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Medical data include various health indicators, such as physiological signals, images,
and treatment histories, providing crucial insights into a patient’s condition and disease
progression. Computer-aided diagnosis (CAD) systems, encompassing detection, seg-
mentation, and classification, have become integral in modern clinical practice, offering
healthcare professionals accurate and efficient diagnostic support. These systems utilize
advanced image-processing techniques to ensure reliable and consistent analysis across
different medical imaging modalities, including CT, MRI, X-ray, and ultrasound. The incor-
poration of artificial intelligence (AI), particularly machine learning and deep learning, has
revolutionized medical imaging by enabling automated disease detection and classification.
However, the development of highly accurate AI models demands large datasets, requiring
specialized expertise in medical data processing and analysis.

Many researchers are considering the impacts of employing AI in enhancing the out-
comes of medical imaging systems. İrem Çetinkaya et al. [1] assessed the performance
of YOLOv8 and the Mask Region Convolutional Neural Network (R-CNN) in detecting
fractured endodontic instruments and root canal treatments (RCTs), comparing their effec-
tiveness with experienced endodontists. They used 1050 periapical radiograph images to
train and evaluate the performance of both models. Their findings were assessed using var-
ious matrices: the accuracy intersection over union (IoU), mean average precision (mAP50),
and inference time. YOLO8 achieved 97.4% accuracy, 98.4% mean precision, and a rapid
interference time of 14.6 ms, whereas Mask R-CNN showed 98.21% accuracy, 95% mean
precision, and 88.4 ms for the interference time. They conclude that both models are appro-
priate for endodontics; however, YOLO is suitable for real-time applications, while Mask
R-CNN is more accurate for pixel-wise segmentation. On the other hand, Se-Yeol Rhyou,
Minyung Yu, and Jae-Chern Yoo [2] propos a novel framework, CSM-FusionNet, to enhance
the detection of hepatocellular carcinoma from ultrasound images, with their model achiev-
ing a promising result in terms of accuracy (97.25%), as well as 100% sensitivity. Taking
a different approach, Ahmet Bozdag et al. [3] propose a content-based image retrieval
(CBIR) model that combines descriptors from three pre-trained CNN structures, namely,
GoogleNet, InceptionV3, and NasNetLarge. They compared performance with two texture-
based methods and six CNN models, utilizing cosine similarity to evaluate the similarity
between them. The proposed CBIR model outperformed six existing models, achieving
an AP (average precision) value of 0.94, demonstrating its effectiveness in detecting gall-
bladder diseases and making ultrasound-based detection more accessible and efficient.

Diagnostics 2025, 15, 1114 https://doi.org/10.3390/diagnostics15091114
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For skin disease detection, Madallah Alruwaili and Mahmood Mohamed [4] explored
the benefits of fused features from three powerful deep learning models, EfficientNet-B0,
EfficientNet-B2, and ResNet50. A fusion mechanism operates by passing the extracted
features through dense and dropout layers, ensuring better generalization and reducing
dimensionality for improved model performance. They obtained a significant result of
99.14% using the 27,153-image Kaggle Skin Diseases Image Dataset. For chest X-ray disease
detection, Yi-Ching Cheng et al. [5] employed results obtained using convolutional neural
networks (CNNs) and Transformer-based models to specify the most effective architecture
for X-ray image analysis. Their outcomes show the effectiveness of CNNs in the detection
of abnormal regions in chest X-ray images.

Several researchers conducted experiments on brain tumor detection and classification.
Alquran et al. [6] employed a modified version of U-Net structures to segment brain tumors
using a huge dataset. The central modifications included the kernel size, the number of
channels, the dropout ratio, and changing the activation function from ReLU to Leaky ReLU.
The obtained global accuracy was 99.4%, with the most important parameter for accuracy,
the Dice similarity, being 90.2%. Deshan Liu [7] focused in their study on brain tumor
segmentation utilizing an enhanced super-pixel technique to precisely cluster pathology
topological blocks, preventing the common issue of the misgrouping of pixels with low
similarity near tumor boundaries. Then, they segmented the entire tumor based on the
topological relationships and weights among these blocks. The validation process was
conducted using the BraTS 2015 dataset and clinical images from 123 patients. The proposed
method achieved high performance, according to the Dice (0.91), Jaccard (0.92), precision
(0.90), and recall (0.91) values, in distinguishing tumors from their surrounding regions.
On the other hand, in their research, Saravanan Srinivasan et al. [8] focused on brain
tumor misdiagnosis, employing three CNN model designs. Their approach achieved high
accuracy in tumor detection (99.53%), classification into five types (93.81%), and grading
(98.56). Their approach was trained and tested on a huge public database to show the
reliability of its use in clinical cases. J. Jebastine [9] investigated brain tumor detection based
on a novel convolution extreme gradient boosting model enhanced through Salp Swarm
Optimization (CEXGB-ESSO). They assessed the rapid growth of specified tumors and their
variability in shape, size, and location, considering issues affecting accurate classification.
Their experiment assessed preprocessed MRI images using bilateral filtration, followed
by deep feature extraction using a CNN where the last traditional fully connected layer
was replaced by the Extreme Gradient Boosting (EXGB) classifier. Enhanced Salp Swarm
Optimization (ESSO) was then employed to optimize the model’s hyperparameters. The
proposed model achieved high performance, with 99% accuracy, 97.52% sensitivity, 98.2%
precision, and 97.7% specificity, revealing its efficiency and reliability in the identification
and classification of brain tumors.

Moreover, kidney stones represent one of the most familiar diseases of the urinary
tract. Traditionally, ultrasound and computed tomography (CT) are the most popular
imaging techniques utilized for people who have chronic kidney pain. Alquran et al. [10]
designed a fully automated system of segmenting 3D kidney structures and evaluating
kidney stones in CT abdominal images; the designed system obtained almost 99% accuracy
for a clinical dataset. Erdal Özbay [11] addresses the increasing need for accurate and
efficient kidney tumor diagnosis, utilizing a deep learning-based approach with a Masked
Autoencoder (MAE) integrated with self-supervised learning and self-distillation (SSLSD-
KTD) to successfully categorize kidney tumors, even with limited data availability. The
model employs local and global attention mechanisms within its encoder–decoder structure
to enhance feature extraction and classification accuracy. It showed remarkable results of
98.04% and 82.14% for accuracy on the KAUH-kidney and CT-kidney datasets, respectively,
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with performance further improving to 99.82% and 95.24% with transfer learning. The
proposed approach could replace traditional diagnostic methods due to its reliability and
robustness. Jorge Gonzalez-Zapata [12] focused on the Guided Deep Metric Learning
(DML) approach to enhancing automated kidney stone detection during ureteroscopy,
specifically for rare stone types with constrained labeled data. Conventional deep learning
methods struggle with such low-data circumstances; therefore, the proposed approach
uses a teacher–student framework inspired by Few-Shot Learning. The teacher model
(GEMINI) constrains the hypothesis space, exploiting a ResNet50 student model to extract
more representative features. The designed experiments conducted on two types of image
datasets—stone surface and section—reveal the method’s remarkable results, showing
10–12% accuracy gains over existing deep learning and deep machine learning.

Several contributions focus on the classification of cervical cancer using medical
images. Alquran et al. [13] enhanced classification accuracy by combining hand craft and
deep features with traditional machine learning classifiers, whereas, in a second work,
they propose Cervical Net [14], which is based on a feature fusion model that surpasses
individual CNNs in recognizing cervical cancer images. Several papers aimed to improve
the utilization of artificial intelligence in medical imaging for the detection and classification
of COVID-19. Amel Imene Hadj Bouzid [15] investigated the effectiveness of widely used
public datasets in training deep learning models to diagnose COVID-19 based on CT
scans, using datasets from 13 countries. Several CNNs, including ResNet, DenseNet, and
EfficientNet, were trained and evaluated through internal cross-validation and external
testing with clinical data. The results emphasize the dilemma of generalization issues
due to variations in acquisition conditions and devices. Transfer learning techniques were
employed, and the most effective models were customized, yielding an enhanced diagnostic
performance in COVID-19 detection. Aboshosha [16] developed an artificial intelligence
framework to diagnose, and develop treatment strategies for, COVID-19 through medical
imagery, highlighting its automation and clinical applicability. Aggarwal et al. [17] review
the most recent developments in COVID-19 image classification employing deep learning,
delineating the key advances, current challenges such as data shortages and variability,
and prospects for enhancing the generalization and robustness of the proposed models
based on previous research perspectives.

In the most recent study, Çağatay Berke Erdaş [18] proposes the use of UNet3+ to
localize colorectal abnormalities, followed by utilizing a Cross-Attention Multi-Scale Vision
Transformer to distinguish between five types of abnormalities. The proposed UNet3+
achieved a Dice coefficient 0.9872, while the classification model outperformed others,
with high accuracy (93.4%) and precision (94.46%). This approach had a great impact in
improving colorectal cancer diagnosis. Moreover, Zhihe Zhao et al. [19] propose a deep
learning-based for classifying colon diseases using endoscopic images. The data were
subjected to preprocessing techniques, and two networks were employed, namely, A_Vit
and MobileNet. Both were trained under the same conditions using the Adam optimizer.
The A_Vit model incorporated MobileNet, achieving 95.76% accuracy and 97.21% recall.

Focusing on prostate cancer, Yao Zheng et al. [20] introduce a weakly supervised
UNet (WSUNet) model that is designed to detect MRI-invisible prostate cancers (MIPCas),
which pose a major challenge due to their similarity to normal tissue on MRI. The research
was conducted with 777 patients: 600 for training and the remainder for evaluating the
performance of the model. Ground truth-labeled prostate biopsies were performed using
an MRI–ultrasound fusion system. The validation process was based on biopsy results,
achieving an AUC of 0.764 and significantly improving the precision by 91.3% (p < 0.01)
compared to traditional biopsy methods. Meanwhile, Zhenzhen Dai et al. [21] analyzed
biparametric MRI (bp-MRI) scans from 262 prostate cancer patients, grouped into three
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cohorts for model development and evaluation. In Cohort 1 (64 patients), histopathology
images were used for precise lesion annotation, split into training, validation, and testing
sets. Cohort 2 (158 patients) underwent bp-MRI-based lesion delineation and was similarly
divided. Cohort 3 included 40 unannotated patients for semi-supervised learning. A
non-local Mask (R-CNN) was utilized and enhanced using various training scenarios. Its
performance was benchmarked against a baseline Mask (R-CNN), 3D U-Net, and expert
radiologist annotations using metrics such as the detection rate, Dice similarity coefficient
(DSC), sensitivity, and Hausdorff Distance (HD), demonstrating its effectiveness in prostate
lesion segmentation. Pablo Cesar Quihui-Rubio et al. [22] introduced FAU-Net, which is a
deep learning model for segmenting prostate zones in MRI images. The proposed model
incorporates additive and feature pyramid attention modules, achieving a mean Dice
similarity index of 84.15% and an intersection of union of 76.9%, outperforming several
other U-Net-based architectures.

Basel Elsayed et al. [23] reviewed the potential of deep learning in the detection of
leukemia in pediatric cases from 2013 to 2023 across various countries, reaching the con-
clusion that artificial intelligence techniques showed effectiveness in achieving a promise
result over conventional methods. Meanwhile, A. Khuzaim Alzahrani et al. [24] present
a deep learning-based framework for the early detection and classification of leukemia.
The proposed model incorporates a novel UNET architecture for segmentation, feature
extraction, and classification. The model was evaluated using four datasets, achieving
promising results, with 97.82% accuracy and a 98.64% F-score. This approach provides a
cost-effective, accurate, and efficient solution that surpasses traditional methods. Morteza
MoradiAmin [25] designed an automated system for accurately diagnosing acute lym-
phoblastic leukemia (ALL), enhancing the images using histogram equalization, segment-
ing nuclei using fuzzy C-means clustering, then classifying six cell types using a cus-
tom convolutional neural network (CNN). The model achieved around 97% classification
accuracy—outperforming VGG-16, DenseNet, and Xception—highlighting its effectiveness
in ALL detection. Moreover, Syed Ijaz Ur Rahman et al. [26] reviewed the most up-to-date
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines
on using AI in ALL detection and classification. Their review focuses on the impact of
early WBC analysis based on blood or bone marrow images and categorizes detection
approaches into image processing, traditional machine learning, and advanced deep learn-
ing models. The review thoroughly evaluates current methodologies and recommends
future research directions to support the advancement of effective, AI-driven leukemia
diagnostic systems. Md Manowarul Islam [27] proposes an AI-based Internet of Medical
Things (IoMT) framework for the automatic detection of acute lymphoblastic leukemia
(ALL) based on peripheral blood smear (PBS) images. Through the integration of deep
learning into cloud-connected microscopic devices, the system transmits PBS images to
a server with a novel fusion model based on a combination of automated features from
VGG16 and DenseNet-121. The training phase used 6512 images from 89 individuals,
and the model achieved outstanding accuracy (99.89%), precision (99.80%), and recall
(99.72%), outperforming existing CNN models. A beta web application simulated this
process, emphasizing its potential in achieving precise early leukemia diagnosis.

In gastrointestinal disease diagnosis, Ejaz Ul Haq et al. [28] addressed the high mortal-
ity rate of gastric cancer by proposing a deep learning-based classification and segmentation
method for endoscopic images. They propose a new model that classifies images into three
categories: normal, early gastric cancer, and advanced gastric cancer. Combining the modi-
fied GoogLeNet, vision transformer (ViT), and Faster R-CNN models, the proposed system
precisely segments and classifies the affected region. The model achieved outstanding
results, with 97.4% accuracy, 97.5% sensitivity, and a 95.9% F1-score for classification and

4



Diagnostics 2025, 15, 1114

96.7% accuracy, 96.6% sensitivity, and an 95.5% F1-score for segmentation. These findings
highlight the impact of the proposed approach in improving gastric cancer diagnosis com-
pared with existing methods. Yiheng Shi et al. [29] conducted a meta-analysis to evaluate
the performance of machine models and clinicians in the early diagnosis of gastric cancer.
Their analysis integrated 21 articles and assessed the sensitivity, specificity, and receiver
operating characteristic (ROC). Machine learning models showed high performance, with a
sensitivity of 0.91, specificity of 0.85, and ROC of 0.94 in the training set, and a sensitivity of
0.90, specificity of 0.90, and ROC of 0.96 in the validation set. Specialist clinicians showed a
better diagnostic performance than non-specialists; however, with the assistance of machine
learning models, non-specialists’ sensitivity significantly improved (0.76 vs. 0.64). This
study concludes that machine learning models can improve diagnostic accuracy, especially
among non-specialist clinicians, providing significant support in the clinical setting in EGC
diagnosis during endoscopy.

Fan Li et al. [30] conducted a large-scale analysis in over 8000 inflammatory bowel
disease (IBD) patients to study how long-term comorbid conditions affected clinical results.
Using hidden class analysis, they recognized patterns of various morbidity in both Crohn’s
disease and ulcerative colitis. They conclude that patients with hypertension and chronic
pain had higher risks of mortality, cardiovascular events, and IBD-related surgeries. Their
results underscore the importance of accounting for comorbidity patterns in IBD treatment
planning. Finally, Chiraag Kulkarni [31] reviews over 80 recent studies employing artificial
intelligence to ulcerative colitis (UC). These studies investigated a range of clinical tasks,
including diagnosis, prognosis, biomarker identification, and complication prediction using
structured and imaging data, employing various methods, such as random forests, support
vector machines, and convolutional neural networks, and assessed their cost-effectiveness
to consider whether these tools could be widely adopted in clinical practice.

In conclusion, the integration of artificial intelligence (AI) and deep learning (DL) into
medical image processing, segmentation, and classification has revolutionized diagnostic
accuracy and efficiency across diverse clinical applications. This Special Issue highlights
groundbreaking advancements, such as YOLOv8 and Mask R-CNN for the real-time
detection of endodontic fractures, U-Net variants achieving over 99% accuracy in brain
tumor segmentation, and hybrid models including CSM-FusionNet for hepatocellular
carcinoma detection in ultrasound images. These innovations underscore the potential of
AI to augment clinical workflows, reduce human error, and enable rapid decision-making,
particularly in resource-constrained settings. However, challenges persist, including the
dependency on large, annotated datasets and the limited generalizability of models across
diverse populations and imaging modalities. Studies in COVID-19 diagnosis revealed
significant performance drops when models trained on public data were tested on external
clinical datasets, emphasizing the need for robust data harmonization and transfer learning
strategies. Additionally, rare disease detection, such as in MRI-invisible prostate cancers
or kidney stones, requires specialized architectures such as WSUNet or SSLSD-KTD to
address data scarcity and anatomical complexity.

Future research should prioritize multi-center collaborations to curate diverse, repre-
sentative datasets and develop lightweight, interpretable models for real-world deployment.
Techniques such as federated learning, few-shot learning, and explainable AI (XAI) could
enhance model transparency and adaptability. Furthermore, the integration of AI into
emerging technologies such as the Internet of Medical Things (IoMT) promises scalable, real-
time diagnostic solutions. By addressing these challenges and fostering interdisciplinary
innovation, AI-driven systems can transition from experimental tools to indispensable
clinical assets, ultimately improving patient outcomes and healthcare accessibility world-
wide. The papers in this Special Issue collectively demonstrate the transformative role of
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AI in medical imaging while charting a roadmap for overcoming existing limitations and
maximizing clinical impacts.
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Abstract: Background/Objectives: Accurate localization of fractured endodontic instru-
ments (FEIs) in periapical radiographs (PAs) remains a significant challenge. This study
aimed to evaluate the performance of YOLOv8 and Mask R-CNN in detecting FEIs and root
canal treatments (RCTs) and compare their diagnostic capabilities with those of experienced
endodontists. Methods: A data set of 1050 annotated PAs was used. Mask R-CNN and
YOLOv8 models were trained and evaluated for FEI and RCT detection. Metrics including
accuracy, intersection over union (IoU), mean average precision at 0.5 IoU (mAP50), and
inference time were analyzed. Observer agreement was assessed using inter-class correla-
tion (ICC), and comparisons were made between AI predictions and human annotations.
Results: YOLOv8 achieved an accuracy of 97.40%, a mAP50 of 98.9%, and an inference time
of 14.6 ms, outperforming Mask R-CNN in speed and mAP50. Mask R-CNN demonstrated
an accuracy of 98.21%, a mAP50 of 95%, and an inference time of 88.7 ms, excelling in
detailed segmentation tasks. Comparative analysis revealed no statistically significant
differences in diagnostic performance between the models and experienced endodontists.
Conclusions: Both YOLOv8 and Mask R-CNN demonstrated high diagnostic accuracy and
reliability, comparable to experienced endodontists. YOLOv8’s rapid detection capabilities
make it particularly suitable for real-time clinical applications, while Mask R-CNN excels
in precise segmentation. This study establishes a strong foundation for integrating AI
into dental diagnostics, offering innovative solutions to improve clinical outcomes. Future
research should address data diversity and explore multimodal imaging for enhanced
diagnostic capabilities.

Keywords: fractured endodontic instruments; root canal therapy; YOLOv8; Mask R-CNN;
Artificial Intelligence; periapical radiography; diagnostic radiology

1. Introduction

The identification and accurate localization of fractured endodontic instruments (FEIs)
in root canal treatment (RCT) represent a significant diagnostic challenge that directly
impacts clinical outcomes. The presence of FEIs obstructs the effective cleaning and dis-
infection of root canals, thereby compromising the success of endodontic therapy. These
challenges point to the critical need for advanced diagnostic techniques to improve preci-
sion and reliability in clinical practice [1].

Radiopaque materials aid in detecting FEIs in empty canals but pose challenges in com-
plete RCT, where FEIs and filling materials share similar radiopacity [2]. Comprehensive

Diagnostics 2025, 15, 653 https://doi.org/10.3390/diagnostics15060653
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studies addressing the radiopacity differences between FEIs and root canal fillings, as well
as the influence of factors such as anatomical superimposition, geometric distortion, and
material-induced artifacts, remain limited in the literature [3]. Advances in digital imaging,
including high-resolution sensors and specialized filters, have improved the visibility of
small instrument fragments. However, detection remains subjective, time-intensive, and
reliant on clinician expertise and image quality [4]. Consequently, alongside advanced diag-
nostic techniques, the integration of artificial intelligence (AI) models presents a promising
approach to improve the accuracy of radiographic examinations and support clinicians in
addressing FEI-related challenges [3].

Radiology provides a direct entry point for AI algorithms in dentistry as its digitally
encoded images facilitate their application. These algorithms effectively identify variations
in tissue density and dental structures, while also detecting and localizing complex features
in medical imaging, improving diagnostic accuracy [5].

Recent advancements in convolutional neural networks (CNNs) have shown signifi-
cant potential in processing large imaging data sets. These algorithms effectively identify
variations in tissue density and dental structures, while also detecting and localizing
complex features in medical imaging, improving diagnostic accuracy [5].

Among these models, Mask R-CNN and YOLO are notable for their unique capa-
bilities. While previous studies have demonstrated the success of both models in object
detection and segmentation tasks [6], these structural differences position Mask R-CNN
as more suitable for tasks requiring detailed object-background differentiation, whereas
YOLOv8’s rapid detection capability offers a distinct advantage in scenarios demanding
quick responses.

Beyond these models, CNNs and long short-term memory networks have recently
been employed for the detection of FEIs, achieving notable success. For instance, CNN-
based models have shown sensitivity of approximately 81% and specificity up to 87% in
identifying FEIs on panoramic images [7]. Similarly, a study employing Mask R-CNN on
PAs achieved a mAP exceeding 98%, highlighting its potential for accurate segmentation
and localisation of fractured instruments [5]. These methods theoretically enhance diag-
nostic efficiency by segmenting and localizing fractured instruments. While the diagnostic
capabilities of AI models are well-documented, the inclusion of observer comparisons
introduces a crucial dimension for assessing their practical applicability in clinical contexts.

The aim of this study is to evaluate the performance of Mask R-CNN and YOLOv8
models in the diagnosis of FEIs and RCTs and to compare their diagnostic capabilities with
those of experienced endodontists, thereby assessing their suitability for clinical application.

2. Materials and Methods

The research protocol was approved by the Non-interventional Clinical Research
Ethical Committee of Trakya University (TÜTF-GOBAEK 2024/384) and was conducted in
accordance with the principles of the Helsinki Declaration. Patient names were excluded,
and all data were anonymized to ensure confidentiality and ethical compliance.

2.1. Data Collection

PAs were selected as the study material due to their accessibility during and after
RCT and their common use in cases with complications. Patients from the Department of
Endodontics at Trakya University who underwent PA examinations were categorized into
the following groups:

(1) FEIs with RCT
(2) FEIs without RCT
(3) Teeth with complete RCT
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(4) Teeth without RCT or FEIs

The radiographic images were captured using a Planmeca Pro X™ 2D intraoral X-ray
unit (Planmeca®, Helsinki, Finland) equipped with a size 2 photostimulable phosphor
plate (PSP) detector. Exposure parameters were standardised at 65 kVp, 7 mA, and 0.2 s.
Images were digitised using the VistaScan Mini Easy system (Dürr, Biertigheim-Bissingen,
Germany), ensuring uniform and reliable imaging quality across all samples.

A total of 396 teeth with FEIs were initially identified, but 16 were excluded for failing
to meet quality standards for PAs. Criteria for quality included adequate resolution, absence
of distortions, and clear visibility of key anatomical landmarks such as the root apex and
canal structure. Radiographs exhibiting artefacts such as cone cuts or motion blurring were
excluded. Additionally, 360 teeth with complete RCT and no instrument fractures, as well
as 310 teeth without RCT or FEIs, were included. All data were standardised to a resolution
of 788 × 612 pixels and stored in PNG format.

2.2. Ground Truth Determination and Observer Agreement

Annotations were performed using an open-source tool (CVAT, version 2.2.0). Two
endodontic specialists, with 3 and 10 years of experience, respectively, annotated each
radiograph for the presence of FEIs and/or RCT using detailed polygonal labelling. Radio-
graphs without these features were left unannotated (Figure 1). To ensure compatibility
with analytical models, polygonal annotations were converted to bounding boxes, as Mask
R-CNN and YOLO algorithms primarily operate using this format. While Mask R-CNN
can generate pixel-level segmentation masks, it first identifies objects using bounding boxes
before applying segmentation. YOLO focuses exclusively on bounding boxes for rapid
detection [8].

Figure 1. Representative examples of Mask R-CNN’s performance on periapical radiographs (PAs)
for detecting fractured endodontic instruments (FEI) and root canal treatments (RCT). The bounding
boxes and associated confidence scores highlight the model’s ability to accurately identify and localize
objects. Panels (A1–E1) represent the ground truth annotations marked with blue boxes for FEI and
red boxes for RCT, while panels (A2–E2) depict the segmentations generated by the Mask R-CNN
model, where FEI is marked with red boxes and RCT with pink boxes.

To ensure high inter-observer reliability and accurate bounding box annotations for
model training, the Inter-Class Correlation (ICC) analysis was applied with a threshold
of 0.9. Radiographs meeting this threshold were considered sufficiently reliable for inclu-
sion in the study. For annotations with ICC values below 0.9, indicating discrepancies
between observers, a re-evaluation process was implemented to address these inconsisten-
cies. This comprehensive approach is particularly important in medical imaging studies,
where precise localization and accurate annotations are essential for model performance
and validity.

In instances where re-evaluation did not resolve disagreements, a third observer was
consulted to finalize the annotations. In cases requiring third observer input, the decision-
making process was guided by predefined criteria. The third observer assessed 11 radio-
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graphs that required further review due to unresolved discrepancies. These disagreements
predominantly arose in images where both RCT and FEIs were present, presenting added
interpretative complexity.

The final data set included 1050 teeth with corresponding annotations, demonstrating
excellent inter-observer agreement and serving as the ground truth for model training.
Among these, FEIs were identified in 37.7% (n = 396), providing a sample size for robust
model evaluation.

2.3. Model Selection and Training

Mask R-CNN was chosen for its ability to delineate precise boundaries, making it
particularly suited for detecting FEIs within complex anatomical structures. Its advanced
segmentation capabilities were advantageous in identifying FEIs within radiopaque areas.
YOLOv8 was selected for its rapid detection capabilities, offering practical benefits for
clinical decision-making [9–11].

Mask R-CNN employs a two-stage segmentation approach for object detection. In
the first stage, the Region Proposal Network (RPN) identifies potential object regions. In
the second stage, these regions undergo further analysis: one layer classifies the object,
another refines the bounding box, and a third generates the binary mask. To enhance
segmentation accuracy, the Region of Interest (RoI) Align layer is utilized [12]. The Mask
R-CNN architecture is shown in Figure 2.

Figure 2. Flowchart of Mask R-CNN architecture. CNN extracts feature maps from the input image.
The Region Proposal Network generates candidate regions, which are processed through RoI (Region
of Interest) Align to ensure accurate spatial alignment. The extracted features are passed through
FC (Fully Connected) layers for classification and bounding box regression. Additionally, Conv
(Convolutional) layers are used for mask prediction.

YOLO processes the entire image in a single pass, simultaneously computing bounding
boxes and class probabilities using a CNN-based architecture. The CNN output is fed into
a prediction stage that determines bounding box coordinates and class probabilities. Due to
its single-pass design, YOLO is optimized for real-time applications, prioritizing speed [13].
The YOLO architecture is shown in Figure 3.

The evaluation was performed on a system featuring a Ryzen 7 5700 x processor,
32 GB RAM, and an RTX 4070 Ti GPU, operating on the Windows platform. The data
set was divided into training (60%), validation (20%), and test (20%) sets, ensuring class
balance across all subsets. Both models were implemented within a structured framework
and trained on a curated set of annotated radiographs to ensure accurate detection and
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localization of FEIs and RCTs. The training process incorporated hyperparameter tuning to
optimize performance.

Figure 3. Flowchart of YOLO architecture.

For YOLOv8, key hyperparameters such as the learning rate (initially set at 0.001),
batch size (set to 32 samples per batch), and intersection over Union (IoU) threshold (fixed
at 0.5) were optimized using a grid search strategy to achieve optimal detection perfor-
mance. Similarly, for Mask R-CNN, the backbone architecture (ResNet-50), the learning rate
schedule (step decay starting at 0.002), and the number of epochs (set to 30) were fine-tuned
to enhance segmentation accuracy. Data augmentation techniques were applied to enhance
model robustness against variations in radiographic quality and noise. These augmen-
tations help the model generalize better by introducing real-world variations commonly
observed in clinical settings, such as horizontal/vertical flipping (50% probability), rotation
(± 15◦ in 10◦ increments), brightness/contrast adjustments (±20%), Gaussian noise, trans-
lation (10% of image size, 10–20% probability), and shear (2◦). Rotation ensures diversity in
image capture angles without excessive distortion, while translation and shear introduce
minor positional shifts reflective of patient or device variability. Flipping leverages dental
symmetry to improve feature representation and data set diversity.

2.4. Box Loss Calculation

During training, box loss was used to evaluate the distance between predicted bound-
ing boxes and ground truth boxes. L1 and L2 losses were used to minimize localization
errors and improve bounding box precision. This metric played a crucial role in refining
model accuracy throughout the training process.

2.5. Follow-Up Analysis

Six months after the initial annotation, the two observers re-evaluated the data set,
and their updated annotations were compared with the predictions of YOLOv8 and Mask
R-CNN using confusion matrices. These matrices facilitated a detailed analysis of true
positive (TP), true negative (TN), false positive (FP), and false negative (FN) across the
classes (FEIs, RCTs, BG), offering insights into observer consistency, model performance,
and areas where the models might face challenges. This comparison provided valuable
metrics for assessing the effectiveness of the models in detecting and classifying these
categories, as well as identifying areas requiring further refinement.
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2.6. Methods for Evaluating Model Effectiveness

These matrices offered insights into the models’ ability to detect FEIs, RCTs, and
background (BG). Key metrics—accuracy, IoU, mAP50, and interference time—are crucial
for assessing model performance in detecting and localizing RCTs and FEIs in PAs. Each is
detailed below.

Accuracy (Equation (1)) measures the proportion of correct predictions, including
both TPs and TNs, out of all predictions made by the model. IoU (Equation (2)), rang-
ing from 0 to 1, was used to measure overlap and assess localization accuracy between
predicted and ground truth bounding boxes. mAP50 (Equation (3)) computes average
precision at an IoU threshold of 0.50, requiring at least 50% overlap for correct detection.
Inference time refers to the time taken by the model to generate a prediction after receiv-
ing input. By selecting mAP50 as evaluation metric, we aim to balance accuracy with
practical applicability, ensuring our models are both effective and deployable in diverse
clinical scenarios.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

IoU =
Area o f Intersection

Area o f Union
(2)

mAP =
1
N ∑N

i=1 APi (3)

2.7. Statistical Analysis

A Z-test was conducted to compare accuracy, IoU, and mAP50 between YOLOv8 and
Mask R-CNN. Given the sufficiently large sample size (n = 1050), the normality assumption
was considered valid. The test was based on the null hypothesis (H0) that no significant
difference exists between the models, while the alternative hypothesis (H1) proposed a sta-
tistically significant difference. A two-tailed Z-test was applied, with statistical significance
set at p < 0.05. All statistical analyses were performed using Microsoft Excel (Microsoft 365,
Version 2501, 64-bit).

3. Results

3.1. Model Performance

The evaluation of YOLO v8 and Mask-R-CNN models revealed consistently high
performance across key metrics, showcasing their suitability for detection and segmentation
tasks (Table 1). Accuracy rates were observed at 97.40% for YOLO v8 and 98.21% for Mask-
R-CNN. Despite the slight numerical advantage of Mask-R-CNN, the difference in accuracy
between the two models was not statistically significant (p = 0.571). Similarly, IoU scores of
both models were remarkably high, with YOLO v8 achieving a perfect score of 100% and
Mask-R-CNN scoring 99%. This difference also lacked statistical significance (p = 0.146),
indicating comparable segmentation precision between the two methods.

In contrast, mAP50 metric highlighted a statistically significant difference (p = 0.020).
YOLO v8 outperformed Mask-R-CNN with a mAP50 of 98.9%, compared to 95% for Mask-
R-CNN, suggesting a superior ability to correctly detect and classify objects across varying
confidence thresholds.

Another notable distinction was observed in computational efficiency, as measured
by interference time. The YOLO v8 model demonstrated a significant advantage in speed,
with an interference time of only 14.6 ms, far surpassing the Mask-R-CNN model’s 88.7 ms.
This substantial reduction in processing time underscores YOLO v8’s potential for real-time
applications, where rapid decision-making is critical.
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Table 1. Comparison of Performance Metrics between YOLO v8 and Mask-R-CNN Models for
Detection and Segmentation.

Accuracy IoU (Intersection Over Union) mAP50 Interference Time

YOLO v8 0.973975 1.00 0.989 14.6 ms

Mask-R-CNN 0.982075 0.99 0.950 88.7 ms

p 0.571 0.146 0.020

3.2. Algorithmic Overview of YOLOv8 and Mask R-CNN

Explainable AI (XAI) techniques were employed to enhance the interpretability and
reliability of object-detection results. Saliency mapping was utilized to identify the most
influential regions contributing to the detection of FEIs, providing valuable insights into
model transparency and robustness. Based on the documentation [14], the Detector-RISE
(D-RISE) saliency algorithm was selected as it aligns with the object-detection approach
used in this study. The results were generated accordingly.

In the saliency map, red areas indicate the regions that contribute most to object recogni-
tion, while blue areas correspond to regions with minimal relevance. Changes and variations
in the red areas are considered to have the highest impact on the decision-making process. In
cases where multiple classes are present in the examples, saliency values are provided for a
single class. Apart from this, saliency graphs can be calculated separately for each value [15].

For YOLO and Mask-R-CNN models, saliency map outputs for FEI and RCT examples
are presented in Figure 4.

Figure 4. Saliency map outputs for FEI and RCT detection using YOLO and Mask R-CNN. (A1–D1)
Raw periapical radiographs, (A2–D2) corresponding saliency maps. (A) YOLO-based saliency map
for FEI detection, (B) YOLO-based saliency map for RCT detection, (C) Mask R-CNN-based saliency
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map for FEI detection, and (D) Mask R-CNN-based saliency map for RCT detection. The red boxes
indicate the regions identified by the models as containing FEI or RCT, highlighting the areas of
interest detected by the respective deep learning approaches.

3.3. Training and Validation Stability

YOLO v8—Box Loss: Both training and validation box loss steadily decreased, ap-
proaching 0.5, indicative of progressive improvements in bounding box predictions. The
close alignment between training and validation losses suggests consistent performance
across data sets and minimal overfitting (Figure 5A).

Figure 5. Comparison of training and validation losses for YOLOv8 (top) and Mask R-CNN (bottom)
models. The YOLOv8 graphs depict box loss (A) and class loss (B), illustrating a steady decrease
in both training and validation losses with minimal divergence, indicating strong generalization
and effective performance in object localization and classification. In contrast, the Mask R-CNN
graph (C) shows the total loss across training and validation, with training loss decreasing rapidly
and validation loss stabilizing with slight fluctuations, reflecting its ability to perform detailed
segmentation tasks. Overall, YOLOv8 demonstrates faster convergence and smoother loss reduction,
while Mask R-CNN exhibits robustness in tasks requiring precise segmentation.

YOLO v8—Class Loss: Class loss decreased rapidly during training, reflecting im-
proved accuracy in classifying objects. The alignment of training and validation losses
demonstrated the model’s robustness and reduced likelihood of overfitting in classification
tasks (Figure 5B).

Mask-R-CNN—Overall Loss: Validation loss peaked early but stabilised rapidly,
indicating improved object localisation and classification accuracy. The close alignment of
training and validation losses highlighted the model’s strong generalisation capabilities
(Figure 5C).
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3.4. Comparative Performance Between Models and Endodontists

The comparative analysis between the models and endodontists revealed no statisti-
cally significant differences, reflecting the consistency and reliability of both human and
machine performance (Table 2). For the FEI F1 score, Endodontist A and Endodontist B
achieved identical values of 0.9947 (p = 1.000). This uniformity extended to comparisons
between Endodontist A and the machine learning models, as no significant differences
were found for either Mask-R-CNN (p = 0.640) or YOLO v8 (p = 0.447). Similarly, En-
dodontist B’s performance did not significantly differ from Mask-R-CNN (p = 0.640) or
YOLO v8 (p = 0.447).

Specifically, the diagnostic accuracy values for Endodontist A and Endodontist B
exhibited slight variations over the 6-month period (Table 2). Accuracy values were as
follows: 0.9947 at the initial assessment and 0.9947 after 6 months for both endodontists,
followed by 0.9944 at both time points. A decrease in diagnostic accuracy was observed in
a particular instance, with values dropping to 0.967 for both endodontists. These findings
suggest a degree of temporal inconsistency in human diagnostic decisions, focusing on the
influence of cognitive and interpretative factors over time.

The RCT F1 score further supported these findings, as no significant differences were
detected among the endodontists or between the models (p > 0.05). These results suggest
that both models perform at a level comparable to experienced practitioners, further
validating their applicability in clinical or research settings.

Within-group comparisons of F1 scores also showed no significant variations across
metrics. For example, the BG metric did not significantly differ from FEI (p = 0.971) or RCT
(p = 0.064). This lack of statistically significant differences across multiple comparisons
indicates a high level of consistency and robustness in both human and model performance.

YOLO v8 and Mask-R-CNN demonstrated performance metrics comparable to skilled
endodontists, with added benefits of automation and scalability. YOLO v8 outperformed
Mask-R-CNN in computational efficiency and mAP50, making it more suitable for high-
speed, accurate applications.
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4. Discussion

This study demonstrates the accuracy and reliability of YOLOv8 and Mask R-CNN
models in detecting and localizing FEIs and RCTs. Both models demonstrated robust
performance, with YOLOv8 and Mask R-CNN effectively identifying all FEI cases while
maintaining minimal error rates in RCT classification. The reported mAP50 scores for
YOLOv8 and Mask R-CNN align closely with results from similar studies [5,16,17], further
validating their potential as clinical diagnostic tools.

Accurate identification of FEIs is crucial for effective treatment planning, particularly
for less experienced clinicians, as their radiopacity often overlaps with that of RCT materials.
A key focus of this study was the challenge of distinguishing between these similarly
radiopaque structures, a topic not extensively explored in prior research [3].

Once a FEI is detected, the treatment approach will depend on the affected tooth and
canal, the location of the instrument separation, the amount of remaining contaminated
material, and the potential damage to the dental structure if removal is attempted [18].
If accessible in the coronal or middle third, retrieval may be attempted using ultrasonic
tips or a specialized device [19]. When removal risks excessive dentin loss or perfora-
tion, bypassing the fragment allows for successful obturation [20]. In apical third cases
where removal is unfeasible, sealing the canal with biocompatible materials minimizes
bacterial leakage and preserves endodontic success [21]. AI-assisted detection enhances
treatment planning by providing precise localization, aiding clinicians in selecting optimal
management strategies [5].

To ensure data set reliability and minimize observer bias, the study employed a strict
methodology, exemplified by a high ICC threshold. By introducing an additional layer
of complexity, this study required the models to differentiate between multiple scenarios
within a single radiograph, including RCT and/or FEIs.

This study utilized YOLOv8 and Mask R-CNN, capitalizing on their respective
strengths and differences in dental diagnostics (Table 3). YOLOv8 exhibited exceptional
performance in rapid detection and classification, achieving a significantly faster inference
time (14.6 ms) and an impressive mAP50 score of 0.989. These attributes may render it
particularly well-suited for real-time clinical applications where both efficiency and accu-
racy are critical. Similarly, Mask R-CNN excelled in precise segmentation tasks, offering
detailed visualization of complex dental structures, albeit with a slower inference time
(88.7 ms). The slower performance of Mask R-CNN compared to YOLOv8 is not surprising,
as Mask R-CNN involves more complex processes, including region proposal generation
and pixel-wise segmentation, whereas YOLOv8 is optimized for real-time detection with
a single network pass [16,22]. The performance of the models was further assessed by
analyzing TP, FP, and FN values for both YOLO and Mask R-CNN, whereas TN values were
omitted, as examples without annotations were considered unnecessary (Supplementary
Materials, Figures S1 and S2).

A notable finding in this study was the statistically significant difference in mAP50 be-
tween the models, emphasizing YOLOv8’s strength in detection accuracy. Future research
may benefit from integrating mAP50 with complementary metrics to provide a more com-
prehensive understanding of model performance across varying scenarios. Additionally,
exploring the impact of alternative IoU thresholds could further enhance the adaptability
of object-detection systems [23,24].

While mAP50 was the only metric showing a statistically significant difference, this
finding should be considered alongside other performance metrics to ensure a holistic
evaluation of model capabilities. Different metrics reveal distinct capabilities of models
and play equally critical roles in determining their suitability for specific clinical applica-
tions. The results underscore the importance of adopting multidimensional evaluation
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frameworks to fully understand the trade-offs between speed, accuracy, and precision in
object-detection models.

Table 3. Comparison of YOLOv8 and Mask R-CNN in Object Detection and Segmentation.

Feature YOLOv8 Mask R-CNN

Detection Architecture
Single-stage detector that
processes the entire image

in a single pass.

Two-stage detector that
first generates region

proposals and then refines
detections and segments

objects.

Network Architecture

Uses a CNN backbone
with a unified prediction
head for bounding boxes
and class probabilities.

Utilizes a CNN backbone
with a Region Proposal

Network (RPN), followed
by RoI Align and separate
branches for classification,
box regression, and mask

prediction.

Computational Efficiency

Optimized for speed and
efficiency, making it
suitable for real-time

applications.

More computationally
demanding due to its

two-stage process, leading
to higher precision but

slower inference.

Detection and
Segmentation Output

Outputs bounding boxes
and class scores, with
instance segmentation

added after v8.

Produces bounding boxes,
class labels, and masks for
pixel-level segmentation.

Numerous studies highlight the effectiveness of YOLOv8 and Mask R-CNN in de-
tecting and segmenting pathologies in dental radiographs. YOLOv8 has achieved 77.03%
accuracy in classifying periodontal diseases in bitewing radiographs and 75% in PAs [25],
while our study demonstrated a significantly higher accuracy of 97.4% in detecting FEIs.
Similarly, the YOLOv8 m model attained 90% accuracy in diagnosing dental diseases from
bitewing and orthopantomographic images, aligning with our findings [22]. Additionally,
YOLOv8 reached 95.2% accuracy and 97.5% mAP50 in segmenting mandibular radiolucent
lesions, comparable to our results [16]. A study has shown that while CNNs achieve higher
classification performance, YOLOv8 exhibits a trade-off between speed and accuracy, with
lower F1 scores in detecting apical and peri-endo combined lesions [26]. Additionally,
research on the automated detection of dental conditions using YOLOv8 has reported pre-
cision and recall values exceeding 80%. However, its performance declines when applied
to external data sets, highlighting challenges in generalizability [24].

Mask R-CNN studies underline its reliability in segmentation and anomaly detection.
Wang et al. (2024) integrated Mask R-CNN with a neural network classifier for diagnosing
periapical diseases, achieving a pixel accuracy exceeding 97% [27]. An attention-enhanced
Mask R-CNN achieved 79.5% accuracy [28], similar to the accuracy observed in our FEI
detection. Other studies reported 75–80% accuracy in identifying dental caries and peri-
odontitis, highlighting its utility in dental radiographic analysis [29,30]. For FEI detection in
PAs, Mask R-CNN achieved 98.8 mAP, 95.2% accuracy, and 97% F1 scores, closely aligning
with our findings [5]. Furthermore, it demonstrated 100% accuracy and 97.49 mAP in tooth
segmentation and numbering, underscoring its precision and clinical applicability [17].

The comparative analysis between endodontists and AI models revealed comparable
levels of diagnostic accuracy, with both achieving high performance metrics. However,
a notable finding was the variation observed in the diagnoses made by endodontists after
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a 6-month interval compared to their initial assessments. These results indicate that while
endodontists and AI models demonstrated comparable diagnostic accuracy, temporal vari-
ability was evident in endodontists’ assessments over a 6-month period. This fluctuation
suggests the influence of cognitive and interpretative factors over time. Such variability
may be attributed to memory effects, evolving clinical judgment, or shifts in diagnostic
perception. These results highlight the inherent subjectivity in human interpretation and
underscore the need for standardized evaluation protocols to enhance diagnostic consis-
tency and reliability in endodontic practice. This highlights the potential for variability in
human interpretations over time, likely influenced by memory effects, shifts in judgment,
or changes in clinical interpretation.

Specifically, while the overall F1 scores of the endodontists remained high, minor
discrepancies were identified in certain cases, particularly in the interpretation of FEIs.
This variability emphasizes the inherent subjectivity and temporal variability of human
diagnoses, even among experienced practitioners.

In contrast, YOLOv8 and Mask R-CNN demonstrated consistent diagnostic perfor-
mance over the same data set, unaffected by temporal or cognitive factors. This consistency
highlights one of the key advantages of AI systems: their ability to provide stable and
reproducible diagnostic outcomes, free from the influence of human-related factors such as
fatigue or shifting perceptions.

These findings suggest that a combined approach leveraging both AI models and
human expertise could enhance diagnostic accuracy. AI models can serve as reliable
and consistent second opinions, helping to mitigate variability in human diagnoses and
ensuring a more robust diagnostic process over time.

Despite the high success rate, certain limitations must be acknowledged. The relatively
low prevalence of FEIs (37.7%) constrains the data set size, potentially limiting the models’
robustness in real-world applications. However, this limitation reflects the fact that FEIs
are relatively rare in clinical settings, which inherently affects data set composition [1].
Additionally, noise and artifacts in PAs, such as anatomical superimpositions and material
distortions, present challenges for accurate detection and localization. These limitations
emphasize the need for enhanced data quality and more robust training strategies to
improve model performance under diverse clinical conditions.

AI, shaped by training data, can reflect inherent biases, necessitating human oversight
to ensure fairness. While transparency fosters trust, it also poses privacy risks, highlighting
the need for a balance between openness and data protection [31,32]. A significant challenge
lies in bridging the gap between AI research and clinical application, as most studies remain
experimental. The absence of standardized data protocols and inconsistent labeling further
exacerbate biases, limiting AI’s reliability in clinical settings [33,34]. Reliance on AI as a
stand-alone diagnostic system without oversight is ethically contentious and may have legal
implications. Addressing these concerns requires clinicians to ensure patient safety, acquire
ethical AI usage skills, and advocate for robust legal frameworks to guide AI integration [32].
Ultimately, developing unbiased, transparent AI systems with robust human oversight is
essential for ensuring ethical implementation and maximizing clinical utility.

Future research should focus on expanding the data set to include a more diverse
range of clinical cases. Additionally, integrating multimodal imaging techniques, such as
combining PA with cone-beam computed tomography or panoramic radiographs, could
provide a more comprehensive diagnostic framework. Exploring the potential of ensemble
learning by combining YOLOv8 with advanced segmentation models could further enhance
detection and localization performance. This study establishes a strong foundation for
the clinical application of YOLOv8 and Mask R-CNN in dental diagnostics. Addressing
the outlined limitations and expanding future research will be vital to fully realizing
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their potential across diverse clinical contexts. Such future research will contribute to the
transformative and innovative impact of AI in dentistry.

5. Conclusions

This study demonstrates the clinical potential of YOLOv8 and Mask R-CNN in de-
tecting and localizing FEIs and RCTs with high accuracy and reliability. By leveraging
the complementary strengths of these models—YOLOv8 for rapid detection and Mask
R-CNN for precise segmentation—the research provides a robust framework for integrating
advanced AI models into routine dental diagnostics. The inclusion of observer comparisons
further demonstrates the practical applicability of these AI models by benchmarking their
performance against clinician expertise.

This study serves as a step forward in the integration of AI into dental practice,
offering innovative solutions to long-standing diagnostic challenges. Integrating these
models into clinical workflows can enhance treatment planning and patient outcomes,
particularly for less experienced clinicians. Expanding research in this field will be critical
for maximizing the transformative potential of AI in dentistry and ensuring its ethical and
effective implementation in diverse clinical settings.
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Software, İ.Ç., E.D.Ç., and E.Ö.; Validation, E.Ö.; Formal analysis, İ.Ç., E.D.Ç., and E.Ö.; Investigation,
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draft preparation, İ.Ç. and E.D.Ç.; Writing—review and editing, İ.Ç. and E.D.Ç.; Visualization, E.Ö.;
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RPN Region Proposal Network
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FC Fully Connected
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Lower Jaw on Panoramic Radiographs Using Deep Neural Networks. Medicina 2023, 59, 2138. [CrossRef]

17. Tekin, B.Y.; Ozcan, C.; Pekince, A.; Yasa, Y. An enhanced tooth segmentation and numbering according to FDI notation in bitewing
radiographs. Comput. Biol. Med. 2022, 146, 105547.

18. McGuigan, M.; Louca, C.; Duncan, H. Clinical decision-making after endodontic instrument fracture. Br. Dent. J. 2013, 214,
395–400. [CrossRef]

19. Souyave, L.; Inglis, A.; Alcalay, M. Removal of fractured endodontic instruments using ultrasonics. Br. Dent. J. 1985, 159, 251–253.
[CrossRef]

20. Souter, N.J.; Messer, H.H. Complications associated with fractured file removal using an ultrasonic technique. J. Endod. 2005, 31,
450–452. [CrossRef]

21. Hülsmann, M.; Schinkel, I. Influence of several factors on the success or failure of removal of fractured instruments from the root
canal. Dent. Traumatol. 1999, 15, 252–258. [CrossRef]

22



Diagnostics 2025, 15, 653

22. Razaghi, M.; Komleh, H.E.; Dehghani, F.; Shahidi, Z. Innovative Diagnosis of Dental Diseases Using YOLO V8 Deep Learning
Model. In Proceedings of the 2024 13th Iranian/3rd International Machine Vision and Image Processing Conference (MVIP),
Tehran, Iran, 6–7 March 2024.

23. Çelik, B.; Çelik, M.E. Root dilaceration using deep learning: A diagnostic approach. Appl. Sci. 2023, 13, 8260. [CrossRef]
24. Mures, anu, S.; Hedes, iu, M.; Iacob, L.; Eftimie, R.; Olariu, E.; Dinu, C.; Jacobs, R.; on behalf of Team Project Group. Automating

Dental Condition Detection on Panoramic Radiographs: Challenges, Pitfalls, and Opportunities. Diagnostics 2024, 14, 2336.
[CrossRef]
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Abstract: Background/Objectives: Ultrasound (US) imaging plays a crucial role in the
early detection and treatment of hepatocellular carcinoma (HCC). However, challenges
such as speckle noise, low contrast, and diverse lesion morphology hinder its diagnostic
accuracy. Methods: To address these issues, we propose CSM-FusionNet, a novel frame-
work that integrates clustering, SoftMax-weighted Box Fusion (SM-WBF), and padding.
Using raw US images from a leading hospital, Samsung Medical Center (SMC), we applied
intensity adjustment, adaptive histogram equalization, low-pass, and high-pass filters
to reduce noise and enhance resolution. Data augmentation generated ten images per
one raw US image, allowing the training of 10 YOLOv8 networks. The mAP@0.5 of each
network was used as SoftMax-derived weights in SM-WBF. Threshold-lowered bounding
boxes were clustered using Density-Based Spatial Clustering of Applications with Noise
(DBSCAN), and outliers were managed within clusters. SM-WBF reduced redundant boxes,
and padding enriched features, improving classification accuracy. Results: The accuracy
improved from 82.48% to 97.58% with sensitivity reaching 100%. The framework increased
lesion detection accuracy from 56.11% to 95.56% after clustering and SM-WBF. Conclusions:

CSM-FusionNet demonstrates the potential to significantly improve diagnostic reliability
in US-based lesion detection, aiding precise clinical decision-making.

Keywords: hepatocellular carcinoma; ultrasound; SoftMax-weighted box fusion; clustering;
CNN; deep learning

1. Introduction

Liver cancer is a major cause of cancer-related mortality [1–3], ranking as the third lead-
ing cause of cancer deaths worldwide in 2022, with 865,000 new cases and 757,948 deaths
reported [4]. Particularly, primary liver cancer is predominantly composed of HCC [5],
which accounts for 75–85% of cases, and intrahepatic cholangiocarcinoma, representing
10–15%. Globally, chronic infection with HBV or HCV is associated with 21% to 55% of
HCC cases [6,7]. The high mortality rate of liver cancer can be attributed to its late-stage
detection, which significantly limits therapeutic options and reduces the likelihood of
favorable outcomes [8,9]. Luckily, early identification of HCC allows for surgical resection,
providing a favorable prognosis, with 5-year survival rates exceeding 70% [10,11]. There-
fore, regular HCC screening is essential for individuals at risk to ensure early detection of
HCC [12–14].

Among screening methods for HCC, ultrasonography is a non-invasive, cost-effective,
and widely accessible imaging technique that provides real-time liver visualization without
ionizing radiation [15]. These attributes make it ideal for regular screening and surveillance
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in high-risk populations, particularly in low- and middle-income countries where liver can-
cer incidence is disproportionately high [16,17]. Despite its advantages, the efficacy of US
depends on the operator’s expertise and the quality of the equipment [18–21]. Additionally,
the detection of small lesions (<2 cm) remains challenging, necessitating complementary
methods such as serum biomarkers or advanced imaging techniques for confirmatory
diagnosis [22].

Nevertheless, combining ultrasonography with other non-invasive approaches holds
significant potential for improving the early detection of liver cancer. Advanced imaging
techniques are currently being developed to improve the detectability of HCC and enhance
the characterization of HCC nodules [23–25]. Recently, emerging artificial intelligence
technologies, featuring powerful brain-like algorithms in the field of medical imaging,
have significantly contributed to improving the accuracy of diagnoses [13–19]. Numerous
artificial intelligence approaches based on deep learning have been proposed to address
the challenges [26–32] and issues related to ultrasonography diagnostic accuracy of HCC
as well as the expertise required [33–37].

Ryu et al. (2021) [33] proposed a joint segmentation and classification system for hep-
atic lesions in ultrasound images, utilizing a shared encoder with two branches. The input
combined a grayscale image with Euclidean distance maps of foreground and background
clicks provided by the user. The system achieved 89.8% accuracy for classification and 90.4%
accuracy for joint segmentation and classification. The segmentation network employed
bilinear interpolation for upsampling, reducing parameters and mitigating overfitting
compared to FCNs. The classification branch, based on a VGG-16 architecture, predicted
lesion types from shared convolutional features. While the integration of segmentation and
classification demonstrated potential, the performance exhibited limitations, particularly in
fully leveraging joint learning. The approach highlights the challenges of combining these
tasks effectively in medical imaging.

Zhao et al. (2023) [34] developed a lightweight neural network, USC-Enet, designed
for small-scale medical image datasets, incorporating an attention mechanism to address
overfitting issues common with small datasets. Using 2168 images, the model achieved a
sensitivity of 0.915. To improve performance, the study streamlined the network structure
for transfer learning, reduced network parameters to prevent overfitting, and combined
image features with clinical data using a random forest classifier. This end-to-end model
integrated Convolutional Neural Network (CNN) feature maps with clinical data, such
as age, gender, hepatitis history, and tumor markers like alpha-fetoprotein, but sensitivity
score remains suboptimal.

Poreddy et al. (2024) [35] proposed a classification model for focal liver lesions
by applying the discrete Haar wavelet transform to each frame of a focal liver lesions
video, decomposing each frame into multiple subbands. Singular value decomposition
was performed on each subband, and the maximum value among the columns of the
Singular Value Decomposition matrices was extracted as a frame-level statistical feature.
These features were averaged across all video frames and fed into a decision tree classifier.
Experimental results achieved an accuracy of 97.18%, surpassing conventional methods.
The authors chose the decision tree due to its robustness on small datasets and ability to
capture simple relationships without overfitting, leading to superior performance compared
to other classifiers.

Chaiteerakij et al. (2024) [36], in a retrospective study using 26,288 ultrasound images
from 5444 patients, developed and evaluated an AI-assisted system for detecting and
classifying seven types of focal liver lesions, including HCC. They employed YOLOv5,
which predicts multiple bounding boxes per grid cell to handle objects of varying sizes and
aspect ratios. To remove duplicates, non-maximum suppression was applied, retaining
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only the bounding box with the highest confidence score in each group. By integrating
YOLOv5 with the Darknet architecture and Cross-Stage Hierarchical Networks (CSPNet),
and pretraining on the COCO dataset, the system achieved an 84% detection rate for HCC
(among all lesions) and an overall accuracy of 94%. Despite its high performance, the
model’s computational complexity may limit its adoption in healthcare settings where
computing resources are constrained.

In this study, we present CSM-FusionNet, a novel deep learning-based fusion model
designed to integrate Clustering, SoftMax-weighted Box Fusion, and Mixture of Experts.
The proposed framework is structured around four core functionalities, each contributing
distinct advantages to the overall system. A concise description of these components is
provided below to highlight their specific roles and significance within the network.

1. Image Preprocessing: Due to the inherent characteristics of US images, significant
speckle noise and variations in resolution arise depending on device settings. To
address these issues, four distinct image processing filters were applied to reduce
noise and accommodate diverse resolutions. This approach also facilitated data
augmentation, expanding a single US image into ten variations for enhanced training
and analysis.

2. Lesion Detection with YOLOv8: To detect lesions within the liver region, we utilized
YOLOv8, one of the most widely adopted object detection models. By leveraging the
ten augmented US images, we constructed ten individual object detection networks.
The mAP@0.5 of each network was measured to serve as weights for the subsequent
bounding box fusion process.

3. Bounding Box Optimization: This stage represents the most technically complex
and critical component of the framework. A low detection threshold is applied
across the ten networks to generate multiple bounding boxes for regions suspected
of containing lesions. Clustering is then performed on the resulting bounding boxes
to identify distinct lesion-distributed regions. Subsequently, these multiple boxes
are consolidated into a single representative box for each region using SM-WBF, an
adaptation of the Weighted Box Fusion (WBF) method tailored to our approach. To
mitigate potential information loss during the fusion process, padding is applied to
each final bounding box as a concluding step.

4. Lesion Classification: The bounding boxes generated through the optimization pro-
cess are ultimately classified into three categories: benign, malignant, and error. Each
US image may yield one or multiple lesion boxes, all of which are subjected to classi-
fication. Among the classified results, boxes labeled as “error” are disregarded. In
cases where both benign and malignant classifications are present within the same
image, the lesion is conservatively categorized as malignant to prioritize diagnos-
tic sensitivity.

Our technology holds the potential to achieve high accuracy and efficiency in the
detection and analysis of lesions using ultrasound imaging. By employing advanced
fusion techniques, such as SM-WBF and clustering algorithms, the system integrates
information from multiple networks to deliver reliable diagnostic results. This enables
healthcare professionals to detect even subtle lesions, reduces diagnostic time, and supports
optimal decision-making for personalized treatment. Furthermore, the automated nature
of the technology enhances resource efficiency and enables precise diagnostics even in
regions with limited medical infrastructure, thereby improving healthcare accessibility.
Ultimately, this innovation emphasizes the importance of early diagnosis and preventive
care, contributing to increased patient survival rates and improved quality of life.
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2. Materials and Methods

2.1. Dataset Preparation

The liver US images used in this study were acquired using the Siemens ACUSON
Sequoia 512 system (Siemens Healthineers, Erlangen, Germany), which operates at a
frequency range of 3 to6 MHz, with 256 gray levels and a maximum depth of 36 cm. These
images were collected under data use agreements and approved by the Institutional Review
Board (IRB) of SMC, one of South Korea’s leading hospitals (SMC-2020-10-178-002). The
dataset was annotated with two categories: benign and malignant. Since accurate diagnosis
using only US images is challenging, the final labels were determined by SMC’s expert
physicians after completing all necessary diagnostic procedures, including CT, MRI, and
biopsy. The annotation for each patient’s US images was based on these comprehensive
findings. Given the goal of our study to develop a screening tool, lesions were categorized
simply into benign or malignant, rather than employing more granular labeling. Figure 1
provides examples of benign and malignant cases from our dataset.

Figure 1. Example of US images from dataset. (a) Benign, (b) Malignant.

The dataset consisted of a total of 1054 ultrasound images, collected from patients
aged 48 to 82 years. Among these, 746 images were labeled as benign, and 308 images were
labeled as malignant. For model development and evaluation, the dataset was divided into
training, validation, and test sets in a 6:2:2 ratio.

2.2. Proposed Deep Learning Neural Network: CSM-FusionNet

As illustrated in Figure 2, this flowchart outlines the framework of our proposed net-
work, CSM-FusionNet. The input images are US images collected from SMC. These images
undergo preprocessing to address the dynamic options and characteristics of US equipment.
To this end, we applied a combination of filters, including a low-pass Gaussian filter, a
high-pass sharpening spatial filter, an intensity adjustment filter, and an adaptive histogram
equalization filter. By combining these filters, each original image was augmented into
ten variations, which were then processed through ten distinct object detection models to
identify potential lesions. The resulting detections produced numerous bounding boxes,
requiring an ensemble approach to identify the true lesion locations. To achieve this, we uti-
lized DBSCAN, a clustering algorithm, and a gate network inspired by Mixture of Experts,
to perform SM-WBF. This process refined the bounding boxes to isolate regions most likely
to contain actual lesions. During clustering, bounding boxes significantly larger or smaller
than the average size of their respective clusters were filtered out as outliers. The detected
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lesions were then classified using a CNN, categorizing each into benign, malignant, or error
classes. The error class was specifically introduced to exclude incorrectly detected lesions.
This comprehensive approach allows the system to effectively handle the inherent diversity
of US images while maintaining high diagnostic accuracy.

 
Figure 2. Flowchart of our proposed network: CSM-FusionNet.

Section 2.3 describes the method for generating ten augmented images from a single
ultrasound image using a combination of preprocessing filters. In Section 2.4, the process
of lesion detection is outlined, where each of the ten augmented images is analyzed
using individual object detection models, and the mAP@0.5 values for each network are
calculated. Section 2.5 explains the normalization of weights based on the mAP@0.5 values
and introduces the clustering-based SM-WBF method for optimizing bounding boxes.
Finally, Section 2.6 details the lesion classification process, where the refined bounding
boxes are categorized into benign, malignant, or error classes.

2.3. Dataset Preprocessing

The preprocessing of US images is the first step in our framework. Due to the inherent
characteristics of ultrasound equipment, US images often contain noise and exhibit varying
resolutions depending on dynamic settings. To generalize these differences, we applied
multiple filters to augment the images. A total of four filters were used, with alpha and beta
values incorporated for preprocessing. First, a contrast enhancement process was applied
using the intensity adjustment filter and adaptive histogram equalization filter, generating
two images from the original US image. Additionally, low-pass and high-pass filters were
applied, with variations introduced through alpha and beta values, resulting in two distinct
images for each filter type. By combining these four filters, a total of ten augmented images
were generated. Further details of this process are illustrated in Figure 3.

As shown in Figure 3, the images processed with the high-pass filter appeared signif-
icantly sharper, while those processed with the low-pass filter exhibited a more blurred
effect compared to the original image. This approach allowed us to effectively handle
variations in resolution and depth differences inherent in ultrasound imaging. The alpha
and beta values used for preprocessing were set empirically, with 1.5 and 0.5 selected
during our experiments.
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Figure 3. The original US image serves as the input image, and through the application of four
distinct filters combined with alpha and beta values, a total of ten augmented images are generated.

2.4. Lesion Detect with YOLOv8

Since ultrasound imaging is frequently used for real-time diagnostics, fast lesion detec-
tion is crucial. YOLOv8 offers a more lightweight architecture and optimized computation
compared to YOLOv5, enabling faster inference speed. For this reason, we chose YOLOv8
for our approach. As illustrated in Figure 4, we employed YOLOv8 to develop the lesion
detector and trained a total of ten networks using ten different datasets. A low threshold
was applied during the detection process to generate a larger number of bounding boxes.
While a higher threshold might improve accuracy metrics, it often results in missing smaller
lesions, particularly those in early stages, or lesions that deviate significantly from the
average size. Such omissions would render the system less effective in clinical applications,
despite high accuracy metrics. By applying a lower threshold, each network produced
between zero and five bounding boxes, which were then utilized in the subsequent steps.

 

Figure 4. Lesion suspected regions, green bounding box, detected by YOLOv8.

2.5. Bounding Box Optimization by Clustering, SM-WBF and Padding

In Section 2.4, numerous bounding boxes are generated by ten YOLOv8 networks.
These bounding boxes may focus on a single location, concentrate on multiple areas, or,
in some cases, fail to detect any region. To address all these scenarios, clustering was
employed to identify regions where bounding boxes are concentrated, followed by an
ensemble process to consolidate multiple boxes into a single representative box for each
region. The detailed methodology is outlined as follows.
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2.5.1. Clustering Using DBSCAN

When utilizing multiple networks for bounding box detection, issues arise where
bounding boxes for the same object may be generated in slightly different locations or
where multiple overlapping boxes are created. In this study, ten networks were employed,
and a low threshold was set to enhance detection sensitivity. This approach resulted in a
significant number of overlapping bounding boxes. To address this, DBSCAN was applied
for clustering. DBSCAN is a density-based clustering algorithm that groups closely located
bounding boxes into clusters based on their center coordinates (xcenter, ycenter). Bounding
boxes that are sufficiently close are assigned to the same cluster, while in traditional
DBSCAN, boxes in sparsely populated areas would be considered noise. However, in
this study, such boxes are treated as important data and reassigned to new clusters. For
clustering, the distance criterion (eps) was set to 0.1, and the minimum number of samples
was set to 1 to ensure that at least one bounding box could form a cluster.

As a result, each cluster contained between one and five bounding boxes. Unlike
traditional DBSCAN, all bounding boxes, including those that might be classified as noise,
were retained as clusters for further analysis. The clustered results were then passed to the
next stage of the process.

2.5.2. Calculate SoftMax Weights Based on the mAP@0.5 Score

To integrate the bounding box detection results, this study employed a Mixture of
Experts (MoE) approach to calculate weights that reflect the performance of each network.
MoE combines the outputs of multiple expert models to produce optimal results, with a
mechanism that dynamically adjusts the contribution of each expert. The performance of
each expert is evaluated based on its reliability and relevance to the problem, maximizing
the quality of the outcome.

In this study, the metric used to quantify the importance of each expert was the
mAP@0.5 (Mean Average Precision at Intersection of Union (IoU) threshold 0.5) of each
network. This metric provides a numerical representation of detection performance, where
a higher mAP value indicates more reliable results. However, directly using mAP values
does not effectively capture the non-linear differences in performance across networks.
To address this, SoftMax normalization was applied to dynamically compute the relative
importance of each network.

SoftMax normalization is closely aligned with the expert selection mechanism in MoE.
By reflecting performance differences among networks, it ensures that higher-performing
networks contribute more significantly to the final detection results. This approach effec-
tively implements the principles of MoE, leveraging SoftMax to prioritize networks that
generate more accurate and reliable predictions.

i. Performance-based weight assignment reflects the relative performance differences
among networks, ensuring that networks with higher mAP values are assigned
greater importance.

ii. Expressing normalized contribution normalizes the weights of all networks, clearly
illustrating the relative contributions of each network to the outcome.

iii. Non-linear influence enhancement amplifies the contribution of high-performing
networks non-linearly as the performance gap increases, ensuring a stronger influence
from superior networks.
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The SoftMax weights calculated in this manner are applied to the bounding box
detection integration process based on the expert selection principle of the MoE. SoftMax
normalization is defined by the following equation:

So f tMax_wi =
emAPi

∑N
j=1 emAPj

(1)

where N is the total number of YOLO networks.

2.5.3. Filter out Outlier Bounding Boxes

We employed ten networks and lowered the detection threshold to identify all regions
suspected of being lesions. As a result, the bounding box detection outputs may include
outliers that are either excessively large or small. Such outliers significantly deviate from
the average size of their respective clusters and can reduce the reliability of the results. To
address this, the bounding boxes within each cluster were refined based on their dimensions,
removing those identified as outliers before proceeding to the integration process. Outlier
removal was performed using the width and height of the bounding boxes within each
cluster. Bounding boxes that deviated beyond a predefined outlier threshold from the
average size were excluded. This process minimized the impact of extreme values on
the subsequent SoftMax-weighted box fusion, thereby improving the quality of the final
bounding boxes. Specifically, the average width and height of the bounding boxes in each
cluster were defined as w and h, respectively. A bounding box with width w and height h
was considered valid if it satisfied the following conditions:

(1 − threshold)× w ≤ w < (1 + threshold)× w, (1 − threshold)× h ≤ h < (1 + threshold)× h (2)

where the threshold represents the allowable deviation ratio, set to 0.5 in this study.
Through this process, outliers were removed from all bounding boxes within each

cluster, and the refined data were used in the subsequent integration stage. This outlier
removal step is essential to ensure the reliability and accuracy of the results by preventing
size distortions in bounding boxes and producing more consistent outcomes.

2.5.4. Bounding Box Fusion with SM-WBF

After clustering the bounding box detection results and removing outlier boxes, SM-
WBF is applied to generate a single representative box for each cluster. This method
focuses on merging the bounding boxes within each cluster identified through DBSCAN
in Section 2.5.1, removing redundancies, and producing an optimal result. SM-WBF
specifically incorporates the SoftMax weights calculated in the earlier stage to implement a
fusion strategy that reflects the performance of each network.

SM-WBF computes the weighted average of the center coordinates (xcenter, ycenter) and
the dimensions (width w, height h) of each bounding box, using the SoftMax weights. This
ensures that the detection results from networks with higher mAP values have a greater
influence on the final box. By incorporating SoftMax normalization, the relative importance
of all networks is considered, closely aligning with the expert selection mechanism of MoE.
Unlike traditional WBF methods, which rely on confidence scores, our approach treats all
detected bounding boxes as equally valid, excluding confidence scores from the fusion
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process. During the box integration process, the coordinates and dimensions of the boxes
within each cluster are computed using the following equations:

x̂center =
∑N

i=1 So f tMax_wi×xcenter,i

∑N
i=1 So f tMax_wi

, ŷcenter =
∑N

i=1 So f tMax_wi×ycenter,i

∑N
i=1 So f tMax_wi

ˆwidth = ∑N
i=1 So f tMax_wi×widthi

∑N
i=1 So f tMax_wi

, ˆheight = ∑N
i=1 So f tMax_wi×heighti

∑N
i=1 So f tMax_wi

(3)

where x̂center and ŷcenter represent the center coordinates of the integrated representative
bounding box, and ˆwidth and ˆheight denote the width and height of the integrated box. N
is the number of bounding boxes within the cluster. So f tMax_wi is the SoftMax weight
calculated in the previous step, and xcenter, ycenter, widthi, heighti are the coordinates and
dimensions of the i-th bounding box within the cluster.

The key innovation of the proposed SM-WBF method lies in the application of mAP-
based SoftMax weights, ensuring that the results from higher-performing networks con-
tribute more significantly to the final bounding box computation. This approach minimizes
the influence of incorrect detections from lower-performing networks while optimizing
the result by comprehensively integrating the information from all bounding boxes within
a cluster. By incorporating the principles of MoE, the method bases its final decisions
on the relative reliability of each expert model (network), thereby enhancing the overall
accuracy of the results. The representative bounding box generated through this process is
subsequently used in the next stages, including outlier removal and padding application,
to further refine the detection outcome.

2.5.5. Add Padding to Bounding Boxes

In ultrasound imaging, the contrast between the tumor contour and the surrounding
liver tissue provides critical clinical information. Therefore, preserving the detected tumor
boundary is essential for accurate analysis and diagnosis. However, during the process
of generating bounding boxes through clustering, there is a risk of partially cropping the
tumor boundary, which can undermine the reliability of the detection results. To prevent
this and retain additional information, such as color contrast around the tumor, padding
was applied to the bounding boxes.

Padding involves extending the boundaries of the bounding box to include the de-
tected object and its surrounding area. The padding size was defined in pixel units, and
the YOLO-format bounding boxes were converted into pixel coordinates to facilitate the
process. After extending each boundary by a specified number of pixels, the padded
bounding box was converted back to the YOLO format to maintain compatibility with the
detection system. Padding was applied using the following formula:

xle f t = xmin − p, xright = xmax + p, yle f t = ymin − p, yle f t = ymax + p (4)

where xmin, xmax, ymin, ymax represent the original bounding box coordinates, and p
denotes the number of pixels added to each boundary.

The padding size was optimized based on the characteristics of ultrasound imaging
and the requirements for tumor analysis. By applying padding, the bounding box en-
compassed not only the detected object’s boundaries but also its surrounding tissue. This
approach preserved essential information for analyzing the contrast between the tumor
boundary and the liver tissue, preventing boundary loss during the clustering process.
As a result, the application of padding significantly improved the reliability of bounding
box-based detection.

To evaluate the accuracy of lesion detection after applying clustering, SM-WBF, and
padding, a novel measurement method was introduced. The primary goal was to ensure
that all regions suspected of being lesions were identified, minimizing the chances of
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missing any lesions. As illustrated in Figure 5, all detected lesion-suspected regions
were compared with the ground truth, and if at least one box matched, the detection
was considered successful. A match was determined by comparing the IoU between the
detected box and the ground truth box including padding. An IoU of 0.9 or higher was used
as the threshold for a match, ensuring high precision in detection evaluation (Figure 6).

Figure 5. Determination of bounding boxes using clustering, SM-WBF, and padding. (a) All bounding
boxes detected by the ten networks. (b) Clustering of bounding boxes into four regions using
DBSCAN. (c) Application of SM-WBF with SoftMax weights to the clustered regions. (d) Addition of
padding to the bounding boxes in (c).

 

Figure 6. Method for measuring lesion detection accuracy. Among the four detected bounding boxes,
at least one box has an IoU of 0.9 or higher with the ground truth, and, therefore, the detection is
considered successful.

2.6. Lesion Classification

The final step is lesion classification. Up to this point, multiple processes such as
clustering and SM-WBF were employed to accurately locate and classify the lesions. The
lesion classification model provides predictions for the class of each detected lesion through
YOLO, and this information supports clinical decision-making. The lesions were catego-
rized into three classes: benign, malignant, and error.

The inclusion of the error class was essential due to the lowered detection threshold
used during the YOLO process, which aimed to detect all potentially suspicious lesions.
After the clustering and SM-WBF processes reduced the bounding boxes to a single box per
region, the classification output for that box became the final result. In cases where more
than one bounding box remained, the following criteria were applied: if all bounding boxes,
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excluding the error class, were classified as benign, the final result was benign; however,
if even one bounding box was classified as malignant, the result was determined to be
malignant. This decision-making process ensured that any potentially malignant lesions
were not overlooked, thereby increasing sensitivity and enhancing the clinical value of the
proposed approach.

3. Result

Our proposed CSM-FusionNet was implemented using MATLAB R2023b on a com-
puter equipped with a GeForce RTX 3090 GPU with 24 GB of memory. Liver ultrasound
images, annotated by experts, were collected from Samsung Medical Center to evaluate
the performance of the proposed model. As demonstrated in the following experimen-
tal results, CSM-FusionNet effectively reduced false detections caused by variations in
lesion size and other noise factors. Moreover, it addressed the limitations of traditional
confidence-based WBF by introducing the novel SM-WBF method. Detailed quantitative
results are provided below.

