
mdpi.com/journal/entropy

Special Issue Reprint

Nonlinear Dynamics in 
Cardiovascular Signals

Edited by 
Claudia Lerma



Nonlinear Dynamics in
Cardiovascular Signals





Nonlinear Dynamics in
Cardiovascular Signals

Guest Editor

Claudia Lerma

Basel • Beijing • Wuhan • Barcelona • Belgrade • Novi Sad • Cluj • Manchester



Guest Editor

Claudia Lerma

Departamento de Biología

Molecular

Instituto Nacional de

Cardiología Ignacio Chávez

Mexico City

Mexico

Editorial Office

MDPI AG

Grosspeteranlage 5

4052 Basel, Switzerland

This is a reprint of the Special Issue, published open access by the journal Entropy (ISSN 1099-4300),

freely accessible at: https://www.mdpi.com/journal/entropy/special_issues/189OYPH31W.

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

Lastname, A.A.; Lastname, B.B. Article Title. Journal Name Year, Volume Number, Page Range.

ISBN 978-3-7258-4449-4 (Hbk)

ISBN 978-3-7258-4450-0 (PDF)

https://doi.org/10.3390/books978-3-7258-4450-0

© 2025 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license. The book as a whole is distributed by MDPI under the terms

and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

license (https://creativecommons.org/licenses/by-nc-nd/4.0/).

https://www.mdpi.com/journal/entropy/special_issues/189OYPH31W
https://doi.org/10.3390/books978-3-7258-4450-0


Contents

Martín Calderón-Juárez, Itayetzin Beurini Cruz-Vega, Gertrudis Hortensia González-Gómez
and Claudia Lerma
Nonlinear Dynamics of Heart Rate Variability after Acutely Induced Myocardial Ischemia by
Percutaneous Transluminal Coronary Angioplasty
Reprinted from: Entropy 2023, 25, 469, https://doi.org/10.3390/e25030469 . . . . . . . . . . . . . 1

Alberto Porta, Vlasta Bari, Francesca Gelpi, Beatrice Cairo, Beatrice De Maria,
Davide Tonon, et al.
On the Different Abilities of Cross-Sample Entropy and K-Nearest-Neighbor
Cross-Unpredictability in Assessing Dynamic Cardiorespiratory and Cerebrovascular
Interactions
Reprinted from: Entropy 2023, 25, 599, https://doi.org/10.3390/e25040599 . . . . . . . . . . . . . 14

Alejandra Margarita Sánchez-Solís, Viridiana Peláez-Hernández,
Laura Mercedes Santiago-Fuentes, Guadalupe Lizzbett Luna-Rodríguez,
José Javier Reyes-Lagos and Arturo Orea-Tejeda
Induced Relaxation Enhances the Cardiorespiratory Dynamics in COVID-19 Survivors
Reprinted from: Entropy 2023, 25, 874, https://doi.org/10.3390/e25060874 . . . . . . . . . . . . . 30

Ludmila Sidorenko, Irina Sidorenko, Andrej Gapelyuk and Niels Wessel
Pathological Heart Rate Regulation in Apparently Healthy Individuals
Reprinted from: Entropy 2023, 25, 1023, https://doi.org/10.3390/e25071023 . . . . . . . . . . . . 50
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Abstract: Several heart rate variability (HRV) characteristics of patients with myocardial ischemia
are associated with a higher mortality risk. However, the immediate effect of acute ischemia on
the HRV nonlinear dynamical behavior is unknown. The objective of this work is to explore the
presence of nonlinearity through surrogate data testing and describe the dynamical behavior of
HRV in acutely induced ischemia by percutaneous transluminal coronary angioplasty (PTCA) with
linear and recurrence quantification analysis (RQA). Short-term electrocardiographic recordings
from 68 patients before and after being treated with elective PTCA were selected from a publicly
available database. The presence of nonlinear behavior was confirmed by determinism and laminarity
in a relevant proportion of HRV time series, in up to 29.4% during baseline conditions and 30.9%
after PTCA without statistical difference between these scenarios. After PTCA, the mean value and
standard deviation of HRV time series decreased, while determinism and laminarity values increased.
Here, the diminishment in overall variability caused by PTCA is not accompanied by a change
in nonlinearity detection. Therefore, the presence of nonlinear behavior in HRV time series is not
necessarily in agreement with the change of traditional and RQA measures.

Keywords: heart rate variability; recurrence plot; surrogate data; nonlinearity; percutaneous
transluminal coronary angiography; reperfusion

1. Introduction

Heart rate variability (HRV) has proven to be a sensitive tool for risk stratification in
patients after acute myocardial infarction (AMI) [1]. In general, decreased time-domain
indices are related to higher cardiovascular and all-cause mortality [1,2]. More recently,
nonlinear measures have been considered to identify high-risk patients [3]. The non-
linear approach, in addition to clinical applications [4], has been implemented to study
cardiovascular and autonomic physiology in experimental settings [5].

Nonlinear behavior is often assumed in physiological time series, such as HRV. How-
ever, it is appropriate to investigate whether the nonlinear properties at issue are justified
by the data [6], as this has implications in the use of methods from the nonlinear approach,
particularly in the interpretation of the results. Often, a diminishment in nonlinear mea-
sures through aging and pathologic conditions is taken as an indicator of “loss” in nonlinear
behavior, although this does not mean that nonlinear dynamic cease to exist in the time
series [7].This issue was addressed with Fourier transform-based surrogate data in patients
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about ten days after AMI [8], in which nonlinear dynamics were identified in HRV using
entropy-based measures of time series complexity and regularity.

One of the major drawbacks of Fourier transform-surrogate data testing is that nonlin-
earity will be detected because the time series are either nonlinear or nonstationary [9]. To
overcome this issue, it has been proposed to use methods based on wavelet decomposition
to generate surrogate data that preserve nonstationary behavior of time series [10,11]. We
have implemented such methods in short-term HRV of healthy subjects and in pathologic
conditions [12], in which we propose to study nonlinear behavior through recurrence
quantification analysis (RQA). This approach is suitable for short, noisy, and nonstationary
time series [13], properties that are present in HRV.

As mentioned above, nonlinearity has been assessed several days after AMI [8], and
during the myocardial ischemia [14,15]. Furthermore, revascularization therapy carried out
by percutaneous transluminal coronary angioplasty (PTCA) may induce relevant changes
in HRV dynamics. HRV linear modifications have been suggested as indicators for im-
proved autonomic regulation during PTCA [16] and during follow-up after PTCA [17–19].
However, the HRV dynamics and the presence of nonlinearity have not been assessed by
the RQA approach in patients with acutely induced occlusion of major coronary arteries.

The aim of the study is to assess the presence of nonlinearity in HRV time series from
patients during acutely induced myocardial ischemia by PTCA, as well as evaluate HRV
through traditional and RQA measures.

2. Materials and Methods
2.1. Study Design and Data Collection

Data collection was obtained from the “STAFF III database” on Physionet [20,21],
which includes data from 104 patients who were elective patients for percutaneous coronary
intervention (PCI) where single prolonged balloon inflation was introduced in one of
the major coronary arteries according to the case. This database was obtained between
1995–1996 at Charleston Area Medical Center (Charleston, WV, USA), containing standard
12-lead ECG recordings.

ECGs in two different moments (lead V) were obtained during the PCI before and
after the intervention in two established places: the patient’s room and the catheterization
laboratory. For this work pre-inflation (baseline) recordings were obtained immediately
before any catheter insertion, and the post-inflation ECG recordings were obtained imme-
diately after the balloon deflation. In both moments, the ECGs were acquired for 5 min
during supine position in the catheterization laboratory.

According to database information, there were 20 patients with prior myocardial
infarction (MI). To minimize the artifacts and noise from skeletal muscle, the Mason-Likar
electrode configuration was used. Data acquisition was performed with a custom-made
equipment by Siemens-Elema AB (Solna, Sweden). The ECG was digitized at a sample rate
of 1000 Hz with 0.625 µV of amplitude resolution. The study protocol was approved by the
Research and Ethics Committee of our institution (protocol number 22–1309).

From the initial sample of 104 patients, during signal processing, QRS detection, and RR
beat correction, 36 patients were excluded due to having total recording time < 300 s (n = 1),
ECG artifacts, arrhythmias, or sustained ectopic beats (n = 11), not having either the pre-
inflation or post-inflation recording in the catheterization laboratory room (n = 12), reading
errors in ECG data (n = 7), or having >5% of RR intervals replaced due to arrhythmias
with adaptive filtering procedure [22] (n = 5). Finally, 68 subjects were considered for the
analysis (40% were female patients). Table 1 shows the clinical characteristics of the studied
sample. When comparing the subgroup by sex, both age and proportion of patients having
prior MI were similar between groups. All patients with prior MI from the initial sample
were included.
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Table 1. Clinical characteristics from 68 patients with myocardial ischemia who underwent a percuta-
neous transluminal coronary angioplasty (PTCA) procedure. Results are shown as mean ± standard
deviation or absolute value (percentage).

Variable All (N = 68) Female (N = 27) Male (N = 41) p Value

Age (years) 59 ± 12 59 ± 10 59 ± 13 0.996
Prior MI 20 (29%) 6 (22%) 14 (34%) 0.291

MI: myocardial infarction.

2.2. ECG Processing and QRS Complex Identification

The ECG recordings of 5 min length were visually inspected by three trained observers.
Additionally, correct identification of R waves was visually supervised in the collaborative
platform PhysioZoo V1.5.6 software under peak detector “rqrs” allowing manual correction
of miss-detections, artifacts, and arrhythmias [23]. An adaptive filter was applied to correct
ectopic heartbeats replacing them by normal RR interval values [22]. Heartbeat replacement
was applied in 39 recordings pre- (71.4%) and post-inflation (28.6%), considering beat
correction of 0.55% as the limit to include. Hence, we refer to NN intervals as the time
between “normal” heartbeats [24].

2.3. Heart Rate Variability Analysis
2.3.1. Time-Domain and Frequency-Domain Measures

The mean value of 5-min HRV time series was calculated (meanNN [ms]), its standard
deviation (SDNN [ms]), and the standard deviation of the difference between consecutive
NN intervals (SDSD [ms]) [24]. Before estimation of the frequency-domain measures, NN
time series were resampled at 3 Hz, then a 300-data point. Hamming window was applied
through the resampled data with 50% overlap. Finally, discrete Fourier transform was
applied, and we calculated the low (LF (ms2), 0.04–0.15 Hz) and high frequency (HF (ms2),
0.15–0.4 Hz) bands. These measures are also expressed as normalized units (n.u.), as
follows [24]:

LF(n.u.) =
LF

Total power−VLF
, (1)

HF(n.u.) =
HF

Total power−VLF
, (2)

where VLF is the very low frequency band (<0.04 Hz). We also show the LF (ms2)/HF (ms2) ratio.

2.3.2. Recurrence Quantification Analysis

The embedding parameters for each time series: embedding dimension (m) and
embedding delay (τ) were determined by the first local minimum at zero in the false
nearest neighbors function and the first local minimum at averaged mutual information
function, respectively.

After embedding, the recurrence plot construction is defined in [13]:

Ri,j = Θ
(

εi − ‖
→
xi −

→
xj‖
)

, i, j = 1, . . . , N, (3)

where a tolerance to define a recurrence εi of the point xj in the vicinity centered in xi
corresponds, in this case, to the fixed amount of neighbors (FAN) norm (recurrence density
was set to = 0.07). If the distance between two points falls within the vicinity, the Heaviside
function Θ(x) assigns Ri,j = 1, and said point is considered a recurrence point, otherwise
Ri,j = 0. Then a matrix of these binarized values is created and is graphically represented
as recurrence plot, where black points correspond to Ri,j = 1, and white points to Ri,j = 0.

The MATLAB toolbox “Cross Recurrence Plot” developed by Marwan et al. [25] (https:
//tocsy.pik-potsdam.de/CRPtoolbox/, accessed on 29 January 2023) was used to estimate
the nonlinear measures determinism (DET) and laminarity (LAM), both measures useful to
characterize the autonomic control of HRV in humans, i.e., larger DET and LAM values
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reflect vagal withdrawal [26]. DET is the proportion of recurrence points that form diagonal
structures (Equation (4)) and LAM is the proportion of recurrence points that form vertical
structures (Equation (5)), calculated with minimal diagonal lmin = 2 and vertical length
vmin = 2, based on the histogram P(l) of diagonal and vertical structures, respectively.

DET =
∑N

l=lmin
lP(l)

∑N
l=1 lP(l)

(4)

LAM =
∑N

v=vmin
lP(l)

∑N
v=1 lP(l)

(5)

2.4. Surrogate Data Testing

We applied the algorithm pinned wavelet iterative amplitude adjusted Fourier transform
(PWIAAFT) [10] developed by Keylock, C. (https://sites.google.com/site/chriskeylocknet/
software, accessed on 29 January 2023), which preserves nonstationary behavior, opposed
to Fourier transform-based surrogates that introduce stationarity on surrogate data [9] and
may be prone to mistake nonstationarity for nonlinearity. Briefly, in this method, maximal
overlap discrete wavelet transform (MODWT) is used to decompose the original time series,
then a threshold (ρ) is established to fix a set of wavelet coefficients. On the remaining
wavelet scales, the iterative amplitude adjusted Fourier transform (IAAFT) [9,11,27] is ap-
plied. Additionally, the algorithm fits a cubic Hermitian polynomial in the fixed coefficients
before applying IAAFT in these [11], also referred to as gradual wavelet reconstruction.
A flow chart describing the IAFFT algorithm is shown in Figure 1 and the wavelet-based
algorithm is described with the flow chart of Figure 2, both procedures are described in
detail in [11].
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Figure 2. Flow chart of the pinned wavelet iterative amplitude adjusted Fourier transform (PWIAAFT)
algorithm (gradual wavelet reconstruction) algorithm. A full description of the algorithm is in [11].

This method was used in 5-min HRV time series in a previous work [12] where no
benefit was found from using a threshold for wavelet fixation ρ > 0.01. Therefore, in this
work we use ρ = 0.01.

A group of 99 surrogates is generated, and a discriminative nonlinear statistic (in this
case, LAM and DET) is measured in the set of surrogates and the original time series. If
the value measured on the original data lies beyond the fifth percentile of either side of the
statistical distribution curve, this time series is classified as nonlinear.

2.5. Statistical Analysis

Categorical clinical variables are expressed as absolute frequency (relative frequency,
in brackets) and were compared with the Pearson’s chi-square test. Continuous data
had normal distribution (Kolmogorov–Smirnov test, p > 0.05) and are shown as mean
(±standard deviation). Continues data were compared with paired Student’s t-test or
analysis of variance (ANOVA) for repeated measures with post-hoc comparisons adjusted
by the Bonferroni method, considering prior MI as the comparison factor between groups
and measurement before and after PTCA as the comparison factor within groups. The
indices LF(ms2), HF(ms2), and LF/HF were log transformed. We calculated 95% confidence
interval for the percentage of nonlinear time series classified as nonlinear (Clopper–Pearson
method). The statistical analysis was performed by Statistical Package for the Social
Sciences (SPSS) version 21.0 (IBM Corp., Armonk, NY, USA).

3. Results

Table 2 shows the results of HRV linear indices in all participants (N = 68). There are
statistically significant differences in meanNN, SDNN, SDSD, ln(LF(ms2)), and ln(HF(ms2))
between the two moments, being smaller after the PTCA procedure compared with the
baseline. LF (n.u.), HF (n.u.), and ln (LF/HF) had no significant difference when compared
before and after PTCA.
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Table 2. Heart rate variability indexes from 68 patients with myocardial ischemia who under-
went a percutaneous transluminal coronary angiography (PTCA) procedure. Results are shown as
mean ± standard deviation.

Before PTCA After PTCA p Value

Time-domain measures

meanNN (ms) 882 ± 149 856 ± 134 0.044
SDNN (ms) 33.9 ± 17.9 23.8 ± 13.1 <0.001
SDSD (ms) 18.8 ± 13.9 11.6 ± 9.3 <0.001

Frequency-domain measures

ln(LF (ms2)) 1 5.107 ± 1.358 4.044 ± 1.438 <0.001
ln(HF (ms2)) 1 3.818 ± 1.397 2.697 ± 1.388 <0.001

LF (n.u.) 74.2 ± 17.8 75.4 ± 17.2 0.580
HF (n.u.) 25.9 ± 17.8 25.1 ± 17.0 0.683

ln(LF/HF) 1 1.289 ± 1.084 1.348 ± 1.035 0.660
1 Natural logarithm (ln) was used for log transformation. meanNN: mean of NN intervals. SDNN: standard
deviation of NN intervals. SDSD: standard deviation of the difference between consecutive NN intervals. LF: low
frequency. HF: high frequency.

Table 3 shows the analysis of linear HRV indices before and after PTCA in patients
grouped by prior MI (N = 20) or no prior MI (N = 48). While meanNN, SDNN, and SDSD
decreased significantly after PTCA only in the group that had no history of prior MI,
ln(LF(ms2)) and ln(HF(ms2)) decreased significantly after PTCA in both groups. LF (n.u.),
HF (n.u.), and ln(LF/HF) had no significant change after PTCA in both groups. In all linear
HRV indices, there were no significant differences between groups (prior MI vs. no prior
MI) for both before and after PTCA.

Table 3. Heart rate variability indexes from patients who underwent PTCA grouped by history of
prior myocardial infarction (MI). Results are shown as mean ± standard deviation.

Prior MI (N = 20) No Prior MI (N = 48)

Before PTCA After PTCA Before PTCA After PTCA

meanNN (ms) 864 ± 147 850 ± 130 891 ± 152 860 ± 137 *
SDNN (ms) 27.6 ± 12.8 23.2 ± 10.8 36.5 ± 19.2 24.1 ± 14.0 **
SDSD (ms) 14.2 ± 7.9 9.6 ± 5.6 20.7 ± 15.4 12.4 ± 10.5 **

ln(LF (ms2)) 4.846 ± 1.358 4.195 ± 1.450 * 5.216 ± 1.357 3.981 ± 1.444 **
ln(HF (ms2)) 3.462 ± 1.287 2.646 ± 1.153 ** 3.966 ± 1.427 2.718 ± 1.485 **

LF (n.u.) 75.783 ± 15.800 77.741 ± 17.568 73.490 ± 18.715 74.399 ± 17.093
HF (n.u.) 24.268 ± 15.832 22.259 ± 17.568 26.510 ± 18.715 26.082 ± 16.874

ln(LF/HF) 1 1.385 ± 1.060 1.549 ± 1.136 1.249 ± 1.103 1.264 ± 0.990
1 Natural logarithm (ln) was used for log transformation. meanNN: mean of NN intervals. SDNN: standard
deviation of NN intervals. SDSD: standard deviation of the difference between consecutive NN intervals. LF: low
frequency. HF: high frequency. * p < 0.05 (before vs. after PTCA, same group). ** p < 0.01 (before vs. after PTCA,
same group).

Figure 3 shows an example of the HRV time series and recurrence plot before PTCA
(left column). The panels on the right column correspond to an illustrative surrogate time
series and recurrence plot that, overall, exhibits a similar texture to the original. Figure 4
shows an example of the original and surrogate HRV time series after PTCA in the same
fashion as Figure 3.

6
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before PTCA (left column), and a surrogate HRV time series with the corresponding recurrence plot
(right column).

Figure 5 shows the percentage of HRV time series classified as nonlinear before and
after PTCA with determinism (DET) and laminarity (LAM) as discriminative nonlinear
statistics. The percentage of nonlinear HRV time series is as follows: (a) DET, before
PTCA 29.4%, after PTCA 30.9%; (b) LAM, before PTCA 26.5%, after PTCA 23.5%. No
statistically significant differences were found before and after PTCA with either of the
nonlinear measures.

DET and LAM values were significantly higher after PTCA compared with baseline
condition (Figure 6); DET (before [0.666 ± 0.164] vs. after [0.739 ± 0.158] PTCA), LAM
(before [0.687 ± 0.192] vs. after [0.761 ± 0.165] PTCA). When comparing DET and LAM of
patients grouped by history of prior MI, the increase in determinism and laminarity was
significant in both groups, and there were no significant differences between groups (both
before and after PTCA) (Figure 7). It can be observed in both Figures 6 and 7 that the values
in each patient can increase or decrease after PTCA, rather than moving their values in
the same direction. In Figure 7, the plots of SDNN and SDSD were added to illustrate that
also in linear HRV indices, individual direction of change after PTCA may vary between
subjects in both groups, and yet only in the groups that had no prior history of MI the
increase in SDNN and SDSD was significant.
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4. Discussion

In this work, we tested the presence of nonlinear information in HRV time series of
patients with acutely induced ischemia during elective PTCA. We show that the overall
statistical variation of HRV time series diminishes immediately after PTCA; also, the DET
and LAM values are higher after the revascularization procedure.

In patients undergoing PTCA, SDNN diminished during the first hour after the
reperfusion procedure and eventually increased beyond their baseline conditions (before
PTCA). Moreover, the mean of RR intervals gradually increased during the next 24 h after
PTCA [28]. Other authors, who measured SDNN before and 24 h after PTCA found that
this value increases; however, they did not observe any relevant change in SDSD [29].
In the present study, we found a decrease in meanNN, SDNN, and SDSD right after the
PTCA. These results reflect that the setpoint of HRV (meanNN) decreases in response to
revascularization (i.e., mean heart rate increases), and the gross variability of the time series
is narrower (SDNN and SDSD). Moreover, lower SDNN in patients treated with PTCA
before hospitalization discharge is related with an increased risk of major clinical events
(death or readmission for a new AMI) [30]. Also, we found that the effect of decreasing
meanNN, SDSD, and SDNN after PTCA was not significant for patients with prior MI.
This suggest that the impact of prior MI is reflected in the modification of the intrinsic
cardiac properties, such as electrical conductivity and propagation, that give place to more
diverse adjustments in regulatory mechanisms that impact heart rate, including the cardiac
autonomic modulation [31].

In a study where 15-min ECG recordings were used for HRV analysis, HF (n.u.)
decreased after PCI, but not LF (n.u.) or LF/HF ratio, although SDNN also decreased [32],
contrary to another study [28], where the HF (ms2) increased after PTCA;nevertheless,
these studies are not comparable due to the methodological differences in the measurement
of HRV indices. However, in our study, regarding frequency–domain measures we found
differences only in the LF and HF indices measured on power units (ms2) but did not
find any significant differences in the LF and HF indices in normalized units (n.u.) or
the LF/HF ratio. The decrease in LF (ms2) and HF (ms2) after PTCA is more likely
an effect of the overall decrease in variability (as observed in the time domain indices)
which corresponds to an overall decrease in total power. In contrast, lack of significant
change in the proportional contributions of each frequency band of interest (LF and HF in
normalized units) indicates that, on average, PTCA had no effect on the autonomic cardiac
modulation [24].

Nonlinear measures are of clinical interest, as some have been proposed as predictors
of mortality in AMI (detrended fluctuation analysis) [33,34]. Complexity in HRV dynamics
of patients after AMI have been assessed with sophisticated methods, such as normalized
complexity index, information storage, and Gaussian linear contrast, and showed that
the detection of nonlinearity by surrogate data testing depends on the nonlinear property
that is measured by a particular metric [8]. In the study mentioned above, the percentage
of nonlinear HRV time series after AMI (in rest), using normalized complexity index,
was approximately 25%, a similar value as in the present study (DET 30.9%, LAM 23.5%,
after PTCA). In our study, we found evidence of nonlinearity with a robust algorithm for
surrogate data testing with both nonlinear measures, DET and LAM. However, we did
not find any differences in the proportion of nonlinear time series after the intervention.
It is possible that the short period of time in which the measures were made was not
enough for the manifestation of different dynamics in HRV caused by reperfusion therapy,
as it has been suggested in a previous work, in which detrended fluctuation analysis
was assessed [35].

However, the algorithm in our work preserves nonstationary behavior in surrogates
in contrast with IAAFT. Thus, the time series identified as nonlinear in [8] could mean
the original time series were nonstationary or nonlinear [9]. By preserving nonlinearity
on surrogate data, we reinforce that the identification of nonlinearity does detect only
nonlinearity [9,10,36], as is the case of our work.
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The decrease in meanNN and SDSD, and the increase in DET and LAM immediately
after PTCA suggest that ischemia-reperfusion does have an effect on the HRV dynamics,
in which the autonomic response on cardiac tissue may play a role [37], but it is likely
that the biological changes within the cardiac tissue, mainly the induction of oxidative
stress, are largely responsible for the quick changes in HRV within the first 5 min after
reperfusion [38]. However, more biological research is needed to establish a direct link
between the effect of ischemia-reperfusion on the cardiac tissue and HRV measures, as well
as the potential clinical applications that it may have.

Increased DET implies a more significant influence of previous heartbeats on the
subsequent one, that is, a reduced set of variations for the dynamical states that can acquire
the system. On the other hand, LAM is related to a longer permanence of the system in a
particular state with the quick capability of a sudden change. These adjustments can reflect
the cardiovascular system’s reorganization after the PTCA procedure. Furthermore, we ob-
served that despite the discrepancy of change in DET and LAM in some patients (Figure 7),
the average increase in these nonlinear HRV indices in response to PTCA was significant
regardless of the history of prior MI, which suggest that the PTCA effect of reducing the set
of variations for the dynamical states in the cardiovascular system is strong enough to occur
even in those patients with prior MI. Interestingly, other works have attempted to study
beat-to-beat nonlinear coupling between NN intervals and arterial pressure in patients
after AMI [39] and after sympathetic and parasympathetic pharmacological blockade [40],
in which the physiological context might be different from acute myocardial ischemia.
Wavelet-based surrogate data might be useful to test the performance of the nonlinear
coupling approach.

After PTCA, the statistical variability of time series diminished (SDNN and SDSD)
and the values of nonlinear measures increased (DET and LAM), although the proportion
of nonlinear time series remains similar to baseline conditions. Hence neither variability in
time series nor the value of nonlinear statistics is necessarily related to the “lose” or “gain”
of nonlinear behavior.

Limitations

Our study is limited to patients with pathologic conditions and does not have a valid
set of comparable healthy subjects to test whether myocardial ischemia is associated with
less or more nonlinear time series. Moreover, it is of physiological interest to test the
effect of medication and preexisting comorbidities, but the database used for this work
lacks extensive clinical information that may be pertinent to link with HRV. These aspects
should be considered in future studies to deepen the factors that potentially determine the
nonlinear dynamics of HRV. It has been noted in other works that the proportion of HRV
nonlinear time series varies when different nonlinear discriminant statistics are used [8,41],
as well as the length of the time series may have an important role in nonlinearity detection,
these issues are yet to be studied in future works.

5. Conclusions

We confirmed through surrogate data testing and RQA analysis that nonlinear dy-
namics are present in HRV time series of patients with MI in up to 29.4% of them. The
proportion of nonlinear time series did not change significantly immediately after PTCA.
After the revascularization procedure, determinism and laminarity increased, which may
reflect a different arrangement in data, i.e., there is a change in the dynamic behavior of
HRV. However, there was no change in the presence of nonlinear dynamics, despite the
loss of statistical variance. Therefore, the HRV dynamic behavior relying on traditional and
nonlinear RQA measures should be interpreted with caution.
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Abstract: Nonlinear markers of coupling strength are often utilized to typify cardiorespiratory
and cerebrovascular regulations. The computation of these indices requires techniques describing
nonlinear interactions between respiration (R) and heart period (HP) and between mean arterial
pressure (MAP) and mean cerebral blood velocity (MCBv). We compared two model-free methods
for the assessment of dynamic HP–R and MCBv–MAP interactions, namely the cross-sample entropy
(CSampEn) and k-nearest-neighbor cross-unpredictability (KNNCUP). Comparison was carried
out first over simulations generated by linear and nonlinear unidirectional causal, bidirectional
linear causal, and lag-zero linear noncausal models, and then over experimental data acquired
from 19 subjects at supine rest during spontaneous breathing and controlled respiration at 10, 15,
and 20 breaths·minute−1 as well as from 13 subjects at supine rest and during 60◦ head-up tilt.
Linear markers were computed for comparison. We found that: (i) over simulations, CSampEn and
KNNCUP exhibit different abilities in evaluating coupling strength; (ii) KNNCUP is more reliable
than CSampEn when interactions occur according to a causal structure, while performances are
similar in noncausal models; (iii) in healthy subjects, KNNCUP is more powerful in characterizing
cardiorespiratory and cerebrovascular variability interactions than CSampEn and linear markers. We
recommend KNNCUP for quantifying cardiorespiratory and cerebrovascular coupling.

Keywords: model-free time series analysis; causality; coupling strength; cardiac control; cerebral
autoregulation; heart rate variability; blood flow; arterial pressure; autonomic nervous system;
controlled breathing; head-up tilt

1. Introduction

There are an increasing number of studies assessing the degree of coupling between
respiration (R) and heart period (HP) [1–7] and between mean arterial pressure (MAP) and
mean cerebral blood velocity (MCBv) [8–14]. This interest is justified by clinical relevance:
indeed, the degree of HP–R coupling is taken as a marker of vagal control being inherently
normalized by breathing activity [1–7], while the strength of the MCBv–MAP relationship
is an indicator of the efficiency of dynamic cerebral autoregulation (dCA) [8–14].

The dynamic interactions between R and HP and between MAP and MCBv feature
common characteristics: (i) they are inherently nonlinear; (ii) their strength is between the
maximum and the minimum values found in the presence of full coupling and perfect
uncoupling, respectively.
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Nonlinearities between R and HP result from the periodical inhibition of aortic arch,
carotid sinus, pulmonary, and atrial stretch receptor activity with R [15–17], reciprocal
influences between sympathetic and vagal activities [18–20], variations of HP variability with
both breathing rate and depth [21–23], phase locking between heartbeat and R rhythm [24–26],
and the gating activity of respiratory centers over vagal and sympathetic outflows [27–30].
On the other hand, nonlinearities between MAP and MCBv are the result of the shape of
the static characteristic of cerebrovascular autoregulation [31], different MCBv responses to
positive and negative MAP variations [32,33], respiratory modulations of the MCBv–MAP
relationship [34], effects of intracranial pressure on the critical closing pressure [35], and
nonlinear influences of the autonomic control, especially over long time scales [36].

The imperfect association between R and HP is the result of the huge number of
control mechanisms adapting HP regardless of R [37,38] and the variable cardiorespiratory
phase locking ratio [24,25,39]. The imperfect association between MAP and MCBv is the
consequence of the dCA aiming at keeping MCBv constant by buffering MAP changes
with suitable adaptations to vessel diameter [8–11].

Given the abovementioned features of the HP–R and MCBv–MAP couplings, nonlinear
tools should be preferred for the assessment of the strength of the interactions and these
methods should be reliable in the presence of weak relationships. The reliability of these
tools is a critical issue because modifications to HP–R and MCBv–MAP coupling strength
are hallmarks of pathology [1,2,8,9].

Cross-sample entropy (CSampEn) [40] and k-nearest-neighbor cross-unpredictability
(KNNCUP) [41] are two methods devised to assess nonlinear interactions between two time
series. The ability of CSampEn and KNNCUP to describe nonlinear dynamics lies in their
model-free nature that does not impose any form to the underlying relationship between
the observed series. After reconstructing the dynamics of the two series in two distinct state
spaces built via the time-delay embedding procedure, CSampEn estimates the negative
logarithm of the conditional probability that, if two patterns of length m − 1 are similar,
they remain alike after including one additional future value: the higher the conditional
probability, the smaller the negative logarithm, the stronger the relationship and the
coupling between the two series [40]. KNNCUP exploits the k patterns built over m − 1
past samples of the driver signal, namely R and MAP in our application, selected among
others for their similarity with the reference vector, to predict the current value of the target
signal, namely HP and MCBv, respectively: the lower the unpredictability of the target
using the driver, the stronger the coupling from the driver to the target [41].

The aim of the present study is to compare the abilities of CSampEn and KNNCUP
to characterize cardiorespiratory and cerebrovascular couplings via the analysis of the
variability of R and HP and of MAP and MCBv. The two tools were first tested over
simulations generated by linear and nonlinear unidirectional causal, linear bidirectional
causal, and lag-zero linear noncausal models to better understand eventual differences in
assessing dynamic HP–R and MCBv–MAP interactions. CSampEn and KNNCUP were
then assessed in healthy subjects under experimental protocols inducing modifications
of the cardiorespiratory and cerebrovascular controls, namely controlled breathing (CB)
at different breathing rates [42,43] and head-up tilt (HUT) with a tilt table inclination of
60◦ [44,45]. Results of CSampEn and KNNCUP were compared with linear markers of cou-
pling [4,9]. Preliminary data were presented at the 44th Annual International Conference
of the Engineering in Medicine and Biology Society [46].

2. Methods
2.1. Generalities for the Computation of CSampEn and KNNCUP

Given two systems X and Y, their joint activity is described by two realizations,
x = {xn, 1 ≤ n ≤ N} and y = {yn, 1 ≤ n ≤ N}, of the stochastic processes X and Y, respectively.
The series x and y are usually collections of values recorded in experimental sessions designed
to probe into the interactions between X and Y. We denote: (i) the current value of y as yi; (ii) the
pattern formed by the m − 1 past values of yi as y−i =

[
yi−1 . . . yi−m+1

]
; and (iii) the m-
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dimensional vector obtained by concatenating yi with y−i as yi =
[
yi yi−1 . . . yi−m+1

]
.

We remark that y−i and yi can be interpreted indifferently as patterns of length, respec-
tively, and m − 1 and m in the time domain or points of, respectively, the (m − 1)- and
m-dimensional state phase spaces built uniformly using the method of lagged coordinates
in the state phase domain. Analogously, we define xj, x−j =

[
xj−1 . . . xj−m+1

]
, and

xj =
[
xj xj−1 . . . xj−m+1

]
the equivalent quantities computed over x. In order to char-

acterize the relationship, if present, between X and Y, we indicate the probability that yi and
xj are close in the m-dimensional state phase space within a tolerance r with p

(∥∥yi − xj
∥∥ ≤ r

)

and with p
(∥∥∥y−i − x−j

∥∥∥ ≤ r
)

the probability that y−i and x−j are closer than r in the (m − 1)-
dimensional state phase space, where ‖·‖ is a metric to compute distance. In this study the
adopted metric is the Euclidean norm.

2.2. CSampEn

CSampEn [40] is defined as the negative logarithm of the ratio of the averaged
p
(∥∥yi − xj

∥∥ ≤ r
)

to the averaged p
(∥∥∥y−i − x−j

∥∥∥ ≤ r
)

as

CSampEn(m, r, N) = −log




〈
p
(∥∥yi − xj

∥∥ ≤ r
)〉

〈
p
(∥∥∥y−i − x−j

∥∥∥ ≤ r
)〉


, (1)

where 〈·〉 performs the time average over all the reference vectors built from x and log(·) is
the natural logarithm. p

(∥∥yi − xj
∥∥ ≤ r

)
and p

(∥∥∥y−i − x−j
∥∥∥ ≤ r

)
are estimated by counting

the number of yi closer than r to xj for i = m, . . . , N and the number of y−i closer than r
to x−j for i = m − 1, . . . , N − 1 and by dividing them by N – m + 1. The unfortunate case

was that
〈

p
(∥∥yi − xj

∥∥ ≤ r
)〉

= 0 and/or
〈

p
(∥∥∥y−i − x−j

∥∥∥ ≤ r
)〉

= 0 were never observed in
our study given the adopted values of m and N. CSampEn is a measure of the negative
logarithm of the conditional probability that two points remain close in the m-dimensional
phase space given that they are close in the (m − 1)-dimensional phase space: the closer
to 1 the conditional probability, the lower the uncertainty associated with the reciprocal
position of patterns in the m-dimensional phase space, the smaller the CSampEn, the
stronger the relationship between X and Y.

