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Direction of Arrival Estimation of Coherent Wideband Sources
Using Nested Array
Yawei Tang, Weiming Deng, Jianfeng Li * and Xiaofei Zhang
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Nanjing 211106, China; ywtang@nuaa.edu.cn (Y.T.); dengweiming0202@126.com (W.D.);
zhangxiaofei@nuaa.edu.cn (X.Z.)
* Correspondence: lijianfeng@nuaa.edu.cn

Abstract: Due to their ability to achieve higher DOA estimation accuracy and larger degrees of
freedom (DOF) using a fixed number of antennas, sparse arrays, etc., nested and coprime arrays
have attracted a lot of attention in relation to research into direction of arrival (DOA) estimation.
However, the usage of the sparse array is based on the assumption that the signals are independent
of each other, which is hard to guarantee in practice due to the complex propagation environment. To
address the challenge of sparse arrays struggling to handle coherent wideband signals, we propose
the following method. Firstly, we exploit the coherent signal subspace method (CSSM) to focus the
wideband signals on the reference frequency and assist in the decorrelation process, which can be
implemented without any pre-estimations. Then, we virtualize the covariance matrix of sparse array
due to the decorrelation operation. Next, an enhanced spatial smoothing algorithm is applied to
make full use of the information available in the data covariance matrix, as well as to improve the
decorrelation effect, after which stage the multiple signal classification (MUSIC) algorithm is used
to obtain DOA estimations. In the simulation, with reference to the root mean square error (RMSE)
that varies in tandem with the signal-to-noise ratio (SNR), the algorithm achieves satisfactory results
compared to other state-of-the-art algorithms, including sparse arrays using the traditional incoherent
signal subspace method (ISSM), the coherent signal subspace method (CSSM), spatial smoothing
algorithms, etc. Furthermore, the proposed method is also validated via real data tests, and the error
value is only 0.2 degrees in real data tests, which is lower than those of the other methods in real
data tests.

Keywords: direction-of-arrival (DOA); sparse array; initial-estimation-free CSSM; enhanced spatial
smoothing

1. Introduction

In recent years, DOA estimations [1–3] have been widely applied in many fields,
such as radar, sonar, wireless communication [4–7], etc. Therefore, research into DOA
estimation has attracted more attention from researchers [8–12]. In general, the spectral
estimation accuracy is positively correlated with the number of antennas, while the sparse
arrays can obtain a large number of continuous elements in the virtual array via the
virtualization method, thereby obtaining a higher accuracy of DOA estimation. To improve
the accuracy of DOA estimation and increase the DOF with a fixed number of antennas,
sparse arrays have gradually replaced uniform line arrays as the most prevalent array
geometry. Examples of these arrays include the minimum redundancy array (MRA) [13],
the coprime array and the nested array. Compared with MRA, coprime array [14–16] and
nested array [17,18] are more feasible in terms of engineering and they can obtain a large
number of continuous elements in the virtual array via the virtualization method, thereby
obtaining a higher accuracy of DOA estimation and a larger DOF. However, nowadays,
research based on sparse arrays is mainly used for incoherent signals, as the performance
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is poor at handling coherent wideband signals. In reality, it can be challenging to evade
coherent signals. As a result, the resolution of coherent wideband signals in sparse arrays
is the primary focus of this paper.

Currently, incoherent narrowband signal DOA estimation techniques have been ex-
tensively used. However, due to the complex propagation environment [19,20], coherent
wideband signals have become an important signal type in real life, and the coherent
signal becomes an important factor affecting the performance of the algorithm. Traditional
incoherent narrowband DOA estimation methods are inadequate for handling coherent
wideband signals. Therefore, research into DOA estimation methods for coherent wide-
band signals holds significant practical importance. Many algorithms have been developed
to counteract the effect of coherence [21–26], such as the widely used algorithm known as
spatial smoothing pre-processing (SSP) [27], which divides the entire array into a series
of overlapping subarrays to obtain a new data covariance matrix with recovered rank. In
this paper, in order to take full advantage of the covariance matrix of individual subarrays
and the mutual covariance matrix of different subarrays, an enhanced spatial smoothing
algorithm is used to more effectively counteract the effects of coherence.

For wideband signals, many types of studies have been conducted regarding wide-
band DOA estimation algorithms. Usually, the wideband signal is first decomposed into
several narrowband signals with multiple frequencies via time-to-frequency conversion.
Then, two widely used classes of wideband DOA estimation algorithms are used. One is
the incoherent signal subspace method (ISSM) [28–30], which applies a high-precision nar-
rowband DOA estimation algorithm (such as the MUSIC [31] algorithm) to the narrowband
signals at multiple frequencies after the time–frequency conversion and averages the results
to obtain the estimated values. This method can achieve high accuracy in a high SNR, but in
a low SNR, the accuracy of the algorithm may be greatly affected, and this method cannot
effectively deal with the problem of coherent sources [32]. Moreover, another algorithm,
known as the coherent signal subspace method (CSSM) [33–37], is often proposed, which
focuses the signal subspace at multiple frequencies to the signal subspace at the reference
frequency by constructing a focus matrix and summing these focused covariance matrices
to construct a single correlation matrix, after which a high-precision narrowband DOA
estimation algorithm can be applied to this covariance matrix to obtain the final estimated
value. This algorithm achieves great performance in the case of low SNR, and the process
of averaging after focusing can reduce the coherence coefficient between signals. Therefore,
it can achieve some decorrelation effect. However, the construction of the focusing matrix
in this algorithm depends on the pre-estimated angle, and the accuracy of the pre-estimated
angle will have a large impact on the accuracy of the final estimated angle. Therefore, a
focusing algorithm that does not require pre-estimated values is used in this paper to avoid
the main drawbacks of the traditional focusing algorithm.

In this paper, firstly, we choose a sparse array in order to obtain a higher spectral
estimation accuracy and a larger DOF using a fixed number of antennas. Then, we choose
the CSSM method to assist in the process of decorrelating the coherent signal. In order
to avoid the final estimation result relying on the pre-estimation, we propose a focusing
algorithm without pre-estimation. Then, we virtualize the covariance matrix of sparse array
due to the decorrelation operation. To more effectively counteract the effects of coherence,
we adopt an enhanced spatial smoothing algorithm to make full use of the information in
the covariance matrix of individual subarrays and the mutual covariance matrix of different
subarrays. Finally, the MUSIC algorithm is applied to obtain the final estimated values.

The paper is organized as follows: In the Section 2, the sparse array based wideband
coherent signal model is described. Then, the algorithm proposed in this paper is presented
in the Section 3. The simulations, actual measurement and analysis are mentioned in the
Section 4. Finally, the conclusion is presented in the Section 5 of this paper.

2



Sensors 2023, 23, 6984

2. Array Model

Considering that the K far-field wideband sources impinged on a two-level nested
array, the received signals were coherent. The sensor positions of nested array could be
expressed as P = {m1d, 1 ≤ m1 ≤ M1} ∪ {m2(M1 + 1)d, 1 ≤ m2 ≤ M2}, where d = λ/2
(λ denotes the signal wavelength), and M1 and M2 represented the number of sensors
of the each of the subarrays, the array is shown in Figure 1. The wideband sources from
different DOAs θ1, θ2, · · · , θk were assumed to be independent. The array output of the
m− th sensor could be represented as follows:

xm(t) =
K

∑
k=1

sk(t− τkm) + nm(t), m = 1, 2, · · · , M1, M1 + 1, 2(M1 + 1), · · ·M2(M1 + 1) (1)

where sk(t) and nm(t) represent the k− th source signal and the noise at the m− th sensor,
respectively, and nm(t) is the additive white Gaussian noise with zero mean and variance
σ2. τkm is the propagation delay associated with the k− th source and m− th sensor.

τkm = (m− 1)d sin θk/c (2)

where c is the speed of signal propagation.
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Figure 1. Two-level nested array.

We transformed the output of each sensor into the frequency domain and partitioned
the frequency band into J non-overlapping narrowband blocks via J − point DFT. Then,
the wideband array model at J frequencies can be formulated as follows:

X( f j) = A( f j)S( f j) + N( f j), j = 1, 2, · · · , J (3)

where S( f j) = [S1( f j), S2( f j), · · · , SK( f j)]
T and N( f j) = [N1( f j), N2( f j), · · · , NM( f j)]

T rep-
resent the signal and noise at frequency f j after DFT transformation, respectively.

A( f j) = [aθ1( f j), aθ2( f j), · · · aθK ( f j)], j = 1, 2 · · · J (4)

where aθk ( f j) = [e−j2π f jτk1 , e−j2π f jτk2 , · · · , e−j2π f jτkM ]
T

represents the frequency-dependent
array steering vectors for k− th source angles.

The data covariance matrix can be written as follows:

R( f j) = E[X( f j)XH( f j)]
= A( f j)Rss( f j)AH( f j) + σ2 I

(5)

where Rss( f j) = E[S( f j)SH( f j)] is the covariance matrix of the source signals at fre-
quency f j.

3
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3. Proposed Method
3.1. Multi-Frequency Focused Decorrelation Method

The traditional CSSM algorithm was used to focus information derived from different
frequency bins on a reference frequency bin, and narrowband algorithms were then used
to obtain DOA estimation values. The key purpose of this algorithm was to construct
a focusing matrix T( f j) to transform the array manifold at frequency f j to the reference
frequency f0 as follows:

T( f j)A( f j) = A( f0) (6)

where T( f j) is the focusing matrix at frequency f j, and it is a unitary matrix.
The data covariance matrix was generated as follows:

Rc =
J

∑
j=1

T( f j)R( f j)TH( f j) (7)

The focusing matrices at different frequencies are non-unique, and the methods used to
construct this matrix have been extensively explored. The rotational signal subspace (RSS)
algorithm is now the approach most widely used to construct unitary focusing matrices by
minimizing the Frobenius norm of the array manifold mismatches.

However, for most existing methods of constructing focus matrices, initial estimations
were critical, and poor initial estimations could have a significant impact on the final
DOA estimations.

In order to avoid excessive dependence on initial estimations for the final accuracy, we
adopted a focusing algorithm that did not require pre-estimation. It can be observed that
the unitary matrix with columns that are the eigenvectors of the data covariance matrix
spanned the same subspace across each frequency as the array manifold, meaning that
we can use them to construct the focusing matrix. This method does not require initial
estimations compared to the approach of building a focusing matrix based on the array
steering vector.

Firstly, we define the focusing matrix as follows:

Tauto( f j) =
1√

J
U( f0)UH( f j) (8)

where U( f j) is a unitary matrix, and its columns are the eigenvectors of the covariance
matrix R( f j).

In practical cases, we multiply Tauto( f j) and X( f j), and we then find

Y( f j) = Tauto( f j)X( f j) (9)

The covariance matrix can be presented as follows:

Ry( f j) = E[Y( f j)YH( f j)]

= Tauto( f j)A( f j)Rss( f j)AH( f j)Tauto
H( f j) +

1
J σ2 I

(10)

Summing up the matrices at J frequencies, we can write the covariance matrix
as follows:

Rcoh =
J−1
∑

j=0
Ry( f j)

= 1
J U( f0)

(
J−1
∑

j=0
UH( f j)A( f j)Rss( f j)AH( f j)U( f j)

)
UH( f0)

+σ2 I

(11)

4
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By constructing a focusing matrix to focus all frequency components to the reference
frequency and then averaging the covariance matrix, the correlation coefficients between
the signals were reduced, meaning that the rank of the covariance matrix was equal to the
number of sources used for decorrelation.

Finally, we constructed the focusing matrix without the need for initial estimations,
focused the covariance matrices at different frequencies to the reference frequency f0, and,
ultimately, obtained the required covariance matrix.

Since the array we used was a two-level nested array, it needed to be virtualized before
it could be used to perform DOA estimation. Thus, we vectorized the above covariance
matrix and found

z = vec(Rcoh) (12)

We sorted z and removed redundancy to obtain z̃, which is the received signal of this
virtual array. The number of continuous elements in the virtual array is N = 2M1(M2 + 1)− 1.

3.2. Enhanced Spatial Smoothing Method

As the received signal is coherent, subspace-based and propagator-based algorithms
cannot be used directly. And one of the most famous decorrelation algorithms is the spatial
smoothing algorithm. The entire array is divided into P subarrays, and L represents the
number of array elements in each subarray, the subarray is shown in Figure 2, where dotted
line represents subarrays not shown in the figure. The relationships between P, L and N
can be expressed as follows:

N = L + P− 1 (13)
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Therefore, the cross-covariance matrix Rij of the i− th subarray and the j− th subarray
can be written as follows:

Rij = E[z̃i z̃j
H ] i, j ∈ (1, 2, · · · P) (14)

where z̃p represents the p− th L row of z̃.
And the backward cross-covariance matrix can be expressed as follows:

Rij = JR∗ij J (15)

where J denotes the (L × L) exchange matrix, and the operator ∗ represents the com-
plex conjugate.

One of the drawbacks of many spatial smoothing methods is that they do not make
full use of the information in the subspace, while the spatial smoothing method used in this
paper utilizes information including the cross-covariance matrix Rij of different subarrays

5
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and the covariance matrix Rii/Rjj of a single subarray. The rank-restored data covariance
matrix after enhanced spatial smoothing can be written as follows:

RESS = 1
2P

P
∑

i=1

P
∑

j=1

{(
RijRji + RijRji

)

+
(

RiiRjj + RiiRjj
)} (16)

Furthermore, we apply the MUSIC algorithm to the covariance matrix RESS, and the
covariance matrix RESS can be divided into the signal subspace and the noise subspace,
which can be written as follows:

RESS = UsΣsUH
s + UNΣNUH

N (17)

where Σs is the diagonal matrix consisting of the maximum eigenvalues sorted in de-
scending order, which have the same numbers as the sources. ΣN is the diagonal matrix
composed of the other eigenvalues. Us and UN are matrices with the eigenvectors that
correspond to the eigenvalues as columns.

The MUSIC spectrum is generated as follows:

PMUSIC(θ) =
1

aH
1 UNUH

N a1
(18)

where a1 = [0, e−j2π f0d sin θ/c, e−j2π f0(2d) sin θ/c, · · · , e−j2π f0(L−1)d sin θ/c]
T

is the subarray steer-
ing vector at the reference frequency f0.

Then, DOA estimation values are obtained through a spectrum search. The main steps
of the proposed method are shown in Algorithm 1.

Algorithm 1: The Proposed Method

Input: The received data X( f j)
Output: DOA estimation values

1. Construct the focus matrix Tauto( f j) according to Equation (8);
2. Obtain the covariance matrix Rcoh after focusing according to Equations (10) and (11);
3. Vectorize the above covariance matrix Rcoh and obtain the received signal z̃ of the virtual

array according to Equation (12);
4. Apply an enhanced spatial smoothing method to obtain the rank-restored covariance matrix

RESS according to Equations (14)–(16);
5. Apply the MUSIC algorithm to obtain the estimation results according to Equations (17)

and (18)

4. Performance Analysis
4.1. Simulation Analysis

To prove the superiority of the proposed method, we compared it to several other
methods. The four methods used are as follows: (i) Using the method in [15], which
uses conventional ISSM algorithm, decorrelation was performed via the traditional spa-
tial smoothing algorithm (named ISSM-ss); (ii) after constructing the focus matrix using
the traditional CSSM algorithm, we used the enhanced spatial smoothing algorithm for
decorrelation (named CSSM-enss); (iii) we then used the focusing algorithm that does not
require the initial estimation to generate the focus matrix (named IEF-CSSM); and (iv) the
algorithm proposed in this article was used.

In this section, the root mean square error (RMSE) was used to verify algorithm
performance. The expression of RMSE is as follows:

RMSE =

√√√√ 1
KN

(
N

∑
n=1

K

∑
k=1

(θk − θ̂k,n)
2
)

(19)

6
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where K and N denote the numbers of sources and Monte Carlo trials, respectively. θ̂k,n
represents the estimated values of n− th Monte Carlo trial. In the following simulations,
the number of Monte Carlo trials is 500.

We design two wideband sources impinging on a two-level nested array from 20◦ and
45◦, and the number of sensors used for both subarrays is 10. The more frequency bins
there are present, the slower the processing speed will be, and the accuracy of the results
will raise. When the number of frequency bins reaches a certain threshold, the change in
result accuracy will become negligible or even non-existent. As a result, between 280 and
320 MHz, a total of 40 frequency bins is uniformly sampled for wideband DOA estimation.

As shown in Figure 3, all four methods perform decorrelation and have spectral peaks
present around the angle of the two sources, but the heights of the spectrum peaks are
different due to the varying performances of the decorrelation methods. The method
with the lowest peak is the IEF-CSSM method, which proves that the CSSM method is
indeed helpful in decorrelation, while the method with a lower peak is the ISSM-ss method.
There are some deviations in the positions of the spectral peaks due to the use of the
ISSM method and the common spatial smoothing algorithm, which is not as effective as
the other two methods using the enhanced spatial smoothing algorithm. Moreover, the
CSSM-enss method results in the final spectral peak height being lower than that of the
method proposed in this paper due to the difference in the focusing algorithm.
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As shown in Figure 4, the RMSE of each method becomes smaller as the SNR gradually
increases. Among the methods, the CSSM-enss method suffers from a definite impact on the
final estimates because the method used to construct the focus matrix is the conventional
CSSM algorithm that requires an initial estimation value, though CSSM-enss has a better
performance than ISSM-ss in its decorrelation algorithm, meaning that the performance
of the CSSM-enss method is slightly better than that of the ISSM-ss method. However,
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the IEF-CSSM method is slightly more accurate because it uses an algorithm that does
not require initial estimation values, but the final performance is weaker than that of the
proposed method because of the poor decorrelation method.
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4.2. Experimental Results

To demonstrate the effectiveness of the proposed method, we conducted a set of
experiments inside of the room, in which a wideband signal with a bandwidth of 10 Mhz
impinged on the sparse array from 12◦. A total of 32 frequency bins were used for wideband
DOA estimation, the experimental equipment and scene are shown in Figures 5 and 6,
respectively. As Figure 7 shows, the performance of the IEF-CSSM method in decorrelation
is weaker than those of other methods in practical testing. On the other hand, the CSSM-
enss method performs better than the ISSM-ss method but is worse than the proposed
method. Furthermore, in Table 1, after the processing of the proposed method, there is a
peak at 12.20◦ in the spectrum, while the real angle is 12◦, which shows that the proposed
method has satisfactory accuracy in practical application. And in order to ensure that the
signal is coherent, we chose to perform experiments in an indoor environment, and the
final processing results prove that the proposed method has the effect of decorrelation.

Table 1. Accuracy of the four methods for real data.

Method DOA Estimation Error Value

IEF-CSSM 8.25◦ 3.75◦

ISSM-ss 12.80◦ 0.80◦

CSSM-enss 12.70◦ 0.70◦

Proposed method 12.20◦ 0.20◦
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5. Conclusions

In this paper, we propose a DOA estimation algorithm for wideband coherent signals
using the nested array. Firstly, a two-level nested array is used to ensure large DOF in
the virtual array. Then, the focusing matrix is constructed without initial estimation to
ensure that the initial estimation’s influence on the final estimation in the conventional
algorithm is avoided. Furthermore, an enhanced spatial smoothing algorithm is used for
decorrelation. Finally, the MUSIC algorithm is applied to perform high-accuracy DOA
estimation. The proposed method has better decorrelation and higher accuracy than the
ISMM-ss, CSMM-enss and IEF-CSSM methods. In our experimental tests, the proposed
method is effective for coherent wideband signal processing, even in indoor environments,
and we have demonstrated the advantage of the proposed method in relation to accuracy
compared to other methods. In the future, we will investigate low-rank matrix recovery
and denoising using the obtained covariance matrix before angle estimation, which could
help to reduce residual interference on the covariance matrix.
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Abstract: In an ultra-wideband (UWB) system, the two-dimensional (2D) multiple signal classification
(MUSIC) algorithms based on high-precision 2D spectral peak search can jointly estimate the time of
arrival (TOA) and angle of arrival (AOA). However, the computational complexity of 2D-MUSIC
is very high, and the corresponding data model is only based on the dual antennas. To solve these
problems, a low-complexity algorithm for joint AOA and TOA estimation of the multipath ultra-
wideband signal is proposed. Firstly, the dual antenna sensing data model is extended to the antenna
array case. Then, based on the array-sensing data model, the proposed algorithm transforms the 2D
spectral peak search of 2D-MUSIC into a secondary optimization problem to extract the estimation
of AOA via only 1D search. Finally, the acquired AOA estimations are brought back, and the TOA
estimations are also obtained through a 1D search. Moreover, in the case of an unknown transmitted
signal waveform, the proposed method can still distinguish the main path signal based on the time
difference of arrival of different paths, which shows wider applications. The simulation results
show that the proposed algorithm outperforms the Root-MUSIC algorithm and the estimation of
signal parameters using the rotational invariance techniques (ESPRIT) algorithm, and keeps the
same estimation accuracy but with greatly reduced computational complexity compared to the
2D-MUSIC algorithm.

Keywords: multipath environment; angle of arrival (AOA); time of arrival (TOA); multiple signal
classification (MUSIC)

1. Introduction

Angle of arrival (AOA) and time of arrival (TOA) are important issues in array signal
processing, which is widely used in radar, navigation, indoor positioning, and wireless
communication [1–3]. In the outdoor environment, the general positioning accuracy of
the global positioning system (GPS) is more than 10 m without aids. GPS fails to help us
in areas such as close-range complex following systems or indoor positioning. However,
there are many applications in these complex environments, such as daily physical activity
tracking [4], intelligent transportation [5], and localization of sensor nodes with a nano un-
manned Aerial Vehicle [6]. In these close-range and complex scenarios, accurate estimation
of AOA and TOA is important for positioning. AOA and TOA mean to measure the angle
of arrival and time of arrival between the base station and the mobile station, respectively.

Ultra-wideband (UWB) signals [7] can solve the multipath problems to be faced in
these scenarios. UWB signals are widely used in low-power short-range wireless commu-
nication [8] due to their large bandwidth, low power consumption, and strong ability to
distinguish multipath signals. The Saleh-Valenzuela (S-V) model [9–11] has been adopted
as a UWB system channel model for small-scale fading. In the S-V model, the multipath
components are modeled as several rays arriving within different clusters. The multipath
components of different clusters have constant AOA and TOA, but the fading is randomly
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Sensors 2023, 23, 6363

varying. A series of algorithms are thus proposed to estimate AOA and TOA using the
properties of the S-V channel model.

Earlier, only TOA in the UWB system was estimated, which was divided into time-
domain methods, frequency-domain methods, and deep learning methods. Ref. [12] pro-
poses a TOA estimation method based on matched filter threshold detection. Refs. [13,14]
propose TOA estimation methods for incoherent energy detection based on a low sampling
rate. A two-step TOA estimation method based on energy coherent detection of the direct
path component is proposed in ref. [15]. The accuracy of the time-domain methods [12–15]
is limited by the bandwidth and sampling interval. To meet the requirement of high resolu-
tion, TOA algorithms from the frequency domain [16–18] have been explored. Refs. [16–18]
use a spectral peak search leading to an increase in computational complexity. Refs. [19–21]
propose deep learning methods for TOA estimation. Ref. [19] proposes a machine learning
method based on kernel principal component analysis, which projects selected channel
parameters into a nonlinear orthogonal high-dimensional space and then uses a subset
of these projections to estimate TOA. A deep learning model consisting of cascaded con-
volutional neural networks is proposed in ref. [20] to estimate TOA. Ref. [21] uses a deep
learning model of ResNet50 [22] to estimate TOA. The deep learning methods reduce the
computational complexity, but it is influenced by the data in the training set, which limits
the applicability.

The AOA estimation in UWB systems has also been studied. Due to the high time res-
olution of ultra-wideband systems, a number of joint AOA and TOA estimation algorithms
have been proposed. In [23], TOA is firstly estimated and then the best linear unbiased
estimation is performed to obtain AOA. Ref. [24] improves the accuracy of TOA estimation
by performing rough estimation and refining estimation, and the improvement of TOA
estimation leads to the improvement of AOA estimation. In [25], a high-precision TOA
estimation method is proposed based on two-dimensional multiple signal classification
(2D-MUSIC), and the AOA can be obtained based on the time difference of adjacent array
elements. Meanwhile, a Root-MUSIC algorithm is proposed to reduce the computational
complexity in [25]. In [26], the computational complexity is further reduced compared
with [25], which requires a spatial-spectral search to estimate the TOA. Ref. [26] estimates
the TOA of two antennas using a polynomial root method, but the estimation accuracy
is slightly reduced. Ref. [27] uses discrete Fourier transform (DFT) processing to obtain a
coarse estimate of TOA, and designs a compensation matrix to phase compensate the time
delay vector to obtain a fine estimate of TOA. The computational complexity of ref. [27] is
greatly reduced because there is no need for eigenvalue decomposition, but the accuracy
of TOA and AOA estimation is seriously affected by the number of DFT points. Ref. [28]
exploits the conjugate symmetry of the time delay matrix to extend the sample points
as well as the number of clusters to improve the estimation accuracy and the number of
sources that can be identified. However, its computational complexity increases. In [29],
the AOA is firstly estimated by frequency domain waveforms, and the TOA is estimated
from AOA. Unlike [23–28], its AOA accuracy is not affected by the TOA estimation ac-
curacy, but its TOA estimation accuracy is unsatisfied. Refs. [23–29] only consider dual
antennas case, which does not consider the case of multiple antennas. In [30], the joint
estimation of AOA and TOA is extended to three-dimensional space positioning using an
iterative approach with high computational complexity, which is only applicable to the
case of a single snapshot.

Although there are some works, e.g., refs. [23–29], considering the joint estimation
of AOA and TOA in UWB system, only the data model of dual antennas is considered,
which is not a general case. Meanwhile, the estimation accuracy and real-time performance
of the methods in refs. [23–30] need to be improved. Moreover, in case of unknown prior
information of the transmitted signal waveform, they are unable to distinguish the main
path signal. To solve these problems, a low-complexity algorithm for joint AOA and
TOA estimation of multipath signal in the UWB system is proposed. Firstly, the proposed
algorithm transforms the 2D spectral search operation into a secondary optimization
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problem, and the AOA estimation is extracted separately. Then, the acquired AOA is
brought into the 2D function, and the TOA estimation is also obtained through a 1D
search. The main advantages of the proposed algorithm are as follows: (1) The proposed
method has enhanced accuracy compared to the Root-MUSIC algorithm and ESPRIT
algorithm, and maintains the same accuracy as the 2D-MUSIC algorithm; (2) Compared
with the 2D-MUSIC, Root-MUSIC and EPRIT algorithm, the proposed algorithm requires
lower complexity; (3) In case of unknown prior information of the transmitted signal,
the proposed method can still distinguish the main path signal based on the time difference
of arrival (TDOA) of a different path, which shows wider applications.

This paper is structured as follows: Section 2 introduces the received data model of
the reference antenna and the proposed array-sensing data model. Section 3 introduces
the traditional joint AOA and TOA estimation algorithms, including the 2D-MUSIC al-
gorithm and the Root-MUSIC algorithm, respectively. Section 4 presents the proposed
low-complexity joint AOA and TOA estimation algorithm. Section 5 shows the computa-
tional complexity and estimation accuracy of different algorithms, while conclusions are
made in Section 6.

Notation: This article uses bold letters to denote vectors or matrices. ()T , ()∗, ()H , ()−1

represent transpose, conjugate, conjugate transpose, and inverse of a matrix, respectively.
IN represents the N × N identity matrix, and E(·) denotes expectation. ∧ denotes an
estimated expression and ./ means point division of matrices. ∂ represents the partial
derivative and |·| represents the absolute value. Finally, diag(a) denotes the diagonal
matrix with the elements of vector a as diagonal elements.

2. Data Model
2.1. Single-Antenna Sensing Data Model

Figure 1 shows the scenario of multipath propagation and antenna array structure
for joint AOA and TOA estimation. The antenna array is a uniform linear array (ULA),
and the number of array elements is M. The array element spacing is d = λ/2, and λ is the
wavelength corresponding to the center frequency of the incident signal. Assume that the
incident signal propagating through the channel produces L multipath. The form of the
signal received by the single antenna is denoted as

y(t) =
L

∑
l=1

βls(t− τl) + w(t) (1)

where s(t) is the transmitted signal, τl is the time delay value corresponding to each path,
βl is the attenuation coefficient corresponding to each path, and w(t) is the zero-mean
additive Gaussian white noise.

( )s t

1t

1q

2q

3q

2t

3t

Figure 1. ULA structure for joint TOA and DOA estimation.

Then, we transform the time-domain form of the signal into the frequency-domain
form as

Y(ω) =
L

∑
l=1

βlS(ω)e−jωτl + W(ω) (2)
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Sampling the received signal in the frequency-domain at equal intervals of N (N > L)
points, with a sampling interval of ∆ω = 2π/N, the discrete frequency-domain form of
the sampled received signal can be obtained as follows:

Y(ωn) =
L

∑
l=1

βlS(ωn)e−jωnτl + W(ωn) (3)

where ωn = n∆ω, n = 0, 1, · · · , N − 1. Dividing the data into K segments (i.e., number of
frequency-domain snapshots), the kth segment frequency-domain data can be written in
the following concise vector form:

yk = SEτ1βk + wk (4)

where yk = [Y(k)(ω0), · · · , Y(k)(ωN−1)]
T ∈ CN×1 is the N-point frequency-domain equal

interval sampling of the received signal in the kth segment. S = diag([S(ω0), · · · , S(ωN−1)])
∈ CN×N is the diagonal matrix, and the diagonal elements are the N-point frequency-
domain equal interval sampling values of the transmitted signal s(t). wk = [W(k)(ω0), · · · ,
W(k)(ωN−1)]

T ∈ CN×1 is the frequency-domain sampling vector of Gaussian white noise.
Eτ1 ∈ CN×L is the matrix containing the signal multipath time delay information. We
refer to it as the time delay matrix. It can be expressed as Eτ1 = [eτ1 , · · · , eτl , · · · , eτL ],
where eτl = [e−jω0τl , e−jω1τl , · · · , e−jωN−1τl ]T . The coefficients of the fading channel are

contained in the vector which can be expressed as βk = [β(k)
1 , β

(k)
2 , · · · , β

(k)
L ]T .

According to the S-V channel model, we can obtain the complex-value fading coeffi-
cient of the kth segment of the lth path as

β
(k)
l = α

(k)
l ejφ(k)

l (5)

where α
(k)
l is the fading amplitude of the kth segment of the lth path, and φ

(k)
l is an arbitrary

phase variable representing a uniform distribution in the range [0, 2π]. Through the S-V
channel model, we can learn that β

(k)
l is a random complex-value fading coefficient.

The current literature only considers the dual-antenna model, without considering
the more generalized array antenna model. Here we propose the multiple array antenna
elements receiving model.

2.2. Proposed Array Antenna Sensing Data Model

Previous methods have performed joint AOA and TOA estimation based on two receiving
antennas, and have ignored the intrinsic connection of the delay matrix from each antenna.
Here, we extend it to the case of multiple antennas. The frequency-domain received signal
Yi ∈ CN×K(i = 1, · · · , M) of each antenna can be obtained from the data model. It can
be expressed as Yi = SEτiB + Wi, where B = [β1, · · · ,βk, · · · ,βK] ∈ CL×K represents the
coefficient of the complex-value fading-channel, and Wi = [wi1, · · · , wik, · · · , wiK] ∈ CN×K

denotes the frequency-domain sampling matrix of Gaussian white noise received by each
antenna. Eτi ∈ CN×L is the delay matrix of each antenna. The time delay matrix of the reference
array element is expressed as

Eτ1 =




e−jω0τ1 e−jω0τ2 · · · e−jω0τL

e−jω1τ1 e−jω1τ2 · · · e−jω1τL

...
...

. . .
...

e−jωN−1τ1 e−jωN−1τ2 . . . e−jωN−1τL


 (6)

The columns of the time delay matrix Eτi of the ith antenna are related to the columns
of the time delay matrix of the reference antenna as follows:

eτil = Φi−1(θl)eτ1l (7)
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where eτil is the lth column of Eτi and Φ(θl) = diag(e−jω0
d sin θl

c , . . . , e−jωN−1
d sin θl

c ).
Because the general sampling bandwidth is larger than the signal bandwidth, many

elements of [S(ω0), . . . , S(ωN−1)] are zero or close to zero. Assuming non-zero at these
frequencies in ωc0, . . . , ωc(P−1), the received signal matrix Z ∈ CMP×K of M antenna array
elements can be constructed as:

Z =




Y1
Y2
...

YM


 =




SFτ1
SFτ2

...
SFτM




︸ ︷︷ ︸
A(τ,θ)

B +




V1
V2
...

VM




︸ ︷︷ ︸
V

= A(τ, θ)B + V

(8)

where S = diag([S(ωc0), · · · , S(ωc(P−1))]). Fτi and Vi are composed of rows of the matrix
Eτi and Wi extracted according to ωc0, . . . , ωc(P−1), where Fτi ∈ CP×L and Vi ∈ CP×K.
τ is the time delay of the multipath signal arriving at the reference array, and θ is the angle
of incidence of the multipath signal arriving at the array.

3. Traditional Based Joint AOA and TOA Algorithm
3.1. 2D-MUSIC Method

The covariance matrix of the received signal matrix Z can be written as follows:

R̂ZZ = ZZH/K (9)

where R̂ZZ ∈ CMP×MP. The 2D-MUSIC [31] space spectral function is constructed
as follows:

P2D−MUSIC(τ, θ) =
1

a(τ, θ)HÛNÛH
Na(τ, θ)

(10)

where a(τ, θ) is the column vector in matrix A(τ, θ), and ÛN ∈ CMP×(MP−L) represents
the signal subspace composed of eigenvectors corresponding to the smaller MP− L eigen-
values. Let τ and θ vary and perform a 2D spectral peak search on Equation (10). τ̂ and θ̂
corresponding to the extreme spectral peak are the joint AOA and TOA estimates, where
the shortest TOA corresponds to the main path signal.

3.2. Root-MUSIC Method

The method is a joint AOA and TOA estimation algorithm proposed in ref. [25] for
dual-antenna. According to the previous data model, the reception data model of the
dual-antenna can be obtained

Y1 = SEτ1B + W1
Y2 = SEτ2B + W2

(11)

The received signal model of the dual antenna is

Z =

[
Y1
Y2

]
=

[
SEτ1
SEτ2

]
B +

[
W1
W2

]
(12)

where the TOA information contained in the time delay matrix Eτ1 of the first array element
is τl(l = 1, 2, . . . , L). The TOA information contained in the time delay matrix Eτ2 of the
second array element is ςl(l = 1, 2, . . . , L).

The eigenvalue decomposition of the covariance matrix R̂1 = Y1YH
1 /K is performed

to obtain the signal subspace and noise subspace.

R̂1 = ÊSΛ̂SÊH
S + ÊNΛ̂N ÊH

N (13)
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where Λ̂S is an L × L diagonal matrix whose diagonal elements contain L maximum
eigenvalues. Λ̂N represents the diagonal matrix whose diagonal elements contain N − L
minimum eigenvalues. ÊS is a matrix consisting of the eigenvectors corresponding to the L
largest eigenvalues of R̂1. ÊN stands for the matrix composed of the remaining eigenvectors.
Then, we construct the one-dimensional spectral peak function as follows

PMUSIC(τ) =
1

[Sb(τ)]H ÊN ÊH
N [Sb(τ)]

(14)

By utilizing the Root-MUSIC [32] idea, we use polynomial rooting instead of spec-
tral peak search. Let z = e−j∆ωτ , p(z) =

[
1, z, . . . , zN−1], and p(z)H = p(z−1)T =[

1, z−1, . . . , z−(N−1)
]
. Equation (14) is transformed into the following form

f̂ (z) = zN−1[Sp(z)]HENEH
N [Sp(z)] (15)

Since the polynomial coefficients are symmetric, the roots are in the form of complex
conjugate pairs, and the L roots ẑ1, ẑ2, . . . , ẑL closest to the unit circle within the unit circle
can be selected. Then the time delay of the signal received by the first antenna is obtained

τ̂l, 0 = −angle(ẑl)/∆ω, (l = 1, 2, . . . , L) (16)

Let ∆τ̂l = ς̂l − τ̂l , which is the time delay difference of the adjacent array elements of
the lth multipath. From Figure 1, we can obtain ∆τ̂l =

d sin θl
c . Exploiting the relationship

between τl and ςl , we can obtain τl − d
c ≤ ςl ≤ τl +

d
c . We perform eigenvalue decomposi-

tion of the covariance matrix R̂ = ZZH/K to obtain the noise subspace ÛN ∈ 2N×(2N−L).
ςl can be estimated using the following one-dimensional spectral peak search function

ς̂l = arg max
ς∈[τ̂l,0− d

c ,τ̂l,0+
d
c ]

1

a(τ̂l,0, ς)HÛNÛH
Na(τ̂l,0, ς)

, l = 1, 2, . . . , L (17)

The TOA value of the second antenna can be obtained by the local search of Equation (17).
Then τl can be estimated via Equation (18) by locally searching τl within τl ∈ [τ̂l,0 − ∆τ, τ̂l,0
+∆τ], where is ∆τ a small value.

τ̂l = arg max
τ∈[τ̂l,0− d

c ,τ̂l,0+
d
c ]

1

a(τ, ς̂l)
HÛNÛH

Na(τ, ς̂l)
, l = 1, 2, . . . , L (18)

Then we can obtain an estimate of the angle of incidence θ̂l = arcsin
(

∆τ̂l c
d

)
,

l = 1, 2, . . . , L. So far, we have implemented the Root-MUSIC algorithm for joint
AOA and TOA estimation in UWB systems.

4. Proposed Algorithm
4.1. Theoretical Derivation

The denominator of Equation (10) can be rewritten as:

f (τ, θ) = a(τ, θ)HÛNÛH
Na(τ, θ)

= [Seτ1l ]
HQ(θ)[Seτ1l ]

(19)

Q(θ) =




I
Φ(θ)

...
ΦM−1(θ)




H

UNUH
N




I
Φ(θ)

...
ΦM−1(θ)


 (20)
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Then, Equation (19) can be written as follows:

f (τ, θ) = |S(ωc0)|2(
e−jωc0τ

S∗(ωc0)
[Seτ1l ]

HQ(θ) ∗ [Seτ1l ]
ejωc0τ

S(ωc0)
) (21)

where S∗(ωc0) represents the conjugate of S(ωc0). Since the constants do not affect the
search of the spectral peak function, Equation (21) can be written as

f (τ, θ) =
e−jωc0τ

S∗(ωc0)
[Seτ1l ]

HQ(θ)[Seτ1l ]
ejωc0τ

S(ωc0)
(22)

Define e(τ) = Seτ1l
ejωc0τ

S(ωc0)
=
[

1 S(ωc1)
S(ωc0)

e−jω1τ · · · S(ωc(P−1))

S(ωc0)
e−jω(P−1)τ

]T
, and

rewrite Equation (22) as
f (τ, θ) = e(τ)HQ(θ)e(τ) (23)

Equation (23) is an objective function, and considering the use of eH
1 e(τ) = 1 to

eliminate the tame solution of e(τ) = 0, where e1 = [1, 0, . . . , 0]T ∈ RP×1, Equation (23)
can be reformulated as:

min
θ,τ

e(τ)HQ(θ)e(τ)||s.t.eH
1 e(τ) = 1 (24)

The cost function is expressed as:

L(θ, τ) = e(τ)HQ(θ)e(τ)− λ(eH
1 e(τ)− 1) (25)

where λ is a constant. Then, we give the derivative of L(θ, τ)

∂

∂e(τ)
L(θ, τ) = 2Q(θ)e(τ)−λe1 (26)

According to Equation (26), we obtain e(τ) = µQ(θ)−1e1, where µ is a constant. Since
eH

1 e(τ) = 1, combined with e(τ) = µQ(θ)−1e1, we obtain µ = 1/eH
1 Q(θ)−1e1. We bring

µ into the e(τ) = µQ(θ)−1e1 to obtain ê(τ) = Q(θ)−1e1
eH

1 Q(θ)−1e1
.

By bringing ê(τ) into min
θ

e(τ)HQ(θ)e(τ), we obtain the estimate θ̂l (l = 1, 2, . . . L)
as:

θ̂l = arg min
θ

1

eH
1 Q(θ)−1e1

= arg max
θ

eH
1 Q(θ)−1e1 (27)

The AOA is obtained by finding the angle corresponding to the peak of the (1, 1)th
element of Q(θ)−1. Then, the acquired AOA is brought into the 2D function, and the TOA
estimation is also obtained through a 1D search. The 2D-MUSIC space spectral function
can be rewritten as :

P1D−MUSIC(τ) =
1

a
(
τ, θ̂
)H

UNUH
Na
(
τ, θ̂
) (28)

The advantage of this proposed method is that the accuracy is close to that of the
2D search, and the computational complexity is greatly reduced compared to the 2D-
MUSIC algorithm.

4.2. Separation of Multipath Signals under Unknown Waveforms

In addition, in case of unknown prior information of the transmitted signal, the pro-
posed method can distinguish the main path signal based on TDOA. With the obtained
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incidence angle θ̂l (l = 1, 2, . . . L) and ê(τ) = Q(θ)−1e1
eH

1 Q(θ)−1e1
, we obtain ê(τl) (l = 1, 2, . . . , L)

∈ CP×1 as:

ê(τl) =

[
S(ωc0)

S(ωc0)
e−jω0τl , . . . ,

S(ωc(P−1))

S(ωc0)
e−jω(P−1)τl

]T

(29)

Let ê(τl) =

[
e1l
EAl

]
=

[
EBl
e2l

]
, where e1l and e2l are the first and last rows of e(τl),

respectively. EAl and EBl are the rest. At this point, we can obtain

EAl ./EBl =

[
S(ωc1)

S(ωc0)
e−j∆ωτl , . . . ,

S(ωc(P−1))

S(ωc(P−2))
e−j∆ωτl

]T

(30)

A simple example of judgment is given below. Suppose now that the incidence angles
of all paths are obtained. At this point, we can obtain

Q1 = EA1./EB1

=

[
S(ωc1)

S(ωc0)
e−j∆ωτ1 , . . . ,

S(ωc(P−1))

S(ωc(P−2))
e−j∆ωτ1

]T

Q2 = EA2./EB2

=

[
S(ωc1)

S(ωc0)
e−j∆ωτ2 , . . . ,

S(ωc(P−1))

S(ωc(P−2))
e−j∆ωτ2

]T

...

QL = EAL./EBL

=

[
S(ωc1)

S(ωc0)
e−j∆ωτL , . . . ,

S(ωc(P−1))

S(ωc(P−2))
e−j∆ωτL

]T

(31)

Qa./Qb =
[
e−j∆ω(τa−τb), . . . , e−j∆ω(τa−τb)

]T
(a, b ∈ l) (32)

This way, the main path signal can be distinguished by observing the positive or
negative TDOA between all paths without relying on the sampled value of the transmit-
ted signal.

5. Computational Complexity and Estimation Performance
5.1. Computational Complexity

The computational complexity of the proposed algorithm is O{2M3P3 + (K − L +
N2L)M2P2 + N1M2P3 + N1MP3 + ((N1 + N2L)M2 − (N1 + N2L)M + 2N1)P3/2 +
N2LMP2 + N2LMP} . The computational complexity of the 2D-MUSIC [26] algorithm
is O{2M3P3 + (K − L + N1N2)M2P2 + N1N2MP2 + N1N2M(M − 1)P3/2 + N1N2MP}.
The computational complexity of the Root-MUSIC [25] algorithm is O{(10 + (2N2L +
1)(M2(M + 1)21− 4)/4)P3 +(L+K− 7)P2 + 2N2L((M− 1)(M+ 2)/2+ M(M+ 1)(2M+
1)(1− 2L)/6− (1− 2L))P2}. The computational complexity of the Esprit [25] algorithm
is O{(2 + (N2L + 1)(M2(M + 1)2 − 4)/4)P3 + (L− 3 + K)P2 + N2L((M− 1)(M + 2)/2 +
M(M + 1)(2M + 1)(1 − 2L)/6 − (1 − L))P2 + (3 − 2L + 3L2)P + (2L3 − 3L2 + L − 1)}.
Here, M is the number of array elements, K is the number of frequency domain snapshots,
L is the number of multipath, P is the number of sampled points, N1 is the number of angle
search points, and N2 is the number of time delay search points.