3.1. Result of Bounding Box Optimization by Clustering, SM-WBF and Padding

In this study, clustering, SM-WBF, and padding were applied to optimize bounding
boxes. This optimization process aimed to remove redundancy among detected bounding
boxes, refine outliers, and preserve the contour information of lesions, thereby enhancing
the reliability and accuracy of the final detection results. Using DBSCAN, bounding boxes
detecting the same lesion were grouped into clusters. Subsequently, bounding boxes within
each cluster were refined by identifying outliers based on their dimensions ˆwidth and

ˆheight. Boxes deviating more than 50% from the average size of the cluster were considered
outliers and reduced. This step was essential to prevent distortion in cluster size and ensure
stability during the integration process.

After clustering and outlier reduction, SM-WBF was applied to generate a single rep-
resentative bounding box for each cluster. SM-WBF calculated weights for each bounding
box by normalizing the mAP@0.5 values of the ten networks using the SoftMax function.
These SoftMax weights were then used to combine the center coordinates and dimensions
of the bounding boxes within each cluster through a weighted average approach. This
method ensured that bounding boxes from higher-performing networks contributed more
significantly to the result. Details of this process are illustrated in Figure 7.

3.2. Performance of Lesion Detection

To evaluate the accuracy of the bounding boxes generated through clustering, SM-
WBF, and padding, we calculated the detection success rate on the test data. A detection
was considered successful if at least one detected bounding box matched the ground truth.
The matching criteria were based on the IoU between the detected box and the ground
truth box with the same padding applied. If the IoU was 0.9 or higher, the boxes were
deemed to match. Detailed results are presented in the table below.

Table 1 compares the results across four different scenarios, presenting mAP@0.5 scores,
the number of correctly detected lesions in the test data, and the resulting accuracy. When
a single YOLOv8 model was applied to the original US images without any preprocessing,
the mAP@0.5 was 0.6128, and the model detected 101 lesions out of 180 test cases, achieving
an accuracy of 56.11%. After applying our preprocessing steps to generate ten networks,
clustering the bounding boxes, and performing SM-WBF, the method detected 172 out
of 180 test cases, with an accuracy of 95.56%. In our evaluation using 180 test images,
we compared the detection performance of YOLOv5, YOLOv8, and YOLOv11. YOLOv5
detected 167 lesions, YOLOv8 detected 172 lesions, and YOLOv11 detected 171 lesions,
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demonstrating that YOLOv8 achieved the best detection performance. It is important to
note that YOLO has many versions, and the most suitable version varies depending on
the dataset. The accuracy values presented here are not generalizable but are specific to
our dataset.

 

Figure 7. (a) An image with all bounding boxes detected by YOLOv8 overlaid, and the results of
bounding box optimization through (b) clustering, (c) SM-WBF, and (d) padding. (e) Ground truth
bounding box.

Table 1. The mAP@0.5 scores for each network and the detection results on the test data.

Network mAP@0.5 Detect Accuracy

Original US image with one YOLOv8 0.6128 101/180 0.5611

WBF

with 10 Network

0.7453 112/180 0.6222

WBF + clustering 0.5038 163/180 0.9056

SM-WBF + clustering 0.5172 172/180 0.9556

Although the mAP@0.5 score was relatively low, this was because the clustering
process preserved all potential bounding box regions, ensuring comprehensive lesion
detection. However, the primary focus of our method is not achieving a higher mAP@0.5
but maximizing the capability to detect actual lesions, which demonstrates its performance
was outstanding.

The bounding box optimization process contributed to enhancing the reliability and
quality of the detection results by eliminating redundancies through clustering, refining
outliers, and applying padding. The final bounding boxes encompassed the tumor contours
without loss, providing a stable input for lesion classification models. This significantly
improved the accuracy of the diagnostic support system.
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3.3. Performance of Lesion Classification

The lesions identified through SM-WBF were classified using a CNN. Among various
models, we selected EfficientNet-b0, known for its efficiency and performance, for compari-
son. As shown in Figure 8, the lesions were classified into three classes: benign, malignant,
and error. For training, the image size was resized to 300 × 300, and the input size of
EfficientNet-b0 was modified from its default 224 × 224 to 300 × 300. This adjustment
was made to ensure accurate classification, as reducing the image size excessively could
compromise the model’s performance.

 

Figure 8. The lesions were classified into three classes using EfficientNet-b0.

The model was trained using the Adam optimizer with an initial learning rate of 0.001
and a momentum of 0.9. Additionally, the training data were shuffled at each epoch to
introduce randomness among the data points, facilitating faster convergence towards the
optimal solution.

If multiple boxes were detected in a single image, all boxes were classified. Boxes
classified as error were ignored, and the output was determined as benign if only benign
boxes were present. However, if even one box was classified as malignant, the output
was set to malignant. Due to the nature of medical screening, where high sensitivity is
more clinically significant than specificity, this approach was adopted to maximize practical
utility for end users. Additionally, a 5-pixel padding was applied to enhance the visibility
of lesion contours and facilitate comparisons between the internal color of the lesion and
the surrounding liver tissue.

As shown in Table 2, the difference with and without padding was substantial. With-
out padding, the lesion contours resulting from clustering could become ambiguous, and
comparing the color of the surrounding liver tissue with the lesion itself becomes nearly im-
possible. When padding was applied, these comparisons were feasible, leading to improved
results. The detailed reasons for this will be discussed further in the discussion section.
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Table 2. The accuracy, sensitivity, specificity, and confusion matrix depending on the presence or
absence of padding. Blue tones represent correct answers, while red tones represent incorrect answers.

Without Padding With Padding

Accuracy 0.8248 0.9758
Sensitivity 0.7903 1.0000
Specificity 0.8327 0.9703

Confusion
Matrix

Using a CNN, we performed inference on the 172 bounding boxes detected by SM-
WBF. The dataset consisted of 114 benign classes, 58 malignant classes, and 48 error lesion
boxes. The inference results are summarized in Table 3. Out of a total of 220 bounding
boxes, 218 were correctly classified, achieving an accuracy of 99.09%, which is highly
satisfactory. Moreover, the sensitivity, a critical metric for screening tests, was perfect 100%.
Specificity was 98.24%, with two benign lesions misclassified as the error class. Importantly,
as evidenced by the test results, no cases of misclassification of benign or malignant lesions
due to error boxes occurred, alleviating a major concern.

Table 3. The accuracy, sensitivity, specificity, and confusion matrix for 172 test datasets. Blue tones
represent correct answers, while red tones represent incorrect answers.

Test with 172 Test Datasets

Accuracy 0.9909

Confusion MatrixSensitivity 1.000

Specificity 0.9824

The results in Table 3 highlight the robustness and reliability of the proposed neural
network model as an effective screening tool for liver cancer detection. Additionally, the
model can assist in identifying patients who require further examination, demonstrating
its practical utility in clinical applications.

Rhyou et al. [37] proposed HCC-Net, which extracts lesions using YOLOv5 and
applies wavelet transform. Each component was assigned ten different weight values,
followed by inverse wavelet transform, generating a total of ten images. These outputs

37



Diagnostics 2025, 15, 588

were concatenated into a new 10-channel dataset for classification, achieving a classifier
sensitivity of 0.9732. In comparison, our proposed method achieved a sensitivity of 1.0000,
demonstrating its superior ability to detect malignant lesions. This higher sensitivity
indicates that our approach is more effective in minimizing false negatives, making it
highly valuable for clinical screening applications where missing a potential malignancy
could have serious consequences.

4. Discussion

Our methodology has three significant points. First, due to the inherent characteristics
of ultrasound images, such as considerable speckle noise and variations in resolution
depending on device settings, we employed various image processing filters to address
these challenges. Using contrast enhancement filters like intensity adjustment and adaptive
histogram equalization, as well as low-pass and high-pass filters, we generated 10 differ-
ent frequency-domain images from a single ultrasound image. This data augmentation
approach allowed us to create 10 networks, each with its own mAP@0.5 score, which were
utilized in the SM-WBF process.

Second, we incorporated clustering and adapted the traditional WBF into SM-WBF to
better suit our network. In conventional WBF, the confidence scores of bounding boxes are
used as weights for fusion, effectively assigning greater importance to higher-confidence
boxes. However, in our system, every bounding box contains critical information, and
applying standard WBF risked losing valuable data. Additionally, we aimed to include all
suspected lesions, necessitating the use of clustering. By employing clustering and SM-WBF,
we achieved higher lesion detection accuracy while preserving critical information.

Lastly, we applied padding to retain richer features. The importance of comparing
colors lies in its diagnostic significance. For screening where histopathological data are
unavailable, color plays a vital role. Malignant lesions often exhibit distinctly different tones
and patterns compared to surrounding normal tissues, whereas benign lesions generally
appear uniform in color. Irregular internal color patterns suggest malignancy. Similarly,
contours are critical; malignant lesions typically have irregular, spiculated, or serrated
edges, reflecting their invasive nature. These lesions often display poorly defined bound-
aries due to infiltration into surrounding tissues, while benign lesions usually have smooth,
rounded, or oval shapes with well-defined borders, often encapsulated. Such morpholog-
ical differences based on contours and internal features are essential for distinguishing
malignant from benign lesions. By applying padding, we ensured that these features were
preserved, leading to significant performance improvements in detection.

However, the methodology also has limitations. The proposed approach involves
data augmentation with 10 filters, inference on each US image using YOLOv8, clustering,
outlier reduction, SM-WBF, and CNN-based classification, leading to high computational
costs that are unsuitable for real-time operation. This trade-off was deemed acceptable for
cancer screening, where accuracy is prioritized over real-time performance. As a future
direction, model optimization for real-time applications will be explored. Furthermore,
while our methodology demonstrates significant improvements in lesion detection, further
validation on larger and more diverse datasets is necessary to confirm its robustness
across different clinical environments. The variability in ultrasound imaging conditions,
including differences in equipment, operators, and patient characteristics, may affect the
generalizability of the proposed approach. To address this, future studies will focus on
testing the model with external datasets from multiple institutions to assess its reliability
and adaptability in real-world clinical applications. Additionally, setting a low threshold to
capture all potential lesions led to the generation of unnecessary boxes, potentially creating
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redundant clusters during the clustering process. Further research will focus on refining
the threshold values to minimize such occurrences.

5. Conclusions

By 2025, it is projected that over one million individuals will receive a liver cancer
diagnosis annually. HCC constitutes approximately 75–85% of these cases. Fortunately,
when detected at an early stage, HCC can be effectively managed before causing significant
liver damage, emphasizing the critical need for efficient screening protocols for high-
risk populations. However, fully automating the classification of liver cancer remains a
significant challenge due to the inherent limitations of US imaging. These challenges include
speckle noise, poor contrast between tumors and surrounding tissues, as well as the diverse
morphology and echogenicity of lesions, all of which hinder their clinical applicability.
Recently, various computer-aided diagnostic systems, including those leveraging deep
learning techniques, have been developed to address these limitations and enhance hepatic
lesion detection and classification.

This study presents “CSM-FusionNet”, a model achieving clinically acceptable accu-
racy through the targeted application of image processing filters, clustering, SM-WBF, and
padding. Raw US images were collected from one of South Korea’s leading general hos-
pitals, SMC. To overcome speckle noise inherent in ultrasound imaging and variations in
resolution due to different settings, four types of filters were applied: intensity adjustment
filter, adaptive histogram equalization filter, low-pass filter, and high-pass filter. These
approaches not only reduced noise but also accounted for diverse resolutions, resulting
in data augmentation that generated 10 US images from a single original image. Due to
the limited nature of data acquisition for HCC, this method provided dual benefits by
expanding the dataset. Each of the 10 US images was processed using the YOLOv8 model,
producing 10 trained networks. The mAP@0.5 score of each network was measured and
used to calculate weights for SM-WBF through SoftMax normalization.

Subsequently, bounding boxes were generated with a low threshold to identify multi-
ple regions suspected of lesions, followed by clustering to segment these regions. Afterward,
outliers were removed from each cluster, and SM-WBF was applied to merge multiple
bounding boxes into a single one, reducing computational complexity. Padding was then
added to the resulting bounding boxes to capture more features. The accuracy when using
only original US images was 56.11%, which increased to 90.56% after applying clustering
and WBF. Further application of SM-WBF elevated the accuracy to 95.56%, detecting lesions
in 172 out of 180 test samples. Finally, classification was performed on the detected lesions,
where padding also played a significant role. Without padding, the classification accuracy
was 82.48%, while with padding, it increased to 97.58%, achieving 100% sensitivity—critical
for computer aided diagnosis (CAD) systems.

Our technology holds significant potential to enhance the accuracy and efficiency of
lesion detection and analysis using ultrasound imaging. By applying advanced fusion
techniques like SM-WBF and clustering algorithms, it integrates information from multiple
networks to deliver reliable diagnostic results. This enables clinicians to detect even minute
lesions that might otherwise be overlooked, reduces diagnostic time, and supports better
decision-making for personalized treatment. Furthermore, it enhances the efficiency of
healthcare systems through automation and enables precise diagnostics even in resource-
limited areas, improving healthcare equity. Ultimately, our technology underscores the
importance of early diagnosis and preventative management, contributing to improved
survival rates and enhanced quality of life for patients.

39



Diagnostics 2025, 15, 588

Author Contributions: Conceptualization, S.-Y.R.; methodology, S.-Y.R.; software, S.-Y.R.; validation,
S.-Y.R. and M.Y.; formal analysis, S.-Y.R.; investigation, S.-Y.R.; resources, S.-Y.R. and J.-C.Y.; data
curation, S.-Y.R.; writing—original draft preparation, S.-Y.R. and M.Y.; writing—review and editing,
J.-C.Y.; visualization, S.-Y.R.; supervision, S.-Y.R.; project administration, S.-Y.R. and J.-C.Y.; All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki and approved by the Institutional Review Board of SAMSUNG MEDICAL
CENTER (SMC-2020-10-178-002 and 28 November 2020).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Data available on request due to restrictions.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript:

US Ultrasound
HCC Hepatocellular Carcinoma
SM-WBF SoftMax-Weighted Box Fusion
SMC Samsung Medical Center
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Abstract: Background/Objectives: Early detection and diagnosis are important when treat-
ing gallbladder (GB) diseases. Poorer clinical outcomes and increased patient symptoms
may result from any error or delay in diagnosis. Many signs and symptoms, especially
those related to GB diseases with similar symptoms, may be unclear. Therefore, highly
qualified medical professionals should interpret and understand ultrasound images. Con-
sidering that diagnosis via ultrasound imaging can be time- and labor-consuming, it may
be challenging to finance and benefit from this service in remote locations. Methods: To-
day, artificial intelligence (AI) techniques ranging from machine learning (ML) to deep
learning (DL), especially in large datasets, can help analysts using Content-Based Image
Retrieval (CBIR) systems with the early diagnosis, treatment, and recognition of diseases,
and then provide effective methods for a medical diagnosis. Results: The developed model
is compared with two different textural and six different Convolutional Neural Network
(CNN) models accepted in the literature—the developed model combines features obtained
from three different pre-trained architectures for feature extraction. The cosine method was
preferred as the similarity measurement metric. Conclusions: Our proposed CBIR model
achieved successful results from six other different models. The AP value obtained in the
proposed model is 0.94. This value shows that our CBIR-based model can be used to detect
GB diseases.

Keywords: artificial intelligence; gallstone diseases; CBIR; carcinoma; cholecystitis

1. Introduction

Gallbladder (GB) disease, a frequent pathology, must be diagnosed accurately and
early on. The GB is an intraperitoneal organ located on the right lower surface of the
liver. The gallbladder is located close to the duodenum, pancreas, and transverse colon.
Anatomically, it is divided into three parts: the fundus and body, infundibulum, and neck.
By holding and releasing bile produced by the liver, the gallbladder contributes significantly
to the digestion process. Bile is a fluid produced by the liver that aids the digestive system
and is discharged into the duodenum through the bile duct system for digestion and fat

Diagnostics 2025, 15, 552 https://doi.org/10.3390/diagnostics15050552
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absorption [1]. Bile acids, phospholipids, lecithin, cholesterol, and bilirubin are the main
constituents of bile.

Cholelithiasis (gallstones) is the most prevalent GB condition, affecting about 10–15%
of the adult population [2]. Nine pathological problems have been shown among the most
common gallbladder diseases today. These include GB perforation, polyps and choles-
terol crystals, gallbladder wall thickening, GB adenomyomatosis, gallstones, cholecystitis,
gangrenous cholecystitis, carcinoma, and issues with the intraabdominal and retroperi-
toneum [3]. When the concentrations of the components that comprise bile surpass their
solubility points, gallstones develop. Excessive cholesterol secretion relative to lecithin and
bile salts causes cholesterol gallstone formation. However, it is known that gallstones are
primarily due to genetic predisposition [4]. The risk also increases due to age, diabetes, and
obesity. In Native Americans, prevalence rates of 30% in men and 60% in women have been
shown [5]. The main symptoms of gallbladder disease are bloating, fever, frequent retching,
change in skin color (jaundice), and pain in the upper abdomen, as shown in Figure 1 [6].

Figure 1. Main symptoms of gallbladder disease.

Before gallbladder surgery, the risk of choledocholithiasis should be assessed because
gallbladder and common bile duct stones are frequently detected combined. Retrograde
endoscopic cholangiography is used to remove stones from the common bile duct, and a
cholecystectomy is performed if choledocholithiasis is verified by ultrasound, endoscopic
ultrasound, or magnetic resonance cholangiography [7]. Gallstones are a major global
health concern because, according to the recent research, they may put patients at risk for
various illnesses, like cancer, cardiovascular disease, and even greater mortality [8–10]. Be-
cause of its aggressive nature and lack of effective treatment options, gallbladder carcinoma
(GBC), the most prevalent malignant tumor of the biliary tract, has a terrible prognosis. The
early detection of GBC is a great challenge for physicians, and most GBCs are incidentally
detected during cholecystectomy procedures for gallstones [11]. Gallbladder polyps (GBPs)
are elevated lesions of the gallbladder mucosa that extend into the gallbladder lumen. The
prevalence of GBPs varies by region and ethnicity, ranging from 0.3% to 9.5%. Pathologi-
cally, GBPs can be separated into non-neoplastic polyps, such as gallbladder adenomyosis,
cholesterol polyps, and inflammatory polyps, and neoplastic polyps, which are linked to
adenomas and adenocarcinomas [12].
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Because of the organ’s intricate anatomy and the variety of medical states that can
affect it, diagnosing GB illnesses can be difficult. With the rapid growth of medical science
and technology in recent years, artificial intelligence (AI) techniques have the potential
to reduce human efforts significantly [13]. Based on ultrasound images (UIs), the AI field
of deep learning (DL) is an instructive medical tomography technique that can aid in the
early identification of GB disease. In order to assist medical personnel in identifying and
categorizing different GB pathological anomalies, ML and deep learning (DL) approaches
have recently demonstrated a notable capacity to analyze medical images [3]. By automat-
ing the analysis process and boosting diagnostic accuracy based on extensive datasets
and sophisticated algorithms, these methods have the promising potential to improve
GB diagnosis [14]. This study used a CBIR-based model to simultaneously detect nine
gallbladder diseases and determine the disease type using UIs. The CBIR model is the
search and analysis of different content-based image features.

CBIR is used to identify various schemas (modalities) in many images. Compared to
a query image, CBIR lets clinicians retrieve pertinent images from an extensive database,
minimizing time-consuming manual searches and aiding in diagnosis [15]. Based on a
query image, CBIR seeks to identify related images from a big database. Numerous medical
imaging domains are being actively researched in this discipline [16]. In addition to the deep
learning architectures already mentioned, the suggested CBIR system offers interaction
information to allow the user to choose which disease in the slice is being queried. CBIR
can more effectively match images in this query for successful retrieval; that is, it can return
more pertinent images. The CBIR system suggested in this paper can automatically produce
pertinent image characteristics from well-annotated image datasets. It can also retrieve
images to collect similar images and previous cases to obtain comprehensive information
about the patient’s conditions.

Class consistency in the top-level images is a common way to evaluate a CBIR system’s
quality. CBIR can improve the efficiency of time-consuming clinical workflow operations.
The use of automated assistance systems, such as CBIR, in diagnosing numerous illnesses
is growing in significance [16].

Images used in medicine are complicated. Due to the complex imaging data and
the modest distinctions between disease states, automated techniques for objective lesion
characterization are required. This approach can speed up radiology workflows and
improve the overall quality of healthcare. Therefore, a CBIR-based model was developed,
which produced successful results in GB diagnosis.

1.1. Releated Works

There are some studies in the literature for the detection of GB diseases. Unlike our
study, deep learning-based methods were used in most of these studies. Lo et al. (2024) [17]
collected a total of 2827 abdominal CT slices from computed tomography (CT) images to
recognize the seven most relevant organs in the abdomen. DenseNet and transformer-based
methods were preferred for the automatic detection of organs. Accuracy values in the
range of 94–99% were achieved in the models used. Gupta et al. (2024) [18] compared
the diagnostic performance of gallbladder cancer (GBC) with deep learning (DL)- based
CNN architectures and skilled radiologists. The study included 565 patients, 334 of whom
had gallstones and gallbladder diseases. When it came to detecting GBCs on the US CNN
(0.836–0.945), Radiologist1 (0.733–0.891), and Radiologist2 (0.761–0.909), the DL-based
method performed as well as or better than the expert radiologists. Zhou et al. (2024) [19]
retrospectively trained a previously trained deep learning-based smartphone application to
help diagnose biliary atresia from ultrasonographic gallbladder images using 3659 original
sonographic gallbladder images and 51,226 smartphone photographs. A novice radiolo-
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gist and an experienced pediatric radiologist also tested a new model. The new model’s
diagnostic performance was more consistent and on par with that of seasoned pediatric
radiologists. Yu et al. (2021) [20] recorded 89,000 abdominal US images from 2386 patients
in the hospital database to detect and localize gallstones and cholecystitis with acceptable
separation and speed. Using SSD-FPN-ResNet-50 and MobileNet V2 architectures, they
determined accuracies of 0.92 and 0.94, respectively. Dadjouy and H. Sajedi (2024) [21] used
the Faster R-CNN and YOLOv8 fusion method for gallbladder detection in ultrasound
images to diagnose gallbladder cancer. Although the Faster R-CNN could estimate highly
accurate bounding boxes, it also produced multiple bounding boxes that misidentified the
background. In contrast, YOLO correctly estimated the location of the bounding boxes.
This was achieved with 90.16% and 82.79% accuracies with Faster R-CNN and YOLOv8
fusion methods. Esen et al. (2024) [22] showed that the gradient boosting technique
achieved the highest accuracy (85.42%) in predicting gallstones using a dataset consisting
of Bioimpedance and the laboratory data of 319 individuals, 161 gallstone patients, and 158
healthy controls. Chattopadhyay et al. (2005) [23] detected gallbladder abnormalities with
92.3% accuracy from ultrasound scan (USS) images obtained from 751 cholecystectomy pa-
tients. Pang et al. (2019) [24] determined the diagnosis of cholelithiasis with 90.8% accuracy
in the analysis of 1300 CT images of cholelithiasis patients with the CNN architecture
(MobileNetV1, SSD, YOLOv2, and original SSD (with VGG-16)). Jang et al. (2021) [25]
analyzed 1039 endoscopic ultrasound (EUS) images in patients with gallbladder polypoid
lesions using the CNN architecture ResNet50. The rates were 57.9%, 96.5%, 77.8%, 91.6%,
and 89.8% for EUS-AI in the differential diagnosis of neoplastic and non-neoplastic GB
polyps. Veena et al. (2022) [26] analyzed the data from computerized tomography (CT)
images of gallbladder diseases with SSD-efficient-Det, Faster R-CNN, and Mask R-CNNs
models. They achieved 0.938 accuracy in the classification with Mask R-CNN architecture.
In the study by Song et al. (2019) [27], the dataset included 5350 images from 726 patients
who segmented CT images of gallbladder stones. In this study, the researchers achieved
91.68% success using DC-GAN and CNN architecture.

1.2. Contribution and Novelty

• It is seen that CNN-based architectures are primarily used in the literature to detect
GB diseases. CNN-based architectures cannot produce successful results, especially
in studies where the number of classes and data are high, and the training of the
architectures takes a very long time in studies where large datasets are used.

• Considering that the dataset used in the study carried out for the detection of GB
diseases has nine classes, we believe that this dataset is suitable for CBIR systems.

• Considering that the early detection of GB diseases is vital, it is very important to be
able to detect these diseases at an early stage with computer-aided models.

• A new CBIR system has been developed to detect GB diseases early and highlight the
success of CBIR systems in detecting GB diseases.

• In the developed system, feature extraction from different architectures and similarity
measurement metrics were tested. As a result, features obtained from three different
models were concatenated. At this stage, different features of the same image were
used together.

• The results were also obtained with different CNN architectures and textural-based
features to test the model’s performance. Different metrics were used to test the
performance of the architectures.

• As a result, the proposed CBIR-based model obtained the most successful results in
the detection of GB diseases.
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1.3. Organization of Paper

In the rest of the article, the structure of the dataset used in the study, meth-
ods, similarity measurement metrics, feature extraction techniques, and the developed
model are presented. Then, the experimental results, discussion, and conclusion sections
are presented.

2. Materials and Methods

2.1. Datasets of Ultrasound Images of Gallbladder Diseases

Ultrasound images of the gallbladder organ taken from inside the digestive system
made up the dataset. JPEG images of the digestive system were included in this dataset.
Siemens Acuson X700, Philips Affiniti 70, Philips CX50, and Canon Viamo c100 ultrasound
machines were used to create the images [28,29].

2.2. Data Processing and Data Collection

To maintain uniformity throughout the dataset, every image was enlarged to
900 × 1200 pixels with a 600 px horizontal resolution and 600 px vertical resolution, even
though the original images had 450 × 600 pixels, a 3:4 aspect ratio, and 150 px horizontal
and 150 px vertical resolutions. In total, 10,692 IU images from 1782 patients were used
(Table 1) [29].

Table 1. Gallbladder disease type dataset details.

Gallbladder Disease Type Female Male
Number of

Patients
Number of

Images

Gallstones 137 84 221 1326
Intraabdominal and retroperitoneum problems 110 85 195 1170
Cholecystitis 102 89 191 1146
Membranous and gangrenous cholecystitis 109 95 204 1224
Perforation 95 82 177 1062
Polyps and cholesterol crystals 99 71 170 1020
Adenomyomatosis 108 86 194 1164
Carcinoma 155 110 265 1590
Various causes of GB wall thickening 92 73 165 990

Total 1.007 775 1.782 10.692

Sample images from the dataset are presented in Figure 2.

 

Figure 2. Gallbladder disease pathology IU images.

2.3. CBIR System Developed for the Detection of Gallbladder Disease Types

The feature map of the images related to the proposed model was extracted. This
process produced a feature vector of 10,692 × 1000 corresponding to 10,692 images in the
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dataset. The proposed model combined feature maps extracted from three different models,
aiming to work with different features of the same image. Finally, the combined feature
maps were adopted as a feature extraction model in the developed CBIR system. The
diagram of the suggested CBIR system is presented in Figure 3.

 

Figure 3. Developed CBIR system.

Image retrieval was conducted using the feature maps generated by the CBIR-based
systems. In the proposed CBIR system, the feature map of the query image was extracted us-
ing the suggested model, and its performance was compared with other CNN architecture-
and textural-based methods. The comparison was performed using cosines similarity
measurement techniques, and the evaluation was carried out by analyzing the precision–
recall (P-R) curve using an 11-point interpolated retrieval curve. In CNN architectures,
Googlenet, InceptionV3, NasNetLarge, DenseNet201, and LBP and HOG architectures in
machine learning classifiers were compared with the proposed model. The proposed model
produced more successful results compared to the models used in this study.

2.4. Cosine Similarity Measure

The cosine similarity calculated for two vectors is the ratio of the calculation obtained
from the product of the cosine angle of these two vectors. When the cosine similarity value
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of two vectors was 1, it was decided that they are similar. Equation (1) was used for the
cosine similarity calculation [30].

Cosα =
A·B

|A|·|B| =

n
∑

i=1
Ai·Bi√

n
∑

i=1
(A i)

2·
√

n
∑

i=1
(B i)

2

(1)

In Equation (1), A represents the weight of each feature of vector A, and B represents
the weight of each feature in vector B. According to the cosine similarity rule, the smaller
the angle for comparing two vectors, the greater the degree of similarity. Twenty related
images in the dataset were accessed by the suggested CBIR model, as seen in Figure 4.
From the dataset’s classes, one image was chosen at random, and the 20 related images that
were retrieved are displayed in order. The images accessed in the correct class and those
accessed in the wrong are indicated with class labels.

 

Figure 4. Examples of the queried image with the proposed CBIR systems.

Figure 4 shows 20 images taken from the dataset by querying a random image belong-
ing to the gallstones class. As a result of the query, images 1–12, 14, 15, 17, and 18 are in the
actual class, while images 13, 16, 19, and 20 are in different classes.

3. Application Results

The MATLAB 2024b program was used to obtain the findings of this research on a
computer running Windows 10, 64 bit, equipped with an Intel i7 processor and 32 GB
of RAM.

The order in which the images are accessed is crucial in content-based image access.
Standard P-R graphs with 11 points are used for the evaluations. A P-R graph is provided
for 20 randomly selected images in each class in the CBIR system that we created. The P-R
graph employed the cosine approach, one of the techniques for measuring similarity.

The interpolated 11-point sequential access was assessed in this study using the
average precession value and the P-R curve. The data collection consists of nine classes.
The average P-R curve was obtained by querying each of the nine classes’ images separately.

49



Diagnostics 2025, 15, 552

Twenty images were retrieved from the CBIR system after each class’s images were queried
independently. By analyzing the images accessed and queried in each class, the average
P-R curve was produced. A total of 10,692 images in the dataset were queried after the P-R
curves of nine classes were assessed independently. The average P-R curve of the 20 images
retrieved in each query was then computed and assessed.

Figure 5a shows the P-R curve for the gallstones class of six different architectures
and the proposed model. The cosine method is used as the distance measurement metric.
Since there are 1326 images in the gallstones class, 26,520 images are accessed. Figure 5b
plots the curves of six different architectures and the proposed model for the images in the
abdomen class. The cosine method is used as the distance measurement metric. Since there
are 1170 images in the abdomen class, 23,400 images are accessed.

 

Figure 5. Average P-R curves for the classes of (a) gallstones and (b) abdomen.

In Figure 5a, the P-R curves are calculated for the gallstones class using the cosine
similarity measurement method for different models and the proposed model. While the
proposed model achieved the highest AP value in the gallstones class, the least successful
architecture was LBP. In the gallstones class, CNN-based methods achieved more successful
results than textural-based methods. The AP value of the proposed model was 0.92711. The
proposed model was successful in all cases in the recall {0. . .1} range in the gallstones class
compared to the other six models. The models showed a high performance in cases up to
Ri 0.2. When Figure 5b is examined, it can be seen that the proposed model shows the best
performance in the abdomen class with an AP value of 0.96338. The textural-based HOG
method performed the worst in the abdomen class, with an AP value of 0.87181. CNN
architectures also produced more successful results than textural-based architectures in
the abdomen class. Googlenet, InceptionV3, NasNetLarge, and DenseNet201 architectures
achieved similar performances in the abdomen class.

Figure 6a shows the P-R curves obtained for the cholecystitis class using the cosine
distance measurement metric in different models. Since there are 1146 images in the
cholecystitis class, 22,920 images are accessed. Figure 6b plots the curves of six different
architectures and the proposed model for the images in the membranous class. The cosine
method is used as the distance measurement metric. Since there are 1224 images in the
membranous class, 24,480 images are accessed.
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Figure 6. Average P-R curves for the classes of (a) cholecystitis and (b) membranous.

In Figure 6a, the P-R curves are calculated for the cholecystitis class using the cosine
similarity measurement method for different models and the proposed model. While
the proposed model achieved the highest AP value in the cholecystitis class, the least
successful architecture was LBP. In the cholecystitis class, CNN-based methods achieved
more successful results than textural-based methods. The AP value of the proposed model
was 0.92951. The proposed model was successful in all cases in the recall {0...1} range
in the cholecystitis class compared to the other six models. The models showed high
performances in cases up to Ri 0.2. When Figure 6b is examined, it can be seen that the
proposed model shows the best performance in the membranous class with an AP value of
0.98734. The textural-based LBP method performed the worst in the membranous class,
with an AP value of 0.91153. CNN architectures also produced more successful results
than textural-based architectures in the membranous class. NasNetLarge, DenseNet201,
Googlenet, InceptionV3, HOG, and LBP architectures followed the proposed model.

The P-R curve for the perforation class images is shown in Figure 7a. This figure
plots the curves of six different architectures and the proposed model. Since there are
1062 images in the perforation class, 21,240 images are accessed. Figure 7b plots the curves
of six different architectures and the proposed model for the images in the polypose class.
The cosine method is used as the distance measurement metric. Since there are 1020 images
in the polypose class, 20,400 images are accessed.

Figure 7a plots P-R curves for the perforation class using the cosine distance mea-
surement method. The proposed model obtained the highest AP value in the perforation
class. The AP value of the proposed model is 0.93358. The least successful model in
the perforation class is LBP, with an AP value of 0.81454. The highest AP value after
the proposed model was achieved with the Googlenet architecture. The proposed model
achieved a performance close to 1 in the range of 0–0.4. In Figure 7b, the most successful
model in the polypose class was the proposed model with an AP value of 0.9678. Similar
values were obtained in the other four CNN architectures used for comparison purposes.
Textural-based models achieved lower AP values. In the proposed model, Ri decreased
after the value of 0.5. It remained close to 1 until this interval.
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Figure 7. Average P-R curves for the classes of (a) perforation and (b) polypose.

The P-R curve for the adenomyomatosis class is shown in Figure 8a. The curves of
six different architectures and the suggested model are plotted in this figure. A total of
23,280 images are viewed since the adenomyomatosis class contains 1164 images. The
curves of six different architectures and the suggested model for the images in the carcinoma
class are plotted in Figure 8b. The metric for measuring distance is the cosine technique. A
total of 31,800 images are viewed since the carcinoma class contains 1590 images.

 

Figure 8. Average P-R curves for the classes of (a) adenomyomatosis and (b) carcinoma.

According to the P-R curve in Figure 8a, the most successful model among the models
used for image retrieval in the adenomyomatosis class is the proposed model with an
AP value of 0.93495. Googlenet and InceptionV3 followed the proposed model with very
close AP values. The proposed model was more successful than the other models in the Ri
0–1 range. The least successful models in the adenomyomatosis class were textural-based
models. LBP was the least successful model in this class, with an AP value of 0.8334.
When Figure 8b is examined, among the models used for image access in the carcinoma
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class, the most successful is the proposed model with an AP value of 0.92494. Googlenet,
NasNetLarge, and InceptionV3 followed the proposed model with very close AP values.
The proposed model was more successful than the other models in the Ri 0–1 range. These
models performed in a close range at Ri 0–0.3. The least successful models in the carcinoma
class were textural-based models. LBP was the least successful model in this class, with an
AP value of 0.82166.

The P-R curves obtained using the cosine metric for the various class of six different
architectures and the proposed model are presented in Figure 9a. A total of 19,800 images
are viewed since the various classes contain 990 images. The P-R curves of all images
in the nine classes in the dataset are shown in Figure 9b. This figure plots the curves of
six different architectures and the proposed model. When the general performance curve
is plotted, the cosine similarity measurement metric is used as the distance measurement
metric. Since there are 10,692 images in the dataset, 213,840 images were accessed. In all
steps, 20 images were accessed for each image.

 

Figure 9. Average P-R curves for the classes of (a) various and (b) overall average P-R curves.

Figure 9a compares the models and the proposed model using the cosine similarity
measurement method. Our suggested model performed the best in the CBIR system, with
AP = 0.93515 in the various classes of images. With an AP of 0.82818, the HOG architecture
performed the worst in the various class average. The suggested model outperforms the
existing models in image access in every scenario within the recall {0..1} range, according to
an analysis of the P-R graph. Compared to other structures, the HOG architecture exhibits
very little success and is similar to the LBP architecture.

When the images in the classes gallstones, abdomen and retroperitoneum, cholecystitis,
membranous and gangrenous cholecystitis, perforation, polyps and cholesterol crystals,
adenomyomatosis, carcinoma, and various causes of gallbladder wall thickening were
evaluated separately in our CBIR system, our proposed model achieved success in all
classes. InceptionV3, NasNetLarge, Googlenet, DenseNet201, LBP, and HOG architectures
were less successful than our proposed model in all classes.

As in all classes, our suggested model performs better in our suggested CBIR system
than alternative models when the overall average of all classes is analyzed in Figure 9b.
Our suggested model’s InceptionV3, NasNetLarge, and Googlenet architectures perform
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similarly when employed alone, but less successfully when it comes to image retrieval. In
terms of overall success, the LBP architecture performed the worst.

In Figure 9b, our proposed model, which consists of the combination of Googlenet +
InceptionV3 + NasNetLarge architectures, is more successful in similar image retrieval with
the feature extraction method and the proposed CBIR system using the cosine similarity
measurement metric, where AP = 0.94403. Class-based performance measurement metrics
are presented in Table 2.

Table 2. Class-based performance metrics of the models (AP).

Diseases
Proposed

Model
Googlenet InceptionV3 NasNetLarge DenseNet201 LBP HOG

Gallstones 0.92711 0.90881 0.91291 0.89273 0.8911 0.82222 0.82701
Abdomen and
Retroperi-
toneum

0.96338 0.95793 0.95117 0.94488 0.94013 0.90188 0.87181

Cholecystitis 0.92951 0.91379 0.91285 0.91363 0.90945 0.81275 0.84326
Membranous
and Gangrenous
Cholecystitis

0.98734 0.98029 0.98013 0.97418 0.97059 0.91153 0.94232

Perforation 0.93358 0.92069 0.91646 0.8856 0.89165 0.81454 0.81652
Polyps and
Cholesterol
Crystals

0.9678 0.95514 0.95577 0.96165 0.95191 0.896 0.90043

Adenomyomatosis 0.93495 0.91201 0.91159 0.90198 0.90489 0.8334 0.85027
Carcinoma 0.92494 0.90797 0.90944 0.90954 0.89727 0.82166 0.83278
Various Causes
of Gallbladder
Wall Thickening

0.93515 0.92272 0.91776 0.91359 0.91393 0.83599 0.82818

General Average 0.94403 0.93001 0.92901 0.9213 0.91792 0.84883 0.85632

4. Discussion

GB disease is a common pathology that requires accurate and early diagnosis for
optimal medical treatment. The early diagnosis and appropriate treatment of gallbladder
diseases are important for preventing complications. A healthy lifestyle, a balanced diet,
and regular health check-ups can reduce the risk of developing these diseases. A delay in
the diagnosis process or misdiagnosis can cause deterioration in the patient’s condition.
Today, the use of AI, ML, and DL techniques in predicting disease progression, identifying
abnormalities, and estimating mortality rates associated with GB diseases has increased
rapidly in the last decade [3,31]. In the proposed CBIR system, 10,692 US images obtained
from gallbladder diseases were analyzed and compared with textural-based models LBP
and HOG, CNN architectures DenseNet201, Googlenet, InceptionV3, and NasNetLarge
models, and disease verification was achieved with an average of 94.4%. Some studies on
the subject and the proposed CBIR-based model are presented in Table 3.

Due to the cost of the training process of CNN-based models, CBIR systems are very
important in studies with large datasets and many classes. When Table 2 is examined, it can
be seen that the proposed CBIR-based model produces successful results. It is also possible
to mention some limitations of the study. One of the limitations of this study is the use of
data obtained from a single center. Another limitation is that the proposed CBIR system
has been tested on a single dataset. The model may need to be tested on other datasets
to prove its effectiveness. In subsequent studies, it is possible to include data and experts
from different centers and obtain more general and successful results.
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Table 3. Literature review.

Paper Year
Model/Method/

Architecture
Dataset Images Accuracy (%)

Dadjouy and
Sajedi,

2024 [21]
2024 Faster R-CNN and

YOLOv8

Gallbladder
Cancer Ultrasound

(GBCU)

The GBCU dataset
includes

1255 ultrasound
images from
218 patients

90.16%, 82.79%

Chattopadhyay
et al.,

2005 [23]
2005 Ultrasound scan

(USS)

Polypoidal lesions
in the gall bladder
(PLG): ultrasound

scan (USS)

751 cholecystectomies

Gallbladder
abnormality
(specificity)

92.3%

Esen et al.,
2024 [22] 2024

RF, MLP, LR, NB, DT,
KNN, GB, AdaBoost,

and XGBoost

Bioimpedance and
laboratory data

319 samples,
161 gallstone patients,

and 158 healthy
controls

85.42%

Yu et al.,
2021 [20] 2021 SSD-FPN-ResNet-50

and MobileNet V2

89,000 abdominal
US images taken

from 2386 patients

Abdominal US
images (>89,000) 0.92 and 0.94

Pang et al.,
2019 [24] 2019

MobileNetV1, SSD,
YOLOv2, and original

SSD (with VGG-16)

CT images of
100 patients with

cholelithiasis

A total of 1300 CT
images of

cholelithiasis
90.8%

Jang et al.,
2021 [25] 2021 ResNet50 Endoscopic

ultrasound (EUS):

1039 EUS images:
polypoid lesions of

the gallbladder (GB)

57.9%, 96.5%,
77.8%, 91.6%,

89.8%

Veena et al.,
2022 [26] 2022

SSD-efficient-Det,
Faster R-CNN, and

Mask R-CNN models

computerized
tomography (CT)

images
60

Mask R-CNN
has a value of

0.938

Song et al.,
2019 [27] 2019 DC-GAN and CNN

Segmenting CT
images of
gallstones

The dataset includes
5350 images from

726 patients
91.68%

Proposed
Model 2025 CBIR-based system Gallbladder

diseases 10.692 IU images 94.4%

5. Conclusions

This study proposed a CBIR-based classification model for diagnosing gallbladder
diseases using UI datasets. By comparing feature extraction methods, including machine
learning architectures like LBP and HOG, and CNN architectures, such as DenseNet201,
Googlenet, InceptionV3, and NasNetLarge, the model demonstrated a superior perfor-
mance with the cosine similarity metric. The evaluation included class-specific and overall
dataset analyses using interpolated 11-point PR curves and AP calculations for performance
measurements. The proposed model achieved the best performance across nine gallbladder
disease classes and the entire dataset. Specifically, the cosine similarity-based CBIR system
yielded notable AP scores, such as 0.92711 for gallstones, 0.96338 for abdomen and retroperi-
toneum, and 0.98734 for membranous and gangrenous cholecystitis. Overall, the model
demonstrated an impressive AP of 0.94403 for the entire dataset, outperforming other
architectures in retrieval accuracy. In conclusion, the proposed CBIR system with the cosine
similarity effectively enhances image retrieval and classification for gallbladder diseases,
showcasing its potential for clinical applications and advancing diagnostic methodologies.
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Abstract: Background: Medical diagnosis for skin diseases, including leukemia, early
skin cancer, benign neoplasms, and alternative disorders, becomes difficult because of
external variations among groups of patients. A research goal is to create a fusion-
level deep learning model that improves stability and skin disease classification per-
formance. Methods: The model design merges three convolutional neural networks
(CNNs): EfficientNet-B0, EfficientNet-B2, and ResNet50, which operate independently
under distinct branches. The neural network model uses its capability to extract de-
tailed features from multiple strong architectures to reach accurate results along with
tight classification precision. A fusion mechanism completes its operation by transmitting
extracted features to dense and dropout layers for generalization and reduced dimension-
ality. Analyses for this research utilized the 27,153-image Kaggle Skin Diseases Image
Dataset, which distributed testing materials into training (80%), validation (10%), and test-
ing (10%) portions for ten skin disorder classes. Results: Evaluation of the proposed model
revealed 99.14% accuracy together with excellent precision, recall, and F1-score metrics.
Conclusions: The proposed deep learning approach demonstrates strong potential as a
starting point for dermatological diagnosis automation since it shows promise for clinical
use in skin disease classification.

Keywords: fusion-based deep learning; EfficientNet; ResNet; skin disease classification;
multi-class classification; dermatological image analysis

1. Introduction

Skin diseases refer to a subgroup of diseases that affect the skin and thus are not
only diverse but also pose serious problems in the management of health care for peo-
ple of all ages and from all over the world [1]. Recent developments of deep learning
techniques for medical image diagnosis apply enhanced chances to increase the diagnosis
and classification strategies of dermatological diseases that can help to reform the clinical
approaches of skin disorders for the better health and comfort of the patients [2]. Such skin
disease features indicate a high demand for accurate and time-saving diagnostic methods,
including more frequent pathologies, such as eczema and acne, and severe conditions, like
psoriasis and cutaneous lymphoma [3]. However, there is still the problem of inequality
in the availability of specialized dermatological services, which leads to several delayed
diagnoses and ways of dealing with illnesses [4]. Timely diagnosis is an important aspect
in cutting down on death and enhancing treatment plans, especially with the area of focus
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being melanoma, which has very low survival rates if diagnosed late. However, referrals
to dermatological specialists and dermatological technologies are frequently unavailable
for patients living in rural or underdeveloped regions, and this is why effective automated
diagnosis systems are called for [5]. Recent improvements in deep learning, especially
convolutional neural networks (CNNs), have been successfully applied in medical image
diagnosis and detection with high automation and accuracy. Currently, there are several
categories of state-of-the-art pre-trained CNNs, including EfficientNet [6], ResNet [7], and
DenseNet [8], among others, which have proven to provide optimum results when applied
to skin lesion classification. Most of these models use transfer learning to learn features
that are then used in accurate predictions for medical images without the need for large
datasets that are time-consuming to annotate. However, discriminative intra-class variabil-
ity and inter-class similarities may be an issue for a single CNN in dermatological imaging.
Several studies have attempted to solve this problem of skin disease classification with
deep learning methods. For instance, Esteva et al. [9] re-tuned an InceptionV3 network and
obtained dermatologist-level performance with their study on a large dataset of skin images.
Likewise, Tschandl et al. [10] trained several CNNs to diagnose several skin diseases, and
they appear to be effective. Nevertheless, these approaches mainly addressed the problem
of a single model or homogeneous ensemble, and this can cause some drawbacks when
handling imbalanced or noisy databases. Such challenges can easily be solved using a
fusion-based method that merges the strengths of the various models. Meštrović et al. [11]
investigated the mutual relationship of urinary tract infection development between the
gut and vaginal and urinary microbiomes to develop new risk assessment tools and thera-
peutic approaches. This research examines microbial disruptions and their consequences
for avoiding UTIs and treating existing infections. Mujahid et al. [12] investigated the
detection of pneumonia in X-ray images through deep learning models, which include
Inception-V3, VGG16, and ResNet50. According to experimental findings, the combination
of Inception-V3 with the CNN ensemble reached 99.73% in recall and 99.29% in accuracy,
which shows promising potential for pneumonia diagnosis. Bordin et al. [13] evaluated
diagnostic procedures to detect Helicobacter pylori by dividing them into invasive and
non-invasive methods. The combination of endoscopic imaging progress with artificial
intelligence boosts real-time diagnosis as the urea breath test alongside the stool antigen
test functions as the main diagnostic method for Helicobacter pylori detection. Antibiotic
resistance assessment requires the combination of molecular methods together with gastric
biopsy cultures. Thomas et al. [14] examined how bacterial populations in the mouth
affect both oral infections and chronic systemic health conditions, including caries and
periodontal disorders, as well as systemic problems. The authors introduced innovative
diagnostic instruments with therapeutic methods based on bacterial recolonization and
host modulation therapy, which supports the importance of combined oral–general health
professional cooperation.

One of the challenges encountered in this research is class imbalance, especially in
skin disease datasets, where some classes have much less data than others, e.g., melanoma
is much less represented than benign conditions [15]. Due to the skewed nature, these
traditional deep learning models are trained in a way to favor major classes, and hence
the performance metrics are off on the minority of classes. As discussed above, the latest
studies [16] tried to address this problem with data augmentation and class-weighted loss
functions. However, the problem of achieving a balanced overall classification performance
has not yet been solved, which requires more effective approaches. Müller et al. [17] have
presented an integration technique, including stacking and augmenting, that has been
shown to hold great promise in improving the medical image classification systems’ relia-
bility and precision. Li et al. [18] introduced a multimodal medical image fusion approach
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combining CNN and supervised learning to address limitations in traditional single-image
fusion methods. The proposed method enhances fusion quality, detail clarity, and efficiency,
demonstrating state-of-the-art performance across various evaluation metrics. Although
these fusion techniques appear to achieve higher accuracy, the regularization methods like
dropout and batch normalization for improving the generalization performance were not
very well incorporated.

In this research, we put forward a fusion-based deep learning model of skin disease
classification based on the combination of EfficientNet-B2, EfficientNet-B0, and ResNet50
architectures. These pre-trained models are then employed to extract static and highly
informative features of skin disease images. The extracted features are normalized using
batch normalization to improve the learning process. Combining these features, the model
receives different feature representations of the features, which solves the problem of
variations within one class and similarities between different classes. The proposed model
includes several dense and dropout layers to better visualize the feature maps and cut down
on overfitting. Dropout, on the other hand, helps prevent the model from over-relying on
some of the features to improve the overall generalization of the model. These strategies
work in conjunction with our proposed model to handle imbalanced datasets with better
accuracy in minority classes. This kind of fusion-based approach serves as the solution to
all the above-mentioned previous studies, which appeared to use only a single piece of
architecture or, at best, did not use complex regularization methods.

Thus, our work contributes to the area by bridging certain known gaps in skin disease
classification. The proposed fusion model is superior to a single-model-based approach
in that it capitalizes on more than one pre-trained architecture and their complementary
qualities to improve outcomes. Furthermore, we also use batch normalization and dropout
techniques to reduce overfitting and handle class imbalance problems. A detailed experi-
mental evaluation validates the proposed model on a standard skin disease dataset used in
previous studies and shows that it outperforms existing techniques in terms of accuracy.
The key contributions of this article are as follows:

1. Propose a fusion-based deep learning model combining EfficientNet-B2, EfficientNet-
B0, and ResNet50 for accurate skin disease classification.

2. A feature fusion strategy with batch normalization and dropout layers is introduced
to improve generalization and robustness.

3. The proposed model effectively addresses class imbalance and enhances minority
class predictions.

4. Comprehensive evaluations on a benchmark skin disease dataset validate the model’s
superiority over existing approaches.

The rest of the paper, Section 2, describes the literature review of skin disease classifi-
cation; after that, the material and methodology are described, and the types of methods
used in our study are presented in Section 3. Then, in Section 4, the results and discussions
of our work are presented. In addition, Section 5 contains the conclusion of the study.

2. Literature Review

Skin disease classification and deep learning approaches have been studied in recent
years with high efficiency. Significant to deep learning in dermatology, Esteva et al. [9] used
the InceptionV3 architecture to do so. Even though the single-CNN model’s results were as
accurate as those of a dermatologist, this design choice may not hold up well in the real
world. Likewise, Tschandl et al. [10] applied CNN ensembles, but some issues that turned
up included computational overhead and overtraining. In [19], the authors extend their
work on deploying advanced deep learning approaches: Vision Transformer (ViT) and
convolutional neural networks (CNNs) to detect melanoma. With increased rates of skin
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cancer and detection of melanoma essential to increase patient survival, the study assesses
the performance of these models using a dermoscopic image dataset. The findings also
reveal that the pre-trained Vision Transformers yielded an impressive diagnostic accuracy
of 97.97%.

Venkata et al. [20] proposed a wrapper feature selection approach based on the drag-
onfly algorithm (DFA) to select the best feature subsets for skin cancer classification. The
researchers combined DFA, where the population of dragonflies has been classified accord-
ing to their fitness values and brought about the required modification to the positions
of dragonflies. In this work, two CNN models were trained using EfficientNet-B2 and
VGG19 models and applied data augmentation to both labeled and unlabeled datasets.
The framework EfficientNet-B2 yielded excellent performance, specifically in obtaining an
overall accuracy of approximately 89.55% on the test set for the classification of some types
of skin diseases. It has the potential for use in other dermatological conditions and for other
tasks such as psoriasis area and severity index (PASI) scoring, for which this study offers
important insights for severity measures and the development of skin disease diagnosis
and classification. The authors in [21] focused on deep learning for image analysis on
skin disease diagnosis. Therefore, the idea of using skin disease identification brings the
consideration of personalization into a potentially more workable reality, with disparate
data sources and adherence to ethical AI practices. The authors in [22] described multiple
skin lesion classification from dermoscopic images using a shallow model Transformer
module (TM) and self-attention unit (SAU) integrated with an efficient CNN model. The
proposed lightweight architecture suggests that CNN-based feature generation simplifi-
cation is possible; simultaneously, the degree of accuracy preservation with dermoscopy
images (DIs) and complex textures is possible. Strong performance on the ISIC-2019 and
PH2 datasets demonstrates the cross-dataset transferability of the approach via experiments
with large sets of other unseen DIs. In the current work, cross-fusion approaches are used
to handle dermoscopy images. Also, in [23], the authors presented a new skin disease
classification model that utilizes leading-edge deep learning as the key methodology to
enhance performance. Based on the MobileNet-V2 architecture, it introduces squeeze-and-
excitation networks, atrous spatial pyramid pooling, and the channel attention mechanism.
Trained on diverse datasets, including PH2, Skin Cancer MNIST: HAM10000, DermNet,
and Skin Cancer ISIC are used as datasets; resizing and mean subtraction normalization
are applied. Here, the MobileNet-V2 backbone extracts hierarchical features, whereas
ASPP combines multi-scale contextual information to produce a feature map. A study on
self-attention-based mechanisms promotes the extraction of inter-channel relationships
and contextual information, positively affecting feature discrimination. The model yields
an accuracy of 98.6%. Moreover, in [24], the author proposed ResNet50-LSTM, a com-
bination of the ResNet50 deep model and the LSTM classification model, to overcome
the shortcomings of existing models. The deep networks are cascaded with the transfer
learning technique, which handles the sequential data and captures the structural content
of the lesion textures. The findings showed that the third case of ResNet50-LSTM-TL
had stunning accuracy, higher than 99.09%, making it even more potent than other deep
learning models in detecting different skin cancers.

Although the work done in recent years has enhanced the accuracy and effectiveness
of deep learning technology in classifying skin diseases, there are still some drawbacks.
Most research considers binary or few categories of classification and so does not offer
broad solutions for classifying skin diseases concurrently. For instance, current models
that are presented in the literature fail to predict all ten standard labels of skin diseases
at the same time; therefore, they cannot be implemented in real-life clinical practice. The
proposed model fulfills the need for better-automated skin disease classification since
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InceptionNet-v3 and other existing deep-learning models prove insufficient. Traditional
approaches fall short of accurate diagnosis when used for skin condition identification
since various skin diseases share visual patterns that produce diagnostic errors through
misclassification errors. A proposed model improves classification results through state-of-
the-art feature extraction processes that minimize misclassification errors while increasing
general performance. An optimized deep learning architecture powerfully differentiates
different dermatological conditions, which makes the model beneficial for clinical decision
support applications alongside telemedicine systems.

3. Materials and Methods

In this section, we describe the models used in our proposed model, such as ResNet50,
EfficientNetB0, and B2, and the rationale behind their selection and fusion. ResNet-50
demonstrated choice as a feature extractor because its deep residual connections address
gradient vanishing problems, thus resulting in effective feature transmission. The combi-
nation of EfficientNet variants B0 and B2 needed integration because they demonstrated
high parameter efficiency together with a balanced trade-off between network depth and
width while running fewer computations. The proposed fusion model selects strengths
from multiple network architectures that will use different feature structures to boost classi-
fication results. CancerNet is expected to deliver improved overall performance by uniting
standard models because it improves both generalization capabilities and misclassification
resistance when classifying visually similar skin diseases.

3.1. ResNet50

There is a CNN model called ResNet50, which stands for Residual Network-50, aimed
at resolving difficulties with training very deep neural networks, mostly the vanishing
gradient drawbacks. As proposed by He et al. [7], ResNet50, as shown in Figure 1, has
50 layers and is based on what is known as residual learning with shortcut connections.
These shortcut connections allow the network to jump over one or more of them and
perform an identity function, thereby making learning much easier. Unlike MobileNet,
ResNet50 learns not direct mappings but residual functions, which should make the
backpropagation step smoother. This enables the establishment of deeper models as far
as the innovation helps in training the same without compromising on its performance,
which is much different from the original architectures like VGG16 and AlexNet.

Figure 1. ResNet50 model architecture.

Figure 1 depicts ResNet-50’s architectural design, adopting deep residual learning to
extract features with added protection against gradient vanishing. The initial architecture
starts with an input layer, and it completes zero padding for spatial dimension protection.
The first stage contains Conv layers for feature extraction, after which Batch Norm helps
stabilize training before the model applies ReLU and Max Pool for down-sampled feature
maps. The architecture includes stages 2 through 5 with convolution combined with identity
blocks, which apply learnable filters within convolutional blocks but let gradient flow pass
through shortcut connections. The framework implements an average pooling (average
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pool) together with a flattening layer to complete its operation. The average pooling
functionality helps decrease dimensions before the final layer transforms feature maps into
one-dimensional vectors. The output predictions emerge from the last fully connected layer,
which concludes the classification process. The systematic design of ResNet-50 enables
both performance in organizing hierarchical models and operational efficiency.

ResNet50 has residual blocks where 1 × 1, 3 × 3, and again 1 × 1 layers are used
for the reduction of dimensionality, feature extraction, and expansion, respectively. In the
same manner, ResNet50 decreases computational costs and Cal energies via bottleneck
designs without compromising the network’s ability to contain sufficient representational
capacities. Because of this learning of hierarchical features, CNNs have been adopted in
image classification chores, performing impressively well on benchmark image datasets,
such as ImageNet. Besides the classification context, ResNet50 has also been used in many
other computer vision tasks, such as object detection, image segmentation, and medical
image analysis [25,26]. Due to its modularity and efficiency, the authors mentioned above
noted that it has become the base for many other derived architectures, primarily ResNet
and DenseNet, due to its residual learning capability [8]. Nonetheless, ResNet50 has its
drawbacks: Although residual learning helps to reduce gradient problems, the depth of
the network poses a problem of computational and memory overhead, especially in envi-
ronments where such resources are scarce. Fine-tuning deep networks such as ResNet50
may be very sensitive and compelled by optimization considerations and hyperparameters’
settings. However, on balance, ResNet50 is the most important accomplishment in deep
learning because it learns deep networks well and generalizes well in many contexts. It has
paved the way for the improvement of subsequent deep learning frameworks in computer
vision, which marks the study as a strong foundation in modern computer vision [7,8].

3.2. Efficient Net

Tan and Le [6] proposed a novel CNN called EfficientNet, improving both efficiency
and accuracy through a proper scaling of depth, width, and resolution of the input data. As
opposed to previous works, EfficientNet applies a compound scaling factor to these dimen-
sions so that all are positively scaled while at the same time maximizing computational
complexity. With EfficientNet-B0 as the baseline model, launched from neural architecture
search (NAS), which maximizes the architecture density while providing extremely high
efficiency. Even though it has merely 5.3 M parameters, EfficientNet-B0, as shown in
Figure 2, provides high results in image classification tasks, is energy efficient, and even
surpasses heavy-hitter models, such as ResNet50 on the ImageNet dataset. It comprises
mobile inverted bottleneck convolution (MBConv) blocks, depth-wise convolutions, and
SWISH activation functions, all of which enable the model to pick fine-grained feature
representation with much less computational cost.

Figure 2. EfficientNet-B0 Model Architecture.
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The EfficientNetB0 design shows the network architecture used for efficient and
scalable image classification duties, as shown in Figure 2. As the base model of the Effi-
cientNet family, EfficientNetB0 applies a compound scaling methodology for equal scaling
of network depth, width, and resolution. The model design permits both high-accuracy
performance and efficient operation. Modularity refers to the network design, which ex-
hibits multiple numbered components extending from Module 1 through Module 584. The
modular approach in the network design represents individual network elements, such as
convolutional layers or activation functions, as well as pooling layers. The systematic and
hierarchical EfficientNetB0 architecture achieves optimal performance–resource utilization
through its structure/modules numbered from 1 to 584.

EfficientNet-B2 is developed from the base EfficientNet-B0 model using compound
scaling, which scales network depth, width, and input resolution in a proportional man-
ner. More precisely, B2 enlarges the input image resolution to 260 × 260, enlarges the
number of channels in the convolutional block, and increases the depth of the model in
comparison with B0. Such enhancements enable EfficientNet-B2 to better encode finer-
scale spatial patterns yet be efficient. EfficientNet-B2 has fewer parameters than B0, with
approximately 9.1 million; however, it has slightly better performance in terms of accu-
racy, so it can be preferred for tasks that require finer features, such as medical image
classification and fine-grained classification [27]. Nevertheless, B2 enlarges its scale while
remaining computationally efficient, thanks to its efficient layout design and the selection
of dimension scaling.

Figure 3 depicts the EfficientNet-B2 architecture, which functions as a convolutional
neural network platform optimized for scalable image classification. A modular design
structure is evident through the large number of numbered modules ranging from Module 1
up to Module 586. Every separate module matches a distinct part of the network, including
convolutional modules and activation functions alongside pooling blocks. The sequential
arrangement of these modules explains how EfficientNetB2 follows a systematic hierarchy
that ensures optimal performance alongside resource efficiency in deep learning tasks. A
modification of EfficientNetB0 implements expanded scaling parameters to achieve better
precision and resistance in this model.

Figure 3. EfficientNet-B2 model architecture.

Recent members of the EfficientNet family, namely B0 and B2, have outperformed
their counterparts, leveling high scores within numerous computer vision tasks, notably
ImageNet. Due to their highly accurate results with low computational complexities, they
are used in a wide range of applications, from mobile applications to large-scale image
recognition [28]. However, due to compound scaling, the growth of model performance is
limited to the baseline architecture, and any additional increase must be obtained through
computationally intensive NASs. Still, EfficientNet-B0 and B2 provide insight into ef-
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fective model scaling and have succeeded in efficient deep learning solutions in various
domains [6,29].

In the proposed model, we select the EfficientNetB0 and EfficientNetB2 models be-
cause they achieve a perfect trade-off between resource efficiency and performance, which
makes them ideal for various applications that work within limited computing capacity.
The two EfficientNet versions establish a foundation through EfficientNetB0, which pro-
vides the compact architectural design with compound scaling as well as the enhanced
accuracy capabilities of EfficientNetB2 without additional computational complexity. The
orientation stems from requirements to use accuracy-strong and deployment-friendly mod-
els for practical use, yet higher variants B7 and B8 demonstrate insufficient performance
despite requiring more resources. The implementation of B0 and B2 allows for an appli-
cable solution that provides both versatility and computational efficiency for different
operational domains.

3.3. Proposed Fusion Model

The proposed fusion model for skin disease classification illustrated in Figure 4 oper-
ates as an architecture for automated skin disease classification. The proposed approach
employs three convolutional neural networks named EfficientNet-B0, EfficientNet-B2, and
ResNet50 that extract multiple feature patterns from medical images. Each CNN performs
separate analyses on the input images while building deep hierarchical features until
reaching a holistic representation of the features. The fused features move through fully
connected layers until the SoftMax layer makes a final classification among the ten skin
disease categories.

Figure 4. Proposed fusion model.

3.3.1. Data Preprocessing

The data processing stage starts by applying preprocessing and augmentation tech-
niques to the skin disease dataset before continuing to the training process. Data augmen-
tation adopts techniques such as rotation, flipping, brightness, and contrast adjustment.
Additionally, rotation serves to provide real-world simulation effects alongside flipping
mechanisms that perform horizontal and vertical transformations for increasing data vari-
ety. Adjustments in brightness levels and contrast values enable the model to understand
different levels of illumination conditions more effectively. The group of augmentation
techniques works together to improve how the model detects skin diseases across different
setting conditions. Data augmentation enables the subdivision of the dataset into three
parts, where 80% serves for training purposes and 10% functions for validation, while the
remaining 10% serves for testing purposes. The model optimizes its parameters during
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training with the data from the training set, and the validation set confirms hyperparameter
adjustments and stops overfitting scenarios. The testing set provides the final model evalu-
ation, so performance metrics exactly gauge actual real-world generalization performance.

3.3.2. Feature Fusion and Classification

The main component of the model combines three pre-trained powerful deep learn-
ing representatives known as EfficientNet-B0, EfficientNet-B2, and ResNet50 for feature
extraction through fusion. The input images undergo high-level feature representation
processing by each model to detect various elements of skin disease patterns. The classifica-
tion procedure combines model-generated feature vectors through concatenation to attain
an enriched feature set that receives additional optimization for classification purposes.
Using this feature fusion technique enhances the compilation of robust features compared
to standalone model usage. The classification process begins after the fused feature vector
goes through a dense layer sequence that contains numerous fully connected blocks. The
final classification head contains three linearly dense layers with 512, then 256, and finally
10 that use SoftMax activation. Between each dense layer exists a Dropout layer. During
training, the dropout layers work as a regularization tool that creates better generalization
through random neuron deactivation. Finally, the output layer performs categorical classifi-
cation aimed at predicting the nature of skin disease. The SoftMax activation function gives
probability scores for each class, and then the model can predict the most probable label of
the input images. The types of skin diseases to be classified in the proposed fusion model
include eczema, melanoma, atopic dermatitis, basal cell carcinoma (BCC), melanocytic nevi
(NV), and benign keratosis-like lesions (BKL).

3.3.3. Evaluation Metrics

Multiple evaluation metrics determine the effectiveness assessment of the proposed
model. The main measure of classification accuracy consists of accuracy. The evaluation
of model performance includes calculations of precision, recall, and F1-score to identify
how well the model distinguishes between various skin disease classes while maintain-
ing sensitivity and specificity. Assessment through the area under the receiver operating
characteristic (AUC-ROC) curve analysis allows measurement of model discrimination
power between classes across different classification threshold points. The proposed
model reaches better classification accuracy together with improved generalization ability
through its integration of multiple pre-trained CNNs and optimized feature fusion tech-
niques. The model’s reproducibility stems from structured preprocessing procedures along
with available scripts and systematic testing methods that allow real-world skin disease
diagnosis applications.

4. Experimental Results and Discussion

The section presents an in-depth description of the dataset while also providing
performance mathematical equations followed by experimental results and a state-of-the-
art comparison discussion.

4.1. Dataset Description

The Skin Diseases Image Dataset is available on Kaggle [30] and provides a vast
collection of original, visually identified skin images intended for a range of dermatological
disease classifications. The dataset is 5.58 GB large. It has 10 different labels containing
different skin diseases and 27,153 images of clinical images that demonstrate variations
in skin color and patterns and range from mild forms of skin diseases to severe. It also
enables reliable model formulation and evaluation by catering to the diverse characteristics
of the dataset. The proposed model was accessed through TensorFlow and Keras tools on
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an NVIDIA GPU device that provided quick model training plus evaluation processes. An
Adam optimizer initiated at a 0.0001 learning rate powered all operations and hidden layers,
using ReLU activation before the Softmax operation generated class probabilities. The
dataset was divided into training (80%), validation (10%), and testing (10%) splits, which
remained constant for all models during the comparison process. To establish the accuracy
of our findings, we conducted 5-fold cross-validation, which strengthened performance
assessment while reducing potential biases in the dataset.

The distribution of skin conditions contains 10 distinct categories that show their
occurrence numbers in the presented Table 1. The research reveals that 1677 persons suffer
from eczema, and 3140 individuals experience melanoma. The record shows that atopic
dermatitis affects 1257 cases, whereas basal cell carcinoma (BCC) has 3323 cases. The
dermatological condition classification has 7970 cases of melanocytic nevi (NV) as the
most common and 2079 cases of benign keratosis-like lesion (BKL) as the second most
common. The reports for psoriasis and lichen planus, along with related conditions, rep-
resent 2055 cases and seborrheic keratoses with other benign tumors represent 1847 cases.
Of the recorded skin conditions, Tinea ringworm, Candidiasis, and other fungal infec-
tions total 1702 cases, while warts, molluscum, and other viral infections amount to 2103
cases. The dataset demonstrates how different skin-related diseases occur throughout their
specified areas.

Table 1. Distribution of skin disease classes with their respective counts.

Class Name Count

Eczema 1677
Melanoma 3140

Atopic dermatitis 1257
Basal cell carcinoma (BCC) 3323

Melanocytic nevi (NV) 7970
Benign keratosis-like lesion (BKL) 2079

Psoriasis, lichen planus, and related diseases 2055
Seborrheic keratoses and other benign tumors 1847

Tinea, ringworm, candidiasis, and other fungal infections 1702
Warts, molluscum, and other viral infections 2103

The analysis uses the hyperparameters in Table 2 to attain peak training outcomes.
Because of its effectiveness on big datasets and generalization capabilities, the stochastic
gradient descent (SGD) optimizer was the choice. The learning rate was set to 0.0001 to
achieve gradual convergence and reduce the possibility of seeking past the ideal solu-
tion. The models were trained through the suitable multi-class classification loss function
known as categorical cross-entropy. The model performance evaluation used accuracy as
the main metric. The model used early stopping through validation loss monitoring to
prevent overfitting using a patience threshold set to 20 epochs. The restore best weights
capability was enabled to save the model parameters that exhibited peak performance for
ultimate assessment.

Several approaches were used to handle the class imbalance problem in the image
dataset by the proposed system. The minority classes benefited from data augmentation
procedures that produced synthetic data by transforming real images with rotation effects
and flipping operations in addition to brightness and contrast transformations. The com-
bination of EfficientNet-B0, EfficientNet-B2, and ResNet50 allowed the model to extract
comprehensive features from skin disease images, thereby reducing reliance on the majority
class data. A weighting mechanism was included in the model’s loss function structure to
prioritize the training of minority classes, therefore achieving balanced performance across
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all diagnosis categories. By applying these combined strategies, the model gained effective
control over the class imbalance, which resulted in strong classification outcomes.

Table 2. Hyperparameters for all models.

Hyperparameter Value

Optimizer Stochastic Gradient Descent (SGD)
Learning Rate 0.0001
Loss Function Categorical Cross entropy

Metrics Accuracy
Monitor Validation Loss
Patience 20 epochs

Restore Best Weights TRUE

4.2. Performance Metrics

The evaluation of each classifier depended on accuracy levels while also using classifi-
cation reports alongside ROC curves. The accuracy evaluation relied on dividing correctly
classified instances by the total instances present. The evaluation process provided initial
precision, recall (detection rate), and F1 scores for each test set class in classification reports.
The comparison of model effectiveness through different classification thresholds employed
ROC curves along with their area under the curve (AUC) evaluation.

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1-measure =
2TP

2TP + FP + FN
(4)

The model performs assessment with four categories, including true positives (TPs),
true negatives (TNs), false positives (FPs), and false negatives (FNs).

4.3. Results

Here, we report the comparative results of the deep learning models alongside the
proposed model, such as EfficientNet-B2, ResNet101V2, MobileNet-v3, and InceptionNet-
v3. To evaluate how well these models are for dermatological disease classification, they
were examined using the Skin Diseases Image Dataset. Their performances were evaluated
with the help of accuracy, precision, recall, and F1-score. The experiments for pre-trained
model comparison depended on standardized execution procedures. The comparison
involved maintaining consistent dataset partitioning methods along with preprocessing
requirements while using the stochastic gradient descent optimizer and identical learning
rates and batch sizes across all experimented models. The training duration changed
according to early stopping, which used validation loss to stop training before overfitting
occurred. The training duration for EfficientNet-B2 models needed only 70+ epochs for
convergence, yet ResNet101V2 required 20+ epochs to achieve maximum performance,
MobileNet-v3 required 60 epochs for convergence, InceptionNet-v3 required 100 epochs
for convergence, and the final proposed model required 20 epochs for convergence. We
explicitly added in the manuscript that all models achieved convergence under uniform
experimental conditions regardless of their various epoch numbers.
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Table 3 shows the classification report of testing the Skin Diseases Image Dataset for
five models, including EfficientNet-B2, ResNet101V2, MobileNet-V3, InceptionNet-V3, and
the proposed model. The execution time of 100 seconds represents the fastest performance
of MobileNet-V3 along with a fair precision and recall score of 0.85 that also produces
comparable F1-score and accuracy levels. The computational time was 170 seconds for
ResNet101V2 while it delivered a performance of 0.80 across metrics. The InceptionNet-V3
model delivered moderate accuracy for skin disease diagnosis through 150 seconds of
execution time, together with precision at 0.82 and F1-score and accuracy at 0.81. The
proposed model delivered superior performance compared to all other models tested by
reaching 99.14% across all assessment indicators within 200 seconds of execution time.
Its diagnostic capabilities for identifying 10 skin disease conditions make the proposed
model a powerful diagnostic instrument even though it requires slightly more computer
processing time.

Table 3. Classification report of the testing dataset.

Model Precision Recall F1-Score Accuracy
Execution Time

in Second

EfficientNet-B2 0.84 0.84 0.84 0.84 140
ResNet101V2 0.80 0.80 0.80 0.80 170
MobileNet-v3 0.85 0.85 0.85 0.85 100

InceptionNet-v3 0.82 0.81 0.81 0.81 150
Proposed Model 0.9914 0.9914 0.9914 0.9914 200

Figure 5 shows the performance evaluation through confusion matrices of four deep
learning models, including ResNet101V2, MobileNet-V3, and InceptionNet-V3, and the
proposed model appears in the figure based on their assessment in a ten-class classification
scenario. The classification performance becomes visible in each confusion matrix through
its presentation of properly identified and wrongly identified sample counts for different
classes. Efficient Net-B2 classification accuracy reaches 84% but enables too many mis-
diagnoses between disparate categories across all non-diagonal elements. ResNet101V2
confirms moderate diagnostic errors between related dermatological conditions when
achieving an 80% overall success rate. The classification capability of MobileNet-V3
reaches 85% accuracy because it shows more correct predictions along its main diago-
nal. InceptionNet-V3, with an accuracy of 81%, exhibits a slightly higher misclassification
rate than MobileNet-V3 but outperforms ResNet101V2. The proposed model delivers
exceptional performance by exceeding all baseline models through its 99.14% accuracy
rating. The proposed model achieves nearly perfect precision, recall, and F1 score for all
classes based on its strong diagonal values and low number of misclassified predictions
found in its confusion matrix. The proposed model provides an effective solution for differ-
entiating between dermatological conditions because its performance steadily improves in
comparison to other models evaluated.