2.3. KNNCUP

Cross-unpredictability (CUP) searches for the dependency f (·) of the future value
yi+τ of the dynamics of the target Y on m − 1 past samples x−i of the dynamics of the
driver X [41,47], where τ is the prediction horizon [14]. yi+τ is usually labelled as the
image of x−i through f (·) and x−i is the reference vector for the search of its k nearest
neighbors. Local CUP approach approximates f (·) in a region around x−i set by its k nearest
neighbors [48]. Given the adopted metric for evaluating distances in the phase space, the
region is a hypersphere and x−i is its center. The k nearest neighbors of the reference vector
x−i were utilized to predict yi+τ . The prediction of yi+τ , namely ŷi+τ , is defined as the
weighted mean of the images of the k nearest neighbors of x−i , where the weights are the
inverse of their distance from the reference vector. Vectors at zero distance from x−i were
excluded from the set of k nearest neighbors. ŷi+τ was computed as a function of time
i, thus providing the predicted series ŷ. The degree of unpredictability of Y given X is
measured via the CUP function defined as 1 − ρ2, where ρ2 is the squared correlation
coefficient between y and ŷ. CUP is bounded between 0 and 1, where 0 indicates that y
can be perfectly predicted from x and 1 indicates complete unpredictability of y based
on x. CUP depends on m. The course of CUP with m was the result of two opposite
tendencies [49]: (i) prediction of y given x might improve and CUP might decrease because
longer patterns built over x bring more information about the future behavior of y; (ii) at
high m, the k nearest neighbors tend to be far away from the reference vector due to the
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spreading of the vectors in the phase space and this effect raises CUP. The minimum of
the CUP function over m was taken as a measure of the uncoupling between x and y [41]
and referred to as the CUP index (CUPI): the closer to 0 the CUPI, the greater the ability to
predict y based on x, the stronger the relationship between X and Y.

3. Simulations
3.1. Graded Unidirectional and Bidirectional Causal Couplings

We simulated bivariate autoregressive (BAR) processes whose components feature
different degrees of coupling and causal relationships. The BAR process is defined as

X(n) = 2ρ1 · [c1 ·Y(n− 1) + (1− c1) · X(n− 1)] · cos ϕ1 − ρ2
1 · X(n− 2) + W1(n)

Y(n) = 2ρ2 · [c2 · X(n− 1) + (1− c2) ·Y(n− 1)] · cos ϕ2 − ρ2
2 ·Y(n− 2) + W2(n)

(2)

where W1 and W2 are Gaussian white noises with zero mean and variances assigned such
that X and Y exhibit unit variance. If c1 = 0 and c2 = 0, X and Y are two uncoupled
second-order autoregressive [AR(2)] processes. If c1 = 0 and c2 6= 0, the directional-
ity of the interactions is from X to Y (i.e., unidirectional causal model). If c1 6= 0 and
c2 6= 0, the directionality of the interactions is from X to Y and vice versa (i.e., bidirec-
tional causal model). In the uncoupled condition, the two processes X to Y were set
to feature dominant rhythms according to two configurations: (i) ρ1 = ρ2 = 0.8 with
phases ϕ1 = ±3π/5 and ϕ2 = ±3π/5 corresponding to an oscillation at normalized
frequency f1 = 0.3 cycles·sample−1 and f2 = 0.3 cycles·sample−1, thus simulating a domi-
nant rhythm in the high frequency (HF) band typical of spontaneous respiration driving
an HP rhythm at the same frequency with a mean HP equal to 1 s; (ii) ρ1 = ρ2 = 0.8 with
phases ϕ1 = ±π/5 and ϕ2 = ±π/5 corresponding to an oscillation at normalized frequency
f1 = 0.1 cycles·sample−1 and f2 = 0.1 cycles·sample−1, thus leading to a dominant rhythm
in the low frequency (LF) band typical of slow breathing driving an HP rhythm at the
same frequency with a mean HP equal to 1 s. Coupling strengths between X and Y were
varied according to the following setup: (i) c1 = 0 and c2 was varied incrementally from
0 to 1.0 in 0.1 steps, thus simulating unidirectional coupling from X to Y with incremental
coupling strength (i.e., from the respiratory system to the heart or from the systemic to
cerebral vasculature); c1 = c2 = c, and c was varied gradually from 0 to 1.0 in 0.1 steps, thus
simulating bidirectional coupling from X to Y and vice versa with incremental coupling
strength (i.e., from the respiratory system to the heart, or from the systemic to cerebral
vasculature, and vice versa).

3.2. Graded Lag-Zero Noncausal Coupling

We simulated a bivariate process whose components featured different degrees of cou-
pling in absence of any causal relationship. This bivariate process is obtained by corrupting
an AR(2) process X with a Gaussian white noise W2 with zero mean and standard deviation
taken as a fraction of the standard deviation of X. The bivariate process is defined as

Y(n) = X(n) + W2(n), (3)

where X is an AR(2) process with zero mean and unit standard deviation and W2 is
a Gaussian white noise with zero mean and standard deviation 1− c2. As in Section 3.1, X
exhibits dominant rhythms according to two pole configurations: (i) ρ1 = ρ2 = 0.8 with
phases ϕ1 = ±3π/5 and ϕ2 = ±3π/5; (ii) ρ1 = ρ2 = 0.8 with phases ϕ1 = ±π/5 and
ϕ2 = ±π/5. Since interactions between X and Y occur at lag-zero, directionality is not
set (i.e., the coupling is instantaneous), thus simulating noncausal interactions between
X and Y. If c2 = 1, X and Y are coincident and, assigned the outcome of the random
experiment, the points [x(n), y(n)] lie exactly on the diagonal line for n = 1, . . . , N, and
the two processes X and Y are fully coupled. c2 was varied incrementally from 0 to 1.0 in
0.1 steps, thus progressively decreasing the standard deviation of W2 and increasing the
coupling strength between X and Y.

17



Entropy 2023, 25, 599

3.3. Unidirectionally-Coupled Identical Logistic Maps

Nonlinear dynamics were simulated via logistic maps. We considered two unidirectionally-
coupled identical logistic maps [50], described as

X(n) = f [X(n− 1)]

Y(n) = c2· f [X(n− 1)]+(1− c 2)· f [Y(n− 1)],
(4)

with
f [X(n− 1)] = r·X(n− 1)·[1− X(n− 1)]

f [Y(n− 1)] = r·Y(n− 1)·[1−Y(n− 1)].
(5)

Thus, X and Y are deterministic signals obtained by iterating (4) starting from the initial
conditions randomly chosen within the interval from 0.0 to 1.0. When c2 = 0, X and Y
evolve independently of each other because their initial conditions are different according
to the equations of the two logistic maps. Given that r = 3.7, the two logistic maps are in
chaotic regime. The coupling is unidirectional because Y does not affect X. The strength of
the interactions from X to Y increases with c2. The parameter c2 was varied from 0 to 1.0 in
0.1 steps.

4. Experimental Protocol and Data Analysis
4.1. Ethical Statement

The R and HP series were extracted from a historical database built to evaluate changes
in the cardiorespiratory coupling with the breathing rate in healthy subjects [42,43]. The
MAP and MCBv series belonged to another historical database built to study the dCA
during postural stimulus in healthy subjects [44,45]. All the original protocols were in
keeping with the Declaration of Helsinki. The protocols were approved by the local
ethical review board of the L. Sacco Hospital, Milan, Italy, and Sacro Cuore Don Calabria
Hospital, Negrar, Italy, respectively, and authorized by the same structures. Written
signed informed consent was obtained from all subjects. Physical examination and full
neurological evaluation certified the healthy status of all the subjects. The subjects were
not under pharmacological treatments interfering with cardiovascular and cerebrovascular
controls. Subjects avoided caffeinated and alcoholic beverages and heavy physical exercises
for 24 h before the study.

4.2. CB Protocol

Data were acquired from 19 healthy subjects (age: 27–35 years, median = 31 years;
8 males, 11 females) at rest in a supine position during spontaneous breathing (SB) and
during CB at 10, 15, and 20 breaths·minute−1, labelled as CB10, CB15, and CB20, respec-
tively. The period of SB always preceded the session of CB. The respiratory frequency of
the CB was selected randomly. The subjects performed all the CB sessions. The timing of
inspiratory and expiratory onsets was provided via a metronome and reinforced verbally
by the experimenter. All the experimental sessions lasted 10 min. The subjects were not
allowed to talk during the entire protocol. The electrocardiogram (ECG) was acquired
from lead II via a bioamplifier (Marazza, Monza, Italy) and respiratory flow via a nasal
thermistor (Marazza, Monza, Italy). Both signals were digitalized synchronously at 300 Hz
by an analog-to-digital 12-bit board (National Instruments, Austin, TX, USA) plugged into
a personal computer. From the ECG, we derived the beat-to-beat variability series of the
HP and a downsampled version of the R signal. After identifying the R-wave from the
ECG, the inter-heartbeat interval between the nth and (n + 1)th R-wave peaks was taken as
the nth HP. The R signal was sampled at the nth R-wave peak.

4.3. HUT Protocol

Data were acquired from 13 healthy subjects with no history of postural syncope (age:
27 ± 8 years; 5 males, 8 females). Subjects were instrumented to continuously monitor
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the ECG from lead II and noninvasive continuous arterial pressure (AP) from the middle
finger of the nondominant arm (Finapres Medical Systems, Enschede, The Netherlands).
The cerebral blood velocity (CBv), measured from the right, or left, middle cerebral artery
through a transcranial Doppler device (Multi-Dop T, DWL, 2 MHz, Compumedics, San
Juan Capistrano, CA, USA), was taken as a surrogate of cerebral blood flow [51]. The CBv
signal was low-pass filtered with a sixth-order Butterworth filter with a cut-off frequency
of 10 Hz. The signals were acquired synchronously at a sampling rate of 1000 Hz. The
subjects underwent 10 min of recording at rest in a supine position (REST) followed by
HUT with a tilt table inclination of 60◦. Both sessions were under SB. Analyses were carried
out 3 min after the HUT onset and within the first 10 min of HUT. None of the subjects
exhibited presyncope signs. We utilized the detection of the R-wave on the ECG to trigger
the process of identification of systolic AP (SAP) and diastolic AP (DAP). The nth SAP was
taken as the maximum of the AP signal within the nth HP. The (n − 1)th DAP was defined
as the minimum of the AP signal preceding the nth SAP. The nth MAP was computed as
the ratio of the definite integral of AP between the occurrences of the (n − 1)th and nth
DAP to the inter-diastolic interval. The same procedure was applied to CBv to calculate the
MCBv. The fiducial points for the computation of MAP were utilized for the computation
of the MCBv.

4.4. Time Domain Analysis

The HP, SAP, DAP, MAP, and MCBv series were manually checked and corrected in
case of missing beats or misdetections. The effects of ectopic beats or isolated arrhythmic
events were mitigated via linear interpolation. Synchronous sequences were randomly
selected within the whole recordings. The length of the series was kept constant regardless
of protocol and experimental condition. As to the CB protocol, we monitored the mean
and variance of the HP series. These markers were labeled as µHP and σ2

HP, respectively,
and expressed in ms and ms2. In the CB protocol, µHP did not vary compared to SB, being
1010 ± 168, 989 ± 157, 1023 ± 162, and 1028 ± 162 during SB, CB10, CB15, and CB20,
respectively, while σ2

HP increased solely during CB10 compared to SB, being 3368 ± 2622,
4784 ± 3356, 3705 ± 3091, and 2813 ± 2158 during SB, CB10, CB15, and CB20, respectively.
As to the HUT series, we monitored the mean and variance of the MAP and MCBv. These in-
dices were denoted as µMAP, σ2

MAP, µMCBv, and σ2
MCBv and expressed in mmHg, mmHg2,

cm·s−1 and cm2·s−2. In the HUT protocol, µMCBv decreased during HUT compared to
REST, being 72 ± 23 and 62 ± 21, respectively, while σ2

MCBv increased from 19 ± 12 to
26 ± 16. In the HUT protocol, µMAP and σ2

MAP did not vary with HUT: µMAP was 99 ± 17
and 95 ± 12 at REST and during HUT, respectively, while σ2

MAP was 18 ± 21 and 19 ± 12.

4.5. Computation of a Linear Marker of Association between Time Series

Squared coherence function K2
x,y( f ) provides an estimation of the degree of linear

association between x and y as a function of the frequency f [4]. It is computed as the ratio
of the square cross-spectrum modulus between x and y divided by the product of their
power spectra. By definition, K2

x,y( f ) is bounded between 0 and 1, where 0 and 1 indicate
the minimum and maximum correlation between x and y. A linear marker of the strength
of the cardiorespiratory coupling is commonly computed by sampling K2

R,HP( f ) at its peak
in the HF band (i.e., from 0.15 to 0.4 Hz) [4,7]. This marker is indicated as K2

R,HP(HF) in
the following. A linear marker of the strength of the cerebrovascular coupling is routinely
computed by sampling K2

MAP,MCBv( f ) at its peak in the very LF (VLF, from 0.02 to 0.07 Hz),
LF (from 0.07 to 0.15 Hz), and HF (i.e., from 0.15 to 0.4 Hz) bands [8,9]. These markers are
indicated as K2

MAP,MCBv(VLF), K2
MAP,MCBv(LF), and K2

MAP,MCBv(HF) in the following. The
superior limit of the LF band and the inferior limit of the HF were modified compared to
the original definition [8] to account for possible slow respiratory rhythms [12]. K2

R,HP( f )
and K2

MAP,MCBv( f ) were estimated according to a bivariate AR model [7]. The model order
was fixed to 10, and the coefficients of the bivariate AR model were identified via the least
squares approach [7].
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4.6. Computation of CSampEn and KNNCUP

Since the aim of the study was to explore the physiological mechanisms responsible
for short-term control of HP and MCBv, the length N of the series was set to 256 [8,52].
The series were first linearly detrended and then normalized to have zero mean and
unit variance. Cardiorespiratory coupling was assessed with x = R and y = HP, while
the cerebrovascular link was evaluated using x = MAP and y = MCBv. CSampEn
was computed over the normalized series with m = 3 and r = 0.2 [14]. KNNCUP was
performed with k = 30 [41]. Over simulated data, KNNCUP was computed with time
horizon τ = −1 in the case of lag-zero noncausal model and with time horizon τ = 0 in the
case of unidirectional and bidirectional causal models. Over experimental data, KNNCUP
was carried out with τ = −1 in agreement with the fast vagal actions responsible for
the respiratory sinus arrhythmia [23,53] and fast resistive component of the MCBv–MAP
relationship [54,55].

4.7. Statistical Analysis

One-way repeated measures analysis of variance (Dunnett’s test for multiple com-
parisons), or Friedman repeated measures analysis of variance on ranks if appropriate
(Dunnett’s test for multiple comparisons), was utilized to check the effect of CB versus SB.
A paired t-test, or a Wilcoxon signed rank test when appropriate, was applied to check
the effect of HUT. Statistical analysis was carried out using a commercial statistical pro-
gram (Sigmaplot, v.14.0, Systat Software, Inc., Chicago, IL, USA). A p < 0.05 was always
considered statistically significant.

5. Results
5.1. Results on Simulations

The line plot of Figure 1 shows the mean (solid line) and the confidence interval of
two standard deviations about the mean (dashed lines) of CSampEn (Figure 1a,c,e) and
CUPI (Figure 1b,d,f) computed over 20 realizations of X and Y. Simulations were generated
via linear unidirectional causal (Figure 1a,b), linear bidirectional causal (Figure 1c,d) and
lag-zero linear noncausal (Figure 1e,f) models. The simulated series featured a dominant HF
rhythm. Regardless of the type of simulations, the expectation is that the coupling strength
increases progressively with c2. According to this expectation, CUPI decreased gradually
with c2, and this result held in simulations of linear unidirectional causal (Figure 1b),
linear bidirectional causal (Figure 1d), and lag-zero linear noncausal (Figure 1f) couplings.
Conversely, CSampEn declined gradually solely in simulations relevant to the lag-zero linear
noncausal model (Figure 1e), being stable over unidirectional causal coupling (Figure 1a)
and paradoxically increasing in bidirectional causal interactions (Figure 1c). Results stress
the limited ability of CSampEn and the more reliable performance of CUPI.

Like Figure 1, Figure 2 shows the results of simulations generated via linear unidi-
rectional causal (Figure 2a,b), linear bidirectional causal (Figure 2c,d) and lag-zero linear
noncausal (Figure 2e,f) models. However, the results are relevant to 20 realizations of
X and Y featuring a dominant LF rhythm. The results stress the greater ability of CUPI
in following the increased coupling strength with c2. Indeed, CUPI gradually decreased
with c2 regarless of the type of simulations (Figure 2b,d,f). CSampEn exhibited bad perfor-
mance over causal models (Figure 2a,c) and good performance in the case of lag-zero linear
noncausal interactions (Figure 2e).
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Figure 1. The line plots show the mean (solid line) and the confidence interval of two standard
deviations about the mean (dashed lines) of CSampEn (a,c,e) and CUPI (b,d,f) as a function of c2.
The results of simulations generated via linear unidirectional causal (i.e., c1 = 0), linear bidirectional
causal (i.e., c1 = c2), and lag-zero linear noncausal models are shown in (a,b), (c,d), and (e,f),
respectively. The processes exhibit a dominant HF rhythm. The curves were built over 20 realizations
of X and Y.
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Figure 2. The line plots show the mean (solid line) and the confidence interval of two standard
deviations about the mean (dashed lines) of CSampEn (a,c,e) and CUPI (b,d,f) as a function of c2.
The results of simulations generated via linear unidirectional causal (i.e., c1 = 0), linear bidirectional
causal (i.e., c1 = c2), and lag-zero linear noncausal models are shown in (a,b), (c,d), and (e,f),
respectively. The processes exhibit a dominant LF rhythm. The curves were built over 20 realizations
of X and Y.
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Figure 3 shows the mean (solid line) and the confidence interval of two standard
deviations about the mean (dashed lines) of CSampEn (Figure 3a) and CUPI (Figure 3b)
computed over dynamics generated via unidirectionally-coupled identical logistic maps
while varying c2. The curves were built over 20 pairs of signals generated according to
different initial conditions. CUPI decreased to 0 with c2 and reached 0 when X and Y
synchronized (Figure 3b). Conversely, CSampEn remained stable with c2, and this result
was the consequence of the inability of CSampEn to detect the situation of uncoupling
when c2 was close to 0 (Figure 3a).
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5.2. Results on CB and HUT Protocols

Figure 4 shows CSampEn (Figure 4a) and CUPI (Figure 4b) computed in the CB
protocol. CSampEn decreased significantly during CB10 compared to SB, thus suggesting
that cardiorespiratory coupling increased at the slowest breathing rate. CUPI exhibited
a similar trend, but its variation compared to SB was significant during both CB10 and
CB15, thus making more evident the dependence of the cardiorespiratory coupling strength
on the respiratory rate during CB.
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Figure 4. The vertical box-and-whisker plots show CSampEn (a) and CUPI (b) as a function of the
experimental condition (i.e., SB, CB10, CB15, and CB20). The height of the box represents the distance
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whiskers denote the 5th and 95th percentiles. The symbol § indicates p < 0.05 versus SB.

Figure 5 shows CSampEn (Figure 5a) and CUPI (Figure 5b) computed in the HUT
protocol. The two markers exhibited striking differences with the experimental condition.
Indeed, CUPI decreased significantly during HUT, thus suggesting an increase of the
cerebrovascular coupling strength, while CSampEn remained stable, thus suggesting
a certain stiffness in following modifications of the cerebrovascular coupling with the
experimental condition.
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Figure 5. The vertical box-and-whisker plots show CSampEn (a) and CUPI (b) as a function of the
experimental condition (i.e., REST and HUT). The height of the box represents the distance between
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denote the 5th and 95th percentiles. The symbol § indicates p < 0.05 versus REST.

Figure 6 shows the linear markers of cardiorespiratory (Figure 6a) and cerebrovascular
(Figure 6b–d) coupling calculated in the CB and HUT protocols, respectively. CB augmented
K2

R,HP(HF) regardless of the rate of paced breathing (Figure 6a). K2
MAP,MCBv(VLF) and

K2
MAP,MCBv(LF) increased during HUT, and this result indicated an increased strength

of the cerebrovascular coupling (Figure 6b,c). Conversely, K2
MAP,MCBv(HF) did not vary

during HUT (Figure 6d).
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Figure 6. The vertical box-and-whisker plots show the K2 marker computed between R and HP
in the HF band in the CB protocol (a) and the K2 markers computed between MAP and MCBv in
the VLF (b), LF (c), and HF (d) bands in the HUT protocol. The height of the box represents the
distance between the first and third quartiles, with the median marked as a horizontal segment, and
the whiskers denote the 5th and 95th percentiles. The symbol § indicates p < 0.05 versus CB or REST.

6. Discussion

The main findings of this study can be summarized as follows: (i) CSampEn and
KNNCUP can quantify the modifications of coupling strength but with different abilities;
(ii) KNNCUP is more reliable than CSampEn when interactions occur according to a causal
structure, while performances are similar over a lag-zero linear noncausal model; (iii) in
healthy subjects KNNCUP is more powerful in identifying the changes in cardiorespira-
tory and cerebrovascular coupling strength in response to experimental challenges than
CSampEn and linear markers.
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6.1. Assessing the Coupling Strength between Dynamic Systems via CSampEn and KNNCUP

The degree of interaction between dynamic systems X and Y is assessed in the present
study via two model-free methods, namely CSampEn and KNNCUP.

CSampEn reconstructs the dynamics of X and Y in two separate embedding spaces
built using the technique of delayed components and assesses the strength of the re-
lationship between the embedding spaces by computing the negative logarithm of the
conditional probability that two patterns generated, respectively, by X and Y that are close
in the (m − 1)-dimensional embedding space remain close in the m-dimensional one. In
other words, according to the philosophy of state space correspondence methods, if two
patterns occupy the same region in the (m − 1)-dimensional embedding spaces, in presence
of a significant coupling between X and Y, they do not move apart when a new component
is added.

Therefore, although the model-free nature of CSampEn allows for the theoretical
description of nonlinear interactions, strong nonlinearities that imply links among different
regions of the phase space, such as those responsible for interactions among rhythms
at different frequencies, cannot be reliably described and the method seems to be more
suitable for describing relations occurring according to a 1:1 coupling ratio.

However, simulations provided in this study prove that, even in the presence of
a 1:1 coupling ratio typically occurring when two processes with the same dominant
oscillation are considered, CSampEn cannot detect the progressive modification of the
coupling strength when interactions between X and Y are generated by a linear causal
model. This conclusion held even in the case of a model simulating the interactions between
two nonlinear deterministic signals generated by logistic maps in a chaotic regime. This
limitation is related to the inability of CSampEn to interpret causality given that it is
a symmetric metric under the reversal of the role between X and Y. The most regrettable
feature of CSampEn is that it can suggest even the opposite trend with the coupling
strength as shown in Figures 1c and 2a,c. Solely in trivial simulations where two stochastic
processes interact in absence of a causal structure (i.e., immediate interactions), CSampEn
can detect the expected modifications with the coupling strength. The limited ability of
CSampEn confirms that the exploitation of a metric based on conditional probability does
not necessarily assure a causal approach [56].

KNNCUP assesses the relationship between X and Y using a completely different
logic, namely the cross-predictability of Y from patterns taken from the past history of X.
KNNCUP recalls model-based cross-conditional entropy even though the metric utilized
to assess irregularity of future behaviors of Y given the activity of X is different from the
evaluation of the logarithm of the variance of the innovation of Y given X [57]. Therefore,
the pattern is created over the activity of X and the ability of this pattern to set future
behaviors of Y is tested by measuring the ability of predicting y based on the knowledge of
x. In addition to having the possibility to describe nonlinear interactions among rhythms
at different frequencies according to the number of past samples of x utilized to predict
y, KNNCUP could account for the causal structure of the mechanisms generating the
interactions between X and Y. In addition to accounting for the directionality of the
interactions, KNNCUP optimizes the embedding dimension and coarse graining via the
search for the minimum over m [41,49] and the coverage of the embedding space with cells
of different size according to the k-nearest-neighbor strategy [58], respectively. The most
remarkable feature of KNNCUP is its robustness in indicating the expected modifications
of the coupling strength regardless of the model structure (i.e., causal or noncausal), type
of causal interactions (i.e., unidirectional or bidirectional), and signal feature (i.e., linear
stochastic or nonlinear deterministic).

In conclusion, KNNCUP should be preferred to CSampEn as a model-free technique
for the assessment of coupling strength even in the presence of interactions occurring at
the same frequency.
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6.2. Superior Ability of CUPI Compared to CSampEn in Evaluating Cardiorespiratory
Coupling Strength

CSampEn and CUPI exhibited similar results in the CB protocol. Indeed, both methods
detected an increase in cardiorespiratory coupling strength during CB10. This result is
not surprising given that the same conclusion was reached via cross-conditional entropy
based on a uniform quantization strategy for the computation of probabilities [42]. A linear
approach based on K2

R,HP( f ) was able to reach the same conclusion, but the trend with the
breathing rate was not evident. Therefore, given the dependence of the cardiorespiratory
coupling strength on the breathing rate, we recommend the use of a respiratory rate-
matched control group in applications to pathological subjects. At first sight, this conclusion
might be the consequence of the increase of the transfer function magnitude from R to
HP while slowing the respiratory rate [4,21,22] resulting from the shape of the sinus node
transfer function [59,60]. Conversely, since a rise in the transfer function magnitude is not
necessarily accompanied by an increase of the coupling strength, the observed finding
is more likely to be the consequence of a firmer pacing of the neural efferent activity
operated by the respiratory centers [27–30]. Given that the influence of R on HP is very
rapid [4,23,53] and produces dominant HP oscillations at the same frequency [22,23],
the difficulties of CSampEn in assessing coupling strength are less evident in the CB
protocol. However, CSampEn and CUPI are not fully equivalent. As a matter of fact,
CSampEn exhibited a slightly lower statistical power in detecting the dependence of the
cardiorespiratory coupling strength on the respiratory rate than CUPI. This finding suggests
that some difficulties of SampEn might be linked to the presence of slower components in
the responses of HP to R [5,61] and to the significant action in the reverse causal direction
(i.e., from HP to R) [3,26,53]. In addition, since the likelihood of the cross-frequency
coupling, for example, between the main respiratory rhythm and oscillations generated
by baroreflex control loop [62,63] increases while slowing the breathing rate, the resulting
impairment of the state space correspondence might have, more importantly, reduced the
effectiveness of CSampEn compared to that of CUPI.

6.3. Superior Ability of CUPI Compared to CSampEn in Evaluating Cerebrovascular
Coupling Strength

CUPI declined during HUT, thus indicating that postural challenge augmented the
cerebrovascular coupling strength. This result might be the consequence of the raise of
AP variability [64,65] that is not buffered with suitable changes to the vessel diameter and
drives changes of MCBv via the pressure-to-flow relationship [66,67]. This consideration
suggests a tendency toward a worsening of the dCA given that an increased association
between MAP and MCBv variations has been observed during fainting [68] and in subjects
with impaired dCA [9,69–71]. A linear approach based on K2

MAP,MCBv( f ) suggested an
increased cerebrovascular coupling strength as well. However, it is worth noting that the
observed increase is likely to occur in a physiological range that does not compromise
the dCA given that the quality of the MCBv response to a sustained step increase of
MAP was found to be preserved during HUT [72,73]. Regardless of the magnitude of the
changes, the robust assessment of the MCBv–MAP coupling strength is a critical issue.
Indeed, traditional markers of MCBv–MAP association based on K2

MAP,MCBv( f ) failed
to detect an increased cerebrovascular coupling strength in pathological subjects with
impaired dCA [74].

Remarkably, CSampEn did not decrease during HUT, thus stressing its limited ability
to quantify the modifications of the cerebrovascular coupling strength during orthostatic
challenge. This result might be the consequence of the causal structure of the dynamic
MCBv–MAP interactions occurring in a closed loop [45,54,55,75] according to the pressure-
to-flow link [76] and the Cushing-like pathway [77] mediated by the activity of the mechano-
receptors of the brainstem [78] and fully operative under physiological modifications of
intracranial pressure [79].
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7. Conclusions

This study proves the different abilities of CSampEn and KNNCUP metrics in as-
sessing the coupling strength between two time series and clarifies the conditions under
which their behaviors diverge. In addition to the trivial disruption of the state space corre-
spondence resulting from nonlinear interactions occurring according to the n:m coupling
ratio, with m and n different from 1, even interactions occurring according to a causal
structure are sufficient to limit the performance of CSampEn. We recommend the avoid-
ance of the use of CSampEn to assess cardiorespiratory and cerebrovascular coupling from
spontaneous variability, because CSampEn might be inadequate to describe the complex
causal nature of these relationships [4–6,42,44,45,55,62,75,80]. Conversely, KNNCUP as-
sures a more reliable nonlinear model-free framework to quantify cardiorespiratory and
cerebrovascular variability interactions because its performances are less dependent on
the structure of the underlying mechanism generating the dynamics, thus allowing the
detection of a trend toward an increase of the cardiorespiratory coupling strength while
slowing the breathing rate and the raise of the cerebrovascular coupling strength during
the sympathetic activation and vagal withdrawal induced by an orthostatic challenge.
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Abstract: Most COVID-19 survivors report experiencing at least one persistent symptom after recov-
ery, including sympathovagal imbalance. Relaxation techniques based on slow-paced breathing have
proven to be beneficial for cardiovascular and respiratory dynamics in healthy subjects and patients
with various diseases. Therefore, the present study aimed to explore the cardiorespiratory dynamics
by linear and nonlinear analysis of photoplethysmographic and respiratory time series on COVID-19
survivors under a psychophysiological assessment that includes slow-paced breathing. We analyzed
photoplethysmographic and respiratory signals of 49 COVID-19 survivors to assess breathing rate
variability (BRV), pulse rate variability (PRV), and pulse–respiration quotient (PRQ) during a psy-
chophysiological assessment. Additionally, a comorbidity-based analysis was conducted to evaluate
group changes. Our results indicate that all BRV indices significantly differed when performing
slow-paced breathing. Nonlinear parameters of PRV were more appropriate for identifying changes
in breathing patterns than linear indices. Furthermore, the mean and standard deviation of PRQ
exhibited a significant increase while sample and fuzzy entropies decreased during diaphragmatic
breathing. Thus, our findings suggest that slow-paced breathing may improve the cardiorespiratory
dynamics of COVID-19 survivors in the short term by enhancing cardiorespiratory coupling via
increased vagal activity.

Keywords: cardiorespiratory coupling; post-COVID-19 syndrome; slow breathing; diaphragmatic
breathing; breathing and relaxation exercises; pulse–respiration quotient

1. Introduction

The COVID-19 disease, caused by the novel coronavirus SARS-CoV-2, emerged at the
end of 2019 and has rapidly spread worldwide since it first appeared in China, resulting in
more than 673 million cases and 6.8 million deaths at the time of writing this article [1–3].
The pathological response to the infection ranges from asymptomatic to severe cases, and
the main complications caused by the disease include hypoxemic respiratory failure, heart
failure, kidney injury, thromboembolic damage, and acute respiratory distress syndrome
(ARDS), which represents most ICU admissions due to COVID-19 illness [4–6]. A sig-
nificant proportion of individuals reported persistent symptoms beyond 12 weeks and
up to 9 months that were not associated with any other diagnosis and occurred after the
recovery from the acute phase of the disease [7,8], regardless of if the patient experienced an
asymptomatic or severe case [9]. These manifestations are part of the post-acute sequelae
of SARS-CoV-2 infection (PASC) or post-COVID syndrome, which involves respiratory,
neurological, endocrine, cardiovascular, and other multisystemic alterations [10,11].
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A high prevalence of autonomic alterations in respiratory and cardiovascular systems,
which modify cardiopulmonary interactions as a sign of dysautonomia or orthostatic syn-
dromes, occurs in subjects who suffered an acute phase of the disease [12–14]. Several
signs and symptoms associated with this autonomic impairment have been reported, with
chronic fatigue, chest pain, dyspnea, sleep disturbances, anxiety, depression, and post-
traumatic stress syndrome being the most common among post-COVID patients [15–18].
Recent research on the dynamics of the autonomic nervous system (ANS) in pathological
conditions has demonstrated the existence of an autonomic imbalance in orthostatic syn-
drome [19], respiratory disease [20], and cardiovascular pathologies [21] by mathematical
modeling of physiological interactions related to system coupling and causality. However,
scarce studies have addressed the study of ANS dynamics in COVID survivors. In this
regard, the pulse–respiration quotient (PRQ) has proven to be a powerful parametrization
tool for analyzing the complex behavior of the ANS and its interactions in a wide range of
clinical and research settings [22].

Slow-paced breathing has been introduced as a relaxation technique that consists
of reducing the breathing rate (BR) to about 6 cycles per minute (0.1 Hz), usually with
5-s deep inhalation and exhalation phases [23]. This breathing technique, also referred
to as diaphragmatic [24] or abdominal slow-paced breathing [25], has shown a beneficial
impact in both healthy and ill individuals [26,27]. Other breathing exercises, such as
meditation and mindfulness, have been shown to reduce depression, pain, anxiety, and
stress indicators [28]. Recent reports have suggested that increased respiratory sinus
arrhythmia (RSA) mediated by a lower breathing rate improves baroreflex sensitivity
and increases parasympathetic nervous control of the heart [29,30]. However, there is
limited evidence on the effects of psychophysiological assessments on the ANS response of
COVID-19 survivors, and the ongoing studies do not include individuals with concomitant
disease [31]. A relevant study highlights the importance of assessing autonomic function
to detect possible alterations that may compromise the recovery of COVID-19 survivors
and to design biofeedback training based on their characteristics [32].

Thus, this work aimed to study the cardiorespiratory dynamics by linear and nonlinear
analysis of photoplethysmographic and respiratory time series on COVID-19 survivors
under a psychophysiological assessment (study I). In addition, as a secondary exploratory
study, the effect of different comorbidities on the cardiorespiratory dynamics of COVID-19
survivors was examined (study II). We hypothesized that relaxation induces increased
cardiorespiratory parasympathetic activity in COVID-19 survivors.

2. Materials and Methods
2.1. Subjects

This exploratory study involved 49 survivors of COVID-19 illness (32 men and
17 women) aged 27 to 84 years old (49± 12 years) who were hospitalized between 2020 and
2022 at the Instituto Nacional de Enfermedades Respiratorias (INER, Mexico City) due to
COVID-19 complications in the acute infection phase. All the participants were laboratory-
confirmed with SARS-CoV-2 and surveyed at three months post-hospital discharge. Table 1
depicts the demographic and clinical characteristics of the sample; psychological disor-
ders such as stress, anxiety, and depression were the most common among participants
(men: 9; women: 11) who disclosed having sequelae after the infection, while most patients
reported at least one cardiovascular, pulmonary, motor, cognitive, or other symptoms in
the aftermath of the disease.

The research protocol was approved by the Ethics Committee of the National Institute
of Respiratory Diseases, Mexico (approval number C57-21). All volunteers in this study
signed an Informed Consent form when they agreed to participate, and all methods
were performed following the relevant guidelines and regulations. The exclusion criteria
involved limited mobility and receiving treatment at home instead of being hospitalized.
The sample size for this exploratory research was determined by convenience sampling.
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Table 1. Demographic and clinical characteristics of the patients.

Variable Sample (n = 49) Men (n = 32) Women (n = 17)

No comorbidities 26 (53%) 15 (47%) 11 (65%)
≥1 comorbidity 23 (47%) 17 (53%) 6 (35%)

Mean hospital stay 21 days 22.4 days 19.5 days
No comorbidities 15.6 days 14.8 days 16.6 days
≥1 comorbidity 28 days 29 days 24.8 days

Sequelae 26 (53%) 14 (44%) 12 (71%)
Cardiovascular 2 1 1

Pulmonary 2 1 1
Motor 4 2 2

Psychological 20 11 9
Cognitive 4 2 2

Others 7 2 5

2.2. Psychophysiological Assessment (Protocol for Relaxation)

A validated protocol of 10 min for relaxation [32,33] was conducted on COVID-19
survivors in a quiet room in the Coordination of Psychology of the Cardiology Department
of the INER between 8 a.m. and 12 p.m. to avoid major fluctuations associated with
circadian rhythms [34,35]. The protocol for relaxation involved four phases with the same
temporal duration: (1) open eyes; (2) closed eyes; (3) natural relaxation, and (4) induced
relaxation. The specific duration and tasks of the participants in each phase are shown in
Table 2. In addition, participants were asked to sit comfortably positioned sitting upright in
a chair, resting their hands on their legs without taking their feet off the ground or moving
while recording was performed.

Table 2. Protocol for relaxation applied to COVID-19 survivors.

