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Editorial

Coastal Disaster Assessment and Response

Deniz Velioglu Sogut

Ocean Engineering and Marine Sciences, Florida Institute of Technology, 150 W University Blvd,
Melbourne, FL 32901, USA; dvelioglusogut@fit.edu

Coastal communities have become increasingly susceptible to natural hazards over the
past few decades, largely due to the effects of climate change [1,2]. The rising frequency and
intensity of storms place immense pressure on coastal populations, particularly in low-lying
areas, and in regions where economic and logistical challenges often hinder evacuation
and recovery efforts [3,4]. Similarly, tsunamis pose a severe threat to coastal communities,
especially those near tectonic subduction zones [5]. Communities lacking adequate tsunami
early warning systems or evacuation plans face heightened vulnerability, underscoring the
urgent need for enhanced disaster preparedness and adaptive resilience strategies.

Traditional Disaster Risk Reduction (DRR) efforts have primarily focused on response
and recovery. However, integrating DRR with climate adaptation strategies offers a more
proactive approach, enabling local communities to effectively respond to coastal hazards [6].
A key element of building resilience is the implementation of nature-based solutions, which
act as natural barriers to mitigate these risks [7–9]. Nature-based approaches can not
only protect coastal populations but also enhance biodiversity and ecosystems. Likewise,
advances in Geographic Information Systems (GISs) and climate modeling could improve
hazard prediction and risk mapping, facilitating improved planning and response mea-
sures [10–13]. At the same time, empowering local communities through participatory
decision-making and knowledge sharing could ensure that adaptation strategies align
with their specific needs. Considering these factors, this Special Issue brings together
innovative research on risk assessment and enhancing community resilience in response to
coastal hazards.

The article by Yoo and Kwon (contribution 1) explores the liquefaction and relique-
faction behavior of coastal embankments subjected to repeated seismic loading. Through
a shaking table experiment, they investigate how different ground conditions influence
soil response under cyclic loading with a particular focus on the effects of groundwater
fluctuations. Their findings indicate that when an upper non-liquefiable layer is present,
liquefaction may not occur initially but can develop after multiple seismic excitations.
As repeated earthquakes cause the groundwater level to rise, liquefaction is eventually
triggered, even in cases where the main seismic event does not cause immediate failure.
Significantly, the study highlights that aftershocks can contribute to liquefaction due to
the cumulative effect of groundwater migration. These insights challenge current seismic
design codes, which typically assess liquefaction risk only for soil layers below the ground-
water table. To enhance the earthquake resilience of coastal infrastructure, the authors stress
the importance of incorporating aftershock-induced liquefaction risk and groundwater
level variations into hazard assessment frameworks.

Recognizing the growing risks associated with storm-induced coastal processes, Chal-
moukis (contribution 2) assesses vulnerability levels through morphodynamic simulations
using the Storm-induced BEAch CHange (SBEACH) model. These simulations are com-
bined with inundation estimates derived from two empirical equations for comparative
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analysis. By correlating both hazards with return period-based assessments, high-risk
coastal areas are identified, offering crucial insights for hazard mitigation planning. A key
takeaway from Chalmoukis’s research is the importance of accurate hazard modeling to
ensure reliable vulnerability mapping. The study highlights the limitations of existing
predictive models, many of which assume smooth coastal profiles and uniform seabed
conditions—assumptions that may not hold for irregular terrains with submerged rocks
and varying sediment grain sizes. Chalmoukis provides an initial large-scale vulnerabil-
ity assessment, which serves as a valuable guide for optimizing disaster preparedness
strategies for coastal regions.

In their study, Nezhad et al. (contribution 3) explore the potential of ENNs to enhance
the accuracy, reliability, and robustness of storm surge predictions compared to single-
model approaches, highlighting the increasing importance of accurate flood prediction
in coastal disaster management. A key focus of Nezhad et al.’s study is the techniques
used to aggregate predictions from multiple neural network models, demonstrating how
the integration of diverse models can lead to more reliable flood forecasts. The study
reveals that there is no universal approach to constructing an optimal ENN model for
storm surge forecasting. Instead, it is necessary to assess different ensemble configurations
to strike a balance between bias and variance, ensuring a trade-off between accuracy,
diversity, stability, generalization, and computational efficiency. Nezhad et al.’s findings
are particularly relevant for coastal researchers, engineers, and planners, emphasizing the
growing role of ENNs in storm surge forecasting, supporting better preparedness and
response strategies for coastal hazards. The authors were awarded the Editor’s Choice
Article Award in recognition of their work.

Li et al. (contribution 4) assess the applicability of the Global Synthetic Tropical
Cyclone Hazard (GSTCH) dataset for tropical cyclone hazards. To evaluate its reliability, the
authors compare it with the Tropical Cyclone Best Track (TCBT) dataset, an authoritative
dataset developed by the China Meteorological Administration. The findings indicate
that key cyclone characteristics, such as landfall wind speed, central pressure at landfall,
and annual cyclone frequency, show no statistically significant differences between the
two datasets at a 95% confidence level. Additionally, the cumulative distributions of the
central maximum wind speed and central minimum pressure along cyclone tracks pass
the Kolmogorov–Smirnov test, confirming that the GSTCH dataset aligns with the TCBT
dataset at the provincial and regional scales. They conclude that the GSTCH dataset is a
reliable and applicable data source for tropical cyclone hazard assessments, demonstrating
strong agreement with the widely accepted TCBT dataset. These findings reinforce the
credibility of the GSTCH dataset as a valuable tool for long-term cyclone hazard studies
and risk assessments.

In their study, Hwang et al. (contribution 5) examine the morphological changes in
coastal areas following the Super Typhoon Hinnamnor (2022), emphasizing the need for ac-
curate observation and modeling to support coastal management. They employ the XBeach
model to simulate pre- and post-storm subaerial data. To enhance model accuracy, Hwang
et al. place particular emphasis on waveform parameters, including wave skewness and
asymmetry, assessing whether these factors should be treated independently or integrated
to improve the representation of sediment deposition from overwash events. They evaluate
the model’s performance and sensitivity by analyzing volume changes, revealing that wave-
form parameters significantly impact deposition patterns. Their findings provide valuable
insights into optimizing parameter selection and calibration for models simulating coastal
sediment transport, improving predictive accuracy in coastal morphological modeling.

Velioglu Sogut et al. (contribution 6) investigate the performance of two numerical
approaches in estimating non-equilibrium foundation scour patterns around a non-slender
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square structure subjected to a transient wave. They compare numerical results with
experimental data to evaluate the accuracy and effectiveness of these approaches. The first
numerical approach models sediment particles as a separate continuum phase, directly
solving continuity and momentum equations for both sediment and fluid phases. The
second approach predicts sediment transport using the quadratic law of bottom shear stress,
achieving accurate bed evolution estimates through careful calibration and validation.
Their findings underscore notable differences in the predictive capabilities of both methods,
particularly in modeling non-equilibrium scour evolution at low Keulegan–Carpenter
numbers. Their work provides valuable insights into the strengths and limitations of these
numerical approaches, contributing to advancing scour prediction techniques in coastal
engineering applications.

In their study, Ma et al. (contribution 7) examine the impact of vegetation on wave at-
tenuation and dune erosion, using the XBeach surfbeat model (XBSB) to simulate conditions
at Mexico Beach during Hurricane Michael (2018). They investigate how different vegeta-
tion drag coefficients influence wave energy reduction and dune stability. Their findings
highlight the significant role of dune vegetation in wave attenuation and erosion control.
Ma et al. emphasize that as vegetation drag coefficients increase, wave energy dissipation
improves, resulting in less dune erosion. Additionally, higher vegetation density enhances
wave height reduction and flow velocity damping within vegetated areas. However, the
findings suggest that beyond a certain density, the rate of improvement in wave attenuation
diminishes, providing negligible additional benefits. Ma et al.’s results emphasize the vital
role of coastal vegetation in enhancing resilience against storm-induced impacts, offering
valuable insights for coastal management strategies and disaster mitigation planning.

In their work, Corkran et al. (contribution 8) analyze the spatiotemporal trends of
tropical cyclones (TCs) affecting the state of Georgia, recognizing that research on Georgia-
specific TCs remains limited due to the state’s small coastline and the infrequency of direct
landfalls. Using data from the North Atlantic Basin hurricane database, they quantify
both direct and indirect TC landfalls in Georgia from 1851 to 2021. Applying a multi-
method approach by combining statistical analysis and mapping, the authors examine
113 tropical cyclones that affected Georgia, identifying September as the month with the
highest percentage of TC-induced rainfall, followed by October and August, which aligns
with peak TC activity. Their findings highlight the heightened risk posed by TCs during the
peak season, emphasizing the need for increased preparedness, strategic resource allocation,
and disaster planning to protect Georgia’s communities, historical landmarks, and natural
environments from the long-term impacts of TC activity.

In their research, Santos and Mileu (contribution 9) evaluate the tsunami inundation
risk in Caxias, Portugal. They generate a Digital Elevation Model (DEM) using newly
obtained LiDAR data and integrate it into the TUNAMI-N model to improve the precision
of inundation predictions. Additionally, the authors highlight the coastal characteristics
and existing protective structures in the region, which are identified through a field survey
conducted at various locations. The findings reveal that low-lying areas in the study region
would be flooded if a tsunami comparable to the 1755 Lisbon event occurred. To mitigate
these risks, the authors recommend constructing seawalls and installing a pedestrian bridge
over the Barcarena Stream, which would act as a barrier against incoming tsunami waves.
This study underscores the importance of integrating these coastal protection measures
into long-term resilience planning to minimize the impacts of tsunamis and winter storm
surges, not only in Caxias but also in other vulnerable coastal regions in Portugal.

Hu et al. (contribution 10) examine the 2018 Sulawesi tsunami, utilizing simple and
accessible remote sensing techniques to assess the extent of destruction and indirectly
evaluate the region’s vulnerability to such disasters. The authors employ Sentinel-2 and
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Maxar WorldView-3 satellite imagery to analyze the affected areas in Palu, Indonesia, by
quantifying changes in vegetation, soil moisture, and water bodies, effectively mapping the
tsunami’s impact on land cover. The resulting inundation map reveals that the most heavily
affected zones are concentrated in urban centers, low-lying areas, and coastal regions.
Unlike high-resolution remote sensing methods that depend on specialized or proprietary
tools, Hu et al. emphasize a more accessible and cost-effective approach that is particularly
beneficial for resource-limited regions and rapid disaster response efforts. Additionally,
the research tackles the challenge of distinguishing tsunami-related damage from other
geological phenomena such as liquefaction, utilizing index-based thresholds to enhance
classification accuracy. The proposed framework is highly adaptable and can be applied
to other vulnerable coastal areas, offering a practical, efficient, and low-cost solution for
post-tsunami damage assessment.

The concluding study in this Special Issue, conducted by Mayorga et al. (contribu-
tion 11), analyzes the structural response of single-story timber houses to the 2010 Chile
tsunami in San Juan Bautista, an island town in the Pacific Ocean. The ASCE 7–22 energy
grade line analysis (EGLA) is used to calculate flow depths and velocities, incorporating
topographic data and recorded runup measurements. The structural evaluation follows
Load and Resistance Factor Design (LRFD) principles, accounting for both dead and live
loads. The findings reveal that houses near the shoreline undergo significant displace-
ment and collapse, caused by hydrodynamic forces, drag, and buoyancy effects, which
weaken foundation anchorage. In contrast, structures further inland experience lower flow
velocities, leading to reduced displacement, lower structural demand, and an increased
tendency to float. To verify the approach, Mayorga et al. perform a nonlinear analysis
on structures exposed to tsunami forces at varying distances from the coast. Although
lightweight timber houses demonstrate strong seismic performance, the authors find them
unsuitable for tsunami-prone areas due to their vulnerability to hydrodynamic loads. The
research emphasizes the importance of using heavier, more rigid materials in flood-prone
areas and relocating lightweight structures to safer zones to improve tsunami resilience in
coastal communities.
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role in making this Special Issue a success.
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Abstract: Liquefaction caused by long-term cyclic loads in loose saturated soil can lead to ground
subsidence and superstructure failures. To address this issue, this study aimed to emulate the
liquefaction phenomenon based on a shaking table test while especially focusing on the soil behavior
mechanism due to the reliquefaction effect. Liquefaction and reliquefaction behaviors were analyzed
by ground conditions where an embankment was located on the coastal ground. Silica sand was
used for the experiment for various thickness and liquefiable conditions, and the embankment model
was constructed above the model ground. For seismic waves, sine wave excitation was applied,
and a total of five excitations (cases) were conducted. When the upper ground layer consisted of
a non-liquefiable layer, liquefaction did not occur due to the first excitations but occurred by the
third excitation. The results indicated that as the earthquake was applied, the water level in the
liquefiable layer increased to the height of the non-liquefiable layer and liquefaction could occur. It
was identified that even if liquefaction did not occur for the main earthquake, liquefaction could
occur due to aftershocks caused by a rise in the groundwater level due to a series of earthquakes. In
a general seismic design code, liquefaction assessment is performed only for soil layers below the
groundwater level; however, when successive earthquakes occur, unexpected liquefaction damage
could occur. Therefore, to mitigate the earthquake risk of liquefaction for coastal embankments, it is
necessary to evaluate the liquefaction by aftershocks even when the groundwater level of the ground
layer under an embankment is low.

Keywords: reliquefaction; liquefaction; coastal embankment; excess pore pressure; aftershock

1. Introduction

In recent years, the coast has been reclaimed in several areas of the world for the
development of industrial complexes, wind power generation, tourism complexes, etc.,
and coastal areas with high liquefaction concerns are increasing. In particular, with the
increasing number of cases of constructing a coastal embankment after reclamation and
using the embankment as a foundation for a wind power generation facility or using it
as a walking trail or bicycle road for tourism effects, concerns over liquefaction damage
to coastal embankments are growing. Liquefaction is a phenomenon in which soil loses
its resistance and behaves in a manner similar to a liquid due to a gradual increase in
excess pore water pressure caused by long-term cyclic loads in loose saturated soil. When
liquefaction occurs, the soil loses its strength and ability to support superstructures such as
buildings and bridges, which can lead to ground subsidence and superstructure failures.

On the other hand, soil densification due to rearrangement and reconsolidation of
particles after liquefaction increases the resistance in future earthquakes, and this theoretical
mechanism is widely applied to ground improvement construction such as compaction
to prevent liquefaction. However, some cases suggest that this intuitive theory is not
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necessarily applicable in all cases. After the first liquefaction, severe cases of reliquefaction
due to aftershocks have been continuously reported [1–6], and the results of related lab
experiments also support these cases [7–11]. To understand and prepare for the dynamic
behavior of the ground that is different from the widely known general theory, in-depth
research on aftershock and reliquefaction mechanisms is required, but related research
is still lacking. Moreover, the recent Türkiye–Syria earthquake resulted in more serious
damage due to aftershocks than due to the main earthquake, reminding us of the need for
research on aftershocks, which have been relatively understudied.

Based on the 1983 Nihonkai–Chubu earthquake, Ohara et al. found that liquefaction
occurs in the soil at lower peak ground acceleration and shear stress ratio values than
those at the initial states, and reliquefaction can occur during earthquakes with magnitudes
smaller than those of earthquakes that occurred previously [12]. Oda et al. investigated the
reliquefaction behavior of saturated granular soils through lab tests [13]. They identified
that liquefaction resistance was significantly lost if large excess pore pressure was generated
in the first cycle. Furthermore, they investigated the influence of several soil parameters
such as the void ratio, relative density, inherent isotropy, and void shape on reliquefaction
behavior. Zhao and Ye performed a series of 3D DEM simulations of undrained cyclic
triaxial tests, and the entire process of main shock-induced liquefaction, reconsolidation
with various degrees, and aftershock-induced reliquefaction was reproduced [14]. They
identified that the reliquefaction resistance of a completely reconsolidated soil may be
higher or lower than its initial liquefaction resistance, which is mainly affected by the
residual anisotropy caused by the first liquefaction. They also identified that reliquefaction
resistance is significantly affected by the reconsolidation degree. By employing a shaking
table test, Ha et al. created soils based on five types of sand tests with a high likelihood of
liquefaction and analyzed the effects of the sand gradation characteristics on changes in the
reliquefaction resistance during reliquefaction [15]. They observed that as D10/Cu increased,
the reduction rate of the reliquefaction resistance decreased linearly, and that as D10/Cu
exceeded 0.15 mm, the reduction rate of resistance during reliquefaction was constant at
approximately 20%. Moreover, based on the number of loading cycles and excess pore
water pressure over time, it was confirmed that the probability of liquefaction decreased
as the excess pore water pressure decreased when the fourth and fifth shaking loads were
applied. In a recent study on reliquefaction, Nepal et al. measured the excess pore water
pressure and acceleration response based on reliquefaction experiments [16]. As observed,
(a) the liquefaction resistance of sand was lower in the second liquefaction than that in the
first, (b) the liquefaction resistance varied with depth, and (c) the probability of liquefaction
of the soil layer near the surface was high. In addition, several researchers confirmed that
seismic shear wave damping in a liquefiable soil layer had different characteristics from that
of a general soil layer. In contrast, several studies recently investigated liquefaction behavior
while considering biaxial effects using experimental and numerical approaches [17–21].
They studied the relationship between detailed properties of the soil and the liquefaction
pattern according to the occurrence of excess pore water pressure and found important
results such as the effects of load non-proportionality and a direct function of the phase
angle of the induced shear stresses on pore water pressure buildup.

The results of the studies described above are meaningful in helping us understand
the reliquefaction behavior following the occurrence of aftershocks and recent advances on
soil liquefaction. However, considering that the greatest damage in the event of liquefaction
and reliquefaction is mainly due to settlement or collapse of superstructures, there is a
limitation because these studies treated the behavior of the soil itself and not of the soil
with structures such as an embankment. Several previous studies employed a numerical
approach to investigate the seismic behavior for the liquefiable soil condition of offshore
structures such as breakwaters and pipelines [22,23]. Other studies performed numerical
or experimental studies on earthquake behavior of embankments and identified that
the widespread damage to such piles and embankments occurred mainly due to the
liquefaction of foundation soil, resulting in excessive settlements, lateral spreading, and
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slope instability [24–31]. However, the key to the above studies was to investigate the
seismic behavior of the embankments or other coastal structures, which was far from the
reliquefaction behavior of embankment structures, which play an important role in securing
the stability of major infrastructure. Therefore, it is necessary to investigate reliquefaction
in scenarios involving structures such as embankments.

In this study, the reliquefaction behavior characteristics of coastal embankment struc-
tures, which have location characteristics with great concerns regarding liquefaction and
reliquefaction occurrences and may cause great damage, were investigated. As demon-
strated in this study based on a shaking table that could simulate liquefaction, the thick-
nesses of the liquefiable and non-liquefiable layers in the ground on which an embankment
was installed to obtain shaking load data for each ground layer when reliquefaction oc-
curred were used to confirm the natural frequency and time history graphs of the response
data. Additionally, the excess pore water pressure ratios were calculated from the first to
fifth liquefaction cycles using a pore water pressure transducer, and a comparative analysis
was conducted on the correlation between the acceleration and excess pore water pressure
ratio during reliquefaction.

2. Liquefaction and Reliquefaction Mechanisms

Liquefaction can be classified into flow liquefaction and cyclic mobility. Flow liq-
uefaction can occur when the static shear stress exceeds the steady-state strength. This
phenomenon occurs primarily on slopes and causes flow failure, which is the most dan-
gerous form of liquefaction-related damage. Cyclic mobility occurs when the static shear
stress is less than the shear strength of the liquefiable ground. It mainly occurs in coastal
areas with gentle slopes and when shaking occurs in uncompacted sandy soil with a short
sedimentation age, such as saturated sand [32].

A characteristic of soil reliquefaction behavior is that the liquefaction resistance can
decrease rapidly although the soil density increases as induced by drainage after liquefac-
tion. Oda et al. reported that when liquefaction occurs in the soil, the grain structure of
the soil is rendered unstable due to shear deformation [13]. Accordingly, excess pore water
pressure increases abruptly, thereby allowing for liquefaction to occur more readily even
due to small earthquakes. Ha compared the number of loading cycles with the change in
excess pore water pressure during reliquefaction and confirmed that fewer load repetitions
were required to trigger reliquefaction when compared with the initial liquefaction [33].

3. Materials and Methods

3.1. Ground Properties and Embankment Specifications

Silica sand No. 7 was used for the ground composition of the shaking table test.
Figure 1 presents the grain size distribution of silica sand No. 7, which is included in
the liquefaction hazard range (grain size range: 0.01–1.0 mm) suggested by the Applied
Technology Council [34]. Table 1 lists the physical properties of the silica sand. The specific
gravity (Gs) of the silica sand No. 7 used in this test was 2.65, the maximum dry unit weight
was 18.17 kN/m3, and the minimum unit dry weight was 13.47 kN/m3. The dimensions
of the model embankment were determined virtually based on the coastal embankment
located in the S-Project in South Korea. Three types of similitude law were suggested by
Iai [35]. Given that liquefaction closely resembles the strain-softening behavior, the third
form of the similitude law was applied, and the ratio of the similitude was 40. Table 2 lists
the properties of the embankment models.
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Figure 1. Particle size distribution curve for model soil.

Table 1. Soil properties of the model soil.

Parameter Value

Specific gravity, Gs 2.65
Maximum void ratio, emax 0.93
Minimum void ratio, emin 0.43

Relative density, Dr(%) 50
Residual friction angle, ∅(◦) 30.5
Mean particle size, D50(mm) 0.11

Uniformity coefficient, Cu 2.89
Coefficient of curvature, Cc 1.07

Permeability, k (m/s) 2.51 × 10−4

Table 2. Mechanical properties of the embankment model.

Parameter Prototype Model Similitude Relationship

Top (mm) 14,000 350 λ

Bottom (mm) 28,400 710 λ

Height (mm) 4000 100 λ

Length (mm) 20,000 500 λ

Volume (cm3) 1.696 × 109 26,500 λ3

Density (kg/m3) 2000 2000 1
Load (kg) 3,392,000 53 λ3

Stress (kgf/m2) 5971.83 149.30 λ

3.2. Seismic Waves

Figure 2 presents the input base motion profile, which was measured on a shaking
table. In the shaking table test, a sinusoidal wave of 5 Hz was determined as the input
motion, which corresponded to a sinusoidal wave of 0.8 Hz at the prototype scale while
applying Iai’s type 3 similitude relationship. Each sine wave excitation had a duration
of 8 s; namely, 1.5 s for the increasing section, 5.0 s for the constant section, and 1.5 s for
the decreasing section with an input acceleration of 0.2 g, which is the return period of a
2400-year earthquake in the Korean seismic design code. A total of five vibrations were
excited to analyze the reliquefaction behavior due to successive earthquakes. The excitation
interval was set to 1800 s so that the excess pore water pressure could be sufficiently
dissipated. As a result of observing the dissipation of the excess pore water pressure
through the measured pore water pressure with the pore water pressure transducer, it was
confirmed that the excess pore water pressure converged to zero at around 600 s.
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Figure 2. Base motion at 0.2 g and 5 Hz.

3.3. Experimental Method

To analyze the behavior of the coastal embankment with respect to the thickness of
the non-liquefiable layer, the soil compositions were divided into two cases as follows. In
Case 1, the soil layer comprised only a 50 cm liquefiable layer, and in Case 2, there were
two layers; i.e., a 32.5 cm lower liquefiable layer and a 17.5 cm upper non-liquefiable layer.
For each experiment, a reliquefaction test was conducted with five sine wave excitations
using a shaking table. Gravel with a size ranging from 1 to 2 cm and a unit weight of
2.0 kN/m3 was used for the embankment, which had a height of 10 cm and a fixed slope
ratio of 1:1.8. The model simulated an actual embankment at a scale of 1:40. Given that an
embankment is a fill structure on a road surface, an overload of 53 kg was applied while
considering the actual weight of the section. To form the ground of the liquefiable layer,
a sieve was installed on the soil box. Next, the soil particles were separated as evenly as
possible; they were slowly dropped into the water to create a composition similar to the
formation principle of the sedimentary layer, and the silica sand was saturated in water
for 72 h. The model ground was formed at a relative density of 50%. The relative density
was measured during a preliminary test. A sample could be placed every 10 cm from
the bottom of the soil box when preparing the model ground. The ground composition
was stopped; the sample was removed; and the weight, volume, and water content were
measured to calculate the unit weight and relative density when the ground composition
was completed. Afterwards, the model ground was formed in the same way, and the target
relative density was constructed by making the weight of soil used in ground composition
the same as that in the preliminary test. The non-liquefiable layer formed a total liquefiable
ground, and then a hose was installed and dewatered after excavating so that the location
did not interfere with the installation of the embankment and instrumentation to create
the non-liquefiable layer. Figure 3 illustrates the procedure employed for the experimental
setup. The test was conducted using a soil chamber with a length, width, and height of
200 cm, 50 cm, and 70 cm, respectively. To reduce the boundary effect of waves due to the
stiffness of the soil chamber during shaking, a 5 cm thick sponge was installed on both
walls of the soil chamber. Figures 4 and 5 present the cross sections in the experiment,
including the measuring instrument. To analyze the ground behavior during reliquefaction
and the occurrence of liquefaction with respect to depth, piezometers were installed at
the end of the embankment, at the center of the embankment, and in the free field at
depths of approximately 10 cm, 20 cm, 30 cm, 40 cm, and 45 cm from the ground surface.
The piezometers were fixed using aluminum rods to maintain a constant height in the
liquefiable soil. Accelerometers were installed at depths of 0, 10, 20, 30, 40, and 50 cm from
the ground surface and fixed to a square acrylic plate to ensure soil-like behavior when
liquefaction occurred. Linear variable differential transformers (LVDTs) were installed at
the center of the embankment and free field to measure the amount of settlement in the
embankment and free field. The test programs are summarized in Table 3.
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Figure 3. Test setup.

Figure 4. Schematic drawing of test section of liquefiable ground for model scale of Case 1
(* prototype scale).

Figure 5. Schematic drawing of test section of non-liquefiable and liquefiable ground for model scale
of Case 2 (* prototype scale).
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Table 3. Test program.

Case Composition of Facilities
Thickness of the

Lower Liquefiable
Layer (m)

Thickness of the Upper
Non-Liquefiable

Layer (m)
Note

Case 1 Embankment
(h = 0.1 m, slope: 1:1.8 fixed)

0.500
(20) * 0 Performance with 1–5

vibrations to confirm
reliquefaction behaviorCase 2 0.325

(12.5) *
0.175
(7.5) *

* Prototype properties.

4. Results and Discussion

Based on the shaking table tests, the accelerometers, piezometers, and LVDTs installed
in each layer were used to calculate the acceleration–time history, excess pore water pressure
ratio, embankment settlement amount, and relative density. The results presented in the
subsequent sections were based on a scaled embankment model (1:40) experiment scaled
to the prototype size using the third form of the Iai similitude.

4.1. Liquefiable Ground Case (Case 1)

All test results were described at the prototype scale by applying a similitude ratio. To
obtain data on the shaking load for each ground layer and check the state of liquefaction,
11 accelerometers and 8 pore water pressure transducers were installed for the experiment
as shown in Figure 4. Figure 6 presents the acceleration–time history measured during
the first excitation using accelerometers installed on the ground surface and at a depth
of 16 m in the free field. The acceleration–time history also indicates the occurrence of
liquefaction. Figure 6a reveals that the acceleration decreased rapidly due to the occurrence
of liquefaction at the ground surface below the embankment. Given that the ground
behaved similarly to a liquid when liquefaction occurred, the ground reaction did not occur
and the amplitude decreased [36]. In contrast, liquefaction did not occur at a depth of
16 m; therefore, the acceleration value did not decrease significantly. It was also confirmed
by the excess pore water pressure ratio and acceleration that during the first excitation,
liquefaction occurred from the ground surface to a depth of 8 m and not more than a depth
of 12 m from the ground surface (Figure 7).

The excess pore water pressure ratio was calculated by dividing the excess pore
water pressure generated over time by the effective stress. The effective stress below the
embankment was calculated by applying an additional surcharge of the embankment body.
Based on previous research, the occurrence of liquefaction is determined when the excess
pore water pressure exceeds 1.0 [37–39]. The liquefied ground was determined when
the excess pore water pressure increased to a value larger than 1.0. Figures 7–9 present a
representative graph of the excess pore water pressure ratio with a depth below the center of
the embankment and the free field due to successive excitations; in addition, the maximum
values of the excess pore water pressures in all cases are described in Tables 4 and 5. The
porewater pressure transducer installed at a 8 m depth in the free field did not work because
of technical issues; therefore, measurements could not be performed. Below the center of
the embankment (as shown in Figure 7), the excess pore water pressure ratios at depths
of 4 m and 8 m exceeded unity, indicating that liquefaction occurred. The excess pore
water pressure ratios at depths of 12 m and 16 m were less than 1 as listed in Figure 7a
and Table 5. These findings indicated that liquefaction did not occur. However, according
to the piezometers located in the free field (Figure 7b), liquefaction occurred at all depths
during the first excitation. This indicated that due to the overload pressure caused by
embankment subsidence, the ground-confining pressure increased more than that in the
free field, leading to different trends from those obtained at a depth of more than 12 m.
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Figure 6. Measured acceleration–time history for first shaking event in Case 1.

Figure 7. Cont.
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Figure 7. Cont.
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Figure 7. Excess pore water pressure ratio for first shaking event (Case 1).

Table 4. Excess pore water pressure ratio at the center of the embankment (Case 1).

Event Number
Excess Pore Water

Pressure Ratio
(Depth: 4 m)

Excess Pore Water
Pressure Ratio
(Depth: 8 m)

Excess Pore Water
Pressure Ratio
(Depth: 12 m)

Excess Pore Water
Pressure Ratio
(Depth: 16 m)

First 1.14 1.09 0.93 0.85
Second 1.01 0.85 0.87 0.80
Third 0.84 0.73 0.71 0.70

Fourth 0.70 0.65 0.62 0.62
Fifth 0.54 0.60 0.57 0.57

Table 5. Excess pore water pressure ratio in the free field (Case 1).

Event Number
Excess Pore Water

Pressure Ratio
(Depth: 4 m)

Excess Pore Water
Pressure Ratio
(Depth: 8 m)

Excess Pore Water
Pressure Ratio
(Depth: 12 m)

Excess Pore Water
Pressure Ratio
(Depth: 16 m)

First 1.22

N/A

1.15 1.07
Second 1.15 1.05 0.92
Third 1.02 0.87 0.84

Fourth 0.92 0.85 0.73
Fifth 0.82 0.72 0.68
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Figure 8. Excess pore water pressure ratio for the third shaking event (Case 1).
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Figure 9. Excess pore water pressure ratio for the fifth shaking event (Case 1).

Figure 8 shows the pore water pressure ratio for the third shaking event. As shown
in Figure 8a, liquefaction did not occur at the center of the embankment during the third
shaking excitation due to densification of the ground and confining pressure of the em-
bankment structure. As shown in Figure 8b, liquefaction only occurred at a depth of 4 m in
the free field.

During the fifth excitation, the excess pore water pressure ratios below the center of the
embankment and free field were less than unity at all depths, indicating that liquefaction did
not occur (Figure 9, Tables 4 and 5) because of densification of the ground during successive
earthquakes. These findings suggested that liquefaction did not occur because the relative
density increased due to ground subsidence caused by the overload pressure from the
embankment and repeated shaking. In addition, as shown in Table 5, the maximum excess
pore water pressure at a depth of 8 m was lower than that at a depth of 4 m below the
center of embankment by the fifth earthquake. This meant that the increase in the confining
pressure and the densification of the ground occurred more in the shallow ground due to
the settlement of the embankment structure due to repeated earthquakes.

As shown in Figure 10, settlement (as measured using the LVDTs) rapidly occurred
during the first excitation and substantially decreased from the first to fifth excitations.
The settlement increased while the excitation continued, and after excitation ended, little
additional settlement occurred even though the excess pore water pressure still remained.
This result was consistent with that of a previous study [40]. Table 6 presents the data for
the settlement amount and relative density according to the number of excitations. The
relative density was calculated using the value obtained by dividing the total volume and
mass of the ground while considering the settlement. Although the relative density should
be presented with respect to each ground depth and excitation step, due to experimental
limitations, this paper presents the relative density for the entire ground. These findings
suggested that the relative density increased to 67.7% during the fifth excitation; that as the
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number of excitations increased, the settlement amount decreased; and that liquefaction
did not occur in the lower ground in the free field. In addition, when the relative density
reached 60%, the excess pore water pressure ratio did not exceed unity except at a depth
of 4 m; therefore, further liquefaction did not occur below the embankment under an
excitation level of 0.2 g.

Figure 10. LVDT at the center of the embankment (Case 1).

Table 6. Relative density and ground settlement at the center of the embankment (Case 1).

Event Number Shake 1 Shake 2 Shake 3 Shake 4 Shake 5

Settlement (prototype)
(Accumulated settlement), m

1.96
(1.96)

0.78
(2.74)

0.29
(3.03)

0.15
(3.18)

0.12
(3.3)

Settlement (model)
(Accumulated settlement), m

0.049
(0.049)

0.019
(0.068)

0.007
(0.075)

0.004
(0.079)

0.003
(0.082)

Relative density, % 59.4 63.1 64.5 65.3 65.8

Figure 11 presents the correlation between the excess pore water pressure ratio and the
relative density at different depths below the center of the embankment for comparison. The
relative density gradually increased as the number of excitations increased, and liquefaction
occurred in the first excitation at depths of 4 m and 8 m as the excess pore water pressure
ratio exceeded 1. However, liquefaction did not occur at depths of 12 m and 16 m when
the excess pore water pressure ratio was less than 1. In addition to the non-occurrence of
liquefaction, the increasing trend of relative density declined. When the relative density
exceeded approximately 65–66%, the excess pore water pressure ratio decreased to values
less than 1 at all depths. These findings suggested that as the number of excitations
increased and the relative density reached a certain value, the ground density increased;
thus, the excess pore water pressure ratio did not exceed 1, and liquefaction did not occur.

4.2. Liquefiable and Non-Liquefiable Ground Case (Case 2)

When there was an upper non-liquefiable layer in the ground as shown in Figure 12,
liquefaction did not occur in any of the ground layers during the first excitations. Figure 13
presents a representative graph of the excess pore water pressure ratio with a depth below
the center of the embankment caused by successive excitation; in addition, the maximum
values of the excess pore water pressure in all cases are described in Tables 7 and 8. In Case
2, the excess pore water pressure ratio was calculated by considering the change of effective
stress due to the groundwater level rise.
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Figure 11. Excess pore water pressure ratio and relative density (center of the embankment, Case 1).

Figure 12. Measured acceleration time history for first shaking event in Case 2.

Figure 13. Cont.
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Figure 13. Cont.
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Figure 13. Excess pore water pressure ratio for successive shaking events below the center of the
embankment (Case 2).

Table 7. Excess pore water pressure ratio at the center of the embankment (Case 2).

Event Number
Excess Pore Water

Pressure Ratio
(Depth: 4 m)

Excess Pore Water
Pressure Ratio
(Depth: 8 m)

Excess Pore Water
Pressure Ratio
(Depth: 12 m)

Excess Pore Water
Pressure Ratio
(Depth: 16 m)

First 0.00 0.60 0.67 0.56
Second 0.42 0.70 0.73 0.63
Third 1.21 1.28 0.92 0.81

Fourth 1.01 0.92 0.83 0.76
Fifth 0.85 0.78 0.76 0.68
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Table 8. Excess pore water pressure ratio in the free field (Case 2).

Event Number
Excess Pore Water

Pressure Ratio
(Depth: 4 m)

Excess Pore Water
Pressure Ratio
(Depth: 8 m)

Excess Pore Water
Pressure Ratio
(Depth: 12 m)

Excess Pore Water
Pressure Ratio
(Depth: 16 m)

First 0.00

N/A

0.83 0.63
Second 0.53 0.91 0.78
Third 1.18 1.02 0.87

Fourth 1.07 0.93 0.82
Fifth 0.91 0.81 0.75

As shown in figure, liquefaction did not occur in the first excitation, whereas it occurred
in the third excitation. The groundwater level rose to 4 m below the ground surface in
the first earthquake and up to the ground surface in the second earthquake (Figure 5).
These findings suggested that as the seismic load was applied, the groundwater level in the
liquefiable layer increased to the height of the non-liquefiable layer, the entire ground was
submerged in groundwater, and liquefaction occurred in the third excitation onward. To
confirm the effects of reliquefaction, a total of five excitations were performed. According
to Table 7, the excess pore water pressure ratio exceeded 1.0 above the layer of 8 m in
the third and above the layer of 4 m in the fourth excitation, indicating that liquefaction
occurred. In addition, even in the layer where liquefaction did not occur, excess pore water
pressure values were observed in the fourth and fifth excitation that were larger than those
after the first earthquake because the effect of the confining pressure was reduced due to an
increase in the groundwater level. As shown in Table 8, when there was a non-liquefiable
layer, liquefaction occurred above 12 m in the third excitations and above 4 m in the fourth
excitation in the free field and not in the fifth excitations. The difference in the occurrence
of liquefaction between the free field and below the center of the embankment mirrored the
observations from Case 1. In particular, liquefaction did not occur in the third excitation at
a depth of 12 m when there was an embankment; this was due to the overload confining
pressure, which was in contrast to the ground case without an embankment.

Figure 14 presents a graph of the amount of embankment settlement based on the
LVDT installed at the center of the embankment. Table 9 presents the data for the settlement
amount and relative density according to the number of excitations. The change in relative
density was not significant in the first and second excitations because liquefaction did
not occur in the saturated ground due to the relatively high confining pressure caused by
non-liquefiable ground. In addition, the groundwater level increased, and the entire ground
was submerged in groundwater; it was judged that the upward pressure of groundwater
level led to a relatively low settlement. The relative density remained similar; therefore,
liquefaction occurred from the third excitation. Subsequently, the relative density increased,
and the amount of settlement in each excitation decreased in subsequent excitations.

Figure 14. LVDT at the center of the embankment (Case 1).
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Table 9. Relative density and ground settlement at the center of the embankment (Case 2).

Event Number Shake 1 Shake 2 Shake 3 Shake 4 Shake 5

Settlement (prototype)
(Accumulated settlement), m

0.13
(0.13)

0.25
(0.38)

1.59
(1.97)

0.51
(2.48)

0.40
(2.88)

Settlement (model)
(Accumulated settlement), m

0.003
(0.003)

0.007
(0.010)

0.040
(0.050)

0.013
(0.063)

0.010
(0.073)

Relative density, % 50.6 51.9 59.5 61.9 63.9

Figure 15 presents a graph of the correlation between the excess pore water pressure
ratio and the relative density at different depths below the center of the embankment when
there was an upper non-liquefiable layer in the ground. Liquefaction did not occur until the
third excitation when there was a non-liquefiable layer. Thus, no significant changes were
observed in the relative density or excess pore water pressure ratio. However, liquefaction
occurred during the third excitation, and the excess pore water pressure ratio exceeded 1.0,
demonstrating an increasing trend similar to that of the relative density. Furthermore, after
the relative density reached 60% or greater, the excess pore water pressure ratio did not
exceed unity, indicating that further liquefaction did not occur under an excitation level
of 0.2 g. It was determined that this phenomenon could occur when the thickness of the
non-liquefaction layer was relatively low and the thickness of the liquefiable layer was
more than twice the thickness of the non-liquefaction layer.

Figure 15. Excess pore water pressure ratio and relative density (center of the embankment, Case 2).

Based on a series of results, it was confirmed that the risk of liquefaction due to
aftershocks is greater than that of the main earthquake in the case of a coastal embankment
where the groundwater level is low (especially when the relative density of the ground is
lower than 60%). In the case of general seismic design criteria, liquefaction risk assessment
is not performed for soil layers higher than the groundwater level; however, if repeated
aftershocks occur, unexpected liquefaction damage may occur due to an increment in
the groundwater level. Therefore, to mitigate the earthquake risk of liquefaction for
coastal embankments, it is necessary to evaluate liquefaction by aftershocks even when
the groundwater level of the ground layer under an embankment is low. However, since
this study summarized the results of experiments performed for limited experimental
cases, additional experimental and numerical analysis studies on various liquefaction layer
thicknesses are needed.
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5. Conclusions

In this study, a series of shaking table tests were conducted while considering the thick-
nesses of liquefiable and non-liquefiable layers in saturated sand upon which an embankment
was installed. Accelerometers, piezometers, and LVDTs were used to analyze the occurrence of
liquefaction and ground behavior with respect to the depth during reliquefaction. The findings
of this study can be summarized as follows:

(1) In Case 1, the liquefaction occurred above 12 m in the first and the second excitations in
the free field and only occurred at the depth of 4 m in the third excitation. At the center of
the embankment, the excess pore water pressure ratio exceeded unity above 8 m in the
first excitation and only reached unity at the depth of 4 m in the second excitation. In this
regard, the difference in the confining pressure caused by the overload pressure from the
embankment most probably influenced the occurrence of liquefaction.

(2) When the upper ground layer consisted of a non-liquefiable layer (Case 2), liquefaction did
not occur in the first excitation and occurred in the third excitation. These results indicated
that as the shaking load was applied, the water level in the liquefiable layer increased
to the height of the non-liquefiable layer, and liquefaction occurred. This suggested that
when there is a liquefiable layer under a non-liquefiable layer, liquefaction may occur due
to aftershocks. In the case of general seismic design criteria, liquefaction risk assessment
is not performed for soil layers higher than the groundwater level; however, if repeated
aftershocks occur, unexpected liquefaction damage may occur due to an increment in the
groundwater level.

(3) In Case 1, the excess pore water pressure ratio decreased below unity after a relative
density of 65% at a depth of 4 m. Additionally, in ground with a non-liquefiable layer, the
excess pore water pressure ratio decreased after a relative density of approximately 63%.
In both cases, liquefaction did not occur when the relative density was approximately 65%
or higher, which can serve as a basis for gauging the likelihood of liquefaction when the
relative density reaches a certain value.

(4) In this study, it was confirmed that even if liquefaction does not occur at the main earth-
quake, liquefaction occurs due to aftershocks caused by a rise in the groundwater level.
In a general seismic design criterion, liquefaction assessment is performed only for soil
layers below the groundwater level; however, if aftershocks occur, unexpected liquefaction
damage may occur to coastal embankments. Therefore, to mitigate the earthquake risk
of liquefaction for coastal embankments, it is necessary to evaluate liquefaction due to
aftershocks even when the groundwater level of the ground layer under an embankment
is low.

For the results of this study to be applied quantitatively, additional research on groundwater
level rise due to earthquakes and the evaluation of liquefaction of subsequent aftershocks should
be conducted via dynamic centrifuge tests and numerical analysis. In addition, further studies
on various soil types also should be conducted in order to derive effective results that can be
applied to various field conditions.
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Abstract: Climate change is expected to increase the risks of coastal hazards (erosion and inundation).
To effectively cope with these emerging problems, littoral countries are advised to assess their coastal
vulnerabilities. In this study, coastal vulnerability is first assessed by considering two basic storm-
induced phenomena, i.e., erosion and inundation. First, the erosion is computed using the numerical
model for Storm-induced BEAch CHange (SBEACH), whereas the inundation is estimated using
two different empirical equations for comparison. Then, the integration of the vulnerabilities of both
storm-induced impacts associated with the same return period permits the identification of the most
hazardous regions. The methodology is applied to the coast of Thrace (Greece). The majority of the
coastline is not vulnerable to erosion, except for some steep and narrow beaches and the coast along
the city of Alexandroupolis. Beaches with very low heights are highly vulnerable to inundation. Half
of the studied coastline is considered highly or very highly vulnerable, whereas the other half is
relatively safe. The above results will help decision-makers choose how to invest their resources for
preventing damage.

Keywords: coastal vulnerability; integrated coastal management; erosion; inundation

1. Introduction

Coastal vulnerability is generally defined as the potential of a beach to be damaged by
storm-induced phenomena [1]. It is quantified by comparing the magnitude of the impact
to the adaptation ability of the coast [2]. The impact is estimated using the intensity of the
storm-induced processes, whereas the capacity of the beach to cope with the considered
impacts is derived from its geomorphology (i.e., beach slope, width, and height). The most
common storm-induced impacts are erosion and inundation [3].

Throughout the last century, pressure on coastal areas has increased due to urbaniza-
tion and large migration towards them. Approximately, a 70% increase in population has
been observed worldwide in low-elevation coastal zones [4]. In particular, the population
around the Mediterranean Sea is estimated to reach 572 million by 2030 [5]. Furthermore,
climate change is expected to have long-term impacts with frequent and intense extreme
storm events and a permanent 1.5 ◦C increase in global surface temperature by 2050 [6].
Consequently, sea level rise will threaten more coasts, and in combination with storm
events and local erosion trends, this can impose severe flood risks. Due to the above, the
Mediterranean coastline is identified by the Intergovernmental Panel on Climate Change
as a vulnerable zone with a high risk of inundation, coastal erosion, and, in general, land
degradation [6]. The increasing erosion and flood phenomena arising in the Mediterranean
push public administrations towards a strategic approach for integrated coastal zone man-
agement (ICZM) with an emphasis on coastal protection. More than a decade ago, the
importance of including hazard assessments in coastal zone policies was highlighted by
the Protocol on ICZM in the Mediterranean [7]. It recommends that its littoral countries
address the effects of natural disasters along their coastlines by assessing their vulnerability.

Following this recommendation, Mendoza and Jimenez [1] estimated the erosion po-
tential of the Catalonian coast in Spain using the Storm-induced BEAch CHange (SBEACH)
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numerical model. From the results of the beach retreat, a five-class storm categorization
was proposed for the Catalonian coast. Monioudi et al. [8] assessed the erosion risk of
the eastern Cretan coastline in Greece under sea level rise. Three analytical equations
were used to estimate the long-term beach evolution, whereas short-term erosion was
modeled using three numerical response models (XBeach, Leont’yev, SBEACH). They
found that the last two models presented similar results. Furthermore, an evaluation of the
economic impact of erosion on tourism revenue for Crete Island in Greece was presented by
Alexandrakis et al. [9], following a similar approach to that of McLaughlin et al. [10]. In
contrast, De Leo et al. [11] studied only the flooding potential of Lalzit Bay in Albania
using offshore wave climate (regional) and nearshore wave climate (local). Their analysis
concluded that the results vary in the run-up estimation, and thus the coastal vulnerability,
due to the different wave climates.

Studies that considered both the erosion and inundation impacts to assess the inte-
grated coastal vulnerability have also been performed [3,12–15]. The advantage of these
articles is that the vulnerability to erosion and inundation were evaluated separately, and
then the contribution of the forcing (storm properties) and receptor (geomorphology) were
quantified for the overall vulnerability. A disadvantage in the work of Jiménez et al. [12] is
that they did not provide a method to calculate the return period and thus it was arbitrarily
selected. The drawback in the study of Bosom and Jiménez [3] is that an empirical formula
specifically derived from numerical simulations of SBEACH along the Catalonian coast [1]
was used to predict the erosion. The results showed that beach erosion estimations similar
to the predictions of SBEACH can be obtained in a simple manner for Catalonian beaches
using the storm characteristics and the proposed erosion classes. However, the empirical
formula cannot be used for other coasts without appropriate calibration. Ferreira et al. [15]
analyzed several European coasts, with three of them being in the Mediterranean Sea. The
numerical model XBeach was used to estimate the erosion, and XBeach coupled with the
overland flood model LISFLOOD-FP were used to compute the inundation. The advantage
of this approach is that their results are more reliable because the impacts are analyzed in
detail. However, its drawback is the increased computational time, since setting up XBeach
and LISFLOOD-FP requires more workload.

It should be mentioned that, in addition to the Mediterranean Sea, similar studies
have also been performed worldwide (e.g., Brazil [16], Bangladesh [17], Colombia [18],
and South Korea [19]). A GIS-based coastal vulnerability assessment of state of Pará,
Brazil, was performed by Szlafsztei and Sterr [16]. A new approach implementing fuzzy
logic based on geospatial techniques was used to analyze the vulnerability of the coast of
Bangladesh [17]. The authors claim that they can analyze the vulnerability at a cell size
of 10 m. The drawback of this approach is the reliability and access of several necessary
GIS data. The vulnerability of the Caribbean and Pacific coast of Colombia was estimated
roughly through a semi-quantitative approximation by applying relative indices to different
variables [18]. The advantage of this approach is that they included human aspects in their
variables, such as housing density, contamination, etc.

The aim of this article is to present a tool to assess the integrated coastal vulnerability
to storm-induced inundation and erosion following a similar probabilistic approach as in
the work of Bosom and Jiménez [3] and apply it on the coast of Thrace, Greece (Figure 1).
The modification of the present study is the use of SBEACH to compute the beach retreat,
instead of an empirical equation. In addition, two different empirical formulas to estimate
the wave run-up are used to analyze their differences, and the inundation vulnerability
framework includes overtopping to better determine the flooding impact. After calculating
the time series of the two hazards, extreme probability functions are fitted to estimate their
magnitudes with large return periods. When both probability distributions are known,
an accepted risk and a time period of concern are selected to estimate a specific return
period. This permits the comparison of vulnerabilities with the same return period and
the identification of the most vulnerable areas. Finally, a simple approach to integrate the
vulnerabilities of both hazards is presented.
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Figure 1. Panoramic view of the globe (top-left corner) with indication of the Mediterranean basin.
The red rectangle at the Mediterranean map (top-right corner) indicates the studied area, coast of
Thrace, Greece (Photo courtesy of Google Earth).

2. Study Coast and Data

The studied coastline is in the Mediterranean Sea and, particularly, in the region of
Thrace, northeast Aegean Sea of Greece (Figure 1). Its length is about 108 km, and its
boundaries are the Nestos and Evros rivers, which are located at the west and east, respec-
tively. Along the river streams, three dams were constructed, resulting in the reduction
of the sediment towards the coast [20]. Apart from the two large rivers, it comprises of
long straight sandy beaches, cliffs, pocket beaches, deltas, lagoons, salt pits and a lake.
The only city on the coastline is Alexandroupolis. The coastal zone of this city is of high
economic value due to its port where commercial, transportation and tourist activities occur.
In contrast, the lagoons, the lake, and the deltas have low economic value, because any
investment will face significant environmental restrictions due to the Ramsar and Natura
2000 protection [21,22]. The socio-economic structure of the rest of the coastline is based on
tourism, aquaculture, agriculture and residential developments, and its economic value is
characterized as medium.

The coastline experiences mild wave climate, which is typical at the North-Eastern
Mediterranean (microtidal and fetch-limited wave conditions) [23]. To characterize the
storms, 3 h hindcasts of the WAM model for ten years (January 1995–December 2004) at
four stations (Figure 2) were used, provided by the Hellenic Centre of Maritime Research.
The wave dataset included the significant wave height, Hs, wave peak period, Tp, wave
direction, Hdir, wind speed, Ws, and wind direction, Wdir. It should be stressed that the
Aegean Sea presents short fetches and storms of limited duration, which may lead to
model errors in comparison to ocean predictions [24]. However, the hindcasted values are
considered representative of the actual wave conditions because they were compared to
available measurements from buoys, and no significant differences were observed [25].

Information about the basic beach dimensions (height, width, and slope) was obtained
from the Hellenic Military Geographical Service through a digital terrain model with 5 m
resolution. The beach slope is mild (~0.002) around the deltas and steep (~0.067) at the
center of the coastline. The sediment diameter varies between 0.22 mm and 0.5 mm [20].
The selected beaches for the present vulnerability assessment are shown in Figure 3.
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Figure 2. The bathymetry of the studied area with indication of the four stations (1, 2, 3, 4). Thasos
and Samothraki islands can be observed at the west and south, respectively.

 
Figure 3. The studied coastline with the eleven selected beaches.

The first and last beach (1 and 11) are located at the deltas of the two rivers, Nestos
and Evros, respectively. Area 3 (Lagoon) is a barrier beach, which is a narrow strip of land
with low elevation. It is a crucial buffer that protects the lagoon against storm damage and
flooding, but its existence is very fragile. The rest of the studied beaches (2 until 10) are
typical sandy ones, whereas beach 10 (City) runs along the city of Alexandroupolis. The
characteristics of each beach are presented on Table 1.

Table 1. Characteristics of the studied beaches.

Length [m] Width [m] Height [m] Slope Buoys

1 Delta 2000 500 0.9 0.002 1
2 1300 30 0.4 0.013 1

3 Lagoon 700 20 0.3 0.018 1
4 300 20 0.4 0.020 2
5 500 20 0.8 0.040 2
6 1500 15 1 0.067 3
7 1000 30 2 0.067 3
8 1100 30 2 0.067 3
9 6000 25 0.8 0.032 3

10 City 9000 15 0.5 0.033 4
11 Delta 8000 125 1 0.008 4

3. Methodology

The methodological framework to assess integrated coastal vulnerability to storm-
induced impacts is schematized in Figure 4. It consists of four main steps: (a) estimation of
the storm-induced phenomena, (b) calculation of the probability distribution of the induced
hazards, (c), selection of the return period, and (d) integration of the coastal vulnerability.
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Figure 4. Methodological framework for integrated coastal vulnerability assessment to storms.

The event approach [26] is followed to estimate the erosion, since it is impossible to
calculate its time-series, but only the erosion produced by independent storms. Therefore,
wave height extreme distributions are first calculated from the storm time-series, then,
other related parameters (i.e., wave period and storm duration) are estimated, and finally,
the storm-induced erosion for each return period is computed.

On the other hand, the response approach [26] is used to estimate the inundation,
because the run-up time-series can be directly calculated from wave data. Afterwards,
extreme probability distributions are fitted, and from them, the inundation probability
distribution is estimated. This reduces the uncertainty in the present analysis, since it allows
the hazard magnitude associated with a given probability of occurrence to be obtained
without assuming relationships between the driving variables [15].

Once the erosion and inundation probability distributions are estimated, vulnerability
maps are drawn based on a selected return period. Following this methodology, decision-
makers (public or private administrators, municipalities, coastal managers, etc.) can select
an acceptable return period for each area of the coastline depending on its characteristics
(economy, infrastructure, environment, etc.). Selecting spatially varying return periods
allows comparisons of vulnerabilities associated with different probabilities.
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3.1. Erosion Parameterization

Cross-shore erosion occurs mainly during extreme storms, and unlike long-shore
erosion, which is difficult to observe in the short-term, it can transport large sediment
volumes over intervals as short as one day. Since storm-induced hazards are considered in
this project, only cross-shore erosion will be estimated.

To start with its vulnerability assessment, first step consists of finding the hazards
forcing, i.e., identify storms in the study area. Subsequently, in order to do so, a storm data
set must be built using the existing wave time-series. In this study, the peak-over-threshold
(P.O.T.) method was used, where a storm is defined as an uninterrupted sequence of waves
with height exceeding a threshold value and direction towards the under-consideration
beaches. The wave height threshold is selected by calculating the 95% quantile of its
cumulative distribution function. Then, extreme probability (Gumbel, Generalized Extreme
Value, Generalized Pareto, and Weibull) distributions were used to fit the storm wave data.
Apart from the extreme wave height, its corresponding period and storm duration are
computed using regression analysis to the existing wave data. With these parameters, the
erosion of every storm can be predicted. Finally, the numerical model SBEACH is selected
to estimate the beach profile response. A detailed description of the model is available
in [27,28], whereas its disadvantages were presented by Thieler et al. [29]. The direction
and rate of cross-shore sediment transport predicted by SBEACH is based on empirical
criteria derived from wave-tank experiments. Its fundamental assumption is that the beach
is changed only by cross-shore erosion, resulting in a redistribution of sediment across its
profile with no net gain or loss of material (sand conservation). Furthermore, it should
not be used to examine profile changes near jetties or similar structures because, in these
cases, profile changes might be controlled more by the interruption of long-shore transport
than by cross-shore. Therefore, SBEACH should only be applied if long-shore erosion can
be neglected, as is in this case. In addition, it is an easy and fast numerical model that
produces reliable results [8].

In this study, beach erosion is characterized by the beach retreat, ΔX, that is defined
as the shoreward displacement of the initial beach line after a storm (Figure 5). This is a
simplification of a real beach response because pre-storm morphology, among other factors,
affects the induced erosion [30]. Furthermore, event grouping, when significantly more
erosion, which can occur from two consecutive storms [31], is not considered. However,
the objective is not to reproduce the exact beach response to storms but to estimate an order
of magnitude of the erosion.

Figure 5. Initial and final beach profile. The eroded volume and beach retreat are marked. S.W.L. is
defined as standing water level.

The final step includes the ability of a coast to cope with erosion in order to quantify
its vulnerability. The parameter used as a characteristic of the coast resilience is the beach
width, W. Wide beaches do not face significant problems even if their short-term erosion is
large. Therefore, the lowest vulnerability will occur when beach width is greater or equal
to the minimum required beach width, Wmin, plus the beach retreat, Δx:

W ≥ Wmin + Δx (1)
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The minimum required beach width is a distance to maintain a coast operative and to
avoid direct exposure of the hinterland to seawater [3]. In this work, Wmin = 10 m to let
machinery work operate after storm damages. On the other hand, the highest vulnerability
is defined when beach width is less or equal to its retreat:

W ≤ Δx (2)

This is the case when a beach is fully eroded, and the infrastructure is exposed to
waves. The erosion vulnerability is quantified using a linear function between Equation
(1), lowest value (safe beach), and Equation (2) highest value (vulnerable beach). It is
also divided in four qualitative classes (green: lowest, yellow: low, orange: high, and
red: highest).

