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Preface

The following Special Issue addresses new approach methodologies for the assessment of

chemicals and products to determine their potential to induce skin sensitization. New approach

methodologies are methods that do not involve the use of animals, typically including in vitro or

in silico methods or a combination of the two. This Special Issue was motivated by my experience of

more than 20 years in evaluating such alternative toxicity test methods to reduce, refine, and replace

the use of animals for regulatory toxicity testing. Skin sensitization assessments of chemicals and

products have made greater progress in reducing animal use than many other regulatory toxicity

evaluations. I am grateful for the broad range of submissions received for this Special Issue. It

is conceivable that some of the methods and approaches presented can serve as inspiration for the

development and evaluation of new approach methodologies for additional toxicity evaluations.

Judy Strickland

Guest Editor
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Editorial

Skin Sensitization Testing Using New Approach Methodologies
Judy Strickland †

Inotiv, Inc., Morrisville, NC 27560, USA; judystrickland@frontier.com
† Retired.

Chemical regulatory authorities require skin sensitization information for a number
of chemical sectors, such as cosmetics, pesticides, newly marketed chemicals, household
products, and topical pharmaceuticals [1]. If regulatory agencies need such information,
then chemical and product developers and distributors also need it. Usually, the infor-
mation needed is skin sensitization hazard, a binary classification to denote whether the
substance has the potential to induce skin sensitization or not, and, if the substance has
skin sensitization potential, skin sensitization potency is needed. Potency information is
provided as a multilevel categorical classification or a point estimate, sometimes referred
to as a “point of departure” (POD), which is a toxicity value used for risk assessment. Such
information is typically determined in animal tests. However, skin sensitization is one of
the regulatory toxicity endpoints seeing much progress in the uptake of new approach
methodologies, which are non-animal skin sensitization evaluations, for regulatory and
developmental purposes. The mechanisms of skin sensitization initiated by binding to skin
proteins is well-characterized by an adverse outcome pathway published by the Organi-
zation for Economic Cooperation and Development (OECD) [2]. Test method developers
have used the key events in the adverse outcome pathway as the targets for developing
non-animal tests that assess whether a chemical or product may activate them.

This Special Issue, “Skin Sensitization Testing Using New Approach Methodologies”,
shows that there is much research and application activity in this area, as evidenced by the
10 articles contributed.

These articles provide a broad coverage of the area of new approach methodologies
for skin sensitization assessments. A number of articles involve test method development.
Fritch et al., Contribution 10, documents the problem formulation stage of test method
development for T-cell activation, which is key event 4 of the adverse outcome pathway
for skin sensitization produced by chemicals that bind to skin proteins [2]. Although
there aresome non-animal tests that measure T-cell activation to assess a substance’s
potential for skin sensitization [3,4], there are no regulatory tests established in harmonized
international test guidelines. Contribution 10 shows that known approaches to assess
T-cell activation are challenged by chemical-mediated toxicity, inefficient or unknown
generation of T-cell epitopes, and low throughput. Contribution 10 reviews the available
solutions and strategies to confirm in vitro T-cell signals and concludes that application and
standardization are necessary to define chemical applicability domains and to strengthen
the role of T-cell tests in regulatory risk assessment.

In Contribution 1, Burla et al. report work to further the development of a non-animal
test for respiratory sensitizers, which are classified as substances of very high concern un-
der the European Commission Regulation for the Registration, Evaluation, Authorization
and restriction of Chemicals (REACH). There are currently no animal or non-animal test
methods approved for regulatory use in evaluating chemicals for respiratory sensitization
hazards. Respiratory sensitizers test positive in the existing animal skin sensitization tests,

Toxics 2025, 13, 326 https://doi.org/10.3390/toxics13050326
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but these tests do not provide enough information to distinguish between skin and respi-
ratory sensitizers. ALIsens®, a three-dimensional in vitro alveolar model, had previously
been evaluated for the classification of respiratory sensitizers [5]. Contribution 1 contin-
ues the evaluation of ALIsens® by establishing its efficacy in discriminating respiratory
sensitizers from skin sensitizers and non-sensitizers.

Contributions 8, Ahmed et al., and 9, Martins-Ribeiro et al., describe a laboratory test
for skin sensitization that has been adapted to detect the immunotoxicity of therapeutic
biologics (Contribution 8), or antibodies damaged by heat, which produces antibody
aggregation (Contribution 9). These tests are very human-relevant. Both investigations
expose human skin explants to evaluate histopathology, and also expose peripheral blood
mononuclear cells from the same donor to evaluate T-cell proliferation or cytokine levels.
Contributions 8 and 9 show that the adapted skin sensitization tests [3,4] were applicable
to identifying adverse immune reactions in addition to skin sensitization.

A number of contributions to this Special Issue build and evaluate computational
models to classify test substances for skin sensitization hazard or to place sensitizers in
potency categories. In Contribution 2, Tieghi et al. develop and evaluate an in silico model
that predicts human skin sensitization hazard and potency categories per the Globally
Harmonized System of Classification and Labelling of Chemicals [6]. Human skin sen-
sitization data were used to build this model and the model is freely available. Such a
model can be easily implemented in the early stages of drug or chemical development and
testing to minimize resource waste and facilitate the early stages of molecule development
while reducing animal testing. Thus, these models are useful even if they do not progress
towards regulatory acceptance.

Mohoric et al. (Contribution 3) and Tourneix et al. (Contribution 6) report on Bayesian
models that combine data streams from in vitro and in silico results to estimate sub-
stance potency for inducing skin sensitization. Both models were based on the work of
Jaworska et al. [7,8]. Animal data from the murine local lymph node assay (LLNA) were
also used to build these models. Both contributions build and evaluate Bayesian models
that predict LLNA potency in four categories as well as PODs for sensitizers that can be
used for risk assessment. However, the models reported in Contributions 3 and 6 use
different potency categories and different methods for predicting the LLNA potency value.
The models from both contributions provide confidence indications for each prediction.
Contributions 3 and 6 show that risk assessment can be performed without animal data.

Gradin et al. does as well, in Contribution 4, and provides a much simpler and
less data intensive approach to developing a POD for skin sensitization risk assess-
ment. The approach uses the information from only one in vitro test, which is based
on gene expression, the GARDskin Dose–Response assay. The best performing model,
which estimates PODs, is a regression of no-expected-sensitization-induction levels
based on human and LLNA data (in vivo PODs) on the assay readout using only an
intercept parameter.

In Contribution 5, Wareing et al. provides an in vitro test method evaluation. It
evaluates the applicability of three key event assays included in the existing OECD test
guideline methods [9–11], one for each of the first three key events, for testing inorganic
nanomaterials for skin sensitization potential. Although the in vitro methods were mod-
ified in an attempt to adjust their suitability to nanomaterials, they were originally de-
veloped and evaluated for small organic molecules and were not a good fit for testing
inorganic nanomaterials.

One contribution, 7, by Juncan et al., provides a case study showing how new approach
methodologies for skin sensitization can be applied to toxicity evaluation during the
product development of cosmetic ingredients. Skin sensitization was one of the toxicity
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endpoints assessed. Evaluations of stability, physicochemical properties, and microbiology
were also performed. Contribution 7 reports on the development and evaluation processes
all the way from the assessment of several candidate ingredients to be included in the
new formulation to assessments of the final formulation. Contribution 7 shows how a
novel proprietary in silico model that predicts skin sensitization can be used to evaluate
ingredients during product development. The in silico evaluation was verified with
clinical testing.

The contributions to this Special Issue, “Skin Sensitization Testing Using New Ap-
proach Methodologies”, highlight a number of data gaps. Skin sensitization test results or
model predictions are typically not considered alone to make a decision on how to clas-
sify a substance. Usually, all information about the substance in question is considered,
including, but not limited to, physicochemical properties, results for other toxic endpoints,
and the known skin sensitization potential of similar substances. A decision tree on how
to apply the results of new approach methodologies for skin sensitization hazard and po-
tency is needed in order to integrate the skin sensitization information with other perti-
nent chemical information. This especially applies to the in silico methods described in
Contribution 2 and the individual in vitro test methods described in Contributions 4 and 5.
However, the Bayesian network models described in Contributions 3 and 6 already use a
number of different data streams. Would these model predictions be sufficient as stand-alone
hazard or potency classifications? More research and evaluation is needed to identify the best
approach for the application of these methods.

Contribution 7 reminds us that the existing OECD test guidelines are not applicable to
all types of substances. The existing guidelines are intended to target mechanisms relevant
to organic substances that induce skin sensitization by binding to skin proteins. Inorganic
nanomaterials (as is the case in Contribution 7), metals such as nickel, and biological agents
may induce skin sensitization by other mechanisms [2]. Thus, research and development of
applicable test methods to detect substances that induce sensitization by means other than
binding to skin proteins is needed. Such test development and application of new approach
methodologies for skin sensitization will continue to be a focus of the regulatory and
regulated communities in order to reduce animal use for these assessments and provide
faster and more human-relevant results.

Data Availability Statement: Not applicable.

Conflicts of Interest: The author declares no conflicts of interest.
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Article

Responses of an In Vitro Coculture Alveolar Model for the
Prediction of Respiratory Sensitizers (ALIsens®) Following
Exposure to Skin Sensitizers and Non-Sensitizers
Sabina Burla 1,2,3,*, Aline Chary 1, Tommaso Serchi 1, Sébastien Cambier 1, Kristie Sullivan 4,5, Elizabeth Baker 4,
Nikaeta Sadekar 6 and Arno C. Gutleb 1,3,*

1 Luxembourg Institute of Science and Technology (LIST), 4422 Belvaux, Luxembourg
2 Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of

Cluj-Napoca, 400372 Cluj-Napoca, Romania
3 Invitrolize Sarl, 4422 Belvaux, Luxembourg
4 Physicians Committee for Responsible Medicine (PCRM), Washington, DC 20016, USA
5 Institute for In Vitro Sciences, Inc. (IIVS), Gaithersburg, MD 20878, USA
6 Research Institute for Fragrance Materials (RIFM), Woodcliff Lake, NJ 07430, USA
* Correspondence: sabina.burla@invitrolize.com (S.B.); arno.gutleb@invitrolize.com (A.C.G.)

Abstract: In recent years, a global increase in allergy incidence following chemical exposure
has been observed. While the process of skin sensitization is well characterized through the
adverse outcome pathway (AOP) framework, the immunological mechanisms underlying
respiratory sensitization remain less well understood. Respiratory sensitizers are classified
as substances of very high concern (SVHC) under the European Union (EU) regulation
for the registration, evaluation, authorization and restriction of chemicals (REACH), em-
phasizing the importance of evaluating respiratory tract sensitization as a critical hazard.
However, the existing new approach methodologies (NAMs) for the identification of skin
sensitizers lack the capacity to differentiate between skin and respiratory sensitizers. Thus,
it is imperative to develop physiologically relevant test systems specifically tailored to
assess respiratory sensitizers. This study aimed to evaluate the efficacy of ALIsens®, a
three-dimensional (3D) in vitro alveolar model designed for the identification of respiratory
sensitizers and to determine its ability to correctly identify sensitizers. In this study, we
used a range of skin sensitizers and non-sensitizers to define the optimal exposure dose,
identify biomarkers, and establish tentative thresholds for correct sensitizer classification.
The results demonstrate that ALIsens® is a promising in vitro complex model that could
successfully discriminate respiratory sensitizers from skin sensitizers and non-sensitizers.
Furthermore, the thymic stromal lymphopoietin receptor (TSLPr) cell surface marker was
confirmed as a reliable biomarker for predicting respiratory sensitization hazards.

Keywords: chemical allergy; new approach methodologies; respiratory sensitization; air-
liquid-interface exposure; dendritic cell activation; cell surface markers

1. Introduction
Allergic reactions arising from chemical exposure represent a significant concern for

human health and can manifest in various ways. Exposure to respiratory sensitizers, in par-
ticular, can lead to long-term health conditions, including allergic rhinitis [1] and asthma [2].
Respiratory sensitization resulting from chemical exposure occurs less frequently than skin
sensitization, largely attributable to a limited number of identified chemical compounds [3],
compared to over 3000 molecules identified as skin sensitizers [4], and exposure context

Toxics 2025, 13, 29 https://doi.org/10.3390/toxics13010029
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from occupational settings to everyday environments. Despite its lower prevalence, respi-
ratory sensitization is critically important due to its significant impact and severity, being
associated with considerable morbidity on the affected individuals and related increased
socioeconomic costs [5,6].

Regulatory agencies enforce specific guidelines and regulations for the classification
and labeling of substances identified as respiratory and skin sensitizers. Early identification
of respiratory sensitizers and distinguishing respiratory from skin sensitizers provides the
necessary data to evaluate the hazards associated with exposure and for appropriate risk
management measures to be implemented for the protection of human health [7]. This
information is essential for making informed decisions regarding the safe handling, use
and management of these substances. As many respiratory sensitizers are encountered
in occupational settings, testing is essential for workers’ protection. Currently, regulatory
agencies do not request the testing of chemicals for respiratory sensitization potential
during product registration or authorization due to the lack of validated testing methods.

The mechanisms underlying respiratory sensitization are not fully understood [8,9],
but the proposed adverse outcome pathway (AOP) for respiratory sensitization [10] shows
points of convergence with the AOP for skin sensitization [11], suggesting common mech-
anisms involved in the development of the two types of sensitization [12]. These rela-
tionships between respiratory and skin sensitization are important for the hazard and
risk assessment process of chemical sensitizers. It has been observed that all identified
respiratory sensitizers yield positive results in the in vivo assays designed for skin sensi-
tization and exhibit dermal sensitization, while the opposite is not universally true [13].
Only a minority of skin sensitizers are also respiratory sensitizers. This suggests that if
a compound tests negative in validated tests for the identification of skin sensitizers, the
likelihood of it being a respiratory sensitizer may be low, but finally, no decision on its
respiratory sensitization hazard can be taken [3,14]. However, if the assay for skin sensitiza-
tion evaluation tests positive, further investigation is required to ascertain the respiratory
sensitization hazard [15]. Distinguishing respiratory from skin sensitizers is essential for
their correct classification to implement effective risk management, apply targeted safety
measures, and reduce health risks.

Identification of low molecular weight (LMW) chemicals that may induce respiratory
sensitization is of paramount importance as respiratory sensitizers have been categorized as
substances of very high concern (SVHC) due to their severe impacts on human health [16].
When a chemical compound is classified as a SVHC under the Registration, Evaluation,
Authorisation and Restriction of Chemicals (REACH) regulation [17], several regulatory
consequences follow. The first step is the inclusion of the substance in the candidate list
of SVHC [18], which triggers obligations for both manufacturers and importers, such as
providing information on the presence of the SVHC in products to downstream users
and consumers. The identification as an SVHC often leads to initiatives for substituting
it with safer alternatives or phasing out the use of these substances where feasible. In
case the European Chemicals Agency (ECHA) moves a substance from the Candidate
List to the Authorization List (Annex XIV of REACH Regulation), its use becomes strictly
controlled [17]. These measures have a significant impact on the manufacturers, and
identification of respiratory sensitizers in the early development phases is very important
for a large array of industries for several reasons: to reduce risks associated with SVHCs, to
ensure better protection for human health and the environment by promoting safe handling
practices to minimize exposure and mitigate risks, ensuring safer work environments and
consumer products.

At present, the classification of chemicals as respiratory sensitizers requires evaluat-
ing their sensitization potential through the analysis of scientific evidence derived from
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occupational data, clinical and experimental studies, and read-across approaches [9,19–21].
A significant challenge in the process of risk assessment of chemicals inducing respiratory
sensitization is the absence of validated or widely recognized methods for identifying and
characterizing chemical respiratory sensitizers [8], as well as for differentiating between
respiratory and skin sensitizers [12,22].

Animal models, such as the local lymph node assay (LLNA), have been employed
to evaluate respiratory sensitizers. Although primarily designed for skin sensitization
testing, this model has offered some insights into the respiratory sensitization potential,
but despite the adaptation to a respiratory LLNA [23], the data obtained could not be
used to gain a deep understanding of the mechanism leading to respiratory sensitization.
Additionally, in vivo tests have been criticized for their limitations in accurately predicting
human responses, as species differences play a significant role in data interpretation [24].
In response to ethical concerns and the stringent need for accurate tests, many countries
from various regions around the globe have phased out or implemented restrictions on
animal testing on cosmetics. The regulatory agencies, therefore, promote the development
of alternative in vitro methods to animal testing to evaluate the impacts of chemicals on
human health. The European Union led this global movement by adopting the Cosmetics
Regulation in 2009 [25]. Alternative methods that are utilized to assess the safety of cosmetic
ingredients and final products fall under the category of new approach methodologies
(NAMs) [26,27], a comprehensive descriptor for any non-animal assay, methodology, ap-
proach, or combination thereof that can be employed to provide input on chemical hazard
and risk assessment [28]. NAMs consist of in chemico, in silico and in vitro methods, which
can be used as stand-alone methodologies or can be comprised of integrated approaches
to testing and assessment (IATAs), defined approaches (DAs) for data interpretation, and
performance-based evaluation of test methods [29].

While significant progress has been made in the identification of skin sensitizers,
resulting in the development and publication of a completely described AOP [11] in which
every key event (KE) is supported by one or more NAMs, the progress in the development
of NAMs for the identification of respiratory sensitizers has been comparatively slower.
However, recent proposals have introduced notable additions to the AOP for respiratory
sensitization [30].

The lung is a complex organ characterized by cellular heterogenicity, and the type of
cells, culture conditions and exposure methodology are key factors that need to be properly
addressed when designing and developing physiologically relevant in vitro human lung
models for the assessment of xenobiotics’ effects upon inhalation [31]. Respiratory sensi-
tization is a complex immunological process in which dendritic cells, the most effective
antigen-presenting cells, play a central role. Their activation, identified as a common key
event (KE3) in both the established skin sensitization and proposed respiratory sensitization
AOPs [12], is crucial. Incorporating dendritic cells, either in monocultures or cocultures
with bronchial cells and in the alveolo-capillary barrier in vitro models, is essential for
advancing the understanding of the immunological mechanisms underlying respiratory
sensitization. Dendritic cells can be derived from human peripheral blood or THP-1, a
human monocytic leukemia-derived immortalized cell line, using granulocyte-macrophage
colony-stimulating factor GM-CSF and interleukin 4 (IL-4) [32,33]. Established cell lines are
commonly used as surrogates for dendritic cells in sensitization studies [34], and several
in vitro assays have been developed with the aim of correctly classifying respiratory sensi-
tizers [9]. Undifferentiated THP-1 cells, in particular, have been utilized in monoculture for
both the development [35,36] and validation of the human cell line activation test (h-CLAT)
assay for the evaluation of skin sensitizers [37]. Additionally, THP-1 cells in monoculture
have been used in studies evaluating respiratory sensitizers [38–41]. The cluster of differen-
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tiation (CD)34+ human acute myeloid leukemia cell line (MUTZ-3) used undifferentiated
in monoculture has also served as a dendritic cell model for the assessment of respiratory
sensitizers [42]. In coculture systems, naïve THP-1 cells have been incorporated to study
respiratory sensitizers [43–45].

Expression of CD86 and CD54 markers is measured on the surface of dendritic cells
(DCs) to assess the skin sensitizing potential of chemicals in the h-CLAT assay [37]. Since
skin and respiratory sensitization share certain mechanisms [12], measuring the expression
of CD86 and CD54 cell surface markers was found suitable for the detection of respiratory
sensitizers due to their roles in immune response modulation. As skin and respiratory
sensitizers differ primarily in the type of T cell response they induce, with skin sensitizers
triggering a T helper 1 (Th1) response and respiratory sensitizers eliciting a Th2 response,
defining specific markers for the correct identification of respiratory sensitizers and dif-
ferentiation from skin sensitizers is essential. Thymic stromal lymphopoietin (TSLP), a
cytokine produced primarily by epithelial cells at barrier surfaces and also by dendritic
cells [46,47], has been studied in the context of asthma [48]. It has been identified as a key
regulator of the Th2 immune response. Dendritic cells are also direct targets of TSLP, as its
receptor is highly expressed in specific populations of myeloid dendritic cells. When naïve
allogeneic T cells are cocultured with TSLP-conditioned dendritic cells, they acquire an
inflammatory Th2-like phenotype characterized by the production of cytokines associated
with respiratory sensitization [46].

ALIsens®, a complex three-dimensional (3D) in vitro coculture alveolar model
based on alveolar type II cells secreting lung surfactant (A549) [49,50], endothelial cells
(EA.hy926) [51], dendritic-like cells (undifferentiated THP-1) [52] and macrophage-like cells
(differentiated THP-1) was developed by Chary and collaborators, 2019 [43]. The model has
been shown to correctly identify respiratory sensitizers from the class of acid anhydrides
based on a set of biomarkers: thymic stromal lymphopoietin receptor (TSLPr), CD86 and
CD54 cell surface marker, soluble mediators release in cell culture medium (cytokines and
chemokines) and gene expression [43]. An increased expression of CD86, CD54, TSLPr and
of the ligand for OX40 (OX40L) on the surface of dendritic cells from exposed in vitro mod-
els has been shown to correctly identify respiratory sensitizers [41,43,50,53]. An enhanced
expression of CD54 and TSLPr cell surface markers was detected 24 h post-exposure to
respiratory sensitizers. TSLPr expression increased upon respiratory sensitizers exposure,
but remained unchanged after exposure to irritants, highlighting its specificity in detecting
respiratory sensitizers [43].

Since skin sensitizers were not tested in ALIsens®, the specificity of this model for
identifying respiratory sensitizers remains uncertain, including its ability to differentiate
between respiratory and skin sensitizers [9]. Additionally, the most relevant biomarkers
from the panel proposed in the development stage of the model needed to be identified.
The increased expression of CD86, CD54 and TSLPr markers in the context of an alveolo-
capillary barrier enhances the model’s ability to detect respiratory sensitizers, offering a
reliable method to differentiate between sensitizers and other chemical exposures [43].

The aim of this study was to evaluate the response of ALIsens® by analyzing the ex-
pression of CD86, CD54 and TSLPr cell surface markers following exposure to known skin
sensitizers and non-sensitizers. Additionally, this investigation sought to identify specific
marker(s) and establish a preliminary threshold that could enable accurate classification of
respiratory sensitizers.
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2. Materials and Methods
All materials (cell lines, cell culture reagents and ware, chemicals, flow cytometry

reagents), equipment and software are presented in Table S1 in the Supplementary Material,
indicating the catalog number, supplier and location information.

2.1. Reagents and Chemicals
2.1.1. Cell Culture Reagents and Chemicals

Dulbecco’s Modified Eagle’s Medium (DMEM), high glucose, with GlutaMAXTM

supplement, Roswell Park Memorial Institute 1640 (RPMI-1640), high glucose, with
GlutaMAXTM supplement, Iscove’s Modified Dulbecco’s Medium (IMDM), Phosphate
buffered saline (PBS) and TrypLETM Express Enzyme (1×) were purchased from GibcoTM

(Erembodegem, Belgium). Accutase was purchased from InvitrogenTM ThermoFischer
Scientific (Carlsbad, NM, USA). Fetal bovine serum (FBS) was purchased from Sigma-
Aldrich (Overijse, Belgium). 4-(2-Hydroxyethyl) piperazine-1-ethanesulfonic acid (HEPES)
(Chemical Abstracts Service Number (CAS No) 7365-45-9), phorbol-12-myristate-13-acetate
(PMA) (CAS No 16561-29-8), resazurin sodium salt (CAS No 62758-13-8) were purchased
from Sigma-Aldrich (Overijse, Belgium). 2-mercaptoethanol (β-ME) (CAS No 60-24-2) was
purchased from Bio-Rad (Temse, Belgium).

2.1.2. Chemicals Tested in the Study

Brij® 35 surfactant was purchased from Merck Life Sciences, Hoeilaart, Belgium.
Citric acid and lactic acid were purchased from VWR Chemicals, Leuven, Belgium.
Dimethyl sulfoxide (DMSO) (CAS No 67-68-5), α-terpineol, 1,2-benzisothiazol-3(2H)-
one, 2-mercaptobenzothiazole, benzylideneacetone, trans-cinnamaldehyde, chloroxylenol,
diphenylcyclopropenone, ethylene glycol dimethacrylate, eugenol, imidazolidinyl urea,
D-limonene, p-phenylenediamine were purchased from Sigma-Aldrich (Overijse, Belgium).
The CAS No for the tested chemicals is provided in Table 1.

2.1.3. Selection of Chemicals

The selection criteria for the tested chemicals were based on the availability of LLNA
reference data, their use as proficiency chemicals in the Organisation for Economic Co-
operation and Development Test Guidelines (OECD TGs) for skin sensitization, and the
availability of results from in chemico and in vitro methods for skin sensitization, specifically
the direct peptide reactivity assay (DPRA) [57] and the h-CLAT [37], respectively. Among
the 11 selected skin sensitizer chemicals, 4 are classified as weak sensitizers, 4 are classified
as moderate sensitizers, 1 as strong sensitizer and 1 as extreme sensitizer, according to
LLNA (Table 1).
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2.2. Cell Culture

The human cell lines A549, EA.hy926 and THP-1 were obtained from the American
Type Culture Collection (ATCC®, Manassas, VA, USA). A549, EA.hy926 and THP-1 cells
were cultivated as previously described [43]. Adherent cell lines, A549 and EA.hy926, were
routinely subcultured twice a week using TrypLETM Express Enzyme (1×) and were used
up to passage number 25. A549 cells were cultivated in DMEM supplemented with 10%
FBS. EA.hy926 cells were cultivated in DMEM, supplemented with 10% FBS and 25 mM
HEPES. The suspension cell line, THP-1, was routinely subcultured twice a week and was
used up to passage number 25. THP-1 cells were cultivated in RPMI-1640 supplemented
with 10% FBS and 50 µM β-ME. All cells were cultivated in a humidified incubator at
37 ◦C, with 5% CO2 and tested every 6 months for mycoplasma contamination using
the MycoAlert® Mycoplasma Detection Kit (Lonza, Roermond, The Netherlands). The
identity of the cell lines was confirmed via human short tandem repeat (STR) profiling
cell authentication service provided by ATCC®. A volume of approximately 40 µL cell
suspension, containing at least 1 × 106 cells, was spotted on the Flinders Technology
Associates (FTA) sample collection card. The FTA cards were allowed to dry and then
returned to ATCC® to genotype the cell lines. The identity of the cells was confirmed
by ATCC®.

2.3. ALIsens® Test System Build-Up

The 3D alveolar in vitro model, ALIsens®, was set up following the methodology
proposed by Klein et al., 2013 [60], with the modifications implemented by Chary et al.,
2019 [43] for the in vitro test system designed for the identification of respiratory sensitizers.
The workflow schema is presented in Figure 1.
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respiratory sensitizers (adapted and modified from [43]) [61].

On day 0, THP-1 cells were seeded in T175 flasks (ThermoFischer Scientific, Merelbeke,
Belgium) at a density of 4 × 105 cells/mL in a complete THP-1 cell culture medium. Cells
were induced to differentiate into macrophage-like THP-1 cells (MΦ-THP-1) by the addition
of PMA at a concentration of 20 ng/mL. PMA was prepared as a stock solution (10 mg/mL)
in ultrapure absolute ethanol and stored at −20 ◦C. This stimulation process was carried
out for 48 h in a humidified incubator at 37 ◦C and 5% CO2. Subsequently, the PMA-
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supplemented medium was replaced with fresh THP-1 complete cell culture medium on
day 2.

On day 2, 6-well cell culture plates (Greiner Bio-One, Vilvoorde, Belgium) were filled
with hanging cell culture inserts, provided with a high pore density membrane with a sur-
face area of 4.5 cm2 and 5 µm pore size (cellQART, Sabeu, Northeim, Germany). The plates
with inserts were inverted to seed human endothelial cells, EA.hy926 (2.4 × 104 cells/cm2),
on the basolateral side of the insert semipermeable membrane. After the cells attached to
the membrane, the plate with inserts was returned to its original orientation, and A549
epithelial cells were seeded on the apical side of the cell culture inserts (6 × 104 cells/cm2).
Complete EA.hy926 cell culture medium was added to the basolateral compartment, and
both epithelial and endothelial cells were cultured to reach confluency over three days at
37 ◦C and 5% CO2.

On day 5, the cell culture medium was removed from both compartments and co-
culture medium consisting of a mix of 25 mM HEPES buffered DMEM (75%), RPMI-1640
(15%) and IMDM (10%) supplemented with 10% FBS (coculture 10% FBS medium) was
added.

On day 6, undifferentiated dendritic-like THP-1 (DC-THP-1) cells (1 × 106 cells/well)
were seeded in the wells of new 6-well suspension cell culture plates (Greiner Bio-One,
Vilvoorde, Belgium) using coculture medium consisting of a mix of HEPES buffered
DMEM (75%), RPMI (15%) and IMDM (10%) supplemented with 1% FBS (coculture 1%
FBS medium). The inserts containing the A549/EA.hy926 cells biculture were transferred
to the plates containing the DC-THP-1 cells. MΦ-THP-1 cells were washed with PBS
and were detached using Accutase for harvesting and seeding in the apical compartment
(2.4 × 104 cells/cm2) on the surface of the A549 cell monolayer. The medium for the tetra-
culture in vitro model was supplemented with 1% FBS to prevent excessive proliferation
of DC-THP-1 cells. The attachment of MΦ-THP-1 cells to the epithelial monolayer was
confirmed via light microscopy 4 h after seeding, and the medium was aspirated from the
apical compartment. The test system was kept for 24 h at the air-liquid interface (ALI)
before exposure.

2.4. Exposure

Exposure of ALIsens® was carried out using the TECAN D300e Digital Dispenser and
T8+ dispensehead cassettes (Tecan, Mechelen, Belgium). The test items were dispensed
onto the apical surface of the test system using the D300e Pattern software (version 1).
The dispenser accurately and reproducibly delivers solutions of test items solubilized in
pure DMSO or sterile water containing 0.1% Brij® 35 surfactant on the apical surface of
the test system. The circular pattern was composed of 200 droplets of a volume of 30 nL
each, arranged in a 0.5 × 0.5 mm grid format and spread over the apical surface area,
with a total single dispense volume of 6 µL per insert. Prior to exposure to the selected
test items, the impact of the two vehicles used for solution preparation on the viability
of the test system was assessed. Pure DMSO and sterile water containing 0.1% Brij®

35 surfactant were dispensed on the apical surface, and cell viability was assessed after
24 h of incubation concurrently with non-exposed inserts (incubator control). ALIsens®

was then exposed to increasing doses of the evaluated chemicals for 24 h to experimentally
determine the individual dose-response curves for viability of the: (1) cells comprised in
the apical compartment (A549+MΦ-THP-1), (2) EA.hy926 cells and (3) DC-THP-1 cells
from the basolateral compartment and mathematically calculate the dose-response curves
for cell viability of the (4) ALIsens® model as an average of the first three individual dose-
response curves. The dose-response curve of the ALIsens® model was used to calculate
the doses of investigated chemicals that reduce the cell viability of the test system by 25%,
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which were subsequently used to expose ALIsens® for the evaluation of endpoints for
respiratory sensitization. The minimum and maximum doses dispensed for each test item
are presented in Table 1.

2.5. Endpoint Measurements
2.5.1. Cell Viability

Cell viability of ALIsens® was measured using the resazurin assay. The test system
was exposed for 24 h to increasing doses (µg/cm2) of test items and the corresponding vehi-
cle controls. Coculture 1% FBS medium was supplemented with 20 mM resazurin sodium
salt stock solution prepared in PBS to reach a working concentration of 400 µM resazurin
(resazurin working solution). The hanging cell culture inserts were transferred from the
initial plates to new 6-well plates containing 1 mL of resazurin working solution to evaluate
the viability of EA.hy926 cells from the tetraculture, and 1 mL of resazurin working solution
was added in the apical compartment of the test system to evaluate the viability of A549
and MΦ-THP-1 cells from the tetraculture. To evaluate the viability of DC-THP-1 cells, 20
µL of resazurin stock solution was added to the cell suspension remaining in the wells of
the plate and homogenized by horizontal manual shaking to reach a final concentration of
400 µM resazurin. The plates containing the test system exposed to test items, and the cor-
responding vehicle controls were incubated at 37 ◦C, 5% CO2, in the dark for 1 h. Following
the incubation period, aliquots of coculture 1% FBS medium ± metabolized resazurin, re-
sorufin, were sampled from the apical (A549+ MΦ-THP-1) and basolateral (EA.hy926) side
of the hanging cell culture insert and from the well of the plate containing the DC-THP-1
cell suspension, and pipetted to a 96-well, flat-bottom microplate (Greiner Bio-One, Vilvo-
orde, Belgium). The absolute fluorescence intensity of resorufin was measured using the
TECAN Spark 20M multi-mode microplate reader (Tecan, Mechelen, Belgium) at 530 nm
excitation and 590 nm emission. Relative cell viability was calculated using Equation (1):

Cell viability =
Absolute fluorescence intensity of the sample − Blank

Absolute fluorescence intensity of the vehicle control − Blank
× 100 (1)

The exposure dose reducing the viability of ALIsens® by 25%, resulting in a 75%
residual cell viability (CV75) was calculated using Equation (2):

LogCV75 =
(75 − c)× Log(b)− (75 − a)× Log(d)

a − c
(2)

where a is the minimum value of cell viability over 75%, c is the maximum percentage of
cell viability below 75%, and b and d are the concentrations showing the percentage of cell
viability at a and c, respectively [37].