Figure 2 shows a comparison of the computational complexity of the proposed method
and the 2D-MUSIC algorithm with the variation of the number of array elements. With
K = 100, M = [2, 4, 6], L = 3, P = 64, N1 = 1001, and N2 = 5001. It can be seen
from Figure 2 that the proposed method obtains lower computational complexity than
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other methods with different values of M. The computational complexity of the proposed
algorithm is reduced by two orders of magnitude compared to the 2D-MUSIC and by one
order of magnitude compared to the Esprit and Root-MUSIC. Thus, the proposed method
provides an appreciable contribution to reducing the computational complexity, especially
compared with other joint AOA and TOA estimation methods of the same type.
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Figure 2. Computational complexity comparison.

5.2. Simulation Parameters

To evaluate the performance of the proposed algorithm, we perform Monte Carlo
simulations. The signal-to-noise ratio (SNR) and root mean square error (RMSE) [33] are
defined, respectively, as

SNR = 10 lg
‖y(t)‖2

‖w(t)‖2 (33)

RMSE =
1
L

L

∑
l=1

√√√√ 1
N

N

∑
n=1

(δl − δ̂l,n)
2

(34)

where y(t) is the time-domain signal received by the antenna, w(t) is additive Gaussian
white noise, L is the number of multipath, and M is the Monte Carlo count. δ̂l,n stands for
the estimation of δl of the nth Monte Carlo trial. δl means the estimation of AOA and TOA.

In this section, the frequency range of the incident UWB signal is set from 3.5 GHz to
4.5 GHz, the bandwidth is 1 GHz, the sampling frequency is 10 GHz, and the number of
sampling points is 2048. After that, we apply the fast Fourier transform on the sampled
signal and select the number of points containing the signal as N = 64. The frequency-
domain snapshot number is K = 100. The number of receiving antennas is M = 2. We
assume that the AOA of the multipath signal is [20◦, 40◦, 60◦] and TOA of the multipath
signal is [4.5/c, 6.5/c, 8.5/c], where c is the speed of light. Figures 3–5 simulate the RMSE
performance of AOA, TOA, and TDOA under different SNR varying from 0 dB to 25 dB.
In Figure 5, except for the proposed algorithm (unknown transmitted signal) which es-
timates the TDOA with the unknown transmitted signal, all other algorithms estimate
TDOA with the known transmitted signal. Figures 6–8 simulate the RMSE performance of
AOA, TOA, and TDOA at different snapshot numbers varying from K = 100 to K = 400
and SNR = 5 dB, respectively. In Figure 8, except for the proposed algorithm (unknown
transmitted signal) which estimates the TDOA with the unknown transmitted signal, all
other algorithms estimate TDOA with the known transmitted signal.
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Figure 3. RMSE comparison of AOA under different SNR.
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Figure 4. RMSE comparison of TOA under different SNR.
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Figure 5. RMSE comparison of TDOA under different SNR.
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Figure 6. RMSE comparison of AOA under number of snapshots.
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Figure 7. RMSE comparison of TOA under number of snapshots.
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Figure 8. RMSE comparison of TDOA under number of snapshots.
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5.3. Results and Discussion

In this paper, the proposed algorithm is compared with the same type of joint AOA
and TOA estimation algorithms, i.e., 2D-MUSIC in ref. [26], Root-MUSIC in ref. [25], and
ESPRIT in ref. [25], respectively. From Figures 3 and 4, it can be seen that the RMSE of AOA
and TOA gradually decrease with the increase in the SNR. Meanwhile, it can be seen that
the RMSE curves of AOA and TOA of the proposed algorithm basically overlap with those
of 2D-MUSIC and are lower than Root-MUSIC and ESPRIT, indicating that the accuracy of
AOA and TOA estimation of the proposed algorithm is basically consistent with 2D-MUSIC
and better than Root-MUSIC and ESPRIT algorithms. Therefore, compared with other
algorithms, the proposed algorithm has certain advantages in AOA and TOA estimation
accuracy for the same SNR.

In order to show the ability of the proposed algorithm to discriminate the main path
when the prior information of the transmitted signal is unknown, Figure 5 shows the TDOA
estimation performance of the proposed algorithm in the case of unknown transmitted
signal, and the rest of the compared algorithms estimate the TDOA in the case of known
transmitted signal. The trend of the RMSE curve of the proposed algorithm (with known
transmit signal) is similar to that of the RMSE curve of TOA shown in Figure 4. The accuracy
of TDOA estimation for the proposed algorithm (known transmitted signal) is basically the
same as 2D-MUSIC and better than Root-MUSIC and ESPRIT. In Figure 5, it can be seen that
the TDOA estimation accuracy of the proposed algorithm (unknown transmitted signal) is
better than the ESPRIT algorithm and slightly inferior to the Root-MUSIC algorithm, 2D-
MUSIC algorithm, and the proposed algorithm (known transmitted signal). Although the
TDOA estimation accuracy of the proposed algorithm (unknown transmitted signal) is
general, it is applicable to a wide range of scenarios because it does not require a priori
information of the known transmitted signal.

The number of snapshots is also an important factor affecting the estimation accuracy.
In Figures 6–8, simulation results show that the performance of RMSE improves as the
number of snapshots increases. It can be seen in Figures 6 and 7 that for the same number
of snapshots, the AOA and TOA estimation accuracy of the proposed algorithm is basically
the same as that of the 2D-MUSIC algorithm, which is better than other algorithms. It can be
seen in Figure 8 that for the same number of snapshots, the TDOA estimation performance
of the proposed algorithm (known transmitted signal) is basically the same as that of the
2D-MUSIC algorithm, and the TDOA performance of the proposed algorithm (unknown
transmitted signal) is slightly inferior to that of the Root-MUSIC algorithm and better than
that of the ESPRIT algorithm. Therefore, compared with other algorithms, the proposed
algorithm has certain advantages in AOA, TOA, and TDOA estimation accuracy for the
same number of snapshots, and the proposed algorithm is applicable to a wide range
of scenarios.

6. Conclusions

In this paper, we proposed a high-precision and low-complexity joint AOA and TOA
estimation algorithm. We extend the received data model of the dual antennas to the
received data model of the multiple antennas. To reduce the computational complexity
of the 2D-MUSIC joint AOA and TOA, the angular search can be extracted separately
by converting the 2D spectral peak search into a secondary optimization problem. Then,
the 2D search is converted into a 1D search based on the acquired AOA. As a result,
the computational complexity is reduced, and the estimation accuracy of the proposed
algorithm remains basically the same as that of the 2D-MUSIC algorithm. Meanwhile,
in case of unknown prior information of the transmitted signal, the proposed method
can distinguish the main path signal based on TDOA, which shows wider applications.
Through simulation experiments, the following conclusions can be obtained:
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(1) The computational efficiency of the proposed algorithm is significantly higher than
that of the 2D-MUSIC algorithm, the Root-MUSIC algorithm, and the ESPRIT algorithm.

(2) At each SNR, the accuracy of AOA, TOA, and TDOA estimation of the proposed
algorithm is basically the same as that of 2D-MUSIC and better than that of Root-
MUSIC and ESPRIT.

(3) At each snapshot number, the accuracy of AOA, TOA, and TDOA estimation of the
proposed algorithm is basically the same as that of 2D-MUSIC and better than that of
Root-MUSIC and ESPRIT.

(4) In case of unknown prior information of the transmitted signal, the proposed method
can still distinguish the main path signal, while the other methods fail.

The current methods can only handle a single signal. However, when multiple signals,
especially those with multipath interference, are present, it becomes challenging to address
the issue. Therefore, future research should focus on tackling the complexities associated
with multiple signals. Additional investigation and exploration are necessary to thoroughly
examine this aspect.
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The following abbreviations are used in this manuscript:

AOA Angle of Arrival
TOA Time of Arrival
MUSIC Multiple Signal Classification
2D Two-Dimensional
Esprit estimation of signal parameters using rotational invariance techniques
GPS Global Positioning System
UWB Ultra-Wideband
S-V Saleh-Valenzuela
2D-MUSIC Two-Dimensional Multiple Signal Classification
TDOA Time Difference of Arrival
1D One-Dimensional
ULA Uniform Linear Array
SNR Signal-to-Noise Ratio
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Abstract: In this paper, the direction of arrival (DOA) estimation problem for the unfolded coprime
linear array (UCLA) is researched. Existing common stacking subarray-based methods for the
coprime array are invalid in the case of its subarrays, which have the same steering vectors of source
angles. To solve the phase ambiguity problem, we reconstruct an improved unfolded coprime linear
array (IUCLA) by rearranging the reference element of the prototype UCLA. Specifically, we design
the multiple coprime inter pairs by introducing the third coprime integer, which can be pairwise with
the other two integers. Then, the phase ambiguity problem can be solved via the multiple coprime
property. Furthermore, we employ a spectral peak searching method that can exploit the whole
aperture and full DOFs of the IUCLA to detect targets and achieve angle estimation. Meanwhile,
the proposed method avoids extra processing in eliminating ambiguous angles, and reduces the
computational complexity. Finally, the Cramer–Rao bound (CRB) and numerical simulations are
provided to demonstrate the effectiveness and superiority of the proposed method.

Keywords: direction of arrival (DOA) estimation; sparse array; improved unfolded coprime linear
array (IUCLA); Cramer–Rao bound (CRB); multiple signal classification (MUSIC)

1. Introduction

Direction of arrival (DOA) estimation has attracted much attention in recent years, and
it has been widely applied in many fields, such as wireless communication, radar, sonar,
medicine and other engineering applications [1–8]. Additionally, the recent integration
of neural networks [9] into the domain of DOA marks a promising frontier in the land-
scape of next-generation wireless communications. Thus, a deep learning-based scheme
is proposed, and the simulation results affirm the superior performance. The model’s
robustness is rigorously examined across various validation cases, providing conclusive
evidence of its potential in real-world applications. The accurate DOA estimation and
low computational complexity have become increasingly important in recent years. In
past decades, numerous subspace-based DOA estimation algorithms, e.g., multiple signals
classification (MUSIC) [10–17] and estimation of signal parameters via rotational invariance
techniques (ESPRIT) [18–22], have been proposed for uniform linear arrays (ULA) [23,24]
and have attracted much attention due to their high resolution and performance. However,
the adjacent antenna element spacing is required to be less than half of a wavelength to
avoid the phase ambiguity problem [25]. Additionally, it limits the array aperture and
consequently influences the mutual coupling [26] between the elements and the estimation
performance; therefore, a non-uniform linear array has been recently proposed to increase
the degrees of freedom (DOF) of the array, known as sparse arrays. Coprime arrays [27,28]
have aroused wide attention due to the improvement of DOA estimation performance.
Meanwhile, due to the larger array aperture, less mutual coupling effects arise. Further-
more, a coprime linear array (CLA) consists of two ULAs, with the inter-element spacing
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larger than half-wavelength; therefore, higher resolution, larger array aperture and a lesser
mutual coupling effect can be attained [29,30]. Recently, a subarray-based method for a co-
prime array to solve the ambiguity problem was developed, and it is proposed in [31]. This
algorithm considers the whole array as two subarrays, and it processes the two subarrays
separately. Then, the MUSIC algorithm is applied to these two subarrays, respectively. By
combining the estimates and finding the nearest spectral peaks from the MUSIC spectra
of two subarrays, the phase ambiguity problem can be eliminated. However, this method
suffers from severe computational complexity due to the global angular searching. Then, a
partial spectral search method is proposed in [32] to decrease the computational complexity,
which employs the linear relationship, along with ambiguous DOA estimates, and searches
through a small sector. However, some problems occur in these mentioned methods of the
CLA, which are as follows:

• DOF is limited by the subarray, which has a smaller number of elements;
• Only self-information of two subarrays is exploited, but mutual information is ne-

glected; as a result, DOA estimation performance is degraded;
• These methods need extra procedures to eliminate ambiguous angles.

To solve these problems, an unfolded coprime linear array (UCLA) is proposed,
which unfolds the two subarrays in two opposite directions so that the array aperture
is extended [33]. By stacking the directional matrices, both self-information and mutual
information are utilized. Therefore, the ambiguity problem is suppressed. Furthermore,
this method can achieve the full DOFs due to the employment of the whole array sensors.
Nevertheless, this technique is not always true. When the source signals satisfy some
relations, the method will be invalid. In the case of three signals, for the two subarrays,
when there are two different signals that have the same steering vectors as the given DOA,
the phase ambiguity still exists. Aiming to tackle this problem, Yang et al. proposed a
beamforming-based technique by defining a decision variable [34] to eliminate the phase
ambiguity. However, this method employs other techniques, in addition to MUSIC spectral
searching, to distinguish the real DOAs, which can increase the computational complexity.
Meanwhile, this method does not always work, and it usually depends on the decision
variable. When the decision variable is small, phase ambiguity problems still occur.

The method in [33] can achieve DOA estimation in most cases, but it does not work
in special conditions. We have demonstrated that the method will be invalid when two
subarrays have the same steering vectors of the source angles. The method in [34] can
achieve the DOAs’ estimation; however, along with MUSIC, it needs additional techniques
to eliminate the ambiguous angles, which will increase the computational complexity. We
demonstrated that this method will sometimes have the problem of “false targets” when the
decision variable is small. We can directly solve the problem of “false targets” by designing
a multiple coprime array configuration. Furthermore, numerous simulation results are
provided to verify the effectiveness of the constructed array. Moreover, compared to nested
arrays, the physical aperture of coprime arrays is larger, and our designed array has a larger
aperture than the original coprime array, which can achieve higher angular resolution.

Therefore, the MUSIC algorithm can be employed directly, without ambiguous angles
arising. Meanwhile, we can obtain the DOAs’ estimation and do not need any other
technique to estimate it. The method can achieve the full DOFs of the array. Compared to
original methods, we find that the proposed method can detect sources effectively, without
phase ambiguity problems.

The main contributions of this paper can be summarized as follows.

(1) The proposed method can effectively eliminate the phase ambiguity problem by
rearranging the reference element spacing and determining unique directional vectors
of different angles.

(2) The whole array aperture of the designed array configuration is utilized to increase
DOFs and improve DOA estimation performance.

(3) The proposed method can obtain unambiguous DOA estimates without additional
processing, which can reduce computational complexity.
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(4) CRB and numerical simulations are offered to verify the superiorities and effectiveness
of the proposed method.

The paper is organized as follows: Section 2 introduces the array configuration and
the data model of the received signals. In Section 3, we detail the ambiguity problem
and present the proposed method; then, we analyze the DOFs and Cramer–Rao bound
(CRB) of the proposed method. In Section 4, we provide extensive simulation results and
demonstrate the superiority of the proposed method. Finally, we present the conclusions in
Section 5.

2. Array Signal Model

As depicted in Figure 1, we consider an UCLA with T = M1 + M2 − 1 sensors. For
the array, it is composed of two uniform linear subarrays. One subarray has M1 sensors
and the other one has M2 sensors, respectively, and M1 and M2 are a pair of coprime
integers. Meanwhile, we assume M1 < M2. Two subarrays are overlapping at the position
of (0, 0), so we can compute the total sensors of the array as T = M1 + M2 − 1. In Figure 1,
the inter-element spacing of subarray 1 can be denoted as d1 = M2d = M2λ/2, and the
inter-element spacing of subarray 2 can be denoted as d2 = M1d = M1λ/2, where d = λ/2
and λ represents the wavelength.
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Assume that there are K narrowband sources impinging on the array, which locates at
Θ = [θ1, θ2, · · · , θK], with signal powers of σ2

1 , σ2
2 , · · · , σ2

K. Additionally, θk ∈ (−π/2, π/2)
denotes the k-th signal, wherein K < T and k ∈ [1, 2, · · · , K]. Furthermore, we suppose
that these signals are far-field uncorrelated. The received signal at time t is denoted as
follows [10]:

x(t) =
[

x1(t)
x2(t)

]
=

[
A1
A2

]
s(t) +

[
n1(t)
n2(t)

]

= As(t) + n(t)

(1)

where A =
[
AT

1 , AT
2 ]

T . A1 and A2 are steering matrices of the two subarrays, respec-
tively. A1 = [a1(θ1), a1(θ2), · · · , a1(θK)] and A2 = [a2(θ1), a2(θ2), · · · , a2(θK)]. a1(θk) =
[1, ejM2πsinθk , · · · , ej(M1−1)M2πsinθk ]T is the steering vector for subarray 1, and a2(θk) =[
e−j(M2−1)M1πsinθk , e−j(M2−2)M1πsinθk , · · · , e−jM1πsinθk , 1]T is the steering vector for subarray

2, respectively. s(t) = [s1(t),s2(t), · · · , sK(t)]T is the signal emitted by the k-th target at time
t, where t = 1, 2, · · · , L and L represents the sampling number. n(t) stands for the additive
white Gaussian noise, it obeys the normal distribution of N

(
0, σ2

k
)

and it is independent
from source signals. n1(t) is the noise vector of subarray 1, and n2(t) denotes the noise
vectors of subarray 2.

3. Ambiguity Problem Demonstration and Resolution

This section introduces the original coprime linear array and the cause of the phase
ambiguity problem. In addition, we analyze the existing methods.
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3.1. Preview

Generally, to avoid phase ambiguity problems, the inter-element spacing is usually set
to be no larger than half-wavelength; however, in this way, the array aperture is restricted.
For the coprime array, which is made up of two uniform linear arrays (ULA), the inter-
element spacing is larger than half of a wavelength.

Figure 2 depicts the relationship between the element spacing and the number of
spectral peaks. Here, peaks denote the number of DOAs. Furthermore, we consider that
there is only one signal coming from θ1 = 24◦. Figure 2, demonstrates that when the
element spacing is set to be d = λ/2, wherein λ represents the wavelength, no ambiguous
angle appears. Meanwhile, when d = 3λ/2 or d = 5λ/2, ambiguous angles appear.
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3.1.1. Case 1

In Case 1, we consider that there are two signals coming from Θ = [θ1, θ2].
We assume that there are two signals, θ1 and θ2, which are real angles. Then, we can

obtain their corresponding directional vectors, which are a(θ1) and a(θ2).

a(θ1) =
[
aT

1 (θ1), aT
2 (θ1)

]T
(2)

a(θ2) =
[
aT

1 (θ2), aT
2 (θ2)

]T
(3)

We assume that θ′1 and θ′2 are ambiguous angles of θ1 and θ2. Therefore, we can acquire
the corresponding steering vectors, which are a

(
θ′1
)

and a(θ′2).

a
(
θ′1
)
= a(θ1) =

[
aT

1
(
θ′1
)
, aT

2
(
θ′1
)]T

=
[
aT

1 (θ1), aT
2 (θ1)

]T
(4)

a
(
θ′2
)
= a(θ2) =

[
aT

1
(
θ′2
)
, aT

2
(
θ′2
)]T

=
[
aT

1 (θ2), aT
2 (θ2)

]T
(5)
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Correspondingly, we have





a1(θ1) = a1
(
θ′1
)

a2(θ1) = a2
(
θ′1
)

a1(θ2) = a1(θ
′
2)

a2(θ2) = a2(θ
′
2)

(6)

Then we have 



M2πsinθ1 = M2πsinθ′1 + 2k1π
M1πsinθ1 = M1πsinθ′1 + 2k2π
M2πsinθ2 = M2πsinθ′2 + 2k1π
M1πsinθ2 = M1πsinθ′2 + 2k2π

(7)

where k1 = −(M2 − 1), · · · , (M2 − 1) and k2 = −(M1 − 1), · · · , (M1 − 1).
Then we can obtain 




sinθ1 = sinθ′1 + 2k1/M2
sinθ1 = sinθ′1 + 2k2/M1
sinθ2 = sinθ′2 + 2k1/M2
sinθ2 = sinθ′2 + 2k2/M1

(8)

Then we have
2k1

M2
=

2k2

M1
(9)

Due to the coprime property of M1 and M2, Equation (9) is not satisfied. That is, in
the case of the two signals of θ1 and θ2, a phase ambiguity problem does not occur.

Figure 3 depicts spectrums without ambiguity, using the method proposed in [33].
The two signals are θ1 = 10◦, θ2 = 37◦. SNR and the snapshots are set to be SNR = 5dB
and L = 200, respectively. Therefore, we can draw a conclusion that the method proposed
in [33] can tackle the phase ambiguity problem with Case 1.
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3.1.2. Case 2

In Case 2, we consider three signals with Θ = [θ1, θ2, θ3].
Similar to Case 1, we suppose θ′1 and θ′2 to be ambiguous angles of θ1 and θ2, respec-

tively. Then, we can obtain the corresponding directional vectors of a
(
θ′1
)

and a(θ′2). If
the relationship that the sine function of the third signal θ3 equals to a

(
θ′1
)

and a(θ′2) is
satisfied, the phase ambiguity problem appears. Figure 4 shows the spectrums with the
method in [33], where it has three target signals, which are θ1 = 10◦, θ2 = 20◦ and θ3 = 30◦.
We set the number of snapshots to be L = 200 and SNR = 5dB. It is depicted clearly in
Figure 4 that the method proposed in [33] still has no difficulty to resolve the three source
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signals. However, this method is not always accurate. When these three source signals
satisfy the relationship wherein the sine function of the third signal, θ3, equals a

(
θ′1
)

and
a(θ′2), the method in [33] will not work; we will illustrate this in Case 3.
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3.1.3. Case 3

From Case 2, we notice that the method in [33] can effectively detect three signals
without ambiguous angles, despite the fact that it does not always work. Thus, we illustrate
Case 3 as follows.

We consider three target signals, which come from Θ = [θ1, θ2, θ3]. Similar to Case
2, we suppose θ′1 and θ′2 to be ambiguous angles of θ1 and θ2, respectively. Then, we can
obtain the corresponding directional vectors of a

(
θ′1
)

and a(θ′2). When these three signals
satisfy that the sine function of θ3 equals to a

(
θ′1
)

and a(θ′2), the ambiguous angle will arise.
In other words, a phase ambiguity problem appears, which is invalidated in the following.

We suppose that the sine function of the third angle, θ3, equals to a
(
θ′1
)

and a(θ′2).
Then, it has {

sinθ3 = sinθ1 + 2(−k1)/M2
sinθ3 = sinθ2 + 2(−k2)/M1

(10)

Then, we can obtain the relationship among θ1,θ2 and θ3 as follows:
{

M2πsinθ3 = M2πsinθ1 + 2(−k1)π
M1πsinθ3 = M1πsinθ2 + 2(−k2)π

(11)

where k1 = −(M2 − 1), · · · ,−1, 1, · · · , (M2 − 1) and k2 = −(M1 − 1), · · · ,−1, 1, · · · , (M1 − 1).
It has {

a1(θ3) = a1(θ1)
a2(θ3) = a2(θ2)

(12)

so we have {
a1(θ1) + a1(θ2)− a1(θ3) = a1(θ2)
a2(θ1) + a2(θ2)− a2(θ3) = a2(θ1)

(13)

Then we define {
a1(θ4) = a1(θ1) + a1(θ2)− a1(θ3)
a2(θ4) = a2(θ1) + a2(θ2)− a2(θ3)

(14)

It has {
a1(θ4) = a1(θ2)
a2(θ4) = a2(θ1)

(15)
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It is obvious that the forth angle, θ4, arises. That is to say, a phase ambiguity problem
occurs. Simulations are presented to demonstrate the analysis.

Figure 5 depicts the scenery of three signals, θ1 = 12.37◦, θ2 = 30◦ and θ3 = 64.16◦,
that come to the array. The SNR and the number of snapshots are set to be SNR = 5 dB
and L = 200, respectively. It can be found that these three signals satisfy a1(θ3) = a1(θ1)
and a2(θ3) = a2(θ2). Furthermore, we have demonstrated that the method in [33] is not
effective in Case 2. Figure 5 shows that, other than these three signals, there is a forth
spectrum that was detected. Aiming at solving the ambiguity problem, Yang et al. proposed
a modified method by defining a decision variable [34]. Meanwhile, the method combines
the beamforming technique with MUSIC, but it is not always effective. Figure 6 shows
that five signals come to the array, and, by using the method in [34], the five signals can be
detected successfully; however, they still have the ambiguous angle, which can increase the
ineffectiveness of the DOA estimation performance. To tackle this problem, an improved
unfolded coprime linear array (IUCLA) for the DOA estimation was proposed without the
phase ambiguity problem. In the proposed method, we choose the third coprime integer,
and, by moving the reference element, the linear combination relation of the steering
vectors can be eliminated. As a result, we can use spectrum peak searching to achieve the
real DOAs. Simultaneously, no additional algorithm is needed. The method is illustrated
in the following part.
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4. Proposed Method and Theoretical Performance Analysis
4.1. The Proposed Method

This section presents the proposed method to tackle the phase ambiguity problem
with Case 3. In the proposed method, we consider constructing the multiple coprime
arrays by introducing the third coprime integer. Specifically, Figure 7a presents an UCLA,
which is composed of two subarrays, including subarray 1 with M1 sensors and subarray
2 with M2 sensors. Figure 7b introduces the third coprime integer, M3, and presents a
rearranged reference point instead of (0, 0). For the improved array, it still incorporates
two subarrays which include M1 and M2 sensors, respectively. Furthermore, we can notice
that the reference sensor is rearranged from (0, 0) to (M3d, 0), where M3 can make coprime
pairs with both M and N.
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We employ the third coprime number, and it combines with another coprime number
to form a pair of coprime integers with pairwise coprime. Multiple pairwise coprime
integers are employed and the strong sidelobes can be suppressed by coprime property.
Similar to the UCLA in Section 1, aside from two coprime integers, M1 = 5, M2 = 7, we
employ the third coprime integers, which are M3 = 3. In this way, there is not only one
coprime integers pair, but also another two coprime integer pairs. Similar to our prior work,
we multiply and employ the coprime property, and can eliminate the strong sidelobe.

In the rearranged array, we can denote the directional vectors of two subarrays with
the k-th signal as

a11(θk)= [ej3M2π sin θk , ejM2π sin θk , · · · , ej(M1−1)M2π sin θk ]T (16)

a22(θk) = [e−j(M2−1)M1π sin θk , e−j(M2−2)M1π sin θk , · · · , e−jM1π sin θk , e−j3M2π sin θk ]
T

(17)

Then, we can obtain the steering vectors of source signal θ3

a11(θ3) = [ej3M2πsinθ3 , ejM2πsinθ3 , · · · , ej(M1−1)M2πsinθ3 ]T (18)

a22(θ3) = [e−j(M2−1)M1πsinθ3 , e−j(M2−2)M1πsinθ3 , · · · , e−jM1πsinθ3 , e−j3M2πsinθ3 ]T (19)
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Additionally, a(θk) denotes the directional vector of the total array.

a(θk) =
[
aT

11(θk), aT
22(θk)

]T
(20)

Similar to Equation (1), we can obtain the received signal

xiu(t) =
[

xiu1(t)
xiu2(t)

]
=

[
A11
A22

]
s(t) +

[
n11(t)
n22(t)

]

= Aius(t) + niu(t)

(21)

where Aiu =
[
AT

11, AT
22]

T . A11 and A22 are steering matrices of the two subarrays for IUCLA,
respectively. A11 = [a11(θ1), a11(θ2), · · · , a11(θK)] and A22 = [a22(θ1), a22(θ2), · · · , a22(θK)],
where a11(θk) and a22(θk) are denoted as Equations (16) and (17). niu(t) =

[
nT

11, nT
22]

T is
the total array noise vector.

The corresponding total covariance matrix can be computed with L snapshots

R̂iu = (1/L)∑L
l=1 XiuXH

iu (22)

The eigenvalue decomposition result of the total covariance matrix, R̂iu, can be denoted as

R̂iu = ÊsiuD̂siuÊH
siu + ÊniuD̂niuÊH

niu (23)

where Êsiu and Êniu are the signal subspace and noise subspace matrices, respectively, and
D̂siu and D̂niu include the eigenvalues.

Referring to the orthogonality between the signal subspace and the noise subspace,
the spectral peak function of MUSIC can be denoted as [10]

f (θ) =
1

aH
iu(θ)EniuEH

niuaiu(θ)
(24)

where aiu(θ) =
[
aT

11(θ), aT
22(θ)

]T .
Referring to the derivation above, when there are three signals coming to the array and

they satisfy a11(θ3) = a11(θ1) and a22(θ3) = a22(θ2), a phase ambiguity problem arises. In
the following, we focus on proving and resolving the ambiguity problem.

Proof. Assume a11(θ3) = a11(θ1). a11(θ3) and a11(θ1) represent the steering vectors of θ3
and θ1 with subarray 1, respectively. It has

{
3M2πsinθ3 = 3M2πsinθ1 + 2k1π
M2πsinθ3 = M2πsinθ1 + 2k1π

(25)

where k1 = (−M2, M2). Thus, a11(θ3) ̸= a11(θ1). □

Similarly, we can obtain that a22(θ3) ̸= a22(θ2), where a22(θ3) and a22(θ1) represent
the steering vectors of θ3 and θ1 with subarray 2, respectively. Furthermore, we can reveal
that the spectral peak function is eliminated. In this way, we can obtain the accurate DOAs’
estimation without ambiguous angle θ4, which means that the phase ambiguity problem
is solved.

4.2. Theoretical Performance Analysis
4.2.1. DOF Analysis

In this part, we will provide the DOF performance of the proposed method. The
method can achieve the full DOFs. Figure 8 shows that there are three signals coming to
the array, with M1 = 3, M2 = 2. Furthermore, the signals are θ1 = 10◦, θ2 = 27.35◦ and
θ3 = 35.01◦.
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Figure 9 shows that there are seven signals coming to the array, with M1 = 5, M2= 4.
Furthermore, the signals are denoted as θ1 = −30◦, θ2 = −10◦, θ3 = 10◦, θ4 = 30◦, θ5 = 35◦,
θ6 = 40◦ and θ7 = 50◦. From Figures 8 and 9, we can see that the proposed method can
achieve the full DOF.
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4.2.2. Computational Complexity Analysis

We compute the complexity of the proposed method and compare the complexity with
the methods in [33,34]. The complexity of the proposed method is similar to the method
in [33], which is denoted as O

(
T2L + T3 + GT(T − K)

)
, where T = M1 + M2 − 1. Further-

more, G = 180◦/τ is the number of the spectrum searching, where τ is the searching
step, and we usually set τ = 0.1◦. L is the number of the snapshots. The method in [34]
needs an additional algorithm to distinguish the true DOAs from the MUSIC spectrum.
Thus, the complexity exceeds the method in [33] and the proposed method, which is
O
(
T2L + T3 + GT(T − K) + QT2). Q is the number of searching of the additional beam-

forming technique. Table 1 presents the computational complexity comparison and the
running time of the methods above, which are computed using MATLAB R2015b under
the condition of Intel (R) Xeon (R) CPU E430 @3.10 GHz and 8 GB random access memory,
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where L = 200, K = 3, (θ1, ϕ1) = (20◦, 38.88◦, 47.90◦), M1 = 5, M2 = 4, which clearly
shows that the proposed method is similar to the method in [33] and outperforms the
method in [34]. Figure 10 depicts the complexity comparison versus the number of sensors
with subarray 2, where the number of subarray 1 is M1 = 5. As the proposed method does
not need an additional procedure to identify the targets, it shows clearly that its complexity
is much lower than the method in [34], and is close to the method in [33].

Table 1. Comparison of computational complexity.

Algorithms Computational Complexity Running Time

Method in [33] O
(
T2L + T3 + GT(T − K)

)
4.1106 ms

Method in [34] O
(
T2L + T3 + GT(T − K) + QT2) 6.0122 ms

The proposed O
(
T2L + T3 + GT(T − K)

)
4.1245 ms
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4.2.3. Advantages

In this part, we summarize the advantages of the improved array of IUCLA for
DOA estimation.

(1) The proposed method can effectively eliminate the phase ambiguity problem by
rearranging the reference element spacing and breaking the spectral function with the
directional matrix.

(2) The improved array treats the array as a whole so that it can achieve the full DOFs;
hence, it improves the estimation performance. Nevertheless, the method in [31] has
a great loss in DOF, which can acquire, at most, M1 − 1 DOFs, where we assume
M1 < M2.

(3) CRB, as the lower bound for the unbiased estimation, is provided as a standard to
measure the estimation performance. Furthermore, it is proven that the designed
array can achieve the lower CRB.

(4) The designed array can achieve DOA estimation with an excellent DOA estimation
performance compared to other algorithms, and it does not need additional algorithms.

(5) The proposed method performs a significant complexity decrease compared to the
method in [33] due to the fact that the method does not use an additional technique,
and it has a slight degrading of estimation performance compared to the method
in [34].
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4.2.4. Cramer–Rao Bound

CRB is the lower bound for unbiased estimation. We provide the CRB as a standard
to measure the estimation performance [35,36]. In this section, we derive the CRB of the
designed IUCLA.

First, we construct the steering matrix of IUCLA as

Aα =

[
A11
Aχ

]
(26)

where Aχ represents a sub-matrix containing the second row to the last one of A22, since
these two subarrays of IUCLA share the same element at the original point.

Referring to [36], we can obtain the CRB as

CRB =
σ2

n
2L

{
Re
[
DH
[
I − Aα(AH

α Aα)
−1AH

α

]
D ⊕ Rs

]}−1
(27)

where Rs =
1
L ∑L

t=1 s(t)sH(t), D =
[

∂aα,1
∂θ1

, ∂aα,2
∂θ2

, . . . , ∂aα,K
∂θK

]
and aα,k denotes the k-th column

of Aα.

5. Simulation Results and Discussion

In the simulation section, we validate the reliability of the proposed method compared
to the methods in [33,34], where we employ an UCLA. Subarray 1 is with M1 = 5 sensors
and subarray 2 is with M2 = 7 sensors. Furthermore, we present the comparison of
different methods and arrays, including UCLA, CLA and the designed IUCLA.

5.1. Reliability Comparison Analysis Based on Different Methods

Example 1: We assume that three signals, θ1 = 12.37◦, θ2 = 30◦ and θ3 = 64.16◦, will
be coming to the array. It can be noticed that these signals satisfy the Equation (10). In the
simulation, we set SNR = −5 dB and the number of snapshots to L = 200. We provide
the simulation result of the method in [33] using the proposed method. From Figure 11a,
we can see that using the designed method has no ambiguity when three sources satisfy
Equation (10), whereas the ambiguity-free method still has an ambiguity problem. In
conclusion, the proposed method can tackle the phase ambiguity problem in Case 2.
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Example 2: We assume three signals with angles of θ1 = 20◦, θ2 = 38.88◦ and
θ3 = 47.90◦. It can be noticed that these signals satisfy Equation (10). In the simulation,
we set SNR = −5 dB and the number of snapshots to L = 200. We provide the simulation
results of the method in [34], using the proposed method. From Figure 11b, we can see that
the method in [34] is not that effective, and the designed array can effectively solve the
phase ambiguity problem.

5.2. Estimation Properties Analysis of the Proposed Method

For the same simulation scenario mentioned above, we utilize the Root Mean Square
Error (RMSE) to validate the estimation accuracy of the proposed method, which is defined
as [33]

RMSE =

√
∑Q

p=1 ∑K
k=1

(
θ̂k,p − θk

)2
/PK (28)

where P is the number of Monte Carlo simulations and θ̂k,p stands for the estimate of the p-
th trial for the k-th theoretical angle θk. In the rest of our paper, we set P = 1000. Figures 12
and 13 show the RMSE versus the SNR and the number of snapshots, respectively. The
CRB is provided. It is observed that the proposed method improves with the increase in
SNR and the number of snapshots, owing to its robustness against noise. Compared to
ESPRIT and PM algorithms, it is obvious that the estimation accuracy of the proposed
method performs the superior estimation behavior.

5.3. CRB Comparison Analysis Based on Different Arrays

We compare the estimation performance of several array configurations, including
UCLA, conventional ULA and our designed IUCLA. In the simulation, for fair comparison,
we assume that all arrays have the same number of sensors. We can conclude from
Figures 14 and 15 that the CRB and estimation performance of the proposed method are
superior to the other two arrays.
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6. Conclusions

In this paper, an IUCLA was proposed to address the ambiguity problem of the
coprime array by rearranging the reference sensor to UCLA to reshape the directional
vectors of subarrays. Subsequently, we introduce the third coprime integer. It combines
another coprime number to form a pair of coprime integers with pairwise coprime. Multiple
pairwise coprime integers are employed, and the strong sidelobes can be suppressed
by coprime property. In this process, we do not need any other technique to eliminate
the ambiguous problem. The proposed method not only improves the DOA estimation
performance and the number of DOFs, but it also reduces the computational complexity.
CRB analysis and extensive simulation results have demonstrated the superiorities and
effectiveness of our method.
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Abstract: A compact circularly polarized non-resonant slotted waveguide antenna array is proposed
with the aim of achieving wide-angle scanning, circular polarization, and low side-lobe levels. The
designed antenna demonstrates a scanning range of +11° to +13° in the frequency domain and a beam
scanning range of −45° to +45° in the phase domain. This design exhibits significant advantages
for low-cost two-dimensional electronic scanning circularly polarized arrays. It employs a compact
element that reduces the aperture area by 50% compared to traditional circular polarization cavities.
Additionally, the staggered array method is employed to achieve an element spacing of 0.57λ within
the azimuth plane. Isolation gaps were introduced into the array to enhance the circular polarization
performance of non-resonant arrays. The Taylor synthesis method was employed to reduce the
side-lobe levels. A prototype was designed, fabricated, and measured. The results indicate superior
radiation efficiency, favorable VSWR levels, and an axis ratio maintenance below 3 dB across the
scanning range. The proposed antenna and methodology effectively broaden the beam scanning
angle of circularly polarized slotted waveguide array antennas.

Keywords: slotted waveguide array; circular polarization; wide-angle scanning; non-resonant array;
phased array antenna; radar sensor

1. Introduction

The slotted waveguide antenna offers notable advantages, such as a high power capac-
ity, low loss, and low side-lobe levels; thus, it is extensively utilized in radar applications.
A circularly-polarized antenna possesses the capability to receive multiple polarized waves,
and the circularly polarized wave has smaller energy losses when penetrating rain or fog
areas [1,2]. The slotted waveguide antenna, when applied in phased array systems, has
significant advantages in complex electromagnetic environments, and it can achieve many
beneficial characteristics, such as fast beam tracking, beamforming, etc. [3–6]. However,
to date, there has been limited research attention directed toward the circularly polarized
phased slotted waveguide antenna. Based on our research (1), the dimensions of the
waveguide and polarizer are the primary limiting factors regarding the beam scanning
range of the phased slotted waveguide antenna, as these large structures result in a notably
narrow scanning range. Consequently, this article introduces a novel approach: a com-
pact circularly polarized non-resonant slotted waveguide, aimed at achieving a broader
scanning angle.

Typically, a phased slotted waveguide array performs the phase dimensional beam
scanning along the waveguide arrangement direction. This array commonly operates
under resonant conditions, radiating linearly polarized electromagnetic waves [7–11].
The radiation elements typically consist of a series of slots positioned along the narrow wall
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of the waveguide. According to the basic phased array theory, the maximum achievable
phase scanning angle satisfies the following:

θmax = arcsin(
λ

d
− 1) (1)

where d is the element distance. In the slotted waveguide array, d represents the distance
between adjacent linear waveguides. The grating lobe will manifest in the visual space if
the scanning angle exceeds θmax.

Due to the limitation of the element distance, it is challenging to design a phased
scanning slotted waveguide array with multiple polarizations. However, the regular fixed-
beam slotted waveguide antenna arrays offer numerous valuable electric characteristics,
such as wide-band polarization [12], dual-band, dual polarization [13–15], and circular
polarization. Circularly polarized slotted waveguide arrays can be categorized into three
distinct types based on their circular polarizer structures: the compound slots, the circular
polarization patch or dipole, and the circular polarization (CP) cavity. Compound slots
typically consist of a pair of slots [16,17] or some complex slots [18] that are carved into
the wall of the waveguide. This type of CP element has the lowest profile and simplest
configuration. However, achieving identical phase excitation requires the compound slots
to be spaced at λg, necessitating the use of dielectric-filled waveguides or SIW to reduce the
waveguide’s wavelength [19]. While dielectrics offer advantages in miniaturization, they
also introduce additional electromagnetic attenuation losses, and many dielectric materials
can compromise structural integrity. Another option is the ridge gap waveguide [20],
but it also faces difficulties in miniaturization. The CP patch, dipole, and CP cavity are
loaded on the waveguide slots, serving as polarizers. The CP patch or dipole has a
flexible configuration, offering an excellent circular polarization performance (e.g., high
efficiency [21], broadband CP [22]), and patches are easily combinable with metamaterials
and other novel technologies [23–25]. However, the compact patches and dipoles loaded
on the waveguides need dielectric layers, and compactly arranged patches may induce
more mutual coupling effects, limiting the power capacity. On the other hand, CP cavities
are typically open-ended waveguides with specific configurations [26,27]. The cavity
aperture can significantly reduce the mutual coupling between elements and enhance the
isolation performance, being particularly beneficial in non-resonant and phased arrays
with complex aperture distributions. Cavities also offer greater robustness compared to
patches. Nevertheless, cavities pose challenges in miniaturization: the conventional CP
cavity’s aperture typically exceeds 0.6λ, according to Equation (1); this dimension limits
the widest scanning angle to ±40°. Figure 1 clearly illustrates these limitations. The study
in [28] introduced a prospective approach to miniaturization employing a four-ridged
cavity and a center-set slot to reduce the aperture of the element. However, this study
lacked comprehensive details regarding the antenna and primarily concentrated on a small
resonant array. Drawing from the insights of ref. [28], we analyzed its construction and
operational principles, expanding its applications to non-resonant arrays and phased arrays.
Meanwhile, we addressed several challenges in integrating this compact structure into
complex arrays. Additionally, the cavity’s CP frequency band is narrower than the bands
of some CP patches [29].

The miniaturization of the waveguide slots poses another challenge in phased array
antennas. As discussed above, the broad wall slots in phased arrays result in a very limited
scanning angle. While reducing the width of the waveguide using ridge waveguides [8,9]
is an option, designing them with circular polarizers is not easy. The asymmetric ridge
waveguide presents a potential solution [30]; however, existing analyses have primarily
focused on resonant arrays. To our knowledge, there is a dearth of research addressing
phase scanning slotted waveguide arrays generating circularly polarized waves. The non-
resonant slotted waveguide array offers a low-cost solution for two-dimensional beam scan
arrays, integrating phase and frequency scanning within the same array. This is particu-
larly suitable for applications insensitive to frequency variations, such as meteorological
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radar. Excited by traveling waves, the non-resonant slotted waveguide has the capabilities
for frequency scanning [31]. The frequency scanning direction is along the waveguide.
With this capability, the non-resonant slotted waveguide array can offer a two-dimensional
beam scan in both the phase domain and frequency domain [32]. Furthermore, compared
to resonant arrays, the non-resonant array can accommodate a wider waveguide length
range, enabling a wider bandwidth.

Figure 1. The relationship curve between the element aperture spacing and maximum scan angle.

To address the aforementioned problem, this article proposes an improved antenna
structure aimed at achieving a wide beam scanning angle and integrating frequency domain
and phase domain scanning array antennas. Our work introduced improved waveguide
feeding slots, a circular polarizer, and staggered array design methods; a phase scanning
angle of ±45° and a frequency domain scanning range of +11° to +13° were achieved in
this study.

The key contributions of this study are as follows:

1. A center-set waveguide slot element on the centerline of the broad wall is proposed to
set up a waveguide circular polarizer with four ridges;

2. A compact circular polarized slotted waveguide planar array is presented that can
realize a wide phase scanning range.

The rest of this article is organized as follows. Section 2 introduces the design of the
compact antenna element, including the circular polarizer and the center-set waveguide slot.
Section 3 introduces the slotted waveguide array designed using this compact circularly
polarized element, along with the technical details concerning beam scanning in the array
design. Section 4 presents the simulation and the measured results. Finally, the conclusions
are presented in Section 5.

2. Configuration of the Antenna Element

The proposed slotted antenna element configuration is depicted in Figure 2. Com-
prising two components, namely, the circular polarizer and the slotted ridge waveguide,
the element functions as follows. A single-ridge waveguide with a straight slot positioned
along the centerline of the broad wall serves as a feed waveguide. A metallic cylinder
placed near the slot disturbs the electromagnetic field distribution within the waveguide.
The slotted ridge waveguide emits linearly polarized waves through the straight slot on the
waveguide. The circular polarizer, configured as an open-ended quad-ridge waveguide, is
mounted on the slot at a 45◦ angle.
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Figure 2. Configuration of the proposed antenna element.

2.1. Design of Circular Polarizer

The circular polarizer is implemented using an open-ended four-ridge waveguide.
Excited by the slot, the circular polarizer reflects linearly polarized waves fully from the
cavity walls, generating two orthogonal electric field components: the TE10 mode and the
TE01 mode. In properly adjusting the polarizer’s profile, an equal amplitude and a 90◦

phase gradient between these two propagating modes can be achieved. Consequently,
upon reaching the radiating aperture interface, the combination of these two modes yields
circularly polarized waves. The primary objective of the waveguide circular polarizer is to
propagate the TE10 and TE01 modes while suppressing the TE11 mode within the operating
frequency band.