3.2. Inundation Parameterization

In general, inundation is caused by a combination of high-water levels due to tide and
wave run-up. Consequently, joint probability analysis should be performed to estimate the
highest water level during a storm. However, the tidal range in the studied coastline is
very low [23], and thus, it can be neglected. The wave run-up describes the phenomenon
when an incoming wave climbs the beach profile up to a level that can be higher than its
crest. The vertical distance between the S.W.L. and the highest point reached by the 2% of
the incident waves is called run-up, R2%. For this study, the wave run-up time series is
computed using the formula [32]:

R2% = 1.1

(
0.35 tan β(HsLo)

0.5 +
[(HsLo(0.563 tan β2 + 0.004)]0.5

2

)
(3)

and the existing wave time series. In Equation (3), Lo (= 1.562·Tp
2) is the deep-water wave-

length associated with the wave peak period, Tp, and tanβ is the beach slope. This equation
(henceforth, Stockdon eq.) is selected because it was derived from field measurements
on natural sandy beaches [32] and it is widely used [3]. However, it was reported that
Stockdon eq. might underpredict the wave run-up [33]. Therefore, the equation presented
by Reis et al. [34] (henceforth, Reis eq.) is also used to estimate the wave run-up time series
and to compare the two empirical formulas,

R2% =

(
(0.38 + 1.67ξ)Hs

1.085

)
(4)

The Irribaren number is defined as ξ = tanβ/(Hs/Lo)0.5. It should be noted that other
formulas [35] to estimate the wave run-up could be used. Nevertheless, to increase the
reliability of a vulnerability assessment, it is recommended to verify that the selected
equations capture the actual processes. The threshold of the wave run-up time series is
selected by finding the 95% quantile of the corresponding cumulative distribution functions.
After applying the P.O.T. method to the wave run-up time series, extreme distributions are
fitted to the highest run-up values.

The beaches resilience against flooding is a function of their height. Higher beaches
will be less inundated. Based on these, the lowest vulnerability is defined when beach
height, B, is greater or equal to the run-up:

B ≥ R2% (5)

On the other hand, the highest vulnerability is defined when the run-up exceeds beach
height by a value Z or more:

B ≤ R2% − Z (6)

The variable Z needs to be adapted based on the specific conditions of the studied
area. For the highest vulnerability, it represents overtopping conditions with significant
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water volumes flowing to the hinterland. It can be defined after comparing the average
overtopping discharge of every beach with values allowed in order to have a littoral road,
pedestrian sidewalk, etc. without any obstructions [36]. In this study, the overtopping
discharge, Q, was calculated by [33]:

Q = A
√

gR3
2%

(
1 − B

R2%

)C
, forR2% > B (7)

where g is the gravitational acceleration, A = 0.033, and C = 10.2 − 0.275/tanβ. Similarly
with erosion, four levels of vulnerability exist, and a linear relationship is assumed between
Equations (5) and (6).

3.3. Integrating Coastal Vulnerability

After the estimation of the extreme distributions, the last steps of the methodology
are to consider an appropriate return period and to integrate the vulnerability against the
hazards of inundation and erosion. The return period is estimated by [37]:

Tr =
1

1 − (1 − P)
1
N

(8)

where P is a probability of occurrence, and N is a time period of concern. In general, these
variables should be defined by the decision-makers of each region, and hence, different
return periods can be analyzed. This permits to study different safety levels, which are a
function of the hinterland importance. The integration of the vulnerability of both hazards
is performed following Table 2. This approach is conservative, because a high or very high
vulnerability has more weight for the estimation of the integrated vulnerability.

Table 2. Approach to integrate the vulnerability of erosion and inundation. The four different colors
classify the vulnerability (green: lowest, yellow: low, orange: high, and red: highest vulnerability).

Erosion

very Low low high very high

In
un

da
ti

on very low very low low high high

low low low high high
high high high high very high

very high high high very high very high

4. Results

4.1. Erosion Results

In this study, the threshold value of the wave height to define a storm was found to be
1.5 m. After applying the P.O.T. method in the wave time series, the storm wave data for
beach 10 (City) are shown in Figure 6 (left). Among the extreme probability distributions
that were used, the Gumbel distribution was chosen (Figure 6-right) as it presented the
best fit. The method that was used to calculate its parameters was the maximum product
of spacings with 95% confidence intervals. It should be stressed that only extreme wave
heights with return periods of maximum 30 years will be considered reliable, because the
extent of a time-series must be at least one-third of the duration to which a variable is being
extrapolated [38]. For the present case, thirty years are considered sufficient to produce
long-term coastal planning.
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Figure 6. Left: Wave time series for area 10 (City). The marked peaks above the red line
(threshold = 1.5 m) are the storms with a direction towards the studied beach. Right: Wave height
Gumbel distribution for area 10 (City). The red and green lines are the 95% confidence intervals.

Using the wave height with a return period of 30 years from Figure 6 (right), the
final profile of a representative cross-section at beach 10 (City) can be simulated from
SBEACH (Figure 7).

Figure 7. Initial (black line) and post−storm (red line) profile of beach 10 (City) for Tr = 30 years.

After following the above procedure for all beaches, the erosion results for three
different return periods are summarized in Table 3. It should be noted that beaches
1–4 and 11 are not eroded (even for storms with Tr = 30 years), whereas the others lose
much sediment and width. Another interesting fact is that the eroded beaches are located
in the sheltered region of Samothraki Island (Figures 2 and 3), receiving storms with lower
energy than the non-eroded beaches that are more exposed. This is explained by the beach
slope. The mild slope beaches at the deltas and the lagoon (Table 1) dissipate more wave
energy, and thus, they are safer against erosion.

35



J. Mar. Sci. Eng. 2023, 11, 1490

Table 3. Beach retreat and difference between beach width and retreat for all examined areas with
three return periods Tr. The four different colors classify the erosion vulnerability (green: lowest,
yellow: low, orange: high, and red: highest vulnerability).

Beach
Width [m]

Beach Retreat [m]
Tr [yrs]

Beach Width–Beach Retreat [m]
Tr [yrs]

5 10 30 5 10 30
1 Delta 500 0.0 0.0 0.0 500.0 500.0 500.0

2 30 0.0 0.0 0.0 30.0 30.0 30.0
3 Lagoon 20 0.0 0.0 0.0 20.0 20.0 20.0

4 20 0.0 0.0 0.0 20.0 20.0 20.0
5 20 13.6 16.2 20.1 6.4 3.8 −0.1
6 15 16.5 18.6 22.2 −1.5 −3.6 −7.2
7 30 15.9 16.1 18.8 14.1 13.9 11.2
8 30 15.9 16.1 18.8 14.1 13.9 11.2
9 25 6.4 7.9 9.3 18.6 17.1 15.7

10 City 15 12.2 14.4 18.1 2.8 0.6 −3.1
11 Delta 125 0.0 0.0 0.0 0.0 0.0 0.0

The vulnerability map to erosion of the coastline is presented in Figure 8 for the return
period of 30 years. Narrow beaches (5, 6 and 10) are those that have erosion problems,
whereas beaches 7 and 8 with 30 m width and large beach retreats (18.8 m for Tr = 30 yrs), are
not even characterized with low vulnerability. In conclusion, the majority of the coastline
is not vulnerable to erosion, except for the steep and narrow beaches 5 and 6, with 20 m
maximum width, and the coast along the city of Alexandroupolis (10).

 

Figure 8. Coastal vulnerability map to erosion with Tr = 30 years.

4.2. Inundation Results

As it was explained in Section 3.2, the wave run-up time series can be calculated
from Equations (3) and (4). In Figure 9, the two different run-up time series due to
Equations (3) and (4) are presented for beach 10 (City).

 

Figure 9. Wave run-up time series (left—Stockdon eq., right—Reis eq.) for beach 10 (City). The red
line is the threshold. The marked peaks are the storms with direction towards the studied coastline.
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For both run-up time series, the GUMBEL distribution presented the best fit. Hence, it
was selected to estimate the wave run-up values for different return periods (Figure 10).

Figure 10. Gumbel distribution of wave run-up for beach 10 (City), calculated with Stockdon (left)
and Reis (right) equation. The red and green lines are the 95% confidence intervals.

The inundation results for all examined beaches are presented in Table 4. The wave
run-up values calculated by Stockdon eq. are approximately half from the ones calculated
by Reis eq. This stresses that using different equations can lead to highly expensive
measures against an overestimated hazard, or, in contrast, can pose danger on the under-
consideration coastline if the hazard is underestimated. Therefore, selecting the correct
equation to describe a physical phenomenon is of paramount importance.

Table 4. Beach height and wave run-up predicted by Stockdon and Reis equations for all examined
areas with three return periods Tr.

Beach
Height [m]

Stockdon Eq. [m]
Tr [yrs]

Reis Eq. [m]
Tr [yrs]

5 10 30 5 10 30

1 Delta 0.9 0.73 0.80 0.90 1.50 1.65 1.82
2 0.4 0.80 0.88 1.05 1.75 1.95 2.25

3 Lagoon 0.3 0.77 0.85 0.91 1.80 2.05 2.35
4 0.4 0.82 0.90 1.03 1.80 2.10 2.45
5 0.8 0.90 1.03 1.20 2.05 2.40 2.70
6 1.0 0.85 0.93 1.05 1.80 2.05 2.45
7 2.0 0.85 0.93 1.05 1.80 2.05 2.45
8 2.0 0.85 0.93 1.05 1.80 2.05 2.45
9 0.8 0.71 0.77 0.85 1.55 1.65 1.80

10 City 0.8 0.83 0.91 1.05 1.70 1.90 2.20
11 Delta 1.0 0.74 0.80 0.88 1.45 1.60 1.80

It should be noted that the wave run-up values of the lagoon area (3) and the coast
of Alexandroupolis (10) are almost the same (Table 4), even though the lagoon (3) is an
exposed beach, and the coast in (10) is semi-protected due to the sheltering effect of the
islands. This is explained because the wave characteristics are not the only inputs to
estimate the run-up; beach slope is also significant. Milder slopes reduce wave run-up,
since tanβ is proportional to R2% in Equations (3) and (4). Furthermore, large run-up values
do not necessarily imply high vulnerability. For example, Reis eq. yields the same run-up
for beach 3 (Lagoon) and beach 7 for Tr = 5 years (Table 4). However, beach 7 does not have
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any flooding problem, because its beach height = 2.0 m > 1.8 m, whereas beach 3 (Lagoon)
is completely inundated (beach height = 0.3 m < 1.8 m).

The results of the overtopping discharge using Reis eq. for a return period of 30 years
are presented in Table 5. The Reis eq. and 30 years return period were selected to be on
the conservative side. It is reported that an overtopping discharge of more than 150 lt/sec
causes damage to structures (buildings, revetments, etc.) and it is dangerous and unsafe
for pedestrians and driving on coastal roads [35]. Based on this and the corresponding
results, the variable Z was set equal to 2 m in Equation (6), e.g., both beach 3 (Lagoon) and
4 experience an overtopping discharge of approximately 175 lt/sec, while having a wave
run-up two meters higher than their height.

Table 5. Beach height, wave run-up based on Reis eq., and overtopping discharge for all exam-
ined beaches.

Beach Height
[m]

Reis Eq. [m] Q [lt/s]
Tr = 30 yrs Tr = 30 yrs

1 Delta 0.9 1.82 10.28
2 0.4 2.25 139.02

3 Lagoon 0.3 2.35 174.49
4 0.4 2.45 171.50
5 0.8 2.70 87.93
6 1.0 2.45 16.38
7 2.0 2.45 0.01
8 2.0 2.45 0.01
9 0.8 1.80 15.76

10 City 0.8 2.20 100.39
11 Delta 1.0 1.80 5.52

Based on the above, the vulnerability maps to inundation are presented in
Figures 11 and 12 for Stockdon and Reis equations, respectively. Beaches with very low
heights (2, 3, 4, 5 and 10 in Table 4) are highly vulnerable to inundation, whereas beaches
7 and 8, that are two meters high, are not expected to have flooding problems.

 

Figure 11. Coastal vulnerability map to inundation predicted by Stockdon eq. with Tr = 30 years.

 

Figure 12. Coastal vulnerability map to inundation predicted by Reis eq. with Tr = 30 years.
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4.3. Integrated Coastal Vulnerability Assessment

In this study, the minimum period of concern for coastal protection is set to n = 10 years,
following the recommendation of the Greek Ministry of Public Works (GMPW). In addition,
for the majority of the studied coastline, failure of a beach will not cause human losses
and it will have medium economic impact. This corresponds to an accepted probability,
p = 0.3 (GMPW). By substituting this value in Equation (8), the return period equals to
thirty years. Based on this, the vulnerability maps to erosion and inundation
(Figures 8, 11 and 12) were presented with a return period of 30 years.

For the integrated coastal vulnerability assessment, the results of Reis eq. were
used. This was conducted because the hinterland of this coastline is known to be prone
to inundation and Reis eq. yields larger wave run-up values that seem to agree with
observations. As a result, the integrated coastal vulnerability to inundation and erosion
associated with thirty years return period along the coast of Thrace is presented in Figure 13.
From the integrated vulnerability map, half of the studied coastline is considered highly
or very highly vulnerable, whereas the other half is relatively safe for Tr = 30 years. The
barrier beach (3 Lagoon) is characterized by high vulnerability only due to inundation
(Figure 12), whereas the coast of Alexandroupolis (10 City) is very highly vulnerable to
both inundation and erosion (see also Figures 8 and 12).

 

Figure 13. Integrated coastal vulnerability map associated with a return period of 30 years.

5. Discussion

An assumption to apply the above methodology is that the beach dimensions were
averaged for each studied area. This may underestimate or overestimate the vulnerability
in some parts. To improve the present assessment in the future, in situ analytical measure-
ments of beach slope, width and height are required. Another point to be considered is
that coastal geomorphology needs to be updated as beach profiles evolve constantly. As it
was previously mentioned, the hazard intensity and the beach capacity to cope with it de-
pend on the pre-storm morphology. Hence, if decision-makers want to have a reliable live
estimation, the present method needs to be complemented with a coastal monitoring plan.

In addition, the present analysis revealed the importance of correctly estimating a
hazard in order to have a reliable vulnerability map. Therefore, the used equations and
models should be validated in order to increase the reliability of the coastal vulnerability
assessments. Most models assume a smooth profile or straight and parallel seabed contours.
This is an assumption that may be completely invalid on coasts that have submerged rocks
or boulders. In the real world, there is also substantial regional and local variability in grain
size. The above should be taken into consideration for the validity of the results.

All in all, the results based on the above hypotheses may contain a degree of uncer-
tainty for some parts of the under-consideration coastline. However, the aim of the present
study is not to replace a detailed beach modeling analysis, but to provide a first approach
to the vulnerability assessment of a large coastline. This can help decision-makers choose
how to invest their resources for preventing damages.

6. Conclusions

In this article, the probabilistic vulnerability to storms of the coast of Thrace, Greece
was assessed. To this end, the methodology presented by Bosom and Jiménez [3] has
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been applied with three modifications. The introduced modifications were the use of the
numerical model SBEACH to estimate the beach retreat, instead of an empirical formula.
Furthermore, two different run-up equations, instead of one, were used to compare their
different estimations concerning the flooding results. Finally, the vulnerability to inundation
was defined after considering the corresponding overtopping discharge.

A large vulnerability variation along the coast of Thrace was found, stressing the
importance of waves and beach geomorphology to the integrated hazards assessment. The
majority of the coastline is not vulnerable to erosion, except for some steep and narrow
beaches, and the coast along the city of Alexandroupolis. Beaches with very low heights
are highly vulnerable to inundation, whereas beaches that are two meters high, are not
expected to have flooding problems. Half of the studied coastline is considered highly
or very highly vulnerable, whereas the other half is relatively safe for Tr = 30 years. It
was also found that an area that is affected by a high-intensity hazard is not necessarily
vulnerable, because coastal vulnerability is defined by the beach capacity to cope with an
extreme hazard.

This methodology is simple, and it can be similarly applied to other Mediterranean
coasts. For different regions, (e.g., beaches with high tide), or under climate change
scenarios (e.g., higher S.W.L.) it can be modified and applied accordingly if the required
information is known.
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Abstract: This review paper focuses on the use of ensemble neural networks (ENN) in the develop-
ment of storm surge flood models. Storm surges are a major concern in coastal regions, and accurate
flood modeling is essential for effective disaster management. Neural network (NN) ensembles have
shown great potential in improving the accuracy and reliability of such models. This paper presents
an overview of the latest research on the application of NNs in storm surge flood modeling and
covers the principles and concepts of ENNs, various ensemble architectures, the main challenges
associated with NN ensemble algorithms, and their potential benefits in improving flood forecasting
accuracy. The main part of this paper pertains to the techniques used to combine a mixed set of
predictions from multiple NN models. The combination of these models can lead to improved
accuracy, robustness, and generalization performance compared to using a single model. However,
generating neural network ensembles also requires careful consideration of the trade-offs between
model diversity, model complexity, and computational resources. The ensemble must balance these
factors to achieve the best performance. The insights presented in this review paper are particularly
relevant for researchers and practitioners working in coastal regions where accurate storm surge
flood modeling is critical.

Keywords: deep learning; storm surge prediction; ensemble model; sea level rise

1. Introduction

Rising sea levels increase the risk of coastal flooding depending on the relative rate of
mean sea/land level changes [1–3]. The impacts are linked to concurrent near-term trends
as well as gradual escalation of long-term coastal inundation risk over time [4]. Estuaries
and coastal areas should adapt to changing climate and implement the necessary mitigation
measures. A complex process such as a storm surge is sensitive to abrupt changes in several
storm parameters, such as intensity, surface atmospheric pressure at the center of the storm,
maximum sustained wind speed, size, and forward speed, in addition to the effects driven
by the characteristics of dynamic coastal settings, such as shoreline geography, estuaries,
and bay barriers [5]. The interdependency of these different factors make it notoriously
hard to predict the timing and intensity of the hydrodynamic response (e.g., water levels
and currents) [6–9]. Parametric models conventionally incorporate historical or synthetic
hurricanes using storm size, intensity, and track, allowing for the prediction of storm surge
heights and overland flooding [10,11].

During a storm surge event (caused by tropical or extratropical cyclones), the potential
impacts extend beyond the surge itself and could exacerbate flooding and structural dam-
age. This can be further intensified by the surface gravity waves due to the superimposed
storm tide [12]. Wave driven set-ups can contribute up to 30% of the total increase in water
level (including both typical fluctuations and any additional rise) along the coast [13]. The
combination of elevated water levels along with the destructive power of waves poses
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a tremendous danger to densely populated areas adjacent to coastal waters. The U.S.
Atlantic and Gulf Coasts, for example, are expected to experience a sea level rise of, on
average, 0.25–0.30 m in 30 years (2020–2050) [14]. This further increases the vulnerability
of coastal regions to compound flooding (CF), where the interaction of rainfall, rivers,
and ocean storm surges combine and create a cataclysmic force [15]. To overcome these
challenges, physics-based approaches, such as hydrodynamic models, have been used to
estimate hydrological processes and flood hazards/the probability of particular events
that require land–atmosphere–ocean coupling [16]. Although these models explain the
nature of flooding phenomena and show great skill for a wide variety of flood predic-
tion scenarios, they usually deal with the physical dynamics and require various types of
datasets, as the occurrence of floods varies with time and space [17,18]. This requires a large
amount of computation, which makes short-term predictions very challenging. The reader
is kindly referred to [17,19,20] for the comprehensive studies related to the development of
physics-based models, their challenges, and capabilities.

Hydrodynamic modeling has also been extensively used to investigate the spatial
and temporal variability of storm surges. Hydrodynamic models are widely utilized to
describe coastal ocean processes and near-shore circulation and to simulate future scenarios
of possible storm surge flooding [21]. These models are well-developed to account for the
inherent uncertainties associated with sea level rise and storm surges. They also consider
the relative impacts of different meteorological forces in total water levels [22,23]. However,
these models are computationally demanding and time consuming. This limits their ability
to simulate large complex domains or ensembles of events.

Some parametric models, such as the Bayesian model averaging, autoregressive inte-
grated moving average, and peak over threshold methods, are among the most preferred
methods to predict the statistical behavior of storm surge flooding [24,25]. However, these
models are, at times, computationally demanding and typically sophisticated. Furthermore,
generalizing the potential impacts of a storm surge for a particular geographical area to
other areas with different parameters and settings is not a reliable approach [23]. Flood
prediction requires constructing a minimum of a decade of non-tidal residual data from
measurement by sea-level gauges [26]. In small datasets, i.e., those with a lack of large-
sample observational data, even a few outliers will significantly alter the model or affect
the correlation among the predicting variables [27].

Low-fidelity numerical storm surge models such as SLOSH (Sea, Lake, and Over-
land Surges from Hurricane) [28] are used by emergency managers and researchers to
assist in forecasting the hydrodynamic response to a predicted hurricane track, size, and
intensity. These models have significant uncertainty when used for forecasting [29,30].
Coupling ADCIRC (ADvanced CIRCulation model) [31] with WAM (WAve prediction
Model) [32], STWAVE (Steady-State Spectral Wave Model) [33], or SWAN (Simulating
WAves Nearshore) [34] is a widely used method for generating high-resolution storm surge
models of specific regions [35,36]. Considering their additional wave forcing processes,
finer mesh sizes, and smaller time steps, high-fidelity models are computationally more
expensive [37]; thus, the accurate and quick assessment of hurricane-induced flooding has
always been a challenging task.

Surrogate models are another approach to overcome this huge obstacle by simplifying
approximations of more complex, higher-order models [10]. The Surge and Wave Island
Modeling Study (SWIMS) [38] in the USACE, for example, developed a fast surrogate model
by simulating hundreds of hurricanes to predict peak storm surges and hurricane responses
in only a couple of seconds, which is an advantage over high-fidelity coupled simulations.
Considering this issue, in a national-scale effort, the U.S. Army Engineer Research and
Development Center developed a statistical analysis and probabilistic modeling tool named
the StormSim Coastal Hazards Rapid Prediction System (StormSim-CHRPS) [39]. The tool
preserves the accuracy of the high-fidelity hydrodynamic numerical simulation methods,
such as ADCIRC, while significantly reducing computational demands, making it more
convenient for real-time emergency management applications. The intricate input/output
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relationships inherent in high-fidelity numerical models are approximated using a machine
learning method called Gaussian process metamodeling (GPM), enabling the rapid pre-
diction of the peak storm surge and hurricane responses within seconds and for different
hurricane scenarios.

Lee et al. [37] sought to enhance coastal resilience by providing a rapid storm surge
prediction surrogate model called C1PKNet, a combination of a convolutional neural
network model (CNN), principal component analysis, and a k-means clustering method,
which was trained efficiently on a dataset of 1031 high-fidelity storm surge simulations.
The resulting model is capable of predicting peak storm surges from realistic tropical
cyclone track time series. A few studies, such as [40,41], even consider global warming,
earth–moon–sun gravitational attractions, and storm surges to estimate the coastal sea
level at an hourly temporal scale. The model in [40] was developed using an artificial
neural network (ANN) approach called long short-term memory (LSTM) and trained on the
ECMWF (European Center for Medium-Range Weather Forecasts) reanalysis dataset, ERA5
(more information on raw input data generation using ERA5 is available in Section 5.1).

To the best of our knowledge, only a limited number of researchers, such as [37,42–44]
aimed to assess the concept of ANN ensemble learning for storm surge prediction. Braakmann-
Folgmann et al. [43], for example, developed a combined convolutional and recurrent neural
network to analyze both the spatial and the temporal evolution of sea level anomalies in the
northern and central Pacific Ocean. They show how neural network architectures outperform
simple regression to improve predictions for the future sea level. A novel deep learning
architecture was implemented by [44] in contrast to a primitive model called the general ocean
circulation model ensemble or NEMO (Nucleus for European Modelling of the Ocean). Their
aim was to reduce the uncertainty associated with accurate sea level predictions and also to
show the importance of sea level and atmospheric inputs for shorter forecast times. In the
latter study, the ensemble ANN method for sea level forecasting known as HIDRA (HIgh-
performance Deep tidal Residual estimation method using Atmospheric data) implements
variants of temporal convolutional networks (TCN) and LSTM to encode temporal features of
atmospheric and sea-level data. The dataset was trained on a 10-year (2006–2016) time series
of atmospheric surface fields using a single member of the ECMWF atmospheric ensemble.

More recent papers such as [42,43] investigated the capability of different combina-
tions of neural network (NN) models to predict surge levels. The fundamental core of this
research revolves around selecting the best NN architecture for an ensemble approach to
outperform a simple probabilistic model. Tiggeloven et al. [43], for example, combined a
CNN-LSTM (ConvLSTM) model to capture the spatio-temporal dependencies for peak wa-
ter level observations. This research has important implications for the sensitivity analysis
of predictor variables and investigates how uncertainty in the predictions changes with in-
put or architecture complexity. Tropical cyclones can also be parametrically represented via
the joint probabilities method (JPM) [45]. However, the parametric description of complex
systems, such as large-scale, non-frontal, low-pressure tropical cyclones, is intrinsically
difficult to determine. As an alternative approach to these models, data-driven methods
such as multiple linear regression [26,46], decision tree, ANN [40,42,43,47–50], and support
vector machine [51,52] have been widely used for the prediction of storm surge heights.
In most of studies where data-driven surrogate models are trained with physics-based
simulations, such as ADCIRC [37,42,52], a major hurdle is the lack of sufficiently long
datasets for training, validating and testing the surrogate models. As [53] explains, a long
record in a storm surge reconstruction dataset is critical to capture as many storm events as
possible; thus low-probability, high-impact, extreme events could be accounted for.

This review paper is structured as follows. Section 2 highlights the general concept of
neural network ensembles and introduces several challenges and limitations. A theoretical
framework for the geometry of neural networks, transfer learning, and their application
to storm surge prediction models and different ensemble generation methods (i.e., how
to combine the predictions from multiple models) are presented in Section 3. Section 4
discusses the less-debated topic of ensemble pruning and fine-tuning, the next stage after
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ensemble generation. Section 5 introduces data preparation considerations on developing
an ensemble of neural networks, and different sources of datasets commonly used to predict
storm surge levels are presented as well. Section 6 discusses some important factors and
parameters regarding the best model selection and how the performance of the selected
ensemble is evaluated. Finally, in Section 7, a summary is presented.

2. Neural Network Ensemble

Ensemble learning refers to techniques that involve combining the predictions of
several base estimators based on classification or regression problems, aiming at improving
predictability. This approach has gained a lot of attention in recent years, and the reported
results regarding sea level rise projections have been satisfactory, such as in [7,44,54].
Ensembles have been reported to achieve higher certified robustness than single machine
learning algorithms, as discussed in Section 2. Therefore, coastal hydrodynamic modeling
techniques have been applied in ensemble with data-driven models such as deep learning
techniques, especially neural networks, to develop ocean circulation and flood simulation
models. This is due to the popularity and application of the finite element methods in
numerical hydrodynamic models and their adequate modeling resolution [55–57]. These
numerical models are conventionally applied to probabilistic coastal ocean forecast systems
such as Surge Guidance System Forecasts (ASGS) or NOAA P-Surge to accommodate
thousands of simulations [58].

Various types of neural networks are helpful to solve regression prediction problems
where the aim is to predict the output of a continuous value such as water levels. Multilayer
perceptrons (MLPs), a classical type of neural network, can reconstruct and validate atmo-
spheric forcing, such as maximum sustained wind speed [59–61]. Convolutional neural
networks (CNNs) have been developed to capture spatial and temporal dependencies for
surge-level observations on a grid-based dataset and could potentially identify and predict
regional and global patterns in storm and climate datasets [62]. They can also extract water
bodies from remote sensing images [63]. Recurrent neural networks (RNNs) could be
helpful in modeling storm behavior and time series of water levels in a sequence prediction
framework [43], which requires a longer training time (not dependent on a fixed input size)
compared to CNNs. Long short-term memory (LSTM), a subtype of RNN, is a successful
model and has been used to capture long-term temporal dependencies of meteorological
forcing [64,65] and to analyze the rapid intensification and occurrences of cyclones [66]. A
diverse set of base learners (individual learners of the ensemble), such as MLPs, CNNs,
and RNNs with appropriate training and tuning, is one empirical way to improve model
performance by generating more complex models [67].

The focus of this paper is to introduce ensemble methods that can predict storm surge
levels using a supervised ANN. Some challenges associated with using ANNs are the
inability to capture peak water levels (due to the complex and nonlinear nature of the
physical processes) [65,68], long-term processes (which are unavailable due to instrument
failures, insufficient data, or sparse observational records), and predictions of storm surges
at ungauged sites [43,69]. However, when utilized appropriately, ANN ensemble models
have the potential to provide better and faster results than finite element hydrodynamic
models. Figure 1 emphasizes the essential need for rapid prediction models, e.g., ENNs,
by presenting a benchmark for the Aransas Wildlife Refuge station in Texas during and
following Hurricane Harvey in 2017 [39]. This descriptive example compares storm surge
predictions from a rapid empirical prediction model against water level observations
from NOAA tide gauges and predictions from operational ADCIRC runs performed at
the U.S. Army Engineer Research and Development Center’s Coastal and Hydraulics
Laboratory (ERDC-CHL). Hurricane Harvey started as a modest tropical storm in August.
However, after re-forming over the Bay of Campeche, it intensified rapidly into a category
4 hurricane. Harvey made its landfall along the central Texas coast and then stalled for
four days, resulting in unprecedented rainfall, exceeding 1520 mm and resulting in a surge
reaching 1.4 m across southeastern Texas [70]. Figure 1 also highlights the rate of change
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and meteorological and oceanographic observations during the hurricane. Forecasts are
typically updated at 6 hour intervals. However, for unusual storm scenarios comparable
to Hurricane Harvey with rapid approach trajectories or extended durations within flood
plains, the expected update intervals can be reduced to 3 h or even shorter.

A thorough and extensive literature review can be found in [1,71], where machine
learning models are compared to traditional physically based models.
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Figure 1. (a) Best track positions and storm surge predictions from the empirical CHRPS model
compared to water level observations from select NOAA tide gauge and storm surge predictions
from operational ADCIRC simulations performed at CHL [39]. (b) Winds. (c) Hourly heights.
(d) Barometric pressure. (e) Air temperature. (f) Sea surface temperature in Aransas Wildlife Refuge
station, TX, for Hurricane Harvey (August 2017).

3. Theoretical Framework

3.1. Neural Network Architectures

The NN architecture consists of individual members called neurons, which are com-
bined to simulate the biological behavior of the brain to solve real-world problems [37,41].
Neural networks are not an exclusive standardized method; instead, they involve learning
algorithms and architectures that can be applied to a wide range of supervised flood and
storm surge forecasting models. These models use a set of individual independent vari-
ables, such as tidal and meteorological data points, and a real value dependent variable
that represents the phenomenon, such as storm surge levels [42,43,72]. A general scheme
is shown in Figure 2 based on a fully connected MLP representation. In the basic MLP
architecture, the input layer is connected to one or multiple hidden layers and finally to the
output layer to construct a fully connected system. The information is primarily processed
in the forward direction (feed-forward) and is put through a linear transformation using
a weights matrix [47,73]. An activation function defines how the weighted sum of the
input vector is transformed to the neurons of the next layer [47]. The choice of activation
function in both the hidden and output layers significantly influences the performance
of the NN model in learning from the training dataset and predicting storm surge events.
Empirical testing and cross-validation are essential to determine the most appropriate
activation function that can effectively capture non-linear relationships within the data.
Table 1 presents some frequently used activation functions specifically tailored for storm
surge prediction models, as well as the relationship between each activation function and
its corresponding Python library. The elementwise activation function is usually shifted
with a bias to adjust the final output matrix. Different model configurations associated
with learning processes and choices of the right dimensions of the NN structure, including
the number of hidden layers, learning rate, batch size, choice of the activation function and
loss function, etc., are referred to as hyperparameters [74–76]. Table 2 presents a summary
of the major hyperparameters in NN models. These tuning parameters pertain to the
physical components, training/optimization procedures, and regularization effect in a
neural network.

In order to train a MLP feed-forward NN model, a backpropagation NN (BPNN)
is widely used. This algorithm has been identified as one of the simplest and the most
powerful ML prediction tools suitable for flood time series and short-term storm surge
predictions [77–80]. In a BPNN algorithm, the gradient of the loss function (the vector
of the partial derivatives) is calculated through a method called chain rule to adjust each
weight and its contribution to the overall error. Further details of BPNN algorithms can be
found in Appendix A.
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Figure 2. Flow diagram of transfer learning in NN, including the reuse of a pre-trained model on a
new problem.

Table 1. Frequently used activation functions in ANN storm surge prediction models.

Activation Function Equation Python Library Applications

ReLU (Rectified Linear Unit) f (x) = max(0, x) tensorflow, keras MLP, CNN
Sigmoid f (x) = 1

1+e−x tensorflow, keras RNN
Tanh (Hyperbolic Tangent) f (x) = ex−e−x

ex+e−x tensorflow, keras RNN

Softmax f (xj) =
exj

∑K
k=1 exk

tensorflow, keras Classification, normalizing the output

Leaky ReLU f (x) = max(αx, x) tensorflow, keras MLP, CNN

Table 2. Classification of major hyperparameters in NN models .

Physical Components Training/Optimization Procedures Regularization

Number of hidden layers within
the network Defining the optimizer algorithm Degree of regularization

(lambda)

Number of hidden Neurons Configuring the learning rate Number of active neurons
(dropout rate)

Choice of key activation function Defining the main type of loss function
Choice of evaluation metric for regression problem
Number of training samples (mini-batch)
Setting the random initialization
Number of training cycles (epochs)

3.2. Transfer Learning

In some scenarios, the NN algorithms use different sources of information such as
historical tropical cyclones, topography, meteorological forcing, and other sources to make
a complex network. Training an ensemble of NN models on such a massive volume
of raw data can be computationally expensive [81]. On the other hand, when datasets
are expensive or difficult to collect or data are scarce for a specific problem (such as the
short-term analysis of hurricane tracks) [64,82], obtaining a training dataset to discern a
meaningful pattern could be problematic. Transfer learning, as shown in Figure 3, is a
functional method of tackling these problems through, i.e., building a high performance NN
model while reducing training time [83]. This is performed by obtaining a high-accuracy
and large pre-trained model from a related source and transferring the knowledge from the
trained data to the target domain in a time-saving way [84]. Surge time series data over long
time scales are usually subject to seasonal variability known as seasonality [85–87] (which
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can be simply defined using a Fourier transform and finding the seasonal frequencies).
Removing seasonality from the time series data might happen during data preparation
(which is further discussed in Section 5). Extractions of sparse time series samples from
short-term extreme impacts during dominant seasons could be limited in size, implying that
the insufficient training data are unable to represent the target efficiently [85]. Therefore,
transferring knowledge from a diverse, large-scale, and pre-trained dataset of a time series
of a similar task (with minor adjustments) could be reasonable [88] when a NN model is
adapted to forecast a new time series, thus avoiding the need for additional training [83].

Training Samples

TimestampMultivariate Timeseries

Target Domain

Labeled data fromsimilar tasks
Pre-trained network

Target Data

Figure 3. Flow diagram of transfer learning in NN involving the reuse of a pre-trained model on a
new problem.

3.3. Ensemble Generation Methods

Ensemble neural networks basically consist of [54]: (1) generating multiple base
learners (weak classifiers) and (2) combining the predictions to make a strong learner. The
notion is that various classes of neural networks are created as base learners and then
combined as a strong learner to predict the storm surge [55]. When ensemble members
employ a single-type base learning algorithm but are generated upon a different subset of
training data, they are classified as homogeneous [67,89]. Heterogeneous ensembles, on the
other hand, consist of classifiers (base learners) of different types, such as MLP, CNN, or
LSTM, which are usually trained on the same dataset [67,90]. These ensemble models are
designed such that base learners are generated in sequential or parallel format. The basic
motivation of the former is to create successive learning algorithms over iterations where
predictions of a base learner are corrected and fine-tuned, then provided to the subsequent
base learners. In the latter, the base learners are generated in parallel and independent
from each other. Predictions of the diverse base learners are then combined using ensemble
learning techniques such as bagging and stacking. These methods can potentially reduce
the inference time (the amount of time taken for a forward propagation) and increase the
overall performance [91].

Generating NN ensembles that predict storm surge heights from historical, synthetic,
or predicted hurricanes and/or are able to estimate overland flooding (or surge-induced
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maximum inundation) requires supervised algorithms to learn how to fit the input labeled
data into a continues function [89,91]. This raises the question of how to incorporate
predictions from different models. In this regard, three leading algorithms for combining
weak learners are recognized.

Bootstrap aggregating (bagging): To ensure diversity among base learners, one notion
is to train each learner on a distinct subset of the available training data. An autonomous
training process can be conducted in parallel for each learner through a popular subsam-
pling ensemble method known as bootstrap aggregation, more commonly referred to as
bagging [91,92]. This method uses randomly generated training sets (extracted from the
initial preprocessed dataset) to obtain an ensemble of predictors and subsequently trains an
integrated neural network associated with training sets (Figure 4). Bagging can consider-
ably reduce variance and is an efficient solution to overfitting [92–94] (i.e., it helps with the
generalization of a NN ensemble model to unseen data). Given a series of extreme flood-
ing events in coastal regions with noisy data obtained from the tide stations, particularly
during times when a storm surge coincides with normal high tide, the bootstrap learning
approach could effectively combine uncertainties originating from various measurements.
In a meteorological forecast of the storm’s behavior, for instance, this approach involves
random sampling of the initial training dataset through standard bagging resampling with
replacement, thus resulting in a low-variance ensemble model [95]. In a regression problem,
assuming that the model is trained on the input vector of A = ([x1, y1], [x2, y2], . . . , [xn, yn]),
to learn the mapping yi = f (xi), i = 1, . . . , n, bootstrap aggregation takes the average of
the predictions yi from a collection of bootstrap samples A∗

j , j = 1, . . . , m. Each sample
is independent and drawn uniformly among A∗

1, . . . , A∗
m with replacement; thus, all the

samples are independent and identically distributed (i.i.d) [92]. The aggregated (bagged)
prediction for each base learner is expressed by

ybs =
∑m

j=1 A∗
j (x)

m
(1)

where A∗
1(x), . . . , A∗

m(x) are the predictions from the i.i.d samples. This method limits
the variance through building different base learners of diverse datasets [96] and helps to
create a more stable and robust overall model. This can be particularly useful in situations
where the data are noisy or where there is high variability in the predicted outcome, such
as in predicting the effects of category 4 and 5 storms. Since ensemble models with low
correlations are preferred in these predictions, the sampling with replacement method
allows more difference in the training dataset and, in turn, results in greater differences
between the predictions of the base learners. It is worth mentioning that the bagging
process, depending on its number of iterations or combination with time series, could be
computationally demanding to fit, as explained in [97]. Figure 5 shows a pseudo-code
for a bagging NN ensemble algorithm; note that this is a simple example, and the actual
implementation of bagging in neural networks may vary depending on each specific case
and library. Additionally, this example does not cover how to handle the overfitting
problem that might occur on these models.

Boosting: This ensemble approach works in a forward stagewise process and learns
the predictions from the previous weak learner by adjusting the weighted data and fitting
the model to an updated training dataset in a sequential order [98] (Figure 6). In the case of
regression, the final output is usually built as the weighted average of a sequence of the
fitted base learners [96,99]. A boosting algorithm reduces the bias owing to the progressive
refinement of the base learner over time [100]. The AdaBoost algorithm, short for Adaptive
Boosting, is one of the most popular boosting algorithms [101]. In this approach, instead of
dividing a training dataset, multiple classifiers are iteratively constructed from the entire
dataset. Using the neural network ensemble model, the subsequent component highlights
the false prediction of the previous step to transform a weak learner into a strong learner. In
other words, training data inaccurately predicted by the former NN become more influential
in the training of the latter NN [92]. This learning approach could be extended to neural
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network ensembles aiming at predicting storm surges or generating a mean estimation of
residual water levels [102]. Figure 7 shows a pseudo-code based on the AdaBoost algorithm
[99]. It is important to note that the actual implementation of boosting in neural networks
may vary depending on the case and library that is implemented. Additionally, there are
other boosting algorithms, such as Gradient Boosting [103] or XGBoost [104], that have
some variations in their pseudo-code.

Original Dataset

Bootstrap 1

Bootstrap 2

Bootstrap n

Storm Surge Height
Final Prediction

Random Sampling

Training Stage

P1
P2
P3

Figure 4. A general scheme of the bagging ensemble approach.

Step 1: Initialize the ensemble
 ensemble_models = []
Step 2: Build base ensemble models 
 for i in range(num_ensemble_models):
    # Sample dataset with replacement to create a new training set
     sample_data = random.sample(original_data, len(original_data))
     # Train a model on the sampled dataset
     model = train_neural_network(sample_data)
     # Add the trained model to the ensemble
     ensemble_models.append(model)
Step 3: Make predictions
 def ensemble_predict(ensemble_models, input_data):
      predictions = []
      for model in ensemble_models:
           predictions.append(model.predict(input_data))
          # Average the predictions to get the final ensemble prediction
      ensemble_prediction = np.mean(predictions)
      return ensemble_prediction

Figure 5. A simplified pseudo-code of an ensemble learning algorithm for bagging.
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Figure 6. A general schematic of the boosting ensemble approach.

Step 1: Initialize the ensemble with a base model
 ensemble_models = [base_model]
Step 2: Expand ensemble
 for i in range(num_iterations):
      # Predictions with current ensemble
      ensemble_predictions = ensemble_predict(ensemble_models, data)
      # Calculate the error of the ensemble predictions
      error = calculate_error(ensemble_predictions, data_labels)
      # Train a new neural network to predict the error
      new_model = train_neural_network(error)
      # Add the new model to the ensemble with a weight
      ensemble_models.append((new_model, weight))
Step 3: Make predictions
 def ensemble_predict(ensemble_models, input_data):
   # Get weighted predictions   
  predictions = []
      for model, weight in ensemble_models:
   prediction = weight * model.predict(input_data)
           predictions.append(prediction)    
      # Sum the predictions to get the final ensemble prediction
      ensemble_prediction = np.sum(predictions)
      return ensemble_prediction

Figure 7. A simplified pseudo-code of an ensemble learning algorithm for boosting.

Assuming that each of n base learners make a prediction yi out of a random sample,
the weighted average of the boosted model would be [105]

ybt =
∑n

j=1 βyi(x)

n
(2)

where β is the shrinkage coefficient that controls the rate at which the boosting algorithm
reduces the error. β is similar to the learning rate hyperparameter in NN.

When using synthetic storm data to support the incomplete dataset (or data which
cannot capture an event resulting from instrument failures), it is possible that the generated
dataset could be more biased and less accurate than real-world data, such as in tide
stations [88,106]. Boosting algorithms focus on weak learners to determine which factors
are contributing to false outcomes and treat those factors carefully in testing data, decreasing
the bias error.
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Stacking: Stacked generalization, also known as stacking, is a heterogeneous ensemble
strategy proposed by Wolpert [106] to train a set of diverse weak learners in parallel with
greater predictive accuracy. Base learners (also called level 0/first-level learners) serve as
input to run a combiner or meta-learner (also called the level 1/second-level/super learner)
(Figure 8). Both the precision and diversity of base learners are crucial to the performance
of a stacking ensemble such that various base learners could construct a well-functioning
model with improved results [107].

Original Dataset

Model 1
Model 2
Model n

Training subsets Level 0base learners

P1
P2
Pn

Meta-model Storm Surge Height
Level 1Meta learner

Predictions

Final prediction

Figure 8. A general scheme of the stacking ensemble approach.

The predictive performance of a stacking ensemble is influenced by the number of
individual base learners [107,108]; however, there are only a few NN combinations available
(as explained in Section 3.3) to investigate the accuracy of combined predictions associated
with different combinations of base learners. Choosing the optimal subset of stacked base
learners is explained in [109–111]. Figure 9 shows a pseudo-code for the stacking ensemble
algorithm. It is to be noted that the provided snippet code is a basic instance, and the actual
implementation of stacking in neural networks might differ according to each specific case
and the implemented methods. Other stacking ensemble algorithms include Blending [112]
and Super Learner [113], which have some variations in this pseudo-code. Let ym

i = f (xi)
represent the mapping function applied to the model m with N = 1, . . . , i observations
in the training set N, where predictions from a set of heterogeneous weak learners (sub-
models) m = 1, 2, . . . , M are combined as new training data for the metalearner. The
stacking weights are defined as the minimum value of the Euclidean distance between the
weighted prediction and the target yi [114]

Wst = arg min

⎛
⎝ N

∑
i=1

[
yi −

M

∑
m=1

W(m). y(m)
i

]2
⎞
⎠ (3)

which leads to the final stacked ensemble prediction yst =
M
∑

m=1

(
Wst . y(m)

)
.

Here, the learning method to train the metalearner is based on the most common form
of regression analysis, linear regression. High-fidelity ocean circulation models such as
ADCIRC predict a skewed distribution of the peak storm surge height at the early stages or
with biased subsets of training datasets [42]. Stacking ensembles can help to mitigate the
effects of data bias and improve the overall performance of the model since they take into
account the strengths and weaknesses of sub-models and make robust predictions to the
biases that may be present in any individual subset.
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Step 1: Initialize the ensemble with base models
 ensemble_models = [base_model_1, base_model_2, ...]
Step 2: Generate meta-features based on base model predictions

meta_features = []
 for model in ensemble_models:
      predictions = model.predict(original_data)
      meta_features.append(predictions)
 meta_features = np.concatenate(meta_features, axis=1)
Step 3: Train a new neural network on the meta-features

meta_model = train_neural_network(meta_features, original_data_labels)
Step 4: Add the meta-model to the ensemble

ensemble_models.append(meta_model)
Step 5: Make predictions
 def ensemble_predict(ensemble_models, input_data):
      base_predictions = []
      for model in ensemble_models[:-1]:  
           base_predictions.append(model.predict(input_data))
     meta_features = np.concatenate(base_predictions, axis=1)
      ensemble_prediction = ensemble_models[-1].predict(meta_features)
      return ensemble_prediction

Figure 9. A simplified pseudo-code of ensemble learning algorithm for stacking.

An overview of six different studies is outlined in Table 3, summarizing the utilization
of ensemble approaches and evaluation metrics, along with the data collection sources
for each study. A comparative analysis is illustrated in Figure 10 based on a qualitative
reference value (rv) and a representative skill metric (sm) across the different studies
summarized in Table 3.

Relative Score =
rv − sm

rv
(4)

1 2 3 4 5 6

2

4

6

8

10

Figure 10. Qualitative assessment of studies numbered 1 to 6 from Table 2.
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Table 3. Comparative analysis of ensemble approaches, evaluation metrics, and data collection in
different studies (2015–2022).

Study
Number

Target Goal Methodology
Ensemble
Approach

Evaluation
Metric

Data Collection

1 [42]
Low-probability peak
storm surge height
due to TCs

ANN and coupled
ADCIRC + SWAN
simulations

GBDTR and
AdaBoost
Regressor

RAE, MRAE,
and RMSE

Synthetic TCs + Historical
typhoon data in the New
York metropolitan area

2 [115] Storm tide and resur-
gence

Hydrodynamic and
Hydrologic Ensemble
Forecast

Stacking (super-
ensemble)
based on
RMSE and bias
correction

RMSE,
PRE,
and COU

US mid-Atlantic and North-
east coastline wind and tide
data

3 [43] Hourly surge time se-
ries at the global scale

ANN, CNN, LSTM,
and ConvLSTM

Bootstrap
aggregation

RMSE
and CRPS

GESLA Version 2 tide station
database

4 [37] Peak storm surges from
TC track time series

C1PKNet (1D CNN,
principal component
analysis, and k-means
clustering)

Average
of ten trained
C1PKNet
model
predictions

MSE and CC NACCS synthetic TC surge
database

5 [83] Real time and accurate
storm surge

CNN and LSTM,
transfer learning – RMSE, MAE,

and CC

Storm surge level time series
in the southeastern coastal re-
gion of China

6 [116] Rapid prediction of
storm surge time series

ANN and CSTORM-
MS coupled model – RMSE and CC Synthetic storms in the Gulf

of Mexico

GBDTR = Gradient Boosted Decision Tree Regressor; RAE = relative absolute error; MRAE = mean relative
absolute error; RMSE = root-mean-square error; MAE = mean absolute error; CC = correlation coefficient;
PRE = peak relative error; COU = coverage of observation uncertainties; CRPS = continuous ranked probability score.

4. Ensemble Pruning and Fine-Tuning

An ensemble model is a systematic process of combining individual diverse base
predictive learners to produce robust and accurate predictions. The concept of an ensemble
model might be potent enough for the default parameters to shine; however, many studies,
such as [117–122], acknowledge that the accuracy could be improved further through
tuning. An intuitive approach is to alter the network’s setup in a process known as pruning.
This is followed by fine-tuning the hyperparameters of the diverse base learners through the
regular process of developing the networks. Pruning entails reducing trivial (or redundant)
parameters from an existing network systematically [123]. In the case that the model has
poor performance after pruning, the hyperparameters are fine-tuned, i.e., the parameters
of each individual model are adjusted, and then the models are retrained to restore the
best possible accuracy [121]. The result is an ensemble of relatively accurate and robust
fine-tuned models with a lower correlation between the independent predictions and
residuals [119]. A general scheme on pruning and fine-tuning steps in a neural network
ensemble is shown in Figure 11.

Pruning: The main idea of pruning networks is to reduce the complexity and energy
required to implement large trained networks and make predictions on new input data in
real time [124]. This could be a crucial stage in predicting storm surge time series [54,55],
such that accurate real-time predictions of storm surge can help emergency management
officials issue evacuation orders, take preemptive measures to protect infrastructures, and
minimize the economic impact of the storm. Typically, the initial network is large and
tends to achieve higher accuracy; generating a smaller network with comparable preci-
sion is preferable. This approach has seen a significant amount of growth over the past
decade [123]. However, a handful of studies, such as [125–127], addressed the process of
ensemble pruning, especially in predicting time series of water surface elevations during
or after storms. One major reason is that some ensemble techniques, such as the Adaboost
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algorithm, inherently mitigate overfitting by independently optimizing input parameters
to reach an optimal value. Once the accuracy of individual base learners slightly surpasses
random guessing, the final model is proven to reduce generalization error, yielding en-
hanced performance as a strong learner [123]. Furthermore, NN ensemble pruning can also
be interpreted as a special type of stacking technique (as introduced in Section 3) in which
a meta-learner is applied to improve the predictive performance of the models [128].

NNE Performance Evaluation

Selective Removal of
Weights and Connections

Re-evaluation of Pruned
Network on Validation Set

Re-training
for Improved
Accuracy ?

Yes

Creating a Representative
Subset of dataset

No Network Initialization
with Learned Weights

Training with Adjusted
Learning Rate and
Overfitting Control

Target Accuracy 
Achieved ? YesNo

Fine-tuningPruning

Figure 11. General process of pruning and fine-tuning in a neural network ensemble.

The major pruning techniques that are applicable to NN ensembles are as follows:
(1) weight decay [129], which involves adding a regularization term to the loss function
that penalizes the complexity of the ensemble; (2) an error-based approach [130], which
involves calculating the prediction errors of each network in the ensemble and removing
the networks with the highest error rates; and (3) neuron pruning [131], which involves
removing the neurons in each network of the ensemble that have the least impact on the
network’s output.

Fine-tuning: Once a pruned ensemble is created, the next common stage is to perform
fine-tuning, where the network is retrained using the pruned architecture, possibly with a
smaller learning rate and fewer training epochs. Fine-tuning can help restore some of the
accuracy lost during pruning and can lead to better generalization performance [132].

Tuning methods cannot be overlooked since less complex but fine-tuned real-time
predictive models could possibly result in accurate predictions of water level and flood
extent [118,119]. which are essential for real-time monitoring and timely warnings of poten-
tial floods. When constructing predictive models, finding a set of optimal hyperparameters
for each individual learner is a challenge. Tuning the base models (learners) individually
and tuning all the models in an ensemble simultaneously are the two fundamental methods
to determine the optimal parameters [67]. In the former approach, the hyperparameter
tuning process for each base model is often carried out as an independent procedure based
on unique sets of hyperparameters. To illustrate, different base models in an ensemble
may use different types of activation functions, optimization algorithms, regularization
techniques, or learning rates. Tuning these hyperparameters separately can help ensure
that each model is individually optimized and contributes to the overall performance of the
ensemble. This conventional approach is described in [133,134]. It is important to note that
the hyperparameter tuning process should also take into account the interactions between
the base models in the ensemble [128,133] (the later approach). The weights assigned to
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each base model have a significant impact on the overall performance of the ensemble, so
these weights may also need to be tuned in conjunction with the hyperparameters of each
individual model. Such a kind of connection is usually more compatible with probabilistic
approaches, such as Bayesian optimization [135]. This method usually involves modeling
the objective function (e.g., accuracy) as a Gaussian process [136], which can be more effi-
cient than other fine-tuning methods, such as grid search [137] and random search [138],in
some cases, as it leverages previous evaluations of the objective function to better guide the
search process [139].

5. Data Preparation

Data preparation in neural network ensembles refers to the process of preprocessing
and organizing raw data before training a group of neural networks together as an en-
semble [140]. The goal of this crucial step is to ensure that the input data are consistent,
relevant, and suitable for use by the ensemble, which can lead to better model performance
and more accurate predictions. A dataset in a traditional ANN can be represented as a
set of input–output pairs, where the input is a vector of features and the output is a scalar
target value [47]. In a regression problem such as water level prediction, a dataset of size N
would be stored as follows:

⎡
⎢⎢⎢⎣

x11 x12 . . . x1j
x21 x22 · · · x2j

...
. . .

...
xi1 · · · xij

⎤
⎥⎥⎥⎦ (5)

Each ith row is an observation in the dataset, and each jth column represents an
individual component of an observation in the dataset

(
xij ∈ R

)
. In contrast to an ANN, the

input xi in convolutional neural networks is a 2D or 3D matrix of pixel values representing
an image with dimensions (height, width, and channels), and a set of convolutional filters
are applied to detect patterns in the image [141]. However, they can also be applied to time
series data by treating the time dimension as a spatial dimension; thus, the input would be
a 1D sequence of data points and a set of 1D filters, which are applied to detect patterns
in the time series [142]. By structuring the time series as a sequence, a CNN can detect
local patterns that correspond to different storm events or meteorological conditions over
shorter time intervals [62].

5.1. Raw Input Data

Datasets are an integral part of ensemble models, and major improvements in the final
prediction highly depend on the availability of high-quality input and training datasets.
There is a diverse assortment of sources and domains that provide data on the oceans and
coasts of the United States. These data can be utilized to improve hurricane prediction
models and create strategies for coping with the impact of climate change on coastal
communities, including rising sea levels [143,144]. With current developments, researchers
can generate various independent records of tropical cyclone datasets from the measured
tide and oceanographic data (Table 4) or take advantage of hindcasting (a retrospective
analysis of past weather conditions) and reanalyzing archives (a more comprehensive
and detailed reconstruction of observations combined with numerical models), such as
high-resolution temperature, pressure, humidity, and wind datasets from a forecast system
(Table 4). Some systems are adept at computing random, short-crested waves in coastal
regions using third-generation wave models, such as WAVEWATCH III, WAM, or SWAN,
or coupling them with other finite-element-based hydrodynamic models [35,36], such as
ADCIRC. Atmospheric and tidal forcing is commonly applied to high-resolution wave
models such as ADCIRC or SWAN [37,52] to simulate the behavior of ocean waves under
different storm conditions and generate synthetic storm datasets that can be used for
assessing flood risk and improving coastal management strategies [11].
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Ensemble NN models have high variability in their input data type and are commonly
considered heterogeneous. While homogeneity could be a desirable property of the in-
put data (in terms of the features and their scales) for neural networks, a heterogeneous
dataset in a regression problem such as storm surge prediction may work better [145]
because it includes a variety of features that capture different aspects of the storm and its
effects on the surge. This helps the neural network learn more robust and diverse features
that can be better generalized to new, unseen data [92,94]. Table 4 presents brief descrip-
tions and features of the ocean datasets that have been extensively used to predict storm
surge levels and flood extents. These datasets address a wide range of features, including:
(1) storm characteristics, such as storm intensity, wind speed and direction, and track;
(2) oceanographic features, such as water temperature, salinity, and currents; (3) meteoro-
logical features, such as air pressure, temperature, and humidity; (4) geographical features,
such as the shape and slope of the coastline, the depth of the ocean floor, islands, and
shoals, and (5) historic storm surge records, including the timing, intensity, and duration of
the surge. Common points and major differences between these datasets are outlined in
Table 5.

Table 4. Description and main features of the most widely used storm and flood datasets. The symbol
� indicates that the feature is included, while the symbol � signifies that the feature is not included.

Dataset Description Features Source

North Atlantic Coast
Comprehensive
Study (NACCS)

A combined set of 1050 syn-
thetic tropical and 100 syn-
thetic extratropical storms us-
ing the coupled ADCIRC/ST-
WAVE models

� Consistent across the entire North
Atlantic Coast region.

The U.S. Army
Corps of Engineers
(USACE) [146]

� Covers storm surge, sea level rise,
and erosion
� Easily accessible
� Coarse spatial resolution
� Limited temporal scope
� Relies on certain assumptions and un-
certainties

ECMWF Re-Analysis
(ERA5)

The latest generation of atmo-
spheric reanalysis of the global
climate with detailed informa-
tion on a wide range of atmo-
spheric variables.

� High temporal and spatial resolution

Copernicus Climate
Change Service (C3S),
the joint C3S-NOAA
project [147,148]

� Covers a wide range of atmospheric
variables
� Publicly available
� Complex and may require advanced
technical skills
� Limited vertical resolution (137 pres-
sure levels)

Global Extreme Sea-
Level Analysis Version 2
(GESLA-2)

Provides 39148 years of sea
level data from 1355 station
records, with information on
extreme sea levels, including
storm surges, tidal cycles, and
rise in sea level.