Figure 6 displays the accuracy changes of five deep learning models, including
EfficientNet-B2, ResNet101V2, MobileNet-V3, InceptionNet-V3, and the proposed model,
during their training and validation cycles across different epochs. The training accuracy of
EfficientNet-B2 steadily rises to indicate 100% success, whereas its validation accuracy sta-
bilizes at 85%, which implies weak model overfitting potential. ResNet101V2 demonstrates
solid training accuracy along with validation accuracy that stops below 80%, potentially be-
cause of model generalization difficulties. MobileNet-V3 demonstrates fast learning, which
results in nearly 85% validation accuracy, as well as stable training–validation accuracy
differences. Training accuracy from InceptionNet-V3 achieved near-perfect results, but
validation accuracy stagnated at 81%, which indicates steps toward overfitting occurred. A

69



Diagnostics 2025, 15, 551

high validation accuracy emerges from the proposed model, which demonstrates minimal
fluctuations and suggests better generalization potential. The proposed model demon-
strates excellent stability between its training accuracy and validation accuracy, which
suggests more robustness together with lower overfitting than the other competing mod-
els. The research findings demonstrate that the proposed model outperforms alternative
models because it shows better results in complex pattern detection combined with strong
generalization capabilities.

EfficientNet-B2EfficientNet B2

MobileNet-V3

InceptionNet-V3InceptionNet V3

ResNet101-V2

Proposed model

Figure 5. Confusion matrices.

EfficientNet-B2EfficientNet B2

MobileNet-V3

InceptionNet-V3Inceptp ionNet V3

ResNet101-V2

Proposed model

Figure 6. Accuracies for all models.

Figure 7 shows a comparison of convergence and generalization capacity exists be-
tween the training and validation loss curves of five models, including EfficientNet-B2
and ResNet101V2, along with MobileNet-V3, InceptionNet-V3, and the proposed model in
a single depiction. The EfficientNet-B2 model demonstrates quick loss decreases during
training and displays steady validation loss at a slightly higher level than training loss
because of limited model overfitting. ResNet101V2 demonstrates training and validation
loss patterns that show a significant gap that signals potential overfitting of the model.
The convergence speed of MobileNet-V3 and InceptionNet-V3 enables their training loss
to approach zero values as the validation loss stays steady, indicating acceptable but not
peak generalizability. A distinct characteristic of the proposed model lies in its stable loss
reduction pattern because training loss correlates closely with validation loss while show-
ing excellent generalization capacity. The proposed model demonstrates lower overfitting
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through its minimal training–validation loss gap; thus, it offers enhanced performance for
complex data distributions.

EfficientNet-B2EfficientNet B2

MobileNet-V3

InceptionNet-V3InceptionNet V3

ResNet101-V2 Proposed model

Figure 7. Losses for all models.

Figure 8 shows receiver operating characteristic (ROC) curve analysis with perfor-
mance evaluation of ten distinct classes, including eczema, alongside melanoma and basal
cell carcinoma. The representation of the true positive rate (TPR) vs. false positive rate
(FPR) trade-offs in specific classes occurs through individual curves alongside area under
the curve (AUC) metrics, which assess model distinction capability. The AUC = 1.00 perfect
separation results of classes melanoma and basal cell carcinoma are distinguished from
other classes such as eczema and warts molluscum, which exhibit strong but sub-perfect
performance, with AUC values between 0.93 and 0.99. Random guessing stands as the ref-
erence point, while model effectiveness increases when the curves get closer to the top-left
area of the graph. High classification accuracy stands out in the figure, even as performance
shows varying levels across specified conditions, especially for selected classes.

EfficientNet-B2EfficientNet B2

MobileNet-V3

InceptionNet-V3InceptionNet V3

ResNet101-V2

Proposed model

Figure 8. ROC curve for all models.

4.4. Discussion

The fusion-based deep learning model, which combined EfficientNet-B0, EfficientNet-
B2, and ResNet50, reached excellent results in skin disease classification, with an accuracy
of 99.14%. The dual benefit of merging multiple pre-trained architectural frameworks
allowed the model to acquire different features, thereby strengthening its ability to per-
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form generalizations across diverse skin conditions. The utilization of single-pretrained
EfficientNet-B2 proves effective, but the multi-architecture fusion approach extracts wider
features while achieving optimal performance in skin disease classification. The proposed
model benefited from additional regularization techniques, which prevented overfitting
while maintaining training stability to enhance its total performance.

The proposed model achieves better class imbalance performance than MobileNet-v3
and ResNet101v2. The design of MobileNet-v3 focuses on efficiency, which results in an
accuracy level reaching 85%, although this result makes it inadequate for analyzing complex
medical datasets needed for skin disease diagnosis. Efforts to use ResNet101v2 resulted
in 80% accuracy, yet the model faced challenges when dealing with multiple diseases and
similar patterns between them. The proposed fusion model delivers a comprehensive
performance improvement through an accuracy of 99.14%. Through fusion, the model
benefits from multiple network-learned features to achieve precise identification of skin
disease variations.

The combination model demonstrates superior performance compared to Inception
and EfficientNet-B2 on challenging multi-class skin disease identification tasks. The
distribution–meaning reduction by convolution filters of Inception networks creates a
challenge when dealing with intra-class differences in data. EfficientNet-B2 shows supe-
rior performance when it comes to both parameter utilization and processing speed, but
the accuracy is 84% for detecting multi-class skin diseases. The proposed model merges
EfficientNet-B0 with EfficientNet-B2 plus ResNet50 as its components to overcome these
hurdles since the combination enhances performance for minority class detection and
guarantees improved accuracy in all categories.

Comparative analysis shows the evolution and further developments in skin disease
classification methods adopted by deep learning frameworks, as shown in Table 4. The
study of Venkata et al. [16] involved the use of the EfficientNet-B2 model on the DermNet
NZ Image Library and was 89.55% accurate. While this result is quite impressive, it
specializes in identifying simple patterns that need some improvement when it comes
to capturing complex skin disease patterns. In contrast, K. Vayadande [17] only adopted
regularization techniques in the CNN framework, whereas the datasets were collected from
the Kaggle site and obtained a striking accuracy of 98%. This improvement is notable for
proving the idea of enhancing the CNN architecture designed for generalization and model
robustness. Similarly, Rezaee [18] used capsule networks to enhance feature extraction,
with an accuracy of 96.87% on the PH2 dataset, and warned that further improvement may
be required to achieve greater levels of accuracy. However, the sophistication of models that
have been developed in the recent past, like those by Nirupama [19] and Mavaddati [20],
has led to improved benchmarks in skin disease classification. Thus, by using MobileNet-
V2 and applying additional modules, such as squeeze-and-excitation networks and atrous
spatial pyramid pooling, Nirupama achieved 98.6% accuracy on multiple datasets. To
round off, Mavaddati developed a ResNet50-LSTM to increase accuracy by a margin;
the repeatability of 99.09% proved this was possible when using both convolutional and
sequential models to capture lesion texture and structural content. These include the
following smart state-of-the-art techniques that the proposed model outperforms, yielding
a maximum accuracy of 99.14% on datasets from Kaggle. This shows that the proposed
model can be used in real-world applications since it indicates high classification accuracy
while at the same time presenting a workable solution for classification methods useable
for various data sizes and applicable in scalable classifications.
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Table 4. Comparative analysis of the proposed model vs. state-of-the-art methods.

Reference No. Year Technique Collections Accuracy

Venkata et al. [20] 2024 EfficientNet-B2 (CNN
model)

DermNet NZ Image
Library 89.55

K. Vayadande [21] 2024
Regularization techniques

within the CNN
framework

Datasets sourced from
Kaggle 98.00

Rezaee [22] 2024
Utilization of capsule

networks for improved
feature extraction

PH2 datasets

Nirupama [23] 2024 MobileNet-V2

PH2 dataset, Skin Cancer
MNIST: HAM10000
dataset, DermNet.

dataset, and Skin Cancer
ISIC dataset.

98.6

Mavaddati [24] 2025 ResNet50 and LSTM Skin Dataset 99.09

Proposed Model - ResNet50 and
EfficientNet(B0, B2)

Skin Datasets sourced
from Kaggle 99.14

5. Conclusions

The deep learning model that fuses a classification network with two pre-trained
networks shows better results for identifying skin diseases. The proposed model design
effectively captures detailed visual characteristics in dermatological images through its
multi-stream architecture that implements EfficientNet-B0, EfficientNet-B2, and ResNet50
components. The combination strategy permits these networks to work together using their
respective strengths while resolving the unique challenges that single models encounter
during both inter-class and intra-class classification. The model delivers exceptional results
on the Kaggle Skin Diseases Image Dataset with 99.14% accuracy together with matching
precision and recall values and an F1 score of 0.9914, which validates its diagnostic credi-
bility. The model executes medical image analysis with deep learning-based complexity
while operating within 200 seconds of execution time. The research results demonstrate
how model fusion approaches can boost dermatological image classification procedures.
Deep learning establishes itself as a dependable tool for diagnostic support in medical
skin disease assessment by achieving nearly flawless performance. These outcomes create
standards for medical imaging research that advance the practical applicability of modern
deep learning approaches in healthcare.

Several important obstacles must be considered. The quality of data and its variation
level determine how well the model functions. The model is now limited to the Kaggle
dataset, which contains a consistent group of skin diseases or conditions, but it cannot
diagnose any other pathologies, and performance is unknown on other datasets. Training
and inference procedures from this system require significant computational power that
becomes a major factor for adoption among resource-restricted locations, including mobile
devices and rural healthcare services. The model requires external validation with various
datasets before it can be used clinically because its effectiveness on external datasets remains
untested. Future research must devote efforts to building a larger database that includes
various skin disorders, particularly uncommon ones, to extend the model’s generalization
abilities. The optimized model design will make it feasible to use this system in real-time
diagnostic tools alongside mobile health applications. Enhanced predictions will result
from processing multiple types of patient information that include demographic features
alongside clinical background records. By implementing the model into clinical decision
support systems, healthcare professionals would gain more effective disease diagnosis
capabilities. This study positions itself as the foundation for developing future sophisticated
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dermatological diagnosis tools that will deliver better accessibility and durability through
AI technology.
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Abstract: Background and Objectives: Chest X-ray (CXR) images are commonly used to diagnose
respiratory and cardiovascular diseases. However, traditional manual interpretation is often sub-
jective, time-consuming, and prone to errors, leading to inconsistent detection accuracy and poor
generalization. In this paper, we present deep learning-based object detection methods for auto-
matically identifying and annotating abnormal regions in CXR images. Methods: We developed
and tested our models using disease-labeled CXR images and location-bounding boxes from E-Da
Hospital. Given the prevalence of normal images over diseased ones in clinical settings, we created
various training datasets and approaches to assess how different proportions of background images
impact model performance. To address the issue of limited examples for certain diseases, we also
investigated few-shot object detection techniques. We compared convolutional neural networks
(CNNs) and Transformer-based models to determine the most effective architecture for medical image
analysis. Results: The findings show that background image proportions greatly influenced model
inference. Moreover, schemes incorporating binary classification consistently improved performance,
and CNN-based models outperformed Transformer-based models across all scenarios. Conclusions:
We have developed a more efficient and reliable system for the automated detection of disease labels
and location bounding boxes in CXR images.

Keywords: chest X-rays; deep learning; few-shot object detection; object detection

1. Introduction

Medical images play a crucial role in disease prevention, detection, and diagnosis,
providing essential support for clinicians. Of the various types, chest X-ray (CXR) images
are particularly valuable for detecting abnormalities in the lungs, heart, and bones, which
aids in making appropriate treatment decisions. The accurate analysis of these images is
highly beneficial for improving patient care. In this study, we aim to enhance diagnostic
accuracy by analyzing CXR images for 12 common chest conditions, including aortic
sclerosis (calcification), arterial curvature, small pulmonary nodules, pulmonary nodule
shadows, tuberculosis, pulmonary fibrosis, increased lung markings, prominent hilar
regions, spinal lesions, intercostal pleural thickening, cardiac hypertrophy, and the presence
of heart pacemakers. Twelve conditions were selected for study due to their reliable high-
quality annotations, which are crucial for developing accurate models. Additionally, they
have clear visual manifestations, making them more detectable via automated analysis.

Traditionally, doctors manually detect abnormalities in chest images through visual
examination, which can be influenced by personal biases and external factors, leading to
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inconsistent results. During initial CXR screenings, physicians must also manually label
lesion areas, a process that is time-consuming and labor-intensive. With the rapid growth
in the volume of clinical image data, the workload for doctors has increased significantly.
In recent years, artificial intelligence, particularly machine learning (ML), has emerged
as a powerful tool for addressing such challenges. Deep learning, a subset of ML, has
shown great success in computer vision tasks like image classification, segmentation,
and object detection. Consequently, researchers have begun applying deep learning to
medical image analysis to automate tasks such as disease diagnosis, detection, and lesion
localization. These automated methods allow time savings, improving diagnostic efficiency
and reducing the impact of external factors.

Several studies have applied deep learning to classify CXR images, aiming to aid
in diagnosing a wide range of diseases. In particular, deep learning has been widely
used to support automated diagnosis of COVID-19 from CXR images. For example, Ali
et al. [1] developed a densely connected squeeze convolutional neural network (CNN)
for classifying cases of COVID-19 and pneumonia with high accuracy, showcasing the
potential of deep learning to enhance diagnostic reliability in the context of a pandemic.
Singh et al. [2] also proposed a CNN architecture where segmentation and classification
were combined to boost the classification accuracy for COVID-19-affected CXR images.
Other studies have focused on identifying various types of pneumonia. Garstka and
Strzelecki [3] developed a custom CNN, trained on a small dataset, to classify pneumonia
types from CXR images. Additionally, recent studies have explored using deep learning to
detect multiple lung diseases. For instance, Rana et al. [4] created an automated system
for classifying 10 different lung diseases, utilizing a flexible CNN architecture in which
graph neural networks were integrated with feedforward layers. A comprehensive analysis
of deep learning applications in lung cancer diagnosis and classification is provided in a
recent systematic review [5].

Object detection involves identifying and locating specific objects within an image,
merging recognition with localization tasks. Through the application of modern object
detection techniques, notable success has been achieved across various fields, including
wildlife monitoring [6], autonomous driving [7], defect inspection [8], security surveil-
lance [9], and face mask detection [10]. These advances have largely been driven by deep
learning models, which are typically based on two architectures: convolutional neural
networks (CNNs) [11–16] and self-attention-based Transformers [17]. CNN-based detec-
tors are classified as either one-stage models, like the YOLO series [18–20], SSD [21], and
RetinaNet [22], which prioritize speed, or two-stage models, such as the R-CNN family [23–25],
which focus on accuracy. Recently, Transformer-based models like DETR [26] and De-
formable DETR [27] have also gained popularity, reflecting ongoing innovations in the field
of object detection.

Despite this progress, there are several challenges hindering the application of deep
learning in medical image object detection [28–30]. For example, most deep learning object
detection models are trained on the MS COCO dataset [31], which consists primarily of
images unrelated to medical applications. This raises concerns about whether models
trained on such datasets can perform well when applied to CXR images—a key issue this
study seeks to address.

Another challenge is the costly and time-consuming process of labeling medical image
data, especially for object detection tasks that require detailed annotations, such as adding
bounding boxes around lesions. This task is even more difficult for CXR images, as it
requires the expertise of radiologists, making the process more complex and resource-
intensive [30]. As a result, the dataset used in this study contains only a limited number of
training images for each disease category, with some categories having very few examples.
This data scarcity poses a significant challenge for training deep learning models, for
which large amounts of labeled data to avoid overfitting are required. To address this, we
employ few-shot object detection methods, which are designed to recognize new (unseen)
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disease categories using only a few training examples after the model has been trained on
numerous examples of known (seen) categories [32–34].

In this study, we aim to improve CXR image analysis by focusing on disease labels and
location bounding boxes for object detection. We explore advanced deep-learning models,
incorporating few-shot techniques to enhance their performance. Additionally, we compare
various deep learning methods to evaluate their strengths and weaknesses, ultimately
seeking to develop a more efficient and reliable system for the automated detection of chest
diseases in CXR images.

2. Related Work

Substantial progress has been made in deep learning for image classification and object
detection, impacting fields like medical imaging. However, accurately detecting specific
disease markers in CXRs remains challenging, especially for rare conditions with limited
data. A review of the current classification and detection methods reveals several gaps and
limitations that serve as motivation for further research in this area.

2.1. Classification

Significant progress has been made in network architectures for image classification.
Scaling up neural networks by increasing their depth can enhance accuracy but may also
lead to the vanishing gradient problem. This was addressed through skip connections using
ResNet [15] to improve gradient flow in deeper networks. DenseNet [16] is an expansion
of ResNet with dense connections that allow each layer to receive feature maps from all
previous layers, enabling feature reuse across layers to reduce parameter count and improve
efficiency. Model scaling was further optimized in developing EfficientNet (B0–B7) [35] by
balancing depth, width, and resolution, achieving a strong trade-off between accuracy and
computational cost.

However, while these classification models are powerful for general tasks, they are lim-
ited in their ability to localize and classify the smaller more subtle abnormalities often found
in CXRs, which require precise object detection capabilities beyond merely classification.

2.2. Object Detection

Different object detection architectures, typically categorized as one- or two-stage
detectors, each have strengths and weaknesses. Two-stage detectors like those derived
from the R-CNN framework are generally more accurate as they utilize a refined candidate
selection process that filters out negative samples early, while one-stage detectors, exempli-
fied by the YOLO series, focus on real-time detection but often generate too many candidate
boxes, causing class imbalance by overfocusing on background samples. The focal loss
function introduced in RetinaNet [22] improved the one-stage detector by reducing the
influence of easy samples and enhancing learning from difficult samples. RetinaNet also
uses a feature pyramid network [36] to integrate features from feature maps of different
scales, thereby enhancing its feature extraction capability. YOLOv3 was improved us-
ing a decoupled head design, stronger data augmentation, and a shift to an anchor-free
framework in developing the real-time detector YOLOX [37], with fewer parameters and
better generalization. The problem of fixed IoU thresholds was addressed using Dynamic
R-CNN [38] by dynamically adjusting the threshold during training and refining the loss
function based on regression label statistics. DETR [26] revolutionized object detection by
employing the Transformer architecture for end-to-end detection, eliminating the need for
traditional anchor boxes or region proposals, though it suffers from slow convergence and
poor small object detection. These issues were addressed using Deformable DETR [27],
which focuses attention on key points near a reference point, improving performance for
high-resolution images and small object detection.

Although these models have been adapted for various fields, their direct application
to CXR analysis remains problematic due to issues such as high computational demand,
slow convergence, and difficulties in detecting small but clinically relevant features. This
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highlights the need for more specialized object detection approaches that can overcome
these limitations within the context of medical imaging.

2.3. Few-Shot Object Detection (FSOD)

The aim of few-shot learning is to build a model that can accurately classify images
using very few training examples for specific classes. In FSOD, the categories are divided
into base classes (with many training examples) and novel classes (with fewer examples).
There are two stages in the training process: base training and k-shot fine-tuning. During
base training, the model is only trained on base class objects, even if the images also
contain novel class objects. In the k-shot fine-tuning stage, a small number (k) of bounding
boxes from each class are used to refine the model. This approach is particularly useful in
medical image analysis, where it may be difficult to collect data, with some diseases being
extremely rare.

Meta-learning, which focuses on “learning to learn”, is crucial for FSOD, where models
are trained on tasks from dataset subsets to rapidly adapt to new tasks. This fine-tuning
approach was previously considered less effective until the two-stage fine-tuning approach
TFA [39] challenged this view. TFA, built on Faster R-CNN, was initially trained on base
classes and fine-tuned only the box predictor for all classes, improving accuracy by replac-
ing the fully connected classifier with a cosine similarity-based classifier. The classification
accuracy for novel classes was improved through FSCE [40] by using contrastive learning
to separate novel instances from base classes. The contrastive proposals encoding loss were
added to the Faster R-CNN loss, enhancing accuracy. In Meta-DETR [41], the first image-
level few-shot detector, generalization was improved by incorporating the correlational
aggregation module to capture inter-class correlations and reduce misclassification.

While these methods have shown success in domains like Pascal VOC and MS COCO,
their performance on CXR datasets remains underexplored. Current FSOD techniques
often struggle with inter-class variability and can suffer from misclassification, particularly
in complex medical datasets where diseases may have overlapping visual features. Thus,
developing a specialized FSOD approach for CXRs could significantly enhance model
adaptability and reliability in detecting rare diseases.

2.4. Deep Learning-Based Object Detection for CXR Images

In recent years, deep learning-based object detection has been applied to CXR images
for identifying foreign objects [42] and localizing abnormalities [43,44] in assisting the
diagnosis of various diseases. Advanced architectures such as YOLO, RetinaNet, Mask
R-CNN, and Faster R-CNN have been adapted for CXR analysis, achieving high accuracy
and fast localization [45]. Notably, in a direct comparison of performance, the YOLOX
model surpassed radiologists [44]. Large datasets with ground-truth bounding boxes, such
as VinDr-CXR (open dataset of 18,000 CXRs with 28 abnormalities) [46] and CXR-AL14
(dataset available upon request for 165,988 CXRs with 14 abnormalities) [44], have been
created to enhance model training.

To improve nodule detection performance, Behrendt et al. [47] evaluated strategies
such as transfer learning using pre-trained weights from the VinDr-CXR and COCO
datasets, as well as training from scratch. They addressed class imbalance by augmenting
training data with generated nodules in healthy CXRs and compared this to oversampling
the less frequent class (CXRs with nodules). After testing various state-of-the-art object
detection algorithms, they developed a systematic approach that incorporated the most ef-
fective techniques, ultimately outperforming all competitors in the NODE21 competition’s
detection track [48].

3. Materials

3.1. Dataset

We used a dataset containing 2123 CXR images, featuring both normal cases and 18
types of diseases. The images were in the DICOM format. These images were retrospec-
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tively collected from the archiving and communication system (PACS) at E-Da Hospital,
covering patient CXRs from January 2008 to December 2018. Along with the images, the
dataset included patient information such as gender, age, and diagnostic reports from
radiologists. The Institutional Review Board of E-Da Hospital approved this study, and all
patients provided written informed consent.

The 18 disease types were chosen by reviewing diagnostic reports and selecting
those with reliable high-quality annotations. We also prioritized diseases with visual
manifestations that could be effectively detected by object detection algorithms, making
them suitable for automated analysis.

An experienced radiological physician (K.-Y.L.) identified and marked lesion regions
on the image. The rectangular bounding box was carefully placed to closely surround the
lesion, capturing its full extent while minimizing any inclusion of unaffected tissue. After
this initial placement, another senior radiologist (N.-H.L.) reviewed and confirmed that
bounding boxes were accurately sized and precisely positioned.

Images were excluded if they were of poor quality or had unclear diagnostic reports.
We also excluded images of minors (patients under 18). After removing duplicates and
missing data, we retained 1802 images, each representing a unique patient. The image sizes
varied, with heights ranging from 1304 to 4280 pixels and widths from 1066 to 4280 pixels.
The dataset employs multi-label classification, as a single patient can have multiple diseases.
Considering the number of cases as well as the sizes and locations of bounding boxes, we
grouped the 18 diseases into 12 categories based on medical guidance. Table 1 presents
the number of images before and after merging the diseases, with the abbreviations of the
12 disease names provided for simplicity. Notably, the number of normal cases is much
higher than the combined total of the 12 diseases, indicating there is a significant class
imbalance in the dataset.

Table 1. Number of images in each disease category before and after merging.

Before After

Categories Count New Categories Abbr. Count

Normal 1212 Normal Normal 1212

Aortic arch atherosclerotic plaque 28

Aortic sclerosis
(calcification) AorScl(Cal) 83

Aortic arch calcification 16

Aortic atherosclerosis 25

Aortic wall calcification 20

Aortic curvature 65
Arterial curvature ArtCur 93

Thoracic vertebral artery curvature 28

Small pulmonary nodules 15 Small pulmonary nodules SmaPulNod 15

Shadows of pulmonary nodules 8 Shadows of
pulmonary nodules ShaOfPulNod 8

Tuberculosis 6 Tuberculosis tuberculosis 6

Pulmonary fibrosis 30 Pulmonary fibrosis PulFib 30

Increased lung streak 89
Increased lung patterns IncLunPat 225Lung field infiltration 138

Obvious hilar 55 Obvious hilar ObvHil 55

Degenerative joint disease of the thoracic spine 75
Spinal lesions SpiLes 170Scoliosis 100

Intercostal pleural thickening 52 Intercostal pleural
thickening IntPleThi 52

Cardiac hypertrophy 41 Cardiac hypertrophy CarHyp 41

Heart pacemaker placement 9 Heart pacemaker
placement HeaPacPla 9

80



Diagnostics 2024, 14, 2636

Each image in the 12 disease categories contains one or more bounding boxes. For
example, annotations for ObvHil (obvious hilar) and PulFib (pulmonary fibrosis) are
often paired, while multiple bounding boxes are typical for SmaPulNod (small pulmonary
nodules). Figure 1 is a bar chart illustrating the total number of images and bounding boxes
for each disease category, and Figure 2 shows sample X-ray images with their corresponding
bounding boxes across the 12 categories.

 

Figure 1. The number of images and bounding boxes for each of the 12 disease categories.

 

Figure 2. Examples of X-ray images and their corresponding bounding boxes across the 12 disease cat-
egories.
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3.2. Data Preprocessing

We processed the CXR images using header data embedded in the DICOM files. If
the DICOM file indicated a logarithmic relationship between pixel values and X-ray beam
intensity, we applied “intensity log transformation”. In this process, each pixel value x[i]
is adjusted based on the visible range defined by the Window Center (WC) and Window
Width (WW). The visible pixel range is between iMin = WC− WW

2 and iMax = WC+ WW
2 ,

while the number of bits for each pixel is defined by BitsStored. The steps for the intensity
log transformation are depicted in Algorithm 1.

Algorithm 1 Pseudocode of the intensity log transformation

Input: x
for i = 0, · · · , N − 1 do

if x[i] < iMin, then x[i] = iMin
if x[i] > iMax, then x[i] = iMax

z[i] = −log
(

1+x[i]
2BitsStored

)
end for

Output: z

CXR images often contain elements, such as chest markers, that are irrelevant to disease
detection. These markers often appear overexposed after logarithmic transformation, such
as in the example of letter “L” (Figure 3a). To enhance the areas of interest, we adjusted
image contrast using the “simplest color balance algorithm”, in which saturation limits of
vmin and vmax are set to improve contrast (Algorithm 2).

Algorithm 2 Pseudocode of the simplest color balance

Input: z
for i = 0, · · · , N − 1 do

c[i] = z[i]−vmin
vmax−vmin

if c[i] < 0, then c[i] = 0
if c[i] > 1, then c[i] = 1

end for

Output: c

 

Figure 3. (a) X-ray images before and after data preprocessing and (b) their corresponding inten-
sity histograms.
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In this study, we set vmin = 0 and vmax = 2.5. Figure 3 shows the progression from the
original DICOM image, through intensity log transformation, to the final contrast-adjusted
image using the simplest color balance algorithm. Intensity histograms for each step are
also shown.

3.3. Experimental Data Setups

To assess the impact of having a large proportion of normal images in our dataset,
a common issue in clinical practice, we created three datasets for our object detection
models. First, the entire dataset (1802 samples), labeled Dataset A, was divided into
training, validation, and test sets with approximate proportions of 63.4%, 16.5%, and 20.1%,
respectively, while ensuring similar disease distributions across all subsets. Next, we
created Dataset B by removing two-thirds of the normal images from the training set and
Dataset C by removing all normal images from the training set. Table 2 shows the number
of images in each dataset.

Table 2. Number of images in the three datasets used for object detection.

Categories 1 Training 2 Validation Test Total 2

Normal 779/178/0 189 244 1212/611/433

AorScl(Cal) 52 15 16 83

ArtCur 57 18 18 93

SmaPulNod 9 3 3 15

ShaOfPulNod 6 1 1 8

tuberculosis 3 1 2 6

PulFib 20 6 4 30

IncLunPat 130 42 53 225

ObvHil 34 12 9 55

SpiLes 107 28 35 170

IntPleThi 35 8 9 52

CarHyp 23 9 9 41

HeaPacPla 6 1 2 9

Unique images 1143/542/364 297 362 1802/1201/1023
1 Categories in bold represent novel classes. 2 Datasets A, B, and C have the same number of images for each
disease category but differ regarding the number of images for the normal category in the training set. For
simplicity, the notation A/B/C is used to represent the number of images in Datasets A, B, and C, respectively.

For the FSOD models, we performed an extra step, dividing the disease categories
into base and novel classes for base training and k-shot fine-tuning. We used the same
three datasets created earlier, designating categories with fewer images—SmaPulNod,
ShaOfPulNod (shadows of pulmonary nodules), tuberculosis, PulFib, and HeaPacPla
(heart pacemaker placement)—as novel classes. The remaining seven categories were
treated as base classes. During k-shot fine-tuning, we set k to 1, 2, 3, 5, or 10, meaning that
we randomly selected up to 10 images for annotation per novel category. When there were
fewer than 10 images in a category, we used all of the available images. An image selected
for one category was not reused for another.

4. Methods

In this study, we applied object detection and FSOD methods to identify disease types
and lesion areas in CXR images. We designed four analytical schemes to determine the
most effective approach. These schemes involved using either object detection or the FSOD
models, with or without a preliminary binary classification step to determine the presence
of disease in the image. For binary classification, object detection, and FSOD tasks, we
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selected two, five, and three models, respectively, as shown in Table 3. To understand the
impact of model architecture on performance for both object detection and FSOD tasks, we
chose models from two primary categories: CNN-based and Transformer-based models.
Additionally, we calculated the specificity of normal images in the test set for each scheme
to assess whether the models could maintain a low misdiagnosis rate while excelling at
disease detection.

Table 3. Models used in this study.

Architecture

CNN-Based Transformer-Based

Task

Binary classification EfficientNet-B3 [35], DenseNet121 [16]

Object detection RetinaNet [22], YOLOX [37], Dynamic
R-CNN [38] DETR [26], Deformable DETR [27]

Few-shot object detection TFA [39], FSCE [40] Meta-DETR [41]

4.1. Scheme 1: Object Detection

In Scheme 1, we trained object detection models using three datasets: A, B, and C.
After training, we tested these models on the test set and calculated key evaluation metrics,
including average precision (AP) and mean average precision (mAP), for detecting diseases
in the 12 disease categories. The overall process is depicted in Figure 4.

 

Figure 4. Flowchart for Schemes 1 and 3, outlining the steps involved in object detection or few-shot
object detection (FSOD).

4.2. Scheme 2: Binary Classification + Object Detection

In this scheme, a binary classification step is introduced before object detection. Two
classification models, Classification Models A and B, were trained on Datasets A and B,
respectively, to determine whether a patient had any disease. Classification Model A uses
the EfficientNet-B3 architecture, while Classification Model B employs DenseNet121.

During testing, images from the test set were first classified by the binary models.
Images classified as positive (indicating the presence of disease) were passed onto the object
detection models trained in Scheme 1. Those classified as negative (indicating no disease)
were labeled as normal and were not subjected to further object detection.

Since Scheme 1 involves training object detection models on three datasets and this
schedule includes classification models on two datasets; there are six possible outcomes for
each test image: A + A, A + B, B + A, B + B, C + A, and C + B. For instance, in the A + B
case, the image was first classified by the classification model trained on Dataset B and, if
positive, analyzed by the object detection model trained on Dataset A. Figure 5 illustrates
this process.
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Figure 5. Flowchart for Schemes 2 and 4, illustrating the process for binary classification followed by
object detection or few-shot object detection (FSOD).

4.3. Scheme 3: Few-Shot Object Detection

Scheme 3 mirrors Scheme 1 but is focused on the FSOD models. These models were
trained on three datasets (A, B, and C), and AP and mAP were calculated for detecting the
12 diseases using the test set.

4.4. Scheme 4: Binary Classification + Few-Shot Object Detection

This scheme is similar to Scheme 2 except that after binary classification, the FSOD
models from Scheme 3 are used for further detection. Like Scheme 2, this method generates
six possible outcomes: A + A, A + B, B + A, B + B, C + A, and C + B.

4.5. Evaluation Metrics

To assess the performance of the binary classifiers, we used standard metrics: accuracy,
precision, recall, and F1-score. For object detection and image segmentation, we used the
intersection over union (IoU) metric, which measures the overlap between a predicted
bounding box (Pred) and the ground-truth box (GT). The IoU is calculated as follows:

IoU =
|GT ∩ Pred|
|GT ∪ Pred| , 0 ≤ IoU ≤ 1

Here, |GT ∩ Pred| represents the overlapping pixels between the predicted and ground
truth boxes, and |GT ∪ Pred| is the total number of pixels in both boxes. An IoU of 0
indicates no overlap, while an IoU of 1 indicates a perfect match. We set a threshold
of 0.5 for this study, meaning that predictions with IoU values above this threshold are
considered correct.

In object detection, the mean average precision (mAP) is a key metric for evaluating
model performance. It combines precision and recall by calculating the average precision
(AP) for each class. For M object classes, the AP for the mth class is calculated as follows:

APm =
∫ 1

0
PRm(r)dr

where PRm(r) is the precision–recall curve for the mth class. To compute precision and recall,
predicted boxes are ranked based on confidence scores. If the IoU between a predicted and
ground–truth box exceeds the threshold, it is considered a true positive; otherwise, it is a
false positive. After calculating precision and recall for all predictions, the precision–recall
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curve is plotted, and the area under the curve is calculated for each class. The mAP is then
calculated as the average of APs across all classes:

mAP =
1
M

M

∑
m=1

APm

The mAP score ranges from 0 to 1, with values closer to 1 indicating better model perfor-
mance in detecting and localizing objects.

5. Results

We present the results from experiments conducted on three custom-designed datasets
using four different analysis approaches. Two binary classification models were trained
on a P100 GPU, while the object detection and FSOD models were trained using NVIDIA
GeForce RTX 3080 and GTX 1080 Ti GPUs.

5.1. Binary Classification

EfficientNet-B3 was trained on Dataset A, and DenseNet121 on Dataset B. These
models were used in Schemes 2 and 4 to predict whether an image contained at least one
instance of disease. Pretrained ImageNet weights were used, with only the fully connected
layer retrained. The hyperparameters are listed in Supplementary Table S1, and images
were normalized using the ImageNet mean and standard deviation.

Table 4 presents the performance of these models on the test set. Due to class imbalance,
we used both the accuracy and F1-score for evaluation. EfficientNet-B3, trained on Dataset
A, outperformed DenseNet121, trained on Dataset B, across all metrics except precision.

Table 4. Performance comparison of the two binary classification models.

Accuracy F1-Score Precision Recall

EfficientNet-B3
on Dataset A 88.12% 85.85% 84.41% 88.05%

DenseNet121 on
Dataset B 86.74% 85.34% 86.44% 84.56%

5.2. Comparison of Analytic Schemes

The training hyperparameters for object detection and FSOD models are provided in
Supplementary Tables S2 and S3.

5.2.1. Results on mAP

Figure 6 shows the mAP performance of various object detection models for Schemes 1
to 4 across multiple datasets. Here, AP was calculated using IoU greater than 0.5 (mAP@0.5).

Some key patterns are observed. 1. Overall Performance: Processing test images
through a binary classification model before object detection yielded better results. 2. Top
Performers: FSCE 10-shot consistently achieved top mAP values, particularly on the C + A
dataset, where it peaked at 0.343. YOLOX also performed well, peaking at 0.300 on the
B + A dataset, although it did not maintain top performance across all datasets. Dynamic
R-CNN and RetinaNet also performed competitively, with notable peaks around 0.26 and
0.261, respectively. 3. Low Performers: The three Transformer-based models consistently
achieved very low mAP values across datasets, with DETR and Meta-DETR maintaining a
flat trend near zero. 4. Few-Shot Trends: Models trained with a higher number of shots
generally performed better, with the TFA and FSCE 10-shot achieving higher mAP than
TFA and FSCE 1-shot across datasets. However, the mAP gains from increasing the shot
number were not always linear and varied across datasets. 5. Dataset Influence: Training
classification models on Dataset B appeared to be more challenging, as evidenced by the
lower performance of models when trained on the x + B rather than the x + A dataset.
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Performance generally peaked on the C + A dataset, where more models achieved their
highest mAP values. 6. Model Stability: Some models, such as Dynamic R-CNN and
RetinaNet, exhibited greater stability with relatively smaller fluctuations in mAP across
datasets. On the other hand, YOLOX and FSCE had more variability, suggesting that
their performance may be more sensitive to dataset characteristics. In summary, Figure 6
shows that processing test images with a binary classification model before object detection
generally improved results, with FSCE 10-shot achieving the highest mAP values, especially
on the C + A dataset. Models like YOLOX, Dynamic R-CNN, and RetinaNet performed
well but showed varying stability across datasets, while Transformer-based models (DETR,
Meta-DETR) consistently had low mAP values.

 
Figure 6. Mean average precision (mAP) results for Schemes 1 to 4. The y-axis represents mAP values,
while the x-axis shows the datasets used for model training. “A” refers to training the object detection
model on Dataset A (Schemes 1 and 3), while “A + B” indicates first using the classification model
trained on Dataset B and then the object detection model trained on Dataset A (Schemes 2 and 4).
The same applies to other labels. For the object detection models, each line is the performance of the
indicated model on the test set. For the FSOD models, the five lines are the performance for each
few-shot fine-tuning scenario (1-shot, 2-shot, 3-shot, 5-shot, 10-shot). The mAP of the best-performing
model is shown for each dataset labeled on the x-axis.

5.2.2. Results for Base and Novel mAP

In FSOD, the categories were divided into base and novel classes. During base training,
only base class bounding boxes were used, with novel classes reserved for few-shot fine-
tuning. It was expected that the FSOD models would perform better on novel classes, on
account of their fewer samples, while the traditional object detection models would excel
on base classes.

Figures 7 and 8 show the mAP for base and novel classes of various object detection
models across a series of datasets. First, we discuss base classes. 1. Top Performers: YOLOX
achieved the highest base mAP value of 0.339 on the A + A dataset. It consistently ranked
among the top-performing models across multiple datasets. RetinaNet also performed
strongly, with a peak of 0.335 and high base mAP values across several datasets. It exhibited
more consistent performance with smaller fluctuations than YOLOX. Dynamic R-CNN also
performed relatively well, although its base mAP values were slightly lower and showed
some variability compared to RetinaNet. 2. Low Performers: The three Transformer-
based models consistently had very low base mAP values across datasets, with DETR
and Meta-DETR remaining almost flat near zero. 3. Few-Shot-Based Model Performance:
Higher-shot FSOD models (such as FSCE 10-shot) tended to have better base mAP values
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than their lower-shot counterparts but were generally outperformed by traditional object
detection models such as YOLOX and RetinaNet on most datasets. 4. Model Stability:
RetinaNet and Dynamic R-CNN showed trends of more stable performance, with fewer
abrupt changes in base mAP across datasets. YOLOX, while generally performing well,
had some larger fluctuations in base mAP, indicating that it may be more sensitive to
changes in dataset characteristics. Overall, Figure 7 highlights that YOLOX and RetinaNet
performed well and were relatively robust across datasets, while DETR and Meta-DETR
consistently underperformed. Models trained with a higher number of shots (e.g., FSCE
10-shot) generally achieved better mAP than lower-shot variants, though not at the level of
the top models like YOLOX and RetinaNet.

 
Figure 7. Base mean average precision (base mAP) results for Schemes 1 to 4. The y-axis represents
base mAP values, while the x-axis shows the datasets used for model training. “A” refers to training
the object detection model on Dataset A (Schemes 1 and 3), while “A + B” indicates first using the
classification model trained on Dataset B and then the object detection model trained on Dataset A
(Schemes 2 and 4). The same applies to other labels. For the object detection models, each line is
the performance of the indicated model on the test set. For the FSOD models, the five lines are the
performance for each few-shot fine-tuning scenario (1-shot, 2-shot, 3-shot, 5-shot, 10-shot). The base
mAP of the best-performing model is shown for each dataset labeled on the x-axis.

Second, we discuss novel classes. (1). Top Performers: FSCE 10-shot was the best-
performing model, reaching a peak novel mAP of 0.515 on the C + A dataset and another
high of 0.414 on the C + B dataset. This suggests that FSCE 10-shot was particularly
effective at handling novel data. Other FSCE variants and YOLOX also performed well,
achieving top novel mAP values across multiple datasets. (2). Low Performers: DETR
and Meta-DETR continued to exhibit low performance, with novel mAP values near zero
across most datasets. The traditional object detection models, such as Dynamic R-CNN and
RetinaNet, showed relatively low novel mAP values, suggesting they may not generalize
as well to novel classes. (3). Few-Shot Trends: Models trained with a higher number of
shots (e.g., FSCE 5-shot and FSCE 10-shot) generally performed better on novel classes than
their lower-shot counterparts. The increase in mAP with higher shot numbers suggests
that these models benefited from having additional samples to learn novel object detection.
(4). Dataset Influence: Training classification models on Dataset B appeared to be more
challenging, given the lower performance of models trained on the x + B than on the x + A
dataset, and there was a general peak in performance on the C + A dataset, with more
models achieving their highest mAP values. In summary, Figure 8 highlights that FSCE
(particularly 10-shot) excelled in novel detection tasks, and YOLOX also performed well.
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Higher-shot models generally performed better in detecting novel objects, while lower-shot
and non-few-shot models struggled, particularly on challenging datasets.

 

Figure 8. Novel mean average precision (novel mAP) results for Schemes 1 to 4. The y-axis represents
novel mAP values, while the x-axis shows the datasets used for model training. “A” refers to training
the object detection model on Dataset A (Schemes 1 and 3), while “A + B” indicates first using the
classification model trained on Dataset B and then the object detection model trained on Dataset A
(Schemes 2 and 4). The same applies to other labels. For the object detection models, each line is
the performance of the indicated model on the test set. For the FSOD models, the five lines are the
performance for each few-shot fine-tuning scenario (1-shot, 2-shot, 3-shot, 5-shot, 10-shot). The novel
mAP of the best-performing model is shown for each dataset labeled on the x-axis.

5.2.3. Disease-Wise AP Results

We evaluated model performance for each disease category, as shown in Supple-
mentary Figures S1–S4. For the FSOD models, only the 10-shot fine-tuning results are
presented. In Schemes 1 and 2, DETR performed poorly, detecting a few lesions in the
categories ArtCur (arterial curvature) and SpiLes (spinal lesions). Similarly, Meta-DETR,
a Transformer-based model, underperformed in Schemes 3 and 4, showing only limited
lesion detection in the IncLunPat (increased lung patterns) category. By contrast, the CNN-
based models performed well in most categories, with object detection models excelling
in the categories IncLunPat, SpiLes, CarHyp (cardiac hypertrophy), and HeaPacPla. The
FSOD models performed better when the test images were first processed through a classifi-
cation model. The best prediction results were observed for HeaPacPla, with many models
demonstrating strong performance. For the lower-performing category ShaOfPulNod, its
AP can be boosted to as high as 1 using FSCE with the combinations C + A or C + B.

We also investigated whether the number of shots used in fine-tuning affects novel
class performance. Supplementary Figure S5 shows the results of FSCE, the best-performing
FSOD model, for five novel classes: SmaPulNod, ShaOfPulNod, tuberculosis, PulFib,
and HeaPacPla. For SmaPulNod and ShaOfPulNod, models were trained on Dataset C
with 10-shot fine-tuning outperforming the others. For PulFib, better performance was
achieved using 1-shot and 5-shot fine-tuning, while for tuberculosis, Classification Model
A misclassified images as normal, preventing AP calculation for the combinations A + A,
B + A, and C + A. HeaPacPla achieved perfect predictions with 2- or higher-shot fine-tuning.

5.2.4. Accuracy of Normal Images

To avoid misclassifying normal images as diseased, we calculated the specificity
(accuracy of normal images) across the four schemes using confidence score thresholds of 0.3
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and 0.5. If a predicted bounding box on a normal image exceeded the threshold, the image
was considered misclassified. Figure 9 shows the specificities across all methods. Models
that passed test images through a classification model before object detection achieved
significantly higher specificity. The three Transformer-based models, despite their lower
mAP performance indicated earlier, showed near-perfect specificity. Transformer-based
models often excel in capturing the global context due to their self-attention mechanism,
which enhances their ability to differentiate between object and non-object regions and
thereby more accurately classify normal images, contributing to their higher specificity.
However, they struggle with the localization and accurate detection of fine-grained objects
and may require more extensive training data or context diversity to achieve high precision
and recall, which explains the discrepancy between their strong specificity and weaker mAP.
In contrast, models like Dynamic R-CNN, TFA, and FSCE (all based on the faster R-CNN
framework), which had higher mAP, tended to show less satisfactory specificity. This may
be due to the design and training objectives of the faster R-CNN architecture, where their
region proposal networks excel at generating candidate regions to contain objects, but are
more prone to misclassify background or non-object regions as objects when confident
regions are identified. Thus, these CNN-based models are tuned to prioritize sensitivity in
finding objects, potentially sacrificing specificity. The specificity of the two FSOD models,
TFA and FSCE, decreased as the number of shots used in fine-tuning increased. YOLOX
stood out by achieving almost perfect specificity at the 0.5 threshold, excelling in both mAP
and the accuracy of normal image detection.

 

Figure 9. Accuracies of normal images for Schemes 1 to 4. The top graph shows the results using a
confidence score threshold of 0.3, while the bottom graph displays the results for a threshold of 0.5.
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6. Discussion

In this study, we developed deep learning-based object detection strategies with two
main goals: first, to address the class imbalance in the dataset for more accurate predictions,
and second, to reduce the false positive rate while maintaining high accuracy. To achieve
these objectives, we established several datasets and experimental approaches. The results
showed that the CNN-based models consistently outperformed the Transformer-based
models, and the proportion of background images in the training sets had a significant
effect on the inference capabilities of these models. When comparing the four proposed
analytic schemes, we found that Schemes 2 and 4, which first applied a classification model,
outperformed Schemes 1 and 3, which relied solely on object detection or the FSOD models.
In particular, the best results were obtained using the approach where test images were first
processed by Classification Model A and then by FSCE trained on Dataset C with 10-shot
fine-tuning.

Despite attempts to balance the data by adjusting the proportion of background images
in the training datasets, class imbalance remained an issue. This led to the use of FSOD
models in Schemes 3 and 4, which were expected to handle class imbalance better based on
their architecture. The experimental results confirmed that the FSOD models outperformed
the object detection models for novel classes, while the reverse was true for base classes.
Class-wise AP analysis showed that different k-shot fine-tuning settings affected categories
in varying ways; more shots did not always result in better performance.

To achieve our second goal, we also calculated the specificity of the test data (i.e.,
accuracy for normal image detection) across all four schemes. The results indicated that the
accuracy of normal images could first be improved by using a binary classification model.
Overall, models that excelled in terms of mAP tended to have lower accuracy for normal
images, and vice versa. YOLOX was the only model that performed well in terms of both
mAP and normal image accuracy.

Studies have shown that CNN architectures are particularly effective in detecting and
localizing abnormalities in CXR images [45]. In our study, we also found that CNN-based
models, particularly YOLOX and FSCE with 10-shot fine-tuning, achieved the highest mAP
scores in disease detection. The limitations posed by small imbalanced annotated datasets
in developing deep learning models for localization have been highlighted in previous
research and addressed by using transfer learning and augmentation techniques [47], in
combination with large datasets containing ground-truth bounding boxes [44]. Similarly,
we observed that FSOD techniques, like FSCE, significantly enhanced the accuracy in
detecting diseases with limited samples. The use of Transformer-based object detection
models in medical image analysis is less common. In our study, we extended the literature
by showing that, unlike CNNs, Transformer-based models such as DETR and Meta-DETR,
which excel in general object detection tasks on diverse datasets such as COCO, exhibited
lower performance in CXR disease detection. While most studies have focused on a
single detection model for specific tasks, Behrendt et al. [47] distinguished themselves by
evaluating transfer learning, nodule augmentation, and various detection algorithms in
building a robust nodule detection system. Our study further contributes by systematically
comparing CNN- and Transformer-based object detection algorithms along with FSOD
techniques to identify and fine-tune the most suitable deep learning models for various
disease detection tasks in CXR images.

The proposed methods for disease detection and localization in CXRs show significant
promise, yet there are limitations that affect their robustness and scalability in clinical set-
tings. First, the models relied on a single-institution dataset, which may lead to overfitting
and reduce their generalizability to diverse clinical environments with varying imaging
protocols and patient populations. Although FSOD techniques were employed to address
class imbalance, accurate detection remained a challenge for certain categories of rare
diseases with very few examples. Transformer-based models like DETR and Meta-DETR
also exhibited limitations in detecting small abnormalities in CXR images, and their high
computational demands further limit their feasibility in real-time or resource-constrained
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settings. Additionally, the reliance on precise bounding box annotations introduces poten-
tial subjectivity, impacting localization accuracy. Future research could focus on enhancing
model generalizability by incorporating multi-institutional datasets and reducing class im-
balance through data augmentation. Exploring lightweight model architectures or hybrid
approaches that integrate CNNs with Transformers could allow for optimizing perfor-
mance while reducing computational requirements. Improved annotation techniques, such
as weak- or self-supervised learning [34] or semi-automated labeling [49,50] may also be
used to enhance model training quality and overall detection accuracy, paving the way for
more robust and clinically viable AI-based diagnostic tools.

7. Conclusions

This study explored the application of deep learning-based object detection models
for disease detection and localization in CXR images. By employing CNN and Transformer-
based architectures, as well as FSOD techniques, we developed and evaluated approaches
for accurately detecting 12 thoracic diseases across multiple analytic schemes. Our results
indicate that the CNN-based models, particularly YOLOX and FSCE (10-shot), consistently
achieved high mAP scores, underscoring their robustness and adaptability to clinical set-
tings. In comparison, Transformer-based models such as DETR and Meta-DETR exhibited
limitations in small object localization, which may stem from both the model architecture
and dataset constraints. Our approach highlights the potential of binary classification as a
preliminary step to reduce false positives in object detection, leading to improved disease
detection accuracy and specificity for normal images. Furthermore, incorporating FSOD
enhanced the capability of our model to handle rare diseases with minimal training sam-
ples, suggesting that few-shot learning can be a valuable addition to resource-constrained
medical imaging tasks.

While promising results were achieved, certain limitations, including potential over-
fitting to dataset-specific features, high computational demands, and class imbalances,
highlight avenues for future research. These limitations could be addressed through
approaches such as cross-institutional validation, lightweight model design, and data
augmentation to further enhance model precision and clinical applicability. Ultimately, this
work contributes valuable insights to the development of robust automated diagnostic tools,
paving the way toward more accurate and efficient CXR disease detection in real-world
healthcare settings.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/diagnostics14232636/s1, Table S1. Hyperparameter settings for
the binary classification models. Table S2. Hyperparameter settings for the object detection models.
Table S3. Hyperparameter settings for the FSOD models. Figure S1. Disease-wise average precision
(AP) values for Scheme 1. Figure S2. Disease-wise average precision (AP) values for Scheme 2.
Figure S3. Disease-wise average precision (AP) values for Scheme 3. Figure S4. Disease-wise average
precision (AP) values for Scheme 4. Figure S5. Novel class APs of FSCE for different shot settings.
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Abstract: This study presents a method to enhance the contrast and luminosity of fundus images
with boundary reflection. In this work, 100 retina images taken from online databases are utilized to
test the performance of the proposed method. First, the red, green and blue channels are read and
stored in separate arrays. Then, the area of the eye also called the region of interest (ROI) is located
by thresholding. Next, the ratios of R to G and B to G at every pixel in the ROI are calculated and
stored along with copies of the R, G and B channels. Then, the RGB channels are subjected to average
filtering using a 3 × 3 mask to smoothen the RGB values of pixels, especially along the border of
the ROI. In the background brightness estimation stage, the ROI of the three channels is filtered by
binomial filters (BFs). This step creates a background brightness (BB) surface of the eye region by
levelling the foreground objects like blood vessels, fundi, optic discs and blood spots, thus allowing
the estimation of the background illumination. In the next stage, using the BB, the luminosity of the
ROI is equalized so that all pixels will have the same background brightness. This is followed by a
contrast adjustment of the ROI using CLAHE. Afterward, details of the adjusted green channel are
enhanced using information from the adjusted red and blue channels. In the color correction stage, the
intensities of pixels in the red and blue channels are adjusted according to their original ratios to the
green channel before the three channels are reunited. The resulting color image resembles the original
one in color distribution and tone but shows marked improvement in luminosity and contrast. The
effectiveness of the approach is tested on the test images and enhancement is noticeable visually and
quantitatively in greyscale and color. On average, this method manages to increase the contrast and
luminosity of the images. The proposed method was implemented using MATLAB R2021b on an
AMD 5900HS processor and the average execution time was less than 10 s. The performance of the
filter is compared to those of two other filters and it shows better results. This technique can be a
useful tool for ophthalmologists who perform diagnoses on the eyes of diabetic patients.

Keywords: retina images; luminosity; contrast; boundary reflection; binomial filter (BF)

1. Introduction

Retina images significantly contribute to the diagnosis of various eye-related con-
ditions including diabetic retinopathy [1], macula edema [2], neovascularization [3] and
glaucoma [4]. They are not only used for diagnosis but are also instrumental in the mon-
itoring of ocular diseases as changes and progression are observed using these images.
Ophthalmologists look for peculiar structures or changes in retina images to identify
present or impending problems. Although ophthalmologists can analyze retina images
effectively, it is a time-consuming process and when there are many patients, inaccurate
diagnosis may occur due to lapses, fatigue or carelessness. Thus, computer-assisted diag-
nosis of retina images is an indispensable tool that can expedite the process and increase
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its accuracy [5–10]. Retina image quality is important in safeguarding the efficiency of
manual or computer-assisted diagnosis. Retina images that have varying illumination, low
contrast and haziness may cause incorrect interpretation by ophthalmologists and affect
the performance of automated analysis systems [5,6].

Images affected by contrast and luminosity unevenness can be corrected by many
enhancement approaches proposed by researchers [11,12]. A comprehensive review of
all image enhancement techniques is not available, but compilations of well-known en-
hancement methods in specific areas have been presented by researchers from time to time.
Schuch et al. focused on reviewing image enhancement of fingerprint images. Various
approaches were reviewed and classified into several categories or models [13]. A review
by Saba et al. [14] concentrates on image enhancements of knee joint images where the
techniques are divided into frequency and spatial classes. A survey of general enhance-
ment methods by Singh and Mittal also classifies the approaches into frequency and spatial
groups [15]. Methods that belong to the spatial domain manipulate the pixels in images by
transforming or altering them directly. Many techniques belong to this group inclusive of
magnitude and log transforms, alpha rooting and histogram-based operations. Frequency-
related techniques perform discrete transformations on entire images using Fourier, cosine,
wavelet or other bases. Then, the transformed images are processed and reverted to the
original image space [16].

In practice, the image enhancement methods are chosen according to the issue to solve,
the image model used, the software platform, available toolboxes and the database. Of late,
there have been reported works on using neural networks with deep learning for noise
removal and image enhancement [15–17]. There are also attempts to use metaheuristic
optimizations to fine-tune the values of parameters used in established approaches [18,19].
The proposed work can be considered a spatial method where a BF is employed to improve
retina images in the RGB domain. Information from all the three channels of the color
images is used to enhance the region of interest (ROI).

Several image enhancement methods for color or grayscale images have been imple-
mented on retinal images. When processing color images in RGB space, many researchers
utilize only the green channel [20,21]. Foracchia et al. developed a statistical technique to
normalize the background of retina images based on some statistical parameters [22]. Coa
et al. implemented a method like the retinex algorithm to enhance retina images. There are
four primary procedures comprising padding, contrast improvement, grayscale adjustment
and refinement. The background padding is implemented to avoid over-enhancing the
retinal boundary. Then all low-frequency components are filtered in the root domain. The
visual color of the image changes significantly once the contrast is adjusted. Then, to regain
the initial image color, every channel is recalibrated. The contrast is then further enhanced
using a refinement step [23]. In earlier works, only the green channel is used to locate
abnormalities that are present retinal images [24]. But lately, retina images are processed
in color.

Zhao et al. processed the B, G and R color channels of retina images to enhance them.
They found that the luminosity and color of the images were correlated [25]. The G, R
and B channels should be changed in the same ratio to preserve color integrity. Rao et al.
transformed fundus images into HSV and then L*a*b* space, to modify the corresponding
V and L components using gamma and CLAHE, respectively [26]. On the other hand, Mitra
et al. converted the images into HIS space before equalizing the histogram of the intensity
I. The suggested max–min color correction strategy is used to acquire the final image with
suitable color [27].

Bala et al. used an adaptive histogram equalization with curvelet and claimed that the
method generated better results [28]. Again, some researchers transformed retina images
into L*a*b space to enhance the contrast of the L component using CLAHE. They scaled the
output range by adopting Hubbard’s retinal image brightness standard [29,30]. Qureshi
et al. used a different space called CIECAM02 to obtain its brightness component J. Then,
the J value was assigned using non-linear mapping based on threshold. They asserted that
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the results were better than histogram-based approaches, but in some cases, a greenish
color shade was introduced [31].

In 2021, Alwazzan et al. utilized the green channel of color images to remove noise
from them using the Wiener filter. CLAHE was also needed to improve their contrast and
then reunite them with the unaltered blue and red components [32]. Coa et al. presented
a new approach by using an intensity transfer strategy. Initially, the image will undergo
contrast stretching. Then, an efficient intensity transfer approach is presented that can
deliver the necessary illumination for a single channel. This procedure requires a guided
image, which could be the original image or another image [33]. Kumar et al. converted
fundus into HSV and L*a*b spaces and performed histogram equalization on their intensity
components, V and L, respectively. Then, the contrasted results are recombined according
to the given weights. The color scheme remained because other components were not
touched [34].

Based on the review, there are lots of methods that have been proposed. Retina images
can be enhanced either in grayscale or color. Most of the researchers utilized the green
channel since the green channel contains more useful information when compared to red
and blue channels. Meanwhile, color images also show significant improvement after
the enhancement process. Several color spaces have been used to isolate the intensity or
luminance component so that traditional enhancement techniques can be applied to it
without affecting the color integrity. Sometimes, retina images contain boundary reflection
besides the usual contrast and luminosity variability. The bright or hazy reflection occludes
the area underneath. In this work, a method to alleviate the problem is presented. The
method relies on estimating the background brightness of an image and the subsequent
compensation of its non-uniformity. Both the contrast and luminosity of grayscale and
RGB color images are enhanced to improve their appearance and statistical parameters.

The rest of this paper is composed of the following sections. Section 2 briefly reviews
the materials and methods of this study. This is followed by the experimental results, and a
discussion of the work is provided in Section 4.

2. Materials and Methods

In the acquisition stage, the fundus images are usually unevenly illuminated causing
contrast and luminosity to vary throughout the ROI. Sometimes they contain boundary
reflection as shown in Figure 1. Boundary reflection can obscure abnormalities and other
foreground objects like exudates and blood vessels under its locality.

  

Figure 1. Two samples of retina images with boundary reflection.

In this work, a method that equalizes the underlying luminosity and enhances the
contrast of retina images with boundary reflection is proposed. The main idea is to estimate
the background brightness of each pixel in the eye region (ROI) using a binomial filter
(BF). This step creates a background brightness (BB) surface for the ROI. Based on the
BB, luminosity correction is performed by equalizing the background luminosity of all
pixels in the ROI to 128 so that they experience the same brightness. This is followed by
contrast adjustment using CLAHE. The approach is implemented in 4 stages involving pre-
filtering, background brightness estimation, pixel intensity adjustment, and color correction.

97



Diagnostics 2024, 14, 1688

Figure 2 shows the flow of stages in the process and the algorithm of the proposed method
is presented in Algorithm 1.

Figure 2. Flow of stages in the enhancement process.

First, the red, green and blue (RGB) channels of the retina image are read and stored.
Before further processing, the ratios of R to G and B to G at each pixel location in the
ROI are computed and stored. These ratios are needed for color correction later. Then,
the ROI and its border are localized by thresholding. Once the ROI is available, it can be
made symmetrical to the vertical center line and the area outside of the ROI can be set
to zero. Often, in an image that is affected by boundary reflection, the reflection center is
located along its border. Then, the RGB channels are subjected to average filtering using a
3 × 3 mask to smoothen the RGB values of pixels, especially along the border of the ROI.
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In the background brightness estimation, the ROI of the three channels of an input
image is processed one by one. For every pixel in the ROI, a w × w neighborhood centered
at the pixel is established. There are w2 pixels in the neighborhood (N), including the center
pixel. If the center pixel is located near or on the border of the ROI, some of the pixels in the
neighborhood (N) will fall outside of the ROI. The pixels in N that lie outside of the ROI
are not convolved with the filter coefficients and thus their multiplications are dropped.
This step creates the smooth background brightness (BB) surface given by Equation (1).

BB(x, y) =
1
D

w

∑
n=−w

w

∑
m=−w

i(x − m, y − n)b(m, n) (1)

where D is the sum of all binomial coefficients in N that are involved in the convolution

D =
w

∑
n=−w

w

∑
m=−w

b(m, n) (2)

such that

∑
m,n ε N

b(m, n)
D

= 1 (3)

Finally, the result is smoothened by average filtering with a 3 × 3 average filter. The
output is a slow varying surface of the background brightness BB(x,y). The brightness
surfaces of the red, green and blue channels are designated as BBR(x,y), BBG(x,y) and
BBB(x,y), respectively.

The background brightness (BB) approximates the underlying luminosity for each
pixel in the ROI. It is a smooth surface that is free of foreground objects. Note that for
each pixel, its blue, green and red values, B(x,y), G(x,y) and R(x,y), can be higher or lower
than its respective background values provided by the BBB(x,y), BBG(x,y) or BBR(x,y).
The difference between the value of a channel and its background brightness is called the
channel gap. The adjustment strategy is to level the underlying luminosity of each pixel to
the same value of 128 as follows.

Algorithm 1: Algorithm of the proposed method

Read input image
Separate R, G and B channels
Calculate ratios of R and B to G
Threshold the channels to obtain the ROI
Obtain BB(x,y) of each channel by convolving the ROI with BF
for each pixel in the ROI of each channel
convolve with 41 × 41 BF
endSmoothen the BB(x,y) by 3 × 3 averaging filter
Obtain the adjusted surface for each channel
for every pixel
AR(x,y) =128 + R(x,y) − BBR(x,y)
AG(x,y) =128 + G(x,y) − BBG(x,y)
AB(x,y) =128 + B(x,y) − BBB(x,y)
end

Further improve the green channel

AGF(x,y) =128 + R(x,y) + G(x,y) + B(x,y) − BBR(x,y) − BBG(x,y) − BBB(x,y)
Equalize AGF(x,y) by CLAHE to obtain EG(x,y)
Obtain the new R, G and B using EF(x,y) and the stored ratios of R and B to G

Rnew(x,y) = R/G × EG(x,y)
Bnew(x,y) = B/G × EG(x,y)
Gnew(x,y) = EG(x,y)

end procedure
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For every pixel (x,y) of the ROI, the background brightness is subtracted from the
pixel value to obtain the gap. For instance, for the red channel R(x,y) and its background
brightness BBR(x,y), the gap is R(x,y) − BBR(x,y). It can be zero, positive or negative. The
adjusted red, AR(x,y), is formed by adding the gap to 128. Then the same adjustment is
made to the green and blue channels such that

AR(x,y) = 128 + R(x,y) − BBR(x,y) (4)

AG(x,y) = 128 + G(x,y) − BBG(x,y) (5)

AB(x,y) = 128 + B(x,y) − BBB(x,y) (6)

The last three equations show that at each location (x,y), the gap is added to the
base level of 128. In other words, for each pixel, the gap is maintained although the
background brightness is shifted to 128. Throughout the ROI of the adjusted images,
the background luminosity appears to be uniformly distributed. After adjusting the back-
ground brightness of the ROI to 128, the channels seem to have lost some contrast due to the
brighter background.

The green channel is key to the color correction step of the image in the post processing
stage. As such, it should contain the most information since the other two channels will be
adjusted based on their ratios to the green channel. From observation, the red channel is
more volatile than the green or blue, as most foreground objects contain high values of red.
The blue channel is the most stable and it captures the background very well. The green
channel usually fluctuates in tandem with the red channel but with less variation. The
gaps of the red and blue channels to their respective background brightness surfaces can be
added to the green channel to improve its contrast and stability. So, Equation (5) becomes

AGF(x,y) = 128 + R(x,y) + G(x,y) + B(x,y) − BBR(x,y) − BBG(x,y) − BBB(x,y) (7)

where AGF(x,y) stands for the adjusted green channel with full information. For retina
images, this step helps improve the appearance and content of the green channel. Figure 3
shows the green channel G(x,y) of an image, its brightness surface BBG(x,y) and its fully
adjusted form AGF(x,y). The size of the BF used is 41 × 41 and its coefficients are scaled so
that the highest coefficient is 100 and the lowest is bottom-limited at 1. The 41 × 41 size is
chosen because it produces decent results and is not too slow to implement.

   

Figure 3. The green channel of an image, its background brightness and fully adjusted form.

Then, the contrast of the AGF(x,y) is further improved by applying contrast-limited
adaptive histogram equalization (CLAHE). The operation is implemented on the entire
ROI. A constraint is imposed on maintaining the number of grey levels in the image. Due
to the constraint, the histogram of the ROI is mainly stretched to improve the contrast of
the background and the foreground of the image. The frequency of any value is limited
to twice the value of the uniform distribution to restrict the contrast. Another constraint
imposed is the gap between consecutive pixel values in the histogram. Each gap can be
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expanded but should not be reduced to avoid the loss of details. Due to these constraints,
the improvement caused by the adaptive equalization to AGF(x,y) is not significant. The
outcome of the equalization step is EG(x,y). The red AR(x,y) and blue AB(x,y) can be
equalized using CLAHE too.

If the equalized channels are reunited directly, the resulting color image will have
peculiar color tones that do not correspond well to the original image. Therefore, the
red AR(x,y) and blue AB(x,y) can be disregarded because they are deemed unsuitable for
recombination. The new red and blue channels are the stored ratios of B and R over G
multiplied by the equalized green channel EG(x,y). As for the new green channel, it is
simply EG(x,y) itself since it is the anchor in this color correction. Thus, the new R, B and G
channels are given by

Rnew(x,y) = R/G × EG(x,y) (8)

Bnew(x,y) = B/G × EG(x,y) (9)

Gnew(x,y) = EG(x,y) (10)

Now, Rnew(x,y), Bnew(x,y) and Gnew(x,y) can be recombined to form a corrected
color image.

3. Results

The databases which consist of 100 retina images were obtained from the online
databases of e-OPHTHA, DIARETDB and EyePACS. About half of the images were selected
because they contain strong boundary reflections caused by over exposure. The rest were
chosen randomly. Most of the images were resized to make them uniform at approximately
500 × 700. The 1D binomial filter was constructed by convolving vector [1 1] to itself
consecutively several times to obtain the desired length (Burt P. (1981)). The way to
construct a filter with length 2w + 1 was to perform a cascaded convolution of the [1 1]
vector to itself 2w times. After the cascaded convolution, the coefficients were divided by
the sum of all coefficients in the filter. The 2D binomial filter was obtained from the vector
outer product of a 1D binomial filter to itself. If the 1D binomial filter B(x) is regarded as
a column vector with length 2w + 1, taking the cross product of B(x) to its transpose B(x)’
produces a 2D binomial filter B(m,n) whose size is (2w + 1) × (2w + 1).

It seemed that the peaky binomial filter was the ideal choice to capture the background
brightness of retina images because it was high at the center. Convolving an image with
the filter resulted in a BS(x,y) that followed the fluctuation of the data closely but did not
capture the underlying trend of the luminosity variation very well. As the size increased, its
peakiness became more acute. Hence, the BF coefficients were scaled so that the maximum
coefficient is 100 and the minimum is lower-limited at 1. The binomial filter was flattened
further by multiplying it with α, where 0.1 < α ≤ 1. Figure 4 shows the samples in Figure 1
that have been processed by a BF whose size is 41 × 41 multiplied with ab α of 1, 0.5, 0.2,
0.1 and 0.01. Take note that when α = 1, the BF is unflattened, and at α = 0.01, all coefficients
of the BF become one.

It is seen that the output quality improves as α decreases. The 41 × 41 BF with
α = 0.1 or 0.01 generates good results for all three samples. The filter with α = 0.1 was
chosen for further testing as it was not too flat. Thus, this filter was tested on eight samples
and changes in contrast and luminosity were calculated. Its performance was compared to
those of median and Gaussian filters. All of the filters had the same size of 41 × 41 and they
were executed in the same framework so that the only factor that influenced the results
was the filter used. The median filter was implemented using a histogram of pixel values.
The Gaussian filter was derived from the standard formula with σ = 5 so that it was not
too peaky and then scaled by 10 so that the maximum coefficient value was 10 and the
minimum value was limited to 1. Figure 5 shows the results produced by the three filters.
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Figure 4. Three retina images processed by BF with α of 1, 0.5, 0.2, 0.1 and 0.01, row wise from top
to bottom.

The results look similar as the filters were implemented in the same framework. All
images show enhancement in luminosity and contrast throughout the ROI, even in the
areas that are partially occluded by reflection. The improvement can be verified visually
and quantitatively. The luminosity of the images was obtained by converting them from
RGB into L*a*b space, where L stands for luminosity. The average luminosity gain of an
image was calculated using equation 11 to estimate the improvement introduced by the
proposed method.

Luminosity Gain =
Avg Filtered Luminance − Avg Un f iltered Luminance

Avg Un f iltered Luminance
× 100% (11)
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The contrast was estimated using the metric of Matkovic et al. (2005). The local
contrasts were the averages of absolute differences of one pixel and its eight nearest
neighbors at different resolutions. The global contrast factor (GCF) for the ROI was the
aggregate of all local contrasts multiplied by defined weightings. In the experiments, three
local contrasts were calculated at three resolutions, and they were multiplied by three
weightings of 0.12, 0.142 and 0.154, respectively. These weightings were suggested by the
authors themselves. The GCF, or contrast, was calculated before and after filtering. The
contrast gain for the images was given by Equation (12) below.

Contrast Gain =
Avg Filtered Contrast − Avg Un f iltered Contrast

Avg Un f iltered Contrast
× 100% (12)

The contrast and luminosity gains for the eight samples and their averages are pre-
sented in Table 1. The figures show that on average, contrast and luminosity gains for
the samples are nearly identical for the three filters. Tests carried out on the remaining
92 images revealed similar outcomes with nearly the same figures. Comparatively, the BF
performed slightly better than the other two filters. Therefore, it is fair to conclude that the
contrast and luminosity of the images have been enhanced by the framework.

    

   

    

    

    

Figure 5. Cont.
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(a) (b) (c) (d) 

Figure 5. The original, binomial-filtered, median-filtered and Gaussian-filtered samples, column-wise
from left to right. (a) Original, (b) binomial, (c) median and (d) Gaussian.

Table 1. The luminance (L) and contrast (C) of the samples before and after filtering.

Sample Before Filtering Binomial Filtered Median Filtered Gaussian Filtered

L C L C L C L C

1 33.0 0.37 57.6 1.05 57.4 1.05 57.5 1.04
2 32.3 0.48 56.8 1.40 56.6 1.27 56.7 1.35
3 30.5 0.38 57.3 1.21 57.7 1.08 56.9 1.18
4 37.15 0.39 64.1 1.13 64.3 1.12 64.2 1.09
5 43.0 0.50 59.43 1.21 60.0 1.23 59.0 1.20
6 35.39 0.62 60.7 1.69 60.5 1.58 60.3 1.66
7 33.48 0.38 60.2 1.11 60.22 1.03 60.4 1.05
8 42.57 0.42 59.7 1.22 59.6 1.10 59.6 1.13

Average 35.92 0.44 59.44 1.25 59.3 1.18 59.3 1.21

Gain - - 65.4% 184.6% 65.3% 168.2% 65.2% 175%

4. Discussion and Conclusions

It is observed that the test images in Figure 5 contain various levels of contrast and
illumination variations. Four of them appear to have boundary reflections of various
degrees. After processing, marked improvements in contrast and luminosity are observed
in all images. The method manages to remove the boundary reflection and expose the
surface with some foreground objects. The second and last samples suffer from a dim
appearance, but their corrected versions are brighter. The third image has an intense
boundary reflection that splits into two parts. The bottom part is small enough that it
might be mistaken as a foreground object. In its corrected form, the boundary reflection is
removed but traces around its edge remain. This is because there exists a strong transition
of red and yellow around its edge which looks like rainbow stripes. The method considers
them as foreground objects and decides to keep them. The same observation applies to
sample 6, where a red stripe remains near its top border.

The performance of the method was further tested on the remaining 92 test images of
the database and the average gains in contrast and luminosity for the binomial filter were
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above 170% and 60%, respectively. The median and Gaussian filters achieved slightly less
gain for contrast and about the same gain for luminosity. After recombination, the resulting
color images resembled the inputs in color tones and distribution, but they showed marked
improvement in contrast and luminosity. The framework was executed on MATLAB
R2021b powered by an AMD 5900HS processor. The average execution times for the three
filters were less than 10 s.

The method works best when the boundary reflection varies smoothly. If the reflection
has a steep transition at its border, it is regarded as a foreground object that needs to be
preserved. On the contrary, if a large exudate happens to be located at the boundary of the
ROI and if its border has a smooth transition, it can be misconstrued as boundary reflection.
In this case, it might be eliminated.

In summary, compared to the original images, marked improvements in contrast and
luminosity are observed in all processed images. In the boundary areas that are previously
shaded by the reflection, the method manages to expose the surface underneath. Overall,
the processed images look better than their raw counterparts. The luminosity of the filtered
images looks uniform, and the original color shades of the ROI are well preserved. All
the foreground objects, including exudates, blood spots, optic discs and blood vessels, are
clearly contrasted.
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Abstract: In cystic lung diseases such as lymphangioleiomyomatosis (LAM), a CT-based cyst score
that measures the percentage of the lung volume occupied by cysts is a common index of the cyst
burden in the lungs. Although the current semi-automatic measurement of the cyst score is well
established, it is susceptible to human operator variabilities. We recently developed a fully automatic
method incorporating adaptive features in place of manual adjustments. In this clinical study,
the automatic method is validated against the standard method in several aspects. These include
the agreement between the cyst scores of the two methods, the agreement of each method with
independent tests of pulmonary function, and the temporal consistency of the measurements in
the consecutive visits of the same patients. We found that the automatic method agreed with the
standard method as well as the agreement between two trained operators running the same standard
method; both methods obtained the same level of correlation with laboratory pulmonary function
tests; the automated method had better temporal consistency than the standard method (p < 0.0001).
The study indicates that the automatic method could replace the standard method and provide better
consistency in assessing the extent of cystic changes in the lungs of patients.