Phase Duration Tasks

1 Open eyes 2.5 min Sitting upright with open eyes,
spontaneous breathing

2 Closed eyes 2.5 min Sitting upright with closed eyes,
spontaneous breathing

3 Natural relaxation 2.5 min Sitting upright with closed eyes, natural skill
of relaxation

4 Induced relaxation 2.5 min
Sitting upright with closed eyes, slow-paced
breathing (six breaths/min, 1:1 inhalation to

exhalation ratio)

The COVID-19 survivors were instructed to follow all the phases in this protocol.
Before the test, the medical staff guided the patient on how to perform a paced-breathing
technique at a fixed rate of six breaths/minute with a 1:1 ratio of inhalation to exhalation
time (5 s each). Additionally, for the natural relaxation phase, individuals were asked to
relax without an explicit indication of modifying their breathing pattern or frequency as
requested for diaphragmatic breathing. In this study, the protocol for relaxation belongs to
a preliminary psychophysiological phase of examination of participants who subsequently
were enrolled in biofeedback therapy based on their heart rate and breathing rate values.

2.3. Data Acquisition and Pre-Processing Process of Photoplethysmographic and Respiratory Time
Series in COVID-19 Survivors

Simultaneously to the protocol for relaxation, the COVID-19 survivors were instru-
mented with a finger-clip pulse oximeter sensor on the thumb of the left hand, followed
by two adjustable sensor belts, one on the chest and another on the abdomen (Figure 1).
The sensors belong to a ProComp Infiniti System (Thought Technology Ltd., Montreal,
CA, Canada) with BVP-Flex/Pro (photoplethysmography sensor/pulse oximeter) and
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Resp-Flex/Pro (respiration sensor belt for chest and abdominal recordings). The pulse and
respiratory signals were recorded with a sampling frequency of 2048 Hz and 256 Hz, respec-
tively. The photoplethysmographic (PPG) and respiratory (RESP) signals were recorded
without pauses among phases and had a total duration of 10 min, with 2.5 min for each
task (Figures 1 and 2).

Figure 1. Placement of sensors for physiological recordings of photoplethysmography (PPG, finger
clip pulse oximeter) and respiratory signals (RESP, chest, and abdominal belts) during the complete
protocol for relaxation. An overview of the phases of the protocol and its duration is shown.

Figure 2. Representative segments (25 s) of photoplethysmographic (PPG) and respiratory signals
(RESP) corresponding to one participant in the protocol for relaxation applied to COVID-19 survivors.
(a) open eyes Phase—PPG signal; (b) closed eyes—PPG signal; (c) natural relaxation—PPG signal;
(d) induced relaxation—PPG signal; (e) open eyes—RESP signal; (f) closed eyes—RESP signal;
(g) natural relaxation—RESP signal; and (h) induced relaxation—RESP signal.

The physiological data recordings were exported as text files to Matlab R2022a (The
MathWorks Inc., Natick, MA, USA). The extracted raw RESP signals were filtered with a
second-order IIR Butterworth bandpass filter with a bandpass frequency range of 0.05 Hz to
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1 Hz. Subsequently, a fourth-order IIR Butterworth low-pass filter with a cutoff frequency
of 5 Hz was used to filter the raw PPG signals to remove noise interference.

2.4. Data Analysis

After the pre-processing stage, the PPG and RESP time series with more than 10% loss
of information at any phase were discarded. In addition, RESP signals with an abnormal
breathing pattern were not considered for further analyses. In consequence, forty-nine
signals were included for breathing rate variability (BRV), pulse rate variability (PRV), and
pulse–respiration quotient (PRQ) data analyses, as indicated in Figure 3.

Figure 3. The flowchart describes the procedure for sample selection criteria for the photoplethys-
mographic (PPG) and respiratory (RESP) signals corresponding to COVID-19 survivors. A total of
forty-nine records were included (study I) in the analysis of pulse rate variability (PRV), breathing rate
variability (BRV), and pulse–respiration quotient (PRQ). Subsequently, a subsample of twenty-one
individuals was evaluated for a comorbidity-based analysis (study II). Note: BR breathing rate; bpm
beats per minute; PULM pulmonary disease; CARD cardiovascular disease; DIAB diabetes; NOC
no comorbidities.

In this study, two main stages were assessed. In study I, forty-nine signals were
included for breathing rate variability (BRV), pulse rate variability (PRV), and pulse–
respiration quotient (PRQ) data analyses, as indicated in Figure 3. Furthermore, in study II,
as a complementary and exploratory study, we separated the individuals by pre-existing
comorbidities. To avoid the influence of sex hormones in the autonomic vagal activity pre-
dominantly found in young women [22,36], the group was reduced to 21 male individuals
sorted by comorbidities into four categories: 1. patients with pulmonary disease (PULM),
2. patients with cardiovascular disease (CARD), 3. patients with diabetes (DIAB), and
4. individuals with no comorbidities (NOC).

2.4.1. Breathing Rate Variability (BRV)

Peak detection was performed to RESP signals from the local inspiration maxima of
each phase to extract the breath-to-breath (BB) time series (expressed in seconds) [37]. The
mean breathing rate (mean BR), the standard deviation of BB intervals (SDBB), and the
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root mean square of successive differences of BB intervals (RMSSD) were computed as
proposed by Soni and Muniyandi [38].

2.4.2. Pulse Rate Variability (PRV)

A peak detection analysis was performed on PPG signals to obtain the pulse-to-pulse
time series (IBI) expressed in milliseconds (ms); it is reported as pulse rate variability (PRV)
since the data were obtained from pulse recordings instead of ECG signals [39,40]. The
linear and nonlinear indices (see Table 3) were computed using the Kubios HRV Standard
3.5 software (Kubios Oy, Kuopio, Finland) [41].

Table 3. Parameters calculated from beat-to-beat interval (IBI) times series of COVID-19 survivors
performing a protocol for relaxation.

Type Index

Linear

Mean PP distance
SDNN
RMSSD

LF power
HF power

LF/HF ratio

Nonlinear
SampEn
DFA α1
DFA α2

PP—pulse-to-pulse; SDNN—standard deviation of normal pulse intervals; RMSSD—root mean square of
successive PP interval differences; LF—relative power of the low-frequency band; HF—relative power of
the high-frequency band; LF/HF—ratio of low to high-frequency band power; SampEn—sample entropy;
DFA α1—detrended fluctuation analysis (short-term); DFA α2—detrended fluctuation analysis (long-term).
Adapted from [42].

2.4.3. Pulse–Respiration Quotient (PRQ)

The pulse–respiration quotient (PRQ) is a parameter reintroduced by Scholkmann and
Wolf, obtained from the ratio of the heart rate to the breathing rate that effectively reflects
the changes in the cardiorespiratory dynamics mediated by age, sex, physical and cognitive
activity, body posture, and chronobiological state, and it is sensitive to the activity executed
at the time of the recording [22]. It can be computed from the instantaneous heart rate and
breathing rate, or the mean value of both parameters as follows:

PRQ =
HR
BR

beats/min
breaths/min

(1)

As proposed by Scholkmann and Wolf, all data regarding the PRQ index are reported as
daytime functional PRQ (D-f-PRQ) [22] since our recordings were collected in the morning.

Instantaneous heart rate and breathing rate time series were obtained from IBI and
BB time series, respectively. To ensure equidistant signals, the instantaneous breathing
rate time series (Figure 4b) was upsampled to match the equivalent value of the breathing
rate at the same instant of the beat occurrence (Figure 4a), both signals were then used for
calculating the instantaneous PRQ. Figure 5 depicts the PRQ time series computation from
the instantaneous heart rate (HR) and breathing rate (BR) signals for the four phases of the
protocol for relaxation (Table 2).

The PRQ analysis included the mean PRQ and standard deviation of instantaneous
PRQ (SD-PRQ) as the linear indexes, followed by sample entropy (SampEn) and fuzzy
entropy (FuzzyEn) as the nonlinear parameters; the computing of the nonlinear indexes is
described below.
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Figure 4. Visual representation of the computing of instantaneous PRQ index from the instantaneous
heart and breathing rate from one subject at phase 1 of the protocol. (a) 15 s of the instantaneous heart
rate time series; (b) 15 s of the upsampled instantaneous breathing rate time series. The figure shows
HR heart rate; bpm beats per minute; BR breathing rate; brpm breaths per minute; pulse–respiration
quotient (PRQ).

Figure 5. Representative examples of pulse–respiration quotient time series computed from instanta-
neous heart rate and breathing rate for the four phases of the protocol for relaxation in one COVID-19
survivor. (a) Instantaneous heart rate at the four phases obtained from a sample of photoplethysmo-
graphic record; (b) sample of the instantaneous breathing rate at four phases of the protocol obtained
from breathing signals; (c) instantaneous pulse–respiration quotient computed from instantaneous
HR and BR series (a,b).

Sample Entropy (SampEn)

Sample entropy is a widely known parameter used to evaluate how regular the
fluctuations of a time series are, reducing the measured bias usually found when using
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approximate entropy (ApEn) associated with the signal length and self-matches [43]. This
method described by Richman and Moorman is computed as follows:

From a vector xN = {x1, x2, x3, . . . , xN : 1 ≤ i ≤ N} of N samples, the vectors u(i) are
formed as a series of m successive points:

u(i) = [x(i), x(i + 1), x(i + 2), . . . , x(i + m− 1)], (2)

m being the embedding dimension of the vector length. From that, the distance d, defined
as the maximum absolute difference of the elements of the vectors is computed; two points
are similar when d between them is less than r:

d[u(i), u(j)] = max{|u(i + k)− u(j + k)| : 0 ≤ k ≤ m− 1} ≤ r (3)

where r is the tolerance factor and equals to 0.1–0.2 times the standard deviation SD of xN
when the data are not normalized [43–46].

Then, we calculate the number of times the distance of u(j) from u(i) vector is less or
equal to r, for which j 6= i , j ≤ N −m + 1, to avoid self-matches:

Cm
i (r) = (N −m + 1)−1

N−m

∑
i=1

number o f times that d[u(i), u(j)] ≤ r (4)

The average similarity Φ is then determined as:

Φm(r) =
1

N −m + 1 ∑N−m+1
i=1 Cm

i (r). (5)

Therefore, SampEn is obtained by:

SampEn(m, r, N) = − ln
(

Φm(r)
Φm+1(r)

)
(6)

Fuzzy Entropy (FuzzyEn)

Fuzzy entropy, introduced by Cheng et al. and based on the fuzzy set theory proposed
by De Luca and Termini, evaluates the complexity and ambiguity of a given data set [47,48].
This measure is more reliable for short-length data and is less affected by noise [49].
FuzzyEn is computed as follows:

From a time series of N samples {u(i) : 1 ≤ i ≤ N}, vectors of m length are formed
as follows:

Xm
i = {u(i), u(i + 1), . . . , u(i + m− 1)} − u0(i) , i = 1 , . . . , N −m + 1, (7)

where Xm
i is conformed of m successive u values, and u0(i) represents the subtraction of

the baseline of each vector to normalize the data:

u0(i) = m−1
m−1

∑
j=0

u(i + j). (8)

Afterward, dm
ij is defined as the maximum absolute difference between the elements

of Xm
i and Xm

j :

dm
ij = d

[
Xm

i , Xm
j

]
= max|(u(i + k)− u0(i))− (u(j + k)− u0(j))| : 0 ≤ k ≤ m, (9)
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from which the similarity degree is obtained by the fuzzy function with given n and
r parameters:

Dm
ij (n, r) = µ

(
dm

ij , n, r
)
= exp


−

(
dm

1j

)n

r


 , i 6= j (10)

Then, the average similarity expressed by ϕm(r) is computed:

ϕm(r) =
1

N −m

N−m

∑
i=1

(
1

N −m− 1

N−m

∑
j=1, j 6=i

Dm
ij

)
, (11)

to later determine the FuzzyEn as:

FuzzyEn(m, n, r, N) = ln ϕm(r)− ln ϕm+1(r) (12)

These entropies were evaluated using PyBios 1.0.0 software (Ribeirão Preto, SP, Brazil),
setting the following parameters for sample entropy (m = 2, r = 0.2) and fuzzy entropy
(m = 2, r = 0.2, n = 2) [50].

2.5. Statistical Analysis

The mean values of linear and nonlinear indices obtained from BB, IBI, and PRQ
time series were evaluated by a Lilliefors (Kolmogorov–Smirnov) test to assess normal
distribution. Subsequently, multiple comparisons between phases with respect to Phase
4 were performed; paired t-tests were conducted if data met the normality assumption;
otherwise, we conducted a non-parametric Wilcoxon signed-rank test instead. A non-
parametric Kruskal Wallis test was carried out for all indices extracted from BRV, PRV, and
PRQ analysis at the induced relaxation phase for comorbidity-based statistical analysis. All
these statistical tests were performed using Matlab R2022a software (The MathWorks Inc.,
Natick, MA, USA).

3. Results
3.1. Breathing Rate Variability

A lower significant mean value of the respiration rate was found in Phase 4
(9.3 ± 3.6 breaths/min) compared to the other three Phases (p < 0.001) following a slow
breathing pattern (Figure 6a). It confirmed that individuals reduced the number of breaths
per minute. Meanwhile, the SDBB and RMSSD increased significantly (p < 0.001) in Phase
4 compared to the other three Phases (Figure 6b,c).

Figure 6. Boxplot of indices of the breathing rate variability (BRV) extracted from the respiration
signal (RESP) in COVID-19 survivors (N = 49) under a psychophysiological assessment of four
phases: (a) mean respiration rate; (b) standard deviation of breath-to-breath (BB) intervals (SDBB);
and (c) root mean square of the successive difference between breath intervals (RMSSD). The figure
shows: bpm breaths per minute, ◦ outliers, *** p < 0.001 obtained by paired t-test, +++ p < 0.001
obtained by Wilcoxon signed-rank test.
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3.2. Pulse Rate Variability
3.2.1. Linear Features

A significant increase (p < 0.001) is exhibited for SDNN and LF/HF ratio in Phase 4
compared with the other three phases. Figure 7 compares the linear indexes of each phase
from the PPG time series.

Figure 7. Boxplot of linear indices of the Pulse Rate variability (PRV) extracted from the photoplethys-
mographic signals (PPG) in COVID-19 survivors (N = 49) under a psychophysiological assessment of
four phases: (a) mean values of the standard deviation of the IBI of typical sinus beats (SDNN); (b) ra-
tio of low frequency (LF) and high frequency (HF) power. The figure shows ◦ outliers, +++ p < 0.001,
obtained by Wilcoxon signed-rank test.

3.2.2. Nonlinear Features

The nonlinear features exhibited significantly decreased mean values for Phase 4:
SampEn and a2 long-term fluctuations decrease when breathing at a 0.1 Hz rate (Figure 8a,c)
rather than following the other three breathing methods. However, short-term fluctuations
(a1) seemed to stand out in Phase 4 (Figure 8b) from the rest of the stages.

Figure 8. Boxplot of nonlinear indices of the pulse rate variability (PRV) extracted from the pho-
toplethysmographic signals (PPG) in COVID-19 survivors (N = 49) under a psychophysiological
assessment of four phases: (a) sample entropy (SampEn); (b,c) detrended fluctuation analysis be-
tween successive PP intervals for short (a1) and long-term (a2) fluctuations, respectively. The figure
shows ◦ outliers, *** p < 0.001, obtained by paired t-test.

3.3. Pulse–Respiration Quotient (PRQ) Variability

From the instantaneous PRQ time series, Phase 4 reported increased mean PRQ and
SD-PRQ values compared to the rest of the stages (p < 0.001, Figure 9a,b). Concerning the
nonlinear analysis, we observed a significant decrease in both entropy indexes (p < 0.001)
at Phase 4 of the protocol (Figure 9c,d).
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Figure 9. Boxplot of pulse–respiration quotient (PRQ) indexes obtained from the instantaneous heart
rate and breathing rate time series (N = 49); (a) Mean PRQ, during slow breathing (6 breaths/min), a
significant increase in PRQ is observed; (b) fluctuations of the instantaneous PRQ reported as the
PRQ standard deviation; (c) Sample entropy of the instantaneous PRQ; (d) Fuzzy entropy of the PRQ.
The figure shows ◦ outliers, *** p < 0.001 obtained by paired t-test, +++ p < 0.001 obtained by Wilcoxon
signed-rank test.

The mean and standard deviation of all evaluated indexes from RESP (Table A1), PPG
(Table A2), and PRQ (Table A3) time series are listed in Appendix A to show the main
changes among protocol phases. The table also includes the p-values of the statistical test
when comparing the first three phases with the last phase. All reported parameters showed
a statistical significance with p < 0.05.

3.4. Comorbidity-Based Analysis

We reported the differences among comorbidity groups at the slow breathing phase.
The features of these groups are listed in Table 4. We observed a mean heart rate difference
with statistical significance (p = 0.03) between the no comorbidities (NOC) and diabetic
(DIAB) groups (depicted in Figure 10a) but no significant variation with cardiovascular
(CARD) and lung disease (PULM) groups.

Table 4. Clinical characteristics by comorbidity.

Comorbidity n Age (Years ± SD)

Cardiovascular disease 3 49 ± 14
Lung disease 3 53.75 ± 13.1

Diabetes 4 50.8 ± 13.8
No comorbidities 11 47.5 ± 13.1

Data presented in this table correspond to the group with n = 21.

Although the p-value obtained from a Kruskal–Wallis test for the mean PRQ did not
show a significant difference, a trend (p = 0.0748) was observed among diabetic individuals
compared to those with no pre-existing comorbidities (Figure 10b).
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Figure 10. Boxplot of the parameters evaluated by individuals’ comorbidities, comparing the Phase 4
obtained from the photoplethysmographic and pulse–respiration quotient time series of COVID-19
survivors (N = 21). (a) The mean heart rate changes among the comorbidity groups in the fourth
phase of the test. (b) The mean PRQ index comparison among the cardiovascular disease (CARD),
diabetes (DIAB), lung disease (PULM), and no comorbidities (NOC) groups in the fourth phase
of the test. The figure displays bpm (beats per minute), with * indicating p < 0.05 obtained by the
Kruskal–Wallis test.

4. Discussion

In this study, we analyzed whether the diaphragmatic slow-paced breathing technique
improves the cardiorespiratory dynamics of COVID-19 survivors. In addition, we evaluated
whether the patients’ comorbidities significantly affect pulse and respiration rates.

4.1. Breathing Rate Variability

Firstly, BRV was studied to demonstrate that metrics obtained from RESP signals show
differences among phases (Figure 6A). For Phases 1 to 3, we found lower values in SDBB
and RMSSD-BB (less than 1 s). This finding is consistent with Alhuthail et al. [51], who
found RMSSD and SDBB values less than 1 s in post-COVID subjects using structured light
plethysmography. Additionally, we confirmed that the psychophysiological assessment
modified the mean breathing rate in Phase 4 compared to the other three phases. Moreover,
we found that SDBB (Figure 6b) and RMSSD (Figure 6c) indices increased in Phase 4 com-
pared to the previous phases; both indices are indicators of the total variability of breathing
and the short-term variability between breathing cycles, respectively [38]. Research on BRV
in COVID-19 survivors is scarce, and even less is known about the impact of diaphragmatic
breathing in this population. Particularly, relevant research has been published recently
about the impact of meditation on breathing rate and BRV [28,52,53]. Some authors have
reported increased RMSSD related to breathing awareness in meditator and non-meditator
participants [38]. This observation may partially explain our findings.

4.2. Pulse Rate Variability

From the linear analysis of PRV, we found that slow-paced breathing (Phase 4) sig-
nificantly increases cardiac parasympathetic activity and global variability, depicted by
SDNN and RMSSD-PP values (Table A2, Appendix A). This finding is consistent with
You et al. [54], who found an increase in the RMSSD during slow-paced breathing at six
breaths per minute compared to the baseline condition in healthy subjects. In the frequency
analysis, we found that slow-paced breathing increased the LF power band and decreased
the HF power band in Phase 4 compared to previous phases (Table A2). These findings are
consistent with the findings of Li et al. [55] on uncorrected spectral HRV analysis, which
showed lower HF power, increased LF band, and LF/HF ratio in patients with hypertension
under 8 breaths/min breathing. In contrast, the study published by Sakakibara [25] found
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increased HRV during paced breathing at eight breaths per minute in healthy individuals
with an increased HF power band. A possible explanation for this might be that 43% of
our participants were COVID-19 survivors with no comorbidities, while in the study by Li
et al., the pattern was shown in the group with hypertension. Hypertension reduces the ac-
tivity of the parasympathetic branch of the ANS and increases sympathetic activity [56,57].
Moreover, the observed decrease in the HF power band in our group in Phase 4 could be
partially explained by the autonomic imbalance reported in COVID-19 survivors.

In the nonlinear analysis, we observed a decrease in SampEn during slow-paced
breathing. This parameter measures the regularity and complexity of a time series, with
lower values indicating more regular patterns [43]. In our group, this index provides
evidence that slow-paced breathing alters the regulation of the cardiac system. We did
not recruit a control group comprising healthy subjects to evaluate possible autonomic
impairment. However, other authors have reported that COVID-19 survivors exhibit lower
SampEn values, which reflect a higher degree of autonomic impairment, compared to
healthy control groups [58,59]. In this study, the SampEn values are higher than those
reported previously. A possible explanation for this difference might be due to the inclusion
of participants with diabetes and cardiovascular diseases (as shown in Tables 1 and 4).
Bajić et al. [59] found that patients with diabetes and hypertension exhibited higher sample
entropy among the comorbidities listed.

Previous studies have reported a distinct behavior of the DFA scaling exponents in
COVID-19 survivors compared to a healthy group. Our results partially agree with those re-
ported by Kurtoğlu et al. [58]. Our group demonstrated that the long-term scaling exponent
α2 value was lower than theirs for all phases. This difference can be partially explained
by our small sample size, compared to other studies, and the comorbidities present in our
group. Additionally, a study concluded that diabetic individuals exhibited an increased
α2 compared to the short-term exponent α1, which indicates decreased parasympathetic
activity. Conversely, healthy subjects showed the opposite [60].

Referring to Phase 4, we observed that slow-paced breathing modifies the DFA ex-
ponents, with an increase in the short-term exponent α1 and a decrease in the long-term
exponent α2 (Figure 8b,c), which may be related to the reciprocal regulation between the
cardiac and respiratory systems, influenced by slow breathing or an individual’s posture,
which enhances the parasympathetic influence on cardiac function. Matić et al. found
that short-term scaling α1 increased significantly, while the long-term scaling exponent α2
decreased in standing and during slow breathing, indicating reciprocal regulation. Their
study showed that changes in posture and breathing patterns significantly impact cardiac
and respiratory interactions mediated through sympathovagal control [61]. Our results
demonstrated that nonlinear indices (SampEn and DFA) had lower p-values than linear
indices (Table A2, Appendix A).

4.3. Pulse–Respiration Quotient

The PRQ analysis reveals complex cardiorespiratory interactions that are not percep-
tible through the single analysis of BRV and PRV [22]. Currently, studies related to PRQ
primarily involve healthy individuals, and there is no data regarding COVID-19 survivors
who experienced post-acute syndrome or performed slow-paced breathing. Matić et al.
reported increased mean PRQ and PRQ variability with orthostasis and slow-paced breath-
ing as signs of cardiorespiratory coupling regulation and adaptability [62]. Our findings
on the mean PRQ (Figure 9a) and SD-PRQ (Figure 9b) showed a significant difference in
response to the change in breathing frequency with higher statistical significance than the
mean and SD of PRV indices. However, contrary to this study, our mean PRQ and SD PRQ
indices exhibited a slightly lower p-value than SD RESP (Table A3).

We found that lower values of SampEn (Figure 9c) and FuzzyEn (Figure 9d) of the
PRQ time series might indicate higher cardiorespiratory coupling mediated by the ANS in
the induced-relaxation phase, as suggested by Tian and Song, who reported a decrease in
the FuzzyEn index and BR during slow breathing in healthy participants [63].
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4.4. Comorbidity-Based Analysis

Related to the effects of slow breathing on COVID-19 survivors with a previously
detected comorbidity, we found that even though changes that enhance autonomic regula-
tion were visible when performing diaphragmatic breathing, patients with type 2 diabetes
mellitus (T2DM) still showed a higher heart rate (Figure 10a), possibly associated with car-
diac autonomic neuropathy [64,65]. Benichou et al. reported that T2DM patients showed
a decreased value of all HRV parameters, which exhibited restricted sympathetic and
parasympathetic activity [66]. Another study demonstrated a short-term reduction of stress
levels, enhanced glycemic status (reduced hyperglycemia), and increased immune response
in diabetic patients with COVID-19 who followed a relaxation technique [67].

Vanzella et al. [68] assessed the changes in HRV among healthy individuals and
patients with COPD; a significant decrease in time (RMSSD, SDNN) and frequency (LF, HF)
domain indices of patients with COPD were found, as indicators of the reduction of both
sympathetic and parasympathetic activity that suggests a worsened autonomic modulation.
The revision conducted by Hamasaki concluded that diaphragmatic breathing improved
the respiratory function of patients with COPD, reduced stress and anxiety symptoms by
stimulating vagal activation, and enhanced cardiorespiratory performance in patients with
heart failure [69].

Lachowska et al. reported that HR and blood pressure responses decreased con-
siderably with slow breathing exercises in heart failure patients with reduced ejection
fraction and enhanced a variety of health-related scores of quality of life (QoL) [70], while
another study exhibited improvement in the long-term cardiorespiratory capacity of these
patients [71]. Post-stroke patients also seem to benefit from slow breathing, with increased
baroreflex sensitivity, lower systolic blood pressure, and HR with increased HRV [72].

Apart from the diabetic group, no significant difference was found among comor-
bidities and healthy individuals during slow breathing (Figure 10a,b). We supposed that
these results could be associated with the fact that both conditions (comorbidities and post-
COVID-19 syndrome) have been proven to modify autonomic function, and the reduced
sample size may cause no statistically significant difference among comorbidity groups.

4.5. Limitations and Future Work

In this study, we encountered some limitations; first, the reduced sample size to
address autonomic changes among patients with comorbidities and healthy individuals,
where both groups coursed COVID-19 sequelae, and the lack of previous research on the
use of the PRQ to evaluate cardiac and respiratory interactions in a similar population
to the one presented in this work, that must be considered in the interpretation of the
provided data. Despite participants reducing their BR, we also noted that several did
not meet the 6 breaths/min breathing rate (Figure 6a and Table A1) that can be partly
associated with the group comorbidities and symptoms of post-COVID-19 syndrome.
Another possible explanation is that many participants did not have previous training in
diaphragmatic breathing.

COVID-19 sequelae negatively impact survivors’ physical and mental health in the
short and long term [73–75]. It has been observed that most of these patients exhibited high
levels of cellular inflammation and autonomic dysregulation [76]. Slow breathing practice
has been proven to enhance the autonomic regulation of individuals with diverse chronic
illnesses [77]; it improves cardiovascular response, decreases sympathetic hyperactivation,
and induces a state of physiological balance, which may be a critical factor in the prevention
or treatment of the cardiovascular manifestations [78–80]. Additionally, it reduces anxious
and depressive symptoms, which can worsen the state of health and recovery of these
patients [81,82]. This psychophysiological evaluation allows observing the response to
various conditions to identify adaptive and maladaptive response patterns to intervene
and, if necessary, modify them [31,81].

Additional studies may be conducted to assess the long-term effect of slow breathing
and other psychophysiological interventions on COVID-19 survivors who present post-
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infection sequelae and may or may not have other comorbidities. Moreover, further analysis
of the differences between men and women is suggested with an increased sample size.
However, the study of the PRQ index seems like a feasible technique to evaluate cardiac
and respiratory interactions and the changes mediated by breathing rate modifications.

5. Conclusions

Our results demonstrate that implementing a psychophysiological assessment based
on slow paced-breathing induces significant changes in the breathing rate variability and
pulse rate variability of COVID-19 survivors. These changes may improve the cardiorespira-
tory dynamics of this population by enhancing cardiorespiratory coupling in the short-term
via increased vagal activity. Additionally, our findings suggest that patients with comor-
bidities, such as type 2 diabetes mellitus, may still benefit from diaphragmatic breathing
despite changes in sympathovagal balance. However, further research is needed to confirm
the efficacy of this practice in the long term.
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Appendix A

Table A1. Mean values (±standard deviation) of indexes obtained from breathing signals at four
phases of the protocol. Statistical significance from paired t-test and Wilcoxon signed-rank test
are included.

Index Phase 1 Phase 2 Phase 3 Phase 4 Comparison p

Mean BR 18.398 ± 4.16 18.498 ± 3.81 18.249 ± 4.13 9.303 ± 3.59
P1–P4 2.21 × 10−18 *
P2–P4 5.69 × 10−20 *
P3–P4 2.66 × 10−18 *

SDBB 0.424 ± 0.25 0.395 ± 0.26 0.450 ± 0.31 2.077 ± 1.32
P1–P4 2.69 × 10−11 +

P2–P4 1.85 × 10−11 +

P3–P4 1.60 × 10−10 +

RMSSD 0.436 ± 0.25 0.417 ± 0.28 0.436 ± 0.27 2.488 ± 1.99
P1–P4 4.74 × 10−9 +

P2–P4 3.45 × 10−9 +

P3–P4 3.97 × 10−9 +

BR—breathing rate; SDBB—standard deviation of breath to breath (BB) intervals; RMSSD—root mean square of
successive BB interval differences; P1—Phase 1; P2—Phase 2; P3—Phase 3; P4—Phase 4. * p-value obtained by
paired t-test, + p-value obtained by Wilcoxon signed-rank test.
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Table A2. Mean values (±standard deviation) of linear and nonlinear indexes obtained from photo-
plethysmographic signals at four phases of the protocol. Statistical significance from paired t-test and
Wilcoxon signed-rank test are included.

Index Phase 1 Phase 2 Phase 3 Phase 4 Comparison p

Mean PP 820.60 ± 129.22 808.54 ± 125.42 821.75 ± 135.57 840.91 ± 137.29
P1–P4 2.59 × 10−4 *
P2–P4 3.29 × 10−7 *
P3–P4 3.48 × 10−4 *

SDNN 22.49 ± 15.82 21.23 ± 14.79 23.56 ± 17.25 37.99 ± 23.76
P1–P4 4.52 × 10−9 +

P2–P4 3.55 × 10−9 +

P3–P4 2.47 × 10−8 +

RMSSD 23.90 ± 21.15 21.99 ± 19.25 24.35 ± 22.74 28.25 ± 20.23
P1–P4 0.0013 +

P2–P4 1.85 × 10−6 +

P3–P4 3.91 × 10−4 +

LF power (nu) 42.63 ± 17.71 47.80 ± 19.87 44.25 ± 20.18 73.85 ± 19.47
P1–P4 7.19 × 10−8 +

P2–P4 2.25 × 10−6 +

P3–P4 6.74 × 10−7 +

HF power (nu) 44.29 ± 22.10 39.04 ± 21.26 43.98 ± 22.58 20.28 ± 16.81
P1–P4 6.98 × 10−9 *
P2–P4 5.24 × 10−6 *
P3–P4 5.16 × 10−7 *

LF/HF ratio 1.65 ± 1.92 2.21 ± 2.52 1.88 ± 2.12 7.06 ± 5.37
P1–P4 5.75 × 10−8 +

P2–P4 2.14 × 10−6 +

P3–P4 2.08 × 10−7 +

SampEn 1.91 ± 0.27 1.84 ± 0.24 1.86 ± 0.28 1.41 ± 0.31
P1–P4 2.83 × 10−11 *
P2–P4 4.42 × 10−11 *
P3–P4 5.93 × 10−10 *

DFA α1 0.95 ± 0.29 0.96 ± 0.32 0.96 ± 0.32 1.33 ± 0.29
P1–P4 9.30 × 10−10 *
P2–P4 4.11 × 10−9 *
P3–P4 6.63 × 10−9 *

DFA α2 0.47 ± 0.18 0.52 ± 0.2 0.51 ± 0.19 0.32 ± 0.17
P1–P4 2.60× 10−6 *
P2–P4 1.83 × 10−7 *
P3–P4 6.85 × 10−7 *

Mean HR 75.00 ± 11.47 76.04 ± 11.34 75.00 ± 11.6 73.44 ± 11.55
P1–P4 6.27 × 10−4 *
P2–P4 1.89 × 10−6 *
P3–P4 9.10 × 10−4 *

PP—peak-to-peak; SDNN—standard deviation of normal PP intervals; RMSSD—root mean square of successive
RR interval differences; LF—relative power of the low-frequency band; HF—relative power of the high-frequency
band; n.u.—normalized unit; LF/HF—ratio of low to high-frequency band power; SampEn—sample entropy; DFA
α1—detrended fluctuation analysis (short-term); DFA α2—detrended fluctuation analysis (long-term); HR—heart
rate; SD—standard deviation; P1—Phase 1; P2—Phase 2; P3—Phase 3; P4—Phase 4. * p-value obtained by paired
t-test, + p-value obtained by Wilcoxon signed-rank test.
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Table A3. Mean values (±standard deviation) of indexes obtained from instantaneous pulse–
respiration quotient time series at four phases of the protocol. Statistical significance from paired
t-test and Wilcoxon signed-rank test are included.

Index Phase 1 Phase 2 Phase 3 Phase 4 Comparison p

Mean PRQ 4.37 ± 1.102 4.38 ± 1.12 4.44 ± 1.267 10.83 ± 3.875
P1–P4 1.34 × 10−9 +

P2–P4 1.18 × 10−9 +

P3–P4 1.34 × 10−9 +

SD—PRQ 0.538 ± 0.30 0.535 ± 0.372 0.583 ± 0.399 2.49 ± 1.523
P1–P4 1.18 × 10−9 +

P2–P4 1.11 × 10−9 +

P3–P4 2.19 × 10−9 +

SampEn 0.973 ± 0.348 0.99 ± 0.36 0.995 ± 0.419 0.563 ± 0.24
P1–P4 5.70 × 10−9 *
P2–P4 3.10 × 10−9 *
P3–P4 1.21 × 10−7 *

FuzzyEn 0.824 ± 0.309 0.825 ± 0.315 0.821 ± 0.352 0.471 ± 0.205
P1–P4 3.10 × 10−8 +

P2–P4 1.46 × 10−7 +

P3–P4 2.60 × 10−6 +

PRQ—pulse–respiration quotient; SD—standard deviation; SampEn—sample entropy; FuzzyEn—fuzzy entropy;
P1—Phase 1; P2—Phase 2; P3—Phase 3; P4—Phase 4. * p-value obtained by paired t-test, + p-value obtained by
Wilcoxon signed-rank test.
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Abstract: Cardiovascular diseases are the leading cause of morbidity and mortality in adults world-
wide. There is one common pathophysiological aspect present in all cardiovascular diseases—
dysfunctional heart rhythm regulation. Taking this aspect into consideration for cardiovascular
risk predictions opens important research perspectives, allowing for the development of preventive
treatment techniques. The aim of this study was to find out whether certain pathologically appearing
signs in the heart rate variability (HRV) of an apparently healthy person, even with high HRV, can be
defined as biomarkers for a disturbed cardiac regulation and whether this can be treated preventively
by a drug-free method. This multi-phase study included 218 healthy subjects of either sex, who
consecutively visited the physician at Gesundheit clinic because of arterial hypertension, depression,
headache, psycho-emotional stress, extreme weakness, disturbed night sleep, heart palpitations, or
chest pain. In study phase A, baseline measurement to identify individuals with cardiovascular
risks was done. Therefore, standard HRV, as well as the new cardiorhythmogram (CRG) method,
were applied to all subjects. The new CRG analysis used here is based on the recently introduced LF
drops and HF counter-regulation. Regarding the mechanisms of why these appear in a steady-state
cardiorhythmmogram, they represent non-linear event-based dynamical HRV biomarkers. The
next phase of the study, phase B, tested whether the pathologically appearing signs identified via
CRG in phase A could be clinically influenced by drug-free treatment. In order to validate the new
CRG method, it was supported by non-linear HRV analysis in both phase A and in phase B. Out
of 218 subjects, the pathologically appearing signs could be detected in 130 cases (60%), p < 0.01,
by the new CRG method, and by the standard HRV analysis in 40 cases (18%), p < 0.05. Thus, the
CRG method was able to detect 42% more cases with pathologically appearing cardiac regulation. In
addition, the comparative CRG analysis before and after treatment showed that the pathologically
appearing signs could be clinically influenced without the use of medication. After treatment, the risk
group decreased eight-fold—from 130 people to 16 (p < 0.01). Therefore, progression of the detected
pathological signs to structural cardiac pathology or arrhythmia could be prevented in most of the
cases. However, in the remaining risk group of 16 apparently healthy subjects, 8 people died due to
all-cause mortality. In contrast, no other subject in this study has died so far. The non-linear parameter
which is able to quantify the changes in CRGs before versus after treatment is FWRENYI4 (symbolic
dynamic feature); it decreased from 2.85 to 2.53 (p < 0.001). In summary, signs of pathological cardiac
regulation can be identified by the CRG analysis of apparently healthy subjects in the early stages of
development of cardiac pathology. Thus, our method offers a sensitive biomarker for cardiovascular
risks. The latter can be influenced by non-drug treatments (acupuncture) to stop the progression into
structural cardiac pathologies or arrhythmias in most but not all of the patients. Therefore, this could
be a real and easy-to-use supplemental method, contributing to primary prevention in cardiology.
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1. Introduction

Cardiovascular diseases are the leading cause of morbidity and mortality in adults
worldwide [1], although ongoing development is enabling more and more modern treat-
ment techniques. Therefore, more resources should be invested in the prediction of struc-
tural heart diseases and arrhythmias, as well as in the research of prophylactic measure-
ments [1–3]. A possible solution for prediction is offered by physiology. From a physio-
logical point of view, before a structural heart disease or arrhythmia is manifested, these
are anticipated by a latent period of disturbances of the heart regulation [4–6]. Usually, a
structural heart disease is manifested when all of the compensatory mechanisms of regula-
tion of the heart at the medullary and the central levels are broken down [7,8]. The person
then enters a dangerous state, where the heart regulation migrates in a compensatory sense
from the medullary to the predominant central level of regulation [4,9,10]. It is obvious
that such a migration of heart regulation should be recognized as early as possible in order
to prevent further progression into a structural heart disease or arrhythmia [3,8,11,12].