A cross-section of the circular polarizer is depicted in Figure 3. The outer shape of the
polarizer is a square, with four ridges positioned inside, where the opposite ridges are of
equal size. The parameters of the ridges significantly impact the propagation characteristics
of the electromagnetic wave modes. Specifically, the lower ridges primarily affect the
TE10 mode, while the higher ridges influence the TE01 mode. Moreover, due to their close
proximity, the TE11 mode is susceptible to influence from both the TE01 and TE10 modes.
The electric field distributions of these three modes in the polarizer cross-section are shown
in Figure 4.

Figure 3. Top view of the circular polarizer.

The parameter values are subject to several conditions. The outer size of the polarizer is
determined by the dimensions of the element radiator, which, ideally, should be minimized.
The width of the ridges is contingent upon the fabrication accuracy requirements and had
a negligible influence on the cutoff frequencies in this study. Consequently, the analysis
focused on the ridge parameters to ascertain specific changes in the cutoff frequency.
As depicted in Figure 5, d1 and d2 exert significant effects on the cutoff frequencies of the
three modes. The simulated results align with the prior analysis; Figure 5a illustrates that
d1 can alter the cutoff frequencies of the TE10 and TE11 modes, with their curves exhibiting
similar trends, whereas the performance of the TE01 mode is minimally affected by changes
in d1. Similarly, Figure 5b demonstrates that variations in d2 have a similar effect than
those in d1, albeit with an emphasis on the TE10 and TE11 modes. Our objective is to
preserve the TE01 and TE11 modes while suppressing the TE11 mode within the operating
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frequency band. The available bandwidth is indicated by the black arrow in Figure 5b.
By finely adjusting these parameters, we can effectively control the propagating modes of
the polarizer.

Figure 4. Electric field distributions of the three modes in a circular polarization cavity at 6.6 GHz.

(a) (b)
Figure 5. (a) The relationship between the cutoff frequencies and ridge height d1 and (b) the
relationship between the cutoff frequencies and ridge height d2.

The cutoff frequencies of each mode, as well as the waveguide wavelength, are
obtained according to the parameters of the ridges. In order to satisfy the phase difference
between the two modes, the height of the polarizer satisfies the following:

2πh
λg10

− 2πh
λg01

=
π

4
(2)

where λg10 is the waveguide wavelength of the TE10 mode, λg01 refers to the waveguide
wavelength of the TE01 mode, and h is the height of the polarizer.

With the aforementioned analysis, the dimensional parameters of the polarizer are
established. The accepted design parameters are listed in Table 1.

Table 1. The parameter values of the four-ridge cavity design.

Parameters s1 s2 d1 d2 h

Value (mm) 7.5 7.5 2.9 5.3 31.3
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2.2. Slotted Waveguide with Metallic Cylinder Inside

A linear center-set slotted waveguide array with a compact ridge is proposed. Lon-
gitudinal slots, serving as radiating elements, are positioned along the centerline of the
waveguide’s broad wall. Metallic cylinders are staggered on the upper inner wall of the
waveguide, on alternating sides of the slots. The configuration of the single-slot radiator is
illustrated in Figure 6.

Figure 6. The configuration of the proposed feed-slotted waveguide. (a) Perspective view. (b) Top
view. (c) Front view.

Conventional waveguide slots are typically carved at specific offset distances from
the centerline of the broad wall. However, as previously discussed, the polarizer is loaded
above the center of each slot at a 45◦ rotated angle. Consequently, conventional offset slots
would lead to offset polarizers, resulting in wider antenna elements. With the proposed
arrangement of the waveguide slots and polarizers, the element width can be significantly
reduced. This approach allows all radiating slot elements to be arranged in a regular grid,
eliminating the need for offsetting them as in traditional designs.

The introduction of special structures into the waveguide can alter its electromagnetic
performance [33,34]. As depicted in Figure 6, a metallic cylinder is positioned on the inner
upper wall of the waveguide at a specific offset distance from the centerline. The role of the
cylinder is to disrupt the electromagnetic field distribution within the waveguide, resulting
in a concentration of the electric field. In the conventional ridge waveguide, the waveg-
uide’s upper wall and the ridge’s upper wall can be approximated to a plate capacitor.
The capacitor’s field distribution and voltage performance are influenced by the two plates’
distance, which is the distance between the waveguide upper wall and the ridge upper
wall in this situation. With a metallic cylinder introduced into the waveguide, the capacitor
model is altered to three capacitors; the cylinder’s bottom surface and the ridge’s upper
surface are approximated to a capacitor, and the remaining parts are approximated to
other capacitors. According to capacitor theory, the closer plates have a higher voltage.
Hence, the voltage at the cylinder is higher than that in other areas. Figure 7 illustrates
the field distribution of the waveguide with the cylinder, showing the gathering of electric
field and surface current at the cylinder position. This disruption leads to an asymmetric
distribution of surface current, causing an electric potential difference at the centerline of
the waveguide. Under these conditions, the center-set slot can be effectively excited by
the asymmetric surface current, with the available slot positions indicated by red marks in
Figure 7a. Through the preceding analysis, it is evident that both the location and scale of
the cylinder influence the field distribution.
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Figure 7. The field distribution of the waveguide with a cylinder. (a) The electric field in the upper
wall of the waveguide. (b) The electric field in the cross-section of the waveguide.

Basic slotted waveguide antenna theory indicates that the radiation efficiency is
contingent upon the excitation voltage of the slot. Leveraging these theories, we adjusted
the parameters of the cylinder to analyze the impact on the radiation performance of the
waveguide slot. Figure 8 depicts the simulation model of the slotted waveguide element.
Figure 9 depicts the S21 results for various cylinder heights under resonant conditions.
The simulation results demonstrate that longer cylinders result in more radiated energy.
Furthermore, while the offset distance of the cylinder does influence radiation efficiency,
its effect is not particularly significant; rather, it primarily affects the gathering position of
the surface current. The radius of the cylinder impacts the intensity of the reflected wave,
with thicker cylinders potentially being intersected by the slot, resulting in irregular shapes
and complex field distributions. Additionally, the slot length can be adjusted to tune the
resonant frequency of the element, akin to conventional waveguide slots.

Figure 8. The simulation model of the slotted waveguide element.

(a) (b)
Figure 9. (a) The simulated S21 (dB) curves of the single resonant slot when changing the cylinder
height and (b) the enlarged view for h = 2.50 mm to 4.00 mm.
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Following the above discussion, we can manipulate the radiation efficiency by adjust-
ing the height of the cylinder. The relation between the radiation efficiency of the slot and
the cylinder height is shown in Figure 10; the cylinder height refers to Nh in Figure 6c. the
radiation efficiency is defined as follows:

E f frad = 1 − (S11)2 − (S21)2 (3)

where E f fRad refers to the radiation efficiency of the antenna element, S11 is the energy re-
flected back to the excited port, and S21 is the energy transmitted to the load or next element.

Figure 10. The relationship between the simulated radiation efficiency and the cylinder height under
the resonant condition.

A method for controlling the element’s radiation efficiency is introduced in this section;
it lays the foundation for the follow-up array design work.

This section describes the working principle and design method of a compact circularly
polarized antenna element, resulting in a miniaturized circularly polarized antenna element
with an aperture size of 0.48λ × 0.48λ. Additionally, this section introduces the method
used to control the radiation efficiency of the element, which serves as the foundation for
subsequent design considerations.

3. Design of Antenna Array
3.1. Linear Array

In this section, the compact antenna element proposed in Section 2 is arranged into a
linear array, with each antenna element featuring a center-set waveguide and a compact
circular polarizer. They are fed by a straight-through waveguide tube, and the structure
of this linear array is shown in Figure 11. The linear array is a non-resonant array that is
excited by a traveling wave. In non-resonant arrays, the slots are excited with different
phases, resulting in the main lobe beam deviating from the normal direction. The phase
difference between the slots varies with the frequency, causing the main lobe direction
to change accordingly. Thus, non-resonant arrays possess the capability of frequency
scanning. In drawing on fundamental phased array antenna theory and waveguide theory,
the relationship between the slots distance d and the beam angle θ satisfies the following:

θ = arcsin(
λ

λg
− λ

2d
) (4)

The distance between the slots also impacts the resonant frequency of the linear
array. When the slot distance is 0.5λg, the non-resonant array exhibits a very high VSWR
at the resonant frequency [35,36]. This phenomenon can be mitigated by increasing the
slot distance. However, excessively long slot distances will result in a high grating lobe
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level. The suppression condition for grating lobes can also be described as in Equation (1).
In conclusion, the maximum value of the slot distance is constrained by the performance of
the grating lobe level, while the minimum value is determined by the VSWR performance.
Additionally, the main lobe direction must be considered in the determination of the
slot distance.

Figure 11. Configuration of an eight-element linear array.

The control of the first side-lobe level was also achieved in this work. Side-lobe control
in slotted waveguide arrays is accomplished by regulating the radiation power weighting
of the elements. The weighting factor is determined using the Taylor Pattern Synthesis
Method. In building upon the findings from Section 2, the differential power weighting of
the elements is achieved through adjustments in the height of the cylinder and the length
of the slot.

3.2. Planar Array

In this section, the parallel waveguide linear array described in Section 3.1 is arranged
into a two-dimensional array, and the structure of the planar array is shown in Figure 12.
To reduce the width of the linear array, we adopted the staggered arrangement method
to position adjacent linear arrays. However, this staggered arrangement results in an
asymmetric planar array, leading to high axial ratio levels and elevated, far side-lobe
levels. To address this issue, we staggered the placement of the eight-element and nine-
element linear arrays. However, the staggered non-resonant array exhibits a less-than-
optimal phase distribution. As depicted in Figure 13a, the phase distribution of the eight-
element array does not align with that of the nine-element array. This mismatched phase
distribution exacerbates the grating lobe performance during phase scanning, as indicated
by the red line in Figure 14. To remedy this, we increase the excitation phase of the eight-
element arrays to compensate for the phase offset induced by the staggered arrangement
(Figure 13b). The magnitude of the increased phase is determined by the waveguide
wavelength λg and the slot distance d. The precise expression for the compensated phase is
given by

Phasecomp = (
d
λ
− 1

2
)π (5)

As shown in Figure 13, the phase compensation can be achieved by increasing the
distance between the excite port and the first element. Figure 13a shows the situation
without phase compensation; the neighboring elements exhibit non-uniform phase excita-
tion, and the red arrow indicates the direction of the electromagnetic wave transmission.
In Figure 13b, we introduce an additional distance between the first element and the feed
port, as highlighted by the yellow rectangular marker; subsequently, the first element’s
working phase is compensated for to achieve the correct value. The compensated result is
depicted by the blue line in Figure 14, and the grating lobe was suppressed effectively by
applying this method.
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Figure 12. Configuration of the planar array.

Figure 13. (a) The mismatching phase distribution in the planar array. (b) The compensation phase
distribution in the planar array.

Figure 14. The red line depicts the simulated radiation pattern under the mismatching phase condition,
and the blue line depicts the simulated radiation pattern under the compensation phase condition, at a
45° beam scanning angle through phase scanning.

With the introduction of the nine-element array into the planar array, the power
weighting of the elements requires re-tuning. Similar to phase compensation, the radiation
fields of the eight-element and nine-element arrays also need to be aligned. To address this,
we utilize the near field results, as depicted in Figure 15. The radiation performance of the
eight-element array serves as the reference standard. By plotting the envelope line of the
near radiated electric field, we can approximate the changing curve of the near field for the
eight-element linear array. The design parameters of the nine-element array are adjusted to
match the curve extracted from the eight-element array. Initially, the weighting parameters
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of the nine-element array are defined using the pattern synthesis method, and the initial
near field curve is extracted and compared with that of the eight-element array. Based on
the discrepancy between the two curves, adjustments are made to the cylinder height and
slot length of the nine-element array to ensure that its curve matches the standard curve.
This iterative process is repeated several times throughout the design phase, resulting in
the final curves depicted in Figure 15. The results demonstrate the good alignment between
the two curves.

Figure 15. The near E-field curves and its envelope line of the adjacent eight- and nine-element
linear arrays.

As discussed earlier, the staggered arrangement results in a complex near field dis-
tribution, exacerbated by the excitation of traveling waves, leading to the intricate phase
distribution of the near field. Additionally, the compact arrangement of the radiating
cavities exacerbates the coupling effects compared to normal conditions. In such scenarios,
the planar array’s leakage wave on the radiating surface exhibits a complex phase and field
distribution, adversely affecting the axial ratio level. To mitigate the influence of the leakage
wave, isolation gaps are introduced on the radiating surface. These gaps serve as channels
into which the leakage wave can be transmitted, subsequently being reflected at the bottom
of the gaps. By adjusting the depth of the gap, the reflected wave and transmitted wave can
be neutralized within it. The configuration of the isolation gaps is illustrated in Figure 12.

With the above analyses and designs, we can obtain the final configuration of the
planar array antenna. The detailed parameters are presented in Table 2.

Table 2. Detailed parameters of the planar array (unit: mm).

Slot No. Eight-Element Array’s
Cylinder Height

Eight-Element Array’s
Slot Length

Nine-Element Array’s
Cylinder Height

Nine-Element Array’s
Slot Length

1 1.7 21.6 1.6 21.6
2 2.2 21.4 1.9 21.4
3 2.8 21.4 2.5 21.4
4 3.3 21.4 3.1 21.4
5 3.9 21.1 3.4 21.1
6 4.1 20.9 3.9 20.9
7 3.8 20.9 4.0 20.9
8 3.2 21.1 3.5 21.1
9 N/A N/A 3.1 21.4

N/A = Not Applicable.

4. Verification and Comparison

The planar antenna was fabricated and measured in our work. During manufacturing,
the antenna is divided into three layers: the waveguide layer, including the waveguide and
ridge structure; the slot layer, including the slots and cylinders; and the circular polarizer
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layer, including the circular polarizer and isolation gap surface. The planar antenna was
manufactured using CNC machining technology. During assembly, a conductive adhesive
was applied to bond the waveguide layer and slot layer. This prevents the deterioration in
the electrical performance caused by electromagnetic leakage resulting from the interlayer
gaps; the circular polarizer layer and waveguide layer were mechanically connected using
screws, which were distributed around the periphery of the prototype. The mechanical
strength is the primary consideration when using screw connections, as the three layers
are heavy and cannot withstand the required strength solely through adhesive bonding.
The measurement was conducted using the far-field method in a 9 m × 9 m microwave
anechoic chamber. The assembled antenna is depicted in Figure 16a, with dimensions of
370 mm × 240 mm × 52 mm.

Figure 16. (a) The fabricated antenna. (b) The power divider. (c) The experimental setup for measurements.

The excitation method warrants mention. Although this antenna is intended for
phased scan array applications, constructing a complete phased array system for mea-
surement purposes is impractical. Instead, in this study, the phase delay was achieved
using nine coaxial cables of varying lengths, ensuring approximate phase differences of
144 degrees. These cables were connected to a power divider and the antenna, as depicted
in Figure 16b. The experimental setup is illustrated in Figure 16c, showing a 12° inclined
support being employed to accommodate the deviated main lobe in the elevation plane.

4.1. Simulation and Measurement Results

The prototype antenna was verified, and the simulation and measurement results are
presented below. The VSWR and S21 of the eight- and nine- element linear arrays were
measured, respectively, abd the results are shown in Figure 17. It is observed that the
measured results closely align with the simulation, indicating good agreement.

Figure 18 presents the radiation patterns of the proposed antenna. Figure 18a–c depict
the elevation radiation patterns at 6.6 GHz, 6.8 GHz, and 7.0 GHz, respectively. The majority
of the simulation and measurement results exhibit close agreement. However, there are
slight discrepancies in the right side-lobe level (SLL) at 6.8 GHz, although all measured
SLL results remained below −20 dB. Furthermore, the frequency scan angle results align
well with those of the simulation. The azimuth radiation pattern results are depicted
in Figure 16d–f; all measured azimuth radiation results exhibit good concordance with
the simulation data. Additionally, the achieved side-lobe levels (SLLs), at approximately
−14 dB, are attributed to the utilization of an equal-amplitude power divider.
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Figure 17. The simulated and measured VSWR and S21 curves within the work band.

(a) (b) (c)

(d) (e) (f)

Figure 18. The measured and simulated radiation patterns in the elevation (EL.) and azimuth (Az.)
planes. (a) El. plane at 6.6 GHz. (b) El. plane at 6.8 GHz. (c) El. plane at 7.0 GHz. (d) Az. plane at
6.6 GHz. (e) Az. plane at 6.8 GHz. (f) Az. plane at 7.0 GHz.

The axial ratio results are shown in Figure 19 and Table 3. A slight offset of 100–150 MHz
is observed in the measured results compared to the simulation results, although the axial
ratio frequency bands remain consistent. After the measurement, it was determined that the
error in these results primarily arose from two sources: manufacturing and assembly errors.
Specifically, the measured value of parameter d1 (in Section 2) ranges between 2.9 and
3.1 mm, and the depth of the circular polarizer varies within 31.4 and 31.6 mm, both of
which deviate from the intended design values. It was found that the conductive adhesive
method of the waveguide cavity layer and gap layer does not affect the electromagnetic
performance. However, the screw connection between the circular polarizer layer and the
waveguide layer has an impact on the axial ratio. This is due to the deformation of the slot
layer and the circular polarizer layer at the center of the prototype. The simulation results,
considering the fabrication error, are indicated in Figure 19 by the orange line. To address
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this problem, the circular polarizer layer and the waveguide layer should be connected
using both screws and conductive adhesive, and the position of the screws needs to be
redesigned to address the deformation problem after assembly. Enhancing the fabrication
accuracy and applying an adhesive to the metal layers can mitigate the frequency offset.

Figure 19. The measured and simulated axial ratios at 11°, 12°, and 13° at 6.6–7.2 GHz.

Table 3. The simulated axial ratio (AR) results in the azimuth plane.

Frequency/GHz AR at 11°/dB AR at 12°/dB AR at 13°/dB

6.7 2.01 2.01 2.00
6.8 0.24 0.10 0.12
6.9 1.44 1.43 1.41
7.0 3.76 3.71 3.64

The advantage of the proposed antenna is the wide beam scan angle; the phase scan
radiation pattern in 6.8 GHz is plotted in Figure 20. The results show that the antenna
can realize beam scanning in the range of −45°∼+45° without a grating lobe; the phase
mismatching effect is entirely suppressed. Table 4 shows the axial ratio result in the
phased scan condition; the scanned beam can still maintain a 3 dB axial ratio under the
machine error.

(a) (b) (c)

Figure 20. The measured and simulated phased scan radiation patterns in the azimuth plane: (a) in
the normal beam direction; (b) in the +45° beam direction; (c) in the −45° beam direction.

Table 4. A comparison of the measured (Mea.) and simulated (Sim.) axial ratio results for a 6.8 GHz
phase scan.

Scan Angle −45° 0° +45°

Axial Ratio (Sim.) 3.33 dB 0.23 dB 2.69 dB
Axial Ratio (Mea.) 2.3 dB 2.9 dB 2.2 dB
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4.2. Comparison and Discussion

Table 5 compares the performance of the proposed antenna with those of several
circularly polarized waveguide slot antennas reported in the literature. Our work achieved
a beam scanning range of −45°∼+45° in the azimuth plane and a scanning range of
+11°∼+13° in the elevation plane. Refs. [19,20] pertain to frequency scan arrays, while [22]
utilized a wideband CP dipole to expand the axial ratio (AR) band. Ref. [28] employed a
similar structure antenna element and proposed a fixed beam array; however, the authors
did not focus on the compact array research domain. Notably, our work achieved a low
side-lobe level (SLL). Comparatively, our antenna realizes a larger beam scanning range
while maintaining an average or superior electrical performance in other aspects.
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5. Conclusions

This paper proposes a compact circularly polarized non-resonant slotted waveguide
array antenna with a wide-beam scanning angle ability. We modified and improved the
existing compact slotted waveguide antenna through a thorough analysis of its working
principles and the optimization of design parameters, adding isolation gaps, and adapting
it for use in non-resonant arrays and phased arrays. The array’s performance was optimized
through phase compensation and element power matching techniques. As a result, we
achieved a compact slotted waveguide antenna that can work in non-resonant arrays
with the capability for wide beam scanning angles. The prototype antenna is proposed,
and the experimental results prove the effectiveness of the antenna design methodology.
The designed antenna exhibits a phase scan capability of ±45° in the azimuth plane and a
frequency scan range of +11° to +13° in the elevation plane, without the grating lobe, and it
maintains a low SLL. The axial ratio remains below 3dB within this scanning range and
bandwidth. Overall, the proposed antenna effectively combines circular polarization with
wide-angle beam scanning capabilities in slotted waveguide array antennas.
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Abstract: The beam pattern of frequency diversity array (FDA) radar has a range–angle two-
dimensional degree of freedom, which makes it possible to distinguish different targets from the
same angle and brings a new approach to anti-jamming of radars. However, the beam pattern of
conventional linearly frequency-biased FDA radar is range–angle-coupled and time-varying. The
method of adding nonlinear frequency bias among the array elements of the FDA array has been
shown to eliminate this coupling property while still allowing for better beam performance of the
emitted beam. In this paper, we obtain a decoupled and time-invariant beam direction map using the
FDA-multi-input–multi-output (FDA-MIMO) radar scheme and then obtain a sharp pencil-shaped
main sphere beam pattern with range–angle dependence using a linear frequency offset scheme
weighted by a Chebyshev window. Finally, the anti-interference performance of the proposed method
is verified in an anti-interference experiment.

Keywords: nonlinear frequency offset; FDA-MIMO radar; Chebyshev window based frequency
offset; array structure design

1. Introduction

Since the first introduction of FDA radars in [1], the important property that their
beam patterns are range-dimension dependent and can vary with time has been discovered,
which has attracted extensive attention from scholars home and abroad. When the time
and frequency offsets are fixed, the emission direction pattern of the frequency-controlled
array has a range–angle-dependent property, which is more flexible compared with the
conventional phased array and has a very high potential in practical applications [2–6].
However, the conventional fixed-frequency offsets FDA emission direction diagram is “S”
shaped, with range–angle coupling characteristics, and is time-varying, which is unfa-
vorable for the practical application of radar. With the exploration of the nature of the
FDA directional pattern characteristics, many beam design methods for FDA radars have
emerged. The range–angle coupling characteristics of FDA radar is caused by introducing
the frequency offset among the array elements, so the frequency offset also needs to be
designed and optimized to solve the coupling problem. The first problem to be solved is the
time-varying problem. The literature [7] studied the time-varying problem of FDA radar
and designed a time-invariant beam pattern, and the literature [8,9] combined FDA radar
with MIMO technology to form a time-invariant beam pattern as well. On the basis of the
existing research, the literature [10] explored the fundamental reason for the time-varying
nature of the beam pattern from the nature of FDA radar and proposed the concept of
“time figure”, which is of guidance for FDA radar research. After a period of research, the
FDA-MIMO radar regime was proved to be one of the available methods to solve the beam
patterns’ coupling problems [11,12]. After solving the time-varying problem, the beam
performance is the next issue to be considered. On the basis of ensuring the time invariance,
many beam design schemes have been proposed to provide a more superior performance.
A logarithmic frequency offset scheme is proposed in the literature [13], which solves
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the periodic problem in space and forms a point beam, but with poor performance. The
literature [14] uses a particle swarm optimization algorithm to determine the frequency
offsets and array element spacing to form a point-like transmit beam map, which also has
a lower side flap in the range dimension, but the calculation is too complex. As studies
proceeded, the design of FDA radar frequency offsets using a window function weighting
scheme became popular. However, window function weighting schemes based on fixed
windows have been studied more often, while window function weighting schemes based
on flexible windows are still less mentioned [14–22]. Compared with the fixed window
function, the flexible window function can have more degrees of freedom in the power
proportion of the main and side flaps, and, therefore, a better performance of the beam
direction map can be obtained [23]. Overall, the present research on frequency-controlled
array transmit beam formation can basically solve the problems of coupling and periodicity,
but the present beam design scheme still has the problems of insufficient beam main flap
focus, low beam resolution, and high side flap, which is more unfavorable for the specific
application of radar. Therefore, it is necessary to design a point-type transmitting beam
with narrow main flap and low side flap. For linear frequency bias, the beam direction map
is not point-like, which is not favorable for radar detection, and because of this, a frequency
bias design is needed to improve the beam direction map performance. In this paper, the
time-invariant FDA beam direction diagram is obtained on the basis of the FDA-MIMO
radar system, and the beam is further optimized by using the Chebyshev window to
weight the linear frequency offsets on the basis of the existing nonlinear frequency offsets
schemes, obtaining the results of narrowing the main flap and reducing the side flaps of the
transmit beam. To better test its application capability, it is combined with the Minimum
Variance Distortion-free Response (MVDR) adaptive beamforming algorithm to test its
performance in jamming immunity. The simulation results show that this scheme has a
more obvious advantage in the beam pattern performance compared with several window
function weighted frequency offset schemes that have been proposed.

2. System Model

From the literature [10], we know that an effective measure to eliminate the time
parameter in the transmit–receive diagram is to use a series of mixers and matched filters at
the receiver. Analogously to this case, we can also use a combination of FDA-MIMO radar
and multiple matched filters at the receiver side to produce beam maps independent of the
time parameters. Consider a narrow-band FDA-MIMO radar system with M transmitting
and N receiving arrays, and design both transmitting and receiving arrays as conventional
linear arrays. Suppose the range between transmitting arrays is dT , the range between
receiving arrays is dR, and the signal carrier frequency is f0; such a system configuration is
shown in Figure 1.
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As shown in the figure, the frequency offset of the mth element is f (m), and the
emission frequency of the mth array element can be expressed as

fm = f0 + f (m) (1)

Suppose each array element emits the same waveform, then the signal emitted by the
mth array element at time t can be expressed as Equation (2)

sm(t) = wm(t)ej2π fmt (2)

where wm(t) is the orthogonal signal envelope emitted by the mth array element,
which satisfies ∫

wm1
∗(t) · wm2(t− τ)dt = 0, m1 6= m2. (3)

where wm1
∗(t) is the conjugate of the wm1(t). With the FDA-MIMO regime radar, the time

delay at the target can be expressed as

τm,n = 2r0/c−mdT sin θ0/c− ndR sin θ0/c (4)

Then, the received signal related to the mth transmitting array element and the nth
receiving array element can be expressed as

sm,n(t− τm,n) = wn(t− τm,n)ejΦm(t−τm,n) · ej2π( f0+ f (m))(t−τm,n) (5)

where n = 1, 2, . . . , N, Φm is the phase modulation corresponding to the mth transmitting
array element in the FDA-MIMO radar, and the time index can be expressed as

t′ = t− 2r
c

(6)

Then, under the far-field condition, Equation (2) can be rewritten as

sm,n
(
t′
)
= wm

(
t′
)
ejΦm(t′)ejϕn(t′) (7)

In order to eliminate the effect of the time parameter and produce a time-invariant
and decoupled transmit beam pattern, we need to use a multi-matching filter approach to
process the signal at the receiver side of the FDA-MIMO radar, as shown in Figure 2.

As shown in the figure, the received signal needs to be mixed with the radio frequency
of the mixer and later mixed with wn(t′) in the digital signal processor, so that the relative
outputs of the mth transmitting array element and the nth receiving array element can be
expressed as

sOutput
m,n

(
t′
)
= ξsejΦm(t′)ejϕn(t′) (8)

where ϕn(t′) can be expressed as

ϕn(t′) = 2π
∫ t′+((mdT sin θ/c)+(ndR sin θ/c))

0 ( f0 + f (m))dx
= 2π

(
( f0 + f (m))t′ + f0

mdT sin θ
c + f0

ndR sin θ
c

) (9)

If the radar is aimed at the target at (rt, θt), the array factor AF can be expressed as

AF =
M
∑

m=1

N
∑

n=1
soutput

m,n (t′) = ξse−j2π f0((2r/c)+mdT(sin θ−sin θt)/c)

·
M
∑

m=1
ej(4π/c) f (m)(rt−r)

N
∑

n=1
ej(2π f0ndR(sin θ−sin θt)/c)

(10)

The transmit–receive normalized beam pattern can be expressed as
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B = BT · BR =

∣∣∣∣∣
M

∑
m=1

ej(4π/c) f (m)(rt−r)ej(2π f0mdT(sin θ−sin θt)/c)

∣∣∣∣∣

2

·
∣∣∣∣∣

N

∑
n=1

ej(2π f0ndR(sin θ−sin θt)/c)

∣∣∣∣∣

2

(11)

It is worth noting that the transmit–receive beam pattern in the above formula can be
equivalent to the multiplication of the transmit beam pattern and the receive beam pattern
at the receiver, which can be represented by BT and BR, respectively.

Sensors 2023, 23, x FOR PEER REVIEW 4 of 17 
 

 

Mixer Mixer Mixer

RF

A/D A/D A/D

MF MFMF

1 1
exp{ 2 }j f t

1
exp{ 2 }

M
j f t

0
( )t

1
( )t 1

( )
M
t

Receive array

Comb filter 
banks

Output signal

 

Figure 2. FDA-MIMO and multi-matching filter system. 

As shown in the figure, the received signal needs to be mixed with the radio fre-

quency of the mixer and later mixed with ( )nw t'  in the digital signal processor, so that 

the relative outputs of the m  th transmitting array element and the n th receiving array 

element can be expressed as 

( ) ( )u ( )ΦOutp t
,

m nj t
m n s

j t's t e e 


=
 

(8) 

where ( )n t'  can be expressed as 

( )
( ) ( )( )

( )
sin / sin /

00

0 0 0

2 ( )

sin sin2 ( ( ))

T Rt md c nd c

n

T R

t f f m dx

md ndf f m t f f
c c

 

 

 


+ +

= +

 
= + + 





+




 

(9) 

If the radar is aimed at the target at ( , )t tr  , the array factor AF  can be expressed as 

( ) ( )

( ) ( )( )

0

0

2 (2 / ) sin sin / )output
,

1 1

2 sin sin /(4 / ) ( )

1 1

( T t

R tt

M N
j f r c md c

m n s
m n

M N
j f nd cj c f m r r

m n

AF s t e

e e

  

  


− + −

= =

−−

= =

= =





 
 

(10) 

The transmit–receive normalized beam pattern can be expressed as 

( ) ( )( ) ( )( )0 0

2 2
2 sin sin / 2 sin sin /(4 / ) ( )

1 1

T t R tt
M N

j f md c j f nd cj c f m r r
R

n
T

m

B B e eB e       − −−

= =

==     (11) 

It is worth noting that the transmit–receive beam pattern in the above formula can 

be equivalent to the multiplication of the transmit beam pattern and the receive beam 

pattern at the receiver, which can be represented by TB  and RB , respectively. 

Figure 2. FDA-MIMO and multi-matching filter system.

Equation (11) shows that the FDA-MIMO radar can rely on its own characteristics to
produce a time-invariant range-dependent beam pattern after the signal processing process,
and that the beam pattern can be maximized at the target point with a maximum value
of M2N2, regardless of the frequency offset change. Therefore, when designing the beam
direction map of the FDA-MIMO radar, the range dependence of the FDA-MIMO radar
should be activated by adding the corresponding variables of phase and target spatial
position at the transmitter side.

3. Chebyshev Window Weighted Linear Frequency Offsets

For the window function weighted frequency offsets scheme, the parameter selection
of the window function is an important element affecting the beam performance. Most
of the window functions of variable windows are controlled by two parameters, so it is
necessary to use the control variable method to find the best combination of parameters.
Ordinarily, when choosing the best position for the performance of a parameter, it is not
possible to make both the main flap width and the side flap height optimal. For example,
when we set the parameter of the peak side flap of the Chebyshev window to a low level,
we can ensure that the side flap energy is low, but the energy will be concentrated in the
main flap, resulting in a wide main flap, which we do not expect. When we are designing a
beam, we usually give priority to minimizing the width of the main flap if the flap level
does not seriously affect the detection. On this basis, the Chebyshev window is utilized for
frequency offset design in this paper. The advantage of the Chebyshev window function is
that the main flap width of the Chebyshev window is minimum for a given flap height, and

66



Sensors 2023, 23, 1476

all flaps have the same amplitude, so that the beam with minimum main flap width can be
obtained by controlling the flaps within an acceptable range when choosing parameters.
For nonlinear frequency offset, the proposed frequency offset methods are: log frequency
offset, Hamming window based frequency offset (Ham-FDA), and sinusoidal-weighted
frequency offset. Our proposed method is a weighted linear frequency offset based on the
Chebyshev window, which outperforms the conventional method in both the main flap
width and the side flap height. The Log-FDA frequency offset can be expressed as

∆ f log
m = δ · log(m + 1) (12)

where δ is a constant, and ∆ fm represents the frequency offset of the first transmitting array
element. Similarly, the frequency offset of Ham-FDA can be expressed as

∆ f Ham
m = B

{
0.54− 0.46 cos

[
2π(m− (M + 1)/2)

M

]}
(13)

where B is the bandwidth and requires that the number of array elements M should be
odd.

The frequency shift of the Hamming window weighted linear frequency offsets (HL-
FDA) scheme proposed in the literature [17] can be expressed as

∆ f HL
m = m∆ f

{
0.54− 0.46 cos

[
2π(m− (M + 1)/2)

M

]}
(14)

The frequency offset of the proposed algorithm in this paper can be expressed as

∆ f proposed
m = m∆ f wc(m) (15)

where wc(m) is the time domain expression for the Chebyshev window function, which
can be expressed as [24]

wc(m) =
∑S

m=−N W0
c (n) cos

( 2π
N mn

)

∑S
m=−N W0

c (n)
(16)

where W0
c (n) is the discrete spectral expression of the Chebyshev window, and S should

be defined as S = (M− 1)/2. Similarly, there are s = (m− 1)/2. As with the Hamming
window weighting scheme, it is also required here that the number of array elements M
should be odd. The algorithm proposed in this paper can be seen in the form of a Chebyshev
window combined with a linear array of arrays, where the output signal associated with
the mth transmitting array element and the nth receiving array element after processing at
the receiver side of the FDA-MIMO system, as shown in Equation (17). The array factor AF
can be expressed as Equation (18).

sOutput
m,n (t′) ≈ rect( t′

Tp
)ξs exp

{
j2π[− f0

2r
c −m∆ f wc(m)) 2r

c

+ f0
mdT sin θ

c + f0
ndR sin θ

c ]
}

= rect( t′
Tp
)ξs exp

{
j2π[− f0

2r
c −m∆ f ∑N

m=−N W0
c (n) cos( 2π

N mn)
∑N

m=−N W0
c (n)

) 2r
c

+ f0
ndT sin θ

c + f0
mdR sin θ

c ]
}

(17)

AF =
M−1
∑

m=0

2N1
∑

n=0
sOutput

m,n (t′)

= rect( t′
Tp
)ξs

M−1
∑

m=0

2N1
∑

n=0
ej2π[− f0

2r
c −m∆ f wc(m)) 2r

c + f0
mdT sin θ

c + f0
ndR sin θ

c ]
(18)
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The vector of orientation A can be expressed as Equation (19), where a and b are
the transmitting and receiving guide vectors, respectively, which can be expressed as
Equations (20) and (21).

A = ξs a(r, θ)⊗ b(θ) (19)

a(r, θ) =




1

ej2π[ f0
dT sin θ

c −m(∆ f wc(m)) 2r
c ]

...

ej2π[ f0
2MdT sinθ

c −2M(∆ f wc(m)) 2r
c ]




(20)

b(θ) =




1
ej2π f0dR sin θ/c

...
ej2π f0dR(N−1) sin θ/c


 (21)

Then, the emission direction diagram BT,R can be expressed as

BT,R =
∣∣wD

H ·A
∣∣2

=

∣∣∣∣
2M
∑

n=0
exp{j2π( f0dTm sin θ−sin θ0

c − 2m∆ f wc(m))}
∣∣∣∣
2

×
∣∣∣∣

N−1
∑

n=0
exp{j2π f0dRn sin θ−sin θ0

c }
∣∣∣∣
2

(22)

4. MVDR Algorithm Model

In order to better test the practical application capability of the proposed frequency
offsets scheme, it is combined with the adaptive beamforming algorithm to verify its beam
output performance under the conventional MVDR algorithm. Adaptive beamforming is
an important method to enhance the signal output signal-to-noise ratio in the array radar
signal processing process. By attaching a weighting factor between each array element, it
causes the array output power to be maximum in the desired direction and minimum in
the jamming direction, by which the output signal-to-noise ratio can converge quickly at
the jamming location, thus forming a zero null.

In the FDA-MIMO system, the desired signal, the dummy target, and the noise are
statistically independent of each other, and the location of the desired target in the setup
space is (r0, θ0), The interfering signal is ij, j is the number of jammings, jamming position
can be set to (rj, θj), and noise n(t) is Gaussian white noise. The signal at the kth snap count
can be expressed as Equation (23), and the output signal in the FDA-MIMO system can be
expressed as Equation (24).

x(t) = a(r0, θ0)s(t) +
J

∑
j=1

a
(
rj, θj

)
ij(t) + n(t) (23)

y(t) = wH [a(r0, θ0)⊗ b(θ0)]s(t) + wH
J

∑
j=1

[
a0
(
rj, θj

)
⊗ bn

(
θj
)]

ij(t) + n(t)
(24)

To keep the energy of the noise minimum while satisfying the constraints, the opti-
mization function of MVDR can be expressed as

minωwHRw

s.t.
{

wHa(r0, θ0) = 1
wHa

(
rj, θj

)
= 0

(25)
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where R is the jamming-plus-noise covariance matrix. The equation can be solved by the
Lagrange multiplier method, the optimal weights of the array are obtained as Equation (26),
and the output signal-to-jamming-noise ratio (SINR) can be expressed as Equation (27)

wMVDR =
R−1a(r0, θ0)

a(r0, θ0)
HR−1a(r0, θ0)

(26)

RSINR =

∣∣wHa(r0, θ0)
∣∣2

wHR−1w− |wHa(r0, θ0)|2
(27)

Finally, incorporating the guidance vector into the above equation, we obtain

RSINR =

∣∣∣∣wH(1, ej2π[ f0
dT sin θ

c −m(∆ f wc(m)) 2r
c ], . . . , ej2π[ f0

2MdT sin θ
c −2M(∆ f wc(m)) 2r

c ])

∣∣∣∣
2

wHR−1w−
∣∣∣∣wH(1, ej2π[ f0

dT sin θ
c −m(∆ f wc(m)) 2r

c ], . . . , ej2π[ f0
2MdT sin θ

c −2M(∆ f wc(m)) 2r
c ])

∣∣∣∣
2 (28)

5. Simulation and Analysis
5.1. Simulation of Frequency Offset Scheme

In our given FDA-MIMO system, the frequency offset affects only the equivalent
transmit beammap and does not affect the receive beammap. Therefore, the simulation
compares only the equivalent transmit beamplot. In this section, we simulate and compare
the performance of Log-FDA, Ham-FDA, HL-FDA, and our proposed FDA frequency offset
scheme. The maximum frequency offsets of these methods are set to be approximately
equal, and the other relevant parameters are set as follows. The carrier frequency f0 is
10 GHz, the array element index is M = N = 15, the array spacing of the transmitting and
receiving arrays is set to dt = dr = 0.015 m, bandwidth is set to B = 27.5 kHz, and the
target position is set to (100 km, 20◦). Figure 3 compares the array element order versus
position for each method.
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After designing the frequency offset on the FDA-MIMO system, we analyzed the
equivalent transmit beamplots of four frequency offset schemes: Log-FDA, Ham-FDA,
HL-FDA, and our proposed scheme, as shown in Figure 4.
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Figure 4. Equivalent transmitting antenna beams of the four schemes: (a) Log-FDA; (b) Ham-FDA; 

(c) HL-FDA; and (d) Proposed. 

As shown in Figure 4, several frequency offsets schemes have been proposed to 

solve the time-varying and coupling problems of the FDA directional map, but the beam 

performance varies. The Log-FDA scheme can solve the range–angle coupling problem, 

but the main flap of its formed beam is too wide and does not focus well, and the Ham-

FDA and HL-FDA schemes can focus the emitted energy at a point in space. The Ham-

FDA and HL-FDA schemes can produce a point-like beam, but the main flap of these 

two schemes is still very wide, and their side flaps are high in height, which also affects 

the radar detection performance to some extent. Our proposed method can produce a 

more focused point-like beam with a lower side flap than the other methods. The 3D 

view of the beam provides a more intuitive view of the overall effect of the beam, which 

is shown in Figure 5. 

Figure 4. Equivalent transmitting antenna beams of the four schemes: (a) Log-FDA; (b) Ham-FDA;
(c) HL-FDA; and (d) Proposed.

As shown in Figure 4, several frequency offsets schemes have been proposed to
solve the time-varying and coupling problems of the FDA directional map, but the beam
performance varies. The Log-FDA scheme can solve the range–angle coupling problem, but
the main flap of its formed beam is too wide and does not focus well, and the Ham-FDA
and HL-FDA schemes can focus the emitted energy at a point in space. The Ham-FDA and
HL-FDA schemes can produce a point-like beam, but the main flap of these two schemes is
still very wide, and their side flaps are high in height, which also affects the radar detection
performance to some extent. Our proposed method can produce a more focused point-like
beam with a lower side flap than the other methods. The 3D view of the beam provides a
more intuitive view of the overall effect of the beam, which is shown in Figure 5.
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As shown in Figure 5, it can be seen that our designed beam produces a lower side
flap, which can help suppress the clutter in the side flap direction. It should be noted
that, although our method produces a lower side flap, the depression energy between the
main flap and the side flap becomes higher, which is the inevitable result of weighting
the frequency offsets with a window function. However, this does not affect the detection
because the side flap energy is still low compared with the main flap, and the jamming
signal inside the side flap can be easily found during the detection process by aligning
the main flap to the detection target. The range-dimensional slicing of the beam map can
better reflect the performance of the beam, and the comparison of each method is shown in
Figure 6.
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Figure 6. Range-Dimensional Slicing Performance Comparison.

As shown in Figure 6, the proposed scheme has greater advantages at both the main
flap and the side flap because the Chebyshev window function is used to evenly disperse
the energy in the side flap to the airspace far away from the main flap. Compared with
several proposed methods, our proposed scheme has better beam-focusing performance
with a narrower main flap and good side flap height, and the half-power beamwidth
diagram can be a good comparison of the performance gap of the scheme, as shown in
Figure 7.
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As represented in Figure 7, the half-power beamwidth comparison results show the
superior performance of our proposed scheme in both angular and range dimensions.

5.2. Analysis of the Anti-Jamming Characteristics of the Proposed Scheme

In this section, we verify the anti-jamming capability of the proposed frequency offsets
scheme in the presence of jamming in space and verify its beam performance under MVDR
conditions, respectively. In the experiment, a range-dimensional jamming and an angle-
dimensional jamming are set up, respectively. It can be seen that Jamming 1 is at the
same angle as the target but at a different range; it is located on the side flap of the range
dimension, and its beam gain is lower than the gain at the target point. Jamming 2 is at the
same range from the target but at a different angle; it is located in the angular dimension
of the side flap, and its gain is also lower than that at the target point. Meanwhile, we
can see from the range slice and angle slice that after the adaptive beam formation, the
beam of FDA-MIMO radar will automatically form a null trap at the jamming to suppress
the jamming, but for the linear frequency offsets FDA-MIMO, it still has more energy
distribution in the angle dimension, which indicates its weak anti-jamming capability in
the angle dimension. The details are shown in Figure 8.
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Figure 9 shows the beamforming performance of Log-FDA under MVDR conditions.
It can be seen that the main flap of the Log-FDA beam becomes very wide and the position
of the peak of the main flap is shifted, which indicates that Log-FDA does not adapt well to
the environment where jamming is present.
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Figures 10 and 11 show the beamforming performance of HL-FDA under MVDR
conditions. It can be seen that both HL-FDA and the proposed scheme can adapt well
to the MVDR algorithm and can form zero traps at jamming locations in the presence of
jamming in space. By observing the slice plots, it can be seen that the proposed scheme
has a higher side flap in the range dimension but a narrower main flap width, which can
better suppress jamming close to the main flap, which is one of the challenges faced by
radar detection. Figure 12 shows the comparison of the output SINR in the presence and
non-existence of MVDR conditions. It can be seen from the figure that the method in this
paper has certain advantages over the traditional linear frequency bias method, which
indicates that it is more applicable to the MVDR algorithm.
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In this paper, the coupling problem of FDA radar is solved using the FDA-MIMO
system, a new nonlinear frequency offset scheme is proposed, and its anti-interference
performance is verified relative to several other frequency offset schemes using the MVDR
algorithm. Considering that most of the current studies focus on the optimization using
fixed window function weighting, this paper utilizes the Chebyshev window function to
optimize the FDA frequency offset for the first time. Compared with the currently proposed
HL-FDA algorithm and Ham-FDA algorithm, the algorithm proposed in this paper has
better performance with the correct selection of parameters and better anti-interference
performance when there is interference in space. However, since this method requires the
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Abstract: The effects of random array deformations on Direction-of-Arrival (DOA) estimation with
root-Multiple Signal Classification for uniform circular arrays (UCA root-MUSIC) are characterized
by a conformally mapped generalized Polynomial Chaos (gPC) algorithm. The studied random de-
formations of the array are elliptical and are described by different Beta distributions. To successfully
capture the erratic deviations in DOA estimates that occur at larger deformations, specifically at the
edges of the distributions, a novel conformal map is introduced, based on the hyperbolic tangent
function. The application of this new map is compared to regular gPC and Monte Carlo sampling
as a reference. A significant increase in convergence rate is observed. The numerical experiments
show that the UCA root-MUSIC algorithm is robust to the considered array deformations, since the
resulting errors on the DOA estimates are limited to only 2 to 3 degrees in most cases.