� Covers a wide range of extreme sea-
level events

University of Hawaii
and the National
Oceanic and Atmo-
spheric Administra-
tion (NOAA) [2]

� Consistent across the entire globe and
different geographic locations
� Publicly available
� Gaps in the data particularly for re-
mote or sparsely populated regions.
� Relies on certain assumptions and un-
certainties
� Limited information on coastal mor-
phology and human activities
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Table 4. Cont.

Dataset Description Features Source

NOAA Global Real Time
Ocean Forecasting Sys-
tem (RTOFS global

provides nowcasts (analyses of
near-present conditions) and
forecast guidance on up to
eight days of ocean tempera-
ture and salinity, water veloc-
ity, sea surface elevation, sea ice
coverage, and sea ice thickness.

� Provides high-quality and updated
oceanographic and meteorological data
in real time

National Centers
for Environmental
Prediction (NCEP),
NOAA [4]

� Global coverage
� High spatial and temporal resolution
� Integration with other models for a
more comprehensive understanding of
storm surge
� Limited data availability for a partic-
ular area or time period
� Relies on certain assumptions and un-
certainties
� Requires significant computational
resources

Coastal Hazards System
(CHS)

National coastal storm hazard
data resource for probabilis-
tic coastal hazard assessment
(PCHA) results and statistics,
including measurements of wa-
ter level, wind speed, and wave
height

� High-quality data

Pacific Coastal and
Marine Science Cen-
ter of the United
States Geological
Survey (USGS) [149]

� High spatial resolution with detailed
information about storm surge patterns
� Provides historical data
� Limited to the coastal areas of the
United States
� Limited temporal resolution for pre-
dicting a storm surge during an ongoing
event
� Needs to be integrated with other
models to make accurate predictions

The Sea, Lake and Over-
land Surges from Hurri-
canes (SLOSH) model

Uses a combination of histori-
cal storm data, topographical
data, and numerical algorithms
to simulate the impact of a hur-
ricane on coastal areas and pre-
dict storm surge heights and
flooding potential associated
with hurricanes.

� Specifically designed and tested for
storm surge prediction

National Oceanic
and Atmospheric
Administration
(NOAA) [150]

� Can be customized to specific geo-
graphic areas
� Can be integrated with other models,
such as atmospheric and wave models
� Resource-intensive
� Limited data availability (requires in-
put data, such as atmospheric pressure
and wind speed)
� Limited spatial resolution
� Relies on certain assumptions and un-
certainties

National Water Level
Observation Network
(NWLON)

A network of tide gauges that
can be used for storm surge pre-
diction.

� Specifically designed and tested for
storm surge prediction

National Oceanic and
Atmospheric Admin-
istration’s (NOAA)
Center for Opera-
tional Oceanographic
Products and Services
(CO-OPS) [151]

� Provides historical data
� Wide geographic coverage through-
out the United States
� Limited spatial resolution
� Lack of a comprehensive model for
predicting storm surge (needs to be inte-
grated with other models)
� Limited data availability in all coastal
regions
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Table 5. General comparison between the datasets in Table 4. The symbol � indicates that the feature
is included, while the symbol � signifies that the feature is not included.

NACCS ERA5 GESLA2 RTOFS CHS SLOSH NWLON

Spatial reso-
lution 0.25 degrees 0.25 degrees 0.25 degrees 0.08 to 0.25 degrees 0.02 to 0.05 degrees 0.02 to 0.05 degrees 0.08 to 0.33 degrees

Temporal
resolution 6 h Hourly Monthly Hourly Hourly Hourly Hourly

Coverage North Atlantic
Coast region Global Global Global Coastal areas of the

United States

Atlantic and Gulf
coasts of the
United States

Coastal areas of the
United States

Availability Open access

Open access
(needs license
for real-time
products)

Open access Open access Limited access Limited access Open access

Complexity Highly complex Highly complex Complex Complex Fairly complex Complex Fairly complex

Possible
data gap

Incomplete cov-
erage or missing
data for certain
time periods

Missing or incom-
plete weather sta-
tion data in cer-
tain regions or pe-
riods

Limited or no
data on certain
sea levels and
time periods

Incomplete cover-
age or missing data
for certain time
periods

Incomplete cover-
age or missing data
for certain time
periods

Missing or incom-
plete data for cer-
tain hurricanes or
regions

Incomplete cover-
age or missing data
for certain time
periods

Integration
with other
models

� � � � � � �

5.2. Data Preprocessing and Wrangling

Data preprocessing and wrangling are critical steps in any machine learning workflow,
and they often take up a significant amount of time and effort [140,152]. The pre-mentioned
datasets may contain several types of data issues that need to be addressed and prepro-
cessed before NN algorithms can be applied effectively. Some of the most common issues
include missing values, outliers, categorical data (such as storm category, wind direction,
tidal phase, landfall location, and storm direction), correlated and irrelevant features, and
issues related to scaling and normalization [152,153]. The dataset presented in Table 6 dis-
plays a subset of hurricane Harvey’s tracking data (Figure 1) derived from the International
Best Track Archive for Climate Stewardship (IBTrACS) [154,155], which, although com-
prehensive, requires careful data processing to be suitable for ENN. Here, the maximum
sustained wind speed reported from multiple agencies for the current location needs to
be converted to a unified 10 min sustained wind speed. Then, important features must be
extracted and interpolated according to desired time steps. Missing values are handled
using interpolation or imputation techniques, such as mean imputation or predictive mod-
eling. Another dataset can be found in [156], where both recent and historical standard
meteorological and water level information is provided by the National Data Buoy Center
(NDBC). The data can be collected from the stations near an area of interest (Port Aransas,
Texas) combined with the extracted TC tracks and then fed into the ENN model.

As mentioned in Section 3.3, data-driven models are usually agnostic to physical laws
because they rely only on data. However, it is important to note that while data-driven
models do not explicitly incorporate physical laws, they can still be used to make predic-
tions about physical phenomena based on empirical data [55,56]. For example, a NN model
can be trained on data from a time series of gauge data to predict the uncertainty related to
storm surge flooding [55,57], even if the underlying physical laws are not fully understood
or modeled. Therefore, the accuracy and reliability of data are heavily influenced by the
quality of data preprocessing steps, such as cleaning and filtering the data, handling miss-
ing values, normalizing or scaling the data, and feature selection or extraction. Last but
foremost, some important issues related to the data preprocessing stage that can impact the
performance of NN ensemble are as follows:
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Table 6. Sample best-track dataset associated with hurricane Harvey (2017) in the North Atlantic
basin [154,155].

SID ISO_TIME NATURE LAT LON WMO_WIND WMO_PRES DIST2LAND LANDFALL

degrees_N degrees_E kts mb km km
2017228N14314 8/25/2017 3:00 TS 25.2924 −94.7578 243 204
2017228N14314 8/25/2017 6:00 TS 25.6 −95.1 90 966 204 170
2017228N14314 8/25/2017 9:00 TS 25.935 −95.4651 160 133
2017228N14314 8/25/2017 12:00 TS 26.3 −95.8 95 949 133 123
2017228N14314 8/25/2017 15:00 TS 26.6999 −96.0652 126 108
2017228N14314 8/25/2017 18:00 TS 27.1 −96.3 105 943 108 67
2017228N14314 8/25/2017 21:00 TS 27.4875 −96.5806 67 34
2017228N14314 8/26/2017 0:00 TS 27.8 −96.8 115 941 34 11
2017228N14314 8/26/2017 3:00 TS 28 −96.9 115 937 11 0
2017228N14314 8/26/2017 6:00 TS 28.2 −97.1 105 948 0 0
2017228N14314 8/26/2017 9:00 TS 28.4534 −97.2205 0 0

Data cleaning: Large amounts of data from various sources, such as weather sen-
sors, tide gauges, and satellite imagery, can be prone to errors, missing data, and outliers,
which can significantly affect the accuracy of the model’s predictions. Therefore, it is
essential to perform data cleaning to remove any errors or inconsistencies in the data before
feeding it into the neural network ensemble model [157]. This process may involve identi-
fying and removing outliers, handling missing data through imputation, and smoothing
noisy signals.

Feature scaling: Neural networks require all features to be on the same scale to
ensure that no feature dominates the others, where feature scaling techniques such as
normalization, standardization, or range scaling can be applied [37]. Choosing the wrong
scaling technique can lead to poor model performance. In storm surge prediction, input
features such as sea level, wind speed, and atmospheric pressure can have very different
scales and ranges. Therefore, it is important to apply feature scaling to ensure that all
features have a similar impact on the model’s predictions.

Feature selection: Ensemble models can have a large number of features, which
can lead to overfitting and poor generalization. The input features may include various
meteorological and oceanographic variables, such as wind speed, air pressure, water
temperature, tidal levels, and ocean currents. However, not all of these features may
be equally important for predicting storm surges. By removing irrelevant or redundant
features, the model can focus on learning the most important patterns in the data, leading to
more accurate predictions [83]. There are various techniques for feature selection (including
filter methods, wrapper methods, and embedded methods) which can be applied before or
during training the NN ensemble model to select the most relevant features.

Data transformation: The goal of data transformation is to convert the input data into
a format that is more suitable for analysis and modeling by the neural network ensemble.
Transforming data to fit a particular distribution can improve the performance of neural
network ensembles and lead to more accurate and robust predictions of storm surges [158].
Some common data transformation techniques include normalization, logarithmic transfor-
mation, PCA transformation, and discretization. However, it is important to choose the
right transformation technique to avoid introducing noise into the data.

Handling class imbalance: This refers to a situation where the distribution of the target
variable is heavily skewed towards one class (base model). In such cases, failing to handle
the class imbalance can lead to biased models with inaccurate predictions that perform
poorly on the minority classes [54]. Various techniques for handling class imbalances
include resampling, synthetic data generation, and cost-sensitive learning.

6. Model Selection and Evaluation

There is no optimal ensemble configuration for predicting peak surge levels under
different scenarios. It is essential to carefully evaluate the performance of different ensem-
ble models and select the one that provides the best trade-off between bias and variance,
accuracy, diversity, stability, generalization, and computational cost [67,91,92,159]. The
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final stage would evaluate and validate the performance of the selected ensemble model
using appropriate evaluation metrics and statistical tests, such as the mean absolute er-
ror (MAE) [21,83,160], root-mean-squared error (RMSE) [106,161], correlation coefficient
(CC) [49,83,106,161], and coefficient of determination (R-squared) [42,43,161–163]. The
following section covers some of the fundamental concepts that are considered when
evaluating a neural network ensemble for storm surge prediction.

6.1. Bias–Variance Tradeoff

The process of designing a NN ensemble, which involves combining multiple mod-
els or algorithms, can be optimized by finding the best balance between bias and vari-
ance [92,164]. Bias refers to the extent to which a model consistently misses the mark
in its predictions, while variance refers to the extent to which a model’s predictions are
sensitive to small perturbations in the training data. A good ensemble should strike a
balance between these two factors in order to minimize the overall prediction error [92]. To
achieve this balance, the optimal choice of weights for each base learner in the ensemble
needs to be determined. The weights are chosen such that they minimize the prediction
error of the ensemble. By doing so, the ensemble becomes more robust to different types
of data and can achieve better overall performance [83]. The bias-variance decomposition
of the mean squared error (MSE) is actually a method for analyzing the behavior of a
stochastic model [92,164,165]. Each individual base learner in the ensemble may have
some degree of stochasticity or variability in its predictions due to factors such as the
initialization of the weights or the selection of the training data. By decomposing the MSE
(between the estimated output variable y and the estimator f (x)) into its bias and variance
components, it is possible to gain insight into the sources of error in the model [83,165]. For
a given sample dataset x, the error made by the estimator f (x) is defined as ε = f(x) − y;
hence, the MSE of the estimator is defined as the expected value of the squared error,
i.e., MSE( f(x)) = E[ε2]. For every unseen sample x, the MSE can be decomposed as

E[( f(x) − y)2] = Bias2( f(x)) + Var( f(x)) + Var(ε) (6)

The last term in Equation (6) contains an irreducible error that is inherent in the
relationship between the input and output and cannot be reduced by any model. This
error arises from the fact that the input may not contain enough information to perfectly
predict the output or that there may be random variations in the data that cannot be
modeled [133,166]. Therefore, an ensemble model cannot reduce irreducible error, but it
can help improve the overall performance of the model by reducing the bias and variance.

6.2. Ensemble Diversity

Ensemble diversity can be particularly important to ensure that the ensemble is able
to accurately capture the complex dynamics of the ocean and the atmosphere that influence
storm surge. By using different training data or model architectures, the ensemble can
better account for different sources of uncertainty in the data and avoid overfitting to any
particular aspect of the data [83,165,166]. As discussed in Section 3.3, there are several tech-
niques that can be used to promote ensemble diversity, including bagging, boosting, and
stacking. One commonly used metric to evaluate ensemble diversity is cross-entropy. Cross-
entropy measures the difference between the predictions of each individual model and the
predictions of the ensemble [164,166,167]. A lower cross-entropy value indicates that the
ensemble is more diverse. Another metric to evaluate ensemble diversity is disagreement,
which measures the degree of disagreement between the predictions of each individual
model [168,169]. A higher disagreement value indicates that the ensemble is more diverse.
Correlation is another metric that can be used to evaluate ensemble diversity [83,106]. It
measures the degree of similarity between the predictions of each individual model. A
lower correlation value indicates that the ensemble is more diverse. When selecting the
final model for a neural network ensemble, a good approach is to choose the model that
achieves good individual performance while contributing to higher ensemble diversity.
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This can be done by evaluating each model’s performance on a validation set and then
evaluating the ensemble’s performance on a separate test set. The final model should
be chosen based on a combination of good individual performance and high ensemble
diversity, as measured by the chosen diversity metric.

6.3. Probabilistic Performance

The predictive ability of probabilistic models can be assessed by probabilistic per-
formance and skill metrics, which can also be used to select the final model in a neural
network ensemble considering ensemble diversity in storm surge prediction [43]. The most
commonly used probabilistic performance metrics are mentioned below. These metrics
can provide a more comprehensive evaluation of the performance of the models in the
ensemble, including their ability to accurately capture the uncertainty in the predictions.
Models that have good individual performance and contribute to higher ensemble diversity
should be chosen.

The Brier skill score (BSS) measures the skill of a forecast by comparing the predictions
with a reference forecast, such as a climatological forecast or a persistence forecast. The
BSS ranges from −∞ to 1, with a score of 1 indicating a perfect forecast and a score of
0 indicating no skill beyond the reference forecast. BSS can be used to evaluate the probabil-
ity of a surge or total water level exceeding a given threshold and thus yields the accuracy
of the system’s probabilistic forecasts [7,170].

The mean square skill score (MSSS) measures the improvement in the mean squared
error (MSE) of the forecast system relative to a reference forecast, such as a climatological
forecast or a persistence forecast. The MSSS ranges from −∞ to 1, with a score of 1
indicating perfect skill and a score of 0 indicating no improvement beyond the reference
forecast. When the system generates a probability distribution for the water level, the MSSS
can measure the improvement in the mean squared error of this distribution over a given
time period compared to the reference forecast [171,172]. The MSSS can be a useful metric
when the focus is on the mean of the forecast distribution rather than the full distribution
itself. However, it does not provide information on the reliability and resolution of the
forecast, which are important for assessing the quality of probabilistic forecasts.

The continuous ranked probability score (CRPS) is used to evaluate the accuracy of
probabilistic forecasts. It measures the distance between the cumulative distribution func-
tion (CDF) of the forecast probability distribution and the CDF of the observed outcomes.
The lower the CRPS, the better the forecast. When the system generates a probability
distribution for the water level, the CRPS can measure the accuracy of this distribution
over a given time period by comparing it to the observed water levels. The CRPS takes into
account both the reliability and sharpness of the forecast probability distribution, which
makes it a more informative metric than the Brier skill score in some cases [148].

7. Summary

The present paper focuses on various approaches that can predict storm surge levels
using ensemble neural networks. The challenges and limitations of accurately predicting
peak water levels, which are often caused by complex interactions between ocean currents,
winds, and atmospheric pressure systems, are also emphasized. Despite the limitations,
supervised neural networks, specifically those utilizing the backpropagation technique,
have proven to be a powerful tool for predicting storm surge levels, particularly for short-
term forecasting. However, the accuracy of BPNN models can be limited by overfitting,
which occurs when the model becomes too complex and fits the training data too closely. To
address the limitations of single BPNN models, ensemble methods that combine multiple
neural network models to improve accuracy and reduce overfitting are preferred. Ensemble
methods involve generating multiple base learners (weak classifiers) and combining their
predictions to create a strong learner. There are three leading meta-algorithms for combining
weak learners: bootstrap aggregating (bagging), boosting, and sitting. Bagging involves
generating multiple training datasets by randomly sampling from the original dataset
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with replacement, then training each base learner on a different dataset. Boosting involves
iteratively training weak classifiers, with each subsequent model focusing on the samples
that were misclassified by the previous model. Stacking involves training a meta-learner
that combines the predictions of multiple base learners. As the networks grow larger,
the importance of pruning and fine-tuning, as well as data preparation and wrangling,
become unquestionable. Data preparation involves preprocessing and organizing raw
data before training a group of neural networks together as an ensemble. The goal of this
crucial step is to ensure that the input data are consistent, relevant, and suitable for use by
the ensemble. The paper highlights different sources of input data type for storm surge
prediction and the need for careful data preprocessing and wrangling to ensure accurate
predictions. However, there is no one-size-fits-all approach for creating an ensemble of
neural networks for predicting storm surge levels. Instead, it is essential to carefully
evaluate the performance of different ensemble models and select the one that provides the
best trade-off between bias and variance, accuracy, diversity, stability, generalization, and
computational cost. Overall, the paper provides valuable insights into the use of ensemble
methods for storm surge flood modeling, which can contribute to better predictions and
preparedness for extreme weather events.
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Appendix A. Implementation of Backward Propagation of Errors
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Figure A1. Simplified BP algorithm in a 1-layer NN with 2D input.

• Defining the sigmoid activation function and its derivative

1 def activation(x):

2 return 1 / (1 + np.exp(-x))

3 def activation_derivative(x):

4 return activation(x) * (1 - activation(x))

• Defining the forward propagation function

1 def for ward_propagation(x, weights , biases):

2 a = [x]

3 z = []

4 for l in range(1, len(weights) + 1):
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5 z.append(np.dot(weights[l], a[l-1]) + biases[l])

6 a.append(activation(z[l-1]))

7 return a, z

• Defining the backward propagation function

1 def backward_propagation(x, y, a, z, weights , biases ,

learnin g_rate):

2 L = len(weights)

3 delta = [None] * (L + 1)

4 gradients = {}

• Running the error propagation using the chain rule ∂L
∂w = ∂L

∂h
∂h
∂z

∂z
∂w , h = f(z), and Loss

Function L = 1
n

n
∑

j=1
(hj − yj)

1 # Compute the output layer delta

2 delta[L] = (a[L] - y) * activation_derivative(z[L-1])

3 # Compute deltas for the hidden layers

4 for l in range(L-1, 0, -1):

5 delta[l] = np.dot(weights[l+1].T, delta[l+1]) *

activation_derivative(z[l-1])

6 # Compute gradients for weights and biases

7 for l in range(1, L+1):

8 gradients[f’dW{l}’] = np.dot(delta[l], a[l-1].T)

9 gradients[f’db{l}’] = delta[l]
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Abstract: A tropical cyclone dataset is an important data source for tropical cyclone disaster research,
and the evaluation of its applicability is a necessary prerequisite. The Global Synthetic Tropical
Cyclone Hazard (GSTCH) dataset is a dataset of global tropical cyclone activity for 10,000 years
from 2018, and has become accepted as a major data source for the study of global tropical cyclone
hazards. On the basis of the authoritative Tropical Cyclone Best Track (TCBT) dataset proposed
by the China Meteorological Administration, this study evaluated the applicability of the GSTCH
dataset in relation to two regions: the Northwest Pacific and China’s coastal provinces. For the
Northwest Pacific, the results show no significant differences in the means and standard deviations
of landfall wind speed, landfall pressure, and annual occurrence number between the two datasets at
the 95% confidence level. They also show the cumulative distributions of central minimum pressure
and central maximum wind speed along the track passed the Kolmogorov–Smirnov (K-S) test at
the 95% confidence level, thereby verifying that the GSTCH dataset is consistent with the TCBT
dataset at sea-area scale. For China’s coastal provinces, the results show that the means or standard
deviations of tropical cyclone characteristics between the two datasets were not significantly different
in provinces other than Guangdong and Hainan, and further analysis revealed that the cumulative
distributions of the tropical cyclone characteristics in Guangdong and Hainan provinces passed the
K-S test at the 95% confidence level, thereby verifying that the GSTCH dataset is consistent with the
TCBT dataset at province scale. The applicability evaluation revealed that no significant differences
exist between most of the tropical cyclone characteristics in the TCBT and GSTCH datasets, and that
the GSTCH dataset is an available and reliable data source for tropical cyclone hazard studies in
China’s coastal areas.

Keywords: Global Synthetic Tropical Cyclone Hazard (GSTCH) dataset; Tropical Cyclone Best Track
(TCBT) dataset; tropical cyclone; applicability evaluation; coastal China

1. Introduction

Tropical cyclones (TCs), also referred to as typhoons, are one of the most severe
types of natural disasters [1], and usually manifest as strong destructive winds and heavy
precipitation that can severely impact people, economies and the environment in coastal
areas when they make landfall [2,3]. The damage caused by TCs includes wind-induced
damage and storm surges risk due to rising water levels [4]. Storm surges, which are the
main secondary disaster hazard triggered by TCs, present high disaster intensity [5], and are
often the greatest threat to life and property [6,7]. With rising sea levels and rapid economic
development in coastal areas, the losses caused by TCs have dramatically increased and
will pose an increasing and extreme hazard around the globe [8,9]. It is therefore crucial to
study TC hazards for TC risk assessments and corresponding TC risk management.
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A reliable TC dataset is of great importance both for TC hazards research and for
sustainable development in coastal areas [10–12]. Currently, the most commonly used
TC dataset resources include the China Meteorological Administration (CMA) dataset,
the Japan Meteorology Agency (JMA) dataset, and the Joint Typhoon Warning Center
(JTWC) dataset [13]. According to TC records, approximately 90 (±10) TCs per year are
formed globally [14], of which 16, on average, make landfall with wind speeds greater
than 33 m/s [15]. It is thus clear that the amount of TC data available for regional hazard
research is limited, and that this problem must be addressed by the establishment of
suitable datasets.

To expand the TC data resource, many studies have used historical tropical cyclone
data (HTCD) to generate a large amount of synthetic tropical cyclone data (STCD) using
various methods. One method is to create STCD through statistical resampling and the
modeling of historical TC tracks and intensities of meteorological datasets from climate
patterns [16–21]. This method, which has been explored widely, has been used by Bloemen-
daal et al. to create the Global Synthetic Tropical Cyclone Hazard (GSTCH) dataset [2]. The
GSTCH dataset, which includes information on TC track, intensity, and size, is particularly
useful for TC risk assessment because it serves as input for storm surge and wave impact
modeling and has characteristics that are important for wind damage assessment [22]. At
the same time, the dataset length of 10,000 years enables it to perform proper statistical
analysis of the return periods of various landfalling TCs.

Before a dataset can be applied to a specific area and a specific research purpose, its
availability and reliability must be evaluated. Many previous studies have shown that
the mean, standard deviation, frequency distribution and cumulative distribution of the
TC features can be used to assess the consistency of STCD with HTCD. Bloemendaal
et al. compared the means and standard deviations of TC features, believing that a mean
value within the standard deviation verified the consistency of STCD with HTCD [2].
Vickery et al. performed a T-test on the mean and an F-test on the standard deviation of
each TC feature to evaluate whether statistically significant differences existed between
STCD and HTCD. Then, for those TC features whose mean or standard deviation values
did not pass the test, a Chi-squared test was used to examine the frequency distribution [16].
Similarly, Nakajo et al. [23] and Lee et al. [24] also compared the frequency distribution and
the cumulative distribution of TC features in STCD and HTCD to evaluate the performance
of STCD. Additionally, the degree of consistency between STCD and HTCD was analyzed
for specific study areas by applying the path assessment method to the paths of TCs in both
datasets [2,13,23,24]. In summary, the mean, standard deviation, frequency distribution,
cumulative distribution, and corresponding hypothesis tests have primarily been used to
evaluate the degree of consistency between STCD and HTCD.

Because of the global coverage and the large number of TCs, the GSTCH dataset is
also a crucial data source for TC hazard assessment and TC risk management in coastal
China. The objective of this study is to evaluate the applicability of the GSTCH dataset
for further research and application in coastal China. The standard dataset for the eval-
uation is the Tropical Cyclone Best Track (TCBT) dataset proposed by the CMA [25,26].
The TC characteristics used include the central maximum wind speed along the track,
central minimum pressure along the track, landfall wind speed, landfall pressure, annual
occurrence number, and annual landfall number. The Northwest Pacific is the sea area with
the highest frequency, strongest intensity, and greatest impact on China in terms of global
TCs [27,28]. Over one third of global TCs occurred in this area, and approximately nine
TCs made landfall in the coastal areas of China per year from 1950 to 2019 [29]. Therefore,
the applicability evaluation of the GSTCH dataset in this study is performed in relation to
two regions—the Northwest Pacific and the provinces of coastal China.
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2. Materials and Methods

2.1. The GSTCH Dataset

The GSTCH dataset on TC characteristics on a global scale was presented by Bloemen-
daal et al. using a newly developed synthetic resampling algorithm called the Synthetic
Tropical cyclOne geneRation Model (STORM). TC characteristics in the GSTCH dataset
comprise the time of occurrence (year and month), order of occurrence, longitude, latitude,
central minimum pressure, central maximum wind speed, radius of maximum wind speed,
whether landfall occurred and distance from land. These characteristics were extracted
from the global historical dataset International Best Track Archive for Climate Stewardship
(IBTrACS) for the time period 1980–2018 (38 years of data), and were statistically extended
to 10,000 years of TC activity under present climate conditions [2,30]. The IBTrACS dataset
was developed under the auspices of the World Data Center for Meteorology of the Na-
tional Oceanic and Atmospheric Administration by collecting and integrating TC datasets
from 12 national meteorological offices that included those of China, Japan, the United
States, and Australia [31,32]. Bloemendaal et al. validated the performance of the GSTCH
dataset by demonstrating that the mean values of various TC characteristics are within one
standard deviation from those found in the IBTrACS dataset and showed that this dataset
can be used by anyone interested in studying the different aspects of TCs and the wind and
storm surge hazards they trigger [2,22].

2.2. The TCBT Dataset

The TCBT dataset is a multi-source, multi-time-scale, multi-spatial-scale, and com-
prehensive TC database, and includes relevant features of all TCs that passed across the
Northwest Pacific during 1949–2021, e.g., the time of occurrence (year, month, day, and
hour), central longitude and latitude, central minimum pressure, and central maximum
wind speed of each TC [26,29]. The CMA overseen the compilation and release of the TCBT
dataset, and it has developed strict procedures and rules to ensure that the dataset incorpo-
rates long temporal coverage, wide spatial coverage, various observational elements, and
high accuracy [33]. The TCBT dataset has been passed through rigorous quality control and
has always been considered to be the most authoritative TC dataset for the coastal areas of
China [9]. Therefore, this study selects the TCBT dataset as the benchmark to evaluate the
GSTCH dataset’s applicability in coastal China.

This study considered a 32 year (1990–2021) TCBT dataset. For comparability, 10 dif-
ferent sets of 32 year periods were selected randomly from the GSTCH dataset, and the
statistical averages of the evaluation indicators of those 10 sets were taken as the evaluation
indicators of TC characteristics. Finally, for the Northwest Pacific, 7122 TCs were selected
from the GSTCH dataset, and 802 TCs were selected from the TCBT dataset. For coastal
China provinces, 2230 TCs were selected from the GSTCH dataset, and 234 TCs were
selected from the TCBT dataset.

2.3. TC Characteristics for Evaluation

TC intensity (peak intensity and landfall intensity), annual occurrence frequency, and
annual landfall frequency are key TC characteristics [23]. The central maximum wind
speed along the track and the central minimum pressure along the track represent the peak
intensity of a TC. The landfall wind speed and landfall pressure represent the intensity
of a TC when it makes landfall. The annual occurrence and landfall numbers represent
the annual occurrence frequency and annual landfall frequency, respectively. Therefore,
this study considered the central maximum wind speed along the track, central minimum
pressure along the track, landfall wind speed, landfall pressure, annual occurrence number,
and annual landfall number as typical TC characteristics for evaluation to verify the degree
of consistency between the GSTCH and TCBT datasets.
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2.4. Indicators for Evaluation

The degree of consistency between the GSTCH and TCBT datasets was evaluated
using the mean, standard deviation, frequency distribution, cumulative distribution, and
the corresponding T-test, F-test, Chi-squared test, and Kolmogorov–Smirnov (K-S) test. The
mean and standard deviation reflect the average level and fluctuation of the TC character-
istics of the GSTCH and TCBT datasets. The frequency distribution and the cumulative
distribution indicate the overall distribution of the TC characteristics. T-test, F-test, Chi-
squared test, and K-S test can determine whether statistically significant differences exist
between the mean, standard deviation, frequency distribution, and cumulative distribution
of the TC characteristics in the GSTCH and TCBT datasets.

The formulas for the calculation of the mean, standard deviation, T-test statistic, and
F-test statistic [16] are as follows:

X1 =
∑n1

i=1 Xi1

n1
(1)

X2 =
∑n2

i=1 Xi2

n2
(2)
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√
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(
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)2

n1 − 1
(3)
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√
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2
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(
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+ 1
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f =
S2

1
S2

2
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where X1 and X2 are the means of the TC characteristics in the TCBT dataset and the
GSTCH dataset, respectively; S1 and S2 are the standard deviations of the TC characteristics
in the TCBT dataset and the GSTCH dataset, respectively; t is the T-test statistic; f is the
F-test statistic; Xi1 and Xi2 are the values of the TC characteristics in the TCBT dataset
and the GSTCH dataset respectively, read directly from the two datasets; and n1 and
n2 are the numbers of TC characteristics included in the TCBT dataset and the GSTCH
dataset, respectively.

The formulas for the calculation of the frequency distribution and the Chi-squared test
statistic [34] are as follows:

P1 =
fi1
n1

(i = 1, 2, . . . . . . , m) (7)

P2 =
fi2
n2

(i = 1, 2, . . . . . . , m) (8)

X2
d f =

m

∑
i=1

( fi1 − fi2)
2

fi1
(9)

where P1 and P2 are the frequency distributions of the TC characteristics in the TCBT
dataset and the GSTCH dataset, respectively; X2

d f is the Chi-squared test statistic; fi1 and
fi2 are the frequencies of the different values of TC characteristics falling into each group i
(the groups are incremented according to the index i) in the TCBT dataset and the GSTCH
dataset, respectively; and m is the statistical grouping of the values of TC characteristics
in the TCBT and GSTCH datasets into m groups. The m value is determined by the group
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spacings of the frequency distribution histograms and the magnitude of the values of TC
characteristics. The group spacings of the frequency distribution histograms of central
maximum wind speed along the track and landfall wind speed refer to the notice of the
CMA: “About the Implementation of the National Standard of Tropical Cyclone Rating”
GB/T 19201-2006 [35], and the group spacings of the frequency distribution histograms
of the central minimum pressure along the track and landfall pressure refer to the Saffir–
Simpson Hurricane Wind Scale [36]. The maximum and minimum values of the abscissa of
the frequency distribution histogram are determined from the maximum and minimum
values of the TC characteristics in the TCBT and GSTCH datasets.

The formulas for the calculation of the cumulative distribution and the K-S test statis-
tics [37] are as follows:

F1(Xi1) = P{Xi1 ≤ X}(i = 1, 2, . . . . . . , m) (10)

F2(Xi2) = P{Xi2 ≤ X}(i = 1, 2, . . . . . . , m) (11)

D = sup|F1(Xi1)− F2(Xi2)| (12)

where F1(Xi1) and F2(Xi2) are the cumulative distributions of the TC characteristics in
the TCBT dataset and the GSTCH dataset, respectively. On the basis of the grouping of
the values of the TC characteristics in the TCBT and GSTCH datasets into m groups, the
cumulative distribution is the probability that Xi1 is less than X in the TCBT dataset, and
that the Xi2 is less than X in the GSTCH dataset. The groupings and maximum values
of the TC characteristics determine the X. The groupings of the central maximum wind
speed along the track and landfall wind speed are referred to in the notice of the CMA:
“About the Implementation of the National Standard of Tropical Cyclone Rating” GB/T
19201-2006 [35], and the groupings of the central minimum pressure along the track and
landfall pressure refer to the Saffir–Simpson Hurricane Wind Scale [36]. In Equation (12),
D is the K-S test statistic, and sup represents the upper-bound function. If set A of real
numbers exists such that no number in A exceeds a minimum real number M, then M is the
upper bound of set A. According to the definition of the upper bound function, the K-S test
statistic in this study took the absolute value of the maximum difference of the cumulative
distributions of the TCBT and GSTCH datasets.

The outcomes of the T-test, F-test, Chi-squared test, and K-S test are statistical hypoth-
esis tests. Their original hypotheses are that the means, standard deviations, frequency
distributions, and cumulative distributions of the TC characteristics in the GSTCH and
TCBT datasets are not statistically significantly different. In this study, the confidence level
of the hypothesis test is set at 95% (α = 1 − 95% = 0.05), indicating a 95% probability that
the original hypothesis is correct. SPSS software (version: v28.0.1.1) is used to obtain the
T-test statistics (and the corresponding p values), F-test statistics (and the corresponding p
values), and Chi-squared test statistics (and the corresponding p values). PyCharm software
(version: 2022.1.4) is used to obtain the K-S test statistics and the corresponding p values.
Comparison of p value and α value can reveal whether the original hypotheses of the T-test,
F-test, Chi-squared test, and K-S test are valid. The relationship between the p value and α

value is shown in Table 1.

Table 1. Relationship between the p value and α value.

p-Value Whether the Original Hypothesis Is Established Statistical Significance

p > α Established
The evaluation indicators of TC characteristics in the TCBT

dataset and the GSTCH dataset do not show a
significant difference

p < α Not Established The evaluation indicators of TC characteristics in the TCBT
dataset and the GSTCH dataset show a significant difference
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2.5. Specific Process for Evaluation

The applicability evaluation of the GSTCH dataset in coastal China focuses on two re-
gions: the Northwest Pacific and China’s coastal provinces. The specific steps of the
research framework are shown in Figure 1. First, the means and standard deviations of the
TC characteristics in the GSTCH and TCBT datasets are calculated for the two study regions.
Then, T-tests and F-tests with 95% confidence intervals are performed on the means and
standard deviations, respectively. If the means are within the standard deviations of each
other, and if the means and standard deviations pass the T-tests and the F-tests, respectively,
the consistency between the GSTCH and TCBT datasets is considered verified for the
coastal areas of China. If the means of the TC characteristics in the GSTCH and TCBT
datasets are not within the standard deviations, and if the means or standard deviations
of the TC features are statistically significantly different, further analysis is performed
on their frequency and cumulative distributions. If the frequency distributions of the TC
characteristics pass the Chi-squared test at the 95% confidence level or if the cumulative
distributions pass the K-S test at the 95% confidence level, the consistency between the
GSTCH and TCBT datasets is considered verified for the coastal areas of China.

Figure 1. The research framework of this study.

3. Results

3.1. The Northwest Pacific
3.1.1. Means and Standard Deviations

Table 2 and Figure 2 compare the means and standard deviations of the central
maximum wind speed along the track, landfall wind speed, central minimum pressure
along the track, landfall pressure, annual occurrence number, and annual landfall number
of the TCs in the Northwest Pacific in the GSTCH and TCBT datasets. The differences
between the means and the standard deviations of the landfall pressure, landfall wind
speed, and annual occurrence number are small. The mean of the central minimum pressure
along the track in the GSTCH dataset is lower than that in the TCBT dataset, and the mean
of the central maximum wind speed along the track in the GSTCH dataset is higher than
that in the TCBT dataset. Nevertheless, all of these fall within the standard deviation of
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each other. Except for the annual landfall number, the means of TC characteristics in the
GSTCH and TCBT datasets are within the standard deviations of each other. In summary,
the GSTCH dataset successfully reproduces the intensity and annual occurrence frequency
of TCs in the Northwest Pacific.

Table 2. Means and standard deviations of TC characteristics in the Northwest Pacific.

TC Characteristics Dataset Mean t P (t)
Standard
Deviation

f P (f )

Central maximum wind speed
along the track (m/s)

TCBT 37.315 −0.049 0.961
14.149

33.329 0GSTCH 42.805 13.801

Landfall wind speed (m/s) TCBT 31.232
0.312 0.755

10.757
6.732 0.1GSTCH 30.972 9.135

Central minimum pressure
along the track (hpa)

TCBT 964.041
5.075 0.001

26.363
0.754 0.385GSTCH 956.491 28.335

Landfall pressure (hpa) TCBT 974.518
1.523 0.128

18.691
1.545 0.214GSTCH 972.096 19.03

Annual occurrence number
(item)

TCBT 25.063
1.612 0.112

4.472
0.256 0.614GSTCH 22.256 4.424

Annual landfall number (item)
TCBT 7 −8.317 0

2
1.89 0.174GSTCH 11.335 3.135

Figure 2. Means and standard deviations of Tropical cyclone (TC) characteristics. (A) Central
maximum wind speed along the track, and Landfall wind speed. (B) Central minimum pressure
along the track, and Landfall pressure. (C) Annual occurrence number, and Annual landfall number)
in the Northwest Pacific.
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The T-tests and F-tests were performed to determine whether the means and standard
deviations of the TC characteristics in the GSTCH and TCBT datasets are equivalent. As
shown in Table 2, the means of the central minimum pressure along the track and the
annual landfall number failed the T-test at the 95% confidence level, and the standard
deviation of the central maximum wind speed along the track failed the F-test at the 95%
confidence level. Therefore, the frequency distributions and cumulative distributions of the
central maximum wind speed along the track, central minimum pressure along the track,
and annual landfall number of the TCs in the GSTCH and TCBT datasets were further
compared and analyzed.

3.1.2. Frequency Distributions and Cumulative Distributions

Figure 3 shows that the frequency distributions of the central maximum wind speed
along the track, central minimum pressure along the track, and annual landfall number
of the TCs in the GSTCH and TCBT datasets are not in good agreement. Comparison of
the cumulative distributions of the TC characteristics is another way to verify the degree
of consistency between the GSTCH and TCBT datasets. The cumulative distributions of
the central maximum wind speed and the central minimum pressure along the track of the
GSTCH and TCBT datasets are in good agreement. However, the cumulative distributions
of the annual landfall number are less consistent (Figure 3). The Chi-squared test results
on the frequency distributions and the K-S test results on the cumulative distributions are
listed in Table 3. The cumulative distributions of the central maximum wind speed along
the track and the central minimum pressure along the track in the GSTCH dataset pass the
K-S test at the 95% confidence level.

Figure 3. Frequency and cumulative distributions of the central maximum wind speed along the
track (A), the annual landfall number (B), and the central minimum pressure along the track (C) in
the Northwest Pacific (broken lines represent GSTCH data; bar charts represent TCBT data).
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Table 3. Results of the Chi-squared test and Kolmogorov–Smirnov (K-S) test in the Northwest Pacific.

TC Characteristics X2
df P (X2

df) D P (D)

Central maximum wind speed along the track (m/s) 18.41 0.001 0.1254 0.0789
Central minimum pressure along the track (hpa) 57.645 0 0.1237 0.0946

Annual landfall number (item) 51.463 0 0.5625 5.223 × 10−5

In sum, the applicability evaluation results in the Northwest Pacific reveal that there
is no statistically significant difference between the means and standard deviations of
the landfall wind speed, landfall pressure, and annual occurrence number of the GSTCH
dataset and the TCBT dataset at the 95% confidence level. The cumulative distributions of
the central minimum pressure and central maximum wind speed along the track pass the
K-S test at the 95% confidence level, verifying that the GSTCH dataset is consistent with
the TCBT dataset at the sea-area scale.

3.2. China’s Coastal Provinces
3.2.1. Means and Standard Deviations

Figure 4 shows the number of TCs in the TCBT and GSTCH datasets that made landfall
in each province. The study period of the TCBT and GSTCH datasets is 32 years, with the
former ranging from 1990 to 2021 and the latter being the ensemble average of 10 different
sets of 32 year periods which are selected at random from the GSTCH dataset.

Figure 4. Number of TCs that made landfall in China’s coastal provinces (item).

Figure 4 clearly shows that the trend of the number of TCs making landfall in each
province in the GSTCH and TCBT datasets is broadly consistent. The landfalling TCs
are concentrated mainly in Fujian, Guangdong, Hainan, Taiwan, and Zhejiang provinces,
accounting for approximately 97% of the total number of TCs making landfall along the
coast of China. In descending order, the provinces with the highest frequency of landfalling
TCs are Guangdong, Taiwan, Hainan, Zhejiang, and Fujian. The TCs making landfall in
the provinces of Guangdong, Taiwan, and Hainan, that are in the coastal area of southern
China, account for 60.4% of the total number of landfalling TCs annually. The TCs making
landfall in the provinces of Zhejiang and Fujian, in the coastal area of eastern China, account
for 37.5% of the total number of landfalling TCs annually.

Overall, the GSTCH dataset underestimates the number of TCs that make landfall
in Guangdong, Hainan and Taiwan provinces, and overestimates the number of TCs that
make landfall in Fujian and Zhejiang provinces. The TCBT dataset only includes TC data
for a period of 32 years, and some provinces have very few TCs, making it ineffective when
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comparing the number of TC landfalls within each province (Figure 4). Therefore, further
analysis of the annual number of landfalling TCs in the GSTCH and TCBT datasets was
performed in the provinces of Fujian, Guangdong, Hainan, Taiwan, and Zhejiang. On the
basis of the TCs that made landfall in the above provinces in the GSTCH and TCBT datasets,
the means and standard deviations of the TC characteristics relevant to each province are
listed in Table 4 and illustrated in Figure 5.

Table 4. Means and standard deviations of TC characteristics in China’s coastal provinces.

Province TC Characteristics Dataset Mean t P (t)
Standard
Deviation

f P (f )

Guangdong

Central maximum wind speed
along the track (m/s)

TCBT 35.089 −0.935 0.352
11.785

0.667 0.416GSTCH 37.008 9.958
Central minimum pressure

along the track (hpa)
TCBT 968.089

2.484 0.014
20.886

0.574 0.45GSTCH 958.223 22.657

Landfall wind speed (m/s) TCBT 29.494
1.154 0.251

9.808
6.476 0.012GSTCH 27.608 7.002

Landfall pressure(hpa) TCBT 977.063 −0.476 0.635
16.337

0.48 0.51GSTCH 978.351 11.403

Annual landfall number (item) TCBT 2.469
3.183 0.002

1.502
6.221 0.015GSTCH 1.469 0.95

Hainan

Central maximum wind speed
along the track (m/s)

TCBT 32.271
0.653 0.516

14.822
2.64 0.108GSTCH 30.277 9.765

Central minimum pressure
along the track (hpa)

TCBT 971.646
0.292 0.771

26.319
0.65 0.422GSTCH 970.007 20.127

Landfall wind speed (m/s) TCBT 26.583
0.991 0.325

9.9
8.646 0.004GSTCH 24.643 5.143

Landfall pressure(hpa) TCBT 980.896 −0.129 0.898
16.782

0.64 0.45GSTCH 981.327 9.249

Annual landfall number (item) TCBT 1.5
2.143 0.036

1.016
1.117 0.295GSTCH 0.967 0.967

Taiwan

Central maximum wind speed
along the track (m/s)

TCBT 42.053
0.468 0.641

14.043
1.913 0.17GSTCH 40.901 11.157

Central minimum pressure
along the track (hpa)

TCBT 955.667
1.629 0.106

25.738
0.572 0.451GSTCH 947.48 26.455

Landfall wind speed (m/s) TCBT 34.386
0.703 0.483

11.865
2.773 0.099GSTCH 32.95 8.974

Landfall pressure(hpa) TCBT 969.421
0.535 0.593

20.842
0.446 0.506GSTCH 967.371 18.713

Annual landfall number (item) TCBT 1.781
0.618 0.539

1.289
0.516 0.475GSTCH 1.594 1.132

Zhejiang

Central maximum wind speed
along the track (m/s)

TCBT 45.105
0.538 0.593

10.619
0.07 0.792GSTCH 43.498 10.031

Central minimum pressure
along the track (hpa)

TCBT 951.053
1.169 0.248

4.769
1.692 0.2GSTCH 942.868 4.629

Landfall wind speed (m/s) TCBT 38.737
1.825 0.074

8.678
0.155 0.696GSTCH 33.778 9.692

Landfall pressure(hpa) TCBT 963.053 −0.604 0.549
14.883

2.034 0.16GSTCH 966.542 22.29

Annual landfall number (item) TCBT 0.594 −1.729 0.089
0.615

3.109 0.083GSTCH 0.969 1.062

Fujian

Central maximum wind speed
along the track (m/s)

TCBT 39
0.137 0.891

15.023
2.015 0.163GSTCH 38.512 9.266

Central minimum pressure
along the track (hpa)

TCBT 961.55
0.779 0.44

29.552
0.842 0.364GSTCH 955.756 21.512

Landfall wind speed (m/s) TCBT 32.25
0.18 0.859

10.109
0.478 0.493GSTCH 31.76 8.553

Landfall pressure(hpa) TCBT 974.2
0.034 0.855

16.379
0.439 0.662GSTCH 971.937 18.199

Annual landfall number (item) TCBT 0.625
0.852 0.36

1.07 −0.907 0.368GSTCH 0.844 0.847
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Figure 5. (A–C) Means and standard deviations of the TC characteristics in China’s coastal provinces
(orange color represents the central maximum wind speed along the track; red color represents
landfall wind speed; purple color represents annual landfall number; blue color represents central
minimum pressure along the track; green color represents landfall pressure. Solid color fills represent
TCBT data; pattern fills represent GSTCH data).

The results show that the means of the TC characteristics all fall within the standard
deviations of each other within each province in the GSTCH and TCBT datasets. Moreover,
the mean deviations of all of the TC characteristics are small, i.e., the largest mean deviation
of the central maximum wind speed along the track, central minimum pressure along the
track, annual landfall number, landfall wind speed, and landfall pressure is 1.994 m/s,
9.866 hpa, 1 item, 4.959 m/s, and 3.489 hpa, respectively. Thus, the GSTCH dataset
successfully reproduces the intensity and annual landfall frequency of those TCs that made
landfall in each province.

As shown in Figure 5, the landfall wind speed of the TCs making landfall in Hainan
and Guangdong provinces is lower than that of the TCs making landfall in Zhejiang,
Taiwan, and Fujian provinces, which is consistent with the fact that TCs with low landfall
wind speed that make landfall in Guangdong and Hainan provinces are most numerous.
The relatively large standard deviations in the TC characteristics in both the GSTCH and
the TCBT datasets indicate that TC intensity has case-by-case differences, and that the
annual number of landfalling TCs has interannual variability. Standard statistical tests
(i.e., the T-tests and F-tests) were performed to verify that the means and the standard
deviations of the TC characteristics between the GSTCH and TCBT datasets are equivalent,
as presented in Table 4.

Table 4 clearly shows that TCs with characteristics that failed the T-test or the F-
test (i.e., central minimum pressure along the track, landfall wind speed, and annual
landfall number) are concentrated in Guangdong and Hainan provinces. The following
sections further investigate the cumulative distributions of the landfall wind speed and the
annual landfall number of TCs that made landfall in Guangdong and Hainan provinces,
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as well as the central minimum pressure along the track of TCs that made landfall in
Guangdong province.

3.2.2. Landfall Wind Speed

Figure 6A shows the cumulative distributions of the landfall wind speed of the TCs in
the GSTCH and TCBT datasets in Guangdong and Hainan provinces. In comparison with
the cumulative distribution of the landfall wind speed of the TCs in the TCBT dataset, the
cumulative distribution of the landfall wind speed of the TCs in the GSTCH dataset passes
the K-S test at the 95% confidence level, as presented in Table 5.

 

Figure 6. Cumulative distributions of the landfall wind speeds considering (A) and ignoring (B) trop-
ical depressions in Guangdong and Hainan provinces (broken lines represent GSTCH data; bar charts
represent TCBT data).

Table 5. Results of the K-S test of the cumulative distributions of the landfall wind speed and the
annual landfall number in Guangdong and Hainan provinces.

TC Characteristics Province D P (D)

Landfall wind speed (considering tropical depression) (m/s)
Guangdong

0.213 0.239
Landfall wind speed (ignoring tropical depression) (m/s) 0.227 0.207

Annual landfall number (item) 0.255 0.093

Landfall wind speed (considering tropical depression) (m/s)
Hainan

0.267 0.239
Landfall wind speed (ignoring tropical depression) (m/s) 0.182 0.465

Annual landfall number (item) 0.313 0.088

Figure 6A indicates that the landfall wind speed of TCs in Guangdong province in
the TCBT dataset is mainly within the range of [12, 41.5), i.e., approximately 85%, and
that the landfall wind speed probability of TCs in Guangdong province in the GSTCH
dataset within this range is approximately 95%. Overall, the landfall wind speed of TCs in
Guangdong and Hainan provinces is underestimated in the GSTCH dataset, which might
be related to the fact that the TCs in the GSTCH dataset include tropical depressions [2].
A tropical depression is the weakest category of TC, able to cause damage to vegetation
and unsecured mobile homes but posing no real threat to other structures [36]. Therefore,
verifying whether the landfall wind speeds in the GSTCH and TCBT datasets are reliable
without considering tropical depressions is appropriate.

As shown in Figure 6B, the cumulative distributions of the landfall wind speed of
TCs in the GSTCH and TCBT datasets are consistent when neglecting tropical depressions.
In comparison with the cumulative distribution of the landfall wind speed of TCs in the
TCBT dataset, the cumulative distributions of the landfall wind speed of TCs in the GSTCH
dataset pass the K-S test at the 95% confidence level, as listed in Table 5.
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3.2.3. Annual Landfall Number

Changes in the annual landfall number of TCs directly affect the mean and standard
deviation of the annual landfall number. Figure 7 shows the number of TCs that made
landfall in Guangdong and Hainan provinces annually during 1990–2021.

 

Figure 7. Annual landfall number of TCs in Guangdong and Hainan provinces during 1990–2021.

Figure 7 clearly shows that the annual landfall number reflects long-term change in
Guangdong and Hainan provinces, affecting the mean and standard deviation of the annual
landfall number. Therefore, in addition to the mean and standard deviation, consideration
of the cumulative distribution is important when verifying the degree of consistency be-
tween the annual landfall numbers of Guangdong and Hainan provinces in the GSTCH and
TCBT datasets. The cumulative distributions of the annual landfall numbers of Guangdong
and Hainan provinces in the GSTCH and TCBT datasets are shown in Figure 8.

 

Figure 8. Cumulative distributions of the annual landfall number of TCs in Guangdong (A) and
Hainan (B) provinces.

Figure 8 shows that the annual landfall numbers of Guangdong province is mainly
concentrated in the range [0, 3]. In this range, the probability for Guangdong province in
the GSTCH dataset is up to 96.88%, while the probability in the TCBT dataset is 86.21%.
The annual landfall numbers of Hainan province are mainly concentrated in the range
[0, 2], and the probability in the GSTCH dataset is up to 90.63%, while the probability in
the TCBT dataset is 84.38%. In comparison with the cumulative distributions of the annual
landfall numbers in Guangdong and Hainan provinces in the TCBT dataset, the cumulative
distributions of the annual landfall numbers in Guangdong and Hainan provinces in the
GSTCH dataset pass the K-S test at the 95% confidence level, as presented in Table 5.
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3.2.4. Central Minimum Pressure along the Track

The cumulative distributions of the central minimum pressure along the track of TCs
that made landfall in Guangdong province in the TCBT and GSTCH datasets are shown in
Figure 9. It can be seen that the GSTCH dataset overestimates the ratio of TCs that made
landfall in Guangdong province with the central minimum pressure along the track in the
range [905, 980). Moreover, the p value of the K-S test statistic of the cumulative distribution
in Guangdong province is 0.002, i.e., much lower than 0.05. Thus, the central minimum
pressure of TCs in Guangdong province in the GSTCH dataset does not pass the K-S test at
the 95% confidence level, and there is a significant difference between the two datasets.

Figure 9. Cumulative distributions of central minimum pressure along the track of TCs in Guang-
dong province.

Guangdong is the province with the most frequent occurrence of TCs making landfall
along the coast of China, and the landfall period is concentrated mainly between June and
October. Differences in sea level pressure and sea surface temperature at different times
affect the magnitude of the central minimum pressure along the track, and the central
minimum pressure along the track in the GSTCH dataset considers environmental condi-
tions (i.e., monthly mean sea level pressure and monthly mean sea surface temperature) [2].
Therefore, this study verifies the degree of consistency between the central minimum pres-
sure along the track of TCs that made landfall in Guangdong province during June–October
in the GSTCH and TCBT datasets.

As shown in Figure 10, during June–October, the mean differences in the central
minimum pressure along the track of TCs that made landfall in Guangdong province are
very small and within the range of standard deviation of each other. The GSTCH dataset
overestimates the mean central minimum pressure along the track in September, and the
standard deviation of the central minimum pressure along the track in the GSTCH dataset
does not pass the F-test at the 95% confidence level (Table 6). The cumulative distributions
of the central minimum pressure along the track of TCs that made landfall in Guangdong
province in September in the GSTCH and TCBT datasets are shown in Figure 11.
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Figure 10. Means and standard deviations of the central minimum pressure along the track of TCs in
Guangdong province from June to October.

Table 6. Results of the T-test of means and the F-test of standard deviations of the central minimum
pressure along the track of TCs in Guangdong province from June to October.

Month t P (t) f P (f )

6 0.589 0.561 0.374 0.546
7 0.645 0.523 3.1 0.087
8 0.854 0.397 2.577 0.115
9 −1.581 0.123 7.737 0.009
10 −0.319 0.758 0.169 0.692

Figure 11. Cumulative distributions of central minimum pressure along the track of TCs in Guang-
dong province in September.

Figure 11 clearly shows that the cumulative distributions of the central minimum
pressure along the track of TCs that made landfall in Guangdong province in September
are consistent between the GSTCH and TCBT datasets. The p value of the K-S test statistic
of the cumulative probability distribution is 0.68, which is greater than 0.05, indicating
that it passes the K-S test at the 95% confidence level. The results reveal no statistically
significant difference between the GSTCH and TCBT datasets in terms of the number of
TCs within each value range of the central minimum pressure along the track that made
landfall in Guangdong province in September.
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4. Discussion

4.1. Usage of the GSTCH Dataset in Coastal China

TCs usually induce other hazards, such as strong wind, huge waves, heavy precipi-
tation, and storm surges [38–40]. They can substantially damage housing, infrastructure
and ecosystems both in coastal areas and far inland. Research by Bloemendaal et al. [2,22]
demonstrates that the GSTCH dataset with 10,000 years of TC activity can be used in
studying the different aspects of TC hazards, including TCs and other induced hazards risk
analysis over the open ocean and in coastal areas, coastal modeling, food risk assessments,
and wind return periods estimation and damage assessments. In particular, the GSTCH
dataset is also applicable to global small islands. Because of its global coverage and the
large number of TCs, there are also enough TCs to perform the risk assessment in the
aforementioned regions.

The long coastline and low-lying terrain of China’s mainland coast (the area of land
below 5 m above sea level is approximately 143,900 km2) make it an area prone to frequent
TC disasters. Moreover, the extended continental shelf and shallow sea areas of coastal
China contribute to the development of storm surges associated with TCs that can cause
substantial economic losses and serious casualties. For example, in 2017, the storm surge
caused by Typhoon Hato caused direct economic losses of 5.154 billion yuan in coastal
areas of Guangdong province, with six people reported killed or missing. In 2018, Super
Typhoon Mangkhut caused total direct economic losses of 2.457 billion yuan in Guangdong,
Guangxi, and Fujian provinces. In 2019, owing to the combined influence of the storm
surge of Typhoon Lekima and nearshore waves, the direct economic losses of the eight
coastal provinces stretching from Fujian to Liaoning totaled 10.288 billion yuan. To sum up,
the coastal areas of China are frequently affected by TCs and their induced storm surges,
and the caused disaster losses are very serious.

Applicability evaluation of this study verifies that the GSTCH dataset provides a
critical data source for the relevant research on TCs and their induced hazards in the coastal
areas of China. It is hoped that this will contribute to disaster risk assessment, proposal of
disaster prevention and reduction actions, and disaster emergency response plan.

4.2. Some Limitations

In previous sections, this study has demonstrated that the GSTCH dataset is well
consistent with the TCBT dataset in China’s coastal areas. There are, however, some
limitations regarding the subsequent usage of this dataset, which are briefly reflected upon
here. In this section we shall also give future research directions.

First, the GSTCH dataset is based on average present-day climate conditions (1980–2017) [2],
and the TC activities represented by GSTCH may be biased by the phases of multi-
decadal variability contained in the 38 year period of record that was used to generate the
dataset [22]. Therefore, the GSTCH dataset cannot be used to assess the climate trends over
longer timescales.

Second, the TC characteristics in the TCBT dataset selected in this study are derived
from satellite observations, high-density ground observations, ground-based radar, weather
maps, and satellite cloud pattern recognition [25,26]. They are considered highly accurate.
However, the 32 year (1990–2021) TC data in the TCBT dataset represent only a limited
temporal range. Future research could extend the temporal scale of the available TC data by
e.g., collecting more historical TCs data and conducting data reanalysis. They may then be
applied to the accurate evaluation of new synthetic TC datasets and to the study of different
aspects of TC hazards. In addition, issues such as changes in observation methods, data
homogeneity, and data quality over time should also be addressed, to ensure the reliability
of the consistency analysis.