2.5.2. Flow Cytometry

DC-THP-1 cell suspensions were collected from the wells of the plates in conical
centrifuge tubes (Greiner Bio-One, Vilvoorde, Belgium) and were centrifuged for 5 min at
300× g. The cell pellets were resuspended and washed in PBS at room temperature. The
cells were centrifuged for 5 min at 300× g, the PBS wash was discarded, and the cells were
resuspended in PBS supplemented with 2% FBS. Cells were stained at 4 ◦C for 45 min using
commercially available fluorescent-labeled monoclonal antibodies: allophycocyanin (APC)
mouse anti-human TSLPr (clone 1F11/TSLPR), BrilliantTM Blue 515 (BB515) mouse anti-
human CD54 (clone HA58) and phycoerythrin (PE) mouse anti-human CD86 (clone 2331
(FUN-1)), and κ isotype-matched controls (mouse IgG1), APC (clone MOPC-21), BB515
(clone X40) and PE (clone MOPC-21) (BD Biosciences, Erembodegen, Belgium). 1 µM
SYTOXTM Blue Nucleic Acid Stain (InvitrogenTM ThermoFischer Scientific, Carlsbad, NM,
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USA) was used as a marker for non-viable cells. Expression of the cell surface markers
was measured using the BD FACSCelestaTM Cell Analyzer (BD Biosciences, Erembodegen,
Belgium), and data was collected using the BD FACSDivaTM software (version 9) provided
with the instrument for data acquisition. A total of 10,000 events were acquired per sample,
and further analysis was performed using FlowJo software (version 10) (BD Life Sciences,
Ashland, OR, USA). Relative geometric mean fluorescence intensities (rMFI) were expressed
as % compared to the vehicle control and calculated using Equation (3):

rMFI =
MFI sample − MFI isotype control of the sample

MFI vehicle control − MFI isotype control of the vehicle control
× 100 (3)

2.6. Graphics and Language

BioRender platform (Science Suite Inc., Toronto, ON, Canada) was used for the prepa-
ration of Figure 1. GraphPad Prism software (version 10) (GraphPad Software Inc., San
Diego, CA, USA) was used for the preparation of Figures 2–6. ChatGPT-3.5 artificial intelli-
gence (AI) language model (OpenAI, San Francisco, CA, USA) was used to improve the
language and readability of the manuscript. Mendeley Reference Manager software (ver-
sion 2) (Elsevier, Amsterdam, The Netherlands) was used to prepare the list of references.
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Figure 2. Viability of cells from the apical compartment (A549 and MΦ-THP-1), EA.hy926 and
DC-THP-1 cells and ALIsens® following exposure to pure DMSO and sterile water containing 0.1%
Brij® 35, relative to the incubator control. Data are expressed as mean ± SD of n = 1, N = 3. p values
(>0.05) were determined by one-way ANOVA, Dunnett’s post-hoc.
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Figure 3. Viability of ALIsens® (black hexagons and line), A549 and MΦ-THP-1 cells (blue cir-
cles and dotted line), EA.hy926 cells (pink triangles and dotted line) and DC-THP-1 cells (green
squares and dotted line) relative to the corresponding vehicle control following 24 h exposure to
the investigated chemicals (A) α-terpineol, (B) citric acid, (C) lactic acid, (D) chloroxylenol, (E) ethy-
lene glycol dimethacrylate, (F) eugenol, (G) imidazolidynil urea, (H) D-limonene, (I) benzylide-
neacetone, (J) trans-cinnamaldehyde, (K) 2-mercaptobenzothiazol, (L) 1,2-benzisothiazol-3(2H)-one,
(M) p-phenylenediamine, (N) diphenylcyclopropenone. Data are expressed as mean ± SEM of n = 1,
N ≥ 3.
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Figure 4. Expression of CD86 marker measured on the surface of DC-THP-1 cells following exposure
of ALIsens® for 24 h to (A) 0.5× CV75 dose and (B) CV75 dose of the evaluated chemicals, assessed
by flow cytometry. Data are expressed as mean ± SD of n = 1, of N = 3 (α-Terp, CA, ChX, IU, D-Lim,
DPC), N = 4 (LA, EGD, Eug, Cinn, 2-MBT, pPD), N = 5 (BZI); N = 6 (BA) for the 0.5× CV75 exposure
dose and of N = 3 (α-Terp, CA, ChX, D-Lim, BA, DPC), N = 4 (LA, EGD, Eug, Cinn, 2-MBT, BZI) for
the CV75 exposure dose. p values were determined by one-sample t-test. p ≤ 0.05 = *, p ≤ 0.01 = **.
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Figure 5. Expression of CD54 marker measured on the surface of DC-THP-1 cells following expo-

sure of ALIsens® for 24 h to (A) 0.5× CV75 and (B) CV75 of the evaluated chemicals, assessed by 
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Figure 5. Expression of CD54 marker measured on the surface of DC-THP-1 cells following exposure
of ALIsens® for 24 h to (A) 0.5× CV75 and (B) CV75 of the evaluated chemicals, assessed by flow
cytometry. Data are expressed as mean ± SD of n = 1, of N = 3 (α-Terp, CA, ChX, IU, D-Lim, DPC),
N = 4 (LA, EGD, Eug, Cinn, 2-MBT, pPD), N = 5 (B ZI); N = 6 (BA) for the 0.5× CV75 exposure dose
and of N = 3 (α-Terp, CA, ChX, D-Lim, BA, DPC), N = 4 (LA, EGD, Eug, Cinn, 2-MBT, BZI) for the
CV75 exposure dose. p values were determined by one-sample t-test. p ≤ 0.05 = *, p ≤ 0.01 = **.
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Figure 6. Expression of TSLPr marker measured on the surface of DC-THP-1 cells following exposure
of ALIsens® for 24 h to (A) 0.5× CV75 and (B) CV75 of the evaluated chemicals, assessed by flow
cytometry. Data are expressed as mean ± SD of n = 1, of N = 3 (α-Terp, CA, ChX, IU, D-Lim, DPC),
N = 4 (LA, EGD, Eug, Cinn, 2-MBT, pPD), N = 5 (BZI); N = 6 (BA) for the 0.5× CV75 exposure dose
and of N = 3 (α-Terp, CA, ChX, D-Lim, BA, BZI, DPC), N = 4 (LA, EGD, Eug, Cinn, 2-MBT) for the
CV75 exposure dose. p values were determined by one-sample t-test. p ≤ 0.05 = *, p ≤ 0.01 = **.

2.7. Statistical Analysis

Data are presented as mean ± standard deviation (SD) or standard error of the mean
(SEM). The number of technical replicates (n), biological replicates (N), and statistical
tests are indicated in the figures’ descriptions. Data from the cell viability dose-response
curves was used to calculate the CV75 value. Differences between control and exposed
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groups were evaluated for the vehicle impact on the viability of ALIsens® and cell surface
marker expression and were considered statistically significant if p-values were p ≤ 0.05 = *,
p ≤ 0.01 = **. Data were analyzed using GraphPad Prism software (version 10).

3. Results
3.1. Cell Viability

3.1.1. Vehicle Impact on the Viability of ALIsens®

The test items solutions were prepared in pure DMSO and sterile water with 0.1%
Brij® 35 surfactant and were delivered on the apical surface of ALIsens® using the TECAN
D300e digital dispenser. DMSO is a vehicle frequently used for the dissolution of chemicals
that are tested in cell culture and is usually used at a concentration that does not influence
the test and the viability of the cell lines used in the method [62], being usually diluted in
the exposure vehicle. Brij® 35, a nonionic surfactant, was added to the aqueous solution to
be dispensed to reduce the surface tension. Surfactants are irritants [63], and they can lead
to cytotoxic effects in in vitro studies employing cell lines [64]. In our study, the solutions
of tested chemicals were directly applied to the apical compartment of ALIsens® in a
pattern of 200 droplets, each containing 30 nL, covering the entire surface of the apical
compartment. The impact of the vehicles used for the preparation of solutions of tested
chemicals on the viability of the in vitro test system was evaluated against a non-exposed
sample, the incubator control. Data reveals that direct application of pure DMSO and sterile
water containing 0.1% Brij® 35 surfactant did not have a significant impact on the viability
of any of the cell types comprised in the in vitro alveolar test system (Figure 2).

3.1.2. Dose-Response Curves of Evaluated Chemicals

The viability of ALIsens® was evaluated 24 h post-exposure using the resazurin
assay. This allowed the determination of the dose-response curve of each tested chemical
that provided the data to calculate the final exposure doses (µg/cm2) for the analysis
of sensitization potential. The standard ALIsens® protocol requires that the respiratory
sensitization potential is tested 24 h post-exposure using an exposure dose of the test item,
leading to a 25% reduction of cell viability (residual cell viability of 75%), CV75 [43].

The cell viability assay has shown that all tested chemicals (Figure 3), with the excep-
tion of D-limonene (Figure 3H), reduced the viability of cells with increasing exposure dose.
This allowed the calculation of the CV75 dose for the chemicals which reduced the viability
of the test system by more than 25%. The calculated doses that were used for exposures for
the evaluation of respiratory sensitization markers are presented in Table 2. As D-limonene
did not reduce the cell viability of ALIsens® under 75%, the highest exposure dose from
the range of doses applied for the generation of the dose-response curve (750 µg/cm2)
and 0.5× 750 µg/cm2 (375 µg/cm2) were used for the exposures for the assessment of
respiratory sensitization endpoints.

Following exposure to increasing doses of citric acid (Figure 3B), chloroxylenol
(Figure 3D), eugenol (Figure 3F), trans-cinnamaldehyde (Figure 3J), 2-mercaptobenzothiazol
(Figure 3K), 1,2-benzisothiazol-3(2H)-one (Figure 3L), p-phenylenediamine (Figure 3M)
and diphenylcyclopropenone (Figure 3N), all cell types comprised in the ALIsens® model
exhibit a uniform response, with the viability of each cell type steadily decreasing as the ex-
posure dose increases. α-Terpineol (Figure 3A), chloroxylenol (Figure 3D), ethylene glycol
dimethacrylate (Figure 3E) and D-limonene (Figure 3H) exposures had the highest impact
on the EA.hy926 cells. The viability of DC-THP-1 cells does not consistently decrease
with increasing doses of α-terpineol (Figure 3A), lactic acid (Figure 3C), ethylene glycol
dimethacrylate (Figure 3E) and D-limonene (3H). Overall, these chemicals have minimal to
no impact on the viability of DC-THP-1 cells. On the other hand, DC-THP-1 cells seem to
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be the most sensitive cells of the ALIsens® model upon exposure to imidazolidinyl urea
(Figure 3G), benzylideneacetone (Figure 3I), 1,2-benzisothiazol-2(3H)-one (Figure 3L) and
diphenylcyclopropenone (Figure 3N).

Table 2. Calculated 75% cell viability (CV75) exposure dose value and 0.5× CV75 exposure dose
values for ALIsens® exposed for 24 h to the evaluated chemicals.

Chemical CV75 1 (µg/cm2) 0.5× CV75 2 (µg/cm2)

α-Terpineol 41.4 20.7
Citric acid 278 139
Lactic acid 346.4 173.2

Chloroxylenol 8.25 4.13
Ethylene glycol dimethacrylate 112.9 56.5

Eugenol 28.5 14.2
Imidazolidynil urea 75.5 37.8

D-Limonene 750 * 375 **
Benzylideneacetone 31.9 15.9

Trans-Cinnamaldehyde 26.2 13.1
2-Mercaptobenzothiazol 13.1 6.6

1,2-Benzisothiazol-3(2H)-one 16.4 8.2
p-Phenylenediamine 20.4 10.2

Diphenylcyclopropenone 4.62 2.31
1 The exposure doses resulting in 75% residual cell viability of the 24 h exposed ALIsens®, expressed in µg/cm2.
2 The exposure doses multiplied with a factor of 0.5 resulting in 75% residual cell viability of the 24 h exposed
ALIsens®, expressed in µg/cm2. *—maximum exposure dose; **—0.5× maximum exposure dose.

3.2. Cell Surface Markers Expression

The CD86, CD54, and TSLPr cell surface markers expression measured on DC-THP-1
cells from the exposed ALIsens® model are presented in Figure 4, Figure 5, and Figure 6,
respectively.

α-Terpineol enhanced the expression of CD54 and CD86 markers on the surface of
DC-THP-1 cells following exposure of the ALIsens® model. Expression of CD86 (140% for
0.5× CV75 exposure dose and 167% for CV75 exposure dose) (Figure 4) and CD54 (183%
for 0.5× CV75 exposure dose and 245% for CV75 exposure dose) (Figure 5) markers was
significantly induced at both tested doses of α-terpineol, exceeding the 150% and 200%
thresholds, respectively, at the CV75 exposure dose (Figures 4B and 5B). No significant
induction of the TSLPr cell surface marker was observed following exposure to the 0.5×
CV75 and CV75 doses of α-terpineol, which resulted in an upregulation of 118% and 101%
as compared to control, respectively (Figure 6A,B). Chloroxylenol significantly increased
the expression of CD54 cell surface marker following exposure to both exposure doses
(129% for 0.5× CV75 and 207% for CV75) (Figure 5A,B) and over the 200% threshold
following exposure to CV75 exposure dose (Figure 5B). No significant increase in the
expression of the other investigated markers, CD86 and TSLPr, was observed following
exposure to the two doses of chloroxylenol (Figures 4 and 6).

Imidazolidinyl urea exposure significantly increased the expression of CD54 (249%)
and TSLPr (279%) markers and over the 200% threshold for the CD54 marker at 0.5×
CV75 dose. Benzylideneacetone significantly enhanced the expression of CD54 cell surface
marker at the lower exposure dose, 0.5× CV75 (150%) (Figure 5A), with an increase in
expression over the 200% threshold following exposure to CV75 dose (Figure 5B). Both
evaluated exposure doses of benzylideneacetone (0.5× CV75 and CV75) significantly
induced the expression of CD86 (Figure 4A,B) and TSLPr (Figure 6A,B) cell surface markers.

Trans-Cinnamaldehyde significantly upregulated TSLPr expression on the surface of
DC-THP-1 cells following exposure to both doses of 0.5× CV and CV75, resulting in values
of 120% and 137%, respectively, as compared to control (Figure 6A,B).

Diphenylcyclopropenone significantly induced the expression of CD54 cell surface
marker up to 463%, over the 200% threshold, at the CV75 exposure dose (Figure 5B).
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For two evaluated chemicals, imidazolidinyl urea and p-phenylenediamine, the expres-
sion of the cell surface markers following exposure to the CV75 doses was not calculated,
as the cell viability of DC-THP-1 cells measured with SYTOXTM Blue in the flow cytometric
readings, was lower than 75%). A low cell viability of the cells can lead to potential diffuse
labeling of cytoplasmic structures as a result of cell membrane destruction [35], and this
could render false-positive or false-negative results. Imidazolidinyl urea reduced the cell
viability of the DC-THP-1 cells from ALIsens® below 75% already at the first testing dose
from the dose-response curve, 60 µg/cm2. It also significantly increased the expression of
the CD54 cell surface marker at the 0.5× CV75 exposure dose (37.8 µg/cm2), surpassing
the 200% threshold set by the h-CLAT assay. Additionally, this skin sensitizer significantly
induced the expression of the TSLPr marker on the surface of DC-THP-1 cells up to the
value of 279%.

The accuracy of the three proposed thresholds for TSLPr cell surface marker expression
to correctly identify skin sensitizers and non-sensitizers as non-respiratory sensitizers was
determined using data from all 14 evaluated chemicals at the 0.5× CV75 dose. For the
CV75 dose, accuracy was calculated based on data from 12 chemicals, as the data from
exposures to imidazolidinyl urea and p-phenylenediamine were not included due to low
DC-THP-1 cell viability, which prevented the evaluation of cell surface marker expression.
At the 0.5× CV75 dose, an accuracy of 79% was observed for the 120 threshold, while
86% accuracy was achieved for both the 150% and 200% thresholds. At the CV75 dose,
the accuracy was 67% for the 120 thresholds and 92% for the 150% and 200% thresholds
(Table 3).

Table 3. Summary data for TSLPr expression following exposure to the investigated chemicals to
0.5× CV75 and CV75 exposure doses.

Exposure Dose (µg/cm2) 0.5× CV75 CV75

Tentative Threshold (%) 120 150 200 120 150 200

α-Terp - - - - - -
CA - - - - - -
ChX - - - + - -
LA - - - - - -

EGD - - - - - -
Eug - - - - - -
IU + + + n/a n/a n/a

D-Lim - - - - - -
BA + + + + + +

Cinn + - - + - -
2-MBT - - - + - -

BZI - - - - - -
p-PD - - - n/a n/a n/a
DPC - - - - - -

Accuracy (%) 79 86 86 67 92 92
rMFIs (%) of TSLPr expression on the surface of DC-THP-1 cells were compared to three tentative criteria: 120%,
150% and 200%. + represents a rMFI value of TSLPr ≥ tentative criterion, and “-” means a rMFI value of TSLPr <
tentative criterion. n/a represents not available data.

4. Discussion
AOP 40 outlines the mechanisms of skin sensitization, providing comprehensive

insights into the skin sensitization pathway, making it the gold standard in the field [11].
This AOP serves as a starting point for understanding respiratory sensitization [30]. It
informs AOP 39 [65] by offering a well-established framework for studying the molecular
and cellular processes that lead to sensitization, including KEs such as hapten binding
to skin proteins, cellular activation, and cytokine release. Since the immune mechanisms
underlying skin and respiratory sensitization share similarities along the events of the two
AOPs, with the main difference between skin and respiratory sensitization being the type
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of adaptive immune responses [12], the detailed guidance in AOP 40 helps researchers
apply these principles to respiratory outcomes in AOP 39, supporting the development of
non-animal testing strategies for respiratory sensitization. Gaining further knowledge of
the mechanisms involved in the process of respiratory sensitization is critical for advancing
the development of accurate assays [30].

The adverse outcomes (AOs) from exposure to different sensitizers vary, with respira-
tory sensitizers causing allergic reactions in the respiratory system, leading to conditions
like asthma, rhinitis, or other respiratory tract issues [8], while skin sensitizers trigger
allergic reactions in the skin, resulting in allergic contact dermatitis (ACD) or eczema. The
severity of AOs is closely linked to their effect on an individual’s health and quality of life.
Since the impact of these two factors varies, along with the type of treatment required, it is
important to distinguish between the two classes of sensitizers. In addition, sensitization
in one system can potentially exacerbate sensitization in the other, leading to more severe
allergic reactions overall.

The exposure route is another aspect that needs to be considered in the context of
sensitization, as skin sensitizers typically induce sensitization upon skin contact, while
respiratory sensitizers primarily induce sensitization through inhalation. There is consid-
erable evidence suggesting that respiratory sensitization can be acquired as a result of
skin exposure [10,66–68]. Accurate identification of respiratory sensitizers is crucial for
implementing effective preventive measures and minimizing exposure risks in occupa-
tional and environmental settings. Over-classifying chemicals as respiratory sensitizers
can lead to unnecessary costs from additional workplace controls or regulatory bans, while
under-classification compromises worker safety. Therefore, distinguishing respiratory
sensitizers from skin sensitizers and non-sensitizers/respiratory irritants is essential for
balanced protection and cost management [9].

The validated in vitro test systems for the evaluation of skin sensitizers cannot dif-
ferentiate between skin and respiratory sensitizers [22], and moreover, some respiratory
sensitizers which have been classified as sensitizers in the LLNA, yield false-negative
results in some of the methods used for the evaluation of skin sensitizers, such as phthalic
anhydride, a respiratory sensitizer [13,21], which tested negative in the h-CLAT assay [56].
The primary focus of ALIsens® is to correctly identify the respiratory sensitization hazard of
LMW chemicals. The test system proved to correctly identify acid anhydrides as respiratory
sensitizers based on the selection of biomarkers, either expressed on the surface of DCs or
secreted into the cell culture medium from the basolateral compartment of the model [43].
Nevertheless, further chemicals from the reference lists of respiratory sensitizers [21,69,70]
need to be evaluated to define the capacity and the accuracy of the model to identify
such allergens.

In the development of ALIsens®, the decision of positive or negative with respect to
respiratory sensitization was based on statistically significant differences in the expression
of evaluated cell surface markers (CD54, CD86, TSLPr) measured on at least three biological
replicates. In the h-CLAT prediction model, each test item is evaluated in at least two
independent runs to derive a single prediction. If the first two runs are not concordant for at
least one of the two markers, a third run is needed, and the final prediction is based on the
majority result of the three individual runs. The upregulation of CD54 or/and CD86 mark-
ers of at least or greater than 200% and 150%, respectively, confirms THP-1 cell activation,
representing KE3 [37], a common KE for skin and respiratory sensitization [10,12].

This study aimed to assess the response of ALIsens® by analyzing changes in the
expression of cell surface markers when exposed to skin sensitizers and non-sensitizers
to evaluate the specificity of the model to correctly identify respiratory sensitizers and
differentiate between skin and respiratory sensitizers. In particular, we sought to iden-

23



Toxics 2025, 13, 29

tify the most indicative marker(s) and propose a preliminary threshold that could accu-
rately identify skin sensitizers, non-sensitizers and non-respiratory sensitizers. To achieve
this, we tested a panel of chemical substances for their potential to increase the expres-
sion of CD86, CD54 and TSLPr cell surface markers on DC-THP-1 cells. The study in-
cluded skin sensitizers of varying potency (weak, moderate, strong, and extreme) and
non-sensitizers, most of which are proficiency chemicals from the OECD TG for the evalua-
tion of skin sensitizers (lactic acid, ethylene glycol dimethacrylate, eugenol, imidazolidinyl
urea, D-limonene, benzylideneacetone, trans-cinnamaldehyde, 2-mercaptobenzothiazole,
para-phenylenediamine) [37,57,58]. TSLPr has been previously identified as a promising
and reliable marker for correctly detecting respiratory sensitizers and distinguishing them
from non-sensitizers [43]. However, since no skin sensitizers were included in previous
studies, it remained unclear whether ALIsens® could correctly identify respiratory sensitiz-
ers and potentially differentiate them from skin sensitizers and non-sensitizers [9,43].

Among the tested skin sensitizers, α-terpineol led to a significant increase in the
expression of CD86 and CD54 cell surface markers at both exposure doses applied to
ALIsens® for 24 h. For terpineol, a mixture of the four isomers, α-, β-, γ- and terpin-4-ol,
with the α-terpineol as principal constituent, there is no concern for skin sensitization [71].
In the h-CLAT assay, α-terpineol was found positive, as it enhanced the expression of
CD54 cell surface marker, but in the “2 out of 3” integrated approach, it was classified as a
non-sensitizer, as it scored negative [59]. Our findings for α-terpineol are in accordance
with the results from the h-CLAT assay. α-terpineol did not enhance the expression of the
TSLPr cell surface marker, neither in a significant manner nor over the tentative thresholds,
indicating that ALIsens® can correctly identify α-terpineol as a non-respiratory sensitizer.
Imidazolidinyl urea, tested at the 0.5× CV75 exposure dose, significantly increased the
expression of CD54 and TSLPr cell surface markers, surpassing the established threshold of
200% in the h-CLAT assay and the proposed tentative criterion of 200%, respectively. This
skin sensitizer yielded positive results in the h-CLAT assay for both evaluated cell surface
markers, CD86 and CD54 [56]. Benzylideneacetone elevated the expression of TSLPr on the
surface of DC-THP-1 cells at both tested exposure doses, surpassing the tentative threshold
of 200% for TSLPr at both the 0.5× CV75 and CV75 doses. Chloroxylenol increased TSLPr
expression beyond the proposed 120% threshold at the CV75 exposure dose, and trans-
cinnamaldehyde increased the expression of the TSLPr cell surface marker at both exposure
doses, over 120%, though it remained under 150% rMFI value. 2-mercaptobenzothiazole
increased the expression of TSLPr over the 120% proposed threshold, but only at the low
tested dose.

In the development of the h-CLAT assay, three arbitrary thresholds, relative fluores-
cence intensity (RFI) values of 120%, 150%, and 200%, were selected to evaluate the assay’s
ability to correctly distinguish skin sensitizers from non-sensitizers. Two independent
experiments were conducted at two laboratories, each testing four doses for each test
item. The mean RFI values for CD86 and CD54 cell surface markers and cell viability
were determined from these two independent experiments to assess accuracy across the
selected thresholds [36]. A similar approach was applied in this study, and the obtained
data facilitated the calculation of ALIsens® accuracy in identifying skin sensitizers and
non-sensitizers based on the proposed thresholds. The ALIsens® model was exposed to
two evaluated doses of each chemical, with at least three biological replicates per condition,
to assess the rMFI values for TSLPr, CD54, and CD86 cell surface markers.

For the tentative criterion rMFI of 120%, the lowest accuracy was observed for both
exposure conditions (0.5× CV75 and CV75) with values of 79% and 67%, respectively.
For the 150% and 200% tentative criteria, an accuracy of 86% was observed for the 0.5×
CV75 exposure dose and 92% for the CV75 exposure dose. It has been previously observed
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that activation of dendritic cells requires a certain level of toxicity [72,73], and at the same
time, respiratory sensitization is a threshold-based phenomenon [66]. The accuracy for the
thresholds of 150% and 200% was consistent across both exposure doses, with the 150%
threshold emerging as the most suitable for effectively identifying skin sensitizers and
non-sensitizers as non-respiratory sensitizers in the ALIsens® model.

Cell viability is the gatekeeper assay in the evaluation of immunotoxic effects, and as
a subtoxic dose was successfully used for the evaluation of skin sensitizers [74], a robust
approach should be used. The expression for the evaluated cell surface markers was not
evaluated for two tested chemicals at the CV75 exposure dose due to the low cell viability
of the DC-THP-1 cells in the flow cytometric analysis. Therefore, an alternative approach
should be developed for the testing of chemicals that significantly reduce the viability of
THP-1 cells used as a model for dendritic cells in the test system but have minimal to no
impact on the other cell types (i.e., A549, EA.hy926) used for the build-up of ALIsens®.
Calculating the CV75 solely from the DC-THP-1 cell viability data acquired following
exposure of ALIsens® to such chemicals would represent a potential solution to ensure, on
the one hand, that the dendritic cells were exposed to the test item indirectly, through the
alveolo-capillary barrier, while on the other hand, the population of viable cells is more or
less 75%, in order not to hamper the measurements of cell surface markers.

The cell viability information is important in evaluating the potential of substances to
induce sensitization in the respiratory tract since ALIsens® addresses a biological mecha-
nism, the modulation of the expression of cell surface phenotypic markers associated with
the maturation of DC-THP-1 cells. Despite its simplicity, the cell viability assay showed the
complexity of the tetraculture model, as the different types of cells of ALIsens® respond in
a particular way following exposure to low molecular weight chemicals belonging to differ-
ent chemical classes. Delivery of test items in the apical compartment did not necessarily
reduce the cell viability of the combination of epithelial and macrophage-like THP-1 cells
to a greater extent than reducing the viability of cells from the basolateral compartment,
endothelial or dendritic-like THP-1 cells. These data suggest that the different cellular
components of a complex alveolar in vitro test system may have certain implications in
the mechanism of respiratory sensitization. The dissection of the model to evaluate the
independent contribution of each cell type of the alveolo-capillary barrier and their indi-
vidual and orchestrated impact on the dendritic cells could help connect some dots in the
mechanism of respiratory sensitization.

In this study, we evaluated the third KE of the respiratory sensitization AOP, high-
lighting that ALIsens® is a promising complex 3D NAM for the evaluation of respiratory
sensitization hazard. The cellular components and the architecture of the model designed
for the identification of respiratory sensitization could also contribute to the differentiation
of respiratory sensitizers from skin sensitizers and non-sensitizers based on the second KE
(KE2), the activation of danger signals through the release of inflammatory cytokines and
chemokines [10,43]. Secreted markers GM-CSF, macrophage inflammatory protein-3-alpha
(MIP-3α)/CCL20 and IL-10 have been identified as predictive markers for the correct
classification of acid anhydrides in a linear discriminant analysis [43]. Several other in vitro
NAMs developed for the evaluation of chemicals to induce respiratory sensitization also
addressed the KE2 of the AOP and measured the expression or secretion of cytokines
and chemokines, including IL-6, IL-8, IL-18, monocyte chemoattractant protein-1 (MCP-
1)/chemokine ligand (CCL)2, growth regulated oncogene-a (GRO-α)/C-X-C motif (CX)CL1,
and regulated on activation, normal T cell expressed and secreted (RANTES)/CCL5, IL-1a,
tumor necrosis factor (TNF-α) [41,75–77]. As respiratory sensitization can be acquired
following skin exposure, NAMs dedicated to the detection of skin sensitizers could be
used to classify the two types of sensitizers and additionally provide a deeper understand-
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ing of the differences in the molecular mechanisms of respiratory and skin sensitization.
Specifically, an in vitro study using keratinocytes as a cellular model evaluating IL-18 levels
following exposure to skin and respiratory sensitizers concluded that the two evaluated
respiratory sensitizers did not increase the intracellular cytokine concentration [78]. A
panel of inflammatory markers, including, but not limited to, cytokines and chemokines
previously identified as promising markers for the identification of respiratory sensitizers,
could be incorporated in future studies to evaluate the response of ALIsens® following
exposure to respiratory and skin sensitizers as well as non-sensitizer.

5. Conclusions
The correct identification of respiratory sensitizers and differentiating them from

skin sensitizers is crucial for the protection of human health, ensuring regulatory compli-
ance, promoting occupational safety, and facilitating informed decision-making in various
contexts, including product labeling and medical care.

By conducting this study, our aim was to answer several questions: (a) can the test
system correctly identify skin sensitizers and non-sensitizers and potentially differentiate
them from respiratory sensitizers? (b) what is/are the specific biomarker(s) that should
be measured to correctly classify chemicals as respiratory sensitizers, and (c) what is
the threshold for this/these biomarker(s) that provide the best specificity? Based on the
obtained results and the calculated accuracy values for the TSLPr cell surface marker, we
can conclude that ALIsens® has the potential to identify skin sensitizers and not harmful
chemicals as non-respiratory sensitizers. However, since no respiratory sensitizers were
included in this study, it is essential to further validate the tentative 150% threshold with
a larger dataset comprising data of respiratory sensitizers tested in ALIsens® to ensure
robust conclusions.

These findings can fill a knowledge gap in the AOP for respiratory sensitization
and provide insights that can inform both the scientific community and the regulatory
bodies. The findings of this research have the potential to pave the way towards a better
understanding of the mechanisms of respiratory sensitization, ultimately contributing to the
identification of respiratory sensitizers in the early development phases of novel chemicals
and molecules across various industries, with the main goal of protecting human health.
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Abstract: Skin sensitization is a significant concern for chemical safety assessments. Traditional
animal assays often fail to predict human responses accurately, and ethical constraints limit the
collection of human data, necessitating a need for reliable in silico models of skin sensitization
prediction. This study introduces HuSSPred, an in silico tool based on the Human Predictive Patch
Test (HPPT). HuSSPred aims to enhance the reliability of predicting human skin sensitization effects
for chemical agents to support their regulatory assessment. We have curated an extensive HPPT
database and performed chemical space analysis and grouping. Binary and multiclass QSAR models
were developed with Bayesian hyperparameter optimization. Model performance was evaluated
via five-fold cross-validation. We performed model validation with reference data from the Defined
Approaches for Skin Sensitization (DASS) app. HuSSPred models demonstrated strong predictive
performance with CCR ranging from 55 to 88%, sensitivity between 48 and 89%, and specificity
between 37 and 92%. The positive predictive value (PPV) ranged from 84 to 97%, versus negative
predictive value (NPV) from 22 to 65%, and coverage was between 75 and 93%. Our models exhibited
comparable or improved performance compared to existing tools, and the external validation showed
the high accuracy and sensitivity of the developed models. HuSSPred provides a reliable, open-access,
and ethical alternative to traditional testing for skin sensitization. Its high accuracy and reasonable
coverage make it a valuable resource for regulatory assessments, aligning with the 3Rs principles. The
publicly accessible HuSSPred web tool offers a user-friendly interface for predicting skin sensitization
based on chemical structure.

Keywords: skin sensitization; computational toxicology; QSAR; cheminformatics; NAMs

1. Introduction

Skin sensitization testing is employed to determine the potential for a substance
to cause allergic contact dermatitis in susceptible individuals [1]. United States and in-
ternational regulatory authorities require or recommend that chemical manufacturers
conduct tests that assess skin sensitization hazards [2]. The most common tests are the
human repeat insult patch test, human maximization test, murine local lymph node assay
(OECD TG 429 [3]), guinea pig maximization test (OECD TG 406 [4]), and Buehler test
(OECD TG 406 [4]), although several non-animal tests now exist (OECD TG 442C; OECD
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TG 442D; OECD TG 442E; OECD TG 497) [5–8]. Despite the widespread use of animal
tests, it has been shown that animal-based assay outcomes do not always equate with
human responses [9] and that animal models are less reproducible than other alternative
methods [10].

Human data provide the most accurate assessment of sensitization potential, but
ethical considerations preclude the intentional induction of sensitization in human subjects,
resulting in limited availability of such data. Despite this sparsity, the human repeat insult
patch test (HRIPT) and the human maximization test (HMT) provide sufficient information
on the potential of substances to cause allergic contact dermatitis. These assays include
results detailing the dose per skin area (DSA) causing induction of sensitization, the number
of individuals sensitized, and other parameters reflecting the sensitization potency from
test substances. Reliable in silico models leveraging human assay data for skin sensitization
predictions could support improved regulatory assessments.

Computational methods have become increasingly vital in toxicology in light of the
three Rs (reduce, refine, and replace) of animal testing. In silico approaches are cost-effective,
safe, and ethical alternatives to traditional animal and human testing. One computational
approach explored here is machine learning (ML), in which algorithms enable systems to
learn and improve from experience without being explicitly programmed [11]. Various
computational models for skin sensitization already exist (Table 1).

Table 1. Overview of existing skin sensitization prediction software.

Title Computational Approach Species/Assay Access

StopTox [12] QSAR Mice/LLNA Free
PredSkin [13] QSAR Mice/LLNA Free

CASE Ultra [14] Structural alerts Mice/LLNA Commercial

Derex Nexus [15,16] Structural alerts Expert
system Mice/LLNA Commercial

OECD QSAR Toolbox [17] QSAR and read-across - * Free
VEGA [18] Read-across - Free

ToxTree [19] Structural alerts - Free

TOPKAT [15] QSAR Rat & Other/
Multiple Commercial

* Cells without input indicate that this information is not publicly available or multiple models are encompassed
in the tool, making a single answer not applicable.

The purpose of this work is to present HuSSPred, an in silico human predictive patch
test (HPPT)-based tool for Human Skin Sensitization Prediction from the human repeat
insult patch test (HRIPT) and the human maximization test (HMT) (Figure 1). This study
continues the series of our previous works on skin sensitization [20–22], extending the
strategy that we developed earlier [23] in modeling human data. Using an extensively
curated HPPT database, we developed QSAR models using random forest (RF), LightGBM,
and support vector machine (SVM) algorithms with Bayesian hyperparameter optimiza-
tion. Our models exhibit comparable or improved performance versus existing tools.
We conclude that HuSSPred is one of the first tools built strictly with human data and
validated with skin sensitization-defined approaches (DA) [24,25]. This tool provides
a reliable, cost-effective, and ethical alternative to traditional testing for skin sensitiza-
tion. Its accuracy and reasonable coverage make it a valuable resource for regulatory
assessments, aligning with the three Rs principles. Furthermore, the HuSSPred web tool
(https://husspred.mml.unc.edu/, accessed on 18 October 2024) is publicly accessible and
offers a user-friendly interface for predicting skin sensitization based on chemical structure.
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Figure 1. General study design of HuSSPred. Experimental data were collected from the HPPT
test results and combined with the HPPT GHS Classifications database. All entries were carefully
curated following best practices in the field. Molecular descriptors were calculated and selected
to build skin sensitization QSAR models. SHAP analysis was performed to enhance the model’s
interpretability. The best-performing QSAR models were deployed as a web tool, HuSSPred, available
at https://husspred.mml.unc.edu/, accessed on 18 October 2024.

2. Materials and Methods
2.1. Data Collection and Curation

We collected chemical data from the NICEATM human predictive patch test (HPPT) [26,27]
and the HPPT Classifications according to the Globally Harmonized System of Classifica-
tion and Labelling of Chemicals (GHS) [28]. The HPPT database contains 2277 entries for
1366 unique chemicals. Using Chemical Abstracts Service Registry Number (CASRN), the
HPPT data were harmonized with the Dose per Skin Area (DSA05) classifications database,
resulting in 2014 entries. The data sets were then biologically and chemically curated
according to the best practices in the field [29–31]. As for chemical curation, we removed
mixtures, inorganics, and large organic compounds, removed counterions, cleaned and
neutralized salts, and normalized chemotypes using the ChemAxon Standardizer soft-
ware [32]. We followed one of the two appropriate procedures for handling duplicates: (i) if
the outcomes of all duplicates were concordant (from a hazard perspective), one record
was kept with the respective outcome; (ii) if any outcomes disagreed, they were removed.
The HPPT data contained four different weight-of-evidence approaches with skin sensitiza-
tion outcomes: the median location-like parameter (MLLP), median sensitization potency
(MSPE), weight of evidence (WoE), and overall weight of evidence (WES). Most curation
steps were performed through Konstanz Information Miner (KNIME) [33–35].