Keywords: lymphangioleimyomatosis; cystic lung disease; CT score; cyst burden; cyst score; low-
attenuation volume; emphysema

1. Introduction

Lymphangioleiomyomatosis (LAM) is a rare, progressive lung disease that affects
3.4–7.8 women per million [1]. It is caused by mutations in the tumor-suppressing tuberous
sclerosis complex (TSC), leading to the constant activation of the mechanistic target of
rapamycin (mTOR) biochemical pathway [2,3]. This results in the proliferation of smooth
muscle cells that can lead to the formation of air-filled cysts in the lungs due to airway
obstruction, airway narrowing, and air trapping [3]. There are two types of LAM: TSC-LAM
and sporadic LAM. TSC-LAM is a hereditary form of the disease that results from germline
mutations in TSC genes [2]. Sporadic LAM, the less common form, occurs due to somatic
mutations primarily in TSC 2 and predominantly affects premenopausal women [4]. The
clinical features of LAM disease include recurrent pneumothorax, chylous effusions, and
shortness of breath caused by airflow obstruction and hyperinflation [5]. Most patients
with LAM have declines in pulmonary function tests (PFTs) including a decline in airflow
due to an increase in airway resistance and poor gas exchange via a reduction in diffusion
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capacity [3]. Although LAM primarily affects the lungs, it can also have multiorgan
manifestations such as epilepsy, brain lesions, and renal angiomyolipoma [6].

Given that patients in the US have a median transplant-free survival of 29 years, regular
monitoring is an important part of the treatment and management of the disease [7,8].
Traditionally, pulmonary function tests have been used to monitor lung function with an
emphasis on metrics such as forced expiratory volume (FEV1), the Tiffeneau–Pinelli index
of forced expiratory volume over forced vital capacity (FEV1/FVC), and diffusion capacity
for carbon monoxide (DLCO) [9,10]. A more recent method to help in the diagnosis and
prognosis of this rare disease has been the use of high-resolution computed tomography
(CT). CT scans offer the direct visualization of cystic changes and are essential for generating
the cyst score, a quantitative measure of the percentage of lung volume occupied by cysts
(Figure 1). Studies have demonstrated the close association between cyst scores and declines
in pulmonary function, offering clinicians an additional tool for managing the disease in
patients with LAM [7,11–13].

  

Figure 1. Comparing the thoracic CT scan of healthy lungs (left) and lungs with LAM (right). In the
image on the right, round, air-filled cysts of a range of sizes appear as dark voids in the lung tissue.

Currently, the gold-standard methods to segment the cysts and calculate the cyst score
are the FDA-approved semi-automatic software (e.g., Canon Medical Systems USA, Inc.,
Tustin, CA, USA). However, semi-automatic methods have inherent limitations. They rely
on trained operators to make manual adjustments based on visual impressions to correct for
instrumental and patient-to-patient variabilities. As a result, they are susceptible to inter-
and intra-operator variability, leading to potential inconsistencies in the cyst score [14].
These affect the evaluation of the rate of the change or progression of the cyst burden in
the lungs over time. Additionally, the requirement for operators to undergo training to
maintain uniform visual standards limits the accessibility of the procedure.

A solution to this problem is fully automatic cyst segmentation. Previously, Schmithorst
and co-authors have described a method based on the frequency histogram of the CT values
of the whole lung to automatically calculate the percentage volume occupied by cysts [15].
However, the method does not provide the identification and segmentation of the cysts
in the images. More recently, we introduced a fully automatic method for generating
cyst segmentation and cyst scores based on the CT attenuation values of the air space
surrounding the body, the large airways, and the local parenchyma [14]. These calculations
remove the need for the subjective visual adjustment of the attenuation threshold by the
trained operator, thus removing the human influence in the process. The technical details
of the method are described in a previous study [14].

In this clinical study, we assessed the automatic method in a cohort of patients with
LAM by comparing it with the gold-standard semi-automatic method and correlating it
with pulmonary function tests. Specifically, we evaluated the agreement between the mea-
surements of the automatic and semi-automatic methods, the agreement of each method
with the laboratory tests of pulmonary function, and the consistency of the measurements
in consecutive visits by the same patients.
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2. Materials and Methods

2.1. Study Population

We performed a retrospective study on 208 CT scans from 152 female patients with
LAM at the Clinical Center of the National Institutes of Health (NIH), Bethesda, MD,
USA during the period from June 2018 to May 2024. The patients were enrolled in the
clinical research protocol “Role of Genetic Factors in the Pathogenesis of Lung Disease”
(clinicaltrials.gov, NCT00001532), which was approved by the National Heart, Lung, and
Blood Institute, the National Institutes of Health Institutional Review Board (IRB # 96-H-
0100). The diagnosis of LAM was confirmed by the American Thoracic Society/Japanese
Pulmonary Society criteria [10]. Ten patients had a history of tuberous sclerosis complex
(TSC). The age range of the study population was from 25.9 to 76.0 years with a median
age of 50.9 years. Some of the patients are followed at our hospital on a regular basis and
have undergone CT scans at annual or bi-annual intervals as part of their regular visits.

2.2. Thoracic CT Scan Protocol

All the patients received inspiratory volumetric high-resolution helical chest CT scans
with a nominal breath-hold period of 10 s and a nominal dose of 0.16 rem. The reconstruc-
tion slice thickness was 1 to 2 mm and the slice center-to-center spacing was 1 mm. The
in-plane pixel resolution was between 0.6 and 0.8 mm. Depending on the scanner platform,
a soft-tissue type of convolution kernel was employed in the reconstruction.

2.3. Laboratory Pulmonary Function Tests

Pulmonary function tests (PFTs) were performed in a clinical pulmonary physiology
laboratory of the hospital during the same visit as the CT exams. The PFT values that were
utilized for this study were the forced expiratory volume in the first second, expressed in
the percentage of predicted values (FEV1_pp); FEV1 normalized to the forced vital capacity
expressed in the percentage of predicted values (FEV1/FVC_pp); and the diffusion capacity
of the lungs for carbon monoxide, adjusted for hemoglobin and expressed in percentage of
predicted values (DLCO_adj_pp) [16,17].

2.4. Standard Semi-Automatic Cyst Score Procedure

The FDA-approved software for cyst segmentation and cyst score calculation is part
of the CT scanner platform (Canon Aquilion ONE, Canon Medical Systems USA, Tustin,
CA, USA). Depending on the version of the scanner software and hardware, the chest CT
series with the appropriate reconstruction setting is loaded into the software. The software
makes an initial segmentation of the cystic areas based on a fixed global threshold of the
CT attenuation value of −940 Hounsfield Units. A trained operator then inspects the
segmentation and adjusts the threshold either upward or downward by the appropriate
amount until a visually satisfactory segmentation is achieved. After segmentation, the
software automatically sums up the total volume of the cysts and calculates the percentage
ratio of total cyst volume/total lung volume as the cyst score. In this study, two trained
operators used the FDA-approved software to generate standard scores for inter-operator
comparison, as explained in Section 2.6.1 below.

2.5. Automatic Cyst Score Procedure

The automatic procedure was applied to the same CT image series as the standard
semi-automatic procedure. The software uses established algorithms to automatically
isolate the lung volumes and the large airways [18,19] before applying information from
several sources, including the surrounding air background, the airways, and the local
parenchyma to calculate the CT attenuation thresholds for cystic areas on a location-specific
basis. The thresholds were then applied to automatically segment the cystic areas, and
the software then calculated the percentage volume fraction of the lungs occupied by the
cysts as the cyst score. A detailed description of the software pipeline is given by Lee and
co-authors [14].
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2.6. Statistical Analysis
2.6.1. Comparing Automatic and Standard Cyst Scores

We assessed the inter-method difference between the standard semi-automatic proce-
dure and the new automatic procedure, using as a reference the intra-method variability
of the semi-automatic procedure itself. The differences between cyst scores generated
by the semi-automated and automated methods were evaluated in 100 CT scans from
100 patients. These scans were accompanied by concurrent pulmonary function tests in the
same visits. The differences between the two scores were analyzed in two ways: through
the Bland–Altman analysis, which examines the mean and variance of the difference [20],
and by assessing the mean and variance of the absolute difference. We then considered
whether the differences between the automatic and standard scores could be accounted for
by the human variability within the standard cyst score itself. For this purpose, we obtained
the standard cyst scores from two trained operators scoring the same scans independently.
These data were available for a separate set of 26 CT scans from a group of 19 patients.
Consequently, two sets of differences were obtained from two pairs of cyst scores: one set
between the automatic and standard cyst scores, the other between the standard cyst scores
from the two operators. We compared the means and variances of the two differences with
Welch’s t-test and the two-sample F-test, respectively. Since the first pair of scores covered
a wider range of cyst scores than the second pair, it was truncated down to the same range
for the comparison to be valid.

2.6.2. Comparing the Correlation of the Cyst Scores to Pulmonary Function Tests

We obtained the correlations of the automatic and standard cyst scores with the three
pulmonary function tests in the 100 CT scans described above. We then compared the
two cyst scores in terms of their correlation with the PFTs using the test of the difference
between two dependent correlations with one variable in common [21].

2.6.3. Comparing the Consistency of the Cyst Scores from the Two Methods

The inconsistency of the cyst scores over time, whether due to operator inconsistencies,
instrumental factors, or patient factors, will introduce stochastic fluctuations in the cyst
scores resulting in a greater variance of the rate of the change in the cyst scores. With this
reasoning, we studied the cyst score rate of change from the most recent two consecutive
visits in a group of 41 patients. The median interval between the two visits was 15.0 months.
We compared the automatic and the standard semi-automatic methods in terms of the
average and the variance of the cyst score rate of change.

3. Results

An example of pulmonary cyst segmentation by the standard semi-automatic method
and by the automatic method is illustrated in Figure 2. The results of the statistical compar-
isons between the two methods are described in the sub-sections below.

  

Figure 2. An example of the standard semi-automatic cyst segmentation (left) and fully automatic
cyst segmentation (right) of an axial section of the chest CT scan of a patient with LAM. The cystic
areas are highlighted in chartreuse color in the image on the left, and green color in the image on
the right.
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3.1. Comparing Automatic and Standard Cyst Scores

The standard semi-automatic cyst scores and the matching automatic cyst scores are
represented in the scatter plot in Figure 3a. The standard scores on the same CT scans
by two different trained operators are represented in Figure 3b. Both pairs of scores lay
generally near the identity lines. The second pair covered a smaller range of cyst scores
between 4.3% and 37.3%. In this range, the Bland–Altman analyses of the differences in the
pairs of scores are summarized in Figure 4. The average difference between the automatic
and the standard cyst scores was (mean ± std) (3.28 ± 2.72)%; the average difference
between the two standard scores from the two operators was (2.29 ± 3.40)%. The two sets
of differences did not differ from each other significantly either in their average values
(p = 0.19) or in their variances (p = 0.078).

  

(a) (b) 

Figure 3. Scatter plots comparing the two pairs of cyst scores. (a) The automatic cyst scores versus
the standard semi-automatic cyst scores of 100 chest CT scans from 100 patients. The dashed blue
line is the identity line. (b) The standard semi-automatic cyst scores generated by trained operator #1
versus trained operator #2 for the same 26 chest CT scans from 19 patients. The dashed orange line is
the identity line.

 

Figure 4. Bland–Altman plots of difference versus average value for the two pairs of cyst scores. The
blue symbols and lines are the analysis of the difference between the standard semi-automatic cyst
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scores and the automatic cyst scores, both of 100 CT scans from 100 patients. The blue dots represent
the difference versus the average for individual scans. The solid horizontal blue line represents the
average of the differences, and the horizontal dashed blue lines represent the 95% confidence interval
of the difference. Similarly, the orange symbols and lines are the analysis of the difference between a
pair of standard semi-automatic cyst scores generated by operator #1 and operator #2, of 26 CT scans
from 19 patients. The orange circles represent the difference versus the average for individual scans.
The solid horizontal orange line represents the average of the differences, and the horizontal dashed
orange lines represent the 95% confidence interval of the difference.

In terms of the absolute values of the difference between the automatic scores and
the standard scores, the average of the absolute differences was (3.48 ± 2.46)%; it was
(2.95 ± 2.81)% for the difference between the two standard scores from the two operators.
These are summarized in Figure 5. Again, the two sets of absolute differences did not differ
significantly from each other either in their average values (p = 0.40) or in their variances
(p = 0.19).

Figure 5. Average of the absolute value of the difference in the cyst scores generated by operator #1
vs. operator #2 (brown bar), and the average of the absolute value of the difference in the cyst scores
generated by the automatic method vs. operator #1 (blue bar). The error bars represent the standard
deviation. The two average values were statistically comparable (p = 0.40 for the comparison of the
mean values and p = 0.19 for the comparison of the variances).

3.2. Comparing the Correlation of the Cyst Scores to Pulmonary Function Tests

All the cyst scores were negatively correlated with the pulmonary function test results,
meaning that higher cyst scores were associated with lower values of pulmonary function
indices. The absolute values of Pearson’s correlation are summarized in Figure 6. The
automatic cyst scores had a slightly stronger correlation with all three categories of PFTs
compared to the standard semi-automatic scores, but the difference was not statistically
significant. The correlation values were −0.765 vs. −0.760 for FEV1_pp with p = 0.73 for
the comparison, −0.772 vs. −0.757 for FEV1/FVC_pp with p = 0.36 for the comparison,
and −0.715 vs. −0.681 for DLCO_adj_pp with p = 0.062 for the comparison.
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Figure 6. Absolute value of correlation between pulmonary function tests and the two types of cyst
scores. The blue bars represent the cyst scores generated by the automatic method, and the orange bars
represent the cyst scores generated by a trained operator using the standard semi-automatic method.
The two sets of correlations were statistically comparable (*: p = 0.73; **: p = 0.36; ***: p = 0.062).

3.3. Comparing the Consistency of the Cyst Scores from the Two Methods

The consistency of the cyst scores was evaluated through the rate of change in the
cyst scores over two consecutive visits. The results are summarized in Figure 7. The
average rate of cyst score changes was (0.25 ± 1.12)%/year by the automatic method, and
(0.68 ± 2.19)%/year by the standard semi-automatic method. The average value of the
rate of change was not statistically different between the two methods with p = 0.20. The
variance of the rate of change from the automatic method was significantly smaller than
the one from the standard method (standard deviation of 1.12%/year vs. 2.19%/year,
p < 0.0001).

 

Figure 7. Box-and-whisker plot of the rate of change in the cyst scores obtained from two consecutive
patient visits. The average rate of change for the standard semi-automatic (orange) and automatic
(blue) methods were statistically comparable (p = 0.20). However, the spread of the rate of change in
the automatic method was significantly smaller than that of the semi-automatic method (a standard
deviation of 1.12%/year vs. 2.19%/year, p < 0.0001).

113



Diagnostics 2024, 14, 1529

4. Discussion

In cystic lung diseases such as lymphangioleiomyomatosis (LAM), a CT-based quan-
titative score of the extent of cystic changes in the lungs is often an integral part of the
management of the disease which aids the evaluation of the stage of the condition and
the effect of treatment [11–13]. Current FDA-approved software to segment the cysts in
the CT images and generate the score is semi-automatic, where a trained operator visually
adjusts the segmentation until it is deemed optimal. Although this procedure routinely
provides clinically useful information, it is affected by inherent human subjective factors
in the form of inter- and intra-operator inconsistencies [14], particularly when assessing
changes over time. In response, we developed a fully automatic cyst segmentation and
scoring method. In this study, the automatic method is validated against the standard
semi-automatic method and against independent pulmonary function tests from the clinical
physiology laboratory.

In the direct comparison between the automatic and the standard semi-automatic cyst
scores, the difference between the standard cyst scores generated by the two operators
independently was used as a reference. This reference provided a measure of the variability
within the semi-automatic score itself. The results showed that the discrepancy between
the automatic method and the standard method was as large as the discrepancy between
the two trained operators running the same standard method. Therefore, the automatic
method agreed with the standard method to the level allowed by the operator-related
variability in the standard method. By the same reasoning, it is plausible that the difference
between the automatic and semi-automatic scores could be accounted for by the human
variability within the semi-automatic scores.

When it comes to the correlation between the cyst scores and pulmonary function as
measured by the physiology laboratory tests, the automatic scores had slightly stronger
associations with the PFT values compared to the standard semi-automatic scores, although
the differences were not statistically significant (p ≥ 0.062).

In terms of the consistency of the cyst scores over time, we reasoned that inconsistency
would lead to random fluctuations in the scores which would broaden the spread of the rate
of change in the scores. Experimentally, the rate of change in the standard semi-automatic
scores had about twice the spread of the one from the automatic scores (p < 0.0001). The
evidence supports the notion that the automatic method improved the consistency of the
cyst scores. This is expected, since the semi-automatic procedure is influenced by operator
judgment, which may vary slightly between different operators and may fluctuate over
time in the same operator. Therefore, by removing the human factor in the process, the
level of consistency should improve when all the other factors are equal.

In the general context of the automatic segmentation of radiologic images in lung dis-
ease, machine learning-based approaches have been the focus of many efforts recently [22].
In the literature, we are aware of one attempt at developing a machine learning-based
method to segment cysts in the chest CT scans of patients with LAM [23] which came from
our institute. Although preliminary results showed promise, it is not yet fully functional.
In contrast, the image-based adaptive method described in this study proved to be suf-
ficiently robust to yield an operational software that is being used routinely in patients
with LAM under a clinical research protocol at our hospital. The several experimental
results in combination provide evidence that the automatic cyst segmentation and scoring
serves as an equally accurate method as the FDA-approved standard semi-automated
segmentation and scoring method. The results also suggest that the automatic method
improved the consistency of the scores over time, which is an important factor when it
comes to assessing the progression of the disease and the effect of treatment. A limitation
of this study is the relatively small number of CT scans available to assess the variability
within the standard method itself (26 scans from 19 patients). This point may be addressed
in the future expansions of the study. Overall, it may be concluded that the automatic cyst
score is a reliable replacement for the current gold-standard semi-automatic cyst score in
the evaluation of patients with LAM disease.
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Abstract: Gastric cancer (GC) is a significant healthcare concern, and the identification of high-risk
patients is crucial. Indeed, gastric precancerous conditions present significant diagnostic challenges,
particularly early intestinal metaplasia (IM) detection. This study developed a deep learning system
to assist in IM detection using image patches from gastric corpus examined using virtual chro-
moendoscopy in a Western country. Utilizing a retrospective dataset of endoscopic images from
Sant’Andrea University Hospital of Rome, collected between January 2020 and December 2023, the
system extracted 200 × 200 pixel patches, classifying them with a voting scheme. The specificity and
sensitivity on the patch test set were 76% and 72%, respectively. The optimization of a learnable voting
scheme on a validation set achieved a specificity of 70% and sensitivity of 100% for entire images.
Despite data limitations and the absence of pre-trained models, the system shows promising results
for preliminary screening in gastric precancerous condition diagnostics, providing an explainable
and robust Artificial Intelligence approach.

Keywords: gastric intestinal metaplasia; virtual chromoendoscopy; BLI; CNN; imaging diagnostics;
ResNet50; classification; segmentation

1. Introduction

Gastric cancer (GC) is the fifth most common neoplasia and the fourth most common
cause of death from neoplastic pathology worldwide [1], and its unfavorable prognosis
is primarily attributed to late diagnosis at an advanced stage of cancer [2]. However, in
low-incidence countries (i.e., European countries), GC screening is not recommended, and
the recognition of patients at risk for the development of GC is fundamental to avoiding un-
necessary gastroscopies and reducing the burden of care. High-risk patients are those with
extensive precancerous gastric conditions or with additional risk factors (i.e., autoimmune
gastritis, a family history of GC), and there is evidence that endoscopic surveillance in
these patients is beneficial [3]. Intestinal metaplasia (IM) is a gastric precancerous condition
characterized by the replacement of the original gastric glands with intestinal epithelium [4].
Gastric IM diagnosis is histological. Therefore, biopsies are necessary during gastroscopy to
stage the precancerous conditions and to define the Helicobacter pylori status. For reporting
the histological evaluation of gastritis and gastric precancerous conditions, the consensus
of the updated Sydney system, based on five biopsies of the stomach (two of the antrum
and one of the incisura sent in the same vial and two of the corpus sent in another vial),
was developed [5]. Therefore, a histological classification system like the Operative Link
on Gastric Intestinal Metaplasia (OLGIM) was proposed to stage IM [6]. The OLGIM score
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includes stages from 0 to IV. According to these studies, patients with advanced stages of
OLGIM (such as stages III and IV) have an increased risk of developing GC [6]. Another
important risk factor for developing GC is the presence of IM or AG in the context of
autoimmune atrophic gastritis (AAG) that extends to the corpus mucosa while sparing the
antrum [7]. The topographic extension of IM is important to define, considering that the
risk of developing cancerous lesions is closely linked to the extent of IM across the gastric
mucosa. In this context, gastric IM can be divided into diffuse or focal, and for this reason, it
is necessary to use diagnostic tools for the support and recognition of gastric precancerous
conditions during endoscopic examination that allow target biopsies to be performed and
patients to be staged correctly. During White Light (WL) endoscopy, random gastric biop-
sies may fail to detect IM. In recent years, several studies have demonstrated that electronic
chromoendoscopy, namely Narrow-Band Imaging (NBI) and Blue-Light Imaging (BLI), has
increased accuracy in the diagnosis of precancerous conditions and cancerous lesions [8].
Electronic chromoendoscopy improved the visualization of vascular and mucosal patterns
by employing narrower bands of blue and green filters instead of conventional red–green–
blue filters [9]. Chromoendoscopically, gastric IM is characterized by some markers, such
as the light blue crest, the marginal turbid band, the white opaque substance, and the
groove type [10]. The ability to perform target biopsies with electronic chromoendoscopy
increases the chance of obtaining a diagnosis of IM and correct staging. In a previous study,
NBI showed an accuracy of 85%-90% for the diagnosis of IM and dysplasia [8]. These
results were then confirmed in a European multicenter study in which an NBI classification
scheme was proposed and validated to stage IM based only on electronic chromoendoscopy
appearance (EGGIM—endoscopic grading of gastric intestinal metaplasia). An EGGIM
score > 4 has been shown to be associated with advanced stages of OLGIM (III, IV) [11]. An-
other type of electronic chromoendoscopy (BLI) showed the same results as NBI for gastric
IM diagnosis and staging [12]. However, electronic chromoendoscopy is not widespread,
and not every endoscopist can use it. Over the past few decades, significant attention
has been directed towards the advancement of computer-assisted systems applicable in
endoscopy [13]. Computer vision is a crucial field of research in Artificial Intelligence
(AI) regarding images and visual data, and convolutional neural networks (CNNs) have
completely changed the field of computer vision. CNNs first appeared in 1980 [14]. A CNN
is a type of neural network architecture that learns a hierarchy of features directly from a
large dataset for a specific task [15]. Several existing image classification algorithms, such
as ResNet50 [16], SE-ResNet50, VGG 16, VGG 19 [17], and Inception V3 [18], are used to
resolve complex problems related to image classification and segmentation benchmarks. In
the task of image classification, the ResNet-50 model appears to be the most well-known
and effective architecture in the medical field [19].

However, the development of a CNN for the task of classifying endoscopic images
must be based on several factors [20]:

The dataset being retrospective or prospective;
The dataset being based on images or videos;
The dataset being derived from a single center (internal set) or multiple centers (exter-
nal set);
The use of endoscopic images exclusively in conventional WL or exclusively with electronic
chromoendoscopy (BLI, NBI, LCI), or both types of lights combined;
Types of deep learning algorithms (which can include image classification algorithms,
object detection algorithms, semantic segmentation algorithms, or a combination of these
algorithms).

The task of the CNN can be focused exclusively on a single task (i.e., the recognition
of a single precancerous condition, such as intestinal metaplasia) or address multiple tasks
(i.e., the simultaneous recognition of IM, AG, and H. pylori gastritis).

Different studies have applied AI models for the detection of upper GI lesions, and
specifically, GC, especially in Eastern countries, and a recent meta-analysis showed promis-
ing results in the application of AI for GC [21–23]. Another recent meta-analysis demon-
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strated good results on the accuracy of AI and its application for early GC diagnosis [24], a
condition with a missing lesion rate of up to 20% in Western countries [25].

On this topic, most studies derive from Asian countries, where there is a high preva-
lence of GC. Conversely, regarding gastric precancerous conditions, only a few studies have
focused on the use of AI for AG and IM, and they are exclusively Asian studies, except for
a German study on AG [26]. Regarding gastric precancerous conditions, there are three
relevant meta-analyses: one about the use of AI for gastric precancerous conditions (based
on nine studies) and one about H. pylori infection (based on four studies), which have
demonstrated a pooled diagnosis accuracy of 90% and 80%, respectively [27]. Another
meta-analysis focused on the diagnostic value of AI-assisted endoscopy for chronic AG
(based on eight studies) reported a diagnostic accuracy of 98% [28].

Lastly, a meta-analysis was conducted on the diagnostic accuracy of AI exclusively
for gastric IM based on 12 eastern studies, demonstrating a pooled sensitivity of 94% and
a specificity of 93%. A clinically significant finding of this meta-analysis is the compari-
son between AI and endoscopists, revealing that AI exhibited higher sensitivity (95% vs.
79%) [29].

The results showed that AI performed excellently in diagnosing GIM, AG, and
H. pylori infection.

Nonetheless, all the meta-analyses described are based on few studies. Furthermore,
there are no Western studies in this field, and developing a CNN system would be useful
in supporting endoscopists to recognize and stage IM in a Western country.

For these reasons, this pilot study aimed to develop and assess the precision and recall
of a CNN system for the recognition of IM in images of a gastric corpus obtained during
gastroscopies with BLI evaluation in a Western country.

2. Methods

2.1. Participants

We retrospectively collected a dataset of endoscopic images from prospective gastro-
scopies performed in a single center, Sant’Andrea Hospital, Sapienza University of Rome,
from January 2020 to December 2023. Images were obtained during routine weekly endo-
scopic sessions of outpatients undergoing follow-up for atrophic gastritis corpus-restricted,
multifocal, and extensive atrophic gastritis, celiac disease, and anemia.

The exclusion criteria were individuals below 18 years of age, incomplete or unavail-
able clinical data, insufficient gastric biopsies, contraindications for biopsies, patients who
had undergone partial or total gastrectomy, and instances involving neoplastic gastric
lesions. Ethical approval and informed consent to collect endoscopic images were obtained
from all patients.

2.2. Endoscopic and Histological Procedures

Gastroscopies were performed using Fuji scopes with the use of pharyngeal anesthe-
sia (xylocaine spray puffs) and/or conscious or deep sedation (midazolam or propofol).
Gastroscopies were performed using High-Resolution (HR) White Light (WL) endoscopy,
followed by a BLI assessment. For the aim of this study, multiple images were taken
during the BLI assessment of the regions of the antrum and the corpus. If IM was en-
doscopically observed with the use of BLI, multiple images of the area of interest were
taken, and targeted biopsies were performed. During the BLI assessment, if no IM was
detected, multiple general images of gastric mucosa were taken, and biopsies according
to the updated Sydney system protocol were performed [5]: two biopsies of the antrum,
one of the incisura angularis, and two of the corpus. These biopsies were then placed
in separate vials for histopathological evaluation, the gold standard for the diagnosis of
gastric IM. Additional biopsies were obtained when other abnormalities were identified
and subsequently submitted for histopathological examination.
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2.3. Image Dataset

For each patient included in the study, a data collection form was administered to col-
lect demographic, endoscopic, and histological data. The images were acquired at a single
center during dedicated sessions by two experienced endoscopists, thereby minimizing the
risk of selection bias. All images of these gastroscopies were collected in a JPEG format, and
after image acquisition, a resident endoscopist discarded WL images, esophagus images,
duodenum images, and poor-quality images (i.e., out-of-focus or low-resolution images).
The criteria for selecting images were the suitability of images to elucidate the presence or
absence of IM; adequate graphic quality; accordance between endoscopic and histologi-
cal evaluation; and guarantee of the anonymity of the images. Images with histological
evaluation compatible with pseudopyloric metaplasia were excluded from the dataset.

Subsequently, an expert endoscopist categorized all the remaining gastric corpus and
antrum BLI images into IM-positive and IM-negative images. For this study, only gastric
body images that were acquired using BLI assessment were used for the CNN model
development. Finally, an expert endoscopist of gastric precancerous conditions performed
annotations of regions of interest that contained informative features using the Image
J software (Image 1.53 t).

2.4. Development of AI Models

The primary challenges were data availability and annotation quality. Due to the
absence of pixel-wise segmentation masks, it was not feasible to tackle the problem as a
segmentation task. Instead, we collected annotations on regions of interest, highlighted as
rectangular or oval regions in the images, as shown in Figure 1.

 
(a) GIM-Negative region (b) GIM-Positive region 

Figure 1. Samples from the dataset showing BLI images with corresponding annotations.

The annotations, labeled as IM-positive or IM-negative, highlight regions with discrim-
inative features (Figure 1). Our approach involves extracting and classifying 20 random
patches of 200 × 200 pixels from each annotated region (Figure 2). The data were split into
80% for training, 10% for validation and hyperparameter tuning (Section 4), and 10% for
testing. Various CNN architectures were tested, including ResNet50, VGG 16, VGG 19, and
Inception V3, with the best results achieved using ResNet50. The models were trained from
scratch using the Adam optimizer [30] for 200 epochs, selecting the best model based on
validation loss. All images were used for testing once only. We calculated the accuracy,
recall, and precision of this model. Recall is a metric used to determine the frequency at
which a machine learning model accurately identifies true positive cases among all the
actual positive cases in the dataset. It is also known as sensitivity. On the other hand,
precision assesses how frequently a machine learning model accurately predicts the positive
class. Precision can also be called specificity.

 
(a) GIM-Negative patches (b) GIM-Positive patches 

Figure 2. Examples of randomly sampled patches from GlM-negative and GlM-positive regions.
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3. Results

Overall, 279 patients were included (62.7% female). The histological examination
revealed the absence of gastric IM in 146 patients, while 133 patients tested positive for
gastric IM. Among those with positive results, 81 cases exhibited IM exclusively in the
corpus, with the antrum spared. Regarding the histological staging of IM, 146 patients
were categorized as OLGIM 0, 50 as OLGIM I, 63 as OLGIM II, 14 as OLGIM III, and 6
as OLGIM IV. Chromoendoscopic staging of IM using the EGGIM score was performed
in 227 patients, with 108 classified as EGGIM 0, 148 as EGGIM 1–4, and 22 as EGGIM >4.
Twenty-two patients tested positive in the histological examination for H. pylori infection.

The final dataset included 1384 high-resolution BLI images, with 721 gastric corpus
images classified as IM-negative and 663 as IM-positive. Each image had a resolution of
1279 × 1023 pixels. A total of 1384 images yielded 505 IM-positive and 771 IM-negative
annotations. Finally, a total of 6103 IM-positive and 4466 IM-negative patches were obtained.
Each image patch had a resolution of 200 × 200 pixels. We split the dataset into three phases:
the training set (which contained 4861 positive patches and 3403 negative patches), the
validation set (which contained 681 positive patches and 521 negative patches), and the test
set (which contained 561 positive patches and 542 negative patches). Images were saved in
JPEG format and are available upon reasonable request to the corresponding author.

The model’s performance on the patch test set, with patches classified as either IM-
positive or IM-negative, demonstrated an accuracy of 74%, a precision of 76%, and a recall
of 72%, as illustrated in Table 1. To support the statistical significance of these results, we
performed a significance test comparing the performance of ResNet-50 with other CNN
architectures like DenseNet, EfficientNet, and XceptionNet. Using a paired t-test, we found
that ResNet-50’s performance was significantly better than the other architectures (p < 0.05).

Table 1. Performance metrics of the CNN model on the patch test set, with patches classified as either
GIM-positive or GIM-negative.

Model Accuracy Precision Recall

ResNet 74% 76% 72%

While the patch-level results revealed certain limitations for standalone diagnostic
use, they formed the foundational layer for further enhancements. For the classification
of entire images as either IM-positive or IM-negative, we developed a custom voting
scheme to achieve this, as illustrated in Figure 3. The voting scheme in our methodology
involves learning a decision threshold to classify entire images based on the classification
of individual patches. First, each image is divided into 30 non-overlapping patches. Our
convolutional neural network (CNN) model, specifically the ResNet-50 architecture, is
trained to classify each patch as either positive or negative for intestinal metaplasia (IM).
Then, we employ a linear search to determine an optimal threshold for the number of
patches that need to be classified as positive for the entire image to be considered positive.
This threshold is learned by maximizing the overall image classification accuracy on the
validation set. For each image, if the number of patches classified as positive exceeds the
learned threshold, the entire image is classified as positive. Conversely, if the number of
positive patches is below the threshold, the image is classified as negative. During the
validation phase, we iteratively adjusted the threshold and evaluated the performance
to ensure that the chosen threshold maximizes the overall accuracy. This process helps
in fine-tuning the model to strike a balance between sensitivity (recall) and specificity
(precision). Table 2 details the configurations yielding the most effective results. One of the
best configurations, with a decision threshold of 0.8 and a patch threshold of 13/30, showed
an accuracy of 78%, a precision of 70%, and a recall of 100%. This voting scheme and
threshold optimization enhance the robustness and practical applicability of our method,
allowing us to achieve high accuracy in classifying entire endoscopic images based on
patch-level predictions. Our method enhances explainability and interpretability over
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traditional CNN classifiers by allowing practitioners to inspect which specific patches
influenced the final classification decision. For instance, patches showing strong specular
reflections might have been erroneously classified as IM-positive. Such errors were readily
identifiable and could be corrected, thereby enabling a more robust and interpretable
diagnostic process.

Figure 3. Illustration of the classification algorithm for entire images. The image is divided into
30 non-overlapping patches that are individually classified, followed by a voting scheme to determine
the overall image classification.

Table 2. Test set metrics for entire image classification, showing the best configurations of decision
and patch thresholds.

Decision
Threshold

Patch
Threshold

Test Accuracy Test Precision Test Recall

0.5 23/30 78% 75% 81%
0.8 13/30 78% 70% 100%
0.5 24/30 76% 68% 83%

4. Discussion

Most studies regarding AI in upper gastrointestinal management have focused on
the detection of early gastric cancer [21–24], while only a few studies, exclusively from
Asian countries, have investigated these learning systems for gastric precancerous
conditions [27–29].

However, given the significant differences in diagnostic outcomes between countries
with a high and low prevalence of GC, it is imperative to also investigate a specific CNN
for the recognition of GC in countries with a low prevalence of GC. Furthermore, in the
Western world, where there is a low prevalence of gastric cancer, recognizing patients with
precancerous conditions who will subsequently undergo endoscopic follow-ups is crucial.
For these reasons, our CNN could provide valuable support in identifying these conditions.
Our system demonstrated high recall and moderate precision, making it particularly
suitable for initial screening applications. However, in countries with a low prevalence of
gastric cancer, a recognition system with greater precision would be more useful in terms of
economic resources. In the initial stages of screening contexts, it is preferable to have high
recall in order to have fewer false negatives. The decision to prioritize the identification of
IM is based on its pivotal role in the gastric carcinogenic process, marking a critical point
of no return. Additionally, in this study, we focused on IM, and distinguishing between
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IM and pseudopyloric metaplasia is crucial because studies indicated that the latter is
not associated with the development of GC [31]. Pseudopyloric metaplasia and other
conditions, such as foveolar hyperplasia or exclusive gastric atrophy, could be disturbing
factors for the correct functioning of the learning machine and should be investigated in
future studies.

A relevant meta-analysis on the diagnostic accuracy of AI regarding gastric IM con-
ducted subgroup analyses to examine factors influencing AI performance in recognizing
gastric IM, including the number of images (>1500 or <1500), the study design (prospective
or retrospective), the study center (multicenter or single center), the endoscopy type (WL
only or others), and the algorithm type (classification algorithm or others). The analysis
revealed that the type of algorithm is the most significant factor that significantly impacts
precision (also known as specificity) [29]. By comparing our system with previous AI
models for IM detection extracted from the meta-analysis already described [29], our study
is the only one that uses the ResNet-50 algorithm in this context. We conducted extensive
experimentation with convolutional neural network (CNN)-based architectures such as
ResNet, DenseNet [32], EfficientNet [33], and XceptionNet [34], each of which consists of a
CNN component for feature extraction and a linear classifier for making predictions. The
aim was to determine which model performed best on our specific task, single patch classi-
fication, where only the regions of interest were considered, while irrelevant regions were
ignored. Our comparative analysis focused on several key factors: 1. Performance: Through
rigorous testing, we observed that ResNet consistently achieved the highest accuracy on
our dataset. This superior performance was crucial in our decision, as accuracy directly
impacts the reliability and effectiveness of the classification task. 2. Complexity: ResNet’s
architecture, characterized by its residual connections, allows for training deeper networks
without the common issue of vanishing gradients. This balance between depth and ease of
training made ResNet more suitable for our needs compared to more complex networks
like DenseNet and EfficientNet, which, despite their advanced capabilities, did not provide
accuracy improvements in our experiments. 3. Suitability for the task: The residual connec-
tions in ResNet facilitate better feature extraction from the patches by enabling the network
to learn residual mappings, which are particularly effective for distinguishing between the
classes in our dataset. This architectural advantage made ResNet more adept at handling
the specific nuances of our classification task.

Regarding precision, which in our study was shown to be lower than recall (also called
sensitivity), it is in line with the results of most of the previous studies analyzed, which all
report values higher than 80% [29]. The diagnostic accuracy of AI in the studies analyzed
in this meta-analysis averaged around 90% [29], while our study achieved approximately
80% diagnostic accuracy, although we reported very high recall values of approximately
100%. Comparing our system to earlier AI models for IM detection [29], we found that
our system is the only one developed based exclusively on BLI assessment. Most of the
previous studies used endoscopic images with electronic chromoendoscopy, such as NBI,
BLI, and Linked Color Imaging (LCI), but only one study developed a system using WL,
NBI, and BLI [35]. The other systems were developed either with NBI assessment alone or
with a combination of WL and NBI assessment.

Another unique aspect, which can also be seen as a limitation, is that our system
focuses exclusively on the gastric corpus. However, this is a preliminary analysis, and
image collection also involved the antral region, which will be subsequently analyzed for
the entire stomach.

To further improve our model, we conducted a detailed error analysis to understand
common misclassifications and identify areas for enhancement. One common issue was
that some patches containing strong specular reflections or image artifacts were erroneously
classified as IM-positive. By implementing preprocessing steps to reduce or eliminate these
reflections and artifacts, we could enhance the model’s accuracy. Techniques like glare
removal and advanced image normalization could be beneficial. Another challenge we
encountered was with patches from out-of-focus or low-quality images, which led to
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incorrect classifications. Developing a quality assessment module to filter out low-quality
patches before classification could prevent such errors. Training a separate CNN to detect
and exclude poor-quality patches might improve overall accuracy. Some patches contained
regions that were difficult to classify, even for human experts. Enhancing the training
dataset with more annotated examples of these ambiguous regions could help the model
learn better representations. Rare patterns and edge cases not well represented in the
training data were often misclassified. Expanding the dataset to include more examples of
rare patterns and edge cases could help the model generalize better. Collaborating with
multiple medical centers to gather a more diverse dataset would be advantageous.

Based on the error analysis, several potential improvements were identified to enhance
our model’s performance. Implementing advanced preprocessing techniques such as glare
removal, noise reduction, and image normalization could improve patch quality and
reduce misclassification due to artifacts. Incorporating a quality assessment module to
automatically detect and exclude low-quality patches before classification could enhance
overall accuracy. Collaborating with additional medical centers to gather a more diverse
and representative dataset, including rare patterns and edge cases, could improve the
model’s ability to generalize to new and unseen data. Developing a multistage classification
pipeline where an initial model filters out obvious negatives, followed by a more detailed
analysis of potential positives, could reduce false positives and improve precision.

By conducting this study, we identified significant issues. Many of the images that were
acquired during the endoscopic examination are of poor quality. Images with disturbing
factors such as mucus, bubbles, or reduced visibility were discarded for CNN deep learning
creation. To reduce the presence of mucus and bubbles in the gastric mucosa, there are
studies that suggest premedication before the endoscopic examination [36]. This approach
could enhance image quality and reduce the time spent washing/cleaning the gastric
mucosa, allowing for more time to detect cancerous and precancerous conditions. Another
important point is that the detection of gastric precancerous conditions during gastroscopy
must be based on a high-quality gastroscopy, with specific performance measures for upper
gastrointestinal endoscopy (exploration time, taking standardized photos, routine use
of electronic chromoendoscopy, etc.) explained in the guidelines [37]. In this regard, it
would be interesting in future research to explore the development of AI to enhance the
quality control of upper gastrointestinal endoscopy [38]. Another problem is image storage
spaces that allow for manipulation (such as the annotations of images), always considering
that they are sensitive data obtained following authorization expressed in the informed
consent of the endoscopic examination. Furthermore, our study had some limitations.
Our dataset had a limited number of images, though there is no mandatory minimum
number of images for accurate deep learning development. Previous studies used datasets
ranging from 84 to 17,000 images to train deep learning models, showing no differences in
diagnostic accuracy outcomes [29]. The development of deep learning was only carried out
for the gastric corpus. The development of a CNN that investigates only one region of the
stomach cannot be used in real practice in the general population but could be useful in
identifying the percentage of patients at high risk of developing GC, such as patients with
autoimmune gastritis [7]. To date, the gold standard for autoimmune gastritis diagnosis
is the histopathological assessment by gastric biopsies during gastroscopy, although non-
invasive serological screening before endoscopy may offer utility in some clinical contexts
(e.g., serum biomarkers like parietal cells and intrinsic factor, autoantibodies, or serum
gastrin and pepsinogens). According to the guidelines, patients with autoimmune gastritis
with the presence of AG and/or IM that extends to the corpus mucosa while sparing the
antrum require a surveillance gastroscopy every 3 years [3].

However, we will aim to also extend this methodology to the gastric antrum region,
enhancing the utility and applicability of our diagnostic tool. Additionally, we will plan
to improve the precision and accuracy of our system through semi-supervised pretrain-
ing strategies.
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Using a dataset comprising thousands of gastric mucosa endoscopic images in WL for
pre-training the system, increasing the number of images by including the antral region,
and increasing the patient pool are all strategies that could enhance the performance of
the CNN system. These strategies are particularly advantageous as they do not require
a large, labeled dataset, thus overcoming one of the significant hurdles in medical image
analysis. However, for data augmentation, we have already used techniques such as
vertical/horizontal reflections, random rotations, and uniform scaling.

An innovative methodology in regenerative medicine to expand the dataset is the
assessment of hyperspectral imaging and CycleGAN-simulated data, which have already
shown promising results in the field of upper gastrointestinal endoscopy for the detection
of early esophageal cancer [39]. Although all existing studies are in the early stages of
development with only internal validation [40], this is an emerging field in medical AI.
Research in this area is expected to grow exponentially in the coming years and should be
considered for future studies. Our efforts will focus on refining these techniques to provide
more reliable and robust diagnostic solutions.

The implementation of CNN models in routine endoscopic practice will enhance the
quality of gastroscopy by improving the detection of patients at risk for the development of
gastric cancer (i.e., those requiring endoscopic surveillance) as well as healthy patients. In
this last subgroup of patients, AI assistance will potentially eliminate the need for biopsies
on healthy mucosa, reducing the burden and healthcare costs involved in endoscopy. Addi-
tionally, more accurate detection of precancerous conditions will help reduce unnecessary
follow-up gastroscopies.

By addressing these areas for improvement, we aim to enhance the accuracy and
reliability of our deep learning system for detecting gastric IM.

In conclusion, in this pilot study, we have introduced a novel AI-driven approach for
the diagnosis of gastric IM in a Western country and constructed a CNN system using
endoscopic image patches from a monocentric hospital that was able to achieve high
recall/sensibility and thus a low number of false negatives for the detection of IM in the
gastric corpus.
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Abstract: Facial acne is a prevalent dermatological condition regularly observed in the general
population. However, it is important to detect acne early as the condition can worsen if not treated.
For this purpose, deep-learning-based methods have been proposed to automate detection, but
acquiring acne training data is not easy. Therefore, this study proposes a novel deep learning model
for facial acne segmentation utilizing a semi-supervised learning method known as bidirectional copy–
paste, which synthesizes images by interchanging foreground and background parts between labeled
and unlabeled images during the training phase. To overcome the lower performance observed in
the labeled image training part compared to the previous methods, a new framework was devised to
directly compute the training loss based on labeled images. The effectiveness of the proposed method
was evaluated against previous semi-supervised learning methods using images cropped from facial
images at acne sites. The proposed method achieved a Dice score of 0.5205 in experiments utilizing
only 3% of labels, marking an improvement of 0.0151 to 0.0473 in Dice score over previous methods.
The proposed semi-supervised learning approach for facial acne segmentation demonstrated an
improvement in performance, offering a novel direction for future acne analysis.

Keywords: acne segmentation; semi-supervised learning; bidirectional copy–paste; deep learning;
semantic segmentation

1. Introduction

Facial skin disorders commonly occur among people, which is why various studies
are being conducted to detect them [1–4]. Out of these, acne is a prevalent skin disorder
that frequently occurs in the general population. Untreated acne has the potential to
deteriorate or result in scarring. Therefore, multiple research investigations are currently
being conducted to detect and classify acne based on facial images.

Figure 1 displays images of acne cropped from facial images, highlighting the variety
in the color and shape of acne. Initially, acne detection primarily involved extracting
features based on color or texture and utilizing classifiers. Budihi et al. [5] applied the
region growing method based on pixel color similarity in facial skin images to select can-
didate areas for acne. Additionally, a self-organizing map was used to diagnose acne.
Alamdari et al. [6] used techniques such as K-means clustering, texture analysis, and color-
based segmentation to segment acne areas. Yadav et al. [7] identified candidate regions
of acne presence on the face based on the hue–saturation–value (HSV) color space and
then distinguished acne using classifiers trained with a support vector machine (SVM).
However, these methods struggle with setting threshold values for classifying acne’s color
or texture. Moreover, defining a descriptor that reflects the diverse characteristics of acne
accurately is challenging for humans. Recently, methods based on deep learning have been
proposed to detect acne, overcoming the aforementioned issues. Rashataprucksa et al. [8] and
Hyunh et al. [9] utilized object detection models such as the faster region-based convolu-
tional neural network (Faster-RCNN) [10] and region-based fully convolutional networks
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(R-FCN) [11] for acne detection. Min et al. [12] employed a dual encoder based on a con-
volutional neural network (CNN) and Transformer to detect face acne. Junayed et al. [13]
also proposed a dual encoder based on CNN and Transformer, but they detected acne
through a semantic segmentation approach. Kim et al. [14] enhanced the performance of
acne segmentation by training on the positional information of acne in the final encoder.

Deep learning techniques fundamentally require labeled training data. However,
labeling is time consuming and costly, and even securing original medical data, such as for
acne, can be challenging. Recently, to partially address the difficulty of acquiring labeled
data, much research has been conducted on semi-supervised learning, which utilizes both
labeled and unlabeled data for training. Initially, various data augmentation techniques
were applied to unlabeled data, employing consistency regularization [15]. Methods like
Cutmix [16], which overlap parts of different images, have significantly aided in improving
semi-supervised learning. Recently, a method that uses bidirectional copy–paste (BCP)
alternately on the foreground and background between labeled and unlabeled data has
been proposed for medical image segmentation [17]. This proposed method performs
semi-supervised learning while maintaining a bidirectional relationship between the two
sets of data. Additionally, to overcome the lack of training data, it was proposed to use
generative models like StyleGAN2 [18,19] to create images for use in acne training [20,21].

Figure 1. Various acne samples. The shape and skin color of acne are considerably diverse.

We conducted semi-supervised learning of the acne segmentation model using BCP.
We aimed to create an acne segmentation model based on semi-supervised learning using
the BCP method. However, in BCP, training was conducted only with synthetic images
created through copy–paste between labeled and unlabeled images. This approach made
it challenging to fully reflect the characteristics of the labeled images. Although BCP
performed well with computed tomography (CT) images, we discovered shortcomings in
segmenting acne across various shapes and skin tones. To address this issue, we proposed
adding a structure to the BCP framework that is directly trained on input labeled images.
Thus, our proposed method aims to maintain the BCP structure while enabling semi-
supervised learning and improving acne segmentation performance by learning from input
labeled images. Additionally, in the ablation study and discussion, we conducted acne
segmentation experiments using ACNE04 [22], which has similar skin tones, and analyzed
issues related to this.

To verify the performance of our proposed method, we compared the acne segmen-
tation performance with that of previous semi-supervised learning methods. For this
purpose, we used images cropped primarily around acne from facial images, as illustrated
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in Figure 1. In this paper’s experiment, we compared the performance of acne segmenta-
tion with conventional semi-supervised learning methods by varying the proportion of
labeled images during the training phase. The results showed that the proposed method
achieved the highest Dice score and Jaccard index compared to previous semi-supervised
methods. Notably, the superior performance over BCP demonstrates that training with
both labeled images and synthetic images, rather than just synthetic images, is effective
for acne segmentation applications. The main contributions of the proposed method are
as follows:

• Fusion of labeled loss and synthetic loss: We propose a method that simultaneously
calculates and fuses the labeled loss for training labeled images and the synthetic loss
for training unlabeled images;

• Comparison of acne segmentation performance with semi-supervised learning meth-
ods: We compared the acne segmentation performance with previous semi-supervised
learning methods based on our acne database and ACNE04. Additionally, through
ablation studies, we compared the acne segmentation performance as the parameters
of U-Net were increased.

The structure of this paper is as follows: Section 2 provides a brief introduction to
acne segmentation research and semi-supervised learning. Section 3 describes the semi-
supervised learning method proposed in this paper, and Section 4 presents the experimental
results of the proposed method. Section 5 shows an ablation study, required when adding
the training loss from input labeled images to the total loss, and Section 6 discusses the
proposed method. Finally, Section 7 summarizes the conclusions of this paper.

2. Related Works

In this section, we briefly review previous acne detection methods based on deep learning
and semi-supervised learning approaches to overcome the challenge of insufficient labeling.

2.1. Acne Detection

Rashataprucksa et al. [8] employed object detection models Faster-RCNN [10] and
R-FCN [11] to detect acne in facial images, comparing these two models to evaluate their
respective acne detection capabilities. Min et al. [12] utilized a dual encoder composed of
a CNN and Transformer to extract features which were then processed through dynamic
context enhancement and mask-aware multi-attention for final acne detection. Similarly,
Junayed et al. [13] approached acne detection through semantic segmentation, employing
a dual encoder setup with a CNN and Transformer. This method involved extracting both
local and global information which was then integrated through a feature versatile block to
the decoder. Kim et al. [14] segmented acne using a U-Net [23,24] structure and applied
center point loss to train the last encoder on acne location information. Acne detection
has primarily been conducted through either object detection or semantic segmentation.
However, since the shape of acne can help differentiate the severity of the condition and
assist in treatment [25], our paper aims to detect acne based on semantic segmentation.

2.2. Semi-Supervised Learning

Semi-supervised learning primarily applies various data augmentations to unlabeled
images, focusing on consistency-based learning. FixMatch [26] extracts prediction probabil-
ities by applying different levels of data augmentation to unlabeled data. Then, it ensures
that the predictions from strongly augmented data maintain consistency based on the pre-
diction probabilities of weakly augmented data. However, in FixMatch, only unlabeled data
with predicted probabilities above a certain threshold were used for training, leading to the
exclusion of many unlabeled data instances. To overcome this limitation, Full-Match [27]
introduced adaptive negative learning to improve training performance. Furthermore,
Wu et al. [28] applied pixel smoothness and inter-class separation in semi-supervised learn-
ing to address the blurring of pixels in edge or low-contrast areas. UniMatch [29] improved
semi-supervised performance by applying stronger data augmentation in a dual structure.
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Notably, for strong data augmentation, Cutmix [16] was applied, which involves insert-
ing specific parts of an image into another image. Recently, a method similar to Cutmix,
BCP [17], was proposed for medical image segmentation. This method pairs labeled and
unlabeled data, overlapping specific parts of their images in a manner similar to Cutmix.
Semi-supervised learning is then performed using a teacher and student network structure.
Loss is calculated by comparing the labeled data region with the actual ground truth, while
the loss for the unlabeled data region is determined using the pseudo ground truth from
the teacher network. Given BCP’s proven effectiveness in medical image segmentation,
this paper aims to leverage BCP to improve facial acne segmentation performance.

3. Method

In this section, we provide a detailed explanation of the proposed method. First, we
present the overall structure and explain the basic principles of BCP. Then, we show how
the training loss is calculated in the proposed method.

3.1. Overall Structure

Figure 2 illustrates the overall structure proposed in this paper. It is fundamentally
composed of a teacher network T and a student network S, similar to the BCP method [17].
Both T and S are constructed with U-Net [23], where the channel count of the first encoder
is 16, which is the same model as BCP. Initially, T and S utilize the same pre-trained weights,
Θp, which are trained through supervised learning using only labeled images. However,
unlike previous approaches that trained Θp with synthetic images created by applying
BCP among labeled images, this study employs labeled images. This is because using
labeled images to generate Θp resulted in better performance than using BCP for acne
segmentation. Algorithm 1 shows the overall pseudo code.

Figure 2. Overall structure of the proposed method. Synthetic images are generated using the
bidirectional copy–paste method. The labeled image and synthetic image are each inferred for
prediction values through the student network. Then, synthetic GT is generated using ground truth
(GT) and pseudo GT. The training loss is calculated by sending a supervisory signal to the student
network through each GT. Once the student network is trained, an EMA update is applied to the
teacher network.
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Algorithm 1 Training process of the proposed acne segmentation model.

Input: labeled images Xl , labels Yl , unlabeled images Yu

Output: trained the student weights Θs

Step 1: Preparing
1.1 Setting α as a weight of unlabeled images
1.2 Setting γ as a weight of labeled loss
1.3 Setting λ as a weight of EMA update for Θt
1.4 Setting η as a learning rate
1.5 Initializing Θp

Step 2: Training the pre-trained weights Θp
2.1 Training and selecting the best Θp
* 2a. Computing labeled losses
* 3Ll

i = Lseg( f (Xl
i ; Θp), Y

j
i), Ll

j = Lseg( f (Xl
j; Θp), Yl

j)

* 2b. Updating Θp

* 3 Θp = Θp − η∇Θp

(
Ll

i + Ll
j

)
Step 3: Training the student weights Θs

3.1 Initializing Θt = Θp, Θs = Θp
3.2 Training and selecting the best Θs

a. Generating synthetic images Xin and Xout by cropping and pasting Xl and Xu

b. Generating pseudo GT Ỹ
u by f (Xu; Θt)

c. Generating synthetic GT Yin and Yout by cropping and pasting Yl and Ỹ
u

* 2d. Computing synthetic losses with a mask M

* 3Lin = Lseg( f (Xin; Θs), Yin)� M + α ×Lseg( f (Xin; Θs), Yin)� (1 − M)

* 3Lout = Lseg( f (Xout; Θs), Yout)� (1 − M) + α ×Lseg( f (Xout; Θs), Yout)� M
* 2e. Computing labeled losses
* 3Ll

i = Lseg( f (Xl
i ; Θp), Y

j
i), Ll

j = Lseg( f (Xl
j; Θp), Yl

j)

* 2f. Updating Θs

* 3Θs = Θs − η
(
∇Θs

(
Lin + Lout + γ

(
Ll

i + Ll
j

)))
* 2g. EMA Updating Θt
* 3Θt = λ × Θt + (1 − λ)Θs

3.2. Pre-Trained Weight

In Step 3 of Algorithm 1, the weights Θt of the teacher network T need to be initialized
with the pre-trained weights Θp. The pre-trained weights are trained solely on labeled
images in Step 2, which is the same as in typical supervised learning. By setting Θp as the
initial values for Θt and Θs, semi-supervised learning based on BCP becomes possible.

3.3. Bidirectional Copy–Paste for Synthetic Images

The method of generating synthetic images using BCP is as follows. First, a mask M of
the same size as the images is created. M consists of zeros and ones, where the area of ones
becomes the region to be copied. Then, M is applied to Equations (1) and (2) to generate
Xin and Xout.

Xin = Xl
j � M + Xu

p � (1 − M), (1)

Xout = Xu
q � M + Xl

i � (1 − M), (2)

where Xl
i and Xl

j are the i-th and j-th labeled images, respectively (i 	= j), and � represents
element-wise multiplication. Xu

p and Xu
q are the p-th and q-th unlabeled images, respectively

(p 	= q). 1 represents a matrix of the same size as M, with all elements being 1. Figure 3
provides a detailed example of a sample image generated through BCP.
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Figure 3. An example of creating Xin by applying BCP to an unlabeled image Xu
q and a labeled

image Xl
j. In mask M, 1 represents the white area, and 0 represents the black area. 1 represents a

matrix of the same size as M, with all elements being 1. � is element-wise multiplication, and ⊕ is
element-wise addition.

3.4. Pseudo Synthetic Ground Truth for Supervisory Signals

The pseudo GT for unlabeled images is generated through the teacher network T.
First, the prediction values for the unlabeled images Xu

p and Xu
q are extracted using the

equation below.
Pu

p = f (Xu
p; Θt), Pu

q = f (Xu
q ; Θt), (3)

where f is a network model.
Then, as in Equation (3), a binarized pseudo GT is generated using the equation below.

Ỹ
u
p(i, j) =

{
1 if Pu

p(i, j) > 0.5
0 otherwise

, Ỹ
u
q (i, j) =

{
1 if Pu

q (i, j) > 0.5
0 otherwise

, (4)

where i and j are coordinates.
Next, the formula below is applied to the ground truths Yl

i and Yl
j of Xl

i and Xl
j,

respectively, to generate Yin and Yout, which are synthetic ground truths.

Yin = Yl
j � M + Ỹ

u
p � (1 − M), (5)

Yout = Ỹ
u
q � M + Yl

i � (1 − M). (6)

3.5. Semi-Supervised Loss Computation

To calculate the training loss for the student network S, the labeled images (Xl
i , Xl

j) and

synthetic images (Xin, Xout) are each inferred through the student network S as Ql
i , Ql

j, Qin,
and Qout, respectively.

Qin = f (Xin; Θs), Qout = f (Xout; Θs), Ql
i = f (Xl

i ; Θs), Ql
j = f (Xl

j; Θs). (7)

Then, the training loss for each corresponding GT is calculated using Equations (8)
through (10). Lseg is the linear combination of Dice loss and cross-entropy.
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Lin = Lseg(Q
in, Yin)� M + α ×Lseg(Q

in, Yin)� (1 − M), (8)

Lout = Lseg(Q
out, Yout)� (1 − M) + α ×Lseg(Q

out, Yout)� M, (9)

Ll
i = Lseg(Q

l
i , Y

j
i), Ll

j = Lseg(Q
l
j, Yl

j), (10)

where α represents the weight of the unlabeled images. The final training loss is calculated
using Equation (11).

L = Lin + Lout + γ(Ll
i + Ll

j), (11)

where γ is a parameter that adjusts the weight of the purely supervised loss. Using the
above loss, the student network S is ultimately updated. Subsequently, an Exponential
Moving Average (EMA) update is performed on the teacher network T using Equation (12).

Θt = λ × Θt + (1 − λ)Θs, (12)

where Θt and Θs represent the parameters of the teacher network T and the student
network S, respectively.

4. Experimental Results

In this section, we analyze the performance of the proposed method for acne segmen-
tation and compare it with previous semi-supervised learning methods. First, we describe
the experimental setup and then proceed to compare the acne segmentation performance
with previous semi-supervised methods.

4.1. Experimental Setup

To validate the performance of our proposed acne segmentation method, we acquired
images of acne from facial images taken with skin diagnostic equipment [30]. Each acne
image is cropped around the acne, as shown in Figure 1, and scaled to 256 × 256. We
collected a total of 2000 acne images, of which 1600 were designated as the training set
and the remaining 400 as the evaluation set. The optimizer used for network training
was a stochastic gradient descent (SGD) with a learning rate of 0.01, momentum of 0.9,
and weight decay set to 0.0001. The batch size was set to 24, comprising 12 labeled and
12 unlabeled data. Based on BCP [17], alpha was set to 0.5, and lambda was set to 0.99.
The size of the area for mask 1 was set to 2/3 of the input image. Gamma was set to
0.5 according to our ablation study. Pre-training iterations were set to 10k, and semi-
supervised learning iterations were set to 30k. The training evaluation was compared using
Dice score and Jaccard index. All experiments were conducted on an RTX 4090, Ubuntu
20.04, Pytorch 2.1.1.

4.2. Comparison of Results
4.2.1. Comparison between Synthetic Images and Labeled Images for Pre-Trained Weight

Pre-trained weights are trained through supervised learning. In the original approach,
BCP was applied to labeled images to create synthetic images for training pre-trained
weights. Our method, however, utilizes labeled images directly without applying BCP
for training pre-trained weights. Thus, a comparison between these two approaches was
initially conducted.

Table 1 presents the results of training with different proportions of labeled data at
3% and 7%. As shown in Table 1, generating pre-trained weights with labeled images
demonstrated superiority in three metrics over using synthetic images. Therefore, we opted
to train with labeled images, which, overall, provided better performance for generating
pre-trained weights Θp.
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Table 1. Comparison between synthetic images and labeled images for generating pre-trained
weights Θp.

Loss Type
Ratio Metrics

Labeled Unlabeled Dice Score Jaccard Index

Synthetic loss 3% 0% 0.4423 0.3108
Labeled loss 3% 0% 0.4570 0.3203

Synthetic loss 7% 0% 0.4784 0.3425
Labeled loss 7% 0% 0.4951 0.3517

4.2.2. Semi-Supervised Learning Comparison

We compared the semi-supervised learning performance of our proposed method
with previous methods. Table 2 lists the performance of our proposed method against
comparison methods across various metrics. Our method was trained in a semi-supervised
manner, as proposed in Section 3, based on the pre-trained weights learned in Section 4.2.1.
As shown in Table 2, our proposed method exhibited the highest performance. This suggests
that training with both BCP-based synthetic images and labeled images simultaneously
provided mutual benefits, leading to the superior performance of our proposed method.
Figure 4 presents examples of results from each method when using 7% labeled images.

Table 2. Comparison of acne segmentation performance of the proposed method and previous
semi-supervised learning methods.

Method
Ratio Metrics

Labeled Unlabeled Dice Score Jaccard Index

SS-Net [28] 3% 97% 0.4732 0.3333
BCP [17] 3% 97% 0.5054 0.3617

Ours 3% 97% 0.5251 0.3777

SS-Net [28] 7% 93% 0.5162 0.3750
BCP [17] 7% 93% 0.5357 0.3912

Ours 7% 93% 0.5603 0.4117

(a) (b) (c) (d) (e)

Figure 4. Examples of acne segmentation results from the compared semi-supervised methods.
(a) represents the input images, (b) is the ground truth. (c) is the result of SS-Net, (d) is the result of
BCP, and (e) is the result of the proposed method.

135



Diagnostics 2024, 14, 1040

Additionally, to further compare our method with BCP, we examined the training
and validation loss and the Dice score. We set the proportion of labeled images at 7% and
calculated the loss using each method for comparison, as shown in Figure 5. In our method,
because labeled loss is added, the initial loss is higher than BCP. However, as training
progresses, it becomes lower than BCP. Especially during training, the validation loss is
mostly lower than BCP. Therefore, by comparing the Dice score, we can confirm that the
proposed method’s acne segmentation performance is clearly higher than that of BCP.

(a) (b)

Figure 5. Comparison of training and validation loss and Dice score for our method and the BCP
method. (a) shows the training and validation losses for each method, and (b) shows the Dice scores.

5. Ablation Study

In this section, we analyze the acne segmentation performance based on the gamma
value used to fuse synthetic loss and labeled loss, and the number of parameters in U-
Net, within the proposed method. Additionally, we compared the acne segmentation
performance of the proposed method with BCP using the public database ACNE04.

5.1. Performance Variation according to γ and the Number of Channels in U-Net

In this section, we present the results of acne segmentation according to different γ
values used in Equation (11) for combining synthetic image loss (Lin + Lout) and labeled
image loss (Ll

i + Ll
j). We tested three scenarios with γ values of 0.1, 0.5, and 1.0. Generally,

using γ = 0.5 resulted in superior overall performance, shown in Table 3. While there
were differences in some scores, high performance was demonstrated in the Dice score and
Jaccard indexes, which consider overall performance. Therefore, in our experiments, we
used γ = 0.5.

Table 3. Comparison of acne segmentation performance based on γ.

γ
Ratio Metrics

Labeled Unlabeled Dice Score Jaccard Index

0.1 3% 97% 0.5177 0.3693
0.5 3% 97% 0.5251 0.3777
1.0 3% 97% 0.5205 0.3753

0.1 7% 93% 0.5522 0.4060
0.5 7% 93% 0.5603 0.4122
1.0 7% 93% 0.5588 0.4117
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Next, we experimented with increasing the number of channels in the first encoder of
the UNet-BN used in our experiments. While BCP set the number of channels at 16, we
conducted comparative experiments with increased numbers at 32 and 64. Table 4 shows
the acne segmentation performance when the number of channels was increased. As the
number of channels increased, performance metrics also improved. Therefore, based on
using 7% labeled images for acne segmentation, compared to using BCP, the Dice score
increased by 0.0424 and the Jaccard index by 0.0359.

Table 4. Comparison of acne segmentation performance based on changes in the number of channels
in the first encoder.

# Channels
Ratio Metrics

Labeled Unlabeled Dice Score Jaccard Index

16 (BCP [17]) 3% 97% 0.5054 0.3617
16 (ours) 3% 97% 0.5251 0.3777
32 (ours) 3% 97% 0.5394 0.3912
64 (ours) 3% 97% 0.5458 0.3965

16 (BCP [17]) 7% 93% 0.5357 0.3912
16 (ours) 7% 93% 0.5603 0.4117
32 (ours) 7% 93% 0.5709 0.4233
64 (ours) 7% 93% 0.5781 0.4271

5.2. Acne Segmentation Performance on ACNE04

In this subsection, we aim to compare acne segmentation performance using the
public acne database ACNE04 [22]. However, ACNE04 does not have annotations for
semantic segmentation. Instead, it provides bounding boxes for object detection. Using this
bounding box information, we generated pseudo ground truth for semantic segmentation,
as shown in Figure 6, by drawing circles passing through the center of each side of the
bounding boxes. Because of the diversity of acne shapes, they do not accurately reflect the
actual boundaries of acne lesions. As a result, this experiment focused on understanding
the trend in performance differences with BCP rather than precise accuracy.

Originally, the ACNE04 database contained a total of 1457 images. However, some
images have poor quality or contain watermarks. We excluded these and selected 1108 im-
ages that had good quality and similar shooting conditions. We selected 222 images for
validation and the remaining ones for training. We cropped the selected images as de-
scribed in Section 4, yielding 1600 training patches and 400 validation patches. Table 5
displays the results of semi-supervised learning using the proposed method and BCP.
While the proposed method outperforms BCP, it yields a somewhat reduced improvement
margin when compared to our acne database. This limitation is attributed to the crude
pseudo ground truth and the characteristics of the images in ACNE04, which will be further
analyzed in the Discussion section. Nevertheless, using both synthetic loss and labeled loss
simultaneously helped to improve acne segmentation performance.

Table 5. Comparison of acne segmentation results using semi-supervised learning with ACNE04’s
pseudo ground truth.

Methods
Ratio Metrics

Labeled Unlabeled Dice Score Jaccard Index

BCP [17] 3% 97% 0.5103 0.3642
Ours 3% 97% 0.5159 0.3702

BCP [17] 7% 93% 0.5664 0.4141
Ours 7% 93% 0.5749 0.4212
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(a) (b) (c)

Figure 6. Example of creating semantic segmentation ground truth using ACNE04’s bounding boxes.
(a) is the original image, and (b) shows the blue boxes indicating acne with bounding boxes. By
drawing ellipses inside the bounding boxes, pseudo ground truth for acne is generated as shown
in (c).

6. Discussion

The proposed method showed improved performance for our data compared to the
original BCP method. However, as observed in the ablation study in Section 5, there was a
decrease in acne segmentation performance improvement in ACNE04. To analyze this, we
compared synthetic images composed from each dataset, as depicted in Figure 7. Our data
include a variety of skin colors and diverse lighting conditions, while the ACNE04 dataset
used in the experiments is predominantly composed of East Asian skin tones. Therefore,
even when creating synthetic images using ACNE04, as shown in Figure 7, the images
composited in the foreground exhibit less disparity and lower color gradation compared
to those composed with our data. Nevertheless, actual human skin tones vary widely in
color depending on race and environmental conditions. Therefore, it is expected that our
method will demonstrate superior performance in actual acne segmentation compared to
the original BCP approach.

Figure 7. Comparison of synthetic images. The two images on the left are synthetic images generated
from our database, and those on the right are from ACNE04. Our database reflects a variety of skin
tones and lighting, resulting in a significant color difference between the duplicated inner images and
the background images. In contrast, the ACNE04 images are synthesized in relatively similar colors.
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7. Conclusions

In this paper, a semi-supervised learning method for training acne segmentation
models is proposed. The original BCP method, which calculates the loss solely on syn-
thetic images, was insufficient for detecting acne across diverse skin tones. To address
this, the training process was enhanced by including original images to improve overall
acne segmentation performance. The proposed method was compared with previous
semi-supervised learning methods on acne patch images and demonstrated superior per-
formance based on evaluation metrics such as the Dice score and Jaccard index. However,
the performance improvement was less significant for ACNE04, where the skin color and
lighting are similar. Since actual human skin color and lighting vary, performance improve-
ments like those in the main results of this paper are expected in real applications. Future
research aims to apply the proposed method across the medical imaging field to enhance
performance in various areas.
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Abstract: Deep learning (DL) networks have shown attractive performance in medical image pro-
cessing tasks such as brain tumor classification. However, they are often criticized as mysterious
“black boxes”. The opaqueness of the model and the reasoning process make it difficult for health
workers to decide whether to trust the prediction outcomes. In this study, we develop an interpretable
multi-part attention network (IMPA-Net) for brain tumor classification to enhance the interpretability
and trustworthiness of classification outcomes. The proposed model not only predicts the tumor
grade but also provides a global explanation for the model interpretability and a local explanation
as justification for the proffered prediction. Global explanation is represented as a group of feature
patterns that the model learns to distinguish high-grade glioma (HGG) and low-grade glioma (LGG)
classes. Local explanation interprets the reasoning process of an individual prediction by calculating
the similarity between the prototypical parts of the image and a group of pre-learned task-related
features. Experiments conducted on the BraTS2017 dataset demonstrate that IMPA-Net is a verifiable
model for the classification task. A percentage of 86% of feature patterns were assessed by two radiol-
ogists to be valid for representing task-relevant medical features. The model shows a classification
accuracy of 92.12%, of which 81.17% were evaluated as trustworthy based on local explanations. Our
interpretable model is a trustworthy model that can be used for decision aids for glioma classification.
Compared with black-box CNNs, it allows health workers and patients to understand the reasoning
process and trust the prediction outcomes.

Keywords: decision support; interpretability; trustworthiness; deep neural networks; brain tumor
classification; multi-part attention

1. Introduction

Brain cancer is one of the ten leading causes of death globally among men and
women [1,2]. The World Health Organization estimates the 5-year survival rate is only 21%
for people aged 40 and over [2]. In most clinical scenarios, LGGs are well-differentiated,
slow-growing lesions, while HGGs are usually aggressive with dismal prognosis [3,4].
Survival rates differ markedly for different tumor grades. Identifying tumor grade at an
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early stage is a major unmet need; it contributes to formulating better treatment strategies
and enhances the overall quality of life of patients.

Magnetic resonance (MR) imaging is a non-invasive technique that remains the stan-
dard of care for brain tumor diagnosis and treatment planning in clinical practice [5,6]. It
provides a reasonably good delineation of the gliomas and conveys biological information
on the tumor location, size, necrosis, edema tissue, the mass effect, and breakdown of
the blood–brain barrier (which results in contrast enhancement in post-contrast-enhanced
T1-weighted (ceT1w) MR images) [6]. In general, LGGs are less invasive. They usually
have well-defined boundaries and homogeneous tumor cores without prominent mitosis,
necrosis, and microvascular proliferation [6–9]. HGGs always show more mass effect.
They usually show microscopic peritumoral white matter tract invasion. The demon-
stration of this diffuse infiltration is an important discriminating feature for the accurate
glioma diagnosis [6].

Diagnosis of brain tumors from MR images is a time-consuming and challenging task
that requires professional knowledge and careful observation. As alternatives, various
automated diagnosis approaches have been developed to assist radiologists in the interpre-
tation of the brain MR images and reduce the likelihood of misdiagnosis. Convolutional
neural networks (CNNs) provide a powerful technology for medical data analysis [10].
CNN-based deep learning architectures can extract important low-level and high-level
features automatically from the given training dataset of sufficient variety and quality [11];
they embed the phase of feature extraction and classification into a self-learning procedure,
allowing fully automatic classification without human interaction, which can be applied to
the problem of tumor diagnosis.

Over the last decade, methods using CNNs have been extensively investigated for
brain tumor classification due to their outstanding performance with very high accuracy
in a research context [12,13]. The differential classification of HGG and LGG is a com-
paratively simple task that has been tackled in numerous different ways using different
CNN methods, and the best-performing models have demonstrated close to 100% perfor-
mance [10]. For example, Khazaee et al. [14] used a pre-trained EfficientNetB0 for HGG and
LGG classification. The model achieved a mean classification accuracy of 98.87%. Chikha-
likar et al. [15] proposed a custom CNN model to classify the type of tumor present in MRI
images, achieving an accuracy of 99.46%. The authors in [16] used transfer learning with
stacking InceptionResNetV2, DenseNet121, MobileNet, Incep-tionV3, Xception, VGG16,
and VGG19 for the same classification task. The average classification accuracy for the test
dataset reached 98.06%. Zhuge et al. [17] utilized a pre-trained ResNet50. The classification
accuracy of the proposed model reached 96.3%.

The above CNN-based methods all achieved remarkable performance on automated
HGG and LGG classification. However, MR images are unlikely to be artifact-free [18],
and the lesion signal measured by MRI is typically mixed with nuisance sources. The
above-mentioned black-box CNNs may learn confounding sources from MR images for
decision making, and the health outcomes cannot easily gain the trust of physicians or
patients because the evidence is unknown [6,19].

The lack of transparency and interpretability concerning the decision-making process
still limits their development into clinical practice [12,19,20]. Visualizing the features that
are faithful to the underlying lesion is crucial to ensuring the interpretability and trustwor-
thiness of classification outcomes. Interpretability is the ability to provide explanations
in terms understandable to a human [21], based on their domain knowledge related to
the task, or common knowledge, according to the task characteristics. The need for inter-
pretability has already been stressed by many papers [21–23], emphasizing cases where
lack of interpretability may be harmful. Can we explain why algorithms go wrong? When
things go well, do we know why and how to exploit them further?

In order to deploy a system in practice, it is necessary to present classification results
in such a way that they are acceptable to end users. This is only possible if users trust the
decision-making process, which, as a consequence, must be transparent and interpretable.
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To date, a limited number of saliency-based interpretable methods have suggested different
frameworks to improve the interpretability and trustworthiness of CNNs for brain tumor
classifications [24–27]. We divide the previous interpretable approaches into two categories:
object-level methods and pixel-level/part-level methods.