Last, landfall wind speed and landfall pressure in this study refer to the initial landfall
wind speed and landfall pressure of a TC, for which the value of the former is usually the
largest and the value of the latter is the lowest [25,26]. TCs might make landfall twice or
even three times. Nevertheless, after the first landfall, the intensity of a TC diminishes
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rapidly owing to the combined effects of ground friction and insufficient energy supply.
Therefore, the wind speed at the time of the first landfall is a better representation of the TC
intensity. For the period 1990–2021, the TCBT dataset includes 56 TCs with twice landfalls
and 16 TCs with thrice landfalls, but they have little supporting data. Therefore, the lack
of TC data available for the second and third landfalls means that verifying the degree of
consistency between the GSTCH and TCBT datasets is impossible in such a case. Future
research could extend the TC data for second and third landfalls by statistical resampling
or modeling.

5. Conclusions

This study evaluated the applicability of the GSTCH dataset in coastal China in relation
to two regions: the Northwest Pacific and China’s coastal provinces. The TC characteristics
for evaluation include central maximum wind speed along the track, central minimum
pressure along the track, landfall wind speed, landfall pressure, annual occurrence number,
and annual landfall number. The evaluation indicators are the mean, standard deviation,
frequency distribution, and cumulative distribution, together with their corresponding
hypothesis tests (T-test, F-test, Chi-squared test, and K-S test).

For the Northwest Pacific, the comparison results showed no significant differences in
the means and standard deviations of landfall wind speed, landfall pressure, and annual
occurrence number between the GSTCH and TCBT datasets at the 95% confidence level. In
addition, the cumulative distributions of central minimum pressure and central maximum
wind speed along the track passed the K-S test at the 95% confidence level. These verified
that the GSTCH dataset is consistent with the TCBT dataset at the sea-area scale.

For China’s coastal provinces, the comparison results show that the means or standard
deviations of TC characteristics between the two datasets were not significantly different in
provinces other than Guangdong and Hainan. Further analysis revealed that the cumulative
distributions of the TC characteristics in Guangdong and Hainan provinces passed the K-S
test at the 95% confidence level, verifying that the GSTCH dataset is consistent with the
TCBT dataset at the province scale.

In general, the TCBT dataset is considered to be the most authoritative TC dataset for
the coastal areas of China, and it can be used as a benchmark for evaluating the applicability
of the GSTCH dataset in coastal China. Therefore, the excellent agreement between the
GSTCH and TCBT datasets for the Northwest Pacific and China’s coastal provinces verifies
that the GSTCH dataset is an available and reliable data source for TC hazard studies in
China’s coastal areas.
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Abstract: Constant changes occur in coastal areas over different timescales, requiring observation
and modeling. Specifically, modeling morphological changes resulting from short-term events, such
as storms, is of great importance in coastal management. Parameter calibration is necessary to
achieve more accurate simulations of process-based models that focus on specific locations and event
characteristics. In this study, the XBeach depth-averaged model was adopted to simulate subaerial
data pre- and post-storms, and overwash phenomena were observed using the data acquired through
unmanned aerial vehicles. The parameters used for the model calibration included those proposed
in previous studies. However, an emphasis was placed on calibrating the parameters related to
sediment transport that were directly associated with overwash and deposition. Specifically, the
parameters corresponding to the waveform parameters, wave skewness, and wave asymmetry were
either integrated or separated to enable an adequate representation of the deposition resulting from
overwash events. The performance and sensitivity of the model to changes in volume were assessed.
Overall, the waveform parameters exhibit significant sensitivity to volume changes, forming the basis
for calibrating the deposition effects caused by overwashing. These results are expected to assist in
the more effective selection and calibration of parameters for simulating sediment deposition due to
overwash events.

Keywords: morphological response; UAV (unmanned aerial vehicle); overwash; numerical
modeling; XBeach

1. Introduction

Changes in coastal areas occur over various timescales and can be attributed to both
human activities and natural phenomena. Among these, short-term extreme events, such
as storms, can cause significant morphological changes in coastal areas. These events can
lead to erosion and even overwash, which can directly affect not only the beach, but also
human settlements located beyond revetments. Hence, precise observations and effective
numerical modeling must be performed for the management of erosion and the associated
morphological changes induced by overwashing along coastlines [1]. Various models can
be used to perform such a numerical modeling; however, they often involve different
assumptions and empirical formulations [2]. To achieve reasonable results, the parameters
provided by these models must be calibrated according to the specific region and target
event or phenomenon [3].

In 2022, Storm Hinnamnor significantly affected Songjeong Beach in Busan, South
Korea. To assess this impact, a survey was conducted using unmanned aerial vehicles
(UAVs), which revealed significant erosion at the front of the beach and deposition due
to overwashing at the back. In this study, the XBeach model [2], which is effective for
simulating erosion caused by storms on sandy beaches [4–6], was employed to simulate
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both erosion and overwash-induced deposition. XBeach was originally developed to sim-
ulate the collapse of barrier islands on dissipative beaches, and its default parameters
have been criticized for overestimating offshore sediment transport [7]. Because of the
model’s inherent nonlinearity and its reliance on empirical formulations, a proper parame-
ter calibration is essential for obtaining accurate results. Various calibration methods have
been proposed in previous studies [4,5,8]. However, the trial-and-error method, which
typically relies on the experience and knowledge of model users, is commonly used. For an
effective calibration, the roles and sensitivities of the parameters within the model must
be understood.

This study aims to simulate the overwash and resultant deposition during a storm
period by calibrating the waveform parameters in XBeach. XBeach utilizes the advection–
diffusion equation for sediment transport. In this equation, the non-linearity term includes
the effects of wave skewness and wave asymmetry. The influence of wave skewness and
asymmetry on the sediment advection velocity has been well explained by van Thiel de
Vries [9]. In XBeach, the parameters for the wave asymmetry and skewness are defined as
facAs and facSk, respectively, and can be represented as facua when these parameters have
identical values. Many prior studies have opted for simulations with facua instead of facAs
and facSk to reduce the number of parameters requiring calibrations, and such simulations
have shown high accuracy for erosion. Facua is often directly linked to asymmetric flow,
with Nederhoff [10] demonstrating a high accuracy for erosion (BSS of 0.83) by calibrating
facua to a value of 0.25 and explaining that an increase in facua reduces the net sediment
transport in the offshore direction. Saber et al. [11] discussed the significant impact of facua
on the onshore (offshore) velocity, which is closely linked to sediment transport, stating
that the default value of facua (0.1) induced an overestimation of erosion. They suggested a
more effective simulation of erosion by correlating it with the average slope angle. In their
study of multiple storm events in XBeach simulations, Jin et al. showed that the sensitivity
of facua was the highest, significantly influencing the model’s accuracy [5]. Therefore, this
research aims to compare and analyze the results of separating facua into facAs and facSk,
not only in terms of the erosion caused by overwash, but also for the resultant deposition.

In this study, two statistical schemes and a volume acquired through a UAV observa-
tion are employed as the basis for evaluating the model’s results. While the beach data for
pre- and post-storm events were obtained, depth data immediately after the storm were
not available; hence, the evaluation was restricted to the beach data.

The research area and UAV survey results are presented in Section 2. Section 3
describes the XBeach model, input data required for the model, and parameters. It also in-
troduces the statistical schemes used for the model accuracy assessment. Section 4 presents
the results, and Sections 5 and 6 present the discussion and conclusions, respectively.

2. Field Data Collection

2.1. Study Area

Figure 1 shows the location of Songjeong Beach in the study area. Songjeong Beach
is a predominant pocket beach located in Busan, Republic of Korea, characterized by a
wave-dominated area (129◦11′45′′–129◦12′23′′ E, 35◦10′24′′–35◦10′56′′ N). With a length of
approximately 1.2 km, the beach width ranges from 43 to 60 m. The beach primarily consists
of sand with a median grain size (D50) of 0.42 mm. In addition, structures composed of
boulders were observed on the flank of the T headland. This region has been consistently
subjected to erosion, prompting the Ministry of Oceans and Fisheries to categorize it with
erosion grades C to D for ongoing management (A = excellent, B = moderate, C = concern,
and D = serious). Consequently, annual nutrition projects are currently underway in this
area. Figure 1 shows the presence of a well-defined crescentic sandbar prior to a storm
event. While the typical tidal range is approximately 1–2 m, a notable elevation in the sea
level occurs during a storm surge.
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Figure 1. Location of Songjeong beach. Google Earth with orthomosaic image from the UAV, taken
on 29 August 2022. The buoy was installed at ‘O’.

2.2. Storm Condition

On 28 August 2022, Storm Hinnamnor originated in the northwestern Pacific and
exhibited an initial wind speed of 15 m/s as it progressed northward. The central mini-
mum pressure reached 955 hPa and struck Busan, Republic of Korea, on 5 September at
21:00. The wave data were obtained using a buoy deployed by the Korea Hydrographic
and Oceanographic Agency (KHOA). Figure 2a shows the significant wave height, wave
period, wave direction, and tide level over time during the storm. The maximum recorded
significant wave height was 10.5 m, with the wave period ranging from 9 to 10 s. Using
this dataset, the wave rose diagram (Figure 2b) shows easterly waves at 90–100◦ during
the storm period. Figure 2c shows the path of Storm Hinnamnor throughout its formation
and dissipation phases. The storm had a direct impact on Busan, leading to a low central
pressure and subsequent storm surge, resulting in a rise in sea level, causing erosion and
overwashing with substantial waves.

2.3. Observation Method

Morphological changes in the beach due to Storm Hinnamnor were captured through
observations conducted with a UAV, both pre- and post-storms. Observations were per-
formed on 29 August 2022, prior to the storm strike, and on 7 September 2022, following its
impact. A Phantom 4 RTK was utilized for these observations, set to operate at an altitude
of 100 m with an overlap and side lap of 80% and a speed of 7.9 m/s. Approximately
720 images were captured. Equipped with real-time kinematic (RTK) technology, the Phan-
tom 4 RTK allows the production of highly accurate data through a real-time correction
using the Global Navigation Satellite System (GNSS). Nonetheless, for the accuracy assess-
ment and calibration, 12 ground control points (GCPs) were established; their locations are
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shown in Figure 3. The integration of approximately 720 photographs and data calibration
with the GCPs were performed using the Pix4Dmapper (ver.4.8.4) software. This process
enabled the acquisition of high-accuracy values with an accuracy assessment based on the
observational data and GCPs presented in Table 1.

 

Figure 2. Wave data during the storm period. (a) Significant wave height, spectral peak period, wave
direction, and tide elevation time series at Songjeong Beach. (b) Wave rose diagram. (c) Paths of
storm Hinnamnor with the study area (yellow dot) and arrival time. The color of the lines indicates
the intensity of the storm. In the depicted graph, the yellow line represents TS (Tropical Storm), the
pink line denotes STS (Severe Tropical Storm), and the red line signifies TY (Typhoon, Storm).

 

Figure 3. Positions of the ground control points (GCPs) in Songjeong Beach.
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Table 1. Standard deviation (Std.Dev) and root mean square error (RMSE) per observation ID (Obs ID).

Obs ID Std. Dev (X/Y/Z) (m) RMSE (X/Y/Z) (m)

Pre-storm 0.005/0.006/0.013 0.005/0.005/0.013
Post-storm 0.007/0.001/0.009 0.007/0.011/0.009
Recovery 0.001/0.009/0.010 0.010/0.009/0.010

2.4. Volumetric Changes and Classification of the Beach

UAVs were used to examine the changes in the beach before and after a storm event.
Table 2 presents the volumetric analysis and the calculated erosion quantities for Songjeong
Beach derived from the UAV survey data. The vertical reference for the volume measure-
ment was based on the elevation calculated using the approximate lowest water level and
datum level (App.LLW). Volume comparisons were conducted in common areas where the
pre- and post-storm regions overlapped to ensure consistency. This approach was necessary
owing to the lack of altitude observations by UAVs in some areas caused by the run-up from
storm surges. Prior to the arrival of the storm on 29 August 2022, the observed volume was
69,939.2 m3. The post-storm assessment on 7 September 2022 indicated an erosion value of
9533 m3, resulting in a remaining volume of 60,406.2 m3. Figure 4a depicts the elevation
differences post- and pre-storm events based on the UAV data comparison. Erosion is
evident along the frontal section of the coastline, with overwash and deposition observed
in the rear section near the revetment site. The most extreme erosion event occurred in the
northeastern SW region of the beach.

Table 2. Erosion and volume of pre- and post-storm events.

Pre-Storm Post-Storm

Obs Date 29 August 2022 7 September 2022
Volume (m3) 69,939.2 60,406.2
Erosion (m3) 9533

Figure 4. (a) Elevation differences after and before the arrival of Storm Hinnamnor. (b) Beach divided
according to their characteristics.

Based on the elevation differences shown in Figure 4a, the beaches were categorized
into three types. Type A refers to areas with significant erosion throughout; type B refers to
areas with erosion at the front and deposition in the rear owing to overwash; and type C
refers to areas with erosion at the front and minimal changes in the rear. The results when
these areas are marked in the study area are shown in Figure 4b. Type A is located in the
SW region of the beach, and type B is the predominant type.
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3. Method of Numerical Modeling

3.1. Description and Domain with Model Set

XBeach is a two-dimensional, depth-averaged (i.e., 2DH) numerical model that in-
tegrates fluid dynamics and morphodynamic processes to simulate wave propagation
and morphological changes under short-term storm wave conditions. The storm event
in the study area was modeled using XBeach (1.23.5527) and the surfbeat mode (XBSB),
specifically designed to simulate hydrodynamics and morphological changes in narrow
areas, such as beaches, dunes, and barrier islands, during storm wave events. The XBSB
model calculates the hydrodynamics (shortwave, longwave, and roller energy) with wave
and water-level inputs as boundary conditions. Subsequently, it simulates the morpho-
dynamics, including sediment transport and the resulting bed-level changes. Figure 5a,b
show the orthogonal grid and pre-depth data used for the XBeach modeling. Depth data
were provided by an external agency and utilized in this study. The data surveyed on
23 August 2022, before the storm, underwent precise calibrations with an error margin of
approximately 1 m. Depth measurements were conducted from 0 to 5 m using a single
beam, whereas depths beyond this range were surveyed using a multibeam approach.
Owing to the essential nature of data correction, a calibration was performed using DGNSS,
a motion sensor, and a gyrocompass. Additionally, tidal and sound speed corrections were
implemented to minimize the data errors. The grid resolution was configured to increase
the density closer to the nearshore, thereby optimizing the simulation of the morphological
changes within the surf and swash zones. Conversely, the grid size was proportionally
enlarged seaward. Specifically, the cross-shore grid size ranged from 3 to 20 m, while the
longshore grid maintained a consistent resolution of 10 m, resulting in a 201 × 201 grid
configuration. The structures, including revetments, were designated as non-erodible
layers. The wave boundary conditions were defined using the time-varying JONSWAP
spectrum based on the observation data, incorporating the parameters (Hs, Tp, and Dp)
outlined in Section 2.2. Temporal variations in the water level were derived from the tide
data in Section 2.2, serving as the water level boundary conditions. The modeling period
spanned from 29 August to 7 September, following the UAV observational data. For the
computational efficiency, significant wave heights of less than 1 m were excluded. The
morphological acceleration factor (morfac) was set at 10.

 

Figure 5. (a) Orthogonal grid domain for XBeach modeling with Google Earth image. (b) Depth with
UAV orthomosaic and Google Earth image. The red dots represent the locations where wave data
were acquired.

3.2. Parameter Calibration

The default parameter settings of XBeach were calibrated for North Sea wave condi-
tions off the Dutch coast and were specifically designed to simulate the collapse of barrier
islands during storms. Consequently, the offshore sediment transport and morphological
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changes were overestimated under typical beach conditions. To address this limitation,
ongoing discussions focus on various parameter calibration methods [3,4,12,13]. In this
study, a trial-and-error approach was employed based on the parameters proposed in
previous studies [5] along with additional parameters, with the aim of simulating overwash
during storm events.

Various formulations were embedded in the XBeach model, allowing for an effec-
tive simulation of the morphological changes specific to the study area. Among these,
the discussions on sediment transport equations are extensive. XBeach offers sediment
transport formulations from Soulsby–Van Rijn [14], van Thiel de Vries–Van Rijn [9,15,16],
and Van Rijn [17]. A primary distinction between the widely used Soulsby and van Thiel
de Vries–Van Rijn equations is that Soulsby employs a drag coefficient to determine the
equilibrium sediment concentration, which is absent from van Thiel de Vries–Van Rijn.
Additionally, the van Thiel de Vries–Van Rijn equation distinguishes between currents
and waves in its calculation of critical velocity, whereas Soulsby does not. Although each
formulation has its strengths, the effectiveness largely depends on the features of the
coastal environment. For instance, De Vet et al. compared the Soulsby–Van Rijn and van
Thiel de Vries–Van Rijn formulations, suggesting that the latter provided more credible
results [18]. The van Thiel de Vries–Van Rijn equation was noted to represent breaching
more effectively and overwashing than the Soulsby equation, which overestimated the
erosion rates. Conversely, Craig et al. [19] favored Soulsby in modeling the microtidal,
wave-dominated hydrodynamic environment of the Upper Texas Coast (UTC), effectively
simulating phenomena, such as collision, overwash, and inundation. Similarly, Orzech
et al. [20] showed commendable Brier Skill Score results for Monterey Bay using the XBeach
2DH model. Monterey Bay, located in California, is characterized by its mild alongshore
currents, rip channel bathymetry, and tidal range of approximately 1.6 m, features that
resonate closely with the Songjeong Beach studied in this research. Consequently, this
study aimed to simulate sediment transport by employing the Soulsby equation.

Within the XBeach model, two formulations related to shortwave breaking exist: the
Roelvink et al. and Daly formulas. The Roelvink equation was used by default for all the
statistical analyses. This equation is based on an empirical formula that incorporates the
breaking coefficient (gamma) and the ratio of the wave height to the water depth. However,
Daly et al. observed that this equation tended to underestimate the wave energy dissipation
when the water depth increases rapidly. In response to this result, Daly introduced the
parameter gamma2, which allowed for a more precise determination of wave breaking,
even in areas with sharp changes in the water depth. Furthermore, when dealing with
depths that have a plane slope instead of steep inclines, the differences in the results
generated by the two formulas are negligible. In this study, based on the previous research,
specific parameters and their associated formulas were adopted, and the Daly equation
was used for the model setup.

Based on this, the gamma and gamma2 parameters were employed, and the waveform
parameters related to the wave skewness and asymmetry, which were closely related to
sediment transport, were calibrated. XBeach offered the two waveform equations provided
by Ruessink et al. [21] and van Thiel [9]. Both computed skewness and asymmetry. The
formula of Ruessink et al. suggests the Ursell number parameter, which is based on over
30,000 field observations of orbital skewness and asymmetry collected under non-breaking
and breaking conditions. Based on the significant wave height, wave period, and water
depth, they reported that the skewness and asymmetry were efficiently represented. An-
other approach involved the equation proposed by van Thiel et al., which was an extension
of the wave-shaped model presented by Rienecker et al. [22]. This model describes the
shortwave shape as a weighted sum of eight sine and cosine functions. Skewness and
asymmetry were then represented based on the computed near-bed shortwave flow ve-
locity using this model. However, it remains unclear which of the two equations is more
accurate [11]. In this study, the default equation provided by van Thiel was used.
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Several studies discuss the effects of skewness and asymmetry on sediment trans-
port [11,13,23]. According to van Thiel et al. [9], Stokes waves exhibit higher onshore
flow velocities than offshore waves. This implies that the sediment movement is more
pronounced during the wave crest than during the wave trough. Consequently, skewness
and asymmetry influence the Eulerian velocities through an additional onshore sediment
advection velocity, denoted as ua. Using skewness and asymmetry, ua can be represented as:

ua = ( fSkSk − fAs As)urms (1)

where fSk is a coefficient related to the phase shift of the intrawave sediment concentration,
flow, and skewness. fAs is the coefficient pertaining to the phase shift between the flow and
the suspended sediment for asymmetry. Assuming that fSk and fAs are equivalent, they
can be expressed as fua, and the equation can be summarized as:

ua = fua(Sk − As)urms (2)

In XBeach, facua is denoted as a coefficient associated with the phase shift between
intrawave sediment suspensions and orbital flow. In previous studies [5], facua was used.
A comparison with the sets of facSk and facAs was conducted in this study. Based on
these observations, it was suggested that the profile shapes in the shoaling and breaker
zones were significantly influenced by facSk. An increase in fasSk was linked to an increase
in wave skewness, which was associated with an increase in offshore sediment fluxes,
whereas [24] the cross-shore profiles in the surf and swash zones were believed to be
affected by facAs. As facAs increases, the asymmetry in the waves is enhanced, leading
to an increase in onshore sediment transport. Based on this, the set parameter values and
their ranges have been summarized in Table 3.

Table 3. Parameter descriptions and values.

Description Calibration Value or Range

gamma Breaker parameter in Daly formula 0.52
gamma2 Set stop point of breaking in Daly formula 0.3

facua Time-averaged flows due to wave skewness and
asymmetry (facua = facSk = facAs) 0.09:0.03:0.42

facAs Time-averaged flows due to wave asymmetry 0.09:0.03:0.36
facSk Time-averaged flows due to wave skewness 0.09:0.03:0.36
D50 Median grain size of sediment (mm) 0.42

break Type of wave breaking formula Roevink_Daly
form Type of sediment transport formula Soulsby-vanrijn

Observational UAV data were used to calibrate the parameters. Comparisons between
the observational and model values were only performed in overlapping areas, which,
owing to the characteristics of the UAV, were confined to the subaerial region [7,19]. Based
on this, the simulation skill proposed by Gallagher et al. (1998) [25] could be employed to
assess the accuracy of the elevation difference obtained from the UAV and model output.
This skill is defined as follows:

Skill = 1 −
∑N

i=1

(
dzbUAV,i

− dzbXBeach,i

)2

∑N
i=1

(
dzbUAV,i

)2 (3)

where N is the number of data points (i.e., the number of grids) in the overlapping section
between the UAV’s pre- and post-data and the output of the model. dzbUAV,i

denotes the
observed bed-level change in i, whereas dzbXBeach,i

is the modeled bed-level change at point
i. A skill value of 1 indicated a perfect match between the model predictions and observed
data, indicating optimal accuracy. A skill of 0 suggested that the model’s accuracy was
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equivalent to random or base-level predictions, whereas a negative skill indicated that the
model’s predictions were less accurate and that it performed poorly (Table 4). Furthermore,
the determination of the mean error allowed us to distinguish between biases resulting
from systematic differences in the model outcomes and random variations. The equations
for this are as follows:

Bias =
1
N

N

∑
i=1

(
zbpost−storm,Model,i

− zbpost−storm,UAV,i

)
(4)

where zbpost−storm,Model,i
is the post-elevation of the model in cell i and zbpost−storm,UAV,i

is the
post-elevation of the observation data. A positive bias indicated that the model predicted
higher elevations than those observed, whereas a negative bias signified that the model
predicted lower elevations than those observed (Table 4).

Table 4. Qualification of XBeach’s performance.

Skill Bias

>0 Good (=1, perfect) Model predicts higher results than Obs
=0 Nothing Same
<0 Poor Model predicts lower results than Obs

4. Results

4.1. Parameter Calibration Results: Sensitivity of Volumetric Information

In this study, as previously mentioned, gamma and gamma2 related to wave breaking
were utilized according to the values used in the previous research by Jin et al. [5]. Only
the waveform parameters, namely, facua, facAs, and facSk, were employed for calibrations.
Additionally, the performance of the model was evaluated based on two statistical schemes
and observed volumetric changes in the beach. The sensitivity of each parameter to the
volume was first examined. As shown in Table 3, 12 facua cases were selected to simulate
beach morphological changes. Figure 6 shows the changes in the volume with increasing
facua values. The volume increased almost proportionally with the increase in facua [26],
reaffirming the significant impact of wave nonlinearity on sediment movement. However,
as depicted in the graph of facua in Figure 6, although the volume increases uniformly
with an increase in facua, the skill value, which represents the accuracy, decreases as it
approaches the observed volume value of 60,406.2 m3. This suggests that the increase in
facua is unsuitable for simulating the unbalanced phenomena of erosion at the front and
deposition at the rear because it leads to an overall increase in volume across the entire
beach area.

The calibration was conducted by separating facua into facAs and facSk. A total of
100 cases were selected to model the morphological responses. Figure 7 shows the changes
in volume with varying facAs at the same facSk. Overall, an increase in facAs led to
an increase in the beach volume when facSk remained constant. This reaffirmed that an
increase in the impact of wave asymmetry led to an increase in sediment transport to the
land. Similar to facua, the skill value generally showed a sharp decline when it exceeded
0.33. Figure 8 presents a graph depicting the changes in the volume and skill value with
varying facSk values for the same facAs. The graph exhibits irregular patterns, which are
different from those of facua or facAs. An increase in facSk did not uniformly increase the
volume; instead, an increase in facAs generally led to an increase in the overall volume.
The increase in facSk was found to enhance sediment movement, but did not determine
the direction of movement, indicating potential transport both offshore and onshore.
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Figure 6. The variations in volume and skill values in response to the changes in facua.

Figure 7. The variations in volume and skill values in response to changes in facAs, with a constant facSk.
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Figure 8. Changes in volume and skill values are shown in response to variations in facSk while
maintaining a constant facAs.

4.2. Parameter Calibration Result: Skill and Bias

In addition to the volumetric results described in Section 4.1, skill and bias were
utilized to assess the accuracy and understand the trends of the skill values for each
case. The changes in skill values corresponding to variations in the parameters of facua,
facAs, and facSk are shown in Figures 6–8. While generally maintaining high values of
approximately 0.5, facua and facAs exhibited a sharp decline in skill values beyond 0.33.
This decrease from values above 0.5 indicates the successful simulation of erosion at the
front; however, erosion is underestimated when the values exceed 0.33. In contrast, facSk
showed irregular patterns for skill values. The calibrated results based on these findings
are summarized in Table 5. ID1 represents the case where facua is used, whereas ID2
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indicates the case where facua is separated into facAs and facSk. The highest skill value,
showing a volume similar to that of the observed data, was achieved by facua at 0.3, with
a skill value of 0.555 and a bias of −0.083, suggesting a slight overestimation of erosion.
Additionally, skill values and biases were analyzed by segmenting them into different
areas. The segmentation was based on morphological changes, categorized as type A for
areas with significant overall erosion, type B for deposition due to overwash, and type C
for erosion at the front with minimal changes in the rear (Figure 4b). The skill values and
biases of each segment are listed in Table 6. ID1, the result of the calibration using facua,
showed high values overall, except for area A. Area A, characterized by severe erosion at
the rear, was insufficiently simulated. Despite the inadequate simulation of the deposition
at the rear, a high skill value of 0.773 was obtained for area B, indicating the result of the
simulation of erosion at the front. A depiction of the elevation difference of the beach
is shown in Figure 9c. Although the erosion at the front was somewhat overestimated,
a high-level simulation of the front erosion was achieved compared with the observed
values (Figure 9a). However, the simulation of deposition due to overwashing did not yield
sufficiently reasonable results.

Table 5. Calibration parameters of facua (ID1), facAs, and facSk (ID2).

ID
Waveform Parameter

Skill Bias Volume
facua facAs facSk

1 0.3 0.555 −0.083 59,646.9
2 0.27 0.18 0.623 −0.082 59,870.5

Obs 60,406.2

Table 6. Skill and bias values for each section.

ID Skill_A Skill_B1 Skill_C Skill_B2

1 0.261 0.773 0.665 0.663
2 0.278 0.850 0.767 0.676

ID Bias_A Bias_B1 Bias_C Bias_B2

1 0.048 −0.026 −0.005 −0.090
2 0.027 −0.019 −0.002 −0.084

Figure 9. Elevation differences of observed data (a), ID2 (b), and ID1 (c).

By contrast, ID2, which was calibrated separately, yielded more effective results. The
calibration values for facAs and facSk were 0.27 and 0.18, respectively, resulting in a volume
similar to the observed data with a skill value of 0.623 and a bias of −0.082 (Table 5). These
values were higher than those obtained for the facua calibration, indicating greater precision.
A detailed analysis conducted by segmenting the different areas is presented in Table 6.
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The skill value and bias of ID2 demonstrate that the skill in area B1 increases to 0.850, as
shown in Figure 9b. Compared with Figure 9c, this figure reveals that the deposition near
the revetment at the rear is more effectively simulated. Skill_A, representing areas with
overall erosion, still shows low values, which can be attributed to the focus on effectively
simulating deposition due to overwash during the calibration process. This resulted in a
somewhat improved skill value from a separate calibration, but it remained lower than that
of skill_B1. By separating facua into facAs, which increased sediment transport to the land,
and facSk, which facilitated sediment movement, a more detailed calibration was possible.
This allowed the simulation of the overwash and its associated deposition. Although an
increase in parameters requiring calibrations could impose additional burdens on model
users, it appeared necessary to simulate the overwash and resultant deposition effectively.

5. Discussions

Significant erosion and overwash-induced deposition around revetments were ob-
served following the 2022 storm Hinnamnor. Such overwash events, which can directly or
indirectly harm humans, underscore the importance of numerically simulating and prevent-
ing them. To simulate these morphological responses, numerical simulations based on UAV
data collected before and after the typhoons were conducted. The model employed for the
simulation was XBeach, a process-based, depth-averaged model specialized for short-term
localized morphological changes in beaches. XBeach can simulate various hydrodynamic
and morphodynamic processes and embed approximately 250 parameters that require
calibrations according to the geomorphological characteristics of the target area and input
data, such as wave conditions. This research utilized a parameter set from previous studies
with a high BSS in the storm cluster, while calibrating the waveform-related parameters
closely tied to sediment transport for a more effective overwash simulation.

The waveform parameters included facSk for skewness, facAs for asymmetry, and
facua, which was an integrated representation of these two parameters. Using gamma
and gamma2 from previous studies, the calibration of these three waveform parameters
was performed to simulate the overwash and resultant deposition. The evaluation of the
model employed simulation skill, applicable only when the ground-level data from UAVs
or LiDAR were available, and bias was used to estimate the extent of overestimations of
erosion and deposition. In addition, the advantages of UAVs in measuring beach volumes
were leveraged as a metric for the parameter calibration.

Calibrations using facua, facAs, and facSk demonstrated an efficient simulation of
frontal erosion. Both parameters had high values and skill values above 0.5, maintain-
ing reasonable volumes while simulating frontal erosion. However, the facua fell short
in simulating the deposition in the rear areas due to overwash. The increase in facua
led to an overall increase in onshore sediment transport. However, this also resulted in
difficulties in simultaneously simulating erosion at the front and deposition at the rear.
Calibrations were performed using the facAs and facSk separation, which successfully
represented both frontal erosion and rear deposition. However, the simulations of areas
experiencing overall erosion were not successful. Various reasons have been hypothesized
for this, with the median grain size (D50) being a likely factor. The study area, Songjeong
Beach, is predominantly sandy and contains gravel and rocky formations in its SW region.
The simulation used a consistent sand grain size based on D50, which could have con-
tributed to these discrepancies. Another factor considered was the use of waveform-related
parameters for the calibrations. The primary objective of this study was to simulate over-
wash and its deposition; hence, only waveform parameters directly related to sediment
transport were calibrated, whereas other parameters were adopted from previous studies.
Given the variety of XBeach parameters, further research involving additional calibrations
is warranted.

An additional analysis was conducted to investigate the sensitivity of the volume
to facua, facSk, and facAs. The facua parameter demonstrated an almost perfectly pro-
portional relationship to the beach volume, indicating that an increase in facua activated
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onshore sediment transport. Similarly, with a constant facSk, an increase in facAs led to an
increase in the beach volume.

6. Conclusions

The following conclusions were drawn:

1. Utilizing the parameters of facua, facSk (skewness), and facAs (asymmetry), which
integrated the wave-shape parameters closely related to sediment movement, in
addition to the previously proposed parameters, was effective for modeling the phe-
nomenon of overwash. The use of facSk and facAs was particularly effective in
simulating overwashing.

2. Although an increase in the number of parameters to be calibrated could pose a burden
on the model user, it was necessary to calibrate them separately when aiming for a
more accurate simulation of the overwash and subsequent sediment deposition.

3. Generally, an increase in facAs was associated with an overall increase in the beach
volume (indicating increased onshore sediment transport), whereas facSk did not
show a similar trend.
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Abstract: The present study evaluates the performance of two numerical approaches in estimating
non-equilibrium scour patterns around a non-slender square structure subjected to a transient wave,
by comparing numerical findings with experimental data. This study also investigates the impact
of the structure’s positioning on bed evolution, analyzing configurations where the structure is
either attached to the sidewall or positioned at the centerline of the wave flume. The first numerical
method treats sediment particles as a distinct continuum phase, directly solving the continuity
and momentum equations for both sediment and fluid phases. The second method estimates
sediment transport using the quadratic law of bottom shear stress, yielding robust predictions of
bed evolution through meticulous calibration and validation. The findings reveal that both methods
underestimate vortex-induced near-bed vertical velocities. Deposits formed along vortex trajectories
are overestimated by the first method, while the second method satisfactorily predicts the bed
evolution beneath these paths. Scour holes caused by wave impingement tend to backfill as the flow
intensity diminishes. The second method cannot sufficiently capture this backfilling, whereas the
first method adequately reflects the phenomenon. Overall, this study highlights significant variations
in the predictive capabilities of both methods in regard to the evolution of non-equilibrium scour at
low Keulegan–Carpenter numbers.

Keywords: Keulegan–Carpenter number; solitary wave; non slender; wave–structure interaction;
FLOW-3D; SedWaveFoam

1. Introduction

The increase in the magnitude and frequency of storms is a crucial aspect of climate
change, where larger ocean waves lead to more frequent and harsher storm surge and
flooding events. The most recent examples are Hurricanes Ian and Nicole, which made
landfall in Florida on 28 September 2022 and 10 November 2022 as powerful Category 4
and 1 storms, respectively. Ian came ashore as one of the strongest storms ever to strike
Florida, leaving behind massive coastal damage and widespread power outages. Nicole
was the first storm to make landfall on Florida’s east coast since 2005, crossing the same
area that had been devastated by Ian six weeks earlier. Its massive size caused widespread
heavy rainfall and high winds across the Bahamas, Florida, and the Greater Antilles,
leading to power outages, substantial damage to infrastructure and residential buildings,
and extensive beach erosion along Florida’s east coast. These extreme flooding events
underscore the need for more in-depth studies on the failures of beachfront structures in
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the low-elevation urbanized coastal zones. An important factor that contributes to the
failure of beachfront structures during such events is the scouring process [1,2].

Wave- and/or current-induced equilibrium scour around slender cylindrical structures
has been extensively studied [3–20] due to its relevance to a wide range of applications such
as offshore wind farms in the renewable energy industry and bridges in the transportation
sector. Studies on the equilibrium scour of slender square structures under different
flow conditions have also been conducted [17,21–23]. However, knowledge on wave-
induced non-equilibrium scour processes around non-slender structures remains limited
due to lack of conclusive data. Non-equilibrium scour is a constantly evolving scour
pattern, as erosion and accretion are not in equilibrium. Various factors contribute to
non-equilibrium scour, including changes in flow velocity, sediment size distribution, and
turbulence intensity. It is commonly observed during transient flow conditions such as
waves, storm-driven floods, or tidal fluctuations. Understanding non-equilibrium scour
is essential for the design and maintenance of infrastructure, as it can lead to significant
alterations in the bathymetry around structures, posing risks to their stability and safety.
Therefore, investigating and predicting non-equilibrium scour processes is crucial for risk
mitigation and the integrity of coastal and hydraulic structures. Recent field investigations
have shown that wave-induced scour around beachfront structures is highly dependent on
the structure’s size and placement within an array [24–26]. Although these investigations
provide insight into the scouring process during extreme overland flooding events, they
do not contribute significantly to the accurate prediction of non-equilibrium scour around
beachfront structures.

Sediment transport processes can be numerically described by an equation set that
simulates the spatial and temporal evolution of a fluid flow carrying sediment as it interacts
with the adjacent mobile bed [27]. Numerical models that simulate sediment transport aim
to predict the overall mass flux and sediment concentration at each point in the domain
with reasonable accuracy. However, the literature review shows that studies investigating
the capability of these models in predicting non-equilibrium scour around non-slender
structures are still lacking. This gap in knowledge motivates the current work.

The present study aims to investigate the morphological changes in a sandy bed when a
transient wave interacts with an emerged non-slender square structure, using a combination
of wave flume experiments and high-fidelity numerical simulations. Additionally, the effect
of structure position on bed evolution was examined by considering two different layouts,
one where the structure was attached to the sidewall and the other where it was positioned
at the centerline. To numerically study the test cases mentioned above, two different
approaches were employed.

The first approach utilized SedWaveFoam, a numerical tool that considers the sediment
layer as a separate phase in addition to air and water phases and solves Reynolds-averaged
Navier–Stokes (RANS) equations. This tool differs from single-phase models that rely
on assumptions of bed/suspended load and bed shear stress [28–30] because it directly
solves the continuity and momentum equations for sediment, water, and air phases [31].
The second approach employed FLOW-3D, which estimates sediment transport using the
quadratic law of bottom shear stress for three-dimensional (3D) turbulent flow and resolves
the flow field using the RANS equations. However, the morphodynamics module of FLOW-
3D is case specific and requires calibration and validation to obtain robust estimations of
bed evolution [32,33].

In this study, a comprehensive comparative analysis was performed to assess the
predictive capabilities of the two different approaches as well as some of their shortcomings
in estimating the non-equilibrium scour around a non-slender emerged square structure
exposed a transient wave. It should be noted that the current version of SedWaveFoam only
supports the k − ε turbulence scheme, whereas FLOW-3D adopts the large eddy simulation
(LES) scheme to simulate the turbulent flow characteristics. Here, the authors regard
the two approaches as different tools, with discussions centered on a broad framework.
The capability of the models was tested for a low Keulegan–Carpenter (KC) number, and
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discussions were based on the non-equilibrium scour characteristics, suspended sediment
concentration, and patterns of sediment deposits in the vicinity of the structure. The present
study advances knowledge in the field of coastal and hydraulic engineering, offering
guidance for scientific community on selecting the most appropriate modeling approach
for similar scenarios. Overall, the effort provides valuable insights that can enhance coastal
resilience in the face of dynamic environmental conditions.

This research builds on the authors’ previous work [34–36], which focused on the
formation and evolution of non-equilibrium scour around square non-slender vertical
structures under solitary wave and/or combined flow (wave and current) actions. The
authors extend their previous work by providing high-fidelity numerical investigations
using a finer mesh and two different layouts to further investigate the underlying physics
of the phenomenon.

2. Physical Modeling

The experiments were carried out using the 25 m long × 1.5 m wide × 1.5 m deep
wave/current flume at Stony Brook University’s Coastal and Hydraulic Engineering Re-
search Laboratory (CHERL). The piston-type wet-back wavemaker had an active wave
absorption system (AWAS) that minimized the effect of wave reflection. To further dampen
the reflected waves, a honeycomb mesh that acted as a passive wave energy absorption
system was placed at the end of the wave flume (Figure 1). A sharp-edged wooden block
with cross-sectional dimensions 0.5 m × 0.5 m was placed on a 0.18 m thick sand layer with
a median grain diameter of d50 = 0.27 mm. The wave paddle was programmed to generate
a solitary wave as described by [37]

η(x, t) = H sech2(k(1 − ct)) (1)

where η is the water surface elevation, c is the wave celerity, t is time and k is the wave
number defined as

√
3H/4h3. The incident wave height (H) at the paddle was 10 cm,

with a period (T) of 3.20 s. The wave propagated over a 0.48 m water depth (h), which
was reduced to 0.30 m on the sandy bed. The flume experiments were conducted for two
layouts: (1) structure attached to the sidewall (side) and (2) structure positioned at the
centerline (center). The KC number used in the experiments is 3.14. While the experiments
were not specifically tailored to replicate a precise real-life condition, the structure and flow
parameters followed the Froude similitude with a λ = 1:40 length scale [17].

In small-scale flume experiments utilizing relatively large structures, blockage effects
may arise, leading to an increase in flow velocity and potentially causing contraction
scour. Various researchers have outlined specific geometric ratios necessary to ensure that
blockage effects on scour depth are minimal [19,38,39]. The distance of the structure from
a wall could impact the findings, leading to accelerated flow and changes in the wake
structure. In potential flow theory, the wall effect is considered negligible when a structure
is located at a distance from the wall equal to its dimension [40]. Therefore, the blockage
ratio is not expected to significantly impact local hydrodynamics in the experiments.

The instantaneous free surface elevation was measured via eight Edinburgh Designs
WG8USB resistive wave gauges (WG) with a sampling frequency of 128 Hz. The velocity
field was captured by three Nortek Vectrino Acoustic Doppler Velocimeters (ADV) with
a sampling rate of 25 Hz. The 3D velocity field was measured at one-third the still water
depth ( h/3) above the sandy bed. The surface of the sand layer was scanned using an
HR-Wallingford HRBP-1070 bed profiler system equipped with a laser probe with an
accuracy of ±0.5 mm. The scanned area measured 2.5 m in length and 1.5 m in width. The
limitations in the maneuverability of the probe arm assembly created a ~2 cm wide blind
zone around the structure, necessitating manual measurement. The surface of the sandy
bed was carefully leveled prior to each test, and the water level was allowed to settle and
be free from disturbances before conducting each trial. The number and plan view of the
instruments are shown in Figure 1. Further details on the experimental procedure can be
found in [36].
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Figure 1. Experimental setup and plan view of WGs and ADVs for (a) side and (b) center layouts.
Yellow circle and gray triangle represent WG and ADV, respectively.

3. Numerical Modeling

As previously mentioned, this study presents a comparative analysis of the scour
formation around the structure, utilizing two high-fidelity numerical models to predict
sediment motions and transport. One model employs multiphase flow physics, while the
other uses conventional bedload/suspended load formulations. Here, a brief description
of each model is presented.

3.1. SedWaveFoam

SedWaveFoam, developed within the OpenFOAM environment, is an open-source Eu-
lerian two-phase model for sediment transport [31]. This model combines the SedFoam [41],
InterFoam [42], and waves2Foam [43] models. The Reynolds-averaged mass conservation
equations for the air (a), water (w), and sediment (s) phases [42,44] are resolved by treating
the air and water as two immiscible fluids, collectively referred to as the fluid-phase ( f ).
The sediment is modeled as a miscible phase in the fluid, resulting in a two-phase flow. To
resolve the interface of the air and water phases, SedWaveFoam uses an interface tracking
scheme [31,42,45]. The mass conservation equations of the fluid and sediment phases are
written as follows:

∂φ f

∂t
+

∂φ f u f
i

∂xi
=

(
∂φa

∂t
+

∂φaua
i

∂xi

)
+

(
∂φw

∂t
+

∂φwuw
i

∂xi

)
= 0 (2)

∂φs

∂t
+

∂φsus
i

∂xi
= 0 (3)

where φa, φw, and φs represent the volumetric concentrations and ua, uw, and us are the
velocities of the air, water, and sediment phases, respectively. The fluid-phase volumetric
concentration and velocity are modelled as φ f = φa + φw and u f = (φaua + φwuw)/φ f ,
respectively. The global mass conservation satisfies φa + φw + φs = 1.

The simplified Reynolds-averaged momentum equations for the two-phase flow are
as follows:

∂ρ f φ
f u f
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+
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f u f
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= −φ f ∂P f
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∂φa
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+
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ij
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∂ρsφsus
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where ρs and ρ f are the densities of sediment and fluid phases, and the density of the
fluid phase is modelled as ρ f = (φaρa + φwρw)/φ f . Here, the densities are adopted as
ρa = 1 kg/m3, ρw = 1000 kg/m3, and ρs = 2650 kg/m3. P f and Ps stand for the fluid
and particle pressures, and the fluid and particle shear stresses are symbolized by the
terms τ

f
ij and τs

ij, respectively. g is the gravitational acceleration and δi3 is the Dirac delta
function. The term σtγs represents the surface tension where σt and γs are the surface
tension coefficient and surface curvature, respectively. The fluid stress, τ

f
ij is modeled

using a two-equation k − ε model [31,45]. The interphase momentum transfer between
fluid–sediment (M f s

i ) and sediment–fluid (Ms f
i ) is a function of drag force and turbulent

suspension [41,46] and follows Newton’s third law (M f s
i = Ms f

i ). The particle pressure,
Ps, and particle shear stress, τs

ij, are modelled as a function of the collisional and frictional
components of the intergranular interactions with the former using the kinetic theory of
granular flow [47]. The reader is kindly referred to [31,41,45,46] for more detail.

3.2. FLOW-3D

FLOW-3D is a computational fluid dynamics (CFD) software package that utilizes
the finite volume method (FVM) to solve the 3D Reynolds-averaged Navier–Stokes equa-
tions [48]. The model employs volume-based techniques for simulation, where the equa-
tions are formulated with area and volume porosity functions, which are essential for the
Fractional Area/Volume Obstacle Representation Method, FAVORTM [49,50], while the free
surface is defined using a volume of fluid (VOF) function [51]. For incompressible fluids,
FLOW-3D utilizes the general mass continuity and momentum equations:

∂

∂xi
(ui Ai)= 0 (6)

∂ui
∂t

+
1

VF

{
uj Aj

∂ui
∂xj

}
= −1

ρ

∂P
∂xi

+ Gi + fi (7)

where i, j = 1, 2, 3 represent the 3D flow field, ui is the fluid velocity, Ai is the fractional
area open to fluid flow, t is time, VF is the fractional volume open to flow, ρ is the fluid
density, P is pressure, Gi is the body acceleration and fi is the viscous acceleration.

The VOF function, F, satisfies the following:

∂F
∂t

+
1

VF

[
∂

∂xi
(FAiui)

]
= FDIF (8)

where

FDIF =
1

VF

[
∂

∂xi

(
νF Ai

∂F
∂xi

)]
(9)

and the diffusion coefficient is νF = σcμ f /ρ. The constant, σc, is referred to as turbulent
Schmidt number, and μ f is the dynamic viscosity of fluid.

The turbulence models implemented in FLOW-3D differ slightly from conventional for-
mulations due to the inclusion of the FAVORTM method in the equations and a generalized
treatment of turbulence production associated with buoyancy forces [48].

Notably, FLOW-3D offers several turbulence model closures, including the two-equation
k − ω, renormalization group (RNG) k − ε, and large eddy simulation (LES) [48,49]. More-
over, the hydrodynamic solver of FLOW-3D is fully coupled with a sediment transport
module that simulates morphological changes resulting from various physical processes,
such as bedload transport, entrainment, and deposition. The standard wall function is
employed to evaluate bed shear stress in 3D turbulent flows, incorporating bed surface
roughness proportional to the median grain size:

ks = croughd50 (10)
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where ks is the Nikuradse roughness of the bed surface, crough is a user-defined coefficient
with default value 2.5, and d50 is the median grain size.

In FLOW-3D, the suspended sediment is modeled as a scalar mass concentration that
is assumed to be uniform across each computational cell and coupled with the density
and viscosity of the fluid cell. To simulate the entrainment of sediment grains, FLOW-3D
employs the equation of [52] to calculate the lift velocity of the entrained sediment grains.

ulift = αnsd0.3∗
(
θ − θ′cr

)1.5

√√√√ ‖g‖d50

(
ρs − ρ f

)
ρ f

(11)

where ulift is the entrainment lift velocity of sediment, α is the entrainment parameter with
a recommended value of 0.018 [52], ns is the vector normal to the bed interface, θ and θcr
are the local and critical Shields parameters given by [53], ‖g‖ is the magnitude of the
gravitational acceleration, ρs and ρ f are the sediment and fluid densities, respectively, and
d∗ is a dimensionless grain diameter given by the following equation:

d∗ = d50

⎡
⎣ρ f

(
ρs − ρ f

)
‖g‖

μ2
f

⎤
⎦

1/3

(12)

The settling velocity of a sediment grain is given as follows [53]:

usettling =
νF
d50

[(
10.362 + 1.049d3∗

)0.5 − 10.36
]

(13)

The bedload transport in each mesh cell can be calculated by three different formulations:
Nielsen [54]

Φ = βNieθ0.5(θ − θ′cr
)

(14)

van Rijn [55]

Φ = βVRd−0.3∗
(

θ

θ′cr
− 1

)2.1
(15)

Meyer-Peter and Müller [56]

Φ = βMPM
(
θ − θ′cr

)1.5 (16)

Here, Φ is the dimensionless bed-load transport rate; βNie, βVR, and βMPM are coeffi-
cients typically taken as 12.0, 0.053, and 8.0, respectively.

The suspended sediment concentration is calculated as follows:

∂cs

∂t
+∇·(uscs) = ∇·∇(Dcs) (17)

where cs is the suspended sediment volume concentration, D is the diffusivity, us is the
suspended sediment velocity calculated as us = u + usettlingcs, u being the velocity of the
fluid–sediment mixture.

3.3. Implementation

To accurately recreate the water surface variations recorded at WG1, the SedWaveFoam
model requires a sufficient number of harmonics, defined by their amplitudes, phases, and
periods. To generate the input boundary conditions, the incident wave signal recorded at
WG1 was transformed using the fast Fourier transform (FFT) algorithm, and its harmonics
were used. The rigid boundaries of the numerical wave flume (NWF) were defined as
no-slip/wall boundaries. To prevent wave reflection from the landward end, an absorption
boundary condition was applied at the outlet, where an inward corrective velocity was
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generated to absorb the incident wave. The depth of the water, gravitational acceleration,
and the free surface height of the border were factors considered in determining this
velocity [57,58].

The incident wave time series measured at WG1 was directly applied at the inlet of the
FLOW-3D NWF, with the flume bottom, sidewalls, and structure defined as wall/no-slip
boundaries. The NWF had a wave absorbing (sponge) layer, where an artificial linear
damping force was implemented to dissipate wave motion [48]. The wave-absorbing
boundary was enforced by selecting an outflow boundary condition at the outlet.

The index of agreement (IA) metric [59] was employed to measure the accuracy of
the simulations. IA accounts for phase disagreements, where IA = 1 and IA = 0 indicate
perfect agreement and disagreement, respectively. To that end, the mesh was refined until
the calculated IA for the measured versus computed horizontal velocity components, u,
remained relatively unchanged (Figure 2). Mesh independence was achieved at a minimum
cell size of 2.5 mm for both models. The center layout yielded the same results as the
side layout.

Figure 2. Grid sensitivity analyses based on the horizontal velocity component, u, captured by ADV1
and ADV3 for side layout: (a) SedWaveFoam; (b) FLOW-3D.

Figure 3 illustrates the final mesh structure utilized in the NWF. The largest cell size
on the x − y plane was 25 mm, which was gradually refined to a smaller cell size near the
structure. The optimal cell size of 2.5 mm, as determined from grid sensitivity analyses,
was employed in the refinement area marked by a dashed rectangle (Figure 3). Moreover,
the region spanning from z = −0.33 m to z = −0.30 m underwent further refinement from
5 mm to 0.5 mm to achieve a more precise prediction of scouring.

To ensure model stability and convergence, the simulations used an adaptive time step
with a maximum Courant number of 0.2. The model outputs had a sampling rate of 25 Hz,
consistent with that of the ADVs. The total number of grid points in the FLOW-3D NWF
for the side layout was ~7.2 × 106 and the clock time for a 15 s simulation was 102 h using
8 cores of a 12th Gen Intel Core i9-12900KF processor. The total number of grid points for
the center layout, on the other hand, was ~17.4 × 106, with 130 h clock time. Even though
the same variable mesh was adopted in both models in the vicinity of the structure, the
SedWaveFoam NWF required longer wave generation and absorption zones for numerical
stability. This resulted in an increase in the total number of grid points to ~22.5 × 106

and ~44.2 × 106 for the side and center layouts, respectively. The clock time of the 15 s
SedWaveFoam simulation was 300 h for the side layout and 624 h for the center layout on
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Blueshark High Performance Computing Cluster at Florida Tech with 10 × 2 × Hexa-Core
Intel Xeon X5650 @ 2.67GHz CPUs (120 cores). (Intel, Santa Clara, CA, USA).

 

Figure 3. Final mesh of NWF for both models. (a) side; (b) center layouts on x − y plane; (c) both
layouts on x − z plane. All units are in mm. Not to scale.

3.4. Validation

The accuracy of the numerical models is evaluated in both time and frequency domains.
The wave gauges and ADVs were replicated in the NWF as line probes at the same locations
as those in the experiments.

Figure 4a,b illustrates the temporal variations of the free surface elevation (η) at three
selected wave gauge positions—WG1, WG2, WG3, and WG4 for the side layout and WG1,
WG2, WG3, and WG7 for the center layout. WG1 is the wave gauge closest to the wave
maker in both layouts, illustrating the time series profile of the incident wave generated by
the wave maker. The height of the solitary wave measured by WG1 is 0.097 m. The gauges
WG2 and WG3 measure the surface fluctuations of the channeled flows in both layouts,
and WG4 and WG7 are the gauges that are attached to the structure’s seaside face for the
side and center layouts, respectively. The IA values for η range between 0.9–1.0, indicating
a good agreement (Table 1).

The streamwise (u), spanwise (v), and vertical (w) velocity components at the three
ADV locations are shown in Figure 4c,d. The raw velocity data were filtered to remove the
noise resulting from potential air entrainment and suspended sediment. The noise was
filtered based on a correlation ≥ 75% and signal-to-noise ratio (SNR) ≥ 10–15. Compared
to the free surface elevations, the velocity field has lower IA values, especially for spanwise
and vertical velocity components (Table 1). These discrepancies are attributed to the
residual noise in the measured data. The lowest IAs are related to the vertical velocity
component, w, which is considerably small compared to the other two velocity components.
Overall, a satisfactory performance was achieved.
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Figure 4. Comparison of measured (gray circles) and computed free surface elevations (η) and velocity
components: (a–c) side; (b–d) center layout. Red and black solid lines represent SedWaveFoam and
FLOW-3D results, respectively.

Table 1. Index of agreement (IA) for free surface elevations and velocity components.

WG1 WG2 WG3 WG4 WG5 WG6 WG7 WG8

SedWaveFoam
Side 0.974 0.980 0.978 0.977 0.966 0.959 0.951 0.944

Center 0.971 0.975 0.977 0.973 0.964 0.953 0.949 0.944

FLOW-3D
Side 0.998 0.985 0.982 0.969 0.988 0.976 0.982 0.977

Center 0.989 0.979 0.978 0.965 0.986 0.902 0.978 0.963

ADV1 ADV2 ADV3

u v w u v w u v w

SedWaveFoam
Side 0.912 0.685 0.661 0.925 0.784 0.545 0.894 0.681 0.554

Center 0.923 0.798 0.653 0.949 0.726 0.671 0.905 0.714 0.608

FLOW-3D
Side 0.937 0.738 0.646 0.934 0.751 0.671 0.909 0.686 0.589

Center 0.972 0.773 0.642 0.958 0.779 0.701 0.927 0.724 0.614

3.5. Model Calibration

The sediment transport module of FLOW-3D is case specific, which requires careful
calibration and validation through several parameters such as the entrainment parameter,
αi; bedload transport model type; and turbulence scheme. The following subsections
provide an in-depth calibration analysis using the abovementioned parameters.

3.5.1. Entrainment Parameter

Wake vortices are the main driving mechanism of scouring around structures under
wave action, where suspended sediment transport is identified as the major transport
mode [11,12,17,35,36,60]. Therefore, accurately replicating the suspended sediment concen-
tration in the FLOW-3D model is crucial. To achieve reliable results, it is imperative to adjust
the lifting velocity (Equation (11)), which is a function of the entrainment parameter (α).
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Figure 5 shows the comparisons of the measured and predicted bed elevation (S)
using three different entrainment parameters ranging from α = 0.018 (default) to α = 0.18
at a particular time instant (t = 15 s) as an example. The predicted bed elevations for
both layouts did not align well with the experimental results when the recommended
value of the entrainment parameter, α = 0.018, was employed. Of the parameters tested,
α = 0.18 was found to provide the best outcome based on the comparison of the scour and
deposition patterns as well as the maximum scour depths for both layouts (Figure 5).

 

Figure 5. Plan view of sandy bed at t = 15 s. Upper panels: side layout. Lower panels: center layout.
The figure compares the measured and predicted bed elevations using three different α values.

3.5.2. Bedload Transport Model

FLOW-3D considers a packed bed as an erodible solid object, with its morphological
changes governed by the conservation of sediment mass. Bedload transport is described as
sediment moving laterally along the channel without being suspended. The model com-
putes bedload transport in each mesh cell using equations from Nielsen [54], van Rijn [55],
or Meyer-Peter and Müller [56]. These three equations were compared to determine the
most applicable approach for the default roughness coefficient, crough = ks/d50 = 2.5,
where d50 = 0.27 mm (Figure 6). The Nielsen equation produced the best results, with the
scour and deposition trends closely matching the experimental data. The predictions were
consistent with the center layout.

 

Figure 6. Plan view of sandy bed at t = 15 s. (a) Measurement; FLOW-3D results obtained using
equations of (b) Nielsen; (c) van Rjin; (d) Meyer-Peter–Müller.
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3.5.3. Turbulence Scheme

The simulations were carried out using four different turbulence schemes: (i) the two-
equation k − ω model [61–63]—suitable for modeling free shear flows with streamwise
pressure gradients like spreading jets, wakes, and plumes; (ii) the two-equation k − ε

model [64]—dynamically calculates the turbulent mixing length and thus useful for a wide
range of flows [65]; (iii) the renormalized group (RNG) k − ε model [66,67]—extends the
capabilities of the standard k − ε model and provide a better coverage for transitionally
turbulent flows; (iv) the LES model—resolves most of the turbulent fluctuations directly,
thus requiring much more computational resources compared to the two-equation models.
Figure 7 highlights the implication of these four turbulence schemes in terms of scour and
depositions in the vicinity of the structure for the side layout.