2.1.1. Binary Data Curation

After combining the two data sets, we kept only binary labeled outcomes (sensitizers
(1) and non-sensitizers (NCs)). Entries with missing outcomes were removed. Then, the
dataset-specific curation began for each weight-of-evidence approach, through which we
removed outcome entries with the label “unavailable” for MLLP, MSPE, WoE, and WES;
this process was performed separately, resulting in 4 independent datasets. Compounds
for which the SMILES could not be retrieved were also removed. We labeled all sensitizers
as Class 1 and non-sensitizers as Class 0. The resulting data sets were exported as SD files
into Python for model development (available in Supplemental File S1).
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2.1.2. Multiclass Data Curation

The collected data contained multiclass GHS classifications for skin sensitization
potency. The outcome labels were mapped to numbers for model building, where NC
(non-sensitizer), 1B (weak sensitizer), and 1A (strong sensitizer) were mapped to classes
0, 1, and 2, respectively. We removed compounds with missing outcomes and SMILES
from each weight-of-evidence approach. The four multiclass data sets are available in
Supplemental File S1.

2.1.3. Continuous Data Curation

The data set entries also included continuous values for the dose per skin area (DSA),
dose per skin area for potential sensitization of 5% of the tested population (DSA05), and
dose per skin area for potential sensitization of at least 1 individual (DSA01+). We excluded
compounds with missing outcomes, applied our standard chemical curation workflow,
and calculated the median for compounds with multiple entries. We applied a logarithmic
transformation to the DSA values.

2.2. Classification QSAR Modeling
2.2.1. Calculation of Molecular Fingerprints

The RDKit package [36] was used to calculate extended-connectivity fingerprints
with a diameter of 4 (ECFP4) and 2048 bits [37]. Molecular ACCess System (MACCS,
version 3) Fingerprints [36], Mordred [38], and Saagar descriptors [39] were also used for
model development.

2.2.2. Model Development and Performance Assessment

Models were developed with either RF, LightGBM, or SVM algorithms. QSAR models
were developed and validated according to the best practices in cheminformatics [40]. In the
RF algorithm, trees were decorrelated via bootstrapping with replacement; in LightGBM, a
gradient-boosting algorithm optimizes model performance through a leaf-wise tree con-
struction approach. Models using LightGBM [41] and RF [42] were implemented through
Scikit-learn, v.1.4.0 [43]. The SVM algorithm finds the optimal hyperplane that maximizes
the margin between distinct classes in a multidimensional feature space, thereby enabling
robust data point classification. These three ML algorithms were also utilized in similar
studies, and they are dominant in the field based on a balance between computational
efficiency, predictivity, and interpretability [44].

For binarized models (non-sensitizers vs. sensitizers), the following statistical metrics
were used to assess the performance of the classification models (Equations (1)–(5)):

Sensitivity (SE):

SE =
NTP

NTP + NFN
, (1)

Specificity (SP):

SP =
NTN

NTN + NFP
, (2)

Correct classification rate (CCR):

CCR =
SE + SP

2
, (3)

Positive predictive value (PPV):

PPV =
NTP

NTP + NFP
, (4)
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Negative predictive value (NPV):

NPV =
NTN

NTN + NFN
(5)

N represents the number of compounds, NTP and NTN represent the number of true
positives and negatives, respectively, and NFP and NFN represent the number of false
positives and false negatives, respectively.

For binary classification models, compounds labeled as skin sensitizers were classified
as positive (Class 1), and non-sensitizing compounds were classified as negative (Class 0).

For multiclass classification, compounds are labeled as non-sensitizers (Class 0), weak
sensitizers (Class 1), or strong sensitizers (Class 2). The one-vs.-rest approach was used
when calculating metrics for multiclass models. Metrics (such as SP and NPV) were
computed for each class separately and then averaged to obtain an overall score. Classes
were weighted equally (macro-average) during calculations for the average

2.2.3. Hyperparameter Optimization

Since the performance of a model can be closely linked to the hyperparameters used
during development, the models were optimized using a Bayesian approach implemented
through Optuna [45]. Optuna uses a framework to identify ideal hyperparameters for a
given set of descriptors and ML algorithms. The best hyper-parameters were then used
to fine-tune the models using the entire training set of compounds and tested during the
5-fold cross-validation step.

2.2.4. Dimensionality Reduction and Feature Selection

Dimensionality reduction was performed by applying a low-variance filter with a
threshold of 0.01. Descriptors with low variance (threshold of 0.01) were filtered out to
exclude non-informative data using Scikit-learn [43]. Subsequently, supervised feature
selection was conducted using recursive feature elimination (RFE) to identify the most
relevant molecular descriptors, thereby improving model performance and interpretability
while reducing overfitting and training time [46].

2.2.5. Normalization of Continuous Descriptors

We normalized the Mordred descriptors using min–max scaling to ensure consistent
scale and improve model performance. The normalization was implemented via the
“MinMaxScaler” class from the Scikit-Learn library [43], which scales each feature to a
range [0–1]. The scaling process adjusts each descriptor’s value to be within the specified
range, preserving the relationships among features while enhancing model training stability.
Scaling was performed within each fold to prevent data leakage, ensuring that the scaling
parameters were derived solely from the training data [47].

2.2.6. Data Set Split and 5-Fold Cross-Validation

Five-fold external cross-validation was used [48]. For this, the data set was split
into five equal parts, wherein one subset (20%) is used as the test set, and the remaining
compounds (80%) compose the training set. This procedure was repeated five times, and
each subset was used as the validation set exactly once. Models were built using the training
set only, and compounds in the test set had to not be present in the training set. Alternative
validation methods, such as 10-fold cross-validation and leave-one-out cross-validation,
are available. We selected 5-fold cross-validation due to its established validity within the
field, effectively balancing methodological rigor with computational efficiency [44].

2.2.7. Threshold Moving

We tried the threshold-moving calibration of probability estimates to increase predic-
tion confidence without losing data, i.e., without needing to balance the data. Binary QSAR
models’ probability thresholds were adjusted using this approach, which was incorporated
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into Python [43,49]. Threshold moving was used to select the binary classification probabil-
ity threshold for the model that produced the highest geometric mean values on these test
sets. The geometric mean was chosen since it better assesses the performance of models
when predicting imbalanced data [49–52]. Radar charts to represent model calibration were
constructed using the Plotly package [53].

2.2.8. Applicability Domain (AD)

Our group has previously shown the importance of the applicability domain of models
when drawing conclusions from predictions derived from QSAR models. The AD must
be stated for the given chemical space of predictive models to identify “reliable” and
“unreliable” regions for predictions [49,54]. Thus, users should only consider the model’s
predictions reliable if their predicted compounds fall within the model’s AD.

The “Applicability Domain” meta-node was used to assess the AD of our models. The
KNIME meta-node uses Euclidean distances to measure the chemical similarity between a
compound from the test set and its nearest neighbor in the training set. The prediction may
be unreliable if the distance of a compound not present in the test set to its nearest neighbor
is higher than an arbitrary parameter (Z = 0.5) that controls the significance level [55].

2.2.9. Model Interpretation

Model interpretation was facilitated using machine learning interpretable packages
such as Shapley additive explanations (SHAP) [56,57]. SHAP can be used to identify key
features that impact model performance, improving the transparency and understanding
of ML models [58].

Contribution maps [59,60] were generated from QSAR models to visualize atoms and
fragments contributing to skin sensitization potential. The contribution maps used an
approach in which an atom’s “weight” was considered a predicted probability difference
obtained when bits in the fingerprints corresponding to the atom were removed. Then, the
normalized weights were used to color atoms in a topography-like map in which green
indicates the contribution to toxicity (i.e., predicted sensitization probability decreases
when bits are removed) and red indicates a negative contribution to toxicity (i.e., predicted
sensitization probability increases when bits are removed) [60].

2.2.10. Model Implementation—HuSSPred Web Tool

The QSAR models developed in this study were implemented as a web application,
HuSSPred, which runs on an Ubuntu server. The HuSSPred application is encoded using
Flask [61], uWSGI [62], Nginx [63], Python 3.11.4 [64], RDKit [36], Scikit-learn [43], and
JavaScript [65]. HuSSPred also includes the JSME molecule editor [66], written in JavaScript
and supported by most popular web browsers. The server takes input chemicals and
produces skin sensitization predictions based on chemical structure for the user.

2.3. Chemical Space Analysis and Grouping

The MoViz pipeline [67] was employed for chemical space analysis and grouping. The
NICEATM team developed the pipeline, which facilitates identifying and organizing struc-
turally similar compounds. Morgan fingerprints with a radius of 2 and 2048 bits were used
for molecular descriptor calculation during the analysis. After this, low-variance descrip-
tors were filtered out, and variable selection was performed to enhance the robustness of
the analysis. Subsequently, uniform manifold approximation and projection (UMAP) [68]
was utilized for dimensionality reduction, enabling the visualization of complex chemical
spaces in a simplified manner. UMAP was chosen over linear methods like principal
component analysis (PCA) because it is a nonlinear manifold learning technique that can
better preserve both local and global structures of high-dimensional data, and it also in-
volves no computational restrictions on embedding dimensions, which is advantageous
for handling the high-dimensionality molecular descriptors used [68,69]. The MoViz [67]
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pipeline allowed for the effective grouping of compounds, supporting the identification of
structural similarities and potential activity cliffs.

2.4. Activity Cliff Analysis—Molecular Roughness Calculation

Mordred descriptors were normalized to compute a pairwise distance matrix based
on Euclidean distance. The roughness index (ROGI) score was calculated to quantify
the ruggedness of the activity landscape [70]. For visualization, we projected the high-
dimensional data onto a 2D plane using multidimensional scaling (MDS). The 3D plot
was generated by interpolating the activity values across the projected 2D coordinates and
plotting the resulting surface. Additionally, a 2D contour plot was created to highlight
the activity distribution, utilizing interpolation to create a smooth heatmap overlaying
the 2D MDS projection. These visualizations facilitated the identification of activity cliffs,
providing insights into structure–activity relationships within the continuous data set.
The code for these plots was adapted from https://github.com/coleygroup/rogi-results,
accessed on 18 October 2024 [70].

2.5. Case Study: Validation Using Defined Approaches

Our models were validated using compound results from the NIEHS Defined Ap-
proaches for Skin Sensitization Web app (DASS app), representing testing strategies that
are accepted by international regulatory authorities. The original DASS data set contained
196 compounds. These compounds cover a diverse range of chemical structures and sensi-
tization potencies and have been employed in previous studies to assess the performance
of the novel skin sensitization-defined approaches, as recognized by the OECD TG 497 and
accepted in 2021 [5]. The data extracted from the DASS app are also available in the Na-
tional Toxicology Program (NTP) Integrated Chemical Environment (ICE), a highly curated
repository of toxicological data for various endpoints [71,72]. We removed compounds
with inconclusive outcomes and compounds in our model’s training set. Then, we used
an automated QSAR-ready workflow to standardize and curate chemical structures [73].
For binary models, we performed validation using (i) the Defined Approaches Integrated
Testing Strategy (DA ITS) Call, (ii) 2o3 Defined Approaches Call, and (iii) Basketter Human
data Call as references [74,75]. After the curation protocols, the DA ITS call had 138 com-
pounds (38 NC, 100 sensitizers), the 2o3 Call had 142 compounds (61 NC, 81 sensitizers),
and the Basketter data set had 63 compounds (21 NC, 42 sensitizers). A consensus heatmap
was created using the Seaborn [76] package for the 45 compounds that had predictions for
all three validation data sets for comparison.

The “Basketter Potency” and “HPPT Reference Potency” columns were used to vali-
date multiclass models. After the removal of training, unclassified, and automated curation,
the data sets comprised 81 compounds (13 NC, 27 weak sensitizers, and 14 strong sensitiz-
ers) and 14 compounds (2 NCs, 10 weak sensitizers, and 2 strong sensitizers), respectively.

The Y-randomization test was also used per OECD Guidance Document on the valida-
tion of QSAR models [77] to investigate whether the reported accuracy of our models was
due to chance correlation. The results of ten rounds of Y-randomization are reported in
Table S3.

3. Results and Discussion
3.1. Data Sets Summary

Here, we have collected and curated the HPPT and the HPPT Classifications database
into four independent binary classification data sets for modeling and comparison, four
multiclass data sets, and three continuous data sets. Table 2 demonstrates the number
of compounds in each data set used for binary classification model development. Data
curation is essential for the development of QSAR models [29,40]. During curation, we
found various inconsistencies in which the same compound would possess the conflicting
ranking of both a sensitizer and a non-sensitizer; these entries were removed. We also
identified multiple entries of the same compound with concordant outcomes, and these
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were merged into a single entry. We emphasize the need for rigorous biological curation, as
QSAR models developed with duplicate entries will exhibit under-optimistic performance
if the outcomes are dissimilar or over-optimistic performance if the outcomes are identical.
The number of compounds in the multiclass data set (Table 3) and continuous models
(Table 4) are provided below. We note that there was a class imbalance for the binary and
multiclass data sets; sensitizers were more abundant than non-sensitizers. Weak sensitizers
were roughly three times as abundant for multiclass data as other classes. The majority
class was randomly undersampled in the multiclass models to mitigate this imbalance and
improve model performance.

Table 2. Number of compounds in each binary data set for MSPE, MLLP, WoE, and WES classifications.

Data Set Sensitizers Non-Sensitizers Total

MLLP 154 41 195
MSPE 177 39 216
WoE 177 41 218
WES 132 37 169

MLLP, median location-like parameter; MSPE, median sensitization potency estimate; WoE, individual weight-of-
evidence scores; WES, overall weight-of-evidence scores.

Table 3. Number of compounds in each multiclass data set for MSPE, MLLP, WoE, and WES classifications.

Data Set Strong Sensitizers Weak Sensitizers Non-Sensitizers Total

MLLP 40 118 41 199
MSPE 44 123 39 206
WoE 42 126 41 209
WES 37 87 34 158

MLLP, Median location-like parameter; MSPE, median sensitization potency estimate; WoE, individual weight-of-
evidence scores; WES, overall weight-of-evidence scores.

Table 4. Number of compounds in continuous data sets for DSA, DSA05, and DSA01 classifications.

Data Set Total

DSA 829
DSA05 170
DSA01 104

DSA, dose per skin area; DSA05, dose per skin area for sensitization of 5% of the tested population; DSA01, dose
per skin area for sensitization of at least 1 tested individual.

3.2. Binary Classification QSAR Models

Here, we built 36 binary classification models with different combinations of molecu-
lar fingerprints and ML methods. The RF, LightGBM, and SVM models were built using
Python and validated with 5-fold cross-validation. Table 5 highlights the statistical charac-
teristics of the binary classification models after threshold moving (calibrated). Table S1
highlights the characteristics of the uncalibrated models. Threshold moving was used to
increase prediction confidence without losing data (i.e., we attempted a threshold-moving
calibration of probability estimates without the need to balance the data). Most cross-
validated skin sensitization models showed high-quality predictive accuracy on 5-fold
external cross-validation based on metrics such as CCR, SE, SP, PPV, NPV, and coverage.

Table 5 highlights the best-performing model for each data set. Briefly, the performance
of these four models showed reasonable CCR (74–88%), SE (63–92%), PPV (90–97%), NPV
(41–60%), and AUC (75–92%). The best-performing model, using the WES data set with
ECFP4 and SVM, showed the most promise and was deployed as a web tool. The perfor-
mance of all models in the WES data set was also assessed using the Y-randomization test.
The best-performing WES model, with the ECFP4 and SVM, significantly outperformed
models built with Y-randomization (Table S3).
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Table 5. Calculated metrics for calibrated binary classification QSAR models.

Approach FP ML CCR SE SP PPV NPV AUC Coverage PT

MLLP

ECFP4 RF 0.74 0.84 0.63 0.90 0.50 0.75 83 0.77
ECFP4 SVM 0.71 0.81 0.61 0.89 0.45 0.77 83 0.78
ECFP4 LightGBM 0.62 0.55 0.68 0.88 0.27 0.63 83 0.80

Mordred RF 0.76 0.69 0.83 0.94 0.40 0.80 93 0.78
Mordred SVM 0.62 0.83 0.41 0.85 0.38 0.58 93 0.80
Mordred LightGBM 0.74 0.69 0.78 0.93 0.39 0.74 93 0.82

MSPE

ECFP4 RF 0.72 0.85 0.59 0.90 0.47 0.72 88.9 0.80
ECFP4 SVM 0.68 0.75 0.62 0.90 0.35 0.73 88.9 0.84
ECFP4 LightGBM 0.55 0.60 0.51 0.85 0.22 0.56 88.9 0.82

Mordred RF 0.78 0.74 0.82 0.95 0.41 0.82 94 0.77
Mordred SVM 0.70 0.67 0.72 0.91 0.32 0.74 94 0.85
Mordred LightGBM 0.73 0.67 0.79 0.94 0.35 0.77 94 0.82

WoE

ECFP4 RF 0.74 0.75 0.73 0.92 0.40 0.75 88.5 0.83
ECFP4 SVM 0.72 0.88 0.56 0.90 0.52 0.70 88.5 0.78
ECFP4 LightGBM 0.62 0.49 0.76 0.90 0.25 0.58 88.5 0.81

Mordred RF 0.78 0.79 0.76 0.93 0.46 0.81 92 0.73
Mordred SVM 0.56 0.64 0.49 0.84 0.24 0.53 92 0.81
Mordred LightGBM 0.74 0.72 0.76 0.93 0.39 0.75 92 0.81

WES

ECFP4 RF 0.82 0.89 0.76 0.93 0.65 0.88 90.5 0.75
ECFP4 SVM 0.88 0.83 0.92 0.97 0.60 0.92 90.5 0.84
ECFP4 LightGBM 0.64 0.53 0.76 0.89 0.31 0.60 90.5 0.78

Mordred RF 0.73 0.67 0.78 0.92 0.4 0.79 91 0.77
Mordred SVM 0.6 0.71 0.49 0.83 0.32 0.59 91 0.78
Mordred LightGBM 0.74 0.79 0.68 0.9 0.47 0.74 91 0.74

RF, random forest; ECFP4, extended connectivity fingerprints with diameter 4; LightGBM, light gradient-boosting
machine; MACCS, molecular access systems keys fingerprint; CCR, correct classification rate; SE, sensitivity;
SP, specificity; PPV, positive predictive value; NPV, negative predictive value; coverage, a ratio of the test set
or external set compounds within the applicability domain; PT, probability threshold; statistical results all
obtained after threshold-moving calibration. Statistical results obtained from the default probability thresholds
(uncalibrated) are available in the Supplementary Table S1. Models in bold reflect those with the best performance
in the data set.

3.2.1. Threshold Moving

In the developed RF, SVM, and LightGBM models, a continuous value represents
the probability of a given compound belonging to a specific class (i.e., sensitizer or non-
sensitizer). With the aim of better differentiating between skin sensitization sensitizers and
non-sensitizers, despite the imbalance of classes present in the data, the probability thresh-
old was adjusted. Usually, probabilities less than 0.5 are assigned to the non-sensitizing
class (Class 0), while values greater than or equal to 0.5 are assigned to the sensitizing
class (Class 1). However, when modeling imbalanced data, QSAR models often express
lower probability estimates for the minority class [49]. Thus, we tested various probabil-
ity thresholds ranging from 0 to 1 in order to identify the optimal threshold for model
performance. The threshold-moving approach and calibration significantly improve the
statistical performance of the QSAR models. Figure 2a–d highlights that, for the best mod-
els, the calibrated models outperformed the uncalibrated counterparts or scored similarly,
rarely underperforming models without calibration. Table S1 highlights the uncalibrated
performance for all binary models.
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Figure 2. Radar chart comparing metrics before and after calibration for best-performing models.
CCR, SE, SP, PPV, NPV, and AUC are included. AUC is a threshold-independent metric. The results
for the best-performing (a) MLLP, (b) MSPE, (c) WoE, and (d) WES models. The calibrated models
outperformed the uncalibrated models or scored similarly, rarely underperforming models without
calibration. Generally, a more balanced and symmetrical shape in the radar chart indicates a uniform
performance across the metrics, while pronounced peaks and dips highlight potential strengths and
weaknesses of the models, respectively.

3.2.2. Binary Model Interpretation with SHAP

SHAP values were calculated to interpret the built binary classification ML models.
SHAP calculates the model’s feature importance, and it is accessible in the web tool.
Figure 3a shows the most relevant features, ranked in order of the impact on the model’s
predictions. These features exhibited the highest average absolute SHAP values, suggesting
that they strongly influenced the model’s predictions. Figure 3b demonstrates the bit images
of the highest impact features. Bits 7 and 16 shared similar substructures, indicating that
this substructure is likely important for the model’s predictions. Given the imbalance in
the data set, most high-impact bits showed a higher impact on the prediction of sensitizers.
It appears that bits 9 and 15 had the highest impact on non-sensitizer prediction. Since
a chemical fingerprint of radius 2 was used, many of the substructures highlighted lack
robust evidence of chemical significance. However, comparisons can still be drawn for
some substructures. For instance, bit 4 resembles the sulfonamide moiety, and drugs with
this structural composition have reported common adverse drug reactions such as allergies
and hypersensitivity [78–82]. According to the Adverse Outcome Pathway (AOP) for skin
sensitization by the OECD [83], step 2 of the AOP involves the substance behaving as a
direct-acting electrophile or being converted into a reactive electrophilic metabolite. Given
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the electrophilic nature of the sulfonamide moiety, as discussed in a recent article evaluating
the degradation mechanisms of sulfonamides [84], it is plausible that this structural feature
could interact with nucleophilic sites in proteins, potentially contributing to sensitization
processes, as outlined in the AOP for skin sensitization. Further, bit 1 resembles a 1,2 alkane
diol substructure, and links have been examined between changes in 1,2 alkane diol chain
length and skin sensitization potential [85].
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3.2.3. Case Study: Validation of Binary Models with DASS App Defined Approaches

Using the DASS app reference experimental values, we compared our binary model’s
predictions to the OECD-validated defined approaches for assessing skin sensitization
(Table 6), as well as a literature-based human reference set.

Table 6. Case study validation metrics for binary classification QSAR models.

Reference Column # Compounds
(NCs/Sensitizers) Inside AD ACC * SE * SP * PPV * NPV *

DA ITS call 138 (37/101) 115 61% 88% 34% 75% 54%
2o3 DA call 142 (61/81) 117 62% 88% 28% 61% 64%

Basketter human data 63 (21/42) 48 75% 94% 34% 75% 75%

* Metrics reflect predictions inside the model’s applicability domain.

The model showed comparable performance across all three validation scenarios, with
accuracy ranging from 61 to 75% and SE from 88 to 94%. Notably, the model showed
significant strength in predicting sensitizers (high SE and PPV) compared to non-sensitizers
(low SP and reasonable NPV). Predictions for the Basketter data set showed promise, which
was expected since the Basketter data most closely resemble the model’s training data,
given that it expresses expert judgment based on human testing, while the DA ITS Call
and the 2o3 are based on an in vitro screening of compounds.

Figure S1 highlights the discrepancy between the predictions for each reference, highlight-
ing how the data used for validation can impact the validation metrics. In brief terms, com-
pounds with all reference values concordant across the three data sets (i.e., all three columns
are either “1” or “0”) showed high correct prediction rates, correctly labeling 30 out of 36
(83%) compounds. When the original outcomes of the external values were divergent, such as
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in compounds of index 1, 5, 40, and 44, the model usually predicted the Basketter category
correctly but incorrectly according to the DA ITS and 2o3 Call. Such discrepancies were
anticipated, considering that the model was created using human data, and the Basketter call
is also based on human information, whereas the DA ITS Call and the 2o3 Call are based
primarily on in vitro experiments (DPRA, h-CLAT, and KeratinoSens assays).

3.3. Chemical Space Analysis

The chemical space analysis performed was investigated for each of the best-performing
models. Supervised classification was performed to identify similarities and gaps in the
chemical space. Figure 4a highlights that there is not much overlap between classes (i.e.,
structurally similar compounds but with different outcomes). Despite variable selection,
compounds were still aggregating and clustering due to structural similarities. Here, we
classified compounds that appeared to cluster together to identify the chemical space,
and we found clusters of chlorophenols, sulfanylacetamides, di-amines, and tri-amines to
contain mostly skin sensitizers.
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Figure 4. Supervised classification results. Compounds are represented as points on the X and Y axes.
The chemical grouping of compounds in the data set was performed after using Morgan descriptors
with a radius of 2 and 2048 bits. Low-variance descriptors were filtered, and dimensionality reduction
was performed using SVM. Grouping was performed after the calculating was depicted for each of
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balancing. Non-sensitizers are in blue, weak sensitizers are in green, and strong sensitizers are in red.

42



Toxics 2024, 12, 803

A similar process was conducted for the best-performing multiclass data set (Figure 4b,c).
The multiclass also had a highly diverse set of compounds in its chemical space. After
random undersampling, Figure 4c highlights that the model still covers most of the chemical
space. Random undersampling was beneficial in balancing class distribution by reducing
the size of the majority class while mitigating the risk of bias in our ML models. In this
situation, random undersampling yielded a reasonable alternative, as most compounds of
the majority class (weak sensitizers) were structurally similar and in close proximity to one
another (Figure 4b).

3.4. Multiclass Modeling Results

Table 7 demonstrates the metrics for the best-performing multiclass models developed.
The performance of all built multiclass models can be found in Table S1. The WES data
set showed the most promising results: reasonable accuracy (73%), specificity (82%), and
an AUC of 75% with 81% coverage. Compared to the binary models, the multiclass
models surprisingly showed better classification of negatives than positives (high SP and
NPV). One potential explanation is the balancing of the data sets and the relatively small
number of compounds in the data set, which likely contributed to better discrimination
between strong sensitizers and non-sensitizers. The best-performing multiclass model also
performed better than the models built with Y-randomization (Table S3).

Table 7. Calculated metrics for calibrated multiclass QSAR models with undersampling.

Approach * FP ML CCR SE SP PPV NPV AUC Coverage

WES

ECFP4 RF 0.60 0.47 0.74 0.49 0.73 0.69 49
ECFP4 SVM 0.58 0.44 0.72 0.44 0.72 0.66 49
ECFP4 LightGBM 0.56 0.41 0.71 0.42 0.71 0.61 49

Mordred RF 0.73 0.64 0.82 0.64 0.82 0.75 81
Mordred SVM 0.50 0.34 0.67 0.23 0.67 0.48 81
Mordred LightGBM 0.66 0.55 0.77 0.55 0.78 0.69 81

* Metrics for the remaining approaches are available in Table S1.

Case Study: Validation of Multiclass Models with Defined Approaches

The validation performance of the multiclass models was evaluated using human skin
sensitization potency reference values as published by the OECD. Here, we can observe
that the model exhibits an average prediction accuracy of (51%), correctly predicting 30
of the 58 compounds. As the confusion matrix highlights (Figure 5), the multiclass model
showed good distinctions between the non-sensitizers (NCs) and strong sensitizers (1A),
only incorrectly mislabeling one compound as a strong sensitizer. However, as emphasized
in Figure 4, the model struggled to correctly distinguish between weak and non-sensitizers
due to their structural similarity (Figure 4), so most NCs were incorrectly predicted as weak
sensitizers (11 compounds). The non-sensitizing class had the most incorrect labels (17 out
of 21 compounds), likely due to the lack of true negatives during model building and
structural similarity to weak sensitizers. Table S2 contains each compound’s predictions
and the validation predictions using HPPT data. For the external set of HPPT compounds
in the DASS app, 13 of 14 compounds were inside the applicability domain. The model
correctly predicted 9 of the 13 compounds in the HPPT validation set (69%). Overall, when
tested with compounds outside the model’s training set, the multiclass model showed
reasonable promise in predicting human skin sensitization potential, with average class-
wise CCR of 63%, SP of 75%, SE of 51%, PPV of 51%, and NPV of 76%.

The validation data set included a diverse array of compounds representing various
chemical classes, such as aldehydes, alcohols, esters, acids, amines, phenols, and hydro-
carbons (Table S2). The original data in the DASS app are also available in the NTP’s
Integrated Chemical Environment (ICE) [72,86]. In the ICE toolbox, the data set is ac-
cessible via the Chemicals quick list as “OECD Defined Approach to Skin Sensitization:
Human” (https://ice.ntp.niehs.nih.gov/ChemicalQuickLists, accessed on 18 October 2024).
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The ICE toolbox Chemical Characterization workflow can also be used to enable a better
understanding of the chemical composition of the data set.
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3.5. Visualization of Continuous Data Structure–Property Landscapes

Visualizing the continuous skin sensitization data provides a qualitative representation
of molecular roughness. Through the 3D and 2D landscapes, activity cliffs can be easily
identified. The data in Figure 6a,b for the DSA data comprised the smoothest landscape
of the three, with a ROGI value of 0.19, followed by DSA05 at 0.29 (Figure 6c,d) and then
DSA01 at 0.31 (Figure 6e,f). In Figure 6, we can observe that all landscape profiles exhibit a
relatively rugged landscape throughout. Further, for the three data sets, we can observe
that very similar molecules lead to drastically different outcomes, suggesting that these
data sets contain activity cliffs.

The continuous models developed for predicting human skin sensitization did not
perform satisfactorily. The box and whisker plots (Figure S2) highlight one of the challenges
in modeling human HPPT data due to the high variability and wide range of results for a
single chemical that, when expanded to the entire data set, introduces noise and inhibits
the model’s ability to predict the dose per skin area for compounds correctly. Notably, for
the three continuous data sets (Figure S2a–c), most compounds have a wide range and
interquartile range (IQR), suggesting that using these compounds for modeling would
introduce ambiguity and significant uncertainties into the model’s predictions. These
results underscore the limitations of using continuous models to capture the underlying
patterns in the human predictive patch test data. We recommend that other groups build
on our curated continuous data and explore alternative modeling approaches to achieve
more reliable predictions.
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3.6. Model Implementation

The most predictive classification model for Human Skin Sensitization Prediction was
implemented in the open-access HuSSPred web application (https://husspred.mml.unc.
edu, accessed on 18 October 2024). The HuSSPred web tool was designed to possess an
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intuitive user interface, where users can draw compounds of interest in the “molecular edi-
tor” box or directly paste a list of SMILES strings to query chemical compounds (Figure 7).
After clicking the “Get Properties” button, the user will be shown the classification outcome
of the compounds (sensitizer or non-sensitizer) using the best classification model. Fur-
ther, the user can opt to include ‘Fragment contribution analysis” and “SHAP descriptor
importance” in the report. All predictions also contain AD estimates and mechanistic inter-
pretation using color-coded maps of fragment contribution. For the fragment-contribution
maps, atoms or fragments promoting positive toxicity are highlighted in green, while those
decreasing toxicity are highlighted in purple. The models developed in this study are
available within the HuSSPred web application https://husspred.mml.unc.edu/, accessed
on 18 October 2024).
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In the development of NAMs to predict a compound’s toxicity and sensitization
potential, it is essential for models to accurately predict potential skin sensitizers, rather
than non-sensitizers, which can reduce animal testing and the waste of resources by
eliminating compounds likely to fail downstream in the development process. Given these
safety and resource management considerations, the high sensitivity of the best-performing
models (63–92%) and high PPV (90–97%) indicate that sensitizers are frequently correctly
labeled. Further, the high PPV and reasonable NPV underscore the model’s potential to
contribute to advancing the three Rs (reduce, refine, and replace). The model’s applicability
to binary contexts is further supported by the high sensitivity (94%) and accuracy (75%)
obtained during the model’s validation with reference human data and other human
biology-based DAs for skin sensitization testing.

While the model performance could be drastically improved by including a more
comprehensive set of true negatives, we emphasize the difficulty of obtaining such, given
the current human skin sensitization testing system. Currently, the Globally Harmonized
System of Classification and Labelling of Chemicals (GHS) [74,87] uses a set of frameworks
for classifying compounds as skin sensitizers [88]. Therefore, the challenge of obtaining a
true negative is commonly caused by not testing substances at a high enough concentration
to trigger sensitization. This frequently results in compounds labeled as “inconclusive”,
which are unsuitable for modeling. To our knowledge, this skin sensitization QSAR model’s
high sensitivity fares competitively well against other established tools in the field. An
evaluation of in silico tools to predict skin sensitization was published in 2017 [89]. From
this report, the best-performing and best-known tools were VEGA, Derek Nexus, and
the OECD QSAR Toolbox. According to the metrics reported in the assessment, our tool
exhibited a good external validation sensitivity score relative to those three, with 94% for
the Basketter human data set, compared to 91%, 78%, and 43%, respectively for the other
three tools, while also being one of few developed with human data. For other metrics,
such as CCR, SP, PPV, and NPV, our models performed similarly or better in the majority
of cases.
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Here, we suggest that our skin sensitization QSAR models’ utility lies in their ability to
predict skin-sensitizing substances accurately. The freely available web tool HuSSPred was
built on the best-performing models with the most highly curated data set available, making
it a valuable tool for toxicity prediction and providing risk assessors with confidence in
the model’s positive predictions. The overall weight-of-evidence approach used for the
web tool (WES) models was the preferred data set due to its robust scoring system and
overall performance. The scores assigned to each “extrapolated” classification in the WES
database intuitively reflect how a risk assessor might combine multiple HPPT results in a
single WoE assessment. Only unambiguous outcomes were reported and assigned a score,
so the developed models available in the web tool were built only on the most rigorous
HPPT data [27,28].

There is an increasing need to quickly determine a compound’s skin sensitization
potential from a regulatory standpoint; unfortunately, these studies are time-consuming
and expensive, and they raise ethical concerns. On the other hand, our QSAR models can
be easily implemented in the early stages of drug development and testing, minimizing
resource waste and facilitating the early stages of drug development while reducing
animal testing. We hope the QSAR models developed here progress further towards
regulatory acceptance.

4. Conclusions

Overall, we have carefully curated the HPPT database to predict skin sensitization, en-
abling a more accurate assessment of the human response. The models underwent rigorous
validation with reference data from the internationally validated Defined Approaches for
Skin Sensitization (DASS), resulting in one of the first in silico tools based strictly on human
data for skin sensitization, with high accuracy and sensitivity, as validated with human
biology-based in vitro outcomes and human data. The rigorously curated data, validation
predictions, and models are available on the website (https://husspred.mml.unc.edu/,
accessed on 18 October 2024), where users can select the desired models to obtain (i) binary
predictions, (ii) multiclass potency predictions for hazard assessments of compounds, and
(iii) fragment-contribution maps for each assay prediction.
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www.mdpi.com/article/10.3390/toxics12110803/s1. File S1: Curated data sets for binary, multiclass,
and continuous model development. Table S1: Uncalibrated model results for binary and WoE
approaches for multiclass models. Table S2: Validation exercise data sets and predictions. Table S3:
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Abstract: Skin sensitisation is a critical adverse effect assessed to ensure the safety of compounds and
materials exposed to the skin. Alongside the development of new approach methodologies (NAMs),
defined approaches (DAs) have been established to promote skin sensitisation potency assessment
by adopting and integrating standardised in vitro, in chemico, and in silico methods with specified
data analysis procedures to achieve reliable and reproducible predictions. The incorporation of
additional NAMs could help increase accessibility and flexibility. Using superior algorithms may
help improve the accuracy of hazard and potency assessment and build confidence in the results.
Here, we introduce two new DA models, with the aim to build DAs on freely available software and
the newly developed kDPRA for covalent binding of a chemical to skin peptides and proteins. The
new DA models are built on an existing Bayesian network (BN) modelling approach and expand on
it. The new DA models include kDPRA data as one of the in vitro parameters and utilise in silico
inputs from open-source QSAR models. Both approaches perform at least on par with the existing
BN DA and show 63% and 68% accuracy when predicting four LLNA potency classes, respectively.
We demonstrate the value of the Bayesian network’s confidence indications for predictions, as they
provide a measure for differentiating between highly accurate and reliable predictions (accuracies up
to 87%) in contrast to low-reliability predictions associated with inaccurate predictions.