At the coarsest level, there are models that have been proposed to offer object-level
explanations for brain tumor classification tasks, such as a class activation mapping method
GradCAM [24,25] that highlights that entire object as the explanation behind the tumor
predictions. The authors in [25] proposed a pre-trained ResNet-50 CNN architecture to
classify three posterior fossa tumors and explained the classification decision by using
GradCAM. The heatmap generated by the GradCAM technique can identify the area of
emphasis and help visualize where the classification model looks for individual predictions.

At a finer level, there are a few interpretable techniques that have been applied to
explain the brain tumor classification results with pixel-level/part-level explanations, such
as pixel-level interpretable algorithms SHAP, Guided Backpropagation (GBP) [24], and a
part-level interpretable model called LIME. Authors in [27] explained the tumor predictions
made by the CNN model with SHAP and LIME methods. The SHAP algorithm explains
the individual prediction by computing the contribution of each pixel on a predicted
image to the prediction using Shapley values to understand what are the main pixels that
affect the output of the model [28]. The LIME algorithm is a counterfactual explanation
method that approximates the classification behavior of a complex neural network using a
simpler, more understandable model without exploring the model itself [29]. In the study,
the authors segmented the input image into superpixels and made small disturbances
around each superpixel to figure out the contribution/importance of each superpixel to
the prediction result. Another study conducted by Pereira et al. [24] utilized GradCAM
and GBP maps to provide insights into the regions that support the prediction to perform
quality assessment of tumor grade prediction between HGG and LGG. The GBP is a
gradient-based visualization method that can visualize which pixels in the input image are
more informative for the correct classification.

The above methods identify the most important pixels or objects of an image as the
explanation for the prediction outcomes. To some extent, they verify the validity of the
classification models. Nevertheless, it is worth stressing that knowing the most important
pixels or objects of an image that determined a specific prediction does not always amount
to a good-quality explanation.

Ideally, networks should be able to explain the reasoning process behind each indi-
vidual decision, and this process, ideally, would be similar to that used by a radiologist,
who looks at specific features of the MR image relevant to the task. For example, if a
doctor classifies a tumor as HGG, this decision always relies mainly on the high-level
class-representative features or properties, like the tumor’s irregularity, the necrotic area,
or the enhancing ring [30].

The objectives of this study were to build an interpretable multi-part attention [31]
network (IMPA-Net) for brain tumor classification to unbox the model and the reasoning
process of individual predictions with understandable MR imaging features. The proposed
IMPA-Net, motivated by [32], provides both global and local explanations for brain tumor
classification on MRI images. Figure 1 gives a more detailed illustration of the connections
and distinctions between the two explanations. The global explanation is represented by a
group of feature patterns that the model learns and uses for the classification. The quality
of the feature patterns can be used to evaluate the ability and reliability of the model on the
classification task. The local explanation interprets the reasoning process of an individual
prediction by comparing the prototypical parts of the image with feature patterns. It can be
used to evaluate the trustworthiness of individual predictions.
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Figure 1. Global and local explanations provided by the proposed IMPA-Net. (a) Research context
illustrates the importance and basic ideas of global and local explanations for deep learning-based
brain tumor classification. It outlines the problems in this research field that the proposed IMPA-
Net attempts to address; (b) local explanation: given an input image, IMPA-Net compares the
activated parts of the input image with the feature patterns and thereby predicts the tumor grade;
(c) global explanation can be interpreted as the class-representative features the entire model learns
to distinguish two classes.

The main contribution of this paper is that it addresses the black-box problems of
CNN classification models for glioma diagnosis by developing a model with the follow-
ing characteristics:

(i) The first multi-part interpretable model that can provide both global and local expla-
nations for brain tumor classification, enabling better human–machine collaboration
for decision aid.

(ii) It presents the reasoning process of individual predictions to show how the model
arrives at the decision making in this context, allowing health workers to evaluate the
reliability of the prediction outcomes.

(iii) It allows the prediction results to be interpreted in a clinical context.
(iv) It highlights the most relevant information for predictions based on medical disease-

related features that can be understood and interpreted by clinicians and patients.

The remainder of the paper is structured as follows. Section 3 gives a detailed intro-
duction to the dataset, the proposed interpretable multi-part attention network, and the
experimental setup. Results are given in Section 3. Section 4 evaluates the performance
of the proposed method on both aspects of its classification and explanation. Section 5
concludes the key findings of this study. Section 6 concludes the proposed work and
discusses the future research directions.
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2. Materials and Methods

The overall workflow of the development and evaluation of the proposed method-
ology is shown in Figure 2. Input brain MRI images are firstly pre-processed by resizing,
normalization, and cropping, and then three augmentation methods, including rotation,
shearing, and skewing are performed to produce the training dataset. The proposed
methodology classifies the input image by comparing its prototypical patches with pre-
learned feature patterns of classes HGG and LGG. In this stage, feature patterns of both
classes are optimized and produced. The quality of the feature patterns is evaluated in the
next step on aspects of their interpretability, class representability, and correctness, and then
poor-quality feature patterns are excluded in the local explanation process. In the next stage,
local explanations of individual predictions are given to illustrate how the model arrives at
the final decisions, and each case will be evaluated based on whether it satisfies two basic
conditions identified for reliability assessment. Finally, the proposed model is evaluated
on both aspects of its performance (classification and explanation), including classifier
performance, global explanation evaluation, local explanation evaluation (correctness and
confidence), and user evaluation.

Figure 2. The overall workflow of the development and evaluation of the proposed methodology.

2.1. Data and Image Processing

We trained and evaluated our network on data from the BraTS 2017 database [33–35].
The dataset contains 285 routine-acquired 3T multimodal clinical MRI scans from multiple
institutions, comprising 210 patients with pathologically confirmed HGG and 75 patients
with LGG. All images from the dataset were pre-processed by co-registration to the same
anatomical template, interpolation to the same resolution (1 mm3), and skull stripping [33].

Slices that contain gliomas were extracted from each patient’s MRI scan. Considering
the enhancing ring in post-contrast-enhanced T1-weighted (ceT1w) MR is an important
discriminating feature for accurate tumor diagnosis between HGG and LGG [6], in our
experiments, only ceT1w MR images were considered. The dataset was then partitioned
into a training dataset (70%) and a testing dataset (30%). A push dataset of 60 images was
randomly selected from the training dataset (30 images for each class).

All images were normalized by Z-score normalization and converted to PNG format,
and then the background pixels were cropped to focus feature learning on the brain areas
instead of the whole image. Moreover, the images were resized to 224 × 224 to fit the
model’s training configurations.
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2.2. Data Augmentation

To increase the size and variability of the training dataset, data augmentation methods
were performed, including twice rotating in the axial imaging plane by a random amount
between 20◦ left and 20◦ right, shearing by a random amount between 10◦ left and right
twice in the transverse direction, and skewing by tilting the images left/right by a random
amount (magnitude = 0.2) twice. In this way, the training dataset is augmented six-fold,
resulting in 6228 images (3546 HGG, 2682 LGG).

2.3. Interpretable Convolutional Neural Network

Figure 3 gives an overview of the proposed IMPA-Net, which consists of a feature
extractor, multi-part attention (MPA), and similarity-based classifier. Images are first propa-
gated into convolutional layers for feature extraction, with a structure selected from VGG16.
In the proposed classification model, we chose VGG16 as the feature extractor as it com-
bines simplicity, ease of implementation, and fine-tuning capability with adequate feature
extraction effectiveness and generalization ability. The pre-trained VGG16 model is suitable
for transfer learning or fine-tuning as a feature extractor for brain tumor classification
tasks [12]. A non-linear activation function ReLU is used for all convolutional layers. Then,
these convolutional layers are followed by a multi-part attention module for similarity
calculation between CNN outputs and the feature patterns pre-learned by the model. In
particular, our network tries to find evidence for an image (such as the pre-processed HGG
image in Figure 3) to be of class HGG by comparing its prototypical patches with learned
feature patterns of class HGG and LGG, as illustrated in the similarity correlation units.
This comparison produces a map of similarity scores of each feature pattern, which is
upsampled and superimposed on the input image to see which part of the input image is
activated by each feature pattern. The activation maps are then propagated into a max-
pooling layer, producing a single similarity score for each comparison. Finally, the model
classifies the input image based on the top 10 similarity scores. The output ScHGG denotes
the weighted sum of top-10 similarity scores generated by the multi-part attention module.

Figure 3. Schematic diagram of the proposed IMPA-Net. It consists of three modules: a feature
extractor, a multi-part attention block, and a similarity-based classifier. The feature patterns within
the multi-part attention block are learned from the push dataset during the training phase.
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2.3.1. Feature Extractor

The architecture consists of a regular convolutional neural network for feature extrac-
tion with a structure selected from VGG16 (kernel size 3 × 3), followed by two additional
1 × 1 convolutional layers. All these convolutional layers ( f ) use a ReLU with a non-linear
activation function.

For a given pre-processed input image x (such as the HGG sample image in Figure 3),
the convolutional layers f extract useful features from x to use for prediction, whose output
cout = f (x) have spatial dimension D× 7× 7, where D is the number of the output channels
of the last convolutional layer.

2.3.2. Multi-Part Attention

In our experiments, we allocated a pre-determined number of feature patterns FP ={
f p

cj
i

}m

i=1
, m = 50 for each class, where cj (j ∈ {HGG, LGG}) represents the class identity

of the feature pattern and i is the index of that feature pattern among all feature patterns of
class cj. So that for each class, 50 feature patterns are learned and produced by the model
from a push dataset. This dataset consists of a pre-determined number of MRI images that
are randomly selected from the training dataset. The shape of each pattern is D × h × w,
where h × w < 7 × 7. In our experiments, h and w are set to 1. The depth of each feature
pattern is the same as that of cout but the height and width are smaller than those of the cout,
each feature pattern will be supposed to represent some representative activation pattern in
a patch of the convolutional output cout, which in turn will correspond to some prototypical
image patch in the original training image.

In our network, every feature patch can be considered as a representative pattern of
one image from the push dataset, and these feature patterns are supposed to direct attention
to enough medical semantic content for recognizing a class [36]. As a schematic illustration
of the multi-part attention for the HGG sample image in Figure 3, the first feature pattern
f pcHGG

1 corresponds to the necrotic tumor core of an HGG training image, and the fourth
feature pattern f pcHGG

4 enhancing tumor margin of an HGG training image, and the ninth
feature pattern f pcHGG

9 the edematous area of an HGG image.
The similarity correlation units SCU in a multi-part attention module computes the L2

distance between the CNN outputs and the feature patterns, as shown in Equation (1). The
ith similarity correlation unit SCU

cj
i of class cj calculates the squared Euclidean distances

between feature patterns f p
cj
i and each patch

∼
cout generated from the convolutional outputs

cout and then inverts the distances to similarity scores. Mathematically, the similarity
correlation unit SCU

cj
i calculates the following:

dist
( ∼

cout, f p
cj
i

)
=

∥∥∥ ∼
cout, f p

cj
i

∥∥∥
2
,

∼
cout ∈ patches(cout), (1)

sim
( ∼

cout, f p
cj
i

)
= log

⎛
⎜⎝dist

( ∼
cout, f p

cj
i

)2
+ 1

dist
( ∼

cout, f p
cj
i

)2
+ ε

⎞
⎟⎠, (2)

SCU
cj
i (cout) =

max
∼

cout ∈ patches (cout)
sim

( ∼
cout, f p

cj
i

)
, (3)

These similarity scores calculated by Equation (2) define an activation map, which
retains the spatial relation of the convolutional output cout. The activation map can be
unsampled to the size of the input image to visualize the part of the input image that looks
most similar to the feature pattern [36]. In Figure 3, the similarity score between the first
feature patterns f pcHGG

1 , a an HGG necrotic tumor core, and the most activated patch of the
input image of a an HGG is scHGG

1 . The similarity score between the fourth feature pattern
f pcHGG

4 , an HGG enhancing tumor margin, and the most activated patch of the input image
is scHGG

4 . The third feature pattern f pcHGG
9 , an HGG edematous area, activated mostly on the
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edematous tissue of the HGG sample image, with a similarity score of scHGG
9 . This shows

that our model finds that the necrotic tumor core of the HGG sample image has a stronger
presence than that of enhancing tumor margin in the input image.

Equation (2) indicates that the similarity is monotonically decreasing with respect
to the squared Euclidean distance, that is, the highest similarity score of the similarity
correlation unit SCU

cj
i comes when

∼
cout is the closest patch to f p

cj
i . In activation maps,

warmer values indicate higher similarity between the learned feature patterns and the
parts of the input image activated by the feature pattern, which is enclosed in the yellow
rectangles on the superimposed source images. Then, the activation maps produced by
similarity scores are max pooled to reduce to a single similarity score s

cj
i for each feature

pattern f p
cj
i . Hence, if the similarity score of the ith similarity correlation unit SCU

cj
i is high,

it indicates that there is a patch in the input image that is very similar to the ith feature
pattern of class cj in the latent space, and that the activated patch contains a similar pattern
to that represented in the ith feature pattern.

2.3.3. Similarity-Based Classifier

Finally, in the classifier block, the top 10 ranking similarity scores are multiplied by
the class-connection weight matrix ω

cj
i to produce the output logit to class cj. The matrix

ω
cj
i represents the relationship between feature patterns and the logit of the class. Higher

class-connection values refer to higher representability of the feature pattern to its class.

Scj = ∑10
i=1 ω

cj
i ·s

cj
i , j ∈ {HGG, LGG} (4)

2.4. Model Training

The training of the proposed model is divided into three stages: stochastic gradient
descent (SGD) of layers before the classifier layer, projection and optimization of feature
patterns, and optimization of class-connection weights.

2.4.1. Stochastic Gradient Descent (SGD) of Layers before the Classifier Layer

The architecture aims to learn meaningful and teak-relevant features that can be
used to distinguish between HGG and LGG, where the most important patches for the
classification task are clustered (in Euclidean distance) around similar feature patterns
of the ‘correct’ class and separated from feature patterns from a different class [36]. To
learn these features, an iterative algorithm SGD is used to simultaneously optimize the
parameters of the convolutional layers f ( fconv) in the feature extractor and the feature

pattern FP =
{

f p
cj
i

}m

i=1
in the multi-part attention module via back propagation. In this

step, the weight matrix (class connection values) ω
cj
i of the last layer in the classifier block

is frozen.
Formally, let X = {x1, x2, . . . , xn} be a set of training images, Y = {y1, y2, . . . , yn}

be the set of the corresponding labels. The optimization problem to be solved here is
to minimize the defined loss function that incorporates the cross-entropy loss (CELoss),
cluster loss (ClstLoss), and separation loss (SepLoss):

Loss =
1
n∑n

k=1 CELoss( f ◦ SCU ◦ f (xk), yk) + r1ClstLoss + r2SepLoss (5)

where ClstLoss and SepLoss are

ClstLoss =
1
n

n

∑
k=1

argmin
i : f p

cj
i ∈ FPyk

argmin
∼

f (xk) ∈ patches( f (xk))

∥∥∥∥ ∼
f (xk)− f p

cj
i

∥∥∥∥
2

2
(6)

SepLoss = − 1
n

n

∑
k=1

argmin
i : f p

cj
i /∈ FPyk

argmin
∼

f (xk) ∈ patches( f (xk))

∥∥∥∥ ∼
f (xk)− f p

cj
i

∥∥∥∥
2

2
, (7)

148



Diagnostics 2024, 14, 997

The CELoss penalizes misclassification during the training process, and the aim is to
minimize CELoss to give better classifications. The ClstLoss is minimized to encourage the
prototypical parts to cluster around the correct class, see Equation (6), whereas the SepLoss
is minimized to separate the prototypical parts from the incorrect class; see Equation (7).

2.4.2. Projection of Feature Patterns

To visualize which parts of the training images from the push dataset are used as
feature patterns, the network projects every feature pattern f p

cj
i onto the closest patch of

the output f (xk
cj) that has the smallest distance from f p

cj
i , and the closest patch has the

same class cj as that of f p
cj
i [32]. The reason is that the patch of training image xk

cj that

corresponds to f p
cj
i should be the one that f p

cj
i activates most strongly on. We can visualize

the part of xk
cj on which f p

cj
i has the strongest activation by forwarding xk

cj through a
trained network. Mathematically, for feature pattern f p

cj
i of class cj (j ∈ {HGG, LGG}),

the network performs the following update:

f p
cj
i = argmin

patch,patch∈patches( f (xcj ))

‖ patch − f p
cj
i ‖2, yk = cj (8)

2.4.3. Optimization of Class-Connection Weights

In this stage, all the parameters from the convolutional layers and multi-part attention
blocks are frozen, and a convex optimization on the class-connection weight matrix ω

cj
i of

the last layer is performed. To rely only on positive connections between feature patterns
and logits, the negative connection ω

cj
i is set to 0 for all to reduce the reliance of the model

on a negative reasoning process of the form “this image is of class HGG because it is not of
class LGG.”. Mathematically, we perform this step to optimize

min
ω

cj
i

1
n

n

∑
k=1

CELoss( f ◦ SCU ◦ f (xk), yk) + λ ∑
cj : f p

cj
i /∈FPyk

∣∣∣∣ω(k,cj)

i

∣∣∣∣, (9)

2.5. Experimental Setup

All the experiments were conducted on a PC with an Intel Core i7-6700K 4.00 GHz
processor running Ubuntu 18.04.6 with one NVIDIA GeForce RTX 2060, using Python 3.9.7
and PyTorch 1.10.1.

The parameters of the convolutional layers from the VGG16 model were pre-trained on
ImageNet [37], and the parameters of the additional convolutional layers were initialized
with Kaiming uniform methods [38]. The parameters of the two additional convolutional
layers are trained and optimized with the learning rate 3 × 10−3 for 5 epochs, while the
pre-trained parameters and biases are fixed. In the following joint training stage, the
parameters of all convolutional layers are optimized from epoch 6, and the model performs
feature pattern projection every 20 epochs, that is, epochs 20, 40, 60, 80, and 100, and the
convex optimization of the last layer is performed after each feature pattern projection
process for 20 iterations with learning rate 10−4.

The other hyperparameters are learning rate for layers pre-trained on ImageNet: 10−4

and learning rate for feature pattern optimization: 3 × 10−3. For VGG16, we set D = 128 as
the number of channels in a similarity correlation unit.

3. Results

3.1. Global Explanation

Global explanation can be interpreted as the class-representative features the entire
model uses to distinguish two classes. Figure 4 shows six learned feature patterns and their
activation maps for each class. It can be seen that all feature patterns localize important
distinguishing features of both classes. The feature patterns of HGG that have higher
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responses in contrast-enhancing tumors as a classification feature agrees with the actual
imaging characteristics of HGG [6]; the feature patterns that focus on the necrotic tumor core
that present heterogeneous high signal and the edematous areas are also important disease-
representative features of HGG [6]; the feature patterns of LGG present higher responses
on the homogeneous tumor cores and the non-enhancing tumor margins [7–9]. It is worth
mentioning that those localized medical features can be understood and interpreted by
the users, and thus, our framework can help provide global explanations in a human-
understandable manner.

Figure 4. Six learned feature patterns and activation maps of HGG (a) and LGG (b) selected to
represent different clinically relevant discriminative features of each class learned by the model.
Training image where feature pattern comes from (feature pattern in box); Activation map (warmer
colors indicate higher activation).

3.2. Local Explanation: Individual Predictions

The local explanation of individual predictions has to satisfy two conditions in order
for its prediction explanations to be considered trustworthy and reliable; that is, all feature
patterns that present the 10 highest similarity scores are from the class of the test image,
and the concept of each top-10 feature pattern is consistent with that of the activated
prototypical patch.

Figure 5 shows the reasoning process of our interpretable model in reaching a predic-
tion on a test image of an HGG. As shown in the activation maps, the highest responses
were found on the tumor core activated by the top and 2nd ranked feature patterns of
class HGG (with similarity scores 8.143 and 8.105, respectively), the 3rd ranked feature
pattern on the tumor enhancing margins, the 6th, 8th, and 9th ranked feature patterns on
the edematous tissues.

The network correctly classifies the tumor as an HGG according to the ground truth.
Furthermore, it provides the evidence of this prediction outcome with multi-part attention
between patches of the test image and feature patterns as the tumor is classified as an HGG
because prototypical patches of the test image, including its necrotic tumor core, enhancing
margins, and edematous tissue was found to have higher similarity (top 10) with feature
patterns from HGG class. The evidence is evaluated to be trustworthy according to the two
reliability criteria, that is, all top-10 feature patterns are from the HGG class, and the concept
of each top-10 feature pattern is consistent with that of the localized prototypical patch.
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Figure 5. The reasoning process of our network for deciding the grade of a tumor. There are ten
rows, split into two groups for ease of presentation: (a) top 1~#5th part attention between a patch of
the test image and feature pattern, (b) #6th~#10th part attention between a patch of the test image
and feature pattern. Each row is organized as follows: in the leftmost column a yellow rectangle
generated by the proposed model is superimposed on the test image, showing a part that looks like a
feature pattern; second column, an enlargement of the part of the test image considered by the model
to look similar to the feature pattern (shown in col. 4); third column: activation maps indicating
how similar each featured pattern resembles part of the test image, in which warmer color indicates
higher responses; fifth column: training images where feature pattern comes from; sixth column:
corresponding activation maps. The final columns quantify the result of the comparison. Column
7: similarity score between the localized prototypical part of the test image (col. 2) and the feature
pattern (col. 4). Column 8: class connection values generated by the proposed model correspond to
the class-connection weight connection between the feature patterns and the logit of class. Column 9:
weighted similarity scores between the localized prototypical patches of the test image with top-10
feature patterns.

Figure 6 shows the reasoning process for reaching a classification decision on a test
image of an LGG. As shown in the third column, the highest responses were found on the
tumor core of the LGG image activated by two ‘tumor core’ feature patterns (similarity
score of 7.420 and 7.332, respectively), the 3rd and 4th ranked feature patterns on the tumor
margins. The network correctly classifies the tumor as an LGG. The explanation is the
network classifies the tumor as an LGG because prototypical patches of the test image,
including its homogeneous tumor core and non-enhancing tumor margins, were found to
have higher similarity (top 10) with feature patterns from the LGG class. Those medical
feature patterns can be understood and interpreted by the users, and thus, our framework
can help provide global explanations in a human-understandable manner. The evidence
for the prediction is evaluated to be trustworthy according to the two reliability criteria.

151



Diagnostics 2024, 14, 997

Figure 6. Example output showing the reasoning process of our network in deciding the grade of
an LGG tumor, (a) top 1~#5th part attention between a patch of the test image and feature pattern,
(b) #6th~#10th part attention between a patch of the test image and feature pattern.

4. Performance Evaluation

4.1. Classification Performance

Statistic metrics for classification performance, including accuracy (ACC), precision
(PRE), specificity (SPE), sensitivity (SEN), and F1-score, were calculated both for the in-
terpretable decision-aid system described in this work and the baseline model, whose
architecture consisted of the same convolutional layers without the intermediate multi-part
attention module and similarity-based classifier. Correct predictions were further evaluated
on their reliability based on local explanations to obtain reliable prediction accuracy to
assess the trustworthiness of the model.

Table 1 presents the comparison of the classification performance of our interpretable
model (before and after the exclusion of ‘background’ feature patterns) with the baseline
model trained on the same dataset. Results show that the interpretable model is slightly
less accurate than the baseline model and that the exclusion of the ‘background’ feature
patterns improved the classification accuracy by 6.53%.

Table 1. Comparison of the classification performance of our interpretable model with the baseline
model.

Model
Performance Metrics

ACC PRE SPE SEN F1 Score

Baseline model 97.30% 99.18% 98.96% 96.03% 0.9758
Our model before exclusion 85.59% 89.17% 86.46% 84.92% 0.8699
Our model after exclusion 92.12% 94.65% 93.23% 91.27% 0.9293

4.2. Explanation Performance
4.2.1. Global Explanation Evaluation

Once trained, the system provides global explanations in the form of a set of feature
patterns that identify image features characteristic of the classes to be predicted. Each
of the feature patterns learned by the system was evaluated on whether it corresponds
to a feature of the class (HGG or LGG) that it is supposed to represent and whether the
area with the highest response (red) is located within the tumor or tissue altered by the
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presence of the tumor. A feature pattern is considered invalid if its most activated area is
situated in the background regions, namely healthy tissue, ventricles, non-brain tissue, or
image background.

Within all feature patterns, two apparent duplicates were found of the LGG class.
Thirteen invalid ‘background’ feature patterns (6 HGG and 7 LGG) were found to have
higher responses in regions irrelevant to the classification task (e.g., low-signal ventricles
and high-intensity background areas). The accuracy of global explanation, defined as the
fraction of learned feature patterns that focus on task-relevant regions, was 86%. The initial
assessment process was conducted by one author (Y.T.X). In cases of ambiguity, feature
patterns were reviewed by other authors (F.Z, L.R), and the final evaluation was arrived
at by consensus. Considering the impact of invalid feature patterns on local explanation,
those ‘background’ feature patterns were excluded in the further local analysis process.

Figure 7 evaluates the representability of two feature patterns that have the largest
class connection weight of each class. The similarity score between the feature pattern (class
connection of 0.737 to HGG) and the prototypical patch from the tumor core of the first
HGG sample image ranks #2 with a similarity of 8.020 (max. 8.782) and #4 with a similarity
of 7.653 (max. 8.379) with the prototypical patch from the tumor core of the second sample
image, showing its high representativity of class HGG. The feature pattern of LGG with the
highest class-connection value (1.311) also shows high representativity of class LGG; the
similarity scores with the localized patches rank first among 10 feature patterns for two
LGG sample images.

Figure 7. Representability of the feature patterns. The explanations on two input MR images are
shown for the feature pattern that has the largest class-connection weight on each class.
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4.2.2. Local Explanation Evaluation

The reliability of an individual prediction was evaluated based on whether its local
explanation satisfies two basic reliability conditions, namely that the reasoning process
should be both confident and correct.

Confidence in the reasoning process. Confidence in the reasoning process can be evaluated
by examining the output of the local explanation. For each case in the test set, the number
of feature patterns corresponding to a correctly or incorrectly identified tumor type was
counted among those with the 10 highest similarity scores. The results were averaged and
summarized in Table 2. Results demonstrate that the inconsistency of the feature patterns
with the class of test images has a high impact on the classification performance of the
model (comparison between wrong predictions and correct predictions, mean 8.62, 0.34,
respectively) and a small impact on the reliability of the predictions (comparison between
correct predictions and unreliable predictions).

Table 2. Summary of the number of feature patterns (top 10) consistent or inconsistent with the
actual class of test images among all test cases, unreliable predictions, wrong predictions, and correct
predictions (TP and TN predictions), summarized as mean (standard deviation) of the fraction of
feature patterns among the top 10 that match or mismatch to the actual class of test images.

Class of
Feature Pattern

Class of Test Image

All Test Cases
Unreliable Predictions

1 Wrong Predictions 2 Correct Predictions 3

HGG LGG HGG LGG HGG LGG HGG LGG

HGG 9.29 (2.27) 0.90 (2.26) 9.87 (0.41) 1.56 (1.17) 2.09 (1.27) 8.62 (1.26) 9.98 (0.17) 0.34 (0.84)
LGG 0.71 (2.27) 9.10 (2.26) 0.13 (0.41) 8.44 (1.17) 7.91 (1.27) 1.38 (1.26) 0.02 (0.17) 9.66 (0.84)

Note: 1 Unreliable predictions are cases among {TP, TN} predictions that are evaluated to be unreliable according
to the two identified reliability criteria. 2 Wrong predictions are {FP, FN}. 3 Correct predictions are {unreliable
predictions, reliable predictions}.

Correctness of the reasoning process. A correct reasoning process is defined as one in
which the concept of the activated prototypical patch is consistent with that of the feature
pattern. Table 3 summarizes the number of incorrectly activated background patches by
top 10 feature patterns among all test images, unreliable predictions, wrong predictions,
and correct predictions.

Table 3. The numbers of incorrectly activated background patches by the top 10 feature patterns
were given as mean (standard deviation) of the fraction of feature patterns among the top 10 that
mismatched the actual class of test images.

Concept of
Activated Patch

Class of Test Image

All Test Images Unreliable Predictions Wrong Predictions Correct Predictions

HGG LGG HGG LGG HGG LGG HGG LGG

Image
background area

0.33 (0.89) 0.46 (1.40) 1.37 (1.34) 1.85 (2.41) 1.46 (1.44) 1.23 (1.83) 0.23 (0.74) 0.40 (1.35)
0.39 (1.14) 1.61 (1.96) 1.37 (1.57) 0.30 (1.06)

Brain
background area

0.65 (1.55) 0.97 (3.19) 2.61 (2.07) 4.46 (3.67) 2.32 (2.30) 1.00 (0.71) 0.43 (1.28) 0.97 (2.51)
0.75 (11.96) 3.55 (3.11) 1.83 (1.96) 0.67 (1.93)

Wilcoxon Signed-Ranks tests were used to assess the effect of incorrectly activated back-
ground patches on the number of mismatched feature patterns among the top 10 ranked,
an indicator of prediction reliability, comparing image background areas and brain back-
ground (i.e., healthy tissue or CSF), for each classification class both separately and jointly.

Considering all test images, image background showed a significantly lower influence
(p-value < 0.05) on reliability compared to brain background (W = 1244.5, p-value < 0.001),
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and the same pattern was repeated considering only the HGG test images (W = 411.0,
p-value = 0.002) or the LGG test images (W = 214.0, p-value = 0.005). Dividing the test
images based on correct predictions (reliable predictions and unreliable predictions, HGG:
W = 171.5, p-value = 0.011; LGG: W = 114.5, p-value = 0.003), wrong predictions (HGG:
W = 53.5, p-value = 0.095 (p > 0.05), LGG: W = 17.5, p-value = 0.943 (p > 0.05)) and unreliable
predictions (same values as correct predictions), only in the second group did these two
sources of error show no difference in their effect.

Tables 2 and 3 indicate the necessity and importance of unboxing the inference process
of CNN models for brain tumor classification. This allows health workers to screen out
unreliable ‘correct’ predictions that might have been learned from irrelevant regions for
decision making.

5. Discussion

This work proposed an interpretable multi-part attention network for brain tumor
classification. In detail, the widely used VGG16 was built with a specific interpretable
architecture to ensure good enough classification performance for the BRATS 2017 dataset.
The model was evaluated in terms of both classification and explainability perspectives.
Results demonstrated the model produced accurate tumor classification, and the classifi-
cation accuracy is on par with some of the best-performing CNN models. Furthermore,
the proposed framework is able to provide higher quality explanations for HGG and LGG
classification, including global explanation and local explanation.

In detail, global explanation is interpreted as a set of feature patterns the model learns
from to classify HGG and LGG. The quality of the feature patterns in terms of their validity
and representativity was evaluated by radiologists to see if they were valid evidence
for decision aids. Results demonstrated the model learns from the class-representative
features of both classes for the classification task, and the HGG feature patterns have higher
responses in the contrast-enhancing tumor, necrotic tumor core, and the edematous areas
as classification evidence; this agrees with the actual imaging characteristics of HGG. The
LGG feature patterns present higher responses on the homogeneous tumor cores and the
non-enhancing tumor margins.

Another important advantage of the proposed model is the local explanation it presents
for individual predictions. Background areas, such as the ventricles, were found to be acti-
vated by the ‘tumor core’ feature patterns of the LGG class. These background patches are
not faithful features to the underlying lesion. Therefore, unboxing the reasoning process is
necessary; it allows the clinicians and patients to screen out ‘unreliable’ correct predictions.

The local explanation of individual explanations was also evaluated by radiologists
to see if it is reliable and acceptable for decision-making support. This form of reliability
evaluation and model tuning is not available in the development of “black box” networks
or the interpretable models mentioned above. According to the findings, the developed so-
lution provided positive outcomes regarding the brain tumor classification and explanation
targeted in this study.

Considering the limitations of the present study, these can be divided into methodolog-
ical limitations in the construction of the network and limitations in the contextualization
of the results.

It is reasonable to suppose that network construction limitations contribute to the
lower classification accuracy of the proposed interpretable model compared with the
baseline model. This discrepancy could be attributed to the model’s classification inference
process, which is greatly influenced by the feature patterns obtained from the randomly
generated push dataset. In future work, optimizing the selection of the push dataset
may help to improve the classification accuracy of the model. It is also possible that the
training data augmentation process could be optimized, as some recent evidence suggests
that, even though we used very widely used augmentation methods, the inclusion of
image orientations not found in the testing set does not improve the generalizing ability of
the model [39].
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Regarding interpretation of the results, we did not find other interpretable deep learn-
ing methods applied to brain tumor classification based on the same dataset, and we cannot
confirm the degree to which the 86% reliability obtained by the model would be considered
acceptable by the health workers. Further collaboration with medical practitioners is impor-
tant for the practical assessment of our model. Considering possible future developments
or our work, several possible extensions are clear. The data modalities could be extended to
incorporate a greater variety of structural images, such as T1w, T2w, and FLAIR, as well as
more targeted sequences, including amide proton transfer [40] and MR spectroscopy [41].
It is also important to consider whether findings in the BraTS2017 dataset carry over into
other datasets. For example, many clinical scanners continue to use lower field strengths.
Publicly available data sets such as MNIBITE [42] and the recent ReMIND [43] could be
leveraged to test IMPA-Net with 1.5-T data.

6. Conclusions

An interpretable classification model based on CNN was developed for brain tumor
classification to enhance the interpretability and trustworthiness of the model and the
health outcomes. The proposed model visualizes the features the model learns and uses
for the classification task. It unboxes the reasoning process of individual predictions and
explains the outcomes in a human-understandable manner, allowing clinicians and patients
to understand and evaluate the reliability of predictions.

In future investigations, alternative datasets encompassing a greater variety of se-
quences and settings, will be included to improve the classification performance and the
generality of the work. Further discussions on the quality of decision aids are also necessary
to determine whether they improved decision making and outcomes for patients facing
treatment or screening decisions and to explore the applicability of IMPA-Net in other
medical imaging tasks.
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Abstract: Uterus measurements are useful for assessing both the treatment and follow-ups of gy-
naecological patients. The aim of our study was to develop a deep learning (DL) tool for fully
automated measurement of the three-dimensional size of the uterus on magnetic resonance imaging
(MRI). In this single-centre retrospective study, 900 cases were included to train, validate, and test a
VGG-16/VGG-11 convolutional neural network (CNN). The ground truth was manual measurement.
The performance of the model was evaluated using the objective key point similarity (OKS), the mean
difference in millimetres, and coefficient of determination R2. The OKS of our model was 0.92 (valida-
tion) and 0.96 (test). The average deviation and R2 coefficient between the AI measurements and the
manual ones were, respectively, 3.9 mm and 0.93 for two-point length, 3.7 mm and 0.94 for three-point
length, 2.6 mm and 0.93 for width, 4.2 mm and 0.75 for thickness. The inter-radiologist variability
was 1.4 mm. A three-dimensional automated measurement was obtained in 1.6 s. In conclusion,
our model was able to locate the uterus on MRIs and place measurement points on it to obtain its
three-dimensional measurement with a very good correlation compared to manual measurements.

Keywords: deep learning; convolutional neural network; artificial intelligence; uterus; measurement; MRI

1. Introduction

Several variations can be observed in the size of the female genitalia, especially the
uterus [1]. First, there are individual physiological factors such as age (pre-pubertal phase,
time of genital activity, menopause) and such as the natural changes in the aspect of the
uterus occurring during gestation. A uterine deformation could also be caused by personal
endometrial or myometrial pathologies. Ultimately, there is a significant inter-individual
variability depending on everyone regarding the size of the uterus [2].

Uterus measurements are undoubtedly useful for assessing both the treatment and
follow-ups of gynaecological patients. Evaluation of the size of the uterus helps describe
the development and senescence of the organs, choose the best procedures, and assist
surgical procedures such as laparoscopy or laparotomy.

From a clinical perspective, knowing the size of the uterus is useful to diagnose
delayed or precocious puberty [3]. Data on the sagittal uterine length and body-to-cervix
ratio can be used to conclude whether the internal genitalia are of pubertal or non-pubertal
morphology [4]. Also, describing the size of the uterus in the case of polymyomatous
pathology is an indicator of the position of the uterus in the patient’s abdomen and enables
clinicians to appreciate the potential urinary and digestive repercussions [5]. Furthermore,
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measuring total uterine length is essential before inserting an Intra Uterine Device (IUD).
It helps to determine where to stop IUD insertion and avoid insertion problems such as
perforation [6]. The width of the uterine cavity is measured to ensure that T-shaped devices
fit properly to the cavity, thus avoiding dimensional disproportions that could lead to
problems of effectiveness or material displacement [7].

From a surgical perspective, knowing the size of the uterus helps to estimate the best
approach for removing the organ when a hysterectomy may be indicated (laparoscopy,
laparotomy, vaginal approach...) [8]. Also, it is necessary to measure the transverse diameter
of the uterus before endometrial ablation by thermal balloon, cryotherapy, radiofrequency
or microwave energy to avoid damaging the endocervical canal [9]. For the NovaSure
electrosurgical technique in particular, the radiofrequency controller needs to know the
values for the intercornal width of the uterine fundus and the length of the uterine cavity,
which must be between 40 and 65 mm [1]. Techniques for treating genital prolapse by
promontofixation will also depend on the size of the uterus [10].

In the obstetrical field, measuring uterine length provides important information to
monitor the progress of the pregnancy and to know whether fetal growth is progressing
correctly [11]. If the size of the uterus is too small or too large, this may lead to an ultrasound
check on fetal growth, the amount of amniotic fluid, and the appearance of the placenta.
Measurements of the uterus can help decide whether curettage is necessary in the event
of a failed pregnancy (spontaneous miscarriage or voluntary termination of pregnancy).
As the width of the endometrial cavity is correlated with gestational age, measuring it at
the time of abortion could help avoid many surgical procedures [12]. Researchers have
postulated that by using the mean of cavity width and area plus two standard deviations
as the upper limit of cavity size (width 50 mm, area 60 cm2), then only 44% of patients in
their study would have required curettage [1]. Measuring uterine length is also particularly
useful for locating the most suitable intrauterine site for the development of fertilized eggs
for in vitro fertilisation. A study by Egbase et al. showed that implantation and pregnancy
rates were higher when the total length of the uterus was between 70 and 90 mm [13]. They
placed the embryos 5 mm from the uterine fundus.

For all these reasons, an accurate description of uterine measurements must be made
in the magnetic resonance (MR) examination of the female pelvis [14].

Usually, the measurement is performed manually by radiologists, wasting medical
time and leading to inter-operator variability [15].

Artificial intelligence (AI) is a scientific discipline based on the premise that the
faculties of human intelligence can be simulated by a machine. Machine learning consists in
creating algorithms capable of learning how to model functions and make predictions using
a process of generalisation of the data induced. Deep learning is a sub-type of machine
learning, using neural networks that are particularly effective in image processing, as they
can learn spatial determinants.

Artificial intelligence has become a potential solution to assist segmentation [16,17].
Thus, AI can develop an automatic segmentation tool for given structures and enable
significant improvements in radiological workflows [18].

Deep learning models have been successful in providing automatic segmentation for
different organs such as the prostate, kidneys, and heart [19–22].

Measuring the uterus is a more challenging task due to anatomical variability and
complex contrasts with surrounding tissues, but also in relation to pathologies such as
endometriosis or myomas that distort the contours of the uterus [11].

Along with ultrasound, magnetic resonance imaging (MRI) is the best imaging modal-
ity for the diagnosis of pelvic pathologies in women. Furthermore, it provides better
reproducibility because it is not observer dependent.

A previous study presents a method for automatic uterus segmentation in MRI
for patients with uterine fibroids undergoing ultrasound-guided HIFU therapy. They
used a 3D nnU-Net model in order to automate uterine volumetry for tracking changes
after therapy [23].
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Another recent study showed that using a combination of deep learning reconstruction
and a sharpening filter markedly increases the image quality of SSFSE of the uterus to the
level of the PROPELLER sequence [24].

The aim of our work was to develop, validate, and test an automated deep learning
tool for MR images, to implement an automatic measurement of the three-dimensional size
of the uterus, and to evaluate its performance compared with the manual measurements
of radiologists.

2. Material and Methods

This retrospective study of model creation was approved by the Independent Ethics
Committee under the reference CHV-2022-006. All patients were informed of the use of
their medical data according to the legal framework imposed by CNIL MR-004. In addition,
all data were pseudonymized beforehand.

2.1. Data Acquisition

All women over 18 years of age who underwent pelvic MRI, including sagittal and
axial T2-weighted images, in the women’s imaging department of Valenciennes Hospital
(France) between September 2021 and March 2022 were retrospectively collected from the
Institutional Picture Archiving and Communication System (Electronic Medical Record
Entreprise, VEPRO AG, Version 8.2, Pfungstadt, Germany).

Pregnant women were excluded, as were MR images with severe motion artefacts, a
highly deviated uterus, and subserous myomatous pathology (FIGO VI and VII, due to
important deformation of the uterus).

These examinations were performed using two MR units, either at 1.5 T (SIGNA artist)
or 3 T (SIGNA premier) (General Electric Healthcare, Cleveland, OH, USA). The acquisition
parameters are listed in Table 1.

Table 1. Magnetic resonance imaging (MRI) acquisition parameters.

Parameters

MRI General Electric 1.5 T, SIGNA
Artist, 2021

General Electric 1.5 T, SIGNA
Artist, 2020

General Electric 3 T, SIGNA
Premier, 2019

Plane Sagittal Axial Sagittal Axial Sagittal Axial

TE (ms) 100–120 100–120 115–120

TR (ms) 5000–1100 4000–10,000 4000–13,000

Number of excitations (Nex) 2 2 1.5 2

Field of view (mm) (393 × 260)–
(408 × 220) 363 × 240 393 × 260 (360–240)–

(410 × 270) 332 × 220

Frequency (Hz) 41.67 41.67 50

Slice thickness (mm) 3.5–4.0 3.5–4.0 3.0–3.5

Interslice gap (mm) 3.5 3.5 0.5–3.0

Patients were randomly assigned to training (80%) and validation sets (20%) without
any overlap.

An additional set of MR images acquired between July and August 2021 was used for
external validation using the same inclusion and exclusion criteria (test set).

2.2. Data Labelling

One radiologist (DM) used artificial intelligence software specifically designed for medi-
cal imaging (Cleverdoc V1.9.0 platform, Cleverdoc Entreprise, Lille, France) for labelling.

When the uterus was not seen, a label of “not observable” was attributed to the exa-
men. When visible, it was targeted by a square area (a label box was drawn on the uterus).
Three consecutive cuts were annotated with points corresponding to the measurements of
the uterus (Figure 1). Thickness and length were noted on sagittal T2-weighted images. The
length was measured using two different methods: one major axis defined by two points,
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and the other defined by three points passing through the fundus, the cervix-isthmus junc-
tion, and the exocervix (Figure 2). Radiologists often prefer the three-point measurement
when the uterus is significantly flexed. The width was labelled on the axial T2-weighted
images. These manual measurements were used to define the ground truth.

Figure 1. Flowchart of the data labelling.

 

Figure 2. (a): Sagittal T2-weighted image with the label “observable” (purple), length label with
two points (dark blue), length label with three points (light blue), thickness label (green). (b): axial
T2-weighted image with label class “observable” (purple) and width label (orange). The vagina and
the rectum were filled with ultrasound gel in order to respond to the clinical indication of this case.

2.3. Model

The overall pipeline works due to two separate models working successively.
First, a box model finds the uteri. Then, a key point model is used to place the

measurement points on the cropped version of the image by placing two points for each
class. This is achieved by splitting each class into two subclasses. The point for each
subclass is determined by its position (top-left or bottom-right). For a length composed of
three points, the midpoint is given in a separate preprocessing step.
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We used convolutional neural network (CNN) architectures with an encoder or
decoder pattern.

Encoder

The encoder network was composed of VGG-16 (box model) and VGG-11 (key point
model). It receives an image with a size of 224 × 224 pixels as input. Subsequently, it
passes through five blocks which are separated by a Max Pooling layer (Kernel = 2.2;
Stride size = 2; No padding) that halves the height and width of the features (Figure 3).

 

Figure 3. (a). VGG-11- modified architecture of the encoder for the box model. (b). VGG-16 modified
architecture of the encoder for the keypoint model.

Decoder

Our model’s decoders are single-instance boxes and key point detectors, which pro-
duce one box and one key point instance for each output class, respectively.

The input of the head is a four-dimensional vector of shape. The outputs are four values
per class (x, y, w, h) for the position of the box and two values per class (x, y) for key
point positions.

2.4. Training

We applied data augmentation techniques such as vertical and horizontal flipping,
random rotation of a multiple of 90◦, and translation of up to 0.1. Furthermore, for the key
point model, we applied more techniques, such as changing the brightness and contrast,
blurring the image, applying Gaussian noise, or reversing the image’s colours.

We sorted our data based on the classes we wanted to train in (“uterus” classes for the
box model and “keypoint” classes for the key point model). We applied a balancer that
always kept a batch size of 10 with an equivalent number of items for each class in order to
ensure the proper distribution of losses and metrics.

The box model was run for 100 epochs (220,783 iterations), and the key point model
was run for 250 epochs (40,320 iterations).

The Adam optimiser was used with a learning rate of 0.0001 to optimise the weight of
the model.

2.5. Statistics
2.5.1. Model Training

We kept track of the model’s losses and calculated the metrics: The intersection over
union (IoU) to evaluate the accuracy of box positions and objective key point similarity
(OKS) for each key point class. This metric quantifies the closeness of the predicted key
point location by using the ground-truth key point. The closer the predicted key point is to
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the ground truth, the closer the OKS approach is to 1. Above 0.80, the model is considered
very good. This metric is calculated as follows:

OKS = exp
(
− d2

2s2k2

)
(1)

where d is the distance between the ground truth key point and predicted key point, s is
the area of the bounding box divided by the total image area, and k is the per-key point
constant that controls the fall-off.

2.5.2. Model Testing

Four experts with experience in genital imaging (EP, GR, BH, and LD with 12, 2,
and 1 years of experience, respectively) manually measured the size of the uterus in
three dimensions on every MR image of the test set. The radiologists were blinded to the
measurements made by others and to the machine. The same viewer (ViewerCleverdoc1.9.0)
was used.

To evaluate the performance of our deep learning tool, we calculated the absolute
average difference (in millimetres) between the measurements of one dataset and those of
another. The coefficient of determination R2 was used to reflect how well the AI measure-
ments matched those of the radiologists using a linear regression model. If R2 is equal to 1,
the algorithm obtains strictly identical measurements to those of the radiologists.

The Cleverdoc V1.9.0 platform (Lille, France) was used for the statistical analyses.

3. Results

A total of 845 MRI scans were collected. Moreover, 45 patients were excluded: 37
because of myomas, 6 because of pregnancies, 3 because of a highly deviated uterus, and 2
because of poor image quality. The characteristics of the patients are shown in Table 2.

Table 2. Characteristics of the patients whose data were included for training, validation, and testing
of the model.

Training and Validation Set
(n = 800)

Test Set
(n = 100)

Age
(mediane (interquartiles)) 45 (33–58) 47 (34–56)

Gel vaginal markup
No 436 (65%) 60 (60%)
Yes 364 (45%) 40 (40%)

Uterus position
Anteflexed 704 (88%) 93 (93%)
Retroflexed 96 (12%) 7 (7%)

MRI without pelvic pathology 177 (22%) 26 (26%)

Subperitoneal endometriosis 123 (15%) 13 (13%)

Adenomyosis 116 (14%) 12 (12%)

Myomas (FIGO 0—V) 124 (15%) 19 (19%)

Cervical cancer 23 (3%) 2 (2%)

Endometrial pathology 75 (9%) 10 (10%)

Ovarian pathology 165 (21%) 16 (16%)

Hysterectomy 50 (6%) -

Uterine malformation 7 (0.9%) 1 (1%)

Other (static disorder,
no-gynaecological pathology. . .) 82 (10%) 13 (13%)

From the 800 included patients for training and validation, 4800 sets were obtained
(three consecutive slices centred on the uterus for each sagittal and axial sequence).
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An additional external cohort of 100 MR images was used for the model testing (Figure 4).

Figure 4. Overview of the workflow for training and testing the automated convolutional neural
network (CNN) tool for measurement of the uterus.

3.1. Validation Performance (Initial Dataset)

During the validation phase, the algorithm was able to locate the uterus and the
measurement key points with excellent accuracy.

With the measurement by DM as ground truth, the mean OKS was 0.92, ranging from
0.90 and 0.94 (Table 3). The OKS was calculated using the cropped images obtained using
the box model.

Table 3. Objective key point similarity (OKS) values of the algorithm for each measurement key
point, with the measurement by DM as ground truth.

Key
Point

Length2
Top left

(L1)

Length2
Bottom

right
(L2)

Length2
Middle

(L3)

Length1
Top left

(L4)

Length2
Bottom

right
(L5)

Width
Top left

(W1)

Width
Bottom

right
(W2)

Thickness
Top left

(T1)

Thickness
Bottom

right
(T2)

Average
(av)

OKS 0.92 0.90 0.94 0.90 0.90 0.94 0.93 0.92 0.93 0.92

3.2. Test Performance (External Dataset)

We observed an improvement in the accuracy of our model when we switched to a
new unknown cohort for testing. With the average of radiologists’ measurements as ground
truth, the mean OKS of our DL tool was 0.96, ranging from 0.95 and 0.98, as reported in
Table 4. The OKS was calculated using full-size images.

Table 4. Objective key point similarity (OKS) values of the algorithm and of each radiologist, for each
measurement key point, with the average of measurements by radiologists as ground truth.

Key point
Length2
Top left

(L1)

Length2
Bottom right

(L2)

Length2
Middle

(L3)

Length1
Top left

(L4)

Length1
Bottom right

(L5)

GR 0.96 0.96 0.98 0.95 0.95

ED 0.97 0.97 0.98 0.96 0.95

LD 0.96 0.96 0.97 0.97 0.96

BH 096 0.96 0.97 0.96 0.95

AI 0.95 0.95 0.97 0.96 0.95

165



Diagnostics 2023, 13, 2662

Table 4. Cont.

Key point
Width

Top left
(W1)

Width
Bottom right

(W2)

Thickness
Top left

(T1)

Thickness
Bottom right

(T2)

Average
(av)

GR 0.99 0.98 0.94 0.94 0.96

ED 0.99 0.98 0.95 0.95 0.97

LD 0.99 0.98 0.95 0.95 0.97

BH 0.98 0.97 0.95 0.95 0.96

AI 0.97 0.98 0.95 0.94 0.96

Regarding the execution speed, it took less than 5 min for the model to extract all
measurements, that is, one three-dimensional measurement in approximately 1.6 s. In
comparison, the average time for a three-dimensional measurement by a radiologist was
clocked at 37.89 s.

3.2.1. Correlation between Manual and Automated Measurements

Out of the 100 MR images of the test set, the average deviation between AI measure-
ments and radiologists’ measurements was 3.6 mm (±6.6 standard deviation (SD)). The
distribution of the gaps was as follows: 3.9 mm for two-point length, 3.7 mm for three-point
length, 2.6 mm for width, and 4.2 mm for thickness (Figure 5). The details of the absolute
measurements are listed in Table 5.

Figure 5. Sample results of the test phase. Width measurements on a T2-weighted axial sequence by
radiologist (GR) (a) and by the algorithm (b). Lengths and thickness measurements on a T2-weighted
sagittal sequence by a radiologist (DM) (c) and by the algorithm (d). We can notice the algorithm’s
error in detection of the contours for the thickness measurement.
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Table 5. Statistics of uterine dimension measurements by the radiologists (ground truth) and by the
algorithm (AI).

Minimum
(mm)

Maximum
(mm)

Median
(mm)

Average
(mm)

Standard Deviation
(SD)

Ground
Truth

AI
Ground

Truth
AI

Ground
Truth

AI
Ground

Truth
AI

Ground
Truth

AI

Length 1
(2 points) 44.73 1.59 123.19 127.94 76.46 76.93 79.95 78.09 17.13 19.28

Length 2
(3 points) 42.14 46.04 123.96 119.75 77.23 74.69 79.43 76.19 16.43 15.46

Thickness 19.78 6.3 73.56 74.08 39.23 36.90 39.89 36.23 11.13 11.95

Width 32.16 35.95 93.65 90.98 52.72 52.58 54.42 54.60 12.35 11.06

The R2 coefficients of determination between the algorithm’s measurements and
the average of the radiologists’ measurements were 0.93 for two-point length, 0.94 for
three-point length, 0.93 for width, and 0.75 for thickness, as shown in Figure 6.

Figure 6. Scatter plots showing the correspondence between artificial intelligence (AI) measurements
(in abscissa) and the average of the radiologist’s measurements (in ordinate) in millimetres.

3.2.2. Variability between Measurements by Radiologists

The mean difference in measurements between all radiologists was 1.4 mm, detailed
as follows: 1.27 mm for two-point length, 2.2 mm for three-point length, 1.14 mm for width,
and 0.93 mm for thickness. The differences between each measure by one radiologist and
the average of the others are presented in Table 6.

167



Diagnostics 2023, 13, 2662

Table 6. Average deviation (AD) in millimeters between all radiologists.

Measures Length2 Length2 Width Thickness

EP 2.11 1.37 0.97 0.93

LD 2.12 1.2 1.12 0.92

BH 2.23 1.42 1.31 1.08

GR 2.36 1.11 1.15 0.8

Average 2.2 1.27 1.14 0.93

We performed a secondary analysis to highlight the distribution of the AI errors.
Nineteen out of 200 images (100 axial + 100 sagittal) had an absolute deviation (averaged
over all image measurements) discreetly greater than 8 mm. This represents less than 10%
of the total number of examinations.

4. Discussion

We successfully achieved our goal of developing an artificial intelligence algorithm
that is able to locate the uterus in pelvic MR examinations, place measurement key points
on it, and provide its three-dimensional measurement with satisfactory accuracy.

The OKS was close to 1, improving from 0.92 (validation) to 0.96 (test). These results
can be explained by the fact that the OKS of the validation phase were calculated based
on the cropped images, whereas those of the test phase were calculated from the full-size
images. The larger the image, the smaller the positioning error.

However, the algorithm remains highly performant when encountering new brand
images. One of the strengths of our study is that our network was tested in an external
cohort which did not have a selection bias applied, except for subserous myomas. This
performance favours the generalisation of this model.

To the best of our knowledge, only one study of segmentation of images of the uterus
has been conducted to date. Kurata et al. evaluated a U-net architecture to contour the
uterus on MR images in the sagittal plane [25]. They reached an average DSC score
(dice similarity coefficient, which can be compared to OKS) of 0.82. This study included
122 patients with or without uterine disorders. Our model was optimised by using a
substantially larger training database of 800 patients.

In parallel, for men, a wide range of studies have been carried out on the automatic
segmentation of images of the prostate, with similar results [26,27]. For example, Alexander
Ushinsky et al. trained a customized hybrid 3D-2D U-Net CNN architecture on manually
segmented MR images and had a DSC score of 0.898 [28].

However, it is more complex for an AI tool to locate and segment images of the uterus
than of the prostate because the uterus can have different positions, bends, or shapes.
Moreover, the uterus is surrounded by many elements (colon, bladder, and ovaries).

Another highlight of our study is that our training dataset was strengthened by the
clinical heterogeneity of its cases, both in terms of pathological conditions and patient
preparation. It included examinations for cervical cancer, endometriosis, and an ultrasound
gel. This suggests that the performance of our CNN would be robust in prospective
clinical settings.

Most studies on automated segmentation have used volumetric models or U-Net
architectures [29,30]. In contrast, our network’s performance was achieved with the VGG-
11/16 architectures. This is a major aspect that led to the success of our algorithm. This
model is more suitable for distance measurements because it is specifically designed to
locate an organ and place measurement points on it. To do so, our pipeline operates using
two different models (box and key point models).

The average deviation between the AI measurements and those of the radiologists
was 3.6 mm (±6.6 SD), while the inter-radiologist variability was 1.4 mm. However, the R2

coefficient was approaching 0.94 for lengths and width, meaning the coherence remained
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extremely strong between the radiologists and AI. For thickness, however, the R2 coefficient
was 0.75, owing to the algorithm being challenged by the junctional zone in rare cases.

The speed of our system is a major advantage over the time required for manual
segmentation. In our experience, it takes a radiologist 37.89 s to measure a uterus in three
dimensions, set against 1.6 s for the algorithm. Our VGGnet may increase the throughput.

Our algorithm has the ability to overthrow a basic task, thus saving radiologists time
for significant intellectual tasks.

Our study had a few limitations that should be acknowledged. First, this was a
retrospective, monocentric study. The database was created using three MRI scanners
(General Electric Healthcare, Valenciennes Hospital, France). The generalisability to other
centres or MRI equipment has not yet been established. We subsequently included images
obtained using the same T2-weighted acquisition protocols. We can imagine a comparative
study of the performance of the algorithm between different MRI parameters or protocols.

In this first approach to developing a three-dimensional measurement software, we
preferred to exclude pregnant women to make easier the algorithm training. In a further
study, we could try to include examinations with pregnant uteruses to make our algorithm
more inclusive. This could provide useful information for obstetricians.

We can easily imagine a clear application of our AI tool in daily practice. The measure-
ments of the algorithm can be displayed on the image server or automatically added to
reports. Valuable information on uterine size could help gynaecologists and surgeons in
their daily practice. A patient’s state of genital activity could be precisely described, as well
as certain pathological conditions such as myomatous disease. Gynaecological procedures
such as IUD insertion, hysterectomy, endometrial resection, or promontoxiation could be
facilitated. These uterine measurements could also certainly be used in the obstetrical
follow-up of patients.

Subsequent studies are required to prospectively validate our network in a clinical
setting. We could consider further studies using the same pipeline to measure endometrial
thickness or ovarian dimensions.

5. Conclusions

To conclude, we validated our approach of fully automated measurements of the
uterus in MRIs.

Our VGG-16/11-based convolutional neural network is able to precisely locate the
uterus and place measurement key points on it with excellent accuracy. From these points,
the three-dimensional measurement of the uterus is obtained. The average difference in
measurement between IA and radiologists remains inconsequential, even though it slightly
exceeds the inter-radiologist variability.

This provides a useful and performant tool that can easily be applied in clinical practice
as an alternative to time-consuming manual tracing.

Author Contributions: Conceptualization, D.M., E.P. and G.R.; methodology, D.M., E.P. and G.R.;
validation, E.P., G.R., B.H., L.A.D.; formal analysis, L.F.; resources, D.M., G.R.; writing—original draft
preparation, D.M., E.P., G.R.; writing—review and editing, D.M., E.P., G.R., N.L., C.H.; supervision,
E.P., C.H. and N.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki, and approved by the Institutional Review Board (or Ethics Committee) of Commission
Ethique de la Recherche Clinique (CERCl) of Valenciennes Hospital, France (reference CHV-2022-006,
date of approval 24 March 2022).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: All data was collected from the Institutional Picture Archiving and
Communication System (EMR Manager, VEPRO AG, Version 8.2, Germany) of Valenciennes
Hospital, France.

169



Diagnostics 2023, 13, 2662

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

AD Average Deviation
AI Artificial Intelligence
CNN Convolutional Neural Network
DL Deep Learning
DSC Dice Similarity Coefficient
IoU Intersection over Union
ML Machine Learning
MR Magnetic Resonance
OKS Objective Key point Similarity
SD Standard Deviation

References

1. Goldstuck, N. Assessment of uterine cavity size and shape: A systematic review addressing relevance to intrauterine procedures
and events. Afr. J. Reprod. Health 2012, 16, 130–139.

2. Bridges, N.A.; Cooke, A.; Healy, M.J.; Hindmarsh, P.C.; Brook, C.G. Growth of the uterus. Arch. Dis. Child. 1996, 75, 330–331.
[CrossRef]

3. Talarico, V.; Rodio, M.B.; Viscomi, A.; Galea, E.; Galati, M.C.; Raiola, G. The role of pelvic ultrasound for the diagnosis and
management of central precocious puberty: An update. Acta Biomed. Atenei Parm. 2021, 92, e2021480.

4. Trotman, G.E. Delayed puberty in the female patient. Curr. Opin. Obstet. Gynecol. 2016, 28, 366. [CrossRef]
5. Adamou, H.; Amadou Magagi, I.; Oumarou Garba, S.; Habou, O. Acute intestinal obstruction due to extrinsic compression by

previa myoma and ectopic pregnancy: A case report. J. Med. Case Rep. 2018, 12, 10. [CrossRef]
6. Weisberg, E. Insertion of Intrauterine Devices. Med. J. 1980, 2, 359–362. [CrossRef]
7. Chi, I.C.; Champion, C.B.; Wilkens, L.R. Cervical dilatation in interval insertion of an IUD Who requires it and does it lead to a

high explulsion rate? Contraception 1987, 36, 403–415. [CrossRef] [PubMed]
8. Taylor, S.M.; Romero, A.A.; Kammerer-Doak, D.N.; Qualls, C.; Rogers, R.G. Abdominal hysterectomy for the enlarged myomatous

uterus compared with vaginal hysterectomy with morcellation. Am. J. Obstet. Gynecol. 2003, 189, 1579–1582. [PubMed]
9. Iavazzo, C.; Salakos, N.; Bakalianou, K.; Vitoratos, N.; Vorgias, G.; Liapis, A. Thermal balloon endometrial ablation: A systematic

review. Arch. Gynecol. Obstet. 2008, 277, 99–108. [CrossRef] [PubMed]
10. Acsinte, O.M.; Rabischong, B.; Bourdel, N.; Canis, M.; Botchorishvili, R. Laparoscopic Promontofixation in 10 Steps. J. Minim.

Invasive Gynecol. 2018, 25, 767. [CrossRef] [PubMed]
11. Garfield, R.; Saade, G.; Buhimschi, C.; Buhimschi, I.; Shi, L.; Shi, S.; Chwalisz, K. Control and assessment of the uterus and cervix

during pregnancy and labour. Hum. Reprod. Update 1998, 4, 673–695. [CrossRef] [PubMed]
12. Kojita, Y.; Matsuo, H.; Kanda, T.; Nishio, M.; Sofue, K.; Nogami, M.; Kono, A.K.; Hori, M.; Murakami, T. Deep learning model for

predicting gestational age after the first trimester using fetal MRI. Eur. Radiol. 2021, 31, 3775–3782. [PubMed]
13. Egbase, P.E.; Al-Sharhan, M.; Grudzinskas, J.G. Influence of position and length of uterus on implantation and clinical pregnancy

rates in IVF and embryo transfer treatment cycles. Hum. Reprod. 2000, 15, 1943–1946. [CrossRef]
14. Ludwin, A.; Martins, W.P. Correct measurement of uterine fundal internal indentation depth and angle: An important but

overlooked issue for precise diagnosis of uterine anomalies. Ultrasound Obstet. Gynecol. 2021, 58, 497–499. [CrossRef] [PubMed]
15. Brouwer, C.L.; Steenbakkers, R.J.H.M.; van den Heuvel, E.; Duppen, J.C.; Navran, A.; Bijl, H.P.; Chouvalova, O.; Burlage, F.R.;

Meertens, H.; Langendijk, J.A.; et al. 3D Variation in delineation of head and neck organs at risk. Radiat. Oncol. Lond. Engl. 2012,
7, 32. [CrossRef] [PubMed]

16. Cardenas, C.E.; Yang, J.; Anderson, B.M.; Court, L.E.; Brock, K.B. Advances in Auto-Segmentation. Semin. Radiat. Oncol. 2019, 29,
185–197. [CrossRef]

17. Kalantar, R.; Lin, G.; Winfield, J.M.; Messiou, C.; Lalondrelle, S.; Blackledge, M.D.; Koh, D.-M. Automatic Segmentation of Pelvic
Cancers Using Deep Learning: State-of-the-Art Approaches and Challenges. Diagnostics 2021, 11, 1964. [CrossRef]

18. Hosny, A.; Parmar, C.; Quackenbush, J.; Schwartz, L.H.; Aerts, H.J.W.L. Artificial intelligence in radiology. Nat. Rev. Cancer 2018,
18, 500–510. [CrossRef]

19. Han, S.; Hwang, S.I.; Lee, H.J. The Classification of Renal Cancer in 3-Phase CT Images Using a Deep Learning Method. J. Digit.
Imaging 2019, 32, 638–643. [CrossRef]

20. Van Gastel, M.D.A.; Edwards, M.E.; Torres, V.E.; Erickson, B.J.; Gansevoort, R.T.; Kline, T.L. Automatic Measurement of Kidney
and Liver Volumes from MR Images of Patients Affected by Autosomal Dominant Polycystic Kidney Disease. J. Am. Soc. Nephrol.
JASN 2019, 30, 1514–1522. [CrossRef]

21. Sforazzini, F.; Salome, P.; Moustafa, M.; Zhou, C.; Schwager, C.; Rein, K.; Bougatf, N.; Kudak, A.; Woodruff, H.; Dubois, L.; et al.
Deep Learning–based Automatic Lung Segmentation on Multiresolution CT Scans from Healthy and Fibrotic Lungs in Mice.
Radiol. Artif. Intell. 2022, 4, e210095. [CrossRef] [PubMed]

170



Diagnostics 2023, 13, 2662

22. Van Assen, M.; Muscogiuri, G.; Caruso, D.; Lee, S.J.; Laghi, A.; De Cecco, C.N. Artificial intelligence in cardiac radiology. Radiol.
Med. (Torino) 2020, 125, 1186–1199. [CrossRef]

23. Theis, M.; Tonguc, T.; Savchenko, O.; Nowak, S.; Block, W.; Recker, F.; Essler, M.; Mustea, A.; Attenberger, U.; Marinova, M.; et al.
Deep learning enables automated MRI-based estimation of uterine volume also in patients with uterine fibroids undergoing
high-intensity focused ultrasound therapy. Insights Imaging 2023, 14, 1. [CrossRef]

24. Tsuboyama, T.; Onishi, H.; Nakamoto, A.; Ogawa, K.; Koyama, Y.; Tarewaki, H.; Tomiyama, N. Impact of Deep Learning
Reconstruction Combined with a Sharpening Filter on Single-Shot Fast Spin-Echo T2-Weighted Magnetic Resonance Imaging of
the Uterus. Investig. Radiol. 2022, 57, 379–386. [CrossRef] [PubMed]

25. Kurata, Y.; Nishio, M.; Kido, A.; Fujimoto, K.; Yakami, M.; Isoda, H.; Togashi, K. Automatic segmentation of the uterus on MRI
using a convolutional neural network. Comput. Biol. Med. 2019, 114, 103438. [CrossRef]

26. Bhandary, S.; Kuhn, D.; Babaiee, Z.; Fechter, T.; Benndorf, M.; Zamboglou, C.; Grosu, R. Investigation and benchmarking of
U-Nets on prostate segmentation tasks. Comput. Med. Imaging Graph. 2023, 107, 102241. [CrossRef] [PubMed]

27. Thimansson, E.; Bengtsson, J.; Baubeta, E.; Engman, J.; Flondell-Sité, D.; Bjartell, A.; Zackrisson, S. Deep learning algorithm
performs similarly to radiologists in the assessment of prostate volume on MRI. Eur. Radiol. 2023, 33, 2519–2528. [CrossRef]
[PubMed]

28. Ushinsky, A.; Bardis, M.; Glavis-Bloom, J.; Uchio, E.; Chantaduly, C.; Nguyentat, M.; Houshyar, R. A 3D-2D Hybrid U-Net
Convolutional Neural Network Approach to Prostate Organ Segmentation of Multiparametric MRI. Am. J. Roentgenol. 2021, 216,
111–116. [CrossRef]

29. Krithika alias AnbuDevi, M.; Suganthi, K. Review of Semantic Segmentation of Medical Images Using Modified Architectures of
UNET. Diagnostics 2022, 12, 3064. [CrossRef]

30. Gifford, R.; Jhawar, S.R.; Krening, S. Deep Learning Architecture to Improve Edge Accuracy of Auto-Contouring for Head and
Neck Radiotherapy. Diagnostics 2023, 13, 2159. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

171



Citation: Kaifi, R. A Review of

Recent Advances in Brain Tumor

Diagnosis Based on AI-Based

Classification. Diagnostics 2023, 13,

3007. https://doi.org/10.3390/

diagnostics13183007

Academic Editors: Dechang Chen,

Wan Azani Mustafa and

Hiam Alquran

Received: 23 June 2023

Revised: 14 September 2023

Accepted: 19 September 2023

Published: 20 September 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diagnostics

Review

A Review of Recent Advances in Brain Tumor Diagnosis Based
on AI-Based Classification

Reham Kaifi 1,2,3

1 Department of Radiological Sciences, College of Applied Medical Sciences, King Saud bin Abdulaziz
University for Health Sciences, Jeddah City 22384, Saudi Arabia; kaifir@ksau-hs.edu.sa

2 King Abdullah International Medical Research Center, Jeddah City 22384, Saudi Arabia
3 Medical Imaging Department, Ministry of the National Guard—Health Affairs,

Jeddah City 11426, Saudi Arabia

Abstract: Uncontrolled and fast cell proliferation is the cause of brain tumors. Early cancer detection is
vitally important to save many lives. Brain tumors can be divided into several categories depending
on the kind, place of origin, pace of development, and stage of progression; as a result, tumor
classification is crucial for targeted therapy. Brain tumor segmentation aims to delineate accurately
the areas of brain tumors. A specialist with a thorough understanding of brain illnesses is needed
to manually identify the proper type of brain tumor. Additionally, processing many images takes
time and is tiresome. Therefore, automatic segmentation and classification techniques are required to
speed up and enhance the diagnosis of brain tumors. Tumors can be quickly and safely detected by
brain scans using imaging modalities, including computed tomography (CT), magnetic resonance
imaging (MRI), and others. Machine learning (ML) and artificial intelligence (AI) have shown
promise in developing algorithms that aid in automatic classification and segmentation utilizing
various imaging modalities. The right segmentation method must be used to precisely classify
patients with brain tumors to enhance diagnosis and treatment. This review describes multiple
types of brain tumors, publicly accessible datasets, enhancement methods, segmentation, feature
extraction, classification, machine learning techniques, deep learning, and learning through a transfer
to study brain tumors. In this study, we attempted to synthesize brain cancer imaging modalities
with automatically computer-assisted methodologies for brain cancer characterization in ML and DL
frameworks. Finding the current problems with the engineering methodologies currently in use and
predicting a future paradigm are other goals of this article.

Keywords: brain tumors; magnetic resonance imaging; computed tomography; computer-aided
diagnostic and detection; deep learning; machine learning

1. Introduction

The human brain, which serves as the control center for all the body’s organs, is a
highly developed organ that enables a person to adapt to and withstand various environ-
mental situations [1]. The human brain allows people to express themselves in words,
carry out activities, and express thoughts and feelings. Cerebrospinal fluid (CSF), white
matter (WM), and gray matter (GM) are the three major tissue components of the human
brain. The gray matter regulates brain activity and comprises neurons and glial cells. The
cerebral cortex is connected to other brain areas through white matter fibers comprising
several myelinated axons. The corpus callosum, a substantial band of white matter fibers,
connects the left and right hemispheres of the brain [2]. A brain tumor is a brain cell growth
that is out of control and aberrant. Any unanticipated development may affect human
functioning since the human skull is a rigid and volume-restricted structure, depending
on the area of the brain involved. Additionally, it might spread to other organs, further
jeopardizing human functions [3]. Early cancer detection makes the ability to plan effective
treatment possible, which is crucial for the healthcare sector [4]. Cancer is difficult to cure,
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and the odds of survival are significantly reduced if it spreads to nearby cells. Undoubtedly,
many lives could be preserved if cancer was detected at its earliest stage using quick and
affordable diagnostic methods. Both invasive and noninvasive approaches may be utilized
to diagnose brain cancer. An incision is made during a biopsy to extract a lesion sample for
analysis. It is regarded as the gold standard for the diagnosis of cancer, where pathologists
examine several cell characteristics of the tumor specimen under a microscope to verify
the malignancy.

Noninvasive techniques include physical inspections of the body and imaging modal-
ities employed for imaging the brain [5]. In comparison to brain biopsy, other imaging
modalities, such as CT scans and MRI images, are more rapid and secure. Radiologists
use these imaging techniques to identify brain problems, evaluate the development of
diseases, and plan surgeries [6]. However, brain scans or image interpretation to diagnose
illnesses are prone to inter-reader variability and accuracy, which depends on the medical
practitioner’s competency [5]. It is crucial to accurately identify the type of brain disorder
to reduce diagnostic errors. Utilizing computer-aided diagnostic (CAD) technologies can
improve accuracy. The fundamental idea behind CAD is to offer a computer result as an
additional guide to help radiologists interpret images and shorten the reading time for
images. This enhances the accuracy and stability of radiological diagnosis [7]. Several
CAT-based artificial intelligence techniques, such as machine learning (ML) and deep
learning (DL), are described in this review for diagnosing tissues and segmenting tumors.
The segmentation process is a crucial aspect of image processing. This approach includes a
procedure for extracting the area that helps determine whether a region is infected. Using
MRI images to segment brain tumors presents various challenges, including image noise,
low contrast, loss borders, shifting intensities inside tissues, and tissue-type variation.

The most complex and crucial task in many medical image applications is detecting
and segmenting brain tumors because it often requires much data and information. Tumors
come in a variety of shapes and sizes. Automatic or semiautomatic detection/segmentation,
helped by AI, is currently crucial in medical diagnostics. The medical professionals must
authenticate the boundaries and areas of the brain cancer and ascertain where precisely it
rests and the exact impacted locations before therapies such as chemotherapy, radiation, or
brain surgery. This review examines the output from various algorithms that are used in
segmenting and detecting brain tumors.

The review is structured as follows: Types of brain tumors are described in Section 2.
The imaging modalities utilized in brain imaging are discussed in Section 3. The review
algorithms used in the study are provided in Section 4. A review of the relevant state-of-
the-art is provided in Section 5. The review is discussed in Section 6. The work’s conclusion
is presented in Section 7.

2. Types of Brain Tumors

The main three parts of the brain are the brain stem, cerebrum, and cerebellum [1].
The cerebellum is the second-largest component of the brain and manages bodily motor
activities, including balance, posture, walking, and general coordination of movements. It
is positioned behind the brain and connected to the brain stem. Internal white matter, tiny
but deeply positioned volumes of gray matter, and a very thin gray matter outer cortex
can all be found in the cerebellum and cerebrum. The brainstem links to the spinal cord.
It is situated at the brain’s base. Vital bodily processes, including motor, sensory, cardiac,
repositories, and reflexes, are all under the control of the brainstem. Its three structural
components are the medulla oblongata, pons, and midbrain [2]. A brain tumor is the
medical term for an unexpected growth of brain cells [8]. According to the tumor’s location,
the kind of tissue involved, and whether they are malignant or benign, scientists have
categorized several types of brain tumors based on the location of the origin (primary
or secondary) and additional contributing elements [9]. The World Health Organization
(WHO) categorized brain tumors into 120 kinds. This categorization is based on the cell’s
origin and behavior, ranging from less aggressive to greater aggressive. Even certain tumor
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forms are rated, with grades I being the least malignant (e.g., meningiomas, pituitary
tumors) and IV being the most malignant. Despite differences in grading systems that rely
on the kind of tumor, this denotes the pace of growth [10]. The most frequent type of brain
tumor in adults is glioma, which may be classified into HGG and LGG. The WHO further
categorized LGG into I–II grade tumors and HGG into III–IV grade. To reduce diagnosing
errors, accurate identification of the specific type of brain disorder is crucial for treatment
planning. A summary of various types of brain tumors is provided in Table 1.