 

Figure 7. Plan view of sandy bed at t = 15 s. (a) Measurement; FLOW-3D results for different
turbulence schemes: (b) LES; (c) RNG; (d) k − ε; (e) k − ω.

The LES scheme predicted both seaside and leeside non-equilibrium scour reasonably
well, while the RNG, k − ε, and k − ω schemes struggled to effectively predict the depo-
sitions around the structure. Instead, these approaches computed large scour footprints
on the leeside of the structure that extended along a ∼ 45

◦
line towards the center of the

NWF—a phenomenon that was not observed during the experiments. Similar results were
obtained for the center layout, where the LES scheme provided the best result with respect
to non-equilibrium scour prediction.

In summary, the calibration analysis indicates that FLOW-3D produced the best bed
elevation predictions with αi = 0.18, the Nielsen [54] bed load transport model, and LES as
the turbulence scheme.

4. Results and Discussion

A comparative analysis of the SedWaveFoam and FLOW-3D performances is presented
in the following.

In Figure 8, we observe the spatial distributions of the instantaneous surface horizontal
velocity, U =

√
u2 + v2, and the vertical velocity component, w, at two different depths:

h/3 m above the sandy bed and on the surface of the sandy bed. The most intense vortex
motion is observed between t = 7 s and t = 8 s, shortly after the wave impinges on the
structure. The spatial distributions of U and w simulated by both models are quite similar
for these time instants. The highest surface horizontal velocities are observed in the area
near the vortex cores, which become less intense as the water level rises under the crest of
the solitary wave.

Both the surface horizontal and vertical velocities above the bed increase as the wake
vortex moves along its spiral trajectory (Figure 8a,c) for both layouts. However, the same
trend is not observed on the bed surface, where the magnitude of these velocities does
not change significantly with respect to time (Figure 8b,d). These findings suggest that
changes in vortex intensity do not necessarily have an impact on sediment suspension
above a certain elevation from the bed.
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Figure 8. Spatial distributions of U and w at t = 7 s and t = 8 s, extracted from (a,c) h/3 m above bed;
(b,d) bed surface. (a,b) and (c,d) are SedWaveFoam and FLOW-3D results, respectively. Upper two
panels: side layout. Lower two panels: center layout.

Figure 9 depicts the spatial distributions of the instantaneous surface horizontal ve-
locity, U, and the out-of-plane vorticity, ωz, extracted at the two different depths—h/3 m
above the sandy bed and on the bed surface—at t = 7 s and t = 8 s. The spatial distri-
bution of ωz simulated by both models is very similar, where the intensity ranges from
−30 Hz to 30 Hz. The clockwise (CW) and counterclockwise (CCW) spinning vorticities
at t = 8 s—marked with hot and cold colors, respectively—are the vortex doublets (i.e.,
ωza and ωza′ ; ωzb and ωzb′ ). For the center layout, a symmetric pattern of vortex pairs
is formed on both seaside and leeside, with the structure’s centerline being the line of
symmetry. The wake vortices, ωzb and ωzc, are found to be larger and more intense than
the out-of-plane vortices, ωza and ωzd, that occur at the seaside of the structure. The CCW
rotating out-of-plane vortices follow a spiral trajectory for both layouts. On the other hand,
the formation of CW rotating vortices, ωz′ , is attributed to the offshore-directed flow. These
vortices adopt a path that is close to a 45◦ line.
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Figure 9. Spatial distributions of U and ωz at t = 7 s and t = 8 s, extracted from (a,c) h/3 m above
bed; (b,d) bed surface. (a,b) and (c,d) are SedWaveFoam and FLOW-3D results, respectively. Upper
two panels: side layout. Lower two panels: center layout.

Figures 10 and 11 present the spatiotemporal variation in bed elevation and sediment
volumetric concentration ( φs) in the vicinity of the structure for both layouts. Here, the
relative position of the bed within each cell is obtained by taking φs as 0.5 based on VOF
method (Figures 10 and 11—upper panels). The values of φs range between 0 and 0.6 since
the porosity of the sediment (i.e., the fluid fraction) is 0.4 (Figures 10 and 11—lower panels).
As SedWaveFoam solves for the three phases, it treats sediment as a single separate phase
in addition to air and water phases. Therefore, the instantaneous “spikes” (S > 0) in
Figures 10a and 11a (upper panels) represent suspended sediment, which is included in
the predicted bed elevation. FLOW-3D, on the other hand, employs the quadratic law
of bottom shear stress and Equations (14)–(17) to estimate the bed load and suspended
sediment concentration and generates separate outputs for bed elevation and sediment
transport modes. Consequently, the FLOW-3D output does not reflect any instantaneous
“spikes” (Figures 10b and 11b).
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Both models predict that soon after the wave impingement on the structure, a signifi-
cant amount of sediment is suspended near the edges, followed by the formation of scour
holes. The highest suspended sediment concentration is confined within the lowest 30%
of the water column (i.e., z = −0.30 m and z = −0.22 m) around the cores of the wake
vortices. This can be attributed to the underprediction of the vortex-induced near-bed
vertical velocity (wn) by both models, which is unable to carry the suspended sediment
further upward towards the free surface. Furthermore, between t = 6 s and t = 8 s, the
dominant sediment transport mode is the suspended load, which is the determining factor
denoting the deposition and/or erosion patterns.

 

Figure 10. Bed elevation and suspended sediment concentration ( φs) in the vicinity of the structure
at various time instants for side layout. (a) SedWaveFoam results; (b) FLOW-3D results.
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Figure 11. Bed elevation and suspended sediment concentration ( φs) in the vicinity of the structure
at various time instants for center layout. (a) SedWaveFoam results; (b) FLOW-3D results.

The suspended sediment concentration in the vicinity of the structure is relatively
lower when the structure is placed in the center of the NWF (Figures 10b and 11b) owing
to a less intense near-bed vorticity for the center layout (Figure 9b,d) compared to that of
the side layout. Accordingly, the scour holes around the structure’s edges are relatively
shallower for the center layout, consistently predicted by two models (Figures 10a and 11a).
The difference in the scour hole depths between the two layouts is more distinctive in
the FLOW-3D predictions, possibly because the suspended sediment concentration is
considerably lower than that predicted by SedWaveFoam.

The instantaneous suspended sediment concentrations at the leeside edge of the
structure simulated by SedWaveFoam and FLOW-3D follow a similar trend for both layouts.
The sediment that is captured by the out-of-plane vortex is carried up to z = −0.22 m
and z = −0.24 m for the side and center layouts, respectively. On the other hand, the
instantaneous suspended sediment concentrations at the seaside edge of the structure
simulated by SedWaveFoam follow a different trend than that of FLOW-3D. The difference
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can be attributed to the intensity of the wake vortex simulated by both models. In particular,
for the center layout, the suspended sediment concentration simulated by SedWaveFoam is
relatively higher, where it is carried up to z = −0.28 m.

Figure 12—upper panels depict the trajectories of the primary vortices and the plan
view of sandy bed at t = 15 s for both layouts. The changes in the sandy bed morphology
occur primarily along the vortex trajectories. The sediment mobilized by the near-bed
vertical velocity (wn) is entrapped by out-of-plane and wake vortices. The less intense
out-of-plane vortices transport and deposit the sediment in the vicinity of the structure.
On the other hand, as the wake vortices drift further seaward, they can no longer sustain
their energy and start to dissipate, leaving sediment deposits along their trajectories. When
the structure is placed on the side of the wave flume, the path of the out-of-plane vortices
simulated by SedWaveFoam is quite similar to that of experiments (i.e., the dotted arrows),
while the out-of-plane vortex trajectory simulated by FLOW-3D slightly differs from the
measurements. The traces of the sediment deposits captured by the wake vortex and
simulated by SedWaveFoam are oriented ~35 degrees (Figure 12a) with respect to the
incident wave direction, while the wake vortex simulated by FLOW-3D travels along
a nearly 45-degree trajectory (Figure 12b), consistent with the observations marked by
the dotted arrows. For the center layout, the trajectory of the out-of-plane vortex pair
bends towards the structure’s seaside wall (Figure 12e), forming a thin layer of sediment
deposit along the trajectory. On the other hand, the wake vortex pair follows a spiral path
(Figure 12f), forming scour holes along the leeside edges, and depositing sediment along
its trajectory. The vortex pair trajectories simulated by both models are quite similar to the
observations. Contrary to the laboratory observations, SedWaveFoam predicts additional
sediment deposits along the trajectory of the wake vortices for both layouts (Figure 12c,g).
This is most likely due to the poor performance of the k − ε model, which underpredicts
wn. For the side layout, the predicted scour hole depth is lower than the measured value,
whereas the model predicts deeper scour holes around the edges of the structure for the
center layout. Both SedWaveFoam and FLOW-3D underestimate the depth of the scour
holes at the structure’s edges for the side layout, whereas they overpredict the scour holes
for the center layout (Figure 12d,h). Overall, it is seen that FLOW-3D performs better than
SedWaveFoam at predicting the final bed elevation. This finding is mainly attributed to the
LES turbulence scheme used in FLOW-3D, which assists the model in resolving smaller
eddies that may still contribute to bed evolution.

 

Figure 12. Plan view of sandy bed at t = 15 s. Upper panels: side layout. Lower panels: center layout.
(a,e) SedWaveFoam results; (b,f) FLOW-3D results; (c,g) difference between SedWaveFoam results
and measurement; (d,h) difference between FLOW-3D results and measurement.
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The instantaneous bed elevation along the vortex trajectories at t = 15 s, extracted from
the measured final bed elevation, for both seaside and leeside of the structure is plotted
in Figure 13 for both layouts. The inconsistencies between the predicted and actual bed
elevations, Δz, are calculated by subtracting the actual bed elevation from those simulated
by the two models. The shaded panels in Figure 13 present Δz, where the dashed red and
black lines represent the deviation of the SedWaveFoam and FLOW-3D simulations from
the measurements, respectively. The scour induced by both out-of-plane and wake vortices
is followed by areas of mild deposition along the vortex trajectories. The vortex effect on the
bottom is inferred by comparing the scour depth for both layouts. The near-bed vorticity
is relatively higher for the side layout (Figure 9), leading to deeper scour holes both at
the leeside and seaside of the structure. SedWaveFoam slightly overestimates deposits
along vortex trajectories for both layouts. FLOW-3D, on the other hand, performs better
in predicting deposits beneath the vortex paths at the structure’s seaside for both layouts;
however, the deposits towards the structure’s leeside are underestimated for the side layout.
Both models fail to accurately predict the vortex-induced scour, which is most noticeable at
the structure’s seaside for the side layout.

 

Figure 13. Elevation of sandy bed along vortex trajectories at seaside and leeside of the structure at
t = 15 s. Upper panels: side layout. Lower panels: center layout. Gray, red, and black lines represent
measurement, SedWaveFoam, and FLOW-3D results, respectively.

The temporal evolution of the maximum scour depth on the seaside and leeside of
the structure is shown in Figure 14, where the measured maximum scour at t = 15 s is
denoted by “X”. The scour holes generated by the wave impingement are backfilled after
the wave passes the structure and the flow climate gets milder. The backfilling is more
prominent in SedWaveFoam results, where the initial scour depth is considerably reduced
between t = 7 s and t = 8 s. The scour depth on the seaside is relatively constant until
t = 13 s before it undergoes a sudden increase. The scour depth then remains constant,
implying that stability is reached. On the other hand, the scour hole formed at the leeside
of the structure is disrupted at t = 10.5 s both for the side and center layout, where an
increase in scour depth is followed by abrupt backfilling. This is probably associated with
the settling of sand that was previously suspended by the strong wake vortices during
wave impingement. FLOW-3D simulations do not reflect the backfilling of the initially
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formed scour. The scour depth reaches its maximum depth at t = 8 s for both layouts and
does not show any variation until t = 15 s.

 

Figure 14. Temporal evolution of maximum scour depth at seaside and leeside of the structure. Upper
panels: side layout. Lower panels: center layout. Red and black lines represent SedWaveFoam and
FLOW-3D results, respectively. X represents the measured maximum scour depth.

SedWaveFoam manages to capture the backfilling process that is observed during the
experiments after the wave impingement and predicts the maximum scour depth with
reasonable accuracy. FLOW-3D, on the other hand, performs poorly and fails to accurately
predict the maximum scour depth at t = 15 s. Overall, SedWaveFoam performs better in
capturing the temporal evolution of the maximum scour depth for both layouts.

The cross-sectional view of sandy bed along two lines, i.e., line A–A, and D–D, at
t = 15 s is given in Figure 15. The cross-sections are taken 3 cm away from the structure for
both layouts. SedWaveFoam underestimates the seaside and leeside scour depths for the
side layout and predicts depositions in the vicinity of the structure, which are not observed
in the experiments for both layouts. The disparity seen between the measurement and Sed-
WaveFoam results is most likely due to k − ε model, which inherently underestimates the
intensity of the vortex in the case of adverse pressure caused by flow blockage [61,68–70].
These vortices are unlikely to carry the trapped sediment away from the structure, re-
sulting in the depositions depicted in Figure 15. Compared to SedWaveFoam, FLOW-3D
demonstrates a better performance in predicting the cross-sectional bed evolution. For
both layouts, the model predicts no depositions near the structure, while the scour depth
is slightly underpredicted for the side layout. Both models overestimate the scour depth
for the center layout. This is attributed to the predicted near-bed vorticities, which are
relatively higher compared to the experiments.
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Figure 15. Cross-sectional view of sandy bed along line A–A and D–D at t = 15 s: (a) side layout;
(b) center layout. Gray, red, and black solid lines represent measurement, SedWaveFoam, and
FLOW-3D results, respectively. Gray dashed line represents the structure.

5. Conclusions

The present study presents a thorough analysis of the accuracy of two different ap-
proaches in estimating the non-equilibrium scour around a non-slender structure exposed
to a transient wave as well as a detailed description of the scouring and deposition pro-
cesses based on laboratory observations and numerical simulations. The first numerical
method treats the sediment layer as a separate phase and directly solves continuity and
momentum equations for the sediment, water, and air phases by implementing the k − ε

turbulence scheme. The second numerical approach estimates sediment transport using
conventional bedload and suspended load methods where the quadratic law of bottom
shear stress for 3D turbulent flow is assumed and the LES scheme is utilized.

The most intense vortex motion is seen immediately after the wave impinges on the
structure. The area around the vortex cores has the highest surface horizontal velocities,
which decrease in intensity as water depth increases. For both layouts, the surface hori-
zontal and vertical velocities increase as the wake vortex moves along its spiral trajectory.
The same pattern is not seen near the sandy bed, where the magnitude of these velocities
does not vary dramatically over time. The wake vortices are larger and more intense than
the out-of-plane vortices that form at the structure’s seaside. The predicted suspended
sediment concentration is mostly confined between z = −0.30 m and z = −0.22 m, which
is attributed to the underestimation of vortex-induced near-bed vertical velocities by both
SedWaveFoam and FLOW-3D. It is found that the suspended sediment concentration in
the vicinity of the structure is relatively lower when the structure is placed in the center of
the NWF. This is expected given that the near-bed vorticity magnitudes of the vortex pairs
in the center layout are smaller than those in the side layout. As a result, the scour around
the structure’s edges is deeper when the structure is placed on the side of the NWF. Sed-
WaveFoam overestimates the deposits along vortex trajectories for both layouts, whereas
FLOW-3D satisfactorily predicts scour and depositions beneath vortex paths. When the
wave passes the structure and the flow climate becomes milder, the scour holes caused by
the wave impingement are backfilled. SedWaveFoam can estimate the maximum scour
depth and capture this backfilling. FLOW-3D results, on the other hand, do not reflect the
backfilling that is seen during the experiments and the model fails to accurately predict
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the maximum scour depth. SedWaveFoam results indicate noticeable depositions along
the cross-sections taken 3 cm away from the structure. These depositions are not observed
in the experiments for both layouts. Both SedWaveFoam and FLOW-3D underpredict the
scour depth for the side layout and overestimate the scour depth for the center layout.

No clear-cut case can be made for the advantages of utilizing any of the two different
approaches based on the available evidence because the capabilities of SedWaveFoam and
FLOW-3D in predicting the non-equilibrium scour for a low KC number vary greatly. Each
model has its pros and cons, which were covered in detail in the preceding sections, and
the results discussed here do not support the use of one model over another. However, the
unwanted depositions in the vicinity of the structure and along vortex trajectories simulated
by SedWaveFoam suggest that incorporating LES into SedWaveFoam could be a viable
approach for future model improvement. On the other hand, the two equation turbulence
schemes embedded in FLOW-3D fail to procure reliable results regarding the evolution
of the sandy bed and the LES scheme is strongly encouraged to reach more accurate
results. Unlike SedWaveFoam, FLOW-3D requires careful calibration of the entrainment
parameter for each test case to properly estimate the suspended sediment concentration and
backfilling, which shows that the model is case specific and should be used with caution.

The results of this study are only applicable to the flow conditions, structure size, and
placements considered. For definitive conclusions addressing the scour around non-slender
square structures under transient wave conditions, a more thorough investigation including
a wider variety of flow conditions, structure dimensions, and layouts is required.

Author Contributions: Conceptualization, D.V.S., E.S. and A.F.; Methodology, D.V.S. and E.S.;
Software, D.V.S. and T.-J.H.; Investigation, D.V.S.; Resources, D.V.S. and A.F.; Data curation, D.V.S. and
E.S.; Writing—original draft, D.V.S.; Writing—review & editing, E.S., A.F. and T.-J.H.; Visualization,
D.V.S. and E.S. All authors have read and agreed to the published version of the manuscript.

Funding: This material is based upon work supported by the National Science Foundation under
grant no. CNS 09-23050. The authors acknowledge funding from the National Sciences Foundation
through grants CMMI-2050798 and CMMI-2050854.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Acknowledgments: FLOW-3D HYDRO software was made available through the FLOW-3D Aca-
demic Program.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Larsen, B.E.; Fuhrman, D.R.; Baykal, C.; Sumer, B.M. Tsunami-induced scour around monopile foundations. Coast. Eng. 2017, 129,
36–49. [CrossRef]

2. Williams, I.A.; Fuhrman, D.R. Numerical simulation of tsunami-scale wave boundary layers. Coast. Eng. 2016, 110, 17–31.
[CrossRef]

3. Breusers, H.N.C.; Nicollet, G.; Shen, H. Local scour around cylindrical piers. J. Hydraul. Res. 1977, 15, 211–252. [CrossRef]
4. Carreiras, J.; Larroudé, P.; Seabra-Santos, F.; Mory, M. Wave scour around piles. In Proceedings of the 27th International

Conference on Coastal Engineering 2000, Sydney, Australia, 16–21 July 2000; pp. 1860–1870.
5. Carreiras, J.; Carmo, J.D.; Seabra-Santos, F. Settlement of vertical piles exposed to waves. Coast. Eng. 2003, 47, 355–365. [CrossRef]
6. Dey, S.; Sumer, B.M.; Fredsøe, J. Control of scour at vertical circular piles under waves and current. J. Hydraul. Eng. 2006, 132,

270–279. [CrossRef]
7. Dey, S.; Helkjær, A.; Sumer, B.M.; Fredsøe, J. Scour at vertical piles in sand-clay mixtures under waves. J. Waterw. Port Coast.

Ocean Eng. 2011, 137, 324–331. [CrossRef]
8. Kobayashi, T. 3-D Analysis of flow around a vertical cylinder on a scoured bed. In Proceedings of the 23rd International

Conference on Coastal Engineering, Venice, Italy, 4–9 October 1992; pp. 3482–3495.
9. Kobayashi, T.; Oda, K. Experimental study on developing process of local scour around a vertical cylinder. In Proceedings of the

24th International Conference on Coastal Engineering, Kobe, Japan, 23 October 1994; pp. 1284–1297. [CrossRef]

125



J. Mar. Sci. Eng. 2024, 12, 946

10. Raaijmakers, T.; Rudolph, D. Time-dependent scour development under combined current and waves conditions-laboratory
experiments with online monitoring technique. In Proceedings of the 4th International Conference on Scour and Erosion, ICSE,
Tokyo, Japan, 5–7 November 2008; pp. 152–161.

11. Sumer, B.M.; Christiansen, N.; Fredsoe, J. Time scale of scour around a vertical pile. In Proceedings of the ISOPE International
Ocean and Polar Engineering Conference, San Francisco, CA, USA, 14–19 June 1992; p. ISOPE-I-92-259.

12. Sumer, B.M.; Fredsøe, J.; Christiansen, N. Scour around vertical pile in waves. J. Waterw. Port Coast. Ocean Eng. 1992, 118, 15–31.
[CrossRef]

13. Sumer, B.M.; Christiansen, N.; Fredsøe, J. Influence of cross section on wave scour around piles. J. Waterw. Port Coast. Ocean Eng.
1993, 119, 477–495. [CrossRef]

14. Sumer, B.M.; Fredsøe, J.; Christiansen, N.; Hansen, S.B. Bed shear stress and scour around coastal structures. In Proceedings of
the 24th International Conference on Coastal Engineering, Kobe, Japan, 23 October 1994; pp. 1595–1609.

15. Sumer, B.M.; Fredsøe, J. Scour around pile in combined waves and current. J. Hydraul. Eng. 2001, 127, 403–411. [CrossRef]
16. Sumer, B.M.; Fredsøe, J. Time scale of scour around a large vertical cylinder in waves. In Proceedings of the ISOPE International

Ocean and Polar Engineering Conference, Kitakyushu, Japan, 26–31 May 2002; p. ISOPE-I-02-143.
17. Sumer, B.M.; Fredsøe, J. The mechanics of scour in the marine environment. In Advanced Series on Ocean Engineering; Word

Scientific: Singapore, 2002.
18. Sumer, B.M. Mathematical modelling of scour: A review. J. Hydraul. Res. 2007, 45, 723–735. [CrossRef]
19. Whitehouse, R. Scour at Marine Structures: A Manual for Practical Applications; Thomas Telford: London, UK, 1998.
20. Zanke, U.C.; Hsu, T.-W.; Roland, A.; Link, O.; Diab, R. Equilibrium scour depths around piles in noncohesive sediments under

currents and waves. Coast. Eng. 2011, 58, 986–991. [CrossRef]
21. Rance, P.J. The Potential for Scour around Large Objects, One-Day Seminar of Scour Prevention Techniques around Offshore Structures;

Society for Underwater Technology: London, UK, 1980; p. 41.
22. Nakamura, T.; Kuramitsu, Y.; Mizutani, N. Tsunami scour around a square structure. Coast. Eng. J. 2008, 50, 209–246. [CrossRef]
23. McGovern, D.; Todd, D.; Rossetto, T.; Whitehouse, R.; Monaghan, J.; Gomes, E. Experimental observations of tsunami induced

scour at onshore structures. Coast. Eng. 2019, 152, 103505. [CrossRef]
24. Kato, F.; Sato, S.; Yeh, H. Large-scale experiment on dynamic response of sand bed around a cylinder due to tsunami. In

Proceedings of the 27th International Conference on Coastal Engineering 2000, Sydney, Australia, 16–21 July 2000; pp. 1848–1859.
25. Mehrzad, S.; Nistor, I.; Rennie, C.D. Experimental modeling of supercritical flows induced erosion around structures. In

Proceedings of the 6th International Conference Application of Physical Modeling in Coastal and Port Engineering and Science,
Ottawa, ON, Canada, 10–13 May 2016; pp. 1–13.

26. Briganti, R.; Musumeci, R.E.; van der Meer, J.; Romano, A.; Stancanelli, L.M.; Kudella, M.; Akbar, R.; Mukhdiar, R.; Altomare, C.;
Suzuki, T.; et al. Wave overtopping at near-vertical seawalls: Influence of foreshore evolution during storms. Ocean Eng. 2022,
261, 112024. [CrossRef]

27. Slingerland, R.L. Numerical models and simulation of sediment transport and deposition. In Sedimentology: Encyclopedia of Earth
Science; Springer: Berlin/Heidelberg, Germany, 1978.

28. Henderson, S.M.; Allen, J.S.; Newberger, P.A. Nearshore sandbar migration predicted by an eddy-diffusive boundary layer model.
J. Geophys. Res. Ocean. 2004, 109, C06024. [CrossRef]

29. Kranenburg, W.M.; Ribberink, J.S.; Uittenbogaard, R.E.; Hulscher, S.J.M.H. Net currents in the wave bottom boundary layer: On
waveshape streaming and progressive wave streaming. J. Geophys. Res. Earth Surf. 2012, 117, F03005. [CrossRef]

30. Kranenburg, W.M.; Ribberink, J.S.; Schretlen, J.J.L.M.; Uittenbogaard, R.E. Sand transport beneath waves: The role of progressive
wave streaming and other free surface effects. J. Geophys. Res. Earth Surf. 2013, 118, 122–139. [CrossRef]

31. Kim, Y.; Cheng, Z.; Hsu, T.; Chauchat, J. A Numerical study of sheet flow under monochromatic nonbreaking waves using a free
surface resolving eulerian two-phase flow model. J. Geophys. Res. Ocean. 2018, 123, 4693–4719. [CrossRef]

32. Fox, B.; Feurich, R. CFD analysis of local scour at bridge piers. In Proceedings of the Federal Interagency Sedimentation and
Hydrologic Modeling SEDHYD Conference, Reno, NV, USA, 24–28 June 2019; pp. 24–28.

33. Le Quere, P.A.; Nistor, I.; Mohammadian, A. Numerical modeling of tsunami-induced scouring around a square column:
Performance assessment of FLOW-3D and Delft3D. J. Coast. Res. 2020, 36, 1278–1291. [CrossRef]

34. Sogut, E.; Farhadzadeh, A. Scouring and loading of idealized beachfront building during overland flooding. Coast. Eng. Proc.
2020, 28, 7. [CrossRef]

35. Sogut, E.; Hsu, T.-J.; Farhadzadeh, A. Experimental and numerical investigations of solitary wave-induced non-equilibrium scour
around structure of square cross-section on sandy berm. Coast. Eng. 2022, 173, 104091. [CrossRef]

36. Sogut, E.; Sogut, D.V.; Farhadzadeh, A. Experimental study of bed evolution around a non-slender square structure under
combined solitary wave and steady current actions. Ocean Eng. 2022, 266, 112792. [CrossRef]

37. Munk, W.H. The solitary wave theory and its application to surf problems. Ann. N. Y. Acad. Sci. 1949, 51, 376–424. [CrossRef]
38. Chiew, Y.M.; Melville, B.W. Local scour around bridge piers. J. Hydraul. Res. 1987, 25, 15–26. [CrossRef]
39. Ballio, F.; Teruzzi, A.; Radice, A. Constriction effects in clear-water scour at abutments. J. Hydraul. Eng. 2009, 135, 140–145.

[CrossRef]
40. Sumer, B.M. Hydrodynamics around Cylindrical Structures; World Scientific: Singapore, 2006; Volume 26.

126



J. Mar. Sci. Eng. 2024, 12, 946

41. Chauchat, J.; Cheng, Z.; Nagel, T.; Bonamy, C.; Hsu, T.-J. SedFoam-2.0: A 3-D two-phase flow numerical model for sediment
transport. Geosci. Model Dev. 2017, 10, 4367–4392. [CrossRef]
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Abstract: This study employs the XBeach surfbeat model (XBSB) to explore the effects of vegetation
on wave attenuation and dune erosion in a case study of Mexico Beach during Hurricane Michael.
The XBSB model was validated against laboratory experiments of wave-induced dune erosion and
wave attenuation by vegetation. In the case study of vegetation on dunes in Mexico Beach during
Hurricane Michael, different vegetation drag coefficients were evaluated to investigate the effects
of vegetation on wave attenuation and dune erosion. LiDAR data of dune profiles before and
after Hurricane Michael were used for model validation. The findings reveal that vegetation on
dunes significantly affects wave attenuation and dune erosion. Under vegetated conditions, as the
vegetation drag coefficient value increases, wave attenuation also increases, leading to a reduction of
dune erosion. An increase in vegetation density enhances wave attenuation in the vegetated area,
including reductions in significant wave height and flow velocity. However, the rate of change in
attenuation decreases as the vegetation density increases. Through simulations under regular wave
condition on Mexico Beach, an optimal vegetation density was identified as 800 units/m2. Beyond
this density, additional vegetation does not substantially improve wave attenuation. Furthermore,
the position of the dune crest elevation is related to the location where the alongshore flow velocity
begins to decrease. The findings highlight the essential role of coastal vegetation in enhancing coastal
resilience against hurricanes.

Keywords: XBeach model; vegetation drag coefficient; vegetation density; dune erosion; wave
attenuation

1. Introduction

Extreme weather events like hurricanes could cause significant erosion to coastal sand
dunes in a short period time by inducing high water levels accompanied with high waves
and strong currents [1–3]. Previous study of Shaw Alex et al. [4] has demonstrated that
dune failure significantly increased flooding during storms, highlighting the crucial role
of dune protection in coastal defense. D’Alessandro and Tomasicchio [5] conducted large-
scale physical model tests to investigate the effects of wave period and water depth on the
resilience of the exposed dune under irregular wave attacks. Aquatic vegetation contributes
to protect dune systems and coastal protection by damping the incoming water [6–11].
The findings of Unguendoli et al. [12] indicated that seagrass was able to reduce beach
erosion volumes up to 55% as well as produced an average attenuation of 32% of the
storm peak. Jacob et al.’s study [13] also agreed that seagrass expansion could be a useful
addition to engineered coastal protection measures. Consequently, with the impact of
aquatic vegetation on wave attenuation receiving increasing attention in recent years, the
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strategy of using vegetation to protect coastal dunes and reduce erosion has been applied
to many studies [14–16].

To investigate the mechanisms of wave energy reduction due to aquatic vegetation,
various studies have been developed. Numerous laboratory experiments examine wave
attenuation by vegetation [17–19]. For example, a large-scale experimental study was
employed to study wave damping over artificial Posidonia oceanic meadow [20]. Besides,
some studies combined laboratory experiments and numerical models to explore the
interactions between wave and vegetation providing significant insights into the effects of
vegetation on wave energy dissipation. Chalmoukis [21] used a porous medium model to
simulate a three-dimensional, two-phase flow past coastal vegetation fields. The model,
validated against experimental data, assessed the impact of equivalent porosity and cross-
shore length on wave behavior over a sloped beach. Holzenthal et al. [22] studied the
influence of flexible, buoyant submerged aquatic vegetation on localized velocity fields,
circulation pathways, and overall tidal behavior by coupling a dynamic friction model with
a depth-integrated circulation-wave model.

Additionally, some studies have used Manning’s roughness coefficients to represent
vegetation in wave attenuation investigations [23–25]. For instance, Lapetina et al. [26]
indicated that 2D storm surge models typically use an enhanced Manning’s coefficient to
represent the effects of coastal vegetation on flow. Medeiros [27] suggested values of 0.138
for Manning’s n and 2.34 m for initial water level based on field investigations in mangrove-
covered regions of southwest Florida. However, Baron-Hyppolite et al. [28] pointed out
that simplistically treating vegetation as enhanced bottom roughness underestimated the
complexity of wave-vegetation interactions, thereby underestimating wave energy dissipa-
tion (error > 30%) while those cases with explicit representation of vegetation showed good
consistency with field data (error < 20%). Besides, Abdoali et al. [29] indicated that the
Manning’s n cannot accurately represent all key physical phenomena of vegetation in water,
prompting the use of numerical models that consider vegetation characteristics to estimate
dissipation more accurately, such as the SWAN model [30] and XBeach model [31]. The
vegetation dissipation formulas applied in these models are functions combined with local
hydrodynamic conditions and can directly reflect measurable vegetation characteristics.
For example, Musumeci et al. [32] used a coupled SWAN model and XBeach model to
simulate the impact of vegetation on coastal erosion and flooding risks.

The complexity of natural systems, combined with the extreme magnitudes of storm
conditions—such as surges, wave heights, and wind speeds—presents substantial chal-
lenges. Meanwhile, this complexity results in a lack of comprehensive data needed for ac-
curate validation [33]. Moreover, existing physical model experiments struggle to replicate
the extreme hydrodynamic conditions of severe storms and the realistic growth patterns
of vegetation [16]. These limitations hinder the accurate assessment of vegetation’s role
in coastal defense [34]. Garzon et al. [35] investigated the ability of Spartina alterniflora
saltmarshes to attenuate wave energy during storm surge conditions in the Chesapeake
Bay. However, the research gaps remain in understanding the mechanisms by which
vegetation affects wave attenuation and dune protection under extreme hydrodynamic
conditions. To address the research gaps, our study aims to employ a one-dimensional
XBeach model based on dune profile data collected pre- and post-hurricane to study the
interactions between wave, dune, and vegetation. This method will enable us to investigate
the protective functions of vegetation on dunes and its efficacy in wave attenuation during
storm surge conditions. A detailed introduction to the XBeach model will also be provided
in Section 2. The vegetation drag coefficient (CD) is a critical parameter in the XBeach
model for calculating vegetation-induced wave dissipation. In Section 2, this paper will
thoroughly review the literature on determining CD, aiming to identify the most suitable
values for our study using the XBeach model.

The remainder of this paper is organized as follows: XBeach surfbeat model descrip-
tions and a review of vegetation drag coefficient are presented in Section 2; Section 3
introduces the model validation of two laboratory experiments; Section 4 presents the
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XBeach surfbeat model application in real study case; and Sections 5 and 6 present the
discussion and conclusions, respectively. In this study, to aid readers in understanding the
abbreviations used in the main text, a table listing each abbreviation used in this manuscript
along with its full form is provided in Appendix A.

2. Model Descriptions and CD Values Review

2.1. XBeach Surfbeat Model Descriptions

The XBeach surfbeat model (XBSB) is a two-dimensional, advanced numerical model
that was developed for simulating nearshore hydrodynamics and morphodynamics under
varying wave conditions [31]. The model employs shallow water equations, which assume
a linear variation of pressure with depth and focus on depth-averaged hydrodynamics. This
approach allows the XBSB model to efficiently simulate long-wave processes, including
storm surges, tides, and tsunami inundation. While the model’s assumptions facilitate
computational efficiency, they may limit its ability to capture detailed processes in regions
with rapid changes in water depth. Nevertheless, the XBSB model is widely recognized
for its ability to predict dune erosion, overwash, and coastal barrier breaches, offering
valuable insights for coastal management and protection strategies [36–38]. For example,
Sánchez-Artús et al. [39] used XBeach model to evaluate the performance of dunes as
coastal protection measures for the barrier beach under three different storm events.

For modeling the interaction between vegetation and wave dissipation, XBeach uti-
lizes the method proposed by Mendez and Losada [40], which was later adjusted by
Suzuki et al. [41]to account for the effects of vertical heterogeneity introduced by vegeta-
tion. The dissipation of short waves caused by vegetation can be solved as a function of
local wave height and several vegetation parameters. Vegetation can be represented by
vertical elements of different properties, allowing for the simulation of damping effects of
vegetation with characteristics like mangroves, which have densely packed roots but sparse
stem areas. The total dissipation term can then be calculated as the sum of dissipation
amounts for each vegetation layer as shown in Equation (1).

Dv = ∑nv
i=1 Dv,i (1)

where Dv,i is the dissipation amount in the vegetation layer i; nv is the number of vegeta-
tion layers.

The dissipation amount for each layer is calculated by the following equations:

Dv,i = Av × ρCD,ibv,i Nv,i

2
√

π

(
kg
2σ

)3
Hrms

3 (2)

Av =
(sinh 3kαih − sinh3kαi−1h

)
+ 3(sinhkαih − sinhkαi−1h)

3kcosh3kh
(3)

αi = hv/h (4)

For the specific vegetation layer i, CD,i is the drag coefficient, bv,i is the diameter of the
vegetation stems, Nv,i is the vegetation density, Hrms is the root-mean-square wave height,
and αi is the relative vegetation height in vegetation layer i.

In this paper, we only studied a single vegetation layer, assuming that the vegetation
is vertically uniform. Therefore, when i = 1, the formula for the wave energy dissipation
under the above vegetation field is as Equation (5).

Dv =
sinh3khv + 3sinhkhv

3kcosh3kh
× ρCDbvNv
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2.2. A Review of CD Determination

The interaction between waves and coastal vegetation is a dynamic and multifaceted
process that significantly influences coastal defense by modifying wave characteristics.
Central to understanding this interaction is the vegetation drag coefficient (CD), an empiri-
cal parameter critical for calculating the wave energy dissipation and the drag resistance
presented by the vegetation [42–44].

Estimating CD has long been a focus in coastal engineering, with methodologies
grounded in field observations, laboratory experiments, and numerical modeling. A notable
study in the Yangtze Estuary in 2019 revealed that Phragmites australis outperformed
Scirpus mariqueter in wave attenuation due to its greater biomass and structural strength,
suggesting a mixed-species strategy could bolster coastal protection [45]. Zhang et al. [46]
developed a new CD calculation formula through field observations. Ding et al. [47]
established a new formulation for the CD based on biomechanical properties and field data
from Terrebonne Bay, LA. Preliminary validation with laboratory experiments on synthetic
vegetation confirmed the model’s improved accuracy in predicting hydrodynamic changes
in marshes, highlighting its utility in assessing vegetation’s protective effects against waves
and surges. Physical experiments were conducted [48] on idealized flexible vegetation in
salt marshes to investigate the relationship between CD and other parameters such as the
degree of submergence, stem density, and wave height. As for most existing numerical
models for wave attenuation, such as SWAN [30], XBeach [31], and SWASH [49], they are
typically combined with physical experiments to explore the estimation of CD value. In
this paper, we will choose the XBeach model, which can explicitly represent vegetation
characteristics, as the numerical model tool.

The CD is usually an empirical parameter used to calculate wave energy dissipation.
The drag force exerted by the rigid vegetation on the currents differs significantly from
that exerted by flexible vegetation due to differences in their deformation characteristics.
For rigid vegetation, since its shape and position do not change with the current, the drag
coefficient CD used to calculate the drag force is constant. Studies by Kothyari et al. [50]
and Liu et al. [51] both examined the drag coefficient for rigid vegetation in open channel
flow, with Liu’s research even investigating the calculation of CD under subcritical
conditions in open channels. Other scholars, such as Hu et al. [52], Van Rooijen et al. [53],
and Etminan et al. [54] have also developed formulations for CD of rigid vegetation.
Additionally, some scholars have begun using artificial neural networks to estimate CD
of rigid vegetation [55,56].

In contrast, for flexible vegetation, the deformation under the action of water flow
will affect the resistance characteristics. The formation of the shear layer at the top of
submerged flexible vegetation is a crucial characteristic of the flow [57,58]. Current physical
experiments on the CD for flexible vegetation [59,60] have shown that the magnitude of CD
is related to the Reynolds number (Re) [61] and the Keulegan–Carpenter number (KC) [40].
Typically, the Re parameter helps characterize the flow regime around the vegetation,
distinguishing between laminar and turbulent flows and their respective impacts on wave
interactions. The KC number is used to describe oscillatory flow conditions, reflecting
the balance between inertia and drag forces acting on vegetation. These parameters are
instrumental in predicting the CD, providing a deeper understanding of the vegetative wave
damping performance across different species and environmental conditions. Physical
experiments found that CD decreases with the increase of the Re and the KC number [59,60].
Houser et al. [57] found that the relationship between the drag coefficient and the Re
depends on the flexibility and morphology of the vegetation. The greater the flexibility, the
more the drag coefficient is reduced. Their research also discovered that flexible vegetation
has a smaller drag coefficient compared to rigid vegetation. In the studies conducted
by José Francisco Sánchez-González et al. [62], a fitting relationship between CD and
KC was obtained through best fit analysis of physical experiment data. Subsequently,
Yin, Xu et al. [63,64] used this fitting relationship between CD and KC to establish semi-
empirical formulas for the CD of flexible vegetation that can be applied to the XBeach model.
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Chen et al. [65] evaluated the effectiveness of two methods for determining CD, which
are crucial for assessing wave damping in vegetated coastal areas, and introduced a new
CD-KC relation for combined wave-current flows. The findings highlighted the superior
performance of the direct measurement approach over the conventional calibration method
in predicting wave dissipation, proposing a unified CD-KC relation that could enhance
the modeling of wave-vegetation interactions. Additionally, Wang et al. [66] provided a
semi-empirical formula to estimate the CD for flexible vegetation. In addition to classifying
vegetation as flexible or rigid, some scholars also study the impact of submersion on CD.
Some formulations specifically address either submerged vegetation [67,68] or emerged
vegetation [69,70], while others encompass both [71,72]. Table 1 reviews CD relations
in vegetation-wave interaction and their deriving methods. The research on empirical
formulas for CD mentioned above mostly remains at the physical experimental stage and
has not been applied to real engineering problems. Through this review, we determined
that the findings of Garzon et al. [35] are the most suitable for application in our model
because they used field observations under storm conditions to obtain the relationship of
CD with the modified Re and KC.

Table 1. A review of CD relations in vegetation-wave interaction and their deriving methods associ-
ated with Re or KC.

Reference Vegetation Wave Method Re or KC Range Formula

Hu et al. (2014) [52] Rigid R Directed
measurement (300, 4700) CD = 1.04 +

(
730
Re

)1.37

ROOIJEN et al. (2015) [73] Rigid I Calibration / /
Mendez et al. (1999) [74] Rigid R Calibration (200, 15,500) CD = 0.08 +

(
2200
Re

)2.2

Chen et al. (2018) [65] Rigid R Calibration (4, 120) CD = 1.17 + 12.89KC−1.25

Wu et al. (2016) [75] Rigid I Calibration / /

Wang et al. (2020) [76] Rigid S Directed
measurement (532, 8048) CD = 0.08 +

(
6436
Re

)0.8957

Kelty et al. (2022) [77] Rigid I Calibration (4900, 190,000) CD = 0.6 +
(

30,000
Re

)
Veelen et al. (2021) [78] quasi-flexible R Calibration (570,1500) CD = 1.04 +

(
730
Re

)1.37

Kobayashi et al. (1993) [61] flexible / Calibration (2200, 18,000) CD = 0.08 +
(

2200
Re

)2.4

Maza et al. (2013) [79] flexible R Calibration (2000, 7000) CD = 1.61 +
(

4600
Re

)1.9

Anderson and Smith (2014) [34] flexible I Calibration (533, 2296) CD = 0.76 +
(

744.2
Re

)1.27

Losada et al. (2016) [80] flexible
R Calibration (4000, 160,000) CD = 0.08 +

(
50,000

Re∗
)2.2

I Calibration (20,000, 60,000) CD = 0.08 +
(

22,000
Re∗

)2.2

Yin et al. (2022) [63] flexible R Calibration (0, 500) CD =
(

150.5
KC

)0.5952

Yin et al. (2023) [81] flexible R Calibration (28, 108) CD = 0.929+
(

41.434
KC

)5.663

Liu et al. (2023) [68] flexible R Calibration (75, 230) CD =
(

25.4
KC

)0.6

Garzon et al. (2019) [35] flexible / Calibration (100, 6000) CD = 0.411 +
(

514
Re∗

)0.5

Reis et al. (2024) [82] flexible R Directed
measurement (22, 60) CD = 1.09 +

(
22
KC

)5.56

Notes: R is regular wave; I is irregular wave; S is solitary wave. The CD formulation by Garzon et al.
(2019) [35] was applied in this study. Re is Reynolds number and KC is the Keulegan–Carpenter number.
In the 5th column, Ranges of KC number are marked with underline while ranges of Re are shown without underline.
Re * means modified Re.
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3. Model Validation by Comparing to Laboratory Experiments

In this paper, we investigate the possibility of applying the CD values of empirical
formulation to real-world scenarios by replicating and validating two classic physical flume
experiments. The primary objective is to demonstrate the model’s capability to predict
interactions between vegetation, waves, and dunes under extreme storm conditions. The
first experiment focused on the model’s ability to accurately capture the evolution of dunes.
The second experiment was chosen to validate XBSB’s ability to accurately predict the effect
of vegetation on wave attenuation under regular wave conditions.

3.1. Case 1: Laboratory Experiment for Wave-Induced Sand Dune Erosion

In this case study, we conducted a comprehensive evaluation of XBeach surfbeat
model, focusing on the erosion of sand dunes under storm surge conditions. Our approach
replicated and validated the experimental setup detailed in Berard’s study [83], matching
physical model parameters, including sediment characteristics and wave conditions.

We set the wave parameters to reflect the conditions in the reference study, with a
significant wave height (Hs) of 0.16 m and a mean absolute wave period (Tm01) of 2.3 s.
The model incorporated two still water levels, 0.40 m for the Low-water test (LW) and
0.47 m for the High-water test (HW), simulating different tidal conditions. This dual
setup allowed us to simulate two scenarios: LWSB (Low-water) and HWSB (High-water),
providing insights into dune erosion under varying hydrodynamic stresses. LWSB and
HWSB simulated results in the collision regime and inundation regime, respectively. We
refined some parameters in our simulations. The parameters are listed in Table 2 including
the comparisons with the referred paper. The one-dimensional model’s mesh, covering a
25 m cross-section, was configured for computational efficiency. From 3.8 m to 4.3 m, a
0.1 m grid was used; from 4.3 m to 20.4 m, a 0.5 m grid; and from 20.4 m to 25 m, a finer
0.025 m grid (Shown in Figure 1). All simulations share these parameter values, signifying
a standardized approach.

Figure 1. Numerical model domain indicating the initial bathymetry, still water levels for the LW and
HW tests, and variable horizontal grid size.

In the hydrodynamic validation, the dune face was designated as a non-erodible layer.
Figure 2 illustrates the cross-shore profiles of still water level (SWL) and observed significant
wave height under low water (LW) and high water (HW) conditions, capturing the collision
and overwash regimes, respectively. In Figure 2, LWSB and HWSB are simulated results by
red dash lines. The sum of square residuals (SSR) is used to quantify the model performance,
as shown in Figure 2c,d. The significant wave height (Hs) predictions from the XBSB model
closely match the observed data, indicating the model’s superior capability to simulate the
complexities of wave interaction with a static dune structure.
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SSR = ∑ (H s,lab − Hs,mod

)2
(6)

Building on the hydrodynamic validation, we assessed the morphological responses
of the dune profile under various water levels. The morphological evolution of the dune
profile was analyzed using simulations for low (LW) and high water (HW) tests, replicating
dune responses over 510 min for LW and 270 min for HW. The model performance was
evaluated using the Brier Skill Score (BSS) [84], which was applied as a quantitative measure
of the model’s accuracy in simulating the morphological evolution of the dune profile.
A BSS of 1 indicates high accuracy, while a BSS ≤ 0 indicates poor predictive capability.
Scores below 0.3 are considered bad, 0.3–0.6 are fair, 0.6–0.8 are good, and above 0.8 are
excellent. The BSS is calculated using Equation (7).

BSS = 1 − ∑
(∣∣zbpost − zbmod

∣∣)2

∑
(∣∣zbpost − zbpre

∣∣)2 (7)

where zbpost indicates the observed bed elevation post-hurricane, zbmod is the bed eleva-
tion results obtained from XBeach models, and zbpre represents the initial bed elevation
pre-hurricane.

 
Figure 2. Validation of XBSB Models under varying water level conditions. (a) Modeled water surface
level (red dash line) of the LW test; (b) Modeled water surface level (red dash line) of the HW test;
(c) Modeled Hs (red dash line) near the dune of the LW test; (d) Modeled Hs (red dash line) near the
dune of the HW test. LW is low-water test; HW is high-water test.
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Table 2. Extended input parameters for dune morphology simulation.

Parameter Meaning Value Berard’s Study Value

wetslp Critical wet slope for underwater
avalanching 0.15 0.3

responseangle Angle of repose affecting dune steepness 25 degree 30 degree
hswitch Switch depth from wet to dry avalanche 0.005 m 0.005 m

form Sediment transport formulation vanthiel_vanrijn vanthiel_vanrijn or soulsby_vanrijn

eps Threshold water depth for cell
inundation 0.09 0.09 or 0.02

The comparative analysis of dune profile evolution during LW test scenarios (Figure 3a,b)
reveals the capabilities of the XBSB model low-water level (LW test). Initially, at 4 min, the
XBSB model shows significant precision with BSS values of 0.888. This accuracy persists un-
til 270 min with a BSS of 0.863, indicating the model’s effectiveness in simulating early-stage
erosive dynamics. However, by 510 min, the BSS diminishes to 0.767, suggesting decreased
accuracy over time due to potential overpredictions of erosive processes. Analyzing the
dune profile evolution during high-water level (HW) tests for the XBSB model, as shown in
Figure 3c,d, highlights its performance in the overtopping regime. The model demonstrates
high accuracy in the initial stages, with BSS values of 0.924 at 8 min. This indicates a strong
ability to simulate dune erosion. However, accuracy declines at the 270-min mark, with a
BSS of 0.875, suggesting the model initially overestimates erosion rates and underestimates
dune face retreat over time. This analysis shows the XBSB model’s strong initial accuracy
in simulating erosive processes under various water levels, with high BSS values.

Figure 3. Temporal evolution of dune profile predictions using the XBSB Model: (a,b) during LW Test
(SWL = 0.4 m), (c,d) during HW Test (SWL = 0.47 m).

3.2. Case 2: Laboratory Experiment for Regular Wave Attenuation over Vegetation

This section utilized the one-dimensional XBSB model to simulate and reproduce
physical model experiments of the attenuation of regular waves under the influence of
vegetation conducted by Yin et al. [63]. The numerical model setup was consistent with the
physical setup of the laboratory experiment, and the configuration and calibration of model
coefficients replicated the water level conditions along the physical flume. The XBeach
model adjusted the length of the physical flume, selecting only the key flume before and
after the vegetated area as the experimental cross-sections.
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The entire experimental section was six meters long with a flat and fixed bottom. The
first two meters of the area had no vegetation and was mainly used for stabilizing and
calibrating wave conditions. This was followed by a 3.16 m vegetated area. The final 0.84 m
also had no vegetation. The vegetation had a stem height of 0.25 m, a diameter of 0.0043 m,
and a density of 1012 units/m2. These vegetation parameters were consistent with the
laboratory experiment. The drag coefficient CD was adjusted based on the results of the
simulated wave heights. In the first scenario, the initial significant wave height was 0.08 m
with a wave period of 1.4 s and the initial water level was 0.35 m. In the second scenario,
the initial significant wave height remained the same at 0.08 m with a wave period also
at 1.4 s, but the initial water level was increased to 0.4 m. The third scenario introduced
changes in significant wave height, wave period, and initial water level. The grid spacing
varied from 0.1 m to 0.03 m, with a total of 153 grid points. In the model, the vegetation
zone spanned from 2 m to 5.16 m, consisting of 112 grid points, with vegetation present on
56 of those points. The total runtime of the model was 3000 s, and data were output every
0.35 s or 0.4 s. The sketch of the XBeach model and vegetation field is shown in Figure 4.

Figure 4. XBeach model setup and vegetation field.

The modeled significant wave heights were in good agreement with the observed
data in Figure 5, demonstrating that the XBSB model replicated the conditions of the
physical flume well. Observations from Figure 5 clearly show that vegetation has a notable
attenuation effect on waves across all three scenarios. In the first scenario, the wave
height decreased by 0.013 m, in the second scenario it decreased by 0.011 m, and in the
third scenario, the reduction was more significant, amounting to 0.022 m. Comparing
scenarios 1 and 2, it is evident that an increase in water level leads to a decrease in the
alongshore fluctuation of measured wave heights, with the percentage of wave height
attenuation dropping from 16.8% to 14.1%. The third scenario shows the most significant
wave height attenuation, reaching 18.5%. Meanwhile, given the low RMSE values (Table 3)
and the close match between the observed and modeled data points, especially within
the region where vegetation is present (the green window), the conclusion is that the CD
calibrated by the XBSB model can accurately reflect the wave attenuation characteristics of
the vegetation in the flume, making it suitable for simulating the propagation process of
waves in vegetated areas.
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Figure 5. Different scenarios of observed and modeled wave attenuation by homogeneous flexible
vegetation. The green window denotes the vegetation field.

Table 3. Boundary conditions and RMSEs for different scenarios.

Case No. Hs (m) SWL (m) T (s) CD RMSE (m)

1 0.08 0.35 1.4 0.8 0.0025
2 0.08 0.4 1.4 0.8 0.0013
3 0.12 0.5 1.6 1.47 0.0055

4. XBeach Modeling of Vegetation Effects on Wave Attenuation and Dune Erosion in
Mexico Beach, FL

Building upon the foundation laid out in Sections 2 and 3, we evaluated the capa-
bility of the XBSB model to simulate and forecast the interactions between waves, sand
dunes, and vegetation. The good model performance in these sections provides a ba-
sis for the following application. In this section, we have applied the XBSB model to a
one-dimensional dune setup located at Mexico Beach, Florida, USA (Figure 6), aiming to
examine the wave attenuation and dune erosion under extreme storm conditions with
different vegetation cover.

 

Figure 6. Aerial view (from NOAA LiDAR Database website [85]) and the location of the dune profile
on Mexico Beach, Florida, USA.
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4.1. Model Setup

The bed elevation of dune profile data was sourced from NOAA LiDAR Database
website [85], which offers pre- and post-hurricane LiDAR data. This dataset enables detailed
analysis of geomorphic changes in response to Hurricane Michael. In our previous study,
we have already validated a two-dimensional XBSB model on Mexico Beach, demonstrating
strong performance [86]. Therefore, we used the best-performing parameters from that
study in the present model and applied the same boundary conditions, including significant
wave height and storm surge data (Figure 7). Unlike the previous large-scale study, which
represented vegetation as bottom friction using Manning’s coefficient, this one-dimensional
model features detailed vegetation parameters and higher grid resolution in vegetated
areas. This approach provides a more accurate simulation of wave-vegetation interactions
and wave behavior near dunes. Detailed model settings are provided below.

 
Figure 7. Boundary conditions of the one-dimensional XBSB model.

As depicted in Figure 8, the one-dimensional XBeach model has a span of approxi-
mately 310 m. The grid size varied across the model domain. From x = 0 to x = 156 m,
the spatial resolution was set at 5 m. In the dune area, which extended from x = 156 m to
x = 260 m, a finer spatial resolution of 0.5 m was employed to capture the intricate interac-
tions. Beyond x = 260 m, the resolution was reverted to 5 m. Based on the field investigation
and Google map, a 10-m vegetation section was set up on the dune crest, referred to as
Veg area in Figure 7. The vegetation density (N) was estimated at 200 units/m2 as well as
a vegetation height (ah) of 0.7 m, with a stem diameter (bv) of 0.005 m based on natural
conditions inferred from field surveys shown in Figure 9. Table 4 shows the vegetation
parameters for the three model cases. The first case was without vegetation and was used
as a comparison for the vegetation cases. In the second case, a drag coefficient of 1.47
was used, while in the last case, a CD of 0.8 was applied. Furthermore, a house structure
was integrated into the model behind the dune. The structure stood 10 m in height and
extended 20 m along the x-axis. The area under the house was designated as a non-erodible
layer, suggesting no morphodynamical evolution here. Through these settings, the model
aims to offer critical insights into the role of vegetation in enhancing dune stability during
severe weather conditions.

Table 4. The vegetation parameters for the different model cases.

Case No.
Parameter

CD N (Units/m2) bv (m) ah (m)

1 / / / /
2 0.8 200 0.005 0.7
3 1.47 200 0.005 0.7

Note: Case 1 represents no-vegetation condition Model setup.
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Figure 8. Onedimensional XBeach model setup illustrating vegetation cover conditions and house
location at Mexico Beach. Peak storm surge is the largest storm surge level during Hurricane Michael.

 

Figure 9. Vegetation on sand dunes on Mexico Beach, FL before Hurricane Michael https://www.
onlyinyourstate.com/florida/fl-forgotten-coast-small-beach-town/ (accessed on 5 July 2018).

4.2. Model Simulations under Wave Condition of Hurricane Michael

We used the empirical formulations of CD conducted by Garzon et al. [35] and
Yin et al. [63] to calibrate the XBSB model. The full CD formulas are listed in Table 1. The
resulting values were 1.47 and 0.8. Besides, based on Section 4.1, we compared the modeled
dune elevations with the observed post-hurricane LiDAR data in Figure 10. Figure 10
illustrates the evolution of dune profiles under varying drag coefficients during Hurricane
Michael. The figure presented five distinct profiles: the observed initial pre-hurricane
profile, the observed post-hurricane profile, a modeled profile without vegetation, and
two modeled profiles with vegetation of different CD values. The observed post-hurricane
profile showed marked changes, indicating significant morphological activity caused by
the hurricane. To validate the performance of the model, we calculated the Brier Skill
Scores (BSS) for three cases. Among them, the case with vegetation and a drag coefficient
of 1.47 yielded a BSS of 0.742, which is greater than 0.6. According to the BSS classification
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in Section 3.1, this indicates that the model performance is good. In contrast, the case
with a CD of 0.8 resulted in a BSS of 0.518, indicating fair model performance. This also
indicates that, in this specific field application, Garzon’s formula for the drag coefficient
was more suitable than Yin’s formula. Therefore, we used the model with a CD of 1.47 for
the sensitivity analysis in Section 4.3. Additionally, the modeled profile without vegetation
demonstrates the most pronounced departure from the observed initial conditions. This
profile exhibited the highest average deviation with an RMSE of 0.392 m and experienced
the most substantial erosion at a depth of 1.105 m. This highlights the erosion vulnera-
bility of dune beds in the absence of vegetation and underscores the stabilizing role that
vegetation plays in dune ecosystems.

Figure 10. Dune profile evolutions with different CD during Hurricane Michael, the vegetation area
shown in Figure 9.