Keywords: Bayesian network; defined approaches; next-generation risk assessment; NAMs; skin
sensitisation

1. Introduction

Skin sensitisation is characterised by four main molecular and physiological Key
Events (KEs) [1]. These KEs include (i) the covalent binding of a chemical to skin peptides
and proteins (KE1); (ii) the activation of keratinocytes, which constitute the main cell
type in skin (KE2); (iii) the activation of dendritic cells (KE3); and (iv) the activation
of T-cells (KE4) [2]. Repeated exposure to a compound can result in contact dermatitis.
The Next-Generation Risk Assessment (NGRA) of skin sensitisation potential is based on
integrating in silico predictions and in vitro test results in defined approaches (DAs). DAs
integrate data from various sources, i.e., in vitro, in chemico, and in silico, to support skin
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sensitisation assessment using a predefined set of resources and data interpretation [3].
Thus, DAs have the potential to align with the principles of the OECD Mutual Acceptance
of Data (MAD) agreement. This agreement requires that data generated for regulatory
purposes in one member country be recognised and accepted by other OECD member
countries [4]. DAs can further be used to support skin sensitisation assessment within
Integrated Approaches to Testing and Assessment (IATAs). IATAs use the weight of
evidence (WoE) and expert evaluation to support decision-making for regulatory bodies [5].

In 2017, two guidance documents on the reporting of DAs (OECD GD 255 and OECD
GD 256) were released [3,6]. In 2018, the U.S. EPA issued a draft science policy document
reporting two DAs: two out of three (2o3) and the Key Event 3/1 Sequential Testing Strategy
(KE 3/1 STS) [7]. In 2021, the OECD published guideline 497 on defined approaches to
skin sensitisation, which incorporated three DAs: the “2o3” DA relies on two concordant
tests from three in vitro assays addressing the three first KEs, namely, the Direct Peptide
Reactivity Assay (DPRA, KE1), KeratinoSensTM (KE2), and the human Cell Line Activation
Test (h-CLAT, KE3) [1]. Furthermore, guideline 497 features two versions of ITS (ITSv1 and
ITSv2), which integrate the results of DPRA and h-CLAT with in silico predictions. The
primary distinction between these two versions is the use of different in silico tools. ITSv1
uses the Derek Nexus software, whereas ITSv2 incorporates the OECD QSAR Toolbox.
In addition, both ITS versions provide a scoring system to predict potency classification
based on the United Nations Globally Harmonised System of Classification and Labelling
of Chemicals (GHS) [8]. Edelweiss Connect recently developed the SaferSkin approach, a
solution package for skin sensitisation risk assessment [9]. The SaferSkin suite offers and
applies OECD DAs, IATAs, and new approach methodologies (NAMs) to perform animal-
free risk assessment of substances. The solution combines a variety of OECD-required
standard in vitro assays with a set of in silico prediction tools based on DAs, machine
learning, and Quantitative Structure–Activity Relationship (QSAR) approaches [1,10,11].

In this article, we present a new DA based on the previously reported Bayesian
network (BN) ITS-3 model of Jaworska et al. by reflecting the advances in both in vitro
experiments and in silico modelling [11,12]. The aim of the study is to increase the trans-
parency and applicability of the available models by integrating a new in vitro assay and
replacing commercial in silico tools with freely available ones. A BN is a powerful tool for
representing complex relationships between variables. It employs a visual map with nodes
depicting factors of interest and arrows indicating their causal or influential connections.
Conditional probability tables associated with each node quantify the likelihood of one
factor occurring based on the states of others. This allows us to analyse the interplay of vari-
ables and make probabilistic inferences within a particular domain. BNs are particularly
valuable due to their capacity to elucidate connections among multiple factors, which may
not be readily apparent, even to domain experts. In addition, BNs provide a probabilistic
assessment of skin sensitisation by integrating diverse data sources to form evidence-based
hypotheses and are designed to handle incomplete data easily. Notably, BNs also enable the
evaluation of prediction uncertainties based on the quality and completeness of the input
data. The primary goals of the present work were to incorporate additional NAMs and
to improve the BN model’s accessibility. Hence, BN models were developed using public
and in-house-generated data and available open-source software. Data used for modelling
and evaluation were collected from the literature and carefully curated; new kinetic DPRA
(kDPRA) data were also generated to fill data gaps (Tables S1 and S2 in Supplementary Ma-
terials). Edelweiss Connect developed a BN model for skin sensitisation assessment based
on the previously reported BN model by Jaworska et al. [9,11,12]. The BN model developed
by Edelweiss Connect is referred to as “SaferSkin-BN” in this publication. SaferSkin-BN
was shown to have similar predictive characteristics to the original model developed by
Jaworska [13]. This article describes the changes implemented in the SaferSkin-BN model,
which include the incorporation of kDPRA parameters and using inputs from publicly
accessible Skin Doctor CP and the open-source software OPERA [14,15]. The original
model from Jaworska et al. and SaferSkin-BN use commercial software (TIMES-SS and
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ACD/Labs) [16,17]; we investigated the impact of the replacement of the commercial soft-
ware by Skin Doctor CP and OPERA on model performance. Since potency estimation
is one of the main challenges in skin sensitisation assessment, we introduced the kDPRA
as a new in vitro assay input parameter. To date, the kDPRA is the only OECD-validated
in vitro assay allowing for the classification of skin sensitisers according to the Globally
Harmonised System (GHS) classes 1A and 1B/non-classified [18].

In silico toxicology protocols demand the combined use of rule-based and statistics-
based models [19]. In order to appreciate this concept, we developed a second model
that was able to incorporate additional in silico prediction models, i.e., Derek Nexus. We
aimed to either improve the predictive performance and include a specific evaluation
of uncertainty and potency or to maintain the original model performance but increase
accessibility, which can be used to support risk assessment goals. Thus, we adjusted the
SaferSkin-BN model by implementing the following modifications:

1. The use of kDPRA data with the rate constant Kmax and GHS class prediction in
addition to DPRA data as input parameters.

2. The replacement of the quinary in silico predictions of skin sensitisation by TIMES-SS
with the binary and ternary predictions of Skin Doctor Conformal Predictor (Skin
Doctor CP).

3. The replacement of the in silico predictions of physicochemical properties by ACD/Lab
with those by OPERA.

4. The extension of the BN model with a rule-based system, i.e., Derek Nexus [20].

The developed BN models were trained by assessing different hyperparametrisation
options and tested to determine their predictive performance. In addition, the influencing
inputs on the final outcomes were evaluated as follows:

- Using a BN with ternary Skin Doctor CP and kDPRA to assess the predictive perfor-
mance of the Skin Doctor CP prediction vs. kDPRA;

- Implementing the Skin Doctor CP p-value;
- Using ternary Skin Doctor CP, kDPRA, and Derek Nexus results;
- Assessing the impact of using DPRA and kDPRA.

The current work presents different models based on the proposed modifications.
Thus, several models were tested in this approach, and the best-performing ones were
incorporated into the SaferSkin software (Edelweiss Connect GmbH, Basel, Switzerland).
The performance of the newly developed models was assessed based on a predefined test
set (Cosmetics Europe database) that was used previously to evaluate the performance of
DA models [21,22]. SaferSkin-BN served as a baseline model for comparison.

2. Materials and Methods
2.1. In Vivo Inputs: LLNA

Regulatory authorities have accepted the Local Lymph Node Assay (LLNA, OECD 429)
as a high standard for evaluating skin sensitisation hazards and risks [23–26]. The LLNA
assay is based on the induction of lymphocyte proliferation in the lymph nodes by draining
the site of the test substance’s application. This proliferation is proportional to the dose and
potency of the applied allergen and provides a simple means of obtaining a quantitative
measurement of sensitisation (OECD 429). This includes the activation and proliferation of
antigen-specific T-cells [27]. Skin sensitisation potential is attributed to a chemical if the
proliferation rate exceeds a factor of 3 compared with the vehicle-treated control group.
The concentration estimated to stimulate a three-fold increase in lymphocyte proliferation
(termed “EC3”) refers to the threshold concentration, which provides information on the
chemical’s skin-sensitising potency. Originally, the concentration in LLNA was reported
on a “per-weight basis”, but for modelling purposes, it was transformed into molar units
using the formula pEC3 = log(Mw/250/EC3(%)) [12]. The following pEC3 thresholds were
applied to derive four potency classes in molar units: non-sensitiser (<−1.9), weak sensitiser
(−1.9, −1.1), moderate sensitiser (−1.1, −0.35), and strong sensitiser (>−0.35) [12]. Thus,
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the formed variable, the pEC3 class, was the target variable in the BN model. The LLNA
data used to develop the model described here were collected from Jaworska et al. [12].

2.2. In Vitro Inputs
2.2.1. DPRA

The DPRA addresses KE1 of the AOP for skin sensitisation, i.e., protein binding, and
it determines the reactivity of a test compound towards synthetic cysteine- and lysine-rich
peptides [18]. Peptide reactivity is reported as a percentage of peptide depletion. For the
DA described by Jaworska et al., the percentage of free peptide remaining in the sample
is used for all calculations. For developing and applying the models described in this
publication, the percentage depletion was used as the input parameter and calculated with
respect to the percentage of the peptide remaining. The DPRA data used to develop the
model described here were collected from Jaworska et al. [12].

2.2.2. kDPRA

The kDPRA is currently the only OECD-accepted in vitro/in chemico assay that was
reported to enable skin sensitisation potency classification [18]. This assay is a modification
of the DPRA. It allows the derivation of a rate constant (Kmax (in 1/sM)) of the depletion of
the cysteine-containing peptide upon reaction with the test compound. Depending on the
rate constant, a test compound can then be classified as GHS 1A or GHS 1B/not classified.
The data were partly derived from studies conducted by Natsch et al. and Natsch and
Gerberick [28,29]. For four compounds out of these databases, one study reported an
unambiguous result while the other one reported no clear study result. In those cases, the
unambiguous result was included in our dataset. No conflicting results were observed
between the two data sources. Additionally, new kDPRA data were generated. The kDPRA
was performed as described in OECD guideline 442C and in the full method description
in the database service on alternative methods (DB-ALM) in protocol 217 [18,30]. The
cysteine peptide was provided by RS Synthesis (Louisville, KY, USA). The chemicals were
purchased from Sigma-Aldrich (St. Louis, MO, USA) or Alfa Chemistry (Holbrook, NY,
USA). The assay was run in 96-well plates. The chemicals were dissolved at 20 mM in
acetonitrile (ACN), diluted in acetonitrile, and added to the cysteine peptide solution
(0.66 mM in phosphate buffer) to final concentrations of 5, 2.5, 1.25, 0.625, and 0.3125 mM.
Monobromobimane (3 mM in ACN) was added after 10, 30, 90, 150, 210, and 1440 min,
respectively, and the fluorescence intensity was measured at Ex/Em 390/480 nm. Peptide
depletion and Kmax were evaluated using an Excel spreadsheet provided as Supplementary
Material in DB-ALM 217 [30]. Not all compounds with missing kDPRA could be tested
due to limited availability or solubility.

2.2.3. KeratinoSensTM

The KeratinoSensTM assay (OECD 442D) addresses KE2 of the AOP for skin sensi-
tisation, i.e., the activation of keratinocytes. The assay evaluates the activation of the
Keap1-Nrf2-ARE pathway, a key pathway triggered by sensitisers in vivo [31]. The aver-
age concentrations (in µM) leading to 1.5-fold and 3-fold induction (EC1.5 and EC3) are
reported alongside the concentration leading to 50% cytotoxicity after 24 h (IC50). The data
were collected from Jaworska et al. [12].

2.2.4. h-CLAT

The h-CLAT assay addresses KE3 of the AOP for skin sensitisation (OECD guideline
442E), known as dendritic cell activation. The assay quantifies changes in the expression of
cell-surface molecules (CD54 and CD86) [18]. Both molecules are essential in the induction
of skin sensitisation; CD54 is involved in dendritic cell migration, and CD86 stimulates
T-cell activation during antigen presentation to dendritic cells [32]. The average compound
concentrations (in µM) inducing 150% of vehicle control expression of CD86 (EC150) and
200% of vehicle control expression of CD54 (EC200) are reported alongside the concentra-
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tion leading to 75% cell viability after 24 h (CV75). The data were collected from Jaworska
et al. [12].

2.3. In Silico Inputs
2.3.1. OPERA

OPERA (v2.9) is a free and open-source suite of QSAR models providing predictions
for physicochemical properties, environmental fates, and toxicity endpoints [15,33]. OPERA
was used to calculate the octanol–water distribution coefficient of compounds at pH 7
(logD@pH7), the water solubility at pH 7 (Ws@pH7), plasma–protein binding, and the
octanol–water partition coefficient (log Kow). The fraction ionised (fion) was calculated
using the formulation = |1 − 10ˆlogD/10ˆlogKow|, where “||” denotes the absolute
value [12].

2.3.2. Skin Doctor CP

Skin Doctor CP is a conformal prediction-based machine learning model for the
classification of small organic compounds into two (non-sensitisers and sensitisers) or
three (non-sensitisers, weak to moderate sensitisers, and strong to extreme sensitisers)
potency classes [34]. The models were trained on publicly available data only. They were
transparently published and are accessible via a web service [35]. As a conformal prediction
model, Skin Doctor CP will only return a prediction if predefined reliability thresholds are
met, and these can be adjusted for the specific use case.

2.3.3. Derek Nexus

Derek Nexus (v6.3) (Lhasa Limited, Leeds, UK) is a rule-based commercial modelling
software that can predict the likely toxicity of a given chemical structure based on the
absence or presence of certain chemical substructures [20]. It has also been recently included
in the DA for skin sensitisation published by the OECD [1]. For skin sensitisation, it is
one of only a few models that can predict not just hazards but also EC3 values. These
values can then be transferred into five distinct potency classes: non-sensitisers and weak,
moderate, strong, and extreme sensitisers. For the modelling, we merged the strong and
extreme sensitiser classes into one class.

2.4. Bayesian Network-Based Defined Approach
2.4.1. Dataset

The starting point for model development was the dataset collected by Jaworska et al.,
which included LLNA, DPRA, KeratinoSensTM, and h-CLAT data, as well as calculated
physicochemical properties for 207 compounds [12]. We extended the dataset with kD-
PRA data from two sources, as well as with newly generated kDPRA data plus sensitiser
potency predictions from Skin Doctor CP and Derek Nexus (which replaced TIMES-SS
potency predictions in the original dataset) [28,29]. Additionally, the physicochemical
parameters originally calculated using commercial software were newly calculated using
the open-source OPERA suite. The original split into training (147 compounds) and test sets
(60 compounds) was preserved from Jaworska et al. to ensure a fair model comparison [12].
The dataset published by Jaworska et al. included two compounds (Farnesol and Benzyl
cinnamate) that are present in training and test set at the same time but each time with dif-
ferent SMILES and a different set of parameters present. Due to comparability we decided
to not change the data. The full training and test set used for model building and evaluation
within this study can be found in Supplementary Materials Tables S1 and S2, respectively.

2.4.2. Discretisation

BNs require discretised continuous variables. Hence, continuous input variables were
discretised into four classes using a supervised clustering algorithm (class–attribute in-
terdependence maximisation, CAIM) implemented in the R package discretisation [36,37].

56



Toxics 2024, 12, 666

Discrete variables (potency classes from Skin Doctor CP, Derek Nexus, and kDPRA classifi-
cation) were not modified.

2.4.3. Building Latent Nodes

In addition to the observed variables (i.e., in vitro and in silico inputs), we used
latent variables in the network structure. These variables were not directly observable
but simplified the network structure (reduced connections between the nodes) and often
improved the model accuracy. Latent variables were designed in a way that they connected
similar input variables. These latent nodes were built in the training set by grouping
the connected input variables into a predefined number of classes. This grouping was
essentially an unsupervised clustering performed through latent class analysis (LCA)
using an R package named poLCA: Polytomous Variable Latent Class Analysis [38]. This
clustering is essentially a search for a global maximum of the log-likelihood function,
so, understandably, its outcome may depend on the initial conditions and number of
repetitions. For the test set, the latent nodes were empty, and their values were inferred
during the BN prediction.

2.4.4. Bayesian Network

A Bayesian network is a powerful tool to model probabilistic knowledge about cer-
tain phenomenon. Nodes in the network represent discrete variables that are connected
with arrows. Each arrow represents a conditional probability table (network parameters)
between the two connected variables. Bayesian networks allow one to calculate the prob-
ability distribution of unobserved discrete variables given the evidence (i.e., values of
observed variables).

Building a BN model involves two steps: (i) defining the network structure (i.e., con-
nectivity among the nodes) and (ii) learning the parameters of the network (i.e., conditional
probability tables). There were many possible connections among the nodes, and it was not
our intention to ascertain the one giving the highest possible performance. Instead, we re-
lied on the BN structure proposed by Jaworska et al., which was developed manually from
mechanistic knowledge of skin sensitisation [12]. We tested two different BN structures
(Figure 1) that both largely resembled the BN architecture from SaferSkin-BN (or Jaworska
et al. [12]) with the following modifications: (i) parameters from the kDPRA were connected
in the same way as the DPRACys (i.e., the percentage of cysteine peptide depletion in the
DPRA) variable; (ii) the in silico TIMES-SS input was replaced by the Skin Doctor CP (left
network) or by the newly formed latent variable INSILICO, which connected the inputs
from Skin Doctor CP and Derek Nexus (right network in Figure 1). Once the BN archi-
tecture was defined, its parameters (conditional probability tables) were learned from the
training set. For the BN modelling, we used the Python library pgmpy and the following
settings: estimator = BayesianEstimator, prior_type = K2, equivalent_sample_size = 1 or 5,
complete_samples_only = False [39].

The BN model predicted discrete probability distributions of all the unknown variables.
For the test set, the unknowns were the target variable, latent nodes, and possibly some
input nodes. However, due to the non-uniform class distribution of target variables
in the training set, the resulting probability was biassed towards the more populated
classes. To correct this bias, we followed the approach presented by Jaworska et al. and
calculated Bayes factors [12]. Then, the predicted class was the one with the highest
Bayes factor. The size of the Bayes factor was also directly related to the confidence in a
prediction [40]: with Bayes factor < 3.2 indicating weak confidence, 3.2 ≤ Bayes factor < 10
indicating substantial confidence, 10 ≤ Bayes factor < 32 indicating strong confidence,
and Bayes factor > 32 indicating very strong confidence. With latent class analysis, we
introduced several hyperparameters that required optimisation: (i) each latent node had
a defined number of classes; we tested three to five classes for each node; (ii) the number
of repetitions of latent class analysis could also influence the BN model performance; we
tested three values, i.e., 10, 20, and 50. We performed an extensive grid search in the space
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of hyperparameters and selected the set of hyperparameters that resulted in the highest
balanced accuracy on the test set. Balanced accuracy was calculated using the method
sklearn.metrics.balanced_accuracy_score from the scikit-learn Python library version 1.5.1. The
method calculates balanced accuracy as an average recall over the four potency classes [41].
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During hyperparameter optimisation, we selected a set of hyperparameters for each
network structure, leading to the highest balanced accuracy on the test set. However,
this outcome could require further investigation to avoid overfitting the test set by the
hyperparameters. Hence, we estimated the accuracy of the two best models using 10-fold
cross-validation. The full dataset (training set + test set) was randomly split into 10 folds.
Nine folds were used to train the discretisation scheme, run latent class analysis (just with
the set of hyperparameters determined during hyperparameter optimisation in Section 3.1),
and train the BN parameters. The trained model was used to generate predictions for the
10th fold.

2.4.5. Evaluation Dataset

The performance of model A and model B in comparison with the baseline SaferSkin-
BN model was evaluated using the Cosmetics Europe Database, a dataset compiled by
the Cosmetics Europe consortium [21,22]. It was previously used by Kleinstreuer et al. to
evaluate the performance of different DA models [22]. The dataset covers, e.g., in vitro data
(DPRA, KeratinoSensTM, h-CLAT) and LLNA data for 128 substances. The dataset was
prepared and curated to include additional required in silico and in vitro data for the current
modelling approach; physicochemical parameters were generated using OPERA. Derek
Nexus and Skin Doctor CP were used to generate predictions for the INSILICO nodes in
model A and model B. kDPRA data were collected from Natsch and Gerberick [29]. TIMES-
SS data for comparison with the SaferSkin-BN were collected from Hofmann et al. [42]. Of
the 128 substances in the original dataset, 6 were of natural origin with unknown exact
compositions. We had to omit those 6 compounds as converting mass concentrations into
molar concentrations or deriving a defined chemical structure for in silico predictions was
impossible. The full evaluation set is summarised in Supplementary Materials Table S3.

3. Results and Discussion

The current work presents the development of novel BN models prioritising trans-
parency and reproducibility to address regulatory concerns and support future regulatory
acceptance. The starting point for model development was SaferSkin-BN, based on the
ITS-3 BN approach developed by Jaworska et al. [12]. The Jaworska ITS-3 model uses
two commercial software packages, TIMES-SS (for predicting skin sensitisation potency)
and ACD/Labs (for predicting physical–chemical properties), as well as in vitro input
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parameters (DPRA, KeratinoSensTM, and h-CLAT). SaferSkin-BN was built using OPERA,
TIMES-SS, DPRA, KeratinoSensTM, and h-CLAT.

Within the present study, we successfully added a new in chemico assay, kDPRA,
which was also recently included in the updated OECD guideline 422C on assays ad-
dressing KE1, i.e., covalent binding to proteins. In addition, the successful replacement of
commercial in silico tools by freely available ones could be shown.

We developed two slightly different models, models A and B, incorporating these two
steps. The first step involved adding two input nodes to the BN representing data from the
kDPRA, i.e., Kmax and kDPRA classification according to GHS classes. Both nodes were
considered equivalent to the DPRACys node representing the cysteine depletion value
determined in the DPRA and were therefore connected to the CYSTEINE latent node just
like DPRACys. This pattern was the same in both model A and model B.

These changes resulted in model A, which is based solely on freely accessible in
silico tools.

Another variant was developed to complement the statistics-based Skin Doctor CP
model with a rule-based in silico model and sensitisation potency prediction. To this end,
we integrated Derek Nexus as an additional input. While we strived to use open-access
tools, the inclusion of Derek Nexus was favourable for considering the recommendations
for in silico toxicology protocols due to its recent adoption in the OECD guideline 497 on
defined approaches on skin sensitisation and to improve the performance with respect to
that of model A [1,19]. To reduce connectivity in the BN and optimise its performance, we
created a new latent node, INSILICO, that replaced the TIMES node in SaferSkin-BN. The
new INSILICO node was connected to the two in silico inputs from Skin Doctor CP and
Derek Nexus. The resulting architecture represented model B.

3.1. Hyperparameter Optimisation

After determining the final network structures, we ran an extensive hyperparameter
search to maximise the balanced accuracy on the test set. Hyperparameters refer to the
latent class analysis during data preparation. In the latent class analysis, we assumed the
number of classes (NCYTOX, NCYSTEINE, NHCLAT, NBIOAV, NINSILICO) for each latent node
(CYTOX, CYSTEINE, HCLAT, BIOAV, INSILICO). Furthermore, we assumed the number
of times the global optimum is estimated using different initial conditions, NREP. The
space of these six hyperparameters was extensively searched, and Table 1 summarises the
optimal set of parameters found for models A and B. Further results reported in this section
are based on the analysis of those optimised versions of models A and B in comparison
with SaferSkin-BN.

Table 1. Optimal parameters and balanced accuracies of BN models A and B predicting four potency
classes on the test set.

Model Architecture
Optimal Hyperparameters Balanced Accuracy on

Test Set (%)NCYTOX NCYSTEINE NHCLAT NBIOAV NINSILICO NREP

Baseline (SaferSkin-BN) 3 4 4 3 N/A 20 66
Model A 3 3 4 3 N/A 20 66
Model B 3 3 3 3 4 20 70

3.2. Incorporation of kDPRA into In Vitro Parameters

The OECD recently updated test guideline 422C on assays addressing KE1, i.e., co-
valent binding to proteins, with a new kDPRA. The kDPRA shows promising predictive
capacity for risk assessment, distinguishing between GHS 1A-classified sensitisers and GHS
1B/non-sensitisers with good accuracy [18]. More kDPRA data might become available in
the public domain in the future or might be generated during a specific compound’s risk
assessment. Therefore, in the present work, we aimed to broaden the scope and source of
the in vitro parameters that could be considered for DA.
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The main parameter obtained in the kDPRA was Kmax, a rate constant for the binding
of the compound to the peptide. The assay also defines a threshold in Kmax that best
distinguishes between GHS 1A sensitisers and GHS 1B/non-sensitisers. Therefore, this
assay provided us with two input parameters for the BN model: Kmax (a continuous
variable that we discretised as described in the Methods section) and kDPRA (a binary
variable representing the classification into GHS 1A or GHS 1B/non-sensitiser). Table 2
compares BN models with and without kDPRA input parameters. Balanced accuracies for
the test set were calculated using four model variants (i.e., models A and B, each with and
without kDPRA nodes). The individual predictions for all compounds from the test set
by the baseline model, as well as model A and model B, can be found in Supplementary
Materials Table S4.

Table 2. Balanced accuracies of BN models A and B predicting four potency classes on the test set
with and without kinetic DPRA (kDPRA) data.

Model Balanced Accuracy (%)

Baseline (SaferSkin-BN) 66
Model A 66

Model A without kDPRA nodes 64
Model B 70

Model B without kDPRA nodes 68

Including the kDPRA data resulted in the comparable or even slightly improved
predictive capacity of the BN model, thus enabling the use of the model with kDPRA
data, DPRA data, or both, depending on their availability. In the field of skin sensitisation
prediction, where relatively sparse data are available in the public domain, this flexibility
will offer an advantage, especially if we expect the kDPRA to be conducted more fre-
quently in the future due to its easier and faster application and its ability to predict a
measure of potency.

3.3. Implementation of In Silico Skin Sensitisation Prediction Models

One critical parameter of the Jaworska ITS-3 model and SaferSkin-BN is the in silico
prediction model of skin sensitisation potency, i.e., the TIMES-SS (TImes MEtabolism Simu-
lator) V.2.27.13 commercial software [43]. TIMES-SS is a hybrid expert system that encodes
structure–activity and structure–metabolism relationships and is therefore capable of pre-
dicting the sensitising potency of a parent compound, as well as that of its metabolites. In
their analysis, Jaworska et al. demonstrated that this parameter had the highest predictive
power of all the input parameters [11].

Within the present study, TIMES-SS inputs were replaced with predictions from the
Skin Doctor CP model, which was transparently published in the literature, was trained on
public LLNA data, and is available via a web service [35]. Table 3 compares the accuracies
of BN models incorporating TIMES-SS or Skin Doctor CP inputs. In model A, we directly
replaced the TIMES-SS input node with the Skin Doctor CP node. However, in model B,
we added one more in silico parameter, i.e., the prediction of skin sensitisation potency
from the Derek Nexus software. Hence, in model B, we actually created a new latent node,
INSILICO, that connected both in silico inputs and replaced the TIMES-SS node.

The statistical analysis showed that replacing TIMES-SS with Skin Doctor CP main-
tained the model’s prediction accuracy. Addition of Derek Nexus predictions (model B)
slightly increased the balanced accuracy. TIMES-SS predicted the skin sensitisation po-
tential for the parent compound and predicted metabolites. The most conservative input
was provided to the DA. Our newly generated models A and B were based on Skin Doctor
CP and Derek Nexus. Both tools predicted the skin sensitisation potential based on the
parent compound. Metabolites were not predicted. The impact of a potential sensitising
metabolite was only indirectly considered, as these models were trained on LLNA in vivo
data, which covered the effect of native, although not human, skin metabolism and, thus,

60



Toxics 2024, 12, 666

captured the effects of both the parent compound and the metabolites formed. The impact
of using in silico predictions for the metabolites on the overall performance of the model
still needed proper evaluation. The superior predictive performance of model B over model
A demonstrated a high impact of the in silico tool Derek Nexus on improving the model’s
accuracy. This was aligned with the observation by Jaworska et al. that the in silico input
(TIMES-SS in their case) was the input parameter with the largest impact on the final
prediction [12].

Table 3. Balanced accuracies of BN models A and B predicting four potency classes with different in
silico inputs.

Model Balanced Accuracy (%)

Baseline (SaferSkin-BN) 66
Variation of model A with TIMES-SS replacing the Skin

Doctor CP node 66

Model A (with Skin Doctor CP node) 66
Model B (with Skin Doctor CP and Derek Nexus nodes) 70

3.4. Replacement of Physicochemical Parameter Prediction Models

In the Jaworska ITS-3 model, the physicochemical parameters (octanol–water partition
coefficient, water solubility, fraction of compound ionised, protein binding) were calculated
with the commercial QSAR models from ACD/Labs [12,17]. To increase the accessibility
and usability of the DA, we calculated these parameters using the open-source OPERA suite.
Table 4 summarises a head-to-head comparison of the newly developed models trained
with physicochemical properties coming from ACD/Labs and OPERA while keeping the
rest of the parameters unchanged (the network architecture was as depicted in Figure 1).
Note that we determined the best set of hyperparameters for each of the two variants of
model A (trained with ACD/Labs and trained with OPERA phys-chem). Incidentally, the
same set of hyperparameters gave the highest test set accuracy for both model variants.

Table 4. Balanced accuracies of the BN models A and B predicting four potency classes on the test set
using physicochemical properties from ACD/Labs and OPERA.

Model Balanced Accuracy (%)

Baseline (SaferSkin-BN) 66
Model A trained with ACD/Labs phys-chem. 66

Model A trained with OPERA phys-chem. 66
Model B trained with ACD/Labs phys-chem. 69

Model B trained with OPERA phys-chem. 70

Replacing the physicochemical parameters from the commercial QSAR models with
those from the open-source suite did not decrease the model’s accuracy.

3.5. Model Cross-Validation

After the optimal hyperparameters were determined, we ran a 10-fold cross-validation
on the entire dataset (i.e., merged the training and test sets) to obtain a more realistic
estimate of the model’s accuracy. Table 5 shows the cross-validated balanced accuracy (full
dataset) of the two models, and these were clearly comparable to the balanced accuracies
on the test set (Table 1). Furthermore, we calculated the minimum, median, and maximum
balanced accuracy per fold to illustrate the variability in balanced accuracy on small
datasets (a typical fold contained 20 compounds). We can see that the balanced accuracy
was difficult to estimate with a relatively small set of compounds.
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Table 5. Cross-validated and fold-balanced accuracies of BN models A and B in predicting four
potency classes.

Model Architecture Cross-Validated
Fold-Balanced Accuracy (%)

Minimum Median Maximum

Model A 66 55 65 83
Model B 68 52 65 90

To illustrate the robustness of the choice of hyperparameters, we ran a 10-fold cross-
validation for every set of hyperparameters and collected the minimum, average, and
maximum balanced accuracy obtained. The results are presented in Table 6. We can
conclude that the hyperparameters selected based on the balanced accuracy of the test set
gave close to the best cross-validated balanced accuracy, too. Another observation was
that we could expect about 10 to 15% variation in balanced accuracy between the best-
performing and the worst-performing sets of hyperparameters. Expectedly, this variation
was substantially lower than the variation in balanced accuracy among the folds.

Table 6. Cross-validated balanced accuracies of BN models A and B in predicting four potency classes
with different sets of hyperparameters.

Model Architecture
Cross-Validated Balanced Accuracy (%)

Minimum Median Maximum

Model A 59 64 68
Model B 61 68 75

3.6. Relation between the Prediction Confidence and Accuracy

An advantage of a BN is its ability to predict sensitiser potency alongside an indication
of prediction confidence. More concordant evidence supports a particular prediction with
a higher confidence level than non-concordant evidence [12]. To illustrate the influence
of the confidence level on prediction accuracy, the accuracy of predictions with different
confidence levels was calculated (Table 7). Importantly, accuracy improved substantially as
confidence levels progressed from weak to very strong.

Table 7. Accuracy of BN models A and B on the test set when predicting four potency classes,
calculated separately for each confidence class. The number of compounds for each class, N, is
provided in parentheses.

Model
Architecture

Accuracy (%)

Weak
Confidence

Substantial
Confidence

Strong
Confidence

Very Strong
Confidence

Model A 48 (N = 33) 55 (N = 69) 55 (N = 31) 88 (N = 69)
Model B 40 (N = 25) 56 (N = 67) 67 (N = 33) 90 (N = 69)

3.7. Prediction of the LLNA EC3 Value for Use in Risk Assessment

Although the proposed BN models provide discrete probability distributions, it is
possible to derive a predicted continuous LLNA EC3 value from those distributions. This
is of substantial value for any quantitative risk assessment. To the authors’ current knowl-
edge, only a few approaches (i.e., the BN, the neural network, and the multiple linear
regression approaches) predict EC3 values [44,45]. The discrete probability distribution
over potency classes could be turned into a distribution over pEC3 values (by applying the
pEC3 thresholds to the class limits). The most likely pEC3 value is the value at the 50th
percentile of that distribution. However, it reports more restrictive values, e.g., at the 70th
or the 90th percentile, which might be considered. The currently developed BN reports
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the probability distribution of pEC3, unlike the existing two DAs, which simply deliver a
pEC3 value without a confidence interval.

The results in Figure 2 display the predicted pEC3 values at the 50th (left), 70th
(middle), and 90th percentiles (right) versus the true pEC3 values. The red lines indicate a
perfect fit. The pEC3 values derived from the 50th percentile are scattered around the red
line. Deriving pEC3 values from higher percentiles resulted in overestimating the potency
(predicting lower EC3 values than the true LLNA results). Within expectations, the highest
R2-values can be found for the 50th percentile. With values of 0.47 and 0.54, they are in line
with the R2-values evaluated for Natsch et al., which are 0.53, 0.52, and 0.54 for EQ1, EQ4
and EQ5, respectively. Small R2-values for the 70th and 90th percentile, of course, result
from the intention to avoid underprediction which is not suited for R2 optimisation.
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3.8. Model Evaluation Using the Cosmetics Europe Database

Recently, a dataset was compiled by the Cosmetics Europe consortium to enable
comparisons of skin sensitisation DA models [21,22]. The dataset covers in vitro data
(DPRA, KeratinoSensTM, h-CLAT), LLNA data, and human potency data for 128 substances.
To enable a consistent comparison with other DA models, we decided to use the same
dataset to evaluate the newly developed DAs. The data were used within the freshly
generated DAs of model A and model B, as well as SaferSkin-BN, for comparison. The
outcomes are summarised in Tables 8 and 9. The individual predictions for all compounds
from the Cosmetics Europe dataset by the baseline model, as well as model A and model B,
can be found in Supplementary Materials Table S5.
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Table 8. Accuracy of the baseline and BN models A and B in predicting four LLNA potency classes
on the Cosmetics Europe dataset calculated separately for each confidence class. The number of
compounds for each class, N, is provided in parentheses.