One of the well-known methods nowadays for assessing the state of the neural regu-
latory systems of the heart is the heart rate variability (HRV) [6,10,13–15]. Applying this
method, when judging the reliability of the transition from the medullary level of regulation
to the central one, shows a lot of limitations [8,13,16,17]. One of the important limitations is
the appearance of non-steady-state events in a steady-state cardiorhytmogram (CRG—time
series of beat-to beat-intervals; also called tachogram) [18,19]. This is because nonstationary
HRV, analyzed when using standard linear methods, does not always show valid and
credible results [8,13,16,18,19]. In the present study, a recently introduced CRG approach
is offered by using dynamical physiological methods. Another essential problem when
applying classical linear methods of HRV for the appreciation of the physiological state
of the heart’s regulation, e.g., for prognosis construction, is that it is mainly based on the
conclusion: whether the HRV is high or low [16]. In this context, it is important to keep
in mind that the HRV decreases significantly when all of the physiological compensatory
mechanisms are broken down [6,11,12,20]. From a clinical point of view, this means that,
under such conditions, the patient starts showing corresponding morbidity manifesta-
tions [11,21–23]. This is why a classical linear analysis cannot be applied for primary
prophylaxis or a reliable prediction of cardiovascular risks in healthy individuals [3,12,24].

In this study, we searched for methods which would enable a reliable detection of
biomarkers for pathological heart regulation in still-healthy persons even with a high
HRV. Additionally, to support the realization of this aim, the CRGs were analyzed by
non-linear methods. Non-linear methods [3,15,17,25–28] are recently introduced methods
to measure HRV and are not affected by non-stationarity, as linear indexes are. They
include a.o. power law exponent, approximate entropy, and detrended fluctuation analysis.
These methods study all complex interactions of hemodynamic, electrophysiological, and
humoral variables as well as the autonomic and central nervous regulations.

Therefore, primarily, the aim of this study was to find out whether certain signs which
show a pathological cardiac regulation, detected in a CRG of an apparently healthy person,
even with high HRV, can be influenced clinically. Secondly, the study aimed to find out
which non-linear parameter can characterize the pathophysiological signs identified in
CRG, supporting the automatic CRG assessment for risk prediction.

2. Material and Methods

In this study, 218 healthy persons were included, who consecutively visited the
physician at medical center “Gesundheit” because of arterial hypertension, depression,
headache, psycho-emotional stress, feeling of extreme weakness, disturbed night sleep,
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feeling of heart palpitations, or chest pain. However, physical examinations, i.e., ECG,
stress test, and echocardiography, did not reveal any structural cardiovascular diseases.
The general duration of the study was three years. Both genders were included, female
65% (N = 142). The average age was 42.8 ± 12.0 years, the BMI was 25.11 ± 4.9.

The inclusion criteria were echocardiographic healthy persons, i.e., persons without
structural heart diseases in sinus rhythm during the measurement. The exclusion criteria
were: age under 18 years, arrhythmias, structural heart diseases, pregnancy, lactation
period, menopause, influenza, thyrotoxicosis, medication which could influence the HRV,
Parkinson disease, and any kind of state where tremor of extremities was observed.

From all subjects included, the HRV was analyzed by linear as well as non-linear
methods, including the pathophysiologic CRG features. Therefore, the biosignal recording
was done in the form of a 5-min steady-state ECG. Hence, the ECG was recorded using the
specialized hardware Polyspectrum. All standard rules and procedures during the measure-
ment were applied [8,13,16]. During the preparation of the persons for the measurement,
all standard rules and procedures were also respected, most prominently the reaching of
steady state before starting the measurement itself [13,16,18]. The physiologic method of
cardiorhythmogram analysis is based on features’ analysis and is dependent on the person
who analyzes the features. In order to approve this process and to create an automatized
basis for the prediction of cardiovascular risks by analyzing a CRG, it was also analyzed by
standard linear and existing non-linear methods of HRV analysis. The parameters applied
for the linear methods of HRV analysis were meanNN, sdNN, sdaNN1, rmssd, pNN50,
cvNN, VLF, LF, and HF [13,16,18,19]. To the non-linear HRV parameters belong Shannon,
noNNtime, FORBWORD, FWSHANNON, FWRENYI4, WSDVAR, WPSUM02, and WP-
SUM13 [17,27–29]. FORBWORD stands for the symbolic dynamics parameter number of
“forbidden words” in the distribution of words with length three: that is, the number of
words which never or only seldomly occur. A high number of forbidden words stands for
a rather regular behavior in the time series. If the time series is highly complex then, when
using Shannon, only a few forbidden words will be found. FWSHANNON and FWRENYI4
denote the Shannon resp. Renyi entropy (of order 4) is calculated from the distribution of
words in the same symbolic dynamics and both are classical complexity measures in time
series. Higher entropy values refer to higher complexity in the corresponding tachograms
and lower values to lower ones. WSDVAR is defined as the variability of different types of
words occurring in the given symbolic dynamics. WPSUM02 and WPSUM13 quantify the
percentage of words with low variability (02) as well as with high variability (13). The phys-
iologic CRG analysis takes certain features of the waves of the heart rate time series—the
low frequency (LF) drops and the high frequency (HF) exhibits counter-regulation. They
can be quantified statistically by FWRENYI4 because the Renyi entropy of order 4 estimates
the global complexity of the tachograms—rarely occurring words have no weight.

The study was performed in several stages. In stage A, all individuals were subject to
the initial HRV measurement, followed by HRV analysis. This was performed step by step:
firstly, the HRV was analyzed using standard linear methods; secondly, a physiological
CRG analysis and non-linear analysis was performed. The aim of stage A was to divide
all subjects into a group of healthy individuals and a risk group. The division was done
based on the standard HRV as well as on the physiologic CRG method. According to the
described HRV application standards [8,16], based on the linear HRV, the individuals were
divided into the risk group if the HRV was low, and into the healthy group if the HRV
was high [8,16,18]. HRV was defined as high if pNN50 > 0.14; it was considered as low if
pNN50 ≤ 0.14. The physiologic CRG analysis allocated the persons with identified patho-
logical signs in the cardiorhythmogram to the risk group. In the case of no pathological
signs in the cardiorhythmogram, the individuals were classified into the healthy group.

In the next stage, stage B, it was proved whether the pathological signs identified
in stage A can be influenced clinically by a drug-free treatment. It was important to find
out whether the signs which were recognized as abnormal in the cardiorhythmograms,
indicating a pathological state of the heart’s regulation, could be treated before they would
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progress into structural heart disease or arrhythmia. Acupuncture was chosen as a physio-
logical drug-free treatment. Therefore, all subjects from the risk group were treated.

In the next stage, stage C, a comparative measurement of HRV by linear, non-linear,
and physiological CRG analysis, immediately following the end of the acupuncture treat-
ment course, was done. The chosen treatment method corresponded to some important
criteria: it should be a non-pharmacological treatment, a non-psychological and non-
psychiatric treatment, and a treatment which corresponds to the demand of reproducibility
and, henceforth, could be further applied in order to prevent the progression of the patho-
logical signs. One type of possible treatment, corresponding to these criteria, is acupunc-
ture [30,31]. In the study conducted by Sroka K., it is reported that acupuncture can be
applied as a reliable drug-free alternative for restoring the physiological functional state
of the parasympathical component of the VNS, being reflected in the stabilization of the
heart rhythm [30]. Hence, all subjects from the risk group were treated with acupuncture.
Acupuncture treatment in our study included 12–15 sessions. It is important to mention
that we chose a non-medicamentous way of treatment because, in the risk group, healthy
subjects were included who were still showing no structural cardiac morbidity manifesta-
tions or arrhythmia, but in whose cardiorhythmograms pathological signs were identified.
Consequently, there was no evidence to apply any pharmaceutical way of treatment.

Then followed stage C: in order to objectively appreciate the changes in the patho-
logical signs under the influence of treatment, each person from the pathological group
was subject to an HRV investigation immediately after the acupuncture course. Then
this was compared with the initial investigation, the baseline measurement, done before
the acupuncture treatment. Therefore, all investigations after the treatment course were
analyzed by the standard linear and non-linear HRV analysis, and by the new physiological
CRG method. The comparative analysis of HRV and the cardiorhythmogram of the mea-
surements done before and after the treatment should answer the following questions: Do
the non-steady-state events actually disappear after the treatment? How is the non-linear
parameter of the CRG method, the counter-regulation, changing after the course? How
does the HRV change after the course?

At the concluding stage, stage D, a comparative analysis between both methods of anal-
ysis, in order to generate physiological biomarkers, was made based on the identified patho-
logical signs during cardiorhythmogram analysis, supported by the non-linear analysis.

3. Description of the Study Design

Stage A: Initial HRV measurement
I Standard linear HRV analysis:

– Individuals with low HRV—the risk group;
– Individuals with high HRV—the group of healthy;
– NA individuals—those who could not be analyzed by these methods.

II Physiological cardiorhythmogram analysis:

– Individuals with identified pathological signs—the risk group;
– Individuals without identified pathological signs—the group of healthy;

Stage B: To prove whether the pathological signs identified in stage A can be influ-
enced clinically by a drug-free treatment

Acupuncture—a physiological drug-free treatment (included 12–15 sessions).
All subjects from the risk group were treated with acupuncture.
Stage C: Comparative measurement of HRV at the end of the acupuncture treatment course.
Stage D: Comparative analysis between standard linear HRV analyzing method and

physiological method of cardiorhythmogram analysis in order to generate physiological
biomarkers based on the identified pathological signs, supported by non-linear analysis.

Statistical analysis was performed by Fischer’s Exact Test. p < 0.05 was considered as
significant, p < 0.01 means a very high significance. p > 0.05 was considered as not significant.
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The present study was approved by the Research Ethics Committee at the session
hold on 13 June 2016, the number of the document “Favorable Opinion of the Research
Ethics Committee” is 78, dated 17 June 2016. The Chairperson of the Research Ethics
Committee during the session was Prof. Viorel Nacu. The session took place at the “Nicolae
Testemitanu” State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.

4. Results

During the first stage, stage A, after the baseline measurement, all subjects (N = 218)
were classified into the risk group and healthy group, based on two approaches to CRG
analysis—the linear HRV method and the recent non-linear physiologic CRG method. In
Figure 1, the comparative analysis of both methods which were used in this study in order
to identify the pathological signs in cardiorhythmograms of healthy individuals is shown.
Based on standard linear HRV analysis, 18% (N = 40) of individuals from the total amount
N = 218 could be categorized into the risk group, whereas, 51% (N = 110) of individuals
were categorized in the healthy group. In 68 individuals, the CRG could not be analyzed
by the standard linear HRV method, so 32% (N = 68) of individuals were categorized into
the non-available (NA) group. Based on the recent non-linear physiologic CRG method,
60% (N = 130) of individuals out of 218 were classified into the risk group, whereas 40%
(N = 88) out of 218 were classified into the healthy group (Figure 1). By this approach, all
CRGs could be analyzed, so that no one was classified into the non-available (NA) group.
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Figure 1. Results of baseline cardiorhythmograms analysis by the physiological method (left) and by
the standard linear HRV method (right). Based on this analysis, the individuals were divided in two
groups: the healthy group and the group with recognized risks.

Also, in the group of subjects who were classified by the linear methods initially
as healthy, pathological signs were identified by the new physiological CRG method.
Therefore, using the new method could also find those who were under the sensitivity
threshold of the linear method. This is why the number of healthy individuals decreased
from 110 to 88 (p < 0.01) after the physiological analysis. Correspondingly, the number
of individuals with recognized risks increased from 40 to 133 (p < 0.01), as analyzed
by the CRG method (Figure 1). In Figure 2 a schematical representation of the results
obtained by applying the standard linear HRV method and the new physiological method
of cardiorhythmogram analysis at every stage of the study: baseline measurement, after the
treatment, and comparative analysis between both methods of analysis is shown (Figure 2).
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Figure 2. Scheme of results obtained by applying the standard linear HRV method and the new phys-
iological method of cardiorhythmogram analysis at every stage of the study: baseline measurement,
after the treatment, and comparative analysis between both methods of analysis.

Description of the scheme.
Stage A: baseline HRV measurement of 218 individuals
I Standard linear HRV analysis of 218

– Persons with low HRV—the risk group 40 (18%);
– Persons with high HRV—the group defined as healthy 110 (51%);
– NA Persons who could not be analyzed by this method 68 (32%).

II Physiological cardiorhythmogram analysis

– Persons with identified pathological signs—the risk group 130 (60%);
– Persons without identified pathological signs—the group defined as healthy 88 (40%).

Stage B: To prove whether pathological signs identified in stage A can be influenced
clinically by a drug-free treatment with acupuncture. All subjects from the risk group (the
group with identified pathological signs) were treated by acupuncture, so 130 from 218
were treated. The treatment course included 12–15 sessions.

Stage C: Comparative measurement of HRV at the end of the acupuncture treatment course.
Stage D: Comparative analysis between standard linear HRV analyzing methods and

non-linear, including the recent physiological method of cardiorhythmogram analysis in
order to generate physiological biomarkers based on the ability of identification of the
pathological signs during HRV and the cardiorhythmogram analysis.

5. Clinical Influence on the Detected Signs of a Pathological Heart Regulation

The comparative analysis of HRV and the cardiorhythmogram of the measurements
done before and after the treatment showed the following dynamic of non-steady-state
events: in 114 (p < 0.01) of the cases, the LF drops were not visible in the cardiorhythmo-
grams after the treatment course. This means that, from 130 subjects with the detected
pathological signs, treated by acupuncture, in 114 (88%) p < 0.01 subjects any pathological
signs were observed after the treatment course. Of 130 treated subjects, 12% (16) of the
subjects still continued to show pathological signs (Figure 3). Another important parameter,
which was evaluated by the physiological CRG analysis before versus after treatment, is the
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counter-regulation: the frequencies of counter-regulation changed from the LF waves to the
HF waves in 81% (105) p < 0.01 of the cases. Such a change in counter-regulation is regarded
as one of the most important positive prognostic factors. From the remaining 12% (16) of
the subjects who had no changes regarding the non-steady-state events’ dynamic of the LF
drops and the counter-regulation, eight patients died. Representative cardiorhythmograms
of two individuals, measured at baseline before and after the treatment (Figure 4). In
Figure 4 the upper two CRGs belong to a patient in whose CRG the pathological signs
disappeared after the treatment course and the other two CRGs (C, D) are from one of the
16 patients in who the pathological signs did not disappear after the treatment (deceased).
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Figure 3. Results of comparative analysis between the CRGs before and after the treatment course,
evaluating the presence of pathological signs. The effectiveness of the treatment course is clearly
visible. The number of patients belonging to the risk group is reduced by eight times—from
130 individuals divided into the risk group before the treatment, the number decreased after the
treatment to 16 (p < 0.01) individuals remaining in the risk group.

The physiological method of cardiorhythmogram analysis was objectively compared
with standard linear and non-linear methods of HRV analysis. The non-linear method of
HRV analysis more quantitatively described the changes in the cardiorhythmograms of
patients before versus after treatment, in comparison to linear methods of HRV analysis.
Among the linear methods which showed significant changes in the 114 patients, comparing
cardiorhythmograms before and after treatment, were the following parameters (indicated
as the mean values): meanNN changed from 890.15 to 947.43 (p < 0.05), sdNN changed
from 40.23 to 47.82 (p < 0.01), sdaNN1changed from 15.16 to 24.03 (p < 0.01), rmssd changed
from 32.28 to 38.69 (p < 0.01), and pNN50 changed from 0.13 to 0.19 (p < 0.01). In conclusion,
the changes of the HRV by linear methods, comparing the measurement before and after
the treatment course, were: the HRV increased significantly after the treatment in 75%
(N = 97) p < 0.01 of cases. In 24% (N = 31) p < 0.05 of cases, the HRV remained without any
changes. In 1.5% (N = 2) of cases the HRV decreased.

Among the non-linear methods which showed significant changes in the 114 patients,
comparing cardiorhythmograms before and after treatment, were the following parameters
(indicated as the mean values): Shannon changed from 1.95 to 2.15 (p < 0.001), FORBWORD
from 13.96 to 19.48 (p < 0.01), FWSHANNON from 3.41 to 3.19 (p < 0.001), FWRENYI4 from
2.85 to 2.53 (p < 0.001), WSDVAR from 2.33 to 2.48 (p < 0.001), WPSUM02 from 0.02 to 0.01
(p < 0.01), and WPSUM13 from 0.41 to 0.51 (p < 0.001).
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Figure 4. Representative cardiorhythmograms of two individuals, measured at baseline before
and after the treatment. The CRGs (A,B) belong to a patient in whose CRG the pathological signs
disappeared after the treatment course. The CRGs (C,D) are from one of the 16 patients in who the
pathological signs did not disappear after the treatment (deceased). Both (A,C) show pathological
signs in the form of LF drops, followed by a pathological counter-regulation. After the treatment
course in (B), the pathological signs disappeared. In (D), the pathological signs still remain.

As can be seen from the comparative analysis of the cardiorhythmograms before and
after the acupuncture course, it is evident that the pathological signs in the cardiorhyth-
mograms found in this study can be detected by physiological CRG analysis. Secondly,
pathological signs can be influenced clinically (Figure 4), without using drugs. Following
the treatment with acupuncture, a large number (88%) N = 114 (p < 0.01) of subjects from
the risk group could move to the healthy group after the treatment course. Like the results
show (Figure 3), a progression of these pathological signs into structural heart pathology
or arrhythmia could be prevented in the majority of cases.

6. Discussion

During the last 30 years, the morbidity and mortality of cardiovascular risks has
drastically increased [1,23,32]. This fact has generated a challenging aim for researchers
all over the world to find predictors for several cardiovascular risks. This scientific chal-
lenge can be solved interdisciplinarily, and the cooperation of physicians, mathematicians,
physicists, and biostatistics is required. Since 2000, until now, a lot of attempts to pro-
pose predictors for several cardiovascular diseases have been made. Regarding the fact
that, in every cardiovascular pathology, the regulatory cardiac system is involved, the
approach of using non-linear dynamics in ECG and HRV analysis to find certain predictors
has been used, e.g., it can be obviously observed, as shown by published studies on the
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prediction of atrial fibrillation and heart failure, by applying the non-linear method of
analysis [15,17,23,25,26,32,33]. In these studies, there are different ECG features described
as potential predictors. Zong et al. [25] showed, when observing a 30-min ECG, the feature
which occurs before paroxysms of atrial fibrillation is the frequency of atrial premature
contractions. In the study of Langley et al. [32], the possibility of predicting the recur-
rence of atrial fibrillation based on the assessment of a number of atrial and ventricular
ectopic heartbeats is described. Therefore, they used 30-min RR interval data. A further
prediction method regarding the appearance of recurrences of atrial fibrillation that is often
described in the literature is the method of P-wave assessment on ECG [26,28,33]. In the
studies which apply this method, researchers often take the duration of the P-wave into
account, as well as its amplitude and the change in the P-wave, the intensities of the P-
wave change power spectrum, and several non-linear P-wave measurements. In particular,
Martinez A. et al. [33] describe the prediction of recurrence of atrial fibrillation, based on
the P-waves, assessed using events observed one hour before the recurrence onset, as an
effective tool. There are a lot of further examples. The findings of our study correspond
to the literature, and the CRG features taken into consideration by the given study are
also based on certain important pathophysiological mechanisms of heart regulation which
stand at the background of the feature; these will be characterized further in this text. The
advantages of the method proposed in this study consist in the possibility to recognize
risks even in apparently healthy individuals, before the onset of disease or arrhythmia;
therefore, they can be applied as predictors and, consequently, even measures of primary
prophylaxis can be realized in the clinic. Another important advantage consists in the
fact the CRG method can be assessed either by a trained physician, analyzing a CRG, or
automatically, possessing a certain software, by evaluation of the CRG features via the
non-linear parameter FWRENYI4.

The results of this study show that it is obvious that the physiological CRG method
was more successful, in comparison with standard linear HRV analysis, in detecting patho-
logical signs in cardiorhythmograms of apparently healthy individuals. Comparing the
physiological method of cardiorhythmogram analysis with the standard linear HRV analy-
sis, the recognition of pathological signs in the cardiorhythmograms of healthy individuals
was about 60%, N = 130 from 218 cases (p < 0.01), compared to 18%, N = 40 from 218 cases
(p < 0.05) recognized by the standard linear HRV analysis. This means that the sensitivity of
the new method is three times higher in comparison with the existing method of standard
linear HRV analysis. One of the reasons that explains such a remarkable difference is
the limitation of the standard linear HRV analysis [16,18,19], which does not allow the
standard HRV to analyze CRGs with events of non-stationarity, despite the fact that events
of non-stationarity occurring in a steady-state CRG reveal predictively important infor-
mation regarding the cardiac regulation [4,27,34,35]. The non-linear methods, including
the new CRG method, do have the possibility to analyze such CRGs [15,25,27–29,32]. The
limitations also belong to the factors, which explains why the number of the NA group
was high in the case of linear HRV analysis. The NA group includes all of the ECGs which
could not be analyzed by linear methods. This amounted to about 32%. This means that,
in 68 out of 218 individuals, the CRGs could not be analyzed by using the linear HRV
analysis. Taking into account that pNN50 can be, anyhow, assessed [13,16,18], it should be
mentioned that, for a high number of the non-stationarity events, the LF drops and extra
beats in the CRGs of the individuals of the NA group, a valid interpretation of pNN50 was
also not possible [16,18,19]. In comparison, there was not one individual who could not be
analyzed by using the physiological method, so that all 218 subjects of the study could be
analyzed by using this method. To conclude, the new method, the physiological method of
cardiorhythmogram analysis, allowed for the analysis even of those subjects who could
not be assessed by the standard linear HRV method. The fact that, due to the CRG method,
all cardiorhythmograms can be analyzed, shows the high reliability of the method. The
number of individuals who were considered healthy by the linear method decreased after
the analysis by the physiological method, from 110 to 88 individuals. This means that, by
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using the physiological method of CRG analysis, pathological signs can be recognized even
in cases where the linear method does not detect these.

Validity is another very important characteristic of the recent CRG method, from
a clinical point of view. It is manifested by the assessment results of the dynamics of
pathological signs—the LF drops and HF counter-regulation before and after the treatment.
Recently, it is one of the few methods which can assess the dynamic changes in the quality of
waves’ frequencies in HF counter-regulation and LF drops [4,24,27]. It is clearly visible how
precisely the new HF counter-regulation parameter evaluated the CRG before versus after
the treatment. It could be recognized that the frequencies of counter-regulation changed
from the LF waves to the HF waves in 81% (105) p < 0.01 of the cases. Such a change in
the counter-regulation is regarded as one of the most important positive prognostic factors.
Therefore, the physiological CRG method is a sensitive assessment tool which is able to
deliver a valid evaluation of the changes in pathological signs even in healthy individuals.
Furthermore, the pathological signs can serve as biomarkers for the test whether the risk
disappeared or not, i.e., whether the treatment for this person was efficient or not—is the
person out of the risk group or does he still belong to the risk group? LF drops is the
second parameter of the CRG method. It makes risk stratification possible via its presence
in a steady-state CRG. The assessment of its dynamic offers the possibility to understand
whether the person is still in the risk group. The results of the present study show that,
in 114 (p < 0.01) cases, the LF drops were absent in the cardiorhythmograms after the
treatment course. This means that, after the treatment course for 130 subjects with the
detected pathological signs, in 114 (88%) p < 0.01 individuals, any pathological signs were
observed. Thus, the pathological signs can be influenced clinically by non–drug treatment.
After the treatment, 93% of the individuals from the risk group were transferred to the
healthy group. Therefore, the recognized cardiovascular risks in healthy individuals can
be eliminated, preventing progression into structural heart disease or arrhythmia. Of
130 treated subjects, 12% (16) of the subjects still continued to show pathological signs
(Figures 3 and 4).

A very important proof of the validity of the new CRG method is the fact that, from
the remaining 12% (16) of the subjects who had no changes regarding the non-stationary
events’ dynamic of the LF drops and the counter-regulation, eight patients died. This
also means that the pathological signs—the LF drops and HF counter-regulation—can be
clinically applied as biomarkers for the identification of individuals who are at high risk.
The important applicative value of the CRG method is represented on the one hand by risk
prediction and on the other hand by the possibility of risk prevention. A further study with
a higher number of individuals is needed to prove the predictive values of the pathological
signs. The changes in the CRGs, which could be assessed by the recent CRG method, were
also objectively proven by the non-linear parameter FWRENYI4. It validated the results
of CRG method with high significance methodological differences between the standard
linear method of HRV analysis and the physiological CRG method for the assessment of
heart regulation.

For the linear method of analysis, a steady-state cardiorhythmogram (Figure 5) was
analyzed by time-domain methods [13,16,18]. When in a cardiorhythmogram, non-steady-
state events (Figure 6) occurred, such as the cardiorhythmogram having to be excluded
from the analysis by the linear methods [16,18,19]. It is important to know that, espe-
cially in cardiorhythmograms, where non-steady-state events in rest state occur, important
information is hidden regarding the detection of pathological signs in healthy individ-
uals [4,10,15,19,22–24]. Such non-steady-state events in a rest-state cardiorhythmogram
are described in the research work of N. Wessel [27]. In his work, these events are called
“grosse Ereignisse” (dt.—big events). He found them in the resting state of patients who
had an increased risk for developing a heart attack. In order to analyze them, he used
non-linear methods of HRV analysis. In another study, the non-steady-state events in
the cardiorhythmograms are called LF drops [4,24] and are described as risk factors for
atrial fibrillation. In our study, these events in cardiorhythmograms were analyzed by the
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physiological CRG method [4] in order to find out whether these can be biomarkers for
cardiovascular risks in healthy individuals.
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Figure 6. Steady-state cardiorhythmograms where events of non-stationarity are presented. Car-
diorhythmogram (A): the pathological signs are presented by the LF drops (encircled), but they
are followed by a physiological counterbalancing via HF waves, so a low risk is estimated. Car-
diorhythmogram (B): LF drops (encircled) are present followed by a pathological counter-regulation,
predominant by LF waves, high risk is estimated.

The new physiological cardiorhythmogram analysis used here is based on the re-
cently introduced LF drops and HF counter-regulation, which are non-linear, event-based
dynamical HRV biomarkers [24]. The neural regulation of the heart rhythm is the phys-
iological background of this method [4–6,14,20]. It is visualized by the corresponding
waves’ structure in a cardiorhythmogram [4,24]. When analyzing a cardiorhythmogram
by using physiological methods, there are some essential rules to be regarded. First, the
cardiorhythmogram should be checked for whether it contains non-steady-state events
(Figure 6), as the appearance of these in a rest-state cardiorhythmogram is characterized
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as a pathological sign [6,23,24,36]. From a pathophysiological point of view, this means
that, in the rest state, the central neuronal heart regulation dominates the heart modu-
lation versus the medullary regulation [4,9,10,20,37,38]. Using another way, the central
neural heart regulation is increased to being pathologically high and the activity of the
medullary heart regulation is insufficient [4,9,10,15,20,37,38]. Such a state should be recog-
nized as early as possible because its progression can lead to structural heart diseases and
arrhythmias [11,14,21,22,25,32].

In order to assess the level of progression of such a pathological state, the counter-
regulation should be taken into account. The counter-regulation represents the part of the
cardiorhythmogram following a non-stationarity event [4,24]. If the counter-regulation
functions physiologically fine, it is driven by the parasympathetic part of the vegetative
nervous system [4,20,21]. This is indicated by a certain wave structure (Figure 6, car-
diorhythmogram A). In this case, in the cardiorhythmogram, high-frequency waves during
the counter-regulation are recognized. Hence, the compensatory function of counter-
regulation functions well. This means that it is able to compensate, during a certain period
of time, the pathologically increased central neural heart regulation. The latter is presented
by non-steady-state events in a cardiorhythmogram (Figure 6). If the counter-regulation
was driven by the sympathetic part of the vegetative nervous system, this is considered
as a pathological counter-regulation (Figure 6, cardiorhythmogram B) [4,21,34,35,37]. This
means that the physiological compensation of the state of a pathologically increased central
neural heart regulation cannot be compensated effectively enough [4,6,9,24,26,37] and is
regarded as a risk factor for the appearance of arrhythmias, progression into structural
heart diseases, and, in the worst-case scenario, death [6,11,14,22–25,27], as was also shown
by the results of the present study.

In summary, the non-steady-state events identified in steady-state cardiorhythmo-
grams of healthy subjects were regarded as pathological signs. These can be identified
by physiological methods of HRV analysis. The pathological signs can be clinically
influenced—after the treatment course, the pathological signs in the form of the non-
steady-state events disappeared from the cardiorhythmogram, the HRV increased, and,
in the majority of cases, the counter-regulation changed from sympathetically driven to
parasympathetically driven. These changes led to the transfer of 88% (N = 114) of the
subjects after the treatment from the pathological group to the healthy group. This has a
very important clinical applicative value. Pathological signs can be identified in physiologi-
cal cardiorhythmograms of healthy individuals in the early stages of the development of
cardiologic pathology by applying non-complicated, easy, and quick methods of registra-
tion. Thus, they can be influenced by non-drug treatment methods in order to stop their
progression into structural heart diseases or arrhythmia. Hence, this could be a real and
easy application method for contributing to primary prophylaxis in cardiology.

The results show that it was possible to answer the question raised in this study in a
positive way. Therefore, such pathological signs could further be defined as biomarkers
for some cardiovascular risks and could, hence, serve for their prediction. This result’s
applicative value would be important for the primary prophylaxis of arrhythmias, some
structural heart diseases, and also a potential heart attack [8,11,12,22–24,27]. Moreover,
the predictive effectiveness of such biomarkers could be tested in a separate study on
a specific cardiological disease. FWRENYI4 is the non-linear parameter that makes a
significant evaluation of the changes in the pathophysiological signs identified in CRG
possible. Further studies should research whether it can be applied for supporting the
automatic CRG assessment for risk prediction.

7. Limitations of the Study

The limitation of this study is that the new CRG method, based on evaluation of the
heart’s regulation in the CRG and the recognition of signs for a pathologic heart regulation,
depends on the skills of a trained physiologist. Although, in this study, the method was
proven objectively and significantly by the non-linear parameter—the FWRENYI4, a further
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study to ensure the automaticity of the evaluation and prediction process is needed. The
basis for such an automatized process is the non-linear parameter FWRENYI4. As was
mentioned above, it approved, in this study, the evaluation technique by CRG method.
Therefore, a further study should be done to test the predictive capacity of FWRENYI4 on a
concrete clinical pathology.

8. Conclusions

1. In steady-state cardiorhythmograms of healthy individuals, pathological signs were
identified that can be applied as biomarkers for the functional pathological state of
the heart’s regulation.

2. The efficacy of the new-found physiological method of cardiorhythmogram analysis
for the recognition of cardiovascular risks in healthy individuals is significantly higher
than the standard HRV analysis: using the new CRG method, the risk group detec-
tion is 60% versus 18% risk detection by the existing standard HRV linear analysis.
Therefore, the sensitivity of the new method is three times higher in comparison with
the existing method of standard linear HRV analysis.

3. The pathological signs on which the new physiological approach to the cardiorhyth-
mogram analysis is based can be defined as biomarkers for cardiovascular risk recog-
nition in healthy individuals.

4. The physiological CRG method is able to analyze even those cardiorhythmograms
which show non-steady-state events.

5. The pathological signs can be influenced clinically by non–drug treatment. After the
treatment, 93% of the individuals from the risk group were transferred to the healthy
group. Therefore, the recognized cardiovascular risks in healthy individuals can be
eliminated, preventing progression into structural heart disease or arrhythmia.

6. The non-linear parameter which significantly characterizes the dynamic of changes in the
pathological signs in the CRGs before treatment versus after treatment is FWRENYI4.
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Abstract: The properties of cardio-respiratory coupling (CRC) are affected by various pathological
conditions related to the cardiovascular and/or respiratory systems. In heart failure, one of the
most common cardiac pathological conditions, the degree of CRC changes primarily depend on
the type of heart-rhythm alterations. In this work, we investigated CRC in heart-failure patients,
applying measures from information theory, i.e., Granger Causality (GC), Transfer Entropy (TE) and
Cross Entropy (CE), to quantify the directed coupling and causality between cardiac (RR interval)
and respiratory (Resp) time series. Patients were divided into three groups depending on their
heart rhythm (sinus rhythm and presence of low/high number of ventricular extrasystoles) and
were studied also after cardiac resynchronization therapy (CRT), distinguishing responders and
non-responders to the therapy. The information-theoretic analysis of bidirectional cardio-respiratory
interactions in HF patients revealed the strong effect of nonlinear components in the RR (high
number of ventricular extrasystoles) and in the Resp time series (respiratory sinus arrhythmia) as
well as in their causal interactions. We showed that GC as a linear model measure is not sensitive
to both nonlinear components and only model free measures as TE and CE may quantify them.
CRT responders mainly exhibit unchanged asymmetry in the TE values, with statistically significant
dominance of the information flow from Resp to RR over the opposite flow from RR to Resp, before
and after CRT. In non-responders this asymmetry was statistically significant only after CRT. Our
results indicate that the success of CRT is related to corresponding information transfer between
the cardiac and respiratory signal quantified at baseline measurements, which could contribute to a
better selection of patients for this type of therapy.

Keywords: cardio-respiratory coupling; heart failure; ventricular extrasystoles; CRT responders;
information theory; Granger Causality; Transfer Entropy; Cross Entropy

1. Introduction

The coordination between beat-to-beat (RR) interval and respiratory signals is cru-
cial for maintaining homeostasis in the coupled cardio-respiratory systems. In the last
several years, approaches proposing unidirectional and bidirectional quantities of relation-
ship between cardiac cycles and respiratory rhythm have been increasingly used, with
potential applicability in revealing new insights in many physiological and pathological
conditions [1–10].

Many of these approaches work in the so-called framework of information dynamics,
which provides measures able to assess the ‘information content’ of individual dynamic
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processes or collections of processes, and the information exchange among them [9,11–13].
A dynamical approach takes into account the flow of time by investigating how much the
past system history contributes to reduce the uncertainty about the present state [11]. In this
context, well-established tools like Granger Causality (GC) and Transfer Entropy (TE) assess
pairwise directional interactions between two subsystems of a complex system, quantifying
the directed flow of information from one subsystem to another [14–17]. On the other hand,
measures of cross-predictability like cross-entropy (CE) quantify how much one process
can be predicted from the other, returning asymmetric measures of coupling without
implementing the Granger concept of causality [18]. All these measures have been widely
applied in physiological contexts, e.g., for investigating cardiovascular variability [19,20],
but also for studying cardiorespiratory interactions in healthy subjects [11] or in patients
suffering of various types of sleep apnea [9].