Table 1. Types of brain tumors.

Types of Tumors Based on Type Comment

Nature

Benign Less aggressive and grows slowly

Malignant Life-threatening and rapidly
expanding

Origin

Primary tumor Originates in the brain directly

Secondary tumor
This tumor develops in another
area of the body like lung and

breast before migrating to the brain

Grading

Grade I Basically, regular in shape, and they
develop slowly

Grade II Appear strange to the view and
grow more slowly

Grade III These tumors grow more quickly
than grade II cancers

Grade IV Reproduced with greater rate

Progression stage

Stage 0 Malignant but do not invade
neighboring cells

Stage 1

Malignant and quickly spreadingStage 2

Stage 3

Stage 4 The malignancy invades every part
of the body

3. Imaging Modalities

For many years, the detection of brain abnormalities has involved the use of several
medical imaging methods. The two brain imaging approaches are structural and functional
scanning [11]. Different measurements relating to brain anatomy, tumor location, traumas,
and other brain illnesses compose structural imaging [12]. The finer-scale metabolic alter-
ations, lesions, and visualization of brain activity are all picked up by functional imaging
methods. Techniques including CT, MRI, SPECT, positron emission tomography (PET),
(FMRI), and ultrasound (US) are utilized to localize brain tumors for their size, location as
well as shape, and other characteristics [13].

3.1. MRI

MRI is a noninvasive procedure that utilizes nonionizing, safe radiation [14] to display
the 3D anatomical structure of any region of the body without the need for cutting the
tissue. To acquire images, it employs RF pulses and an intense magnetic field [15].

The body is intended to be positioned within an intense magnetic field. The water
molecules of the human body are initially in their equilibrium state when the magnets
are off. The magnetic field is then activated by moving the magnets. The body’s water
molecules align with the magnetic field’s direction under the effect of this powerful mag-
netic field [14]. Protons are stimulated to spin opposing the magnetic field and realign
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by the application of a high RF energy pulse to the body in the magnetic field’s direction.
Protons are stimulated to spin opposing the magnetic field and realign by the application
of a high RF energy pulse to the body in the magnetic field’s direction. When the RF energy
pulse is stopped, the water molecules return to their state of equilibrium and align with
the magnetic field once more [14]. This causes the water molecules to produce RF energy,
which the scanner detects and transforms into visual images [16]. The tissue structure
determines the amount of RF energy the water molecules can use. As we can see in Figure 1,
healthy brain has white matter (WM), gray matter (GM), and CSF, according to a structural
MRI scan [17]. The primary difference between these tissues in a structural MRI scan is
based on the amount of water they contain, with WM constituting 70% water and GM
containing 80% water. The CSF fluid is almost entirely composed of water, as shown in
Figure 1.

Figure 1. Healthy brain MRI image showing white matter (WM), gray matter (GM), and CSF [17].

Figure 2 illustrates the fundamental MRI planes used to visualize the anatomy of
the brain: axial, coronal, and sagittal. Tl, T2, and FLAIR MRI sequences are most often
employed for brain analysis [14]. A Tl-weighted scan can distinguish between gray and
white matter. T2-weighted imaging is water-content sensitive and is therefore ideally suited
to conditions where water accumulates within the tissues of the brain.

Figure 2. Fundamental MRI planes: (a) coronal, (b) sagittal, and (c) axial.

In pathology, FLAIR is utilized to differentiate between CSF and abnormalities in the
brain. Gray-level intensity values in pixel spaces form an image during an MRI scan. The
values of the gray-level intensity are dependent on the cell density. On T1 and T2 images
of a tumor brain, the intensity level of the tumorous tissues differs [16]. The properties of
various MRI sequences are shown in Table 2.

175



Diagnostics 2023, 13, 3007

Table 2. Properties of various MRI sequences.

T1 T2 Flair

White Matter Bright Dark Dark

Gray Matter Gray Dark Dark

CSF Dark Bright Dark

Tumor Dark Bright Bright

Most tumors show low or medium gray intensity on T1-w. On T2-w, most tumors
exhibit bright intensity [17]. Examples of MRI tumor intensity level are shown in Figure 3.

Figure 3. MRI brain tumor: (a) FLAIR image, (b) T1 image, and (c) T2 image [17].

Another type of MRI identified as functional magnetic resonance imaging (fMRI) [18]
measures changes in blood oxygenation to interpret brain activity. An area of the brain that
is more active begins to use more blood and oxygen. As a result, an fMRI correlates the
location and mental process to map the continuing activity in the brain.

3.2. CT

CT scanners provide finely detailed images of the interior of the body using a revolving
X-ray beam and a row of detectors. On a computer, specific algorithms are used to process
the images captured from various angles to create cross-sectional images of the entire
body [19]. However, a CT scan can offer more precise images of the skull, spine, and other
bone structures close to a brain tumor, as shown in Figure 4. Patients typically receive
contrast injections to highlight aberrant tissues. The patient may occasionally take dye to
improve their image. When an MRI is unavailable, and the patient has an implantation
like a pacemaker, a CT scan may be performed to diagnose a brain tumor. The benefits of
using CT scanning are low cost, improved tissue classification detection, quick imaging,
and more widespread availability. The radiation risk in a CT scan is 100 times greater than
in a standard X-ray diagnosis [19].

Figure 4. CT brain tumor.
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3.3. PET

An example of a nuclear medicine technique that analyzes the metabolic activity of
biological tissues is positron emission tomography (PET) [20]. Therefore, to help evaluate
the tissue being studied, a small amount of a radioactive tracer is utilized throughout the
procedure. Fluorodeoxyglucose (FDG) is a popular PET agent for imaging the brain. To
provide more conclusive information on malignant (cancerous) tumors and other lesions,
PET may also be utilized in conjunction with other diagnostic procedures like CT or MRI.
PET scans an organ or tissue by utilizing a scanning device to find photons released by a
radionuclide at that site [20]. The chemical compounds that are normally utilized by the
specific organ or tissue throughout its metabolic process are combined with a radioactive
atom to create the tracer used in PET scans, as shown in Figure 5.

Figure 5. PET brain tumor.

3.4. SPECT

A nuclear imaging examination called a single-photon emission computed tomogra-
phy (SPECT) combines CT with a radioactive tracer. The tracer is what enables medical
professionals to observe the blood flow to tissues and organs [21]. A tracer is injected
into the patient’s bloodstream prior to the SPECT scan. The radiolabeled tracer generates
gamma rays that the CT scanner can detect since it is radiolabeled. Gamma-ray information
is gathered by the computer and shown on the CT cross-sections. A 3D representation of
the brain can be created by adding these cross-sections back together [21].

3.5. Ultrasound

An ultrasound is a specialized imaging technique that provides details that can be
useful in cancer diagnosis, especially for soft tissues. It is frequently employed as the
initial step in the typical cancer diagnostic procedure [22]. One advantage of ultrasound
is that a test can be completed swiftly and affordably without subjecting the patient to
radiation. However, ultrasound cannot independently confirm a cancer diagnosis and is
unable to generate images with the precise level of resolution or detail like a CT or MRI
scan. A medical expert gently moves a transducer throughout the patient’s skin across
the region of the body being examined during a conventional ultrasound examination.
A succession of high-frequency sounds is generated by the transducer, which “bounce
off” the patient’s interior organs. The ensuing echoes return to the ultrasound device,
which then transforms the sound waves into a 2D image that may be observed in real-time
on a monitor. According to [22], US probes have been applied in brain tumor resection.
According to the degree of density inside the tissue being assessed, the shape and strength
of ultrasonic echoes can change. An ultrasound can detect tumors that may be malignant
because solid masses and fluid-filled cysts bounce sound waves differently.
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4. Classification and Segmentation Method

As was stated in the introduction, brain tumors are a leading cause of death world-
wide. Computer-aided detection and diagnosis refer to software that utilizes DL, ML, and
computer vision for analyzing radiological and pathological images. It has been created to
assist radiologists in diagnosing human disease in various body regions, including appli-
cations for brain tumors. This review explored different CAT-based artificial intelligence
approaches, including ML and DL, for automatically classifying and segmenting tumors.

4.1. Classification Methods

A classification is an approach in which related datasets are grouped together accord-
ing to common features. A classifier in classification is a model created for predicting the
unique features of a class label. Predicting the desired class for each type of data is the
fundamental goal of classification. Deep learning and machine learning techniques are
used for the classification of medical images. The key distinction between the two types is
the approach for obtaining the features used in the classification process.

4.1.1. Machine Learning

ML is a branch of AI that allows computers to learn without being explicitly pro-
grammed. Classifying medical images, including lesions, into various groups using input
features has become one of the latest applications of ML. There are two types of ML algo-
rithms: supervised learning and unsupervised learning [23]. ML algorithms learn from
labeled data in supervised learning. Unsupervised learning is the process by which ML
systems attempt to comprehend the interdata relationship using unlabeled data. ML has
been employed to analyze brain cancers in the context of brain imaging [24]. The main
stages of ML classification are image preprocessing, feature extraction, feature selection,
and classification. Figure 6 illustrates the process architecture.

Figure 6. ML block diagram.

1. Data Acquisition

As previously noted, we can collect brain cancer images using several imaging modal-
ities such as MRI, CT, and PET. This technique effectively visualizes aberrant brain tissues.

2. Preprocessing

Preprocessing is a very important stage in the medical field. Normally, noise enhance-
ment or reduction in images occurs during preprocessing. Medical noise significantly
reduces image quality, making them diagnostically inefficient. To properly classify medical
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images, the preprocessing stage must be effective enough to eliminate as much noise as
possible without affecting essential image components [25]. This procedure is carried out
using a variety of approaches, including cropping, image scaling, histogram equalization,
filtering using a median filter, and image adjusting [26].

3. Feature extraction

The process of converting images into features based on several image characteristics in
the medical field is known as feature extraction. These features carry the same information
as the original images but are entirely different. This technique has the advantages of
enhancing classifier accuracy, decreasing overfitting risk, allowing users to analyze data,
and speeding up training [27]. Texture, contrast, brightness, shape, gray level co-occurrence
matrix (GLCM) [28], Gabor transforms [29], wavelet-based features [30], 3D Haralick
features [31], and histogram of local binary patterns (LBP) [32] are some of the examples of
the various types of features.

4. Feature selection

The technique attempts to arrange the features in ascending order of importance
or relevance, with the top features being mostly employed in classification. As a result,
multiple feature selection techniques are needed to reduce redundant information to
discriminate between relevant and nonrelated features [33], such as PCA [34], genetic
algorithm (GA) [35], and ICA [36].

5. ML algorithm

Machine learning aims to divide the input information into separate groups based
on common features or patterns of behavior. KNN [35], ANN [37], RF [38], and SVM [39]
are examples of supervised methods. These techniques include two stages: training and
testing. During training, the data are manually labeled using human involvement. The
model is first constructed in this step, after which it is utilized to determine the classes that
are unlabeled in the testing stage. Application of the KNN algorithm works by finding
the points that are closest to each other by computing the distance between them using
one of several different approaches, including the Hamming, Manhatten, Euclidean, and
Minkowski distances [35].

The support vector machine (SVM) technique is frequently employed for classification
tasks. Every feature forming a data point in this approach, which represents a coordinate,
is formed in a distinct n-space. As a result, the objective of the SVM method is to identify
a boundary or line across a space with n dimensions, referred to as a hyperplane that
separates classes [39]. There are numerous ways to create different hyperplanes, but the
one with the maximum margin is the best. The maximum margin is the separation between
the most extreme data points inside a class, often known as the support vectors.

4.1.2. Extreme Learning Machine (ELM)

Another new field that uses less computing than neural networks is evolutionary
machine learning (EML). It is based on the real-time classification and regression technique
known as the single-layer feed-forward neural network (SLFFNN). The input-to-hidden
layer weights in the ELM are initialized randomly, whereas the hidden-to-output layer
weights are trained to utilize the Moore–Penrose inverse method [40] to obtain a least-
squares solution. As a result, classification accuracy is increased while net complexity,
training time, and learning speed are all reduced.

Additionally, the hidden layer weights provide the network the capacity to multitask
similar to other ML techniques such as KNN, SVM, and Bayesian networks [40]. As shown
in Figure 7, the ELM network is composed of three levels, all of which are connected.
Weights between the hidden and output layers can only vary, but the weights between the
input and hidden layers are initially fixed at random and remain so during training.
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Figure 7. Extreme learning machine.

4.1.3. Deep Learning (DL)

Beginning a few years ago, deep learning, a branch of machine learning, has been uti-
lized extensively to create automatic, semiautomatic, and hybrid models that can accurately
detect and segment tumors in the shortest period possible [41]. DL can learn the features
that are significant for a problem by utilizing a training corpus with sufficient diversity
and quality. Deep learning [42] has achieved excellent success in tackling the issues of
ML by combining the feature extraction and selection phases into the training process [43].
Deep learning is motivated by the comprehension of neural networks that exist within
the human brain. DL models are often represented as a sequence of layers generated by
a weighted sum of information from the previous layer. The data are represented by the
first layer, while the output is represented by the last layer [44]. Deep learning models
can tackle extremely difficult problems while often requiring less human interaction than
conventional ML techniques because several layers make it possible to duplicate complex
mapping functions.

The most common DL model used for the categorization and segmentation of images
is a convolution neural network (CNN). In a hierarchical manner, CNN analyzes the spatial
relationship of pixels. Convoluting the images with learned filters creates a hierarchy of
feature maps, which is how this is accomplished. This convolution function is performed
in several layers such that the features are translation- and distortion-invariant and hence
accurate to a high degree [45]. Figure 8 illustrates the main process in DL.

Figure 8. DL block diagram.
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Preprocessing is primarily used to eliminate unnecessary variation from the input
image and make training the model easier. More actions are required to extend beyond
neural network models’ limits, such as resizing normalization. All images must be resized
before being entered into CNN classification models since DL requires inputs of a constant
size [46]. Images that are greater than the desired size can be reduced by downscaling,
interpolation, or cutting the background pixels [46].

Many images are required for CNN-based classification. Data augmentation is one
of the most important data strategies for addressing issues with unequal distribution and
data paucity [47].

CNN’s architecture is composed of three primary layers: convolutional, pooling, and
fully connected. The first layer is the main layer that is able to extract image features such as
edges and boundaries. Based on the desired prediction results, this layer may automatically
learn many filters in parallel for the training dataset. The first layer creates features, but
the second layer oversees data reduction, which minimizes the size of those features and
reduces the demand for computing resources. Every neuron in the final layer, which is a
completely connected layer, is coupled to every neuron in the first layer. The layer serves as
a classifier to classify the acquired feature vector of previous layers [48,49]. The approach
that CNN uses is similar to how various neural networks work: it continually modifies its
weights by taking an error from the output and inserting it as output to improve filters and
weights. In addition, CNN standardizes the output utilizing a SoftMax function [50]. Many
types of CNN architecture exist, including ResNet, AlexNet, and cascade-CNN, among
others [51].

4.2. Segmentation Method

Brain tumor segmentation, which has been employed in some research, is an important
step in improving disease diagnosis, evaluation, treatment plans, and clinical trials. The
purpose of segmentation in tumor classification is to detect the tumor location from brain
scans, improve representation, and allow quantitative evaluations of image structures
during the feature extraction step [52]. Brain tumor segmentation can be accomplished in
two ways: manually and completely automatically [53].

Manual tumor segmentation from brain scans is a difficult and time-consuming proce-
dure. Furthermore, the artifacts created during the imaging procedure result in poor-quality
images that are difficult to analyze. Additionally, due to uneven lesions, geographical
flexibility, and unclear borders, manual detection of brain tumors is challenging. This sec-
tion discusses several automated brain tumor segmentation strategies to help radiologists
overcome these issues.

4.2.1. Region-Based Segmentation

A region in an image is a collection of related pixels that comply with specific ho-
mogeneity requirements, such as shape, texture, and pixel intensity values [54]. In a
region-based segmentation, the image is divided into disparate areas to precisely identify
the target region [55]. When grouping pixels together, the region-based segmentation
takes into consideration the pixel values, such as gray-level variance and difference, as
well as their spatial closeness, such as the Euclidean distance or region density. K-means
clustering [56] and FCM [56] are the most techniques used in this method.

4.2.2. Thresholding Methods

The thresholding approach is a straightforward and effective way to separate the
necessary region [57], but finding an optimum threshold in low-contrast images may
be challenging.

Based on picture intensity, threshold values are chosen using histogram analysis [58].
There are two types of thresholding techniques: local and global. The global thresholding
approach is the best choice for segmentation if the objects and the background have highly
uniform brightness or intensity. The Gaussian distribution approach may be used to
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obtain the ideal threshold value [59]. Otsu thresholding [38] is the popular method among
these techniques.

4.2.3. Watershed Techniques

The intensities of the image are analyzed using watershed techniques [60]. Topological
watershed [61], marker-based watershed [62], and image IFT watershed [63] are a few
examples of watershed algorithms.

4.2.4. Morphological-Based Method

The morphology technique relies on the morphology of image features. It is mostly
used for extracting details from images based on shape representation. Dougherty [64]
defines dilation and erosion as two basic operations. Dilation is used to increase the size of
an image. Erosion reduces the size of images.

4.2.5. Edge-Based Method

Edge detection is performed using variations in image intensity. Pixels at an edge are
those where the image’s function abruptly changes. Edge-based segmentation techniques
include those by Sobel, Roberts, Prewitt, and Canny [65]. Reference [66] offers an enhanced
edge detection approach for tumor segmentation. The development of an automated
image-dependent thresholding is combined with the Sobel operator to identify the edges of
the brain tumor.

4.2.6. Neural-Networks-Based Method

Neuronal network-based segmentation techniques employ computer models of artifi-
cial neural networks consisting of weighted connections between processing units (called
neurons). At the connections, the weights act as multipliers. To acquire the coefficient
values, training is necessary. The segmentation of medical images and other fields has
made use of a variety of neural network designs. Some of the techniques utilized in the
segmentation process include the multilayer perceptron (MLP), Hopfield neural networks
(HNN) [67], back-propagation learning algorithm, SVM-based segmentation [68], and
self-organizing maps (SOM) neural network [67].

4.2.7. DL-Based Segmentation

The primary strategy used in the DL-based segmentation of brain tumors technique
is to pass an image through a series of deep learning structures before performing input
image segmentation based on the deep features [69]. Many deep learning methods, such as
deep CNNs, CNN, and others, have been suggested for segmenting brain tumors.

A deep learning system called semantic segmentation [70] arranges pixels in an
image according to semantic categories. The objective is to create a dense pixel-by-pixel
segmentation map of the image, and each pixel is given an assigned category or entity.

4.3. Performance Evaluation

An important component of every research work involves evaluating the classification
and segmentation performance. The primary goal of this evaluation is to measure and
analyze the model’s capability for segmentation or diagnostic purposes. Segmentation is a
crucial step in improving the diagnostic process, as we mentioned before, but for this to
occur, the segmentation process must be as accurate as feasible. Additionally, to evaluate
the diagnostic approach utilized while taking complexity and time into account [71].

True positive (TP), true negative (TN), false positive (FP), and false negative (FN) are
the main four elements in any analysis or to evaluate any segmentation or classification
algorithm. A pixel that is accurately predicted to be assigned to the specified class in a
segmentation method is represented by TP and TN based on the ground truth. Furthermore,
FP is a result when the model predicts a pixel wrongly as not belonging to a specific class. A
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false negative (FN) results when the model wrongly predicts a pixel belonging to a certain
class [71].

TP in classification tasks refers to an image that is accurately categorized into a positive
category based on the ground truth. Similar to this, the TN result occurs when the model
properly classifies an image in the negative category. As opposed to that, FP results occur
when the model wrongly assigns an image in the positive class while the actual datum is
in the negative category. FN results occur when the model misclassifies an image while it
belongs in the positive category. Through the four elements mentioned above, different
performance measures enable us to expand the analysis.

Accuracy (ACC) measures a model’s ability to correctly categorize all pixels/classes,
whether they are positive or negative. Sensitivity (SEN) shows the percentage of accurately
predicted positive images/pixels among all actual positive samples. It evaluates a model’s
ability to recognize relevant samples or pixels. The percentage of actual negatives that were
predicted is known as specificity (SPE). It indicates a percentage of classes or pixels that
could not be accurately recognized [71].

The precision (PR) or positive predictive value (PPV) measures how frequently the
model correctly predicts the class or pixel. It provides the precise percentage of positively
expected results from models. The most often used statistic that combines SEN and
precision is the F1 score [72]. It refers to the two-dimensional harmonic mean.

The Jaccard index (JI), also known as intersection over union (IoU), calculates the
percentage of overlap between the model’s prediction output and the annotation ground-
truth mask.

The spatial overlap between the segmented region of the model and the ground-
truth tumor region is measured by the Dice similarity coefficient (DSC). A DSC value
of zero means there is no spatial overlap between the annotated model result and the
actual tumor location, whereas a value of one means there is complete spatial overlap. The
receiver characteristics curve is summarized by the area under the curve (AUC), which
compares SEN to the false positive rate as a measure of a classifier’s ability to discriminate
between classes.

The similarity between the segmentation produced by the model and the expert-
annotated ground truth is known as the similarity index (SI). It describes how the identifica-
tion of the tumor region is comparable to that of the input image [71]. Table 3 summarizes
different performance equations.

Table 3. Performance equation.

Parameter Equation

ACC (TP + TN)/(TP + FN + FP + TN)

SEN TP/(TP + FN)

SPE TN/(TN + FP)

PR TP/(TP + FP)

F1_SCORE 2 ∗ PR ∗ SEN/(PR + SEN)

DCS 2 ∗ TP/(2 ∗ TP + FP + FN

Jaccard TP/(TP + FP + FN)

5. Literature Review

5.1. Article Selection

The major goal of this study is to review and understand brain tumor classification
and detection strategies developed worldwide between 2010 and 2023. This present study
aims to review the most popular techniques for detecting brain cancer that have been made
available globally, in addition to looking at how successful CAD systems are in this process.

We did not target any one publisher specifically, but we utilized articles from a variety
of sources to account for the diversity of knowledge in a particular field. We collected

183



Diagnostics 2023, 13, 3007

appropriate articles from several internet scientific research article libraries. We searched
the pertinent publications using IEEE Explore, Medline, ScienceDirect, Google Scholar,
and ResearchGate.

Each time, the filter choice for the year (2010 to 2023) was chosen so that only papers
from the chosen period were presented. Most frequently, we used terms like “detection
of MRI images using deep learning,” “classification of brain tumor from CT/MRI images
using deep learning,” “detection and classification of brain tumor using deep learning,”
“CT brain tumor,” “PET brain tumor,” etc. This study offers an analysis of 53 chosen
publications.

5.2. Publicly Available Datasets

The researchers tested the proposed methods on several publicly accessible datasets.
In this part, several significant and difficult datasets are covered. The most difficult MRI
datasets are BRATS. Table 4 presents a summary of the dataset names.

Table 4. Summary of the dataset.

Dataset MRI Sequences Source

BRATS T1, T2, FLAIR [73]

RIDER T1, T2, FLAIR [74]

Harvard T2 [75]

TCGA T1, T2, FLAIR [76,77]

Figshare T1 [78]

IXI T1, T2 [79]

5.3. Related Work

In addition to the several techniques for segmenting brain tumors that we already
highlighted, this section presents a summary of studies that use artificial intelligence to
classify brain tumors.

5.3.1. MRI Brain Tumor Segmentation

This section describes the various machine learning, deep learning, region growth,
thresholding, and literature-proposed brain tumor segmentation strategies.

To segment brain tumors, Gordillo et al. [80] utilized fuzzy logic structure, which they
built utilizing features extracted from MR images and expert knowledge. This system
learns unsupervised and is fully automated. With trials conducted on two different forms
of brain tumors, glioblastoma multiform and meningioma, the result of segmentation using
this approach is shown to be satisfactory, with the lowest accuracy of 71% and a maximum
of 93%.

Employing fuzzy c-means clustering on MRI, Rajendran [81] presented logic analyzing
for segmenting brain tumors. The region-based technique that iteratively progresses
toward the ultimate tumor border was initialized using the tumor type output of fuzzy
clustering. Using 15 MR images with manual segmentation ground truth available, tests
were conducted on this approach to determine its effectiveness. The overall result was
suitable, with a sensitivity of 96.37% and an average Jaccard coefficient value of 83.19%.

An SVM classifier was applied by Kishore et al. to categorize tumor pixels using
vectors of features from MR images, such as mean intensity and LBP. Level sets and region-
growing techniques were used for the segmentation. The experiments on their suggested
methods used MR images with tumor regions manually defined by 11 different participants.
Their suggested methods are effective, with a DSC score of 0.69 [82].

A framework for segmenting tumorous MRI 3D images was presented by Abbasi
and Tajeripour [38]. The first phase improves the input image’s contrast using bias field
correction. The data capacity is reduced using the multilevel Otsu technique in the second
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phase. LBP in three orthogonal planes and an enhanced histogram of images are employed
in the third stage, the feature extraction step. Lastly, the random forest is employed as a
classifier for distinguishing tumorous areas since it can work flawlessly with large inputs
and has a high level of segmentation accuracy. The overall outcome was acceptable, with a
mean Jaccard value of 87% and a DSC of 93%.

By combining two K-means and FCM-clustering approaches, Almahfud et al. [83]
suggest a technique for segmenting human brain MRI images to identify brain cancers.
Because K-means is more susceptible to color variations, it can rapidly and effectively
discover optima and local outliers. So that the cluster results are better and the calculation
procedure is simpler, the K-means results are clustered once more with FCM to categorize
the convex contour based on the border. To increase accuracy, morphology and noise
reduction procedures are also suggested. Sixty-two brain MRI scans were used in the study,
and the accuracy rate was 91.94%.

According to Pereira et al. [69], an automated segmentation technique based on CNN
architecture was proposed, which explores small three-by-three kernels. Given the smaller
number of weights in the network, using small kernels enables the creation of more intricate
architectures and helps prevent overfitting. Additionally, they looked at the use of intensity
normalizing as an initial processing step, which, when combined with data augmentation,
was highly successful in segmenting brain tumors in MRI images. Their suggestion was
verified using the BRATS database, yielding Dice similarity coefficient values of 0.88, 0.83,
and 0.77 for the Challenge dataset for the whole, core, and enhancing areas.

According to the properties of a separated local square, they suggested a unique
approach for segmenting brain tumors [84]. The suggested procedure essentially consists
of three parts. An image was divided into homogenous sections with roughly comparable
properties and sizes using the super-pixel segmentation technique in the first stage. The
second phase was the extraction of gray statistical features and textural information. In
the last phase of building the segmentation model, super-pixels were identified as either
tumor areas or nontumor regions using SVM. They used 20 images from the BRATS dataset,
where a DSC of 86.12% was attained, to test the suggested technique.

The CAD system suggested by Gupta et al. [85] offers a noninvasive method for
the accurate tumor segmentation and detection of gliomas. The system takes advantage
of the super pixels’ combined properties and the FCM-clustering technique. The sug-
gested CAD method recorded 98% accuracy for glioma detection in both low-grade and
high-grade tumors.

Brain tumor segmentation using the CNN-based data transfer to SVM classifier ap-
proach was proposed by Cui et al. [68]. Two cascaded phases comprise their algorithm.
They trained CNN in the initial step to understand the mapping of the image region to
the tumor label region. In the testing phase, they passed the testing image and CNN’s
anticipated label output to an SVM classifier for precise segmentation. Tests and evalua-
tions show that the suggested structure outperforms separate SVM-based or CNN-based
segmentation, while DSC achieved 86.12%.

The two-pathway-group CNN architecture described by Razzak et al. is a novel
approach for brain tumor segmentation that simultaneously takes advantage of local and
global contextual traits. This approach imposes equivariance in the 2PG-CNN model
to prevent instability and overfitting parameter sharing. The output of a basic CNN is
handled as an extra source and combined at the last layer of the 2PG CNN, where the
cascade architecture was included. When a group CNN was embedded into a two-route
architecture for model validation using BRATS datasets, the results were DSC 89.2%, PR
88.22%, and SEN 88.32% [86].

A semantic segmentation model for the segmentation of brain tumors from multi-
modal 3D MRIs for the BRATS dataset was published in [87]. After experimenting with
several normalizing techniques, they discovered that group-norm and instance-norm per-
formed equally well. Additionally, they have tested with more advanced methods of data
augmentation, such as random histogram pairing, linear image transformations, rotations,
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and random image filtering, but these have yet to show any significant benefit. Further,
raising the network depth had no positive effect on performance. However, increasing the
number of filters consistently produced better results. Their BRATS end testing dataset
values were 0.826, 0.882, and 0.837 for overall Dice coefficient or improved tumor core,
entire tumor, and tumor center, respectively.

CNN was used by Karayegen and Aksahin [88] to offer a semantic segmentation
approach for autonomously segmenting brain tumors on BRATS image datasets that
include images from four distinct imaging modalities (T1, T1C, T2, and FLAIR). This
technique was effectively used, and images were shown in a variety of planes, including
sagittal, coronal, and axial, to determine the precise tumor location and parameters such as
height, breadth, and depth. In terms of tumor prediction, evaluation findings of semantic
segmentation carried out using networks are incredibly encouraging. The mean IoU and
mean prediction ratio were both calculated to be 86.946 and 91.718, respectively.

A novel, completely automatic method for segmenting brain tumor regions was
proposed by Ullah et al. [89] using multiscale residual attention CNN (MRA-UNet). To
maintain the sequential information, MRA-UNet uses three sequential slices as its input.
By employing multiscale learning in a cascade path, it can make use of the adaptable
region of interest strategy and precisely segment improved and core tumor regions. In the
BRATS-2020 dataset, their method produced novel outcomes with an overall Dice score of
90.18%.

A new technique for segmenting brain tumors using the fuzzy Otsu thresholding
morphology (FOTM) approach was presented by Wisaeng and Sa-Ngiamvibool [90]. The
values from each single histogram in the original MRI image were modified by using a
color normalizing preprocessing method in conjunction with histogram specification. The
findings unambiguously demonstrate that image gliomas, image meningiomas, and image
pituitary have average accuracy indices of 93.77%, 94.32%, and 94.37%, respectively. A
summary of MRI brain tumor segmentation is provided in Table 5.

Table 5. MRI brain tumor segmentation.

Ref. Scan Year Technique Method Performance Metrics Result

[80] MRI 2010 region-based FCM Acc 93.00%

[81] MRI 2011 region-based FCM Jaccard 83.19%

[82] MRI 2012 NN LBP with SVM DSC 69.00%

[69] MRI 2016 DL CNN DSC 88.00%

[84] MRI 2017 NN GLCM with
SVM DSC 86.12%

[38] MRI 2017 NN LBP with RF Jaccard and DSC
87%
and
93%

[85] MRI 2018 region-based FCM Acc 98.00%

[83] MRI 2018 region-based FCM and
k-mean Acc 91.94%

[68] MRI 2019 DL and NN CNN with
SVM DSC 88.00%

[86] MRI 2019 DL Two-path
CNN DSC 89.20%

[87] MRI 2019 DL semantic Acc 88.20%

[88] MRI 2021 DL semantic IoU 91.72%

[89] MRI 2022 DL MRA-UNet DSC 98.18%

[90] MRI 2023 region-based Fuzzy Otsu
Threshold Acc 94.37%
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5.3.2. MRI Brain Tumor Classification Using ML

The automated classification of brain cancers using MRI images has been the subject
of several studies. Cleaning data, feature extraction, and feature selection are the basic
steps in the machine learning (ML) process that have been used for this purpose. Building
an ML model based on labeled samples is the last step. A summary of MRI brain tumor
classification using ML is provided in Table 6.

An NN-based technique to categorize a given MR brain image as either normal or
abnormal is presented in [91]. In this method, features were first extracted from images
using the wavelet transform, and then the dimensionality of the features was reduced using
PCA methodology. The reduced features were routed to a back-propagation NN that uses
a scaled conjugate gradient (SCG) to determine the best weights for the NN. This technique
was used on 66 images, 18 of which were normal and 48 abnormal. On training and test
images, the classification accuracy was 100%.

An automated and efficient CAD method based on ensemble classifiers was proposed
by Arakeri and Reddy [36] for the classification of brain cancers on MRI images as benign
or malignant. A tumor’s texture, shape, and border properties were extracted and used
as a representation. The ICA approach was used to select the most significant features.
The ensemble classifier, consisting of SVM, ANN, and kNN classifiers, is trained using
these features to describe the tumor. A dataset consisting of 550 patients’ T1- and T2-
weighted MR images was used for the experiments. With an accuracy of 99.09% (sensitivity
100% and specificity 98.21%), the experimental findings demonstrated that the suggested
classification approach achieves strong agreement with the combined classifier and is
extremely successful in the identification of brain tumors. Figure 9 illustrates the CAD
method based on ensemble classifiers.

Figure 9. CAD method based on ensemble classifiers.

In [92], the authors suggested a novel, wavelet-energy-based method for automatically
classifying MR images of the human brain into normal or abnormal. The classifier was
SVM, and biogeography-based optimization (BBO) was utilized to enhance the SVM’s
weights. They succeeded in achieving 99% precision and 97% accuracy.

Amin et al. [28] suggest an automated technique to distinguish between malignant
and benign brain MRI images. The segmentation of potential lesions has used a variety of
methodologies. Then, considering shape, texture, and intensity, a feature set was selected
for every candidate lesion. The SVM classifier is then used on the collection of features
to compare the proposed framework’s precision using various cross-validations. Three
benchmark datasets, including Harvard, Rider, and Local, are used to verify the suggested
technique. For the procedure, the average accuracy was 97.1%, the area under the curve
was 0.98, the sensitivity was 91.9%, and the specificity was 98.0%.

A suitable CAD approach toward classifying brain tumors is proposed in [93]. The
database includes meningioma, astrocytoma, normal brain areas, and primary brain tumors.
The radiologists selected 20 × 20 regions of interest (ROIs) for every image in the dataset.
Altogether, these ROI(s) were used to extract 371 intensity and texture features. These three
classes were divided using the ANN classifier. Overall classification accuracy was 92.43%.

Four hundred twenty-eight T1 MR images from 55 individuals were used in a varied
dataset for multiclass brain tumor classification [94]. A based-on content active contour
model extracted 856 ROIs. These ROIs were used to extract 218 intensity and texture
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features. PCA was employed in this study to reduce the size of the feature space. The ANN
was then used to classify these six categories. The classification accuracy was seen to have
reached 85.5%.

A unique strategy for classifying brain tumors in MRI images was proposed in [95]
by employing improved structural descriptors and hybrid kernel-SVM. To better classify
the image and improve the texture feature extraction process using statistical parameters,
they used GLCM and histograms to derive the texture feature from every region. Different
kernels were combined to create a hybrid kernel SVM classifier to enhance the classification
process. They applied this technique to only axial T1 brain MRI images—93% accuracy for
their suggested strategy.

A hybrid system composed of two ML techniques was suggested in [96] for classifying
brain tumors. For this, 70 brain MR images overall (60 abnormal, 10 normal) were taken
into consideration. DWT was used to extract features from the images. Using PCA, the
total number of features was decreased. Following feature extraction, feed-forward back-
propagation ANN and KNN were applied individually on the decreased features. The
back-propagation learning method for updating weights is covered by FP-ANN. KNN has
already been covered. Using KNN and FP-ANN, this technique achieves 97% and 98%
accuracy, respectively [96].

A strategy for classifying brain MRI images was presented in [97]. Initially, they used
an enhanced image improvement method that comprises two distinct steps: noise removal
and contrast enhancement using histogram equalization. Then, using a DWT to extract
features from an improved MR brain image, they further decreased these features by mean
and standard deviation. Finally, they developed a sophisticated deep neural network
(DNN) to classify the brain MRI images as abnormal or normal, and their strategy achieved
95.8%.

Table 6. MRI brain tumor classification using ML.

Ref. Scan Year
Feature

Extraction
Feature

Selection Classification Acc.

[96] MRI 2010 GLCM PCA ANN and KNN 98% and
97%

[91] MRI 2011 Wavelet PCA Back-propagation
NN 100.00%

[94] MRI 2013 Intensity and
texture PCA ANN 85.50%

[95] MRI 2014 GLCM - SVM 93.00%

[36] MRI 2015 Texture and
shape ICA SVM 99.09%

[92] MRI 2015 Wavelet - SVM 97.00%

[28] MRI 2017 Texture and
shape - SVM 97.10%

[93] MRI 2017 Intensity and
texture - ANN 92.43%

[97] MRI 2020 DWT
Mean and
standard
deviation

DNN 95.8%

5.3.3. MRI Brain Tumor Classification Using DL

Difficulties remain in categorizing brain cancers from an MRI scan, despite encour-
aging developments in the field of ML algorithms for the classification of brain tumors
into their different types. These difficulties are mostly the result of the ROI detection;
typical labor-intensive feature extraction methods could be more effective [98]. Owing
to the nature of deep learning, the categorization of brain tumors is now a data-driven
problem rather than a challenge based on manually created features [99]. CNN is one of
the deep learning models that is frequently utilized in brain tumor classification tasks and
has produced a significant result [100].
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According to a study [101], the CNN algorithm can be used to divide the sever-
ity of gliomas into two categories: low severity or high severity, as well as multiple
grades of severity (Grades II, III, and IV). Accuracy rates of 71% and 96% were reached by
the classifier.

A DL approach based on a CNN was proposed by Sultan et al. [7] to classify different
kinds of brain tumors using two publicly available datasets. The proposed method’s block
diagram is presented in Figure 10. The first divides cancers into meningioma, pituitary, and
glioma tumors. The other one distinguishes among Grade II, III, and IV gliomas. The first
and second datasets, which each have 233 and 73 patients, contain a combined total of 3064
and 516 T1 images. The suggested network configuration achieves the best overall accuracy,
96.13% and 98.7%, for the two studies, which results in significant performance [7].

Figure 10. A block schematic showing the suggested approach. Reprinted (adapted) with permission
from [7]. Copyright 2019 IEEE.

Similarly, ref. [102] showed how to classify brain MRI scan images into malignant and
benign using CNN algorithms in conjunction with augmenting data and image processing.
They evaluated the effectiveness of their CNN model with pretrained VGG-16, Inception-
v3, and ResNet-50 models using the transfer learning methodology. Even though the
experiment was carried out on a relatively small dataset, the results reveal that the model’s
accuracy result is quite strong and has a very low complexity rate, as it obtained 100%
accuracy, compared to VGG-16’s 96%, ResNet-50’s 89%, and Inception-V3’s 75%. The
structure of the suggested CNN architecture is shown in Figure 11.

Figure 11. Proposed method. Reprinted (adapted) with permission from [102]. Copyright 2020
Mathematical Biosciences and Engineering.

For accurate glioma grade prediction, researchers developed a customized CNN-based
deep learning model [103] and evaluated the performance using AlexNet, GoogleNet, and
SqueezeNet by transfer learning. Based on 104 clinical glioma patients with (50 LGGs
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and 54 HGGs), they trained and evaluated the models. The training data was expanded
using a variety of data augmentation methods. A five-fold cross-validation procedure
was used to assess each model’s performance. According to the study’s findings, their
specially created deep CNN model outperformed the pretrained models by an equal or
greater percentage. The custom model’s accuracy, sensitivity, F1 score, specificity, and AUC
values were, respectively, 0.971, 0.980, 0.970, 0.963, and 0.989.

A novel transfer learning-based active learning paradigm for classifying brain tumors
was proposed by Ruqian et al. [104]. Figure 12 describes the workflow for active learning.
On the MRI training dataset of 203 patients and the baseline validation dataset of 66 patients,
they used a 2D slice-based technique to train and fine-tune the model. Their suggested
approach allowed the model to obtain an area under the curve (ROC) of 82.89%. The
researchers built a balanced dataset and ran the same process on it to further investigate
the robustness of their strategy. Compared to the baseline’s AUC of 78.48%, the model’s
AUC was 82%.

Figure 12. Workflow of the suggested active learning framework based on transfer learning.
Reprinted (adapted) with permission from [104]. Copyright 2021 Frontiers in Artificial Intelligence.

A total of 131 patients with glioma were enrolled [105]. A rectangular ROI was used to
segment tumor images, and this ROI contained around 80% of the tumor. The test dataset
was then created by randomly selecting 20% of the patient-level data. Models previously
trained on the expansive natural image database ImageNet were applied to MRI images,
and then AlexNet and GoogleNet were developed from scratch and fine-tuned. Five-fold
cross-validation (CV) was used on the patient-level split to evaluate the classification task.
The averaged performance metrics for validation accuracy, test accuracy, and test AUC
from the five-fold CV of GoogleNet were, respectively, 0.867, 0.909, and 0.939.

Hamdaoui et al. [106] proposed an intelligent medical decision-support system for
identifying and categorizing brain tumors using images from the risk of malignancy index.
They employed deep transfer learning principles to avoid the scarcity of training data
required to construct the CNN model. For this, they selected seven CNN architectures that
had already been trained on an ImageNet dataset that they carefully fitted on (MRI) data of
brain tumors gathered from the BRATS database, as shown in Figure 13. Just the prediction
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that received the highest score among the predictions made by the seven pretrained CNNs
is produced to increase their model’s accuracy. They evaluated the effectiveness of the
primary two-class model, which includes LGG and HGG brain cancers, using a ten-way
cross-validation method. The test precision, F1 score, test precision, and test sensitivity for
their suggested model were 98.67%, 98.06%, 98.33%, and 98.06%, respectively.

Figure 13. Proposed process for deep transfer learning. Reprinted (adapted) with permission
from [106]. Copyright 2021 Indonesian Journal of Electrical Engineering and Computer Science.

A new AI diagnosis model called EfficientNetB0 was created by Khazaee et al. [107]
to assess and categorize human brain gliomas utilizing sequences from MR images. They
used a common dataset (BRATS-2019) to validate the new AI model, and they showed that
the AI components—CNN and transfer learning—provided outstanding performance for
categorizing and grading glioma images, with 98.8% accuracy.

In [70], the researchers developed a model using transfer learning and pretrained
ResNet18 to identify basal ganglia germinomas more accurately. In this retrospective
analysis, 73 patients with basal ganglioma were enrolled. Based on both T1 and T2 data,
brain tumors were manually segmented. To create the tumor classification model, the
T1 sequence was utilized. Transfer learning and a 2D convolutional network were used.
Five-fold cross-validation was used to train the model, and it resulted in a mean AUC
of 88%.

Researchers suggested an effective hyperparameter optimization method for CNN
based on Bayesian optimization [108]. This method was assessed by categorizing 3064
T1 images into three types of brain cancers (glioma, pituitary, and meningioma). Five
popular deep pretrained models are compared to the improved CNN’s performance us-
ing transfer learning. Their CNN achieved 98.70% validation accuracy after applying
Bayesian optimization.

A novel generated transfer DL model was developed by Alanazi et al. [109] for the early
diagnosis of brain cancers into their different categories, such as meningioma, pituitary,
and glioma. Several layers of the models were first constructed from scratch to test the
performance of standalone CNN models performed for brain MRI images. The weights
of the neurons were then revised using the transfer learning approach to categorize brain
MRI images into tumor subclasses using the 22-layer, isolated CNN model. Consequently,
the transfer-learned model that was created had an accuracy rate of 95.75%.

Rizwan et al. [110] suggested a method to identify various BT classes using Gaussian-
CNN on two datasets. One of the datasets is employed to categorize lesions into pituitary,
glioma, and meningioma. The other distinguishes between the three glioma classes (II, III,
and IV). The first and second datasets, respectively, have 233 and 73 victims from a total of
3064 and 516 images on T1 enhanced images. For the two datasets, the suggested method
has an accuracy of 99.8% and 97.14%.

A seven-layer CNN was suggested in [111] to assist with the three-class categorization
of brain MR images. To decrease computing time, separable convolution was used. The
suggested separable CNN model achieved 97.52% accuracy on a publicly available dataset
of 3064 images.
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Several pretrained CNNs were utilized in [112], including GoogleNet, Alexnet, Resnet50,
Resnet101, VGG-16, VGG-19, InceptionResNetV2, and Inceptionv3. To accommodate
additional image categories, the final few layers of these networks were modified. Data
from the clinical, Harvard, and Figshare repositories were widely used to assess these
models. The dataset was divided into training and testing halves in a 60:40 ratio. The
validation on the test set demonstrates that, compared to other proposed models, the
Alexnet with transfer learning demonstrated the best performance in the shortest time. The
suggested method obtained accuracies of 100%, 94%, and 95.92% using three datasets and
is more generic because it does not require any manually created features.

The suggested framework [113] describes three experiments that classified brain
malignancies such as meningiomas, gliomas, and pituitary tumors using three designs of
CNN (AlexNet, VGGNet, and GoogleNet). Using the MRI slices of the brain tumor dataset
from Figshare, each study then investigates transfer learning approaches like fine-tuning
and freezing. The data augmentation approaches are applied to the MRI slices for results
generalization, increasing dataset samples, and minimizing the risk of overfitting. The fine-
tuned VGG16 architecture attained the best accuracy at 98.69% in terms of categorization
in the proposed studies.

An effective hybrid optimization approach was used in [114] for the segmentation and
classification of brain tumors. To improve categorization, the CNN features were extracted.
The suggested chronological Jaya honey badger algorithm (CJHBA) was used to train the
deep residual network (DRN), which was used to conduct the classification by using the
retrieved features as input. The Jaya algorithm, the honey badger algorithm (HBA), and
the chronological notion are all combined in the proposed CJHBA. Using BRATS-2018, the
performance is assessed. The highest accuracy is 92.10%. A summary of MRI brain tumor
classification using DL is provided in Table 7.

Table 7. MRI brain tumor classification using DL.

Ref. Scan Year Technique Method Result
Performance

Metrics

[101] MRI 2015 DL Custom-CNN 96.00% Acc

[7] MRI 2019 DL Custom-CNN 98.70% Acc

[102] MRI 2020 DL VGG-16, Inception-v3, ResNet-50
96%
75%
89%

Acc

[103] MRI 2021 DL AlexNet, GoogleNet, SqueezeNet 97.10% Acc

[104] MRI 2021 DL Custom-CNN 82.89% ROC

[105] MRI 2018 DL AlexNet 90.90% Test acc

[106] MRI 2021 DL multi-CNN structure

98.67%
98.06%
98.33%
98.06%

precision,
F1 score,
precision,
sensitivity

[107] MRI 2022 DL EfficientNetB0 98.80% Acc

[70] MRI 2022 DL ResNet18 88.00% AUC

[108] MRI 2022 DL Custom-CNN 98.70% Acc

[109] MRI 2022 DL Custom-CNN 95.75% Acc

[110] MRI 2022 DL Gaussian-CNN 99.80% Acc

[111] MRI 2020 DL seven-layer CNN 97.52% Acc

[112] MRI 2021 DL Alexnet 100.00% Acc

[113] MRI 2019 DL VGG16 98.69% Acc

[114] MRI 2023 DL CNN 92.10% Acc
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5.3.4. Hybrid Techniques

Hybrid strategies use multiple approaches to achieve high accuracy, emphasizing
each approach’s benefits while minimizing the drawbacks. The first method employed a
segmentation technique to identify the part of the brain that was infected, and the second
method for classification. Hybrid techniques are summarized in Table 8.

The proposed integrated SVM and ANN-based method for classification can be dis-
covered in [115]. The FCM method is used to segment the brain MRI images initially, where
the updated membership and k value diverge from the standard method. Two types of
characteristics have been retrieved from segmented images to distinguish and categorize tu-
mors. Using SVM, the first category of statistical features was used to differentiate between
normal or abnormal brain MRI images. This SVM technique has an accuracy rate of 97.44%.
Area, perimeter, orientation, and eccentricity were additional criteria used to distinguish
between the tumor and various malignant stages I through IV. The tumor categories and
stages of malignant tumors are classified through the ANN back-propagation technique.
This suggested strategy has a 97.37% accuracy rate for categorizing tumor stages.

A hybrid segmentation strategy using ANN was suggested in [116] to enhance the
brain tumor’s classification outcomes. First, the tumor region was segmented using
skull stripping and thresholding. The segmented tumor was subsequently recognized
using the canny algorithm, and the features of the identified tumor cell region were then
used as the input of the ANN for classification; 98.9% accuracy can be attained with the
provided strategy.

A system that can identify and categorize the different types of tumors as well as
detect them in T1 and T2 image sequences was proposed by Ramdlon et al. [52]. Only the
axial section of the MRI results, which are divided into three classifications (Glioblastoma,
Astrocytoma, and Oligodendroglioma), are used for the data analysis using this method.
Basic image processing techniques were used to identify the tumor region, including image
enhancement, binarization, morphology, and watershed. Following the shape extraction
feature segmentation, the KNN classifier was used to classify tumors; 89.5% of tumors were
correctly classified.

Gurbina et al. [30] described the suggested integrated DWT and SVM classification
methods. The initial segmentation of the brain MRI images was performed using Ostu’s
approach. The DWT features were obtained from segmented images to identify and
categorize tumors. Brain MRI images were divided into benign and malignant categories
using an SVM classifier. This SVM method has a 99% accuracy rate.

The objective of the study in [117] is multilevel segmentation for effective feature
extraction and brain tumor classification from MRI data. The authors used thresholding,
the watershed algorithm, and morphological methods for segmentation after preprocessing
the MRI image data. Through CNN, features are extracted, and SVM classed the tumor
images as malignant or noncancerous. The proposed algorithm has an overall accuracy
of 87.4%.

The classification of brain tumors into three types—glioblastoma, sarcoma, and
metastatic—has been proposed by the authors of [118]. The authors first used FCM cluster-
ing to segment the brain tumor and then DWT to extract the features. PCA was then used
to minimize the characteristics. Using six layers of DNN, categorization was completed.
The suggested method displays 98% accuracy.

The method presented by Babu et al. [119] focused on categorizing and segmenting
brain cancers from MRI images. Four processes compose the procedure: image denoising,
segmentation of tumor, extracting features, and hybrid classification. They used the wavelet-
based method to extract features after employing the thresholding process to remove tumors
from brain MRI images. The final hybrid categorization was performed using CNN. The
experiment’s findings showed that the approach had a segmentation accuracy of 95.23%,
but the suggested optimized CNN had a classification accuracy of 99%.

Improved SVM was suggested as a novel algorithm by Ansari [120]. They recom-
mended four steps for identifying and classifying brain tumors using MRI data: preprocess-
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ing, segmentation of images, extracting features, and image categorization. They segmented
tumors using a fuzzy clustering approach and extracted key features using GLCM. In the
classification stage, improved SVM was finally used. The suggested approach has an 88%
accuracy rate.

A fully automated system for segmenting and diagnosing brain tumors was proposed
by Farajzadeh et al. [121]. This is accomplished by first applying five distinct preprocessing
techniques to an MR image, passing the images through a DWT, and then extracting six
local attributes from the image. The processed images are then delivered to an NN, which
subsequently extracts higher-order attributes from them. Another NN then weighs the
features and concatenates them with the initial MR image. The hybrid U-Net is then fed with
the concatenated data to segment the tumor and classify the image. For segmenting and
categorizing brain tumors, they attained accuracy rates of 98.93% and 98.81%, respectively.

Table 8. Hybrid techniques.

Ref. Year
Segmentation

Method
Feature

Extraction
Classifier Accuracy

[115] 2017 FCM shape and
statistical

SVM and
ANN

97.44% and
97.37%

[118] 2017 FCM DWT and
PCA CNN 98.00%

[52] 2019 watershed shape KNN 89.50%

[30] 2019 Ostu’s DWT SVM 99.00%

[117] 2020 thresholding and
watershed CNN SVM 87.4%.

[116] 2020 canny GLCM and
Gabor ANN 98.90%

[119] 2023 thresholding wavelet CNN 99.00%

[120] 2023 fuzzy clustering GLCM Improved
SVM 88.00%

[121] 2023 U-Net DWT CNN 98.93%

5.3.5. Various Segmentation and Classification Methods Employing CT Images

Wavelet statistical texture features (WST) and wavelet co-occurrence texture features
(WCT) were combined to segment brain tumors in CT images [122] automatically. After
utilizing GA to choose the best texture features, two different NN classifiers were tested to
segment the region of a tumor. This approach is shown to provide good outcomes with an
accuracy rate of above 97%. Architecture of NN is shown in Figure 14.

For the segmentation and classification of cancers in brain CT images utilizing SVM
with GA feature selection, a novel dominating feature extraction methodology was pre-
sented in [123]. They used FCM and K-means during the segmentation step and GLCM
and WCT during the feature extraction stage. This approach is shown to provide positive
results with an accuracy rate of above 98%.

An improved semantic segmentation model for CT images was suggested in [124].
Additionally, classification is used in the suggested work. In the suggested architecture, the
semantic segmentation network, which has several convolutional layers and pooling layers,
was used to first segment the brain image. Then, using the GoogleNet model, the tumor
was divided into three groups: meningioma, glioma, and pituitary tumor. The overall
accuracy achieved with this strategy was 99.6%.
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Figure 14. Architecture of NN.

A unique correlation learning technique utilizing CNN and ANN was proposed by
Woniak et al. [125]. CNN used the support neural network to determine the best filters for
the convolution and pooling layers. Consequently, the main neural classification improved
efficiency and learns more quickly. Results indicated that the CLM model can achieve 96%
accuracy, 95% precision, and 95% recall.

The contribution of image fusion to an enhanced brain tumor classification framework
was examined by Nanmaran et al. [126], and this new fusion-based tumor categoriza-
tion model can be more successfully applied to personalized therapy. A distinct cosine
transform-based (DCT) fusion technique is utilized to combine MRI and SPECT images of
benign and malignant class brain tumors. With the help of the features extracted from fused
images, SVM, KNN, and decision trees were set to test. When using features extracted from
fused images, the SVM classifier outperformed KNN and decision tree classifiers with an
overall accuracy of 96.8%, specificity of 93%, recall of 94%, precision of 95%, and F1 score
of 91%. Table 9 provides different segmentation and classification methods employing
CT images.

Table 9. Various segmentation and classification methods employing CT images.

Ref. Year Type Segmentation Feature Extraction
Feature

Selection
Classification Result

[122] 2011 CT NN WCT and WST GA - 97.00%

[123] 2011 CT FCM and
k-mean GLCM and WCT GA SVM 98.00%

[124] 2020 CT Semantic - - GoogleNet 99.60%

[125] 2021 CT - - - CNN 96.00%

[126] 2022 SPECT/MRI - DCT - SVM 96.80%

6. Discussion

Most brain tumor segmentation and classification strategies are presented in this
review. The quantitative efficiency of numerous conventional ML- and DL-based algorithms
is covered in this article. Figure 15 displays the total number of publications published
between 2010 and 2022 used in this review. Figure 16 displays the total number of articles
published that perform classification, segmentation, or both.
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Figure 16. Number of articles published that perform classification, segmentation, or both.

Brain tumor segmentation uses traditional image segmentation methods like region
growth and unsupervised machine learning. Noise, low image quality, and the initial
seed point are its biggest challenges. The classification of pixels into multiple classes has
been accomplished in the second generation of segmentation methods using unsupervised
ML, such as FCM and K-means. These techniques are, nevertheless, quite noise sensitive.
Pixel-level classification-based segmentation approaches utilizing conventional supervised
ML have been presented to overcome this difficulty. Feature engineering, which extracts
the tumor-descriptive pieces of information for the model’s training, is frequently used in
conjunction with these techniques. Additionally, postprocessing helps further improve the
results of supervised machine learning segmentation. Through the pipeline of its compo-
nent parts, the deep learning-based approach accomplishes an end-to-end segmentation of
tumors using an MRI image. These models frequently eliminate the requirement for manu-
ally built features by automatically extracting tumor descriptive information. However,
their application in the medical domains is limited by the need for a big dataset for training
the models and the complexity of understanding them.
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In addition to the segmentation of the brain cancer region from the MRI scan, the
classification of the tumor into its appropriate type is crucial for diagnosis and treatment
planning, which in today’s medical practice necessitates a biopsy process. Several ap-
proaches that use shallow ML and DL have been put forth for classifying brain tumors.
Type shallow ML techniques frequently include preprocessing, ROI identification, and
feature extraction steps. Extracting descriptive information is a difficult task because of the
inherent noise sensitivity associated with MRI image collection as well as differences in the
shape, size, and position of tumor tissue cells. As a result, deep learning algorithms are
currently the most advanced method for classifying many types of brain cancers, includ-
ing astrocytomas, gliomas, meningiomas, and pituitary tumors. This review has covered
several classifications of brain tumors.

The noisy nature of an MRI image is one of the most frequent difficulties in ML-
based segmentation and classification of brain tumors. To increase the precision of brain
tumor segmentation and classification models, noise estimation and denoising MRI images
is a vital preprocessing operation. As a result, several methods, including the median
filter [115], Wiener filter and DWT [30], and DL-based methods [117], have been suggested
for denoising MRI images.

Large amounts of data are needed for DL models to operate effectively, but there need
to be more datasets available. Data augmentation aids in expanding small datasets and
creating a powerful generalized model. A common augmentation method for MRI images
has yet to be developed. Although many methods have been presented by researchers,
their primary goal is to increase the number of images. Most of the time, they ignore the
connections between space and texture. An identical augmentation technique is required
for comparative analysis to be conducted on its foundation.

7. General Problems and Challenges

Features are first manually extracted for ML, and are then fed into the ML-based
differentiation system. Continuous variation within image classes makes utilizing ML-
based algorithms for image classification challenging. Furthermore, the feature extraction
methods’ usage of modern distance metrics makes it impossible to determine the similarity
between two images.

Deep learning analyzes several parameters and optimizes them to extract and select
features on its own. However, the system lacks intelligence in feature selection and typi-
cally pools, which reduces parameters and eliminates features that could be useful to the
entire system.

Furthermore, DL models need data, and those data are coupled with millions or tril-
lions of parameters. Therefore, enormous amounts of memory and GPU-based computers
are required in the current environment. However, because of their high cost, these devices
are not available to everyone. Consequently, many researchers need to create models that
fit within their available budgets, which significantly impacts the quality of their study.

The noisy nature of an MRI image is one of the most frequent difficulties in ML-based
brain tumor detection and classification. Preprocessing is necessary to remove all forms of
noise from data and make it more suitable for the task at hand. Preprocessing difficulties
exist in all the available datasets. However, the BRATS datasets have problems, such
as motion artifacts and noise. There is no established preprocessing standard currently.
People employ subpar application software, causing the image quality to decrease rather
than improve.

7.1. Brain Cancer and Other Brain Disorders
7.1.1. Stroke

Hemorrhagic strokes come from blood vessel injury or aberrant vascular structure,
while ischemic strokes occur when the brain’s blood supply is cut off. Although the fact
that strokes and brain tumors are two distinct illnesses, the connections associated with
them have been studied [127].
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They discovered that stroke patients are more likely than other cancer types to acquire
brain cancer. Another intriguing conclusion of the study is that women between the ages
of 40 and 60 and elderly stroke patients are more likely to acquire brain cancer.

7.1.2. Alzheimer’s Disease

Short-term loss of memory is an initial symptom of Alzheimer’s disease (AD), a chronic
neurodegenerative illness that may become worse over time as the disease progresses [108].
Despite AD and cancer being two distinct diseases, several studies have found a connection
between them. According to the research, there is an inverse association between cancer
and Alzheimer’s disease. They discovered that patients who had cancer had a 33% lower
risk of Alzheimer’s disease than individuals who had not had cancer throughout the course
of a mean follow-up of 10 years. Another intriguing finding of the study was that people
with AD had a 61% lower risk of developing cancer.

8. Future Directions

The main applications of CADx systems are in educating and training; clinical practice
is not one of them. CADx-based systems still need to be widely used in clinics. The
absence of established techniques for assessing CADx systems in a practical environment
is one cause of this. The performance metrics outlined in this study provide a helpful and
necessary baseline for comparing algorithms, but because they are all so dependent on the
training set, more advanced tools are required.

The fact that the image formats utilized to train the models were those characteristics
of the AI research field (PNG) rather than those of the radiology field (DICOM, NIfTI) is
noteworthy. Many of the articles analyzed needed authors with clinical backgrounds.

A different but related technical issue that may affect the performance of CADx
systems in practice is the need for physician training on interacting with and interpreting
the results of such systems for diagnostic decisions. This issue must be dealt with in all the
papers included in the review. In terms of research project relevance and the acceptance of
its findings, greater participation by doctors in the process may be advantageous.

9. Conclusions

A brain tumor is an abnormal growth of brain tissue that affects the brain’s ability
to function normally. The primary objective in medical image processing is to find ac-
curate and helpful information with the minimum possible errors by using algorithms.
The four steps involved in segmenting and categorizing brain tumors using MRI data are
preprocessing, picture segmentation, extracting features, and image classification. The
diagnosis, treatment strategy, and patient follow-up can all be greatly enhanced by au-
tomating the segmentation and categorization of brain tumors. It is still difficult to create
a fully autonomous system that can be deployed on clinical floors due to the appearance
of the tumor and its irregular size, form, and nature. The review’s primary goal is to
present the state-of-the-art in the field of brain cancer, which includes the pathophysiology
of the disease, imaging technologies, WHO classification standards for tumors, primary
methods of diagnosis, and CAD algorithms for brain tumor classifications using ML and
DL techniques. Automating the segmentation and categorization of brain tumors using
deep learning techniques has many advantages over region-growing and shallow ML
systems. DL algorithms’ powerful feature learning capabilities are primarily to blame for
this. Although DL techniques have made a substantial contribution, a general technique
is still needed. This study reviewed 53 studies that used ML and DL to classify brain
tumors based on MRI, and it examined the challenges and obstacles that CAD brain tumor
classification techniques now face in practical application and advancement—a thorough
examination of the variables that might impact classification accuracy. The MRI sequences
and web address of the online repository for the dataset are among the publicly available
databases that have been briefly listed in Table 4 and used in the experiments evaluated in
this paper.
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Abstract: Cervical cancer is known as a major health problem globally, with high mortality as well
as incidence rates. Over the years, there have been significant advancements in cervical cancer
detection techniques, leading to improved accuracy, sensitivity, and specificity. This article provides a
chronological review of cervical cancer detection techniques, from the traditional Pap smear test to the
latest computer-aided detection (CAD) systems. The traditional method for cervical cancer screening
is the Pap smear test. It consists of examining cervical cells under a microscope for abnormalities.
However, this method is subjective and may miss precancerous lesions, leading to false negatives
and a delayed diagnosis. Therefore, a growing interest has been in shown developing CAD methods
to enhance cervical cancer screening. However, the effectiveness and reliability of CAD systems are
still being evaluated. A systematic review of the literature was performed using the Scopus database
to identify relevant studies on cervical cancer detection techniques published between 1996 and 2022.
The search terms used included “(cervix OR cervical) AND (cancer OR tumor) AND (detect* OR
diagnosis)”. Studies were included if they reported on the development or evaluation of cervical
cancer detection techniques, including traditional methods and CAD systems. The results of the
review showed that CAD technology for cervical cancer detection has come a long way since it
was introduced in the 1990s. Early CAD systems utilized image processing and pattern recognition
techniques to analyze digital images of cervical cells, with limited success due to low sensitivity and
specificity. In the early 2000s, machine learning (ML) algorithms were introduced to the CAD field
for cervical cancer detection, allowing for more accurate and automated analysis of digital images
of cervical cells. ML-based CAD systems have shown promise in several studies, with improved
sensitivity and specificity reported compared to traditional screening methods. In summary, this
chronological review of cervical cancer detection techniques highlights the significant advancements
made in this field over the past few decades. ML-based CAD systems have shown promise for
improving the accuracy and sensitivity of cervical cancer detection. The Hybrid Intelligent System for
Cervical Cancer Diagnosis (HISCCD) and the Automated Cervical Screening System (ACSS) are two
of the most promising CAD systems. Still, deeper validation and research are required before being
broadly accepted. Continued innovation and collaboration in this field may help enhance cervical
cancer detection as well as ultimately reduce the disease’s burden on women worldwide.

Keywords: cervix; tumor; review; CAD
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1. Introduction

In 2020, cervical cancer recorded 604,127 new cases and death in 341,831 cases, accord-
ing to the Global Cancer Observatory (GCO) [1]. In Malaysia, cervical cancer is the fourth
most common cancer among women, accounting for around 1740 newly diagnosed cases
and 991 yearly fatalities in 2020 [2]. Every year, between 2000 and 3000 cases of cervical
cancer are hospitalized in Malaysia, according to the Ministry of Health (MoH). The ma-
jority of these cases come late in the course of the disease. Malaysia’s mortality rate from
cervical cancer is more than twice as high as that of the United Kingdom, the Netherlands,
and Finland. The mortality rate has not decreased despite the implementation of screening
programs and immunization campaigns against cervical cancer. The economic burden of
cervical cancer is significant. In Malaysia, managing cervical cancer (from prevention to
handling invasive diseases) costs around RM 312 million (USD 76 million). The majority
of this (67%) goes towards treating aggressive cancer patients [3]. Pap smear screening
is employed for early cervical cancer detection. The most crucial step is analyzing the
Pap smear slide, and the identification of any condition or disease is crucial in order to
administer the appropriate treatment [4,5]. Additionally, the Pap smear diagnostic reaction
to a medication or treatment must be viewed or measured for clinical research. Clinically,
microscope images are frequently utilized to diagnose Pap smear results. The sample im-
ages in the traditional approach, which involves taking a sample image under a microscope,
run the risk of blurring effects, noise, shadows, lighting issues, as well as artifact issues
on the images of thin smears [6,7]. Images from a Pap smear may have noise or other
artifacts. Images from Pap smears may have poorer quality owing to noise or low contrast.
Since the diagnosis relies on an individual, there are risks associated with the conventional
procedure that might result in incorrect findings. A woman’s cervix is where cervical cancer
first develops. The female reproductive system is depicted in Figure 1 [8]. It happens
as a result of abnormal cervix cell growth [9]. The cervix and tissues nearby, as well as
organs consisting of the liver or lungs, will be invaded by this. Human papillomavirus
(HPV) infection is linked to an increased risk of generating abnormal cells. Abnormal
menstruation, irregular menstruation, heavy menstruation, weight loss, pelvic pain, and
vaginal discomfort are the initial indications of cervical cancer.

 

Figure 1. Female reproductive system [10].

Cervical cancer is caused by a group of viruses called HPV. Having sexual activity
with another person may transmit HPV. There is evidence that HPV plays a role in the
occurrence of penis, vagina, vulva, and anus cancers. There are more than 100 types of
HPV, and HPV types 16 and 18 account for approximately 70% of all cervical cancer cases
globally [11]. All women ranging in age from 25 to 74 are invited to screening tests. There
are various methods to screen the cervical lining using a colposcopy, which is used to
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magnify the area that the doctor wants to check after inserting the speculum into the vagina
to check both the vagina and the cervix [12].

Early detection of cervical cancer is crucial since late diagnosis reduces the chance
of survival in the entire world’s female population [13]. According to Logeswaran (2020),
90% of women with cervical cancer diagnoses in low- and middle-income countries such
as India may die unexpectedly as a consequence of inadequate detection, early diagnosis,
effective screening, and treatment [14]. J. Lu et al. (2020) conducted a similar study and
discovered that early screening is the most successful strategy for reducing the worldwide
cervical cancer burden. Nonetheless, because of a lack of information, limited access to
medical facilities, and prohibitively costly processes in developing countries, vulnerable
patient populations are unable to bear routine examinations [15].

It may be diagnosed using a variety of screening tests, but the Papanicolaou smear
test, which employs cell cytology, is the most common. It is a reliable method for detecting
cervical cancer, although there is always a possibility of misinterpretation owing to human
observational mistakes [16,17]. According to a study conducted in the medical field by
Jaya and Latha (2019), image processing plays a crucial role in making the correct choice
by utilizing a variety of techniques and algorithms. However, it is difficult to detect Pap
smear images through microscopes. Traditional cervical cell screening also relies heavily
on the pathologists’ experience, which has the disadvantages of poor efficiency as well as
low accuracy. Cervical cancer cells do not differ much in texture or color from normal cells,
making their detection with smear tests very difficult [18].

However, cone biopsy screening is used when an abnormal cell is suspected in the
cervix in order to detect it early. The most common screen test, as well as the Pap smear,
also called the Papanicolaou test, is based mainly on using a brush to remove a small part of
the lining tissue and checking it under microscopic levels to see if there are changes in the
cell. This type of test can be used to discover if there is an infection or inflammation in the
cervix or the presence of the HPV virus. The resultant images that have been obtained are
called Pap smear images, which form a huge factor in early cervical cancer detection as well
as classification. The new method for screening is based on the detection of HPV absence
or presence [19]. Much research is carried out on the detection and classification of this
type of cancer utilizing nanotechnology and building a biosensor to detect HPV, as well as
using Pap smear images to detect and classify abnormal cells utilizing the benefits of deep
and machine learning (ML) techniques. Other research focused on electrical impedance
matching of affected signals with a 3D finite element model for cancer and non-cancerous
cells. Cervical cancer affects the female reproductive system and is strongly associated with
HPV infection, obesity, smoking, and sexually transmitted diseases (STDs). Manual Pap
tests (Papanicolaou tests) are widely used for the early detection of cancer, but they are
costly, stagnant, and highly dependent on the pathologist’s expertise. Several computer
aided diagnostic (CAD) systems were developed to automatically detect cervical cancer.
Developing automatic prediction models to identify vulnerable patients can improve the
efficacy of screening programs and eliminate inconsistencies and subjectivity resulting
from cytopathologists’ lack of expertise.

2. Materials and Methods

The primary goal of this study is to explore and understand the methodology of
cervical cancer detection around the world between 1996 and 2022. The purpose of the
current narrative analysis is to respond to the primary research question: (1) What types of
cervical cancer detection have been proposed around the world? (2) How effective were
computer-aided diagnostics for the Pap smear screening process? Contrary to that, cervical
cancer detection has evolved significantly over the years, with several different techniques
now available. The Pap smear test remains the most frequently employed method. Still,
newer techniques such as visual inspection with acetic acid (VIA) and HPV testing, as
well as Lugol’s iodine, are becoming more widely used. Early detection is the key to
successful treatment and improved outcomes, and women should undergo regular cervical
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cancer screening according to recommended guidelines. In addition, this part discusses the
requirement for a comprehensive evaluation of the cervical cancer situation. The outline
of this review paper consists of three sections: Section 1 discusses an introduction and
related research, and Section 2 describes the review data. The conclusions of this research
are discussed in Section 3.

A method for obtaining the literature is shown in Table 1. The systematic review
approach comprises three primary phases that were employed to determine the many
relevant publications for this study. The initial phase is keyword recognition and the search
for connected, related phrases utilizing the encyclopedia, dictionaries, and thesaurus, as
well as prior research. Therefore, search strings were developed for the Scopus database
once all pertinent terms were chosen. Considering literature (research papers) is the main
source of pertinent information, it was the initial criterion. It also covers the exclusion
of conference proceedings, chapters, books, book series, meta-synthesis, meta-analysis,
reviews, and systematic reviews from the present research. Additionally, the review was
limited to English-language studies only. A total of 108 publications were chosen in
accordance with particular parameters.

Table 1. The specification for primary data searching.

Keyword Cervix, Cervical, Cancer, Tumor, Detect, Diagnosis

Inclusion Article, Journal, English, computer science, and engineering

Exclusion Pure medicine, review article, other languages

Final Search String
(Scopus)

TITLE ((cervix OR cervical) AND (cancer OR tumor) AND (detect* OR diagnosis)) AND (LIMIT-TO
(PUBSTAGE, “final”)) AND (LIMIT-TO (DOCTYPE, “ar”)) AND (LIMIT-TO (SUBJAREA, “ENGI”)
OR LIMIT-TO (SUBJAREA, “COMP”)) AND (LIMIT-TO (LANGUAGE, “English”)) AND (LIMIT-TO

(SRCTYPE, “j”))

Number of Primary Article 108

Figure 2 represents the number of documents about cervical cancer per year. Obviously,
interest in this topic started in 1996 with only one paper, and no production from 1997 to
2001 appeared in other documents. The settlement of ignorance was shown from 2002
to 2007, and two documents appeared in 2008. The steady increasing pattern appeared
from 2009 to 2011. The sharp growth appeared from 2009 to 2015. In 2015–2018, there
were swings between increasing and decreasing, but the average number was around eight
documents per year. The total number sharply increased from 2018 to 2022 to be the mean
of around 15 documents per year as well. That reflects people’s consideration of the danger
of cervical cancer as well as the significance of research to build a solid understanding of
the nature of the disease and the tools to overcome or reduce its impacts on women.

Figure 2. Number of documents per year.
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3. Review of the Study

3.1. 1996–2015

Many studies have been conducted in the past to investigate cervical cancer diagnosis.
Worldwide research is being conducted by doctors to better understand cervical cancer,
how to prevent it, how to cure it, and how to provide treatment for those who have been
diagnosed with the disease. For example, in 1996, an innovative method for the creation of
segmentation and diagnostic algorithms for biomedical image analysis was given by [20].
In this case, a prototype expert system was created to give gynecologists a reliable and
objective tool. Moreover, a collection of knowledge sources was created using specialized
image-analysis methods. The robust control method employed by the expert system
reduces the need for domain-specific control knowledge and has been shown to efficiently
identify cervical cancer. The composition of segmentation and diagnostic methods for
biomedical image analysis was also discussed in this paper, employing a new technique.

After many years, cervical cancer diagnosis evolved due to technological development.
Following that, in 2001 [21], it was stated that the principal component analysis (PCA) in
the wavelet domain delivers robust novel features with regard to the non-invasive detection
of cervical intraepithelial neoplasia (CIN) employing fluorescence imaging spectroscopy.
The term “principal wavelet components” (PWCs) refers to these characteristics. Average
accurate classification rates for five cervical tissue classes—low-grade dysplasia (CIN 1),
squamous, columnar, and metaplasia—as well as a fifth class for other unidentified tis-
sue types, blood, and mucus—were 95% when PWC characteristics were employed as
inputs to a 5-class NN. Apart from these [22], we presented a new technique to determine
cervical cancer employing microwaves to measure the dielectric properties of the smear
at microwave frequencies. This measuring approach is easy, and the smear collection is
non-surgical and painless. The findings propose another option to the Papanikolaou or
Papanicolaou tests and demonstrate a new technique for detecting cervical cancer using mi-
crowave measurement that may offer a less invasive alternative to these surgical procedures
for detecting the disease.