Model Architecture

Accuracy (%)

Complete
Dataset

Weak
Confidence

Substantial
Confidence

Strong
Confidence

Very Strong
Confidence

Baseline (SaferSkin-BN) 61 (N = 122) 46 (N = 28) 62 (N = 39) 44 (N = 25) 87 (N = 30)
Model A 63 (N = 122) 33 (N = 30) 65 (N = 54) 83 (N = 12) 85 (N = 26)
Model B 68 (N = 122) 43 (N = 37) 72 (N = 43) 86 (N = 22) 85 (N = 20)

Table 9. Accuracy of the baseline and BN models A and B in predicting three human potency classes
on the Cosmetics Europe dataset calculated separately for each confidence class. The number of
compounds for each class, N, is provided in parentheses.

Model Architecture

Accuracy (%)

Complete
Dataset

Weak
Confidence

Substantial
Confidence

Strong
Confidence

Very Strong
Confidence

Baseline (SaferSkin-BN) 57 (N = 122) 54 (N = 28) 44 (N = 29) 64 (N = 25) 70 (N = 30)
Model A 55 (N = 122) 43 (N = 30) 52 (N = 54) 58 (N = 12) 73 (N = 26)
Model B 61 (N = 122) 49 (N = 37) 63 (N = 43) 64 (N = 22) 75 (N = 20)

Considering the overall predictions of the complete set (N = 122), model B’s accu-
racy was superior (68%) to both model A’s performance and that of the baseline model,
SaferSkin-BN (63% and 61% accuracy, respectively). The database was originally imple-
mented to evaluate the performance of several DA models by Kleinstreuer et al.: Kao
Sequential Testing Strategy, Kao Integrated Testing Strategy, Shiseido Artificial Neural
Network (DPRA/h-CLAT or DPRA/h-CLAT/KeratinoSensTM), and P&G BN ITS-3 [22].
The resulting accuracies for predicting the LLNA sensitising potency ranged from 65 to
70%. Thus, the accuracies of the newly developed models were of the same order of
magnitude as those of the existing DA models. Additional benefits of the newly developed
DAs are improved accessibility, transparency, and a more flexible spectrum of in vitro
input parameters. Beyond that, our newly developed models A and B provide four-class
potency prediction, while the DAs evaluated by Kleinstreuer et al. [22] provide up to
three potency classes. This difference needs to be considered when comparing the derived
accuracy values. A higher number of potency classes is beneficial for safety assessment
since it decreases the range of possible potencies for compounds assigned to a certain
potency class.

To predict the three human potency classes, the four LLNA classes were combined
into three classes (strong, weak = moderate + weak, non-sensitising), and accuracies were
evaluated on the complete set (N = 122), as well as for different confidence levels (Table 9).
The predictive capacity for LLNA was superior to the prediction of human potency. This can
be explained by the fact that all three models were trained on the LLNA data. LLNA data,
despite their variability, are experimental values obtained in reproducible experiments,
whereas human potency data are expert gradings that also incorporate the exposure of
the population [25]. For the human endpoint, we again observed that the accuracy of
model A was comparable to that of the baseline model. In contrast, model B offered a
slight improvement over the baseline model. To compare the newly developed models
with other DAs, we again turned to the work by Kleinstreuer et al. [22], where DAs were
evaluated on the Cosmetics Europe dataset. To briefly summarise the results from [22] on
the accuracy of predicting three human potency classes, all DAs performed comparable
or better than the LLNA assay (59% accuracy). The worst DA in [22] was the Bayesian
network approach with 55% accuracy, the same as the newly developed model A. The best
performing DAs were Kao STS and Kao ITS with 64 and 69% accuracy. With model B, we
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reach the same performance as the neural network approaches by Shiseido ANN (D_hC)
and ANN (D_hC_KS) with 61 and 63% accuracy.

An advantage of the presented BN models is their capacity to provide a confidence
estimation for a single prediction. For each sensitiser potency class, the prediction probabil-
ity is calculated based on the evidence from in vitro assays and in silico tools. Consistent
results from different in silico and in vitro tools increase confidence, whereas conflicting
results decrease confidence. A good correlation between prediction accuracy and the
estimated confidence level was observed (Tables 8 and 9). Predictions with very strong
confidence reached accuracies of up to 88%, whereas the predictions with weak confidence
were associated with accuracies below 50%. Therefore, predictions with weak confidence
should be scrutinised thoroughly and may require an additional safety assessment factor.

3.9. Applicability and Limitations of Proposed Approach

Among the strengths of the proposed approach are (i) its ability to handle incomplete
input parameters; (ii) its provision of the confidence level of predictions, which are strongly
correlated to the model’s accuracy; (iii) and its provision of the EC3 value that is require for
risk assessment.

However, the approach also has limitations. One is the discretization of continuous
input variables, which will necessarily result in potentially mispredicted compounds that
have continuous input parameters close to their discretization thresholds. Such cases
should be inspected carefully, and predictions could be generated with slight variation of
such input parameters.

Another limitation is that the approach requires a known chemical structure to convert
in vitro parameters into molar units. So, the issue of how to handle cases of natural
substances with unknown chemical structures is not very well defined.

4. Conclusions

In this article, we describe the development of two new DA models, model A and
model B, with the aim to increase the applicability and flexibility of current approaches by
allowing input from a new in vitro method as well as from freely available in silico tools.
Both models developed are based on previously published Bayesian network approaches,
ITS-3 and SaferSkin-BN [9,12]. The existing DAs were upgraded by expanding the set of
in vitro input parameters with integrated kDPRA data and by increasing accessibility and
transparency by replacing the commercial in silico software TIMES-SS and ACD/Labs
with the publicly accessible software Skin Doctor CP and OPERA. The most accurate
model, model B, includes predictions from the commercial in silico tool Derek Nexus
to comply with recommendations for in silico toxicology protocols. The combination of
rule-based and statistical in silico prediction tools increased the performance of model
B compared with model A and the baseline model SaferSkin-BN, respectively. Using
the Cosmetics Europe dataset to evaluate the newly developed models enables direct
comparison with other published DA models evaluated on the same dataset [22]. Models A
and B both showed comparable or even superior accuracy compared to the baseline model,
SaferSkin-BN. A comparative evaluation of published DAs showed similar accuracy at 63%
to 68%. The models’ accuracy increased by considering a higher confidence level of up to
85%. However, the newly developed models enable a more granular potency assessment
because they predict four instead of three classes. The incorporation of additional LLNA
data would further improve the predictive capacity, as well as the confidence in predictions.
While the models are trained and optimised for LLNA prediction, we could also show
their capability to predict skin sensitisation in humans. In addition, we could show
that the incorporated measure of reliability can indicate the model’s applicability to an
individual molecule of interest. This would allow us to distinguish between highly and
less reliable predictions. Our analysis shows a general trend in potency overestimation
for the predicted pEC3 derived from higher percentiles. This overestimation results in a
more conservative and, consequently, more protective calculation of safe concentrations
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using NGRA approaches. Ultimately, this work supports the goal of reaching regulatory
acceptance of newly developed DA models for NGRA approaches to skin sensitisation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/toxics12090666/s1, Table S1: Data set used for training of the BN
models; Table S2: Data set used for evaluation of the BN models; Table S3: Cosmetics Europe data set
enriched with results from kDPRA, Derek, Skin Doctor CP and OPERA as used for further evaluation
of the BN models; Table S4a: Predictions on the test set returned by the baseline model; Table S4b:
Predictions on the test set returned by model A; Table S4c: Predictions on the test set returned by
model B; Table S5a: Predictions on the Cosemtics Europe data set returned by the baseline model;
Table S5b: Predictions on the Cosemtics Europe data set returned by model A; Table S5c: Predictions
on the Cosemtics Europe data set returned by model B.
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Abstract: Toxicological assessments of skin sensitizers have progressed towards a higher reliance on
non-animal methods. Current technological trends aim to extend the utility of non-animal methods to
accurately characterize skin-sensitizing potency. The GARDskin Dose–Response assay has previously
been described; it was shown that its main readout, cDV0 concentration, is associated with skin-
sensitizing potency. The ability to predict potency from cDV0 in the form of NESILs derived from
LLNAs or human NOELs was evaluated. The assessment of a dataset of 30 chemicals showed that
the cDV0 values still correlated strongly and significantly with both LLNA EC3 and human NOEL
values (ρ = 0.645–0.787 [p < 1 × 10−3]). A composite potency value that combined LLNA and human
potency data was defined, which aided the performance of the proposed model for the prediction of
NESILs. The potency model accurately predicted sensitizing potency, with cross-validation errors
of 2.75 and 3.22 fold changes compared with NESILs from LLNAs and humans, respectively. In
conclusion, the results suggest that the GARDskin Dose–Response assay may be used to derive an
accurate quantitative continuous potency estimate of skin sensitizers.

Keywords: NAM; GARDskin Dose–Response; sensitizing potency; quantitative risk assessment;
point of departure

1. Introduction

Chemicals possess a wide range of physiochemical properties. While many are benefi-
cial, making them ubiquitous in industries and society, some can induce hazardous effects
in humans. Therefore, it is essential to investigate the potential of chemicals to induce
adverse effects. One type of hazard that is routinely screened for is the capacity to induce
skin sensitization [1,2]. Skin sensitization is a hypersensitivity reaction that follows a topical
exposure to an inducing chemical, leading to the establishment of a specific immunological
memory [3,4]. The underlying mechanisms of this reaction have been extensively studied
and explained, and the major key events (KEs) are recognized and have been summarized
in an Adverse Outcome Pathway (AOP) [5]. As the sensitization reaction results in an
immunological memory, a sensitized individual will suffer from adverse effects upon
repeated exposure to that specific chemical, making the initial avoidance of hazardous
exposure levels imperative.

The induction of skin sensitization is a dose-dependent event, and the likelihood that
sensitization occurs typically increases with dose [6]. However, chemicals’ efficiencies
to induce sensitization vary greatly [7]. For example, a strong skin sensitizer may cause
sensitization from a few micrograms of topical exposure, while weak sensitizers would
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require milligrams to reach a similar probability of sensitization on the same surface
area. Therefore, it is not only relevant to evaluate the ability of a chemical to induce skin
sensitization, but also to characterize an identified skin sensitizer’s potency, i.e., to derive
an estimate of an exposure level that is not expected to induce skin sensitization in the
general population.

Traditionally, the assessment of skin sensitizers has relied on information from in vivo
assays. Guinea pig models were among the earliest standardized methods, which included
the Buehler assay [8–10] and the Guinea Pig Maximization Test (GPMT) [11]. These were
largely superseded by the more recent murine Local Lymph Node Assay (LLNA) [12–14],
which brought several improvements over the guinea pig assays. These include aspects
of animal welfare and an improved scientific rationale, as the assay provides an objective
and quantitative readout [15]. Further, while potency information could be gathered from
the guinea pig models [6], the LLNA incorporates dose–response measurements, and the
derived effective concentration for a stimulation index of 3 (EC3) serves as an immediate
indicator of sensitizing potency, which has been shown to correspond well with human-
derived potency data [16–19]. Human potency data are often described in terms of No
Observed Effect Levels (NOELs) or Lowest Observed Effect Levels (LOELs) from Human
Repeat Insult Patch Tests (HRIPTs). However, testing on humans is problematic [20], especially
given the potential severity and enduring effects of skin sensitization, and is typically avoided
unless used in confirmatory scenarios where a lack of response has been demonstrated [21].
Nevertheless, when available, data from both humans and LLNAs may be used as information
sources to derive No Expected Sensitization Induction Levels (NESILs), which may be used
as a Point of Departure (PoD) in risk assessment strategies [22,23].

More recent advancements in the field of skin-sensitization assessment, however,
are being made toward the development of non-animal methods, or New Approach
Methodologies (NAMs), aiming to replace animal tests, not only for hazard identification
but also for hazard characterization and potency evaluation. An initial milestone, which
has to a significant degree already been realized, is the establishment of NAMs capable
of accurately and reliably identifying skin-sensitizing hazards. Today, many different
NAMs can be used to generate such hazard information, and validated and regulatory
approved methods are described in various OECD test guidelines [24–26], each of which is
associated with a specific KE of the AOP. However, none of the methods described in the
TGs have so far been approved for stand-alone use. Therefore, endeavors have also been
made to integrate results across NAMs to increase confidence in their joint classification
outcomes, using so-called Defined Approaches for Skin Sensitization (DASS) [27–29]. In
addition to these NAMs, skin-sensitizing hazard data can also be obtained using in silico
methods [30–33], which may contribute to weight-of-evidence assessments.

A second milestone in the replacement of animal tests is the development of methods
capable of informing about chemicals’ skin-sensitizing potencies. Indeed, some potency
information may already be derived in a discrete manner, as described in the current OECD
test guideline 497, where integrated testing strategies incorporating multiple information
sources (including in chemico, in vitro, and in silico) are used to predict sensitizing potency
per the globally harmonized system for classification and labelling (UN GHS) [29]. How-
ever, the apogee of NAM development for the purpose of potency assessment is, neverthe-
less, likely a readout provided as a quantitative continuous potency value. Some progress
has already been made towards this objective. For example, probabilistic approaches based
on Bayesian or Artificial Neuronal Network (ANN) frameworks that incorporate multiple
information sources, including several NAMs, have been described for the prediction
of PoDs [34–37]. Similarly, several alternative regression models based on the output of
established NAMs have been proposed for the prediction of LLNA EC3 values [38]. Besides
methods incorporating data from individual NAMs, novel test methods have also been
proposed for directly generating potency information [24,39].

While the development of NAMs for the assessment of skin sensitizers progresses,
frameworks for interpreting their results and managing risks are also being established. For
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example, Next-Generation Risk Assessment (NGRA) strategies that incorporate information
from several NAMs have recently been proposed [40,41].

We have previously described an extended protocol of the GARDskin assay that in-
corporates dose–response measurements to derive a concentration estimate that correlates
strongly and significantly with both LLNA EC3 and human NOELs [42]. The classical
GARDskin assay is an OECD-approved assay described in test guideline 442E [26], together
with other methods addressing the key event of dendritic cell activation. The GARDskin
assay, and the dose–response adaptation, relies on the monitoring of genetic changes in
a biomarker signature following chemical exposure. The biomarker signature includes
several genes relevant to immune activation, including cd86, hmox1, nqo1, and nlrp12 [43].
The dose–response adaptation studies the summarized gene response over multiple con-
centrations to identify the lowest concentration capable of inducing a positive classification
in the GARDskin assay. As such, the main methodology is a typical toxicological approach,
which is also applied in the LLNA, where a PoD is determined from a dose–response curve
and used as a measure of potency.

In this work, we further characterize the GARDskin Dose–Response assay and provide
results that show that its readout, the cDV0 value, correlates significantly with established
potency metrics on a larger dataset and can be used to accurately predict potency. Notably,
the redundancy and potential ambiguity of having repeated NESILs derived from the
LLNA and human NOELs for model fitting was rectified using a composite potency value
describing a latent potency signal. This approach improved the predictive performance
compared with methods relying on individual references, generating NESIL predictions
relevant for risk assessment frameworks such as NGRA [40,41].

2. Materials and Methods
2.1. The GARDskin Dose–Response Assay

The GARDskin Dose–Response assay is based on the protocol of the GARDskin assay,
publicly available in the Tracking System for Alternative methods towards Regulatory
acceptance (TSAR) [44]. The assay measures the expression levels of genes in the GARDskin
Genomic Prediction Signature (GPS) following treatment with a test chemical to the cell
system [26,43,45], i.e., the Senzacell cell line (ATCC depository PTA-123875). The interpreta-
tion of gene response is made with a support vector machine (SVM) (explicitly described in
supporting documents to the OECD TG 442E [46]), which outputs a decision value (DV) on
which the subsequent classification is based. A test chemical is classified as a skin sensitizer
if the generated mean DV is greater than zero (DV ≥ 0) and as a non-sensitizer if the mean
DV is less than zero (DV < 0).

The GARDskin Dose–Response assay extends the standard protocol by evaluating the
test chemical at several concentrations [42]. DVs are calculated for every concentration and
the lowest concentration expected to induce a positive classification is determined, which
corresponds to the lowest concentration that predicts a DV of 0. Practically, this concen-
tration can be estimated using linear interpolation between the two closest concentrations
that generate predictions on the opposite sides of the GARDskin classification threshold.
The estimated concentration is the main readout of the GARDskin Dose–Response assay,
termed cDV0 [42].

In more detail, a test item assessment starts with an examination of the cytotoxic
properties of the chemical, using a protocol based on propidium iodide staining and flow
cytometry analysis. A concentration inducing low-to-non-toxic conditions, as determined
by the relative viability of the cell system following exposure, is determined. This con-
centration is termed the GARD input concentration and constitutes the sole assessment
concentration in the standard GARDskin assay and the highest evaluated concentration
in the GARDskin Dose–Response assay. Subsequent concentrations in the dose–response
assay are typically calculated using a dilution series with a dilution factor of approximately
0.5. The actual design of the concentration curve can be modified for particular purposes,
i.e., a higher number of replicates with smaller steps between concentrations may result in
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reduced uncertainty of an estimated cDV0 value but at the cost of resources. As this study
comprises chemicals from several separate experiments, the designs of the concentration
curves are not identical. For example, in Gradin et al.’s study [42], chemicals were analyzed
by evaluating 12 different concentrations with a dilution factor of 0.6 and a single replicate
per concentration. Since then, data have been acquired using more standardized dilution
schemes optimized from accumulated observations, typically including 6 concentrations
with two or three replicates. The actual dilution schemes used for each chemical in this
study are available in Supplementary Tables S2 and S3.

Cells are treated with the test chemical at the determined concentrations for 24 h,
following which cells are harvested and total RNA is isolated and purified. Gene expression
levels are quantified using the NanoString nCounter system using a custom GARDskin
codeset, as described previously [26,45]. The data analysis pipeline for transforming raw
gene expression levels into decision values has been publicly described, including all
parameter values [46]. For the dose–response analysis, the decision values are examined
against the treatment concentrations to verify the presence of a dose–response relationship.
A cDV0 concentration is estimated when a dose-dependent response is observed, using
linear interpolation between the two closest points (in terms of concentration) that are on
adjacent sides of the classification threshold.

2.2. Dataset

This work was based on a dataset of 30 chemicals, as listed in Table 1. More complete
details regarding the chemicals are presented in Supplementary Table S1. GARDskin Dose–
Response data for 18 of the chemicals were previously described in Gradin et al.’s work [42].
In that work, chemicals were selected to span a wide range of expected potency values while
preferably having both human and LLNA reference data. In addition, they were selected
to cover the potency span relatively evenly to allow for an efficient correlation analysis
between cDV0 and potency references. That dataset of 18 chemicals was extended here
with 12 new chemicals. The new chemicals raised skin-sensitization alerts and had LLNA
and human NOEL data. The chemicals were butyl resorcinol (18979-61-8); citral (5392-40-5);
chlorpromazine (50-53-3); (R)-(+)-Limonene (5989-27-5); alpha-iso-Methylionone (127-51-
5); phenylacetaldehyde (122-78-1); ethyl acrylate (140-88-5); cinnamic alcohol (104-54-1);
3-Propylidenephthalide (17369-59-4); 5-Methyl-2,3-hexanedione (13706-86-0); and carvone
(6485-40-1). A majority of weak and moderate, i.e., UN GHS Cat. 1B, skin sensitizers were
selected to reduce the uncertainty in the estimated relationship between cDV0 and the
sensitization potency for this category of ingredients, as precision in this potency range
may be of particular relevance for the cosmetics industry.

The analysis included repeated runs for 10 of the chemicals. Repeated cDV0 values
were merged by their geometric mean values before incorporation in downstream calcula-
tions (including correlation evaluations and regression analyses). Individual cDV0 values
and repeated runs’ geometric means are described in Table 1 and in Supplementary Table S1.
The geometric mean was used as it consistently maintains the relative differences be-
tween measurements. For example, the geometric mean of 0.5 µg/mL and 2 µg/mL is
1 µg/mL, which is 2-fold from either of the original values.

LLNA EC3, human NOELs, and human Lowest Observed Effect Levels (LOELs) were
collected from the published literature [47–53] (see Supplementary Table S1 for details).
LLNA EC3 values were converted into NESIL estimates in µg/cm2 by multiplying the
percentage values by 250 [54].
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Table 1. Description of the chemical dataset. The cPV column describes the computed composite
potency values. Chemicals that have data from repeated tests show results from the individual
studies within parentheses and the summarized values (the geometric mean), which are used for
subsequent calculations, outside the parentheses. Entries with dashes (“-”) represent reference data
points that could not be located or composite potency values that could not be defined due to at least
one missing reference value.

NESIL µg/cm2

Chemical CAS MW (g/mol) cDV0 (µg/mL) LLNA HRIPT NOEL
Composite

Potency Value
(cPV)

Human LOEL
(µg/cm2)

Benzalkonium chloride 8001-54-5 424.15 0.350 25.0 - - -
2,4-Dinitrochlorobenzene 97-00-7 202.55 0.443 13.5 8.8 9.80 8.8
Cinnamic aldehyde 104-55-2 132.16 0.524 250 591 378 775
Citral 5392-40-5 152.23 1.11 (0.737, 1.67) 1450 1417 1440 3876
Diethyl maleate 141-05-9 172.18 1.03 (0.754, 1.40) 525 1600 921 -
Dimethyl fumarate 624-49-7 144.13 0.874 87.5 88 82.8 -
Methylisothiazolinone 2682-20-4 115.15 0.904 325 15 63.4 -
Benzyl Alcohol 100-51-6 108.14 1.37 NS 5905 - 8858
Chlorpromazine 50-53-3 318.9 1.38 35.0 1150 200 17,241
alpha-Isomethylionone 127-51-5 206.32 3.10 (1.48, 6.51) 5450 70,860 21,400 -
Iodopropynyl
butylcarbamate 55406-53-6 281.09 1.61 225 - - -

Isoeugenol 97-54-1 164.21 1.70 325 250 275 775
p-Mentha-1,8-dien-7-al 2111-75-3 150.22 2.41 (1.73, 3.38) 1010 709 835 2760
Phenylacetaldehyde 122-78-1 120.15 2.68 750 591 654 1181
Carvone 6485-40-1 150.22 5.13 (3.58, 7.35) 3250 2657 2980 18,898
7-Hydroxycitronellal 107-75-5 172.26 5.70 5275 4960 5260 5814
5-Methyl-2,3-hexanedione 13706-86-0 128.169 8.97 6500 3448 4830 3450
Eugenol 97-53-0 164.21 9.29 2900 5906 4270 -
Ethyl acrylate 140-88-5 100.12 9.47 8188 1600 3630 4000
Cinnamic alcohol 104-54-1 134.17 10.3 5775 2953 4200 4724
Butyl resorcinol 18979-61-8 166.22 8.83 (10.3, 7.55) 950 - - -
Farnesol 4602-84-0 222.37 11.8 (11.5, 12.1) 1200 2755 1850 6897
Geraniol 106-24-1 154.25 15.4 (12.7, 18.7) 4025 11,811 7220 -
Imidazolidinyl urea 39236-46-9 388.29 14.9 6000 2000 3490 2000
3-Propylidenephthalide 17369-59-4 174.2 18.5 (18.8, 18.2) 925 945 928 2760
Pentachlorophenol 87-86-5 266.34 20.1 5000 2155 3310 6897
(R)-(+)-Limonene 5989-27-5 136.23 14.8 (20.2, 10.8) 13,125 10,000 12,000 -
3-Dimethylaminopropylamine 109-55-7 102.18 25.7 875 - - -
Benzyl salicylate 118-58-1 228.25 37.4 725 17,715 3790 -
Linalool 78-70-6 154.25 43.0 8875 14,998 12,100 -

2.3. Creation of a Composite Potency Value

The reference composite potency value was created by fitting a robust errors-in-
variables model between NESIL values derived from LLNA EC3 and human NOELs,
and by orthogonally projecting the datapoints onto the fitted line, creating the composite
potency values. More explicitly, a Passing–Bablok regression model [55] was fitted between
the log-transformed NESILs from LLNA EC3 and human NOEL values (see Table 1 for a
description of the data). The 25 chemicals with continuous LLNA and human data were
included in the fit. The Passing–Bablok fit was created in R (version 4.2.0) [56] with the
R-package Deming (version 1.4) [57]. Confidence intervals for the fitted coefficients were
estimated using bootstrap [58], taking 10,000 bootstrap replicates. The composite potency
values were calculated as follows.

Given the linear PB fit as line l in the form y = ax + b, and data point p with coordinates
(xi, yi), the coordinates of the projection of point p onto l was calculated by finding the
intersect between line l and the line that is orthogonal to l and passes through coordinates
(xi, yi), as described by Equation (1). The point’s projected coordinates (x̂i, ŷi) are thus
given by Equations (2) and (3).

y = − x
a
+ yi +

xi
a

, (1)

x̂i =
yi +

xi
a + b

a + 1
a

, (2)
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ŷi = a× x̂i + b, (3)

The relative distances between the projected points were calculated with the Pythagorean
theorem, using the data point with the smallest composite potency value as a reference (note
that min(x̂) and min(ŷ) refer to the same data point). As the relative distances between
the projected points may be inflated in this step, the data were scaled by the expected
inflation rate per original potency unit. The relative distances were calculated as described
in Equation (4).

di =

√
(x̂i −min(x̂))2 + (ŷi −min(ŷ))2 × 1√

1 + a2
, (4)

where di is the distance between chemical i and the chemical with the smallest composite
potency value on the composite potency scale, x̂i is the projected x-coordinate for chemical
i, ŷi is the projected y-coordinate for chemical i, min(x̂) and min(ŷ) correspond to the
minimum values of the projected x- and y-coordinates for the set of chemicals, and a is
the slope of the fitted PB model onto which the projections are made. Finally, the location
of the composite potency value was shifted so that the average differences between the
composite scale and the projected x- and y-coordinates were minimized (see Equation (5)).

cPV = d +
Avg(x̂− d) + Avg(ŷ− d)

2
, (5)

where cPV is the composite potency value, d is the vector of distance calculated in
Equation (4), x̂ and ŷ are the projected x- and y-coordinates, and Avg is a function for
the calculation of the arithmetic mean.

2.4. Fitting of Potency Prediction Models

Two main types of models were considered for predicting potency values from cDV0.
The first one was standard linear regression, where overall prediction errors are minimized.
The other type of model was a robust implementation of linear regression, where the fit
was achieved using iterative re-weighted least squares, incorporating Huber loss to down-
weight samples with relatively outlying values [59]. The constant k in the Huber weighting
was kept at the default value of 1.345. The standard regression models were fitted using R
(version 4.2.0) and base package stats (version 4.2.0) [56]. The robust regression models
were fitted in R (version 4.2.0) with the package MASS (version 7.3-56) [60].

The performances of the fits were evaluated using repeated cross-validation, with
50 repeats and 10 folds. Classification accuracy was based on the absolute geometric mean
fold change, defined as described in Equation (6). The cross-validation performance was
summarized within repeats and then across the repeats.

Absolute geometric mean f old change = e
∑n

i=1 |log (
Predictioni
Re f erencei

)|
n (6)

where Predictioni is the potency prediction of chemical i, Referencei is the reference potency
value for chemical i, and n is the number of chemicals. Note that Predictioni and Referencei
are not log-transformed in Equation (6).

2.5. General Statistical Calculations and Visualizations

All calculations were performed in R (version 4.2.0) [56]. Correlation metrics and
regression models were calculated and fitted on log10-transformed concentrations or
dose values, unless explicitly stated otherwise. Linear correlations were calculated with
the Pearson correlation coefficient and rank correlations with the Spearman correlation
coefficient. Calculations of prediction errors were based on relative differences, expressed
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as fold changes. Aggregated performance figures summarized over a set of chemicals were
calculated as absolute geometric mean fold changes (see Equation (6)).

Figures 1–3 were created using ggplot2 (version 3.4.0) [61].
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3. Results
3.1. Potency Information in cDV0 Values

The GARDskin Dose–Response assay is a method for the quantitative assessment of
skin-sensitizing potency. cDV0 has been shown to be significantly associated with skin-
sensitizing potency, defined from either LLNA EC3 values or human NOEL values. To
provide a more detailed understanding of these associations, and to examine methods
capable of predicting such potency values from cDV0, data on 12 chemicals were generated
and added to a dataset of 18 previously described chemicals [42]. The results for the
complete dataset of 30 chemicals are described in Table 1.

The correlations between cDV0 values and LLNA EC3 and human NOELs were first
assessed (see Table 2). As can be seen, both linear and rank correlations are significant and
range from 0.645 to 0.787. Generally, the cDV0 values appear more strongly correlated with
LLNA EC3 than with human NOELs. Moreover, the magnitudes of the correlation scores
are similar to those calculated between the two references.

Table 2. Linear (Pearson) and rank (Spearman) correlation coefficients between GARDskin Dose–
Response cDV0, LLNA EC3, and human NOEL values.

On Molar-Based Concentrations On Mass-Based Concentrations
Linear Correlation Rank Correlation Linear Correlation Rank Correlation

cDV0 vs. LLNA EC3 0.787 (p = 4.20 × 10−7) 0.709 (p = 2.74 × 10−5) 0.743 (p = 3.92 × 10−6) 0.669 (p = 7.18 × 10−5)
cDV0 vs. human NOEL 0.645 (p = 3.70 × 10−4) 0.664 (p = 3.08 × 10−4) 0.652 (p = 3.11 × 10−4) 0.656 (p = 2.74 × 10−4)

LLNA EC3 vs. human NOEL 0.738 (p = 2.54 × 10−5) 0.773 (p = 1.02 × 10−5) 0.736 (p = 2.72 × 10−5) 0.709 (p = 7.20 × 10−5)

3.2. Creation of Reference Composite Potency Values

As shown, the cDV0 values correlate significantly with both LLNA EC3 and human
NOELs, which suggests that the ranking of chemicals obtained from the GARDskin Dose–
Response assay is, in itself, informative of potency. However, for the metric to be useful in
NGRA, the cDV0 value is advantageously translated into a more appropriate unit such as
the more readily interpretable µg/cm2.

However, two distinct sets of references are available for constructing a potential
prediction model, i.e., NESILs derived from either LLNA EC3 values or human NOEL
values. While it may be argued that the human endpoint is the more relevant one (as we
are attempting to predict sensitization in humans), LLNA EC3 values are a more consistent
estimator of a PoD, as human NOELs do not necessarily represent the highest possible
non-sensitizing concentration (only the highest observed non-sensitizing concentration).

76



Toxics 2024, 12, 626

As both metrices have potential advantages and disadvantages, while simultaneously
describing an underlying potency signal, it was hypothesized that one could leverage both
information sources against each other to create a composite potency value to which a
model could be fitted. Therefore, a robust errors-in-variables model, a Passing–Bablok
(PB) regression model, was fitted between the 25 chemicals with NESILs from both LLNA
EC3 and human NOEL values. The fit between the measures is displayed in Figure 1. The
fitted coefficients of the PB model are described in Table 3. The estimated coefficients were
close to, and not significantly different from, the identity line (slope = 1, intercept = 0),
indicating that no systematic differences between the references could be detected on the
examined dataset.

Table 3. Regression coefficients of the PB models fitted between the reference NESILs. The values
within the parentheses describe the estimated 95% confidence intervals of the coefficients.

Intercept Slope

Molar 0.0435 (−0.459, 0.331) 0.988 (0.700, 1.30)
Mass 0.183 (−0.778, 1.22) 0.958 (0.624, 1.22)

The composite potency values were created by projecting the individual data points
onto the fitted line. The individual reference values and the composite scores are described
in Table 1. Figure 2 compares the composite scores with the original potency references.
The figure suggests that the composite values capture the overall potency information from
either reference well.

3.3. Prediction of Potency Values from cDV0

Figure 3 shows a scatter plot comparing the cDV0 values with the derived composite
potency values. As expected, based on the underlying reference values, they correlate
strongly and significantly. The linear correlation for molar-based concentrations was
estimated to be 0.770 (p = 6.68 × 10−6) and the rank correlation to be 0.710 (p = 1.07 × 10−4).
The corresponding values for the mass-based concentrations were 0.762 (p = 9.56 × 10−6)
and 0.709 (p = 1.10 × 10−4), for linear and rank correlation respectively. Interestingly,
for the 25 chemicals that had references from LLNA EC3 and human NOEL values, the
correlation scores between the composite potency values and cDV0 were higher compared
with any correlation score calculated between cDV0 and either of the individual references.

Regression models were fitted with the aim of predicting the composite potency
values from the cDV0 values. Two main variants of regression models were considered: a
standard linear regression model and a robust regression model that reduced the influence
of deviating observations. The model types were fitted both with and without a parameter
for a slope. When the slope was not estimated, a constant value of 1 was assumed. The
performances of all four types of models were examined using repeated cross-validation,
which showed that the prediction errors were consistently smaller for the models that only
estimated an intercept. The two regression techniques produced relatively similar results,
but the smallest errors were observed for the robust regression. Therefore, the robust
regression model that only included an intercept was selected as the most appropriate for
potency predictions. From the cross-validation, the prediction errors for both molar- and
mass-based models were estimated at 2.75 and 3.22 fold changes compared with the NESIL
values from the LLNA EC3 and human NOELs, respectively.

For comparative reasons, and to allow for the assessment of the utility of the composite
potency values for the fitting of the models, the cross-validation procedure was repeated
using the individual potency references for fitting and evaluating the regression models
(e.g., a model was trained and evaluated on LLNA data). The result from this cross-
validation is described in Table 4. As can be seen, the prediction errors of these models
were generally higher compared with the errors obtained for the models fitted to the
composite potency values, supporting the hypothesis that it may be beneficial to leverage
potency references against each other.
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Table 4. Results from repeated cross-validation using individual references for fitting the models.
The fold changes describe the absolute geometric mean fold changes from the cross-validation.

Potency Reference Regression Method Concentration
Unit

Fold-Change
Error—Intercept and Slope

Fold-Change
Error—Intercept Only

LLNA Linear regression Mass 2.97 2.84
LLNA Linear regression Molar 2.96 2.84
NOEL Linear regression Mass 3.45 3.24
NOEL Linear regression Molar 3.45 3.24
LLNA Robust regression Mass 2.98 2.82
LLNA Robust regression Molar 2.98 2.82
NOEL Robust regression Mass 3.5 3.24
NOEL Robust regression Molar 3.48 3.24

Based on available data and the presented results, the robust regression model that
only estimated an intercept and that was fitted on the composite potency values was
found to be the overall best-performing potency prediction model. Table 5 shows the
fitted coefficients. Given the simplicity of the final models and the fact that they were
fitted on log-transformed values, predictions can in practice be obtained by multiplying a
cDV0 value by a constant, which equals the value of the intercept expressed in base 10 (see
Equations (7) and (8); coefficients are rounded to three significant figures).

Predicted potency in µmol/cm2 = cDV0 in µM × 0.301, (7)

Predicted potency in µg/cm2 = cDV0 in µg/mL × 304, (8)

Table 5. Coefficients of the fitted potency models. Values within the parentheses describe the
estimated 95% confidence intervals for the coefficients.