In previous works, we investigated cardio-respiratory interactions in heart-failure
patients using unidirectional markers and bidirectional markers based on linear models
at baseline measurements [6,21]. The potential of the information-theoretic approaches
described above has still not been tested for evaluating the effects of cardiac resynchroniza-
tion therapy (CRT) in heart failure (HF). CRT has been used for more than 20 years in the
treatment of symptomatic patients with heart failure with reduced left ventricular ejection
fraction (LVEF) and abnormal QRS duration and morphology [22,23]. CRT leads to restora-
tion of electromechanical synchrony, resulting in an improvement in the cardiac pump
function, ejection fraction and reverse remodeling of the left ventricle. In most patients,
these mechanical effects are associated with an improvement in the functional capacity and
with a reduction in morbidity and mortality [24]. Nowadays, we know that, in addition
to restoring ventricular mechanical synchronization, there are various cardiac and extra-
cardiac effects of CRT, which are also responsible for its beneficial outcomes. One such effect
is the remodeling of β-adrenergic signaling pathways and the restoration of sympathovagal
balance [25]. The effect of CRT on cholinergic signaling has not been fully investigated
in the literature yet, nor has the significance of CRT-induced neurohumoral modulation
and its influence on cardio-respiratory interactions in these patients [26]. In recent years,
significant advancements have been made in patient selection, implantation approaches,
implant material performances, post-implantation device programming and medical ther-
apy optimization. However, still a third of patients do not achieve the expected benefit
from CRT implantation [27]. Therefore, it is very important—but also challenging—to use
new approaches in the analysis of heart-failure patients who are candidates for CRT im-
plantation, to preoperatively separate future responders from non-responders, according to
parameters that have not yet been used. In this context, parameters that define autonomic
function and cardio-respiratory interactions can certainly be of great importance.

In this work, we evaluate the cardio-respiratory interactions in terms of information
flows between the coupled RR and respiratory signal dynamics. We used both the linear
parametric and the nonlinear model-free implementations of the concept of Granger causal-
ity provided by GC and TE measures, as well as cross entropy, to investigate asymmetric
coupling on different HF CRT responders and non-responders.

2. Materials and Methods
2.1. Subjects and Experimental Protocol

The data analyzed in this study consist in part of the raw data obtained from previously
recruited patients with heart failure (reduced left ventricular ejection fraction, LVEF < 35%),
and indication for CRT device implantation published in our previous work where the pool
of results from all patients were analyzed together [21]. The study was approved by the
Ethics Committee of the Faculty of Medicine the University of Belgrade, and each subject
signed an informed consent form (Approve Date: 17 March 2017, Ref. Numb.29/III-4).
Since the techniques applied in this work are sensitive to the type of heart rhythm, we
excluded data from 8 patients (2 responders to CRT) with permanent atrial fibrillation from
the group of 47 heart-failure patients. The main reason is that, since the cardiac rhythm in
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atrial fibrillation is highly irregular, the corresponding data would not satisfy stationarity
criteria needed for our analysis; moreover, we have previously shown that the influence
of respiration on cardiac rhythm and in the opposite direction is very small in patients
with atrial fibrillation [6]. Contrary to our previous study [21] where we did not separate
groups by arrhythmias, in this study we examined the effects of a low and high number
of VESs on cardio-respiratory coupling before and after CRT. For this study, we divided
the analyzed 39 HF patients into 3 groups: a first group of 14 patients with sinus rhythm
(HFSin), a second group of 11 patients with a low number (<6) of ventricular extrasystoles
(HFVES1), and a third group of 14 patients with 6 and more ventricular extrasystoles
(HFVES2). Measurements were performed before (baseline) and approximately 9 months
after CRT device implantation (follow-up). After follow-up, patients were divided into two
groups, i.e., responders (N = 25) and non-responders (N = 14), in relation to the response to
CRT, which was assessed according to changes in certain clinical and echocardiographic
parameters. We defined an echocardiographic responder to CRT as a patient with increased
left ventricular EF by 5% or more, and functional (clinical) who improved at least one class
category in the New York Heart Association functional classification and/or the six-minute
walk test by at least 10% at follow-up. In this study, a responder to resynchronization
therapy had to meet both echocardiographic and functional criteria. Both baseline and
follow-up experiments were conducted in the morning, between 7 and 8 a.m., in a quiet
room surrounding at the Pacemaker Center of the University Clinical Center of Serbia.
Baseline measurements were carried out immediately before device implantation. Data
were acquired from 20 min of electrocardiographic (ECG) and respiratory (Resp)-signal
measurements of relaxed subjects in the supine position and at a spontaneous breathing
frequency by the Biopac MP100 system and AcqKnowledge 3.9.1 software (BIOPAC System,
Inc., Santa Barbara, CA, USA) using a sampling rate equal to 1 kHz [21]. ECG data
were acquired using the ECG 100C electrocardiogram amplifier module, while an RSP
100C respiratory pneumogram amplifier module with TSD 201 transducer attached to
the belt (using an adjustable nylon strap) was used to measure abdominal expansion and
contraction. The interbeat interval (i.e., ECG RR intervals) time series in patients with sinus
rhythm and sinus rhythm with ventricular extrasystoles were analyzed. Interbeat (RR)
intervals and interbreath (BB) intervals were extracted from signals recorded using the tool
Pick Peaks from OriginPro 8.6 (OriginLab Corporation, Northampton, MA, USA). In the
ECG with ventricular extrasystoles (VES), we used the time coordinate of the peak from
VES as R peak coordinate for the subsequent analyses.

The first analysis consisted in evaluating the changes in RR and BB intervals by
computing their mean and standard error. Furthermore, given that the RR and respiration
samples obtained in this way were unequally positioned, an equal equidistant resampling
of both series was carried out using the mean RR value of each individual as the resampling
interval. The resampling procedure was performed via linear interpolation between two
corresponding adjacent existing samples [3]. In this way, the resampling frequency was
different for each subject, and fell within the range (0.8–1.5) Hz. The final analyzed RR and
Resp time series were measured from signal lasting 20 min, resulting in a different numbers
of samples according to the individually varying resampling frequency (Table 1).

Table 1. Comparison of the mean values of sample numbers in each group before (baseline) and
after (follow-up) cardio resynchronization therapy (CRT) as well as of the mean values between the
groups in each condition.

Group Baseline (×103) Follow-Up (×103) p (Baseline vs. F-Up)

HFSin (N = 14; 71% R) 1.31 ± 0.18 1.22 ± 0.19 0.124
HFVES1 (N = 11; 64% R) 1.34 ± 0.29 1.25 ± 0.22 0.131
HFVES2 (N = 14; 57% R) 1.49 ± 0.18 1.30 ± 0.17 0.008

67



Entropy 2023, 25, 1072

Table 1. Cont.

Group Baseline (×103) Follow-Up (×103) p (Baseline vs. F-Up)

p (Among groups) 0.061 0.469

Responders (N = 25) 1.43 ± 0.22 1.28 ± 0.18 0.007
Non-Responders (N = 14) 1.30 ± 0.22 1.22 ± 0.21 0.090
p (Resp. vs. Non-Resp.) 0.118 0.149

Values are mean ± standard deviation. In the brackets percent of responders (R) in each HF group is given.

2.2. Information-Theoretic Measures and Data Analysis

For the analysis of RR and BB intervals, we computed the mean and standard error
taking into account HFSin, HFVES1, HFVES2 groups, both at baseline and at follow-up for
both responders and non-responders to CRT. Then, to investigate the dynamics of coupling
and causality within the cardio-respiratory system, the information-theoretic measures of
GC, TE and CE were computed on the RR and Resp time series.

These measures are defined, in the context of dynamic systems mapped by random
processes, considering a bivariate random process S = {X, Y} composed of two interacting
processes X and Y, respectively, considered as the driver and target process. In this
context, the concept of Granger causality from X to Y is formalized through the measure of
Transfer Entropy, which quantifies the information that the past states of driver process,
X−n = [Xn−1, Xn−2, . . .], transfer to the present state of the target process, Yn, when the past
states of the target itself, Y−n = [Yn−1, Yn−2, . . .], are known. The TE is defined as:

TEX→Y = I
(
Yn; X−n

∣∣Y−n
)

(1)

where I
(
Yn; X−n

∣∣Y−n
)

is the conditional mutual information. On the other hand, the pre-
dictability of the present state of the target process Yn from the past states of the driver
process X−n is quantified through the cross entropy defined as:

CEX→Y = I
(
Yn; X−n

)
(2)

where I
(
Yn; X−n

)
is the mutual information.

In addition to the standard definitions given in (1) and (2), when assessing influences
within physiological systems, it may be important to take into account the so-called instan-
taneous effects, i.e., the influence that the current state of driver process Xn can have on
the target state Yn [28,29]. To this end, the definitions of TE and CE can be modified as
follows [28]:

iTEX→Y = I
(
Yn; Xn, X−n

∣∣Y−n
)

(3)

iCEX→Y = I
(
Yn; Xn, X−n

)
(4)

The so-called instantaneous TE and instantaneous CE defined in (3) and (4) are used
when the instantaneous effects are deemed as physiologically relevant, i.e., in the direction
from Resp to RR but not in the direction from RR to Resp.

In this work, the above presented measures were implemented in practice using both a
linear model-based and a non-linear model-free estimator. The first approach makes use of
linear regression models whereby the present state of the target process Yn is described as a
linear combination of its p past states, Yp

n =
[
Yn−1, . . . , Yn−p

]
, or of the p past states of both

processes,
[
Xp

n, Yp
n

]
. These linear regression models return prediction errors, or residuals,

whose variance can be related to the concept of conditional entropy under the assumption
of Gaussianity and can be exploited to provide a measure of predictability improvement
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related to the TE [11]. Specifically, denoted as σ2
Yn |Yp

n
, and σ2

Yn |Xp
n ,Yp

n
the prediction error

variances of the two regression models, the measure of GC was computed as [30]

GCX→Y = ln
σ2

Yn |Yp
n

σ2
Yn |Xp

n ,Yp
n

(5)

Moreover, an extended measure of GC incorporating the instantaneous effect from X
to Y and denoted as iGCX→Y was computed, augmenting the vector Xp

n with the inclusion
of Xn in (5) [31].

The second method is a model-free approach that makes use of nearest-neighbors
to compute the probability density functions needed for the estimation of entropy mea-
sures [32]. Here, we used the formulation reported in [33] which performs, for each pattern
forming a realization of the present and past states of the analyzed processes, the search
for its k nearest neighbors to compute the entropy in the highest-dimensional space, and
then adopts a distance-projection strategy to compute the entropies in the spaces of lower
dimension. The resulting estimator has the form (see [34] for details)

TEX→Y = ψ(k) +
〈

ψ
(

NYq
n
+ 1
)
− ψ

(
NYnYq

n
+ 1
)
− ψ

(
NXq

nYq
n
+ 1
)〉

(6)

where ψ(·) is the digamma function, k is the number of neighbors considered in the highest
dimensional space, εn,k is twice the distance of the n-th reference pattern

(
yn, yq

n, xq
n

)
to its

kth neighbor in the highest dimensional space, and NXq
nYq

n
, NYnYq

n
and NYq

n
are the number

of patterns whose distance from the projected reference pattern ((yq
n, xq

n), (yn, yq
n) and yq

n,
respectively) is lower than εn,k/2. A similar treatment leads to estimating the cross entropy
measure as:

CEX→Y = ψ(k) + ψ(N)−
〈

ψ(NYn + 1) + ψ
(

NXq
n
+ 1
)〉

(7)

where N is the number of available patterns and the other symbols have the same meaning
as in (6) (thus NXq

n
and NYn are the number of patterns whose distance from the projected

xq
n and yn is lower than εn,k/2). As for the linear estimation of GC, extended measures of

TE and CE were also obtained augmenting the vector Xq
n with the inclusion of Xn in (6) and

(7) when the instantaneous effect from X to Y was deemed as causally relevant.
In the analyzed dataset, the measures defined above were computed along the two

directions of interaction from Resp to RR and from RR to Resp, to analyze closed-loop
bidirectional cardiorespiratory interactions. Given the adopted measurement convention,
the heartbeat cannot transfer information at zero-lag to the respiratory system, since the
i-th breath sample is simultaneous with the onset of the i-th cardiac period. Therefore, the
standard measures of GC, TE and CE given in (5)–(7) computed without incorporating the
instantaneous effect were used when X = RR and Y = Resp, while the extended measures in
which the vector of the past driver states is augmented with the present driver state were
used when X = Resp and Y = RR.

With regard to GC computation, the model order p was set according to the Akaike
information criterion (AIC), taking care to consider the present state of the driver in defining
the model in the direction of analysis from Resp to RR. Even if the choice of the model order
can influence the value of the achieved information measures and thus their physiological
significance, in this work a sufficiently high value was selected in order to have enough
‘memory’ of the two processes involved in the interaction [34].

Regarding the non-linear implementation of CE and TE measures, the number of
neighbors k was fixed to 10 and the number of considered past states q to 2, as commonly
performed in the literature in the field [35].
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2.3. Statistical Analysis

In order to assess the statistical significance of the differences of the various indexes
between groups and conditions, we employed nonparametric tests. For each measure,
the distributions of the results were tested against normality through a Shapiro–Wilk test
and since the most of the measures did not follow a normal distribution, we performed
nonparametric tests for their comparison.

We performed the Wilcoxon test to compare the mean values of sample numbers in
each group before and after CRT, and the Mann–Whitney U test to compare CRT groups in
each condition. The Kruskal–Wallis H test was applied to compare the mean values among
the HF groups (HFSin, HFVES1 and HFVES2) in each condition (Table 1).

For RR and BB intervals analyses we tested (1) the baseline versus follow-up condition
using the Wilcoxon test for each HF group, and the CRT group; (2) responders versus non-
responders performing the Mann–Whitney U test in both conditions; and (3) differences
between the HF groups, before and after CRT, using also the Mann–Whitney U test (n = 3:
HFSin vs. HFVES1, HFSin vs. HFVES2, and HFVES1 vs. HFVES2), Table 2.

Table 2. Descriptive statistics.

HF Groups CRT Groups

Condition HFSin HFVES1 HFVES2 Responders Non-Responders

RR [s] Baseline 0.930 ± 0.032 ττ 0.932 ± 0.054 0.813 ± 0.026 ** 0.857 ± 0.027 * 0.943 ± 0.040
Follow-up 1.010 ± 0.053 0.99± 0.40 0.934 ± 0.031 0.959 ± 0.036 1.007 ± 0.051

BB [s] Baseline 4.25 ± 0.38 3.82 ± 0.27 3.40 ± 0.13 4.01 ± 0.24 * 3.49 ± 0.14
Follow-up 4.30 ± 0.39 3.96 ± 0.37 3.65 ± 0.21 4.32 ± 0.26 # 3.35 ± 0.14

** p < 0.01 * p < 0.05 Baseline vs. Follow-up, # p < 0.05 Responders vs. Non-Responders, ττ p < 0.01 HFSin
vs. HFVES2.

For information-theoretic measures, the following statistical analyses were performed
in HF groups and in CRT groups separately. We used the Mann–Whitney U test to compare
groups at baseline and at follow-up measurements. In each group, significant differences be-
tween bidirectional measures distributions were recognized by a Wilcoxon non-parametric
pairwise test. For comparison of these parameters between baseline and follow-up mea-
surements, we also used a Wilcoxon test.

For all analyses, probability values p < 0.05 were considered statistically significant.
Statistical analyses were carried out in SPSS (SPSS Inc., Chicago, IL, USA) version 17.

3. Results

In Table 2, the analysis of RR intervals and BB intervals in the analyzed groups is
shown, with regard to descriptive statistics measures (mean and standard error). Respon-
ders to CRT exhibited statistically significantly prolonged RR intervals (p = 0.028) and BB
intervals (p = 0.014) compared to baseline, while non-responders did not change these
markers (p > 0.05). Also, there was no difference between the responder and non-responder
groups, except for BB intervals at follow-up measurements (p = 0.013).

Figures 1–3 present, as bar graphs, the results obtained with regard to linear and
nonlinear measures of GC, TE, and CE computed along the two directions of interaction
from Resp to RR and from RR to Resp. There was a tendency for GC(Resp-RR) to be
higher than GC(RR-Resp) in all patients at baseline condition, but only after CRT device
implantation in the HFSin and HFVES2 group the difference was statistically significant,
with p < 0.05 (Figure 1).

70



Entropy 2023, 25, 1072
Entropy 2023, 25, x FOR PEER REVIEW 7 of 15 
 

 

 

Figure 1. Granger causality (GC) at baseline measurements (A) and at follow-up measurements 
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rhythm and small number of ventricular extrasystoles (HFVES1), and with sinus rhythm and 
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sality of respiration in RR intervals time series and vice versa. Data are presented as mean + 

standard error. * p < 0.05. 
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higher number of ventricular extrasystoles (HFVES2). TE(Resp-RR) and GC(RR-Resp) denote cau-
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standard error. ** p < 0.01, * p < 0.05. 

Figure 1. Granger causality (GC) at baseline measurements (A) and at follow-up measurements after
CRT device implantation (B) in heart-failure patients: with sinus rhythm (HFSin), with sinus rhythm
and small number of ventricular extrasystoles (HFVES1), and with sinus rhythm and higher number
of ventricular extrasystoles (HFVES2). GC(Resp-RR) and GC(RR-Resp) denote causality of respiration
in RR intervals time series and vice versa. Data are presented as mean + standard error. * p < 0.05.
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Figure 2. Transfer entropy (TE) at baseline measurements (A) and at follow-up measurements after
CRT device implantation (B) in heart-failure patients: with sinus rhythm (HFSin), with sinus rhythm
and small number of ventricular extrasystoles (HFVES1), and with sinus rhythm and higher number of
ventricular extrasystoles (HFVES2). TE(Resp-RR) and GC(RR-Resp) denote causality of respiration in RR
intervals time series and vice versa. Data are presented as mean + standard error. ** p < 0.01, * p < 0.05.

Moreover, compared with the baseline measurement, in the group of HFSin patients,
CRT showed significantly decreased GC(RR-Resp), p = 0.048 (not shown in Figure 1),
resulting in a significant difference between GC(Resp-RR) and GC(RR-Resp) (p < 0.05)
(Figure 1B). In the group of HFVES1 patients, there was no statistically significant difference
between GC in both measurements (Figure 1).
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Figure 3. Cross entropy (CE) at baseline measurements (A) and at follow-up measurements after CRT
device implantation (B) in heart failure patients: with sinus rhythm (HFSin), with sinus rhythm and
small number of ventricular extrasystoles (HFVES1), and with sinus rhythm and higher number of
ventricular extrasystoles (HFVES2). TE(Resp-RR) and CE(RR-Resp) denote causality of respiration in RR
intervals time series and vice versa. Data are presented as mean + standard error. ** p < 0.01, * p < 0.05.

In Table 3, the results of the comparisons between coupling and causality measures
computed in the HF groups at baseline and at follow-up measurements are presented.
Linear Granger causality measures were sensitive to a higher number of VESs and at
baseline measurements they significantly decreased with the number of VESs in both
directions. After CRT implementation, a statistically significant difference was found in
GC(Resp-RR) between the HFSin patients’ group and the two other groups and in GC(RR-
Resp) between the HFSin and the HFVES2 group.

Table 3. Statistical significance of comparisons between pairs of groups for bidirectional measures.

Baseline Follow-Up

HFSin vs.
HFVES1

HFSin vs.
HFVES2

HFVES1 vs.
HFVES2

HFSin vs.
HFVES1

HFSin vs.
HFVES2

HFVES1 vs.
HFVES2

GC(Resp-RR) 0.432 0.001 0.002 0.013 0.004 0.751
GC(RR-Resp) 0.297 0.001 0.001 0.212 0.012 0.527
TE(Resp-RR) 0.572 0.635 0.165 0.080 0.246 0.681
TE(RR-Resp) 0.181 0.137 0.005 1.000 0.946 0.918
CE(Resp-RR) 0.258 0.131 0.123 0.440 0.781 0.758
CE(RR-Resp) 0.643 0.274 0.258 0.411 0.980 0.957

Statistically significant values are in bold.

Figure 2 shows the measures of TE computed along the two directions of interaction
between Resp and RR. A statistically significant difference between TE(Resp-RR) and TE(RR-
Resp) in the HFSin and HFVES2 groups of patients was present at the baseline and was
maintained after CRT implantation (p < 0.01), also showing a tendency to become more
marked. Only in the HFVES1 group, TE(Resp-RR) was not significantly greater than
TE(RR-Resp). In the comparison between groups at the baseline measurement, we found
a statistically significant difference in TE(RR-Resp) between groups of patients with VES
(Table 3). CRT influenced TE(RR-Resp) in the HFSin and HFVES1 group with decreasing
values but only towards to the tendency of statistical significance (p = 0.08) and (p = 0.12).
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Contrary to GC and TE, where RR to Resp measures were lower than Resp to RR
measures, CE(RR-Resp) were higher than CE(Resp-RR) in all analyzed groups (Figure 3).
Statistically significant differences were preserved only in HFSin group during both baseline
and follow-up. In the other two groups, statistically significant differences were reported
only after CRT implantation. Comparison between groups did not reveal any statistically
significant difference in CE measures.

Figure 4 presents the results of the comparison between baseline and follow-up mark-
ers and between the two directions, in both groups of responders and non-responders. In
the group of CRT responders, the two GC measures did not change after CRT, while in the
group of non-responders, follow-up measurements indicated a reduction in GC(RR-Resp).
In this group, although unchanged, GC(Resp-RR) became significantly higher than GC(RR-
Resp) after the follow-up measurement. Further, TE(Resp-RR) was significantly higher
than TE(RR-Resp) in both baseline and follow-up measurements in responders, and in non-
responders only after follow-up measurement. Contrary, CE(Resp-RR) was significantly
lower than CE(RR-Resp) in both measurements in responders and in non-responders only
after follow-up measurement. No significant differences between directed measures for
any measure were found at baseline in non-responders while significant differences were
obtained for all information-theoretic measures at baseline in the group of CRT responders.
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Figure 4. Granger causality (GC) at baseline measurements and at follow-up measurements in
responders (A) and non-responders (B) to CRT. Transfer Entropy (TE) at the baseline measurements
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and at the follow-up measurements in responders (C) and non-responders (D) to CRT. Cross Entropy
(CE) at the baseline measurements and at the follow-up measurements in responders (E) and non-
responders (F) to CRT. Resp-RR and RR-Resp denote causality of respiration in RR interval time series
and vice versa. Data are presented as mean + standard error. ** p < 0.01, * p < 0.05.

4. Discussion
4.1. Heart Rate and Respiratory Rate

The analysis of the mean heart and respiratory rates confirms the results from previous
works, and here it is complemented with a dynamic analysis of the variability of RR and BB
intervals [6]. The results of our research indicate that in patients with heart failure, resting
heart and respiratory rates are the highest in patients with a large number of ventricular
extrasystoles before CRT. When we separately analyze CRT responders and non-responders,
we observe that during follow-up there is a decrease in heart rate in all HF patients, but that
it is statistically significant only in CRT responders. The reasons for this result are related to
the intensification of antiarrhythmic therapy in all patients after CRT implantation, as well
as to the improvement in clinical status and the recovery of vagal tone, which dominantly
determines this parameter, in patients who benefited from device implantation [36,37].

Respiratory rate also significantly decreases in CRT responders during follow-up,
but increases slightly in non-responders, resulting in a statistically significant difference
in the values of this parameter between these two groups at control examination. An
improvement in cardiac function enables better perfusion, i.e., a reduction in tissue hypoxia,
which leads to reduction in chemoreceptor stimulation, and this can explain the decrease
in respiratory rate in CRT responders [38]. Our results also confirm that better functional
capacity, according to the NYHA (New York Heart Association) classification of HF, and
higher LVEF, are associated with lower respiratory frequency [39].

4.2. Granger Causality and Transfer Entropy

In this study the model-based Granger causality analysis showed a stronger influence
of respiration on heart rhythm in all HF patients. The reasons for small discrepancies in
GC analysis comparing these results and the findings reported in our previous study in the
HF groups are probably methodological, since we used a different GC algorithm in the last
paper [40]. In addition, the groups with VES were not equally defined: in our previous
work, the HFVES group was defined by more than 20 premature ventricular ectopic beats
during signal recording [6]. According to Granger causal analyses, such as the GC measure
(model-based) and the TE measure (model-free), it is expected that respiration would have a
stronger impact on the heart rate than vice versa. This result can be documented in healthy
subjects and describes the well-known phenomenon of respiratory sinus arrhythmia (RSA)
whereby Resp changes modulate the heart period duration differently during inspiration than
during expiration. Our results, for the HF patients in sinus rhythm, document this effect only
when the TE was used (Figure 2A), but not using the GC (Figure 1A), suggesting that RSA
mechanisms are nonlinear and cannot be fully captured using the linear GC analysis.

Furthermore, the GC decreased progressively from sinus rhythm to the HFVES1 and
the HFVES2 group during baseline (Figure 1A), while the TE did not show an evident simi-
lar trend (Figure 2A). This suggests that in HF patients, the cardiorespiratory interactions
evaluated in the presence of extrasystoles have a strong nonlinear component which can be
properly captured only when TE is estimated.

A similar influence of cardiac rhythm on respiration and vice versa in the HFVES1
group at the control recording is difficult to interpret. The effect of respiration on cardiac
rhythm is determined by various factors even under physiological conditions. For instance,
it has been shown that this influence loses its importance in the elderly, i.e., the strength of
direct respiratory modulation of cardiac rhythm decreases with aging, as well as the indirect
effects of respiration on heart rate due to the reduction in baroreflex sensitivity [41–44].
When autonomic imbalance occurs (as in HF), this bidirectional interaction is certainly
altered, with the activation of compensatory mechanisms that are still poorly understood.
In the previous paper [6], we presented the assumption that the stronger influence of the
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heart rhythm on the respiratory signal in patients with HF and VES is due to compensatory
mechanisms that restore the regularity of the heart rhythm and increase its influence on
breathing. However, after this study, it is clear that the frequency of extrasystoles, as well
as possible other factors such as the HF stage or age, have an impact on bidirectional
cardio-respiratory interactions. On the other hand, we observed that during follow-up,
the influence of breathing on heart rhythm significantly weakened in patients with a low
number of VESs, thus demonstrating a stronger influence of the cardiac rhythm on the
respiratory signal in the HFVES1 group.

Regarding the TE values in HFVES patients, we noticed that causality along the
direction from the RR to Resp in the follow up measurements was not sensitive to the
higher frequency of extrasystoles, as it was in baseline recordings (Table 3). On the other
hand, the prevalence of the causal interaction along the direction Resp to RR becomes much
more marked after CRT, and this was detected using both GC and TE (Figures 1B and 2B).
This suggests that resynchronization therapy is successful in restoring RSA in HF patients,
activating both the linear and nonlinear components of the interaction from Resp to RR.
The recovery of vagal tone and baroreceptor activity is responsible for strengthening the
effect of respiration on cardiac rhythm, i.e., that intense cardiorespiratory interaction in
this direction is a confirmation of the existence of the balanced activity of control and
compensatory mechanisms. This result also implies that with the restoration of Resp on RR,
we can detect the joined mechanism of the reduced linear component of cardiac causality
from RR on restored Resp (Figure 1A,B).

4.3. Cross Entropy

The opposite trends exhibited by CE if compared to GC and TE reflect a prevalence of
the coupling in the direction RR to Resp, amplified after CRT (Figure 3). The reason for this
difference is very likely methodological: while GC and TE quantify directed interactions in
terms of predictability improvement, the CE implements the concept of cross-predictability.
From this point of view, the CE is more similar to measures like convergent cross-mapping,
which attempt to infer the dominant causation in a bidirectional interaction by predicting
the driver starting from the history of the target process [45]. Therefore, according to this
methodological consideration, it is not surprising that a predominant Resp to RR mechanism
produces a higher GC/TE from Resp to RR but also higher CE from RR to Resp.

The values of CE(Resp-RR) and CE(RR-Resp) were not significantly different between
the groups at any of the measurements, and both parameters had the largest preoperative
values in the HFVES1 group, and at control recording in the HFSin group. This suggests
that in cardiorespiratory coupling, the prediction of the dynamics of one signal based solely
on the history of the other is stable in time and that the presence of arrhythmias does not
significantly affect it.

Our finding that in HF patients, cardio-respiratory interactions assessed in the pres-
ence of ventricular extrasystoles have a strong nonlinear component that can only be
properly captured when using TE, was confirmed by the results of model-free CE, which
did not exhibit any particular trends, and after the resynchronization therapy clearly dif-
ferentiated the two directions of interaction even in presence of extrasystoles. Transfer
entropy, in addition to confirming that the occurrence of ventricular extrasystoles signifi-
cantly affects the interactions of the respiratory and cardiovascular system, also indicates
that their frequency decisively determines the intensity of information flow between these
systems. What compensatory mechanisms and at what levels of regulation of physiological
processes trigger the occurrence of ventricular extrasystoles, and what are the causes of
their pronounced dynamics during monitoring, as well as in relation to the extra beats
frequency, remain to be determined by future research.

4.4. Cardiac Resynchronization Therapy

The results of the comparative analysis of CRT responders and non-responders provide
useful insights about the reaction of patients to therapy. At the baseline measurement, no
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significant differences between these two groups were reported with regard to Granger
causality analysis, with a stronger influence of respiration on heart rhythm in both groups
of patients at the control examination in the case of the model-free approach (Figure 4C,D)
and only for non-responders with the linear measure (Figure 4B).

Moreover, it is noteworthy that the nonlinear measure of causality is able to identify
the prevalence of causality from respiration to cardiac activity in the baseline condition
for responders to CRT (Figure 4C). This finding may suggest that if there is a statistically
significant difference between TE parameters in a patient who is a candidate for CRT,
he/she will benefit from device implantation. However, this would be too bold and
probably a wrong conclusion, given that in CRT non-responders, the difference between
these parameters preoperatively is close to statistical significance, and is achieved at the
follow-up examination.

The values of both CE parameters were lower in CRT responders compared to non-
responders for all the measurements. During follow-up, statistically significantly higher
values of CE(RR-Resp) compared to CE(Resp-RR) were observed in CRT responders and
non-responders.

It is also very interesting to observe changes in the intensity of the information flow in
different directions in CRT non-responders. In fact, the TE(Resp-RR) increase in patients
with significantly reduced vagal tone is an indicator that the values of RSA, which is a
measure of cardiorespiratory interaction, and CE(Resp-RR), which is a measure of cardio-
respiratory coupling, do not necessarily follow each other, and this is emphasized in some
previous works [46].

5. Conclusions

Information-theoretic analysis of bidirectional cardio-respiratory interactions revealed
the strong effect of nonlinear components in the RR and Resp time series, as well as in their
causal interaction in evaluation of cardiac resynchronization therapy in HF patients.

Our results, for the HF patients in sinus rhythm, document the RSA effect only when
using the TE but not GC. On the other hand, the prevalence of the causal interaction along
the direction from Resp to RR becomes much more marked after CRT, and this was detected
using both GC and TE, which suggests that the resynchronization therapy is successful in
restoring RSA in HFSin patients, activating both the linear and nonlinear components of
the interaction from Resp to RR. Regarding the CE, it exhibits opposite trends of GC and TE,
showing prevalence of coupling in the direction from RR to Resp, enhanced after CRT.

In the HF patients, before and after CRT, the occurrence of a high number of extrasystoles
significantly reduced GC in both directions. The GC progressively decreases from HF in sinus
rhythm to HFVES1 and to HFVES2, while the TE does not show a similar evident trend.
This finding suggests that in HF patients, the cardio-respiratory interactions evaluated in
the presence of extrasystoles have a strong nonlinear component that can only be properly
captured when the TE is used. This is confirmed also by the CE formulated in a model-free
way, which does not show particular trends and after the resynchronization therapy clearly
differentiates the two directions of interaction even in the presence of extrasystoles.

Contrary to results obtained in the group of non-responders, in the group of responders
to CRT we found a statistically significant difference in the baseline condition between the
Resp-RR and RR-Resp directions, quantified by applied measures from information theory.
This finding could be useful in the selection of patients for CRT.
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Abstract: Bradycardia, frequently observed in preterm infants, presents significant risks due to
the immaturity of their autonomic nervous system (ANS) and respiratory systems. These infants
may face cardiorespiratory events, leading to severe complications like hypoxemia and neurode-
velopmental disorders. Although neonatal care has advanced, the influence of bradycardia on car-
diorespiratory coupling (CRC) remains elusive. This exploratory study delves into CRC in preterm
infants, emphasizing disparities between events with and without bradycardia. Using the Preterm
Infant Cardio-Respiratory Signals (PICS) database, we analyzed interbeat (R-R) and inter-breath
intervals (IBI) from 10 preterm infants. The time series were segmented into bradycardic (B) and
non-bradycardic (NB) segments. Employing information theory measures, we quantified the irregu-
larity of cardiac and respiratory time series. Notably, B segments had significantly lower entropy
values for R-R and IBI than NB segments, while mutual information was higher in NB segments. This
could imply a reduction in the complexity of respiratory and cardiac dynamics during bradycardic
events, potentially indicating weaker CRC. Building on these insights, this research highlights the
distinctive physiological characteristics of preterm infants and underscores the potential of emerging
non-invasive diagnostic tools.

Keywords: cardiorespiratory coupling; bradycardia; apnea of prematurity; neonatal care; electrocar-
diogram; respiratory signal; neurodevelopment; information theory

1. Introduction

Each year, approximately 15 million babies are born prematurely before 37 weeks of
gestation. These infants are susceptible to various health issues, which are the leading
cause of death in children under the age of 5 [1].

The function of the cardiac and respiratory systems is influenced and regulated by the
autonomic nervous system (ANS). The ongoing activity of the ANS can result in interactions
between the cardiac and respiratory rhythms, also known as cardiorespiratory interactions
(CRIs). These CRIs can lead to relative synchronization between the two systems, called
cardiorespiratory coupling (CRC). It is acknowledged that the respiratory rhythm takes
precedence over the cardiac rhythm [2]. CRC, which denotes the interplay between the
pulmonary and cardiovascular systems, is mainly correlated with efferent vagal activity
and is an intrinsic process that can have advantageous impacts on the general well-being
of living beings by establishing collaborative associations between the cardiovascular and
respiratory systems. However, there is insufficient knowledge regarding the mechanisms
that promote normal and abnormal interactions between the two systems, potentially
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resulting in ANS alterations in various diseases [3]. Notably, CRC decreases when there is
a shift in the balance between sympathetic and vagal activity, characterized by an increase
in sympathetic activity and a decrease in vagal activity, as indicated in relevant research [4].
This observation persists even in individuals who have undergone training [5].

Bradycardia, as defined by the Neonatal Resuscitation Program (NRP), refers to a
neonate’s heart rate dropping below 100 beats per minute (bpm) and commonly occurs
in preterm infants [6]. Among all the potential complications associated with prematurity,
those related to CRC may include apnea. Apnea is typically characterized by a cessation of
breathing lasting at least 20 s or a shorter pause in breathing accompanied by bradycardia
(a heart rate below 100 beats per minute), pallor, or cyanosis [7]. However, premature
babies often experience brief apnea episodes lasting less than 20 s due to even minor
interruptions in airflow, leading to hypoxemia or bradycardia.

Preterm infants face a complex array of changes, and the issue of bradycardia within
the context of CRC introduces significant concern. In this way, infant bradycardia can lead
to respiratory events like apnea. These events, characterized by breathing interruptions
and associated bradycardia, can result in hypoxemia and cerebral hypoperfusion, posing
immediate threats to the infant’s well-being [8]. Furthermore, the long-term consequences
extend to potential neurodevelopmental disorders, which are well documented in preterm
infants [8,9]. Bradycardia contributes substantially to morbidity and mortality in this
vulnerable population [10]. Understanding the intricate interplay between bradycardia
and CRC is crucial for identifying potential risks to both short-term and long-term neu-
rodevelopmental outcomes [10–12]. Authors have associated these factors with delays in
neurodevelopment and numerous other factors related to prematurity associated with long-
term negative consequences [13]. The incidence of bradycardia in preterm infants differs
based on their gestational age, birth weight, and other risk factors, including respiratory
distress syndrome, sepsis, and anemia [14,15]. Furthermore, it has been reported that there
is a correlation between bradycardia, low birth weight, and gestational age [16]. Despite
the progress in neonatal care, bradycardia remains a profound contributor to morbidity
and mortality in premature infants [17].