Keywords: conformal map; polynomial chaos; root-MUSIC; direction-of-arrival; uniform circular
array; deformation; error propagation

1. Introduction

Direction-of-arrival (DOA) estimation is a fundamental enabler of current and next-
generation wireless communication systems. With the arrival of 5G and the development of
6G, it is of great importance to understand how DOA techniques perform under imperfect
conditions, especially as the effects of hardware impairments become more important
when the operating frequency increases [1]. Simulation times can be large and Monte Carlo
(MC) analysis is often too time-consuming due to the excessive number of realizations
that must be evaluated. Therefore, a fitting stochastic framework for the characteriza-
tion of uncertainty propagation within these systems is Generalized Polynomial Chaos
(gPC) [2,3]. As a versatile technique, gPC has been applied extensively to study the effects
of randomness on antenna performance and radio wave propagation [4–11]. With the
appropriate approach, gPC can even compete with MC when a high number of random
variables are used [12–17]. In the context of localization, gPC has also been used—for ex-
ample, in [18,19], where the effects of element displacements on DOA estimation were
investigated; in [20], where the effects of random element gain and phase variations were
studied, and in [21], where the uncertainty in multiple angle-of-arrival measurements was
translated into an uncertainty in position estimation.

Being based on polynomials, however, gPC has its own drawbacks, one of the most
important ones being slow convergence in the presence of function singularities [22,23].
Conformal maps can alleviate these problems, as demonstrated on Maxwell’s source
problem in [24]. Conformal maps were used previously in [25] to compute more accurate
quadrature rules for integrands with similar non-polynomial behavior, inspired by [26,27].

In this work, we extend the techniques described in [24] by introducing a novel map
that compensates for (apparent) singularities on the real axis. We illustrate the effectiveness
of this new conformal map by characterizing the effects of elliptical array deformations
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on root-Multiple Signal Classification for uniform circular arrays (UCA root-MUSIC) [28],
as it is a well-established and efficient DOA estimation algorithm. The UCA topology is a
relatively simple array geometry that enables DOA estimation of the azimuth angle over
a full 360◦ field of view, besides some more limited capability to provide estimates of the
elevation angle. However, the dedicated UCA-root-MUSIC algorithm heavily relies on
the inherent circular symmetry of the antenna array. Therefore, this algorithm and array
topology are the ideal candidates to study the effects of random deformations on DOA
estimation techniques. To be concise and keep the focus on the presence of singularities,
we do not include white noise, in contrast to [18–20].

In the next section, key concepts are introduced and the novel conformal map is
revealed in the appropriate mathematical framework. In Sections 3 and 4, the computational
results are presented and discussed, and in the final section, Section 5, a conclusion is given.

2. Methods
2.1. gPC Approximation

Generalized Polynomial Chaos (gPC) [2,3] approximates a function f of a random
variable x by an expansion in a well-chosen orthogonal polynomial basis {Φk}. The ortho-
gonal polynomials in question are associated with the weight function w, representing the
probability density function of the random variable being used, typically according the
Askey scheme [2]. If f is a function that is (computationally) expensive to evaluate, a gPC
approximation of f can provide a computationally cheap substitute.

Assuming that w is a weight function with support [−1, 1], the gPC orthogonal projec-
tion of degree N is defined as

PN f (x) =
N

∑
k=0

tkΦk(x), tk = C−1
k ·

1∫

−1

f (x)Φk(x)w(x)dx, (1)

with Ck =
∫ 1
−1 Φ2

k(x)w(x)dx. Once the expansion coefficients tk are known, the first two
moments of f can be calculated and estimated by

µ =

1∫

−1

f (x)w(x)dx = t0

µ2 =

1∫

−1

f 2(x)w(x)dx ≈
N

∑
k=0

t 2
k · Ck,

(2)

while the standard deviation on f can be estimated by

σ =
√

µ2 − µ2 ≈
(

N

∑
k=1

t 2
k · Ck

) 1
2

. (3)

The error in the L2-norm ‖ · ‖L2,w can be written in terms of the standard deviation σ
and its estimator:
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‖ f − PN f ‖L2,w =




1∫

−1

[ f (x)− PN f (x)]2w(x)dx




1
2

=




1∫

−1

[
∞

∑
k=0

tkΦk(x)−
N

∑
k=0

tkΦk(x)

]2

w(x)dx




1
2

=




1∫

−1

[
∞

∑
k=N+1

tkΦk(x)

]2

w(x)dx




1
2

=

(
∞

∑
k=N+1

t2
k · Ck

) 1
2

=

(
∞

∑
k=1

t2
k · Ck −

N

∑
k=1

t2
k · Ck

) 1
2

=

(
σ2 −

N

∑
k=1

t 2
k · Ck

) 1
2

.

(4)

The quality of the gPC approximation will depend upon the analyticity of f in the
complex plane [3,22,23]. The analyticity of f can be described by a Bernstein ellipse Eρ,
which is defined as the ellipse with foci −1 and 1 and ρ as the sum of its semiminor
and semimajor axis; see Figure 1. From Bernstein’s theorem for the convergence of the
Chebyshev projection PCh

N [22,23] and the fact that the gPC projection PN minimizes the
L2-error [3], it follows that, if f is analytically continuable to the open Bernstein ellipse
Eρ ⊆ C, the error on the Nth degree gPC approximation, according to the L2-norm, is
limited to

‖ f − PN f ‖L2,w ≤ ‖ f − PCh
N f ‖L2,w ≤ ‖ f − PCh

N f ‖∞ · ‖1‖L2,w ≤ 2
Mρ−N

ρ− 1
, (5)

with ‖ · ‖∞ the supremum norm and | f (x)| ≤ M for x ∈ Eρ. It is clear from Equation (5)
that it is preferable to have a high ρ, i.e., a large Bernstein ellipse, for optimal convergence.
Singularities in the complex plane, close to the interval of interest [−1, 1], can substantially
lower ρ and will, therefore, be detrimental to the gPC approximation.

−1 0 1
−1

−0.5

0

0.5

1

semimajor

se
m
im

in
o
r

Re

Im

Figure 1. The E1.6 Bernstein ellipse. Its size ρ is equal to the sum of its semiminor and semimajor
axes—in this case, 1.6. Its foci −1 and 1 are shown by the black dots.

In most practical applications, the integral in Equation (1) is not analytically com-
putable. In 1D cases, the coefficients tk are generally approximated numerically using a
Gauss quadrature rule [3]:

tk ≈ C−1
k ·

N+1

∑
i=1

f (xi)Φk(xi)wi, (6)
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with (xi, wi) being the N + 1 quadrature nodes and weights of polynomial accuracy 2N + 1
associated with w. According to [3], Section 3.6, the aliasing error on the polynomial
expansion of f is given by

AN f (x) =
∞

∑
j=N+1

tj

N

∑
k=0

C−1
k

[
N+1

∑
i=1

Φj(xi)Φk(xi)wi

]
Φk(x). (7)

In essence, the aliasing error follows from the fact that the lower-order polynomials
{Φk} cannot be distinguished from the higher-order polynomials {Φj} on a finite grid.
As seen in Equation (7), it can be interpreted as the error that is introduced by using the
lower-order discrete expansion of the higher-order polynomials instead of the higher-order
polynomials themselves. In [3], it is mentioned that the aliasing error induced by using
Formula (6) is usually of the same order as the projection error in Equation (5). Hence,
the aliasing error will also benefit from a higher ρ.

2.2. Conformally Mapped gPC

In [24], a framework was established to incorporate conformal maps into the gPC
algorithm for enlarging the Bernstein ellipse, based on earlier research from [25]. Con-
sider a map g that is conformal in an open region Ω ⊆ C with subdomain [−1, 1] ⊆ R,
with g([−1, 1]) = [−1, 1] and g(±1) = ±1. This map can be used to define a new variable x̃:

{
x = g(x̃)
x̃ = g−1(x).

(8)

If x is a random variable, distributed according to the weight function w(x) with
support [−1, 1], the variable after transformation x̃ will have its own weight function w̃(x̃)
with support [−1, 1] [24]:

w̃(x̃) = [w ◦ g](x̃)
∣∣∣∣
dx
dx̃

∣∣∣∣
= [w ◦ g](x̃)

∣∣g′(x̃)
∣∣.

The symbol ◦ is used to denote function composition, i.e., [ f1 ◦ f2](x) = f1( f2(x)).
By choosing g′ > 0 in Ω, the above equation becomes

w̃(x̃) = [w ◦ g](x̃)g′(x̃). (9)

Assuming that the orthogonal polynomials {Φk} associated with w are known, the or-
thogonal polynomials {Φ̃k} associated with w̃ can be constructed by the Modified Cheby-
shev Algorithm [29]. Next, the quadrature points x̃i and associated weights w̃i of w̃ can be
calculated using the Golub–Welsch Algorithm [30]. The Modified Chebyshev Algorithm is
based upon a set of integrals called the modified moments, defined by

mk =

1∫

−1

Φk(x̃)w̃(x̃)dx̃. (10)

Only for select combinations of weight function and conformal map can these integrals
be calculated analytically. In other cases, one has to make use of quadrature rules (or other
computational methods) to evaluate these integrals numerically. As the quadrature nodes
and weights belonging to w̃ are not yet known at this point in the algorithm, this integral
has to be reformulated as an integral with weight function w, whose quadrature nodes and
weights are known. One means of achieving this is by rewriting the integral as
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mk =

1∫

−1

Φk(x̃)w̃(x̃)dx̃

=

1∫

−1

Φk(x)
w̃(x)
w(x)

w(x)dx

≈
Nm

∑
i=1

Φk(xi)
w̃(xi)

w(xi)
· wi.

(11)

with (xi, wi) the quadrature nodes and weights of polynomial accuracy 2Nm − 1 associated
with w. Within this research, the value of Nm was set to 50, a value for which sufficient
accuracy was reached.

Instead of a polynomial expansion of f , in the conformally mapped gPC algorithm
introduced by [24], an expansion of f ◦ g is performed, using the newly constructed
Φ̃k polynomials:

PN [ f ◦ g](x̃) =
N

∑
k=0

t̃kΦ̃k(x̃). (12)

By substituting the inverse map x̃ = g−1(x) at both sides of Equation (12), a mapped
approximation of f is obtained:

P̃N f (x) =
N

∑
k=0

t̃k

[
Φ̃k ◦ g−1

]
(x). (13)

A schematic overview of this algorithm is shown in Scheme 1.

x-space x̃-space

f(x) [f ◦ g](x̃)

w(x) w̃(x̃)

mk

Φ̃k

(x̃i, w̃i)
gPC

PN [f ◦ g](x̃)P̃Nf(x)

g

g91

Scheme 1. An overview of the conformally mapped gPC algorithm. A new random variable x̃ is
defined by applying a conformal map x = g(x̃) on the random variable x. An adapted quadrature
rule (x̃i, w̃i) is constructed for the new weight function w̃(x̃) via the modified moments mk, along
with its own orthogonal polynomials {Φ̃k}. Generalized Polynomial Chaos (gPC) is applied to the
composite function [ f ◦ g] and a mapped gPC approximation of f is found after performing the
inverse conformal map x̃ = g−1(x).

81



Sensors 2022, 22, 5229

Analogously to classic gPC, the coefficients t̃k can be approximated by means of
discrete projection, yielding

t̃k = C̃−1
k ·

1∫

−1

[ f ◦ g](x̃)Φ̃k(x̃)w̃(x̃)dx̃

≈ C̃−1
k ·

N+1

∑
i=1

[ f ◦ g](x̃i)Φ̃k(x̃i)w̃i,

(14)

with C̃k =
∫ 1
−1 Φ̃2

k(x̃)w̃(x̃)dx̃ and (x̃i, w̃i) the quadrature nodes and weights of polynomial
accuracy 2N + 1 associated with w̃.

An upper bound similar to the one in Equation (5) can be derived for the conformally
mapped gPC expansion [3,22–24]:

‖ f − P̃N f ‖L2,w = ‖ f ◦ g− PN [ f ◦ g]‖L2,w̃ ≤ 2
M̃ρ̃−N

ρ̃− 1
. (15)

In this case, ρ̃ is the size of the open Bernstein ellipse Eρ̃, in which f ◦ g is analytically
continuable. It is apparent from Equations (5) and (15) that the conformal map g needs to
be chosen in such a way that ρ̃ exceeds ρ, thus achieving a faster convergence. In other
words, f ◦ g needs to be analytically continuable in a larger open Bernstein ellipse than f .

To the best of the authors’ knowledge, only one class of conformal map has been
applied in the context of polynomial-based methods. This set of maps shifts singularities
directly above or below the [−1, 1] interval, away from the origin, in order to achieve a
larger Bernstein ellipse. The Ellipse-to-Strip map [25], the Sausage map [25], the Kosloff Tal-
Ezer (KTE) map [27] and the Ellipse-to-Slit map [31] all fall into this category. In Figure 2,
examples are shown of these established maps.

(a)

−0.5

0

0.5

Im

(b)

−1 0 1

−0.5

0

0.5

Re
(c)

Im

−1 0 1

Re
(d)

Figure 2. The E1.6 Bernstein ellipse (dashed black line) and its image (solid blue line) under the
Ellipse-to-Strip map (a), the KTE map (b), the Sausage map (c) and the Ellipse-to-Slit map with slits
along the imaginary axis (d).

However, it is possible to encounter function singularities in other locations of the
complex plane, such as on the real axis, close to the [−1, 1] interval. In these situations,
there is a need for a new conformal map, which is proposed further in Section 2.3.
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2.3. Tanh Map

Assume that f has a singularity on the real axis at location p with |p| > 1. Due to this
singularity, the size of the Bernstein ellipse Eρ associated with f (in the x-space) is limited
to ρ = |p|+

√
p2 − 1. Ideally, one would use a map that gives rise to a Bernstein ellipse Eρ̃,

associated with f ◦ g in the x̃-space, that is larger than Eρ. It is clear that a suitable map for
this purpose should shift the singularity away from the [−1, 1] interval. We propose the
tanh map for this purpose:

x = g(x̃; κ) =
tanh(κx̃)
tanh(κ)

. (16)

An illustration of this map for a real x and x̃, and for different values of κ, is shown in
Figure 3. The parameter κ is added to make the map adaptable to different values of the
singularity’s location p.

−1 0 1

−1

0

1

x̃

g
(x̃
;κ

)

Trivial map
κ = 1.5
κ = 2
κ = 2.5

Figure 3. The tanh map for real x̃ at different values of κ, together with the trivial map g(x̃) = x̃.

The tanh(z) function is periodic with period π j, i.e., tanh(z) = tanh(z± π j), and has
simple poles at π

2 j± π jl, with l ∈ Z. As the map needs to be bijective in order to define
the inverse map, the domain of the above map is restricted to the strip around the real axis
between its closest poles:

|Im(x̃)| < π

2κ
j. (17)

The inverse of Equation (16) can now be defined as

x̃ = g−1(x; κ) =
1

2κ
ln
(

1 + x tanh(κ)
1− x tanh(κ)

)
. (18)

Using the tanh map, the singularity will shift to a position | p̃| = |g−1(p; κ)| > |p|.
As g−1(p; κ) needs to be defined and g−1(x; κ) has branch cuts

]
−∞,− 1

tanh(κ)

]
and

[
1

tanh(κ) ,+∞
[
, κ is fundamentally limited to

κ < κmax = ln
( |p|+ 1
|p| − 1

)
. (19)

Two Bernstein ellipses in the x̃-space can be defined: one that only takes into account
the shifted singularity p̃ with size
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ρ̃re = | p̃|+
√

p̃2 − 1 =
1

2κ

∣∣∣∣ln
(

1 + p tanh(κ)
1− p tanh(κ)

)∣∣∣∣+
√

1
4κ2 ln

(
1 + p tanh(κ)
1− p tanh(κ)

)2
− 1, (20)

and one ellipse that only takes into account the singularities ± π
2κ j introduced by the tanh

map, with size

ρ̃im =
π

2κ
+

√
π2

4κ2 + 1. (21)

Depending on the values of p and κ, either Eρ̃re or Eρ̃im will be the largest ellipse.
As the presence of singularities is restrictive for the gPC algorithm, ρ̃ is equal to the size
of the smallest of both ellipses, i.e., ρ̃ = min(ρ̃re, ρ̃im). The largest and optimal value of
ρ̃, named ρ̃eq, is reached when both ellipses overlap (ρ̃re = ρ̃im) at a certain κeq, which
can be found by solving Equations (20) and (21). Figure 4 illustrates this procedure for a
singularity located at p = ±1.1125. The value of κeq as a function of the singularity position
|p| is shown in Figure 5, along with the two regions in (|p|, κ)-space, one where ρ̃re ≤ ρ̃im
and one where ρ̃re ≥ ρ̃im.

(a)

−1

0

1

ρ = 1.6Im

(b)

ρ̃ = 2.62

−2 0 2

−1

0

1

ρ̃ = 2.47

Re
(c)

Im

−2 0 2

ρ̃eq = 2.72

Re
(d)

Eρ̃re

Eρ̃im

Eρ̃eq

Figure 4. The Bernstein ellipse with size ρ = 1.6 (singularity located at p = ±1.1125) in the x-space
(a) and the corresponding Bernstein ellipses Eρ̃re and Eρ̃im when using κ = 1.05κeq (b), κ = 0.95κeq

(c) and κ = κeq (d). The singularities are depicted with hollow dots.
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Figure 5. The different regions, denoting the relative sizes of both Bernstein ellipses, in the
(|p|, κ)-space.
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Since Eρ̃eq has the singularities of g, being± π
2κ j, on its border, it will map to an infinitely

large region g(Eρ̃eq ; κeq) in the x-space, as can be seen in Figure 6. This is similar to the
Ellipse-to-Strip [25] and the Ellipse-to-Slit maps [31]. The condition that f is analytically
continuable within this infinite region is rather strict, and if this is not the case, the effective
Bernstein ellipse will be smaller than Eρ̃eq . Luckily, the region of analyticity for f will shrink
very quickly in comparison to the corresponding Bernstein ellipse Eρ̃. Additionally, when
comparing ρ̃ with ρ in Figure 7, one can conclude that, in practice, as long as singularities
above and below the [−1, 1] interval are reasonably far away, the convergence rate gain
does not suffer much when applying the tanh map.

−2 0 2

−4

−2

0

2

4

Re
(a)

Im

f(x)

−2 −1 0 1 2

−3

−2

−1

0

1

2

3

Re
(b)

Im

[f ◦ g] (x̃)

ρ̃eq
0.95ρ̃eq, 0.9ρ̃eq,
0.85ρ̃eq, 0.8ρ̃eq

Figure 6. Starting with a Bernstein ellipse E1.6 in the x-space, the Bernstein ellipses in the x̃-space
with sizes ρ̃eq = 2.72, 0.95ρ̃eq = 2.59, 0.9ρ̃eq = 2.45, 0.85ρ̃eq = 2.31 and 0.8ρ̃eq = 2.18 are shown (b).
The corresponding regions g(Eρ̃; κeq) in which analytic continuability of f is assumed are shown in (a).
The original Bernstein ellipse E1.6 is shown with a dashed line as a reference and the singularities are
depicted with hollow dots.
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Figure 7. The size of Eρ̃ as a function of the size of Eρ when using the tanh map. ρ̃eq corresponds to
the maximally achievable value of ρ̃.
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2.4. Setup

Consider a nine-element uniform circular array (UCA) deployed in the azimuth
plane. As the effects of the displacement of individual antenna elements on root-MUSIC
have already been studied in earlier research—for example, in [18,19]—to showcase the
proposed method, we assume that the array deforms in the shape of an ellipse with constant
circumference and constant distance between the elements along the elliptical arc. This
deformation is characterized by a single (random) variable: an “extended” eccentricity e
defined by

e =





√
1− b

a if a > b

−
√

1− a
b if a < b

0 if a = b,

(22)

with 2a being the width of the array (along φ = 0◦) and 2b the height (along φ = 90◦).
Different array deformations are illustrated in Figure 8.

e = 0 e = 0.5

e = 0.9

2a

2b
φ = 0◦

φ

e = −0.75

Figure 8. The shape of the deformed UCAs for different values of e.

We limit the eccentricity to the interval [−0.9, 0.9], since values outside of this interval
were deemed too unrealistic and the deformation would become too large for the DOA
algorithm to provide a DOA estimation. However, it is standard practice [24,25] to rescale
random variables to [−1, 1]. Therefore, the random variable x is introduced as e = 0.9 · x.
We assume x to be distributed according to a Beta distribution [32]:

Beta(x; α, β) =
(1 + x)α−1(1− x)β−1

2α+β−1 · Γ(α + β)

Γ(α)Γ(β)
. (23)

Figure 9 illustrates three Beta distributions with shape parameters α = β = 1,
α = β = 2 and α = β = 3. The orthogonal polynomials {Φk} associated with the Beta
distribution are the Jacobi polynomials [33].

Since the UCA root-MUSIC algorithm was calibrated with a circular array in mind,
as the array deforms, the estimated DOAs will deviate from their correct positions. This
error propagation is described by a function φ̂ = f (x), with φ̂ being the DOA estimation
corresponding to one specific source.
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Figure 9. The three different Beta distributions used in this work.

From a practical viewpoint, it is non-intuitive to consider the analytic continuation
of f (x) in the complex plane beyond the [−1, 1] interval. However, one can state that f ,
the relation between deformation and (erroneous) DOA estimation, behaves in a highly
erratic manner when x approaches the edges of the interval [−1, 1]. This behavior is
equivalent to the presence of nearby singularities on the real axis. Therefore, the principles
of Sections 2.1–2.3 apply to this case, even though f (x) has no closed form and the analytic
continuation is not known.

3. Results

The operating frequency of the considered antenna array is set to 3.5 GHz (wavelength
λ ≈ 8.57 cm), being the center of a 5G band [34]. The dipole elements are all of length
λ/2, as is the radius of the UCA. The array is excited by six plane waves along directions
φ = 50◦, 70◦, 165◦, 220◦, 305◦ and 350◦ in the azimuth plane. DOA estimation is performed
with the UCA root-MUSIC algorithm [28]. The full-wave NEC2++ simulator [35] is applied
to rigorously simulate the complete antenna array, including all mutual coupling effects.
For conciseness, we only discuss the behavior of one of the six DOA estimates, being the
one corresponding to the source at φ = 50◦.

In Figures 10–12, the absolute and relative errors of µ and σ are presented as a function
of N for the different Beta distributions. These values are calculated with classic gPC and
mapped gPC for varying values of κ. The expansion coefficients are approximated with
discrete projection according to Equations (6) and (14). As µ is equal to t0 and t̃0, the error
shown in subfigures (c) is only the aliasing error introduced by the discrete projection.
The error on the estimation of σ in subfigures (d) can, in addition to the aliasing error,
be directly linked to the L2-error according to Equation (4). As there are no analytical
solutions to compare the results with, reference values are computed numerically by means
of Monte Carlo simulation, using Latin Hypercube Sampling (LHS) with 106 samples [36].
These values are displayed in Table 1. The implemented UCA root-MUSIC algorithm has a
precision of around 10−6 degrees, which is why, in some graphs, convergence halts at a
relative error of around 2× 10−8 and 10−6 for µ and σ, respectively.

Table 1. The reference values of µ and σ. Computed with MC using LHS and 106 samples.

µref σref

Beta(x; 1, 1) 49.510102 2.527614
Beta(x; 2, 2) 50.046675 1.347420
Beta(x; 3, 3) 50.163825 0.956752
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Figure 10. The absolute and relative errors on µ (a,c) and σ (b,d) with regard to their reference value
when applying the Beta(x; 1, 1) distribution. The precision floor is shown by a dashed line.
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Figure 11. The absolute and relative errors on µ (a,c) and σ (b,d) with regard to their reference value
when applying the Beta(x; 2, 2) distribution. The precision floor is shown by a dashed line.
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Figure 12. The absolute and relative errors on µ (a,c) and σ (b,d) with regard to their reference value
when applying the Beta(x; 3, 3) distribution. The precision floor is shown by a dashed line.

In Figure 13, a comparison between the resulting classic and mapped gPC approx-
imations of f , using the Beta(x; 2, 2) distribution and N = 15, is shown. In Figure 14,
the comparison of the resulting empirical cumulative distribution functions (CDFs) is plotted.
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Figure 13. (a) The approximation of f using classic and mapped gPC and (b) the error on the ap-
proximation with regard to the reference curve, with w(x) = Beta(x; 2, 2) and N = 15. The reference
curve was constructed by sampling the full simulation.
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Figure 14. (a) The empirical CDFs of φ̂ when sampling the classic and mapped gPC expansion with the
full simulation as a reference, each constructed with LHS and 106 samples, with w(x) = Beta(x; 2, 2)
and N = 15. (b) The error of the classic and mapped gPC CDFs in comparison to the reference CDF.

4. Discussion

The discussion is presented in two parts. First, the advantages of the use of the tanh
map are analyzed, based on the deformed UCA application. Afterwards, the effects of the
random array deformations on the UCA root-MUSIC algorithm are discussed.

4.1. Comparison of Classic and Mapped gPC

In Figures 10–12, we see a general improvement when using mapped gPC over classic
gPC, as, in all cases, mapped gPC reaches the precision bound the fastest. Comparing the
results for the estimation of µ, in subfigures (a) and (c), in which only the aliasing error
is present, we can confirm that the aliasing error does indeed benefit from an increase
in the size of the Bernstein ellipse. As expected, this increase in convergence rate is also
present in the results for the estimation of σ in subfigures (b) and (d), which affirms the
principles from Sections 2.2 and 2.3. Note that the error on σ is linked to the L2-error in
Equations (5) and (15) via Equation (4).

One aspect that should be mentioned is that, according to Equations (5) and (15),
maximizing the size of the Bernstein ellipse only maximizes the rate of convergence, i.e., the
incline of the convergence curves in subfigures (c) and (d). The vertical position of the
convergence curves will, however, depend on other factors besides the size of the Bernstein
ellipse. Therefore, it is possible that the fastest-converging method is not the one with the
smallest error, especially in the cases with Beta(x; 2, 2) and Beta(x; 3, 3) as weight functions,
where the precision floor is reached relatively quickly.

Two factors influence this phenomenon: first, the M/M̃ parameter in
Equations (5) and (15), which is an upper bound of | f | in its supposed region of ana-
lyticity, being either Eρ for classic gPC or g(Eρ̃; κ) for mapped gPC. Although it is difficult
to establish closed-form mathematical relations for the value of M/M̃, for the mapped gPC
case, one can state that an increase in κ will cause M̃ to either increase or stay the same,
as clarified in Equation (24). In other words, an increase in convergence rate due to an
increase in κ can be paired with an upward vertical shift in the convergence curve.

κ1 < κ2 ⇒ g(Eρ̃; κ1) ⊂ g(Eρ̃; κ2)⇒ M̃1 ≤ M̃2 (24)
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Another factor is the aliasing error, defined by Equation (7), which is a function
of the used weight function w/w̃ and the expansion polynomials {Φk}/{Φ̃k}, adding a
dependency on w and κ. An exact evaluation of Equation (7) is difficult. Upper bounds to
the aliasing error are available for, among others, the Legendre and Chebychev polynomial
expansions [37]; however, these are not readily applicable to this mapped gPC context.
The dependency of both these factors on κ and w explains why we see different performance
for the different κ values as the weight function changes, even though f and its singularities,
and therefore also κeq, stay the same. Unfortunately, it is difficult to establish closed-form
mathematical relations for these dependencies.

Figure 13 shows that a better fit is achieved at the extremities of the interval when
using mapped instead of classic gPC, resulting in a lower supremum error and L2-error.
As this erratic behavior of f in these regions has a large influence on the statistical moments
of the function, a better fit at the edges will have a significant impact on the accuracy of the
estimation of µ and σ. Another benefit of the mapped approach is a better approximation
of the CDF at the far left and far right sides, as seen in Figure 14.

4.2. Consequences for the UCA Root-MUSIC Algorithm

In the situations studied in this paper, the introduction of a random deformation of the
array causes a bias in the DOA estimator of 0.05 to 0.5 degrees and a standard deviation of
the DOA estimation of 1 to 2.5 degrees (depending on the distribution shape; see Table 1).
All things considered, this makes the UCA root-MUSIC algorithm rather robust against the
array deformations studied in this work.

5. Conclusions and Future Work

The non-polynomial behavior of the root-MUSIC DOA estimation as a function of
the elliptical deformation of the UCA can be compared to the presence of singularities
on the real axis, close to the interval of interest, which have a detrimental effect on the
convergence of the classic gPC algorithm. Luckily, using the newly defined tanh conformal
map, these singularities are moved further away from the domain of the random variable,
which makes for a better characterization of the erratic behavior of the DOA estimation
and, as a result, causes a considerable increase in the convergence rate of the first- and
second-order statistics in comparison to classic gPC.

We conclude from the simulations that the errors induced in the DOA estimation
due to the elliptical deformation of the UCA are limited to only a few degrees in most
cases. However, when the eccentricity reaches an absolute value of around 0.7, the DOA
estimations become very volatile, with much larger errors of up to 10 degrees.

In future work, it can be of interest to develop and research even more specific
conformal maps so that each type of function singularity can be dealt with in an efficient
manner. As for the DOA estimation in 5G and 6G wireless communication networks, it
might be advisable to look at other types of antenna arrays, such as rectangular arrays,
which are currently integrated into 5G base stations and handsets [38]. Additionally, it could
be interesting to look at other, modified types of MUSIC, such as or spatial/backward/time
smoothing MUSIC, which are better equipped to deal with highly correlated signals,
as encountered due to multipath propagation in indoor environments [39]. The technique
could also be extended to hybrid techniques, such as SpotFi, that rely on a combination
of time-of-flight and angle-of-arrival with MUSIC to perform accurate localization with
common WiFi infrastructures [40].

Author Contributions: S.V.B. performed the mathematical derivations, wrote the algorithm, per-
formed the simulations and analyzed the data; S.V.B., J.V., T.V.H. and H.R. interpreted the analyzed
data; S.V.B. wrote the manuscript and J.V., T.V.H. and H.R. revised it. All authors have read and
agreed to the published version of the manuscript.

91



Sensors 2022, 22, 5229

Funding: This work was supported by the Fonds Wetenschappelijk Onderzoek – Vlaanderen - FWO
under Grants n◦ G0F4918N (EOS ID 30452698) and n◦ S001521N IoBaLeT: Sustainable Internet of
Battery-Less Things.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Abbasi, Q.H.; Jilani, S.F.; Alomainy, A.; Imran, M.A. Antennas and Propagation for 5G and Beyond; Institution of Engineering and

Technology: Stevenage, UK, 2020.
2. Xiu, D.; Karniadakis, G.E. The Wiener—Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 2002,

24, 619–644. [CrossRef]
3. Xiu, D. Numerical Methods for Stochastic Computations: A Spectral Method Approach; Princeton University Press: Princeton, NJ,

USA, 2010.
4. Rossi, M.; Dierck, A.; Rogier, H.; Vande Ginste, D. A stochastic framework for the variability analysis of textile antennas. IEEE

Trans. Antennas Propag. 2014, 62, 6510–6514. [CrossRef]
5. Kersaudy, P.; Mostarshedi, S.; Sudret, B.; Picon, O.; Wiart, J. Stochastic Analysis of Scattered Field by Building Facades Using

Polynomial Chaos. IEEE Trans. Antennas Propag. 2014, 62, 6382–6393. [CrossRef]
6. Rossi, M.; Stockman, G.J.; Rogier, H.; Vande Ginste, D. Stochastic Analysis of the Efficiency of a Wireless Power Transfer System

Subject to Antenna Variability and Position Uncertainties. Sensors 2016, 16, 1100. [CrossRef]
7. Du, J.; Roblin, C. Statistical modeling of disturbed antennas based on the polynomial chaos expansion. IEEE Antennas Wirel.

Propag. Lett. 2016, 16, 1843–1846. [CrossRef]
8. Nguyen, B.T.; Samimi, A.; Vergara, S.E.W.; Sarris, C.D.; Simpson, J.J. Analysis of electromagnetic wave propagation in variable

magnetized plasma via polynomial chaos expansion. IEEE Trans. Antennas Propag. 2018, 67, 438–449. [CrossRef]
9. Ding, S.; Pichon, L. Sensitivity Analysis of an Implanted Antenna within Surrounding Biological Environment. Energies 2020, 13,

996. [CrossRef]
10. Leifsson, L.; Du, X.; Koziel, S. Efficient yield estimation of multiband patch antennas by polynomial chaos-based Kriging. Int. J.

Numer. Model. Electron. Netw. Devices Fields 2020, 33, e2722. [CrossRef]
11. Rogier, H. Generalized Gamma-Laguerre Polynomial Chaos to Model Random Bending of Wearable Antennas. IEEE Antennas

Wirel. Propag. Lett. 2022, 21, 1243–1247. [CrossRef]
12. Babacan, S.D.; Molina, R.; Katsaggelos, A.K. Bayesian compressive sensing using Laplace priors. IEEE Trans. Image Process. 2009,

19, 53–63. [CrossRef]
13. Zhang, Z.; Batselier, K.; Liu, H.; Daniel, L.; Wong, N. Tensor computation: A new framework for high-dimensional problems in

EDA. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2016, 36, 521–536. [CrossRef]
14. Salis, C.; Zygiridis, T. Dimensionality reduction of the polynomial chaos technique based on the method of moments. IEEE

Antennas Wirel. Propag. Lett. 2018, 17, 2349–2353. [CrossRef]
15. Kaintura, A.; Dhaene, T.; Spina, D. Review of Polynomial Chaos-Based Methods for Uncertainty Quantification in Modern

Integrated Circuits. Electronics 2018, 7, 30. [CrossRef]
16. Tomy, G.J.K.; Vinoy, K.J. A fast polynomial chaos expansion for uncertainty quantification in stochastic electromagnetic problems.

IEEE Antennas Wirel. Propag. Lett. 2019, 18, 2120–2124. [CrossRef]
17. Lüthen, N.; Marelli, S.; Sudret, B. Sparse polynomial chaos expansions: Literature survey and benchmark. SIAM/ASA J. Uncertain.

Quantif. 2021, 9, 593–649. [CrossRef]
18. Inghelbrecht, V.; Verhaevert, J.; Van Hecke, T.; Rogier, H. The influence of random element displacement on DOA estimates

obtained with (Khatri–Rao-) root-MUSIC. Sensors 2014, 14, 21258–21280. [CrossRef]
19. Inghelbrecht, V.; Verhaevert, J.; Van Hecke, T.; Rogier, H.; Moeneclaey, M.; Bruneel, H. Stochastic framework for evaluating the

effect of displaced antenna elements on DOA estimation. IEEE Antennas Wirel. Propag. Lett. 2016, 16, 262–265. [CrossRef]
20. Van der Vorst, T.; Van Eeckhaute, M.; Benlarbi-Delai, A.; Sarrazin, J.; Horlin, F.; De Doncker, P. Propagation of uncertainty in

the MUSIC algorithm using polynomial chaos expansions. In Proceedings of the 11th European Conference on Antennas and
Propagation, Paris, France, 19–24 March 2017; pp. 820–822.

21. Van der Vorst, T.; Van Eeckhaute, M.; Benlarbi-Delai, A.; Sarrazin, J.; Quitin, F.; Horlin, F.; De Doncker, P. Application of
polynomial chaos expansions for uncertainty estimation in angle-of-arrival based localization. In Uncertainty Modeling for
Engineering Applications; Springer: Berlin/Heidelberg, Germany, 2019; pp. 103–117.

22. Bernstein, S. Sur l’ordre de la Meilleure Approximation des Fonctions Continues par des Polynômes de Degré Donné; Hayez, Imprimeur
des Académies Royales: Brussels, Belgium 1912; Volume 4.

23. Trefethen, L.N. Approximation Theory and Approximation Practice; Siam: Philadelphia, PA, USA, 2019; Volume 164.

92



Sensors 2022, 22, 5229

24. Georg, N.; Römer, U. Conformally mapped polynomial chaos expansions for Maxwell’s source problem with random input data.
Int. J. Numer. Model. Electron. Netw. Devices Fields 2020, 33, 2776. [CrossRef]

25. Hale, N.; Trefethen, L.N. New quadrature formulas from conformal maps. SIAM J. Numer. Anal. 2008, 46, 930–948. [CrossRef]
26. Alpert, B.K. Hybrid Gauss-trapezoidal quadrature rules. SIAM J. Sci. Comput. 1999, 20, 1551–1584. [CrossRef]
27. Kosloff, D.; Tal-Ezer, H. A modified Chebyshev pseudospectral method with an O(N-1) time step restriction. J. Comput. Phys.

1993, 104, 457–469. [CrossRef]
28. Goossens, R.; Rogier, H.; Werbrouck, S. UCA Root-MUSIC with sparse uniform circular arrays. IEEE Trans. Signal Process. 2008,

56, 4095–4099. [CrossRef]
29. Gautschi, W. Orthogonal polynomials—Constructive theory and applications. J. Comput. Appl. Math. 1985, 12, 61–76. [CrossRef]
30. Golub, G.H.; Welsch, J.H. Calculation of Gauss quadrature rules. Math. Comput. 1969, 23, 221–230. [CrossRef]
31. Hale, N.; Trefethen, L.N. On the Use of Conformal Maps to Speed Up Numerical Computations.Ph.D. Thesis, University of

Oxford, Oxford, UK, 2009.
32. Johnson, N.L.; Kotz, S.; Balakrishnan, N. Beta distributions. In Continuous Univariate Distributions, 2nd ed.; John Wiley and Sons:

New York, NY, USA, 1994; pp. 221–235.
33. Shen, J.; Tang, T.; Wang, L.L. Orthogonal polynomials and related approximation results. In Spectral Methods; Springer:

Berlin/Heidelberg, Germany, 2011; pp. 47–140.
34. Habibi, M.A.; Nasimi, M.; Han, B.; Schotten, H.D. A comprehensive survey of RAN architectures toward 5G mobile communica-

tion system. IEEE Access 2019, 7, 70371–70421. [CrossRef]
35. Molteno, T.C.A.; Kyriazis, N. NEC2++: An NEC-2 Compatible Numerical Electromagnetics Code; University of Otago: Dunedin, New

Zealand, 2014.
36. Pebesma, E.J.; Heuvelink, G.B. Latin hypercube sampling of Gaussian random fields. Technometrics 1999, 41, 303–312. [CrossRef]
37. Hesthaven, J.S.; Gottlieb, S.; Gottlieb, D. Spectral Methods for Time-Dependent Problems; Cambridge University Press: Cambridge,

UK, 2007; Volume 21.
38. Watanabe, A.O.; Ali, M.; Sayeed, S.Y.B.; Tummala, R.R.; Pulugurtha, M.R. A review of 5G front-end systems package integration.

IEEE Trans. Compon. Packag. Manuf. Technol. 2020, 11, 118–133. [CrossRef]
39. Molodtsov, V.; Kureev, A.; Khorov, E. Experimental Study of Smoothing Modifications of the MUSIC Algorithm for Direction of

Arrival Estimation in Indoor Environments. IEEE Access 2021, 9, 153767–153774. [CrossRef]
40. Kotaru, M.; Joshi, K.; Bharadia, D.; Katti, S. Spotfi: Decimeter level localization using wifi. In Proceedings of the 2015 ACM

Conference on Special Interest Group on Data Communication, London, UK, 17–21 August 2015; pp. 269–282.

93



sensors

Article

Reweighted Off-Grid Sparse Spectrum Fitting for DOA
Estimation in Sensor Array with Unknown Mutual Coupling
Liangliang Li 1, Xianpeng Wang 1,*, Xiang Lan 1, Gang Xu 2 and Liangtian Wan 3

1 State Key Laboratory of Marine Resource Utilization in South China Sea, School of Information and
Communication Engineering, Hainan University, Haikou 570228, China; liangliangli0717@126.com (L.L.);
xlan@hainanu.edu.cn (X.L.)

2 State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China; gangxu@seu.edu.cn
3 Key Laboratory for Ubiquitous Network and Service Software of Liaoning Province, School of Software,

Dalian University of Technology, Dalian 116620, China; wanliangtian@dlut.edu.cn
* Correspondence: wxpeng2016@hainanu.edu.cn

Abstract: In the environment of unknown mutual coupling, many works on direction-of-arrival
(DOA) estimation with sensor array are prone to performance degradation or even failure. Moreover,
there are few literatures on off-grid direction finding using regularized sparse recovery technology.
Therefore, the scenario of off-grid DOA estimation in sensor array with unknown mutual coupling
is investigated, and then a reweighted off-grid Sparse Spectrum Fitting (Re-OGSpSF) approach is
developed in this article. Inspired by the selection matrix, an undisturbed array output is formed
to remove the unknown mutual coupling effect. Subsequently, a refined off-grid SpSF (OGSpSF)
recovery model is structured by integrating the off-grid error term obtained from the first-order
Taylor approximation of the higher-order term into the underlying on-grid sparse representation
model. After that, a novel Re-OGSpSF framework is formulated to recover the sparse vectors, where
a weighted matrix is developed by the MUSIC-like spectrum function to enhance the solution’s
sparsity. Ultimately, off-grid DOA estimation can be realized with the help of the recovered sparse
vectors. Thanks to the off-grid representation and reweighted strategy, the proposed method can
effectively and efficiently achieve high-precision continuous DOA estimation, making it favorable for
real-time direction finding. The simulation results validate the superiority of the proposed method.

Keywords: DOA estimation; sensor array; unknown mutual coupling; off-grid error; Sparse Spectrum
Fitting; reweighted sparse recovery

1. Introduction

Parameter estimation has drawn widespread concern and become a research hotspot
in the field of array signal processing over the past few decades, especially for direction-
of-arrival (DOA) estimation [1,2]. To the best of our knowledge, DOA estimation mainly
uses sensor array to sample, analyze, and process spatial signals, achieving azimuth and
elevation angles estimation for interested targets. It is one of the research foundations and
vital components of parameter estimation, which provides precious angle information,
and even prepares for subsequent parameter information like position. It is generally
encountered in various real-life applications, such as unmanned aerial vehicles (UAV),
vehicle localization, navigation, etc [3,4].

Currently, these efforts towards direction finding can be roughly grouped into two cate-
gories, i.e., subspace technologies [5–8] and sparse signal recovery (SSR) attempts [9–13]. The
former are represented by the multiple signal classification (MUSIC) algorithm [5] and the
estimation of signal parameters via rotational invariance techniques (ESPRIT) algorithm [6],
officially opening the era of super-resolution direction finding. Afterwards, subspace estima-
tors [7,8] are successively refined from different aspects, such as accuracy and robustness.
These subspace frameworks largely rest with the eigenvalue decomposition (EVD) of the
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covariance matrix to decouple the subspaces, and then exploit the inherent relationships
between the array manifolds and the decoupled subspaces to estimate DOAs. However, they
are quite susceptible to the effects of signal-to-noise ratio (SNR), snapshots number, coherent
targets, etc. In other words, it is hard for them to obtain the desirable performance under
relatively harsh direction finding circumstances, such as unsatisfactory SNR and insufficient
snapshots. Motivated by the potential spatial sparsity of the targets, the SSR perspective
based on the principle of Compressed Sensing (CS) [14,15] came into being to solve the above
problem. Subsequently, a set of sparsity-aware estimators are structured, including convex
optimization attempts [9–11] and sparse Bayesian learning (SBL) efforts [12,13]. Simulta-
neously, plenty of research results have shown that this not only improves the estimation
accuracy under the conditions of undesirable SNR and snapshots, but also enhances the
robustness to coherent sources [16].