We compared the significant wave heights (Hs) along the profile at the peak storm
surge level in Figure 11. Between 120 m and 160 m, Hs fluctuates around 1.7 m for all three
conditions. However, beyond 160 m, particularly within the vegetated area from 218 m to
228 m, Hs significantly decreases. The no vegetation scenario consistently showed higher
Hs, with a wave height reduction of 0.11 m, indicating less wave attenuation. In contrast,
the CD = 0.8 scenario showed a moderate decrease in Hs, with a reduction of 0.15 m, while
the CD = 1.47 scenario exhibited the most substantial wave height reduction of 0.46 m. This
demonstrates that higher drag coefficients result in more wave attenuation.

Figure 11. Significant wave height variation along cross-section with different vegetation drag
coefficients CD at peak storm surge level (red circle), showing vegetation effects on wave attenuation.
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4.3. Sensitivity Analysis of Vegetation Effects under Regular Wave Condition

In this section, we conducted a sensitivity analysis on the impact of vegetation density
on dune erosion and wave attenuation under regular wave conditions. Based on the
predicted results from the XBSB models in Section 4.2, we examined various vegetation
cover scenarios. The various vegetation densities of study cases are listed in Table 5.
The input tide boundary condition was the peak storm surge of 4.76 m. The input wave
condition was a significant wave height of 1.98 m during Hurricane Michael, as shown in
Figure 7. The model ran for 3 h, simulating the evolution of the dune, the changes in flow
velocities, and the changes in significant wave heights under different vegetation densities.
The baseline parameters for the XBSB model remain consistent with those in Section 4.2,
featuring a vegetation height of 0.7 m and a stem diameter of 0.005 m. This comprehensive
suite of cases allows for an in-depth analysis of the interaction between vegetation and
wave dynamics, highlighting the potential of vegetation in mitigating coastal erosion and
enhancing dune protection under storm surge conditions.

Table 5. Different vegetation cover scenarios with various densities.

Case No. Density N (Units/m2)

case 4 No vegetation
case 5 200
case 6 500
case 7 800
case 8 1200

Figure 12 illustrates the simulation results of the XBSB model for cases 4 to 8 with
various vegetation densities. Figure 12a shows that as vegetation density increased, the at-
tenuation of significant wave height within the vegetated zones became more pronounced.
The x-coordinate at which this attenuation stabilized moves closer to the initial range of
the vegetated area as density increases. The moving of the stabilization point reflects the
increased efficiency of denser vegetation in absorbing and dissipating wave energy. Specific
attenuation values are provided in Table 6. Generally, higher vegetation densities resulted
in a greater value of wave attenuation, with the maximum wave height reduction observed
at N = 800 units/m2. However, beyond a density of 800 units/m2, the impact of density
on wave reduction tended to decrease. This stabilization may be due to the drag effect of
vegetation reaching a “saturation point”, where further increases in vegetation density had
minimal additional impact on wave reduction. This indicated an optimal vegetation density
threshold, beyond which extra vegetation could not significantly enhance wave energy
dissipation. Figure 12b shows the variation in mean flow velocity along the cross-section
during the model run. When the flow reached the vegetated area, all cases with different
vegetation densities experienced an immediate drop in velocity, followed by slight fluctua-
tions within the vegetated zone. Subsequently, the flow velocity increased again due to the
decline in bed elevation behind the vegetation area. Figure 12c revealed the bed elevation
along the cross-section under different vegetation densities. Without vegetation cover, the
dune was almost entirely removed. With vegetation present, significant protection of the
dune was observed. At a vegetation density of N = 200 units/m2, the dune crest moved
noticeably landward. As the density continued to increase, the dune crest position shifted
forward again. This shift was related to the x-coordinate position where the flow velocity
begins to drop, as shown in Figure 12b. Additionally, unlike the significant differences in
wave height attenuation across various vegetation densities, the reduction in dune crest
elevation does not show significant differences under different vegetation densities.
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Figure 12. Impact of vegetation density on (a) average significant wave height, (b) average flow
velocity, and (c) final bed elevation.

Table 6. Impact of density of vegetation on significant wave height reduction.

Distance
Significant Wave Height (m)

No veg N = 200 (Units/m2) N = 500 (Units/m2) N = 800 (Units/m2) N = 1200 (Units/m2)

x = 218 (m) 1.74 1.72 1.72 1.72 1.72
x = 228 (m) 1.66 0.90 0.40 0.28 0.30

Reduction (m) 0.08 0.82 1.32 1.44 1.42
Rate (%) 0 47.73 76.92 83.88 82.67

Δ Rate (%) 0 47.73 29.19 6.96 −1.21
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5. Discussion

In this paper, we applied the XBeach model to evaluate the effects of vegetation on
wave attenuation and dune erosion. Because lab experimental data for vegetation on dune
is not available, we used the experiment data from the work of Berard et al. [83] and Yin’s
laboratory experiments [63] to validate the performance of the XBSB model in predicting
and simulating the effects of vegetation on dune erosion and wave attenuation. The field
application of XBeach to Mexico Beach under Hurricane Michael as described in Section 4.1
fills the current research gap on wave actions on sand dunes with vegetation. The data set
of storm surges, waves, vegetation, beach, and dune profiles before and after Hurricane
Michael from LiDAR surveys provided a good model validation for vegetation on dunes
under hurricane wave conditions, as shown in Figures 8–10. LiDAR data of dune profiles
before and after Hurricane Michael were used for model validation (Figure 10).

As can be seen in Figures 10 and 11, compared with the observed post-hurricane dune
elevation, vegetation on dunes reduced dune erosion and enhanced coastal resilience. This
conclusion aligns with the findings of some recent studies [87,88] that demonstrated that
vegetation significantly reduces wave heights, thus lowering flooding and erosion risks
and providing multiple ecosystem benefits. However, because the XBSB is based on some
modeling simplifications, the actual applications of vegetating the sand dune warrants
further exploration. One notable simplification in the XBSB model is the representation of
vegetation as uniformly distributed, slender, cylindrical structures. In reality, the vegetation
does not grow uniformly across the dune surface and has leaves that contribute to the
complexity of their density distribution. For example, Suzuki et al. [89] pointed out that
drag force induced by horizontal vegetation stems/roots and porosity are often neglected
in numerical models. A more accurate method might be to set up horizontal vegetation
fields with various densities in future studies.

Another important point to consider is that in real extreme hydrodynamic scenarios,
storm surges and huge waves can uproot or flatten thin plants or cause vegetation to be
dislodged from the dunes due to erosion. This reduction in vegetation cover can diminish
the ability to attenuate wave energy and stabilize the sand substrate, thus exacerbating
erosion. However, these factors are not accounted for in the XBSB simulations. A report on
Indonesia [90] recommended the planting of shade vegetation and fruit trees in the costal
front zone to reduce the impact of coastal erosion. These strategies suggested that trees
can provide a green barrier due to their deeper root systems and more significant biomass,
which may enhance dune stability and wave energy dissipation. Future research should
investigate the effects of different types of vegetation, including shrubs and trees, under
extreme hydrodynamic forces.

Based on the findings in Section 4.3, vegetation density plays a crucial role in wave
attenuation and erosion resistance. However, the relationship is not linear. There is a critical
density, beyond which additional vegetation does not significantly reduce wave energy
or dune erosion, indicating that there is an optimal density for maximizing protective
benefits. In practical engineering, when considering the planting of vegetation on dunes, it
is essential to determine and implement this optimal density. This finding resonates with
the findings of Chen et al. [88], which emphasizes that optimizing the location and size of
vegetation is crucial to increasing efficiency. This study only presents one single case in
Mexico Beach during Hurricane Michael. Therefore, the optimal density simulated could
vary under different environmental conditions, vegetation types, and storm scenarios.
Therefore, further study is necessary to establish a range of optimal densities across various
contexts. For example, studies should examine regional variations in optimal vegetation
density. Factors such as local climate, dune morphology, and typical vegetation type can
influence the effectiveness of vegetation in mitigating erosion and attenuating waves.

6. Conclusions

This study applied the XBeach surfbeat model to evaluate the effects of vegetation
on wave attenuation and dune erosion. Validation against laboratory experiments demon-
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strated the model’s reliability. The case study of vegetation on dunes during Hurricane
Michael shows the importance of vegetation for dune morphology during hurricanes. Veg-
etation stabilizes dunes and reduces erosion, with vegetated dunes showing significantly
less erosion. In general, an increase in vegetation density enhances wave attenuation and
reduces erosion rates. A saturation point has been identified where additional density
does not significantly increase wave attenuation. The implications of this study for coastal
resilience planning are significant. XBeach surfbeat model that predicts and enhances the
protective functions of coastal vegetation on sand dunes is valuable for coastal resilience
planning. This study expanded the application range of laboratory vegetation drag force
parameters to the field application to account for the interactions among waves, dunes, and
vegetation under actual hurricane conditions.

Author Contributions: Conceptualization, M.M., W.H. and S.J.; methodology and validation
M.M.; formal analysis and investigation, M.M.; resources and data curation, M.M., K.Y. and S.X.;
writing—original draft preparation, M.M.; writing—review and editing, M.M., W.H., S.J. and C.O.;
visualization M.M.; supervision, W.H. and S.J. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Upon request.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

Table A1. List of Abbreviations Used in the Manuscript.

Abbreviation Full Form

XBSB XBeach surfbeat model
LiDAR Light Detection and Ranging

CD Vegetation drag coefficient
Re Reynolds number
KC Keulegan–Carpenter number
LW Low-water test
HW High-water test

LWSB Simulated results of Low-water test
HWSB Simulated results of High-water test
SWL Still water level
BSS Brier Skill Score
SSR Sum of square residuals
Hs Significant wave height

RMSE Root means square error
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Abstract: Tropical cyclones (TCs), often characterized by high wind speeds and heavy rainfall, cause
widespread devastation, affecting millions of people and leading to economic losses worldwide.
TC-specific research in Georgia is scarce, likely due to the minimal geographical extent of its coast
and the infrequency of direct landfalls. Research on Georgia TCs does not account for storms that
make landfall in other southeastern states (e.g., Florida) and continue north, northeast, or northwest
into Georgia. This study used the North Atlantic Basin hurricane database (HURDAT2) to quantify
the spatiotemporal patterns of direct and indirect landfalling of Georgia tropical cyclones (>16 ms−1)
from 1851 to 2021. TC-induced rainfall was also quantified using rainfall data (nClimGrid-Daily
and nClimGrid) from 1951 to 2021 to estimate the proportion of Georgia’s total annual and monthly
rainfall attributed to TCs. A multi-methodological approach, incorporating statistics and mapping, is
employed to assess the trends of Georgia’s tropical cyclones and the associated rainfall. The study
analyzed 113 TCs and found that, on average, less than one TC annually (x̄ = 0.66) traverses the
state. September averaged the highest percentage (25%) of TC-induced rainfall, followed by October
(14%), and August (13%). This pattern aligns with the TC season, with the highest frequency of TCs
occurring in September (n = 35), followed by August (n = 25), and October (n = 18). We found that
10% of tropical storms make landfall on the coastline, while the remaining 91% enter Georgia by
making landfall in Florida (92%), Louisiana (7%), or South Carolina (1%) first. A threat of TCs during
the peak of the season emphasizes the importance of heightened awareness, increased planning
practices, and resource allocation during these periods to protect Georgia’s history and natural beauty,
and its residents.

Keywords: tropical cyclones; Georgia; precipitation

1. Introduction

1.1. Tropical Cyclone Damage in Georgia

The United States coastline stretches 5955 km (3700 miles) along the Gulf of Mexico
(GOM) and the Atlantic Seaboard [1]. Within this extensive coastline, the state of Georgia
accounts for 160 km (100 miles). Coastal locations throughout the GOM and North Atlantic
frequently experience tropical cyclones (TCs), or low-pressure systems with strong rotating
winds [2].

Georgia has experienced 107 individual billion-dollar disaster events since 1980,
the most of any state in the Southeast U.S. [3]. Twenty-four of these disasters were at-
tributed to TCs [3] experienced by Georgia and the surrounding states. These TCs were
the costliest disasters in the region, with an estimated loss of USD 10–20 billion. The most
recent TC was Hurricane Idalia in August 2023. Hurricane Idalia is estimated to have
resulted in USD 3.5 billion in damages due to strong winds, flooding, heavy rainfall, storm
surge, and downed trees [3]. Less than 24 h before landfall, Hurricane Idalia rapidly in-
tensified, leaving residents scrambling to evacuate [4]. Rapid intensification is defined as
a one-minute maximum sustained surface wind speed that increases by ≥30 knots over
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24 h [5]. Hurricane Idalia was predicted to travel through Savannah, Georgia, but ulti-
mately moved in a more northward direction. Many residents in the northern regions
who were not planning on evacuating experienced heavy rainfall, flooding, and intense
winds [6]. Valdosta, Georgia, experienced extensive infrastructure damage due to the lack
of TC-resistant infrastructure [6].

Hurricane Irma in September 2017 caused USD 54 million in damage from falling
trees, debris, strong winds, power outages, extensive flooding, and storm surge [7]. Two
fatalities were reported in northern Georgia due to falling trees, with many other reports
involving major injuries [7]. Rainfall across the state ranged from 30.48 mm (1.2 in) in
northern Georgia to 341.9 mm (13.46 in) in the coastal area around Brunswick. Due to
drier-than-normal conditions preceding the storm, the state experienced extensive flooding
in multiple regions [7]. Over 900,000 residents lost power across the state, which took days
to restore due to the damage around the region [8].

Hurricanes are TCs that exhibit 1-minute sustained winds of ≥33 ms−1. Over half
(∼60%) of all hurricanes that affect Georgia travel from the south or southeast [9]. In this
paper, a Georgia hurricane is defined as a hurricane that enters the state’s boundary at
hurricane-strength wind intensity, regardless of whether it makes direct landfall. TCs
infrequently make direct landfall in Georgia due to the short coastline. Over 161 years,
only 14 hurricanes moved directly across Georgia’s coastline without previously making
landfall somewhere else along the U.S. coastline [10]. More frequently, TCs affect Georgia
after making initial landfall in other states, such as Florida. A subset of storms will enter
Georgia at hurricane intensity and quickly downgrade into tropical storms. These tropical
storms can still cause immense damage for residents, as seen in Hurricanes Idalia, Irma,
and Michael, which all became tropical storms shortly after entering Georgia. Indirect
TCs entering the state at hurricane intensity through Florida should be considered part of
Georgia’s historical hurricane occurrences.

1.2. Hurricane Michael in Georgia

Hurricane Michael (2018) was a Category 5 (≥69 ms−1) hurricane on the Saffir–
Simpson Wind Scale while in the GOM, and it made landfall just southeast of Panama City,
Florida, as a Category 5 storm. The system formed in the Caribbean Sea on 2 October 2018,
and by 7 October, it formed into a tropical depression off the coast of Cozumel, Mexico [11].
The system rapidly intensified before traveling off the west coast of Cuba, where maximum
sustained winds reached 43.7 ms−1 (85 kt; 95 mph) [11]. At landfall, Hurricane Michael
exhibited maximum sustained wind speeds of 71.9 ms−1 (140 kt; 161 mph) [11]. The event
accelerated northeastward into Georgia as a Category 3 hurricane. Michael weakened into
a tropical storm as it passed southeast of Macon, Georgia (∼265 km north of the Florida
border), and continued through Augusta, Georgia, and into the Carolinas. The remnant low
of Michael traveled into the Atlantic, where it dissipated off the northern coast of Portugal
on 15 October [11].

Donaldsonville, Georgia, reported a maximum wind gust of 44 ms−1 (85 kt; 100 mph).
Hurricane Michael produced three tornadoes: Two rated as EF-0 (105–137 km/h) were
recorded in Fulton and Crawford County, and one EF-1 (138–177 km/h) tornado occurred
in Peach County with minor damages reported [11]. One fatality was reported due to a
falling tree during the storm. Southwestern and Central Georgia reported wind damage
in the agriculture/forestry sector, with Donaldsonville reporting damage to 99% of the
homes and agriculture in the region. Dougherty County, Georgia, reported approximately
3000 residential structures damaged and 49 destroyed. NOAA’s National Centers for
Environmental Information (NCEI) estimated USD 25 billion in damages from Hurricane
Michael in the U.S. in 2018, with USD 4.7 billion occurring in Georgia from property,
agricultural, and forestry losses [11].

As seen with Hurricane Michael, Irma, and Idalia, heavy rainfall is a common haz-
ard associated with TCs. Intense, sustained rainfall can overwhelm rivers, streams,
and drainage systems, leading to flash floods and the inundation of communities [12].
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Rainfall and associated flood waters can lead to the failure of infrastructure, such as build-
ings, bridges, and roads [13–15] and/or cause erosion to undermine foundations and
structures [14]. TC rainfall can destroy crops by causing flooding or providing excessive
moisture for certain plants [16]. Soil erosion and agricultural schedules are important to
obtain a yield with certain crops, and changes to these can affect the food supply chain [16].

The aftermath of TCs often results in prolonged and unexpected impacts that extend
far beyond the immediate damage. For instance, Hurricane Michael’s passage through
Georgia led to the downing of a vast number of trees that altered the landscape [17]. The ac-
cumulated fallen timber, which eventually dried, became fuel for a severe wildfire season
the following year. The 2017 wildfire season included the devastating West Mims Fire,
ignited by a lightning strike in the Okefenokee National Wildlife Refuge [18]. This fire
caused mandatory evacuations in southern Georgia due to its severity [18]. Spanning
approximately 140,000 acres, the fire affected not just Georgia but also reached Florida [18].
It threatened residents, firefighters, homes, Georgia’s landscape, and other species. The ini-
tial devastation caused by a TC is often the beginning, with subsequent effects impacting
ecosystems and communities.

These examples illustrate that a hurricane does not need to make direct landfall on
the coast of Georgia to inflict considerable damage throughout the state. Research must
encompass the effects of TCs on entire states, not just on specific regions. Georgia is
included in many southeastern regional studies on TCs that focus on states that experience
more direct landfalls. While regional-scale research is valuable, a statewide approach is
equally important.

1.3. Research Problem and Purpose

Few studies specifically focus on TCs in Georgia at a state level, likely due to the coast’s
minimal geographical extent and the relative infrequency of direct landfalls. This dearth
of research affects the public’s understanding of TCs in Georgia, which leaves residents
without necessary planning information. TC research in the state focuses specifically on
coastal Georgia [10,19,20]. Concentrating on a specific region deprives the remainder of the
state of essential information needed to prepare for a severe event.

A comprehensive evaluation of the spatiotemporal characteristics of Georgia’s TCs
is imperative to accurately assess and prepare for potential TCs in specific sub-regions
in the state. The analytical approach enables the state to identify and prioritize regions
requiring targeted assistance, resources, or disaster recovery initiatives before, during,
and after the hurricane season [3]. Regions historically prone to TCs often equip their
infrastructure to withstand the multifaceted impacts of such storms, including storm
surges, high-velocity wind gusts, and intense rainfall [21]. However, the current lack of
TC-related research within Georgia presents a substantial challenge. Without detailed
knowledge of areas susceptible to TCs, there is a heightened risk of existing infrastructure
that may not adequately fortify against the destructive nature of these extreme weather
events [22]. While Georgia may not frequently experience TCs, closely monitoring and
preparing for TCs remains critical [10]. Though less intense than hurricanes, tropical storms
can still inflict considerable damage due to their potential association with heavy rainfall
and strong winds [23]. Consequently, a thorough understanding of these weather events
is essential for effective state-level planning and response strategies [19]. Additionally,
the characteristics of TCs may change in the future [24], and it is imperative to inform
communities of their historical risk and how that may change.

This research focuses on Georgia’s spatiotemporal characteristics (e.g., frequency,
intensity, and location) of direct and indirect TCs exceeding 16 ms−1. There is an additional
emphasis on TC rainfall, showing the proportion of annual and monthly rainfall from TCs.
Descriptive statistics are used to provide the spatiotemporal characteristics of Georgia TCs,
including seasonality, intensity, frequency, and distribution. The research used ArcGIS Pro
to aggregate monthly and annual precipitation and calculate the amount of TC rainfall in
the state.
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2. Materials and Methods

2.1. HURDAT2

TC data from the North Atlantic Basin hurricane database (HURDAT2) consist of
data on TCs occurring in the North Atlantic Basin since 1851 [25]. HURDAT2 includes
location and wind speed information at six-hourly increments for each known track in
the basin. Beginning in 1961, synoptic observations at landfall were added outside the
six-hour increments. Elsner and Jagger [2] provided an interpolation method that produces
hourly values along the known track using the six-hourly and synoptic data. The hourly
interpolated data are generated through spline interpolation [2]. This method ensures the
retention of values at the designated six-hour intervals, employing a piecewise polynomial
to obtain the values between the six-hour increments [2]. The geographic positions of
the TCs are interpolated by using spherical geometry on the splines [2]. The data subset
encompasses a comprehensive time frame from 1851 to 2021. Despite the acknowledged
constraints inherent in earlier records, including the extensive historical data is vital. This
approach facilitates a thorough examination of potential trends in TCs in Georgia.

HURDAT2 has limited reporting before the pre-flight (before 1944) and pre-satellite
(before 1966) era [25]. This results in underestimations of storm frequency due to earlier
data relying on human observations, leading to higher rates of classification or missed
storms due to the lack of human presence at sea during storm occurrences [25]. TC
intensities may be under-analyzed or categorized as lower than the actual event [25]. This
study focuses on TCs that have crossed the Georgia border, so many concerns over the
earlier records (e.g., missed open ocean storms) are less relevant here. Confidence in the
estimations increases when a storm has made landfall, as land observations become more
straightforward compared to open ocean observations [25].

This study only focused on TCs with sustained 1-minute wind speeds exceeding
16 ms−1 within Georgia. The data were a subset to exclude storms that occurred only
as extratropical cyclones, subtropical depressions, subtropical storms, tropical waves,
or disturbances. Due to this, TC rainfall in this study is underrepresented. In the context
of this study, the term ‘indirect’ is used to describe TCs that did not make landfall on
Georgia’s coastline but entered through another location. In contrast, the term ‘direct’
defines storms that made landfall on Georgia’s coastline. We used the R Program for
Statistical Computing for statistics and graphics [26]. ArcGIS Pro was used for data analysis
and data mapping [27].

2.2. nClimGrid-Daily

Daily precipitation data for this study were attained from the NCEI’s nClimGrid-
Daily, which consists of daily high-resolution of 0.04178◦ (nominally 5 km) precipitation,
among other variables, from 1951 to near present [28]. The dataset includes information
from the cooperative Observer Program (COOP), the Automated Surface Observing System
(ASOS), and the Remote Automatic Weather Stations (RAWSs) [28]. RAWSs are only used
for temperature and are, thus, not used here. The thin-plate smoothing splines method was
used for a wide range of topographical and climatic features and still shows the complexity
of the terrain and coastal proximity [28]. This approach collectively minimizes the likeli-
hood of interpolation errors, making it suitable for daily temperature and precipitation at
various spatial scales [29,30].

One limitation of the nClimGrid-Daily is the variation in daily observation times of
stations incorporated into grid estimation. Such variations can lead to discrepancies in
recorded precipitation values [31]. To minimize this impact, the dataset included daily
measurements taken at midnight, 0500, 0600, 0700, 0800, and 0900 local time. These times
were chosen because they are the most common for reporting [28]. Morning observations
were combined with midnight observations from the previous day to align the data further.
This method enhances the consistency between the two 24 h observation periods ending at
these times [28].
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The varying observation time of nClimGrid-Daily creates a challenge when identifying
the exact dates when the TCs caused precipitation in Georgia. TCs enter Georgia at varying
hours throughout any given day. To align with the nClimGrid-Daily rainfall observation
times, this study reevaluated the days when TCs entered the state. If a TC entered Georgia
at or after 1000 EST, rainfall data from the next day were used. If the TC entered Georgia
before 1000 EST, the reported HURDAT2 date was used. This was to account for rainfall
that may have been combined with the previous day’s data due to most reports coming in
between 0000 and 0900.

2.3. Analytical Approach

Descriptive statistics summarize the entire database of TCs in Georgia, revealing the
main characteristics. This includes determining average frequency, analyzing monthly
occurrences, and identifying the weakest and strongest wind intensities recorded in the
state. This study used descriptive statistics to calculate the average intensity of TCs and
assess the years with the highest and lowest TC activity. This method illustrates the range
and patterns of TCs in Georgia, laying a foundation for future assessments of the potential
impacts on the region.

This study used a 500 km buffer (250 km buffer on each side of the track’s center point)
around the interpolated HURDAT2 tracks to isolate the TC rainfall from any influences
from other meteorological systems [32]. Any buffers intersecting with the Georgia state
border were used in the rainfall portion of this study [33].

From 1951 to 2021, the total rainfall that occurred on the days of each TC was ag-
gregated annually. The start date for each storm was the first day that the storm buffer
intersected Georgia, and the end date was the last day of the intersection. Statistical
summaries for months and years are provided. Some storms have rainfall spanning over
two months. For example, Hurricane Ernesto in 2006 entered Georgia on 31 August and
departed the state on 1 September. Both days were included for aggregation, and each
monthly summary was considered separately.

The rainfall data were clipped to the Georgia state boundary. The rainfall from each
TC was then summed to find the total rainfall in Georgia from these events. The TC
rainfall was next divided by the annual rainfall from 1951 to 2021. The daily rainfall grids
were used to calculate each TC’s rainfall and then compared to the annual rainfall grids
(e.g., from all sources of precipitation). The annual grids were calculated by summing the
monthly gridded rainfall. The monthly gridded rainfall data were extracted from the sister
dataset—nClimGrid-Daily. The nClimGrid-Daily dataset was standardized with nClimGrid-
Monthly to ensure consistency across various products and applications [28].

The procedure applies to both annual and monthly rainfall averages. First, the annual
TC gridded rainfall total was determined by summing the precipitation from each TC
and clipping it to Georgia’s state boundary. To determine TCs’ contribution to the state’s
precipitation, the sum was divided by the total rainfall from 1951 to 2021. Precipitation
data were averaged by month. TCs affecting Georgia across two months were divided to
ensure accurate attribution to the correct month. For accurate monthly rainfall estimates,
the total precipitation and TCs affecting Georgia were both divided by 71 years to account
for months with no precipitation in the dataset. Finally, TC monthly averages were divided
by the total monthly rainfall.

3. Results

3.1. Descriptive Statistics

This study analyzed 113 tropical storms and hurricanes occurring within the boundary
of Georgia from 1851 to 2021 (Table 1). The classification of storm type was based on the
intensity of the TCs when the storm entered the state’s boundaries either on the coast or
through another state, reflecting the varied intensities experienced throughout the state.
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Table 1. Tropical cyclones in Georgia from 1851 to 2021 separated by landfall intensity and di-
rect/indirect landfall. Percentage of total TCs relates to Georgia’s total.

Event Type Total Count Hurricanes Tropical Storms Percentages of Total TCs

Direct Landfall 10 4 9 9%
Indirect Landfall 103 19 83 91%

Total Impact 113 24 89 100%

Figure 1 depicts the 10 direct landfalling TCs in Georgia categorized by storm type.
Figure 1b shows the 103 indirect landfalling TCs in Georgia categorized by storm type.
These indirect TCs form within the Atlantic Basin, Caribbean Sea, and Gulf of Mexico,
and the tracks make initial landfall in Florida (92%), Louisiana (7%), or South Carolina (1%).

a

b

Atlantic Ocean

Gulf of 

Mexico

Atlantic Ocean

Figure 1. (a) Track map of direct landfalling tropical cyclones on the coastline of Georgia from 1851 to
2021; (b) track map of indirect landfalling tropical cyclones in the state of Georgia from 1851 to 2021.
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Figures 2 and 3 are heat maps highlighting the specific locations where TCs have
entered and exited the state. The first entrance of each TC track into the state is considered.
One track from an unnamed TC in 1947 entered the state multiple times due to the track’s
curvature but only the initial entrance is considered. Two TCs only had one track segment
enter the state before leaving the state. These two storms (Unnamed 1874 and Eta 2020) are
included in both the entrance and exit maps. Each TC’s point of entry or exit is marked
with a black dot. Each point has a buffer with a 40.3 km (25 mi) radius to determine the
overlap among points, indicating areas where multiple buffers intersect. On the maps, red
areas indicate regions with the highest density of entry points, while green represents the
areas with little TC activity within a 40.3 km radius. Regions without color signify the
sparsest areas, where TCs have not directly entered or exited. However, this does not imply
that these areas have been completely unaffected by TCs. The densest entry area is along
the southern border, where most tracks made landfall in Florida from the GOM and then
continued into Georgia, followed by the sparsest area along the western border.

Figure 2. Heat map of first tropical cyclone entry points into Georgia, 1851–2021.

Figure 3 is a heat map for the exit points of TCs in Georgia from 1851 to 2021. There
are nine TCs not considered in this map as they became tropical depressions ≤ 16 ms−1

within the state’s borders. These storms were all unnamed systems (1871, 1873, 1875, 1887,
1916, 1917, 1933, and 1966) except for Florence in 1953. Most storms exited on the eastern
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edge of the state, with the densest area along the southeastern border. This is because most
TCs entered from the south and traveled eastward; however, some TCs continued north
into Tennessee or North Carolina. TCs that made direct landfall on the coastal area tended
to move westward exiting along the state’s western border.

Figure 3. Heat map of tropical cyclone exit points along the Georgia border, 1851–2021.

Table 2 shows the distribution of annual Georgia TC counts categorized by the Saffir–
Simpson Hurricane Wind Scale (NOAA 2020). Category 4 and Category 5 hurricanes have
not occurred in the state’s known history. Hurricane Michael in 2018 and the Unnamed
1898 hurricane both maintained Category 3 hurricane status as the tracks entered Georgia
but decayed as the storms traveled further inland. The Unnamed 1898 hurricane made
landfall on 2 October from the Atlantic Ocean on the southern coastline of Georgia with an
estimated wind speed of 57 ms−1. The Unnamed 1898 hurricane decayed and downgraded
into a tropical storm around 201.1 km (125 mi) in Georgia. Hurricane Michael entered the
southwestern corner of Georgia from the GOM with a wind speed of 53 ms−1. Hurricane
Michael decayed and downgraded into a tropical storm around 144.8 km (90 mi) from the
state’s border.
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Table 2. Category distribution of tropical cyclones in Georgia, 1851–2021.

Tropical
Cyclone

(16–32 ms−1)

Category 1
(33–42 ms−1)

Category 2
(43–49 ms−1)

Category 3
(50–58 ms−1)

Category 4
(59–70 ms−1)

Category 5
(≥70 ms−1)

89 15 7 2 0 0

Figure 4 illustrates the time series of annual Georgia TCs over the 171-year period.
When considering all TCs, the average rate is 0.66 TC/yr, with a σ2 of 0.65. When consider-
ing only tropical storms, the rates are 0.52 TS/yr (σ2 = 0.56) and hurricanes and 0.14 hur/yr
(σ2 = 0.145). Most of the hurricanes (27%, n = 21) occurred in the first one hundred years
of the dataset. Only three hurricanes occurred after 1950.
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Figure 4. Georgia’s annual tropical cyclone occurrence (1851–2021) categorized by intensity.

3.2. Tropical Cyclone Seasonality

TC seasonality in Georgia is shown in Figure 5. The most active months of the
hurricane season were August, September, and October [34]. September was the most
active month for TCs in Georgia (n = 40; 35%), followed by October (n = 27; 24%). August
was the most active hurricane month (n = 8; 7%). May had two recorded tropical storms
outside of the official hurricane season. This is not uncommon, and further analysis of the
storms is included below. June experienced a high number of TCs (n = 15; 13%).
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Figure 5. The seasonality of tropical cyclones within the Georgia state boundary separated by intensity.

3.3. Wind Intensity

Figure 6 illustrates the maximum wind speeds (ms−1) of TCs in Georgia. Most TCs
decayed upon entering the state’s boundaries. However, five TCs increased wind speed as
they moved further into the state. Two TCs reached their peak wind speeds approximately
50 miles north of the southern border of Georgia, with the intensity of a tropical storm
and tropical depression. Another two storms originating from the GOM passed through
Florida and into Georgia, achieving their maximum wind speeds as tropical storms at the
Georgia–South Carolina border. These storms traveled nearly 225 km (140 mi) northeast
from their entry point into Georgia while increasing in intensity. Additionally, Hurricane
Dora (1964) made landfall in Florida from the Atlantic, moved west, and then turned
northeast through western Georgia, covering about 410 km (260 mi) of the state before its
highest wind speed was recorded as it crossed into South Carolina. The maximum wind
speed was 54.6 ms−1 by an unnamed Category 3 hurricane in 1898. The mean wind speed
was 27.2 ms−1 with a σ2 of 75.8.

3.4. Annual Average Rainfall

The study analyzed 119 storms occurring between 1951 and 2021 based on the available
rainfall data. Figure 7 shows the TC tracks when rainfall data were available. A 500 km
buffer was added around each track to determine the area where rainfall might have
occurred from the TC. When the buffer intersected Georgia, the TC and associated rainfall
were included. TCs were, again, categorized into tropical storms and hurricanes based
on the highest maximum sustained wind recorded within the buffer area. There were
42 (35%) hurricanes and 77 (65%) tropical storms. Across the 119 TCs, there were 295 days
of observed precipitation within the state’s border, equivalent to roughly 1% of all days
during the period of study (1951–2021).
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Figure 6. Distribution of tropical cyclone maximum intensity within the state of Georgia from 1851
to 2021.

Figure 7. Tropical cyclone tracks used to find the annual TC precipitation in Georgia from 1951
to 2021.
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Georgia is divided into five distinct regions, including the Appalachian Plateau,
the Ridge and Valley region, the Blue Ridge Mountains, the Piedmont region, and the
Coastal Plain (Figure 8). The Coastal Plain can be divided into the upper and lower regions.
When discussing the rainfall in this study, the regions will be referenced to provide spatial
context regarding where rainfall occurs within the state.

Figure 8. The five geographic regions of Georgia with county delineation and the Coastal Plain
divided into the upper and lower regions.

Figure 9 shows the rainfall attributed to TCs across the state by percent of total Georgia
annual rainfall. Along the coastline, approximately 5–6% of annual rainfall is attributed
to TCs. This value gradually diminishes moving toward the northwest. The Piedmont
and Upper Coastal Plain regions receive an average of 2–4% of annual rainfall from TCs.
The northwestern portion of the state receives ≤ 1% annual rainfall from TCs.
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Figure 9. Annual TC precipitation percentage in Georgia from 1951 to 2021.

3.5. Monthly Tropical Cyclone Precipitation and Tracks

Understanding the distribution of TC rainfall across months of the TC season and the
proportion of annual rainfall is important for planning purposes. May is not considered
a part of the North Atlantic TC season, but of the 119 TCs in this portion of the study,
7 TCs occurred in May (Figure 10a). Five of these pre-season May TCs (all tropical storm
strength) have occurred since 2012. May has a high precipitation concentration from TCs in
the Lower Coastal Plain, 3–5% (Figure 11a). The rest of the state has an average of 0–2%
annual precipitation from TCs.

In total, 19 TCs have occurred in June since 1951 (Figure 10b). Of these, 3 were hurri-
canes, and 16 were tropical storms. Most of the June tracks form in the GOM. The western
Caribbean is known for retaining its warmth well into the later part of the hurricane season.
However, Figure 10b suggests that this region starts to warm up earlier in the season than
previously thought, potentially indicating a longer period of elevated temperatures [35].
Most of the TCs travel into Georgia from the GOM, traveling northeast into the Atlantic.

In June, the highest precipitation concentration is along the southeastern border with
4% of its annual precipitation from TCs (Figure 11b). The Lower Coastal Plain receives 3%
of average annual precipitation from TCs. The Upper Coastal Plain and Piedmont region
receive 2%, with the remainder of the state receiving 0–2%.

July observed 13 TCs with 5 hurricanes and 8 tropical storms, as shown in Figure 10c.
Three TCs formed in the Southern Atlantic, six in the GOM, and four east of Georgia’s
border in the Atlantic.

July has a high precipitation concentration from TCs in the western Piedmont region,
around 4% (Figure 11c). This is surprising as most of the tracks travel near the state’s
southeastern region (Figure 10c). This could be because the tracks closest to this region did
not produce much rainfall. The southeast and northern regions receive an average of 0–4%
of their annual rainfall from TCs.
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Figure 10d depicts the tracks that occurred in August. Three tracks in Figure 10d are
also shown in September’s (Figure 10e) track map because the storms spanned the two
months. There were 25 TCs that occurred in August, with 6 hurricanes and 19 tropical
storms. Twenty of the August TCs formed in the Atlantic, with seven forming near the
coast of Florida and/or South Carolina.

August has a high concentration of TC rainfall along the eastern border of Georgia
(Figure 11d). This is likely due to the number of storms traveling through Georgia
and South Carolina. The southwestern portion of the state has a range of 2–3% on
average TC precipitation per year. The northeastern region has the highest annual average
concentration of rainfall, with an average range of 4–5%.

There were 35 TCs in September (Figure 10e). September experienced the highest
number of hurricanes, with a total of 19. In addition, there were 16 tropical storms in
September. There is one TC that is also represented in October’s (Figure 10f) track map
because it spanned the two months. Most of the storms formed in the Atlantic, with only
six TCs forming in the GOM.

Figure 10. TC Tracks that occurred from May to November in Georgia from 1951 to 2021; monthly
average rainfall data attributed to tropical cyclones from May to November.

Figure 11e shows that September had the highest average rainfall compared to all
other months. The highest concentration of precipitation is attributed to TCs along the
eastern border moving inland within the Coastal Plain and Piedmont regions. This could be
due to the high-traffic area of TCs that traveled specifically in that area (Figure 10e). Most
of the state receives an average of at least 3% of its annual rainfall from TCs in September.
The only exception is along the eastern border, which receives 20–25%, and this is the
highest concentration of rainfall averages for this region compared to the other months.
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Figure 10f shows that October had 18 TCs with 8 hurricanes and 10 tropical storms.
One TC formed in the middle of the Atlantic Ocean while the rest formed in the GOM,
Caribbean Sea, or the southern portion of the Atlantic Ocean. Figure 11f shows that the
highest concentration of 10% of rainfall in October occurs along the eastern border within
the eastern border of the Coastal Plain. The rest of the state sees varying concentrations of
around 1–4% of its rainfall from TCs.

Figure 10g shows that November only had two TCs with one hurricane and one
tropical storm. Hurricane Kate (1985) traveled through Georgia from the GOM, and it
formed in the Atlantic Ocean. Tropical storm Juan (1985) formed in the GOM and traveled
within the buffer, so it never moved over any part of Georgia. The majority of the rainfall
this month is attributed to Hurricane Kate.

Figure 11g shows that the highest concentration of precipitation was due to Hurricane
Kate. The rainfall was highest as the hurricane entered the southwest region and exited
along the middle of the eastern border. This precipitation was mainly concentrated in the
Upper Coastal Plain. The southern coastline and the northern portion of the state received
no rainfall from TCs during this month.

Figure 11. Average TC precipitation percentage for May–November in Georgia from 1951 to 2021.
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4. Discussion

This research focused on the spatial characteristics of tropical cyclone (TC) frequency,
intensity, and rainfall in Georgia, USA. The study found that 113 TCs entered the state
of Georgia from 1851 to 2021. Previously, the authors of [10] found 14 hurricanes that
made direct landfall on Georgia’s coast from 1851 to 2014. Of the 113 TCs in this study,
24 were categorized as hurricanes, and 89 were categorized as tropical storms as they
entered the state’s borders. Consistent with the established patterns of activity, Georgia’s
TC season was most active during the months of August, September, and October [34].
September had the highest TC frequency (n = 40; 35%), October had the second highest TC
frequency (n = 27; 23%), and August had the highest frequency of hurricanes (n = 8; 7%).
A surprising early batch of May (n = 2; 2%) and June TCs (n = 15; 13%) was seen within the
data. The early occurrence of TCs in June and May may be attributed to the position of the
Bermuda High, which increases the likelihood of landfall in the Gulf of Mexico earlier in
the TC season [36]. The maximum wind speed observed was 54.6 ms−1 by an unnamed
hurricane in 1898. The minimum wind speed observed was 16.3 ms−1 by an unnamed
storm in 1904. The mean wind speed for indirect and direct landfalls in GA observed across
the dataset was 27.2 ms−1. A study found that Georgia’s coastline experiences TCs with an
average of lower wind speeds compared to the coastline of South Carolina [37].

Another study revealed that all category hurricanes in Georgia have decreased over
time [10]. Many studies primarily concentrate on the assessment of lifetime maximum
intensity over the open ocean, rather than the intensity when a TC reaches land and moves
inland, which complicates making direct comparisons [37]. Bettinger et al. (2009) and others
found that TCs making landfall on the Gulf of Mexico coast decrease in intensity more
quickly than similar storms making landfall on Georgia’s coastline [37]. These findings
challenge prevailing assumptions about the impact of changing climate conditions on
hurricane behavior in the North Atlantic Basin. In the Georgia TC dataset, most hurricanes
(87%) occurred in the first 100 years of the data. This is likely causing the decreasing trend
in intensity. Another probable factor contributing to the decrease in TC intensity is the
transformation of Georgia’s landscape. The region’s transformation has been shaped by a
confluence of factors, including natural processes, natural disasters, demographic changes,
and economic developments. Georgia has continually increased in urbanization, which
can disrupt the essential conditions required for a TC to maintain or increase in intensity.
Severe storms still existed in the later years, including Hurricane Michael in 2018. Further
statistical analysis should be conducted to focus on the modern (flight/satellite era to the
present) tropical cyclones in Georgia [25]. This will assist in seeing what the trends and
characteristics of modern TCs are. Georgia TCs occur most often in September, which aligns
with the most active month for TCs throughout the basin [34]. This has implications for
disaster preparedness and resource allocation, emphasizing the importance of heightened
vigilance and readiness during September. On average, Georgia experiences 0.66 TCs
(0.52 tropical storms and 0.14 hurricanes) per year. While it is not expected to be an annual
occurrence, the threat of TCs remains within Georgia and is heightened in the middle of
the season.

TC-induced rainfall was observed at high percentages across the Coastal Plain and the
Piedmont region when compared to annual rainfall totals. Other studies have conducted
similar TC rainfall research on the east coast [32,38,39]. The differences between this study
and the previous studies include the time span, study area, and rainfall dataset. The studies
found similar results for Georgia while having a lower resolution [32,38,39]. Similar to this
study, there is little variability in the Appalachian Plateau and the Ridge and Valley regions
of Georgia. This study had a higher resolution and found that 1–5% of TC-induced rainfall
occurred on average along the coastline. The 3% or lower TC-induced rainfall was seen in
the northwestern portion of the state. Figures 9 and 11, showing the Piedmont region, as
well as Upper, and Lower Coastal Plains, indicate more variability in the amount of rainfall
compared to Nogeuria and Keim’s study [32,38,39].
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May and November had the lowest TC-induced rainfall amounts, with 3% and 1%,
respectively. Only two TCs were recorded in November. The most TC-induced rainfall
occurred in September and October, with 25% and 14%, respectively.

The impact of TCs on regions in Georgia can vary based on whether the landfall was
direct or indirect. Nonetheless, both scenarios entail considerable risks of flash floods and
intense winds. This study also acknowledges indirect TC-related impacts not previously or
extensively mentioned, such as tornadoes and wildfires. Furthermore, a severe hurricane is
not limited by whether a TC makes direct or indirect landfall in a region.

5. Conclusions

The spatial and temporal patterns of TC-induced rainfall further emphasize the varied
impacts these storms have across different regions of Georgia. The coastline and the
Piedmont regions experienced a higher percentage of TC-induced precipitation. This
variability in impact allows for an approach to disaster preparedness and response that is
tailored to the specific vulnerabilities of each region.

Rainfall during September occurs across the entire state, regardless of the region.
The emphasis on September as a peak month for TCs underscores the need for targeted
preparedness efforts during this period. The provided annual averages contribute to a
comprehensive characterization of Georgia’s tropical weather patterns, providing valuable
insights for future research and policy considerations. This research aims to represent the
people who are underrepresented in the literature and in planning practices to create a
safer environment and to spread information to better protect the public. Hurricane Idalia
and Hurricane Michael prove that hurricanes make their way into Georgia and have a
major impact on the region, yet the public focuses on hurricanes’ impact in Florida, South
Carolina, and North Carolina. Hurricanes and tropical storms continue to impact Georgia,
and this research serves as an updated climatology to help protect Georgia’s history, natural
beauty, and the people within.
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Abstract: Previous research showed that a tsunami similar to the 1755 event would inundate Caxias’
low-ground areas in Oeiras municipality, Portugal. However, the streets of downtown Caxias were
not well reproduced, which is a limitation of the area’s mitigation strategies and evacuation plan. For
these reasons, new Lidar data were used for the first time in Portugal. The new local topography data
allowed the construction of a more accurate DEM, which was used in the tsunami numerical model
to update and improve the inundation results. As a complement, a field survey was conducted in
several locations to assess coastal features and protection. The numerical model results show that
low-ground areas up to 6 m in height were inundated by the tsunami, including the residential area,
the road, and the railway. To stop the tsunami waves from inundating these areas, it is proposed
that the construction of more sea walls up to 7 m in height and a third bridge over the Barcarena
Stream, only for pedestrians, ranging from 5 to 7 m in height, which will serve as a gate for the
incoming tsunami waves. These coastal protections should be part of the strategy to mitigate coastal
overtopping (winter storm surges and tsunamis) not only in Caxias but also in other coastal zones.

Keywords: coastal protection; tsunami; field survey; tsunami numerical model; Portugal

1. Introduction

Worldwide, coastal areas are quite vulnerable to extreme events such as winter storm
surges, hurricanes, typhoons, and tsunamis or meteo-tsunamis. Some of these past disasters
inundated the low-ground areas, causing severe damage and fatalities, as presented by, for
example, refs. [1,2]. These situations are even more aggravated due to coastal erosion [3]
and the sea level rise. Simultaneously, the populations are more attracted to the coastal
areas due to urban occupation, tourism or leisure purposes, industry, and services, which
increase the population’s exposure to these natural disasters [2].

As a consequence, many published papers assess shoreline changes and their impacts
on coastal structures in the worldwide coastal evolution. To cope with this problem, the
Journal of Marine Science and Engineering (MDPI) has published more than 200 papers
related to coastal protection from 2023 till August 2024 and about 100 papers related to
tsunamis in the period 2021–2024, too many to conduct a citation of all of them. Still, in
this study, several worldwide case studies are presented. For example, ref. [4] presented
the installation of buffer blocks on the coastline of Germany. On the other hand, natural
Mangrove belt forests are important not only for the ecosystem but also for coastal pro-
tection [5]. However, these natural resources have been disappearing over the decades
in Vietnam, and artificial breakwaters have been constructed, which have shown to be
highly effective in reducing wave height impact. Still, structural failures can occur when a
tsunami overtops a breakwater [6]. Following the 2004 Indian Ocean Tsunami, the role of
mangroves also proved to be very effective in the reduction in the tsunami impact at Banda
Aceh, Indonesia [7,8]. On the other hand, other natural features such as vegetation and
sand dunes are also very effective in wave attenuation, as discussed in a beach in Florida,
EUA [9].
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In Portugal, the complexity of the coastal zone was shown [10] to be due mainly to
four typologies (cluster analysis): natural systems in disequilibrium, with predominantly
environmental impacts; anthropogenic areas, with high population density, predominantly
natural coastal protection, or no protection; natural systems in equilibrium, with few im-
pacts; and predominantly artificial areas, with coastal protection intervention and multiple
impacts. On the other hand, numerical modeling was used to calculate the wave overtop-
ping phenomenon on a Portuguese alongshore coastal defense structure [11]. Furthermore,
ref. [12] showed the assessment of susceptibility to maritime flooding on the Northern coast
of Portugal is based mainly on two variables: the wave climate and the morphological
state of the beaches. Moreover, ref. [13] analyzed tide gauge data from Portuguese stations
from 1980 to 2016 that shows about a 0.1 m increase in the mean sea level. The authors
conducted a probabilistic analysis to estimate the sea level rise till 2100 and concluded the
average rising of the mean sea level is about 0.7 m for a return period of 50 years.

In addition, there are specific guidelines for the Oeiras municipality, Portugal (see
location in Figure 1a,b). The Municipal Plan of Adaptation to Climate Change in Oeiras [14]
claims that “on all the beaches of the municipality, it is projected that the rise from the
mean sea level implies a significant reduction in that capacity, which could derail its
beach exploration”, with examples being Caxias Beach. In addition, the Energy and
Climate Action Plan of Oeiras (PAECO 2030+) [15], in the Strategic Axis of Water System
and Estuarine Edge, the specific measures are to promote the riverfront adaptation to the
average water level rise and flood enlargement and to promote the protection of buildings at
risk of coastal flood or coastal overtopping and existing coastal defense and port structures
and beach protection and maintenance.

Previous research [16] has shown the 1755 tsunami arrived at Caxias (Figure 1) 33 min
after the earthquake, at the beaches inundating the low-ground areas of the Caxias down-
town (Figure 1c), as well as the Caxias Public Park and Royal Estate of Caxias. In the
tsunami inundation zone, there are about 40 buildings: about 25 that are residential, about
10 that are military, two restaurants (#C) located at the São Bruno beach, the sewage facility
treatment (building #A), one service (building #B), and the São Bruno Fortress (#D). These
results are important to understand the overall tsunami impact and evacuation conditions,
as discussed by these authors [16]. However, the Digital Elevation Model (DEM) used
in the tsunami numerical model had 9 m of cell size resolution, which is not enough to
reproduce the detailed local features of Caxias, such as the streets of the residential area
of Caxias downtown and the parks and gardens layout. In general, the topography data
in Portugal are still of low resolution, and to solve this problem, new topography data
were collected by using LIDAR technology. To the authors’ knowledge, this is the first time
that this type of technology has been used in Portugal in the context of tsunami numerical
modeling, which is why this study is considered to be innovative. The use of new data
allows the reproduction of the DEM of the study area more accurately.

Therefore, the study area taken in this paper is Caxias (Figure 1), which incorpo-
rates the Caxias and São Bruno beaches, is localized in Oeiras municipality, and is in-
tegrated into the Lisbon Metropolitan Area, Portugal. Its geographical coordinates are
38◦41′55′′ N, 9◦16′45′′ W, and 38◦41′54′′ N, 9◦16′27′′ W. These beaches flank the Barcarena
Stream, which is about 25 m wide, and are bordered to the north by the Cascais railway line,
built in 1890, and the National Road 6 (Marginal Avenue), inaugurated in 1940 [17]. Two
important architectural heritage properties stand out near the beaches: the Caxias Royal
Estate and the São Bruno Fortress, which was also inundated by the tsunami (building #C).
Built in the 17th century, the Caxias Royal Estate stands out for its unique architectural
design, environment, living style, and landscape qualities, which constitute a singular cul-
tural heritage [18], while the São Bruno Bruno is one of the military defense constructions
at the entrance to the Tagus River. Moreover, the location of the Caxias Train Station (red
building in Figure 1c) and several parking lots near the Caxias and São Bruno beaches
make the area even more attractive to residents and tourists.
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Moreover, the pandemic situation due to COVID-19 was a unique opportunity to reg-
ister in real-time the present population on both beaches. At the time, the recommendation
considering the social distance of 1.5 m [19] for the maximum beach capacity was 1700 peo-
ple in Caxias Beach. In São Bruno Beach, the maximum capacity was 969 people [20],
obtained from a simple rate formula (maximum beach capacity = beach area/8.5 m2).
Thus, the Oeiras City Hall installed turnstile control data at the beach accesses (#1 to #5,
in Figure 1c) to ensure the health and safety of beach users. The population data at the
beaches consisted of 24 h records during the summer months of June to September 2021 [20].
The data are still very relevant since there are no available data on the number of present
populations at both beaches before and after 2021. The data showed the maximum number
of people registered in Caxias Beach on 22 August 2021 between 15 h (622 people) and 18 h
(734 people). In São Bruno Beach, the maximum number of people was registered on 4 July
2021 between 11 h (133 people) and 16 h (241 people).

As pointed out by a previous study [16], a basic tsunami scenario is already contem-
plated in the Municipal Emergency Plan [21] that needs to be reviewed and updated. On
the other hand, the Caxias and São Bruno beaches have five accesses: beach access #1 and
#5 are stairs, while beach access #2 is a tunnel, and beach accesses #3 and #4 are ramps.
Although there is high ground nearby, the configuration of these exits may cause some
confusion to beach users if an emergency evacuation is necessary, and for that reason,
the local tsunami hazard on each beach was classified as high [16]. Nevertheless, the
new topography data allow an upgrade of the tsunami numerical model setting from five
computational regions [16] to six regions (this study), with a 9 m cell size to a 3 m cell
size, respectively. In computational region 6, the local features of Caxias are accurately
reproduced, including streets and ramps to access the beaches.

 
Figure 1. Geographical Framework of the study area, with the administrative limits [22]: (a) location
of Oeiras municipality; (b) location of the Caxias area in Oeiras municipality; (c) details of the railway,
road, buildings [23], and land use (adapted from [24]) in the Caxias area. The tsunami inundation
zone was calculated by previous research [16] with a cell size resolution of 9 m. Highlighted
buildings: A—sewage treatment facility; B—service; C—restaurant; D—São Bruno Fortress; Red
building—Caxias train station.
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Thus, the objectives of this research are as follows: (1) to conduct a follow-up of a
previous publication [16] by using new topographic data obtained from Lidar Technology
to update the tsunami numerical model results of the 1755 event at Caxias and São Bruno
Beaches, in the vicinity of Barcarena Stream, in Oeiras municipality, Portugal. (2) Propose
several coastal protection measures in order to increase the safety of coastal communities to
extreme coastal events in the study area. Moreover, these methods can be applied to other
coastal regions in the world, particularly in low-ground areas.

2. Materials and Methods

This study is a follow-up of previous research [16], and the methodology is the same.
The tsunami numerical modeling was carried out using the TUNAMI-N2 code of Tohoku
University, which considers the non-linear shallow water equations discretized with a
staggered leap-frog finite difference scheme [25]. This method has been used to study many
tsunamis, such as the 2004 Indian Ocean Tsunami [26], the 2011 Tohoku Tsunami [27], the
2016 Fukushima Tsunami [28], and the 2024 Ishikawa Prefecture tsunami in Japan [29].

The equations were applied to the nesting of six computational regions, where each
region has a progressively smaller area and finer grid cell size (from 729 m in Region 1
to 3 m in Region 6), being included in the previous computational region, as presented
in Figure 2. The computational regions 1 to 5 are the same as those used in a previous
publication [16], on which several bathymetry charts and topography maps with different
scales are based.

 

Figure 2. Conditions of the numerical model setting in the Caxias coastal area of Oeiras municipality:
(a) Region 1 and initial sea surface displacement of the 1755 tsunami; (b) Region 2 and the placement
of Regions 3 to 6; (c) Details of computational Region 6.

In addition, computational region 6 is new in this study. New topographic data
allowed a more detailed and realistic construction of the digital elevation model with a 3 m
cell size to reproduce the local features such as streets, sidewalks, and the stream layout.
The data collection was based on a laser scan of the study area carried out using a RIEGL
VUX laser scanner installed on a helicopter. This mission was carried out on 11 May 2020
at an average altitude of about 61 m (200 feet) and an average speed of about 74 km/h
(40 knots). The main technical characteristics of the survey were a nominal point density of
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a minimum of 16 points per m², a nominal pulse spacing of <0.25 m, and multiple discrete
returns (minimum potential of 4 per pulse). The absolute vertical accuracy for the LiDAR
survey and derived digital elevation model was computed for non-vegetated areas with an
RMSEz of <0.10 m at more than a 95% confidence level.

Also, as in the previous research [16], the tsunami source model considered in this
study is the 1755 tsunami, which is located on the Gorringe Bank (Figure 1a). The initial
sea surface displacement was calculated by using the Okada formulas [30] in Region 1,
which led to a maximum uplift of about +6.0 m and a subsidence of −0.4 m (Figure 2a).
This source model was proposed and validated for the 1755 tsunami at the regional and
local scales [31–37].

As a complement to the tsunami numerical model, a field survey (Figure 3) was
conducted on several occasions. Field surveys are important to assess coastal conditions,
including collecting evidence during and after coastal disasters like winter storm surges
and tsunamis [38]. In Portugal (Figure 3a), the surveys were conducted on several spots of
Caxias (this study) on different occasions from May 2022 to June 2024.

Figure 3. Location of places where the several field surveys were conducted on several occasions:
(a) Portugal; (b) Japan.

In addition, previous field surveys conducted in 2013 on two other locations of the
Portuguese coastline (Figure 3a) help to discuss and interpret the results obtained in this
study to support natural coastal protection. The surveys were conducted in Cova Beach,
Figueira da Foz, located at 40◦07′24′′ N, 8◦51′48′′ W, and Urban Health Park, Setubal,
located at 38◦31′05′′ N, 8◦54′11′′ W. These places show examples of natural protection of
the coastline.

On the other hand, the experience obtained with the field survey in Japan in 2012,
after the 2011 Tohoku Tsunami (Figure 3b), allows a more comprehensive knowledge in the
discussion of the several types of coastal protection proposed in this study. In Japan, the
technical visit was conducted in Taro, located at 39◦44′08′′ N, 141◦58′19′′ E; RikuzenTakata,
located at 39◦00′13′′ N, 141◦37′33′′ E; MinamiSanriku, located at 38◦40′29′′ N, 141◦26′51′′ E;
and Arahama, Sendai, located at 38◦13′15′′ N, 140◦59′00′′ E. These places show examples
of natural protection of the coastline and the impact of the construction of seawalls and
tsunami gates.

3. Results

The tsunami numerical model on computational region 6 produced several output
results, such as the water level variation snapshots, inundation depth, maximum water
level, and water level time series, as presented in Figures 4 and 5. In addition, the field
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survey results are presented in Figure 6, showing a view of the several spots of the study
area to help conduct a comprehensive analysis of the tsunami impact.