Premature neonates face an increased risk of developing bradycardia due to their
immature respiratory and ANS. This condition can lead to apnea episodes and periodic
breathing, indicative of an underdeveloped cardiorespiratory control system [18,19]. How-
ever, some newborns born prematurely or at full term may experience a drop in heart rate
during feeding, even without other signs of respiratory or gastroesophageal reflux disease.
The specific role of the ANS in triggering these symptoms remains unclear. It is plausible
that the decrease in heart rate during feeding is linked to increased reflex parasympathetic
autonomic nervous system activity [20].

Dick et al. highlighted the interrelationship between the cardiovascular and respi-
ratory systems, which are distinct but interconnected [21]. In recent years, integrative
physiology has gained increasing attention [22], providing a broader comprehension of
how physiological systems interact. Several authors have examined the importance of
CRC in neonates. Joshi et al. investigated alterations in CRC among preterm infants and
revealed a synchronization of heart rate acceleration and deceleration with inspiration and
expiration. They emphasized the sensitivity of these changes to whether the infants were
provided with kangaroo care [23]. Groot et al. studied cardiorespiratory activity and its
correlation with sleep quality and duration. Their findings suggest that heart rate and res-
piratory frequency are linked to active and quiet sleep, while term neonates exhibit stability
and stillness [24]. Similar research conducted by Lucchini et al. employed cross-spectral
analysis and bivariate phase-rectified signal averaging (BPRSA) to measure the occurrence
and intensity of CRC. The results of the analysis indicate that the BPRSA curve could be
responsive to CRC, evaluating the lag between respiratory activity and R-R series [25].

From the literature thus far, there is an evident gap concerning the impact of brady-
cardia on CRC in preterm infants. Evaluating CRC is especially crucial for those infants
who experience bradycardia due to an underdeveloped ANS. This study aims to assess
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CRC in preterm infants utilizing nonlinear methodologies grounded in information theory,
including mutual information (MI) and entropy. The objective is to explore some autonomic
mechanisms associated with nonlinear interactions between the cardiovascular and respi-
ratory systems. This evaluation was performed during bradycardia events and periods
devoid of bradycardia. The central hypothesis is that CRC exhibits variances between
bradycardia and non-bradycardia events in preterm infants.

2. Materials and Methods

This exploratory study used electrocardiograms (ECGs) and respiratory signals from
the Preterm Infant Cardio-Respiratory Signals (PICS) database [17]. This database con-
tains simultaneous electrocardiograms and respiratory signals from 10 preterm infants.
These signals have an approximate duration ranging from 20 to 70 h. The infants had
postconceptional ages (PCA) between 29 3

7 and 34 2
7 weeks and weights ranging from

843 to 2100 g (Table 1). The data were collected in the Neonatal Intensive Care Unit
(NICU) at the University of Massachusetts Memorial Healthcare and are available at
http://physionet.org/content/picsdb/1.0.0/ (accessed on 1 August 2023).

Table 1. PCA, weight, and mean heart rate of PICS subjects.

Subject 1 2 3 4 5 6 7 8 9 10

PCA 29 3
7 30 5

7 30 5
7 30 1

7 32 2
7 30 1

7 30 1
7 32 3

7 30 4
7 34 2

7
Weight (kg) 1.2 1.76 1.71 0.84 1.67 1.14 1.11 2.1 1.23 1.9

Mean heart rate (bpm) 155 131 131 167 143 137 162 141 150 156

This table is an extract from [10].

2.1. Data Processing Pipeline

The complete processing of the ECG and respiratory signals is summarized in Figure 1
and was executed using MATLAB® vR2022b (The Mathworks, Inc., Natick, MA, USA).
Data extraction of the ten infants (Figure 1a) was carried out from both ECG and res-
piration records (provided in the standard WFDB format) using the WFDB Toolbox for
MATLAB® [26,27]. The interbeat intervals (R-R) and inter-breath intervals (IBI) time series
were computed based on the annotation files accompanying the PICS database for the ECG
and respiratory signals, respectively (Figure 1b).
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Signal preprocessing (Figure 1c) involved several considerations. An adaptive filter
was applied to the R-R and IBI time series [28] to correct for any outliers (artifacts). Since the
sampling is not uniform, both time series were resampled at 4 Hz (in addition to removing
high-frequency noise) to redistribute the non-equidistant samples of the R-R intervals and
IBI; then, both time series were synchronous. Later, both time series were divided according
to bradycardia periods. We define bradycardia as events in which the heart rate slows to
less than 100 bpm (or equivalently R-R > 0.6 s) and lasts for at least two beats (>1.2 s). We
categorized the data into bradycardic (B) and non-bradycardic (NB) segments based on the
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resampled R-R and IBI time series. We applied Inequality 1 to evaluate each reliable R-R
sample:

(i ≥ 0.6 s) && (i + (i + 1)) ≥ 1.2 s (1)

where i is the current R-R sample, the number of B data events is significantly less than
the number of NB events, resulting in B events having much fewer time samples. Random
Undersampling (RUS) was then used to balance the length of B and NB samples (for
both R-R and IBI time series), extracting the necessary number of time samples from R-R
and IBI during NB to equal the number of samples of R-R and IBI for the B condition.
Remarkably, each time the adaptive filtering process is performed for each subject, the
output has slightly different data because the algorithm of the adaptive filter [28] uses
random values from [µa(n)− 0.5σa(n), µa(n) + 0.5σa(n)] to replace those recognized as
outliers, where µa is the adaptive mean and σa the adaptive standard deviation. This
adaptive filter comprises three primary steps: (i) the identification and removal of evident
recognition errors, (ii) application of the adaptive percent filter to the physiological signals,
and (iii) implementation of the adaptive controlling filter. Recognition errors, such as
zero-length R-R or IBI intervals and pauses, are consistently excluded from consideration
based on established practices in clinical acquisition systems.

Therefore, steps from 1b to 1d were performed over 100 trials, and the input for the
statistical analysis (Figure 1e) is the median. Figure 2 shows the samples extracted from
the R-R and IBI time series, respectively. Since information theory measures are related
to probabilities and distributions, the original data are organized into bins (similar to a
histogram) and transformed into probability values, as shown in the data distribution plot
in Figure 2.
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2.2. Information Theory Measures
2.2.1. Notation and Preliminaries

Information theory metrics formally define dynamics and possible interactions be-
tween systems X and Y (for bivariate cases), modeled as discrete random variables. Then, X
and Y can take values from their respective alphabets Ax and Ay according to a probability
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distribution denoted by p(x) = PrPr {X = x} , x ∈ Ax and p(y) = PrPr {Y = y} , y ∈ Ay.
In [29], Shannon developed a theory based on a statistical representation of a communi-
cation system. Shannon extended the information measure introduced by Ralph Hartley
and linked this concept to a probability distribution associated with the source of symbols.
According to Shannon, the information I associated with observing a symbol with a proba-
bility of occurrence p is represented by I(p) = log 1

p . Thus, the information obtained from
observing a symbol depends on its probability of occurrence. In other words, the less likely
the symbol is to occur, the more information is gained from observing it.

The key measure in information theory is the Shannon entropy. It quantifies the
information content of a random variable X (it can be extended to a vector of two or more
random variables) as the average ambiguity associated with its outcomes [29]. Entropy
measures were calculated to characterize the irregularity of the R-R and IBI time series
within both B and NB segments. Additionally, mutual information and cross-entropy were
employed to assess the degree of coupling between the R-R and IBI time series across these
segments. A brief description of the information above indices is presented below. For
improved clarity in the subsequent sections, we will consider X as the R-R time series and
Y as the IBI time series.

2.2.2. Entropy

The entropy (referred to as Shannon entropy) H(X) of a discrete random variable X
with the alphabet Ax and a probability mass function p(x) = PrPr {X = x} , x ∈ Ax
is a measure of uncertainty of occurrence of a certain event, quantifying the amount of
information a variable has:

H(X) = −∑n
i=1 p(xi)log2 p(xi) (2)

where H is the measure of entropy, p is the probability of observing the ith value of the bin
series data x, and n is the number of bins. We consider the log in base two as bits as units
of entropy.

2.2.3. Cross-Entropy

Also proposed by Kullback and called directed divergence [30], the cross-entropy
cH(X, Y) measures the degree of difference between two discrete random variables X and
Y, with the alphabet Ax and Ay, and a probability distribution p(x) and p(y), respectively:

cH(X, Y) = −∑n
i=1 p(xi)log2 p(yi) (3)

cH(Y, X) = −∑n
i=1 p(yi)log2 p(xi) (4)

While there are numerous approaches to computing cross-entropy [29], we chose to
use the widely accepted definition in Machine Learning [31] to avoid entering the debate
over the optimal cross-entropy measure, which is beyond the scope of this paper.

2.2.4. Mutual Information

Mutual information (MI) is defined as a measure of the amount of information shared
between two discrete random variables X and Y, with the alphabet Ax and Ay, and a joint
probability distribution p(x, y). It quantifies the nonlinear dependence of two signals. In
terms of entropy, the MI can be calculated as the sum of two variable entropies minus the
joint entropy [32]. Equation (5) shows the general form of MI.

MI(X, Y) = H(X) + H(Y)− H(X, Y) (5)

where H(X, Y) represents joint entropy of time series X and Y, respectively.
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2.3. Statistical Analysis

The 100 trials performed on each of the ten subjects yielded 1000 values of the entropy
of R-R and IBI, cross-entropy, and mutual information (MI) under both B and NB events.
To simplify the analysis, we computed the median of these 100 measurements for each
participant in both groups (B and NB), resulting in a single value per subject in each group
(n = 10). Given the small sample size and the uncertain distribution of the outcomes, which
cannot be assumed to be approximately normal, nonparametric tests were considered ap-
propriate [33]. Therefore, a Wilcoxon matched-pairs signed rank test for repeated measures
was chosen as the statistical method to assess differences. These results were gathered and
processed for within-subjects analysis using GraphPad Prism 8 (GraphPad Software, La
Jolla, CA, USA) software.

3. Results

Figure 3 presents the boxplots representing the average values of the information-
theory indices for both bradycardia (B) and non-bradycardia (NB) samples. Initially, it
was essential to ensure that each set of extracted data demonstrated the presence of either
bradycardia or non-bradycardia, which was established through the distribution of the R-R
intervals. An example is depicted in Figure 2.
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Figure 3. Boxplots of significant information-theory indices related to complexity between interbeat
intervals (R-R) and inter-breath intervals (IBI) segments of preterm infants during bradycardia (B)
and non-bradycardia events (NB). (a) Entropy of R-R time series between B and NB; (b) Entropy of
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* p < 0.05 between B and NB by Wilcoxon matched-pairs signed rank test.

The entropy of R-R and IBI time series, MI, and cross-entropy, revealed significant
differences between the B and NB segments. These observed differences provide evi-
dence, indicating decreased MI and entropy values in the B segments compared to the NB
segments.

Focusing on the entropy of R-R, as illustrated in Figure 3a, the B segments were
noted to have significantly lower mean values than the NB segments (3.656 ± 1.052
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vs. 4.343 ± 0.9411, respectively, p = 0.0371). In a similar vein, the analysis of the entropy
of IBI displayed in Figure 3b showed a significant decrease in mean values for the B seg-
ments in comparison to the NB segments (3.950 ± 0.7259 vs. 4.358 ± 0.8800, respectively,
p = 0.0244).

Upon examining the mutual information indices (Figure 3c), a significant difference
was identified between the B and NB segments. The B segments exhibited an average
MI value of 0.3895 ± 0.1184, while the NB segments exhibited a higher average value of
0.6582 ± 0.3110. This significant difference, with a p-value of 0.0137, is visually represented
in Figure 2c.

In contrast, the cross-entropy (R-R -> IBI and IBI -> R-R) did not reveal significant dif-
ferences between the B and NB segments. The calculated average cross-entropy (R-R -> IBI)
for B and NB was 5.804 ± 2.944 and 5.640 ± 2.531, respectively, resulting in a p-value
of 0.3477. Similarly, the cross-entropy (IBI -> R-R) for B and NB was 6.701 ± 3.923 and
6.272 ± 2.766, respectively, resulting in a p-value of 0.500.

4. Discussion

While most of the research concerning bradycardia in preterm infants has been cen-
tered on predicting bradycardic/apneic events before their occurrence [17,34–36], our study
stands out as the exploratory effort in assessing CRC in preterm infants during events,
whether they involve bradycardia or not. Consequently, the significance of this preliminary
study lies in its contribution to advancing our comprehension of the intricate physiolog-
ical cardiorespiratory mechanisms through information theory tools. Moreover, it helps
us recognize potential alterations in their complex dynamics and nonlinear correlations,
offering valuable insights into this crucial aspect of infant healthcare. This exploratory
study was designed to elucidate further whether a notable difference exists in the interac-
tion between the cardiovascular and respiratory systems among preterm infants during
episodes with and without bradycardia. The rationale behind this investigation stems
from the understanding that premature birth can result in underdeveloped coordination
between these systems, with bradycardia being a potential indicator of immature control
over cardiovascular and respiratory functions [37,38].

Our study’s initial results indicate that the interplay between cardiac and respiratory
systems may be altered during bradycardia episodes compared to non-bradycardic periods.
Complexity measures applied to the R-R and IBI time series demonstrate a significative
decrease during bradycardic episodes, as illustrated in Figure 3a,b, corresponding to re-
duced entropy. This observation is in line with prior studies that have examined abnormal
neonatal cardiac conditions [39,40]. The noted reduction in complexity supports the hy-
pothesis that pathological states, such as congestive heart failure, are characterized by less
complexity in their physiological patterns than healthy systems [41]. Considering these
findings, the link between bradycardia and a decreased complexity in the cardiac and respi-
ratory systems—as suggested by the lower entropy values in R-R and IBI segments during
bradycardic periods—warrants careful interpretation. Our study does not definitively es-
tablish causality. Furthermore, the lack of significant difference in cross-entropy regarding
the influence of respiration on R-R intervals (or the inverse) highlights the need for a more
detailed investigation into their interconnection. Subsequent research is essential to eluci-
date the underlying mechanisms and to potentially confirm a causal relationship between
the complexity of the cardiac and respiratory systems and the incidence of bradycardia in
preterm infants.

Mutual information, derived from information theory, measures the potential nonlin-
ear interactions between two variables—here, the R-R intervals of the heart and the IBI
from respiration. The MI values observed in the NB segments could suggest nonlinear
associations between the cardiac and respiratory systems when bradycardia is absent.
Such a relationship might imply a level of synchronization between the heart and lungs
that could be important for physiological stability. Conversely, the MI values in the B
(bradycardic) segments may reflect a different degree of interaction during bradycardic
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episodes, which the nature of bradycardia itself might influence. The slower heart rate
associated with bradycardia could potentially affect the usual synchrony between the
cardiovascular and respiratory systems, possibly leading to a change in their capacity to
adjust and communicate effectively with one another, a process that is crucial for maintain-
ing balance within the body and adapting to changes in the environment [3]. However,
these interpretations remain speculative, and the results do not definitively establish a
difference in cardiorespiratory coupling (CRC) between bradycardic and non-bradycardic
states. Further investigation is needed to understand these associations fully.

In light of these speculative interpretations, it is well recognized that the heart and
lungs are engaged in a constant reciprocal interaction, forming a functional and anatomical
reserve that underpins CRC. This dynamic exchange is key to the seamless coordination
between these systems under typical conditions. Disruptions in this coupling may manifest
in the face of various cardiac or pulmonary disorders, including bradycardia. Therefore,
the findings of our study, which hint at altered interactions during bradycardic episodes,
could indicate such disruptions. This notion aligns with the established concept of ongoing
interaction between the heart and lungs, yet the exact relationship with bradycardia ob-
served here remains hypothetical, underscoring the need for further research to clarify the
nature of this linkage.

These findings underscore the importance of comprehending in detail the dynamics
of the interaction between the heart and lungs in premature infants, as this understanding
can have significant implications for the health and neurodevelopment of this population.
Identifying and addressing alterations in this interaction could help prevent or mitigate
issues and delays in the neurodevelopment of premature infants [12]. Furthermore, this
research emphasizes the need to consider complex and nonlinear factors when assessing
the health of premature infants, as these factors can substantially impact their short-term
and long-term well-being.

Building on this, it is widely acknowledged in existing research that preterm infants
are at a higher risk for various health issues and suboptimal neurodevelopmental outcomes,
the mechanisms of which remain incompletely understood. A related study evaluated the
autonomic development of newborns based on their gestational age at birth, with a specific
focus on regulating cardiorespiratory functions. The research suggests that infants born
prematurely at 35–36 weeks of gestational age exhibit a higher susceptibility to breathing
instability, evidenced by diminished CRC [42]. It underscores the observation that an
increase in gestational age at birth corresponds to an enhanced coupling between the two
systems. These findings highlight the lower level of maturation in preterm infants and their
underdeveloped cardiorespiratory regulation, which aligns with epidemiological data and
may indicate a heightened risk for divergent outcomes [42]. Given the exploratory nature
of our research, it suggests a direction for future studies to investigate further and possibly
expand upon the understanding of cardiorespiratory interactions in preterm infants, with
a particular focus on bradycardia. A study utilizing the same database for predicting
bradycardic events revealed that increased variance in the heart rate signal was a precursor
to severe bradycardia. This increased variance was associated with a rise in power from
low content dynamics in the low-frequency and diminished multiscale entropy values
preceding bradycardia [17]. This observation amplifies our findings, pointing towards
nuanced physiological shifts before the onset of bradycardic episodes. Notably, previous
findings have shown a significant negative correlation between entropy and the duration
of respiratory support required, further emphasizing the potential clinical implications of
these observations [43].

Furthermore, additional research has explored the ramifications of initial immuniza-
tion on cardiorespiratory events in extremely preterm infants. The observed cardiores-
piratory events were mainly attributed to a dominant sympathetic influence over heart
rate, reduced Heart Rate Variability (HRV), characterized by low entropy, and a continuing
immaturity in controlling respiratory rhythm [44]. These findings reiterate the complexity
of the regulatory mechanisms in preterm infants and their susceptibility to alterations
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in physiological states. Another significant contribution to this discourse was a study
highlighting the predictive capabilities of cardiorespiratory variability parameters during
non-invasive respiratory support in extremely preterm infants. The study demonstrated
moderate predictive accuracy for successful extubation, with these measures showcasing
notable differences between successful and unsuccessful extubation cases. This highlights
their potential as biomarkers to assess extubation outcomes in this vulnerable group [45].

The uniqueness of our work lies in its application of information theory tools to
assess alterations in CRC from recorded data, which may reveal patterns that are not
immediately apparent in predictive models. This retrospective analysis could inform
the development of sophisticated monitoring techniques that, while not real-time, could
still enhance clinicians’ ability to understand and respond to bradycardic episodes or
other cardiorespiratory anomalies. Additionally, by retrospectively assessing CRC during
bradycardia, our study offers fresh insights into the physiological states of preterm infants.
We deepen our understanding of the cardiorespiratory system’s function during these
critical periods by examining the reduced complexity and potential nonlinear correlations
between cardiac and respiratory signals. This knowledge could lead to improved clinical
strategies to enhance this vulnerable population’s health and developmental outcomes.

The current study represents a novel approach in understanding the interplay between
bradycardia and CRC in preterm infants. Previous studies in this field, such as those by
Faes et al., 2014 [46], Rozo et al., 2021 [47], Lucchini et al., 2020 [48], and Lucchini et al.,
2018 [25], have laid important groundwork. Faes et al.’s study focused on the use of
model-free tools for time series analysis to understand physiological system interactions,
introducing a method to evaluate the direction, magnitude, and timing of information
transfer between systems. Rozo et al. compared various methods to estimate Transfer
Entropy (TE) in cardio-respiratory interactions, finding adaptive partitioning most effective.
Their work emphasized the importance of choosing appropriate signals and methods for
analyzing such interactions. The study by Lucchini et al., 2020, explored cardiorespiratory
information transfer in healthy neonates, aiming to describe its development relative to
gestational age. They extended the traditional TE measure to analyze both instantaneous
and delayed effects between cardiac and respiratory systems. Lastly, Lucchini et al., 2018,
investigated the phase coupling and its directionality in newborn infants, assessing the
influence of gestational age at birth on the development of this synchronization.

The current study builds upon these foundations by specifically focusing on the dif-
ferences in CRC during bradycardic and non-bradycardic events in very preterm infants.
Unlike the previous studies which primarily involved healthy subjects or general neonate
populations, this research delves into a more vulnerable group, very preterm infants expe-
riencing bradycardia. The use of the PICS database for analyzing cardiac and respiratory
time series, coupled with information theory measures, marks a distinctive approach. This
study’s findings about the lower entropy values in bradycardic segments and the implica-
tions for reduced complexity in cardiorespiratory dynamics during such events contribute
significantly to the understanding of autonomic maturation and the interplay between
cardiac and respiratory systems in this high-risk population. This direction is crucial for
developing better diagnostic tools and enhancing healthcare outcomes for preterm infants.

CRC assessment may help provide additional measures of infant well-being, which
would be complementary in a clinical setting. To follow up these investigations in the future,
CRC features characterized by information theory measures could be used to implement
classifiers to distinguish bradycardic periods from regular ones. Although at first glance, it
may seem redundant to develop classifiers to distinguish bradycardia, as it can be easily
identified through heart rate, there are merits in considering this approach. Bradycardia
can be readily detected, but identifying subtle patterns, correlations, and nonlinear features
that could indicate the severity, etiology, or prognostic implications of bradycardia may
not be as straightforward. The classifiers developed from information theory measures
could identify these features and provide a deeper understanding and earlier detection
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of cardiorespiratory irregularities. This could justify the effort and resources needed to
develop and implement such tools in a clinical setting.

Despite the limitations inherent in using electrocardiograms and respiratory signals,
these remain standard and widely accepted methods for assessing CRC [49–51]. Advances
in technology have improved the accuracy of these measurements, and the use of signal-
processing techniques can mitigate the impact of artifacts. Furthermore, complementary
methods and additional physiological measures can be incorporated to validate findings
and ensure the robustness of the results.

Finally, these novel measures might become non-invasive complementary diagnostic
tools to investigate the physiological mechanisms involved in bradycardia and potential
predictors of bradycardic periods. Future work consists of the computation of relevant
indexes such as functional autonomic age (FAA) derived from the ECG signal [42] and
respiratory signs; it offers direct avenues towards estimating autonomic maturation at the
bedside during intensive care monitoring.

5. Conclusions

This preliminary study provides an exploratory look at cardiorespiratory coupling
in preterm infants, comparing episodes with and without bradycardia. The changes
noted in the entropy of interbeat (R-R) and inter-breath (IBI) interval time series might
reflect a different organization in the respiratory and cardiac dynamics during bradycardic
events. Moreover, the observed variations in mutual information may suggest potential
changes in the cardiorespiratory interaction during such events. Our results could imply a
reduction in the complexity of respiratory and cardiac dynamics during bradycardic events,
potentially indicating weaker CRC. These initial observations contribute to a nuanced
understanding of the physiological intricacies of preterm infants and highlight the possible
utility of new metrics as non-invasive diagnostic tools. The noted variations in entropy
raise questions about possible neurodevelopmental concerns in preterm infants. These
preliminary findings emphasize the importance of further research to explore the broader
implications of cardiorespiratory interactions on these infants’ neurodevelopment and
overall health. The study suggests directions for future research that may advance our
understanding of autonomic growth and cardiorespiratory relationships, ultimately aiming
to improve healthcare outcomes for preterm infants.
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22. Acampa, M.; Voss, A.; Bojić, T. Editorial: Cardiorespiratory Coupling-Novel Insights for Integrative Biomedicine. Front. Neurosci.
2021, 15, 671900. [CrossRef]

23. Joshi, R.; Kommers, D.; Long, X.; Feijs, L.; Van Huffel, S.; van Pul, C.; Andriessen, P. Cardiorespiratory Coupling in Preterm
Infants. J. Appl. Physiol. 2019, 126, 202–213. [CrossRef]

24. de Groot, E.R.; Knoop, M.S.; Hoogen, A.v.D.; Wang, X.; Long, X.; Pillen, S.; Benders, M.; Dudink, J. The Value of Cardiorespiratory
Parameters for Sleep STATE classification in Preterm Infants: A Systematic Review. Sleep Med. Rev. 2021, 58, 101462. [CrossRef]
[PubMed]

25. Lucchini, M.; Pini, N.; Fifer, W.P.; Burtchen, N.; Signorini, M.G. Characterization of Cardiorespiratory Phase Synchronization and
Directionality in Late Premature and Full Term Infants. Physiol. Meas. 2018, 39, 064001. [CrossRef] [PubMed]

26. Silva, I.; Moody, G.B. An Open-Source Toolbox for Analysing and Processing PhysioNet Databases in MATLAB and Octave. J.
Open Res. Softw. 2014, 2, e27. [CrossRef] [PubMed]

27. Goldberger, A.L.; Amaral, L.A.N.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.-K.;
Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic
Signals. Circulation 2000, 101, E215–E220. [CrossRef] [PubMed]

28. Wessel, N.; Voss, A.; Malberg, H.; Ziehmann, C.; Voss, H.U.; Schirdewan, A.; Meyerfeldt, U.; Kurths, J. Nonlinear Analysis of
Complex Phenomena in Cardiological Data. Herzschrittmachertherapie + Elektrophysiologie 2000, 11, 159–173. [CrossRef]

29. Faes, L.; Porta, A.; Nollo, G. Information Decomposition in Bivariate Systems: Theory and Application to Cardiorespiratory
Dynamics. Entropy 2015, 17, 277–303. [CrossRef]

89



Entropy 2023, 25, 1616

30. Mallows, C.L.; Kullback, S. Information Theory and Statistics. J. R. Stat. Soc. Ser. A (General) 1959, 122, 380. [CrossRef]
31. Cui, Y.; Zhai, J.; Wang, X. Extreme Learning Machine Based on Cross Entropy. In Proceedings of the International Conference on

Machine Learning and Cybernetics, Jeju Island, Republic of Korea, 19–24 June 2016; Volume 2.
32. Schulz, S.; Adochiei, F.-C.; Edu, I.-R.; Schroeder, R.; Costin, H.; Bär, K.-J.; Voss, A. Cardiovascular and Cardiorespiratory Coupling

Analyses: A Review. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2013, 371, 20120191. [CrossRef]
33. Furfey, P.H.; Siegel, S. Nonparametric Statistics for the Behavioral Sciences. Am. Cathol. Sociol. Rev. 1957, 18, 163. [CrossRef]
34. Jiang, H.; Salmon, B.P.; Gale, T.J.; Dargaville, P.A. Prediction of Bradycardia in Preterm Infants Using Artificial Neural Networks.

Mach. Learn. Appl. 2022, 10, 100426. [CrossRef]
35. Zuzarte, I.; Sternad, D.; Paydarfar, D. Predicting Apneic Events in Preterm Infants Using Cardio-Respiratory and Movement

Features. Comput. Methods Programs Biomed. 2021, 209, 106321. [CrossRef] [PubMed]
36. Lim, K.; Jiang, H.; Marshall, A.P.; Salmon, B.; Gale, T.J.; Dargaville, P.A. Predicting Apnoeic Events in Preterm Infants. Front.

Pediatr. 2020, 8, 570. [CrossRef] [PubMed]
37. Di Fiore, J.M.; Poets, C.F.; Gauda, E.; Martin, R.J.; MacFarlane, P. Cardiorespiratory Events in Preterm Infants: Etiology and

Monitoring Technologies. J. Perinatol. 2016, 36, 165–171. [CrossRef] [PubMed]
38. Gauda, E.B.; McLemore, G.L. Premature Birth, Homeostatic Plasticity and Respiratory Consequences of Inflammation. Respir.

Physiol. Neurobiol. 2020, 274, 103337. [CrossRef] [PubMed]
39. Lake, D.E.; Richman, J.S.; Griffin, M.P.; Moorman, J.R. Sample Entropy Analysis of Neonatal Heart Rate Variability. Am. J.

Physiol.-Regul. Integr. Comp. Physiol. 2002, 283, R789–R797. [CrossRef] [PubMed]
40. Pravisani, G.; Beuchee, A.; Mainardi, L.; Carrault, G. Short Term Prediction of Severe Bradycardia in Premature Newborns. In

Proceedings of the Computers in Cardiology, Thessaloniki, Greece, 21–24 September 2003; Volume 30.
41. Goldberger, A.L.; Amaral, L.A.N.; Hausdorff, J.M.; Ivanov, P.C.; Peng, C.-K.; Stanley, H.E. Fractal Dynamics in Physiology:

Alterations with Disease and Aging. Proc. Natl. Acad. Sci. USA 2002, 99 (Suppl. S1), 2466–2472. [CrossRef]
42. Lucchini, M.; Burtchen, N.; Fifer, W.P.; Signorini, M.G. Multi-Parametric Cardiorespiratory Analysis in Late-Preterm, Early-Term,

and Full-Term Infants at Birth. Med. Biol. Eng. Comput. 2019, 57, 99–106. [CrossRef]
43. Jost, K.; Datta, A.N.; Frey, U.P.; Suki, B.; Schulzke, S.M. Heart Rate Fluctuation after Birth Predicts Subsequent Cardiorespiratory

Stability in Preterm Infants. Pediatr. Res. 2019, 86, 348–354. [CrossRef]
44. Mialet-Marty, T.; Beuchée, A.; Ben Jmaa, W.; N’Guyen, N.; Navarro, X.; Porée, F.; Nuyt, A.M.; Pladys, P. Possible Predictors of

Cardiorespiratory Events after Immunization in Preterm Neonates. Neonatology 2013, 104, 151–155. [CrossRef]
45. Latremouille, S.; Bhuller, M.; Shalish, W.; Sant’anna, G. Cardiorespiratory Measures Shortly after Extubation and Extubation

Outcomes in Extremely Preterm Infants. Pediatr. Res. 2023, 93, 1687–1693. [CrossRef]
46. Faes, L.; Marinazzo, D.; Montalto, A.; Nollo, G. Lag-Specific Transfer Entropy as a Tool to Assess Cardiovascular and Cardiorespi-

ratory Information Transfer. IEEE Trans. Biomed. Eng. 2014, 61, 2556–2568. [CrossRef] [PubMed]
47. Rozo, A.; Morales, J.; Moeyersons, J.; Joshi, R.; Caiani, E.G.; Borzée, P.; Buyse, B.; Testelmans, D.; Van Huffel, S.; Varon, C.

Benchmarking Transfer Entropy Methods for the Study of Linear and Nonlinear Cardio-Respiratory Interactions. Entropy 2021,
23, 939. [CrossRef] [PubMed]

48. Lucchini, M.; Pini, N.; Burtchen, N.; Signorini, M.G.; Fifer, W.P. Transfer Entropy Modeling of Newborn Cardiorespiratory
Regulation. Front. Physiol. 2020, 11, 1095. [CrossRef] [PubMed]

49. Pompe, B.; Blidh, P.; Hoyer, D.; Eiselt, M. Using Mutual Information to Measure Coupling in the Cardiorespiratory System. IEEE
Eng. Med. Biol. Mag. 1998, 17, 32–39. [CrossRef]

50. Hoyer, D.; Leder, U.; Hoyer, H.; Pompe, B.; Sommer, M.; Zwiener, U. Mutual Information and Phase Dependencies: Measures of
Reduced Nonlinear Cardiorespiratory Interactions after Myocardial Infarction. Med. Eng. Phys. 2002, 24, 33–43. [CrossRef]

51. Iyer, K.K.; Leitner, U.; Giordano, V.; Roberts, J.A.; Vanhatalo, S.; Klebermass-Schrehof, K.; Stevenson, N.J. Bedside Tracking of
Functional Autonomic Age in Preterm Infants. Pediatr. Res. 2022, 94, 206–212. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

90



entropy

Review

Topological Data Analysis in Cardiovascular Signals:
An Overview
Enrique Hernández-Lemus 1,2,*, Pedro Miramontes 1,3 and Mireya Martínez-García 4

1 Computational Genomics Division, National Institute of Genomic Medicine, Mexico City 14610, Mexico;
pmv@ciencias.unam.mx

2 Center for Complexity Sciences, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
3 Department of Mathematics, Sciences School, Universidad Nacional Autónoma de México,

Mexico City 04510, Mexico
4 Department of Immunology, National Institute of Cardiology, Mexico City 14080, Mexico;

mireya.martinez@cardiologia.org.mx
* Correspondence: ehernandez@inmegen.gob.mx

Abstract: Topological data analysis (TDA) is a recent approach for analyzing and interpreting complex
data sets based on ideas a branch of mathematics called algebraic topology. TDA has proven useful
to disentangle non-trivial data structures in a broad range of data analytics problems including the
study of cardiovascular signals. Here, we aim to provide an overview of the application of TDA
to cardiovascular signals and its potential to enhance the understanding of cardiovascular diseases
and their treatment in the form of a literature or narrative review. We first introduce the concept
of TDA and its key techniques, including persistent homology, Mapper, and multidimensional
scaling. We then discuss the use of TDA in analyzing various cardiovascular signals, including
electrocardiography, photoplethysmography, and arterial stiffness. We also discuss the potential of
TDA to improve the diagnosis and prognosis of cardiovascular diseases, as well as its limitations
and challenges. Finally, we outline future directions for the use of TDA in cardiovascular signal
analysis and its potential impact on clinical practice. Overall, TDA shows great promise as a powerful
tool for the analysis of complex cardiovascular signals and may offer significant insights into the
understanding and management of cardiovascular diseases.

Keywords: topological data analysis; cardiovascular signals; alegbraic topology; persistent homology;
mapper algorithm

1. Introduction: Data Analytics in Modern Cardiology

Cardiovascular diseases (CVDs) have been, for a long time, a major global health
problem that has caused more deaths than any form of cancer or respiratory disease
combined. The detection and prediction of CVDs is made difficult by the numerous
etiological factors, complex disease pathways, and diverse clinical presentations [1,2].
However, with the advent of an enhanced capability for the generation of complex high-
dimensional data from electronic medical records, mobile health devices, and imaging
data, one is presented with both challenges and opportunities for data-driven discovery
and research. While traditional statistical approaches for risk stratification have been
broadly developed, leading to important improvements of diagnosis, prognosis and in
some cases therapeutics, most of these models have limitations in terms of individualized
risk prediction. Recently, data analytics, artificial intelligence and machine learning have
emerged as potential solutions for overcoming the limitations of traditional approaches in
the field of CVD research.

Advance analytics algorithms can have a major impact on cardiovascular disease
prediction and diagnosis. CVD data, however, remain challenging for common machine
learning and data analytics approaches due to the wide variety and large heterogeneity of
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the diverse cardiovascular signals currently being probed [3,4]. Among the several different
approaches that are arising to cope with such disparate data, one that results particularly
outstanding for its generality and its ability to handle data integrating diverse dynamic
ranges and scales is topological data analysis [5,6].

Topological data analysis (TDA) is, in short, a family of analytic methods that has
been gaining relevance and recognition to model, predict and understand the behavior of
complex biomedical data. TDA is founded on the tenets of algebraic topology, a mathe-
matical field that deals with the shape of data and has a set of methods for studying it [7].
In this review article, we want to present the fundamentals of TDA and its applications
in the analysis of cardiovascular signals. We aim to make these techniques accessible to
non-experts by explaining their theoretical foundations and surveying their use in compu-
tational cardiology. We also discuss the limitations of these methods and suggest possible
ways to incorporate them into clinical care and biomedical informatics in the context of
cardiovascular diseases.

Figure 1 presents a graphic overview of the main ideas, starting with one or several
data sources on cardiovascular signals coming from medical devices, wearables, clinical
monitors, electronic health records and so on. Data are used to generate data clouds that
are turned into Metric data sets that are then processed and analyzed with the tools of
topological data analysis (see below) to generate homology groups, persistence diagrams
and signatures useful to classify signals for a deeper understanding of their phenomenology.