On the other hand, in vivo, cervical dysplasia and cancer detection utilizing model-
based analysis of reflectance and fluorescence spectra have been proven [23]. Here, a
theory-based diffusion model is employed along with two analytical methods for calcu-
lating reflectance spectra that are contrasted with Monte Carlo simulations. A diagnostic
algorithm is also created and tested utilizing cross-validation based on these obtained
parameters. This algorithm’s sensitivity/specificity for each measurement in comparison
to the gold standard of histopathology are 85/51%. The accuracy described in previous
research using optical technology to identify cervical cancer and its precursors corresponds
to this.

Meanwhile, in [24], a quantitative colposcopic imaging system for early cervical cancer
diagnosis is assessed in a clinical study. The cervix of living human beings is employed to
assess the kinetics of the acetowhitening process in order to obtain diagnostic information.
The imaging method relies on 3D active stereo vision as well as motion tracking. It was
possible to distinguish between normal tissue and HPV-infected tissue, as well as low-grade
and high-grade CIN lesions, utilizing a diagnostic algorithm with 91% SE and 90% SP. The
findings show that the quantitative colposcopic imaging system may be able to deliver
unbiased screening and diagnostic information for the early detection of cervical cancer.

Additionally, [25] immobilized anti-HPV18 and E. coli O157: H7 antibodies on mag-
netic silica-coated Fe3O4 for early diagnosis of cervical cancer as well as diarrhea. Uncoated
Fe3O4 nanoparticles having a 9–16 nm average diameter as well as a saturation magne-
tization of around 66 emu/g were first prepared using the co-precipitation method. The
findings revealed that magnetic SiO2-coated Fe3O4 nanoparticles could be an auspicious
contender for diagnosing cervical cancer at an early stage, specifically with high accuracy.

In 2011, [26] employed an optoelectronic method to detect CIN as well as cervical
cancer. The pNOR number and the sensitivity/specificity of the optoelectronic approach
were shown by the authors to be correlated. The specificity of the optoelectronic approach
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was calculated to be 65.70% for LGSIL and 90.38% for HGSIL and cervix squamous cell
carcinoma. The optoelectronic technique utilized to validate the absence of cervical pathol-
ogy was assessed to have a 78.89% specificity. Here, CIN, which exists in the squamous
epithelium as well as squamous cell carcinoma of the cervix, is easily detected using the
optoelectronic approach.

In the same year, [27] investigated the hWAPL histological expression value assessment
in the cytological as well as histological diagnosis with regard to cervical intraepithelial
neoplasia and cervical cancer. The expression intensity of hWAPL protein in the HSIL
group, LSIL group, ASCUS group, and ASC-H group was obviously greater than that in
the NILM group (p < 0.05), and the expression intensity in the ASCUS group and ASC-H
group was higher than that in the LSIL group (p < 0.05). Furthermore, in the ASCUS and
ASC-H groups, the frequency of SCC + CIN III was above 50%. Therefore, hWAPL may
be a promising candidate for diagnosing low-grade CIN. Furthermore, the histological
expression of hWAPL is consistent with the cervical lesions’ cytological type.

A year later, in 2012, in order to enhance cervical cancer risk classification, [28] investi-
gated the automated detection of dual p16/Ki67 nuclear immunoreactivity in liquid-based
Pap tests. Algorithms were created to digitize and examine smears stained with p16 as
well as Ki67 antibodies. The nuclear mask was produced employing a gradient-based
radial symmetry operator along with adaptive symmetry image processing. This was
subsequently followed by the extraction of attributes from each nucleus, such as pixel data
as well as immunoreactivity signatures. The quantitative analysis of immunoreactivity
offered by the further emphasis on classified nuclei, according to the authors, may have a
positive influence on the effectiveness and screening results of the Pap test.

In the same year, which is 2012 [29], a new technique was proposed to construct a
tumor probability map while gradually determining the boundaries of an organ of interest
on the basis of the accomplished nonrigid transformation. The technique dealt with the
difficulties of considerable tumor regression and its impact on nearby tissues. Findings
indicate that the suggested technique greatly surpasses the current registration algorithms
and reaches a precision equivalent to manual segmentation. Additionally, there is excellent
agreement between the suggested method’s tumor detection results and manual delineation
by an experienced doctor.

Moreover, in [30], blood and urine samples from cervical cancer patients were collected,
and their fluorescence emission spectra (FES) as well as Stokes shift spectra (SSS) were
contrasted to those of normal controls. Both spectra demonstrated that in cervical cancer
patients, the relative levels of biomolecules, which include flavin, nicotinamide, adenine
dinucleotide, collagen, and porphyrin, were out of balance. The author also stated that this
is the first study on FES and SSS of blood and urine samples from patients with cervical
cancer that provides a sensitivity of 80% as well as a specificity of 78%.

A total of 2 years later, in 2014 [31], it was proposed to use time-resolved blood
component spectra to identify cervical cancer. Porphyrin served as the biomarker indicative
of cancer in this instance, with samples from cancer patients having fluorescence decay
times that are 60% greater than those from normal controls. A randomized set of samples
from cancer patients and controls (n = 27 in total) could be categorized with sensitivity
(92%) and specificity (86%) using these parameters.

Utilizing reduced graphene oxide–tetraethylene pentamine as electrode materials and
distinct redox probes as labels [32], this suggested simultaneous electrochemical detection
of cervical cancer indicators in the same year. In accordance with the peak current change
of neutral red and thionine prior to and following the antigen-antibody reaction, the
immunosensor was constructed with a sandwich structure. According to the findings, the
immunosensor exhibited a broad linear range, a small detection limit, high reproducibility,
and stability. Furthermore, the technique has been employed successfully to examine
serum samples.

Moreover, [33] utilized extracted intrinsic fluorescence as well as PCA to identify the
advancement of cervical cancer. Here, along with the intrinsic fluorescence, the effective-

209



Diagnostics 2023, 13, 1763

ness of PCA in separating the aggregate behavior from smaller associated clusters in a
dimensionally diminished space is tested. By closely observing the sectorial behavior of the
dominant eigenvectors of PCA, it is possible to determine the various activities of the dom-
inant fluorophores, flavins, nicotinamide adenine dinucleotide, collagen, and porphyrin of
various classes of precancers. The Mahalanobis distance was also computed utilizing the
scores of the chosen major components in order to better categorize the various grades.

A year later, [34] presented a method for colposcopic images-based automated cervical
cancer diagnosis. Here, abnormal and normal tissue are distinguished using wavelet and
statistically based attributes. The wavelet-decomposed image is employed to obtain the
wavelet energies. The feature vector produced from the combination of these features is
then applied to the detection. The segmented cancer region demonstrates that the suggested
fusion technique is capable of identifying the cancer-affected region with more accuracy
over the wavelet, along with statistical features-based approaches.

In addition, a hybrid classifier-based computer-aided detection (CAD) of cervical
cancer utilizing Pap smear images was also suggested by [35] in 2015. It is utilized to divide
the cell image from the test Pap smear into normal and dysplastic cell images. Following
that, morphological techniques are employed to identify and segment the abnormal cell
region. On images from databases with free access to the public, the suggested technique
is evaluated. A unique illumination correction and intensity normalization approach on
cervigrams was put out by [36] in the same year in order to aid in the early detection of
uterine cervical cancer. In light of our study’s results, we draw the conclusion that the peak
of the squamous epithelium (SE) region’s intensity distribution and the peak of the entire
cervix region are significantly associated.

Furthermore, by using the nested structure of its data to extract patient-level features
from the cell-level data, utilizing a statistical model that takes advantage of the hierarchical
data structure, and classifying the cellular level [37], it executed comparative research on
three primary methods for solving problems. With an estimated 61% sensitivity and 89%
specificity on independent data, the optimal method was to classify at the cellular level
and count the number of cells with a posterior probability larger than a threshold value. In
addition, recent advancements in statistical learning make it feasible to reach great accuracy.
Apart from that, new clinical studies that support the use of HPV E6/E7 mRNA as a marker
in advanced cervical cancer screening programs were reported in 2015 [38]. The authors
give a general review of the research study sample size, age, recruitment setting, HPV
mRNA, and HPV DNA tests. It was demonstrated by the pooled evaluation of clinical
research that HPV mRNA may be a useful diagnostic biomarker. To draw a firm conclusion,
however, further research must be conducted.

On the other hand, in the same year, [39] investigated the degree of squaraine dye
aggregation that affects the strength of surface-enhanced Raman signal scattering (SERS)
after adsorption on a gold surface that has been nano-roughened. When chemisorbed
on spherical gold nanoparticles, the SQ2 (mono lipoic acid appended), SQ5 (conjugated
with hexyl and dodecyl side chains), and SQ6 (conjugated with hexyl and dodecyl side
chains) squaraine derivatives demonstrated a substantial rise in Raman scattering in the
fingerprint region. HeLa cells demonstrated pronounced SERS mapping intensity and
selectivity towards the cell surface and nucleus after further conjugating this nanotag with
monoclonal antibodies that targeted overexpressed receptors, EGFR and p16/Ki-67, in
cervical cancer cells.

Subsequently, [40] proposes a system for automatically classifying and segmenting
cervical cells. Radiating Gradient Vector Flow (RGVF) Snake is employed to separate the
cytoplasm, nucleus, and background of a single cervical cell image. For system training,
several cellular and nuclear properties are retrieved. Artificial neural networks (ANN) are
employed to examine the dataset’s ability to categorize seven distinct cell types and distin-
guish between abnormal and normal cells. The clinical research on styping identification
of HPV infection using microarrays from paraffin-embedded tissues of precursor lesions
as well as cervical cancer was also explored by [41]. This led to the identification of the
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prevalence and type distribution of HPV in cervical cancer and CIN in Jiangsu, China. The
findings indicate that Jiangsu’s (China’s) high rate of HPV 16, 18, 33, 31, and 58 warrants
further notice. It has significant repercussions for the effective administration of the HPV
vaccination and the selection of testing techniques.

Apart from that, [42] examined the fractal dimension of AFM images of human cer-
vical epithelial cells at various stages of cancer growth to evaluate the early detection
of cervical cancer. Individual human cervical epithelial cells at three phases of cancer
progression—normal, immortal (pre-malignant), and carcinoma cells—were examined
using the AFM HarmoniX modality by the author. The authors were successful in distin-
guishing between abnormal and normal cells by utilizing AFM to examine the surface
characteristics of human cervical epithelial cells. This technique could supplement current
techniques to improve the accuracy of diagnosis.

Moreover, [43] proposed using nanotechnology and biomarkers for cervical cancer’s
early detection and treatment. Nanomaterials are special in their optical, physical, and
electrical characteristics, which has made them particularly advantageous for sensing.
Cancer biomarkers, which are employed as targets in the detection and monitoring of
cancer, are mostly composed of RNA fragments, DNA fragments, antibody fragments, and
proteins. In a few decades, it is expected to be feasible to identify cancer at a very early
stage, giving a significantly greater probability of treatment.

Subsequently, [44] describes an ultrasensitive electrochemical immunosensor for ac-
curate detection of p16 and shows how effectively it performs when used with patient
cell lysates to detect solubilized p16 protein. Furthermore, the authors also reported that
the suggested immunosensor successfully detected raised p16 levels in cervical swab sam-
ples taken from 10 patients who had received positive results from a standard Pap smear
test, demonstrating that electrochemical immunosensors hold great potential for the early
detection of cervical cancer in a clinical setting.

3.2. 2016–2018

Several studies tried to diagnose cervical cancer using various techniques. For in-
stance, in 2015, Yulan Wang et al. recommended the use of fluorescence lifetime imaging
microscopy (FLIM) for the early detection of cervical cancer. They discovered that the
lifetime of cancerous cells was shorter compared to normal cells. They recommend FLIM
as a highly precise and specific method that can detect the occurrence of precancerous as
well as cancerous cells quickly [45].

In 2016, S. Athinarayanan et al. [46] suggested an automatic multistage cervical cancer
diagnostic system using Pap smear images (obtained from the Herlev dataset described
in Table 2) and machine learning (ML) methods. In the preprocessing stage, images
were denoised, intensity and texture features were extracted, and finally, images were
differentiated using SVM into normal and abnormal classes. They succeeded in detecting
cervical cancer with 94% accuracy. Moreover, Anousouya Devi et al. [47] developed an
image analysis algorithm to replace time-consuming Pap smear screening tests. The authors
discussed a variety of segmentation algorithms and feature extraction techniques with
regard to the efficient segmentation of Pap smear slides.

Furthermore, Xianfeng Xu et al. [48] investigated the value of PET/CT scanning in
detecting cervical carcinoma in 51 patients. Note that PET/CT diagnosis capability is
superior to the classical FIGO discrimination technique. For example, PET/CT detected
primary tumors with 84.31% accuracy, 80.77% specificity, and 88% sensitivity. On the
other hand, it detected lymph nodes with 76.47% accuracy, 71.43% specificity, and 82.61%
sensitivity. Subsequently, Jose Amaya et al. [49] designed a high-stability voltage current
source for the recognition of cervical cancer using electrical bio-impedance spectroscopy.
Here, the medical kit they designed was compatible with international standards. Finally,
Rizanda Sobar et al. [50] determined seven behavior features and surveyed 72 respon-
dents (including 22 cancer patients) in Indonesia. They used two machine learning (ML)
techniques, particularly logistic regression (LR) and Naïve Bayes, to forecast the risk of
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becoming a cervical cancer patient. With respect to accuracy, Naïve Bayes outperformed
LR (91.67% compared to 87.5%), and with respect to AUC, LR outperformed Naïve Bayes
(0.97 compared to 0.96).

Table 2. Pap smear image classification in the Herlev dataset [9].

Cell Class Name Cell Count Sub-Total

Normal
Normal Superficial Squamous 74

242Normal Intermediate Squamous 70
Normal Columnar 98

Abnormal

Carcinoma In Situ 150

675
Light Dysplastic 182

Moderate Dysplastic 146
Severe Dysplastic 197

Total 917 917

One year later, Irvin Sitompul et al. [51] conducted a descriptive qualitative study
using a questionnaire to evaluate the knowledge of aged women in the Cakung health
center regarding the early detection and prevention of cervical cancer. They concluded that
knowledge of the Human Papilloma Virus (HPV) vaccine is weak. Meanwhile, Branislava
Jeftic et al. [52] presented a cervical cancer detection method relying on optomagnetic
imaging spectroscopy (OMIS) and compared the findings utilizing unstained and stained
Papanicolaou smears. Using the Naïve Bayes classifier, they separated the samples into four
groups: the II Pap group (normal cells), the III Pap group (abnormal cells), and the IV and
V Pap group (cancerous cells). Unstained sample classification with Naïve Bayes achieved
96% accuracy, whereas stained sample classification achieved 85.18% accuracy. Apart
from these, Abdullah Iliyasu et al. [53] proposed a quantum hybrid technique that uses
quantum particle swarm optimization (QPSO) for selecting 7 out of 17 features, as well as a
fuzzy KNN for the classification of cervical cells in smeared images. They used 917 images
from the Herlev dataset and achieved 86% recall, 85% precision, and F1 score of 85%.
On the other hand, Wen Wu et al. [54] employed three SVM-based combinations for the
diagnosis of cervical cancer. All four target variables were identified, and the performance
of SVM was superior to SVM-RFE and SVM-PCA. SVM achieved high precision using all
30 features, but the computation cost was high. The authors showed that the SVM-RFE
and SVM-PCA gave comparable performance to the SVM using only 8 features, improving
classification time considerably.

In the same year, Katrin Carow et al. [55] presented evidence that the incorporation of
HPV-DNA into the host genome is an initial step in the formation of cervical cancer. They
recommend using viral-cellular junction sites as biomarkers when examining circulating
tumors. Meanwhile, Vidya Kudva et al. [56] proposed an image-processing approach
that can be used as an image treatment step in any cervix cancer detection system. They
presented a cervix region segmentation method and detected specular reflections with
high precision, irrespective of lighting conditions and color variations. Apart from these,
Guanglu Sun et al. [57] suggested an ML framework relying on relief feature selection and a
Random Forest (RF) classifier to diagnose cervical cancer. They used 917 Pap smear images
obtained from the Herlev dataset together with 10-fold cross-validation to perform binary
classification. RF outperformed LR, C4.5, and Naïve Bayes classifiers with 94.44% accuracy
and 0.9804 AUC using 13 features. In addition, Rubina Shaikh et al. [58] compared two
optical modalities, particularly Raman (RS) and Diffuse Reflectance Spectroscopy (DRS), in
differentiating between normal and abnormal cells. One hundred forty-six recorded spectra
(67 tumors and 79 normal) were analyzed using a combination of Principal Component and
Linear Discriminant Analysis ML techniques. They used Leave One Out Cross Validation
(LOOCV) and concluded that DRS is more suited for rural areas, whereas RS is suited for
developing countries. Furthermore, Muljo et al. developed an online learning management
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prototype to educate health workers and the public in Indonesia about early cervical cancer
detection as well as treatment [59].

In 2018, Mithlesh Arya et al. [60] used SVM as well as ANN to classify single-cell
images captured from Pap smear slides into benign and malignant tumors. The accuracy
obtained using the suggested texture-based features exceeds that obtained using shape-
based features. Additionally, the performance obtained using a combination of features was
better than that obtained using a single feature. Using quadratic SVM, they achieved 99.5%
accuracy, 99% sensitivity, and 99% specificity. Meanwhile, Ashutosh Sharma et al. [61]
successfully employed fluoranthene-based yellow fluorescent lipid probes with respect
to the detection of lipid droplets in cervical cancer tissues. FLUN-550 and FLUN-552
quantitatively detected the excess lipid accumulation and were really useful in the early
diagnosis of human cervical cancer. Additionally, Kelwin Fernandes et al. [62] developed
a supervised deep learning (DL) method to diagnose cervical cancer with high accuracy
using the medical records of 858 patients. To study the impact of their architecture, they
applied their methodology to different datasets and demonstrated that their efficiency is not
limited to cervical cancer. They used a loss function for dimensionality reduction, achieving
an AUC of 0.6875. Furthermore, Yueyue Jing et al. [63] established quick, highly sensitive,
and highly specific label-free imaging and spectroscopy for the detection of cervical tumors
compared to the traditional clinical staining method. They studied unstained tissues
extracted from 38 patients and achieved 100% sensitivity and 91% specificity.

In the same year, Rocky Dillak et al. [64] suggested an early alarm system to diagnose
cervical cancer based on a combination of chaos optimization and ridge polynomial neural
networks. They achieved an accuracy of 96%, a sensitivity of 95.56%, and a specificity of
96.67%. Apart from these, Vidya Kudva et al. [65] manually extracted 102 images obtained
during visual inspection with acetic acid; 42 images were pathologic, and the remaining
60 were negative. They used a shallow-layer CNN to discriminate between cancer and
non-cancer lesions by automatically extracting features from 684 representative patches
with 100% accuracy. Following that, Sherif Abdoh et al. [66] identified 32 risk factors
to build a cervical cancer diagnosis framework. They employed two feature reduction
techniques, namely Recursive Feature Elimination (RFE) and PCA. Furthermore, they used
an RF classifier combined with the Synthetic Minority Oversampling Technique (SMOTE)
to correctly classify cervical cancers. The obtained results were validated using 10-fold
cross-validation, and SMOTE-RF outperformed SMOTE-RF-RFE and SMOTE-RF-PCA in
detecting all 4 cancer groups.

3.3. 2019–2020

As artificial intelligence (AI) and image processing technology advance, we have
reviewed progressively intelligent diagnosis tools that are being applied in cervical cancer
screening. In this section, we offer a brief review of some methods available in the literature,
starting with the year 2019 and progressing to the current cervical screening. Lavanya
Devi et al. (2019), for instance, investigate the various automated methods for detecting
abnormal cells in Pap images. Cancer screening commonly includes a Pap smear test and
an acetic acid test. Cells from the vagina and cervix are extracted and analyzed under
a microscope for the occurrence of an abnormal cell in a pap test. An acetic acid test
is employed to identify the existence of abnormal cells by comparing the differences in
characteristics between samples before and after the application of acetic acid. According
to the report, automated screening has become more common than manual screening,
given that the latter is inaccurate [67]. This method of screening has been endorsed in a
study conducted by Abdullah et al. (2019), where computer-based algorithms are broadly
employed in cervical cancer screening. In this research, a better cellular neural network
(CNN) algorithm has been set up as a potential means of detecting cancerous cells in Pap
smear images in real-time. For automated detection of cancerous cervix cells, a CNN
built-in in MATLAB using templates that segment cell nuclei has been established. The
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simulation findings demonstrate that our suggested CNN algorithm can automatically
identify cervix cancer cells with over 88% accuracy [68].

Jaya and Latha (2019) introduced a technique for enhancing Pap smear images by
comparing Power Law Transformation for Gamma Correction, Histogram Equalization
in the Contrast Stretching algorithm, Contrast Limited Adaptive Histogram Equalization
(CLAHE), and Shading Correction. To determine the performance of upgraded Pap smear
images, the quality measurement NAC, SC, PSNR, and MSE values were determined.
As a programming tool, MATLAB R2016a and ANN classification were used to assess
the accuracy level of each feature extraction of the algorithm. The study concluded that
CLAHE produced a decent result for enhancement, and the SGLDM feature extraction
algorithm achieved 93% accuracy while utilizing ANN [69]. A review of the literature
undertaken found that accurate recognition of cervical cancer cells is crucial for clinical
diagnosis. A better approach built around the residual neural network is presented to
increase the accuracy of diagnosis. However, these current algorithms are only enhanced
by the use of low-level manual features. The findings of the experiments demonstrate that
the lightweight deep model performs better than the current comparative models and may
obtain a model accuracy of 94.1% when applied to the cervical cell data set [70]. Hence,
as recommended by William et al. (2019), it is advantageous to construct a computer-
assisted diagnostic tool to increase the accuracy and reliability of the Pap smear test. In
this research, Pap smear image analysis was utilized to construct a tool for the automated
detection and classification of cervical cancer. Scene segmentation was accomplished
using a trainable Weka segmentation classifier, while a sequential elimination strategy was
employed for debris rejection. While classification was accomplished utilizing a fuzzy
C-means technique, feature selection was accomplished employing simulated annealing
combined with a wrapper filter [71]. The research found that three distinct datasets—single-
cell images, multiple-cell images, and Pap smear slide images from a pathology lab—were
utilized to evaluate the classifier. For each dataset, overall classification accuracy, sensitivity,
and specificity results of “98.88%, 99.28% and 97.47%”, “97.64%, 98.08% and 97.16%”, and
“95.00%, 100% and 90.00%”, accordingly, were attained. In comparison to the manual
analysis, which takes between 5 and 10 min per slide, the suggested system can analyze a
whole Pap smear slide in about 3 min.

Ref. [72] identified the relevant features in the cancer classification as well as opti-
mized the model. The vital properties in the attribute list were explored using the binary
cuckoo search optimization technique. The experimental findings demonstrate the greater
performance of the Decision Tree (DT) classifier over all other classifiers, with accuracy
increasing from 94.7% to 97% following cuckoo optimization. Another study conducted
by Adem et al. (2019) discovered that softmax classification with a stacked autoencoder
model, which was implemented for the first time in the cervical cancer dataset, performed
better compared to other ML methods with an appropriate 97.8% classification rate. New
techniques of diagnosis are described in this article in terms of patient diagnostic support
systems, taking into account the interest in ML approaches in cancer research [73].

In the year 2020, a number of studies offered new screening methods, such as the
Shot multiBox detector, which can accurately detect many items of multiple scales at the
same time to solve the classic saliency cervical cancer diagnosis approach in ultrasound
images. The study provides a new multi-saliency object detection model with an appended
deconvolution module embedded within the residual attention module. Experiments
demonstrate that the suggested diagnosis method beats comparable algorithms in terms
of detection accuracy. It also improves the accuracy of cervical diagnosis by increasing
detection performance for multi-saliency cervical cancer objects with small scales [74]. The
Enhanced Johnson’s Algorithm (EJA) was proposed by Ali et al. (2019) as the new shortest
path for detecting cervical cancer-associated genes in the Protein-to-Protein Interaction (PPI)
network for early cervical cancer diagnosis in their study. EJA was also adopted to find
the shortest path between invasive and pre-invasive genes. The Bellman-Ford approach
was used in EJA to reconstruct the path with a new iterative matrix, which successfully
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reduced the elapsed time by omitting the negative cycles in the gene connection [75].
Huang et al. (2019) discovered that endogenous fluorophores in cells and tissues, such as
diminished nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) as well as flavin
adenine dinucleotide (FAD), may be imaged by FLIM to illustrate the tissue morphology
features, including the biomolecular variations in the microenvironment. It was shown
that by monitoring the fluorescence lifetime of NAD(P)H as well as FAD in nearby healthy
cervical tissues, benign uterine tumors with abnormal cell development, which include
leiomyomas and adenomyosis, may be identified [76]. According to [18], cervical cancer
is caused by morphological alterations in cells or dead nuclei in the cervix. The detection
of abnormalities in cells necessitated a high-level digital image processing technique that
included an automated, complete ML skill set. To split the cytoplasm as well as the nucleus
from the cell, an innovative fuzzy-based approach has been proposed. KNN is instructed
with the color and form attributes of the segmented cell units, and then it is used to classify
unknown cervix cell samples. The cytoplasm, as well as the nucleus of the cervix cell, are
given shape and color using the proposed technique.

Several other methods have been introduced in detecting this disease, such as auto-
matic feature extraction and classification for acetic acid and Lugol’s iodine cervigrams,
as well as (2) methods for merging diagnosis/features of distinct contrasts in cervigrams
for enhanced performance, which attained a sensitivity, specificity, and accuracy of 81.3%,
78.6%, and 80.0%, respectively [77]. A study reported that a novel immunosensor had been
formed for quantitative detection with respect to the squamous cell carcinoma antigen
(SCCA) in cervical cancer, built on surface-enhanced Raman scattering (SERS). The SCCA
monoclonal antibody was combined with polydopamine resin microspheres covered with
gold nanoparticles as capture substrates. Phosphate buffer (PBS) had a detection limit of
7.16 pg mL−1 and human peripheral blood had a detection limit of 8.03 pg LH−1. The
findings showed that the SERS immunoassay approach has a possibility for use in early
cervical cancer screening and diagnosis [78]. Fuzzy Swallow Swarm Based Feature Se-
lection (FSSBFS) has been introduced for the optimal selection of cervical cancer features.
The proposed ISVM-FssBFS classifier is improved when compared to SVM and Multilayer
Perception Classifier (MLP) classifiers. The cervical cancer samples are characterized by
32 risk factors and four target classes: Biopsy, Cytology, Schiller, and Hinselmann [79].

Early identification of CIN dramatically improved patient survival rates in the year
2020 [80]. Most cervical cancer detection algorithms rely on natural image object detection
technologies, with only minor improvements made to account for the complex application
scenario with respect to cervical lesion detection. The suggested method’s sensitivity
at four false positives per image as well as average precision are enhanced by 2.79 and
7.2%, respectively, when compared to the baseline (Retinanet) [81]. Chen et al. (2020)
first established the feasibility of using CT imaging and radiomics to create a low-cost
image marker for detecting LN metastasis in cervical cancer patients. Here, the model
was trained to utilize a leave-one-case-out (LOCO) cross-validation strategy with a total
accuracy of 76.4%. Li et al. (2020) proposed a DL framework with regard to the accurate
identification of LSIL+ (which includes CIN and cervical cancer) employing time-lapsed
colposcopic images. All of the fusion methods that are compared perform better than the
automated cervical cancer diagnosis systems that are currently in place and utilize a single
time slot. The best fusion strategy was discovered to be a convolutional graph network with
edge features (E-GCN). A novel framework built around a strong feature Convolutional
Neural Networks (CNN)-Support Vector Machine (SVM) model was presented to properly
categorize the cervical cells, according to research by Dongyao Jia et al. (2020). On two
distinct datasets, the suggested technique was assessed using the metrics of accuracy (Acc),
sensitivity (Sn), and specificity (Sp). The outcomes suggested that the CNN-SVM model
with strong features might be utilized to classify cells for early cervical cancer screening [82].

A potential technique for the diagnosis of cervical cancer with parametrial infiltration
is the combination of whole-tumor dynamic contrast-enhanced MRI and texture anal-
ysis [83]. Ktrans, energy, and entropy work more effectively together than separately,
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particularly when it comes to increasing diagnostic sensitivity. Fuzzy logic and adaptive
neuro-fuzzy inference system (ANFIS) classification method-based cancer area detection
and segmentation in cervical images were suggested by Ramasamy and Chinnasamy in
2020. Fuzzy logic is employed to identify the thick and thin edges, which are then combined
using an image fusion approach at the pixel level. The suggested cervical cancer detection
system has a classification rate average of 98.8%. In comparison to earlier suggested ap-
proaches for cervical cancer estimation, the CCPM result demonstrated more accuracy [84].
The sensitivity, specificity, and accuracy of the suggested cervical cancer segmentation
methods presented in this paper are 98.1%, 99.4%, and 99.3%, respectively. A model for
early cervical cancer prediction (CCPM) has been developed by researchers, utilizing risk
indicators as inputs. In comparison to earlier suggested approaches for cervical cancer
estimation, the CCPM results demonstrated more accuracy. For quick and effective action
at the early stages of the disease, a mobile application that may gather information on
cervical cancer risk factors and offer CCPM findings has been created [85].

Apart from that, [15] adopted a voting method that takes into account the issues with
earlier research on cervical cancer. To assess the suggested procedure, several measures are
implemented. According to the findings, the voting approach may be used to accurately
forecast the chance of having cervical cancer. In comparison to previous techniques, the one
that is being presented is more scalable and practical. The key finding by Singh and Goyal
(2020) is the choice of the optimal ML algorithm with the maximum accuracy. Several
algorithms were able to achieve up to 100%. Although a method such as LR with L1
regularization has a 100% accuracy rate, it consumes too much CPU time [16].

To effectively recognize the nucleus as well as the cytoplasm boundary of the Pap
smear cell as a way to diagnose cervical cancer, an enhanced normalized graph cut with
generalized data for enhanced segmentation (INGC-GDES) method was presented. In
comparison to earlier methods, the suggested INGC-G DES mechanism leads to a 28%
improvement in classification accuracy [13]. To the best of our knowledge, research has
demonstrated the potential of Mueller matrix image processing as a unique strategy for
the detection of cancer and precancer [86]. Sections of the human uterine cervix’s normal
and precancerous tissue were utilized in the study. The research explained the creation
of a DNA-based electrochemical biosensor that is sensitive and selective for the early
detection of HPV-18. As a proprietary, accurate, sensitive, and quick diagnostic approach
for HPV 18 in the polymerase chain reaction (PCR) of actual samples, the suggested
biosensor can be presented. On a screen-printed carbon electrode (SPCE), a nanocomposite
of reduced graphene oxide (rGO) as well as multiwalled carbon nanotubes (MWCNTs) was
electrodeposited [87].

A study conducted by Rehman et al. (2020) reported that an auto-assisted cervical
cancer screening system is suggested that utilizes a CNN trained on the Cervical Cells
database. The system provides better performance than its previous counterparts under
various testing conditions. For the 2-class problem, the classification accuracy of SR, SVM,
and GEDT is determined to be 98.8%, 99.5%, and 99.6%, respectively [17]. Validation
of Association Rule Mining using the Test Train Approach (VARMTTA), a data-driven
methodology, was put out by Logeswaran et al. (2020). Employing the train-test validation
approach lowers the number of rules that are generated from the dataset. This technique
makes use of conventional measures, including sensitivity, precision, and total accuracy [14].
According to Sahoo et al. (2020), using a common path interferometric setup, low-coherence
backscattered images of precancerous cervical tissue sections were recorded. These low-
coherence images were subjected to a two-dimensional multifractal detrended fluctuation
analysis (2D MFDFA) in order to examine the fluctuations in their fractal nature. The RI
fluctuations showed long-range relationships, and multifractality was shown to be greater
for cervical cancer with higher grades. It was discovered that normal and CIN-I, CIN-I and
CIN-II, and normal and CIN-II had specificities and sensitivities of 94%, 88%, 93%, 96%,
and 100%, respectively [88].
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3.4. 2021–2022

B. Chitra and S. S. Kumar [89] reviewed the most recent soft computing techniques for
detecting and classifying the most updated algorithms in current research. It is considered
a literature review of the most common classification techniques for cervical cancer up to
2021. On top of that, Md. MamunAli et al. [90] employed clinical data for early cervical
cancer detection. They applied a variety of data transformation techniques, such as Z-score,
log, and sine functions, in addition to feature selection methods for specifying the most
priority features for early detection of cervical cancer. Their results concluded that the
logarithmic transformation feature is the best for biopsy data. On the other hand, sine
is the best for cytology. However, the combination of sine as well as logarithmic is the
best for the Hinselmann dataset, but for the Schiller dataset, the Z-score performance is
the best. The classifiers utilized in this study are RF, Random Tree (RT), and instance-
based nearest neighbor classifiers. For better performance, B. Chitra and S. S. Kumar [91]
utilized the DL structure DesnNet 121 to classify Pap smear images. They apply various
augmentation techniques to the dataset. The DL structure is optimized using the Mutation-
based Atom Search Optimization (MASO) algorithm, which is employed to enhance the
hyperparameters of DensNet121, for instance, the learning rate, the number of neurons in
the dense layer, the number of epochs, patch size, and others. This approach obtains the best
accuracy among existing techniques, which reaches 98.3%. Attempting other methods, such
as recurrent neural networks, Zhang et al. [92] discussed the existing screening methods
for cervical cancer that are based mainly on separated cells. Therefore, any misclassified
cell causes poor accuracy. To overcome these limitations, they proposed a method that
combines Long-Short Term Memory (LSTM) with a full CNN as well as fuzzy nonlinear
regression. They exploited the time series method for improving cervical screening for
cancer. Their procedure was accurate to 98.3%.

Sohely Jahan et al. [93] proposed an approach that is described in Figure 3. As it is
clear, the raw cervical dataset is cured by outlier removal, cleaning methods, and excluding
the records that have missing values. Various feature selection principles are utilized, for
instance, Chi-square and RF, to find the most significant features. The selected features
are scaled and split into 70:30 to train and test various types of classifiers such as Random
Forest (RF), Logistic Regression (LR), Support Vector (SV), Multi-Layer Perceptron (MLP),
Decision Tree (DT), Gradient Boosting (GB), K-nearest neighbour (KNN), and AdaBoost
(AB) classifiers. MLP performed the best among all with a variety of features. On the other
hand, all classifiers have almost the same high performance on 25 selected features.

 

Figure 3. Automated invasive cervical cancer disease detection at an early stage via an appropriate
ML model.

217



Diagnostics 2023, 13, 1763

The research aims to improve accuracy with a reliable system. Therefore, Lei Cao et al. [94]
suggested a more accurate system for detecting cervical cancer. Their method is based on a
feature pyramid network to automatically classify cytological images by detecting abnormal
cells. Their distinguished model has two features: the first is the reading way of the cervical
cytology images, which is the same as pathologists, and the second is detecting abnormal
cells at different scales using a multi-scale region-based fusion network. Their designed
approach builds on clinical knowledge about abnormal cervical cells based on their shapes
and sizes. The performance of their approach is better than the DL approach. Their highest
accuracy was 95.8% on the independent dataset. Their process is accurate and quick,
and their diagnosis time is 0.04 s per image, which is faster than pathologists’ diagnoses.
For dealing with big-size images such as 1000 × 1000 pixels, Antoine Pirovano et al. [95]
proposed the classification under regression constraints. Their experiment enhanced the
sensitivity by up to 80% for localizing malignancy in whole slide images. The proposed
approach can be integrated with the pathology laboratory system to improve prediction.
Figure 4 illustrates their approach.

 

Figure 4. Graphical abstract of Antoine Pirovano et al.’s approach [95].

Some researchers used nanotechnology techniques, where Sakshi Pareek et al. [96] uti-
lized nanotechnology to design an electrochemical biosensor that is sensitive and accurate
for human papillomavirus infection (HPV-16) that causes cervical cancer. The designed
biosensor is label-free for DNA. The proposed biosensor exhibits excellent sensitivity and
stability. This is the core point in the HPV-16 analysis in medical diagnosis fields. On
the other hand, Huiting Zhang et al. [97] employed Raman spectroscopy of pre-cancerous
lesions for early cervical cancer detection. Their method depends on the Raman spec-
trum signal of the pre-cancerous cell, then utilizes partial least squares (PLS) with the
Relife method for feature extraction from the signal. The selected features are passed to
KNN and ELM classifiers. The novelty in their work is the feature fusion in the feature
extraction phase. The classifier’s performance was enhanced using feature fusion, where
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KNN accuracy elevated from 88.17% to 93.55% using feature fusion and ELM from 90.81%
to 93.51%.

AI is the challenge of many researchers, such as Sukumar Ponnusamy et al. [98],
who combine the artificial neural network and fuzzy system interference (ANFIS) with
a watershed algorithm to process, segment, and classify the Pap smear images. They
exploited the fuzzy rules to classify abnormal images into their types. Their findings
contrast with the existing approach, and it is feasible with high accuracy for classifying
malignant cells into their corresponding classes. On top of that, Hongzhen Zhou et al. [99]
analyzed the cervical tumor by automatic feature extraction using a deep belief network
in contrast-enhanced ultrasonography images. Their goal postulated the effectiveness of
intelligent cervical cancer diagnosis on chemotherapy. Their results are presented in terms
of higher sensitivity and accuracy for the diagnosis system. Other researchers focused on
the segmentation of affected parts of cervical cells using online machine learning (OLM),
which was carried out by Asma Daly et al. [100], who segmented the cervical cells using
the pelvic region in magnetic resonance imaging (MRI). They obtained high accuracy
when they compared their results with existing segmentation techniques. Another type of
ML is majority voting, which is based on utilizing a single classifier prediction and then
an ensemble of them to vote the major, as proposed by Qazi Mudassar Ilyas et al. [101],
who suggested using the ensemble classifier with majority voting of the output. Their
ensemble consists of SVM, DT, RF, Naïve Bayes (NB), KNN, LR, J48 DT, and MLP. The
best accuracy reached 94% when applied to different benchmark datasets. On the other
hand, it utilized other types of classifiers, such as AB, XGBoost, and RF, with the Firefly
algorithm as a feature reduction method in addition to SMOTE, which is utilized to deal
with imbalance problems in the data. The four diagnostic data sets are exploited (Schiller,
Hinselmann, Biopsy, and Cytology). The accuracy is enhanced in terms of reducing the
number of selected features [102]. Due to state-of-the-art DL approaches, Khaled Mabrouk
Amer Adweb et al. [103] discriminate between normal and pre-cancerous cervical cells
using Leaky-RELU and PRELU in residual neural networks. The optimum accuracy
reached 90.2% in Leaky-RELU and PRELU and 100% in colposcopy cervical images. On
the other hand, Anant R. Bhatt et al. [104] discussed the shortcomings of all existing
binary classification methods and conventional neural networks with respect to cervical
cancer images. Therefore, they suggested a new approach to extracting features and
classifying cervical cancer into multiclasses in a whole slide image (WSI) using ConvNet and
a transfer learning strategy. They achieved 99.7% accuracy for multiclass classification in the
SIPaKMed dataset. Other research focused on cervical cancer detection employing image
processing methods such as Balaji, G. N., et al. [105], which utilized Boykov–Kolmogorov
Graph Cuts as well as Cloud Model-based Synergy Integrated Segmentation algorithms
for identifying the boundary for cytoplasm and nuclei in cervical Pap smear images. They
approved that their methods enhanced the prognosis of cervical cancer by 14% over the
traditional segmentation methods. Other studies employed template matching between
the measured electrical impedance spectra of cervical cells and the spectra generated from
a 3D model of finite elements for cancerous and non-cancerous cervical cells. The matching
between spectra is expressed as a score to determine the high strength between the finite
element model and the concourse and non-cancerous cells. This method can be effective
for cervical cancer detection [106]. Some studies focused on the concomitant presence of
miRNA-9-5p in cervical cancer, which was detected by RT-PCR. The experiment concluded
that MiRNA-9-5p could be used as a biological marker for cervical cancer, which can be
profitable in the inhibition track by inhibiting the CXCR4 gene and protein [107].

Some studies used the Lambert-Beer law to calculate the absorption peak. They found
that the absorption is proportional to the cell concentration [108]. In contrast, other studies
worked on both breast and cervical cancer together by employing DL [109]. Their work
focused on utilizing the concepts of type of cancer, breast or cervical, whether it is located
internally or externally, in addition to the imaging modality, whether it is mammography,
ultrasound cytology, or colposcopy. Their results compared clinical diagnoses with DL.
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They conclude that DL can be an efficient tool for diagnosing cervical or breast cancer that
can be replaced by clinician diagnosis. One Nobel and the most effective study depend
on the fluorescence signal of urine samples [110]. They collected data using urine samples
from 1500 patients and compared them with the healthy subjects, which formed control
samples. They achieved a high true positive rate, reaching 74%. Their experiments can
be conducted with simple requirements, such as fluorescence device analyses. With an
amount of 200 μL, this process for diagnosis needs almost 40 min. On the other hand, the
detection of affected papillomaviruses using photothermal-triggered multi-signal readout
point-of-care testing (POCT). This bioassay method is realized and sensitive in linear ranges
10−6 ng/mL to 1 ng/mL with detection constraints reaching 1.60 × 10−6 ng/mL. This
method is effective because it is fast, precise, and optimized for POCT. Therefore, it can
be used in rural areas for the early detection of malignancy. Table 3 shows the reality of
this method when it is compared with the available cervical cancer biomarker detection
methods [111].

Table 3. Comparison with multiple techniques with regard to cervical cancer biomarker detection.

Detection
Methods

Targets Liner Range
LOD (Limit of

Detection)

Magnetic sensor VCP 25–200 ng/mL 2.5 × 10−5 ng/mL

Colorimetric assay HPV 20–2500 nM 1.03 nM

Electrochemical pGEM-T/E6 40–5000 ng/mL 0.016 ng/mL

Electrochemical GST-p16 15.6–250 ng/mL 1.3 ng/mL

Swab immunoassay E6 protein 10−6–1 ng/mL 1.60 × 10−6 ng/mL

Combining texture features of the nucleus and cytoplasm in Pap smear images is a
prominent tool to diagnose cervical cells. This method comes from the reality that doctors
diagnose cervical cancer based mainly on the structure as well as the size of the cervical
cells. Therefore, the Pap smear images in the Herlev dataset are segmented, and then the
texture features are extracted to pass through a multilayer feed-forward neural network.
The optimum results show high performance compared with the existing method [112]. On
the other side, some studies employed DL and endomicroscopic images to diagnose CIN
grade 2. The segmented nucleus is exploited to obtain relevant information for diagnosis.
The dataset consisted of 1600 patients, and 20% were used for validation and testing. This
approach results in sensitivity reaching 94% and specificity reaching 58%. Therefore, HPV
infection test results are considered added features. The sensitivity remains at 94%, and the
specificity is enhanced to 71% [113]. Apart from that, Dongyao Jia et al. [114] employed the
YOLO (You Only Look Once) algorithm to detect abnormal cervical cells to guarantee the
accuracy and rapidity of the model. This novel method forms a milestone for future work
in automatic cervical cancer diagnosis.

Among the most prominent studies employed dual-tree complex wavelet transform
(DTCWT) with a DL approach to classify Pap smear images into four categories: carcinoma
in situ, normal, dysplastic, and superficial. The database is augmented for DL requirements
using shearing and flipping transformations. The pixel conductivity of the augmented
images is manipulated using multimodal (DTCWT). The CNN that has been used in
their experiment is ResNet18, and they obtained a high accuracy of about 99% [115]. On
the contrary, Chenjie Li et al. [116] assessed the effectiveness of 3D ultrasound imaging
(TUI) on the local staging diagnosis of cervical cancer. Their suggestion is compared with
existing methods such as pelvic examination and MRI. Their experiment was conducted on
35 cervical cancer patients, and the back-propagation algorithm was exploited to segment
the images. Their results conclude that there is a high correlation between tumor size in
MRI and THI, reaching 0.842, and that the correlation between MR and clinical examination
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reaches 0.654. This reveals high consistency between MR and THI and can be used for
evaluating the local staging for cervical cancer.

For the combination of image processing and AI, most recent studies, such as AbuKhalil,
T., et al. [117], enhanced Pap smear images using median filters and then segmented them
using Outs thresholding techniques. The deep descriptors are extracted using ResNet and
Inception modules. The resultant descriptors are passed to the recurrent neural network
(RNN) to classify Pap smear images as cancerous or non-cancerous. In another study,
Mohamed Ibrahim Waly et al. [118] used the Harvel data set to classify Pap smear images
after applying preprocessing techniques such as a Gaussian filter to remove noise. Then
identify the illness portion by segmenting the cell with the Tsallis entropy method with
dragonfly optimization (TE-DFO). The segmented region is passed through the SqueezeNet
model to extract automated graphical features. Weighted Extreme Learning Machine (ELM)
is employed for cervix cell classification. On top of that, R. Elakkiya et al. [119] discussed
the shortcomings of the existing methods for classifying cervical cell cancers. Mainly, they
are based on accurate spotting and segmentation, in addition to handcrafted feature extrac-
tion. Therefore, they proposed Small-Object Detection-Generative Adversarial Networks
(SOD-GAN) with a Fine-tuned Stacked Autoencoder (F-SAE) to detect the lesion faster and
classify it into premalignant and malignant without segmentation and preprocessing. At
the same time, M. Anousouya Devi et al. [120] utilized Neutrosophic Graph Cut-based
for segmenting preprocessed Pap smear images into non-overlapping regions, which will
lead to enhanced classification accuracy. This algorithm depends mainly on transforming
preprocessed Pap smear images into the neutrophilic set. Then, the indeterminacy filter
played a main role in integrating the intensity, including the spatial information of prepro-
cessed images based on the indeterminacy value. This value specifies the weights for each
pixel to define the graph. Finally, the maximum graph is determined to obtain the optimal
segmentation results. This approach is better than existing detection methods by over 13%.

4. Discussion

Cervical cancer is a prominent health problem globally, with high mortality as well as
incidence rates, particularly in developing countries [121,122]. Early detection is critical for
the successful treatment and management of cervical cancer. The traditional method for
cervical cancer screening is the Pap smear test, which involves the examination of cervical
cells under a microscope for abnormalities. HPV is a very common sexually transmitted
infection, with estimates estimating that up to 80% of sexually active women will become
infected with HPV at some point in their lives. However, the majority of these infections
will clear up on their own without causing any long-term health problems. There are
many different types of HPV, and some types are more likely to cause cancer than others.
However, this method is subjective and may miss precancerous lesions, leading to false
negatives and a delayed diagnosis. Therefore, there has been further interest in establishing
CAD methods to improve cervical cancer screening. CAD technology for cervical cancer
detection has been extensively examined over the past few decades [123,124]. Between
1996 and 2022, significant advancements have been made in this field, leading to improved
accuracy, sensitivity, and specificity of CAD methods. Early CAD systems utilized image
processing and pattern recognition techniques to analyze digital images of cervical cells
with the aim of identifying abnormal cells and lesions. However, these early systems had
limited success due to low sensitivity and specificity.

In the early 2000s, ML algorithms were introduced to the field of CAD for cervical
cancer detection. ML algorithms can analyze large datasets and learn from them to identify
patterns and make predictions. This allowed for more accurate and automated analysis
of digital images of cervical cells. ML-based CAD systems have shown promise in sev-
eral studies, with improved sensitivity and specificity reported compared to traditional
screening methods [125–127]. Among the most promising CAD systems for cervical can-
cer detection is the Hybrid Intelligent System for Cervical Cancer Diagnosis (HISCCD),
which was developed in 2012. HISCCD is a combination of ML algorithms and rule-based
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systems that analyze digital images of cervical cells to detect abnormal cells and lesions.
Several studies have reported improved sensitivity and specificity of HISCCD compared
to traditional screening methods. Another promising CAD system is the Automated Cer-
vical Screening System (ACSS), which was introduced in 2016. ACSS uses an ML-based
algorithm to analyze digital images of cervical cells and identify abnormal cells and lesions.
In a study comparing ACSS to the Pap smear test, ACSS showed higher specificity and
sensitivity for detecting high-grade cervical intraepithelial neoplasia. In addition to these
systems, there have been several other CAD systems developed over the years, each with
its own strengths and limitations. One of the major challenges with CAD systems for
cervical cancer detection is the lack of standardized protocols and data sharing, which
limits their widespread adoption and validation.

The previous studies describe the most updated state-of-the-art techniques that were
suggested, validated, and evaluated for early cervical cancer detection. Most researchers
conducted their experiments utilizing image processing in addition to ML and DL. The
pre-processing techniques are employed to enhance the visualization of Pap smear images
and make feature extraction an easy and more accurate task. Other researchers skipped
this step by utilizing DL techniques to extract features automatically, which reduces time
and gives accurate results because all of the features excreted in this step are relevant to
the corresponding class. However, many researchers focused on HPV, which plays the
main role in the infection of cervical cancer. They focused on the nanotechnology track by
designing a biosensor that can detect the infection and is distinguished by its stability and
linearity. Other researchers focus on building a finite element model for both cancerous
and noncancerous cells to study the electrical impedance spectroscopy and compare it with
the tested cell to find the matching score between them. They count it as an alternative
method that is more accurate than using a Pap smear screening test. Chemical reactions are
also considered by other researchers by studying the fluorescence signals from the urine of
the infected women and comparing those signals with those of healthy women.

Various methods have been carried out in this area, either in biochemistry, image
processing, DL, signals, or nanotechnology tracks, to enhance and reach a highly accurate
approach to diagnosing cervical cancer in its early stages. This will reduce the mortality
rate among women and increase the chance of survival. In conclusion, CAD technology
for cervical cancer detection has come a long way since its introduction in the 1990s.
ML-based algorithms have shown promise in improving the accuracy and sensitivity
of CAD systems for cervical cancer detection. HISCCD and ACSS are two of the most
promising CAD systems, but extensive research and validation are required before they
can be broadly applied.

5. Conclusions

Cervical cancer is a substantial public health issue globally, with more than half a
million new cases and a quarter of a million deaths each year. Early detection and treatment
of cervical cancer can significantly improve outcomes and save lives. Fortunately, there
are several different methods for cervical cancer detection, each with its own limitations
and advantages. The Pap smear test is the most broadly employed and popular technique
with respect to cervical cancer detection. It is a low-cost, simple, and efficient way to screen
for precancerous or cancerous changes in the cervix. The Pap smear test has undergone
several improvements over the years, including the use of liquid-based cytology, which
has improved its accuracy and sensitivity. However, the Pap smear test is not foolproof
and can miss some cases of cervical cancer, especially in its early stages.

The recommended screening guidelines may vary depending on age, risk factors,
and previous screening results. In developed countries, the adoption of cervical cancer
screening programs has led to a significant decrease in cervical cancer mortality rates.
However, in low- and middle-income countries, the lack of access to screening programs
and cost-effective screening methods and vaccines is a significant barrier to early detection
and effective treatment. Therefore, the development of simple, low-cost, and accurate
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screening methods that can be implemented in low-resource settings is essential. In recent
years, machine learning (ML) and deep learning (DL) algorithms have been deployed to
aid in cervical cancer diagnosis and treatment by identifying abnormal and normal cells
automatically, precisely, and quickly. These algorithms have demonstrated high sensitivity
and specificity in detecting abnormal cervical cells, indicating their potential use as an
adjunct to traditional screening methods. However, more research is needed to evaluate
the feasibility and effectiveness of these algorithms in real-world clinical settings.

In the future, the identification of important risk factors as well as the utilization of
various segmentation pre-processing techniques can enhance the effectiveness of cervical
cancer diagnosis and treatment. Bigger and more balanced data can also improve the
performance of future classification systems. In conclusion, cervical cancer detection has
come a long way over the years, with several different methods available, each with its
advantages and limitations. The Pap smear test remains the most frequently employed
method, but newer methods, including HPV testing, VIA, and VILI, are becoming more
widely used. A colposcopy is also an important tool for follow-up and diagnostic purposes.
Regular cervical cancer screening is critical for early detection and successful treatment.
Women should discuss their screening options with their healthcare provider and follow
the recommended guidelines for cervical cancer screening. By working together, we can
continue to improve cervical cancer detection and save lives. Nevertheless, continued
innovation and collaboration in this field may facilitate the enhancement of cervical cancer
detection and ultimately lower the disease’s burden on women worldwide.
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Abstract: Skin lesions are essential for the early detection and management of a number of derma-
tological disorders. Learning-based methods for skin lesion analysis have drawn much attention
lately because of improvements in computer vision and machine learning techniques. A review of
the most-recent methods for skin lesion classification, segmentation, and detection is presented in
this survey paper. The significance of skin lesion analysis in healthcare and the difficulties of physical
inspection are discussed in this survey paper. The review of state-of-the-art papers targeting skin
lesion classification is then covered in depth with the goal of correctly identifying the type of skin
lesion from dermoscopic, macroscopic, and other lesion image formats. The contribution and limita-
tions of various techniques used in the selected study papers, including deep learning architectures
and conventional machine learning methods, are examined. The survey then looks into study papers
focused on skin lesion segmentation and detection techniques that aimed to identify the precise
borders of skin lesions and classify them accordingly. These techniques make it easier to conduct
subsequent analyses and allow for precise measurements and quantitative evaluations. The survey
paper discusses well-known segmentation algorithms, including deep-learning-based, graph-based,
and region-based ones. The difficulties, datasets, and evaluation metrics particular to skin lesion
segmentation are also discussed. Throughout the survey, notable datasets, benchmark challenges,
and evaluation metrics relevant to skin lesion analysis are highlighted, providing a comprehensive
overview of the field. The paper concludes with a summary of the major trends, challenges, and
potential future directions in skin lesion classification, segmentation, and detection, aiming to inspire
further advancements in this critical domain of dermatological research.

Keywords: skin; cancer; skin disease; skin cancer; melanoma; machine learning; deep learning;
detection; segmentation; classification

1. Introduction

The evolution of machine learning techniques has impacted many sectors. For instance,
breast cancer detection and classification [1,2], diabetes detection and prediction [3,4],
and brain tumor detection and classification [5,6] are some of the impacts that machine
learning techniques have shown in the health sector in the past few years [7]. The agricul-
tural sector [8,9] and financial sector [10] are also sectors that have benefited from machine
learning techniques. In recent years, we have seen significant advancements in derma-
tology as researchers and clinicians try to understand the complexities of various skin
conditions. Skin conditions affect millions of people worldwide and have a substantial
impact on both physical health and quality of life. The skin protects our inside organs
from microbes, regulates temperature, and serves as a sensation organ [11]. Human skin
has three layers: epidermis, dermis, and hypodermis [12]. The epidermis is the outermost
layer of skin, which provides a waterproof barrier. It creates our skin tone as it contains
special cells called melanocytes, which produce the pigment melanin. The dermis is found
under the epidermis and contains tough connective tissues, hair follicles, and sweat glands.
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The hypodermis is made of fat and connective tissue. Any of the diseases or disorders that
harm these layers of skin can be categorized as skin disease.

Apart from the disability and morbidity caused by skin diseases, skin cancer can be
fatal if not treated early. Skin cancer occurs when abnormal cells grow uncontrollably in the
skin [13]. According to the American Cancer Society [14], 1.9-million new cancer cases are
expected to be diagnosed in 2021. The death rate due to skin cancer in America, during 2021,
is predicted to be 1670 deaths per day. Kumar et al. [15] claimed that skin cancer is the
most-common cancer in developing countries with the most-advanced diagnostics and
prognosis. It has recorded 500,000 new cases in U.S., and that made it be classified as the
19th most-common cancer globally.

It is one of the three most-dangerous and -rapidly expanding cancer types, making
it a significant public health issue [16]. One out of every three cancer diagnoses is re-
lated to skin cancer, according to the World Health Organization, and the Skin Cancer
Foundation reports that the prevalence of skin cancer is rising globally [17]. Both benign
and malignant skin tumors can develop from DNA damage caused by exposure to UV
light, which results in unregulated cell growth, according to Hasan et al. [18]. Despite
their growth, benign tumors do not spread. They include pyrogenic granulomas, cysts,
cherry angiomas, seborrheic keratosis, dermatofibromas, skin tags, and dermatofibroma.
Malignant tumors, on the other hand, can invade other tissues and organs and spread
unpredictably throughout the patient’s body. Skin cancer can broadly be categorized as
melanoma and non-melanoma skin cancer. Non-melanoma skin cancer includes squa-
mous cell carcinoma, basal cell carcinoma, and Merkel cell carcinoma, among many others.
Melanoma arises from pigment-producing cells called melanocytes. If not diagnosed early
and managed well, it is very lethal. When detected early, its five-year survival rate is 93%.
However, the rate can decrease to 27% after spreading to distant lymph nodes and other
organs [14]. That is why due emphasis is being given to screening pigmented lesions:

• Basal cell carcinoma or basalioma (BCC): It begins in the basal cells, the innermost cells
of the epidermis, and accounts for around 80% of cases. Although basal cell growth
is modest, BCC is typically treatable and does little harm if detected and treated in a
timely manner.

• Squamous cell carcinoma or cutaneous spinocellular carcinoma (SCC): This is the
primary cause of 16% of skin cancers and develops in the epidermis’s outermost layer
of squamous cells. Early detection makes it easy treatable, but if left untreated, it can
spread to other body regions and penetrate the deeper layers of skin.

• Malignant melanoma (MM): It is a highly severe malignant skin tumor and originates
in the melanocytic cells in the epidermis. It spreads quickly, has a high fatality rate
because of early metastasis, and is challenging to treat. Although it only causes 4% of
skin cancers, it causes death in 80% of instances. Patients with metastatic melanoma
have a five-year survival rate of just 14%. It has a 95% cure rate if detected early;
therefore, early diagnosis can significantly improve survival prospects.

Traditionally, dermatologists diagnose skin disease by looking at the patient’s skin
lesions. A dermatoscope (hand-held magnifying lens and built-in light) can be used to
better see the area of interest. The revealing characteristics of skin lesions include the size,
shape, color, edge, boundary, and location of the abnormality, as well as the presence or
absence of other symptoms or signs. Therefore, the experience of the dermatologist can
affect the examination process. Besides, skin lesions exhibit similarities in color, texture,
edge contour, and other features. If visual inspection of the skin does not provide the
doctor with a diagnosis, invasive tests such as a biopsy [14], scraping, etc., are used to
identify skin disorders. These processes are also not efficient as they require a large amount
of time and affect the patient’s curing time. The diagnosis of skin diseases and cancer,
which is mainly thorough inspection of the skin lesions, opens room for AI intervention.
AI uses pictures of skin lesions to interpret the diagnosis. Recently, there have been several
works performed on skin lesion analysis using machine learning and image-processing
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techniques. They have been used in many works in the literature for skin lesion attribute
identification, segmentation, and disease type detection.

1.1. Contribution

This systematic literature review provides basic technological developments and fun-
damentals methodically, together with recommendations for researchers. Its contribution
can be summarized as follows:

• Comprehensive compilation and analysis of freely accessible and on-demand accessi-
ble skin lesion datasets for classification and detection.

• By consolidating research articles published between 2017 and 2023, this study presents
vital perspectives on the detection, segmentation, and classification of skin lesions.

• This survey summarized and evaluated the contributions and limitations of the past
survey papers in the domain of skin classification and detection, which were published
between 2017 and 2023.

• This recapitulation outlines unaddressed research needs, offering a concise summary
of the unresolved research challenges and potential avenues for further exploration in
skin lesion categorization and detection across diverse skin datasets.

• The study paper indicated that, in recent years, the accuracy of skin image analy-
sis using machine learning approaches has grown, leading it to being viewed as a
complimentary approach to clinical evaluation.

1.2. Paper Organization

The rest of the paper is organized as follows, Section 2 discusses recent related works,
and Section 3 presents the methodology employed in this paper to perform the systematic
literature review. In Section 4, we present the main public databases containing dermo-
scopic images, relevant for most of the studies carried out previously for skin disease
diagnosis. The machine learning techniques applied to skin disease classification are pre-
sented in Section 5.1. The commonly used machine learning techniques for skin disease
detection are discussed in Section 5.2. The findings of the systematic literature review from
a different perspective is presented in Section 6, and a brief discussion on open challenges
and future directions is provided in Section 7. Finally, the conclusion of this systematic
review paper is presented in Section 8.

2. Related Work

Skin lesion classification and detection have emerged as critical areas of research in
medical imaging and computer vision, with the potential to revolutionize the early diagno-
sis and treatment of various skin disorders, including skin cancer. In this discussion, we
delve into the existing body of related work on skin lesion classification and detection, ex-
ploring the methodologies, approaches, and advancements that researchers have employed
in this domain.

Grignaffini et al. [16] conducted a systematic review of the prior literature on the use
of machine learning techniques for the detection and classification of skin cancer from
various datasets (MedNode, ISIC2017, HAM10000, ISIC2016, PH2, DermIS, DermQuest,
ISIC archive, IDS, ISIC 2019, ISIC2020, ISIC2018, 7-point checklist, and DermNZ). After ex-
amining a total of 68 research papers, the authors provided a complete summary of the
various machine learning techniques utilized for skin cancer categorization, along with
their performance metrics. The methods, findings, and introduction are all divided into
separate sections in this well-organized piece of work. Because the authors thoroughly
outlined the inclusion and exclusion criteria used to choose the research, the review is more
reliable. The authors also used a Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) flow diagram to show the study-selection process. The Results
Section of the study, together with performance metrics, provides a complete analysis of the
various machine learning techniques used for skin cancer categorization. After carefully
comparing all available techniques, the authors identified the best ones. The authors also
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examined the limitations of earlier studies and highlighted the need for more-dependable
and -accurate methodologies.

Zafar et al. [19] provided an overview of the many techniques for analyzing skin
lesions and diagnosing cancer that have been published in the literature. This review
article featured studies on the diagnosis of skin lesions using several datasets (MedNode,
ISIC2017, HAM10000, ISIC2016, PH2, DermIS, DermQuest, ISIC 2019, ISIC2020, ISIC2018,
7-point checklist, HPH, ISIC archive, ISBI 2016, ISBI 2017, and DermNZ) from different
repositories. The report provided an outstanding summary of the various approaches that
have been proposed for the examination of skin lesions and cancer diagnosis.

In a thorough review, Hauser et al. [20] investigated the use of explainable artificial
intelligence (XAI) in the identification of skin cancer, and XAI refers to artificial intelligence
models that can describe their decision-making processes in order to aid doctors in better
understanding and interpreting the model’s predictions. The authors conducted a thor-
ough search of the literature on Google Scholar, PubMed, IEEE Explore, Science Direct,
and Scopus and discovered 37 articles that used XAI techniques in skin cancer diagnosis.
The authors discussed the various XAI techniques used in the trials, including decision
trees, gradient-based strategies, and rule-based models. They drew attention to both the
advantages of XAI, including enhanced transparency and interpretability, and its potential
drawbacks, such as decreased accuracy when compared to black-box models. The authors
drew the conclusion that XAI has the potential to improve skin cancer detection by pro-
viding more-transparent and -understandable models. They also emphasized the need for
more research to demonstrate the viability of XAI models in clinical settings and to address
the challenges of integrating these models into pre-existing healthcare systems.

In their study, Jeong et al. [21] aimed to examine the current approaches, outcomes,
and restrictions of deep learning in dermatology. The investigation included studies pub-
lished between 2015 and 2021, and the authors discovered 65 papers that met their criteria
for inclusion. The various deep learning techniques used, the types of dermatological
conditions looked into, and the performance standards used to rate the models were dis-
cussed. The authors’ in-depth analysis of how deep learning techniques are applied in
dermatology is a significant contribution to the field. The survey article provided links to
other datasets that researchers may utilize, which were discovered. It is conceivable that ad-
ditional important studies were overlooked because the assessment was restricted to works
published between 2015 and 2021. While acknowledging the limitations of deep learning
in dermatology, it would have been helpful to provide more-specific recommendations for
future research to address these limitations.

Hasan et al. [22] conducted a thorough examination of 594 papers, 356 of which
were for skin lesion segmentation and 238 for skin lesion classification. Furthermore, they
evaluated and investigated potential segmentation and classification patterns for skin
lesions. Important details regarding the procedures used to create CAD systems were
provided by analyzing and summarizing these articles in a variety of ways. They included
the method configurations (techniques, architectures, module frameworks, and losses),
training methods, assessment methods, and input data, which included dataset usage, data
preprocessing, augmentations, and addressing imbalanced concerns.

Relevant and essential definitions and theories were also included in this list. The aim
of the researchers was to study several performance-improving strategies, such as ensemble
and postprocessing. The main challenges of evaluating skin lesion segmentation and
classification algorithms using small datasets were addressed, along with some potential
solutions. They also discussed these dimensions to disclose their current trends based on
usage frequencies.

A critical analysis of a few cutting-edge machine learning methods for skin cancer
detection was presented by Bhatt et al. [23]. The importance of early melanoma skin cancer
detection was also stressed by the authors because it significantly increases survival rates.
The scientists also offered a comprehensive overview of the most-recent machine learning
techniques for melanoma skin cancer detection and classification. The authors covered a
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variety of subjects in-depth, including different algorithms (support vector machine, K-nearest
neighbors, and CNN), data augmentation, and feature-extraction techniques using datasets
such as PH2, MEDNODE, Dermofit, Dermquest, and others compiled from the archives of
the ISIC and ISBI. There were, however, some restrictions in the work. In the study, bias in
training data and other potential negative effects of using machine learning algorithms for
melanoma detection were not addressed. The potential ethical repercussions of using machine
learning algorithms for medical diagnosis were also not addressed by the authors.

An overview of numerous skin disease categorization methods based on machine learn-
ing approaches was presented by Mohammed and Al-Tuwaijari [24]. Support vector machines,
decision trees, random forests, artificial neural networks, and deep learning were just a few of
the methods covered in the study. The technique and performance indicators employed in
these systems were also covered in the article. The approaches for classifying skin diseases us-
ing machine learning algorithms were well-explained in this paper. It did not, however, offer a
thorough analysis of the methodologies surveyed. The survey might not include all methods
for classifying skin diseases that are currently in use. Furthermore, a deeper examination and
evaluation of the examined methodologies would have improved the paper’s value.

A study on the possibility of deep learning and machine learning techniques for the early
identification of skin cancer was reported by Mazhar et al. in the publication [25]. The authors
reviewed the pertinent literature on skin cancer detection and the application of artificial
intelligence (AI) in the healthcare industry using a systematic manner. The study offered
a thorough assessment of the state-of-the-art in skin cancer diagnosis today, as well as the
potential of AI to boost accuracy, cut down on waiting times, and increase access to healthcare
services. A thorough explanation of the many methodologies employed in the study, such as
convolutional neural networks (CNNs), was also provided. The authors may have discussed
the problems with data quality, data imbalance, data bias, and the necessity for big datasets
to train deep learning models. The study may have been made stronger by comparing the
effectiveness of machine learning and deep learning approaches to conventional methods
for skin cancer detection. Furthermore, a section on the ethical issues surrounding the use of
AI in healthcare, particularly in relation to patient data security and privacy, may have been
added to the article. Overall, the paper provided a great summary of the application of deep
learning and machine learning to the identification of skin cancer.

Table 1 presents a summary of related studies, highlighting both contributions and
limitations of related studies.

Table 1. Summary of related works with their contributions and limitations.

Author and Year of Publication Contribution Limitation

Grignaffini et al. [16], 2022

• It reported a systematic literature review
of recent research on the use of machine
learning to classify skin lesions.

• The paper discussed datasets that are
used commonly in skin lesion detection
and classification.

• Explaining the basic concepts of tradi-
tional ML algorithms is not important
for the readers of such papers.

• Explaining the basic concepts of DL is
also not important to readers that this
paper targets.

Zafar et al. [19], 2023

• A thorough assessment of the literature
on the methods, procedures, and ap-
proaches used to examine skin lesions
was made in this paper.

• Research publications that analyzed skin
lesions based on their complicated and
uncommon features were excluded.

Hauser et al. [20], 2022
• A systematic review of explainable ar-

tificial intelligence (XAI) in skin cancer
recognition was made in this paper.

• Limited to only XAI, it may have not cov-
ered all aspects of AI in skin cancer recog-
nition.

• It did not compare XAI with others tradi-
tional ML and DL techniques in terms of
various evaluation parameters.
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Table 1. Cont.

Author and Year of Publication Contribution Limitation

Jeong et al. [21], 2023

• Provided a thorough overview of der-
matology in the literature review.

• A summarized review report of the
current state of the datasets, trans-
fer learning strategies, difficulties,
and restrictions within the body of
existing AI work was presented.

• The survey was limited to papers
published between 2015 and 2021.

• It overlookedpertinent studies.

Hasan et al. [22], 2023

• The authors revealed that the ISIC is
the most-commonly applied dataset in
skin disease segmentation and classifi-
cation.

• The survey enables researchers to de-
termine the best experimental setup
for skin lesion diagnosis.

• Most of the publications (100+) con-
sidered in the papers were those pub-
lished 6 years, between 2011 and
2016.

Bhatt et al. [23], 2022

• Detailed analysis of cutting-edge
machine learning methods for the
identification and categorization of
melanoma skin cancer.

• Primarily focused on conventional
machine learning methods for the
identification and classification of
melanoma skin cancer.

Mohammed and Al-Tuwaijari [24], 2022

• Provided a summary of various clas-
sification systems for skin diseases
based on machine learning methods.

• Did not offer a methodical assess-
ment of the approaches and did not
include all of them.

Mazhar et al. [25], 2023

• Reviewed the pertinent literature on
skin cancer detection and the appli-
cation of artificial intelligence (AI)
in healthcare.

• Ethical issues surrounding the use of
AI in healthcare, particularly in rela-
tion to patient data security and pri-
vacy, may have been added to the arti-
cle.

3. Methods

In this systematic review approach for ML-based skin disease detection and classi-
fication, we defined the research questions, search strategies with the search databases,
and paper selection criteria. In order to analyze current research findings that have been
suggested for skin disease detection and classification using conventional machine learning
methods, deep learning methods, and hybrid methodologies, this systematic literature
review work set three main objectives: (1) to identify the commonly available datasets that
could be accessed freely or upon request; (2) to explore the contribution and limitations of
the current state-of-the-art methods; (3) to present the summary of the open challenges in
the area of skin disease and cancer detection and classification.

In this systematic review, we defined a rigorous research question that can summarize
the body of literature already available on a skin lesion detection and classification, enabling
a thorough and objective understanding of this topic. Several methods and processes were
used to make sure the study was effective and true to its original intent. We examined the
essentials of a systematic review or survey in this thorough explanation, focusing on five
pre-established research questions, search strings, five inclusion and six exclusion criteria,
and five search engines or databases.

Research questions:Any systematic review or survey must start with a set of clear
research questions as its cornerstone. These inquiries direct the entire research procedure
and aid in defining the study’s scope. Five research topics were already established in this
case as presented in Table 2. These inquiries were made to be precise, short, and geared
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towards the review’s particular goals to provide a guide for the methodical gathering and
examination of pertinent facts.

Search strings: Creating search phrases or keywords is a crucial step in the systematic
review process. These carefully constructed search strings are used to look up scientific
papers across a variety of databases or search engines. They ought to be planned to
include all pertinent material pertaining to the study’s questions. Search strings that
combine synonyms, Boolean operators, and truncation symbols make sure that the review
is thorough and does not overlook any important studies. Algorithm 1 presents how the
search strings were combined to collect the appropriate scientific papers specific to the
pre-defined topic.

Inclusion and exclusion criteria: Pre-specified inclusion and exclusion criteria were
developed as presented in Table 3 to preserve the caliber and applicability of the papers
included in the review. Five inclusion criteria and six exclusion criteria were established in
this case. The inclusion criteria specified the qualities that papers must have in order to be
taken into account for the review, such as the time period between publications, the type of
study, which was specific to the topic, the reputability of the journals where the scientific
papers were published, and the language of the study. On the other hand, the exclusion
criteria outlined the circumstances under which an article would be disregarded, such as
non-English language publications or research that poses a significant risk of bias such
as M.Sc. and Ph.D. theses, seminars, posters, case studies, and publications before 2020.
These standards aided in ensuring that the review concentrated on the most-pertinent and
-methodologically reliable studies.

Search engines or databases: In systematic reviews, the choice of the search engines
or databases is also crucial. Utilizing several databases increases the chance of finding
a wide variety of pertinent publications. Five search engines or databases were chosen
in this systematic review process, as indicated in Figure 1. IEEE Xplore, MDPI, Google
Scholar, Springer Link, and Science direct are a few popular databases for scientific literature.
The evaluation reduced the chance of missing important findings by searching across
different platforms.

These methods worked together to make sure that the systematic review process was
orderly, impartial, and able to offer solid, evidence-based insights into the chosen study
field, as presented in Algorithm 2.

Table 2. Researchquestions for the systematic review work.

No. Research Question Objectives

1 What are the major targets of applying machine
learning techniques in skin disease diagnosis?

To investigate the major targets of applying
traditional machine learning and deep learn-
ing approaches for skin disease diagnosis.

2 What machine learning techniques are used
in skin disease diagnosis?

To identify the commonly and recently pro-
posed traditional machine learning tech-
niques and deep learning techniques for skin
disease diagnosis.

3 What are the common available dataset for
skin disease diagnosis?

To identify the publicly available dataset that
researchers can download either by online
registration or freely available with or with-
out payment.

4 How successful are the proposed machine
learning techniques in skin disease diagnosis?

To analyze and compare the proposed ma-
chine learning techniques in the diagnosis of
skin disease.

5
What are the future challenges in applying
machine learning techniques for skin dis-
ease diagnosis?

To investigate the open questions in the ap-
plication of machine learning techniques for
skin disease diagnosis.
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Table 3. Inclusion and exclusion criteria for paper selection.

Inclusion Criteria (ICs) Exclusion Criteria (ECs)

IC1: The papers should focus on skin disease or
cancer detection or segmentation or classifica-
tion

EC1: Publications that are not focused on skin
disease and cancer detection or classification or
segmentation.

IC2: The papers should include different types
of diseases, mainly skin cancer or melanoma.

EC2: Publications not peer-reviewed, ab-
stracts, editorial letters, book reviews, and sci-
entific reports.

IC3: The papers should be published in rep-
utable journals with an impact factor and in-
dexed in the Web of Science or Scopus or recog-
nized conference proceedings.

EC3: M.Sc. and Ph.D. theses, posters, and semi-
nars.

IC4: The studies should be written in English. EC4: Studies that are published prior to 2020
except for Sections 1 and 4.

IC5: Publication year for Sections 1 and 4 can be
any year of publication.

EC5: Skin disease detection and classification
based on case studies.

IC6: The publication year for study paper to
be included in the systematic review must be
between 2020 and 2023

EC6: Study papers that are not peer-reviewed
and journals that are not indexed in the Web of
Science or Scopus.