Model Estimated Intercept

Molar-based robust regression −0.521 (−0.689, −0.353)
Mass-based robust regression 2.48 (2.32, 2.65)

The fitted values of the proposed models and their predictions for the samples not
included in the training set (i.e., the five chemicals without complete references; data are
detailed in Supplementary Table S1) were further examined. The geometric mean predic-
tion errors expressed in fold change were estimated to be 2.69 and 3.12 compared with
NESILs from LLNA EC3 and human NOELs, respectively (for both mass- and molar-based
concentrations). For comparison, the prediction error of LLNA EC3 compared with human
NOELs was 2.63 fold changes. On the same set of 25 chemicals, the GARDskin Dose–
Response’s prediction error of human NOELs was 2.94 fold changes. While the LLNA
predicted human potency with an overall lower error on this set of chemicals, the differ-
ence in performance compared with the proposed prediction model was not significant
(p = 0.508 [Wilcoxon signed-rank test]).

Figure 4 displays the relative errors between the proposed model’s predictions and
the individual references’ potency values for the chemicals, including LLNA EC3 (black
bars), human NOELs (grey bars), and the composite reference values (white bars). Fourteen
chemicals were consistently predicted within 3 fold changes compared with any of the
references (i.e., the largest fold change for any reference was below 3). Three chemicals
were predicted with a greater than 5-fold difference compared with any of the references
(i.e., the smallest fold change for any reference was greater than 5). These chemicals
were 2,4-dinitrochlorobenzene and 3-propylenephthalide (underpredicted), and alpha-
isomethylionone (overpredicted).
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Finally, considering the comparison between potency predictions and the reference
values, due to the simplicity of the proposed potency prediction model, the correlation
coefficients between predictions and references are identical to those described in Table 2
(ranging between 0.645 and 0.787 when compared with LLNA EC3 and human NOELs).

4. Discussion

The development of NAMs able to inform on chemicals’ skin-sensitizing hazards
has progressed relatively rapidly and far, and several methods have gained regulatory
approval for identifying hazards, following the demonstration of their reliabilities and
performances [24–26,29]. In addition, more recent advancements have seen integrated
testing strategies approved for categorical potency assessment in line with the subcatego-
rization defined by the UN GHS [29]. While all of these progressions reduce and replace
the necessity of animal methods for the assessment of skin sensitizers, there are still areas
where NAMs can be further improved. One such area is the assessment of skin-sensitizing
potency, particularly considering the derivation of quantitative continuous potency metri-
ces that may act as replacements for, e.g., the well-established LLNA EC3 value. This is an
active field of research and several interesting methods have been described [34,36–39].

In this work, we have expanded on previously published results, describing how
the GARDskin assay can be used to derive a continuous concentration metric, the cDV0
value, associated with skin-sensitizing potency. Specifically, the GARDskin Dose–Response
assay extends the validated GARDskin assay’s protocol by incorporating measurements at
multiple concentrations. Using the derived dose–response data, the lowest concentration
capable of inducing a positive classification is identified. Here, we describe such cDV0
concentrations for a set of 30 chemicals and further characterize their association with
both human and LLNA data. It was confirmed that cDV0 values maintained strong and
significant correlations with both LLNA EC3 and human NOELs on this extended set of
chemicals. Generally, the correlation coefficients were higher for LLNA EC3 compared to
human NOELs. This could potentially be attributed to the fact that human NOEL values
do not necessarily describe the highest possible non-sensitizing concentration. However,
the uncertainty in the correlation estimates was too high to conclude that either metric
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correlated significantly higher with cDV0 than the other. This is, however, a trend that
could be considered in future works.

Having shown that cDV0 values are associated with potency, a model capable of
predicting NESILs was defined. Several approaches could be considered for creating
prediction models that take cDV0 as input, including the creation of separate models for
the classification of NESILs derived from LLNA EC3 and human NOELs (i.e., distinct
models trained on LLNA EC3 and on human NOELs). However, this may not be ideal, as
the same cDV0 value could give rise to two distinct potency values, which could impede
interpretation. Therefore, it was explored if a single potency model could be defined from
a composite potency reference constructed using information from both LLNA EC3 and
human NOELs. A similar endeavor has been described in the construction of the reference
chemical potency list (RCPL), where a consensus potency value was defined by evaluating
both human and animal data [62]. While that scale, in part, relies on expert judgment for
potency value assignment, the approach taken here was solely data- and computationally
driven, combining NESILs from LLNA EC3 and human NOELs. The main assumption for
the creation of the potency scale was that both LLNA EC3 and human NOELs describe the
same underlying phenomenon, i.e., sensitizing potency, and that both metrics are associated
with errors. The composite potency value was then designed to attempt to describe the
common underlying potency signal, which was accomplished using a Passing–Bablok
regression model [55] that robustly captured the association between the two references.
Importantly, models fitted to the composite potency values received lower errors when
predicting the original reference potency values, as compared with models fitted to the
individual references. Moreover, the correlation coefficients were also marginally higher
for the composite potency values compared with correlations to the individual references
when considering the same set of 25 chemicals. While the reason for these results is not
completely understood, it is possible that composite potency values inflict some degree of
moderation or regularization to the original references, which may have a stabilizing effect
during model fitting. This does not seem unreasonable, as a latent signal may be better
described via the aggregation of several noisy measurements.

During initial model exploration, it was observed that the fitted parameters for the
slopes were very close to 1, suggesting that they may not need to be estimated from the
model. Indeed, models without an explicit estimate for the slope achieved lower values
of Akaike’s Information Criterion (AIC) [63]. Because of this, for the actual evaluation of
the models’ performances in cross-validation, they were fitted both with and without a
parameter for the slope. In addition, the biological implication of a fixed slope of 1 could
further indicate that the system used for the evaluation of potency is relevant, as the relative
difference of skin-sensitizing potency is sustained. The consistently best-performing models
corresponded to those without slope estimates. This is also convenient, as it leads to very
simple prediction models. As the final models were fitted to log-transformed potency
values and only contained estimates for the intercepts, in practice, they can be applied by
multiplying an untransformed cDV0 value with a constant, as specified by equations 7 and
8. Moreover, as noted, an appealing property of these models is that they suggest that an
n-factor difference in cDV0 values corresponds to an n-factor difference in the predicted
NESIL. Finally, as models only contain a single estimated parameter, the uncertainties of
the fits become relatively small and constant over the prediction range on the log scale.

The errors for the prediction model were estimated at 2.75 and 3.22 fold changes
compared with LLNA EC3 and human NOELs, respectively, evaluated using a cross-
validation approach. These figures were also close to the errors observed for the fitted
values of the final model (i.e., as predicted by the current fits without cross-validation),
which were 2.69 fold changes and 3.12 fold changes for LLNA EC3 and human NOELs,
respectively. In line with observations for the correlation coefficients, LLNA EC3 was
predicted with a lower error, though not significantly. As previously noted, human NOEL
does not necessarily represent the highest non-sensitizing concentration of a chemical,
which could potentially explain prediction discrepancies. Despite this, the numbers of
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over/under-predicted chemicals were quite evenly balanced. Nevertheless, of the 12
chemicals whose potency was underpredicted compared with human NOELs, LOEL
values could be located for 10. Interestingly, only three of the underpredicted potency
instances produced predicted NESILs greater than the LOEL values (i.e., 7/10 predictions
were between NOEL and LOEL).

To put the performance figures into greater context, the prediction performances of
other potency sources were also considered. First, the error of the LLNA assay when
predicting human NOELs in this dataset was calculated, and was found to be 2.63 fold
changes. The error of the GARDskin Dose–Response model was 2.94 fold changes, com-
pared with human NOELs on the same set of 25 chemicals. While the LLNA achieved
an overall lower error, the prediction errors were not found to be significantly different.
Other sources of potency predictions include, e.g., the relatively recent publication where
several regression models incorporating data from established NAMs, including Kerati-
noSens, DPRA, h-CLAT, and the kDPRA, for predicting EC3 values were described. While
their prediction metrices were based on a larger dataset (n = 188), they reported geomet-
ric mean absolute fold changes that ranged between 3.1 and 3.5 (median values ranged
between 2.3 and 2.7). This appears to be comparable with the errors described in this
work. One aspect of consideration is, however, that the prediction model proposed in this
work is very simple and only requires a single information source, i.e., the cDV0 value, for
potency predictions.

Considering the largest prediction errors obtained with this dataset, GARDskin
Dose–Response predicted three chemicals with a fold change error greater than 5 com-
pared with both human and LLNA references. These were alpha-isomethylionone, 2,4-
dinitrochlorobenzene, and 3-propylidenephthalide. The potency of 3-propylidenephthalide
was underpredicted by approximately 6-fold. It had two similar cDV0 values, suggesting
that the assay outcomes were reproducible for the test item. Moreover, the NESILs from the
LLNA and human NOEL were also very similar to each other. Currently, no explanation
has been recognized for this prediction discrepancy. The potency of alpha-isomethylionone
was overpredicted compared with both LLNA and human NOELs. The chemical had two
runs in the GARDskin Dose–Response assay. However, these differed more than 4-fold,
indicating some uncertainty in the chemical’s actual cDV0. Even so, a prediction generated
with the larger of the two cDV0 estimates still overpredicted the potency of the chemical.
The relative error for the run with the higher cDV0 value compared with LLNA EC3 was
approximately 2.5 fold changes, which is, nevertheless, still a significant overprediction of
potency compared with the human NOEL (>25 fold). It is relevant to note that the LLNA
also overpredicts the potency of alpha-isomethylione. A tentative hypothesis for LLNA’s
overprediction was previously provided where it was suggested that the autoxidation of
the chemical, which is more likely to occur in the LLNA than under the occluded patches
in HRIPTs, could explain the higher potency in the LLNA, as the oxidation products are
typically strong sensitizers [64]. Although only a hypothesis, it is possible that this effect is
also relevant for the overprediction of its potency in the GARDskin Dose–Response assay,
which could potentially be explored in follow-up studies. Lastly, 2,4-dinitrochlorobenzene
displayed a clear and steep response and the cDV0 value was considered reliable, despite
only consisting of data from a single experiment. Interestingly, the underprediction of
its potency does not appear to be a unique observation in the GARDskin Dose–Response
assay, as similar tendencies were also described by Natsch et al. [65]. A clear explanation
for this is, however, not available. Finally, it is important to consider that the GARDskin
Dose–Response assay represents a relatively simple model of biological processes and
ignores potential components that may contribute to the observed in vivo potency values.
Additional data generated from chemical assessments in the GARDskin Dose–Response
assay will likely provide interesting avenues for future investigations. These will help to
further establish the predictive performance of the assay and other important properties,
including the reproducibility of the numerical readout. Indeed, data for these purposes are
being generated and some have already been published [41].
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To conclude, we have described the GARDskin Dose–Response assay and demon-
strated a significant association between its readout and available measures of skin-
sensitizing potency on a set of 30 chemicals. A simple model for the prediction of sensitizing
potency in the form of a quantitative continuous PoD was developed that only consisted
of a single parameter. The performance of the prediction model was evaluated using
cross-validation, and errors were estimated at 2.75 fold changes compared with NESILs
derived from the LLNA, and 3.22 fold changes compared with NESILs based on human
NOELs. The GARDskin Dose–Response method is therefore considered a useful tool for
deriving skin-sensitizing potency information, which may be used as a PoD in subsequent
risk assessments.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/toxics12090626/s1, Table S1: Chemical information; Tables S2 and S3:
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Abstract: Since 2020, the REACh regulation requires toxicological data on nanoforms of materials,
including the assessment of their skin-sensitizing properties. Small molecules’ skin sensitization
potential can be assessed by new approach methodologies (NAMs) addressing three key events
(KE: protein interaction, activation of dendritic cells, and activation of keratinocytes) combined in a
defined approach (DA) described in the OECD guideline 497. In the present study, the applicability
of three NAMs (DPRA, LuSens, and h-CLAT) to nine materials (eight inorganic nanomaterials (NM)
consisting of CeO2, BaSO4, TiO2 or SiO2, and quartz) was evaluated. The NAMs were technically
applicable to NM using a specific sample preparation (NANOGENOTOX dispersion protocol) and
method modifications to reduce interaction of NM with the photometric and flowcytometric read-
outs. The results of the three assays were combined according to the defined approach described in
the OECD guideline No. 497; two of the inorganic NM were identified as skin sensitizers. However,
data from animal studies (for ZnO, also human data) indicate no skin sensitization potential. The
remaining seven test substances were assessed as “inconclusive” because all inorganic NM were
outside the domain of the DPRA, and the achievable test concentrations were not sufficiently high
according to the current test guidelines of all three NAMs. The use of these NAMs for (inorganic) NM
and the relevance of the results in general are challenged in three ways: (i) NAMs need modification
to be applicable to insoluble, inorganic matter; (ii) current test guidelines lack adequate concentration
metrics and top concentrations achievable for NM; and (iii) NM may not cause skin sensitization by
the same molecular and cellular key events as small organic molecules do; in fact, T-cell-mediated
hypersensitivity may not be the most relevant reaction of the immune system to NM. We conclude
that the NAMs adopted by OECD test guidelines are currently not a good fit for testing inorganic NM.

Keywords: inorganic nanomaterials; skin sensitization; OECD test guidelines; new approach
methodologies; applicability; h-CLAT; LuSens; DPRA

1. Introduction

The applications of nanomaterials (NM) range through various fields, including coat-
ings, cosmetics, medicine, and electronics [1]. As the application fields grew, extensive
investigation of NM with respect to their potential effects on human health and the environ-
ment became necessary [2–4]. During the last decades, numerous publicly funded projects
have generated methods and know–how on the characterization, toxicological testing, and
grouping of NMs [5]. Since 2020, NM falls under the REACH regulations; thus, informa-
tion on NM skin sensitization potential is required, as listed in Annex VII. Non-animal
methods (or new approach methodologies, NAMs) are a priority for data generation under
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REACh, for small organic molecules and NM alike. Thereupon, an in vivo test shall only be
performed if NAMs are not applicable to the test substance or deliver inconclusive results.

In 2021, defined approaches (DA) to assess skin sensitization of test substances using
data generated by NAMs were adopted as OECD guideline (GL) 497 [6]. The NAMs used
as information sources in the DA address three key events of the adverse outcome pathway
(AOP) for skin sensitization: (i) molecular interaction with skin proteins; (ii) activation of
keratinocytes; and (iii) activation of dendritic cells. The first key event can be addressed
by an in chemico assay, the direct peptide reactivity assay (DPRA). The DPRA is based
on quantification of the depletion of artificial model peptides caused by the reaction
of test substances with these peptides. The method was initially developed for testing
small organic molecules with electrophilic functions, which can react with nucleophilic
thiol and/or amino groups of cysteine and lysine of skin proteins (and also of the DPRA
model peptides) [7]. Most inorganic NM are larger than most small organic molecules
and do not hold distinct electrophilic functions, which would covalently bind to cysteine
and/or lysine. Hence, the application of DPRA for testing inorganic NM is mechanistically
questionable. The second key event, inflammatory response and changes in gene expression
of keratinocytes, can be addressed, e.g., by the KeratinoSensTM and LuSens assays with
immortalized human keratinocyte cell lines. Both cell lines were genetically modified
by inserting a luciferase reporter gene for monitoring the activation of the Keap1–Nrf2–
ARE pathway. Luciferase signal increases due to Nrf2-mediated activation of antioxidant
response element (ARE), initiated by oxidative or electrophile stress detected by the Keap-1
protein [8,9]. The third key event, the activation of dendritic cells, can be addressed by the
so-called human cell line activation test (h-CLAT). The h-CLAT assay is performed with the
human monocytic leukemia cell line THP-1 exposed to the test substance. The activation of
these cells is measured via the changes in the expression of two surface markers, CD54 and
CD86, stained with fluorescent antibodies and quantified in a flow cytometer [10].

According to the first DA of the OECD GL No. 497, the “2 out of 3” (2o3) DA, any
two of the three tests addressing these key events of the AOP determine the overall results.
The second DA, the ITSv2 DA, uses information from the DPRA and h-CLAT combined
with protein binding alerts generated using the OECD QSAR Toolbox. The overall result
of the DA is discerning potential skin sensitizers and non-sensitizers (hazard assessment)
in accordance with the UN GHS sensitizer categories. The DA GL based on AOP for skin
sensitization was initially adopted to assess the skin sensitization potential of small organic
molecules [4,11,12].

Thus far, only a few studies on NM with skin sensitization NAMs have been conducted.
Likewise, only a few animal studies on NM’s skin sensitization are available [13–20].
Physical and chemical properties of inorganic NM differ from those of small organic
molecules. Most NMs are larger and often not monodisperse. There is no defined molecular
weight of NM and a distribution of different particle sizes [1]. Larger NM penetrate only a
few layers into the stratum corneum of intact skin but do not become bioavailable; thus, no
interaction with living cells is expected [21,22]. Most inorganic NMs would interact with
proteins via mechanisms other than covalent binding, e.g., non-covalent metal coordination
bonds, or redox reactions. Moreover, inorganic NM can release metal ions and generate
reactive oxygen species (ROS). NM forms protein coronas, which could alter the structures
of the proteins. These could be molecular initiating events related to altered immune
functions [3,11,23–28], but they may not be well captured by the current NAMs. In addition
to these mechanistic stipulations, there are also technical hurdles: NMs are not directly
applicable to these NAMs as they are not soluble (as long as they are NM), which requires
a test item preparation different from the dissolution of small organic molecules and
modifications to avoid interferences with optical read-outs of the NAMs.

To assess the applicability of the NAM-based DA for skin sensitization, we have tested
nine widely used inorganic NM with three skin sensitization NAMs, which were adopted
as OECD TGs (No. 442C, D, and E).
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2. Materials and Methods

NM and quartz (SiO2 DQ12) were tested in three NAMs: DPRA, LuSens, and h-
CLAT (OECD TGs No. 442C [29], D [30], and E [31]) with modifications in test substance
preparation (described below) to adapt these three assays for their applicability to NM.
The results of these three assays were evaluated based on the criteria of DA OECD GL No.
497 [6], i.e., including borderline ranges [32].

2.1. Nanomaterials

In the present study, eight inorganic NM and one micron-sized material (SiO2 DQ12)
were assessed (Table 1). They consist of different metals or metalloids (Ba, Ce, Si, Ti, and Zn)
as oxides or sulfates and represent different sizes and crystallinities (SiO2 Aerosil, Levasil,
and DQ12).

Table 1. Test substances and their properties.

Test Substance CAS-Number Physicochemical Properties Skin Sensitization Potential

CeO2 NM-212 1306-38-3 40 nm (SEM)
very low water solubility (<0.001 wt.%) #

Cerium oxide is reported
non-sensitizing in the GPMT [33]

BaSO4 NM-220 7727-43-7 25 nm (SEM) #

low water solubility (<0.05 wt.%) #
bulk material was reported

non-sensitizing in the LLNA 1

SiO2 Levasil 200 (40%) 7631-86-9 5–50 nm (REM/TEM) *
soluble in water

reported non-sensitizing in the
GPMT * and the LLNA 1

Quartz SiO2 DQ12 n.a. 500–750 nm * crystalline quartz
practically insoluble *

reported non-sensitizing in
the LLNA 1

SiO2 Aerosil R972 68611-44-9
16 nm +

hydrophobized colloidal silica
water solubility > 1 mg/L *

Aerosil R812 and R 8200 were
reported non-skin sensitizing in

the GPMT 1

SiO2 Aerosil 200 7631-86-9
9 nm (TEM/SEM) [25]

hydrophilic fumed silica
water solubility > 1 mg/L *

bulk material was reported
non-sensitizing in the LLNA 1

TiO2 NIST® SRM® 13463-67-7 19–37 nm +

very low water solubility (0.001 g/L) *
reported non-sensitizing in

the LLNA *

TiO2 P25 Aeroxide 13463-67-7 21 nm *
hydrophilic titanium dioxide

reported non-sensitizing in the
patch test and the GMPT *

ZnO Z-Cote HP1 1314-13-2 190 nm [34] ZnO nanomaterials were reported
as non-sensitizing in patch test 1

* Data provided in the safety sheet or certificate of analysis. # Value determined in the Department of Analytical
and Material Science, BASF SE. + Value given in the manufacturer’s website. 1 Data published in the registration
dossier released by ECHA.

2.2. Test Substance Preparation

The preparation of the test substances was carried out based on the procedures de-
scribed by the NANOGENOTOX standard operation procedure (SOP). This dispersion
protocol was developed in the EU-project NanoREG and is one of the most widely used
dispersion protocols. It was developed for the preparation of general batch dispersions for
in vitro and in vivo toxicity testing to produce a highly dispersed state of a wide range of
nanomaterials [35,36]. A fixed (gravimetric) test substance concentration of 2.56 mg/mL
was prepared for every NM. Moreover, 25.6 mg of the respective test substance were
weighed into a glass vessel and pre-wetted with 50 µL of ethanol. Thereafter, 9.95 mL of
the respective vehicle (bovine serum albumin (0.05 w/v%) in deionized water for DPRA
and cell culture medium for LuSens (with additional 4% DMSO) or h-CLAT assay) was
added. The stock preparation was sonicated using a Branson Sonifier SFX 550 with 20%
amplitude (400 W) for 16 min. Stock preparations were thoroughly shaken using a vortex
prior to following dilution steps, and the homogeneity of the dispersion was assessed by
visual inspection. All test substance stocks were prepared freshly for each experiment. The
preparations were generally applied within two hours after weighing the test substances;
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the test substance preparations were homogenous and stably dispersed by visual inspection
unless otherwise noted for individual assays.

2.3. Test Concentrations

The stock dispersions of the test substance were prepared at 2.56 mg/mL as described
above. The test guidelines prescribe either test substance concentrations with a defined
molar concentration or a so-called “gravimetric approach“ using mass per volume concen-
trations. Also, the constituents of NMs have a molar mass (BaSO4 233, CeO2 172, SiO2 60,
TiO2 80, and ZnO 81 g/mol), but at a given molar concentration, most of the test substance
is not dissolved but only dispersed, i.e., packed inside the particles. Accordingly, the
“gravimetric approach” could be applied by using an assumed average molecular weight
of 200 g/mol for test substances without defined molar mass—but still assumed to be
dissolved. Since this assumption does not hold, instead the relevant concentration metric
of NM and other solid particles would be different; i.e., particle number per volume or
particle surface area per volume have been proposed [37–39]. In addition, the nominal
concentration of a NM in cell culture media (even for stable dispersions and using any
concentration metric) may not be the effective concentration [40–42]. For other reasons,
this is also true for dissolved molecules [43,44]. While the respective test guidelines define
nominal maximum concentrations to be tested, the maximum concentration may be limited
by cytotoxicity as described in the guidelines for test systems using living cells (LuSens
and h-CLAT) and elsewhere [45–47]. Preparing dispersions of NM in cell culture media
can greatly influence the results of in vitro tests [48]. Therefore, the dispersion protocols
were standardized. The maximum concentration of a NM in a stable cell culture media
dispersion is limited. We implemented one of the established protocols [35], which is using
a maximum concentration of 2.56 mg/L. As a consequence, the maximum concentration
of NM in the respective test system resulted from the dilution of this stock dispersion
according to the respective protocols.

DPRA: Dilutions of test substances were prepared from the stock preparation
(2.56 mg/mL) according to the standard pipetting procedure given in the DB-ALM proto-
col [49] (nominal, based on the constituents of the respective NM: 2.7 to 10.6 mM instead of
stock solution concentration of 100 mM or 20 mg/mL for soluble organic test substances
as required in OECD TG No. 442C) dilutions for C-peptide and K-peptide incubations,
respectively, with 0.50 mM of the corresponding peptide.

LuSens: Dilutions of test substances were prepared from the stock preparation
(2.56 mg/mL) with 640 µg/mL as the maximum concentration (while the TG requires
a concentration of 2000 µM or 2000 µg/mL). Test substance concentrations were adjusted if
cytotoxicity was observed (ZnO, CeO2, both of the TiO2 NM, SiO2 Levasil 200, SiO2 Aerosil
200, and SiO2 DQ12). Tested concentrations are given in the Supplementary Materials.
Consequently, only BaSO4 and SiO2 Aerosil R972 were tested at concentrations that were
not cytotoxic and below 2000 µg/mL. Higher test concentrations were, however, not tech-
nically achievable with the concentration of 2.56 mg/mL of the stock dispersion, which
was prepared according to the standardized protocol.

h-CLAT: The 1st experiment was always conducted with a maximum concentration of
1280 µg/mL, corresponding to the highest applicable dilution from the 2.56 mg/mL test
substance stock preparation (according to the test guideline, the top final concentration is
1000 µg/mL). If this is non-cytotoxic, the maximum concentration should be re-determined.
In any case, the final concentration in the plate should not exceed 5000 µg/mL for test
chemicals dissolved or stably dispersed in saline or medium.

At the 1st experiment, ZnO, TiO2 NIST® SRM®, TiO2 Aeroxide P25, CeO2 (all <50%
viability), and BaSO4 (≤80% viability) were cytotoxic at the maximum concentration of
1280 µg/mL. The test concentrations were lowered accordingly in the following exper-
iments. All SiO2 test substances were not cytotoxic at the maximum concentration of
1280 µg/mL (viability ≥90%). The concentrations were, however, not increased in the
following experiments as higher test concentrations were not achievable with the stock
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dispersion, which was prepared according to the standardized protocol. Cytotoxicity data
and tested concentrations are given in the Supplementary Materials.

2.4. Direct Peptide Reactivity Assay (DPRA)

The DPRA experiments were performed following an adapted protocol based on
OECD TG No. 442C. Following the stock preparations according to the above-described
NANOGENOTOX protocol, the test substance dilutions were prepared (as triplicates) fol-
lowing the standard pipetting procedure (given in the DB-ALM protocol No. 154): (1) stock
preparation was diluted 20-fold and incubated with 0.50 mM of the cysteine-containing
peptide (C-peptide) (Ac-RFAACAA-COOH, 752 g/mol), and (2) stock preparation was
diluted 1:4 and incubated with 0.50 mM of the lysine-containing peptide (K-peptide) (Ac-
RFAAKAA-COOH, 776 g/mol) for 24 h at approx. 25 ◦C. The remaining non-depleted
peptide concentration was determined by high-performance liquid chromatography (HPLC)
with gradient elution and UV detection at 220 nm (corresponding to the absorption band of
phenylalanine). In parallel, triplicates of the concurrent vehicle control and a positive control
(PC) (50 mM ethylene glycol dimethacrylate (EGDMA)) were incubated with the peptides.
Additionally, a co-elution control was carried out to detect possible interference of the test
substance due to co-elution with the peptides via analysis of the ratio of peak areas at 220 nm
and 258 nm. The mean depletion was evaluated based on TG No. 442C and GL No. 497 with
criteria listed below (Table 2), defining negative, borderline, or positive reactivity.

Table 2. Evaluation criteria of DPRA, according to OECD TG No. 442C and GL No. 497, based on
the C-peptide/test substance 1:10/K-peptide/test substance 1:50 prediction model (mean peptide
depletion) and the C-peptide/test substance 1:10 prediction model (C-peptide-only depletion).

Mean Peptide
Depletion [%]

C-Peptide
Depletion [%] 1 Reactivity Evaluation

>42.47 >98.24 high reactivity positive
>22.62; ≤42.47 >23.09; ≤98.24 moderate reactivity positive
>6.38; ≤22.62 >13.89; ≤23.09 low reactivity positive
>4.94; ≤8.32 >10.55; ≤18.47 borderline 2 inconclusive

≤6.38 ≤13.89 minimal or no reactivity negative 3

1 If mean peptide depletion [%] could not be determined due to invalid K-peptide depletion (e.g., insolubility
of the K-peptide samples or interference in the samples of the K-peptide), C-peptide depletion is considered for
evaluation. 2 According to OECD GL No. 497, results in this range were considered borderline and evaluated as
inconclusive due to their uncertainty. 3 For test substances that were not completely soluble by visual observation
in the sample preparations containing the peptides immediately after preparation or after 24 h, the result may be
under-predictive due to limited availability of the test substance. In this case, if the mean peptide depletion was
below the borderline range, the reactivity was considered “inconclusive”. Likewise, is a mean peptide depletion
was above the borderline range, a test substance was considered “positive”.

2.5. LuSens Assay

The LuSens assay was performed following an adapted protocol based on OECD No.
TG No. 442D. The assay consisted of two parts: first, a cytotoxicity pre-experiment for
determining the CV75 value (estimated concentration that affords 75% cell viability by
linear regression) and a basis to determine the concentration range for the main experiment.
If any interference between the test substance and MTT read-out was observed in the
absorption spectrum at OD550nm, an alternative viability assay (CellTiter-Glo®, Promega
GmbH, Walldorf, Germany) was performed to quantify ATP. Second, the main experiment
consisted of measurement of the luciferase induction after 48 h exposure time (as triplicates)
to the test substance with at least 8 concentrations for determining the keratinocyte activa-
tion. The maximum concentration tested in the main experiments was 640 µg/mL. For this,
the cells were lyzed, and luciferase induction was evaluated by measuring luminescence
signal after substrate addition (One Glo®, Promega). Cell viability was determined for
each tested concentration with either an MTT or ATP assay. In parallel, triplicates of the
concurrent vehicle control, a positive control (PC) (18 µg/mL ethylene glycol dimethacry-
late (EGDMA)) and a negative control (450 µg/mL DL-lactic acid (LA)), were incubated
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with the cells. At least two independent experiments were performed for evaluation of
the luciferase induction. Based on the OECD TG No. 442D and borderline ranges [32,50],
mean fold induction in at least two independent experiments was evaluated with criteria
listed below (Table 3) to conclude a negative, borderline, or positive keratinocyte activation
potential.

Table 3. Evaluation criteria of LuSens assay according to OECD TG No. 442D and GL 497.

Mean Fold Induction Reactivity Evaluation

>1.76 activates keratinocytes positive 1

>1.28; ≤1.76 borderline 2 inconclusive
≤1.28 does not activate keratinocytes negative 3

1 If the luciferase induction was above 1.76-fold, statistically significant in at least 2 consecutive tested concentra-
tions with a cell viability greater than 70%, and at least 3 test concentrations were non-cytotoxic, the outcome of
the LuSens assay was considered positive. 2 Applying borderline range criteria for the LuSens assay [32,49], such
as described in OECD GL 497, results in this range were considered borderline and evaluated as inconclusive
due to their uncertainty. 3 A test substance was considered negative when the criteria mentioned above were not
met up to the maximum concentration of 2000 µg/mL or up to the cytotoxicity limit (at least one concentration
displaying viability below 70%).

2.6. h-CLAT Assay

The h-CLAT assay was performed following a modified protocol based on the OECD
TG No. 442E with adaptations for NM implemented, as described above for the test
substance preparation, and as follows. No pre-test for cytotoxicity assessment was per-
formed. The 1st main experiment was always conducted with a maximum concentration of
1280 µg/mL, corresponding to the highest applicable concentration from the 2.56 mg/mL
test substance stock preparation. For the main experiments, the human cell line THP-1 was
treated with at least 8 testsubstance concentrations for 24 h. In parallel, the concurrent vehi-
cle control, a positive control (PC) (4 µg/mL 1-chloro-2,4-dinitrobenzene (DNCB)), and a
negative control (1000 µg/mL DL-LA) were incubated with the cells. To assess the matured
cell population by flow cytometry density gradient centrifugation (on a Ficoll-Paque PLUS
(GE Healthcare, 17-1440-02) with centrifugation at 1500 rpm for 15 min at room tempera-
ture, without break function in the deceleration phase) was performed to remove the test
substance before applying to the flow cytometer to avoid interferences and damages to
the instrument. Thereafter, cells were stained with PI along with FITC-labeled anti-human
CD86 antibodies or FITC-labeled anti-human CD54 antibodies or the corresponding isotype
control FITC-labeled anti-mouse IgG1. The relative mean fluorescence (RFI) of CD86 and
CD54 was evaluated by measuring the CD86 and CD54 signals by flow cytometric analysis.
In parallel, the cytotoxicity of the test substance was measured using the fluorescence
intensity of PI. At least two independent experiments were performed for evaluation of
the dendritic cell activation, and test-substance concentrations were adjusted if evaluation
criteria for viability (>50% in at least four tested concentrations) of an experiment were
not met. The mean RFI induction in two independent experiments was evaluated based
on OECD TG No. 442E and OECD GL 497, with criteria listed below (Table 4) defining a
negative, borderline, or positive dendritic cell activation.

90



Toxics 2024, 12, 616

Table 4. Evaluation criteria of the h-CLAT assay according to OECD TG No. 442E and GL 497.

Mean RFI (CD86) Mean RFI (CD54) Reactivity Evaluation

>184 >255 activates dendritic cells positive 1

>121; ≤184 >156; ≤255 borderline 2 inconclusive
≤121 ≤156 does not activate dendritic cells negative 3

1 If the mean RFI value for CD86 was greater than 184 and/or the mean RFI value for CD54 is greater than 255 at
any concentration in relation to vehicle control that does not reduce viability below 50% and reproduces in the
same cell surface marker in at least an additional independent experiment, the h-CLAT assay was considered
positive. 2 According to OECD GL 497, results in this range were considered borderline and evaluated as
inconclusive due to their uncertainty. 3 A test substance was considered negative when the ‘positive’ criteria
mentioned above were not met up to the maximum concentration of 5000 µg/mL for the vehicle culture medium
or 1000 µg/mL for 0.2% DMSO in culture medium or up to the cytotoxicity limit (with viability less than 90%
at the highest concentration tested). If these criteria were not met, no conclusion on dendritic could be derived
under these test conditions.

2.7. Defined Approach

The results obtained in three NAMs were evaluated according to the AOP-based
“2 out of 3” (2o3) and ITSv2 DAs for skin sensitization hazard identification described in
OECD GL No. 497. In 2o3, any two of the three tests determine the overall results, i.e., if
any two assays result positive, the overall test results yield the prediction of a sensitizer,
while any two negative test results would yield the prediction of a test substance to be a
non-sensitizer. To include experimental uncertainties for the predictivity of single assays,
borderline ranges were considered for the evaluation of skin sensitization potential. In
ITSv2, scores are assigned for the results of DPRA and h-CLAT experiments and for the
results from the OECD QSAR Toolbox to yield an overall result that predicts the skin
sensitization potency of chemicals: UN GHS category 1A (strong sensitizer), category 1B
(other sensitizer), or not classified (non-sensitizer).

3. Results and Discussion

Nine particles, eight inorganic NM and DQ12, were tested in DPRA, LuSens, and
h-CLAT assays. These are insoluble (as long as they are particles) and require modifications
of the test protocols.

3.1. DPRA

The DPRA experiments were performed with a modified protocol based on OECD
TG No. 442C, originally described by Gerberick et al. in 2004 [7]. The non-depleted
peptide concentrations were determined by HPLC, and the depleted peptide concentrations
evaluated (Table 5).

Table 5. Results and evaluation of the DPRA with test substances. Peptide depletion values for
K-peptide and C-peptide, as well as the mean of both peptides, are given.