In terms of SBL-based approaches, their estimation accuracy relies heavily on the
discretization degree of the investigated spatial domain. The higher the discretization
degree (i.e., the denser the grid points), the smaller the grid interval, and the heavier the
computational burden, while the lower the discretization degree (i.e., the sparser the grid
points), the larger the grid interval, and the greater the mismatches between the desired
DOAs and the closest candidate directions. Since it is almost impossible to ensure that all
sources fall precisely on the predefined candidate directions, it is hard for the targets to
avoid off-grid error caused by such mismatch.

Many attempts have been made in view of off-grid DOA estimation [17–21]. A
Sparse Spectrum Fitting with Modeling Uncertainty (SpSFMU) scheme [17] is developed by
linearly approximating the off-grid gap in the closest candidate grid points. Compared to its
on-grid SpSF framework, it allows continuous DOA estimation, enhancing the estimation
accuracy or/and relieving the computational load. Inspired by the linear approximation,
a novel off-grid sparse Bayesian inference (OGSBI) approach [18] is presented with the
assumption that the off-grid gap is uniformly distributed within the grid interval, where
the off-grid gap is ultimately calculated by the expectation maximization (EM) strategy. As
shown in [19], a robust block-sparse Bayesian learning framework without noise variance
estimation is further derived via employing the sample covariance matrix. Despite these
approaches [18,19] being robust to off-grid gap, it is computationally expensive for them
to achieve satisfactory estimation accuracy, and their performance remains unacceptable
under the condition of very coarse grids. For realizing a satisfactory performance under
the coarse grid condition without aggravating the computational load, a robust root off-
grid sparse Bayesian learning (Root-OGSBL) method [20] is designed, which dynamically
upgrades predefined grid points via solving a polynomial to reduce off-grid error. Inspired
by [20], a modified off-grid SBL (Re-OGSBL) approach [21] with a forgotten factor scheme
is reported to further refine the dynamic update procedure for grid points.

Although these attempts have some attractive properties, they all either explicitly
or implicitly require ideal array manifolds. In reality, there are plenty of array manifold
perturbations in complex circumstances, such as unknown mutual coupling [22,23] and
gain-phase error [24,25]. It should be noted that for a selected array, the more antennas, the
smaller their spacing, and the more likely to cause space electromagnetic fields interaction
between sensors. In this way, closely-spaced antennas are greatly vulnerable to unknown
mutual coupling effect, destroying the desirable array manifold structure and making these
approaches damaged or invalid in complex electromagnetic environments.

Therefore, many efforts have been devoted to DOA estimation in unknown mutual
coupling [26–33]. Motivated by the spirit of array compensation, a group of auxiliary anten-
nas are additionally placed on the two boundaries of the initial array to avoid the unknown
mutual coupling influence, facilitating the direct utilization of the MUSIC principle [26].
Different from [26], a specific selection matrix [27] is structured to achieve array compensa-
tion through choosing sensors at the ends of the original array to be auxiliary ones. This
attempt provides acceptable direction finding performance with low computational com-
plexity, although at the cost of array aperture. Subsequently, the parameterized decoupling
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work [28] is reported to decouple the DOA information from the unknown mutual coupling.
Despite preserving the entire array aperture well, it leads to a high computational burden.
Except for the attempts achieved by subspace techniques in [26–28], a series of decoupling
investigations on unknown mutual coupling interference have been conducted from the
perspective of SSR [29–33]. As discussed in [29], an enhanced l1-SVD (singular value
decomposition) approach is introduced via using a selection matrix. Afterwards, a block
sparse recovery (BSR) estimator [30] is developed in the data domain by parameterizing
the coupled array manifold. Following the idea of parameterized decoupling, a robust
BSR framework of array covariance vectors is reported as well [31]. However, it is still
subject to the l1-norm approximation, causing limited recovery performance. Afterwards,
weighting techniques have received keen attention for their wide applications in parameter
estimation [32,33], data fusion [34,35], error estimation [36,37], etc. Among them, weighting
research on DOA estimation, i.e., the reweighted BSR approaches [32,33], are performed to
enforce the solution’s sparsity for improving the estimation accuracy of the angle parameter.
Unfortunately, whether the schemes with off-grid error [17–21] or the frameworks under
unknown mutual coupling [26–33], they focus on only one factor that we are interested in,
i.e., off-grid error or unknown mutual coupling.

In fact, there are few studies on off-grid DOA estimation under unknown mutual
coupling [38–40]. According to [38], a revised Root-OGSBL (Root-SBL) method is reported
for off-grid estimation with unknown mutual coupling. Moreover, a novel sparse Bayesian
learning with mutual coupling (SBLMC) estimator [39] for MIMO radar is developed by
the expectation maximum (EM) principle to iteratively update unknown parameters, such
as noise variance, mutual coupling coefficients, and off-grid gap vector. Nevertheless,
such estimation superiority is at the expense of computational burden. Subsequently, an
off-grid sparse recovery algorithm under unknown mutual coupling (OGSRMC) [40] is
presented by iteratively updating DOAs, unknown mutual coupling, and off-grid parame-
ters, which is superior in computational complexity and inferior in estimation accuracy to
the SBLMC method.

In this work, a reweighted off-grid SpSF (Re-OGSpSF) scheme is presented for DOA
estimation in the environment of unknown mutual coupling. The proposed estimator not
only incorporates the off-grid error term into the underlying on-grid sparse recovery model
to enhance the robustness, but also utilizes the reweighted strategy to ensure accuracy.
Hence, the proposed Re-OGSpSF framework can realize high-precision continuous DOA
estimation with low computational burden by adopting a coarse grid interval. Massive
experimental results are displayed to validate the above inferences. The main contributions
of this paper are listed as follows:

(1) Designing a selection matrix to eliminate the unknown mutual coupling interference;
(2) Formulating an improved off-grid SpSF (OGSpSF) framework for off-grid DOA

estimation by joint sparse recovery;
(3) Developing a MUSIC-like weighted matrix to reweight the OGSpSF scheme for

strengthening the solution’s sparsity.

The remainder of this article is structured as follows: In Section 2, an actual data model
affected by unknown mutual coupling is first defined. Then, a novel Re-OGSpSF scheme
is explored for direction finding with unknown mutual coupling of the sensor array in
Section 3. Subsequently, Section 4 presents the relevant remarks of this work. Afterwards, a
series of simulation results are given to validate the superiority of the proposed framework
in Section 5. Finally, Section 6 presents the conclusion of this paper.

Additionally, the relevant key notations involved in this work are explained in the
following Table 1.
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Table 1. Relevant key notations.

Notations Definitions

(·)T , (·)∗, and (·)H Transpose, conjugate, and conjugate-transpose
0M×K M× K dimensional zero matrix

IM M×M dimensional identity matrix
diag{·} Diagonalization operator

E{·} Mathematical expectation operator
⊗ and � Kronecker and Khatri–Rao products

| · | and det{·} Absolute value and determinant operators
min{·} and max{·} Return the minimum and maximum value operators
‖ · ‖0, ‖ · ‖1, and ‖ · ‖2 l0-norm, l1-norm, and l2-norm

2. The Coupled Signal Model

Consider a uniform linear array (ULA) configured with M omnidirectional sensors,
each separated by the spacing d. d ≤ λd/2, where λd refers to the signal wavelength. K
narrowband uncorrelated sources {sk}K

k=1 are incident on the ULA from distinct direc-
tions {θk}K

k=1, where there is reason to believe that K is known exactly in advance [24,25].
Therefore, the ideal array output can be structured as

x(t) = As(t) + n(t) (1)

where x(t) = [x1(t), x2(t), . . . , xM(t)]T ∈ CM×1 means the ideal received data. s(t) =
[s1(t), s2(t), . . . , sK(t)]T ∈ CK×1 reveals the signal vector. n(t) = [n1(t), n2(t), . . . , nM(t)]T ∈
CM×1 represents a stochastic Gaussian white noise vector, which follows n(t) ∼ N(0, σ2IM)
with noise power σ2. A = [a(θ1), a(θ2), . . . , a(θK)] ∈ CM×K denotes the array manifold
matrix, where a(θk) = [1, η(θk), . . . , ηM−1(θk)]

T ∈ CM×1 refers to the steering vector with
η(θk) = e−j2πd/λd sin θk .

For a fixed array, the greater the number of antennas, the closer the sensors, and
the greater the possibility of space electromagnetic fields interaction between them. In
other words, the sensors are too close to escape such interaction, causing unknown mutual
coupling disturbance between closely-spaced sensors. Under such a scenario, the ideal
structure of the array manifold is disturbed and then coupled as

â(θk) = Ga(θk) (2)

where G ∈ CM×M represents a mutual coupling matrix (MCM). According to [26], it is
rational for MCM to depict its intrinsic properties with the complex banded symmetric
Toeplitz structure. The mutual coupling coefficients between the sensors are inversely
proportional to their spacing, i.e., the greater the antenna distance, the smaller the mutual
coupling coefficients. What is more, the magnitude of the mutual coupling coefficient
decreases rapidly when the antenna spacing increases [23]. In this way, it is reasonable to
assume that the sensors far enough away are immune to the effect of unknown mutual
coupling, i.e., the corresponding coefficients in the MCM are zero. Therefore, MCM
is typically modeled as a banded symmetric Toeplitz matrix with just a few nonzero
coefficients [23,29], i.e.,
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G = Toeplitz([1, g1, . . . , gH , 01×(M−H−1)])

=




1 g1 · · · gH
g1 1 g1 · · · gH 0
...

. . . . . . . . . . . . . . .
gH · · · g1 1 g1 · · · gH

. . .
...

. . . . . . . . . . . . . . .
gH · · · g1 1 g1 · · · gH

. . .
...

. . . . . . . . .
...

0 gH · · · g1 1 g1
gH · · · g1 1




M×M

(3)

where {gc}H
c=1 reveal H unknown non-zero mutual coupling coefficients that satisfy

0 < |gH | < |gH−1| <, . . . ,< |g1| < |g0| = 1.
Under the condition of unknown mutual coupling, (1) should be rewritten as

x(t) = GAs(t) + n(t) (4)

By collecting T snapshots, the coupled array output matrix can be formed as

X = GAS + N (5)

where X = [x(t1), x(t1), . . . , x(tT)] ∈ CM×T refers to the coupled array output. Â =
GA = [â(θ1), â(θ2), . . . , â(θK)] ∈ CM×K reveals the coupled array manifold matrix with
â(θk) = Ga(θk)(K = 1, 2, . . . , K). S = [s(t1), s(t2), . . . , s(tT)] ∈ CK×T is the source matrix.
N = [n(t1), n(t2), . . . , n(tT)] ∈ CM×T indicates the noise matrix.

3. Re-OGSpSF for DOA Estimation in Sensor Array with Unknown Mutual Coupling

In this section, an effective Re-OGSpSF estimator is structured for off-grid DOA
estimation with sensor array under the condition of unknown mutual coupling. Under such
a framework, an enhanced OGSpSF representation model is constructed by integrating the
off-grid error term obtained from the first-order Taylor approximation of the higher-order
term into the underlying on-grid sparse recovery one. What is more, a weighted matrix
is achieved by the MUSIC-like principle to reweight the OGSpSF scheme for improving
the estimation accuracy. Hence, such an off-grid estimator can provide continuous DOA
estimation to enforce the estimation accuracy or/and reduce the computational burden
when an off-grid case occurs. In this way, it enables effective and efficient high-precision
continuous off-grid estimation that would be more suitable for real-time direction finding.

3.1. Eliminating the Effect of Unknown Mutual Coupling

Obviously, the actual steering vector contains unknown mutual coupling coefficients,
indicating that numerous DOA estimation approaches, including the SSR manner, will
fail to work. In order to study the DOA estimation issue from the SSR perspective, it is
quite necessary for the sparse reconstruction model to structure the effective over-complete
dictionary. In other words, the unknown mutual coupling interference should be removed
first for direction finding. According to (3), the specific selection matrix [29] is designed as

J = [0(M−2H)×H , I(M−2H), 0(M−2H)×H ] (6)

Then, multiplying the selection matrix J by the coupled steering vector in (2) yields

ã(θk) = Jâ(θk) = JGa(θk) = ξk~a(θk) (7)
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where ξk =
H
∑

h=−H
g|h|e−j2πd/λd(h+H) sin θk indicates a constant for each true target. ~a(θk) =

[1, η(θk), . . . , η
~M−1(θk)]

T ∈ C ~M×1 refers to a new array manifold with ~M = M− 2H. It suc-
cessfully decouples the DOAs parameter from the unknown mutual coupling coefficients,
despite not using H antennas on each side of the ULA.

Inspired by (7), (5) can be greatly decoupled as

Y = JX = J(GAS + N) = JGAS + JN = ~AΛΛΛS + ~N = ~A~S + ~N (8)

where Y = [y(t1), y(t1), . . . , y(tT)] ∈ C ~M×T reveals the array output free from unknown
mutual coupling interference. ~A = [~a(θ1),~a(θ2), . . . ,~a(θK)] ∈ C ~M×K denotes the decoupled
array manifold matrix, like A in (1). ΛΛΛ = diag{ξ1, ξ2, . . . , ξK} ∈ CK×K stands for a diagonal
matrix that can be integrated with matrix S to generate a revised signal matrix~S. ~N ∈ C ~M×T

represents the modified noise matrix.

3.2. SpSF Principle

According to (8), the covariance matrix of Y can be denoted as

R = E{YYH} = ~AR~S
~A

H
+R~N = ~Adiag{ρ2

1, ρ2
2, . . . , ρ2

K}~A
H
+σ2I ~M

(9)

where R~N = σ2I ~M denotes the noise covariance matrix. R~S = diag{ρ2
1, ρ2

2, . . . , ρ2
K}means

the signal covariance matrix, where ρ2
k stands for the k-th signal power.

Based on (9), it can be found that the array aperture can be enlarged by performing
the covariance vectorization operation. Then, vectoring R yields

rv = vec(R) = (~A
∗ �~A)~u +~nv = ~Av~u +~nv (10)

where ~Av = ~A
∗ � ~A = [~av(θ1),~av(θ2), . . . ,~av(θK)] ∈ C ~M2×K is the virtual array manifold

matrix, where~av(θk) =~a∗(θk)⊗~a(θk) ∈ C ~M2×1 denotes the virtual array manifold, unlike
the steering vector ~a(θk) in (8). Obviously, such a vectorized signal model effectively
increases the degrees of freedom (DOFs) of the virtual array and expands the array aperture.
~u = [ρ2

1, ρ2
2, . . . , ρ2

K]
T ∈ CK×1 and~nv = vec(R~N) = σ2vec(I ~M) ∈ C ~M2×1.

Inspired by (10), a sparsity-inducing scheme can be structured for DOA estimation.
Through discretizing the spatial domain uniformly and densely enough, a set of candidate
directions can be achieved, that is, θ̄θθ = {θ̄1, θ̄2, . . . , θ̄N}(N > K). In this way, it is reasonable
to assume that all source DOAs fall exactly on the candidate directions of set θ̄θθ. Then, an
over-complete dictionary can be modeled as

Āv = Ā∗ � Ā=[~av(θ̄1),~av(θ̄2), . . . ,~av(θ̄N)]∈ C ~M2×N (11)

where Ā = [~a(θ̄1),~a(θ̄2), . . . ,~a(θ̄N)] ∈ C ~M×N and~av(θ̄n) =~a∗(θ̄n)⊗~a(θ̄n) ∈ C ~M2×1.
Combining (11), (10) can be sparsely expressed as

rv = (Ā∗ � Ā)ū +~nv = Āvū +~nv (12)

where ū = [ρ̄2
1, ρ̄2

2, . . . , ρ̄2
N ]

T ∈ CN×1 reveals the K-sparse vector of signal power due to
the existence of K sources. K non-zero entries in ū correspond to the desired DOAs and
are equal to that in~u, i.e., {ρ2

k}
K
k=1. In this way, such a direction-finding problem can be

turned into a sparse reconstruction issue, where DOAs can be determined by scanning the
locations of K non-zero entries in the sparse vector ū.

To the best of our knowledge, the l0-norm penalty is considered to be the theoretically
optimal choice for measuring sparsity. Unfortunately, as a classical non-convex and non-
deterministic polynomial (NP)-hard issue, l0-norm penalty is mathematically intractable.
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That is to say, l0-norm penalty may not be applicable in actual direction finding. Inspired
by [22,33], it is rational for the sparsity-inducing scheme to recover the sparse matrix via
using l1-norm optimization rather than l0-norm minimization. Through convex approx-
imation, l1-norm penalty turns the non-convex scenario into a convex one to relieve the
computational load. Following this thought, the l1-norm penalty scheme can be structured
as

min‖ū‖1 s.t. ‖rv − Āvū‖2
2 6 ς, ū > 0 (13)

where ς refers to the regularization parameter, which balances the fitting error and signal
sparsity and is crucial to robust sparse recovery. Its detailed explanation can be found in
Remark 1 of the Related Remarks in Section 4.

In (9), R is an ideal covariance matrix based on the infinite number of snapshots,
which is unavailable in practice. In actual situations, R is usually replaced by the sample
covariance matrix under a finite number of snapshots T, i.e.,

R̄ =
1
T

T

∑
t=1

Y(t)YH(t) (14)

It is easy to find that there is a fitting error between R and R̄ caused by the finite
snapshots, that is, ∆R = R̄−R. In this way, (10) should be revised as follows:

r̄v = vec(R̄)= vec(R + ∆R) = rv + ∆r = ~Av~u +~nv + ∆r (15)

where ∆r = r̄v − rv = vec(∆R) = vec(R̄−R) refers to the covariance fitting error vector.
Then, (15) can be further sparsely modeled as

r̄v = (Ā∗ � Ā)ū +~nv + ∆r = Āvū +~nv + ∆r (16)

Inspired by [10,11], ∆r obeys the distribution as follows:

∆r ∼ AsN(0 ~M2×1, W) (17)

where W = RT⊗R
T . AsN(µ, v) indicates the asymptotically normal (AsN) distribution,

whose mean and variance are equal to µ and v, respectively. Obviously, ∆r does not obey
the standard normal distribution and ς is hard to calculate at this time. Whereas, with the
help of asymptotic characteristic of ∆r, it is easy to determine the parameter ς.

Combining the principle of linear algebra yields

W− 1
2 ∆r ∼ AsN(0 ~M2×1, I ~M2) (18)

As depicted in (18), it can be directly deduced that

∥∥∥W− 1
2 ∆r

∥∥∥
2

2
∼ Asχ2( ~M2) (19)

where Asχ2(ν) obeys the asymptotically chi-square distribution with ν DOFs.

Let W̄ = R̄T⊗R̄
T and n̄v = σ̄2vec(I ~M) be estimates of W and~nv, respectively. Addition-

ally, σ̄2 is the estimated noise power. Combining (16) with (19) yields

min‖ū‖1 s.t.
∥∥∥W̄− 1

2 (r̄v − n̄v − Āvū)
∥∥∥

2
6 √ς, ū > 0 (20)

In this way, DOA estimation can be achieved by the spatial spectrum of the recovered
sparse vector ū.
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3.3. Off-Grid SpSF (OGSpSF) for DOA Estimation

It is clear that the sparse vector ū in (20) can indeed be recovered for DOA estimation.
Unfortunately, it only considers the on-grid case by default. In practice, the spatial domain
can hardly be discretized adequately to generate continuous candidate sampling grids, but
the target directions are continuous variables. Thus, it is difficult for the predefined grid
points to accurately match the actual angles. In other words, there is an inevitable off-grid
gap between the desired DOAs and the candidate grid points, degrading the estimation
performance to some extent. Inspired by the linear approximation thought in [17], an
effective OGSpSF representation model is formed by integrating the off-grid error term
derived from the first-order Taylor approximation into the original on-grid sparse recovery
one to guarantee the robustness and accuracy.

It is known that the candidate direction θ̄n is mismatched with the true DOA θK under
the off-grid scenario. Furthermore, it is not hard to find that each element of the virtual
array manifold~av(θk) in (10) can be represented as [~av(θk)]~m = e−j2πd/λd~m sin θk with integer
~m ∈ [1− ~M, ~M− 1]. Resorting to [~av(θ̄n)]~m in (11), [~av(θk)]~m can be depicted as

[~av(θk)]~m = e−j2πd/λd~mδn × [~av(θ̄n)]~m (21)

where [~av(θ̄n)]~m = e−j2πd/λd~m sin θ̄n . θ̄n ∈ θ̄θθ is the sampling grid point closest to θk and
δn = sin θk − sin θ̄n indicates the offset parameter. Inspired by the Taylor expansion in
algebraic theory, e−j2πd/λd~mδn can be replaced by its first-order Taylor approximation, i.e.,
e−j2πd/λd~mδn ≈ [1 + (−j2πd/λd~mδn)].

Then, (21) can be approximated to

~m = e−j2πd/λd~mδn × [~av(θ̄n)]~m

≈ [1 + (−j2πd/λd~mδn)][~av(θ̄n)]~m

≈ [~av(θ̄n)]~m + (−j2πd/λd~m)[~av(θ̄n)]~mδn

(22)

According to (22), it can be deduced that the virtual array manifold ~av(θk) can be
composed of~av(θ̄n) and~bv(θ̄n)δn, where~bv(θ̄n) can be recorded as

~bv(θ̄n) = ΓΓΓ~av(θ̄n) (23)

where ΓΓΓ = diag{φφφ} ∈ C ~M2× ~M2
indicates a diagonal matrix with φφφ = [φ1, φ2, . . . , φ ~M2 ] =

−j2πd/λd[0, 1, . . . , ~M− 1,−1, 0, . . . , ~M− 2, . . . , 2− ~M, 3− ~M, . . . , 1, 1− ~M, 2− ~M, . . . , 0] ∈
C1× ~M2

. Obviously, its diagonal element corresponding to [~av(θ̄n)]~m is equal to−j2πd/λd~m.
By separating the unknown variable δn and the known parameter −j2πd/λd~m,~bv(θ̄n) can
finally be known, despite δn being hard to determine due to the presence of sin θk.

In this way, another over-complete dictionary B̄v, except for Āv in (11), can be further
structured to help construct the off-grid sparse recovery model, which takes the following
form:

B̄v = ΓΓΓĀv = [~bv(θ̄1),~bv(θ̄2), . . . ,~bv(θ̄N)] ∈ C ~M2×N (24)

Following (22) and (24), the on-grid sparse representation model in (16) should be
refined to an OGSpSF recovery one, i.e.,

r̄v = vec(R̄) = (Āv + ΓΓΓĀv∆∆∆)ū +~nv + ∆r = Āvū + B̄vv̄ +~nv + ∆r (25)

where ∆∆∆ = diag{δ1, δ2, . . . , δN} ∈ CN×N denotes a diagonal matrix associated with the
unknown DOAs information that can be integrated with ū to structure a new virtual signal
power vector v̄, i.e., v̄ = ∆∆∆ū = [q̄2

1, q̄2
2, . . . , q̄2

N ]
T = [δ1ρ̄2

1, δ2ρ̄2
2, . . . , δN ρ̄2

N ]
T ∈ CN×1.

On the one hand, it is preferable for the estimated spatial spectrum to associate the
non-zero signal powers with the nearest sampling grid points. ρ̄2

n in the sparse vector
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ū means the signal power centered at the sampling grid point θ̄n. Thus, the following
restriction is given as:

γn 6 δn 6 βn, n = 1, 2, . . . , N (26)

where

γn = sin
θ̄n−1 + θ̄n

2
− sin θ̄n, n = 2, 3, . . . , N (27)

βn = sin
θ̄n+1 + θ̄n

2
− sin θ̄n, n = 1, 2, . . . , N − 1 (28)

where γ1 = 0 and βN = 0.
On the other hand, as ū > 0 (i.e., ρ̄2

n > 0, n = 1, 2, . . . , N), the following constraint can
be further deduced from (26):

γnρ̄2
n 6 q̄2

n 6 βnρ̄2
n, n = 1, 2, . . . , N (29)

Observing (25), when there is no source from the candidate directions set centered on
θ̄n, the corresponding spatial spectrum entries in the sparse vectors ū and v̄ are ūn = 0 and
v̄n = 0, respectively. Hence, ū takes the same support set (i.e., row sparsity) as v̄, which
promotes group sparsity between the sparse vectors ū and v̄ [17]. This group sparsity of
[ū, v̄] can be exploited as the objective function, and then an OGSpSF scheme can be built
for off-grid DOA estimation, i.e.,

min
∥∥∥Pl2

∥∥∥
1

s.t.
∥∥∥W̄− 1

2 (r̄v − n̄v − Āvū− B̄vv̄)
∥∥∥

2
6√ς

γnρ̄2
n 6 q̄2

n 6 βnρ̄2
n, ρ̄2

n > 0, n = 1, 2, . . . , N
(30)

where Pl2 = [ū, v̄]l2 = [ p̄1, p̄2, . . . , p̄N ]
T ∈ CN×1, whose nth entry p̄n equals the l2-norm of

the nth row in P = [ū, v̄], i.e.,

p̄n =

√√√√
2

∑̄
j=1

(pn, j̄)
2, n = 1, 2, . . . , N (31)

where pn, j̄ is an element in P with the coordinate index (n, j̄).
Obviously, the off-grid estimation trouble was finally transformed into a joint sparse

recovery problem by exploiting the group sparsity of P = [ū, v̄]. With the help of the
recovered sparse vectors ū and v̄ in (30), the problem of off-grid DOAs can be solved.

Specifically, the positions of K peaks, i.e., n1, n2, . . . , nK, can first be determined by
plotting the spatial spectrum of the recovered sparse vector ū. Subsequently, the final
off-grid DOA estimation can be computed based on the recovered sparse vectors ū and v̄,
as follows:

θ̂k = arcsin[sin θ̄nk + v̄nk /ūnk ], k = 1, 2, . . . , K (32)

where ūnk > 0, k = 1, 2, . . . , K is supposed here.
Such a convex constraint framework reasonably utilizes the group sparsity of P =

[ū, v̄] to facilitate continuous off-grid DOA estimation. Consequently, it is favorable for
direction finding under off-grid condition to enhance the robustness and accuracy. What
is more, this framework can quickly achieve high-precision continuous DOA estimation
by exploiting a coarse grid interval to reduce the computational burden. In this way, such
feasible off-grid scheme is applicable to real-time direction finding scenarios.

Unfortunately, the penalty scheme in (30) realizes off-grid DOA estimation by relaxing
the l0-norm constraint to the l1-norm one, generating an approximation error and compro-
mising the recovery accuracy. In view of the limited recovery performance, the following
subsection will reweight the OGSpSF framework in (30) to enhance accuracy.
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3.4. Reweighted OGSpSF (Re-OGSpSF) for DOA Estimation in Sensor Array with Unknown
Mutual Coupling

As the l1-norm is just a convex approximation of the l0-norm, there will inevitably
be a difference between these two penalty ways. Different from the impartial l0-norm
optimization, the penalty for larger coefficients outweighs that for smaller coefficients
in the l1-norm constraint scheme, which means that the two sparse vectors ū and v̄ or
the sparse vector Pl2 in (30) cannot be recovered well. For acquiring better recovery
performance in the l1-norm constraint scheme, a weighted attempt achieved by the MUSIC-
like principle [22,33] is carried out to strengthen the solution’s sparsity.

First, imposing eigenvalue decomposition on R̄ yields

R̄ =
~M

∑
~m=1

τ~mααα~mαααH
~m = EsΛΛΛsEH

s + EnΛΛΛnEH
n (33)

where τ~m and ααα~m stand for the ~mth eigenvalue and the corresponding eigenvector of
the sample covariance matrix R̄, respectively. ΛΛΛs = diag{τ1, τ2, . . . , τK} ∈ CK×K and
ΛΛΛn = diag{τK+1, τK+2, . . . , τ~M} ∈ C( ~M−K)×( ~M−K). The signal subspace Es and the noise
subspace En are formed by eigenvectors corresponding to K larger eigenvalues and ~M− K
smaller eigenvalues, respectively.

Then, as the decoupled steering vector is orthogonal to its noise subspace, a spatial
spectrum function of MUSIC-like is structured as

fMUSIC(θ) = arg min
{

det{~aH(θ)EnEH
n~a(θ)}

}
(34)

Since the over-complete dictionary Āv in (11) is obtained by sparsely representing ~Av
in (10), it is still orthogonal to its noise subspace, facilitating the weights establishment.
Without loss of generality, the over-complete dictionary Āv can be partitioned into two
sub-matrices, i.e., Āv = [Āv1 , Āv2 ]. The former, Āv1 , is assumed to be formed by K array
manifolds corresponding to the desired target directions, while the latter, Āv2 , is thought to
be made up of the remaining N − K steering vectors. According to (34), the initial weights
can be depicted as

ẑn =det{~aH(θ̄n)EnEH
n~a(θ̄n)}, n=1, 2, . . . , N (35)

where the initial weight ẑn corresponds to the possible target angle θ̄n. Based on (35), the
weights can be further expressed as

z̄n = ẑn/max{ẑ1, ẑ2, . . . , ẑN}, n=1, 2, . . . , N (36)

At last, a robust MUSIC-like weighted matrix achieved by (36) can be established as

Z = diag{z} (37)

where z = [z1, z2] = [z̄1, z̄2, . . . , z̄N ]. z1 contains K weights corresponding to the real DOAs,
smaller than that in z2 formed by the residual weights. In particular, the weights in z1 satisfy
z1 → 0 when the number of snapshots T → ∞. Through applying the weighted matrix
to the l1-norm penalty framework, smaller weights in z1 protect larger coefficients, while
larger weights in z2 punish smaller coefficients that are more likely to be zero. Accordingly,
they can be punished as fairly as possible, no matter the larger or smaller coefficients in the
sparse vectors ū and v̄.

Implanting the weighted matrix Z into the sparsity-inducing framework in (30) yields

min
∥∥∥ZPl2

∥∥∥
1

s.t.
∥∥∥W̄− 1

2 (r̄v − n̄v − Āvū− B̄vv̄)
∥∥∥

2
6√ς

γnρ̄2
n 6 q̄2

n 6 βnρ̄2
n, ρ̄2

n > 0, n = 1, 2, . . . , N
(38)
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The reweighted off-grid constraint framework in (38) can be successfully computed
by using second order cone (SOC) programming software packages in MATLAB, such as
CVX and Sedumi. Similarly, the final off-grid estimation can be realized by calculating (32).

So far, an efficient Re-OGSpSF approach has been developed to solve the off-grid DOA
estimation problem in the environment of unknown mutual coupling. The entire procedure
of the proposed method is given in Algorithm 1.

Algorithm 1 Re-OGSpSF for DOA estimation in sensor array with unknown mutual
coupling

1: Input: The coupled received data X in (5);
2: Formulate a decoupled array output Y using (8) by left multiplying the selection matrix

J in (6) to eliminate the unknown mutual coupling effect;
3: Compute the sample covariance matrix R̄ of Y based on (14);
4: Perform vectorization attempt on R̄ to establish a vector data model given in (15);
5: Impose eigenvalue decomposition on R̄ by (33) to obtain the noise subspace En;
6: Structure the over-complete dictionaries Āv in (11) and B̄v in (24) to achieve an enhanced

OGSpSF recovery model in (25);
7: Design a MUSIC-like weighted matrix Z using (37) to reinforce the solution’s sparsity;
8: Develop an effective Re-OGSpSF framework adopting (38) for off-grid DOA estimation

by joint sparse recovery;
9: Output: The recovered sparse vectors ū and v̄;

10: Perform a 1-D spectrum search on the vector ū to determine the indices of its K peaks.
11: Calculate off-grid DOAs based on the recovered sparse vectors ū and v̄ by (32).

4. Related Remarks

Remark 1. To the best of our knowledge, it is extremely critical for (38) to determine the estimated
noise power σ̄2 and an appropriate regularization parameter ς. On the one hand, σ̄2 can be computed
via averaging ~M− K smaller eigenvalues of the sample covariance matrix R̄. On the other hand, ς
plays an extremely vital role in robust sparse reconstruction, balancing the fitting error and signal
sparsity. Inspired by (19), the fitting error in (20), (30), and (38) follows the asymptotic chi-square
distribution with ~M2 DOFs. Hence, ς can be determined via the upper bound of the fitting error
with a high probability ~ρ, i.e.,

Pr{χ2( ~M2) 6 ς} = ~ρ, ς = χ2
~ρ(

~M2) (39)

where Pr{·} reveals the probability distribution of the event. In this way, ς can finally be determined
by using the function chi2inv(~ρ, ~M2) in MATLAB, where ~ρ = 0.999 is enough in this paper.

Remark 2. This paper mainly focuses on off-grid DOA estimation under the condition of unknown
mutual coupling, and then proposes an enhanced Re-OGSpSF algorithm. For the off-grid error, the
off-grid representation is carried out in this article. To be specific, the off-grid error term obtained
from the first-order Taylor approximation is integrated into the potential on-grid sparse model to
construct the OGSpSF recovery model. To better and more intuitively verify the robustness of
the proposed methodology to the off-grid error, a potential reweighted approach using the SpSF
principle under the condition of unknown mutual coupling can be obtained by removing the off-grid
representation in (21). To distinguish it from the proposed (Re-OGSpSF) framework, it can be
defined as the reweighted SpSF (Re-SpSF) method. Specifically, according to the SpSF principle in
Section 3.2, DOA estimation can be obtained with the help of the recovered sparse vector ū. However,
the approximate penalty for replacing the l0-norm constraint with the l1-norm one causes limited
reconstruction performance. Thus, the SpSF principle in Section 3.2 is combined with the weighted
measure in Section 3.4 to form the Re-SpSF framework, i.e.,

min‖Zū‖1 s.t.
∥∥∥W̄− 1

2 (r̄v − n̄v − Āvū)
∥∥∥

2
6 √ς, ū > 0 (40)
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Due to the off-grid representation, the proposed scheme can provide continuous DOA estima-
tion. From the perspective of estimation accuracy, the proposed Re-OGSpSF method mitigates the
interference of off-grid error to a certain extent, enhances the robustness against off-grid error, and
improves the estimation accuracy. In terms of angle estimation speed, the proposed Re-OGSpSF
method can quickly perform high-precision continuous direction finding by setting a coarse grid
interval, which relieves the computational burden and speeds up the DOA estimation. In general,
the proposed methodology is effective and efficient in achieving high-precision continuous off-grid
DOA estimation, which is more suitable for real-time direction finding in practical applications.
This will be demonstrated in the subsequent simulation experiments.

5. Numerical Simulation Results

In this section, extensive simulation experiments are performed to validate the estima-
tion performance of the proposed Re-OGSpSF scheme. In order to show the effectiveness
and efficiency, several estimators are simultaneously tested to compare with the proposed
approach, including the l1-SVD algorithm (recorded as SVD method) in [29], the BSR
approach in [30], the SRACV method in [31], the reweighted SRACV framework (recorded
as ReSRACV method) in [32], the potential Re-SpSF scheme (recorded as Re-SpSF method)
in (40), and the Root-SBL estimator in [38]. Furthermore, as a benchmark for performance
evaluation, the Cramer–Rao bound (CRB) in [41] is calculated as well. Additionally, the
root means square error (RMSE) is computed to measure their accuracy, denoted as

RMSE =

√√√√ 1
LK

L

∑
l=1

K

∑
k=1

(θl,k − θk)2 (41)

where θl,k reveals the estimated value of the desired DOA θk at the lth Monte Carlo running.
L = 200 stands for the total number of Monte Carlo trials in this article.

In what follows, M = 10 sensors are configured to structure a ULA, which are evenly
separated by half-wavelength spacing, i.e., d = λd/2. Suppose there are K = 2 narrow-
band uncorrelated targets from distinct directions incident on the ULA, where DOAs
are recorded as θ1 = −7.3◦ and θ2 = 4.2◦, respectively. Moreover, there are three non-
zero coefficients in the MCM with H = 2, that is, g0 = 1, g1 = 0.6864− j0.4776, and
g2 = 0.2069− j0.1024. In addition, the discrete grid spacing ε of the spatial domain from
−90◦ to 90◦ is set to 1◦.

Figure 1 describes the spatial spectrum of all estimators with SNR = 0 dB and T = 200.
Additionally, their corresponding estimation results are recorded in Table 2. On the one
hand, there are two sharp peaks for these approaches in Figure 1, implying that they are
able to maintain direction finding under unknown mutual coupling and off-grid conditions.
What is more, it is not hard to find that the peaks of the Root-SBL approach are the least
sharp and the sidelobe is the highest, while the peaks of the potential Re-SpSF and the
proposed methods are the sharpest and the sidelobes are the lowest. On the other hand,
Table 2 depicts the proposed method outperforms the Re-SpSF and ReSRACV algorithms,
and is the closest to the real DOAs among these estimators. Since the estimated DOAs
of Re-SpSF are the same as those of the ReSRACV, Re-SpSF and ReSRACV frameworks
show a similar estimation performance. Conversely, the SVD and BSR algorithms are
furthest from the desired DOAs and have the worst performance. Moreover, the Root-SBL
estimator is overall closer to the true DOAs than the SRACV framework, but not as close as
the Re-SpSF and ReSRACV approaches. Hence, the proposed method is superior to other
algorithms in terms of resolution and accuracy.
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Figure 1. The spatial spectrum of all methods.

Table 2. Comparison of estimation results of all methods.

Methods DOA 1 DOA 2

SVD Method −8.0000◦ 5.0000◦

BSR Method −8.0000◦ 5.0000◦

SRACV Method −8.0000◦ 4.0000◦

ReSRACV Method −7.0000◦ 4.0000◦

Re-SpSF Method −7.0000◦ 4.0000◦

Root-SBL Method −7.1965◦ 3.7667◦

Proposed Method −7.3479◦ 4.5000◦

Figure 2 reveals the RMSE versus SNR of all methods with T = 200. From Figure 2,
with the increase of SNR, the RMSEs of all methods decrease to a certain extent, i.e., these
estimators improve the estimation accuracy. Among them, the SVD and BSR methods
have the largest RMSEs and the worst performance, where the RMSE of the SVD approach
is close to that of the BSR algorithm over the whole interested SNR range. Meanwhile,
the RMSE of the SRACV approach is lower than that of them, but higher than that of
the ReSRACV and Re-SpSF schemes. That is, the ReSRACV and Re-SpSF estimators are
better than the other three approaches in accuracy, mainly due to their reweighted measure.
Obviously, the RMSEs for the ReSRACV and Re-SpSF schemes are almost equivalent,
revealing that their corresponding estimation performances are very similar. What is more,
it can be found that at low SNR (SNR = −10 dB), the RMSE of the proposed estimator is
slightly greater than that of the ReSRACV algorithm, but less than that of the Root-SBL and
Re-SpSF algorithms, especially the Root-SBL algorithm. As SNR improves, the RMSE of the
proposed method is the lowest and closest to CRB. Its estimation performance is far better
than that of algorithms such as the ReSRACV, Re-SpSF, and Root-SBL schemes. It should
be noted that the difference between Re-SpSF and the proposed algorithm is whether an
off-grid representation is performed. The Re-SpSF algorithm does not perform off-grid
representation, causing a higher RMSE than that of the proposed method. In other words,
thanks to the off-grid representation, the proposed method displays good robustness and
satisfactory estimation accuracy for the off-grid error. In general, the proposed method has
advantages over the other six approaches.
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Figure 2. RMSE versus SNR of all methods.

Figure 3 demonstrates the probability of successful detection (PSD) versus SNR of
all methods with T = 200. If the error between the interested DOAs θk and the estimated
DOAs θ̂k is less than 0.7◦, i.e., |θ̂k − θk| < 0.7◦, the signal source can be considered to be
successfully detected. As expected, the PSDs of all estimators gradually increase as SNR
improves. More importantly, the PSD of the proposed method not only outperforms that of
the other six algorithms over the entire selected SNR range, especially for relatively low
SNRs, but also reaches 100% faster than that of the other algorithms.
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Figure 3. PSD versus SNR of all methods.

Figure 4 illustrates the RMSE versus snapshots of all algorithms with SNR = 5 dB.
Additionally, their corresponding RMSEs are recorded in Table 3. Similar to Figure 2, the
increase in snapshots number promotes the estimation performance of these approaches
to some extent. Simultaneously, the performance of the SVD approach remains similar
to that of the BSR framework, being the worst among these estimators. Furthermore,
it is obvious that the RMSE of the ReSRACV framework is almost the same as that of
the Re-SpSF scheme and much lower than that of the SRACV estimator. This implies
that the ReSRACV and Re-SpSF algorithms have the same estimation performance and
outperform the SRACV framework. This is mainly attributed to the fact that the ReSRACV
framework uses the same reweightwd measure as the Re-SpSF scheme, which reduces
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the RMSE well. However, it is not difficult to find from Table 3 that the RMSEs of the
ReSRACV and Re-SpSF methodologies stop decreasing after reaching a certain level (i.e.,
RMSE = 0.2500), indicating that their accuracy no longer improves and tends to saturate
in such case. This may be because their discrete grid interval (i.e., ε = 1◦) is set too large,
resulting in the increase in snapshots not being enough to resist the influence of off-grid
error on the estimation accuracy. The RMSE of the Root-SBL estimator is lower than those of
the ReSRACV and Re-SpSF schemes, but higher than that of the proposed approach, except
for the case of T = 50. It means that the Root-SBL methodology is superior to the ReSRACV
and Re-SpSF estimators and inferior to the proposed method. Moreover, the RMSE of the
proposed algorithm is lower than that of the potential Re-SpSF framework. That is to say,
the off-grid representation in the proposed method enhances the robustness to off-grid
error well and improves the estimation accuracy. In short, the proposed method takes the
lowest RMSE and the best estimation performance, which is closest to CRB. Therefore, the
proposed method outperforms the other six estimators.
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Figure 4. RMSE versus snapshots of all methods.

Table 3. RMSE under different number of snapshots of all methods.

Method

RMSE Snapshot
50 100 200 300 400 500 600

SVD Method 0.7544 0.7311 0.7240 0.7103 0.6624 0.6372 0.6177
BSR Method 0.8446 0.7587 0.7134 0.6723 0.6333 0.5665 0.5709

SRACV Method 0.6462 0.5978 0.5905 0.5855 0.5620 0.5530 0.5574
ReSRACV Method 0.3313 0.2790 0.2549 0.2517 0.2500 0.2500 0.2500
Re-SpSF Method 0.3298 0.2783 0.2581 0.2500 0.2500 0.2500 0.2500
Root-SBL Method 0.2773 0.2487 0.2307 0.2189 0.2154 0.2120 0.2107
Proposed Method 0.2878 0.1880 0.1343 0.1007 0.0888 0.0767 0.0703

Figure 5 displays the RMSE versus grid interval of all methods, where SNR = 0 dB
and T = 200. In most of the selected grid intervals, the RMSE of the proposed method
is the smallest, closest to 0, and least influenced by the coarse grid intervals. Hence, it
shares the best and most stable estimation performance. The main reason is that it not
only concerns mutual coupling and off-grid errors to reinforce the robustness, but also
exploits the reweighted strategy to improve accuracy. Similarly, the Root-SBL algorithm
also considers all factors, unlike the other five regularization methods that focus only on
mutual coupling. Clearly, when the grid interval is less than 1◦, the RMSE of the Root-
SBL estimator is approximately equal to those of the ReSRACV and Re-SpSF approaches,
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which means that its performance is similar to that of the ReSRACV and Re-SpSF schemes.
This is mainly because the influence of off-grid gap is relatively weak in this way, while
the reweighted measure in the ReSRACV and Re-SpSF estimators ensures high-precision
estimation. As the grid interval increases, the off-grid error dominates among these two
errors, and thus the Root-SBL algorithm is significantly better than the ReSRACV and
Re-SpSF frameworks at this time. Furthermore, the RMSEs of the SVD, BSR, and SRACV
schemes are close, farthest from 0, and most affected by the coarse grid intervals, i.e., their
performances are similar, the worst, and the least stable. It is emphasized that the Re-
SpSF scheme does not perform off-grid representation compared to the proposed method,
so its estimation accuracy is easily affected by off-grid error, especially for coarse grid
intervals. Therefore, the proposed method has not only superior estimation accuracy, but
also satisfactory robustness to off-grid error.
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Figure 5. RMSE versus grid interval of all methods.

Figures 6 and 7 indicate the RMSE and PSD versus SNR of the proposed method for
different number of antennas, respectively. In Figures 6 and 7, the number of snapshots is set
to T = 200. According to Figures 6 and 7, as SNR or/and the number of sensors gradually
increases, the RMSE of the proposed method decreases overall, while the corresponding
PSD gradually enhances to 100%, especially for unsatisfactory SNR. Evidently, the PSD
with M = 11 sensors is higher than that of other sensor numbers, which can be the first
to reach 100%. M = 9 antennas has the lowest PSD, which is the slowest to achieve 100%.
Therefore, the performance of the proposed method can be well enhanced by improving
the SNR and/or the number of antennas. However, it should be pointed out that using a
greater number of antennas to improve accuracy will not only increase the estimation cost,
but also aggravate the computational burden, which is not conducive to real-time direction
finding. In summary, it is a wise choice for practical applications to choose the appropriate
number of antennas for balancing the estimation accuracy and computational load.
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Figure 6. RMSE versus SNR of the proposed method for different number of antennas.