Figure 1. Topological Data Analysis in cardiology. Starting from diverse sources of cardiovascular
signals, topological data analytics allowed a systematic study and categorization leading to a better
understanding of the underlying phenomena, thus providing clues for clinicians and basic scien-
tists. Figure generated with BioRender.com, central panel is taken from Larrysong, CC BY-SA 4.0
https://creativecommons.org/licenses/by-sa/4.0 (accessed on 4 June 2023), via Wikimedia Commons.
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2. Fundamentals of Topological Data Analysis

Topology is a branch of mathematics that deals with the shapes of objects. It provides
a framework for understanding how objects can be deformed and still retain their essential
properties. For example, a circular rubber band can be stretched into an oval, but a segment
of string cannot. Topologists study the connectedness of objects by counting their number
of pieces and holes, and use this information to classify objects into different categories.

A related field, algebraic topology, provides a framework for describing the global
structure of a space in a precise and quantitative way. It uses methods that take into
account the entire space and its objects rather than just local information. Algebraic
topology uses the concept of homology to classify objects based on their number and
type of holes, and topological spaces, which consist of points and neighborhoods that
satisfy certain conditions to do so. The notion of a topological space allows for flexibility in
using topological tools in various applications, as it does not rely on numerical values to
determine the proximity of points, but rather whether their neighborhoods overlap.

More formally, an Homology is a set of topological invariants represented by homology
groups Hk(X) that describe k-dimensional holes in topological space X. The rank of Hk(X)
(known as the kth Betti number), is analogous to the dimension of a vector space and indi-
cates the number of k-dimensional holes. For example, H0 corresponds to zero-dimensional
features or connected components, H1 corresponds to one-dimensional features or cycles,
and H2 corresponds to two-dimensional features or cavities. It is also possible to study Hk
for larger values of k, but it becomes more difficult to visualize the associated features.

At this stage, homology seems to be a rather abstract concept; however, it can be
connected in a straightforward manner to data analytics once we recognize one quite
important property of data points: their shape as a set, that is, the way in which data points
are distributed in the feature’s space. One can obtain an approximation to this shape by
looking at how holes are distributed in the data space. Our understanding of why points
accumulate in one region of the data space and are missing in other regions is a powerful
tool to look for trends in the data. In order to understand the topological shape of a data set
and identify its holes, it is useful to assign a topological structure to the data and calculate
topological invariants. Homology groups are useful for this purpose because there are
efficient algorithms for computing some of the more relevant of these invariants in the
context of TDA [8].

Homology groups are hence used to classify topological spaces based on the topologi-
cal features of their shape, such as connectedness, loops, and voids. Homology groups of a
topological space are invariant under continuous deformations, meaning that if two spaces
have different homology groups, then they cannot be continuously deformed into one another
and are therefore topologically distinct. Homology can thus be used to distinguish between
spaces that may appear to be the same from other perspectives, such as those that have the
same dimension or the same symmetries.

In the context of topological data analysis (TDA), the interpretation of topological
features like connectedness, loops, holes, and voids involves understanding the geometric
and structural properties of the data that these features represent. Let us briefly review
some of these ideas.

Connectedness: Connectedness refers to the property of data points or regions being
connected in a topological space. In TDA, connectedness typically corresponds to the
number of connected components in a data set. The number of connected components can
provide insights into the overall structure of the data. High connectedness implies that the
data are relatively well-connected, while low connectedness may indicate separate clusters
or isolated data points.

Loops: Loops represent closed paths or cycles in the data. They can occur when points
or regions in the data form closed curves or circles. Loops can capture repetitive or periodic
patterns in the data. They are often associated with cyclic structures or data points arranged
in circular or ring-like formations.
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Holes: Holes correspond to empty spaces or voids in the data where there are no data
points. These voids can take various shapes, including spherical voids, tunnel-like voids,
or irregular voids. The presence and characteristics of holes provide information about
data emptiness. They can indicate the absence of data in specific regions or reveal patterns
in data distribution, such as clustering around voids.

Voids: Voids are regions of space that lack data points. They are similar to holes but
can be more generalized and may not necessarily be enclosed by data. Voids are often
used to study the spatial distribution and density of data points. Large, persistent voids
may suggest regions where data are scarce, while small, transient voids may highlight
local fluctuations.

To interpret these topological features effectively, TDA often employs persistence
diagrams or barcode diagrams. These diagrams summarize the births and deaths of topo-
logical features across a range of spatial scales, providing a quantitative way to assess the
significance and persistence of these features. Here is how persistence diagrams relate to
the interpretation of topological features:

Connectedness: The number of connected components is quantified by points in the
persistence diagram. Longer persistence (vertical distance from birth to death) indicates
more robust connected components.

Loops: Loops are associated with features in the persistence diagram. Longer loops
correspond to more persistent cyclic patterns in the data.

Holes and Voids: Holes and voids are represented by clusters of points in the per-
sistence diagram. The position of points in the diagram indicates the spatial scale and
persistence of these features.

In summary, interpreting topological features in TDA involves understanding the
presence, size, and persistence of connectedness, loops, holes, and voids in user data.
Persistence diagrams provide a concise visual representation of these features and their
characteristics across different scales, aiding in the exploration and analysis of complex
data sets. A more formal explanation of these concepts is discussed in Section 2.1.

2.1. Persistent Homology

We discuss some of the main homology groups used for data analytics. We start by
presenting the Persistent Homology Group or Persistent Homology, PH.

PH identifies topological features of a space at different scales. Features that are
consistently detected across a broad range of scales are considered more likely to be true
features of the space rather than being influenced by factors such as sampling errors or
noise. To use persistent homology, the space must be represented as a simplicial complex (i.e.,
a set of polytopes, like points, line segments, triangles, tetrahedra and so on) and a filtration,
or a nested sequence of increasing subsets, must be defined using a distance function on
the space.

To clarify such abstract concepts as simplicial complex and filtration, let us consider a
set of measurements of some property (or properties) of interest in terms of the associated
features for each point (see Figure 2A). We customarily call this set a point cloud; this
represents the data. Point clouds, which, as we said, are simply collections of points, do not
have many interesting topological properties per se. However, we can analyze their topology
by placing a ball of radius ϵ around each point. This method (called filtration) allows for us
to encode geometric information by increasing the value of ϵ, which determines how much
the boundaries of the shape blur and expand. As ϵ increases (Figure 2B–E), points that
were initially distinct may begin to overlap, altering the concept of proximity. Essentially,
this process involves taking, let us say, an impressionist painting (when we partially close
our eyes to reveal details, like we do to appreciate a picture from Claude Monet) looking at
the point cloud to offer it a more defined shape.
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Figure 2. Persistent homology via FSC. Panel (A) presents a set of data points in feature space. In
panel (B), we put a ball of radius ϵ around each data point. In panels (B–E), we increase radius ϵ.
Neighborhoods start to overlap, giving rise to the establishment of a filtered simplicial complex.

A bit more formally, a simplicial complex is a collection of finite sets of points, called
vertices, that are connected by edges, line segments connecting two vertices, and faces,
which are polygons with three or more edges. The vertices, edges, and faces of a simplicial
complex must satisfy certain conditions:

1. Every face of the complex must be a simplex, that is, a triangle or a higher-dimensional
analogue of a triangle.

2. Every face of the complex must be a subset of one of the vertices of the complex.
3. If a face of the complex is a subset of another face, then the larger face must be a

subset of one of the vertices of the complex.

Once we learn to build a simplicial complex for a given scale (value of ϵ) by changing
the value of ϵ, what we do is create a filtered simplicial complex (FSC). Every topological
property (such as the homologies Hk) that persists through the FSC is a PH. Intuitively,
different phenomena under study give rise to different point clouds that, when analyzed
via an FSC, have different PHs.

2.1.1. Building the FSC

By building the PH to a given point cloud, one aims to create a complex that ap-
proximates the original manifold using the given points. To achieve this, connections are
established between points by adding edges between pairs of points; faces between triples
of points; and so on. To determine which connections to create, we introduce a parameter
called the filtration value (the ϵ we already mentioned), which limits the maximum length
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of the edges that can be included in our simplices. We vary ϵ and build the complex at each
value, calculating the homology of the complex at each step.

There are three main strategies for using ϵ to assign simplices: the Vietoris–Rips strategy,
the witness strategy, and the lazy-witness strategy [9]. The Vietoris–Rips strategy adds an
edge between two points if their distance is less than ϵ, a face between three points if their
pairwise distance is less than ϵ, and so on. This approach is accurate but computationally
expensive. The witness strategy uses two sets of points, called landmark points and witness
points, to create the complex. Landmark points are used as vertices and edges are added
between two landmark points if there is a witness point within distance ϵ of both points,
faces are added if there is a witness point within ϵ of all three points, and so on. The
lazy-witness strategy is similar to the witness strategy in terms of how edges are assigned,
but simplices of higher order are added anywhere there are n points that are all connected
by edges.

2.1.2. Calculating the PH

Once we choose a filtration, it is possible to calculate the homology groups (the Hk’s)
of each space in the filtration. Homology groups are a way of describing the topological
features of a space, such as connected components, holes, and voids. Depending on the
particular task, we may choose a maximum value of k to build the first k homology groups.
Then, we can use these homology groups to create a barcode or persistence diagram, which
shows how the topological features of the space change as the scale changes [9].

To calculate persistent homology, it is possible to use a variety of algorithms, such as
the already mentioned Vietoris–Rips complex, the Čech complex, or the alpha complex.
These algorithms construct a simplicial complex from the data, which can then be used to
calculate the homology groups of the space.

Calculating persistent homology and interpreting the results is a non-trivial task.
Several issues need to be considered and decisions need to be taken in every step of the
process. We can summarize the process as follows:

1. Simplicial Complex Construction: Begin by constructing a simplicial complex from
your data. This complex can be based on various covering maps, such as the Vietoris–
Rips complex, yhe Čech complex, or the alpha complex, depending on the chosen
strategy (see Sections 2.4 and 2.5, as well as Table 1 below).
The simplicial complex consists of vertices (0—simplices), edges (1—simplices), tri-
angles (2—simplices), and higher-dimensional simplices. The choice of the complex
depends on user data and the topological features of interest.

2. Filtration: Introduce a filtration parameter (often denoted as ϵ) that varies over a
range of values. This parameter controls which simplices are included in the complex
based on some criterion (e.g., distance threshold).
As ϵ increases, more simplices are added to the complex, and the complex evolves.
The filtration process captures the topological changes as ϵ varies.

3. Boundary Matrix: For each value of ϵ in the filtration, compute the boundary matrix
(also called the boundary operator) of the simplicial complex. This matrix encodes
the relations between simplices.
Each row of the boundary matrix corresponds to a (k − 1)-dimensional simplex, and
each column corresponds to a k-dimensional simplex. The entries indicate how many
times a (k − 1)-dimensional simplex is a face of a k-dimensional simplex.

4. Persistent Homology Calculation: Perform a sequence of matrix reductions (e.g.,
Gaussian elimination) to identify the cycles and boundaries in the boundary matrix.
A cycle is a collection of simplices whose boundaries sum to zero, while a boundary
is the boundary of another simplex.
Persistent homology focuses on tracking the birth and death of cycles across different
values of ϵ. These births and deaths are recorded in a persistence diagram or a barcode.
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5. Persistence Diagram or Barcode: The persistence diagram is a graphical representa-
tion of the births and deaths of topological features (connected components, loops,
voids) as ϵ varies.
Each point in the diagram represents a topological feature and is plotted at birth
(x-coordinate) and death (y-coordinate).
Interpretation:
A point in the upper-left quadrant represents a long-lived feature that persists across
a wide range of ϵ values.
A point in the lower-right quadrant represents a short-lived feature that exists only
for a narrow range of ϵ values.
The diagonal represents features that are consistently present throughout the entire
range of ϵ values.
The distance between the birth and death of a point in the diagram quantifies the fea-
ture’s persistence or lifetime. Longer persistence indicates a more stable and significant
feature.

6. Topological Summaries: By examining the persistence diagram or a barcode, infor-
mation can be extracted about the prominent topological features in a user data set.
Features with longer persistence are considered more robust and significant.
The number of connected components, loops, and voids can be quantified by counting
points in specific regions of the diagram.

2.2. The Mapper Algorithm

Mapper is a recently developed algorithm that provides a reliable tool for topological
data analysis. Mapper allows for researchers to identify and visualize the structure of a
data set by creating a graph representation of the data [10].

The Mapper algorithm consists in the following steps [11] (see Figure 3):

1. Covering the data set: The original data set (Figure 3a) is partitioned into a number of
overlapping subsets called nodes (Figure 3b). This is accomplished using a function
called the covering map. The covering map assigns each point in the data set to a
node. Since the nodes are allowed to overlap, every point potentially belongs to
multiple nodes.
There are several different ways to define a covering map. The choice of a covering
map, however, can significantly affect the resulting Mapper graph. Some common
approaches to define a covering map include:

(a) Filtering: The data set is partitioned based on the values of one or more
variables. A data set may, for instance, be partitioned based on the values of a
categorical variable, such as gender or race.

(b) Projection: Data set partitioning is performed by calculating the distance be-
tween points in the data set and using it as a membership criteria. This
can be achieved using a distance function such as Euclidean distance or
cosine similarity.

(c) Overlapping intervals: The data set is partitioned into overlapping intervals,
such as bins or quantiles. This can be useful for data sets that are evenly
distributed or those having a known underlying distribution.

The choice of covering map depends on the characteristics of the data set and the
research question being addressed. It is important to choose a covering map that is
appropriate for the data set and that will yield meaningful results.

2. Clustering the nodes: The nodes are then clustered using a clustering algorithm, such
as k-means or single-linkage clustering. The resulting clusters (Figure 3c) represent
the topological features of the data set, and the edges between the clusters represent
the relationships between the features.
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Figure 3. The steps of the Mapper algorithm. (a) The data, a cloud of points. (b) The projection of the
data into a lower dimension space. (c) The preimage is clustered and (d) a graph is built based on the
clustered groups. See text.

The resulting graph (Figure 3d), called a Mapper graph, can be used to identify pat-
terns and relationships in the data set that may not be apparent from other forms of
visualization [12].

2.3. Multidimensional Scaling

In the context of topological data analysis, multidimensional scaling (MDS) is a method
to visualize the relationships between a set of complex objects as projected in a lower-
dimensional space. MDS is a versatile technique used in various fields for analyzing and
visualizing relationships between objects. It can be used both in classic data analysis
approaches and in conjunction with TDA methods. MDS works by creating a map of the
objects in which the distance between said objects reflects (to a certain point) the dissimilar-
ity between them [13]. MDS is often used along other techniques, like clustering, to analyze
patterns in data sets that have a large number of variables. Multidimensional scaling can
help identify relationships between objects that are not immediately apparent; hence, it is
useful to visually explore complex data sets [14]. There are several different algorithms for
performing MDS, including classical MDS, nonmetric MDS, and metric MDS.

Classical MDS is the most common method (see Figure 4). In a nutshell, we start
with a set of n points in a space of high dimension (m), then we introduce a measure
of similarity (or dissimilarity), for instance, a distance (such as the Euclidean distance),
then we have a square symmetric matrix with n × n pairwise distances, and MDS is
attained by performing Principal Coordinate Analysis (i.e., eigenvalue decomposition)
of such matrix. The result is a set of lower-dimensional coordinates for n points. Hence,
classic MDS is based on the idea of preserving the pairwise distances between objects in
the projected low-dimensional map. Classical MDS finds the map that best preserves the
distances between objects using an optimization algorithm. The Nonmetric MDS method is
similar to classical MDS, but it does not assume that the dissimilarities between objects are
metric—i.e., represented by a continuous scale; instead, it preserves the rank order of the
dissimilarities between objects, instead of the absolute values. Metric MDS, conversely, is a
variant of classical MDS based on stress minimization, that is, by considering the difference
between the distances in the low-dimensional map and the dissimilarities in the data set.
This method is used when the dissimilarities between objects can be represented by a
continuous scale.
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Figure 4. Classic multidimensional scaling.

In general, classical MDS is the most widely used method, but nonmetric MDS and
metric MDS may be more appropriate in certain situations.

How to Determine the Scaling Approach?

The choice between classical MDS, nonmetric MDS, and metric MDS depends ulti-
mately on the characteristics of the data and the specific research question. Some general
guidelines are as follows:

1. Classical MDS:

- When to Use: Classical MDS is suitable when using metric (distance) data that
accurately represent the pairwise dissimilarities between objects. In classical MDS,
the goal is to find a configuration of points in a lower-dimensional space (usually
2D or 3D) that best approximates the given distance matrix.

- Pros: It preserves the actual distances between data points in lower-dimensional
representation.
It provides a faithful representation when the input distances are accurate.
It is well-suited for situations where the metric properties of the data are crucial.

- Cons: It assumes that the input distances are accurate and may not work well with
noisy or unreliable distance data.
It may not capture the underlying structure of the data if the metric assumption
is violated.

2. Nonmetric MDS:

- When to Use: Nonmetric MDS is appropriate when using ordinal or rank-order
data, where the exact distances between data points are not known, but their relative
dissimilarities or rankings are available. Nonmetric MDS finds a configuration that
best preserves the order of dissimilarities.

- Pros: It is more flexible than classical MDS and can be used with ordinal data.
It can handle situations where the exact distances are uncertain or difficult to obtain.

- Cons: It does not preserve the actual distances between data points, so the resulting
configuration is only an ordinal representation.
The choice of a monotonic transformation function to convert ordinal data into
dissimilarity values can affect the results.

3. Metric MDS:

- When to Use: Metric MDS can be used when using data that are inherently non-
metric, but it is believed that transforming it into a metric space could reveal
meaningful patterns. Metric MDS aims to find a metric configuration that best
approximates the non-metric dissimilarities.

- Pros: It provides a way to convert non-metric data into a metric representation for
visualization or analysis.
It can help identify relationships in the data that may not be apparent in the original
non-metric space.
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- Cons: The success of metric MDS depends on the choice of the transformation
function to convert non-metric data into metric distances.
It may not work well if the non-metric relationships in the data are too complex or
cannot be adequately approximated by a metric space.

In summary, the choice between classical, nonmetric, and metric MDS depends on the
nature of user data and the goals of analysis. If metric data are accurate and preservation of
the actual distances is desired, classical MDS is appropriate. If data are ordinal or dissimi-
larity measures are uncertain, nonmetric MDS may be more suitable. Metric MDS can be
considered when it is desired to convert non-metric data into a metric space for visualization
or analysis, but it requires careful consideration of the transformation function.

2.4. Choosing the Covering Map

When choosing a covering map in TDA, there are several characteristics of the data
sets which are relevant to consider; among these, we can mention the following:

1. Data Dimensionality: The dimensionality of the data under consideration is crucial.
Covering maps should be chosen to preserve the relevant topological information in
the data. For high-dimensional data, dimension reduction techniques may be applied
before selecting a covering map.

2. Noise and Outliers: The presence of noise and outliers in the data can affect the
choice of a covering map. Robust covering maps can help mitigate the influence of
noise and outliers on the topological analysis.

3. Data Density: The distribution of data points in the feature space matters. A covering
map should be chosen to account for variations in data density, especially if there are
regions of high density and regions with sparse data.

4. Topological Features of Interest: It is important to consider the specific topological
features one is interested in analyzing. Different covering maps may emphasize
different aspects of data topology, such as connected components, loops, or voids.
The election of a covering map should align with particular research objectives.

5. Computational Efficiency: The computational complexity of calculating the covering
map should also be taken into account. Some covering maps may be computationally
expensive, which can be a limiting factor for large data sets.

6. Continuous vs. Discrete Data: It should be determined whether the data under
analysis are continuous or discrete. The choice of a covering map may differ based on
the nature of the data.

7. Metric or Non-Metric Data: Some covering maps are designed for metric spaces,
where distances between data points are well defined, while others may work better
for non-metric or qualitative data.

8. Geometric and Topological Considerations: The geometric and topological char-
acteristics of user data should be considered. Certain covering maps may be more
suitable for capturing specific geometric or topological properties, such as persistence
diagrams or Betti numbers.

9. Domain Knowledge: Domain-specific knowledge should be incorporated into user
choice of a covering map. Understanding the underlying structure of the data can
guide the user in selecting an appropriate covering map.

10. Robustness and Stability: The robustness and stability of the chosen covering map
shpuld be assessed. TDA techniques should ideally produce consistent results under
small perturbations of the data or variations in sampling.

In practice, there are various covering maps and TDA algorithms available, such as
Vietoris–Rips complexes, Čech complexes, and alpha complexes. The choice of covering
map should be guided by a combination of these factors, tailored to the specific characteris-
tics and goals of user data analysis. It may also involve some experimentation to determine
which covering map best captures the desired topological features.
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Different types of covering maps are thus best suited for different kinds of data. Some
of the main covering maps used in TDA are presented in Table 1.

Ultimately, the choice of covering map depends on the specific characteristics of user
data, such as dimensionality, metric properties, and the topological features of interest. It is
often beneficial to experiment with different covering maps and parameters to determine
which one best captures the desired topological information for a particular data set.
Additionally, combining multiple covering maps and TDA techniques can provide a more
comprehensive understanding of complex data sets.

2.5. Different Strategies for Topological Feature Selection

The Vietoris–Rips strategy, the witness strategy, and the lazy-witness strategy are
some of the best-known TDA methods to capture and analyze the topological features of
data sets. Each of these strategies has its own advantages and disadvantages.

2.5.1. Vietoris–Rips (VR) Strategy

The main advantage of the VR strategy is its simplicity, since the VR complex is rela-
tively easy to understand and implement. It connects data points based on a fixed distance
threshold, which is quite intuitive. Another advantage of the VR lies on its widespread
use, for there is a significant body of literature and software implementations available. It
works well with data in metric spaces where distances between points are well defined.

One of the disadvantages is that VR is quite sensitive to certain parameters; the
choice of distance threshold (radius parameter) can significantly impact the topology of the
resulting complex. Selecting an appropriate threshold can be challenging and may require
prior knowledge of the data. VR can be also challenging for its computational burden:
constructing the VR complex can be computationally expensive, especially for large data
sets or high-dimensional data. VR is also limited in terms of robustness: the VR complex is
sensitive to noise and outliers, and small perturbations in the data can lead to significant
changes in complex topology.

2.5.2. Witness Strategy (WS)

The witness strategy (WS), in turn, is more robust to noise and outliers compared to
the VR complex. It selects a subset of witness points that can capture the topology of the
data more effectively. WS is more flexible; witness complexes can be applied to both metric
and non-metric data, making them versatile for various data types and able to handle data
with varying sampling densities; this, they are suitable for irregularly sampled data sets.

Implementation of WS, however, can be more involved than that of the VR complex,
as it requires selecting witness points and computing their witness neighborhoods. Also,
while witness complexes are more robust, they still depend on parameters like the number
of witness points and the witness radius. Choosing appropriate parameters can indeed be
a non-trivial task.

2.5.3. Lazy-Witness Strategy (LW)

The LW strategy is an optimization of the witness strategy that reduces computational
cost. It constructs witness complex on-the-fly as needed, potentially saving memory and
computation time. Like WS, the LW strategy is robust to noise and outliers.

In spite of these advantages, there are also shortcomings. Implementing the LW
strategy can be more complex than implementing the basic witness strategy, as it requires
careful management of data structures and computational resources. While it can be more
memory efficient than precomputing a full witness complex, the LW strategy still consumes
memory as it constructs the complex in real time. This may still be a limitation for very
large data sets.

In summary, the choice between the Vietoris–Rips strategy, witness strategy, and
lazy-witness strategy depends on the specific characteristics of user data and the compu-
tational resources available. The Vietoris–Rips complex is straightforward but sensitive
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to parameter choice and noise. The witness strategy offers improved robustness but may
require more effort in parameter tuning. The lazy-witness strategy combines robustness
with some memory and computation efficiency, making it a good choice for large data sets.
Experimentation and a deep understanding of user data characteristics are essential when
selecting the most appropriate strategy for user TDA analysis.

3. Applications of TDA to Analyze Cardiovascular Signals
3.1. General Features

Aljanobi and Lee [5] recently applied the Mapper algorithm to predict heart disease.
They selected nine significant features in each of the two UCI heart disease data sets
(Cleveland and Statlog). The authors then used a tri-dimensional SVD filter to improve the
filtering process. As a result, they observed an accuracy of 99.32% in the Cleveland data set
and 99.62% in the Statlog data set in predicting heart disease.

Though not precisely signals but rather contextual string corpora (i.e., texts), TDA has
also been applied to the analysis of structured and unstructured text in EHRs and clinical
notes. This is achieved by first converting textual data into a suitable format for analysis.
This can involve techniques such as tokenization, stemming, and removing stop words.
Afterwards, one needs to represent the text as numerical vectors using methods like Term
Frequency-Inverse Document Frequency (TF-IDF) or word embeddings (Word2Vec, GloVe).
Once data are vectorized and tokenized, TDA can be applied. Lopez and coworkers [15],
for instance, used the Mapper algorithm to classify distinctive subsets of patients receiving
optimal treatments post-acute myocardial infarction (AMI) in order to identify high-risk
subgroups of patients for having a future adverse event (AE) such as death, heart failure
hospitalization, or recurrent myocardial infarction. A retrospective analysis of 31 clinical
variables from the EHR of 798 AMI subjects was conducted at a single center. The subjects
were divided into high- and low-risk groups based on their probability of survival without
AEs at 1 year. TDA identified six subgroups of patients. Four of these subgroups, totaling
597 subjects, had a probability of survival without AEs that was greater than a one-fold
change, and were considered low risk. The other two subgroups, totaling 344 subjects,
had a probability of survival without AEs that was less than a one-fold change, and
were considered high risk. However, 143 subjects (18% of the total) were classified as
intermediate risk because they belonged to both high- and low-risk subgroups. TDA was
also able to significantly stratify AMI patients into three subgroups with distinctive rates
of AEs up to 3 years after AMI. This approach to EHR-based risk stratification does not
require additional patient interaction and is not dependent on prior knowledge, but more
studies are needed before it can be used in clinical practice.

3.2. ECG Data and Heart Rate Signals

In another recent study, Yan and coworkers [16] explored the use of topological
data analysis to classify electrocardiographic signals and detect arrhythmias. Cardiac
arrhythmias are abnormal heart rhythms or irregularities in the heartbeat that may be too
fast (tachycardia), too slow (bradycardia), or irregular. Arrhythmias may originate from
problems with the heart’s electrical system, damage to the heart muscle, or other medical
conditions. The most common types of arrhythmias are Atrial Fibrillation (AF) defined
as an irregular and often rapid heartbeat that can lead to stroke and other heart-related
complications; Atrial Flutter which is similar to AF, is characterized by a rapid, regular
heartbeat originating in the atria; Supraventricular Tachycardia is characterized by episodes
of rapid heart rate originating above the heart’s ventricles; Ventricular Tachycardia, a fast,
regular beating of the heart’s lower chambers (ventricles) that can be life-threatening;
Ventricular Fibrillation (VF) which is a chaotic, rapid heartbeat that can be life-threatening
and requires immediate medical attention; and finally Bradycardia, a slower than normal
heart rate, often caused by issues with the heart’s natural pacemaker.

In the particular case of reference [16], phase space reconstruction was used to convert
the signals into point clouds, which were then analyzed using topological techniques to
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extract persistence landscapes as features for the classification task. The authors found that
the proposed method was effective, with a normal heartbeat class recognition rate of 100%
when using just 20% of the training set, and recognition rates of 97.13% for ventricular beats,
94.27% for supraventricular beats, and 94.27% for fusion beats. This ability to maintain
high performance with a small training sample space makes TDA particularly suitable for
personalized analysis.

One particularly difficult problem in cardiovascular disease diagnostics with im-
portant implications for therapy is the evolution of atrial fibrillation [17]. Indeed, the
progression of AF from paroxysmal to persistent or permanent forms has become a signifi-
cant issue in cardiovascular disorders. Information about the pattern of presentation of AF
(paroxysmal, persistent, or permanent) is useful in the management of algorithms for each
category, which aims to reduce symptoms and prevent severe problems associated with AF.
Until now, AF classification has been based on the duration and number of episodes. In par-
ticular, changes in complexity of Heart Rate Variation (HRV) may contain clinically relevant
signals of impending systemic dysregulation. HRV measures the fluctuations in the time
intervals between consecutive heartbeats, providing insights into the autonomic nervous
system’s activity, particularly the balance between its sympathetic and parasympathetic
branches. A number of nonlinear methods based on phase space and topological properties
can provide further insight into HRV abnormalities such as fibrillation. In an effort to
provide a tool for the qualitative classification of AF stages, Safarbaly and Golpayegani [18]
proposed two geometrical indices (fractal dimension and persistent homology) based on
HRV phase space, which were able to successfully replicate the changes in AF progression.

Their studied population included 38 lone AF patients and 20 normal subjects, whose
data were collected from the Physio-Bank database [19]. “Time of Life (TOL)” was proposed
as a new feature based on the initial and final Čech radius in the persistent homology
diagram. A neural network was implemented to demonstrate the effectiveness of both
TOL and fractal dimension as classification features, resulting in a classification accuracy
of 93%. The proposed indices thus provide a signal representation framework useful for
understanding the dynamic changes in AF cardiac patterns but also for classifying normal
and pathological rhythms.

PH was also used by Graff et al. to study HRV [20]; the authors suggested the use
of persistent homology for the analysis of HRV, relying on some topological descriptors
previously used in the literature and introducing new ones that are specific to HRV, later
discussing their relationship to standard HRV measures. The authors showed that this
novel approach produces a set of indices that may be as useful as classical parameters in
distinguishing between series of beat-to-beat intervals (RR-intervals) in healthy individuals
as well as in patients who have experienced a stroke.

Also in the context of fibrillation (this time for the prediction of early ventricular
fibrillation), Ling and coworkers [21] proposed a novel feature based on topological data
analysis to increase the accuracy of early VF prediction. In their work, the heart activity
was first treated as a cardiac dynamical system, which was described through phase space
reconstruction. The topological structure of the phase space was then characterized using
persistent homology, and statistical features of the topological structure were extracted
and defined as TDA features. To validate the prediction performance of the proposed
method, 60 subjects (30 VF, 30 healthy) from three public ECG databases were used. The
TDA features showed a superior accuracy of 91.7% compared to heart rate variability
features and box-counting features. When all three types of features were combined as
fusion features, the optimal accuracy of 95.0% was achieved. The fusion features were then
ranked, and the first seven components were all from TDA features. The proposed features
may have a significant effect on improving the predictive performance of early VF.

A similar approach was taken by Mjahad, et al. [22], who applied TDA to generate
novel features contributing to improve both detection and classification performance of
cardiac arrhythmias such as Ventricular Fibrillation (VF) and Ventricular Tachycardia (VT).
The electrocardiographic (ECG) signals used for this evaluation were obtained from the
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standard MIT-BIH and AHA databases. The authors evaluated two types of input data
for classification: TDA features and the so-called Persistence Diagram Image (PDI). When
using the reduced TDA-derived features, a high average accuracy of nearly 99% was ob-
served to discriminate between four types of rhythms (98.68% for VF; 99.05% for VT; 98.76%
for normal sinus; and 99.09% for other rhythms), with specificity values higher than 97.16%
in all cases. In addition, a higher accuracy of 99.51% was obtained when discriminating
between shockable (VT/VF) and non-shockable rhythms (99.03% sensitivity and 99.67%
specificity). These results show that the use of TDA-derived geometric features, combined
with the k-Nearest Neighbor (kNN) classifier, significantly improves classification perfor-
mance compared to previous works. These results were achieved without pre-selection of
ECG episodes, suggesting that these features may be successfully used in Automated Exter-
nal Defibrillation (AED) [23,24] and Implantable Cardioverter Defibrillation (ICD) [25,26]
therapies.

Jiang and collaborators studied non-invasive atrial fibrillation using TDA on ballis-
tocardiographic (BCG) data [27]. BCG refers to the measurement and recording of the
ballistic forces generated by the ejection of blood from the heart during each cardiac cycle.
These forces produce subtle vibrations and movements in the body, particularly in the chest
and torso. Ballistocardiography is a non-invasive technique used to capture and analyze
these mechanical movements, providing valuable information about cardiac function and
hemodynamics. In this research, BCG series was transformed into a high-dimensional
point cloud in order to capture more rhythmic information. These point clouds were then
analyzed using TDA, resulting in persistent homology barcodes. The statistics of these
barcodes were extracted as nine persistent homology features to quantitatively describe
the barcodes. In order to test the effectiveness of this method for detecting atrial fibrillation
(AF), the researchers collected BCG data from 73 subjects with both AF and non-AF seg-
ments, and applied six machine learning classifiers. The combination of these 9 features
with 17 previously proposed features resulted in a 6.17% increase in accuracy compared
to using 17 features alone (p < 0.001), with an overall accuracy of 94.50%. By selecting
the most effective features using feature selection, the researchers were able to achieve a
classification accuracy of 93.50%. According to the authors, these results suggest that the
proposed features can improve AF detection performance when applied to a large amount
of BCG data with diverse pathological information and individual differences.

TDA can also be combined with other data analytics/Ml approaches such as random
forests (RF). Ignacio and collaborators developed a topological method to inform RF-based
ECG classifiers [28]. In brief, in this approach, a two-level random forest model is trained
to classify 12-lead ECGs using mathematically computable topological signatures as proxy
for features informed by medical expertise. ECGs are treated as multivariate time series
data and transformed into point cloud embeddings that capture both local and global
structures and encode periodic information as attractor cycles in a high-dimensional space.
Topological data analysis is then used to extract topological features from these embeddings,
and these features are combined with demographic data and statistical moments of RR
intervals calculated using the Pan–Tompkins algorithm for each lead to train the classifier.
This multi-class classification task aims to leverage the medical expertise represented in the
topological signatures to accurately classify ECGs.

The same group combined TDA and ML approaches to study atrial fibrillation in
ECGs [29], showing that topological features can be used to accurately classify single-lead
ECGs by applying delay embeddings to map ECGs onto high-dimensional point clouds,
which convert periodic signals into algebraically computable topological signatures, thus
allowing them the use of these topological features to classify ECGs.

A similar approach coupling TDA with Deep Learning to study ECGs has been recently
developed [30]. Training deep learning models on time series data such as ECG poses some
challenges such as lack of labeled data and class imbalance [31,32]. The authors used TDA
to improve the performance of deep learning models on this type of data. The authors
found that using TDA as a time-series embedding method for input to deep learning
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models resulted more effective than training these models directly on raw data. TDA in
this context serves as a generic, low-level feature extractor that can capture common signal
patterns and improve performance with limited training data. Experiments on public
human physiological biosignal data sets showed that this approach leads to improved
accuracy, particularly for imbalanced classes with only a few training instances compared
to the full data set.

Conventional TDA of ECG time series can be further improved by considering the time
delay structure to generate higher dimensional mappings of the original series [33] able to
be analyzed via TDA. This was the approach taken by Fraser and coworkers [34], who found
that TDA visualizations are able top unveil ectopic and other abnormal occurrences in long
signals, indicating a promising direction for the study of longitudinal physiological signals.

A different approach to deal with ECG time series using TDA makes use of optimal
representative cycles. In reference [35], the authors applied a topological data-analytic
method to identify parts of an electrocardiogram (ECG) signal that are representative of
specific topological features and proposed that these parts correspond to the P, Q, S, and
T-waves in the ECG signal. They then used information about these parts of the signal,
identified as P, Q, S, and T-waves, to measure PR-interval, QT-interval, ST-segment, QRS-
duration, P-wave duration, and T-wave duration. The method was tested on simulated
and real Lead II ECG data, demonstrating its potential use in analyzing the morphology of
the signal over time and in arrhythmia detection algorithms.

3.3. Stenosis and Vascular Data

TDA has also been used to study stenosis, an abnormal narrowing or constriction of
blood vessels. In the cardiovascular system, arterial stenosis can be particularly significant.
Atherosclerosis, a condition characterized by the buildup of plaque on the inner walls of
arteries, is a common cause of arterial stenosis. Nicponski and collaborators [36] demon-
strated the use of persistent homology to assess the severity of stenosis in different types
of stenotic vessels. They introduced the concept of critical failure value, which applies one-
dimensional homology to these vessels as a way to quantify the degree of stenosis. They
also presented the spherical projection method, which could potentially be used to classify
various types and levels of stenosis, and showed that the two-dimensional homology of
the spherical projection can serve as a new index for characterizing blood vessels. It is
worth noticing that, as in many other instances in data analytics, data pre-processing often
represents a crucial stage [37].