Test Substance K-Peptide
Depletion [%]

C-Peptide
Depletion [%]

Mean
Depletion [%] 1 Result 2

CeO2 NM-212 0.60 ± 0.46 3.28 ± 0.94 1.94 negative 3

BaSO4 NM-220 0.00 ± 0.24 1.96 ± 0.82 0.98 negative 3

SiO2 Levasil 200 (40%) 0.25 ± 0.80 −0.36 ± 0.28 0.12 negative 3

SiO2 DQ12 −0.41 ± 0.97 −0.20 ± 0.64 0.00 negative 3

SiO2 Aerosil R972 −0.30 ± 0.63± −2.00 ± 1.01 0.00 negative 3

SiO2 Aerosil 200 −0.55 ± 0.33 −0.88 ± 1.44 0.00 negative 3

TiO2 NIST® SRM® −2.62 ± 0.84 −1.67 ± 2.67 0.00 negative 3

TiO2 P25 Aeroxide −2.91 ± 0.39 1.16 ± 2.53 0.58 negative 3

ZnO Z-Cote HP1 −3.09 ± 2.75 −6.76 ± 0.42 0.00 negative 3

1 Negative K- and C-peptide depletion values were set to 0.00 for the determination of the mean. 2 Mean peptide
depletion values were evaluated according to the criteria mentioned in Table 2, regardless of chemical composition
and solubility of the test substances and actual peptide—test substance ratios. 3 Considered “inconclusive”
according to the test guideline as the test substance is inorganic and insoluble.
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Mean peptide depletion was <2% for all nine test substances (at a stock concentration
of 2.56 mg/mL). The tested stock concentration was below the required concentration
(20 mg/mL in the gravimetric approach) and hence the ratio to the peptide according to
TG442C [29]. The molar mass of the elemental composition of the selected NM was used
to calculate the nominal concentrations, and the resulting test substance-to-peptide ratios
were calculated based on the nominal concentrations.

Nevertheless, these “negative” or non-reactive results have to be considered “incon-
clusive” according to TG No. 442C [29], due to the following reasons: (1) Metals and
inorganic substances should not be tested in DPRA, as they are “known to react with
proteins via mechanisms other than covalent binding”. (2) Insoluble substances cannot
deliver firm conclusions on the lack of reactivity if no reactivity is observed, since it is “not
sure if sufficient exposure can be achieved” and the effective concentration is unknown, in
particular if sedimentation occurs despite prior sonification [51]. Studies on few inorganic
materials have however demonstrated that indeed these materials can also yield positive
results in the DPRA (compiled in [52]) or a modified version of the assay using LC-MS/MS
detection (but adducts were not analyzed) testing multiple concentrations [53]. Further,
Roberts et al. (2007) describe transition metals as being able to covalently bind proteins
via covalent coordination bonds [54], and in a recent study with inorganic NM, positive
results for C-peptide reactivity (and no reactivity for K-peptide) were reported for TiO2 and
CeO2 nanoparticles [13,15]. The C-peptide, however, is prone to dimerization by oxidation,
which would lead to peptide depletion without binding of the test substance, leading to
an overestimation of reactivity, and metal ions had been described to cause dimerization
of the thiol-group-containing nucleophile in the ADRA [55]. Therefore, positive results
with thiol nucleophiles should be evaluated with caution, and the formation of reaction
products of the peptides should be quantified to the depletion of the peptide. An approach
to differentiate between dimers and reaction products has been proposed for the ADRA
to identify false positives due to thiol nucleophile dimerization [56]. While no reactivity
was observed for any of the NM assessed in the present study, adduct analysis and kinetics
may clarify the applicability domain limitation stated in OECD TG No. 442C.

With adaptations, the DPRA was technically applicable to insoluble NM. According to
the method’s data interpretation procedure (DIP), it can only deliver conclusive results for
non-dissolved test substances in the case of a peptide depletion above the defined threshold,
whereas less peptide depletion is not assessed as being negative, but as inconclusive. To
enable the investigation of inorganic test substances, which can react with proteins via
mechanisms other than covalent binding, different analytical methods are required that
can address these reactions and identify potential adducts (e.g., metal complex formation)
or modified proteins in the corona of the NM.

3.2. LuSens

The LuSens experiments were performed following a modified protocol based on the
OECD TG 442D, originally described by Ramirez et al. in 2014 [30]. For cytotoxicity mea-
surements, MTT tests with a range of dilutions were performed. For CeO2 NM-212, prior
centrifugation was necessary, as large deviations were observed in MTT measurements.
For SiO2 DQ12 and TiO2 NIST® SRM® ATP tests were conducted instead of MTT tests as
an alternative cytotoxicity determination. After assessment of cytotoxicity, appropriate
test substance concentrations were selected for incubations to assess luciferase induction.
The resulting CV75 and EC 1.50 values were calculated, and keratinocyte activation was
evaluated (Table 6).

Four NM yielded negative results, whereas two NM and DQ12 were tested positive.
Three replicate experiments with BaSO4 delivered inconsistent results: a negative and
borderline result and an invalid experiment due to high cytotoxicity. Experiments with
SiO2 Aerosil R972 delivered borderline results; however, these results were considered
inconclusive due to visible inhomogeneity and the test guideline requiring a homogenous
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test substance preparation. Overall, the LuSens assay was technically applicable with
adaptations to the TG protocol.

Table 6. Results and evaluation of the LuSens assay with test substances. Values of the calculated
test substance concentration with 75% cell viability (CV75), maximum fold-induction values (Imax),
and the calculated concentration with 1.50-fold luciferase induction (EC 1.50) are given, if applicable
or determined.

Test Substance CV75 [µg/mL] Imax EC 1.50 [µg/mL] Result

CeO2 NM-212 532 0.71 n.a. 1 negative
BaSO4 NM-220 n.a. 1 1.41 n.a. 1 inconclusive 2

Levasil 200 (40%) 61.5 2.77 33 positive
SiO2 DQ12 498 3.32 <179 3 positive

SiO2 Aerosil R972 n.a. 1 1.81 n.a. 1 inconclusive 2

SiO2 Aerosil 200 15 1.85 n.a. 1 negative
TiO2 NIST® SRM® 351 1.01 n.a. 1 negative
TiO2 P25 Aeroxide 222 0.89 n.a. 1 negative
ZnO Z-Cote HP1 13.7 5.17 <7 3 positive

1 n.a. = not applicable, no cytotoxic effects were observed in any of the concentrations, or the mean fold induction
at the highest tested concentration (with a viability >70%) was lower than 1.50. 2 Considered “inconclusive”
according to OECD TG442D as the test substance preparation was visually inhomogeneous (SiO2 Aerosil R972)
or tested below the maximum concentration without cytotoxicity (BaSO4). 3 Not determined, the mean fold
induction at the lowest tested concentration was higher than 1.50.

Despite the conclusive results according to TG442D, these results should be interpreted
with caution, as the predictivity of the LuSens assay is based on the reaction of the test
substance (or products formed from or by the test substance) with thiols of Keap-1, which
is then activating the Keap1–Nrf2–ARE pathway [24]. The reactivity of solid, inorganic
materials with these thiols is not well investigated. Interestingly, none of the NM exhibited
any significant reactivity in the DPRA with the C-peptide containing a thiol group, while
three test substances (SiO2 Levasil 200 (40%), SiO2 DQ12, and ZnO Z-Cote HP1) delivered
clearly positive results in the LuSens assay. Two other SiO2-based NM were tested negative
and borderline; hence, no direct correlation of elemental composition could be driven, and
the published data on SiO2-based NM are also not consistent [17,57]. Recently, studies
with NM in the KeratinoSens assay (addressing the same key event as the LuSens assay)
were conducted. In one study, positive results for gold and silver nanoparticles were
reported, whereas NiO and TiO2 were tested negative [20]. In another study, CuO was
tested positive, whereas CeO2, TiO2, ZnO, and other metal oxides (NM) were tested
negative [16]. The negative results for the TiO2-based NM and CeO2 in our experiments
agree with these studies’ outcomes. For ZnO, DQ12, and SiO2 Levasil, our experiments
indicated an activation of the Keap1–Nrf2–ARE pathway. This pathway is contributing to
skin sensitization in the context of other KEs of the AOP. Independent of this, activation
of this pathway indicates oxidative stress, which can indeed be caused by inorganic NM,
either by catalyzing the formation of ROS or by releasing metal ions. Previous studies
investigated the surface reactivity and ROS production of NM [23,25] by different methods
(electron spin resonance (ESR) spectroscopy, ferric reducing ability of serum (FRAS), and
protein carbonylation). The relative activity of one NM compared to another varied with
different methods, and some nanoforms of a NM showed results different from another
nanoform [58]. In several assays, DQ12, ZnO, and some silica showed higher activities
(based on the same mass concentration) than BaSO4, CeO2, and TiO2 NM. The LuSens assay
may serve as another assay to assess the surface reactivity and ROS production of NM,
which is one criterion to group NM [59,60] and define sets of similar nanoforms [58,61].
This approach has already been explored [23].
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3.3. h-CLAT

The h-CLAT experiments were conducted following a modified protocol based on
the OECD TG No. 442E, without cytotoxicity measurements prior to the main experiment.
Hence, the first main experiment was always conducted with the highest achievable
concentration (diluted from the stock preparation), and the concentration was adjusted
after assessment of cytotoxicity. After 24-h exposure time, density gradient centrifugation
was performed to separate NM from cells prior to flow cytometry to avoid interferences.
To investigate the influence of this step, experiments with and without centrifugation
were conducted with SiO2 Levasil 200 (40%). No apparent influence of centrifugation on
cell viability was observed while particles were removed. Cells were stained with the
corresponding fluorescently labeled antibodies. The relative mean fluorescence (RFI) of
CD86 and CD54 were measured, which were then used to calculate EC150 and EC200
values for CD86 and CD54, respectively, and evaluated to assess the dendritic cell activation
potential of NM (Table 7).

Table 7. Results and evaluation of the h-CLAT assay with test substances. Values of maximum
fold-induction (Imax) and the calculated test substance concentrations resulting in a RFI of 150% for
CD86 or 200% for CD54 (EC150 and EC200) are given, if applicable or determined.

Test Substance EC150
(CD86)

Imax
(CD86)

EC200
(CD54)

Imax
(CD54) Evaluation

CeO2 NM-212 n.a. 140 n.a. 100 negative/borderline
for CD86 in one run 1

BaSO4 NM-220 n.a. 121 n.a. 97 negative
SiO2 Levasil 200 (40%) n.a. 87 n.a. 201 inconclusive 2

SiO2 DQ12 n.a. 176 <144 µg/mL 970 positive
SiO2 Aerosil R972 n.a. 138 n.a. 120 inconclusive 2

SiO2 Aerosil 200 n.a. 171 n.a. 235 inconclusive 3

TiO2 NIST® SRM® n.a. 128 n.a. 132 negative/borderline
for CD86 in one run 1

TiO2 P25 Aeroxide <357 µg/mL 213 n.a. 152 positive
ZnO Z-Cote HP1 n.a. 163 <144 µg/mL 2585 positive

1 Results of valid experiments yielded negative (without borderline range) and negative or borderline if the
borderline ranges provided in GL 497 are considered. Hence, at least one more independent experiment would
be needed to derive a conclusive prediction in the h-CLAT. 2 Considered “inconclusive” according to the test
guideline as the maximum concentration was below the maximum stated in the guideline and the actually tested
maximum concentration was not cytotoxic. 3 Without considering the borderline range, the first run was positive
for CD86, the second negative for both, and the third run was positive for CD54. Hence, at least one more
independent experiment would be needed to derive a conclusive prediction in the h-CLAT. n.a. = not applicable.

Two NM and DQ12 yielded clearly positive results for one of the CD markers, whereas
only one NM, BaSO4, was tested negative for the upregulation of both surface markers.
Most of the NM yielded negative or borderline results for one of the surface markers.
According to DIP of the TG, the tests should be performed up to a defined concentration
(2 mg/mL) or up to the cytotoxicity limit. However, application at this concentration
was not possible following the NANOGENETOX protocol. Hence, all NM should have
been tested at a concentration limited by their cytotoxicity. Three NM, SiO2 Aerosil 200,
SiO2 Aerosil R972, and SiO2 Levasil 200, yielded negative or borderline results for CD54;
however, in these experiments, the cytotoxicity limit was not reached; thus, the results
are considered inconclusive. A previous study with silica NM investigated with LuSens
and h-CLAT assays found no activity in either assay and not cytotoxicity even at the
highest concentrations [17]. In another assay adopted as part of OECD TG 442E, namely
the GARDskin assay, 13 metal compounds were tested, and the others concluded a similar
predictive capacity as compared to defined organic molecules [62].

In conclusion, the h-CLAT assay was technically applicable with the addition of the
centrifugation step to the TG protocol. The significance of negative or borderline results
obtained with this assay is, however, limited by the achievable maximum concentration
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with a given dispersion protocol. Moreover, the biological relevance of this assay towards
the potential skin sensitization of NM is questionable.

3.4. Assessment of the Skin Sensitization Potential with DAs

The results obtained in three NAMs (according to OECD TG No. 442C, D, and E),
addressing three KE in skin sensitization AOP, were evaluated according to the 2o3 and DA
for skin sensitization described in OECD GL No. 497. First, all results obtained in the three
assays were considered in the evaluation (Table 8), even though some are inconclusive
according to the TG since the test substances are inorganic materials, are not completely
soluble, and/or sufficient test concentrations of dispersed particles could not be achieved
by standard protocols (please see footnotes for details).

Table 8. Evaluation results and ITSv2 score of NAMs, as well as evaluation of the 2o3 DA with
DPRA, LuSens, and h-CLAT assays for assessing the skin sensitization potential of test substances.
Information from the OECD Toolbox is not available 1.

Test Substance DPRA 1 LuSens 2 h-CLAT Evaluation 2o3 5

CeO2 NM-212 n 1

inconclusive
n n/br

inconclusive
non sensitiser 5

inconclusive

BaSO4 NM-220 n 1

inconclusive inconclusive 2 n non sensitiser 5

inconclusive
SiO2 Levasil 200

(40%)
n 1

inconclusive
p inconclusive 3 inconclusive

SiO2 DQ12 n 1

inconclusive
p p sensitiser

SiO2 Aerosil
R972

n 1

inconclusive inconclusive 2 inconclusive 3 inconclusive

SiO2 Aerosil 200 n 1

inconclusive
n inconclusive 4 non sensitiser 5

inconclusive
TiO2 NIST®

SRM®
n 1

inconclusive
n n/br

inconclusive
non sensitiser 5

inconclusive
TiO2 P25
Aeroxide

n 1

inconclusive
n p non sensitiser 5

inconclusive

ZnO Z-Cote HP1 n 1

inconclusive
p p sensitiser

1 According to TG 442C, inorganic materials are out of the applicability domain of DPRA, and the insolubility of
the NM makes the negative results inconclusive. 2 Considered “inconclusive” according to OECD TG 442D as
the test substance preparation was visually inhomogeneous (SiO2 Aerosil R972) or tested below the maximum
concentration without cytotoxicity (BaSO4). 3 Considered “inconclusive” according to the test guideline as the
maximum concentration was below the maximum stated in the guideline and the actually tested maximum
concentration was not cytotoxic. 4 Without considering the borderline range, the first run was positive for CD86,
the second negative for both, and the third run was positive for CD54. Hence, at least one more independent
experiment would be needed to derive a conclusive prediction in the h-CLAT. Considering the borderline
range, the first run was borderline in both markers, and the following two runs were negative in CD86 and
borderline in CD54. 5 Where two predictions are provided, the first evaluation disregards inconclusive results
due to borderline evaluation in individual assays and limitations in the DPRA (see footnote 1 to this table).
Abbreviations: n = negative; p = positive; br = borderline.

In the 2o3 DA, of the nine materials tested, two NM were evaluated inconclusive due
to solubility/inhomogeneity issues (SiO2 Levasil 200 (40%) and SiO2 Aerosil R972), and
two (SiO2 DQ12 and ZnO Z-Cote HP1) were identified as skin sensitizers. The remain-
ing five NM possibly have no skin sensitization potential; however, the final evaluation
has to be considered inconclusive because (i) negative results of the DPRA with inor-
ganic and insoluble test substances are inconclusive, and (ii) LuSens and h-CLAT assays
partly delivered inconclusive results due to borderline results and inconsistencies between
single experiments.

OECD GL497 also provides DAs comprising the DPRA, h-CLAT, and the OECD
toolbox as information sources in ITSv2. Using the present dataset, evaluation according
to ITSv2 DA was challenging due to negative/inconclusive results in the experimental
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information sources and the unavailability of protein binding alerts from the OECD toolbox.
Two NM could be evaluated with ITSv2. They are assessed as being skin sensitizers by this
DA. Both DAs consistently indicate skin sensitization potential for DQ12 and ZnO NM.
Both test substances tested negative in animal studies, and ZnO was also found negative in
humans [63,64]. However, both materials have substantial ROS-production capabilities,
and the results obtained with NAMs may rather reflect this activity than specific skin
sensitization potential [23,25]. According to in vivo skin sensitization studies (TG No. 442B:
Skin Sensitization Local Lymph Node Assay, LLNA: BrdU-ELISA), TiO2, CeO2, SiO2, and
ZnO NM do not induce skin sensitization in the mice [17,19,65]. LLNA data of small
organic molecules are, however, not well correlated to skin sensitization in humans, and
in vitro methods should be assessed towards human relevance [66]. Moreover, with the
LLNA, test substances are applied to the intact skin, and the negative results could merely
reflect the absence of sufficient skin penetration. Bypassing the skin barrier for a more
conservative hazard assessment would require a Guinea Pig Maximization Test using an
adjuvant to increase skin penetration [67]. This test has been performed for CeO2 NM-212,
SiO2 Levasil 200, materials related to SiO2 R972, and TiO2 P25; all four NM were found
negative (see Table 1 for references).

A principal mechanism by which solid NM could cause skin sensitization is via the
release of ions (or other soluble substances) with a skin sensitization potential. None of the
ions constituting the NM tested in this study are classified as skin sensitizers. However,
dissolution of skin sensitizing constituents from respective NM (e.g., nickel nanoparticles)
could give relevant info towards a potential for skin sensitization. The solubility can give
first-tier information on the expected concentration of released ions; the solubility values
of the nanoparticles in this study are listed in Table 1. More refined methods to measure
dissolution kinetics of NM are available [68].

4. Conclusions

NM could technically be applied to skin sensitization NAMs (DPRA, LuSens, and
h-CLAT assays) with some adaptations. The dispersion of the NM is crucial. In this study,
NM dispersions were prepared using a standardized protocol to obtain highly dispersed
NM, which were applied to the test systems directly after preparation. Some of the TG
are using molar concentrations that are not defined for NM. Gravimetric approaches in
the TG are based on mixtures and formulations consisting of small molecules with the
assumption of an average molecular weight of 200 g/mol, thus not directly applicable for
larger structures such as solid particles. An adequate concentration metric for NM testing
in skin sensitization NAMs needs to be defined.

None of the NM-depleted peptides in DPRA. Nevertheless, all results had to be
considered inconclusive due to the insolubility of the NM and because inorganic materials
are out of the applicability domain of the DPRA.

In cell-based assays, further adaptations were required due to interference with the
read-out. Centrifugation steps were performed to separate NM from cells prior to optical
read-out. Some NM interfered with the MTT assay, and ATP assays were used as an
alternative for viability measurement; PrestoBlue assays could be another alternative [69].
Three test substances were positive in the LuSens assay. These test substances showed a
higher ROS production in other assays, and the LuSens assay may well be suitable to detect
NM-induced ROS formation in mammalian cells. Three test substances were positive in the
h-CLAT assay for dendritic cell activation. Two of them, ZnO and DQ12, were also positive
in the LuSens assay. Consequently, these two substances were assessed as overall positive
according to the DA. They were, however, not showing skin sensitization potential in
animal studies nor—for ZnO—in humans. For seven NM, no consistent overall assessment
could be derived from the three NAM tests. All are inorganic and insoluble and hence
outside the applicability domain of the DPRA. Four of them did not form stable dispersions
or did not achieve the maximum concentrations defined in the TG of the LuSens or h-CLAT.
Three NM gave borderline results in the h-CLAT or non-consistent results in the LuSens and
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h-CLAT. For all NM, the current NAM TG does not define adequate concentration metrics.
Moreover, the relevance of the tested KE towards skin sensitization by inorganic, insoluble
matter is unknown. Relevant mechanisms of NM skin sensitization should be identified,
and respective NAMs (with adequate concentration metrics) should be developed and
validated for reliability and human relevance (ideally using human reference data). The
current NAMs, which were developed for small organic molecules, seem not to be a
good fit for NM. The currently available data from humans, animal studies, and in vitro
do not indicate a skin sensitization potential for inorganic NM without skin sensitizing
constituents.
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Abstract: Regulations of cosmetic ingredients and products have been the most advanced in em-
bracing new approach methodologies (NAMs). Consequently, the cosmetic industry has assumed a
forerunner role in the development and implementation of animal-free next-generation risk assess-
ment (NGRA) that incorporates defined approaches (DAs) to assess the skin sensitization potency
of ingredients. A Bayesian network DA predicting four potency categories (SkinSens-BN) was con-
structed against reference Local Lymph Node Assay data for a total of 297 substances, achieving a
predictive performance similar to that of other DAs. With the aim of optimally informing risk assess-
ment with a continuous point of departure (PoD), a weighted sum of the SkinSens-BN probabilities
for four potency classes (non-, weak, moderate, and strong/extreme sensitizer) was calculated, using
fixed weights based on associated LLNA EC3-values. The approach was promising, e.g., the derived
PoDs for substances classified as non-sensitizers did not overlap with any others and 77% of PoDs
were similar or more conservative than LLNA EC3. In addition, the predictions were assigned a
level of confidence based on the probabilities to inform the evaluation of uncertainty in an NGRA
context. In conclusion, the PoD derivation approach can substantially contribute to reliable skin
sensitization NGRAs.

Keywords: skin sensitization; risk assessment; point of departure; Bayesian network; defined approach

1. Introduction

Initiated by societal pressure and ethical concerns, political chemical safety pro-
grams around the globe are aiming at moving away from animal-based solutions and
are calling for hazard and risk assessment approaches based on new approach method-
ologies (NAMs). Regulations of cosmetic ingredients and products have been the most
advanced in abandoning animal experiments and embracing NAM solutions, especially in
Europe [1,2]. Consequently, the cosmetic industry has assumed a forerunner role in the
development and implementation of animal-free approaches to assess the primarily hazard
of chemical ingredients.

Substantial efforts have been made to pave the way to advance NAMs for skin sensi-
tization, which have led to substantial progress [3]. Based on the qualitative mechanistic
understanding operationalized in the OECD skin sensitization adverse outcome pathway
(AOP) [4], in vitro and in chemico test methods have been developed to address the first
three key events (KEs) of the AOP. Based on thorough validation and independent assess-
ment, several NAMs have been included in OECD Test Guidelines (TGs). TG 442C contains
three in chemico reactivity test methods modeling the molecular initiating event (MIE) or
KE1 “covalent binding of a chemical to skin protein” [5,6]: the Direct Peptide Reactivity
Assay (DPRA), the Amino acid Derivative Reactivity Assay, and the kinetic DPRA (kDPRA),
which were reviewed by Alépée, et al. [7]. TG 442D includes the KeratinoSens™ and the

Toxics 2024, 12, 536. https://doi.org/10.3390/toxics12080536 https://www.mdpi.com/journal/toxics101
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very similar LuSens, two in vitro test methods modeling KE2 “Keratinocyte activation” [8],
while TG 442E features the four cell-based test methods U-SENS™, h-CLAT, IL8-Luc, and
the GARD™skin that model KE3 “Dendritic cell activation” [9].

Although addressing the MIE could in theory be sufficient to cover a sequential chain
of KEs, modeling errors inherent to the NAMs have led to the common understanding
that a combination of NAMs covering at least two KEs of the skin sensitization AOP are
required to provide high predictivity [10]. Consequently, a plethora of combinations of skin
sensitization NAMs and also including other information sources, the so-called defined
approaches (DAs), have been developed, including the sequential stacking tier strategy
DAs developed somewhat later [11,12]. The majority of DAs have been reviewed by
Kleinstreuer, et al. [13]. Recently, two DAs with a relatively simple decision tree approach
to either predict skin sensitization hazard or United Nations (UN) Globally Harmonized
System (GHS) classification categories have been adopted by the OECD [14]. The first three
DAs included in this guideline use combinations of OECD-validated in chemico and in vitro
test data, in some cases along with in silico information. The DAs currently described in
this guideline are: (i) the “2 out of 3” (2o3) defined approach for hazard identification and
(ii) two versions of the integrated testing strategy (ITSv1) for hazard and UN GHS potency
categorization, both of which use the same test methods to address KE1 and KE3, but differ
in the in silico predictions they incorporate (ITSv1: Derek Nexus; ITSv2: (OECD QSAR
Toolbox 4.5)). The other Das have been developed for risk assessment purposes, i.e., they
provide predictions of four categories or of a continuous value (see, for example, [13,15–17]).
DAs can be applied as or transformed into a NAM-based point of departure (PoD) to be
used in the next-generation risk assessment (NGRA) framework for skin sensitization,
replacing the traditionally used animal-based or human-based PoDs [18,19].

Among them, a DA based on a Bayesian network, usually referred to as the Bayesian
integrated testing strategy (ITS) for skin sensitization potency assessment, has been developed
to derive a potency prediction of being a non-, weak, moderate, or extreme/strong sensitizer
based on the Bayes factor [20]. Bayesian networks are probabilistic by definition, as they
describe relationships between variables of the system of interest by conditional probabilities,
which together form the joint probability distribution of the system. Bayesian networks can
be graphically described by directed acyclic graphs (DAGs) comprising input variables, latent
variables, and connections between dependent variables [21]. The advantages of Bayesian ap-
proaches have been acknowledged for risk assessment in general and for skin sensitization in
particular, comprising the representation of the underlying mechanistic/dependent processes
through DAGs, the ability to compensate for missing input data, and the inherent ability
to address uncertainty [20,22–25]. In a risk assessment context, the selection of a category,
either based on the maximum posterior probability or the Bayes factor, and subsequently of
the lowest value in a category as the PoD, results in a limited number of potential PoDs. In
addition, such a PoD comes with an unknown level of associated uncertainty, as the distance
between the lowest category value and the true value can fall anywhere in the range that the
category spans, as highlighted in a case study [18].

Building on the advantages of the Bayesian integrated testing strategy (ITS) for skin
sensitization, a Bayesian network model (SkinSens-BN) was built to assess potency classifi-
cation. This new DA offers enhanced flexibility by expanding the scope of the input data
used and the covered chemistry (i.e., mainly cosmetic ingredients). While predicting four
potency categories, which can be reduced to obtain predictions of UN GHS categories and
skin sensitization hazard, the SkinSens-BN posterior probabilities were used to predict, in
addition, a continuous PoD and to derive a categorical indicator of confidence associated
with the predicted results.
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2. Materials and Methods
2.1. Data Inputs
2.1.1. NAMs

The 13 inputs included in the Bayesian network were selected to inform several bio-
logical events relevant for the skin sensitization mode of action. Building upon previous
work (for example, summarized by [13,26]), bioavailability was addressed by three physico-
chemical properties (molecular weight (MW) calculated from the structure, octanol–water
partition coefficient (clogP) from Biobyte v.5.2, and volatility from EPISuite v. 4.1 catego-
rized according to [27]), metabolism by Tissue Metabolism Simulator (TIMES-SS, v2.29.1.28
model v23.28), and the reactivity mode of action by the ToxTree module “Skin sensitization
reactivity domains” (version 2.6.13) [28]. The three AOP key events were covered with the
in vitro/chemico test methods DPRA, KeratinoSens™ [29] and the U-SENS™ [30,31], the
latter two also informing cytotoxicity. Local Lymph Node Assay (LLNA) data extracted
from the OECD database were used as a reference [32]. Further details are provided in
Supplemental Table S1 “Inputs”.

In total, 297 chemicals were selected using pre-defined criteria, such as the avail-
ability of LLNA test results, which were used to determine the reference result for de-
termining a substance’s potency. Data were retrieved from two sources: 219 substances,
including 70 proprietary substances (identity not revealed) from Tourneix, Alépée, De-
troyer, Eilstein, Martinozzi Teissier, Nardelli, Noçairi, Pauloin, Piroird and Del Bufalo [12],
which included 184 cosmetic ingredients, inter alia, 72 dyes, 22 preservatives, and 40 fra-
grances; and 78 from the OECD database [32]. A total of 3861 input data were retrieved.
NAM data were also collected from additional sources [12,33]. The data are summa-
rized in Supplemental Table S1 “Data”. Training set input data were complete, except for
40 substances with inconclusive (12) or partly missing (28) DPRA data, one substance with
partly missing KeratinoSens™ data, 14 substances with inconclusive volatility data, and
39 substances with inconclusive TIMES-SS predictions. Input data for the test set were com-
plete, except for six substances not tested in the U-SENS™, four substances with inconclu-
sive or missing DPRA data, four substances for which no or partly missing KeratinoSens™

data were available, and six substances with inconclusive TIMES-SS predictions.

2.1.2. In Vivo Reference Data

As the Bayesian network was to be constructed against reference data, Local Lymph
Node Assay (LLNA) data were extracted from the OECD database [32]. Supplemental
Table S1 “Data” includes the EC3 value for each substance, i.e., the interpolated dose
that stimulates a three-fold increase in lymph node cell proliferative activity compared
to the vehicle control. For non-sensitizers, the EC3 value was set at 100%, as conducted
previously (for example, [18,34]). In addition, the skin sensitization categories of the UN
GHS, i.e., Cat. 1A for EC3 ≤ 2% (strong/extreme sensitizers), Cat. 1B for EC3 between 2
and 100%, and no category (NS), and a 4-class categorization that divides the GHS Cat.
1B into weak (EC3 ≥ 10%) and moderate skin sensitizers (2% < EC3 < 10%), are presented
(Figure 1) [35,36].
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Figure 1. Relationship of skin sensitization categories for potency (4 classes), UN GHS categories,
and hazard derived from LLNA EC3 values.

2.2. Bayesian Network
2.2.1. Construction and Training

The Bayesian network was generated with BayesiaLab v10.2, a commercial software
(available at https://www.bayesia.com (accessed on 17 July 2024)). The input parameters
used are listed in Supplemental Table S1 “Inputs”, structured by the biological event they
inform. Each quantitative input variable was discretized into two or three categories using
by using a Minimum Description Length approach for finding the value of the thresholds
and their number [37]. For the prediction of the four LLNA potency classes as described
above, each quantitative input variable was discretized into two or three categories using
data-driven thresholds. For example, the U-SENS™ EC150 thresholds were 3.86 and
51.79, resulting in three categories. All discretization thresholds for the quantitative input
variables are provided in Supplemental Table S1 “Inputs”.

The SkinSens-BN network, based on data-driven and expert knowledge, is structurally
similar to the one by Jaworska, Natsch, Ryan, Strickland, Ashikaga and Miyazawa [20],
who described the rationale for the network structure, the direct dependencies, and the
direction between nodes/inputs. The arrows connect the conditionally dependent variables.
This representation allows to reduce the complexity of the network, i.e., the number of
probabilities to estimate. Expert knowledge was used to create meaningful latent variables
that allow to create probabilistic summaries of the associated manifest variables. The
rationale of the selection of input variables that cover the three first key events of the AOP
for skin sensitization and of the structure is provided in Supplemental Table S1 “Input”.

The 297 substances were divided into training and test sets based on the two major
sources used for substance selection and data retrieval. The network was trained with the
input data of 219 chemicals [11], which are provided in Supplemental Table S1 “Data”, to
predict the posterior distribution of the probabilities of a chemical belonging to each potency
class given the observations. The resulting network was tested with the 78 substances from
the OECD database [32]. These were primarily selected to obtain the coverage of the LLNA
potency spectrum and of the physico-chemical properties (MW, clogP, and volatility similar
to that of the training set (Supplemental Figure S1)). However, the two sets differed in the
proportion of UN GHS Cat. 1A substances (lower in the test set) and the clogP (higher in
the test).

Four latent variables (bioavailability, metabolism, cysteine, and U-SENS™) were used
to structure the network by connecting related inputs, e.g., the three physico-chemical
inputs’ molecular weight, clogP and volatility informing bioavailability. The DAG repre-
senting the network was further structured manually.

104



Toxics 2024, 12, 536

2.2.2. Performance Analysis

The Skin-Sens-BN obtained with the training set was internally validated by 5-fold
cross-validation, stratified to obtain identical distribution in the 4 LLNA potency classes.
Cross-validation resulted in an average accuracy of 61%, which was considered to suffi-
ciently demonstrate the robustness and generalizability of the predictive performance of
the BN.

The predictive capacity for four potency classes (non-sensitizer, weak, moderate, and
strong/extreme), determined by the most likely predicted class, the three UN GHS (1A
and 1B vs. No Category), and for skin sensitization hazard (NS vs. S) was assessed by
comparison with the LLNA reference results using contingency tables. For a four-class
prediction (NS/weak/moderate/strong–extreme), randomly assigning each item to a class
would result in a 25% accuracy rate. In the current study, the achieved percentage surpasses
this probability and even more the 50% chance of landing on either side for the binary
S/NS prediction. As highlighted schematically in Figure 1, classes/categories are simply
combined moving from potency to UN GHS to hazard. Pertinent predictive parameters,
i.e., accuracy, and specificity and sensitivity for hazard classification were calculated.

2.3. Confidence Categorization

In order to derive an indicator of confidence of a chemical belonging to a potency class,
the predicted probabilities, called probability profile, were converted to Generalized Bayes
Factors (GBFs) applying the same formula used by Jaworska, Natsch, Ryan, Strickland,
Ashikaga and Miyazawa [20], i.e., calculating the ratio of the posterior odds and the prior
odds in the training set per class. Subsequently, we transformed the GBFs to what was
termed “weight of evidence” (W = 10 × log10 (GBF)), which is measured in deciban, with
one deciban being “about the smallest change in W that is directly perceptible to human
intuition” [38]. The confidence in the prediction was categorized based on the maximum
W-values across the four potency classes. Based on Jeffreys’ decision rule [39], W-values
between −5 and 5 were associated with “weak” confidence, W-values between −10 and
−5 and between 5 and 10 with “moderate” confidence, and W-values smaller −10 or larger
than 10 with “high” confidence.

In other words, the SkinSens-BN model provides for each substance an indication of
the confidence in the predicted potency class result based on the data observation.

2.4. PoD Derivation

The final node of the Bayesian network returns the discrete probability p for a sub-
stance belonging to each of the four classes (non-sensitizer (NS), “weak”, “moderate” and
“strong or extreme” sensitizer). Using fixed weights for each of the classes that were based
on associated LLNA EC3-values, i.e., 100 for NS, 10 for weak, 2 for moderate, and 0.2
for strong or extreme) the point of departure (PoD) was defined as the following sum of
weighted probabilities:

PoDBN [%] = p(NS) × 100 + p(weak) × 10 + p(moderate) × 2 + p(strong or extreme) × 0.2 (1)

The weights relate to LLNA EC3-value, with 100 representing a non-sensitizing result
in the LLNA, 10 representing to lowest EC3 considered to be weak, 2 representing the EC3
used to discriminate UN GHS categories 1A and 1B, and 0.2 considered as a representative
value for strong and extreme sensitizer [36]. The PoD sum assumes its maximum when
p(NS) = 100 and the other probabilities are 0. In this case, the PoD is 100, corresponding
to a negative LLNA. The minimum is obtained for p(strong or extreme) = 100 (and the
other probabilities being 0), resulting in a PoD of 0.2%. As this minimum is larger than the
LLNA EC-value of 0.2%, the approach will, in comparison to the LLNA, systematically
underpredict the PoD for highly potent sensitizers. This limitation is acknowledged, but
considered acceptable, as substances with a low PoD are rarely used as cosmetic ingredients.
On the other end of the spectrum, PoDBN will practically always be <100%.
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3. Results
3.1. SkinSens-BN and Its Predictive Performance
3.1.1. The Network Structure

The Bayesian network, referred to as SkinSens-BN, was constructed using 13 inputs
informing various biologically relevant events, including mechanistic key events as opera-
tionalized in the skin sensitization AOP, and 219 defined substances, for which most inputs
were available, and four latent variables. A graphical representation of the SkinSens-BN is
shown in Figure 2. The inputs are displayed as circles. The four latent variables “Bioavail-
ability”, “Metabolism”, “Cysteine”, and “U-SENS” are indicated as rounded rectangles,
while the final node “LLNA potency prediction” is represented as a target. Arrows connect
the dependent variables, with the arrow direction indicating the relationship.
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Figure 2. The directed acyclic graph (DAG) of the SkinSens-BN. The gray-shaded circles indicate the
inputs (continuous border line: qualitative input; dotted border line: discretized quantitative input),
rounded rectangles indicate latent variables, arrows connect dependent inputs, and the final node
“LLNA potency prediction” is represented as a “target”.