0 5 10 15

SNR(dB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
S

D

M=8

M=9

M=10

M=11

Figure 7. PSD versus SNR of the proposed method for different number of antennas.

Figures 8 and 9 describe the RMSE and PSD versus snapshots of the proposed method
for different number of antennas, respectively. In Figures 8 and 9, SNR is fixed at 0 dB. As
shown in Figures 8 and 9, the larger the number of snapshots or/and sensors, the smaller
the RMSE of the proposed method, and the larger the corresponding PSD, which behaves
like the general trend in Figures 6 and 7. On the one hand, it is feasible for direction finding
to ensure estimation accuracy by increasing the number of antennas or/and snapshots. On
the other hand, it has to be acknowledged that the larger the number of sensors, the higher
the estimation cost, and the heavier the computational complexity. Hence, such superior
estimation accuracy attributed to multiple antennas is at the expense of computational load.
That is to say, a suitable number of sensors is more applicable to the actual direction finding.
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Figure 8. RMSE versus snapshots of the proposed method for different number of antennas.
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Figure 9. PSD versus snapshots of the proposed method for different number of antennas.

6. Conclusions

In this article, an effective and efficient reweighted sparsity-inducing approach achieved
by the OGSpSF framework is presented for off-grid DOA estimation in sensor array with
unknown mutual coupling. In the proposed method, the decoupled received data is de-
signed by exploiting a selection matrix to escape the unknown mutual coupling disturbance.
Then, an enhanced OGSpSF recovery model is constructed by incorporating the linearly
approximated off-grid error term into the potential on-grid sparse model to ensure the
robustness. Subsequently, an upgraded Re-OGSpSF framework is explored for off-grid
DOA estimation using joint sparse recovery, where a MUSIC-like weighted matrix is further
implanted to improve accuracy. Eventually, off-grid DOA estimation can be estimated via
the spatial spectrum of the reconstructed sparse vector. Attributed to the off-grid represen-
tation and reweighted attempt, the proposed method can efficiently provide high-precision
continuous DOA estimation by setting a coarse grid interval, making it more suitable
for real-time direction finding. Extensive simulation results show the effectiveness and
efficiency of the proposed approach.
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Abstract: Subspace methods are widely used in FMCW-MIMO radars for target parameter estima-
tions. However, the performances of the existing algorithms degrade rapidly in non-ideal situations.
For example, a small number of snapshots may result in the distortion of the covariance matrix
estimation and a low signal-to-noise ratio (SNR) can lead to subspace leakage problems, which
affects the parameter estimation accuracy. In this paper, a joint DOA–range estimation algorithm is
proposed to solve the above issues. Firstly, the improved unitary root-MUSIC algorithm is applied
to reduce the influence of non-ideal terms in building the covariance matrix. Subsequently, the
least squares method is employed to process the data and obtain paired range estimation. However,
in a small number of snapshots and low SNR scenarios, even if the impact of non-ideal terms is
reduced, there will still be cases where the estimators sometimes deviate from the true target. The
estimators that deviate greatly from targets are regarded as outliers. Therefore, threshold detection is
applied to determine whether outliers exist. After that, a pseudo-noise resampling (PR) technology is
proposed to form a new data observation matrix, which further alleviates the error of the estimators.
The proposed method overcomes performance degradation in a small number of snapshots or low
SNRs simultaneously. Theoretical analyses and simulation results demonstrate the effectiveness
and superiority.

Keywords: target localization; FMCW-MIMO radar; DOA–range estimation; subspace leakage

1. Introduction

As radar is widely used in autonomous driving and military fields, target localization
has become one of the most important research directions. Although the traditional ultra-
sonic radar and laser radar [1–3] can achieve basic target detection, they are vulnerable to
environmental effects. In harsh weather scenarios, the detection abilities of the above radars
decrease sharply, including (but not limited to) the high costs and low estimation accuracies.
To improve the detection performances in such complex communication environments, a
FMCW-MIMO radar is proposed as a solution [4]. Compared to traditional radars, FMCW-
MIMO radars have great advantages, including high accuracies [5,6], low interception
probabilities [7], and strong anti-jamming abilities [8–11]. Meanwhile, they transmit or-
thogonal waveforms to form virtual array elements and enlarge the array apertures so
that the limited array elements can be used to achieve higher degrees of freedom and
spatial resolutions [12–14]. Thus, FMCW-MIMO radars have great potential for pedestrian
detection or target localization [15–17], especially for multi-target scenarios.

Parameters of the FMCW-MIMO radar include the direction of arrival (DOA), the
direction of departure (DOD), range, Doppler frequency (DF), etc. [18–20]. Recently, more
focus has been placed on target localization work, which includes direction and range
estimation. Fast Fourier transform (FFT) is proposed as a representative technology of the
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target localization [21]. In [22], a novel FFT algorithm for DOA estimation is proposed
with the FMCW-MIMO radar. In the algorithm, the array aperture was expanded with
interpolation technology. However, the estimation resolution was still limited by the
number of sampling points. To further improve the resolution, a method was proposed
in [23], which selects regions of interest in the total samples to reduce redundancy. While
this method is FFT-based, the improvement in resolution is unsatisfactory compared to
other algorithms. For the two-dimensional estimation problem, such as joint DOA–range
estimation, the 2D-FFT [24,25] algorithm has high computational complexity, and the
resolution is highly dependent on the number of sampling points.

Based on the disadvantages of the FFT algorithm, subspace-based algorithms have
been studied, providing new perspectives for target localization. Parameter estimations
based on the FMCW-MIMO system are more about extending the classical subspace-based
algorithms into two-dimensional (2D) structures, such as the joint angle-frequency estima-
tion (JAFE) [26,27] and 2D multi-signal classification (2D-MUSIC) algorithm [28]. In the
2D-MUSIC algorithm, the eigenvalue decomposition (EVD) [29] or singular value decompo-
sition (SVD) [30] is employed to distinguish the signal and noise subspaces of the received
covariance matrix. Based on the orthogonality between two subspaces, a two-dimensional
spectral peak search function is applied to realize the parameter estimation through the
joint search in the DOA–range domain [31]. However, the 2D-MUSIC algorithm requires
decomposing the huge covariance matrix and selecting a suitable grid step to search for the
two-dimensional spectral peaks, leading to great computation complexities and difficulties
in real-time processing. To ensure the resolution and reduce the computational complexity
simultaneously, Kim et al. attempted to combine the subspace algorithm with FFT [32,33].
First, the target parameters were roughly estimated by FFT. Then the MUSIC algorithm
only searched for a small region that was close to the rough result by the FFT. By reduc-
ing the search region, the MUSIC algorithm avoids the redundant search computation.
In [34,35], the authors reduced the computation complexity in a different way. The two
papers respectively used ESPRIT and toot-MUSIC instead of MUSIC to estimate parameters,
where the spectral peak search was replaced by the direct formula solution. To estimate
the coherent source signals, a double smoothing algorithm was proposed in [36]. The
algorithm constructs two double-smoothing matrices, and estimates the angle and delay,
respectively, by using the translation invariance structure. However, the performances of
the above subspace algorithms degrade rapidly in cases of small snapshot numbers or low
SNRs. The reason is the subspace leakage [37–39], which means a part of the real signal
subspace is possibly located in the estimated noise subspace.

In low SNRs or a small number of snapshot scenarios, the covariance matrices of
sample data are different from theoretical covariance matrices. Diagonal loading [40] and
shrinkage-based [41] methods move or scale eigenvalues to improve data covariance, but
their signal and noise projection matrices do not change much. In [42], a random matrix
theory and technology were introduced to improve the performance, but the performance
was satisfactory only when the number of snapshots was considered.

In this paper, we propose a new joint DOA–range estimation algorithm for the FMCW-
MIMO radar system to solve the performance degradation problem of the above algorithms
under a small number of snapshots and low SNR. First, for angle estimation, we propose
an improved algorithm based on the unitary root-MUSIC algorithm [43,44], which mainly
optimizes and updates the covariance matrix of two-dimensional data to reduce the impacts
of non-ideal items. Then, according to the results of the angle estimation, the least squares
method is used to estimate the range information to realize the automatic matching of the
angle and range. These angle and range estimators constitute the target estimation set.
Finally, for the target estimation set, a threshold detection method based on PR technology
is designed to detect and eliminate the abnormal estimation caused by the subspace leakage,
which further improves the accuracy and stability of the target localization. The main
contributions of the proposed method are summarized as follows:
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1. The proposed method achieves a two-dimensional parameter estimation under the
FMCW-MIMO radar system, which overcomes the disadvantages of traditional FFT-
based and subspace-based algorithms. This algorithm has better performance in
regard to a low SNR and a small number of snapshots.

2. We propose a new iterative strategy to optimize the angle estimation and apply the
least squares to the signal model of the FMCW-MIMO radar to achieve multi-target
localization. Therefore, the range and angle parameters can be estimated in pairs.

3. To further improve the target localization accuracy in case of a small number of
snapshots and a low SNR, we introduce a threshold detection and pseudo-noise
resampling algorithm in the joint estimation framework. Through the screening of the
threshold detection and the improvement of the PR method, the unqualified estimates
considered as outliers could be removed and the accuracy of the parameter estimation
improved accordingly.

The rest of this article is organized as follows. Section 2 briefly introduces the signal
model and parameters of the FMCW-MIMO radar. Section 3 describes the proposed
algorithm in detail. In Section 4, numerical examples and simulation results are given and
compared with other algorithms. Conclusions are drawn in Section 5.

The symbol definitions are shown in Table 1 to facilitate the derivation of subse-
quent formulas.

Table 1. Related notation.

Notations Definitions

uppercase bold italic letter matrix
lowercase bold italic letter vector

IM identity matrix of M order
E(·) mathematical expectation

diag(·) diagonalization of the matrix
(·)H conjugate transpose of the matrix
(·)T transpose of the matrix
(·)∗ conjugate matrix
(·)† pseudo-inverse of the matrix
(·)⊥ orthogonal complement of the matrix

CM×N complex space of size M× N
|·| modulus operator
‖·‖2 l2 norm operation
∪ union

2. Signal Model

As shown in Figure 1, the MIMO radar uses two separate arrays to transmit and
receive signals, respectively. The first row is the transmitting array, which contains two
transmitting antennas; the receiving array lies on the last row, which consists of four
antennas with equal spacings. Each pair of transmitting and receiving antennas can be
independently equivalent to a monostatic element, which is marked as the midpoint of the
transmit–receive element connection. In this way, a uniform linear array(ULA) composed
of eight equivalent virtual elements is obtained, as shown in the middle row.
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Figure 1. Synthetization of the virtual antenna array.

Figure 2 shows the working principle of the FMCW radar. When transmitting a
frequency-modulated continuous signal, the transmitted signal can be specifically ex-
pressed as:

s(t) = VT cos (2π fct + πkt2 + φ0), 0 ≤ t ≤ Tc (1)

where VT and fc denote the amplitude and starting frequency of the chirp, respectively. The
slope of the chirp is given by k = B/Tc, which is related to the bandwidth B and the scan
duration Tc. φ0 represents the initial phase of the signal and τ is the time delay between
two chirps (TX and RX).

Figure 2. FMCW radar echo diagram.

The target localization of the FMCW-MIMO radar is shown in Figure 3. The virtual
array constructed by the MIMO part can be viewed as a ULA with spacing d between
two adjacent elements. Signals are emitted from the array with the direction of departure
θ. When reaching a target, echoes will be generated and impinge on the array from the
direction of arrival θ. We assume that there are K far-field targets and M equivalent virtual
antennas in the FMCW-MIMO radar system model.

Figure 3. Target localization diagram of FMCW-MIMO radar.
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According to the FMCW signal principle, the IF signal is generated after mixing, and
the receiving signals are reflected by far-field fixed targets. After applying the Hilbert
transform, the IF signal generated by the k-th target is:

u(t) = µej(2πkτt+2π fcτ) (2)

As receiving elements receive, all IF signals generated by K targets, and the received
signals of the m-th element can be expressed as:

xm(t) =
K

∑
k=1

µkej(2πkτm,kt+2π fcτm,k) + nm(t) (3)

where τm,k = 2rk
c + 2d×(m−1) sin θk

c is the time delay of transmitting and th m-th receiving
signals. rk is the range from the transmitting antenna to the k-th target, d× (m− 1) denotes
the range between the transmitting antenna and m-th receiving antenna, nm(t) is the
Gaussian noise collected by the element.

N-point sampling is performed for Equation (3) with sampling interval TS. The echo
signal can finally be changed into:

xm[n] =
K

∑
k=1

µkej2πk( 2rk
c +

d(m−1) sin θk
c )nTS

+ ej2π fc(
2rk

c +
d(m−1) sin θk

c ) + nm[n], n = 0, 1, 2, ..., N − 1

(4)

Since the echo signals are from far-field, the spacings between the array antennas can
be negligible compared to the distance between the transmitting antenna and the target,
i.e., rk � d× (m− 1) sin θk, Equation (4) can be reduced as:

xm[n] =
K

∑
k=1

µkej( 4π fcd(m−1) sin θk
c +

4πBTsrkn
Tc +

4π fcrk
c ) + nm[n] (5)

The matrix form of the receiving signals can be shown:

X = AS + N, X ∈ CM×N (6)

Here, the steering vector ai = [1, ej 2π fcd sin θi
c , ..., ej 2π fcd(M−1) sin θi

c ]T , i = 1, 2, ..., K consti-
tutes the matrix A = [a1, ..., ak]. Moreover, the signal matrix S = [s1, ..., sK]

T . The noise
matrix N is a Gaussian white process with zero mean and covariance σ2

nIM.

3. Joint DOA–Range Estimation

This section proposes a novel method of joint DOA–range estimation in the FMCW-
MIMO radar. First, for the complex-valued data processing, we introduce unitary transfor-
mations to convert complex-valued operations into real-valued operations. Then, in the
angle domain, the covariance matrix is iteratively updated with the improved URM algo-
rithm to extract more accurate DOA estimators. According to DOA estimators, we derive
the corresponding steering vector and extract the phase. Range estimation is carried out
with the least squares method, and the automatic pairing of two-dimensional parameters
is directly realized. Finally, our work uses threshold detection for the paired parameter
sets and optimizes the data matrix by pseudo-noise resampling. Each step of the proposed
algorithm is elaborated in Figure 4.
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Figure 4. Structure of the proposed algorithm.

3.1. Preliminary Estimation of DOA via URM Algorithm

Assuming that the noise and signals are independent of each other, the covariance
matrix of the received data can be denoted:

R = E
(

XXH
)
= ARsA + σ2IM (7)

where Rs means the covariance matrix of signals. In practical work, the theoretical value of
Rs is hardly obtained and an approach R̂ by averaging N snapshots is used instead:

R̂ =
1
N

XXH (8)

Next, we decompose the covariance matrix R̂ into signal and noise subspaces by the
eigenvalue decomposition. For accelerating the decomposition, unitary transformation is
used to change the covariance matrix R̂ into the real-valued matrix Ĉ:

Ĉ =
1
2

QH
M(R̂ + JMR̂∗JM)QM = Re

{
QH

MR̂QM

}
(9)

where JM is an M×M exchange matrix with ‘ones’ on its anti-diagonal and ‘zeros’; else-
where. QM is a sparse unitary matrix, defined as:

QM =





1√
2

[
Il jIl
Jl −jJl

]
, f or M = 2l

1√
2




Il 0l jIl
0T

l

√
2 0T

l
Jl 0l −jJl


, f or M = 2l + 1

(10)

Obviously, QM is divided into two cases where the matrix dimension is odd or even.
After the eigenvalue decomposition, Ĉ is expressed as follows:

Ĉ = ÊΛ̂ÊH
= ÊSΛ̂SÊH

S + ÊNΛ̂NÊH
N (11)
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where ÊN is the noise subspace. Λ̂ = diag(λ1, λ2, ..., λM) is the diagonal matrix composed
of the eigenvalues λ. ÊN consists of the eigenvector corresponding to the eigenvalue
λK+1, ..., λM. Assuming that the targets are not correlated, the root polynomial is con-
structed according to the noise subspace [43,44].

PURM(z) = aT(z−1)ÊNÊH
Na(z) (12)

where a(z) = [1, z, ..., zM−1]T , z = exp(jw). After selecting the K roots that are closest to the
unit circle, the signal DOA can be calculated according to the following formula:

θ̂ = arcsin(
arg (z)×c

4πd fc
) (13)

θ̂ denotes the angle parameters of the targets estimated by the unitary root-MUSIC
(URM) algorithm.

3.2. DOA Estimation via Improved URM Algorithm

As mentioned above, the angle information required for multi-target localization can
be gained by the URM algorithm. However, due to subspace leakage, the URM algorithm
decreases in performance sharply with a low SNR or a small number of snapshots. The
reason is the existence of non-ideal terms. If we expand the covariance matrix R̂:

R̂ =
1
N

N

∑
n=1
{AS(n) + N(n)}{AS(n) + N(n)}H

= A

{
1
N

N

∑
n=1

S(n)S(n)H)

}
AH +

1
N

N

∑
n=1

N(n)N(n)H

+ A

{
1
N

N

∑
n=1

S(n)N(n)H)

}
+

{
1
N

N

∑
n=1

N(n)S(n)H)

}
AH

(14)

In the preceding formula, R̂ was divided into four terms, of which, the first two terms
represent the signal covariance matrix and the noise covariance matrix, respectively. The
focus is on the latter two items, which are defined as non-ideal terms. Assuming that the
noise and signals are uncorrelated, when the number of snapshots is large enough, the
non-ideal terms approach zero. However, in practice, the number of snapshots is limited,
and the non-ideal terms adversely affect the algorithm, causing subspace estimation to
deviate from the real subspace data.

In this section, we propose an improved URM algorithm to enhance the performance.
The main idea of improvement is to revise the covariance matrix and reduce the impact
of non-ideal terms through optimization iterations. Then, the angle parameters can be
extracted from the modified ideal covariance matrix.

Firstly, the URM algorithm is used to estimate the targets and obtain the initial angle
set θ̂(0) = [θ̂

(0)
1 , θ̂

(0)
2 , ..., θ̂

(0)
K ], then the updated array manifold is

Â = [a(θ̂(0)1 ), a(θ̂(0)2 ), ..., a(θ̂(0)K )] (15)

The superscript indicates the number of iterations. Accordingly, the signal Ŝ can be
described as:

Ŝ(l)
= arg min

a
‖X− Â(l)S‖2

2 (16)

After the least squares fitting, it can be expressed as:

Ŝ(l)
= [(Â(l)

)HÂ(l)
]((−1)(Â(l)

)HX (17)
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Therefore, the noise component can be estimated as:

N̂(l)
= X− Â(l)Ŝ(l)

(18)

Introducing the real-valued covariance matrix Ĉ in Equation (11), the non-ideal term
T can be found as:

T , Â(l)
{

1
N

N

∑
n=1

Ŝ(l)
(n)N̂(l)

(n)
H
)

}

= Â(l)
{

1
N

N

∑
n=1

(
(Â(l)

)HÂ(l)
)−1(

Â(l)
)H

X

×
(

XH −XH
(
(Â(l)

)HÂ(l)
)−1(

Â(l)
)H
)}

= P̂A

{
1
N

N

∑
n=1

XXH(IM − P̂A)

}

= P̂AĈP̂⊥A

(19)

where

P̂A , Â(l)
(
(Â(l)

)HÂ(l)
)−1(

Â(l)
)H

(20)

P̂⊥A , IM − P̂A (21)

As shown in the previous formula, the value of the non-ideal term is only related to
the real-valued covariance matrix Ĉ and the array manifold after simplification.

On this basis, the covariance matrix is modified:

Ĉ(l)
= Ĉ(l−1) − ε

(
T + TH

)
(22)

The parameters of the modified covariance matrix are estimated again to obtain the
angle set

{
θ̂
(l)
1 , θ̂

(l)
2 , ..., θ̂

(l)
K

}
. When the difference between two consecutive estimation

results is less than the preset value, the iteration stops. The improved URM estimation
method can be summarized as in Algorithm 1.

Algorithm 1: DOA estimation via the improved URM algorithm.

Input: The received data X
1. The initial covariance matrix Ĉ is calculated according to (9).

2. The initial angle set θ̂(0) = [θ̂
(0)
1 , θ̂

(0)
2 , ..., θ̂

(0)
K ] are calculated by (13).

Start iteration
3. Update the array manifold Â according to Equation (15).
4. Calculate the non-ideal terms by Equations (19) and (20).
5. Update the covariance matrix Ĉ according to (22).

6. Update the new angle set
{

θ̂
(l)
1 , θ̂

(l)
2 , ..., θ̂

(l)
K

}
according to the updated covariance matrix Ĉ.

7. ∑K
k=1 ‖θ̂

(l−1)
k − θ̂

(l)
k ‖2

2 is less than the preset constant.
Terminate iteration

Output: θ̂(l) = [θ̂
(l)
1 , θ̂

(l)
2 , ..., θ̂

(l)
K ]

3.3. Range Estimation

After estimating the angle parameters, the steering vector matrix can be reconstructed as:

Ã = [a(θ̂1), a(θ̂2), ..., a(θ̂K)] (23)
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Combined with Equation (9), we can obtain

Y = (Ã†X)T = (Ã†ÃS + Ã†N)T = ST + (Ã†N)T (24)

By normalizing the matrix, the real-valued vector matrix can be obtained:

Y(:, k) = Im{ln (Y(:, k)/Y(1, k))} (25)

The ‘least squares’ is constructed as follows:

min ‖Grk − Yk‖2
F (26)

where G is the least squares matrix:

G =

[
1 1 ... 1

4πBTs/Tc 2× 4πBTs/Tc ... N × 4πBTs/Tc

]
(27)

where, ∆ = 4πBTs/Tc denotes the phase difference between the adjacent elements and N
is the number of snapshots. We define r̂k as the estimator of the range parameter, which
can be expressed as:

r̂k = G†
r Y(:, k) (28)

The second element of each column vector of r̂k is the estimated value of the range
parameter. So far, in line with the proposed method, we can estimate the cursory DOA and
range parameters of the objectives in pairs.

3.4. Refined DOA–Range Estimation by Pseudo-Noise Resampling

In Sections 3.2 and 3.3, we propose a joint DOA–range estimation method based on
the FMCW-MIMO radar. However, the abnormal estimators that deviate from real targets
still occur in low SNR or a small number of snapshot scenarios. So a joint application of
pseudo-noise resampling technology and threshold detection is proposed to mitigate the
influence of outliers.

First, we use threshold detection to detect the outliers. The threshold range can be
determined by conventional beamforming technology and FFT. Beamforming technology
and FFT can quickly estimate the angle and range parameter at the expense of accuracy, to
provide us with the approximate range of the targets. Thus, the thresholds for the angle
and range parameters are assumed as:

θH = [θmax
1 − θL

1 , θmax
1 + θR

1 ] ∪ [θmax
2 − θL

2 , θmax
2 + θR

2 ] ∪ ...∪ [θmax
K − θL

K, θmax
K + θR

K ] (29)

rH = [rmax
1 − rL

1 , rmax
1 + rR

1 ] ∪ [rmax
2 − rL

2 , rmax
2 + rR

2 ] ∪ ...∪ [rmax
K − rL

K, rmax
K + rR

K ] (30)

where θmax and rmax denote the K highest peak of the beamformer and FFT method,
respectively, θL

K and rL
K represent the left boundary of the angle parameter and range

parameter of each target interval, θR
K and rR

K are the right boundaries.
We denote the rough parameter estimation results with the set θ̂ = [θ̂1, θ̂2, ..., θ̂K] and

r̂ = [r̂1, r̂2, ..., r̂K] in Sections 3.2 and 3.3. If the estimated values satisfy the threshold
detection, then the estimated parameters are taken as the final results. Estimators that
do not pass the threshold detection are considered outliers, a pseudo-noise approach
is presented when an outlier occurs. The idea of this approach is to perturb the raw
measurement data matrix X by an artificially generated pseudo-random noise. Here, we
define the pseudo-noise matrix Y ∈ CM×N as the pseudo-noise matrix, where:

E(Y) = 0, E(YYH) = σ2
YNI, E(YYT) = 0 (31)
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Meanwhile, as the variance is related to the variance of the original data matrix, the
power of pseudo-random noise σ2

Y can be estimated by σ2
Y = ρσ2, where ρ is a user-defined

parameter and σ2 is given by:

σ2 =
1

M− K
TrΛ̂N =

1
M− K

M

∑
i=K+1

λ̂i (32)

λ̂i is a group of eigenvalues arranged in descending order, which is achieved by the
decomposition of matrix X.

Combing Equations (31) and (32), the resampled data matrix Z is:

Z = X + Y (33)

We assume that the original matrix X is perturbed for W times and the W groups of
resampled data matrix Z are obtained correspondingly. For each resampled data matrix,
it is necessary to perform the steps in Sections 3.2 and 3.3. The corresponding estimators
construct the W groups of the estimators set

(
θ̂k, r̂k

)
, k = 1, 2, ..., K. Then the threshold

detection is applied to the estimator sets, and the W groups of the estimators are divided
into two subsets:

B1 =
{(

θ̂k, r̂k
)(1)

, ...,
(
θ̂k, r̂k

)(J)
}

,

B2 =
{(

θ̂k, r̂k
)(1)

, ...,
(
θ̂k, r̂k

)(W−J)
} (34)

J groups of the estimator sets that pass the detection constitute B1, and B2 is composed
of W − J groups of estimator sets rejected by the threshold detection.

If 0 < J < W, the final target parameter estimator is the average result of the successful
J groups of the estimator set:

θ̂k =
1
J

J

∑
i=1

θ̂
(i)
k , r̂k =

1
J

J

∑
i=1

r̂(i)k (35)

If J = 0 means that all groups of estimators fail to pass the threshold detection even if
the PR technology is performed. Facing the case where all estimators deviate from the true
value, we need to select the optimal one among the multiple groups of estimators set in B2
as the final output estimation. Since the angle and range parameters of the target exist in
pairs in the set, we can use one of the parameter information pieces as a judgment object.
In this paper, the angle parameter was selected as the judgment object.

First, the angle estimators in B2 are divided into K subsets according to different
targets:

B2k =
{

θ̂
(1)
k , .., θ̂

(W)
k

}
, i = 1, ..., K (36)

where B2k represents the set of W group angle estimators for the k-th target.
According to Equation (13), the angle estimation is related to the corresponding

polynomial root.

|Dk| =
{∣∣∣ẑ(1)k

∣∣∣, ..,
∣∣∣ẑ(W)

k

∣∣∣
}

, k = 1, ..., K (37)

In the above DOA algorithm, the root polynomial PURM has (M-1) pairs of symmetri-
cally mirrored roots about the unit circle, and the K roots closest to the unit circle are what
we need. So, we choose the ẑ with the smallest modulus in Dk to ensure that the deviation
between the corresponding estimated value θ̂k in B2k and the theoretical value is minimum.
Then the paired range parameters will be determined. Finally, the corresponding target
parameters

(
θ̂k, r̂k

)
can be obtained.The above steps can be summarized as Algorithm 2.
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Algorithm 2: Refined DOA–range estimation by pseudo-noise resampling.

Input: The received data X, initial parameter estimator
(
θ̂k, r̂k

)
.

1. Set the threshold area and apply the threshold detection to these estimators.
2. If it passes the detection, terminate this algorithm and output the estimator of θ̂ and r̂.
3. If not, W groups of the resampled data are obtained by using the pseudo-noise matrix.

(1) For the updated X, use the algorithms in Sections 3.2 and 3.3 to estimate the DOA and range.
(2) Perform the threshold detection again for W group estimators and categorize them as (34).

If J > 0, then estimate target parameters via (35).
If J = 0, then select target parameters by (36) and (37).

Output:
{

θ̂k, r̂k
}

4. Simulations

In this section, the proposed algorithm is compared with conventional algorithms.
The parameter settings of the FMCW-MIMO radar are shown in Table 2.

In this experiment, three different targets are set at (θ1, r1) = [−8.78◦, 10.73 m],
(θ2, r2) = [2.43◦, 32.78 m], and (θ3, r3) = [12.07◦, 23.66 m], respectively. The number
of Monte Carlo trials is MC = 500.

Table 2. Parameters of the FMCW-MIMO radar.

Parameter Value Parameter Value

c 3 × 108 m/s Ts 25 ns
fs 2.46 × 109 Hz B 1.2 × 108 Hz
λ 120 mm M 8
d 60 mm L 3

4.1. 2D Point Cloud of the Target

First, to verify the localization performance, the proposed algorithm was simulated
with SNR = 10, N = 50, where N is the number of snapshots. The results are shown in
Figure 1 and the X and Y axes represent the angle and range parameters, respectively.

In Figure 5, the three target points can be distinguished, and the estimated targets are
very close to the preset ones, which proves the reliability of our proposed algorithm.
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Figure 5. The 2D point cloud of the estimated targets.
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4.2. Performance Analysis

In this part, we set multiple SNRs and the number of snapshots to explore the differ-
ences between the proposed algorithm and the comparison algorithms in diverse environ-
ments. The 2D-MUSIC, 2D-ESPRIT, and DFT-root-MUSIC (DFT-RM) algorithms are used
as comparison algorithms, among which 2D-MUSIC and 2D-ESPRIT are two-dimensional
joint DOA–range estimation algorithms. Meanwhile, DFT-RM estimates the angle and
range with the RM algorithm and DFT algorithm, respectively.

4.2.1. RMSE Performance of DOA

The RMSE (root mean square error) is usually used as an important index to evalu-
ate the algorithm’s performance. The RMSE of the FMCW MIMO radar’s DOA can be
defined as:

RMSEθ =
1
K

K

∑
k=1

√√√√ 1
MC

MC

∑
mc=1

(θmc,k − θk)2 (38)

where K denotes the number of targets, θmc,k stands for the angle estimation of the k-th
target in the mc-th Monte Carlo experiment.

Figure 6 shows the RMSEs of the DOA estimation against SNR when the number
of snapshots is fixed at 50. The results show that the proposed method is superior to
other algorithms in accuracy and stability. The main reason is that the proposed method
reduces the influences of non-ideal terms, which improves the accuracy of the location.
The 2D-ESPRIT algorithm loses the array aperture when decomposing the subspace, so the
RMSE is larger than that of the 2D-RM and proposed algorithm.
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Figure 6. RMSE of the DOA estimation versus SNR.

The trends of the RMSE with different snapshot numbers are revealed in Figure 7. In
this simulation, the SNR is fixed at 5 dB, and the number of snapshots increases from 10
to 150. When the number of snapshots is less than 70, the performance advantage of the
proposed algorithm is obvious, and even if the number of snapshots is greater than 70,
it is also one of the algorithms with the smallest errors. When the number of snapshots
exceeds 70, the proposed algorithm has a similar performance compared to 2D-RM and
DFT-RM. As the number of snapshots increases, the deviation of the sample covariance
matrix from the theoretical covariance matrix gradually shrinks. Therefore, the proposed
method improves in an unobvious manner and gradually approaches 2D-RM with a large
number of snapshots.
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The CRB curve of the FMCW-MIMO radar is also given to evaluate the estimation
performance of the algorithms. It shows that the proposed algorithm is closer to the CRB
curve than the comparison algorithms in terms of the DOA estimation, which means that
the proposed algorithm outperforms other algorithms, especially with low SNRs and a
small number of snapshots.
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Figure 7. RMSE of the DOA estimation versus snapshots.

4.2.2. RMSE Performance of Range

In this simulation, we evaluated the range parameter estimation performances of
different algorithms versus different SNRs and snapshots, as shown in Figures 8 and 9.
Similar to the previous section, the RMSE formula for the range of the FMCW MIMO radar
can be written as:

RMSEr =
1
K

K

∑
k=1

√√√√ 1
MC

MC

∑
mc=1

(rmc,k − rk)2 (39)

Evaluating the range estimation is the same as the DOA estimation performance
evaluation, with two different groups of parameter settings: SNR varies from −5 to 20 dB
with N = 50, and the number of snapshots changes from 10 to 150 with SNR = 5 dB.

An explanatory point is needed for this simulation; DFT-RM uses the FFT algorithm
for the range estimation, which highly depends on the number of snapshots. When
the snapshot number is not enough, the range resolution will decrease, resulting in low
accuracy and failure of the FFT algorithm.

Therefore, in Figure 8, when the number of snapshots is fixed at 50, the range estima-
tion of the DFT-RM tends to be a straight line. In Figure 9, since the number of snapshots is
always set in a low state, the DFT-RM performance is always unstable, resulting in a large
estimation error. The performances of other algorithms all improve with the increase of
the SNR and the number of snapshots, but the proposed one is closer to the CRB curve
intuitively, as seen in Figures 8 and 9. Therefore, the proposed method still has obvious
advantages over the other conventional algorithms in the range domain.
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Figure 8. RMSE of the range estimation versus the SNR.
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Figure 9. RMSE of the range estimation versus the snapshots.

4.2.3. PSD versus SNR

The probability of successful detection (PSD) is another indicator to measure the
performance, which can be defined by the following formula:

PSD =
H
D
× 100 (40)

where D represents the number of experiments and H denotes the number of success-
ful tests.

In this section, to demonstrate the trend of each algorithm completely, DOA and range
estimates are considered successful in meeting |θmc,k − θk| ≤ 0.7◦ and |rmc,k − rk| ≤ 1.5 m.

Figures 10 and 11 describe the PSD of the range and angle estimation under different
SNRs when the number of N = 50. It is clear that the algorithm we proposed is better
than other methods under different SNRs, especially in low SNRs. The reason is that
the proposed algorithm reduces the negative impacts of non-ideal items. The algorithms,
which are highly dependent on the sampling points or snapshots, suffer from non-ideal
items and have more failed estimators.

127



Sensors 2022, 22, 9706

0 5 10 15 20

SNR (dB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
S

D
 o

f 
D

O
A

proposed

2D-RM

DFT-RM

2D-ESPRIT

Figure 10. PSD of the DOA estimation versus SNR.
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Figure 11. PSD of the range estimation versus SNR.

4.2.4. PSD versus Snapshots

In this section, we investigate the PSD of the proposed and compared algorithms with
fixed SNRs and varying numbers of snapshots. In Figure 12, the proposed algorithm has a
high success rate when the number of snapshots is only 30, and achieves full detection when
the number of snapshots is 50. Compared with the RM, FFT-RM, and ESPRIT algorithms,
the proposed method is more stable in the angle domain.

For the range estimation, Figure 13 shows the PSD curves of all algorithms from 10 to
150 snapshots. Compared to other algorithms, the proposed method has a higher success
rate in all scenarios. Notice that the DFT-RM method has a low success rate level as this
method requires more snapshots than others.
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Figure 12. PSD of the DOA estimation versus the snapshots.
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Figure 13. PSD of the range estimation versus the snapshots.

5. Conclusions

In this paper, the algorithm applies iterative updating to reduce the non-ideal items
and approach a more accurate covariance matrix. Based on the covariance matrix, a
rough angle estimation and range estimation were obtained by U-root-MUSIC and the
least squares algorithms, respectively. Threshold detection was then used to refine the
rough results, where the outliers were further processed. Simulations have shown that
this method improves the estimation accuracy effectively, especially in conditions with a
small number of snapshots and low SNRs. In future work, we will optimize the proposed
algorithm to make it suitable for more practical application scenarios.
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Abstract: This paper presents an experimental validation of deep learning-based direction-of-arrival
(DoA) estimation by using realistic data collected via universal software radio peripheral (USRP).
Deep neural network (DNN) and convolutional neural network (CNN) structures are designed to
estimate the DoA. Two types of data are used for training networks. One is the data synthesized by
the signal model, and the other is the data collected by USRP. Here, the signal model considers both
mutual coupling and multipath signals. Experimental results show that the estimation performance
is most accurate when training DNN and CNN with the collected data. Furthermore, the estima-
tion tends to be poor in the indoor environment, which suffers from the strong non-line-of-sight
(NLoS) signals.

Keywords: deep learning; direction-of-arrival estimation; deep neural network; convolutional neural
network; universal software radio peripheral

1. Introduction

Direction-of-arrival (DoA) estimation is one of the long-studied research topics in array
signal processing. DoA estimation algorithms have been adopted in various applications,
such as localization and radar [1]. Traditional DoA estimation algorithms such as MUSIC [2]
and ESPRIT [3] are proposed based on the characteristic of the signal model. Although they
can ideally achieve high estimation accuracy and resolution, unexpected problems (e.g.,
multipath effect [4], gain-phase error [5], mutual coupling [6], antenna misalignment [7],
etc.) may exist in practice. In this case, the signal model cannot capture the characteristics
of a real received signal, thereby causing degradation of the DoA estimation performance.

There have been various studies to deal with problems that may cause model mis-
match. One of these studies is coherent DoA estimation, which can estimate multipath
signals impinging from different directions [4,8,9]. On the other hand, there are problems
induced by hardware impairments such as gain-phase error, mutual coupling, and antenna
misalignment. There have been efforts to calibrate these errors without using reference
signals, where [5,10,11] deal with gain-phase error, [6,12,13] deal with mutual coupling
between antennas in an array, and [7,14] deal with the errors in the steering vector that
can be caused by antenna misalignment. However, the performance of the aforemen-
tioned works may degrade when several problems simultaneously occur or there are more
unexpected problems.

After the introduction of deep learning [15], DoA estimation algorithms based on
various types of neural network (NN) have been proposed in [16–20]. One of the benefits
of using deep learning is that the user does not have to know the exact signal model if there
are sufficient training data. For this reason, it is expected that the deep learning-based DoA
estimation does not suffer from model mismatch problems by using data that capture all
kinds of errors (e.g., actual measured data). In [16,17], deep neural network (DNN)-based
DoA estimation was proposed, where these works report that the DNN-based estimation
is more accurate than the traditional DoA estimation. After the proposal of the DNN-based
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DoA estimation, convolutional neural network (CNN)-based DoA estimation has been
studied in [18,19]. The CNN-based DoA estimation shows better estimation accuracy
and resolution compared to the DNN-based DoA estimation. In [20], the DoA estimation
based on unsupervised learning was proposed, where unsupervised learning can make
data collection easier since data labeling is not required. In recent works, there have been
efforts to exploit features of classical DoA estimation, rather than solely depending on NN.
Refs. [21–23] respectively employ DNN, CNN, and recurrent neural network (RNN) to
estimate the ideal noiseless covariance matrix, which is denoted as a pseudo covariance
matrix. Then, the classical DoA estimation such as MUSIC and root-MUSIC estimates the
DoA with pseudo covariance matrix. In [24], the residual neural network (ResNet) first
estimates the candidates of DoAs. From the candidates, the classical maximum likelihood
estimation (MLE) [25] picks the final DoAs. A combination of these two methods enhances
the accuracy while achieving lower complexity than only using MLE.

However, the existing works on the deep learning-based DoA estimation lack exper-
imental validation, even though the deep learning-based DoA estimation is expected to
be effective in a practical situation where there are many problems that cause a model
mismatch. In this paper, we validate deep learning-based DoA estimation with realistic
data collected by a universal software radio peripheral (USRP). In the experiment, two
types of data—data synthesized by the signal model and data collected by USRP—are used
for training networks. The estimation accuracy is then analyzed according to the type of
training data.

2. System Model

In this paper, we consider one transmitter, which is equipped with an omni-directional
antenna. A receiver is equipped with a uniform linear array (ULA), which has M antenna
elements. The spacing between adjacent antennas is set to half-wavelength λ/2, where λ
denotes the wavelength of the transmitted signal.

To generate the data for training DNN and CNN, the signal model should be defined.
Here, the generated data are expected to be well-suited for training if the signal model can
capture the state of the hardware systems. Among the many kinds of hardware-induced
problems, the gain-phase error in our systems is calibrated using the method in [26]. The
antenna spacing is designed to be half-wavelength so that there is no antenna misalignment.
However, the current systems cannot calibrate mutual coupling and multipath effects. Thus,
in this paper, we consider mutual coupling and multipath effects to design the received
signal model.

An array manifold vector whose DoA is θ, a(θ) can be given as follows:

a(θ) =
[
1, ejπ cos θ , . . . , ej(M−1)π cos θ

]T
∈ CM×1. (1)

To capture mutual coupling and multipath effects, we model a received signal X ∈ CM×D as:

X = C
P

∑
p=0

αpa(θp)sT + N ∈ CM×D. (2)

where C ∈ CM×M denotes the mutual coupling matrix [27]. P denotes the number of
non-line-of-sight (NLoS) paths. αp and θp respectively denote the channel gain and the
DoA of the p-th signal path. Specifically, α0 and θ0 denote the channel gain and the DoA of
the line-of-sight (LoS) path. s = [s1, . . . , sD]

T ∈ CD×1 denotes a signal vector, whose power
equals σ2

s . D is a number of signal snapshots. N ∈ CM×D is a noise matrix, whose entries
all follow CN (0, σ2). σ2 denotes the power of the noise. RX, the covariance matrix of X, can
be defined as:

RX = E
[
XXH

]
≈ XXH

D
∈ CM×M. (3)
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3. Deep Learning Network Structure for DoA Estimation

This section introduces two network structures for DoA estimation, which are re-
spectively based on DNN and CNN. A scheme of deep learning-based DoA estimation is
depicted in Figure 1. In the presence of multipath signals and mutual couplings, the deep
learning network aims to estimate the DoA of the LoS path using the covariance matrix.

Figure 1. A scheme of deep learning-based DoA estimation. The proposed DNN or CNN structure
estimates the DoA of the LoS path in the presence of multipath signals and mutual coupling.

3.1. DoA Estimation via Deep Neural Network

Since the input of the DNN has to be a real vector, the input of the DNN χDNN ∈
R2M2×1 is formulated as:

χDNN = vec
([

real
(

RX

‖RX‖F

)
, imag

(
RX

‖RX‖F

)])
, (4)

where vec(·) denotes the vectorization. real(·) and imag(·) respectively denote the real
and imaginary values of the argument. ‖·‖F denotes the Frobenius norm.

Letting L, d(l), and I(l) respectively denote the number of dense layers, the output of
the l-th layer, and the size of d(l), d(l)(j) can be given by:

d(l)(j) = ReLU




I(l−1)

∑
i=1

U(l)(j, i)d(l−1)(j) + v(l)(j)


,

l = 1, . . . , L,

(5)

where d(0) = χDNN. ReLU(·) denotes the ReLU function, which is widely used as the
activation function of the neuron [15]. U(l) and v(l) denote the weights and the bias of the
l-th layers. The loss function of the DNN is given by MSE,

(
θ̂0 − θ0

)2
, where θ̂0 denotes the

estimated value of the DoA of the LoS path. The weights and the bias that minimize the
loss function can be denoted as:

{
Û(l), v̂(l)

}L

l=1
= argmin
{U(l),v(l)}L

l=1

(
θ̂0 − θ0

)2
, (6)
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where Û(l) and v̂(l) denote the weights and the bias of the l-th dense layer that minimize
the loss function. (6) is implemented by back propagation. A parameter setting for the
DNN structure used in this paper is summarized in Table 1.

Table 1. Parameter setting for DNN structure.

Parameter Value (or Type)

Number of layers (L) 2

Size of layers (I(l) for l = 1, . . . , L) 600, 600

Loss function MSE

Optimizer Adam

Activation function ReLU

Batch size 100

3.2. DoA Estimation via Convolutional Neural Network

Since the input of the CNN can be a three-dimensional matrix, the input of the CNN
χCNN ∈ RM×M×2 is formulated as:

χCNN =

[
real

(
RX

‖RX‖F

)
; imag

(
RX

‖RX‖F

)]
, (7)

where ; denotes an operator that overlaps matrices with the same dimension.
An output of the k-th convolutional layer, C(k), can be represented as in [18]:

C(k)(:, :, j) = ReLU
(

W(k)
j ∗C(k−1) + B(k)

j

)
,

for j = 1, . . . , J(k), k = 1, . . . , K,
(8)

where ∗ denotes the convolution. C(k)(:, :, j) denotes the j-th channel of 3D tensor C(k)

and C(0) = χCNN. J(k) and K are the number of kernels and the number of convolutional
layers. W(k)

j ∈ RQk×Qk denotes the j-th kernel in the k-th layer, where Qk is a dimen-

sion of the kernels in the k-th layer. B(k)
j denotes the bias for the j-th kernel in the k-th

convolutional layer.
After undergoing K convolutional layers, all values of C(K) are summed to yield the

output. The loss function of the CNN is given by MSE,
(
θ̂0 − θ0

)2
. The convolution kernel

and the bias that minimize the loss function can be given by:
{

Ŵ(k)
j , B̂(k)

j

}
= argmin{

W(k)
j ,B(k)

j

}
(
θ̂0 − θ0

)2
, for j = 1, . . . , J(k), k = 1, . . . , K, (9)

where Ŵ(k)
j and B̂(k)

j denote the j-th convolution kernel and the bias of the k-th layer that
minimize the loss function. (9) is implemented by back propagation. A parameter setting
for CNN structure used in this paper is summarized in Table 2.
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Table 2. Parameter setting for CNN structure.