 
Figure 4. Tsunami numerical model results for the elapsed time after the earthquake of water
level snapshots showing the arrival of the first tsunami wave: (a) 31 min; (b) 32 min; (c) 33 min;
(d) 34 min; (e) 35 min; (f) 36 min. Highlighted buildings: A—Sewage treatment facility; B—Service;
C—Restaurant; D—São Bruno Fortress.

The water level snapshots results show the first tsunami wave arrived offshore the
Caxias and São Bruno beaches 31 min after the earthquake (Figure 4a), taking two more
minutes to completely inundate the Caxias beach, the section of the Marginal Avenue
(about 460 m length), and the São Bruno beach as well as its sidewalk (Figure 4c). The field
survey shows that Marginal Avenue has four traffic lanes (Figure 6a), with a total width
of about 15 m. On the other hand, the railway, which was not hit by the tsunami, has two
lanes with also a total width of about 15 m.

The first wave travels upstream the Barcarena Stream, overtopping its margins, which
are made of brick and concrete walls with different heights (Figure 6b,c), inundating the
low ground of the Caxias downtown, the Caxias Public Park, and the Royal Estate of Caxias,
from 34 min (Figure 4d) after the earthquake, and continues to spread for at least 2 more
minutes (Figure 4e,f). The field survey shows there are sections of the Barcarena Stream that
are only protected by a fence, while other parts have vegetation or sea walls (Figure 6b,c).
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Figure 5. Tsunami numerical model results on computational region 6: (a) Inundation depth;
(b) maximum water level; (c) Water level time series in Caxias. Highlighted constructions: A—Sewage
treatment facility; B—Service; C—Restaurant; D—São Bruno Fortress.

The inundation depth results (Figure 5a) provide the water level above the ground
(local topography data) for each computational pixel with a cell size of 3 m. The results
show that Caxias Beach is completely inundated, and the highest value is 6.4 m, and the
lowest is 1.7 m. The tsunami also inundates the stretch of Marginal Avenue with values up
to 1.3 m high. Therefore, the road is not a safe place for people to evacuate. The values at
São Bruno beach vary between 1.8 m and 5.6 m, and the sidewalk and the low ground area
are completely inundated up to 2.4 m high.

The field survey shows a view of the São Bruno beach and sidewalk (Figure 6d); as the
tsunami reaches the seawall of Marginal Avenue, it may cause some scouring and damage
on hit. Although the tsunami does not reach the road, which is located above 6 m height,
there are only two beach accesses (#4 and #5) that may not be large enough for beach users
to safely evacuate the beach.

However, the results on the computational region 6 with a pixel cell size of 3 m (this
study) show the railway was not hit by the tsunami because it is located on higher ground
(from 6.5 m height). In the previous study [16], where the tsunami numerical results on
computational Region 5 were carried out with a pixel cell size of 9 m, the tsunami hit the
railway and overtopped it, inundating the Caxias downtown and the Caxias Public Park
(Figure 1). Two computational factors influenced these results: the new Lidar data allowed
a more accurate Digital Elevation Model (DEM), and the setting of the numerical model
(Figure 2) allowed the reproduction of the coastal features of the study area.

Moreover, the tsunami traveled upstream the Barcarena Stream for 1120 m, inundating
the low ground margins for a section of about 560 m, conducting to an inundation depth at
the Caxias downtown up to 3.1 m high, up to 2.6 m at the Caxias Public Park, and up to
0.9 m in the Royal Estate of Caxias.

On the other hand, the maximum water level results (Figure 5b) provide the water
level above the mean sea level for each computational pixel with a cell size of 3 m, including
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on-land and offshore outputs. The results show that at Caxias Beach, the highest value is
6.5 m, and the lowest is 5.4 m. The tsunami also inundates the section of Marginal Avenue
with 5.8 m to 6.8 m height but does not overtop the bridges over the Barcarena Stream
(Figure 6a) because they are located at about 6 m height and the maximum water level
reaches up to 4.9 m height. In the stretch of the inundated areas of the Caxias downtown
and Caxias Royal Estate (about 550 m long), the maximum water level at the Barcarena
Stream reaches 4.9 m, decreasing gradually upstream to a height of 3.2 m. In the last stretch
of about 370 m, where there is no inundation, the water remains restricted within the stream
margins and reaches 2.8 m in height. The maximum water level at the Caxias downtown
varies between 3.9 m and 4.8 m in height, 4.0 m to 5.0 m in height at the Caxias Public Park,
and 3.2 m to 4.5 m in height in the Royal Estate of Caxias. Offshore the São Bruno beach,
the water level varies between 3.8 m and 5.6 m, and offshore the Caxias beach, 4.4 m and
6.4 m.

 

Figure 6. Field surveys were conducted in different spots of the study area. See Figure 1 for locations:
(a) Caxias beach and a view of Marginal Avenue and railway on 30 April 2024; (b) a view of Barcarena
Stream in the vicinity of the Caxias Public Park on 2 December 2023. The dashed lines highlight the
brick wall at different heights. Building A: Sewage treatment facility; Building B: service. The white
circle shows an area with only a fence for protection; (c) View of the Barcarena stream in the vicinity
of the Caxias downtown and Royal Estate of Caxias. The white circle shows an area with vegetation
belt protection about 2 m high; (d) São Bruno beach on 28 August 2024. Building C—restaurant;
building D—São Bruno Fortress; beach access #4 is a ramp; beach access #5 is a stair.

Finally, the water level time series (Figure 5c) shows the first wave arrives at the
coastline of Caxias 31 min (picked at the +0.1 m height) after the earthquake, and the peak
of the first wave is 4.98 m at 33 min. The second wave reaches 2.69 m at 44 min, followed
by other minor waves with maximum water levels between 1.5 and 1.7 m, with sea level
variations for 90 min.
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4. Discussion

Natural landscapes, such as mangrove forests in Asia [5,7,8] or sand dunes [9,39],
protect the coastal areas without human intervention. The field survey conducted in
Figueira da Foz, Portugal (Figure 7a) shows that sand dunes offer natural protection against
extreme coastal events. Nevertheless, constant erosion requires monitoring and, in some
places, the construction of spurs and other artificial constructions. However, unlike Figueira
da Foz, the Caxias coastal area is not naturally protected by sand dunes. Therefore, other
solutions must be planned to allow coastal protection.

 

Figure 7. Field survey in Portugal showing natural coastal protection: (a) Cova beach, Figueira da
Foz. The sand dunes reach up to 10–14 m in height. Photo taken on 2 June 2013; (b) Urban Health
Park (Jardim da Saude), Setubal with pine trees and elevated ground. Photo taken on 20 June 2013.

The results presented in Section 3 show the tsunami in the section of Caxias Beach
inundates Marginal Avenue. Not only is this a very hazardous situation for the vehicles
that circulate on the road, but the air cavity pressure and cavity water depth behaviors
when a tsunami overtops a breakwater [6] can cause damage to the seawall, including the
scouring of the foundations. This situation was observed during the 2011 Tohoku Tsunami
in Taro, during which parts of the breakwater were ripped off (Figure 8a). Similar damage
due to scoring was also observed in several infrastructures after the 2015 Illapel Tsunami in
Chile [40].

In addition, the winter storm surges also raise some concern for the protection of
coastal areas, especially during high tides. An example is the Monica Depression that hit
Portugal’s mainland from 7 to 10 March 2024 [41]. The field survey conducted at Caxias
Beach during and after this storm (Figure 9) shows the waves inundated the beach, and the
water almost reached the sea wall of Marginal Avenue.

To solve this situation, it is proposed to expand the seawall of Marginal Avenue, that
is, to continue with the silting of the beach, which has been carried out since the 1940s. The
new area to be constructed must have a height of at least 7 m and be at least 10 m wide.
In addition, the new area must include some “green belt” with the plantation of several
species of bushes and trees.

The “green belt” provides shade, but it has also proved to be an effective barrier to
water pressure [42]. The field survey conducted on several coastal areas shows this type of
coastal protection has been successfully carried out in Setubal, Portugal (Figure 7b), and in
Sendai and Rikuzentakata, Japan (Figure 8b,c).

Similarly, the results presented in Section 3 show that the São Bruno beach is inundated
by the tsunami hitting the sidewalk. Although the water does not reach Marginal Avenue,
it may cause damage and score to the seawall. To solve this problem, it is proposed to
increase the height of the sidewalk at São Bruno beach (Figure 6d) as a ramp with a low
slope angle from the current 4 m to 7 m. The restaurant (building #D), which is located at
about 4 m, should also be replaced with a higher topography level of 7 m in height.
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Figure 8. Field survey conducted in Japan on 18–19 February 2012: (a) Remains of the breakwater
and one building in Taro; (b) Part of the pine tree forest belt at Arahama, Sendai. (c) Only one tree
stands from the pine tree forest belt, “The Miracle Pine Tree,” Rikuzentakata; (d) Tsunami gate at the
River Hachiman, Minami-Sanriku.

In addition, the evidence left by the sand and the debris deposited inside the tunnel of
Caxias beach (Figure 9c) due to the Depression Monica shows the maximum inundation
reached about 3.8 m in height. On the other hand, the probabilistic estimation for the mean
sea level rise to a return period of 50 years is 0.7 m [13]. For these reasons, the new maritime
sidewalk to be constructed at Caxias Beachshould be constructed at least 4.5 m high and
about 10 m wide.

Moreover, there is evidence that the area of Caxias Beach has been decreasing due to
the yearly sand erosion combined with the lack of maintenance of the beach. Thus, it is
important that the sand is replaced to reach 3.5 m in height and to increase the width of the
beach from the current 50 m to 85 m. As a consequence, there will be a shift in the coastline.

Nevertheless, it is important to point out that placing a breakwater or buffer block
offshore of the Caxias and São Bruno beaches would decrease the depth of tsunami inun-
dation, as discussed, for example, by [4]. However, this option is not possible to install
for coastal protection in the study area because an offshore breakwater is not esthetically
appealing for both residents and tourists, as well as may constitute a hazard to navigation
on the Tagus River.

In addition, the quality of the water at Caxias and São Bruno beaches is not very
good. Portugal has the Blue Flag Award [43]: each year, the Blue Flag is granted to the
beaches that follow several criteria, including water quality. In 2024, Caxias and São Bruno
beaches did not receive the Blue Flag. The water is regularly analyzed by chemical and
biological contents of the water [44], showing both beaches are acceptable for public use.
Although the water quality analysis and local circulation are outside of the scope of this
paper, to improve the water quality at the beaches, it is recommended to relocate the sewage
treatment facility (Building #A) or to impose more strict methods to filter the water that is
dumped into the Barcarena Stream. Thus, adding offshore breakwaters of buffer blocks
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may cause the possibility of reducing or even cutting altogether the water regeneration in
the high-low-tide currents since it may promote low water circulation and high residence
time inside the trapped area by the breakwater, which in turn would cause a significant
decrease in the water quality.

 

Figure 9. Field surveys were conducted in different spots of the study area. See Figure 1 for locations:
(a) Beach Access #1 during the Depression Monica on 10 March 2024; (b) Beach Access #1 on 17
December 2023; (c) Sand deposited inside the tunnel (Beach Access #2) due to the Depression Monica
on 13 March 2024; (d) Tunnel was cleaned (Beach Access #2) on 30 April 2024.

The results presented in Section 3 show the tsunami overtops the margins of the
Barcarena Stream. The field survey shows there is already some effort to protect the low-
ground area with sea walls and vegetation (Figure 5b,c). Thus, it is proposed that the
continuation of the construction of the levees and increasing their heights range from 4.8 m
to 7.2 m at the tsunami inundation zone. Moreover, the field survey in MinamiSanrilu
(Figure 8d) shows that a tsunami gate could be an effective structure to decrease the tsunami
impact upstream of the Barcarena Stream. On the other hand, the field survey conducted
in MinamiSanriru also shows that some sections of the gates failed to be low because of
damage due to the earthquake. In addition, the cost–benefit makes this option not realistic
to be applied in Portugal. Instead, it is proposed that the construction of a new bridge
only for pedestrians (Figure 10) be done. The bridge would allow the passage between the
Caxias and São Bruno beaches as a continuous maritime sidewalk. The damage on bridges
related to tsunamis overtopping the upper decks has been analyzed [45,46]; thus, to avoid
this situation, the new proposed bridge in the river mouth of the Barcarena Stream should
be at 7 m height.
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Figure 10. Proposal to build a new bridge over the Barcarena Stream. This third bridge is only for
pedestrians and bicycles and should have a height ranging from 5 to 7 m since, at present, Marginal
Avenue is at about 6 m height, and the lower part of the bridge is at 5 m height. In addition, the new
bridge should have a design to deflect the incoming sea waves.

Thus, the proposed Digital Elevation Model (DEM) was added to the topography
of computational region 6 (Figure 2c), and the tsunami numerical model was carried
out again. Moreover, the new beach accesses must be done exclusively by ramps (#R1
to R6, in Figures 11 and 12), similar to the existing beach accesses #3 and #4 (Figure 1).
Figures 11 and 12 show the results of the new simulation, with the proposed DEM that
would allow further coastal protection. The first tsunami wave inundates the Caxias beach,
its new sidewalk, and the São Bruno beach. It travels upstream of the Barcarena Stream
but does not overtop its margins (Figure 11), and at 36 minutes is at about 500 m inland
(Figure 11b).

The inundation depth results (Figure 12a) show that Caxias Beach is completely
inundated, with the lowest value of 1.8 m and the highest value of 6.1 m, and the values
at São Bruno Beach vary between 1.8 m and 5.3 m, which are very similar to the results
obtained with the current DEM (Figure 6a). However, it does not inundate the new seawall
at Caxias beach with 7 m height, and therefore, Marginal Avenue is not hit, nor is the new
sidewalk and restaurant (Building #C) at São Bruno beach.

The maximum water level results (Figure 12b) show that at Caxias Beach, the lowest
is 5.2 m, and the highest is 6.1 m. The tsunami does not overtop the bridges over the
Barcarena Stream (Figures 5a and 10) because they are located at about 6 m height, and
the maximum water level ranges between 5.6 m and 5.8 m height. Still, the water may
reach the lower part of the bridges, which are about 5 m high, and for this reason, the
new proposed pedestrian bridge should serve as a tsunami gate to protect the existing
bridges of Marginal Avenue and the railway (Figure 5a). Still, a careful analysis must be
carried out before the construction of the new bridge due to the interaction between decks
of twin-box bridges [45]. The tsunami travels upstream of the Barcarena Stream, and the
water remains within its margins, with the maximum water level ranging between 2.1 m
and 5.8 m. Finally, the water level time series (Figure 12c) shows the tsunami has the same
behavior offshore, with no variation from Figure 6c.
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Figure 11. Tsunami numerical model results for the elapsed time after the earthquake of water level
snapshots showing the arrival of the first tsunami wave, with the proposed DEM (Digital Elevation
Model) represented by the green line: (a) 34 min, (b) 36 min; Highlighted buildings: A—Sewage
treatment facility; B—Service; C—Restaurant; D—São Bruno Fortress.

 

Figure 12. Tsunami numerical model results on computational region 6, with the proposed DEM
(digital elevation model) represented by the green line: (a) Inundation depth; (b) maximum water
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level; (c) Water level time series in Caxias. Highlighted buildings: A—Sewage treatment facility;
B—Service; C—Restaurant; D—São Bruno Fortress.

5. Conclusions

The new Lidar technology has shown to be a very important tool for collecting detailed
topography at the local scale. The new topographic data allowed the construction of a
more accurate Digital Elevation Model (DEM) of the study area with a cell size pixel of 3 m,
which reproduced the local features such as streets.

The tsunami numerical model results show that a tsunami similar to the 1755 event
arrived at Caxias 33 min after the earthquake, inundating the Caxias beach and Marginal
Avenue; the downtown of Caxias was also inundated, including residential buildings,
34 min after the earthquake.

On the other hand, although tsunamis are rare events, in recent years, winter storm
surges have become more frequent and severe, which, combined with the sea level rise, are
a concern for low-ground areas. An example was the Depression Monica, which hit Caxias
in March 2024. The water reached a maximum height of 3.8 m and inundated the Caxias
beach and the tunnel (beach access #2).

For these reasons, it is proposed to continue the silting process of Caxias Beach by
the construction of a new seawall with a height of 7 m, and the new sidewalk at the beach
should be at least 4.5 m in height. At São Bruno Beach, it is proposed to increase the height
of the present sidewalk from the current 4 m height to a 7 m height, with a gentle slope.
The restaurant on this beach (building #C) should also be moved to a height of 7 m. The
levees of the margins of the Barcarena Stream should have a height ranging between 4.8 m
and 7.2 m. Moreover, it is proposed that the construction of a third bridge for pedestrians
will serve as a gate for incoming sea waves. The numerical simulation considering the
proposed DEM with new seawalls shows the tsunami inundates only the low-ground areas
of the Caxias and São Bruno beaches, and all the seawalls are not overtopped.

These coastal protections should be part of the strategy to mitigate coastal overtopping
(winter storm surges and tsunamis) not only in Caxias but also in other coastal zones. The
proposed coastal protections will allow redundant protection to the beach users since it will
allow a quick evacuation to safe, higher ground but also reduce the impact on buildings as
well as on the road, railway, and the other two bridges.
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Abstract: The 2018 Sulawesi Earthquake and Tsunami serves as a backdrop for this work,
which employs simple and straightforward remote sensing techniques to determine the ex-
tent of the destruction and indirectly evaluate the region’s vulnerability to such catastrophic
events. Documenting damage from tsunamis is only meaningful shortly after the disaster
has occurred because governmental agencies clean up debris and start the recovery process
within a few hours after the destruction has occurred, deeming impact estimates unreliable.
Sentinel-2 and Maxar WorldView-3 satellite images were used to calculate well-known
environmental indices to delineate the tsunami-affected areas in Palu, Indonesia. The use of
NDVI, NDSI, and NDWI indices has allowed for a quantifiable measure of the changes in
vegetation, soil moisture, and water bodies, providing a clear demarcation of the tsunami’s
impact on land cover. The final tsunami inundation map indicates that the areas most
affected by the tsunami are found in the urban center, low-lying regions, and along the coast.
This work charts the aftermath of one of Indonesia’s recent tsunamis but may also lay the
groundwork for an easy, handy, and low-cost approach to quickly identify tsunami-affected
zones. While previous studies have used high-resolution remote sensing methods such as
LiDAR or SAR, our study emphasizes accessibility and simplicity, making it more feasible
for resource-constrained regions or rapid disaster response. The scientific novelty lies in
the integration of widely used environmental indices (dNDVI, dNDWI, and dNDSI) with
threshold-based Decision Tree classification to delineate tsunami-affected areas. Unlike
many studies that rely on advanced or proprietary tools, we demonstrate that compa-
rable results can be achieved with cost-effective open-source data and straightforward
methodologies. Additionally, we address the challenge of differentiating tsunami impacts
from other phenomena (et, liquefaction) through index-based thresholds and propose a
framework that is adaptable to other vulnerable coastal regions.

Keywords: remote sensing; natural hazards; environmental indices; land cover change;
vulnerability assessment; Indonesia; tsunami

1. Introduction

Tsunamis are a result of the sudden displacement of the water column, triggered
by events such as earthquakes, volcanic eruptions, submarine landslides, or atmospheric
disturbances (e.g., [1–7]). Tsunamis can be highly destructive through inundation, erosion,
strong currents in ports and harbors, and scouring caused by strong forces generated
during the receding of waters, leading to loss of life and property damage (e.g., [8–16]). On
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many occasions, tsunamis caused more damage than the earthquakes that triggered them
(e.g., Chile 1960, Alaska 1964, Tohoku 2011, Banda Aceh, 2004).

Indonesia is vulnerable to earthquakes, tsunamis, and volcanic eruptions due to its
geographic location at the junction of three tectonic plates (the Indo-Australian Plate, the
Eurasian Plate, and the Pacific Plate) [17–19]. Because of this tectonic setting, the presence
of numerous underwater volcanoes combined with a densely populated coastal zone means
that a large part of the country’s population is exposed to a number of coastal hazards
including tsunamis as we have observed in the recent past (e.g., the 2004 Banda Aceh
tsunami; [17–21]). According to the global tsunami database, a total of 77 tsunamis have
been documented in Indonesia since 1608 [22]. These tsunamis have claimed the lives of
more than 368,000 people in the country [22]. Among these, the catastrophic 2004 Indian
Ocean tsunami alone killed 167,540 people in Indonesia and more than 220,000 people in
14 countries in Asia and Africa (Table 1) [23].

Table 1. Summary of significant life losses (>100) in Indonesia from recent tsunamis [22].

Name
Date

(mm/dd/yr)
Source Location

Earthquake
Magnitude

Maximum Water
Height (m)

Total
Deaths

2004 Indian Ocean
Tsunami 12/24/2004 Earthquake Sumatra 9.1 50.9 227,899

2005 Nisa-Simeulue
Tsunami 03/28/2005 Earthquake Indonesia 8.6 4.2 1313

2006 Pangandaran
Tsunami 07/17/2006 Earthquake South of Java 7.7 20.9 802

2010 Mentawai
Tsunami 10/25/2010 Earthquake Sumatra 7.8 16.9 431

2018 Sulawesi
Tsunami 09/20/2018 Earthquake

and Volcano Sulawesi 7.5 10.73 4340

2018 Sunda strait
Tsunami 12/22/2018 Volcano and

Landslide Krakatau * 85 437

* The 2018 Sunda Strait tsunami was not directly caused by an earthquake, so it does not have a seismic magnitude.

More recently, an M7.5 earthquake struck Central Sulawesi island, Indonesia, on
28 September 2018 at 6:03 p.m. local time (10:03 UTC). The earthquake caused severe
damage to buildings and infrastructure and was responsible for more than three thousand
deaths and many more people injured. The impact of this event is attributed to ground
shaking, major liquefaction, landslides, and a tsunami. This was a large strike-slip faulting
event at a shallow depth that generated a tsunami that caused damage through flooding,
debris, ground erosion, and scouring [24–27].

Remote sensing, the technique of obtaining information about objects from a distance,
has become a crucial tool in disaster management. Regarding tsunamis, satellite imagery
has primarily been used for post-event damage assessment or as a source of byproducts
(e.g., DEMs, friction maps) that serve as inputs to numerical models. Pioneering studies, like
those following the 2004 Indian Ocean tsunami, utilized satellite imagery to map affected
coastlines and assess the extent of inundation (e.g., [28–33]). These early applications relied
mainly on optical imagery.

Recent technological advancements have broadened the scope of remote sensing in
tsunami science. High-resolution satellite imagery, LiDAR (Light Detection and Ranging),
and radar technologies have enabled more detailed and accurate assessments of tsunami
inundation and impact. For instance, Chiroiu et al. [30] demonstrated the use of high-
resolution satellite data for rapid damage assessment in coastal zones. Studies like those
by Tang et al. [29] explored the use of satellite altimetry data to detect sea-level anomalies
indicative of tsunamis. Similarly, SAR (Synthetic Aperture Radar) data, due to their
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ability to penetrate cloud cover and capture surface roughness, have been explored in
detecting tsunami wavefronts and forecasting their impact [31]. Most of these studies
have focused on the use of satellite imagery to estimate post-tsunami damage such as the
extent of inundation and structural damage and evaluate the impact on natural resources
(e.g., [32–38]). For example, Gokon et al. [39] highlighted the usefulness of remote sensing
in understanding the extent of damage to aid effective recovery and rehabilitation efforts.

It has previously been verified that it is possible to identify tsunami-inundated areas
by observing changes in spectral indices. Specifically, Yamazaki et al. [33] carried out a field
survey in southern Thailand to examine areas severely affected by the Banda Aceh 2004
Boxing Day tsunami using GPS cameras and a handheld spectrometer. Three conditions
of vegetation were measured: healthy (replanted), seriously affected (yellow), and dead.
There were clear differences in the reflectance curves among these three conditions, with
healthy plants showing a rapid increase in reflectance between the visible red (R) and
near-infrared (NIR) bands. This characteristic was reduced in the unhealthy plants and
was absent in the dead plants [33]. These notable changes in vegetation reflectance, offer
an effective way to evaluate the impact of tsunamis on coastal vegetation.

Remote sensing techniques have also been employed to study the environmental
impacts of tsunamis, such as changes in land cover, coastal erosion, and sedimentation.
Research by Yamazaki et al. [33] using multispectral imagery provided insights into the
long-term ecological effects of tsunamis on coastal environments. The integration of remote
sensing data with Geographic Information System (GIS) platforms and modeling techniques
may offer significant advancements to traditional tsunami hazard studies. This integration
allows for more comprehensive spatial analysis and modeling of tsunami risks and impacts
(e.g., [39]). Studies by Taubenböck et al. [40] illustrate how combining satellite data with
GIS models can enhance tsunami hazard mapping and risk assessment.

Despite significant progress, challenges remain in remote sensing applications in
tsunami science. These include limitations in spatial and temporal resolution, data avail-
ability, and the need for rapid data processing during emergency situations. Future research
is likely to focus on integrating real-time data processing, improving the accuracy of early
warning systems, and enhancing the resolution of satellite data [41]. Remote sensing can
become an indispensable tool in tsunami analysis, offering valuable data for early warning,
impact assessment, and recovery planning. As technology advances, its role in under-
standing and mitigating tsunami risks is likely to grow, providing more precise and timely
information to safeguard vulnerable coastal communities.

Studies have shown that the financial impact of natural disasters is significant and
rising (e.g., [42–46]). Additionally, investments in disaster risk mitigation may be eco-
nomically beneficial; research suggests that every dollar spent on mitigation can save a
substantial amount in post-disaster rebuilding efforts [42–47]. The costs associated with
natural disaster management in Palu, which include research, disaster preparedness, and
other aspects, have been substantial. In the aftermath of the 2018 earthquake and tsunami,
the region faced significant challenges. While specific financial figures for research and
disaster preparedness activities in Palu are not readily available, the overall impact of losses
was estimated to be IDR 2.89 trillion (1 billion IDR approximately equals USD 64,000), with
damage costs amounting to IDR 15.58 trillion due to the disaster [48].

This study aims to use easy, handy, and low-cost Remote Sensing techniques to quickly
identify tsunami-affected zones in Palu. This is to enhance future disaster readiness by
accurately mapping and assessing the extent of areas affected by the 2018 Sulawesi Earth-
quake and Tsunami in Palu. This should be a low-cost methodology using satellite imagery
from open sources that can be simple and quick with the potential to be implemented in an
early warning system or post-disaster for disaster management.
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2. Data and Methods

2.1. Study Area

This study was conducted in the city of Palu, located in Central Sulawesi Province,
Indonesia (Figure 1). Palu, the capital and largest city of the province spans an area of
395 km2, situated between 0◦39′ S to 0◦56′ S latitude and 119◦45′ E to 120◦1′ E longitude
(Palu, 2022). According to the 2020 Indonesian census (2021), the city has a population of
373,218, making it the third-most populous city on the island after Makassar and Manado.
Palu is situated on the Palu-Koro Fault and is frequently struck by earthquakes, such as
the 2018 Sulawesi earthquake [17,24,25]. The local landscape includes a narrow valley
surrounded by steep mountains, with the Palu River running through the city and coastal
lowlands prone to flooding and tsunamis [25]. Settlement patterns are concentrated along
riverbanks, coastal zones, and valley floors, where rapid urbanization and informal housing
have increased the population’s exposure to natural hazards [25]. According to Indone-
sia’s National Disaster Management Agency, the earthquake-triggered secondary natural
disasters, including soil liquefaction, landslides, and tsunamis, significantly affected Palu.
For example, the 2018 earthquake caused one of the largest soil liquefaction-induced mass
landslides in the world (e.g., [24–27]).

 

Figure 1. (Top) Relative location of Sulawesi Island and Palu City (red circle) in Indonesia.
(Lower left) Study Area: Palu City (red). (Lower right) Palu City Administrative Division.
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2.2. Data

Our primary data source is Sentinel-2 imagery, provided by the European Space
Agency (ESA). The Sentinel-2 mission comprises two identical satellites, Sentinel-2A and
Sentinel-2B, launched in 2015 and 2017, respectively. These satellites are equipped with a
high-resolution multispectral imaging instrument capable of capturing Earth’s surface at
a spatial resolution of up to 10 m. The instrument collects data across 13 spectral bands,
spanning from visible light to near infrared. This range supports a variety of applications,
including land use and land cover mapping, vegetation monitoring, and disaster response.
For this study, Sentinel-2 images from 27 September 2018 (pre-tsunami and 2 October 2018
(post-tsunami) were analyzed to assess the impact of the tsunami, as shown in Table 2.

Table 2. Sentinel-2 imagery description table.

Satellite and
Mission ID

Product
Level

Spatial
Resolution

Band
Number

Production
Baseline

Orbit
Number

Acquisition
Sensing Time

Pre-tsunami

Sentinel-2
S2B Level-1C 10 m

Band 2
Band 3
Band 4
Band 8

N0206 R103 09/27/2018

Sentinel-2
S2B Level-1C 20 m

Band 5
Band 6
Band 7

Band 8A
Band 11
Band 12

N0206 R103 09/27/2018

Sentinel-2
S2B Level-1C 60 m

Band 1
Band 9
Band 10

N0206 R103 09/27/2018

Post-tsunami

Sentinel-2
S2A Level-1C 1 0m

Band 2
Band 3
Band 4
Band 8

N0206 R103 10/02/2018

Sentinel-2
S2A Level-1C 20 m

Band 5
Band 6
Band 7

Band 8A
Band 11
Band 12

N0206 R103 10/02/2018

Sentinel-2
S2A Level-1C 60 m

Band 1
Band 9
Band 10

N0206 R103 10/02/2018

An additional remote sensing dataset used is Maxar WorldView-3 imagery (Table 3).
Maxar Technologies, a leading space technology and intelligence company, operates a suite
of commercial imaging satellites capable of capturing high-resolution images of Earth for
diverse applications, including environmental monitoring, urban planning, and disaster
management. Through its Open Data Program, Maxar provides free satellite imagery for
disaster response, making high-quality geospatial data available to support organizations
during major crisis events. This program has been activated for various disasters, including
earthquakes and hurricanes, offering essential data to aid in response, management, and
relief efforts.
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Table 3. Maxar WorldView imagery description table.

Satellite Band Number Spatial Resolution
Acquisition

Sensing Time

Pre-tsunami

WorldView-3 1 Panchromatic band (450–800 nm) 0.31 m 08/17/2018
WorldView-3 8 Visible Near Infrared (VNIR) bands 1.24 m at nadir 08/17/2018
WorldView-3 8 Shortwave Infrared (SWIR) bands 3.70 m at nadir 08/17/2018

WorldView-3 12 CAVIS (Clouds, Aerosols, Vapors,
Ice, and Snow) bands 30 m at nadir 08/17/2018

Post-tsunami

WorldView-3 1 Panchromatic band (450–800 nm) 0.31m 10/02/2018
WorldView-3 8 Visible Near Infrared (VNIR) bands 1.24 m at nadir 10/02/2018
WorldView-3 8 Shortwave Infrared (SWIR) bands 3.70 m at nadir 10/02/2018

WorldView-3 12 CAVIS (Clouds, Aerosols, Vapors,
Ice, and Snow) bands 30 m at nadir 10/02/2018

2.3. Remote Sensing Workflow

The techniques presented here are meant to capture the imprint of the 2018 tsunami
in the post-disaster landscape. The analysis captures all these through a combination of
common tools such as indices, color composites, classification, and threshold analysis. For
example, the Normalized Difference Vegetation Index (NDVI) is commonly used to estimate
vegetation density, but in a post-tsunami environment, NDVI should be able to determine
the extent of vegetation erosion and increased soil moisture. The hypothesis is that the
density of vegetation in the study area will decrease following the tsunami, as indicated
by a decline in NDVI values, while water and soil indices are expected to increase. NDVI
is supplemented by the Normalized Difference Water Index (NDWI) and the Normalized
Difference Soil Index (NDSI) as indicators of water presence and soil changes, therefore
acting as a proxy of the tsunami impact on the ground.

The workflow outlined in Figure 2 describes the main steps in the process of using
remote sensing data to identify tsunami-impacted areas. The key steps include:

1. Acquisition of Sentinel-2 imagery for pre- and post-tsunami periods;
2. Data preprocessing, which involves atmospheric correction, radiometric calibration,

and resampling to convert raw Digital Number (DN) values into reflectance values;
3. Index calculations for NDVI, NDSI, and NDWI from reflectance data to distinguish

various land and water features;
4. Visual analysis with Maxar Satellite Imagery to identify affected and unaffected

regions by the tsunami;
5. Comparative analysis of indices before and after the tsunami to detect changes in

vegetation, soil, and water;
6. Threshold determination using cumulative frequency distribution to classify im-

pacted areas based on index variations;
7. Output generation, producing a map that clearly marks tsunami-affected areas,

serving as a valuable tool for disaster response and assessment.

2.4. Index Formulas

This study utilizes three commonly used vegetation indices: NDVI, NDWI, and NDSI.
The Normalized Difference Vegetation Index (NDVI) quantifies vegetation by measuring
the contrast between near-infrared light, which vegetation reflects strongly, and red light,
which it absorbs. This method is useful for assessing both the amount and health of plant
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growth, as higher NDVI values indicate denser vegetation. Additionally, NDVI effectively
suppresses open-water features [49]. NDVI is calculated as follows:

NDVI = Index(NIR, RED) =
(NIR − RED)

(NIR + RED)
(1)

 

Figure 2. Remote Sensing Workflow. To derive the final tsunami-affected areas, a Decision Tree
classification method was employed, integrating the dNDVI, dNDSI, and dNDWI values obtained
from pre- and post-event indices.

For Sentinel-2, the vegetation index is calculated as

NDVI = Index(B8, B4) =
(B8 − B4)
(B8 + B4)

(2)

where Red and NIR are the reflectance of red and near-infrared bands, respectively. The
NDVI formula takes these differences into account and generates a value ranging from −1
to +1, where higher values indicate healthier and more abundant vegetation. If the NDVI
equation were inverted and the green band were employed, the results would likewise be
inverted, with vegetation being suppressed and open-water features enhanced [49].

The equation for Normalized Difference Water Index (NDWI) is calculated as follows:

NDWI = Index (GREEN, NIR) =
(GREEN − NIR)
(GREEN + NIR)

(3)
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For Sentinel-2, the water index is calculated as

NDWI = Index (B3, B8) =
(B3 − B8)
(B3 + B8)

(4)

where Green and NIR refer to the reflectance values of the green and near-infrared bands,
respectively. The result of this equation highlights water features with positive values, while
soil and terrestrial vegetation are represented by zero or negative values. The equation for
the Normalized Difference Soil Index (NDSI) [50] is as follows:

NDSI = Index (RED, BLUE) =
(RED − BLUE)
(RED + BLUE)

(5)

For Sentinel-2, the soil index is calculated as

NDSI = Index (B4, B2) =
(B4 − B2)
(B4 + B2)

(6)

In addition to the well-known indices above, other common remote sensing tools were
employed to identify tsunami-impacted areas and the inundation extent such as true color
composites and false color composites. False color composites use non-visible bands of the
electromagnetic spectrum and map them to visible colors to highlight features that are not
easily discerned in true-color imagery.

3. Results

3.1. Color Composites

A false color composite using satellite images taken after the Palu tsunami event
on 2 October 2018 is used here. Specifically, Short-Wave Infrared (SWIR), Visible Near
Infrared (VNIR), and Red bands were assigned to the RGB (Red, Green, Blue) color channels,
respectively. The strength of the false color composites is that land cover types such as
vegetation or water can appear in various colors depending on the band combination
used. The goal is to enhance visualization of the different land cover types for analysis or
processing. In the FCC used here, urban areas or bare ground appear in shades of purple,
pink, grey, or brown while water appears in dark blue (Figure 3).

3.2. Computation of Indices

Three different vegetation indices have been used for our analysis that are further
discussed next.

3.2.1. Normalized Difference Vegetation Index

NDVI values for pre- and post-tsunami imagery were calculated (Figure 4) and reclas-
sified based on the NDVI classification criteria developed by Al-Doski et al. [51]. NDVI
is used as a measure of vegetation health, with higher values indicating denser healthier
vegetation. Image values were classified into three categories (Figure 4) that represent
values from −1 to 0 (water, snow, and clouds), values from 0 to 0.2 (barren land, built-up
areas, and rock), and vegetation from 0.2 to 1. The comparison shows little change in the
water, snow, and cloud class, while there is an apparent increase in barren land along the
coastline especially WNW-facing coastlines, suggesting vegetation loss and soil exposure
due to the tsunami. This significant alteration within a five-day interval suggests the impact
of a coastal hazard (tsunami) on the land surface.
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Figure 3. False color composite after the tsunami (2018/02/10 (SWIR, VNIR, and RED as RGB bands).

Basic statistics calculated from the pre- and after-NDVI values (Table 4) also support
the NDVI maps (Figure 4). Before the tsunami, the imagery showed NDVI values ranging
from a minimum of −0.32 to a maximum of 0.95, with an average of 0.37. After the tsunami,
both the maximum and mean NDVI values declined: the minimum NDVI fell to −0.42, the
maximum to 0.88, and the mean to 0.34. These changes indicate an overall reduction in
vegetation health immediately following the tsunami.

Table 4. NDVI value calculation for pre- and post-tsunami imagery.

Min Max Mean StdDev

NDVI: Pre-tsunami Imagery
(2018/09/27) −0.32 0.95 0.37 0.20

NDVI: Post-tsunami Imagery
(2018/10/02) −0.42 0.88 0.34 0.19

3.2.2. Normalized Difference Water Index

The Normalized Difference Water Index (NDWI) maps (Figure 5) illustrate the area
of interest before (left) and after (right) the Palu tsunami. This index is a valuable tool for
identifying water features, with values ranging from −1 to 1. Typically, non-water areas
are represented within the range of −1 to 0, while water bodies correspond to values from
0 to 1. The pre-tsunami map, dated 27 September 2018, captures water bodies prior to
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the tsunami. Any changes (i.e., increase) to water bodies post-tsunami in the 2 October
2018 map should be attributed to the inundation associated with the tsunami. Together,
these maps provide compelling visual evidence of the alterations in water extent following
the disaster.

Figure 4. Reclassified NDVI for pre-tsunami (2018/09/27) (left) and post-tsunami imagery
(2018/10/02) based on the NDVI classification criteria developed by Al-Doski et al. [51] (right).

Table 5 presents basic statistics summarizing the NDWI values recorded before and
after the Palu tsunami. The mean NDWI value post-tsunami is slightly higher than the
pre-tsunami value, suggesting a minor increase in water content; however, the difference is
minimal. For a more comprehensive understanding of these changes, Figure 5 offers a visual
representation of the distribution and extent of water features, effectively highlighting any
changes to land cover due to the tsunami.

Table 5. NDWI value calculation for pre- and post-tsunami imagery.

Min Max Mean StdDev

NDWI: Pre-tsunami Imagery
(2018/09/27) −0.95 0.50 −0.38 0.17

NDWI: Post-tsunami Imagery
(2018/10/02) −0.10 0.54 −0.37 0.16
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Figure 5. Reclassified NDWI for pre-tsunami (2018/09/27) (left) and post-tsunami imagery
(2018/10/02) (right).

3.2.3. Normalized Difference Soil Index

Complementing the previous 2 indices, NDSI may help in identifying and interpreting
changes on the ground surface due to the tsunami. As shown in Figure 6, the NDSI shows
soil surface changes, and in this instance, a clear increase in soil features (yellow) is visible
in the post-tsunami image (Figure 6 right). Such a change following the tsunami may be due
to the removal of vegetation or other cover, revealing more of the soil surface underneath
or the deposition of sediments on top of other land cover types.

Table 6 provides a summary of statistical data for NDSI from imagery captured before
and after the Palu tsunami. The NDSI is used to differentiate between soil and non-soil
surface features. The post-tsunami imagery shows an increase in both the maximum NDSI
value and the mean NDSI value, indicating a greater presence or exposure of soil features
after the event. This can be attributed to the disturbance caused by the tsunami, which may
have cleared away vegetation or other surface materials, exposing the soil underneath, or
the deposition of sediments manifesting as soil. NDSI shows the largest changes due to the
tsunami than any other index used here. The standard deviation in the post-tsunami data
is slightly lower than in the pre-tsunami data, suggesting less variability in soil exposure
after the tsunami.
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Figure 6. Reclassified NDSI for pre-tsunami (2018/09/27) (left) and post-tsunami imagery
(2018/10/02) (right).

Table 6. NDSI value summary for pre- and post-tsunami imagery.

Min Max Mean StdDev

NDSI: Pre-tsunami Imagery
(2018/09/27) −0.66 0.66 0.11 0.08

NDSI: Post-tsunami Imagery
(2018/10/02) −0.57 0.10 0.14 0.08

3.3. Threshold Analysis

To obtain more precise threshold values, we concentrated on a smaller research area
located in the northeast part of Palu, which was highly affected by the tsunami and had
a clear boundary between the impacted and unaffected areas. By narrowing down the
study area, we can conduct a more rigorous analysis to gain a better understanding of
the disaster’s extent and related characteristics. This approach allows us to provide more
precise data for threshold analysis and mapping of the tsunami-affected regions, thereby
increasing the accuracy of the results.

The NDVI, NDSI, and NDWI were calculated based on the formulas presented in
Section 2.4. Typically, higher NDVI values indicate greater vegetation coverage, while
higher NDSI and NDWI values indicate more soil moisture and water bodies, respectively.
The most prominent changes in NDVI, NDSI, and NDWI values in tsunami-affected areas
are shown in Figure 7. As seen in Figure 7, NDVI decreases (darker shade), and NDSI
and NDWI increase (lighter shade) in the tsunami-affected areas. These observations are
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based on the effects of the tsunami, which caused vegetation to wash away or become
dead/weakened, exposed the soil, and increased soil moisture. Differences in the indices
between areas affected and unaffected by the tsunami are readily apparent, and these
disparities can serve as reliable indicators of tsunami inundation.

 

Figure 7. Computed NDVI, NDSI, and NDWI for pre-tsunami (2018/09/27) and post-tsunami
(2018/10/02) for a small area of Palu. Dashed line delineates the area affected by the tsunami in the
post-disaster images.

Research indicates two methodologies for setting threshold values to assess tsunami
impact: using solely post-tsunami imagery or comparing both pre- and post-tsunami im-
ages [50]. The first approach is viable when pre-event images are unavailable. However,
juxtaposing images from before and after an event typically yields a more accurate assess-
ment [49,50]. This study employed the comparative method for spatial analysis of the
tsunami’s effects and to establish reliable threshold values.

The image taken on 27 September 2018, serves as a pre-tsunami depiction, while
the one captured on 2 October 2018, serves as a post-tsunami representation (Figure 7).
To further analyze the data, the distribution of index differences between affected and
unaffected areas was also calculated. The resulting cumulative frequency distribution of the
difference for NDVI, NDSI, and NDWI in both affected and unaffected areas is displayed
in Figure 8. By identifying the maximum difference between their cumulative frequency
distributions, it is feasible to establish a threshold value that can effectively distinguish the
two classes (unaffected vs affected). By utilizing this approach, the calculated thresholds
for NDVI, NDSI, and NDWI were found to be −0.2, 0, and 0.04, respectively. In summary,
based on pre-tsunami and post-tsunami images, pixels with an NDVI (−0.2) value below
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the calculated threshold, and NDSI (0) and NDWI values (0.04) exceeding the determined
thresholds, are classified as tsunami-affected areas.

 

Figure 8. Cumulative frequency distribution of the differences between NDVI, NDSI, and NDWI.

Using the thresholds for the three indices (NDVI, NDSI, and NDWI), we applied
these values to our research area, as illustrated in Figure 9. More specifically, as described
above, pixels with an NDVI value below the calculated threshold (<−0.2) and NDSI
and NDWI values exceeding the determined thresholds (>0 and >0.04) are classified as
tsunami-affected areas. Illustrated in Figure 10, the entire city was impacted by the tsunami,
with the tsunami-affected areas primarily concentrated along the coastal regions of Palu.
Furthermore, it is important to note that Balaroa City, located in the southwest part of
Palu, was also affected by soil liquefaction after the earthquake and subsequently buried
(Figure 9).

 

Figure 9. Mapping NDVI, NDSI, and NDWI based on the threshold values. Dark pixels indicate
areas impacted by the tsunami.

To derive the final tsunami-affected areas, a Decision Tree classification method was
employed, integrating the dNDVI, dNDSI, and dNDWI values obtained from pre- and
post-event indices. The Decision Tree is a rule-based classification approach that uses
a hierarchical structure to assign each pixel to a specific class (e.g., tsunami-affected or
unaffected) based on a set of conditions. In this study, thresholds for the indices were
established using cumulative frequency distribution analysis. Pixels with values below the
NDVI threshold (−0.2) and above the NDSI (0) and NDWI (0.04) thresholds were classified
as tsunami-affected areas.
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Figure 10. Final tsunami inundation map using a Decision Tree classification method, integrating the
dNDVI, dNDSI, and dNDWI values obtained from pre- and post-event indices.

This method allowed the systematic combination of the three indices to discern
changes in water, soil, and vegetation caused by the tsunami. By leveraging these indices
in a hierarchical decision-making framework, the Decision Tree enhanced classification
accuracy, particularly in complex environments where a single index might be insuffi-
cient. Figure 10 illustrates the “cumulative” classification result, with tsunami-impacted
regions marked in red predominantly concentrated along the coastal areas. However,
it is evident from Figure 10 that the method also captured impacts beyond tsunami in-
undation, such as liquefaction, landslides, and other secondary effects triggered by the
earthquake. This limitation highlights the need for additional techniques or data to refine
the classification further.

4. Discussion and Conclusions

This work focused on the application of freely available and low-cost remote sensing
techniques, specifically leveraging Sentinel-2 and Maxar imagery, to quickly and effectively
identify tsunami-affected areas. The remote sensing techniques employed in this study
were designed to capture the impacts of tsunamis on the post-disaster landscape shortly
after the event and before cleanup efforts by governmental agencies could alter the ground
conditions. While previous studies have used high-resolution remote sensing methods
such as LiDAR or SAR, our study emphasized accessibility and simplicity, making it more
feasible for resource-constrained regions or rapid disaster response.
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The results have successfully demonstrated the application of straightforward remote
sensing techniques in mapping tsunami-affected areas in Palu, Indonesia, highlighting the
capabilities of Sentinel-2 imagery in disaster assessment. The use of dNDVI, dNDSI, and
dNDWI indices has allowed for a quantifiable measure of the changes in vegetation, soil
moisture, and water bodies, providing a clear demarcation of the tsunami’s impact. This
approach offers an understanding of disaster impacts, informing better preparedness and
response strategies with easy-to-implement tools that are widely used.

The scientific novelty lies in the integration of widely used environmental indices
(dNDVI, dNDWI, and dNDSI) with threshold-based Decision Tree classification to delineate
tsunami-affected areas. Unlike many studies that rely on advanced or proprietary tools, we
demonstrated that comparable results can be achieved with cost-effective open-source data
and straightforward methodologies. Additionally, we addressed the challenge of differen-
tiating tsunami impacts from other phenomena (e.g., liquefaction) through index-based
thresholds and proposed a framework that is adaptable to other vulnerable coastal regions.

The final tsunami inundation map indicates that areas most affected by the tsunami
are located in the urban center, low-lying regions, and along the coast. The tsunami in-
undation map appears to capture more than tsunami-affected areas such as liquefaction.
Other methods (e.g., GIS) such as the Analytic Hierarchy Process (AHP) method, although
somewhat subjective, can provide validation against the tsunami inundation map, con-
firming the importance of topography, slope, and land use as critical factors in tsunami
inundation [52–54] but also in helping to differentiate between tsunamis and other areas
impacted by different phenomena (liquefaction). This synthesis of various data types can
provide a more nuanced understanding of vulnerability and impact.

The effective use of remote sensing in this study underscores their potential in disaster
management. Policies should support the investment in and utilization of these technolo-
gies for better disaster preparedness, risk assessment, and recovery planning. The study’s
findings can be used in urban planning that integrates resilience against natural disasters.
Tools such as those used here can be implemented by international agencies that deal with
disaster assessment and management such as Copernicus Emergency Management Services
(https://emergency.copernicus.eu/) or local agencies for better planning and preparedness.
The implementation characteristics depend on the needs of the agency.

While this study has provided significant insights, several limitations must be ac-
knowledged. Firstly, the spatial resolution of remote sensing data, while sufficient for
broad assessments, may not capture the finer details necessary for micro-scale planning.
This limitation points to the need for higher-resolution data or supplementary ground
truthing for more detailed analysis. Secondly, the remote sensing data for this study, with
only a five-day interval between pre- and post-tsunami images, presents a unique dataset.
Such timely data acquisition is not always feasible, as obtaining simultaneous pre- and
post-event images is often not possible in many scenarios.

The impact captured in satellite images may not be easily differentiated from other
secondary effects such as liquefaction, which coincided the Palu tsunami. One of the
challenges of delineating the tsunami impact is the differentiation of the tsunami signature
to other secondary or seasonal effects. In our case, we were able to overcome the contami-
nation of results by seasonal vegetation changes and pre-existing environmental conditions
because the remote sensing images used in this study were acquired within a time span of
no more than five days before and after the tsunami, eliminating concerns about seasonal
changes. Further improving tools used here in this direction would be highly beneficial.
Additionally, the study’s focus on Palu may limit the generalizability of findings to other
regions with different geographical and socio-economic contexts. Future research could
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address these constraints by incorporating a broader range of case studies and employing
more sophisticated remote sensing technologies as they become available.

Author Contributions: Conceptualization Y.H., A.B. and M.K.; methodology, Y.H. and M.K.; software,
Y.H.; validation, Y.H.; formal analysis, Y.H.; investigation, Y.H., A.B. and M.K.; resources, Y.H., A.B.
and M.K.; data curation, Y.H. writing—original draft preparation, Y.H. and A.B.; writing—review and
editing, Y.H., A.B. and M.K.; visualization, Y.H.; supervision, A.B. and M.K.; project administration,
A.B. and M.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The current analysis did not constitute human subject
research and was exempt from further IRB review.

Informed Consent Statement: Not applicable.

Data Availability Statement: All the data used in this study are available online.

Acknowledgments: The work was completed while at Tufts University.

Conflicts of Interest: Author Aggeliki Barberopoulou was employed by the company Prometheus
Space Technologies 2. The remaining authors declare that the research was conducted in the absence
of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

1. Koshimura, S.; Moya, L.; Mas, E.; Bai, Y. Tsunami Damage Detection with Remote Sensing: A Review. Geosciences 2020, 10, 177.
[CrossRef]

2. Shuto, N.; Fujima, K. A Short History of Tsunami Research and Countermeasures in Japan. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci.
2009, 85, 267–275. [CrossRef]

3. Kanamori, H. Mechanism of Tsunami Earthquakes. Phys. Earth Planet. Inter. 1972, 6, 346–359. [CrossRef]
4. Abe, K. Tsunami and Mechanism of Great Earthquakes. Phys. Earth Planet. Inter. 1973, 7, 193–203. [CrossRef]
5. Röbke, B.R.; Vött, A. The Tsunami Phenomenon. Prog. Oceanogr. 2017, 159, 296–312. [CrossRef]
6. Harbitz, C.B.; Løvholt, F.; Pedersen, G.; Masson, D.G. Mechanisms of Tsunami Generation by Submarine Landslides: A Short

Review. Nor. J. Geol. 2006, 86, 255–264.
7. Papadopoulos, G.A.; Gràcia, E.; Urgeles, R.; Sallares, V.; De Martini, P.M.; Pantosti, D.; González, M.; Yalciner, A.C.; Mascle, J.;

Sakellariou, D.; et al. Historical and Pre-Historical Tsunamis in the Mediterranean and Its Connected Seas: Geological Signatures,
Generation Mechanisms and Coastal Impacts. Mar. Geol. 2014, 354, 81–109. [CrossRef]

8. Jaumé, S.C.; Sykes, L.R. Evolving Towards a Critical Point: A Review of Accelerating Seismic Moment/Energy Release Prior to
Large and Great Earthquakes. In Seismicity Patterns, Their Statistical Significance and Physical Meaning; Wyss, M., Shimazaki, K., Ito,
A., Eds.; Birkhäuser: Basel, Switzerland, 1999; pp. 279–305.

9. van Rijsingen, E.; Lallemand, S.; Peyret, M.; Arcay, D.; Heuret, A.; Funiciello, F.; Corbi, F. How Subduction Interface Roughness
Influences the Occurrence of Large Interplate Earthquakes. Geochem. Geophys. Geosyst. 2018, 19, 2342–2370. [CrossRef]

10. Han, S.-C.; Sauber, J.; Luthcke, S. Regional Gravity Decrease After the 2010 Maule (Chile) Earthquake Indicates Large-Scale Mass
Redistribution. Geophys. Res. Lett. 2010, 37, L23307. [CrossRef]

11. Baba, T.; Cummins, P.R. Contiguous Rupture Areas of Two Nankai Trough Earthquakes Revealed by High-Resolution Tsunami
Waveform Inversion. Geophys. Res. Lett. 2005, 32, L08305. [CrossRef]

12. Thiel, C.C., Jr.; Zsutty, T.C. Earthquake Characteristics and Damage Statistics. Earthq. Spectra 1987, 3, 747–792. [CrossRef]
13. Wesnousky, S.G. Displacement and Geometrical Characteristics of Earthquake Surface Ruptures: Issues and Implications for

Seismic-Hazard Analysis and the Process of Earthquake Rupture. Bull. Seismol. Soc. Am. 2008, 98, 1609–1632. [CrossRef]
14. Oth, A. On the Characteristics of Earthquake Stress Release Variations in Japan. Earth Planet. Sci. Lett. 2013, 377–378, 132–141.

[CrossRef]
15. Van Dorn, W.G. Some Tsunami Characteristics Deducible from Tide Records. J. Phys. Oceanogr. 1984, 14, 353–363. [CrossRef]
16. Løvholt, F.; Pedersen, G.; Harbitz, C.B.; Glimsdal, S.; Kim, J. On the Characteristics of Landslide Tsunamis. Philos. Trans. R. Soc. A

Math. Phys. Eng. Sci. 2015, 373, 20140376. [CrossRef]
17. Reid, J.A.; Mooney, W.D. Tsunami Occurrence 1900–2020: A Global Review, with Examples from Indonesia. Pure Appl. Geophys.

2023, 180, 1549–1571. [CrossRef]

199



J. Mar. Sci. Eng. 2025, 13, 178

18. Muhari, A.; Diposaptono, S.; Imamura, F. Toward an Integrated Tsunami Disaster Mitigation: Lessons Learned from Previous
Tsunami Events in Indonesia. J. Nat. Disaster Sci. 2007, 29, 13–19. [CrossRef]

19. Esteban, M.; Tsimopoulou, V.; Mikami, T.; Yun, N.Y.; Suppasri, A.; Shibayama, T. Recent Tsunamis Events and Preparedness:
Development of Tsunami Awareness in Indonesia, Chile and Japan. Int. J. Disaster Risk Reduct. 2013, 5, 84–97. [CrossRef]

20. Mutaqin, B.W.; Lavigne, F.; Hadmoko, D.S.; Ngalawani, M.N. Volcanic eruption-induced tsunami in Indonesia: A review. IOP
Conf. Ser. Earth Environ. Sci. 2019, 256, 012023. [CrossRef]

21. Supriatna, J. Konservasi Biodiversitas: Teori dan Praktik di Indonesia; Yayasan Pustaka Obor Indonesia: Jakarta, Indonesia, 2018.
22. National Geophysical Data Center/World Data Service. NCEI/WDS Global Historical Tsunami Database. NOAA National

Centers for Environmental Information. Available online: https://data.noaa.gov/metaview/page?xml=NOAA/NESDIS/
NGDC/MGG/Hazards/iso/xml/G02151.xml&view=getDataView (accessed on 16 January 2024). [CrossRef]

23. Intergovernmental Oceanographic Commission (IOC) of UNESCO. Tsunami Programme—Pacific. Available online: https:
//tsunami.ioc.unesco.org/en/pacific (accessed on 16 January 2024).

24. Valkaniotis, S.; Ganas, A.; Tsironi, V.; Barberopoulou, A. A Preliminary Report on the M7.5 Palu Earthquake Co-Seismic Ruptures and
Landslides Using Image Correlation Techniques on Optical Satellite Data; Zenodo: Genève, Switzerland, 2018. [CrossRef]

25. Paulik, R.; Gusman, A.; Williams, J.H.; Pratama, G.M.; Lin, S.-L.; Prawirabhakti, A.; Sulendra, K.; Zachari, M.Y.; Fortuna, Z.E.D.;
Layuk, N.B.P.; et al. Tsunami hazard and built environment damage observations from Palu City after the September 28, 2018
Sulawesi earthquake and tsunami. Pure Appl. Geophys. 2019, 176, 3305–3321. [CrossRef]

26. Rahardjo, P.P. Study on the phenomena of liquefaction-induced massive landslides in 28 September 2018 Palu-Donggala
earthquake. In Understanding and Reducing Landslide Disaster Risk: Volume 5 Catastrophic Landslides and Frontiers of Landslide Science,
5th ed.; Elsevier: London, UK, 2021; pp. 25–48.

27. Omira, R.; Dogan, G.G.; Hidayat, R.; Husrin, S.; Prasetya, G.; Annunziato, A.; Proietti, C.; Probst, P.; Paparo, M.A.; Wronna, M.;
et al. The September 28th, 2018, tsunami in Palu-Sulawesi, Indonesia: A post-event field survey. Pure Appl. Geophys. 2019, 176,
1379–1395. [CrossRef]

28. Ramírez-Herrera, M.T.; Navarrete-Pacheco, J.A. Satellite data for a rapid assessment of tsunami inundation areas after the 2011
Tohoku tsunami. Pure Appl. Geophys. 2013, 170, 1067–1080. [CrossRef]

29. Tang, L.; Titov, V.; Chamberlin, C. Assessment of potential tsunami impact for Southern California, USA using satellite altimetry
data. Nat. Hazards 2016, 82, 359–370.