3.4. TDA in Echocardiography

Applications of TDA to echocardiographic data have also been developed. Such is
the case of the work the group of Tokodi [38,39] who analyzed a cohort of 1334 patients
to identify similarities among patients based on several echocardiographic measures of
left ventricular function. Echocardiography, a medical imaging technique that uses sound
waves to create detailed images of the heart, generates 2D and 3D maps of vascular
structure. However, accurate image reconstruction is far from trivial, in particular for
small convoluted cavities. A network was developed in reference [38] to represent these
similarities, and a group classifier was used to predict the location of 96 patients with two
consecutive echocardiograms in this network. The analysis revealed four distinct regions
in the network, each with significant differences in the rate of major adverse cardiovascular
event (MACE) rehospitalization. Patients in the fourth region had more than two times
the risk of MACE rehospitalization compared to those in the other regions. Improvement
or stability in Regions I and II was associated with lower MACE rehospitalization rates
compared to worsening or stability Regions III and IV. The authors concluded that TDA-
driven patient similarity analysis may improve the precision of phenotyping and aid in the
prognosis of patients by tracking changes in cardiac function over time.
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4. Conclusions

We showed that within the realm of cardiovascular signal analysis, the utilization of
Topological Data Analysis (TDA) displayed remarkable promise across diverse applications
(see Table 2). As we mentioned, Aljanobi and Lee applied the Mapper algorithm to predict
heart disease with exceptional accuracy, achieving 99.32% accuracy in the Cleveland data
set and 99.62% in the Statlog data set. This underscores the effectiveness of TDA in
identifying significant features for disease prediction. Moving beyond disease prediction,
TDA proved invaluable in the risk stratification of patients post-acute myocardial infarction
(AMI). Lopez and colleagues employed the Mapper algorithm on Electronic Health Records
(EHR), successfully classifying distinct subsets of AMI patients. The insights gained into
high-risk subgroups and their susceptibility to adverse events up to 3 years post AMI
showcase the potential of TDA in personalized patient care.

The application of TDA to electrocardiographic (ECG) signal classification yielded
notable outcomes. Yan and Ling explored TDA for arrhythmia detection and early ventric-
ular fibrillation prediction, respectively. Yan’s use of persistent homology achieved high
recognition rates, while Ling’s approach demonstrated superior accuracy compared to tra-
ditional features, indicating the robustness of TDA in diverse ECG applications. Safarbaly
and Golpayegani delved into the progression of atrial fibrillation (AF) using persistent ho-
mology. Their novel geometric indices, based on HRV phase space, successfully replicated
changes in AF stages, attaining a classification accuracy of 93%. This not only sheds light
on AF dynamics, but also presents a potential tool for qualitative AF classification.

The synergy of TDA with machine learning was evident in Mjahad’s work, where
TDA-derived geometric features significantly improved the classification of cardiac arrhyth-
mias. The application extended to non-invasive atrial fibrillation detection by Jiang and
collaborators, showcasing an enhanced accuracy compared to traditional features alone.
Byers and team explored the integration of TDA with deep learning for ECG classification.
Using TDA as a time-series embedding method for deep learning models resulted in im-
proved accuracy, particularly for imbalanced classes, addressing challenges in classification
tasks with limited training data. TDA’s versatility extended to stenosis severity assessment
in various vessels, as demonstrated by Nicponski and collaborators. The critical failure
value and spherical projection methods provided quantifiable measures, highlighting the
potential of TDA in characterizing blood vessels. Lastly, TDA was applied to echocardio-
graphic data by Tokodi and team for patient similarity analysis. The Mapper algorithm
revealed distinct regions in a network representing similarities among patients based on
echocardiographic measures. The identified regions were associated with significant dif-
ferences in major adverse cardiovascular events (MACE) rehospitalization rates, offering
insights into patient prognosis.

In conclusion, the diverse applications of TDA in cardiovascular signal analysis un-
derscore its effectiveness in disease prediction, risk stratification, signal classification, and
patient similarity analysis. The integration of TDA with machine learning and deep learn-
ing techniques presents exciting avenues for advancing our understanding of complex
cardiovascular patterns and improving clinical outcomes (for software implementations
see Table A1). However, further research and validation are essential to solidify the clinical
applicability of these TDA-based approaches.
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Perspectives and Limitations

We presented a panoramic (and by necessity incomplete) view of the applications of
topological data analysis to the study of cardiovascular signals. We must, however, stress
that, as every analytic technique, TDA has a set of limitations and a range of applicability.
Among its limitations, we can include its inherent complexity both to implement the
analyses and to interpret the results. Also relevant is TDA’s sensitivity to noise and reliance
on assumptions of the data distribution (for instance, one assumes that filtration can be
carried out unambiguously). Another aspect to consider is that topological data analysis
can be computationally intensive, particularly for large or complex data sets. This, along
potential biases in noisy signals, may preclude the accurate identification of the topological
features of certain data sets, especially if the data are of low quality. As we said, topological
data analysis relies on assumptions about the data set, for instance, the existence of a natural
distance measure. This condition may not hold in all cases. This may potentially limit
its applicability. Additionally, the results of topological data analysis can be difficult to
interpret, particularly for non-experts, a fact that can make challenging to communicate
the results of a topological analysis to a general audience. However, even in light of these
limitations, TDA is a quite powerful approach that (perhaps in combination with other
data analytic approaches) may result very useful for the study of complex biosignals, such
as those arising in cardiology.
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Appendix A. Computational Tools

In Table A1, we present some commonly used algorithms used to perform topological
data analysis calculations implemented in libraries for common programming languages.
Implementations vary in their capabilities, computational complexity and depth of doc-
umentation. These are, however, well documented enough, so that most people with
scientific programming expertise may find them fairly usable and reliable. Where applica-
ble, references to the underlying algorithms used are included.

Table A1. Computational tools for topological data analysis. All links were accesed on 4 June 2023.

Tool Language URL Reference

TDA R https://cran.r-project.org/web/packages/TDA/index.html [40,41]

TDAstats R https://cran.r-project.org/web/packages/TDAstats/index.html [42]

TDApplied R https://cran.r-project.org/web/packages/TDApplied/index.html

tdaverse R https://github.com/tdaverse/tdaverse

PHAT Python https://bitbucket.org/phat-code/phat/src/master/ [43]

Dionysus 2 C++/Python https://mrzv.org/software/dionysus2/

GUDHI C++/Python https://gudhi.inria.fr/

TTK C++/Python https://topology-tool-kit.github.io/

DIPHA C++/Matlab https://github.com/DIPHA/dipha [44]
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Table A1. Cont.

Tool Language URL Reference

Giotto-tda Python https://giotto-ai.github.io/gtda-docs/latest/library.html

Jplex Java https://www.math.colostate.edu/~adams/jplex/index.html

Ripser C++ https://github.com/Ripser/ripser

Ripser++ C++ CUDA https://github.com/simonzhang00/ripser-plusplus [45]

HERA C++/Python https://bitbucket.org/grey_narn/hera/src/master/ [46]

EIRENE Julia https://github.com/Eetion/Eirene.jl

sklearn-tda Python https://github.com/MathieuCarriere/sklearn-tda

Scikit-TDA Python https://github.com/scikit-tda
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Abstract: Biological signals such as respiration (RSP) and heart rate (HR) are oscillatory and physi-
ologically coupled, maintaining homeostasis through regulatory mechanisms. This report models
the dynamic relationship between RSP and HR in 45 healthy volunteers at rest. Cross-correlation
between RSP and HR was computed, along with regression analysis to predict HR from RSP and
its first-order time derivative in continuous signals. A simulation model tested the possibility of
replicating the RSP–HR relationship. Cross-correlation results showed a time lag in the sub-second
range of these signals (849.21 ms ± SD 344.84). The possible modulation of HR by RSP was me-
diated by the RSP amplitude and its first-order time derivative (in 45 of 45 cases). A simulation
of this process allowed us to replicate the physiological relationship between RSP and HR. These
results provide support for understanding the dynamic interactions in cardiorespiratory coupling
at rest, showing a short time lag between RSP and HR and a modulation of the HR signal by the
first-order time derivative of the RSP. This dynamic would optionally be incorporated into dynamic
models of resting cardiopulmonary coupling and suggests a mechanism for optimizing respiration
in the alveolar system by promoting synchrony between the gases and hemoglobin in the alveolar
pulmonary system.

Keywords: heart rate; respiration; predictive modeling; human physiology; simulation

1. Introduction

Metabolic and autonomic processes in humans and animals are regulated by control
systems that facilitate adaptation and survival in response to internal or external changes.
This adaptive process is essential for maintaining stability and is a well-documented
phenomenon known as homeostasis, which plays a critical role in maintaining an efficient
functional state [1]. Canon [2] introduced the term to describe the feedback operation in
physiological systems and the maintenance of equilibrium. It is now recognized as an
inherent self-regulatory system within biological systems that is necessary for the state of
normal functioning [3].

Biological signals of the nervous system typically exhibit inherent oscillations with
varying characteristics, including frequency and temporal variations. The precise variability
of these signals is often unclear [4]. Oscillations are influenced by environmental factors
and intrinsic processes, including homeostasis and feedback. For instance, spontaneous
oscillations in heart rate (HR) have been extensively studied by frequency decomposition,
revealing their associations with various activities of the sympathetic and parasympathetic
nervous systems [5]. Similar studies have been extended to other biological systems.

HR and respiration signals (RSP) and their oscillations are amplitude-modulated and
synchronized [6,7], considering that respiration influences the cardiac response. Inspiration
increases HR, while expiration decreases it, a phenomenon known as respiratory sinus
arrhythmia (RSA), which is widely accepted as an index of vagal activity enhancing
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pulmonary gas exchange [7,8]. The physiological system primarily responsible for the
interaction between respiration and circulation is the autonomic nervous system (ANS).
However, the physiological mechanisms underlying the modulation of cardiac responses
by respiration are complex and multifactorial. Both HR and RSP signals are influenced
by external and internal mechanisms. Cardiovascular variability is mainly modulated by
the two branches of the ANS, which affect the redistribution of blood volume, blood flow,
heart rate, and heart variability, but its modulation is also proposed to be largely influenced
by breathing. These effects are complex and affect cardiac responses at multiple levels.

The relationship between RSP and HR, often referred to as cardiorespiratory coupling
(CRC), has been successfully modeled by complexity measures [9–12]. These studies fo-
cusing on CRC and nonlinear dynamics provide insights into physiological regulation in
the context of adaptive mechanisms to stress, aging, and physical training. For instance,
stressors such as dehydration have been related to reduced synchronization indices and al-
tered directional relationships between cardiovascular and respiratory variables [9]. Aging
further modulates these dynamics, with the resting state showing weakened respiratory
contributions to cardiac regulation, while stress conditions amplify these impairments [10].
In contrast, athletes have shown stronger CRC compared to sedentary individuals, re-
flecting enhanced autonomic synchronization [12]. Specific training interventions, such as
inspiratory muscle training, have shown the potential to enhance CRC by promoting central
respiratory and autonomic adaptations, with effects observed during active challenges and
subtle improvements at rest [11].

The use of linear relationships involving the RSP and its first-time derivative, as a
possible causal signal for HR has been explored [13], suggesting an important role for stretch
receptors in modulating HR. However, the continuous dynamic relationship between the
RSP and HR signals has not been intensively explored. The demonstration of the role of the
first-order time derivative of the RSP term in the prediction of HR from RSP would suggest
the possibility of linearizing this relationship in the whole RSP cycle during resting state
respiration and, given the quasi-sinusoidal character of the RSP signal, it would be possible
to model the regulation of the time-lag between RSP and HR by controlling the gains of the
RSP and its first-time derivative. Such a model, once empirically validated, would allow to
explore by simulation of the HR signal, the regulation of the physiological delay between
the RSP and the HR signals, by modulating the amplitude of the signals conveyed to the
central nervous system by slow and fast adapting pulmonary stretch receptors [13].

The respiratory rhythm is typically generated by respiratory peacemaker cells in the
brainstem, and its oscillations are modulated by central and peripheral reflexes that adapt
in response to environmental demands [14]. The origin of the RSA and/or its modula-
tion is currently a matter of debate, several hypotheses could be complementary. In fact,
such a complex regulation of the cardiorespiratory coupling would give the system great
robustness to maintain an adequate level of function. These proposed mechanisms for
the generation and/or regulation of RSA are (i) a central mechanism exerted by the brain-
stem sympathetic and parasympathetic nuclei, which would be controlled by the central
respiratory nuclei through a central pacemaker [15–18]; (ii) one of the main regulatory
nodes of RSA would be in the baroreceptor reflex, as evidence from baroreceptor suction
shows its strong influence on RSA, for instance, in forced apnea, RSA is induced by cyclic
suction stimulating carotid baroreceptors, suggesting a crucial role for the baroreceptor
reflex. Under more natural conditions, the inspiratory phase would increase venous re-
turn and then increase arterial pressure, inducing an increase in baroreceptor activity
that would activate vagal nuclei in the brainstem [14]; (iii) the activation of pulmonary
stretch receptors, generating the Hering-Breuer reflex, which by modifying the central
pattern generator of respiration would also modify the vagal response [19]; (iv) but also
mechanical pressure exerted over the atrial sinus can modulate the RSA, the so-called
Bainbridge reflex [20], and (v) hypercapnia, oxygen pressure, and acidosis acting on central
and peripheral chemoreceptors can modulate respiratory sinus arrhythmia [21–23]. The
controversy regarding the relative importance of central or reflexive mechanisms in the
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generation and/or modulation of RSA is a long-standing debate with a difficult answer [24]
and will not be directly addressed in this report. It is worth noting that both HR and RSP
serve the primary purpose of maintaining homeostasis through the balanced and proper
functioning of these physiological mechanisms.

In addition to RSA, other types of cardiorespiratory coupling include cardiorespiratory
phase synchronization (CRS) and cardiorespiratory coordination (CRCo) [25,26]. CRS refers
to the tendency of the heartbeat to align with a specific phase of the respiratory cycle, often
observed during deep sleep and under anesthesia. On the other hand, CRCo examines the
relationship between the heartbeat and the preceding and following respiratory onset in
the time domain. While CRS allows us to analyze how the timing of heartbeats aligns with
specific phases of the respiratory cycle [9], CRCo can adapt to variations in respiratory cycle
lengths, capturing dynamic changes in the heart–respiration relationship, and some studies
have shown their differences in the degree of information provided by the two approaches
(relaxation for CRS and stress for CRCo), the CRCo being independent of the length of the
respiratory cycle unlike the CRS [26]. These terms could be confused and related to the
RSA, but their effects can be observed both independently and in conjunction with RSA.
Although there are relevant terms in the understanding of cardiorespiratory coupling, the
present study does not attempt to integrate them as they are beyond the main objective of
the study.

The present report aims to improve the understanding of the predictive heart rate
estimation based on respiratory signals. By analyzing this relationship from a statistical
and dynamic point of view, this will provide more accurate information for the modeling
of this process. Specifically, we explore the possibility of predicting the continuous heart
rate cardiac signal from the respiratory, inspiratory, and expiratory signals in healthy
young adults during a spontaneous resting state. Furthermore, the present results are
intended to highlight some dynamic aspects of the relationships between RSP and cardiac
signals, which would be optionally useful for physiologists and modelers to incorporate in
functional descriptions of the relationship between RSP and HR in a resting state.

The main objective of the present report is to model the continuous linear dynamic re-
lationship between the RSP and HR signals, incorporating the first-order time derivative of
the RSP [13]. This will support the existence of an anticipatory signal of the respiratory state
of the lungs (inspiratory inflation and expiratory deflation) which would help to modulate
the time-lag between RSP and HR. Obtaining such a relationship would suggest a possible
physiological mechanism to optimize gas exchange by better aligning the RSP and HR.
This could possibly be supported by pulmonary fast and slow adapting stretch receptors
and/or baroreceptors and chemoreceptors, which would modulate the vagal response
and then HR. It can be hypothesized that the continuous HR signal can be predicted from
the continuous RSP signal and its first-time derivative, and as a consequence, modulating
the gain of these terms will allow us to adjust the time-lag between the respiratory and
cardiac signals.

2. Materials and Methods
2.1. Participants

A sample of 45 volunteer subjects (18 males and 27 females, mean age = 26.71 ± 4.41 SD)
participated in the present study. All of them were healthy subjects without any neu-
rological or psychological disorders. They were university students who reported no
cardiopulmonary problems or any other major health issues. They were recruited through
advertisements at the University of Seville. Before the study, they were informed about
the procedure and then signed an informed consent form. The study was approved by the
Bioethical Committee of the Junta de Andalucía (1045-N-21 and 1717-N-22) and followed
the rules of the latest revision of the Declaration of Helsinki for human research.
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2.2. Experimental Session

Peripheral ECG and RSP signals were recorded using an MP160 (BIOPAC Systems,
Goleta, CA, USA) with two amplifier modules (ECG-100C and RSP-100C) (Figure 1). The
ECG was collected using three Ag-AgCl lead electrodes (positive, negative, and ground,
TSD203 transducer) placed on the left wrist, right wrist, and right ankle, respectively. The
RSP signal was recorded by a transducer band placed on the chest (TSD201 transducer).
Participants were instructed to move as little as possible and to look at the screen for 3
min without any task or response. Respiration during this period was unassisted and
spontaneous. The gain was set to 1000 in the ECG and 10 in the RSP amplifier. The sampling
rate was 1000 Hz. Data acquisition was performed with AcqKnowledge v.5.0.1 software
(BIOPAC Systems).
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Figure 1. Flowchart of signal processing. Flowchart showing the experimental session and subsequent
data analysis. AICc: Akaike information criterion.

2.3. Data Analysis

For data analysis (Figure 1), the ECG signal was first processed in AcqKnowledge
software, to calculate the HR time series from the ECG signal. The processed signals were
exported to Matlab R2019b (MathWorks), where a custom script was used to extract 3 min
of spontaneous activity for each subject (Figure 2). To ensure that the analysis captured
relevant physiological oscillations while minimizing noise, both HR and RSP signals were
band-pass filtered between 0.1 Hz and 1 Hz using a zero-phase filter filtfilt. This range
was chosen to include the RSA dynamic, considering that the respiratory rate is around
0.1 to 0.3 Hz, and the HR variability ranges are around 0.04 to 0.4 Hz, and specifically, the
RSA effect has been related to the HF component > 0.15 Hz [27]. Neither the RSP nor the
HR signal showed clear trends after applying the high-pass filter at 0.01 Hz. The filtered
signals were then standardized using z-score.
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2.4. Signal Analysis

To analyze the possible time-lag delay of the HR signal with respect to the RSP signal,
a cross-correlation analysis between the two signals was calculated in Matlab using the
xcorr function. In addition to cross-correlation, mutual information (MI) analysis was
performed to assess the non-linear dependencies between the HR and RSP signals. Mutual
information quantifies the amount of information that one random variable contains about
another random variable [28] and captures both linear and non-linear relationships. The
MI was calculated using the joint probability distribution of the signals, derived from their
joint histogram, and the marginal probabilities for each signal. As mentioned above, these
analyses were performed on the z-score signals to ensure consistent results.

To test for a possible dependence of the continuous HR signal on the continuous
RSP signal and its first time derivative, the following continuous models were tested
by regression analysis in each subject on the continuous RSP signals and (as shown in
Figures 2 and 3) using the Matlab function fitlm.

Continuous model 1 (c-model1):

HRm(t) = b0 + b1 ∗ RSP(t) (1)

Continuous model 2 (c-model2) (based on Kapidžić et al., 2014 [13]):

HRm(t) = b0 + b1 ∗ RSP(t) + b2 ∗ dRSP/dt (2)

HRm(t): Modelled continuous heart rate signal from the respiratory signal.
RSP (t): Continuous respiratory signal.
dRSP/dt: First-time derivative of RSP(t).

Then, the best model was calculated by the Akaike Information Criterion (AIC) subject
by subject [29]. The operationalized variables were the empirical variables RSP and HR
(both in z-score), and the computed variables HRm(t), and the first-time derivative of
RSP (dRSP/dt). The time-lag values of RSP and HR were obtained by cross-correlation.
Statistical analyses were performed in Matlab R2019b (MathWorks) and the Statistical
Package for the Social Sciences 26 (SPSS). A simulation, described in the next section, was
built up to show that the computation of the RSP time derivative would be able to modulate
the time lag between RSP and HR.
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HR, an MI analysis was added, finding mean values of 1.90 ± SD 0.41. The histogram 
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the RSP and HR signals in three subjects with the highest correlation coefficients (0.817–0.93) and
one subject with low correlation (0.218). (B) Histogram with the time-lags indices excluding the
subjects with higher time-lag values and very poor cross-correlation. (C) Histogram of the cross-
correlation values without excluding subjects. (D) Histogram with the mutual information values
without excluding subjects.

3. Results

First, we were interested in how the RSP and HR cycles would be related to a pos-
sible delay between the RSP and the HR cycles, to be determined by cross-correlation
between these two signals. For the cross-correlation analysis (Figure 3), the general results
showed negative time-lag indices and high peak correlation when the RSP signal was cross-
correlated with HR. There were no significant gender differences in the time-lag and cross-
correlation analysis. However, in two subjects the lag indices were extremely large and
showed a low correlation peak. These two outliers were detected by the isoutlier function.
Excluding these two subjects, the mean value of the lag indices was 849.21 ± SD 344.84,
indicating a delayed response for the HR compared to the RSP signal. Similarly, taking into
account the relevance of the non-linearities in the study of the influence of the RSP in HR,
an MI analysis was added, finding mean values of 1.90 ± SD 0.41. The histogram shows
that the MI values are clustered around a moderate level of shared information between HR
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and RSP signals. No significant effect of gender was found for this metric. To ensure that
the linear approach captures the most relevant information about the relationship of the
RSP and HR at rest, a correlation analysis was calculated between these two metrics, which
showed a significant correlation between MI and cross-correlation (R = 0.498; p < 0.001).
These results suggest that at rest, most of the common information between HR and RSP
signals is captured by linear dependencies.

To test the dynamic relationship between RSP and HR signals, the continuous mod-
els described in Section 2 were applied and tested (c-model1 and c-model2). Note that
c-model1 is similar to relating the empirical HR to the empirical RSP, as HRm in c-model1
is linearly related to RSP. Figure 4A shows a pattern similar to a closed trajectory for the
relationship of RSP to HR. This closed trajectory is suggested in Figure 4B to be due to the
time-lag between RSP and HR. However, when the predicted signal HRm generated by
the c-model2 is compared with HR, the phase-lag with HR disappears (Figure 4B orange
lines), and a trend showing the linearization of the relationship between the predicted HRm
values of c-model2 and empirical HR appears (Figures 4C and 5). The results for all subjects
are shown in Supplementary Table S1 and Supplementary Figures S1 and S2. The most
explanatory model according to the AICc criterion is c-model2 when compared to c-model1
(45/45 cases). The slope of the first term (proportional to the RSP signal) shows a preponder-
ance of positive slopes (32/45), while the second term (proportional to the first-time deriva-
tive of the RSP) shows a preponderance of negative slopes: 44/45. When the total sample
of subjects is plotted for the linear regressions between HR vs. RSP, and HR vs. predicted
values from c-model2 (HR vs. HRm), the slope of the c-model2 (HRm vs. HR) was always
positive and steeper than in c-model1 (HR vs. RSP) (Supplementary Figures S1 and S2).
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would have the effect of reducing the delay between RSP and HR, the following simula-
tion (script in the Supplementary Material) is sketched in the diagram of Figure 6. First, 
(i) a simulated RSP signal (RSP(t)) is generated from an asymmetric and smoothed trian-
gular signal (Simulated_RSP variable in the script’s code) (Figure 7A), (ii) and then a de-
layed HRm signal is obtained by inserting a delay time into the RSP (t) (delayed_HR in 
the code), (iii) then dRSP/dt (deriv_RSP in the code) is calculated, which allows (iv) the 
HRm variable (advanced_HR in the code) to be obtained as a direct application of c-
model2 by summing the dRSP/dt term modulated by gain2 to the RSP(t). HRm (ad-
vanced_HR) would simulate the empirically recorded HR. By changing the gain2 of the 
dRSP/dt, it is possible to adjust the delay between the RSP(t) signal (Simulated_RSP in the 

Figure 4. RSP vs. HR (and HRm). (A) Closed trajectory of the respiratory signal (RSP) vs. the heart
rate signal (HR). (B) This figure shows the trend to linearization between the predicted HRm and HR
signal when the c-model2, which includes a term of the first-time derivative of RSP, is applied. Please
observe the high overlapping between the predicted HRm values from cmodel-2 and the HR signal
(in orange). (C) When the predicted values of c-model2 (HRm) are represented vs. HR, a linearity of
the relationship emerges.

These results suggest that the consideration of dRSP/dt improves the prediction of
the HR signal. A possible model for the relationship between peripheral receptor activity
and the HR response is shown in Figure 6. To test the hypothesis that the derivative
term would have the effect of reducing the delay between RSP and HR, the following
simulation (script in the Supplementary Material) is sketched in the diagram of Figure 6.
First, (i) a simulated RSP signal (RSP(t)) is generated from an asymmetric and smoothed
triangular signal (Simulated_RSP variable in the script’s code) (Figure 7A), (ii) and then a
delayed HRm signal is obtained by inserting a delay time into the RSP (t) (delayed_HR in
the code), (iii) then dRSP/dt (deriv_RSP in the code) is calculated, which allows (iv) the
HRm variable (advanced_HR in the code) to be obtained as a direct application of c-model2
by summing the dRSP/dt term modulated by gain2 to the RSP(t). HRm (advanced_HR)
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would simulate the empirically recorded HR. By changing the gain2 of the dRSP/dt, it is
possible to adjust the delay between the RSP(t) signal (Simulated_RSP in the code) and the
HRm (advanced_HR in the code) (Figure 7B). Alternatively, the time-lag can be modulated
by changing the gain1 of the RSP(t). Not only the time-lag but also the amplitude of HRm
can be modulated by a multiplicative gain3 factor. The dashed line in Figure 6 suggests
the possibility, not included in the model, that chemoreceptors would modulate the values
of gain1 and/or gain2 values to optimize respiratory gas exchange at the pulmonary
alveolar system.

 
Figure 5. Linear regression of representative subjects. Graphical representation of the linear regres-
sions of HR vs. RSP (left side) and HR vs. the predicted values of c-model2 (HRm). Two subjects with
a low AICc difference and two subjects with a high AICc difference are displayed. The same analysis
for the complete sample (45 subjects) is displayed in Supplementary Figures S1 and S2. AICc: Akaike
information criterion corrected.
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Figure 7. Simulation of heart rate from the respiration signal. (A) The simulated RSP(t), its time
derivative, and delayed and advanced simulated HRm by c-model2 are displayed. (B) The mod-
ulations of the time-lags between the simulated RSP(t) and HRm for three different values of the
gain2 are displayed. (C) Closed trajectory between the simulated RSP(t) and HRm replicating the
relationship between the experimentally recorded RSP and HR.

Note that the delay between RSP(t) and HRm included in the model is a consequence
of the whole process. By modulating the gain1 for the RSP(t) term, gain2 for the dRSP/dt,
or both, it is possible to balance the time-lag between RSP(t) and HRm. The script in the
Supplementary Material allows to demonstrate how the adjustment of the gain 1 and/or
2 allows to modulate the time-lag between RSP and HR.

Figure 7A shows the computation of the simulated HRm as a delayed linear rela-
tionship of the RSP(t) signal. By adding the derivative of respiration (dRSP/dt) to the
RSP(t), the delay of the heart rate with respect to the RSP(t) can be reduced, resulting in the
advanced HRm, which is intended to simulate the empirically recorded HR. By changing
the gain2 of the dRSP/dt term, the time-lag between the RSP(t) and HRm signals can be
modulated (Figure 7B). The amplitude of the HRm signal can also be modulated (gain3).
Finally, the closed trajectory observed in most of the subjects for the RSP vs. HR signals,
as shown in Figure 4A and Supplementary Figures S1 and S2, is obtained by plotting the
simulated RSP(t) vs. the computed HRm (Figure 7C). The physiological feasibility and
possible adaptive value of the model will be discussed. Similar results as in Figure 7A–C
can be obtained by modulating gain1 (see script in the Supplementary Material).

4. Discussion

The dynamic relationship between the RSP signal and the HR signal is supported by
the significant cross-correlation, mutual information, and time-lag delay between these
two signals. The c-model2 suggests that the amplitude of the heartbeat frequency during
RSA would be related to the amplitude of the RSP signal and its first-order time derivative
of the RSP amplitude. The inclusion of the time derivative of the RSP allows linearization
of the modeling of the cardiopulmonary relationship. This would allow anticipating the
state of the lung (inflation and deflation), reducing the delay between the activation of the
stretch receptors and the cardiac response, and facilitating gas exchange in the alveolar
system, as previously suggested [22,30]. The proposed model has been simulated and
allows to confirm that the modulation of the gain of the RSP(t) and/or the dRSP/dt term
allows to regulate the time-lag between RSP and HR.

The inclusion of MI analysis in the present report provided additional insights into
the nonlinear dynamics of the dynamic relationship between HR and RSP at rest. The
results showed values around a moderate level of shared information between HR and RSP
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signals, similar to the cross-correlation results, and supporting the existing literature on
their interconnection [6,12,16,22,31]. Furthermore, the significant correlation between MI
and cross-correlation suggests that linear dependencies account for a substantial proportion
of the shared information between HR and RSP signals under spontaneous resting state
conditions. This finding reinforces the utility of linear approaches in capturing the dynamics
of both signals at rest while highlighting the complementary role of non-linear metrics
such as MI in exploring additional features in the relationship between these physiological
signals. While non-linear analyses provide valuable complementary information, the
strong performance of linear metrics suggests that much of the shared information between
these signals could be attributed to stable, linear interactions when analyzing young
healthy subjects under spontaneous resting state conditions. Possibly, nonlinearities would
be more relevant for explaining RSP–HR interactions under stressful, pathological, and
aging conditions.

The cross-correlation results show that the RSP signal precedes the HR, the latter with
a mean delay of 849.21 ms, with oscillations that are coupled in most subjects, according to
the concept of the RSA of HR causally linked to RSP. These results support the well-known
hypothesis that respiratory cycles influence the cardiac response [16,31]. The observed time-
lag values are consistent with some previous measurements, for instance, Saul et al. [32]
proposed that R–R interval changes follow breathing with a time lag of about 0.3 s. The
presence of a delay between the respiratory and cardiac cycles [33] does not necessarily
resolve the controversy about a central or peripheral mechanism for generating RSA [24],
since different modulatory pathways with synchronized but different time delays would
explain the respiratory-to-cardiac cycle time-lag. This result is consistent with proposals
on the controlling role of respiration over cardiac cycles by central [34]; or peripheral
mechanisms linked to respiratory [19], or respiratory-related signals [14,21,22]. Therefore,
a time-lag delay between the respiratory and cardiac cycles should be included in the
dynamic modeling of RSA.

The relationship between both signals is more evident when considering the max-
imally explanatory model for HR from RSP (c-model2), in which the inclusion of the
first-order time derivative of the respiratory signal improves the ability of RSP to predict
HR. A result, previously obtained for the inspiratory phase, and incorporating the RSP and
its time derivative, is used to predict HR [13]. From a modeling perspective, the first-order
time derivative allows a transition from a closed trajectory for the relationship between RSP
and. HR to a more linear one. The dependence of the RSP signal on HR has previously been
observed and quantified using autoregressive moving average techniques [31], demonstrat-
ing the influence of the time evolution of RSP (and arterial pressure) on HR. However, such
modeling does not establish a precise relationship between the time derivative of RSP and
HR, a relationship that has been previously described [13], suggesting possible mechanisms
for pathological conditions. A potential advantage of the c-model2 is that it suggests the
presence of an anticipatory computation of the respiratory phase by partially discounting
the time delay between pulmonary stretch receptors activation and HR response. This
could optimize gas exchange [22,30] in the alveolar pulmonary system between RSP and
HR by a precise time-lag between both signals.

An important point to note about c-model2 is that when the predicted values of HR
from c-model2 (HRm) are regressed with HR, a linearization with a positive slope appears.
This result should be interpreted from a modeling perspective as if RSP, once compensated
by the rate of change (second term of c-model2), linearly drives the cardiac cycle during the
resting state, supporting the view of a modulation of HR from the respiratory cycle [7,8].
One suggestion would be that slowly adapting stretch receptors would carry the first term
of c-model2 (proportional to the RSP signal) and the fast-adapting receptors, which are
more sensitive to changes in RSP, would carry the second term of c-model2, proportional to
the time derivative of RSP. The presence of rapid and fast adapting stretch receptors in the
respiratory muscles would carry the RSP and dRSP/dt signals to central vagal centers [19]
without discarding the possible role of arterial pressure mechanoreceptors in the carotid
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body. The possible role of stretch receptors must be considered tentatively, but would
explain the influence of the RSP time derivative on HR. Of course, the cardiac response
has much broader peripheral and central regulatory points, including the carotid body
receptors, which are difficult to assess from the present results. However, the reported
simulation must be understood in terms of signal processing modeling rather than as
a specific physiological proposal that would require pharmacological or physiological
intervention and/or the recording of peripheral and central nervous system generators.

The possibility of obtaining a precise time-lag between RSP and HR during RSA, by
regulating the gain of RSP or dRSP/dt, is important to optimize the synchrony between
the inspiration phase at the alveolar level and the arrival of an optimal amount of deoxy-
genated blood at the alveolar level. This is a dynamically complex problem to be computed
due to the physics of the gases and fluids passing through the bronchi and bronchioles and
the different ramifications at the cardiovascular level and blood flow through them. The
present model and simulation allow the possibility of regulating the time-lag by modifying
the proportion of RSP and dRSP/dt signal at the neural level. However, modeling neural
processing is also complex. To model the exact relationship between the contribution
of the RSP and dRSP/dt to HR would require a lot of physiological information, taking
into account the mechanics of the respiratory system to activate the stretch receptors, the
activation of the receptors, the central processing, the activation of the heart, and the heart
electrical transmission. Such an amount of physiological information would be impracti-
cable in humans. However, the proposed model opens the possibility of finding the most
adaptive and energetically efficient oxygenation level by regulating the cardiorespiratory
time-lag during RSA, with chemoreceptors providing information about the efficacy of gas
exchange [21–23]. Assessment of blood oxygenation levels would hypothetically induce
changes in the model gain1 to optimize the synchrony between atmospheric gas pressure
and hemoglobin concentration at the alveolus to optimize gas exchange [22,30]. But also,
the possibility of modulating the delay between RSP and HR could be modulated by precise
timing initiation of the inspiratory phase from the cardiac activity [35].

The present report makes some suggestions about the possible control of HR by
peripheral stretch receptors related to the RSP cycle. However, to confirm this approach, the
forced control of the RSP cycle, pharmacological approaches, and/or invasive recordings of
the peripheral and central nervous system would be required to follow the neural feedback
chain, central generators, and autonomic cardiac control. Also, testing in pathological
conditions where the interaction between RSP and HR is disturbed would be very useful
to understand this relationship.

5. Conclusions

In conclusion, to model the possible inter-relationship between the RSP and HR sig-
nals, a time-lag delay between RSP and HR, which could be reduced by taking into account
the time derivative of the RSP signal, would give a good account of the RSP–HR cardiores-
piratory dynamics during the resting state in young healthy subjects. The proposed model
allows the linearization of the relationship between RSP and HR and, by modulating the
gains of the RSP and/or dRSP/dt terms, allows the adjustment of the time-lag between
RSP and HR, possibly allowing the optimization of the gas exchange between the vascular
and pulmonary systems.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/e26121083/s1. Table S1. Linear model regression of continuous waves of
HR and RSP z-score signals including the time derivatives of RSP. Figure S1. Linear regression of the
continuous signal. Graphical representation of the linear regressions of HR vs. RSP (left side) and
HR vs. the predicted values of c-model2 for the first 24 Subjects (1–24 Subjects). Figure S2. Linear
regression of the continuous signal. Graphical representation of the linear regressions of HR vs.
RSP (left side) and HR vs. the predicted values of c-model2 for the last 21 Subjects (25–45 Subjects).
Supplementary code. Matlab custom script to perform a simulation that allows to replicate the
physiological relationship between RSP and HR.
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