Algorithm 1 Pseudocode for defining the search string

Search_String = [("Skin” OR “Skin disease” OR “Skin cancer” OR “Melanoma” OR “Skin lesion”
AND

(“Machine Learning Methods” OR “Machine Learning Techniques”OR “Deep Learning Methods”
OR “Deep Learning Techniques” OR “Classical Machine Learning Methods” OR “Traditional

Machine Learning Methods”
AND

(“Detection” OR “Classification” OR “Segmentation”)]

Algorithm 2 Pseudocode for generating potential review papers

SearchDatabases ← Springer_Link, MDPI, Science_Direct, Wiley_Online, IEEE_Xplore,
Google_nScholar
{Initialization:}
Area_Keyword ← [Skin, Skin_disease, Skin_cancer, Melanoma]
Method_keywords ← [Deep_Learning_Methods, Classical_Machine_Learning_Methods,
HybridMethod]
Target_keywords ← [Detection, Classi f ication, Segmentation]
Search_String ← “Algorithm 1”
for keyword ∈ Area_keywords do

for target ∈ Target_keywords do
for method ∈ Method_keywords do

Search_String = Algorithm 1
for database ∈ Databases do

List1 ← databases.search(Search_String)
end for

end for
end for

end for
Inclusion_Criteria = [IC1,IC2,IC3,IC4,IC5,IC6]
Exclusion_Criteria = [EC1,EC2,EC3,EC4, EC5,EC6]
List2 ← Apply.Inclusion_Critera(List1)
Final_Lists ← Apply.Inclusion_Critera(List2)
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4. Skin Datasets

Skin lesion datasets are a useful tool for the development of algorithms to identify
and categorize various forms of skin lesions in the fields of dermatology and computer
vision. Various skin disorders, including benign and malignant lesions, are represented
by a collection of images and labels. The “ISIC (International Skin Imaging Collaboration)
Archive” is a well-known dataset of skin lesions [26,27]. The vast majority of the images in
this dataset are dermoscopic images, which are polarized and enlarged views of skin lesions
taken with specialized dermatology equipment. The ISIC Archive has been extensively
utilized in research to create automated algorithms for melanoma diagnosis and skin
lesion classification.

The “HAM10000” dataset is another important source of data [26,27]. It consists of
10,015 dermoscopic images of pigmented skin lesions divided into seven groups, including
basal cell carcinoma, melanoma, and nevi. For the categorization of skin lesions, deep learning
models have been developed using the HAM10000 dataset in a number of research works.
A dataset that is exclusively devoted to melanocytic lesions is the “PH2 Dataset” [26,27]. It
includes 200 dermoscopic photos of normal and uncommon melanocytic lesions, coupled
with a ground truth that has been expertly annotated for precise diagnosis. In order to create
algorithms that aid in the early identification and diagnosis of melanoma, the PH2 dataset
has been extensively used. The development of computer-aided diagnosis and automated
skin lesion classification has greatly benefited from these skin lesion datasets, as well as others
that are available in the literature. These datasets are still being used by scientists and doctors
to improve skin disease diagnosis and treatment by creating more-precise and -effective
algorithms for skin lesion analysis.

In Tables 4–6, the most-popular dermoscopic public datasets are summarized, and
the details of these datasets can be found in [26,27], while the website to download each
dataset is also presented in Table 7.

Table 4. Summary of openly accessible datasets—ISIC Archive [26–28].

Dataset Collection Site Publication Year Imaging Modality
Number of
Category

Number of
Images

ISIC2020 Hospital Clinic Barcelona 2020 Dermoscopic 2 7311

ISIC2020 University of Queensland 2020 Dermoscopic - 8449

ISIC2020 Medical University Vienna 2020 Dermoscopic 2 4374

ISIC2020 Memorial Sloan Kettering
Cancer Center 2020 Dermoscopic 5 11,108

ISIC2020
Sydney Melanoma Diagnosis

Centre and Melanoma
Institute Australia

2020 Dermoscopic 8 1884

HAM10000

Medical University of
Vienna and skin cancer

practice of Cliff Rosendahl in
Queensland

2018 Dermoscopic 8 10,015

BCN20000 Hospital Clinic Barcelona 2019 Dermoscopic 9 19,424

JID Journal of Investigative
Dermatology 2018 Macroscopic 3 100

MSK 1-5 Memorial Sloan Kettering
Cancer Center 2015 and 2017 Dermoscopic 15 3918

UDA
Google Research, Brain

Team, and Carnegie Mellon
University

2014 and 2015 Dermoscopic 7 617
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Table 5. Summary of openly accessible datasets—ISIC Challenge test set and non-ISIC datasets [26–28].

Dataset Collection Site Publication Year Imaging Modality
Number of
Category

Number of
Images

ISIC2020 Test set 2020 Dermoscopic - 10,982

ISIC2019 Test set 2018 and 2019 Dermoscopic - 8238

ISIC2018 Test set 2018 Dermoscopic - 1000

PAD-UFES-20 Non-ISIC set 2020 Macroscopic 6 2298

PH2 Dermatology Service of
Pedro Hispano Hospital 2013 Dermoscopic 3 200

7-point criteria
evaluation
database

Dr. Giuseppe Argenziano 2018 Dermoscopic and
Macroscopic 15 2013

MED-NODE University Medical Center
Groningen (UMCG) 2015 Macroscopic 2 170

SKINL2
Instituto de

Telecomunicações Campus
Universitário de Santiago

2019 Light field photographs and
dermoscopic photographs 8 814

SNU University of Waterloo - Macroscopic 2 206

SDN-260 - 2019 Macroscopic 260 20,600

Table 6. Summary of non-openly accessible datasets, but downloaded upon request [26–28].

Dataset Collection Site Publication Year Imaging Modality
Number of
Category

Number of
Images

Asan Asan Institutional 2017 Macroscopic 12 17,125

Hallym Asan Institutional 2017 - 1 152

DERMOFIT
image library University of Edinburgh - - 10 1300

IMA205 - 2018 - - -

MoleMapper app
patient photo

Ph.D. cancer biologist,
Dan Webster 2017 Macroscopic 2 2422

SNU University of Edinburgh 2018 Macroscopic 134 2201

Severance - 2020 Macroscopic 43 40,331

Papadakis - 2021 Macroscopic 1 156

Table 7. Datasets and associated download websites [26–28] accessed on 20 July 2023.

Dataset Website

Monkeypox-dataset-2022 https://github.com/mahsan2/Monkeypox-
dataset-2022

ACNE04 https://github.com/xpwu95/LDL

BCN_20000 (part of ISIC 2019) https:
//challenge2019.isic-archive.com/data.html

Asan and Hallym https://figshare.com/articles/Asan_and_
Hallym_Dataset_Thumbnails_/5406136
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Table 7. Cont.

Dataset Website

Atlas Dermatologico http://www.atlasdermatologico.com.br

DermQuest http://dermquest.com

DermAtlas http://www.dermatlas.net

Dermis http://www.dermis.net/dermisroot/en/home/
index.htm

Dermnet http://www.dermnet.com

DermWeb http://www.dermweb.com

Dermnet NZ https://www.dermnetnz.org

Dermatoweb http://www.dermatoweb.net

Danderm http://www.danderm-pdv.is.kkh.dk/atlas/
index.html

Dermatologia Praktyczna http://derma.pl/

DermSynth3D https://github.com/sfu-mial/DermSynth3D

DermX (525 dermatological images with
diagnoses and diagnosis explanations by

three dermatologists)
https://github.com/ralucaj/dermx

Dermofit https://licensing.edinburgh-innovations.ed.ac.
uk/i/software/dermofit-image-library.html

Derm7pt http://derm.cs.sfu.ca/

Diverse Dermatology Images (DDI) https://ddi-dataset.github.io

ENriching Health data by ANnotations of
Crowd and Experts (ENHANCE): ABC

criteria annotations of ISIC 2017 and
PH2 datasets

https://github.com/raumannsr/ENHANCE

Fitzpatrick17k (16,577 clinical images with
diagnosis and Fitzpatrick scale labels) https://github.com/mattgroh/fitzpatrick17k

HAM10000 https://www.nature.com/articles/sdata2018161

Hellenic Derm Atlas http://www.hellenicdermatlas.com/en

ISIC https://isic-archive.com/

Islam et al. Monkeypox Skin Image
Dataset 2022

www.Kaggle.com/datasets/arafathussain/
monkeypox-skin-image-dataset-2022

MedMNIST https://medmnist.com

Med-Node http://www.cs.rug.nl/~imaging/databases/
melanoma_naevi/

Meddean http://www.meddean.luc.edu/lumen/MedEd/
medicine/dermatology/melton/atlas.htm

MoleMap https://molemap.co.nz

MSK https://arxiv.org/abs/1710.05006

PH2 https:
//www.fc.up.pt/addi/ph2%20database.html

PAD-UFES-20 (clinical skin lesion images
from smartphones)

https:
//data.mendeley.com/datasets/zr7vgbcyr2/1
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Table 7. Cont.

Dataset Website

Skin3D https://github.com/jeremykawahara/skin3d

SD198 https://drive.google.com/file/d/1YgnKz3hnzD3
umEYHAgd29n2AwedV1Jmg/view

Skin Cancer Detection https://uwaterloo.ca/vision-image-processing-
lab/research-demos/skin-cancer-detection

SKINCON https://skincon-dataset.github.io/index.html

University of Iowa Clinical Skin
Disease Images

http://www.medicine.uiowa.edu/dermatology/
diseaseimages/

UWaterloo Skin Cancer Detection dataset
(images taken from DermIS and DermQuest

along with lesion segmentation)

https://uwaterloo.ca/vision-image-processing-
lab/research-demos/skin-cancer-detection

XiangyaDerm http://airl.csu.edu.cn/xiangyaderm/

5. Machine-Learning-Based Skin Disease Detection and Classification

In this section, the important discoveries, trends, and knowledge gaps that have been
identified from prior research are highlighted thorough an examination of the body of
literature on skin diseases. This study sought to provide a thorough overview of the present
understanding in the topic and highlight prospective directions for further research by
integrating the collective knowledge from a variety of sources.

5.1. Machine Learning and Deep Learning in Skin Disease Classification

Skin diseases and skin cancer pose significant health concerns worldwide. Early detec-
tion and accurate classification of these conditions are crucial for effective treatment and
improved patient outcomes. In recent years, the field of dermatology has witnessed remark-
able advancements in the development of automated systems for skin disease classification.
These systems leverage the power of artificial intelligence (AI) and machine learning tech-
niques to analyze dermatological images and provide reliable diagnoses. The classification
of skin diseases and skin cancer traditionally relied on manual examination and subjective
interpretation by dermatologists. However, the subjective nature of this process often led
to inconsistencies and errors in diagnosis. With the advent of computer-aided diagnosis
(CAD) systems, the dermatology community has gained access to powerful tools that can
enhance diagnostic accuracy and assist healthcare professionals in decision-making.

This review report aimed to explore the latest advancements in the field of skin disease
and skin cancer classification using AI-based approaches. We examined the methodologies
employed in various studies, including deep learning algorithms, convolutional neural net-
works (CNNs), and image analysis techniques. By analyzing the strengths and limitations
of these approaches, we can gain insights into the current state-of-the-art and identify areas
for further improvement.

Balaji et al. [29] presented a method for skin disease detection and segmentation
using the dynamic graph cut algorithm and classification through a Naive Bayes classifier.
The authors first segmented the skin lesion from the background using the dynamic graph
cut algorithm and, then, used texture and color features to classify the skin lesion into one
of several categories using the Naive Bayes classifier. The use of both a dynamic graph
cut algorithm and a Naive Bayes classifier provides a robust and accurate method for
identifying and classifying skin lesions. The authors provided a clear description of the
methodology used and the results obtained, including a comparison with existing methods.
The authors evaluated their proposed approach using the ISIC 2017 dataset and reported an
accuracy of 91.7%, a sensitivity of 70.1%, and a specificity of 72.7%. The dataset is available
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publicly on the ISIC website for public studies. The approach also scored an accuracy of
94.3% for benign cases, 91.2% for melanoma, and 92.9% for keratosis.

Ali et al. [30] presented a study on the application of EfficientNets for multiclass
skin cancer classification, with the aim of contributing to the prevention of skin cancer.
The authors utilized the HAM10000 dataset consisting of 10,015 skin lesion images from
seven different classes and compared the performance of different variants of EfficientNets
with traditional deep learning models. The proposed approach was mainly focused on the
transfer learning technique using an EfficientNet and showed promising results for the
evaluation parameters that were selected during the experimental analysis. The authors
presented an interesting and relevant study on the application of EfficientNet Variants
B0–B7 for skin cancer classification. However, B0 was the best-performing model of the
EfficientNets out of B0–B7 with an accuracy of 87.9%. The model was also evaluated in
terms of other evaluation parameters and achieved a precision of 88%, a recall of 88%,
an F1-score of 87%, and an AUC of 97.53%. Overall, the experimental results of this paper
suggested that the proposed skin cancer classification model based on EfficientNets can
accurately classify skin cancer and has the potential to be a useful tool in the prevention
and early detection of skin cancer. However, the study had a few limitations. Firstly,
the authors did not provide a detailed comparison of their results with other state-of-the-art
methods for skin cancer classification, which makes it difficult to assess the significance
of their findings. Secondly, the study only used a single dataset, which may limit the
generalizability of the results. Future studies could benefit from using multiple datasets
and exploring the transferability of the models to different domains. Lastly, the authors
did not provide any information on the computational resources required for training and
evaluating the models, which could be useful for researchers and practitioners looking to
replicate or adapt their approach.

Srinivasu et al. [31] presented a classification approach for skin disease detection using
deep learning neural networks with MobileNet V2 and LSTM. The proposed approach
involved preprocessing of skin images followed by feature extraction using MobileNet V2
and classification using LSTM. More than 10,000 skin photos made up the dataset utilized
for evaluation. These images were divided into fivedifferent skin diseases: melanocytic
nevi (NV), basal cell carcinoma (BCC), actinic keratoses and intraepithelial carcinoma
(AKIEC), dermatofibroma (DF), and melanoma (MEL). The contribution of the paper was
the development of an accurate skin disease classification approach using deep learning
techniques that were lightweight and required less computational time. The main limitation
of the proposed approach was that it requires a large amount of data to train the model
effectively. The proposed approach achieved an accuracy of 90.21%, which outperformed
the existing approaches VGG16, AlexNet, MobileNet, ResNet50, U-Net, SegNet, DT, and
RF. The sensitivity, recall, and specificity values for each skin disease category were also
reported, which further validated the effectiveness of the proposed approach. The results
demonstrated that the proposed approach can accurately classify skin diseases, which can
aid in the early diagnosis and treatment of such diseases.

Shetty et al. [32] presented a novel approach for skin lesion classification using a
convolutional neural network (CNN) and machine learning techniques. The authors aimed
to develop an accurate and automated system for the classification of dermoscopic images
into different categories of skin lesions. The paper’s contribution lied in the development
of a CNN-based skin lesion classification system that can accurately classify seven differ-
ent categories of skin lesions with high accuracy. The authors utilized publicly available
datasets and compared their proposed system’s performance with other state-of-the-art
systems such as EW-FCM + Wide-shuffleNet, shifted MobileNet V2, Shifted GoogLeNet,
shifted 2-Nets, Inception V3, ResNet101, InceptionResNet V2, Xception, NASNetLarge,
ResNet50, ResNet101 + KcPCA + SVMRBF, VGG16 + GoogLeNet ensemble, and Modified-
MobileNet and outperformed all in terms of accuracy. The limitation of this paper was
that the proposed system is limited to dermoscopic images, and it cannot classify clinical
images, which are more challenging to classify due to their low contrast and other artifacts.
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The experimental results showed that the proposed system achieved an overall accuracy of
95.18%, outperforming other state-of-the-art systems.

Jain et al. [33] proposed a multi-type skin disease classification algorithm using an
optimal path deep-neural-network (OP-DNN)-based feature extraction approach. The pro-
posed algorithm achieved improved accuracy compared to other state-of-the-art algorithms
for the classification of various skin diseases. The contribution of this paper was the
proposal of an OP-DNN-based feature extraction approach for multi-type skin disease
classification. This approach improved the accuracy of classification and also reduced
the number of features required for classification. The paper also provided experimental
results that demonstrated the effectiveness of the proposed approach. The algorithm was
evaluated on the ISIC dataset with 23,906 skin lesion images and achieved an accuracy of
95%, which outperformed other algorithms such as KNN, NB, RF, MLP, CNN, and LSTM
for multi-type skin disease classification.

Wei et al. [34] proposed a novel skin disease classification model based on DenseNet
and ConvNeXt fusion. The proposed model utilized the strengths of both DenseNet and
ConvNeXt to achieve better performance in skin disease classification. The model was
evaluated on two different datasets, where one is the publicly available HAM10000 dataset
and the other was the dataset from Peking Union Medical College Hospital, and it achieved
superior performance compared to the other models. The proposed model addresses the
limitations of previous models by combining the strengths of the DenseNet and ConvNeXt
architectures, which has not been explored before in skin disease classification. The model
achieved state-of-the-art performance on the HAM10000 dataset and can potentially be
used in clinical settings to assist dermatologists in diagnosing skin diseases. However,
the study did not provide any explanation of how the model’s decisions were made, which
may limit its interpretability in a clinical setting. The proposed model achieved an accuracy
of 95.29% on the HAM10000 dataset and 96.54% on the Peking Union Medical College
Hospital dataset, outperforming the other state-of-the-art models. The model also achieved
high sensitivity and specificity for all skin disease categories. The study also conducted
ablation experiments to show the effectiveness of the proposed fusion approach, which
outperformed the individual DenseNet and ConvNeXt models.

Almuayqil et al. [35] presented a computer-aided diagnosis system for detecting
early signs of skin diseases using a hybrid model that combines different pretrained
deep learning models (VGG19, InceptionV3, ResNet50, DenseNet201, and Xception) with
traditional machine learning classifiers (LR, SVM, and RF). The proposed system consists of
four main steps: preprocessing the input raw image data and metadata; feature extraction
using six pretrained deep learning models (VGG19, InceptionV3, ResNet50, DenseNet201,
and Xception); features concatenation; classification using machine learning techniques.
The proposed hybrid system was evaluated on the HAM10000 dataset of skin images and
showed promising results in detecting skin diseases accurately. However, the proposed
hybrid approach DenseNet201 combined with LR achieved better performance with an
accuracy of 99.94% in detecting skin diseases, which outperformed the other state-of-the-art
approaches. The authors also provided a detailed comparison of the proposed model
with other state-of-the-art methods, showing its superiority in terms of accuracy and other
evaluation metrics.

Reddy et al. [36] proposed a novel approach for the detection of skin diseases using
optimized region growing segmentation and autoencoder-based classification. The pro-
posed approach employs an efficient segmentation algorithm that can identify the affected
regions of the skin accurately. Subsequently, a convolutional autoencoder-based clas-
sification model was used to classify the skin diseases based on the extracted features.
The experimental results indicated that the proposed approach achieved promising re-
sults and outperformed several state-of-the-art methods in terms of accuracy and other
evaluation metrics. The proposed approach offers several contributions to the field of
skin disease detection. Firstly, the proposed segmentation algorithm is optimized for skin
disease detection and can accurately identify the affected regions of the skin. Secondly,
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the proposed autoencoder-based classification model can classify the skin diseases with
high accuracy using the extracted features. Lastly, the proposed approach outperformed
several state-of-the-art methods in terms of accuracy and other evaluation metrics. One
of the limitation of the approach is that it may not generalize well to new datasets with
different characteristics as the the model was evaluated on the small dataset used from PH2
with 200 images. The experimental results indicated that the proposed approach achieved
an accuracy of 94.2%, which outperformed several state-of-the-art methods. The proposed
approach also achieved high values for other evaluation metrics such as the precision,
recall, and F1-score, which demonstrated the effectiveness of the proposed approach for
skin disease detection.

Malibari et al. [37] presented an optimal deep-neural-network-driven computer-aided
diagnosis (ODNNsingle bondCADSCC) model for skin cancer detection and classification.
The Wiener-filtering (WF)-based preprocessing step was used extensively in the described
ODNNsingle bondCADSCC model, which was then segmented using U-Net. Moreover,
the SqueezeNet model was used to produce a number of feature vectors. Eventually,
effective skin cancer detection and classification were achieved by using the improved
whale optimization algorithm (IWOA) with a DNN model. IWOA is used in this technique
to effectively choose the DNN settings. The comparison study findings demonstrated
the suggested ODNNsingle bondCADSCC model’s promising performance against more-
recent techniques with a high accuracy of 99.90%. Although the results are promising, it
would be helpful to validate the proposed model on a larger dataset to assess its robustness
and generalization capabilities. Another limitation is that the proposed model does not
provide explanations for its decisions, which is essential for gaining the trust of clinicians
and patients.

Qian et al. [38] proposed a deep convolutional neural network dermatoscopic image
classification approach that groups multi-scale attention blocks (GMABs) and uses class-
specific loss weighting. To increase the size of the DCNN model, the authors introduced
GMABs to several scale attention branches. Hence, utilizing the GMABs to extract multi-
scale fine-grained features will help the model better be able to focus on the lesion region,
improving the DCNN’s performance. The attention blocks, which may be used in different
DCNN structures and trained end-to-end, have a straightforward structure and a limited
number of parameters. The model will function successfully if the class-specific loss
weighting approach is used to address the issue of category imbalance. As a result of this
strategy, the accuracy of samples that are susceptible to misclassification can be greatly
increased. To evaluate the model, the HAM10000 dataset was used, and the result showed
that the accuracy of the proposed method reached 91.6%, the AUC 97.1%, the sensitivity
73.5%, and the specificity 96.4%. This confirmed that the method can perform well in
dermatoscopic classification tasks.

An augmented-intelligence-enabled deep neural networking (AuDNN) system for
classifying and predicting skin cancer utilizing multi-dimensional information on industrial
IoT standards was proposed by Kumar et al. [15]. The proposed framework incorporates
deep learning algorithms and IoT standards to create a robust and efficient skin cancer
classification system. The approach was evaluated on a Kaggle skin cancer dataset and
CIA datasets on melanoma categorization of skin lesion images, and the results showed
that it outperformed other state-of-the-art methods. The proposed AuDNN framework
is a significant contribution to the field of medical image analysis. The integration of
IoT standards and deep learning algorithms has created a system that is both robust and
efficient for skin cancer classification. The paper also provided a detailed analysis of
the performance of the proposed method, which can guide the development of future
approaches for skin lesion classification. One limitation of this study was that the dataset
used for training and evaluation was not explicitly mentioned. It would be helpful to
know more about the dataset and its properties to assess the robustness and generalization
capabilities of the proposed method. Another limitation is that the implementation of IoT
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standards may require significant resources and expertise, which may not be available in
all settings. The proposed AuDNN framework achieved an accuracy of 93.26%.

Notwithstanding the amazing developments, the current deep-network-based ap-
proaches, which naively adopt the published network topologies in general image clas-
sification to the classification of skin lesions, still have much potential for optimization.
Using self-attention to describe the global correlation of the features gathered from the
conventional deep models, Nakai et al. [39] suggested an enhanced deep bottleneck trans-
former model to enhance the performance of skin lesions. For balanced learning, they
particularly used an improved transformer module that included a dual-position encoding
module to include an encoded position vector on both the key and the query vectors.
By replacing the bottleneck spatial convolutions of the late-stage blocks in the baseline deep
networks with the upgraded module, they created a unique deep skin lesion classification
model to enhance skin lesion classification performance. To validate the effectiveness of
different deep models in identifying skin lesions, they conducted comprehensive tests on
two benchmark skin lesion datasets, ISIC2017 and HAM10000. With their method, the three
quantitative metrics of accuracy, sensitivity, and specificity on the ISIC2017 dataset achieved
92.1%, 90.1%, and 91.9%, respectively. The findings on the accuracy and precision for the
HAM10000 dataset were 95.84% and 96.1%. This demonstrated a superb harmony between
sensitivity and specificity.

Hossain et al. [40] first developed an EM dataset with the assistance of knowledgeable
dermatologists from the Clermont-Ferrand University Medical Center in France. Second,
the authors trained 23 convolutional neural networks (CNNs) on a collection of skin lesion
photos. These CNNs were modified versions of the VGG, ResNet, DenseNet, MobileNet,
Xception, NASNet, and EfficientNet architectures. Lastly, the authors used transfer learning
from pretrained ImageNet models to improve the CNNs’ performance after pretraining
them with the HAM10000 skin lesion dataset. Fourth, to examine the explainability of
the model, the authors used gradient-weighted class activation mapping to pinpoint the
input regions crucial to CNNs for making predictions. Lastly, the authors offered model
selection suggestions based on computational complexity and predictive capability. With an
accuracy of 84.42% ± 1.36, an AUC of 0.9189 ± 0.0115, a precision of 83.1% ± 2.49, a sen-
sitivity of 87.93% ± 1.47, and a specificity of 80.65% ± 3.59, the customized ResNet50
architecture provided the best classification results. With an accuracy of 83.13% ± 1.2,
AUC of 0.9094 ± 0.0129, precision of 82.83% ± 1.75, sensitivity of 85.21% ± 3.91, and speci-
ficity of 80.89% ± 2.95, a lightweight model of a modified EfficientNetB0 also performed
well. The authors contributed a Lyme disease dataset with twenty-three modified CNN
architecturesfor image-based diagnosis, effective customized transfer learning using the
combination of ImageNet and the HAM10000 dataset, a lightweight CNN, and a criteria-
based guideline for model architecture selection.

Afza et al. [41] proposed a hierarchical architecture based on two-dimensional super-
pixels and deep learning to increase the accuracy of skin lesion classification. The authors
combined the locally and globally improved photos to improve the contrast of the original
dermoscopy images. The proposed method consisted of three steps: superpixel segmen-
tation, feature extraction, and classification using a deep learning model.The proposed
method contributes to the field of skin lesion classification by introducing a hierarchical
three-step superpixel and deep learning framework. This method improved the accuracy of
skin lesion classification and reduced the computational complexity of the task by dividing
the image into superpixels and classifying them individually. The proposed method is
also generalizable and can be used on other datasets for skin lesion classification. Using
an updated grasshopper optimization approach, the collected features were further opti-
mized before being categorized using the Naive Bayes classifier. In order to evaluate the
proposed hierarchical technique, three datasets (Ph2, ISBI2016, and HAM1000) consisting
of three, two, and seven skin cancer classes were used. For these datasets (Ph2, ISBI2016,
and HAM1000), the proposed method had corresponding accuracy levels of 95.40%, 91.1%,
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and 85.80%. The findings indicated that this strategy can help in classifying skin cancer
more accurately.

Alam [42] proposed S2C-DeLeNet, a method for detecting skin cancer lesions from
dermoscopic images. The proposed method integrates segmentation and classification
using a parameter-transfer-based approach. The segmentation network, DeLeNet, was
trained on a large-scale dataset for dermoscopic lesion segmentation, and the classification
network, S2CNet, was trained on a public dataset for skin lesion classification. The authors
transferred the parameters of the segmentation network to the classification network and
fine-tuned the network on the classification task. The architecture of the segmentation
sub-network used an EfficientNet B4 backbone in place of the encoder. The classification
sub-network contained a “Classification Feature Extraction” component that pulled learned
segmentation feature maps towards lesion prediction. The “Feature Coalescing Module”
block mixed and trailed each dimensional feature from the encoder and decoder, while the
“3D-Layer Residuals” block developed a parallel pathway of low-dimensional features with
large variance. These were the blocks created as part of the classification architecture. Af-
ter tweaking on a publicly accessible dataset, the segmentation achieved a mean Dice score
of 0.9494, exceeding existing segmentation algorithms, while the classification achieved
a mean accuracy of 0.9103, outperforming well-known and traditional classifiers. Addi-
tionally, the network’s already-tuned performance produced very pleasant outcomes when
cross-inferring on various datasets for skin cancer segmentation. Thorough testing was
performed to demonstrate the network’s effectiveness for not only dermoscopic pictures,
but also for other types of medical imaging, demonstrating its potential to be a systematic
diagnostic solution for dermatology and maybe other medical specialties. For comparison,
eight cutting-edge networks, AlexNet, GoogLeNet, VGG, ResNet, Inception-Net, Efficient-
Net, DenseNet, and MobileNet, as well as their different iterations, were taken into account,
which confirmed that the proposed approach outperformed the state-of-the-art approaches.

With the aid of cutting-edge deep learning methodology, Elashiri et al. [43] intended
to put into practice an efficient way for classifying skin diseases. The contrast-enhancement
technique first collects and preprocesses the dataset by histogram equalization. The segmen-
tation of the photos was carried out by the Fuzzy C Means segmentation after preprocessing
(FCM). Furthermore, the segmented images were used as the input for ResNet50, VGG16,
and Deeplabv3’s deep feature extraction. The features were combined and obtained from
the third and bottom layer of these three approaches. Hybrid squirrel butterfly search
optimization performs weighted feature extraction to offer these concatenated features to
the feature trans-creation phase (HSBSO). The modified long short-term memory (MLSTM)
receives the changed features, and the same HSBSO optimizes the architecture there to
create the final output for classification. The analysis’s findings supported the notion that
the proposed method is more effective than traditional methods in terms of implementing
a classification of skin diseases that is accurate.

Adla et al. [44] proposed a full-resolution convolutional network with hyperparame-
ter optimization for dermoscopy image segmentation-enhanced skin cancer classification.
The hyperparameters of the network were optimized through a novel dynamic graph cut
algorithm technique. By fusing the wolves’ individualized hunting techniques with their
collective hunting methods, the hyperparameters highlighted the need for a healthy bal-
ance between exploration and exploitation and produced a neighborhood-based searching
approach. The motivation of the authors was to create a full-resolution convolutional-
network-based model that is hyperparameter-optimized and is capable of accurately iden-
tifying different forms of skin cancer using dermoscopy images. The initial contribution
made by the authors was FrCN-DGCA, which uses the DGCA approach to segment skin
lesion images and generate image ROIs in a manner similar to how doctors define ROIs.
The authors’ second addition was the action bundle, which is used as a hyperparameter by
the skin image-segmentation executor they provided in order to improve the segmentation
process’s accuracy. This segmentation process was based on the dynamic graph cut. Last,
but not least, the authors carried out a quantitative statistical analysis of the skin lesion
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segmentation findings to show the dependability of the segmentation methodology and
to contrast the findings with those of the current state-of-the-art methods. The suggested
model performed better than the other designs in tasks requiring skin lesion identification,
with an accuracy of 97.986%.

Hierarchy-aware contrastive learning with late fusion (HAC-LF), a revolutionary
technique presented by Hsu and Tseng [45], enhances the performance of multi-class skin
classification. A new loss function called hierarchy-aware contrastive loss (HAC Loss) was
developed by the developers of HAC-LF to lessen the effects of the major-type misclassi-
fication issue. The major-type and multi-class classification performance were balanced
using the late fusion method. The ISIC 2019 Challenges dataset, which comprises three skin
lesion datasets, was used in a series of tests by the authors to assess the performance of the
suggested approach. The experimental results demonstrated that, in all assessment metrics
employed in their study, the suggested method outperformed the representative deep
learning algorithms for skin lesion categorization. For accuracy, sensitivity, and specificity
in the major-type categorization, HAC-LF scored 87.1%, 84.2%, and 88.9%, respectively. Re-
garding the sensitivity of the minority classes, HAC-LF performed better than the baseline
model with an imbalanced class distribution.

A convolutional neural network (CNN) model for skin image segmentation was
developed by Yanagisawa et al. [46] in order to produce a collection of skin disease images
suitable for the CAD of various skin disease categories. The DeepLabv3+-based CNN
segmentation model was trained to identify skin and lesion areas, and the areas that met
the criteria of being more than 80% skin and more than 10% lesion of the picture were
segmented out. Atopic dermatitis was distinguished from malignant diseases and their
consequences, such as mycosis fungoides, impetigo, and herpesvirus infection, by the
created CNN-segmented image database with roughly 90% sensitivity and specificity.
The accuracy of identifying skin diseases in the CNN-segmented image dataset was higher
than that of the original picture dataset and nearly on par with the manually cropped
image dataset.

A multi-site cross-organ calibrated deep learning (MuSClD) approach for the auto-
mated diagnosis of non-melanoma skin cancer was presented by Zhou et al. [47]. To increase
the generalizability of the model, the suggested strategy makes use of deep learning models
that have been trained on a variety of datasets from various sites and organs. This paper’s
key contribution was the creation of a reliable deep-learning-based method for the auto-
mated diagnosis of skin cancers other than melanoma. The proposed strategy was intended
to go beyond the drawbacks of existing methods, which have poor generalizability because
of small sample sizes and a lack of diversity. The MuSClD technique uses datasets from
several sites and organs to increase the model’s capacity for generalization. The main
drawback of this paper was the lack of explanation for how the suggested deep learning
model makes decisions. Although the model had a high degree of accuracy in detecting
non-melanoma skin cancer, it is unclear how the model came to that conclusion. This lack
of interpretability might prevent the suggested strategy from being used in clinical settings.
Using a sizable collection of photos of skin cancers other than melanoma, the MuSClD
method was assessed. As measured in terms of the AUC, the suggested method fared
better than other cutting-edge approaches. Additionally, the study demonstrated that the
MuSClD method is adaptable to changes in imaging modalities and patient demographics,
making it appropriate for practical use.

Omeroglu et al. [48] proposed a novel soft-attention-based multi-modal deep learning
framework for multi-label skin lesion classification. The proposed framework utilizes
both visual and textual features of skin lesions to improve the classification accuracy.
The framework consisted of two parallel branches, one for processing visual features and
the other for processing textual features. A soft attention mechanism was incorporated into
the framework to emphasize important visual and textual features. The 7-point criteria
evaluation dataset, a well-known multi-modality multi-label dataset for skin diseases, was
used to evaluate the proposed framework. For multi-label skin lesion classification, it
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attained an average accuracy of 83.04%. It increased the average accuracy on the test set by
more than 2.14% and was more accurate than the most-recent approaches.

Serte and Demirel [49] applied wavelet transform to extract features and deep learning
to classify the features with the intention to enhance the performance of skin lesion classifi-
cation. First, the wavelet transform was used as a preprocessing step to extract features
from the skin lesion images. Then, skin lesions were divided into various groups using a
deep learning model that was trained on the retrieved features. The authors tested their
method against other cutting-edge approaches using the publicly accessible dataset ISIC
2017 of skin lesions. The use of a deep learning model for classification and the use of a
wavelet transform to extract features were the key contributions of this paper. In this study,
the best combination of models for melanoma and seborrheic keratosis detection were the
ResNet-18-based I-A1-H-V and ResNet-50-based I-A1-A2-A3 models.

Bansal et al. [50] proposed a grayscale-based lesion segmentation, while texture char-
acteristics were extracted in the RGB color space using global (grey-level co-occurrence
matrix (GLCM) for entropy, contrast, correlation, angular second moment, inverse different
moment, and sum of squares) and local (LBP and oriented FAST and rotated BRIEF (ORB))
techniques. A total of 52 color attributes for each image were extracted as the color features
using histograms of the five color spaces (grayscale, RGB, YCrCb, L*a*b, and HSV), as well
as information on the mean, standard deviation, skewness, and kurtosis. The BHHO-S and
BHHO-V binary variations of the Harris hawk optimization (HHO) method, which used
S-shaped and V-shaped transfer functions with a time-dependent behavior, respectively,
for feature selection, were introduced. The classifier that determines whether the dermo-
scopic image contains melanoma or not was given the selected attributes. The performance
of the suggested approaches was compared to that of already-developed metaheuristic
algorithms by the authors. The experiment’s findings demonstrated that classifiers that
used features chosen using BHHO-S were superior to those that used BHHO-V and those
that employed current, cutting-edge metaheuristic methods. The experimental results also
showed that, in comparison to global- and other local-texture-feature-extraction strategies,
texture features derived utilizing local binary patterns and color features offered higher
classification accuracy.

Statistical fractal signatures (STF) and statistical-prism-based fractal signatures were
the two new fractal signatures that Gutiérrez et al. [51] used to solve the issue of amorphous
pigmentary lesions and blurred edges (SSPF). In order to classify multiclass skin lesions
utilizing the two new fractal signatures and several classifiers, various computer-aided
diagnosis techniques were compared. The combination of SSTF and the LDA classifier
yielded the finest outcomes for reliable, impartial, and reproducible techniques.

Using a hybrid model that integrates deep transfer learning, convolutional neural
networks (CNNs), and gradient boosting machines (GBMs), Thanka et al. [52] suggested
a new ensemble strategy for the classification of melanoma. The proposed method was
examined using 25,331 photos of skin lesions from the ISIC 2019 Challenge, a publicly
accessible dataset. According to the experimental findings, the proposed hybrid strategy
that merged VGG16 and XGBOOST was successful in achieving an overall accuracy of
99.1%, a sensitivity of 99.4%, and a specificity of 98.8%. The accuracy, sensitivity, and speci-
ficity of the proposed hybrid approach, which included VGG16 and LightBGM, were all
higher than the figures provided by other models, at 97.2%, 97.8%, and 96.6%, respectively.
The preprocessing of the dataset, the kind of CNN model, and the design of the GBM
model were all covered in-depth in the authors’ extensive explanation of the approach.

In a study by Brinker et al. [53], the diagnostic precision of an artificial intelligence (AI)
system for melanoma detection in skin biopsy samples was examined. The performance of
the AI algorithm was compared to that of 18 leading pathologists from across the world in
the study. The mean sensitivity, specificity, and accuracy of the Ensemble CNNs trained
on slides with or without annotation of the tumor region as a region of interest were on
par with those of the experts (unannotated: 88%, 88%, and 88%, respectively; area under
the curve (AUC) of 0.95; annotated: 94%, 90%, and 92%, respectively; AUC of 0.97). The
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research demonstrated that the AI algorithm had a very low rate of false positives and false
negatives and was very reliable in detecting melanoma. The study also discovered that the
AI algorithm’s performance was on par with that of skilled pathologists. The pathologists
had a 90.33% diagnosis accuracy, an 88.88% sensitivity, and a 91.77% specificity. There
was no statistically significant difference between the AI algorithm and the pathologists.
Overall, this research showed that AI algorithms could be a useful tool for melanoma
diagnosis, with performance on par with that of skilled pathologists.

In order to classify skin lesions, Alenezi et al. [54] presented a hybrid technique
called the wavelet transform-deep residual neural network (WT-DRNNet). The wavelet
transformation, pooling, and normalization section of the constructed model employing
the suggested approach provided finer details by removing undesired detail from skin
lesion images to acquire a better-performing model. The residual neural network built on
transfer learning was then used to extract deep features. Finally, the global average pooling
approach was combined with these deep features, and the training phase was carried out
with the help of the extreme learning machine, which is based on the ReLu and other
kinds of activation functions. In order to evaluate the effectiveness of the suggested model,
the experimental works employed the ISIC2017 and HAM10000 datasets. The suggested
algorithm’s accuracy, specificity, precision, and F1-score metrics for performance were
96.91%, 97.68%, 96.43%, and 95.79% for the ISIC2017 dataset, compared to 95.73%, 98.8%,
95.84%, and 93.44% for the HAM10000 dataset. These outcomes performed better than the
state-of-the-art for categorizing skin lesions. As a result, the suggested algorithm can help
specialized doctors automatically classify cancer based on photographs of skin lesions.

Alhudhaif et al. [55] recommended a deep learning approach that was based on mecha-
nisms for focusing attention and enhanced by methods for balancing data. The dataset used
in the study was HAM10000, which included 10,015 annotated skin images of seven differ-
ent types of skin lesions. The dataset was unbalanced and made balanced using techniques
that included SMOTE, ADASYN, RandomOverSampler, and data augmentation. A soft
attention module was selected as the attention mechanism in order to focus on the features
of the input data and generate a feature map. The proposed model consisted of a soft atten-
tion module and convolutional layers. By integrating them with the attention mechanism,
the authors were able to extract the image features from the convolutional neural networks.
The key areas of the image were the focus of the soft attention module. The soft attention
module and the applied data-balancing techniques significantly improved the performance
of the proposed model. On open-source datasets for skin lesion classification, numerous
studies were performed using convolutional neural networks and attention mechanisms.
One of the contributions of the proposed approach was the attention mechanism used in
the neural network. The balanced and unbalanced HAM10000 dataset’s versions were
used for training and the test results at different times. On the unbalanced HAM10000
dataset, training accuracy rates of 85.73%, validation accuracy rates of 70.90%, and test
accuracy rates of 69.75% were attained. The SMOTE methods on the balanced dataset
yielded accuracy rates of 99.86% during training, 96.41% during validation, and 95.94%
during testing. Compared to other balancing methods, the SMOTE method produced better
results. It can be seen that the proposed model had high accuracy rates as a result of the
applied data-balancing techniques.

Huang et al. [56] proposed a computer-assisted approach for the analysis of skin cancer.
In their study, they combined deep learning and metaheuristic methods. The fundamental
concept was to create a deep belief network (DBN) based on an enhanced metaheuristic
method called the modified electromagnetic field optimization algorithm (MEFOA) to
build a reliable skin cancer diagnosis system. The proposed approach was tested on the
HAM10000 benchmark dataset, and its effectiveness was verified by contrasting the find-
ings with recent research regarding accuracy, sensitivity, specificity, precision, and F1 score.

Kalpana et al. [57] suggested a technique called ESVMKRF-HEAO, which stands for
ensemble support vector kernel random-forest-based hybrid equilibrium Aquila optimiza-
tion. The HAM10000 dataset, which contains different types of skin lesion images, was
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used to test the suggested prediction model. First, preprocessing was applied to the dataset
for noise removal and image quality improvement. Then, the malignant lesion patches
were separated from the healthy backdrop using the thresholding-based segmentation
technique. Finally, the dataset was given to the proposed classifier as the input, and it cor-
rectly predicted and categorized the segmented images into five (melanocytic nevus, basal
cell carcinoma, melanoma, actinic keratosis, and dermatofibroma) based on their feature
characteristics. The proposed model was simulated using the MATLAB 2019a program,
and the performance of the suggested ESVMKRF-HEAO method was assessed in terms of
parameters such as the sensitivity, F1-score, accuracy, precision, and specificity. In terms of
all metrics, the suggested ESVMKRF-HEAO strategy performed better, especially when it
came to the experimental data, and a 97.4% prediction accuracy was achieved.

Shi et al. [58] proposed a two-stage end-to-end deep learning framework for pathologic
evaluation in skin tumor identification, with a particular focus on neurofibromas (NFs),
Bowen disease (BD), and seborrheic keratosis (SK). The most-prevalent illnesses involving
skin lesions are NF, BD, and SK, and they can seriously harm a person’s body. In their study,
the authors suggested two unique methods, the attention graph gated network (AGCN)
and chain memory convolutional neural network (CMCNN), for diagnosing skin tumors.
Patchwise diagnostics and slidewise diagnostics were the two steps of the framework,
where they reported the result of the whole-slide image (WSI) as the input in the proposed
diagnosis. Convolutional neural networks (CNNs) were used in the initial screening stage
to discover probable tumor locations, and multi-label classification networks were used in
the fine-grained classification stage to categorize the detected regions into certain tumor
kinds. On a dataset of skin tumor images collected from Huashan Hospital, the suggested
framework was tested, and the results showed promising accuracy and receiver operating
characteristic curves.

Rafay and Hussain [59] proposed a technique that utilized a dataset that integrated
two different datasets to establish a new dataset of 31 diseases of the skin. In their study,
the authors used three different CNN models—EfficientNet, ResNet, and VGG—each with
a different architecture for transfer learning on the dataset for skin diseases. EfficientNet
was further tuned because it had the best testing precision, where it initially achieved a
testing accuracy of 71% with a training split of 70%. However, this was considered to be low;
thus, the 70% training split for the 3424 samples was increased, and the model’s accuracy
increased as a result to 72%. Again, the experiment was re-executed with a train–test split
of 80%:20%, and the improvement in accuracy was 74%. The new dataset was augmented
for a further experiment, which then increased the model’s accuracy to 87.15%.

Maqsood and Damaševičius [60] proposed a methodology for localizing and classi-
fying multiclass skin lesions. The suggested method begins by preprocessing the source
dermoscopic images with a contrast-enhancement-based modified bio-inspired multi-
ple exposure fusion method. The skin lesion locations were segmented in the second
stage using a specially created 26-layer convolutional neural network (CNN) architecture.
The segmented lesion images were used to modify and train four pretrained CNN models
(Xception, ResNet-50, ResNet-101, and VGG16) in the third stage. In the fourth stage, all
of the CNN models’ deep feature vectors were recovered and combined using the convo-
lutional sparse image decomposition method. The Poisson distribution feature selection
approach and univariate measurement were also employed in the fifth stage to choose
the optimal features for classification. A multi-class support vector machine (MC-SVM)
was then fed the chosen features to perform the final classification. The proposed method
performed better in terms of accuracy, sensitivity, specificity, and F1-score. The addition of
multiclass classification increased the research’s usefulness in real-world situations. How-
ever, the proposed approach lacked interpretability, making it challenging to understand
the reasoning behind the classification decisions.

To identify skin diseases, Kalaiyarivu and Nalini [61] developed a CNN-based method
that extracted color features and texture (local binary pattern and gray level co-occurrence
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matrix) features from hand skin images. In their study, the authors reported the accuracy
of the proposed CNN model as 87.5%.

Kousis et al. [62] employed 11 distinct CNN models in a different study to identify
skin cancer. In this method, they used the HAM10000 dataset and DenseNet169 model,
reporting an accuracy of 92.25%. Among the 11 CNN architecture configurations con-
sidered in the study, DenseNet169 reported the best results and achieved an accuracy
of 92.25%, a sensitivity of 93.59%, and an F1-score of 93.27%, which outperformed the
existing state-of-the-art.

A hybrid classification strategy employing a CNN and a layered BLSTM was proposed
by Ahmad et al. [63]. In this study, the classification task was carried out by ensembling
the BLSTM with a deep CNN network after feature extraction. The accuracy reported by
the authors for their experiments on two different datasets (one customized with a size of
6454 images and the other being HAM10000) was 91.73% and 89.47%, respectively.

A deep-learning-based application that classifies many types of skin diseases was
proposed by Aijaz et al. [64]. This method made use of the CNN and LSTM deep learning
models. In this study, the experimental analysis was performed on 301 images of psoriasis
from the Dermnet dataset and 172 images of normal skin from the BFL NTU dataset.
Before extracting the color, texture, and form features, the input sample images underwent
image preprocessing comprising data augmentation, enhancement, and segmentation. A
convolutional neural network (CNN) and long short-term memory (LSTM) were the two
deep learning methods that were used with classification models that were trained on 80%
of the images. According to reports, the CNN and LSTM had accuracy rates of 84.2% and
72.3%, respectively. The accuracy results from this study showed that this deep learning
technology has the potential to be used in other dermatology fields for better prediction.

Using data from the ISIC 2019 and PH2 databases, Benyahia et al. [65] examined the
classification of skin lesions. The efficiency of 24 machine learning methods as classifiers
and 17 widely used pretrained convolutional neural network (CNN) architectures as
feature extractors were examined by the authors. The authors found accuracy rates of
92.34% and 91.71%, respectively, for a DenseNet201 combined with Fine KNN or Cubic
SVM, using the ISIC 2019 dataset. The hybrid approach (DenseNet201 + Cubic SVM and
DenseNet201 + Quadratic SVM) was also evaluated on the PH2 dataset, and the results
showed that the suggested methodology outperformed the rivals with a 99% accuracy rate.

5.2. Machine Learning and Deep Learning in Skin Disease Detection

Inthiyaz et al. [66] presented a study on the use of deep learning techniques for the
detection of skin diseases. The authors proposed a skin-disease-detection model based on
convolutional neural networks (CNNs) that can classify skin diseases into ten different
categories. The model was trained and evaluated using a dataset from Xiangya-Derm of
skin disease images. The results showed that the proposed model achieved high accuracy
and outperformed existing state-of-the-art models in skin disease detection. The main
contribution of this paper was the development of a novel deep-learning-based skin-
disease-detection model that can accurately classify skin diseases into different categories.
One potential limitation of this study is that the proposed model was only tested on a
specific dataset of skin disease images. Therefore, its generalizability to other datasets
or real-world scenarios may need to be further evaluated. The paper reported that the
proposed skin-disease-detection model achieved an overall accuracy of 87% on the test set,
outperforming other existing models for skin disease detection. The authors also performed
a comparative analysis of the proposed model with other state-of-the-art models, including
ResNet-50, Inception-v3, and VGG-16. The results showed that the proposed model
outperformed these models in terms of accuracy and other evaluation metrics. Overall,
the experimental results of this paper suggested that the proposed skin-disease-detection
model based on deep learning techniques can accurately classify skin diseases and has the
potential to be a useful tool for dermatologists and healthcare professionals in diagnosing
skin diseases.
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ič
iu

s
[6

0]
M

C
-S

V
M

IS
IC

20
19

93
.4

7
84

.3
4

87
.5

3
-

-
88

.6
7

-

M
aq

so
od

an
d

D
am

aš
ev

ič
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Dwivedi et al. [67] proposed a deep-learning-based approach for automated skin dis-
ease detection using the Fast R-CNN algorithm. The proposed approach aimed to address
the limitations of traditional approaches that are heavily dependent on domain knowledge
and feature extraction. The experimental findings demonstrated that the suggested method
achieved an overall accuracy of 90%, which outperformed traditional machine-learning-
based approaches. The approach was evaluated on the HAM10000 dataset, which is a
widely used benchmark dataset for skin disease detection. The contribution of the paper
was the proposed approach for automated skin disease detection using the Fast R-CNN
algorithm, which can handle large datasets and achieve high accuracy without the need for
domain knowledge or feature extraction. One of the limitations of the proposed approach
is that it requires a large amount of labeled data for training, which can be a challenge
for some applications. Additionally, the approach is limited to detecting skin diseases
included in the HAM10000 dataset, and further evaluation is required for detecting other
skin diseases. Overall, the paper presented a promising approach for automated skin
disease detection using deep learning, with the potential to improve clinical diagnosis and
reduce human error.

Alam and Jihan [68] presented an efficient approach for detecting skin diseases us-
ing deep learning techniques. The proposed approach involves preprocessing of skin
images followed by feature extraction using convolutional neural networks (CNNs) and
classification using support vector machine (SVM). The dataset used for the evaluation
consisted of 10,000 skin images, which were categorized into seven different skin diseases.
The approach achieved an accuracy of 95.6%, which is a significant improvement compared
to existing approaches. The contribution of the paper is the development of an efficient
and accurate skin disease detection approach using deep learning techniques. The main
limitation of the proposed approach is that it requires a large amount of data to train the
model effectively. In addition, the proposed approach may not be suitable for detecting rare
skin diseases that are not present in the training dataset. The proposed approach achieved
an accuracy of 95.6%, which outperformed the existing approaches. The precision and
recall values for each skin disease category were also reported, which further validated
the effectiveness of the proposed approach. The results demonstrated that the proposed
approach can accurately detect skin diseases, which can aid in the early diagnosis and
treatment of such diseases.

Wan et al. [69] proposed a detection algorithm for pigmented skin diseases, based on
classifier-level and feature-level fusion. The proposed algorithm combines the strengths
of multiple classifiers and features to improve the detection accuracy of pigmented skin
diseases. The experiments showed that the proposed algorithm outperformed the other
state-of-the-art algorithms in terms of accuracy and other parameters. The novelty of the
algorithm proposed in this paper for the diagnosis of pigmented skin diseases was its
main contribution. The efficiency of the suggested fusion network was visualized using
gradient-weighted class activation mapping (Grad_CAM) and Grad_CAM++. The results
demonstrated that the accuracy and area under the curve (AUC) of the approach in this
study reached 92.1% and 95.3%, respectively, when compared to those of the conventional
detection algorithm for pigmented skin conditions. The contribution of this study as
claimed by the authors included techniques used to perform the data augmentation, the
method used for image augmentation noise, the two-feature-level fusion optimization
scheme, and the visualization algorithms (Grad_CAM and Grad_CAM++) to verify the
validity of the fusion network.

An optimization-based algorithm to identify skin cancer from a collection of photos
was presented by Kumar and Vanmathi [70]. The input image was created from a database
in the primary stage, where it was preprocessed with a Gaussian filter and region of interest
(ROI) extraction to weed out noise and mine interesting sections. Using the proposed
U-RP-Net, the segmentation was carried out. By combining U-Net and RP-Net in this
instance, the proposed U-RP-Net model was created. Meanwhile, the output from the
RP-Net and U-Net models was combined using the Jaccard-similarity-based fusion model.
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To enhance the performance of detection, data augmentation was performed. SqueezeNet
was used to locate skin cancer at the end. The Aquila whale optimization (AWO) method
was also used to train SqueezeNet. The Aquila optimizer (AO) and whale optimization
algorithm were combined to create the new AWO method (WOA). The highest testing
accuracy of 92.5%, sensitivity of 92.1%, and specificity of 91.7% were achieved by the
developed AWO-based SqueezeNet.

Suicmez et al. [71] proposed a hybrid learning approach for the detection of melanoma
by removing hair from dermoscopic images. The approach combines image-processing
techniques and the wavelet transform with machine learning algorithms, including a
support vector machine (SVM) and artificial neural network (ANN). In order to speed up
the algorithm’s detection time, the system first uses image-processing techniques (masking
for saturation and wavelet transform) to eliminate impediments such as hair, air bubbles,
and noise from dermoscopic images. Making the lesion more noticeable for detection is
another crucial step in this procedure. Melanoma detection was used for the first time
using a unique hybrid model that combines deep learning and machine learning as an AI
building block. The HAM10000 (ISIC 2018) and ISIC 2020 datasets were utilized to gauge
the developed system’s performance ratio after stabilization. The paper demonstrated
the effectiveness of the proposed approach in removing hair from dermoscopic images,
which is a crucial preprocessing step in melanoma detection. However, the approach is
dependent on the quality of the input images, and low-quality images may negatively
impact the performance.

Choudhary et al. [72] proposed a neural-network-based method to separate dermo-
scopic images including two different kinds of skin lesions. The initiative’s proposed
solution was divided into four steps that included initial image processing, skin lesion
segmentation, feature extraction, and DNN-based classification. With a median filter, image
processing was the initial stage in removing any extra noise. The specific locations of the
skin lesions were then segmented using Otsu’s image-segmentation method. The third
stage involved further extraction of the skin lesion characteristics, which were retrieved
utilizing the RGB color model, 2D DWT, and GLCM. The classification of the various
types of skin diseases using a backpropagation deep neural network and the Levenberg–
Marquardt (LM) generalization approach to reduce the mean-squared error was the fourth
stage. The ISIC 2017 dataset was used to train and test the suggested deep learning model.
With DNN, they were able to outperform other state-of-the-art machine learning classifiers
with an accuracy of 84.45%.

Lembhe et al. [73] proposed a synthetic skin-cancer-screening method using a solution
or sequence from visual LR images. To improve the image-processing and machine learning
methods, a deep learning strategy on super-resolution images was applied. Convolutional
neural network models such as VGG 16, ResNet, and Inception V3 can be accurately
recreated using image super-resolution (ISR) techniques. This model was created with the
help of the Keras backend, and it was evaluated using a sequence or solution from visual
LR photos. To improve the altering layers of the neural networks utilized for training,
a deep learning strategy on the picture super-resolution was applied. The convolutional
neural network model’s ISIC accuracy dataset, which is publicly available, was used to
build the model.

A novel hybrid extreme learning machine (ELM) and teaching–learning-based opti-
mization (TLBO) algorithm was developed by Priyadharshini et al. [74] as a flexible method
for melanoma detection. While TLBO is an optimization technique used to fine-tune the
network’s parameters for enhanced performance, the ELM is a single-hidden-layer feed-
forward neural network that can be trained rapidly and accurately. In contrast to earlier
studies, the authors used the two methodologies to identify skin lesions as benign or ma-
lignant images, potentially increasing the accuracy of melanoma identification. However,
the performance of the proposed method was only tested on a single dataset for skin cancer
detection, which is a drawback of the paper. Evaluating the performance of the algorithm
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on additional skin cancer datasets should have been assessed by the authors to establish its
practicality and robustness.

For the purpose of detecting melanoma skin cancer, Dandu et al. [75] introduced a
unique method that combines transfer learning with hybrid classification. To increase the
accuracy of melanoma detection, the authors developed a hybrid framework that uses
pretrained deep learning models for segmentation and incorporates a hybrid classification
technique. The development of a hybrid strategy that successfully combines transfer
learning and classification approaches was one of the paper’s contributions. The authors
increased melanoma detection accuracy by modifying a pretrained convolutional neural
network for skin lesion segmentation and mixing hand-crafted features with segmented
lesion features in the classification process. The proposed approach was evaluated in terms
of accuracy, precision, and recall on a benchmark dataset. However, the paper did have
certain limitations, where clinical validation is needed to evaluate the generalizability
and dependability of the suggested strategy across a range of demographics and skin
types. The paper might also used more-thorough arguments and justifications for the
features used for the hybrid classification technique. Furthermore, the reproducibility and
comprehension might be improved by a more-detailed explanation of the specific features
used and their significance to melanoma diagnosis. Last, but not least, despite the paper’s
promise of increased performance in comparison to current procedures, there was a lack of
a thorough comparative analysis using cutting-edge techniques. Such an analysis would
offer a more-thorough evaluation of the advantages and disadvantages of the suggested
strategy in comparison to other pertinent methods.

In this section skin lesion detection using machine learning and deep learning were
examined, and in Table 8 presented summary of all the prior studies discussed in this study
and their performance also presented in Table 9.

Table 9. Summary of previous studies on skin disease detection with their performance.

Author and Year Method Dataset
Dataset

Size
Acc (%) Sn (%) Sp (%) R (%) P (%) F1 (%)

Dwived et al. [67] Fast R-CNN - - 90 - - -

Alam and
Jihan et al. [68]

DL+ Image
Processing - - 85.14 - - - - -

Wan et al. [69] Fusion Network HAM10000 10,015 92.01 - 89.53 - - 88.94

Kumar and
Vanmathi et al. [70] U-Net + RP-Net - - 92.5 92.1 91.7 - - -

Suicmez et al. [71]
Hybrid

CNN-Gradient Boost
Classifier

HAM10000 10,015 99.4 99.4 - 99.4 99.4 99.4

Suicmez et al. [71]
Hybrid

CNN-Machine
Learning

ISIC 2020 - 100 100 - 100 100 100

Lembhe et al. [73] VGG16: ISR ISIC 70.17 69 - - 68 73 -

Lembhe et al. [73] ResNet: ISR ISIC 86.57 87 - - 87 87 -

Lembhe et al. [73] Inception V3: ISR ISIC 91.26 92 - - 89 92 -

Priyadharshini et al. [74] ELM- TLBO Kaggle and
DermIS 300 - - - 92.45 89.72 91.64

Dandu et al. [75] Ensemble Classifier SIIM ISIC - 86.38 - - 86.50 86.16 -
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6. Discussion

In this section, we delve into a detailed analysis of the key aspects explored in our survey
paper related to skin lesion classification and detection. We focused on papers exclusively
dedicated to classification tasks and those solely addressing detection challenges. Additionally,
we investigated the relationship between skin lesion dataset modalities and the number of
papers utilizing them. Furthermore, we examined how the distribution of papers varied
concerning their publication years. Lastly, we explored the relationship between the types of
datasets used and the number of papers employing them. By examining these critical factors,
we aimed to gain a comprehensive understanding of the trends and developments in skin
lesion research, shedding light on the prevailing research priorities and areas for potential
future exploration.

The findings from our survey, as illustrated in Tables 10–12, revealed the primary research
emphases observed in the papers under consideration. A significant portion of the papers
focused on classification tasks, indicating the prevalence of studies aimed at categorizing and
labeling various entities within the dataset. However, we also noted that a smaller subset of
papers placed their emphasis on detection tasks, highlighting the interest in identifying specific
objects or occurrences of interest within the data. Moreover, a notable number of papers took
a more-comprehensive approach, addressing both classification and detection aspects in their
research, reflecting the need for a holistic understanding and analysis of the data. Furthermore,
a few papers delved even deeper, incorporating segmentation alongside classification and
detection in their investigations. This integration allowed for the precise delineation and
localization of specific regions or structures within the dataset, providing more-detailed insights
and facilitating advanced analyses.

The variation in research foci across the surveyed papers emphasized the multidimen-
sional nature of the field, where researchers employed various methodologies and techniques
to address distinct aspects of a dataset. The diversity of approaches contributes to a richer
understanding of the datasets’ complexities and enables the development of robust algorithms
and models to tackle real-world challenges effectively. As the field continues to advance, these
findings offer valuable guidance for researchers seeking to identify potential research gaps and
align their studies with the evolving trends and needs of the domain.

Table 10. Summary of previous studies those focused on skin disease classification.

Author Method Objective

Ali et al. [30] EfficientNets Classification

Reddy et al. [36] GWO Classification

Inthiyaz et al. [66] CNN Classification

Srinivasu et al. [31] DLNN + MobileNet V2 + LSTM Classification

Shetty et al. [32] ML + CNN Classification

Wei et al. [34] DenseNet + ConvNeXt Classification

Wei et al. [34] DenseNet + ConvNeXt Classification

Almuayqil et al. [35] DenseNet 201 + ML Classification

Malibari et al. [37] ODNNsingle bondCADSCC Classification

Qian et al. [38] DCNN-GMAB Classification

Jain et al. [33] OP-DNN Classification

Kumar et al. [15] AUDNN Classification

Nakai et al. [39] EDBTM (Dataset: HAM10000) Classification

Nakai et al. [39] EDBTM (Dataset: ISIC2017) Classification

Hossain et al. [40] Customized ResNet50 Classification

Hossain et al. [40] Lightweight EfficientNetB0 Classification
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Table 10. Cont.

Author Method Objective

Afza et al. [41] Hierarchical: NB Classification

Afza et al. [41] Hierarchical: NB (Dataset: PH2) Classification

Afza et al. [41] Hierarchical: NB (Dataset: HAM10000) Classification

Alam et al. [42] S2C-DeLeNet Classification

Elashiri et al. [43] HSBSO-LSTM (Dataset: PH2) Classification

Elashiri et al. [43] HSBSO-LSTM (Dataset: HAM10000) Classification

Benyahia et al. [65] DenseNet201 + Cubic SVM Classification

Benyahia et al. [65] DenseNet201 + Quadratic SVM Classification

Table 11. Summary of previous studies those focused on skin disease detection.

Author Method Objective

Dwived et al.[67] Fast R-CNN Detection

Alam and Jihan et al. [68] DL+ Image Processing Detection

Wan et al.[69] Fusion Network Detection

Kumar and Vanmathi et al. [70] U-Net + RP-Net Detection

Suicmez et al. [71] Hybrid CNN-Gradient Boost Classifier Detection

Suicmez et al. [71] Hybrid CNN-Machine Learning Detection

Lembhe et al. [73] VGG16: ISR Detection

Lembhe et al.[73] ResNet: ISR Detection

Lembhe et al. [73] Inception V3: ISR Detection

Priyadharshini et al. [74] ELM- TLBO Detection

Dandu et al. [75] Ensemble Classifier Detection

Table 12. Summary of previous studies those focused on skin disease for multiple objectives.

Author Method Objective

Reddy et al. [36] GAWO Segmentation and Classification

Malibari et al. [37] ODNNsingle bondCADSCC Classification and Detection

Afza et al. [41] Hierarchical: NB Segmentation, Classification, and Detection

Afza et al. [41] Hierarchical: NB Segmentation, Classification, and Detection

Afza et al. [41] Hierarchical: NB Segmentation, Classification, and Detection

Alam et al. [42] S2C-DeLeNet Segmentation, Classification, and Detection

Maqsood and Damaševičius [60] MC-SVM Classification and Detection

Maqsood and Damaševičius [60] MC-SVM Classification and Detection

Maqsood and Damaševičius [60] MC-SVM Classification and Detection

Maqsood and Damaševičius [60] MC-SVM Classification and Detection

Dandu et al. [75] Ensemble Classifier Segmentation, Classification, and Detection

Yanagisawa et al. [46] DeepLabv3+- CNN Segmentation and Classification

In this comprehensive survey paper, we performed a thorough collection of research
papers published between the years 2017 and 2019. The content extracted from these papers
primarily focused on their Section 1, making up approximately 11.11% of the total papers
included in our analysis. By delving into these introductory sections, we aimed to gain
insights into the prevalent themes, background knowledge, and contextual information
used by researchers in their respective studies.
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Notably, the majority of the papers we examined were relatively recent, with a sub-
stantial portion published in the year 2020, constituting around 6.18% of the papers in
our survey. This suggests a growing interest and significant advancements in the research
field during that particular year. The influx of publications in 2020 indicates an active and
dynamic research landscape, with scholars contributing new perspectives and findings to
the body of knowledge.

Moreover, we observed a substantial increase in publications in the subsequent years,
with 2021 contributing to 11.11% of the papers. This steady growth indicates a sustained
momentum in research activities, as researchers continued to investigate and explore
various topics and areas of interest.

The year 2022 saw a remarkable surge in scholarly output, covering an impressive
38.27% of the papers in our survey. This surge may reflect emerging trends, breakthroughs,
or significant developments in the field, garnering substantial attention from researchers
and leading to a spike in academic contributions.

Even though the year 2023 was still ongoing at the time of our survey, it already
showcased a notable presence, accounting for 33.33% of the papers. This suggests that re-
search endeavors were thriving, and the year holds promise for numerous new discoveries
and advancements.

By carefully analyzing the distribution of publications across these years, our survey
paper provides a snapshot of the research landscape’s temporal evolution (Figure 2).
The higher concentration of recent papers highlights the dynamic nature of the field
and the continuous drive to explore new avenues and challenges. Moreover, it points to
the significance of staying up-to-date with the latest research findings and integrating the
most-current knowledge into ongoing studies.

Furthermore, our survey contributes to understanding the trends and areas of focus
within the research community over time. The increasing trend in publications from 2020
to 2023 indicates that the topics being studied were of great interest to researchers, likely
due to their relevance and potential impact on the broader scientific and practical domains.

In our systematic review paper, we conducted an in-depth analysis of a diverse
range of skin lesion datasets, specifically focusing on the imaging modalities employed to
capture the characteristics of these lesions. Our investigation yielded valuable insights into
the distribution and prevalence of different imaging modalities within these datasets, as
presented in Figure 3.
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Figure 2. Reviewed papers’ distribution by year of publication.
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Figure 3. Imaging modalities in skin datasets.

A significant portion, accounting for 48.12% of the datasets, utilized the dermoscopic
image modality. Dermoscopy, a non-invasive imaging technique, plays a crucial role in
dermatology and skin lesion research. It involves the use of a specialized dermatoscope,
which is a handheld magnifying device with a light source, to examine the skin lesions at a
higher level of magnification. Dermoscopic images provide clinicians and researchers with
enhanced visualization of the morphological structures and patterns within the skin lesions,
aiding in more-accurate diagnosis, classification, and monitoring of various skin conditions.
The prominence of dermoscopic imaging in nearly half of the datasets underscores its
importance as a preferred and highly informative modality in the field.

Another significant imaging modality, observed in approximately 33.33% of the
datasets, was the macroscopic imaging modality. Macroscopic images are captured using
conventional visible light photography, which allows for a comprehensive view of the
skin lesions as perceived by the naked eye. While macroscopic images lack the fine details
provided by dermoscopy, they offer a practical and easily accessible means of documenting
skin lesions. These images are particularly useful in a clinical setting where dermoscopes
might not be readily available, and they provide essential information about the external
appearance and overall presentation of the skin lesions. Moreover, macroscopic images
often serve as valuable complements to dermoscopic images, providing a broader context
for the lesion’s evaluation.

In addition to dermoscopic and macroscopic imaging modalities, the remaining 18.52%
of the datasets encompassed various other types of imaging modalities. These may in-
clude confocal microscopy, ultrasound imaging, multispectral imaging, or combinations of
multiple imaging techniques. Each of these alternative modalities offers unique benefits
and insights into specific aspects of skin lesions, enabling a comprehensive understanding
of their underlying structures and pathological features. The inclusion of these diverse
imaging modalities in a portion of the datasets indicates the continuous exploration and
experimentation within the scientific community to advance the capabilities of skin lesion
analysis and diagnosis.

In our systematic review paper, we conducted an extensive analysis of various research
studies in the field of skin lesion detection, classification, and segmentation. As illustrated
in Figure 4, we observed the utilization of different datasets in these studies. Notably,
the HAM10000 dataset was employed in 38.02% of the papers, indicating its widespread
adoption among researchers. The PH2 dataset, on the other hand, was found to be used in
8.50% of the papers. Although its usage was less prevalent compared to HAM10000, it still
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played a significant role in contributing to the body of knowledge in this area. Furthermore,
we observed that the ISIC dataset was utilized in 33.8% of the research papers. The high
usage of the ISIC dataset can be attributed to its large and diverse collection of skin lesion
images, making it a valuable resource for developing and evaluating skin-lesion-detection
and -classification algorithms. In addition to the three major datasets mentioned above, we
discovered that the remaining datasets collectively covered 19.72% of the studies. These
datasets might be more-specialized or domain-specific, serving specific research purposes,
or comparatively smaller in size. Overall, the data from our systematic review indicated
that the HAM10000, ISIC, and PH2 datasets were the most-commonly used and influential
resources in the domain of skin lesion research. Researchers have heavily relied on these
datasets to train, test, and benchmark their algorithms due to their richness, diversity,
and representativeness of real-world skin lesions. By understanding the prevalence and
usage of these datasets, we gain valuable insights into the current trends and directions in
skin lesion research, allowing for better benchmarking and comparison of novel approaches
in the field. It also highlights the need for continued efforts in curating and sharing high-
quality datasets to further advance the state-of-the-art in skin lesion detection, classification,
and segmentation.

HAM10000

38.0%
PH2

8.5%

ISIC

33.8%

Others

19.7%

Figure 4. Datasets’ distribution in the systematically reviewed papers.

7. Open Challenges for Skin Lesion Classification and Detection

Skin disease diagnosis is an area of ongoing research and development, with several
open challenges that researchers and clinicians are actively addressing. Here are some of the
key challenges in skin disease diagnosis, along with possible citations for further reading:

• image analysis:It is still difficult to develop reliable automated image analysis meth-
ods for the detection of skin diseases. This entails the recognition, categorization,
and segmentation of skin lesions from dermatoscopic or image-based data [76,77].

• Data standardization and annotation: The lack of standardized and annotated datasets
for skin diseases hinders the development and evaluation of algorithms. Creating
comprehensive datasets with accurate annotations is crucial for training and validating
machine learning models [78–80].

• Interpretable decision support systems: Skin disease diagnosis often requires inter-
pretability to gain trust from clinicians. Developing decision support systems that
provide transparent explanations for their predictions is a challenge that needs to be
addressed [81].

• Incorporating clinical data: Integrating patient history, symptoms, and other clinical
data along with visual information can improve the accuracy of skin disease diag-
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nosis. However, effectively utilizing heterogeneous clinical data remains an open
challenge [76].

• Real-time diagnosis: Enabling real-time skin disease diagnosis in clinical settings is
another challenge. Developing fast and efficient algorithms that can provide quick
and accurate assessments is crucial for improving patient outcomes [82].

• Addressing bias in dermatological datasets: Many dermatological datasets suffer from
biases, including under-representation of certain skin types and diseases. Overcoming
these biases is essential to ensure fairness and accuracy in skin-disease-diagnosis
algorithms [83].

• Augmenting small and imbalanced datasets: Obtaining large and balanced datasets
for training skin-disease-diagnosis models can be challenging. Developing effective
data-augmentation techniques and strategies to handle imbalanced classes is crucial
for improving model performance [84].

• Explainability and interpretability: Interpreting the decisions made by skin-disease-
diagnosis models is important for gaining trust and acceptance from healthcare pro-
fessionals. Developing explainable and interpretable models that can provide insights
into the decision-making process is an ongoing challenge [85,86].

• Generalization to external data: Ensuring the generalizability of skin-disease-diagnosis
models to external datasets and real-world clinical settings is crucial. Models need to
be robust enough to handle variations in imaging conditions, patient demographics,
and disease presentations [87].

• Integration with clinical workflows: Seamlessly integrating skin disease diagnosis
algorithms into clinical workflows poses a challenge. The development of user-friendly
interfaces and systems that can assist healthcare professionals in real-time diagnosis is
essential for practical implementation [88,89].

• Ethical issues associated with AI: Currently, all doctors and users of AI products face
the ethical challenges brought on by this technology. As most of us know, artificial
intelligence may greatly aid in diagnosing and classifying diseases such as dermato-
logical and other conditions. However, it also contributed to the current methods of
skin-related disease detection and treatment, which indeed raise severe ethical and
dermatological questions. As a result, the AI research community has been inspired to
concentrate on trustworthy and responsible AI research [77].

• Skin condition similarities: One of the most-common challenges in skin disease/cancer
classification and detection is that many skin conditions have similarities between
them that are not distinguishable visually [11].

These challenges highlight the ongoing research and development efforts in skin disease
diagnosis, focusing on data biases, interpretability, generalization, practical integration into
clinical settings, etc. Researchers continue to work towards addressing these challenges to
improve the accuracy and usability of diagnostic tools for dermatological conditions.

8. Conclusions

This survey on classification, segmentation, and detection of skin diseases and skin
cancer has brought to light the impressive developments in dermatology made possible
by the application of artificial intelligence (AI) techniques. This survey paper demon-
strated the potential of AI-based systems to increase diagnostic precision, boost patient
outcomes, and completely transform the identification and management of skin disorders
including cancer.

Traditional machine learning algorithms, deep learning algorithms, and image analysis
methods have all been used by researchers to create complex models that can analyze
dermatological images captured using different imaging modalities with high levels of
accuracy, sensitivity, specificity, and F1-scores. These simulations have demonstrated their
capacity to categorize different skin conditions and locate malignant tumors, matching and
occasionally even outperforming the performance of professional dermatologists.
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The application of AI to dermatology has enhanced patient care by creating new
opportunities for more-precise diagnosis. In situations where access to dermatologists may
be limited, the use of computer-aided diagnostic (CAD) systems has the potential to help
healthcare practitioners make decisions. These solutions can help with triage, offer second
views, and increase the effectiveness of clinical workflows, all of which will ultimately
enhance patient care and results.

However, despite the enormous progress made, difficulties still exist in the creation
and application of AI-based systems for the diagnosis of skin conditions and skin cancer.
To ensure trustworthy and moral applications in clinical settings, concerns including
the quality and diversity of training datasets, class imbalance, and the interpretability
of AI models must be addressed. Additionally, careful consideration of data protection,
regulatory compliance, and physician acceptability is necessary for the integration of these
technologies into the current healthcare infrastructure. Future studies should concentrate
on overcoming these difficulties and enhancing the precision and durability of AI-based
skin disease classification, segmentation, and detection systems. The creation of explainable
AI models should also be prioritized since they can promote transparent decision-making
and foster a relationship of trust between healthcare professionals and AI systems.

In conclusion, the systematic review report has shown how the field of dermatology
could be profoundly affected by AI technologies. We can anticipate additional devel-
opments in skin illness and skin cancer analysis with continuing study, development,
and collaboration between AI experts and dermatologists. These developments promise to
increase diagnostic precision, create tailored treatment regimens, and improve patient care,
all of which will improve the management of dermatological disorders.
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