Parameter Value (or Type)

Number of layers (K) 3

Number of kernels (J(k) for k = 1, . . . , K) 50, 150, 300

Size of kernels (Qk for k = 1, . . . , K) 3, 2, 1

Loss function MSE

Optimizer Adam

Activation function ReLU

Batch size 100

4. Experimental Results and Discussion
4.1. Experimental Setup

In this paper, we use two types of data. One is synthesized data generated based
on the signal model in (2). We generated 4,000,000 synthesized data via MATLAB. Here,
M, D, and the maximum mutual coupling strength were respectively set to 4, 512, and
0.05. α0 was fixed to 1. P was randomly set between 0 and 10, and αp was randomly set
between 0 and 0.5. The signal-to-noise ratio (SNR) of synthesized data was also randomly
set between 0 dB and 20 dB, where the SNR is defined as 10log

(
σ2

s /σ2) [dB].
Another type of data is that collected with USRP. Note that this data may differ from

the signal model in (2). If so, the estimation is expected to be inaccurate when the network
is trained with synthesized data. Figure 2 shows a transmitter and a receiver used for the
experiment. The transmitter mainly consists of USRP 2954R and the transmitting antenna.
The receiver mainly consists of USRP 2955 and a receiving antenna array. Although USRP
2954R and USRP 2955 support a frequency range of 10 MHz–6 GHz, we set the carrier
frequency to 5.8 GHz, which is the center frequency of antennas. For this reason, the
spacing between patch antennas in the array is designed to the half-wavelength of 5.8
GHz. USRP 2954R generates a 5.8 GHz cosine wave, and the transmitting antenna emits
the wave. Then, USRP 2955 receives the cosine wave via the antenna array at a sampling
rate of 1 MHz. By using GNU radio, the covariance matrices of the received signals are
collected with USRP 2955.

Figure 2. A picture of transmitter and receiver used for the experiment.
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As shown in Figure 3, we data in two different environments, the indoor hallway
and the outdoor parking lot. In the indoor hallway, the NLoS signals were expected to
be stronger than those in the outdoor parking lot. For this reason, the DoA estimation
was expected to be inaccurate in the indoor hallway. DoA estimation range is restricted to
[40◦, 140◦] since the radiation pattern of each patch antenna in an array is directional. From
40◦ to 140◦ in 10◦ increments, a total of 17,600 covariance matrices were collected, where
half of the data were collected in the indoor hallway while the other half weere collected in
the outdoor parking lot. During the experiment, the transmitting power was set to 20 dBm,
and the distance between transmitter and receiver was fixed to 6 m. With the collected data,
the DoA estimation accuracy is analyzed in the following subsection.

Figure 3. A picture of the indoor hallway and outdoor parking lot. The NLoS signals were expected
to be strong in the indoor hallway.

4.2. Peformance Analysis and Discussion

Before analyzing the DoA estimation performance, we checked the similarity between
collected data and synthesized data. Since the DoAs of the multipath signals weere not
measured, we compared the collected covariance matrices with ideal covariance matrices.
Ideal covariance matrices are the covariance matrices calculated without considering
multipath signals and other hardware-induced errors. The ideal covariance matrix is
defined as:

Rideal(θ) = a(θ)a(θ)H ∈ CM×M, θ ∈ Θ, (10)

where Rideal(θ) denotes an ideal covariance matrix according to θ. Θ is a set consisting of
labeled DoAs of collected data, which equals {40◦, 50◦, 60◦, 70◦, 80◦, 90◦, 100◦, 110◦, 120◦,
130◦, 140◦}.

The correlation between collected covariance matrices and ideal covariance matrices
is defined as:

ρ(θ) = E
[ 〈Rcol(θ), Rideal(θ)〉
‖Rcol(θ)‖F‖Rideal(θ)‖F

]
, θ ∈ Θ, (11)

where ρ(θ) denotes the correlation according to DoA. Rcol(θ) denotes the collected covari-
ance matrix whose DoA label is θ. 〈A, B〉 denotes the correlation between two matrices,
which equals real(trace(AHB)). E[·] denotes the mean calculated using collected data.
ρ(θ) ∈ [0, 1], where ρ(θ) = 1 when Rcol(θ) can be represented as aRideal(θ). Here, a is a
constant. Figure 4 shows the correlation between collected covariance matrices and ideal
covariance matrices according to DoA and the experiment environment. As expected, the
data collected in the indoor environment has a low correlation since it suffers from strong
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multipath signals. On the other hand, the data collected in the outdoor environment has a
higher correlation since there are fewer objects that can make multipath signals.

Figure 4. Correlation between collected covariance matrices and ideal covariance matrices according
to DoA and experiment environment.

To analyze the DoA estimation performance, we compared five algorithms. One was
MUSIC [2]; two were based on DNN and CNN in Section 3.1, and were trained with
4,000,000 synthesized data. The other two algorithms were also based on DNN and CNN in
Section 3.1, but they were trained with 75% of the 17,600 collected data points . When using
the collected data for training networks, 25% of the 17,600 collected data points were used
for testing DoA estimation accuracy. The root mean squared error (RMSE) is defined as√
E
[(

θ̂0 − θ0
)2
]
, where θ0 and θ̂0 respectively denote the true DoA and the DoA estimated

using the test data.
Figure 5 presents two results for the indoor environment, the RMSE of the DoA

estimation algorithms and the histogram of estimation results. Both results are derived
based on indoor collected data. As expected, Figure 5a,b show that the estimation accuracy
is poor in the indoor environment due to the strong NLoS signals. Furthermore, the results
also show that the signal model in (2) fails to capture the indoor propagation characteristics
since estimation accuracy decreases when using synthesized data for training. However,
the DNN and the CNN trained with collected data show much better performance than
others. The RMSE of the DNN and the CNN trained with collected data do not surpass 3.5◦

in every DoA. To be more specific, Figure 5b shows that estimation results tend to gather
around the actual DoA when using collected data. When using synthesized data, however,
there is a difference between the mean of estimation results and the actual DoA. Moreover,
the variance of the estimation is high.

Figure 6 presents two results for the outdoor environment, the RMSE of the DoA
estimation algorithms and the histogram of estimation results. Since the NLoS signals are
expected to be much weaker in the outdoor environment, the RMSE of all algorithms are
much lower than those in Figure 5a. The RMSE tended to increase when the DoA got far
from 90◦. We think that this is due to the directivity of the antenna elements. The gain
of each antenna element was 5 dBi when the DoA was 90◦. However, the gain dropped
to 2 dBi when the DoA was 40◦ or 140◦. Overall, the DNN trained with synthesized data
were more accurate than MUSIC except in a few DoAs, but the RMSE of the CNN trained
with synthesized data was unexpectedly high when the DoA was 40◦. Meanwhile, the
DNN and the CNN trained with collected data were more accurate than others. To be
more specific, when using synthesized data, there was a difference between the mean of
estimation results and the actual DoA. However, this difference was smaller than that in
Figure 5b. When using collected data, estimation results tended to gather around the actual
DoA.

Table 3 shows a total RMSE of all DoA estimation algorithms. In the indoor environ-
ment, the algorithms except those using collected data showed poor performance. Among
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them, the DNN and CNN trained with synthesized data showed slightly better perfor-
mance than MUSIC. Although the performance of all algorithms improved in the outdoor,
the DNN and CNN trained collected data showed much better performance than others.
Since the RMSE of the CNN trained with synthesized data soared when the DoA was
40◦—its total RMSE was larger than that of MUSIC.

Table 4 shows the training time, computation time, and computational complexity of
each algorithm. Here, the computational complexity of CNN is derived using [28]. The
training time is proportional to the amount of training data. When training a network with
4,000,000 synthesized data points, it took 3500 and 4400 seconds to train the DNN and
CNN. On the other hand, it took 190 and 230 seconds to train the DNN and CNN when
using 13, 200 collected data points. Although the DNN and CNN-based DoA estimation
take a long time for training, their computational complexity is much less than MUSIC
once the networks are trained.

(a)

(b)
Figure 5. Performance analysis of DoA estimation algorithms in the indoor environment. The first
figure shows the RMSE according to DoA, and the second figure is a histogram of estimation results
when the actual DoA is 90◦. (a) RMSE. (b) Histogram.
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(a)

(b)
Figure 6. Performance analysis of DoA estimation algorithms in the outdoor environment. The first
figure shows the RMSE according to DoA, and the second figure is a histogram of estimation results
when the actual DoA is 90◦. (a) RMSE. (b) Histogram.

From all results, we conclude that training with collected data enables accurate DoA
estimation. However, collecting sufficient data can be difficult in practice. One of the solu-
tions to this problem is using the synthesized data that well capture the characteristics of the
realistic wave. Another solution is to use unsupervised learning such as [20]. Unsupervised
learning can make collecting data much easier since data labeling is not required.

Table 3. A total RMSE of DoA estimation algorithms.

DNN
(Synthesized Data)

CNN
(Synthesized Data)

MUSIC DNN
(Collected Data)

CNN
(Collected Data)

Indoor 31.8◦ 30.6◦ 36.2◦ 2.1◦ 1.2◦

Outdoor 6.2◦ 14.1◦ 10.6◦ 1.6◦ 1.3◦
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Table 4. Analysis on training time, computation time, and computational complexity.

Training Time [s] Computation Time [µs] Computational Complexity

DNN (Synthesized data) 3500
33 O

((
M2 + I(2)

)
I(1)
)

DNN (Collected data) 190

CNN (Synthesized data) 4400
35 O

(
M2 ∑3

i=2 Q2
i J(i− 1)J(i)

)

CNN (Collected data) 230

MUSIC - 7161 O
(

M3)

5. Conclusions

We present the experimental validation of the deep learning-based DoA estimation
using USRP. The DNN and the CNN structures are designed to estimate the DoA of the LoS
path with the covariance matrix. In the experiment, two types of data are exploited. One is
the data synthesized with the signal model, and the other is the data collected by USRP.
The experimental results show that the DoA estimation is most accurate when training
DNN and CNN with the collected data. Furthermore, the DoA estimation performance is
poor in the indoor environment, which suffers from the strong NLoS signals. However,
collecting sufficient data may not be feasible in practice. We expect that this can be resolved
by better signal modeling and unsupervised learning.
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Abstract: Coordinated positioning based on direction of arrival (DOA)–time difference of arrival
(TDOA) is a research area of great interest in beyond-visual-range target positioning with shortwave.
The DOA estimation accuracy greatly affects the accuracy of coordinated positioning. With existing
positioning methods, the elevation angle’s estimation accuracy in multipath propagation decreases
sharply. Accordingly, the positioning accuracy also decreases. In this paper, the elevation angle
is modeled as a random variable, with its probability distribution reflecting the characteristics of
multipath propagation. A new coordinated positioning method based on DOA–TDOA and Bayesian
estimation with shortwave anti-multipath is proposed. First, a convolutional neural network is used
to learn the three-dimensional spatial spectrogram to make an intelligent decision on the number
of single and multiple paths, and to obtain a probability distribution of the elevation angle under
multiple paths. Second, the elevation angle’s estimated value is modified using the elevation angle’s
probability distribution. The modified elevation angle’s estimated value is substituted into a DOA
pseudo-linear observation equation, and the target position’s estimated value is obtained using the
matrix QR decomposition iteration algorithm. Finally, a TDOA pseudo-linear observation equation is
established using the target estimate obtained in the DOA stage, and the coordinated positioning
result is obtained using the matrix QR decomposition iteration algorithm again. Simulation results
demonstrated that the proposed method had a stronger anti-multipath capability than traditional
methods, and it improved the coordinated positioning accuracy of the DOA and TDOA. Measured
data were used to validate the proposed method.

Keywords: shortwave; coordinated positioning; anti-multipath; prior information; deep learning

1. Introduction

Shortwave communication is an important means of long-distance communication
and it has the characteristics of high destructibility and strong mobility. Shortwave signal
source positioning has wide applications in both the military and civilian fields [1,2]. Target
positioning based on position parameters is the main method for shortwave positioning.
The position parameters mainly include direction of arrival (DOA), time of arrival, time
difference of arrival (TDOA), and frequency difference of arrival. Usually, a single posi-
tioning parameter can be used to estimate the target position; however, a combination
of multiple parameters can effectively improve the positioning accuracy [3]. DOA posi-
tioning and TDOA positioning are the two most representative shortwave positioning
approaches. A combination of DOA and TDOA can significantly improve the accuracy of
shortwave positioning.

For propagation within the visual range, researchers have proposed many algorithms
for DOA positioning [4–6], TDOA positioning [7–9], and DOA–TDOA coordinated posi-
tioning [10–12]. However, these algorithms cannot be used directly in beyond-visual-range
(BVR) shortwave communication. At present, there are few positioning algorithms for BVR
shortwave targets. In [13], the authors proposed a TDOA positioning method for BVR
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shortwave targets based on a grid search. Their method has high positioning accuracy;
however, it is a complex computational process. In [14], the authors proposed a TDOA
positioning algorithm with gradient projection based on an ionospheric quasi-parabolic
(QP) model. However, using the QP model requires many ionospheric parameters, which
are difficult to obtain in practice. Moreover, the QP model has the limitation of only consid-
ering specific ionospheric reflections. Compared with the QP model, the ionospheric virtual
height reflection model [15,16] only requires the ionospheric reflection virtual height as an
input parameter, and different reflection virtual heights correspond to different ionospheric
reflections. In [17], the authors proposed a method to conduct pseudo-linearization on the
DOA and TDOA observation equations based on an ionospheric virtual height reflection
model. They obtained solutions using an iterative matrix QR decomposition algorithm
with simple calculations. However, this method only considers a single transmission path
without considering the shortwave multipath effect in the practical process. In [18], the
authors proposed a DOA–TDOA coordinated positioning method based on an ionospheric
virtual height reflection model using two propagation paths without the need for a known
ionospheric virtual height. However, this method requires a large amount of computation
and requires the accurate arrival elevation angles of two propagation paths, which are
difficult to achieve in practice.

The multipath effect under the ionospheric influence leads to difficulties in shortwave
positioning, which has a great impact on the estimation of positioning parameters such
as the arrival angle, and thus, the positioning accuracy. In actual shortwave positioning,
the measurement error of the azimuth angle can reach about 3◦, while the measurement
error of the elevation angle can reach about 5–10◦. Therefore, the elevation angle is not
usually used for positioning. At present, data fusion is used to handle multipath data
after the signal is received in the main methods designed for multipath scenarios [16,19,20].
However, these cannot be applied directly to the DOA or TDOA positioning scenarios
in this study.

To summarize, in this paper, shortwave anti-multipath coordinated positioning with
DOA–TDOA is addressed. To accurately reflect the characteristics of ionospheric reflection,
the arrival elevation angle was simulated as a random variable with a Gaussian mixture
model (GMM). First, a convolutional neural network (CNN) was used to learn the three-
dimensional spatial spectrogram to identify the modes of single-path propagation and
multipath propagation. The corresponding probability distribution of the elevation angle
was obtained and used to modify the estimated value of the elevation angle. Then, a
two-dimensional DOA pseudo-linear observation equation was established based on the
azimuth estimate and the elevation angle’s modified estimate. The matrix QR decomposi-
tion iteration algorithm proposed in [17] was used to obtain the DOA positioning results.
Finally, a TDOA pseudo-linear observation equation was established based on the DOA
positioning results, and the final positioning results were obtained using the matrix QR
decomposition iteration algorithm again.

The remainder of this paper is as follows: Section 2 introduces the impact caused
by the multipath problem and the observation model. Section 3 proposes the improved
method. Section 4 shows the results of the simulation experiments. Section 5 shows the
results of the measured data, and Section 6 summarizes the paper.

2. Problem Statement and Observation Models
2.1. Multipath Problem

The ionospheric signal channel varies randomly with space, time, and frequency,
which has an impact on transmitted signals such as multipath fading and polarization
fading. The electromagnetic wave incident in the ionosphere is divided into an ordinary
(O) mode and unusual (X) mode. These two modes correspond to different paths and
generate multipath fading. Ionospheric passive oblique detection technology can be used to
obtain the ionospheric information regarding the reflection points between the transmitting
and receiving stations. The high frequency radio signal is transmitted by the transmitting
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station, and the delay in the propagation time is calculated by the signal received by the
receiving station, so as to infer the characteristics of the ionosphere. Figure 1 shows the
result of passive oblique detection. The abscissa in Figure 1 represents frequency and the
ordinate represents the group path. The colors indicate the electron concentrations. It can
be observed that when the frequency is between 10 and 12 MHz, there are two propaga-
tion modes that correspond to the O and X waves. Therefore, when the communication
frequency falls within this frequency range, there are multiple propagation paths that affect
signal reception.
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Figure 1. An example of an ionization map in ionospheric passive oblique detection.

Figure 2 shows a geometric illustration of multipath propagation. The electromagnetic
wave reaches the receiving station after it is transmitted through the ionosphere. Because
of the layered structure of the ionosphere, each layer corresponds to a different reflection
height. The electromagnetic wave can reach the receiving station through different reflection
heights that correspond to different paths. The elevation angles of the signals that reach
the receiving station through different paths are different [15]. Target positioning under
two paths was investigated in this study.
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Multipath propagation in the spatial spectrogram is manifested by multiple spectral
peaks at the same azimuth. Therefore, angle estimation ambiguity may occur [16]. Figure 3
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shows spatial spectrogram examples of a single path and two paths. In the case of two
paths, the spectral peaks are formed at two elevation angles, and the two spectral peaks are
not easy to separate. Therefore, the angle estimation accuracy is affected.
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Remark 1. Only one single path and two paths are taken as examples to illustrate the influence
of multipath on the spatial spectrogram. When the number of paths increases, the spectral peak of
spatial spectrum will increase correspondingly; however, the case for a larger number of paths is
very rare [20].

When the fading amplitude follows the Rayleigh distribution, the probability distri-
bution of the multipath time delay follows a normal distribution [21]. Inspired by this
phenomenon, in this study, the authors modeled the single-path arrival elevation angle as
a Gaussian distribution, with the true value as the mean. Figure 2 shows that the reflection
height corresponds to the elevation angle. Because the ionosphere is time varying, the
reflection height also varies, which results in a change in the elevation angle. Therefore,
a Gaussian distribution model of the elevation angle can reflect the ionospheric change.
When the elevation angles under the two paths are simulated as a GMM, their mean values
are the true values at the corresponding reflection heights. The multipath elevation angles
are modeled as a GMM to determine target positioning with multipath.

2.2. Array Receiving Signal Model

For an assumed circular array with p elements, there are q signals that have incident
angles Θ1, Θ2, . . . , Θq in the array, where Θi = (θi, φi), and θi Lining φi are the arrival angle
and elevation angle of the ith signal, respectively. The arrival azimuth refers to the angle
between the incident direction of the signal and the north direction of the local observation
station. The elevation angle refers to the angle between the incident direction of the signal
and the surface plane of the observation station. The output of the kth element in the
antenna array can be expressed as

xk(t) =
q

∑
i=1

gkisi(t− τki) + nk(t) (1)

where si(t) denotes the ith incident signal in the array, gki denotes the complex gain of the
kth array element in the ith signal array, nk(t) denotes the additive noise in the kth array
element, and τki denotes the time delay of the signal reaching the array element relative to
the reference point.

It is assumed that the array elements are isotropic and there are no impacts, such as
channel inconsistency and mutual coupling. Therefore, gki = 1, and the received signal
model of the array is given by

X = A(Θ)S + N (2)
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In Equation (2), X = [x1(t), . . . , xp(t)]
T ∈ Cp×1 is the array output vector.

N = [n1(t), . . . , np(t)]
T ∈ Cp×1 is the additive noise vector of the array.

S = [s1(t), . . . , sq(t)]
T ∈ Cq×1 is the signal source vector. A(Θ) = [a(Θ1), . . . , a(Θq)] ∈ Cp×q

is an array flow pattern matrix, where a(Θi) = [e−jωoτ1i , . . . , e−jωoτ1p ]
T ∈ Cp×1 is the array

direction vector, and ωo is the carrier frequency of the signal.

Remark 2. A is the array manifold matrix, which is related to the shape of the array and the
direction of the signal. In practice, the shape of the antenna array will not change once it is fixed, so
A is closely related to the direction of the signal. In practice, the self-adjustment of the antenna array
can ensure A can be used for angle estimation, and there will be no ill-conditioned matrix. N stands
for additive noise. The larger it is, the lower the accuracy of angle estimation. When it reaches a
certain level, angle estimation cannot be carried out. In addition, N does not have a substantial
impact on the structure of matrix A, and N only has an impact on the estimation accuracy.

Under the narrowband model defined in Equation (2), the DOA estimation based on
the multiple signal classification (MUSIC) algorithm is given by

ΘMUSIC = argmax
Θ

(1/(aH(Θ)UNUH
Na(Θ))) (3)

In Equation (3), UN ∈ Cp×(p−q) is the noise subspace in the MUSIC algorithm.

2.3. MUSIC Algorithm

The MUSIC algorithm is a classical direction of arrival estimation algorithm, and the
main steps are as follows:

(1) Calculate the covariance matrix of array output data based on Equation (2);
(2) Eigenvalue decomposition is performed on the covariance matrix obtained in step (1)

to obtain the signal subspace US and noise subspace UN ;
(3) Search the angle corresponding to the maximum value of Equation (3), which is the

angle estimate value.

2.4. Positioning Solution Algorithm

The positioning scenario in this study is the same as that in [16], with N DOA position-
ing observation stations and M TDOA positioning observation stations, which are denoted
as u1, u2, . . . , uN , uN+1, . . . , uN+M.

The positioning algorithm is divided into two stages. In the first stage, the pseudo-
linear observation equations of the azimuth and the elevation angle are established, as
shown in Equation (4). According to the geographical constraints of the earth surface and
the algebraic relationship between the auxiliary variables

∣∣∣∣u
∣∣|22 and the target position

u ∈ R3×1, the equality constraint shown in Equation (5) can be obtained. u is the target
position vector in the earth-centered earth-fixed coordinate system. The estimation criterion
with a double quadratic equality can be obtained by combining Equations (4) and (5). Then,
the DOA stage estimate can be obtained using the matrix QR decomposition iteration
algorithm [16] as follows:

Bθu = bθ

Bφ

[
u∣∣∣∣u
∣∣|22

]
= bφ

(4)

{
tT

uA1tT
u = R2

e

tT
uA2tT

u + cT
1 tu = 0

(5)
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where Bθ ∈ RN×3, Bφ ∈ RN×4, tu ∈ R4×1 and Re is the equatorial radius of the earth and e
is the first eccentricity of the earth. In Equation (5)

Bθ [i, :] = [si,1 cos(θi)− si,2 sin(θi)]
T, bθ [i, :] = (si,1 cos(θi)− si,2 sin(θi))

Tui

Bφ[i, :] =
[
2uT

i ,−1
]T, bφ =

∣∣∣
∣∣∣ui

∣∣∣|22−
∣∣∣
∣∣∣u− ui

∣∣∣|22, i = 1, 2, . . . , N

A1 = diag
{

1, 1, 1/(1− e2), 0
}

, A2 = diag{1, 1, 1, 0}
c1 = [0, 0, 0,−1]T

tu =

[
u∣∣∣∣u
∣∣|22

]

(6)

si,2 = [− cos(ωi,1) sin(ωi,2),− sin(ωi,1) cos(ωi,2), cos(ωi,2)]
T, si,1 = [− sin(ωi,1), cos(ωi,2), 0]T,

ωi,1, ωi,2 are the longitude and latitude of the ith observation station, respectively.
In the second stage, the pseudo-linear equation of the time difference is established

based on the DOA estimate, as shown in Equation (7). Similarly, Equations (5) and (7)
are combined to construct an estimation criterion that contains the double quadratic
equality. The matrix QR decomposition iteration algorithm is used to obtain the final
positioning results [16].

Bτ

[
u∣∣∣∣u
∣∣|22

]
= bτ

Bτ [m− 1. :] =
[
2a2

muT
N+m,−a2

m
]
, bτ [m− 1, :] = 4R2

0µ2
m + a2

m(
∣∣∣∣uN+m

∣∣|22 − 4R2
0)

m = 2, 3, . . . , M

(7)

where Bτ ∈ R(M−1)×4, am = 2R0(R0 + hm), µm is defined in Equation (73) of [16]. R0 is the
average radius of the earth.

3. Improved Method
3.1. Path Number Discrimination and the Elevation Angle’s Prior Distribution Learning Based on
the CNN

The CNN is a type of feedforward neural network that contains convolutional compu-
tation and a deep structure [22,23]. It is a representative deep learning network and widely
used in the field of image processing. Its learning technology has matured gradually. In
this study, when the two paths are close to each other, the two spectral peaks are merged
into one spectral peak in the spatial spectrogram, as shown in Figure 4. Traditional spectral
peak search techniques cannot distinguish a single path from two paths; hence, only one
spectral peak can be obtained rather than the elevation angles of two paths.

In this study, the CNN was used to detect and identify spatial spectrograms to dis-
criminate between a single path and multiple paths. In the multipath case, the CNN was
used to obtain the elevation angle of each path.
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3.1.1. Path Number Discrimination

The problem of path number discrimination based on spatial spectrograms belongs
to an image classification problem with supervised learning. In this study, 10,000 spatial
spectrogram images with different numbers of paths were generated with an elevation
angle range of 5◦ to 70◦. The number ratio between the single path and the two paths was
approximately 1:1. The spatial spectrogram contained RGB images of 256 × 256 pixels.

Remark 3. When there are multiple signals, there are many possible combinations of signals and the
number of paths, which will lead to the very complex training process of neural network and a large
amount of training data is required. In addition, based on the theory of array signal processing [24],
when the arrival direction of multiple signals is different, multiple signals can be reduced into a
single signal by dimensionality reduction. Therefore, each signal can be processed in this way. By
using this method, the accuracy will not decrease, but the computation can be greatly reduced.

Remark 4. The network used in this paper can be used to identify the number of paths under
more paths, and only needs to increase the corresponding training data. However, the case for a
larger number of paths is very rare [21] so this paper focuses on two common cases: single path and
two paths.

The CNN structure is shown in Figure 5. It contained four convolutional layers and
two fully connected layers. The convolutional layer is used to extract spatial spectral
features. The fully connected layer plays the role of mapping the learned feature represen-
tation to the label space of samples. The activation function was the ReLU function. The
loss function was the BCELoss function. To prevent overfitting, an early stop mechanism
was used in the training process. If the loss value of the validation set did not decrease for
10 consecutive times, the training was stopped.

The loss curves of the training set and validation set are shown in Figure 6. The loss
values of the training and validation sets maintained the same decreasing trend, and there
was no overfitting during the training process. A total of 2000 spatial spectrograms were
used as the test set. The accuracy of path number discrimination was 99.8%. Therefore, we
can use the trained network to determine the number of paths.
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3.1.2. Search for Multipath Spectral Peaks

After the number of paths was determined, the search for the spectral peak in the
spatial spectrogram was performed using a regression method based on the CNN. The
regression network model structure is shown in Figure 7. The convolutional layer dimen-
sion was added in the model structure based on the path number discrimination model
to improve the characteristic extraction capability of the model. The model output was
modified from the classification result to the regression result of the elevation angle. The
loss function was the MSELoss function. A total of 10,000 spatial spectral spectrogram
images of the two paths were generated as the training data with an elevation angle range
of 5◦ to 70◦. The early stop mechanism was the same as the network shown in Figure 5.
The loss curve in the training process is shown in Figure 8. The decreasing trend of the
loss value in the training set was consistent with that in the validation set. There was no
overfitting in the training process. A total of 1000 randomly generated spatial spectrogram
images were used as the test set. When the angle error was within 1.5◦, the prediction
accuracy was acceptable. The prediction accuracy rate of the elevation angle is defined as
the ratio of the number of correctly predicted spatial spectral spectrograms to the number
of total spatial spectral spectrograms. It was 94.75%, which demonstrated satisfactory
model performance that met the expected requirements.
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3.1.3. Elevation Angle’s Prior Distribution Learning

A simulation was conducted to generate 10,000 spatial spectrogram images that
included a single path and two paths for a specific region. The elevation angles of the
two paths followed a GMM. First, the number of paths was determined by the path
discrimination model to obtain the numbers of single-path and two-path spectrograms,
which were 3823 and 6177, respectively. For the single-path spatial spectrograms, the
elevation angle was obtained using a traditional search method for the spectral peak. For
the two-path spatial spectrums, the network shown in Figure 7 was used to determine the
elevation angle, and the probability distribution of the elevation angle was also collected.
Figure 9 shows the result of the comparison between the actual probability distribution of
the elevation angle and the probability distribution obtained by CNN learning. As shown
in Figure 9, neural network learning helped us to obtain an important characteristic, that
is, the elevation angles of the two paths followed a GMM. Therefore, the network met the
expected requirements.
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The prior distribution information of the elevation angle can be used to modify the pos-
terior probability to obtain the modified posterior probability. This idea is important and pro-
vided by Equation (9). According to this idea, the prior distribution of the elevation angle can 
be used to modify the elevation angle’s estimated value obtained using Equation (3). 

Hargmin( ( ) ( )) ( )H
MUSIC N NΘ Θ P


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3.2. Estimate Modification of the Elevation Angle Based on Prior Information

Under the influence of multipath fading, the elevation angle φ of the same target is no
longer a fixed value but a random variable that varies with the direction measurement’s
time and site, denoted by φ(r, t), where r is the location of the measurement station and
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t is time. Different from traditional methods in which the elevation angle is considered as
a deterministic parameter for direction measurement, in this paper, Bayesian estimation
theory was introduced and the elevation angle distribution under the ionospheric multi-
layer reflection was considered as prior information to estimate the maximum posterior
probability of the elevation angle as follows:

P(φ|X) = P(X|φ)P(φ)
P(X)

(8)

where X is the array observation vector defined by Equation (2), P(φ|X) is the posterior
probability, P(X|φ) is the likelihood function of the elevation angle with respect to the
observation vector, and P(φ) is the prior probability distribution of the elevation angle.
Equation (8) can be simplified as follows:

P(φ|X) = ηP(X|φ)P(φ) (9)

where
η = (P(X))−1 =

1
∑A P(X|φ)P(φ)

(10)

The prior distribution information of the elevation angle can be used to modify the
posterior probability to obtain the modified posterior probability. This idea is impor-
tant and provided by Equation (9). According to this idea, the prior distribution of the
elevation angle can be used to modify the elevation angle’s estimated value obtained
using Equation (3).

φMUSIC = argmin
φ

(aH(Θ)UNUH
Na(Θ)) P(φ) (11)

It should be noted that the elevation angle’s correction only involved multiplying the
angle’s estimate by a coefficient, so that the increase in the computational effort was limited.
Although the prior probability distribution of the elevation angle requires a large amount
of data analysis, the computation is an offline process. Therefore, only one deep learning
calculation is needed to obtain the distributions for actual positioning.

As shown in Figure 2, the calculation method of the azimuth and the elevation angle
of the signal that passes each path to arrive at the ith DOA observation station is as follows:

θi = arctan

(
ux − uix
uy − uiy

)
,

R
sin
(

π
2 − φi − βi

) =
R + hi

sin
(

π
2 + φi

) , i = 1, 2, . . . , N (12)

where R is the average radius of the earth, and u were ui are the coordinates of the target and
ith observation station, respectively, in the earth-centered earth-fixed coordinate system.

The modified estimates of the azimuth and the elevation angle were obtained using
Equation (3) and (11). The estimates were substituted into Equation (4) to obtain the pseudo-
linear equations of the azimuth and the elevation angle. The matrix QR decomposition
iteration algorithm was used to obtain the DOA stage positioning results.

According to Figure 2, the propagation distance of each path can be expressed
as follows:

dm = 2
√
(R sin(βm))

2 + (R− R cos(βm) + hm)
2 m = 1, 2, . . . , M (13)

Therefore, the difference between the arrival time of the signal at the mth observation
station and the arrival time at the first observation station can be calculated as

τm =
2
c
(dm − d1) (14)
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Considering βm = arcsin(||u− um||/(2R) ) and that this calculation is related to the
target position, Equation (14) cannot be pseudo-linearized directly. In this case, the target
estimate of the DOA in the first stage can be considered as a known value in the TDOA
stage to obtain the pseudo-linear equation shown in Equation (7) and obtain the final results
using the matrix QR decomposition iteration algorithm.

4. Simulation Studies

Simulations were conducted to verify the positioning performance of the proposed
method. The default settings of the simulation parameters included the following. The
longitude and latitude of the radiation source were 134◦ and 34◦, respectively. There
were seven shortwave observation stations, among which the first three had the DOA
positioning system and the last four had the TDOA positioning system. Their longitudes,
latitudes, and corresponding ionospheric reflection heights are shown in Table 1. The
observation errors of the azimuth, elevation angle, TDOA, and ionospheric reflection
height all followed Gaussian distributions with zero means and were independent of each
other. Their covariance matrices were

ΩΘ = blkdiag
{

Ωθ , Ωφ

}
= σ2

θ I2N

Ωτ = σ2
τRM−1

Ωh = σ2
h IN+M

(15)

where the diagonal elements of the matrix RM−1 were 1, and all other elements were 0.5.
blkdiag{·} is a block-diagonal matrix formed from the matrices or vectors. The root mean
square error of positioning was the measurement standard of positioning accuracy. The
calculation formula for the root mean square error of positioning is given by

RMSE =

√√√√ K

∑
i=1

∣∣∣∣û− u
∣∣|22

K
(16)

where K denotes the number of Monte Carlo simulation runs. K takes 5000 in the simulation.

Table 1. Longitude, latitude, and ionospheric reflection virtual height of the observation station.

Observation Station Longitude (◦) Latitude (◦) Ionospheric Reflection Virtual Height (km)

DOA-1 116.23 40.22 340.00
DOA-2 112.54 33.00 390.00
DOA-3 116.00 29.71 370.00

TDOA-1 123.47 41.80 310.00
TDOA-2 114.54 38.04 350.00
TDOA-3 114.03 30.58 385.00
DOA-1 116.23 40.22 340.00

Figure 10 shows that the results for the positioning accuracy vary with the stan-
dard deviation of the angle’s error with a single path. Other parameters were set as
στ = (0.3/c)/s and σh = 2km, where the elevation angle’s search step was 0.01◦. “Max”
means that the spectral peak with the largest spatial spectrum was selected as the angle’s
estimate when the MUSIC algorithm was used. Figure 10 shows that the traditional po-
sitioning algorithm failed when the angle error was greater than 1.5◦, which resulted in
a sharply increasing positioning error. By contrast, the proposed method improved the
estimation accuracy of the elevation angle; therefore, the failure threshold of the algorithm
was raised. Figure 11 shows that the results for the positioning accuracy vary with the
target’s longitude under a single path. As shown in Figure 11, when the distance between
the observation station and the target increased, the positioning accuracy decreased, mainly
because DOA positioning was sensitive to the distance between the target and the obser-
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vation station. However, the accuracy did not decrease greatly. Therefore, the proposed
method has a certain generalization capability at the location of the radiation source.
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uses the average value of the angles corresponding to the two spectral peaks in the spatial
spectrum as the angle’s estimated value, denoted by “Average.” The data given by the
proposed method are denoted as “Bayes.”

Figures 12 and 13 show the root mean square errors of the estimated values of the
elevation angles given by the traditional methods and proposed method when the elevation
angles were different. Figure 12 shows that when the difference between the elevation
angles of the two paths was greater than 5◦, the angle’s estimation accuracy was less than 3◦,
and the positioning algorithm failed. Figure 13 shows that the elevation angle’s estimation
accuracies for the proposed method were all below 2◦ under various angle differences,
which indicates that the proposed method had a certain anti-multipath effect.

Figures 14 and 15 show that the results for the positioning accuracy of the traditional
methods and proposed method varied with the standard deviation of the angle’s error
when the differences between the elevation angles of the two paths were 1◦ and 3◦, re-
spectively. As the angles’ difference between the two paths increased, the positioning
error of the traditional methods gradually increased, and the threshold value was reduced.
This shows that when the difference between the angles of the two paths was large, the
traditional method could not position accurately. Moreover, when the DOA positioning
error was large in the first stage, the accuracy of the proposed coordinated positioning
was even lower than that of the standalone DOA positioning. This indicates that when
the DOA accuracy was low, coordinated positioning was not meaningful. In this case,
the accuracy of standalone positioning was better than that of coordinated positioning. It
also indicates that the accuracy of coordinated positioning was not always better than that
of standalone positioning.
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Figure 16 shows the positioning accuracy varied with the standard deviation of the
angle’s error when the elevation angles’ differences were 5◦, 7◦, and 10◦ for the proposed
method. Because the traditional methods were not effective at this point, they are not
shown in the figure.

Figures 14–16 show that as the angle difference increased, the proposed method
maintained high accuracy. Therefore, the proposed method had a strong anti-multipath
function. This is because the prior information for the elevation angle is related to the
position and time of the observation station, but is irrelevant to the path’s state. Therefore,
prior information regarding the elevation angle can be used to correct the elevation angles
under different angle differences.
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Figure 15. The positioning accuracy varied with the standard deviation of the angle’s error when the
multipath elevation angle difference was 3◦.
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5. Measured Data

The ionospheric multipath reflection model and its variation trends with respect to
time were validated using measured data. The transmitting station used in the experiment
was a radio station in Urumqi (87◦ E, 43◦ N), Xinjiang, China. The receiving station was a
20-channel shortwave direction measurement array located in Zhengzhou (113◦ E, 34◦ N),
Henan Province, China. The experimental parameters are shown in Table 2.
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Table 2. List of experimental parameters.

Parameter Signal Modulation Type Distance Azimuth Radius-to-Wavelength Ratio

Value AM 2447 km 294.1◦ 2.5

Figure 17 shows an illustration of the arrival angle’s estimate of the transmitting
station obtained using the receiving array. In the signal direction, the elevation angle varied
greatly, and the multipath effect existed. Based on the figure, the elevation angles of the
two paths could not be separated accurately. Therefore, the estimation accuracy of the
elevation angle was reduced because of the existence of the multipath effect.
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Figure 17. Local amplification of signal directions.

Figure 18 shows the time-varying results of the elevation angle of the signal. The
difference between the elevation angles of the two paths was small at some moments,
whereas the difference was large at other moments. Figure 19 shows the distribution
of the signal’s elevation angle. The elevation angle distribution of the two paths was
approximately a GMM, thus verifying the previous analysis and the validity of this study.
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6. Conclusions

In this paper, DOA–TODA coordinated positioning for shortwave radiation sources
was addressed based on prior information regarding the distribution of the elevation
angles. First, a CNN was used to determine the number of single and multiple paths. The
probability distribution of the elevation angle with the corresponding number of paths
was learned. Then, the DOA and TDOA observation models were constructed according
to the ionospheric virtual reflection model. The elevation angle’s estimated value was
modified using the elevation angle’s prior information. An optimization model with double
quadratic equality constraints was constructed according to the pseudo-linear equations
of the azimuth, the elevation angle, and TDOA. The matrix QR decomposition iteration
algorithm was used to solve the model.

Simulations were conducted for the single-path and two-path cases. The simula-
tion results demonstrated that compared with traditional methods, the proposed method
achieved better positioning accuracy when the angle error was large, and anti-noise per-
formance improved with strong anti-multipath performance. Moreover, the proposed
method generalized the target position. Finally, the measured data were used to validate
the proposed method. It should be noted that in this paper, only DOA–TDOA coordinated
positioning for stationary targets was addressed. A future study needs to be conducted for
moving targets.
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Abstract: Power transformers play a critical role in power systems, and the early detection of their
faults and defects, accounting for over 30%, can be achieved through abnormal sound analysis.
Sound source localization based on microphone arrays has proven effective in focusing on the
troubleshooting scope, preventing potential severe hazards caused by delays in fault removal,
and significantly reducing operational and maintenance difficulties and costs. However, existing
microphone array-based sound source localization algorithms face challenges in maintaining both
accuracy and simplicity and especially suffer from a sharp decrease in performance when dealing
with multiple sound sources. This paper presents a multi-sound source localization algorithm
for transformer faults based on polyphase filters, integrating the sum-difference monopulse angle
measurement technique into the microphone array. Firstly, the signals received from the transformers
are divided into multiple subbands using polyphase filters, allowing for multi-source separation
and reducing the sampling rate of each subband. Next, the time-domain signals in subbands
subject to noise suppression are processed into sum and difference beams. The resulting beam
outputs are transformed into frequency-domain signals using the Fast Fourier Transform (FFT),
effectively enhancing the signal-to-noise ratio (SNR) for separate sound sources. Finally, each subband
undergoes sum-difference monopulse angle measurement in the frequency domain to achieve the
high-precision localization of specific faults. The proposed algorithm has been demonstrated to be
effective in achieving higher localization accuracy and reducing computational complexity in the
presence of actual amplitude-phase errors in microphone arrays. These advantages can facilitate its
practical applications. By enabling early targeting of fault sources when abnormalities occur, this
algorithm provides valuable assistance to operation and maintenance personnel, thereby enhancing
the maintenance efficiency of transformers.

Keywords: transformer; polyphase filter; sum-difference monopulse; multi-source separation; multi-
source localization

1. Introduction

The rapid growth in power demand has led to the constant expansion of grid capacity
and the continuous improvement of voltage levels. As a result, higher and stricter require-
ments for safe operation and reliable power supply have been imposed on power systems.
Power transformers serve as core equipment in power systems, and their operating condi-
tions have a direct impact on the overall functioning of power grids [1–3]. It is essential
to enhance the operational reliability of transformers as well as promptly identify and
localize any faults that occur during their operation, which is a crucial task for ensuring
the safe and reliable operation of power grids. At present, some typical faults of power
transformers, such as partial discharge, short-circuit impulse, and DC magnetic bias, can
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be distinguished from the voiceprint signal. For example, when a partial discharge occurs
in a power transformer, air bubbles and impurities will appear inside, leading to partial
damage to the dielectric and a “squeak” or “crackle” sound. When a power transformer
encounters a short-circuit shock, the short-circuit current will surge, producing a “gurgling”
boiling sound inside the transformer [4]. Therefore, in engineering design, when facing
voiceprint information, it is necessary to first detect and identify the faulty voiceprint,
and then locate the identified faulty voiceprint. However, due to various factors such as
the presence of interference sounds in their operating environments, complex structures,
and diverse operating conditions, existing localization techniques can only target large
components, falling short of achieving precise localization. In recent years, microphone
array-based sound source localization technology has gained significant attention due to
its convenience and efficiency [5–9].

Many scholars, both in China and abroad, have conducted extensive studies on micro-
phone array-based sound source localization. For instance, Hahn et al. proposed a sound
source localization method based on steerable beamforming [10]. However, this method
relies on prior knowledge of sound sources and ambient noises, which is often challenging
to obtain in real-world scenarios. Another method presented by Dibiase et al. is the guided
response power-phase conversion approach [11]. However, this technique necessitates a
global search and a subsequent heavy computational workload. Schmidt introduced the
multiple signal classification (MUSIC) algorithm [12], which is only applicable in scenarios
where the number of sources is known and the sources are non-coherent. This algorithm
has subsequently sparked various improvements by other researchers. For instance, Refer-
ence [13] suggests using a windowing function to filter and process coherent signals for
estimating their direction of arrival (DOA). Reference [14] proposes a joint diagonalization
matrix-based algorithm to construct a cost function, enabling DOA estimation even in
scenarios with unknown numbers of mixed signals. Although these improved versions of
the MUSIC algorithm have made progress in overcoming the limitations of the original
method, they still face challenges in real-time processing due to the high computational
complexity associated with covariance matrix estimation and matrix inversion.

While these algorithms demonstrate effectiveness in localizing sound sources under
specific scenarios, applying them directly in complex multi-source transformer environ-
ments is impractical. In such scenarios, a feasible approach to localizing each sound source
involves using a filter bank for separate extraction of sources, followed by direction finding.
However, traditional analysis filter banks perform filtering before sampling, which can
lead to increased hardware resource requirements when a high sampling rate is necessary.
In contrast, the utilization of polyphase filters (PFs) [15–17] offers advantages in improving
resource efficiency by sharing a low-pass filter among different branches and leveraging
the sampling rate transformation theorem that allows for downsampling before filtering.