30. Chiroiu, L.; André, C.; Rekacewicz, P. High-resolution satellite imagery in coastal disaster management: Assessing the 2004
Tsunami impact. Disaster Prevention and Management 2018, 27, 578–590.

31. Liu, P.L.; Lynett, P.; Fernando, H. Observation of the 2011 Tohoku tsunami using satellite SAR data. Remote Sens. Environ. 2015,
159, 202–215.

32. Sepúlveda, I.; Tozer, B.; Haase, J.S.; Liu, P.L.F.; Grigoriu, M. Modeling uncertainties of bathymetry predicted with satellite
altimetry data and application to tsunami hazard assessments. J. Geophys. Res. Solid Earth 2020, 125, e2020JB019735. [CrossRef]

33. Yamazaki, F.; Matsuoka, M.; Warnitchai, P.; Polngam, S.; Ghosh, S. Tsunami reconnaissance survey in Thailand using satellite
images and GPS. Asian J. Geoinform. 2005, 5, 53–61.

34. Paris, R.; Lavigne, F.; Wassmer, P.; Sartohadi, J. Coastal sedimentation associated with the December 26, 2004 tsunami in Lhok
Nga, west Banda Aceh (Sumatra, Indonesia). Mar. Geol. 2007, 238, 93–106. [CrossRef]

35. Lavigne, F.; Paris, R.; Grancher, D.; Wassmer, P.; Brunstein, D.; Vautier, F.; Flohic, F.; De Coster, B.; Gunawan, T.; Gomez, C.; et al.
Reconstruction of tsunami inland propagation on December 26, 2004, in Banda Aceh, Indonesia, through field investigations.
Pure Appl. Geophys. 2009, 166, 259–281. [CrossRef]

36. Borrero, J.C. Field survey of northern Sumatra and Banda Aceh, Indonesia after the tsunami and earthquake of 26 December 2004.
Seismol. Res. Lett. 2005, 76, 312–320. [CrossRef]

37. Koshimura, S.; Gokon, H.; Fukuoka, T.; Hayashi, S. Remote sensing and GIS-based approach to identify the impact of the 2011
Tohoku Earthquake tsunami disaster. J. Jpn. Assoc. Earthq. Eng. 2012, 12, 50–62.

38. Sambah, A.B.; Miura, F. Spatial data analysis and remote sensing for observing tsunami-inundated areas. Int. J. Remote Sens. 2016,
37, 2047–2065. [CrossRef]

39. Gokon, H.; Koshimura, S.; Matsuoka, M. Remote sensing-based assessment of tsunami vulnerability and risk in coastal areas. Int.
J. Disaster Risk Reduct. 2017, 22, 487–501.

40. Taubenböck, H.; Post, J.; Kiefl, R.; Roth, A.; Ismail, F.; Strunz, G.; Dech, S. Risk and vulnerability assessment to tsunami hazard
using very high resolution satellite data—The case study of Padang, Indonesia. Nat. Hazards Earth Syst. Sci. 2008, 8, 409–420.
[CrossRef]

41. Li, X. Real-Time High-Rate GNSS Techniques for Earthquake Monitoring and Early Warning. Remote Sens. 2015, 7, 12346–12364.
42. National Oceanic and Atmospheric Administration. 2021 U.S. Billion-Dollar Weather and Climate Disasters: A Historical

Perspective. Climate.gov. 2021. Available online: https://www.climate.gov/news-features/blogs/beyond-data/2021-us-billion-
dollar-weather-and-climate-disasters-historical (accessed on 22 December 2024).

200



J. Mar. Sci. Eng. 2025, 13, 178

43. Kreimer, A. Social and Economic Impacts of Natural Disasters. Int. Geol. Rev. 2001, 43, 401–405. [CrossRef]
44. Keerthiratne, S.; Tol, R.S. Impact of Natural Disasters on Financial Development. Econ. Disasters Clim. Chang. 2017, 1, 33–54.

[CrossRef]
45. Chang, C.P.; Zhang, L.W. Do Natural Disasters Increase Financial Risks? An Empirical Analysis. Bull. Monet. Econ. Bank. 2020, 23,

61–86.
46. Bhola, V.; Hertelendy, A.; Hart, A.; Adnan, S.B.; Ciottone, G. Escalating costs of billion-dollar disasters in the US: Climate change

necessitates disaster risk reduction. J. Clim. Chang. Health 2023, 10, 100201. [CrossRef]
47. Samad, M.A.; Ali, M.N.; Khairil, M. Indonesian Disaster Governance: Public Policy and Social Economic Impact. Elem. Educ.

Online 2021, 20, 73–88.
48. Damarjati, D. Management Earthquake and Tsunami Disaster in Palu, Indonesia. IJSSHR 2022, 5. 284-288. Available online:

https://ijsshr.in/v5i1/38.php (accessed on 22 December 2024).
49. McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J.

Remote Sens. 1996, 17, 1425–1432. [CrossRef]
50. Kouchi, K.I.; Yamazaki, F. Characteristics of tsunami-affected areas in moderate resolution satellite images. IEEE Trans. Geosci.

Remote Sens. 2007, 45, 1650–1657. [CrossRef]
51. Al-Doski, J.; Mansor, S.B.; Shafri, H.Z.M. NDVI differencing and post-classification to detect vegetation changes in Halabja City,

Iraq. IOSR J. Appl. Geol. Geophys. 2013, 1, 1–10. [CrossRef]
52. Banai, R. Fuzziness in geographic information systems: Contributions from the analytic hierarchy process. Int. J. Geogr. Inf. Syst.

1993, 7, 315–329. [CrossRef]
53. Dyer, J.S. Remarks on the analytic hierarchy process. Manag. Sci. 1990, 36, 249–258. [CrossRef]
54. Saaty, T.L. Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 2008, 1, 83–98. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

201



Academic Editor: Deniz Velioglu

Sogut

Received: 6 February 2025

Revised: 24 February 2025

Accepted: 25 February 2025

Published: 28 February 2025

Citation: Otey, D.; Vielma, J.C.;

Winckler, P. Structural Failure Modes

of Single-Story Timber Houses Under

Tsunami Loads Using ASCE 7’S

Energy Grade Line Analysis. J. Mar.

Sci. Eng. 2025, 13, 484. https://

doi.org/10.3390/jmse13030484

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Structural Failure Modes of Single-Story Timber Houses Under
Tsunami Loads Using ASCE 7’S Energy Grade Line Analysis

Darko Otey 1, Juan Carlos Vielma 1,* and Patricio Winckler 2,3,4,*

1 Escuela de Ingeniería Civil, Pontificia Universidad Católica de Valparaíso, Brasil Ave. 2950,
Valparaíso 2340025, Chile; darko.otey.m@mail.pucv.cl

2 Escuela de Ingeniería Oceánica, Universidad de Valparaíso, Valparaíso 2362844, Chile
3 National Research Center for Integrated Natural Disaster Management (CIGIDEN), Vicuña Mackenna 4860,

Santiago de Chile 7820436, Chile
4 Centro de Observación Marino para Estudios de Riesgos del Ambiente Costero (COSTAR),

Valparaíso 2362844, Chile
* Correspondence: juan.vielma@pucv.cl (J.C.V.); patricio.winckler@uv.cl (P.W.)

Abstract: The structural response of single-story timber houses subjected to the 27 February
2010 Chile tsunami is studied in San Juan Bautista, an island town located nearly 600 km
westward from the earthquake’s rupture source, in the Pacific Ocean. The ASCE 7-22 energy
grade line analysis (EGLA) is used to calculate flow depths and velocities as functions
of the topography and recorded runup. To understand the structural response along the
topography, reactions and displacements are computed at six positions every 50 m from
the coastline. Houses are modeled using the Robot software, considering dead and live
loads cases under the Load and Resistance Factor Design (LRFD) philosophy. The results
show that houses located near the coastline experience severe displacements and collapse
due to a combination of hydrodynamic forces, drag and buoyancy, which significantly
reduces the efficiency of the foundations’ anchorage. Structures far from the coastline
are less exposed to reduced velocities, resulting in decreased displacements, structural
demand and a tendency to float. Finally, the methodology is validated by applying a
nonlinear analysis of the structures subjected to tsunami loads at the different positions
considered in this study. Despite their seismic resistance, lightweight timber houses are
shown to not be suitable for areas prone to tsunamis. Tsunami-resilient design should
therefore consider heavier and more rigid materials in flooding areas and the relocation of
lightweight structures in safe zones.

Keywords: tsunami; energy grade line analysis; ASCE 7-22; nonlinear analysis; 27 February
2010 Chile earthquake

1. Introduction

Tsunamis have posed persistent threats throughout human history, causing devastat-
ing material and human losses. While tsunamis can be triggered by several phenomena,
their most significant source are large megathrust earthquakes such as those in the Indian
Ocean (2004), Chile (2010) and Japan (2011). The increasing exposure of coastal settlements
to these events highlights the need to study their effects on infrastructure [1,2] to ensure
structural integrity and facilitate evacuation. Various design codes have been developed to
design tsunami resilient structures, with a particular emphasis on reinforced concrete and
structural steel buildings [3–5]. However, the behavior of smaller, lightweight residential
buildings near potential tsunami inundation zones has been overlooked.
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1.1. Impacts of Tsunamis on Buildings

Tsunami impacts on coastal structures have been well-documented following the
large megathrust earthquakes that occurred in the 20th century. For example, Ghobarah
et al. [6] conducted a detailed analysis of the impact of the 2004 Indian Ocean tsunami on
buildings, bridges and infrastructure in Thailand and Indonesia. Similarly, Fritz et al. [7],
Robertson et al. [8] and Zareian et al. [9] documented the extensive damage to residential
and industrial facilities following the 2010 Maule earthquake and tsunami, emphasizing
the need for robust design and construction practices to mitigate future risks. In addition,
Jayaratne et al. [10] identified key failure mechanisms and proposed a validated model for
predicting scour depth in coastal structures impacted by the 2011 Tohoku tsunami in Japan,
while Koshimura et al. [11] focused on tsunami impact on structures for the same event.

Several studies have addressed the response of structures affected by tsunamis, fo-
cusing on different aspects of the phenomena; some have highlighted the role of the
environment (e.g., topography and location) on the impact on buildings [12,13] while
others have noted that the urban configuration may either channel the flow, thus increasing
speeds, or reduce the impact in presence of robust structures on the front line [14]. It
has been noted that typical timber and masonry housing structures experience significant
damage under moderate flows, with high chances of collapse for depths above 2 m [12,13],
while reinforced concrete and steel structures are more resilient [13,15]. Overall, the struc-
tural damage depends largely on the material, the suitability of the design [15] and the
year of construction [16]. As preventive measures against structural failure, a series of
recommendations focused on reinforced concrete structures have been offered [15].

Experimental studies have significantly advanced the understanding of tsunami forces
and their impact on structures. For example, Kihara et al. [17,18] conducted large-scale
experiments on concrete vertical walls, identifying critical response characteristics under
tsunami wave pressures and debris impacts. Similarly, Naito et al. [19,20] explored the
effects of shipping containers on coastal structures, highlighting the need for site-specific
assessments of debris impact potential. The importance of these findings is further em-
phasized by Robertson et al. [8], who provided valuable insights into the hydrodynamic
loading required to cause structural failures during tsunamis.

1.2. Methods Used to Compute the Structural Response of Buildings

Recent advancements in tsunami-resilient design standards have significantly con-
tributed to enhancing the structural reliability of coastal infrastructure. Existing method-
ologies for structural analysis in the context of tsunamis range from complex numerical
models to physical models. Linton et al. [21], for example, assessed the hydrodynamic
conditions and structural response of several full-scale light-frame wood walls subjected
to tsunamis using the Large Wave Flume of the NEES Tsunami Facility at Oregon State
University. Alternatively, Krautwald et al. [22] challenged the common assumption that
buildings remain rigid during hydrodynamic loading by testing the deformation of an
idealized light-frame timber structure at the Large Wave Flume of the Coastal Research
Center in Hannover.

Fragility curves, which describe the probability of structural failure using empirical
data, have been widely used. For instance, Suppasri et al. [23] developed fragility curves
based on data from 250,000 buildings affected by the 2011 Japan tsunami. However, while
fragility curves provide valuable insights, they are often generalized and empirical. On
the other hand, the nonlinear static pushover analysis offers a more precise method for
analyzing specific structures but requires significant computational resources, making it
impractical for widespread application. Examples include the publications by Baiguera
et al. [24] and Aegerter et al. [25], which performed pushover analysis on structures using
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OpenSees [26] and ETABS [27] software, respectively. Another alternative for structural
analysis is the energy grade line analysis (EGLA) method of the ASCE 7-22 [28], which
provides a simplified yet useful tool for designing structures to withstand tsunami loads.

Among the methodologies used to assess the structural response to tsunamis, the
energy grade line analysis (EGLA) has been incorporated into the ASCE 7-22 standard as
a practical approach for estimating flood depths and flow velocities based on runup data
and topography. Its simplicity and applicability in exploratory studies have made it an
attractive tool for evaluating hydrodynamic loads on coastal structures. However, as a
method based on simplified assumptions about tsunami flow, EGLA does not explicitly
capture transient effects, local turbulence, or three-dimensional interactions between the
flow and the built environment. Therefore, its application should be considered within a
preliminary estimation framework and supplemented with other tools whenever possible.

1.3. The ASCE 7′s EGLA

This research analyzes the behavior of a single-family timber structure subjected
to loads generated by a tsunami, characterized by the ASCE 7-22 [28] method called
energy grade line, which relates the hydraulic energy line with the data of a previously
recorded tsunami, such as runups and the topography of the study site, with their respective
horizontal flood distances; all of this is to interpret the heights and velocities that occur
throughout the analysis area [29,30]. The introduction of the ASCE 7-16 standard marked a
major step forward in establishing guidelines for designing structures to withstand tsunami
loads [31]. Carden et al. [32] demonstrated the application of the EGLA and ASCE 7-16
provisions in mitigating structural failures during the 2011 Tohoku tsunami, highlighting
the method’s reliability and the conservative nature of the load estimates. Along this line,
Chock et al. [33] conducted a comprehensive structural reliability analysis for tsunami
hydrodynamic loads, utilizing Monte Carlo simulations to validate the probabilistic limit
state reliabilities for various structural components, further affirming the robustness of
ASCE 7-16 provisions. Chock [34] provided a detailed explanation of the technical basis
and methodology underlying the tsunami-resilient design requirements in the ASCE 7-16
standard, emphasizing the integration of probabilistic hazard analysis, tsunami physics and
fluid mechanics into a unified design framework. The EGLA, as outlined in the updated
ASCE 7-22, offers a simplified yet effective tool for designing tsunami-resistant structures.
Carden et al. [32] showed its effectiveness in mitigating structural failures during the 2011
Tohoku tsunami while Tada et al. [35] analyzed over 500 inundation measurements in
Sendai, enhancing its accuracy for predicting tsunami-induced inundation heights.

In this study, we analyze the structural response of a timber single-story house using
ASCE 7-22‘s EGLA in the insular town of San Juan Bautista, Robinson Crusoe Island, Juan
Fernández Archipelago (Figure 1). The results obtained with EGLA are further validated
with nonlinear structural analyses of the structure under equivalent tsunami loads.

While the EGLA method provides a reasonable estimation of tsunami hydrodynamic
parameters, its application should be considered an approximation tool in structural design.
ASCE 7-22 states that this method is suitable for initial estimations and exploratory studies
but does not replace more detailed approaches based on numerical modeling. In this study,
EGLA is used as a practical approach to obtain a preliminary estimation of hydrodynamic
loads and to evaluate the structural response of timber houses in San Juan Bautista, analyz-
ing its applicability in the context of lightweight buildings exposed to tsunamis; however,
its results should be interpreted with caution and adjusted when possible.
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(a) (b)

(c)

(d)

Figure 1. Location of (a) Robinson Crusoe Island and (b) the town of San Juan Bautista. The different
failure modes caused by 27 February 2010 tsunami in San Juan Bautista are shown in (c,d). At the
shore, houses were washed away by strong currents (c) whereas near the flooding line, houses floated
due to buoyant forces (b). (c) is reproduced from Breuer et al. [36].

2. The 27 February 2010 Tsunami in San Juan Bautista

On 27 February 2010, a Mw = 8.8 earthquake occurred off the coast of Chile, generating
a destructive tsunami along the continental coast, Easter Island and the small town of
San Juan Bautista on Robinson Crusoe Island. Located 680 off the coast of Chile, San
Juan Bautista was impacted by the first tsunami 49 min after the main shock as a slow-
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moving flood followed by a violent wave caused the total destruction of 160 houses and
18 casualties [7,37]. The loss of the buildings accounted for 40.1% housing and a great
portion of basic services [36]. The aftermath was recorded in documentaries by UV [38].
According to Breuer et al. [36], this tsunami is part of a long-lasting list of 56 events
affecting the island since 1591, some of which were destructive (1730, 1751, 1835, 1868, 1877,
1946, 1960).

Immediately following the earthquake, a series of post-tsunami surveys were launched
to characterize the impact on the town. Two sites within Robinson Crusoe were surveyed
by Fritz et al. [7] (Figure 8a) but the profile in San Juan Bautista (Figure 8b) coincided with
the most affected area. The lower part of the town was severely affected by the tsunami,
leaving 16 casualties, 160 ruined houses and most of the public facilities destroyed [36]. As
Breuer et al. [36] observed during a survey conducted one month following the tsunami,
weak structural joints connecting the houses to their foundations could explain why the
structures floated, since this created buoyancy on the higher ground (Figure 1a), while near
the coast, scour and high impact loads due to the high speeds also contributed to the overall
damage (Figure 1b). These hypothetical failure modes, however, have not undergone a
rigorous structural analysis, which could inform future design guidelines.

There are two reasons implied by Breuer et al. [36] that explain the huge structural
damage in San Juan Bautista: (a) building materials are scarce and maintenance costs high as
they sometimes rely on offshore supply and (b) the limited usable space due to the volcanic
structure of the island has promoted the construction of single-story family houses in
tsunami-exposed areas. Additionally, the existing Communal Regulating Plan enforced by
the time of the 2010 tsunami authorized the construction of housing, commercial buildings
and public facilities in exposed areas, without prescribing structural types (e.g., frames,
walls, cables) and materials (e.g., masonry, reinforced concrete, wood, steel). Consequently,
the prevailing structural typology prior to the 2010 tsunamis consisted of single-story
timber houses with weak anchoring systems (aimed to transfer dead and live loads to
the ground) and a low ratio between window-to-wall areas, which made them highly
impermeable to the tsunami. It should be noted that all 160 buildings in the flooded
area were fully damaged, regardless of whether they were affected by strong currents
or water depths. However, the failure modes slightly differed with the distance to the
shore. According to Breuer et al. [36], weak structural joints connecting the houses to their
foundations explain why some houses floated due to buoyancy on the higher ground where
the flow was relatively slow (Figure 8a), which is a structural failure documented earlier in
past events [39,40]. Our analysis is conducted on a topographic profile along La Pólvora
Street, where a maximum penetration and runup within the town were recorded by Fritz
et al. [7].

3. Methodology

Following ASCE 7-22, Chapter 6, in this study, it is assumed that structures are
subjected to hydrostatic and hydrodynamic forces, waterborne debris accumulation and
impact loads. Due to the in situ evidence later discussed, the scour or geotechnical damage
of the soil are disregarded. Seismic ground motion effects on structures are disregarded,
as the triggering earthquake occurred in the Chile–Perú subduction zone, nearly 600 km
east from Robinson Crusoe Island, and islanders did not feel the shaking. Our focus is on
single-story timber houses, disregarding critical facilities which were completely destroyed
during the 27 February 2010 tsunami [37].
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3.1. EGLA of Maximum Inundation Depths and Flow Velocity

The analysis is conducted on a topographic profile along La Pólvora Street (Figure 2),
where a runup of 18.3 m was recorded at an inundation distance of 295 m and two records
of flow depths were recorded by Fritz et al. [7]. The maximum inundation depths and
flow velocity along the ground elevation profile up to the runup are determined using
the EGLA (Figure 3). The ground elevation along the transect is represented as a series of
linear sloped segments each with a Manning’s coefficient consistent with the equivalent
terrain macroroughness friction of that terrain segment. The EGLA is performed incremen-
tally across the topographic transect in a stepwise procedure from the runup (where the
hydraulic head is zero and the water elevation is equal to the runup) to the mean water
shoreline using Equation (1)

Ei = Ei−1 + (ϕi + si)Δxi (1)

where Ei is the hydraulic head at point i, given by

Ei = hi + u2
i /2g = hi

(
1 + Fr2

i /2
)

. (2)

Here, hi is the inundation depth, ui the maximum flow velocity, ϕi the average ground
slope between i and i − 1, Fri = ui/

√ghi the Froude number, Δxi the increment of
horizontal distance between the consecutive points of coordinate xi measured inland from
the still water level (SWL as in Figure 3) and si the friction slope of the energy grade line
between consecutive points, calculated as follows:

si = u2
i n2/h4/3

i (3)

where n = 0.025 is the Manning’s coefficient, defined for open land or field according to
ASCE 7-22. This value neglects the frictional effects of the houses and built environment
that existed before and was washed away by the tsunamis. Velocity is determined as
a function of inundation depth, in accordance with the prescribed value of the Froude
number calculated according to Equation (4).

Fr = α
√

1 − x/XR (4)

where α = 1.0 and XR is the design inundation distance inland from Medium High Water
(MHW) shoreline. No bore correction is conducted as the nearshore bathymetry is too steep
to generate a bore. Table 1 shows the parameters used in the EGLA. The resulting flow
depth and velocities are then corrected to fit the flow depths obtained by Fritz et al. [7].
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(a)

(b)

(c)

Figure 2. (a) Topographic profile used in the EGLA, with flow depths recorded by Fritz et al. [7],
maximum runup by Winckler et al. [41] and buildings identified before and after the 2010 tsunami by
Breuer et al. [36]. (b) Elevation and plan view of the area neighboring La Pólvora Street including
gymnasium [a], school [b], houses [c], touristic and commercial infrastructure [d], church [e] and
warehouses for fishing activities [f]. (c) La Pólvora Street, as observed from its lower section.

208



J. Mar. Sci. Eng. 2025, 13, 484

Figure 3. Illustration of the EGLA across an inundated transect, where the incident tsunami flow is
from left to right. EGL: energy grade line. SWL: still water level. Adapted from ASCE 7-22.

Table 1. Parameters used in the EGLA.

Parameter Symbol Dimension Value

Overall building width B m 6.6
Manning’s roughness coefficient n - 0.025

Height of wall hw m 2.4
Width subject to force b m 6.6

Minimum fluid specific weight density γs kN/m3 11
Minimum fluid mass density ρs g/cm3 1.1

Importance factor Itsu - 1
Drag coefficient Cd - 1.25

Proportion of closure coefficient Ccx - 4.42
Story height of story x hsx m 4.35

Time interval Δt s 1

3.2. Tsunami Hydrodynamic Loads

The methodology includes the estimation of flow depths and depth-averaged hori-
zontal flow speeds using the ASCE 7-22′s EGLA, from which computed hydrostatic, drag
and impact forces are used in the structural analysis of a timber single-story house. The
application is based on the combination of a proprietary Matlab (R2022a) script for the
computation of hydrodynamic loads and the use of the software Robot Structural Analysis
Professional 2024 (referred as Robot hereafter) [42] to compute the structural response on
several locations within a topographic profile of La Pólvora Street, where a maximum
penetration of 295 m and a runup of 18.3 were reported by Fritz et al. [7].

Figure 4 shows the flow depth obtained from the EGLA and different house posi-
tions where the structural analysis is conducted, as well as the dominant hydrostatic and
hydrodynamic loads during and after the impact of a tsunami. The buoyancy force, the un-
balanced lateral hydrostatic force, the drag force and the impact of wood logs are evaluated
following ASCE 7-22, FEMA P-646 [43] and NCh3363 2015 [44].

3.2.1. Buoyancy Force

The buoyancy force (Fb) is evaluated in accordance with Equation (5):

Fb = γs VW (5)

where γs is the minimum fluid weight density for design hydrostatic loads and VW is
the displaced water volume. For modeling purposes, this force is applied as a pressure,
since this facilitates the modeling of the claddings. The buoyancy of the vertical walls is
discarded as these have an almost negligible volume and thus a small buoyancy compared
to the other acting forces.
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(a)

(b) (c)

Figure 4. (a) Flow depth obtained from the EGLA and different house positions (0, 50, 100, 150, 200
and 250 m) where the structural analysis is conducted. (b,c) show the dominant hydrostatic and
hydrodynamic loads during the impact of a tsunami and when the flow is fully developed around
the house, respectively.

3.2.2. Unbalanced Lateral Hydrostatic Force

The unbalanced hydrostatic lateral force (Fh), when the flow does not overtop the
wall, is determined using Equation (6):

Fh = 1/2 γsbh2 (6)

where b is the width of the building subject to force and h the tsunami inundation depth
above the grade plane at the structure. Where the flow overtops the wall, the lateral
hydrostatic force on the wall is determined using Equation (7):

Fb = 0.6γs(2h − hw) bhw (7)

where hw is the height of wall. The forces in Equations (2) and (3) were applied as the
equivalent distributed forces of triangular and trapezoidal shapes on walls.

3.2.3. Drag Force

The drag force is computed with Equation (8):

Fdx = 0.5ρs ItsuCdCcxbhsxu2 (8)

where ρs is the minimum fluid mass density for hydrodynamic design, Itsu the importance
factor for tsunami forces to account for additional uncertainty in estimated parameters, Cd

the drag coefficient based on quasi-steady forces, Ccx the proportion of closure coefficient,
b the width of the building subject to force and u the tsunami flow velocity.

3.2.4. Impact of Wood Logs

The nominal maximum instantaneous debris impact force was preliminarily computed
using ASCE 7-22 (Equations (6.11-2) and (6.11-3)) but the resulting value (130 tonf) was
considered excessive (Appendix A). Alternatively, we calculate the impact force (FIF) by
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floating objects from NCh3363 2015 [44], which assumes a debris of 500 kg impacting on a
time interval (Δt = 1 s for timber structures) at the speed of the tsunami u.

FIF = 500(u/Δt) (9)

This force is applied to the front wall at the level reached by the tsunami inundation
depth when it is lower than the height of the structure (h > hw) and at its centroid when
the depth exceeds the structure. Impact forces are applied when the tsunami impacts the
structure (Figure 4b) and once the flow has reached a relatively uniform and stationary
pattern around the house (Figure 4c).

3.2.5. Load Cases

Load cases are based on the LRFD philosophy from ASCE 7-22, which is integrated
into Robot. A seismic nature is assigned to tsunami load so that its amplification factor
corresponds to an accidental combination.

3.3. Structural Modeling of a Timber Single-Story House

A 60 m2 timber single-story house with a gable roof is modeled using Robot. To com-
pute the hydrodynamic loads, we conservatively disregard the openings (e.g., doors and
windows). The timber structure is modeled using Grade C16 Pinus radiata [45], a material
locally used according to the Chilean code NCh1198 [46]. The timber structure’s configura-
tion includes 7.5 cm × 7.5 cm elements for corner supports, 5 cm × 5 cm elements spaced
every 50 cm for walls and roofing, 5 cm × 7.5 cm elements for roof beams, 15 cm × 2.5 cm
bars for trusses and 15 cm × 10 cm elements for floor beams. The 20 cm × 20 cm concrete
pedestals spaced 1.5 m and braced to the floor beams are considered as the top of the
foundation (Figure 5). Structural failure modes include failures due to bending, shear,
buckling, torsion and fatigue. Emphasis is placed on the structural failure under combined
loads in an Ultimate Limit State (ULS).

Dead, live and roof live loads are considered constant and valued according to the
Chilean code NCh1537 [47]. The dead load is considered for the entire structure, except
for the house’s floor, where a distributed surface dead load of 0.1 kPa is assumed for a
1-inch-thick floor made of white pine wood elements of 420 kgf/m3 [45] with enclosures.
Uniformly distributed live loads of 2 kPa are considered for floors and roofs, with this load
applied to general use areas and bedrooms. A 0.3 kPa uniformly distributed live load for
the roof (3.3 m long, 1.94 m high and a slope of 58%) is determined based on the slope and
tributary area of each structural frame. Tsunami loads (hydrostatic, hydrodynamic and
debris impact) are assumed to act perpendicular to timber single-story houses positioned
every 50 m along La Pólvora Street (e.g., x = 0, 50, 100, 150, 200 and 250 m, being x = 0 m
the coastline and 250 m near the runup). Table 2 summarizes the flow depths immediately
before (seaward), in the centroid of and immediately after (landward) each house’s location.

3.4. Load Combinatios

Load cases and weighting factors prescribed in ASCE 7-22 are used herein (Table 3).
The following combinations are used:

1.4D (10)

1.2D + 1.6L + (0.5Lr or 0.3S or 0.5R) (11)

1.2D + (1.6Lr or 1.0S or 1.6R) + (L or 0.5W) (12)
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where D is the dead load, L the live load, Lr the roof live load, S the snow load, R the rain
load and W the wind load. The combinations considering the interaction of tsunami loads
with gravity loads are as follows:

0.9D + FTSU + HTSU (13)

1.2D + FTSU + 0.5L + 0.2S + HTSU (14)

where FTSU is the direct tsunami load, HTSU the load induced by earth pressure under
submerged conditions, L the live load and S the snow load. We disregard snow, rain and
wind loads due to the location of the study. Load cases are considered during the impact of
the tsunami (I), as in Figure 4b, and when the flow has completely flooded the surrounding
area of the house (F), as in Figure 4c. The pressures obtained on the different faces of the
structure are shown schematically in Figure 6.

Table 2. Flow depths and loads acting on a timber single-story house positioned every 50 m along
La Pólvora Street. hs, hc and hl are the flow depths immediately seaward, in the centroid and
immediately inland of each house, respectively. Pb is the buoyancy pressure, Ph the lateral hydrostatic
pressure, Pd the drag pressure and Fi f the impact force from floating objects.

x
m

hs
m

hc
m

hl
m

Pb
kPa

Ph
kPa

Pd
kPa

Fif
kN

250 2.48 2.15 1.81 27.31 13.66 2.27 1.01
200 4.55 4.36 4.16 47.85 31.40 8.34 1.93
150 5.54 5.48 5.41 47.85 44.37 15.20 2.61
100 6.05 6.02 6.00 47.85 51.10 22.14 3.14
50 5.99 6.00 6.00 47.85 50.38 27.42 3.50
0 6.62 6.37 6.12 47.85 58.64 36.35 4.03

Table 3. Load cases corresponding to the ultimate limit state (ULS). In this table, D represents the
dead load, L the live load, Fd the drag force, Fi f the impact force from floating objects, Fb the buoyant
force and Fh the lateral hydrostatic force. The value corresponds to the amplification in the load
cases. The sign is positive for a force acting landwards and negative seaward. Parentheses (I) and (F)
correspond to load cases during the impact of the tsunami and when the flow has completely flooded
the surrounding area of the house, respectively.

Load
Case

D L Fd Fif Fb Fh

C1 1.4 - - - - -
C2 1.2 1.6 - - - -
C3 1.2 - - - - -
C4 1.2 0.5 - - - -
C5 0.9 - - - - -

C6 (I) 1.2 0.5 1 1 - -
C7 (I) 1.2 - 1 1 - -
C8 (I) 1.2 0.5 −1 −1 - -
C9 (I) 1.2 - −1 −1 - -

C10 (I) 0.9 - 1 1 - -
C11 (I) 0.9 - −1 −1 - -
C6 (F) 1.2 0.5 - - 1 1
C7 (F) 1.2 - - - 1 1
C8 (F) 1.2 0.5 - - −1 −1
C9 (F) 1.2 - - - −1 −1

C10 (F) 0.9 - - - 1 1
C11 (F) 0.9 - - - −1 −1
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Figure 5. Drawings of the timber single-story house used in the analysis. Relevant dimensions are
shown. Windows and doors are not considered in the structural model.

(a) (b)

Figure 6. Hydrostatic force in kN/m in (a) position x = 0 m and (b) position x = 250 m. Structural
node 17 is the one with maximum displacement along the x-axis at x = 0 m in load case C10 (I).

3.5. Nonlinear Analysis

The results obtained with EGLA are further validated with nonlinear structural anal-
yses of the structure under equivalent tsunami loads. For this, the structure is modeled
considering two sources of nonlinearity: (1) the constitutive nonlinearity, linked to the
response of the constituent materials of the structure and (2), the geometric nonlinearity,
which affects very flexible structures [48]. As described above, the structure is composed of
reinforced concrete members for the pedestals that support the timber superstructure and
transmit the loads to the foundations. Concrete and reinforcing steel are modeled using
Mander et al.’s [49] and Menegotto and Pinto’s [50] models, respectively. Timber elements
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are modeled using the elastic-plastic model with a small hardening fraction (0.5%) [51].
The details of these models are shown in Tables 4–6.

Table 4. Constitutive model parameters for timber elements of Pinus Radiata.

Parameter Dimensions Value

Compression strength MPa 4.26
Strength lower bound MPa 3.7

Bending strength MPa 8.6
Modulus of elasticity MPa 8829

Specific weight kN/m3 4.9

Table 5. Constitutive model parameters by Mander et al. for concrete grade G25.

Parameter Dimensions Value

Compression strength MPa 33
Strength lower bound MPa 25

Tension strength MPa 2.6
Modulus of elasticity MPa 26,999

Specific weight kN/m3 24

Table 6. Constitutive model parameters by Menegotto and Pinto for steel grade A630–420H. A1, A2,
A3 and A4 correspond to transition curve shape calibrating coefficients.

Parameter Dimensions Value

Modulus of elasticity E MPa 200,000
Yield strength Fy MPa 490
Strain hardening

parameter - 0.005

Transition curve initial
shape parameter - 20

Coefficient A1 - 18.5
Coefficient A2 - 0.15
Coefficient A3 - 0
Coefficient A4 - 1

Fracture/buckling strain - 1
Specific weight kN/m3 78

The gravity loads applied to the nonlinear model are the same as those described
above for the linear model (Section 3.3). Loads produced by the tsunami are applied
sequentially, considering their variation with respect to the flood height. The tsunami
pressure acts on the façade (main elevation in Figure 5). Figure 7 shows an isometric view
of the nonlinear model, with the gravity and tsunami loads applied at the nodes of the
façade. The nonlinear analysis is carried out, having, as the main variable, the flood height
indicated for each position with respect to at x = 0 m (Table 2). The procedure contained
in ASCE 7-22 is applied to determine the loads on the façade; the SeismoStruct V-24 [52]
software is used to perform the analysis.
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Figure 7. Isometric view of the nonlinear structural model, with gravity loads and tsunami loads.

It should be noted that the nonlinear analysis model is based on the fiber approach, in
which the cross-sections of structural members are discretized into fibers adapted to the
section geometry. In the case of reinforced concrete structural members, the fibers consist
of cover concrete, core concrete and composite fibers made of core concrete and reinforcing
steel. For the timber components, homogeneous fibers of this material are considered.

The analysis framework established in ASCE 7-22 follows an incremental approach,
where the loads are progressively applied in a series of finite steps. In each step, a load
increment is applied to the nodes of the façade, as illustrated in Figure 7. These load
increments correspond to the hydrostatic height, which is updated at each step of the
analysis. As the loads increase, the internal stresses within the fibers of the structural
members also rise. When these stresses exceed the strength limits specified in Tables 4–6,
plasticization begins, leading to the progressive damage of the components.

For each load increment, the displacements at the center of gravity of the roof and the
base shear in the direction of the incoming wave are computed. By plotting the base shear
force against the roof displacement, a capacity curve is obtained, from which critical points
of structural response are analyzed. The nonlinear analysis only considers the application
of the aforementioned loads, excluding other forces such as impact and buoyancy.

To evaluate the progression of tsunami-induced damage to the structure, two perfor-
mance criteria are defined based on the strain limits of radiata pine timber [53]. The first
strain threshold corresponds to the point where the material ceases to exhibit approximately
linear behavior, while the second threshold marks the peak stress point, beyond which the
material begins to lose its load-bearing capacity. Determining the displacements at which
these limit values are reached allows for the monitoring of the evolution of damage in the
different structural members.

4. Results

4.1. EGLA of Maximum Inundation Depths and Flow Velocities

Figure 8a shows the EGL in a gray dashed line at different house positions where the
structural analysis is conducted, as well as the flow depths and runup recorded by Fritz
et al. [7]. As the reported flow depths are smaller than the EGL, the latter is reduced by a
factor of 0.5 to fit the data. The EGL and corrected flow depths differ by as much as 6.2 m at
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x = 100 m, which could be attributed to several causes, as later discussed. Figure 8b shows
the flow depth and velocity as obtained from the Corrected EGL.

(a)

(b)

(c)

(d)

Figure 8. (a) EGL and corrected EGL for flow depths (crossed circles) and runup recorded by Fritz
et al. [7] at different house positions (x = 0, 50, 100, 150, 200 and 250 m) where the structural analysis
is conducted. (b) Flow depth and velocity inferred from the EGLA. (c) Forces generated by the
tsunami and reactions of the structure in the x-axis and z-axis and (d) displacement of node 17 that
deforms the most in the analysis performed.

4.2. Relative Displacements

The structural damage was determined based on the criterion of relative displacements
caused by the tsunami. As inferred from the structural analysis of all house positions,
the structural node of maximum displacement along the x-axis corresponds to node 17
(Figure 6) at x = 0 m in load case C10 (I). Then, the maximum displacement at x = 0 m is
compared with the other house positions, resulting in Figure 8d. We found that relative
displacements exceeding tens of meters would occur under linear elastic behavior, lead-
ing to structural collapse due to the fragility of the material and the connections of the
timber structures.
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4.3. Supports Reactions

Figure 8c shows a significant reduction in the shear force in the flow direction between
x = 0 m and 250 m. The high values of the shear force for the position x = 0 explain the
collapse experienced in houses close to the coastline, as observed in Figure 1d. This decrease
can explain the dominant failure mode of the buildings closest to the coastline, which were
probably separated from their supports as a result of the shear (e.g., Figure 1d). As for the
moment, there is not such a drastic reduction when comparing the house positions, thus
their influence in house position located at x = 0 m may mean that the failure mode far
from the coastline is caused more by the overturning of the structure.

The forces and moments at each of the supports of the structure for the C12 load case
(the combination with largest resultant in x-axis) at the two loading instants are presented
in Figures 9 and 10 for the positions 0 m and 250 m, respectively. The reactions correspond
to the combined and factored loads as indicated above. Tables 7 and 8 shows the resulting
load cases for a house position located at x = 0 m and x = 250 m, respectively. The reactions
shown in Figure 8a are obtained from Tables 7 and 8. Figure 8c summarizes the results of
the forces caused by the tsunami in the x- and z-axes, for all house positions.

(a) (b)

Figure 9. Reactions in the supports for the loading corresponding to a house position at x = 0 m from
the coastline (a) in the x-axis and (b) z-axis. The numbers from 1 to 7 represent the positions of the
pedestals shown in Figure 6.

(a) (b)

Figure 10. Reactions in the supports for the loading corresponding to a house position at x = 250 m
from the coastline (a) in the x-axis and (b) z-axis. The numbers from 1 to 7 represent the positions of
the pedestals shown in Figure 6.
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Table 7. Resulting load cases for a house position located at x = 0 m from the shoreline. Fx, Fy and Fz

are the resulting forces in the x-, y- and z-axes, respectively, while Mx, My and Mz are the resulting
moments in the x-, y- and z-axes, respectively. Parentheses (I) and (F) correspond to load cases during
the impact of the tsunami and when the flow has completely flooded the surrounding area of the
house, respectively.

Load
Case

Fx
kN

Fy
kN

Fz
kN

Mx
kNm

My
kNm

Mz
kNm

C1 0 0 18.2 0 0 0
C2 0 0 241.5 0 0.01 0
C3 0 0 15.6 0 0 0
C4 0 0 86.2 0 0 0
C5 0 0 11.7 0 0 0

C6 (I) −825.5 0 86.2 0 540.2 0
C7 (I) −825.5 0 15.6 0 540.2 0
C8 (I) 825.5 0 86.2 0 −540.2 0
C9 (I) 825.5 0 15.6 0 −540.2 0
C10 (I) −825.5 0 11.7 0 540.2 0
C11 (I) 825.5 0 11.7 0 −540.2 0
C6 (F) 0 0 −2727.6 0 0 0
C7 (F) 0 0 −2798.2 0 −0.01 0
C8 (F) 0 0 2900.1 0 0.01 0
C9 (F) 0 0 2829.5 0 0.01 0

C10 (F) 0 0 −2802.2 0 −0.01 0
C11 (F) 0 0 2825.6 0 0.01 0

Table 8. Resulting load cases for a house position located at x = 250 m from the shoreline. Fx, Fy

and Fz are the resulting forces in the x-, y- and z-axes, respectively, while Mx, My and Mz are the
resulting moments in the x-, y- and z-axes, respectively. Parentheses (I) and (F) correspond to load
cases during the impact of the tsunami and when the flow has completely flooded the surrounding
area of the house, respectively.

Load
Case

Fx
kN

Fy
kN

Fz
kN

Mx
kNm

My
kNm

Mz
kNm

C1 0 0 18.23 0 0 0
C2 0 0 241.53 0 0.01 0
C3 0 0 15.63 0 0 0
C4 0 0 86.22 0 0 0
C5 0 0 11.72 0 0 0

C6 (I) −52.32 0 86.22 0 34.42 0
C7 (I) −52.32 0 15.63 0 34.41 0
C8 (I) 52.32 0 86.22 0 −34.41 0
C9 (I) 52.32 0 15.63 0 −34.41 0
C10 (I) −52.32 0 11.72 0 34.41 0
C11 (I) 52.32 0 11.72 0 −34.41 0
C6 (F) 0 0 −1520 0 0 0
C7 (F) 312.36 0 −1590.6 0 0 0
C8 (F) −312.36 0 52.32 0 0.01 0
C9 (F) 0 0 1621.86 0 0.01 0

C10 (F) 0 0 −1594.51 0 0 0
C11 (F) 0 0 1617.95 0 0.01 0

The nonlinear analysis applied to the structure has allowed the obtainment of the
capacity curves for each of the positions considered in the study. These curves are shown
in Figure 11. Note that for the positions between 0 m and 200 m, the capacity curves are
similar, since the tsunami loads are produced by flood heights that generate loads that
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cause the structure to collapse. On the contrary, for the position 250 m from the coast, the
flood height has been significantly reduced, producing an effect of reducing the loads on
the façade that practically maintains the elastic behaviour of the structural elements.

(a) (b)

(c) (d)

(e) (f)

Figure 11. Capacity curves obtained from the nonlinear analysis for the positions from the shoreline
of (a) x = 0 m, (b) 50 m, (c) 100 m, (d) 150 m, (e) 200 m and (f) 250 m.

The curves in Figure 11 show points at which the first member reaches plastic deforma-
tion and points at which the first failure deformation is reached in one of the members. As
soon as damage begins to occur, the curves flatten progressively until reaching the point at
which the greatest shear force is reached at the base, whose values are shown in Figure 11.
Note that for the positions between x = 0 m and 200 m, the point of maximum shear force
has practically the same value. From that point onwards, there is a sustained reduction
in the lateral force resistance capacity, reaching the point corresponding to the ultimate
displacement.

Figure 12 shows the damage at the point of maximum shear force, including points
where both plastic deformations (ochre circles) and breaking deformations in the timber
elements (pink circles) have occurred. The figure shows the damage for the position
x = 200 m; however, it shows similar damage to other positions (x = 0 m to 150 m). The
model located at x = 250 m does not show damage and is thus omitted herein. The
noticeable damage in Figure 12a shows that the well-known floor mechanism is formed,
where a kinematically unstable structure having all the ends of columns with ball joints

219



J. Mar. Sci. Eng. 2025, 13, 484

cannot sustain greater lateral forces, causing it to collapse. Similarly, Figure 12b shows
that tsunami loads cause serious damage to the structural members of the façade at the
analysis point for which the maximum shear force is reached, being an indication that these
members have collapsed. Finally, note that the reinforced concrete pedestals and the floor
frame beams do not show damage, coinciding with the damage observed in houses located
near the runup line, as shown in Figure 1c and noticed by Breuer et al. [36].

(c)

(a) (b)

Yield reached

Fracture reached

Figure 12. Deformed and damaged structure at the point of maximum shear force reached. (a) Right
side elevation view, (b) front elevation view and (c) isometric view.

5. Discussion

5.1. Hydrodynamic Loads Using the EGLA

The application of the EGLA provides an easy way to estimate flow depths and veloci-
ties throughout La Pólvora’s topographic profile, given that in situ records are available.
However, as shown in Figure 8a, its straightforward application provides a significant over-
estimation of flow depths, which in turn results in an overestimation of the hydrodynamic
forces.

One of the challenges in applying EGLA is the propagation of uncertainties in the
estimation of hydrodynamic loads. As shown in Figure 8a, the uncorrected EGL curve
overestimates flood depths compared to the field data recorded by Fritz et al. [7]. To
mitigate this discrepancy, a correction factor was applied to the EGL curve, ensuring better
agreement with the observed values. However, it is important to note that in scenarios
where field data are not available to make adjustments, EGLA may introduce variations in
the determination of structural loads. Consequently, the loads obtained herein should be
considered conservative estimates, useful for assessing trends in structural response but
not necessarily representative of the actual loads experienced during a tsunami.

This difference could be attributed to the highly transient and nonuniform flow which
is neglected in the EGLA (e.g., stationary flow, neglected vertical accelerations, friction
parametrization based on Manning’s formula for uniform stationary flow) or the reliability
of the in situ records of flow depths, which are assumed to be reliable herein. For the
analyzed case, the use of an ad hoc reduction coefficient to the EGL is a simplified but
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reasonable alternative given that in situ data are available. However, in applications where
only modeled runups are available (e.g., flooding charts), sensitivity analyses and/or
calibration processes should be conducted to constrain the uncertainty of the method.

No attempts to compute inundation depths and flow velocities from a time history
inundation analysis are conducted herein, as the tide gauge in the pier of San Juan Bautista
was destroyed during the tsunami [41]. Therefore, maximum inundation depths and
velocities are assumed to be in phase, thus providing a conservative estimation of tsunami
loads. Additionally, the flow is assumed to be parallel to La Pólvora’s topographic profile
and to all houses’ positions considered herein, thus neglecting the transverse effects (along
the y-axis) on the structural response of each structure. An improvement from EGLA could
be achieved by means of more sophisticated methods which could recover the transient
nature of the flow, the phase lag of flow depths and velocities, the horizontal pattern of
the flow (e.g., Shallow Water Equations or Boussinesq type of equations) and, eventually,
the three-dimensional nature of the flow triggered by the steep nearshore bathymetry
characterizing the neighboring San Juan Bautista (e.g., Reynolds-Averaged Navier–Stokes
equations, Large Eddy Simulations).

While more advanced methods—such as numerical modeling based on Shallow Water
Equations (SWE) or Reynolds Averaged Navier–Stokes (RANS) equations—would allow
for a more accurate representation of the temporal and spatial evolution of tsunami flow,
our study does not aim to provide a comprehensive validation of hydrodynamic parameters
other than water levels captured in situ. Instead, our approach focuses on the structural
response of timber houses under hydrodynamic loads estimated using a practical method.
Future research could complement this analysis with more detailed studies incorporating
advanced numerical modeling to assess the degree of uncertainty associated with the use
of EGLA in this type of application.

5.2. Structural Analysis Using the EGLA

According to ASCE 7-22, Chapter 6, buildings in tsunami-exposed areas are subjected
to hydrostatic and hydrodynamic forces, waterborne debris accumulation and impact loads,
subsidence and scour. In this study, we disregard scour or the geotechnical damage of the
soil, as there was no ubiquitous evidence of such phenomena during the field surveys by
Fritz et al. [7] and Breuer et al. [36]. Additionally, being far from the rupture, there is no
evidence of subsidence following the 27 February 2010 earthquake in the town of San Juan
Bautista.

As for the structural analysis, Figures 8a and 9a show that the support reactions in
the x-axis at the coastline (x = 0 m) is 16 times larger than those in the farthest position
(x = 250 m). In contrast, along the z-axis, the ratio is 1.8 for the same positions. The total
forces in the y-axis are zero in all cases, as the flow depth is assumed to be equal on both
sides of the structure, causing the lateral hydrostatic forces to cancel each other out.

Figures 8a and 9a also show that the shear forces in the x-axis decrease as the house
location is further from the coastline. This is because the drag and impact forces of floating
objects scale with the square of the flow velocity, the latter of which decreases as the flow
depth does. In the z-axis, forces remain constant up to x = 200 m as the structure is
completely submerged (i.e., the displaced volume is equal to the house’s volume), then
decrease considerably at x = 250 m, as the house becomes partially flooded.

Upon examining the resulting structural deformations, the maximum inter-story drift
of 4.94 is observed at node 17 in the x-axis for the structure’s position at the coastline
(x = 0 m) under the most unfavorable load case. This value significantly exceeds the
maximum inter-story drift considered in the design of timber frame structures [54,55],
suggesting that the structures experience complete collapse due to the tsunami. Such a large
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inter-story drift is obtained by considering the linear elastic behavior of structural elements,
which, due to their flexibility, tend to deform under combined loading actions. Additionally,
displacements are significant across all positions of the structure, indicating that the house
reaches collapse as it can no longer support its own weight due to the overturning moments
produced by the shifting centers of gravity of the structural components.

5.3. Failure Due to Buoyancy

Our results do not provide sufficient details to conclude whether houses float or fail
due to tsunami impact, but provide spatial estimates of force magnitudes prompting the
latter (i.e., buoyancy) or former (i.e., hydrodynamic and impact forces) failure modes. The
few houses that presumably floated (Figure 1c) were constrained to the last few meters
before the runup, which were not fully captured with the spatial spacing of 50 m considered
for each house position. This could be further improved by increasing the spatial resolution
of the analysis for this particular case, by conducting sensitivity analyses for simplified
flow conditions and structures or more sophisticated methods. Additionally, from the
three post-tsunami field surveys conducted by the Ocean Engineering team at Universidad
de Valparaíso [41], structural damage was only assessed on 28 March 2010, nearly one
month after the tsunami, and after reconstruction works had concluded. By this time, clear
evidence of structural damage was scarce and likely modified.

Fortunately, structural failure due to buoyancy has been investigated by several
researchers. Yeh et al. [56], for example, found that buoyancy reduces the net force on
the structural body, thereby diminishing the recovery forces needed to resist sliding and
overturning failures. They concluded that the failure patterns of buildings following the
2011 Tohoku earthquake and tsunami were diverse: some buildings inland failed during
the runup while others failed during the drawdown, being pushed towards the sea. This
suggests that forces of the external flow alone may not govern the failure mode, but the
stability of buildings previously weakened by buoyancy force may have played a role in
their failure. Conversely, del Zoppo et al. [57] showed that buoyancy can lead to failure in
combination with other effects associated with tsunamis.

Buoyancy can be a critical factor when coastal buildings feature fragile vertical enclo-
sures, such as walls, doors and windows. Indeed, Yeh et al. [58,59] showed that precarious
constructions with vertical enclosures survived the tsunami following the Tohoku earth-
quake, allowing us to deduce that buoyancy played a decisive role in San Juan Bautista, as
single-story houses exhibited similar features of fragile vertical enclosures. This digression
is, however, tentative in San Juan Bautista, as the majority of timber houses were fully de-
stroyed, their parts scattered and then mixed with the flow, thus making the identification
of failure modes hard.

5.4. Contribution to the Resilience of Coastal Communities

The resilience of specific urban or rural communities to tsunamis is very sensitive
to the location and distance of buildings with respect to the coast [60]. This is especially
true for timber structures, which despite their ductile performance, are highly vulnerable
to the action of tsunamis [60,61]. To reduce the impact of tsunamis, a “location criterion”
where timber houses are located above the flooding line should therefore be combined with
the design of mitigation works, the use of other structural typologies or reinforcements at
the most stressed points of structures [61]. However, localized damage in exposed houses
due to the impact of floating objects [62] is highly expected, regardless of the typology
or materials used. To plan effective interventions, the planning process should also be
based on resilience metrics [63] and the use of fragility curves and/or surfaces, such as
those developed in earthquake-resistant design [60,64]. Last but not least, the resilience of
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communities should be improved by matching urban planning with the implementation of
early warning systems to evacuate the population to safe shelters, designed in accordance
with regulatory provisions [65].

6. Conclusions

This study assesses the structural response of single-story timber houses subjected to
tsunami-induced loads using the EGLA method in different positions along a topographic
profile in San Juan Bautista. We aimed to understand the failure modes of these lightweight
structures and to determine whether the distance from the coast can be considered a factor
in improving the safety of such constructions against future events.

As for the estimation of hydrodynamic loads, the EGLA provides a simple approach
whenever in situ records are available. However, more sophisticated hydrodynamic models
(e.g., SWE or RANS) could improve accuracy by capturing transient flow behaviors and
three-dimensional effects which are not considered in EGLA.

Structural (linear) analyses reveal that, near the coastline, timber houses experience
excessively large displacements and structural collapse as a result of a combination of buoy-
ancy, impact, hydrodynamic and drag forces. The presence of buoyant forces (~290 ton-f)
exacerbates structural instability in houses near the shore, reducing the foundations’ an-
chorage efficiency and contributing to structural flotation. On the contrary, the farther from
the coastline, the lower the depths and flow velocities, which leads to a decrease in drag
forces and results in decreased displacements and reduced structural demand.

The nonlinear analysis confirms the results obtained from the linear analysis, since the
structure collapses in all positions in the first 200 m from the coastline, while presenting
a very low demand near the maximum runup, for which the structure remains elastic,
without any of its members showing damage. Consequently, the methodology based on
EGLA provides consistent results of the behavior of structures subjected to large tsunami
forces, without requiring very sophisticated and laborious analyses such as those involving
the nonlinearity characteristics of the structures.

Given the limitations of nonlinear analysis, the analysis applied to the structure located
at x = 250 m only considers the lateral forces caused by the tsunami acting on the façade.
However, it is expected that the buoyancy forces will cause the collapse of the structure,
since they reach a value close to 1600 kN.

Despite their seismic resistance, lightweight timber structures are not suitable for areas
prone to tsunamis. The use of heavier and more rigid materials, such as reinforced concrete,
is recommended to withstand hydrodynamic and buoyant forces effectively. An interesting
exercise would be to implement nonlinear analysis in steel, reinforced concrete and masonry
structures responding to tsunami loads, aiming to provide guidelines for the design of
structures of different materials, e.g., [66–69]. Future research should also evaluate the
performance of different configurations (e.g., two or more story houses, elevated houses,
the use of composite materials) to establish comprehensive design guidelines for tsunami-
prone areas. Overall, the study highlights the need for stricter building codes in coastal
regions, the use of tsunami-resilient design materials and the relocation of lightweight
structures further inland to mitigate risk.

While EGLA provides practical estimates of tsunami-induced loads on coastal struc-
tures, its application in structural design should be approached with caution. ASCE 7-22
acknowledges that EGLA is a useful method for exploratory studies and preliminary
estimations; however, its use as the sole tool for designing tsunami-resilient structures
should be supplemented with more rigorous approaches whenever feasible. In particular,
combining EGLA with detailed structural analyses or advanced hydrodynamic modeling
could offer a more accurate assessment of structural performance under extreme loads.
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Additionally, land-use planning and the selection of appropriate construction materials
remain key factors in mitigating damage in tsunami-prone areas.

Future research should explore the performance of different building materials under
tsunami-induced loads, particularly reinforced concrete, steel and hybrid structural systems.
Conducting nonlinear analyses on these materials could provide a comparative assessment
of their resistance to hydrodynamic forces and their failure mechanisms, contributing to
the development of more robust design guidelines. Additionally, optimizing disaster-
resistant designs through computational techniques, such as performance-based design
approaches or topology optimization, could help to enhance structural resilience in tsunami-
prone areas. These studies could also incorporate experimental validations to further refine
numerical modeling techniques and improve the accuracy of failure predictions for different
structural typologies.
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Appendix A. Impact of Wood Logs Using ASCE 7-22

The nominal maximum instantaneous debris impact force (Fni) is determined in
accordance with Equation (A1)

Fni = umax
√

k md (A1)

where umax is the maximum flow velocity at depths sufficient to float the debris, k the
effective stiffness of the impacting debris or the lateral stiffness of the impacted structural
element(s) deformed by the impact, whichever is less and md the mass of the debris. The
instantaneous debris impact force (Fi) is determined with Equation (A2)

Fi = ItsuCoFni (A2)

where Co is the orientation coefficient (Co = 0.65 for logs and poles). Logs are assumed to
strike longitudinally for the calculation of debris stiffness in the equation. The stiffness
of logs is calculated as k = EA/L, in which E is the longitudinal modulus of elasticity of
the log, A its cross-sectional area and L its length. A Pinus radiata wood log, 2.5 m long
and 75 cm in diameter with a density of 420 kg/m3 and an elastic modulus of 7900 MPa,
is considered. Along with Eucalyptus, Pinus radiata is the most abundant species in the
lower part of San Juan Bautista. With these assumptions, the impact force resulted in
Fi = 130 tonf, which was considered excessive.
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Table A1. Parameters used to compute impact of wood logs using ASCE 7-22.

Parameter Symbol Dimension Value

Effective stiffness of the impacting logs k kN/m 1.39 × 106

Maximum velocity at depths of debris umax m/s 8.05
Mass of debris object md kg 500

Orientation coefficient Co - 0.65
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