Among the various angle measurement algorithms, the sum-difference monopulse
(MP) method stands out due to its high accuracy, robustness, and easy applicability, and has
been extensively applied in radar systems [18–20]. However, there are a limited number of
studies exploring its application in the field of sound source localization. To summarize,
this paper presents a sound source localization algorithm for detecting faults in power
transformers, combining polyphase filters with the MP method, to give a solution for
achieving high-precision localization of sound sources in transformers within complex
environments. This research on spatial localization technology for abnormal sound sources
facilitates the precise localization of zones containing abnormal sound sources within
transformers and improves maintenance efficiency by narrowing down the troubleshooting
scope.

2. Signal-Receiving Model of Microphone Array

The model depicted in Figure 1 illustrates the signal received by microphones in a
uniform linear array with M elements. In this model, the normal direction represents
the direction perpendicular to the array. On the assumption of a far-field model, signals
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from different sound sources propagate as plane waves coming from various incidence
directions. Considering the leftmost signal as the reference element, the received signals of
the array can be expressed as [21]

X = a1x1 + . . . + aQxQ + N = Re(
Q

∑
n=1

anxn + N) (1)

an = [1 . . . exp(
j2π fn(M − 1)d sin θn

c
)]

T
(2)

where d denotes the element spacing; Q denotes the number of sound sources; x(n) denotes
the complex amplitude of the nth sound signal; fn denotes the frequency of the nth sound
signal; θn denotes the angle of incidence of the nth sound signal; c denotes the velocity of
sound; N denotes the M × 1-dimensional noise vector; an denotes the steering vector of
the array response; Re(·) denotes the operation to extract the real part; and T denotes the
transpose operator.
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Figure 1. Linear array model of signal receiving.

3. Multi-Source Separation Using Polyphase Filter

The sound emitted by running transformers primarily originates from the vibrations
of various components, such as windings, iron cores, cooling fans, and others. These
components generate vibrations at different frequencies. To localize fault sound sources
separately and eliminate noise interference in complex multi-source environments, an
analysis filter bank is employed to divide the sound signals received from the transformers
into multiple subbands, allowing for the separation of fault sound sources.

Traditional analysis filter banks typically first divide the wideband signals xn into
K subbands using a modulation process and then shift these subbands to the baseband
while decimating them to reduce the sampling rate. The theoretical formulas can be found
in [22]. This process necessitates numerous unnecessary calculations, leading to a waste of
hardware resources. On the contrary, analysis filter banks based on a polyphase structure
share a low-pass filter among branches to improve resource utilization.

An N-point FIR filter system function is assumed as

H(z) =
N−1

∑
l=0

h(n) (3)

Taking N as a multiple of K and letting L = N/K, we obtain

El(ZK) =
L−1

∑
n=0

h(nK + l)
(

zK
)−n

(4)

as the polyphase component of the filter, and then the filter system function can be ex-
pressed as

H(z) =
M−1

∑
l=0

z−lEl(zK) (5)

For traditional analysis filter banks, the kth (k = 0, 1, . . . , K − 1) output can be ex-
pressed as

vk(n) = [x(n) ∗ hk(n)]e−jwkn (6)
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yk(m) = vk(n)|n=Km =
N−1

∑
i=0

x(Km − i)[h0(i)ejωk(i−Km)] (7)

where x(n) denotes the input signal, hk(n) denotes the kth filter response, with
hk(n) = h0(n)ejωkn, and h0(n) denotes the low-pass prototype filter.

Letting
i = lK + r (8)

Equation (7) can be expressed as

yk(m) =
K−1

∑
r=0

ejωkr
L−1

∑
l=0

xr(m − l)er(l)ejωkK(l−m) (9)

In Equation (9),
xr(m − l) = x(Km − Kl − r) (10)

er(l) = h0(Kl + r) (11)

In odd-channel layout scenarios, the center frequency of the kth subband is ex-
pressed as

wk = −π +
2πk

K
(12)

Substituting it into Equation (9), we obtain

yk(m) = K(IDFT[(xr(m) ∗ er(m))(−1)r]) (13)

Figure 2 illustrates a channelized polyphase filter. In the polyphase filter (PF) approach,
it is important to note that the sequence length of all subbands is 1/K of the original
sequence length. Specifically, the 0th and (K/2)th subbands carry real signals, while the
remaining subbands carry complex signals. Additionally, the information in the 1st to
(K/2 − 1)th subbands is the same as that in the (K/2 + 1)th to (K – 1)th subbands. When
using PFs for signals received by each element, the output in the kth channel of the array is
expressed as

Yk(m) = a ∗ (K(IDFT[(xr(m) ∗ er(m)(−1)r)])) (14)

where a denotes the steering vector of the array.

Sensors 2024, 24, x FOR PEER REVIEW  4 of 12 
 

 

1

0

( ) ( )
M

l K
l

l

H z z E z






    (5) 

For traditional analysis filter banks, the kth (k = 0, 1, ..., K − 1) output can be expressed 

as 

( ) [ ( ) ( )] kjw n
k kv n x n h n e    (6) 

1
( )

0
0

( ) ( ) ( )[ ( ) ]k

N
j i Km

k k n Km
i

y m v n x Km i h i e 







     (7) 

where  ( )x n   denotes  the  input  signal,  ( )kh n   denotes  the  kth  filter  response,  with 

0( ) ( ) kj n
kh n h n e  , and  0 ( )h n  denotes the low-pass prototype filter. 

Letting 

i lK r    (8) 

Equation (7) can be expressed as 

1 1
( )

0 0

( ) ( ) ( )k k

K L
j r j K l m

k r r
r l

y m e x m l e l e 
 



 

     (9) 

In Equation (9), 

( ) ( )rx m l x Km Kl r      (10) 

0( ) ( )re l h Kl r    (11) 

In odd-channel layout scenarios, the center frequency of the kth subband is expressed as 

2
k

k
w

K


     (12) 

Substituting it into Equation (9), we obtain 

( )= ( [( ( ) ( ))(-1) ])r
k r ry m K IDFT x m e m   (13) 

Figure 2 illustrates a channelized polyphase filter. In the polyphase filter (PF) ap-

proach,  it  is  important  to note  that  the sequence  length of all subbands  is 1/K of  the 

original sequence length. Specifically, the 0th and (K/2)th subbands carry real signals, 

while the remaining subbands carry complex signals. Additionally, the information in 

the 1st to (K/2 − 1)th subbands is the same as that in the (K/2 + 1)th to (K – 1)th subbands. 

When using PFs for signals received by each element, the output in the kth channel of 

the array is expressed as 

( ) * ( ( [( ( ) * ( )( 1) )]))r
k r rm K IDFT x m e m Y a   (14) 

where  a  denotes the steering vector of the array. 

K

...

K

K

1z

1z
( )zE K-point 

IDFT

0 ( )y n

1( )y n

1( )Ky n

( )x n

 

Figure 2. Channelized polyphase filter. 
Figure 2. Channelized polyphase filter.

The incorporation of polyphase filters allows for the separation of multiple fault sound
sources. Moreover, the sequence length of the subbands containing fault sound sources
is reduced to 1/K of the original length by downsampling before filtering, which helps
reduce the computational workload of subsequent operations, contributing to enhanced
calculation efficiency. In addition, sharing a low-pass filter among the polyphase filter
branches can greatly improve the utilization rate of system resources.
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4. Multi-Source Localization Based on Sum-Difference Monopulse in
Frequency Domain
4.1. Principle of Sum-Difference Monopulse Angle Measurement

Current sound source localization algorithms based on microphone arrays often
demand extensive calculations to achieve high localization accuracy, which imposes a high
cost for real-world implementation. Therefore, the exploration of a microphone array-based
sound source localization technology that combines both accuracy and simplicity holds
paramount significance in engineering practice. Considering the extensive applications
of the sum-difference MP angle measurement in radar systems, which boasts a simple
structure, low calculation complexity, and high accuracy, this section presents a multi-
source localization algorithm based on microphone arrays, which aims to strike a balance
between accuracy and simplicity, emphasizing the integration of the sum-difference MP
technique with the previously mentioned PF in the microphone array.

The sum-difference monopulse angle measurement is achieved by aligning the main
lobe of the sum beam with the desired direction and forming the null of the difference
beam in the desired direction. We adjust the distance between the microphone array and
the transformer and weight the amplitude of each subband to ensure that the transformer’s
sound surface is located within the main lobe of the beam. Through the output ratio
calculation between the sum and difference beams, a specific value is derived. This value
represents the extent of deviation of the beams in the target direction from the beam center,
leading to a precise estimation of the target location. Detailed theoretical derivations can
be found in reference [23].

Assuming the element spacing of an M-element uniform linear array as d and the
beam pointing as θ0, the sum beam weight wΣ can be taken as

wΣ = a(θ0) (15)

Based on the symmetry of uniform linear arrays, the difference in beam weight w∆
can be taken as

w∆ = [

M/2︷ ︸︸ ︷
−1, . . . ,−1,

M/2︷ ︸︸ ︷
1, . . . , 1]

T

⊙ a(θ0) (16)

In Equation (16), ⊙ represents the Hadamard product. Then, the outputs of the sum
and difference beams in the kth subband can be expressed by Equations (17) and (18),
respectively.

Σ(θ) = wH
Σ Yk(m) (17)

∆(θ) = wH
∆ Yk(m) (18)

The in-band signaling angle can be estimated from the outputs of the sum and differ-
ence beams as follows:

∧
θ = θ0 +

1
k′

Re(
∆(θ)
Σ(θ)

) (19)

In Equation (19), k′ denotes the monopulse ratio slope [24,25].

k′ = j
πMd

2λ
(20)

It can be seen from Equation (20) that the value of k′ is determined solely by the number
of elements (M), element spacing (d), and signal wavelength (λ). The angle measurement
accuracy is correlated with the value of k′ and SNR. Notably, higher values of k′ and SNR
contribute to improved accuracy in angle measurement.

4.2. Multi-Source Localization in Subbands

To enhance the accuracy of sound source localization, the complex variational mode
decomposition (CVMD) [26] method is used to suppress noise. CVMD is applied within
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the subbands that contain faulty sound sources. It enables the transformation of the
outputs of the sum and difference beams to the frequency domain, thereby providing an
enhanced SNR.

ˆ∑(θ) = FFT(wH
Σ Yk(m)) (21)

∆̂(θ) = FFT(wH
∆ Yk(m)) (22)

where FFT denotes the Fast Fourier Transform, and ∑̂(θ) and ∆̂(θ) represent the frequency-
domain outputs of ∑̂(θ) and ∆̂(θ), respectively.

In conclusion, the proposed algorithm can be explained using a flow chart, as shown
in Figure 3. This algorithm, integrating PF and frequency-domain MP angle measurement,
can be used for multi-source sound localization of faults in power transformers.
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Figure 3. Flow chart of the algorithm for multi-sound source localization.

5. Analysis of Algorithm Performance

The performance of the algorithm was verified using the experimental data, which
are detailed below. The microphone array used in the experiment was an eight-element
line array, with each array element having a center spacing of 4.25 cm and a sampling
rate of 96 KHz. Figure 4 shows the microphone array used in the experiment. The first
transformer sound source to be estimated emitted electromagnetic sound, while the second
sound source emitted a whistling sound. Figure 5 shows a sketch of the experimental setup.
The system parameters are shown in Table 1.
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Table 1. Parameters of experimental system.

Parameter Symbol Value

Sampling rate fs 96,000 Hz
Number of elements M 8

Element spacing d 0.0425 m
Center frequency of electromagnetic sound f1 293.5 Hz

Center frequency of whistling sound f2 1404 Hz
True offset value of electromagnetic sound a1 −0.3 m

True offset value of whistling sound a2 0.36 m
Velocity of sound c 340 m/s

Number of subbands K data

The entire Nyquist spectrum was divided into 640 subbands using PFs, with each
subband having a bandwidth of 150 Hz. In engineering applications, the transformer’s
voiceprint needs to be detected and identified before localization. In fault identification,
the frequency domain information corresponding to different faulty voiceprints can be
determined, and this can be used to determine the subbands in which the faulty voiceprint is
located. The electromagnetic sound was localized in the 323rd subband, while the whistling
sound was in the 330th subband. Figures 6 and 7 illustrate the frequency spectrograms of
the subbands containing these two sound sources in their respective elements.
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Figure 6. Subband spectrum of array elements for electromagnetic sound.
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Figure 7. Subband spectrum of array elements for whistling sound.
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Figures 8 and 9 show the antenna patterns for the sum and difference beams corre-
sponding to f1 and f2, along with their monopulse response curves. These illustrations
demonstrate that the main lobe of the beams is aligned at an angle of 0 degrees, indicating
a notch in the difference beams. It is important to note that the sum-difference monopulse
angle measurement exploits the linear interval of the monopulse response curve near the
main lobe. Consequently, as the sound source frequency increases, the main lobe narrows,
resulting in a larger value of k′ and higher accuracy in angle measurement. Typically, the
range of the 3dB main lobe attenuation is considered the linear interval for angle measure-
ment. Thus, in Figure 8, the angle measurement range for the sum and difference beams of
the electromagnetic sound is approximately −30◦ to 30◦, while for the whistling sound, it
is approximately −15◦ to 15◦.
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Figures 10 and 11 show the FFT outputs of the sum and difference beams, respectively,
for the electromagnetic sound and the whistling sound. In the validation of the actual
measurement data, we used two different spectra of electromagnetic and whistling sounds
corresponding to the two kinds of faulty sound patterns for localization. Table 2 shows
the offsets in the conversion results obtained from angle estimation using MP and MUSIC
algorithms. Through a comparison of these results, it can be concluded that the algorithm
proposed in this paper demonstrates significantly improved localization accuracy, both at
high and low frequencies.
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Figure 10. FFT outputs of sum and difference beams of electromagnetic sound.
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Figure 11. FFT outputs of sum and difference beams of whistling sound.

Table 2. Angle measurement results of different algorithms.

Algorithm f1 Estimation
Offset/m

f1 Estimation
Error/m

f2 Estimation
Offset/m

f2 Estimation
Error/m

MP −0.6039 −0.3039 0.3322 −0.0278
MUSIC −0.6850 −0.3850 0.2601 −0.0999

6. Conclusions

To tackle the challenges faced by classical microphone array-based sound source
localization algorithms, which often struggle to balance accuracy and simplicity and, in
particular, encounter significant performance degradation when addressing transformer
faults in environments with multiple sound sources, this paper investigates the algorithm
for multi-sound source localization of power transformer faults based on polyphase filters.
The algorithm incorporates PFs to first divide the received signal into different subbands,
enabling the downsampling of signals in the time-domain subbands and the separate
formation of sum and difference beams. The outputs of these sum and difference beams are
transformed into the frequency domain, and their ratio is utilized to achieve high-precision
localization of fault sound sources simultaneously. In this paper, the performance of the
proposed algorithm is evaluated by comparing its angle measurement results with those
obtained using the MUSIC algorithm. The experimental data demonstrate that the proposed
algorithm outperforms the MUSIC algorithm in terms of localization accuracy when faced
with array amplitude and phase errors. Moreover, the proposed algorithm offers practical
advantages due to its lower computational complexity, making it suitable for real-world
applications. This algorithm has proven effective in achieving high-precision localization of
sound sources for transformer faults. It helps narrow down the troubleshooting scope and
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assists operation and inspection personnel in targeting fault sources when abnormalities
initially emerge. These benefits significantly enhance the efficiency of operation and
inspection, thereby demonstrating substantial application potential. The present study also
establishes a strong foundation for future investigations concentrating on ways to further
suppress interference and enhance the localization accuracy of this algorithm in complex
environments where interference and noise coexist.
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Abstract: This paper delves into the problem of direct position determination (DPD) for non-Gaussian
sources. Existing DPD algorithms are hindered by their high computational complexity from ex-
haustive grid searches and a disregard for the received signal characteristics by multiple nested
arrays (MNAs). To address these issues, the paper proposes a novel DPD algorithm for non-Gaussian
sources with MNAs: the Discrete Fourier Transform (DFT) and Taylor compensation algorithm.
Initially, the fourth-order cumulant matrix of the received signal is computed, and the vectorizing
method is applied. Subsequently, a computationally efficient DPD cost function is proposed by
leveraging a normalized DFT matrix to reduce complexity. Finally, first-order Taylor compensation is
utilized to enhance the accuracy of the localization results. The superiority of the proposed algorithm
is demonstrated through numerical simulation results.

Keywords: non-Gaussian signal; multiple nested arrays; direct position determination; Discrete
Fourier Transform; Taylor compensation

1. Introduction

The advancement of wireless positioning technology has led to its widespread ap-
plication in various sectors, including military defense, emergency rescue [1,2], resource
exploration, intelligent transportation, and more [3–5]. Precisely locating enemy radiation
sources is crucial for victory in battlefield scenarios. Wireless localization technology is
categorized into traditional two-step positioning and direct position determination (DPD)
technology [6–8].

The two-step positioning framework can be further classified into angle of arrival
(AOA) [9], time of arrival (TOA) [10], time difference of arrival (TDOA) [11], received
signal strength (RSS) [12], and other categories based on intermediate parameters estima-
tion. While this technology estimates intermediate parameters from received signals and
then solves spatial geometry problems to determine radiation source positions, it suffers
from information loss between steps and suboptimal accuracy due to errors in parameter
matching processes [13].

A DPD algorithm is suggested in [14] as a solution to address the challenges men-
tioned. This algorithm has garnered attention for its ability to achieve superior localization
accuracy compared to the two-step algorithm, particularly in low signal-to-noise ratio
(SNR) environments. The DPD algorithm directly determines the source position from the
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original received data, eliminating the need for estimating signal parameters and thereby
avoiding estimation errors associated with intermediate parameters in the two-step ap-
proach. Moreover, the DPD algorithm does not require a matching procedure. While no
intermediate parameters are essential in the DPD framework, certain signal parameters
must still be taken into account in the algorithm model. The maximum likelihood (ML)
DPD estimator in [15] incorporates joint information from angle of arrival (AOA) and time
difference of arrival (TDOA) to achieve high localization accuracy through exhaustive
search, albeit at the cost of increased complexity in scenarios with multiple sources. To mit-
igate this complexity, the subspace data fusion (SDF) technology [16] based on multiple
signal classification (MUSIC) [17] is proposed. Furthermore, the Capon DPD algorithm,
which avoids eigenvalue decomposition (EVD), is introduced for situations with multiple
sources [18]. However, all the aforementioned algorithms treat the source signal as arbitrary,
whereas studies have proved that better positioning accuracy can be achieved when the
property of the source signal is a priori known [19,20]. A localization algorithm tailored
for orthogonal frequency division multiplexing (OFDM) signals is detailed in [21]. Due to
the high computational demands of ML algorithms, an extended SDF DPD algorithm is
proposed in [22]. Additionally, features of non-circular signals are harnessed to enhance
positioning accuracy and increase the degree of freedom (DOF) as evidenced by studies
such as [23–25].

In the realm of localization research, it is commonly presumed that a signal adheres
to a Gaussian distribution, with the second-order cumulant (SOC) [26] being utilized to
derive a probability density function that encapsulates all signal information. However,
practical scenarios often involve signals that deviate from Gaussian distribution, rendering
lower-order cumulants insufficient in capturing all signal details. Therefore, the fourth-
order cumulant (FOC) introduced in [27] is employed for signal analysis. Unlike SOC,
FOC is adept at disregarding Gaussian noise and expanding array elements, leading to
enhanced parameter estimation precision as evidenced in [28–30]. Moreover, prevalent
position estimation techniques rely on uniform linear arrays (ULAs), which suffer from
densely positioned elements, inducing heightened mutual coupling. Proposals to mitigate
this challenge include sparse arrays with larger apertures and reduced mutual coupling,
exemplified by classic coprime arrays and nested arrays (NAs) as put forth in [31–33].

In this paper, we propose a novel DPD algorithm utilizing multiple nested arrays
(MNAs) for non-Gaussian sources. The main contributions are summarized as follows:

• The property of non-Gaussian sources is fully exploited to suppress Gaussian noise
and augment the virtual array aperture, which benefits the available degrees of
freedom (DOFs).

• We propose a novel low-complexity DPD algorithm of non-Gaussian sources utilizing
MNAs. We deploy the Discrete Fourier Transform (DFT) method to construct a com-
putationally efficient DPD cost function to reduce the high computational complexity
caused by exhaustive grid search.

• We utilize the Taylor compensation method to improve the localization accuracy at
the expense of calculating the position estimation bias. It should be emphasized that
even when the source position does not fall on the preset grid, the proposed algorithm
can still estimate the position of sources accurately.

• Complexity analysis and extensive numerical results are presented to verify the supe-
riority of the proposed algorithm in terms of location accuracy, resolution capability,
and computational complexity.

The following structure of the article is, the MNAs localization model is introduced in
Section 2. The proposed algorithm is derived in Section 3. Performance analysis, numerical
results, and conclusions are drawn in Sections 4, 5 and 6, respectively.

Notations: Vectors and matrices are lower-case bold and upper-case bold, respectively.
(·)T , (·)∗, and (·)H denote transposition, conjugate, and Hermitian transpose, respectively.
x(n) extracts the nth element of vector x; E(·) represents the expectation operator; ⊗ is the
Kronecker product; vec(·) stacks the columns of a matrix into a vector; ∂(x)/∂(y) denotes
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the derivation of x with respect to y; diag(x) turns vector x into a diagonal matrix; and ∥·∥
denotes the l2 norm.

2. Model Formulation

In the context depicted in Figure 1, we analyze a scenario where K incoherent non-
Gaussian sources emit narrow-band stationary signals in a two-dimensional localization
setting, with unknown positions. It is assumed that the quantity of sources K is pre-
determined, and various established techniques can be employed to ascertain it [34,35].
To pinpoint these unidentified sources, we deploy L spatially distributed sensor arrays, each
furnished with a NA comprising M array elements. The positions of the sources and sensor
arrays are represented as pk = [xk, yk]

T(k = 1, · · · , K) and ul = [xl , yl ]
T(l = 1, · · · , L),

respectively. The signal received by the lth sensor array at the tth (t = 1, · · · , T) snapshot
can be formulated as per [36]:

xl(t) = Al(p)s(t) + nl(t) (1)

O x

y

O x

y
1p

2p
Kp

1u
2u Lu

lu

1N 2N

array element
(sensor)

sensor array

source

,l k

Figure 1. Geometry of multiple nested arrays localization.

with the following notational definitions:

• p =
[
pT

1 , · · · , pT
K
]T ∈ C2K×1 is the position vector of K sources;

• Al(p) = [al(p1), al(p2), · · · , al(pK)] ∈ CM×K is the array manifold of the lth NA,

and al(pk) =

[
ej2πd1

sin φl,k
λ , ej2πd2

sin φl,k
λ , · · · , ej2πdM

sin φl,k
λ

]T
∈ CM×1 denotes the array

steering vector, where sin φl,k = pk(1)−ul(1)
∥ul−pk∥ . Array element locations d1, d2, · · · , dM

are given by the set

S = {d, 2d, · · · , N1d, (N1 + 1)d, 2(N1 + 1)d, · · · , N2(N1 + 1)d} (2)

where M = N1 + N2, and d denotes the space between array elements, which is
usually set as half of wavelength λ/2;

• s(t) = [s1(t), s2(t), · · · , sK(t)]
T ∈ CK×1 is the signal vector transmitted from the kth

source at time t, where k = 1, 2, · · · , K, t = 1, 2, · · · , T;
• nl(t) denotes the independent additive white Gaussian noise vector of the lth sensor array.
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3. Proposed Algorithm

Define the FOC of a stationary stochastic process x as [37]:

Cum
(

xk1 , xk2 , x∗k3
, x∗k4

)
= E

(
xk1 xk2 x∗k3

x∗k4

)
− E

(
xk1 xk2

)
E
(

x∗k3
x∗k4

)
− E

(
xk1 x∗k3

)
E
(

xk2 x∗k4

)
− E

(
xk1 x∗k4

)
E
(

xk2 x∗k3

)
(3)

where k1, k2, k3, k4, 1 ≤ k1, k2, k3, k4 ≤ T are integers. And the FOC matrix of the received
signal xl(t) can be expressed as [38,39]:

Rl,4 =
K

∑
k=1

csk ,4[al(pk)⊗ a∗l (pk)][al(pk)⊗ a∗l (pk)]
H =

K

∑
k=1

csk ,4al,4x(pk)a
H
l,4x(pk) (4)

where al,4x(pk) = al(pk) ⊗ a∗l (pk), 1 ≤ k ≤ K, csk ,4 = Cum(sk(t), sk(t), s∗k (t), s∗l,k(t)) de-
notes the FOC of the kth signal and is calculated using (3). Notably, the elements of al,4x(pk)

can be constructed with ej2π(di−dj)
sin φl,k

λ , di, dj ∈ S. In practice, al,4x(pk) can be considered
the steering vector of Rl,4, which expands from al(pk). To further improve the accuracy of
localization, we vectorize Rl,4 by column [40]:

z̃l = vec(Rl,4) = Ãl(p)c (5)

where Ãl(p) takes the form:

Ãl(p) =
[
a∗l,4x(p1)⊗ al,4x(p1), · · · , a∗l,4x(pK)⊗ al,4x(pK)

]
= [al,vec(p1), · · · , al,vec(pK)] (6)

and
c = [cs1,4, cs2,4, · · · , csK ,4]

T (7)

Without loss of generality, suppose that the number of sensors of two subarrays of each NA
is equal, i.e., N1 = N2 = M/2. Then, the closed-form expression of the al,vec(pk) location
can be stacked as [40]

Svec = {−Mvecd,−(Mvec − 1)d, · · · , (Mvec − 1)d, Mvecd|Mvec = 2N1(N1 + 1)− 2} (8)

with many redundant elements. According to [41], matrix Al,sort(p) ∈ C(2Mvec+1)×K is
formed by removing the redundancy from al,vec(pk). Meanwhile, the corresponding virtual
signal vector zl,sort is given by

zl,sort = Al,sort(p)c (9)

Then, according to the geometry relationship showed in Figure 1, for a random grid
p = [x, y]T , we have

sin φl =
x − xl√

(x − xl)
2 + (y − yl)

2
(10)

Let ql =
J
2 sin φl , where J = 2Mvec + 1, yielding

ql =
J(x − xl)

2
√
(x − xl)

2 + (y − yl)
2

(11)

Define DFT vector vl,p ∈ CJ×1, the τth element of which is

vl,p(τ) =
(

e−j2πql /J
)τ

(12)

Substitute (11) into (12), yielding

vl,p(τ) = e
−jπτ(x−xl)√

(x−xl)
2
+(y−yl)

2
(13)
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where 1 ≤ τ ≤ J. Combining the information of MNAs, we can construct the following
DPD problem:

p̂ini
k = arg max

p

L

∑
l=1

J

∑
τ=1

vl,p(τ)zl,sort(τ) (14)

where the estimated location p̂ini
k =

[
x̂ini

k , ŷini
k
]T , k = 1, 2, · · · , K is based on the assump-

tion that the position of the source falls on the preset grid. When the assumption is not
met, the off-grid error will always exist. To overcome this issue, we apply the Taylor
compensation method to the initial position estimation.

Define vectors
px = [x1, x2, · · · , xK]

T (15)

py = [y1, y2, · · · , yK]
T (16)

p̂ini
x =

[
x̂ini

1 , x̂ini
2 , · · · , x̂ini

K

]T
(17)

p̂ini
y =

[
ŷini

1 , ŷini
2 , · · · , ŷini

K

]T
(18)

zsort =
[
zT

1,sort, zT
2,sort, · · · , zT

L,sort

]T
(19)

and matrix
Asort(p) =

[
AT

1,sort(p), AT
2,sort(p), · · · , AT

L,sort(p)
]T

(20)

According to (9), we have
zsort = Asort(p)c (21)

Performing the first-order Taylor expansion of Asort(p) at p̂ini =
[(

p̂ini
1
)T , · · · ,

(
p̂ini

K
)T
]T

,
and ignoring the second-order and higher-order terms, we have:

Asort(p) ≈ Asort

(
p̂ini
)
+

2K

∑
i=1

(
p(i)− p̂ini(i)

)∂Asort(p)
∂p(i)

∣∣∣∣
p=p̂ini

(22)

where p(i) and p̂ini(i) extract the ith element of p and p̂ini, respectively. Substitute (15)–(18)
into (22), yielding

Asort(p) ≈ Asort

(
p̂ini
)
+

∂Asort(p)
∂pT

x

∣∣∣∣
px=p̂ini

x

Λx +
∂Asort(p)

∂pT
y

∣∣∣∣∣
py=p̂ini

y

Λy (23)

where Λx = diag(δx), Λy = diag
(
δy
)

with δx = px − p̂ini
x , δy = py − p̂ini

y . Substitute (23)
into (21), yielding

ẑsort ≈

Asort

(
p̂ini
)
+

∂Asort(p)
∂pT

x

∣∣∣∣
px=p̂ini

x

Λx +
∂Asort(p)

∂pT
y

∣∣∣∣∣
py=p̂ini

y

Λy


c (24)

Rewrite (24) as

ẑsort ≈

Asort

(
p̂ini
)

,
∂Asort(p)

∂pT
x

∣∣∣∣
px=p̂ini

x

,
∂Asort(p)

∂pT
y

∣∣∣∣∣
py=p̂ini

y






c
ωx
ωy


 (25)
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where ωx = Λxc and ωy = Λyc. Let B =

[
Asort

(
p̂ini), ∂Asort(p)

∂pT
x

∣∣∣
px=p̂ini

x
, ∂Asort(p)

∂pT
y

∣∣∣∣
py=p̂ini

y

]
,

y =




c
ωx
ωy


, the least square solution of y is readily given by

ŷ =
(

BHB
)−1

BH ẑsort (26)

It should be noted that the estimated value ĉ is composed of the first to Kth elements
of ŷ, ω̂x is composed of the (K + 1)th to 2Kth elements of ŷ, and ω̂y is composed of the
(2K + 1)th to 3Kth elements of ŷ. Therefore, the accurate position estimation after Taylor
compensation is given by

p̂x = p̂ini
x + ω̂x./ĉ (27)

p̂y = p̂ini
y + ω̂y./ĉ (28)

The main steps of the proposed algorithm are summarized as in Algorithm 1.

Algorithm 1: Main Steps of the FOC-DFT-Taylor Algorithm

Input: {xl(t)}T
t=1, K, {ul}L

l=1, λ, d, M, N1, N2.
1. Calculate the FOC matrix R̂l,4 according to (4);
2. Vectorize the matrix R̂l,4 and remove the redundancy to obtain the virtual signal vector

zl,sort utilizing (5) and (8);
3. Construct the normalized DFT vector according to (12) and obtain initial estimated values

of the source position p̂ini
k = [x̂k, ŷk]

T , k = 1, 2, · · · , K using (14);
4. Perform the first-order Taylor expansion of Asort(p) at p̂ini and construct the least square

constraint utilizing (23) and (26);
5. Obtain accurate position estimation after compensation according to (27) and (28).

Output: p̂x, p̂y

4. Performance Discussion
4.1. Complexity

Here, the main computational complexity of different algorithms is compared in
terms of complex number multiplication times. The parameters used are listed as follows:
M is the number of array elements; K denotes the number of sources; L is the number
of NAs; T represents the number of snapshot; J = 2Mvec + 1 is the length of virtual
signal vector zl,sort; and we denote the number of search grids for x and y directions
as recorded as Dx and Dy. The main complexity of the proposed algorithm lies in the
calculation of the FOC matrix, O

(
LTM4); grid search, O

(
LJDxDy

)
; complex differentiation,

O(2LKJ); and compensation, O
(
27K3 + 9K2 + 9K2LJ + 3KLJ

)
. For the sake of comparison,

the complexity of the proposed algorithm (termed as FOC-DFT-Taylor), the classic SDF
DPD algorithm with spatial smoothing technology (termed as FOC-SS-SDF-DPD) [22,42],
the Capon DPD algorithm with spatial smoothing technology (termed as FOC-SS-Capon-
DPD) [18], and the proposed DFT DPD algorithm with SOC (termed as SOC-DFT-DPD)
are given in Table 1, where Na = (J + 1)/2 denotes the length of the smoothing window.

Figure 2 shows the computational complexity of four different algorithms with the
parameters setting as below: M = 8, K = 12, N1 = N2 = 4, T = 500, J = 77, Na = 39,
Dx = Dy = 400, and the number of NAs is changed from 3 to 10. As we can see, compared
to the FOC-SS-SDF-DPD and FOC-SS-Capon-DPD algorithm, the proposed FOC-DFT-
DPD and FOC-DFT-Taylor algorithms reduce the computational complexity thanks to the
computationally efficient cost function. The complexity of the proposed FOC-DFT-Taylor
is a bit heavier than that of the FOC-DFT-DPD and SOC-DFT-DPD algorithms, while it
exhibits higher localization accuracy, which will be shown in Section 5.
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Table 1. Comparison of computational complexity.

Methods Computational Complexity

SOC-DFT-DPD O
(

LTM2 + LMvecDxDy
)

FOC-DFT-DPD O
(

LTM4 + LJDxDy
)

FOC-DFT-Taylor O
(

LTM4 + LJDxDy + 27K3 + 9K2 + 9K2LJ + 5KLJ
)

FOC-SS-SDF-DPD [22] O
(

LTM4 + 2LN3
a + LDxDy Na(Na − K)

)

FOC-SS-Capon-DPD [18] O
(

LTM4 + LN3
a + LDxDy

(
N2

a + Na
))
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FOC-DFT-Taylor

Figure 2. Comparison of complexity versus L.

Figure 3 shows the computational complexity of four different algorithms with the
parameters setting as below: K = 8, N1 = N2 = M/2, T = 300, Dx = Dy = 500, and the
number of array elements is changed from 6 to 20. As we can see, compared to the
FOC-SS-SDF-DPD and FOC-SS-Capon-DPD algorithm, the proposed FOC-DFT-DPD and
FOC-DFT-Taylor algorithms reduce the computational complexity, as they are less sensitive
to the number of array elements M. The complexity of the proposed FOC-DFT-Taylor
algorithm is a bit heavier than that of FOC-DFT-DPD and SOC-DFT-DPD algorithms.
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Figure 3. Comparison of complexity versus M.
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4.2. Advantages

1. Low Complexity: Compared to the FOC-SS-SDF-DPD and FOC-SS-Capon-DPD algo-
rithms, the proposed algorithm reduces much of the computational complexity thanks
to the computationally efficient cost function.

2. High DOF: Compared to the FOC-SS-SDF-DPD and FOC-SS-Capon-DPD algorithms,
the proposed algorithm does not need SS technology for decoherence, which is
caused by vectorizing the FOC matrix. Thus, the proposed algorithm can estimate
more sources.

3. Suppress Gaussian Noise: The proposed algorithm takes full advantage of the charac-
teristics of non-Gaussian signals, and the Gaussian noise is suppressed during the
process of calculating the FOC matrix.

4. High Accuracy: When the sources do not fall on the preset grids, i.e., the off-grid error
exists, the proposed algorithm can still estimate the position of sources accurately
thanks to the Taylor compensation.

5. High-Resolution Capability: Compared to FOC-SS-SDF-DPD and FOC-SS-Capon-DPD
methods, the proposed method has higher resolution capability.

5. Numerical Analysis

We conduct numerical simulations in this section to evaluate various algorithms and
demonstrate the effectiveness of the proposed approach. The superiority of the proposed
method is established through comparisons. Our evaluation includes assessing localiza-
tion accuracy using root mean square error (RMSE) across different algorithms, which is
defined as

RMSE =
1
K

K

∑
k=1

√√√√
Mc

∑
mc=1

∥p̂k,mc − pk∥2/Mc (29)

here, Mc denotes the number of Monte Carlo runs, and p̂k,mc is the estimated position of the
kth source in the mcth Monte Carlo experiment. The resolution capability of the algorithms
is assessed by the definition of the effective estimate rate (EER), which is calculated by

EER =
1

Mc

Mc

∑
mc

αmc (30)

with

αmc =





1, if 1
K ∑K

k=1 ∥p̂k,mc − pk∥ < εerror

0, otherwise
(31)

where εerror represents the error threshold.

5.1. Effectiveness Analysis

Figure 4 shows scatter diagrams of the proposed FOC-DFT-Taylor algorithm, where
the number of Monte Carlo runs is 300, K = 2, and L = 4. The location of sources and
SAs are set as u1 = [−900 m, 1000 m]T , u2 = [−300 m, 500 m]T , u3 = [300 m,−180 m]T ,
u4 = [−800 m, 900 m]T , p1 = [100.5 m, 900.2 m]T , p2 = [900.6 m, 200.7 m]T . The results
presented in Figure 4a demonstrate the successful estimation of sources by the FOC-DFT-
DPD algorithm. Furthermore, analysis of Figure 4b reveals that the estimated positions
closely align with the true positions following Taylor compensation, providing a compelling
clue for the efficacy of the proposed FOC-DFT-Taylor algorithm.
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Figure 4. Scatter diagrams of the proposed algorithm when M = 4, N1 = N2 = 2, T = 300,
Dx = Dy = 600, u1 = [−900 m, 1000 m]T , u2 = [−300 m, 500 m]T , u3 = [300 m,−180 m]T ,
u4 = [−800 m, 900 m]T , p1 = [100.5 m, 900.2 m]T , p2 = [900.6 m, 200.7 m]T , SNR = 5 dB. (a) Ini-
tial estimation. (b) After Taylor compensation.

5.2. RMSE Results

Figure 5 depicts the RMSE of four algorithms versus SNR when the number of
Monte Carlo runs is 600, M = 6, N1 = N2 = 3, T = 500, Dx = Dy = 600, L = 4,
K = 2, u1 = [−900 m,−1200 m]T , u2 = [−300 m,−1100 m]T , u3 = [300 m,−1000 m]T ,
u4 = [−800 m,−900 m]T , p1 = [200.5 m, 623.5 m]T , p2 = [920.5 m,−174.5 m]T , SNR is
changed from −5 dB to 30 dB, and the gap of search grids is 1 m. Observe that the RMSE
values of the four algorithms exhibit close proximity except for the SOC-DFT-DPD algo-
rithm when SNR is below 10 dB, thanks to the property of non-Gaussian sources. The pro-
posed FOC-DFT-Taylor algorithm demonstrates superior performance over the others at
SNR levels exceeding 10 dB, showcasing its exceptional capabilities. Moreover, the RMSE
associated with the proposed FOC-DFT-Taylor algorithm consistently remains below that
of the FOC-DFT-DPD algorithm at the expense of performing Taylor compensation.

Figure 6 shows the RMSE of four algorithms versus T when the number of Monte
Carlo runs is 600, M = 6, N1 = N2 = 3, SNR = 15 dB, Dx = Dy = 600, L = 4,
K = 2, u1 = [−900 m,−1200 m]T , u2 = [−300 m,−1100 m]T , u3 = [300 m,−1000 m]T ,
u4 = [−800 m,−900 m]T , p1 = [100.5 m, 815.5 m]T , p2 = [970.5 m, 54.5 m]T , the number
of snapshots is changed from 200 to 900, and the gap of the search grids is 1 m. The local-
ization performance of the FOC-DFT-DPD and SOC-DFT-DPD remains consistent, as they
do not operate as super resolution algorithms and are constrained by M. Thanks to the
property of non-Gaussian sources, the localization accuracy of the FOC-DFT-DPD is higher
than that of SOC-DFT-DPD. Moreover, the RMSE values of the FOC-DFT-Taylor algo-
rithm consistently outperform the other three algorithms due to its compensation method,
showcasing its superior accuracy in localization.
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Figure 5. Comparison of RMSE versus SNR.
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Figure 6. Comparison of RMSE versus T.

Figure 7 shows the RMSE performance of different algorithms versus the number of ar-
ray elements M over 500 Monte Carlo runs, when N1 = N2 = M/2, Dx = Dy = 600, L = 4,
K = 2, u1 = [−900 m,−1200 m]T , u2 = [−300 m,−1100 m]T , u3 = [300 m,−1000 m]T ,
u4 = [−800 m,−900 m]T , p1 = [100.5 m, 815.5 m]T , p2 = [970.5 m, 54.5 m]T , T = 500,
SNR = 20 dB, the number of array elements is changed from 4 to 18, and the gap of the
search grids is 1 m. Observe that when the array size exceeds 8, the RMSEs of FOC-SS-
SDF-DPD, FOC-SS-Capon-DPD, and FOC-DFT-DPD algorithms stabilize around 0.7 m
due to their inability to address off-grid errors. In comparison, the RMSE values of the
proposed FOC-DFT-Taylor algorithm consistently outperform the other algorithms thanks
to its compensation method, demonstrating superior accuracy in localization. Unfor-
tunately, the SOC-DFT-DPD performs poorly, as it fails to take full advantage of non-
Gaussian sources. Furthermore, the RMSE values of FOC-DFT-DPD decrease as the ar-
ray size increases, indicating that localization accuracy is constrained by the number of
array elements.
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Figure 7. Comparison of RMSE versus M.

5.3. EER Analysis

Figure 8 shows the EER of four algorithms versus SNR when the number of Monte
Carlo runs is 600, M = 8, N1 = N2 = 4, T = 500, Dx = Dy = 600, L = 4, K = 2,
u1 = [−900 m,−1200 m]T , u2 = [−300 m,−1100 m]T , u3 = [300 m,−1000 m]T ,
u4 = [−800 m,−900 m]T , p1 = [100.5 m, 900.2 m]T , p2 = [900.6 m, 200.7 m]T , SNR is
changed from 6 dB to 20 dB, the gap of search grids is 1 m, and the error threshold
εerror is set as 0.75 m. The EER achieved by the proposed FOC-DFT-Taylor algorithm
surpasses 90%, contrasting with the EERs below 90% for the other four algorithms when
SNR reaches a level of 14 dB. Unfortunately, the SOC-DFT-DPD performs poorly, as it fails
to take full advantage of non-Gaussian sources. Notably, the proposed FOC-DFT-Taylor
algorithm exhibits superior resolution capabilities compared to the remaining algorithms
in the study.
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Figure 8. Comparison of EER versus SNR.

Figure 9 shows the EER of four algorithms versus T, when the number of Monte
Carlo runs is 600, M = 6, N1 = N2 = 3, SNR = 20 dB, Dx = Dy = 600, L = 4,
K = 2, u1 = [−900 m,−1200 m]T , u2 = [−300 m,−1100 m]T , u3 = [300 m,−1000 m]T ,
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u4 = [−800 m,−900 m]T , p1 = [200.5 m, 623.5 m]T , p2 = [920.5 m,−174.5 m]T , the num-
ber of snapshots is changed from 20 to 600, the gap of search grids is 1 m, and the error
threshold εerror is set as 1 m. The EER of the proposed FOC-DFT-Taylor algorithm shows a
slight increase compared to the FOC-SS-SDF-DPD algorithm, yet with a significant reduc-
tion in complexity. Unfortunately, the SOC-DFT-DPD performs poorly, as it fails to take full
advantage of non-Gaussian sources. Additionally, when compared to the FOC-SS-Capon-
DPD and FOC-DFT-DPD algorithms, the EER of the FOC-DFT-Taylor algorithm is higher,
underscoring its superior resolution capabilities.
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Figure 9. Comparison of EER versus T.

6. Conclusions

In this article, the focus is on discussing the direct position determination (DPD) of
non-Gaussian sources and proposing a new algorithm called the FOC-DFT-Taylor algorithm
with multiple nested arrays (MNAs). This novel algorithm is designed to create an efficient
DPD cost function that significantly reduces complexity when compared to conventional
FOC-SS-SDF-DPD and FOC-SS-Capon-DPD algorithms. By leveraging the characteristics
of non-Gaussian signals, this proposed algorithm offers a greater number of achievable
degrees of freedom (DOFs). Additionally, due to the utilization of Taylor compensation,
this new algorithm demonstrates improved localization accuracy and resolution capability
over the traditional FOC-SS-SDF-DPD and FOC-SS-Capon-DPD algorithms.
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Abbreviations
The following abbreviations are used in this manuscript:

DPD Direct Position Determination
MNA Multiple Nested Array
DFT Discrete Fourier Transform
AOA Angle of Arrival
TDOA Time Difference of Arrival
TOA Time of Arrival
RSS Received Signal Strength
ML Maximum Likelihood
SNR Signal-to-noise Ratio
SDF Subspace Data Fusion
MUSIC Multiple Signal Classification
EVD Eigenvalue Decomposition
OFDM Orthogonal Frequency Division Multiplexing
SOC Second-order Cumulant
FOC Fourth-order Cumulant
ULA Uniform Linear Array
NA Nested Array
DOF Degree of Freedom
SS Spatial Smoothing
RMSE Root Mean Square Error
EER Effective Estimate Rate
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