3.1.2. Predictivity: Training and Test Sets, Individual and Combined

The SkinSens-BN predictivity for the training set obtained by comparison to the
LLNA reference data was calculated for discriminating four potency classes, the UN GHS
categories, and a binary hazard classification. The results are summarized at the top of
Table 1. The accuracy of prediction was 64% for the four potency categories, increasing
to 68% for UN GHS categories and to 84% for hazard classes. For hazard, the specificity
was 80% (55/69), the sensitivity 87% (130/150), and the balanced accuracy, i.e., the average
of specificity and sensitivity, 84%. The number of substances over-predicted and under-
predicted was very similar in each of the sub-tables, indicating the SkinSens-BN equally
weighted mispredictions, i.e., not reducing mispredictions in one direction at the cost of
the other directions.

In comparison to the training set, the test set predictions were lower for the potency
classes and the UN GHS category, as indicated by reduced accuracies by 11% and 5%,
respectively (Table 1, middle). The lower test set predictivity of the potency classes is
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primarily caused by the overprediction of weak sensitizers and mispredictions of moderate
sensitizers. A potential reason explaining mispredictions is an imbalanced distribution of
chemistry or other important factors between the training and test sets. For example, of the
eight acrylates, three were in the training set and five in the test set, including four weak
sensitizers that were overpredicted as strong/extreme. Note that three out of these four
overpredicted weak sensitizers (GHS Cat. 1B) were also overpredicted as GHS Cat. 1A
by both ITSv1 and ITSv2 [32]. Interestingly, the accuracy for hazard was higher (by 2%),
as was the sensitivity (130/150 = 87% in the training set vs. 47/50 = 94% in the test set),
while the specificity (55/69 = 80% in the training set vs. 20/28 = 71% in the test set) and
balanced accuracy (83.2% in the training set vs. 82.7% in the test set) were lower. Table 1
also includes the predictivity when combining the training and test sets (at the bottom).
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3.1.3. Confidence Assessment

The confidence in the SkinSens-BN prediction was determined in relation to the
maximum GBFs across the four potency classes, which were derived from the probability
profile, i.e., the posterior distribution, and the prior. The maximum GBF was transformed
into a W-value, which was interpreted using a simplification of the Jeffrey’s decision. The
level of confidence was grouped into the three categories of high, moderate, and low. This
level of confidence is intended to provide risk assessors with an indication of confidence
when using SkinSens-BN results, informing the next risk assessment step. To summarize
the results, these were grouped by potency category with the highest GBF.

Of the 98 substances predicted as NS, the majority (71/98 = 72.4%) were associated
with a “high” level of confidence. “Weak” substances were predominant (51/61 = 83.6%),
with an assigned “moderate” level of confidence, as were substances with “moderate”
potency (29/36 = 80.5%). The level of confidence of substances predicted as extreme/strong
sensitizers was most evenly distributed, with a “high” level of confidence assigned to 48.0%
(49/102) of the substances.

Table 2 exemplifies the approach of transforming the probability profile into a W-value,
from which the level of confidence is derived by using three substances that were weak
sensitizers in the LLNA. “Weak” was also the most likely predicted class in the SkinSens-
BN probability profile. However, the individual probability profiles differ in shape, in
particular the probability of the weak class (p(weak)). While p(weak) was very high for
geraniol, it was just slightly higher than p(moderate) for hydroxycitronellal. This difference
was also reflected in the W-values, leading to a high confidence for geraniol, a moderate
confidence for N,N-dibutylaniline, and a low confidence for hydroxycitronellal.

Table 2. SkinSens-BN probability profile of three example substances, with the corresponding
W-values, predicted classes, and confidence levels.

Substance Name Geraniol N,N-dibutylaniline Hydroxycitronellal

LLNA EC3 (UN GHS cat.) 26% (1B) 19.6% (1B) 33% (1B)

SkinSens-BN Prob. Profile W Prob. Profile W Prob. Profile W

p(NS) 0.1539 −4.02 0.0247 −1.26 0.0017 −2.43
p(weak) 0.7240 10.96 0.5687 7.97 0.3912 4.84

p(moderate) 0.1144 −3.38 0.2930 1.69 0.3810 3.41
p(strong/ext.) 0.0078 −1.72 0.1135 −5.08 0.2261 −1.45

predicted class weak weak weak

confidence high moderate low

3.2. Derivation of a Continuous PoD with SkinSens-BN and Its Comparison to EC3

The discrete SkinSens-BN a posteriori probability distribution for the four potency
classes, i.e., the probability profile, was used to construct an approach to derive a contin-
uous PoD (PoDBN). For each of the 297 substances, a sum of these probabilities associ-
ated with fixed weights, which were based on LLNA EC3 values associated with each
class, was calculated. The probability profiles for all substances and the PoDBN are pro-
vided in Supplemental Table S1. The PoDBN ranged from the absolute PoD minimum of
0.20%, which was obtained for four substances (lauryl gallate, tetrachlorosalicylanilide,
dinitrochlorobenzene, and 4-nitrobenzyl bromide), to the maximum PoDBN of 99.76%
(Figure 3), with a median of 14.23%, a lower quartile of 1.52%, and an upper quartile of
78.84%.

To exemplify the approach, we selected three substances from the test set. Their
identities, LLNA EC3 values, UN GHS category, probability profiles, predicted class, i.e.,
derived from the max. of the probability profile, and PoD estimates are summarized in
Table 3.
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Figure 3. Comparison of PoDBN (y-axis) and the predicted most likely potency class (x-axis), i.e., the
class with the highest probability, with the number of substance (n) in the class: (A) as a dotplot (with
median line) and (B) as a boxplot.

Table 3. PoDBN derivation for three example substances (bold: class with the highest probability).

Substance Name Lilial 4-Methoxy-α-methyl
benzenpropanal

3,4-Dihydro-
coumarin

LLNA EC3 8.6% 23.6% 5.6%

UN GHS category 1B 1B 1B

SkinSens-BN
probability profile

p(NS) 0.0244 0.1605 0.1614
p(weak) 0.5685 0.5185 0.3946

p(moderate) 0.2934 0.2736 0.4284
p(strong/extreme) 0.1138 0.0474 0.0156

predicted class
(PoD as lower bound of predicted class)

Weak
(10%)

Weak
(10%)

Moderate
(2%)

confidence moderate moderate low

PoDBN 8.73% 21.79% 20.94%

For Lilial, all PoD (LLNA EC3, based on predicted class and PoDBN) were very similar.
With an EC3 of 8.6%, the PoDBN was almost identical (8.7%), while the PoD derived from
the max. of the probability profile was 10%, i.e., the lower bound of the weak category. For
4-Methoxy-α-methyl benzenpropanal, the PoDBN was similar to the EC3, both approx. a
factor two higher compared to the approach of assigning it to the most likely potency class,
i.e., a category PoD of 10%. For 3,4-Dihydro-coumarin, the class-based PoD and the EC3
were similar, while the PoDBN was higher.

This comparison of the PoDBN to the most likely potency class was conducted for
all 297 substances. The results are summarized in Figure 3. Of the 297 substances, for 98,
the most likely potency class was non-sensitizers. The PoDBN in this class ranged from
50.62% to 99.76%, with a median of 94.94%, and was higher than all other PoDBN, except
for one proprietary substance predicted in the weak potency class. The PoDBN of the
102 substances in the strong/extreme potency class ranged from 0.20% to 11.47%, with a
median of 0.7% and an upper quartile of 1.64%. The values clearly overlapped with the
PoDBN of the substances in the moderate potency class (33 substances), while the PoDBN
of 5 of those 33 overlapped with the weak potency class. Weak and moderate predicted
potency classes, with medians 20.07% and 5.81%, respectively, showed wider distributions
and overlapped considerably.
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The large overlap indicated that potency grouping by the max. value in the probability
profile may suggest a certainty in the result that is not reflected when considering the
entire profile.

Figure 3 also demonstrates that the PoDBN will generally be higher than a PoD derived
from the lowest threshold value of the predicted potency class. This is, for example, indi-
cated by 22 substances in the strong/extreme potency class with a PoDBN > 2%, including
1 substance with a PoDBN of 11.5% and by only 1 substance in the moderate potency class
with a PoD < 2%. In contrast, 21 of the 61 substances in the weak class had a PoD < 10%
(min. of 4.89%).

Next, the continuous PoDs were compared with the corresponding LLNA reference
EC3-values, assigning an EC3 of 100 to non-sensitizers. A dotplot of all PoDBN-EC3 pairs
is shown in Figure 4. The data were clearly positively correlated, with highly statistically
significant (p-values < 0.001) Pearson and Spearman correlation coefficients of 0.75 and 0.73,
respectively, compared to the LLNA EC3. The data points below the line of identity indicate
substances for which the PoDBN is lower, and those above the line of identity indicate
substances for which the PoDBN is higher. For example, the cluster of data points (triangles)
in the upper left corner of Figure 4A had a clearly higher PoBBN and the substances with
EC3-values between 2 and 10 were frequently overpredicted (black dots in Figure 4B low
the line of identity).
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To further quantify the similarity, the PoDBN/EC3 ratios were investigated. Values
below 1 indicated substances with PoDBN < EC3, i.e., more conservative-derived PoD, and
values above 1 indicated substances with PoDBN > EC3, i.e., less conservative-derived PoD.
The ratios are represented as a histogram in Figure 5A. Ratios between 0.316 and 3.16, i.e.,
maximum 100.5-fold difference in PoDBN and EC3 in either direction, were considered as
“similar”. This approach is based on the median LLNA EC3 standard deviation when using
the same vehicle, i.e., 0.25, and the calculations presented by Hoffmann (2015). This group
comprised 58.9% (175/297) of all substances. For 17.9% (53/297) of the substances, the
PoDBN was at least 3.16-times lower than EC3, i.e., more conservative, while the PoDBN was
less conservative for 23.2% (69/297). The occurrence of more severe less conservative ratios
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can partly be explained by the difference in the scaling of the two parameters at the lower
end (minimum PoDBN: 0.2% vs. minimum EC3: 0.0003%). The least conservative PoD
derived with the SkinSens-BN was derived for oxazolone, with a ratio of 6960 (20.88/0.003),
which was also the most severely underpredicted substance in the linear regression-based
PoD models by Natsch and Gerberick [15]. As a summary measure, the geometric mean
fold error was calculated as 3.55 for all substances and as 3.97 for the test set only, indicating
a slight decrease in performance.
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Figure 5. (A): Histogram of the ratio of the PoDBN and the LLNA EC3 for the substances (n = 297).
(B): Histogram of the ratio of the PoDBN and the LLNA EC3 for substances with an EC3 ≥ 0.2
(n = 268). Substances with a ratio < 0.316 had a more conservative PoDBN and substances with a
ratio > 3.16 had a less conservative PoDBN (gray shades).

To explore this effect of different scaling, a histogram without the substances with
LLNA EC-values < 0.2, i.e., 29 most extreme skin sensitizers in the LLNA, is presented in
Figure 5B. The absolute number of substances, for which the PoDBN was more conservative,
remained the same, i.e., 53, resulting in 19.8% due to the smaller total amount of substances.
Except for a proprietary substance (OA39:EC3 = 0.1 and PoDBN = 0.48), also the “similar”
substances were not affected. However, as expected, the number of substances, for which
the PoDBN was less conservative, was substantially reduced by 28. It remains to be explored
how to best address these scaling differences, e.g., by not deriving a PoDBN for substances
with a probability profile maximum value for the extreme/strong potency category that is
associated with at the least moderate confidence.
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4. Discussion

Skin sensitization is the human health effect for which a generally applicable, system-
atic, and exclusively NAM-based risk assessment approach is most advanced. An NGRA
framework has been proposed that provides guidance for a tiered and transparent integra-
tion of relevant information, while allowing for flexibility [18,19]. This NGRA framework
has been applied in various case studies to demonstrate its applicability and to initiate
a constructive dialogue with stakeholders [22,40–43]. A centerpiece of the NGRA is the
defined approaches (DAs) that integrate data from experimental NAMs that address at
least two key events of the skin sensitization AOP [4]. Several DAs of different levels of
complexity have been developed. These comprise two decision-tree-based DAs for hazard
identification and classification according to the UN GHS, which were recently adopted by
the OECD [14]. In addition, DAs using more sophisticated statistical approaches providing
results that can, either directly or transformed, be used to derive a PoD for risk assessment
have been proposed [20,44,45]. Among these, the Bayesian network by Jaworska, Natsch,
Ryan, Strickland, Ashikaga and Miyazawa [20] is of particular interest due to its strengths,
such as the provision of a probability profile across the potency classes, which can be used
to quantify uncertainty associated with predictions, and the ability to cope with missing
data. In contrast, the property that such network predictions are categorical limits the
ability to derive a more precise PoD than the lower LLNA EC3-values associated with
each class.

Building on the strengths, a Bayesian network similar to the one of Jaworska, Natsch,
Ryan, Strickland, Ashikaga and Miyazawa [20] was developed, called SkinSens-BN. The
main differences were the adaptation to some new input parameters and an increased total
number of substances used that covered a broad spectrum of physico-chemical properties
and LLNA EC3-values, including non-sensitizers. Overall, the predictive performance was
considered in the range of the OECD-adopted DAs. The skin sensitization hazard was
predicted as good, as reported for the ‘2of3′ DA [14,46]. Small differences in sensitivity and
specificity were evened out, as indicated by the almost identical accuracies and balanced
accuracies that ranged from 83% to 85%. In terms of UN GHS category predictions, the
SkinSens-BN was compared to the “Integrated Testing Strategy (ITS)” DA, also included
in the OECD TG 497. For both ITS versions, an accuracy of 71% was reported, with no
misprediction over two categories and some inconclusive predictions. The respective
accuracy of the SkinSens-BN was 67%. Six substances were mispredicted by two classes,
five LLNA non-sensitizers as GHS Cat. 1A and one LLNA GHS Cat. 1A as a non-sensitizer
(highlighted in Supplemental Table S1 “Data”). However, only one of those substances was
part of the data used for calculating the ITS predictive performance in OECD TG 497. For
these comparisons, it needs to be kept in mind that the number of substances was more
than twice as high and that no inconclusive predictions were present for the SkinSens-BN.

Regarding the prediction of four potency classes, which was 53% for the test set
and 61% overall, a comparison with the Bayesian integrated testing strategy (ITS) for
skin sensitization potency assessment would be most informative [20]. However, an
independent evaluation is, to our knowledge, not available. An evaluation of the Bayesian
integrated testing strategy (ITS) for skin sensitization potency assessment regarding three
LLNA potency classes, which are similar to the GHS categories, obtained an accuracy
of 68% with 115 substances, a predictivity very similar to the GHS predictivity of the
SkinSens-BN [13]. Indications such as the seemingly lower predictivity for acrylates
could be conducted as follow-up to further improve the SkinSens-BN, and may allow the
further improvement in the predictive performance for four classes. However, it needs to
keep in mind that the construction of the SkinSens-BN was primarily a means to an end.
Nevertheless, the successful construction of a Bayesian network can contribute to building
trust in the general approach and demonstrates the flexibility of the approach in terms of
the inputs and chemistry to be covered.

Once it was confirmed that the SkinSens-BN performed promisingly, the primary
goal of constructing an approach to derive a continuous PoD was addressed. A weighted
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sum combining fixed weights-associated LLNA EC3-values for each of the classes with
the respective probabilities of their probability profile as weights was constructed. This
approach, which is generally applicable, resulted in continuous PoDs in the theoretical
range from 0.2 to 100%. The comparison of the SkinSens-BN PoD and the respective LLNA
EC3-values showed that, for 77% of the 297 substances, a similar or more conservative PoD
was derived.

Options to further characterize and improve the SkinSens-BN include conducting a
sensitivity analysis to characterize the impact that individual inputs have on the prediction,
assessing the impact of missing inputs, and tuning it more toward human relevance, as
conducted by Natsch [47]. The PoDBN issue of underpredictions of strong and extreme
sensitizers could be solved by the combination with an approach that can reliably iden-
tify extreme sensitizers in a first step, for example, by the use of NAMs targeting the
identification of strong and extreme sensitizers, as the kDPRA [48], or by exploring tar-
geted prediction models, as described for the ADRA by Alépée, Tourneix, Singh, Ade and
Grégoire [7]. In addition, the adaptation of the PoDBN algorithm and the adjustment of the
PoDBN based on analog information or a tiered decision process that specifically addresses
extreme potency prediction, e.g., by not deriving a PoDBN for substances with a probability
profile maximum value for the extreme/strong potency category that is associated with
at the least moderate confidence, could be explored. Although it needs to be considered
that strong and extreme skin sensitizers are only very rarely, if at all, used as cosmetic
ingredients, the improvement in an adapted strategy for these potency classes could be
applicable to other industries, such as agrochemicals, botanicals, and medical and wearable
devices, which are faced with the same concerns [49–52].

In addition, similarly to the approach of rating the confidence in predictions using the
Bayes factor applied by Jaworska, Natsch, Ryan, Strickland, Ashikaga and Miyazawa [20],
the probability profile was the basis to assign the prediction of confidence levels. The GBFs
were transformed into W-values, which were categorized to provide the three confidence
levels of “low”, “moderate”, and “high”. In essence, the approach resulted in a higher
confidence the more probability was assigned to one of the four potency classes, or, in other
words, the higher the distribution peak. On average, non-sensitizer potency predictions
were associated with the highest confidence and moderate potency predictions with the
lowest confidence.

The confidence rating is expected to substantially inform the next risk assessment
steps in a weight of evidence approach. The overall risk assessment outcome is evaluated
as a weight of evidence considering the calculated PoD [and, in the case of SkinSens-BN,
the probability profile], the confidence in the use of NAM input data within the DAs
(applicability domain), and the relative conservatism in the transformation of the DA
outcome to a PoD (the most likely predicted class). For cases with insufficient confidence
to reach a decision, it may, in combination with the detailed evaluation of individual
inputs, point to the next steps in the process, which are needed to increase the confidence.
Alternatively, the margin of exposure could be increased. This is intended to explore the
usefulness of the SkinSens-BN-derived PoDs with associated confidence levels in several
case studies, which may also identify potential avenues to improve the approach.

In conclusion, the development of the SkinSens-BN model and its related PoD deriva-
tion approach, in the context of the NGRA, clearly indicates that quantitative risk as-
sessments of skin sensitization can be achieved without a reliance on data from studies
conducted on animals.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/toxics12080536/s1, Figure S1: Comparison of EC3 val-
ues, GHS categories, and three physico-chemical properties of the training and the test sets using the
Kruskal–Wallis test, with p-values; Table S1: Summary of all inputs used to construct the Bayesian
network [5,27–31].
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Abstract: The term “risk assessment” is often substituted with “safety assessment”, to demonstrate
the safe properties of cosmetic ingredients and formulations. With respect to the actual legislative
framework, the proper use of in silico evaluation could offer a representative non-animal substitute
for the toxicity evaluation of cosmetic ingredients. The in silico assessment needs to be integrated
with other lines of proof (in vitro and/or in vivo data) in the form of a complex methodology in
order to demonstrate the safety evaluation of cosmetic ingredients/products. The present study
aimed to develop and characterize a new cosmetic formulation, designed for the skin care of the
periorbital area. Quality control comprising stability, physicochemical, and microbiological evaluation
was performed. Another objective of this study was to present a screening model for the safety
evaluation of the cosmetic formulation by identifying individual ingredients, and to confirm the skin
compatibility based on in vivo evaluation. The results demonstrated the in silico and in vivo safety
profile of the cosmetic ingredients used in the present formulation. In silico evaluation, using a novel,
specific software applicable for the risk evaluation of ingredients and formulations, showed that the
incorporated ingredients were non-mutagenic and non-sensitizing, and considering the margin of
safety (MoS), the cosmetic raw materials could be considered safe. Skin compatibility was confirmed
by the patch test performed under dermatological control, evidencing the “non-irritating” potential
of the developed cosmetic formulation.

Keywords: cosmetic ingredients; anti-ageing eye serum; safety assessment; skin compatibility;
alternative methods; in silico evaluation

1. Introduction

The continuous evolution of the cosmetics industry, together with the development
and improvement of the legislation designed to protect the consumer, has contributed to the
increasing credibility of cosmetology and cosmetics. Whereas in the past cosmetic products
were recommended and mainly used for beauty or hygienic purposes, nowadays they are
applied for more complex and demanding objectives, such as maintaining an optimum
skin condition, performing a eutrophic function, and finally fulfilling an aesthetic criterion,
while being safe and effective. Three main aspects are considered of major importance
regarding the formulation and development of cosmetic products—quality, safety, and
efficacy [1,2].

According to Regulation (EC) No. 1223/2009 [2], which legally governs cosmetics in
the European Union, it must be assumed that cosmetics are safe for human use, and that an
assessment of this safety was performed, this assumption being an essential characteristic
of the Cosmetics Regulation. Based on this regulation, the consumers are protected against
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Toxics 2024, 12, 451

a potential risk (Article 3 regarding safety), by establishing specific rules for the safety as-
sessment of cosmetics (Article 10 referring to safety assessment, to ensure compliance with
Article 3) [2,3]. An essential legal requirement is to ensure that the cosmetic formulation
has been assessed according to a safety report (Cosmetic Product Safety Report (CPSR),
part B) [2].

However, cosmetic formulations contain a mixture of different ingredients with vari-
ous properties, like emollients, preservatives, humectants, surfactants, fragrances, colorants,
and sometimes vegetal extracts [4,5]. Accordingly, even in cosmetics are generally safe for
consumers, some allergic effects can be reported [5].

The cosmetics industry is highly motivated to apply non-animal approaches, also
known as new approach methodologies (NAMs) or next-generation risk assessment
(NGRA), including in vitro, in chemico, and in silico evaluations. These refer to toxicologi-
cal endpoints and can be applied according to the Cosmetics Regulation No. 1223/2009,
which prohibits animal testing, as well marketing of cosmetic ingredients and finished
products [6,7].

NAMs used in the safety evaluation of cosmetic raw materials are nowadays at differ-
ent stages of implementation, with some already in routine use, while others need more
evidence to support their application (Figure 1) [8]. In silico data are useful in regulatory
risk assessment when used as supporting evidence in an overall safety evaluation of cos-
metic formulations. Figure 1 presents different NAMs, emphasizing in silico methods and
clinical evaluation, considered for the safety assessment of a newly developed formulation,
as described in this study.
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Figure 1. Status of new approach methodologies (NAMs) for the risk assessment of cosmetic in-
gredients (in silico tools and clinical studies are evidenced as these methods were considered for a
comprehensive safety assessment of a novel cosmetic formulation).

Even if NAMs are currently widely used for the risk assessment of cosmetic ingredients
and formulations, there is still a high demand for a combined risk evaluation methodology,
as alternative tests are not always fully applicable for multicomponent ingredients and
cosmetic formulations, this representing a main disadvantage compared, e.g., to in vivo
evaluation [9].

The first objective of the present study was the formulation of an anti-ageing eye
serum, specially designed for the periorbital skin area, which incorporates innovative
active ingredients such as low-molecular-weight (LMW) HA, claiming an anti-ageing
effect, and medium-molecular-weight (MMW) HA, possessing regenerating properties,
together with an anti-ageing botanical complex based on horse chestnut flowers. Quality
control of the formulation, evaluating the physicochemical characteristics and microbiology,
and including a challenge (preservative efficacy evaluation), was performed in this study.
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Another objective of this study was to carry out an in silico safety assessment, in order
to predict the hazards and to evaluate the safety, by characterizing individual cosmetic
ingredients of the developed cosmetic formulation. Finally, we sought to confirm the skin
compatibility and tolerance through an in vivo assessment.

2. Materials and Methods
2.1. Selection and Safety-Level Data of Ingredients incorporated into the Cosmetic Formulation

A classification of the raw materials was performed, in order to select the ingredients
for the cosmetic formulation (anti-ageing eye serum). Based on material safety data sheets
(MSDSs), the following ingredients according to their INCI (International Nomenclature
of Cosmetic Ingredients) and commercial denomination were selected for the present
formulation:

(i) Butylene glycol cocoate (Cocoate BG, Gattefosse, France) is a multifunctional cosmetic
ingredient, which functions as an emollient and solubilizer. It also provides excellent
skin compatibility and possesses excellent sensorial properties [10].

(ii) Glycerin (Elton Corporation S.A., Ilfov, Romania) is a safe ingredient, widely used
in cosmetics, possessing various functions like serving as a skin conditioning agent,
humectant, skin protectant, hair conditioning agent, viscosity-decreasing agent, fra-
grance ingredient, and denaturant [11,12]. Also, glycerin was demonstrated to have
optimal skin tolerability even on atopic dry skin [13].

(iii) As broad-spectrum cosmetic preservatives against bacteria, yeasts, and molds, phe-
noxyethanol (and) ethylhexylglycerin (Euxyl PE 9010, Schülke&Mayr GmbH, Norder-
stedt, Germany) were selected [14].

(iv) Low-molecular-weight HA (LMW-HA) (20–50 kDa) (PrimalHyal 50, Givaudan, France)
improves skin biomechanical properties, like skin roughness and firmness [15,16],
while medium-molecular-weight HA (MMW-HA) (100–300 kDa) (PrimalHyal 300,
Givaudan, France) has the capacity to reinforce the skin’s natural defense, along
with possessing a regenerating effect [16,17]. Depending on its molecular weight,
hyaluronic acid (HA) has different effects in skin care formulations, and in association
with other active ingredients, supplementary benefits can be claimed [16].

(v) Fructose (and) glycerin (and) water (and) Aesculus hippocastanum (Horse chestnut)
extract (Gatuline Link n Lift, Gattefosse, France) is a natural complex based on flowers
of Aesculus hippocastanum (horse chestnut), with anti-ageing effects, improving skin
texture and especially reducing crow’s feet and under-eye wrinkles (length, surface,
and volume) [18–20].

Available information on the safe use level and ingredient concentration was retrieved
from the Cosmetic Ingredient Database (CosIng) [21] and Cosmetic Ingredient Review
(CIR) [22], independent entities responsible for the safety evaluation of individual cosmetic
ingredients [23]. Also, COSMILE Europe, a cosmetic ingredient database launched in
February 2023 by Cosmetics Europe, was considered in order to find available information
on the cosmetic ingredients’ properties, functions, whether they are of synthetic or natural
origin, and in which types of formulation they are appropriate [24]. Table 1 presents the
general information and safety-level data of cosmetic raw materials in the formulated eye
serum according to the CosIng, CIR, and COSMILE databases.
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2.2. Development and Manufacturing Procedure of the Anti-Ageing Eye Serum

Phase A: Butylene glycol cocoate was heated at 75–80 ◦C.
Phase B: The aqueous phase, which incorporates ultrapure water (PURELAB® Option

Q7 (Type I), ELGA LabWater, High Wycombe, UK), glycerin, and the preservative, was
heated to 75 ◦C. Homogenization was performed to completely disperse the components
of the aqueous phase.

Phase A was added to Phase B under continuous stirring, using a T 50 digital ULTRA-
TURRAX equipped with a dispersing element S 50 N-G 45 G (IKA, Staufen, Germany)
(1600 rpm for 15 min).

Phase C: The active complex fructose, glycerin, water, Aesculus hippocastanum (horse
chestnut) extract, together with LMW and HMW hydrolyzed HA (previously dissolved in
10 mL of water for complete dissolution), were added under constant stirring (600 rpm
for 5 min) to the emulsion obtained from phases A and B, previously completely cooled
to 40 ◦C.

2.3. Quality Control of the Anti-Ageing Eye Serum

Complying with the requirements of Regulation 1223/2009, various evaluations were
conducted for the developed formulation: (a) stability evaluation; (b) physicochemical
control: organoleptic testing (appearance, color, odor), pH, density and viscosity evaluation;
(c) microbiological control and preservative efficacy test (challenge test) [33–39].

2.3.1. Stability of the Cosmetic Formulation

For accelerated stability testing, the formulation was alternatively stored for 30 days at
4 ◦C (16 h) (LKUv 1610 MediLine, Liebherr, Germany), 20 ◦C (8 h), and 40 ◦C (16 h) (natural
convection drying oven SLN-32 (STD), Pol-Eko, Wodzisław Śląski, Poland) [33,36,37].

2.3.2. Physicochemical Testing of the Developed Formulation

Another criterion for the quality evaluation was the physicochemical control. Thus,
organoleptic testing (appearance, color, odor) (ISO 6658:2005 p. 5.4.2 [40]) was carried out
and the pH (PB-234 ed. I of 03.10.2013r.), density (20 ◦C) (PB-155 ed. I of 2 May 2012), and
viscosity (Brookfield DV-III Ultra, spindle Sc4-18/RPM: 250 (o/min/shear rate 330 (1/s))
were determined.

2.3.3. Microbiological Quality and Challenge Testing of the Cosmetic Formulation

The microbiological control of the formulation was performed applying standard
methods: enumeration and detection of aerobic mesophilic bacteria [41], yeast and mold
counts [42], and Staphylococcus aureus [43], Candida albicans [44], Escherichia coli [45], and
Pseudomonas aeruginosa [46] detection.

The efficacy of the preservation system, respectively, phenoxyethanol and ethylhexyl-
glycerin incorporated in the developed formulation, was also evaluated according to the
international cosmetics challenge test standard (PN EN ISO 11930:2012 [47]) [33].

2.4. Safety Assessment of the Anti-Ageing Eye Serum
2.4.1. In Silico Approaches for Safety Evaluation of Cosmetic Ingredients and Risk
Assessment of the Developed Anti-Ageing Serum

For this purpose, we used a special software, a system dedicated to the specific field
of cosmetics, SpheraCosmolife (SpheraCosmolife v. 0.24), which is a module of LIFE
VERMEER delivered by Kode Chemoinformatics together with the Istituto di Ricerche
Farmacologiche Mario Negri IRCCS, Milan, Italy [48]. The software, applicable for inte-
grated hazard and exposure assessment of cosmetic ingredients and formulations as part
of risk evaluation, was implemented for the in silico assessment of the novel developed
anti-ageing serum.

The evaluation process is defined within the Scientific Committee on Consumer Safety
(SCCS) Notes of Guidance (NoG) for the testing of cosmetic ingredients and their safety
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evaluation [49]. The margin of safety (MoS), considering the systemic exposure dose,
including several models for exposure and risk prediction, and also the threshold of
toxicological concern (TTC), are determined with the aid of this software. For a substance
to be considered safe, the MoS must be higher than 100, as specified in the SCCS NoG and
initially proposed by the World Health Organization (WHO), when defining an interspecies
and intraspecies factor each of 10. The software also indicates other toxicological features
(e.g., mutagenicity and skin sensitization), to assure an overall assessment of the potential
risk of the incorporated cosmetic ingredients [50].

2.4.2. Clinical Safety Evaluation of the Developed Cosmetic Formulation—Dermatological
Semi-Open Test

The present study aimed to evaluate the sensitizing/irritant potential and the skin
tolerance. After the application of the formulation, under a patch test, the probability
of erythema or skin edema appearance was evaluated. This study included 25 healthy
Caucasian people, with phototype I-IV according to the Fitzpatrick scale. Subjects with a
known history of a dermatological, medical, and/or physical condition that could influence
the outcome of this study were not included. Subjects’ skin conditions were considered
as general inclusion criteria in this study (skin without irritations and changes requiring
pharmacological treatment, subjects using any treatment on the test site, having any active
skin disease that could interfere with the purpose of this study). None of the subjects
reported previous hypersensitivity or adverse reactions to the individual ingredients of the
cosmetic formulation.

The patch (12 mm diameter Finn Chamber, SmartPractice, Phoenix, AZ, USA) was
applied (for 48 h) on the arm or interscapular area. A “blank” control sample and a control
sample with water were used to avoid inaccurate interpretations related to skin irritations.
The skin reaction was examined by a dermatologist 30 min after patch removal. Other
evaluations were performed 72 h and 96 h after application.

For clinical safety evaluation, evaluation parameters of skin reactions were assessed by
(I) clinical erythema assessment on a six-point severity scale (0 = no erythema; 0.5 = light
erythema; 1 = erythema and/or papules; 2 = erythema and/or papules and/or vesicles;
3 = erythema and/or papules and/or vesicles and/or blisters; 4 = erythema, bullous
and/or ulcerative reaction and/or papules and/or vesicles and/or blisters), and by (II)
clinical edema assessment based on a five-point severity scale (0 = no edema; 1 = very
light edema, hardly visible; 2 = light edema; 3 = moderate edema; and 4 = strong edema
(extended swelling even beyond the application area)) at all evaluation time points.

The results are expressed based on the average irritation index (Xav). The formulation
could be considered “not-irritating”, “slightly irritating”, “moderately irritating”, or “highly
irritating” [33,51,52].

An informed consent form (ICF), including information about the purpose of this
study, methodology, and possible side effects was filled in by the volunteer subjects. This
study was conducted by an external laboratory (J.S. Hamilton Poland Sp. z o.o., Gdynia,
Poland) in accordance with the recommendations of the Cosmetics Regulation and current
guidelines [48–50].

3. Results
3.1. Anti-Ageing Eye Serum Formulation

MSDSs of cosmetic ingredient categories incorporated in the formulation were ac-
cessed for their INCI denomination, physicochemical characteristics, toxicological evalu-
ation, compatibility with other cosmetic ingredients, and concentration level in cosmetic
formulations. Available safe-level information for ingredients and safety information con-
sidering use restriction according to the current legal framework were obtained from the
CosIng, CIR, and COSMILE databases. Considering all this information, a selection of
cosmetic ingredients was performed. Table 2 presents the developed anti-ageing eye serum
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considering the commercial and INCI denomination of the ingredients, their function in
the cosmetic formulation, the supplier, and the concentration limit.

Table 2. The anti-ageing eye serum formulation.

Commercial Name INCI Function Supplier INCI-KEY * (%)

Aqua Water Solvent A

Cocoate BG Butylene Glycol Cocoate Emollient/solubilizer Gattefossé E

Glycerol Glycerin Denaturant/humectant/
solvent ELTON E

Euxyl PE 9010 Phenoxyethanol and
Ethylhexylglycerin Preservative Schülke & Mayr GmbH F

PrimalHyal™ 50 Hydrolyzed Hyaluronic Acid
Antistatic/humectant/

skin conditioning
/moisturizing

Givaudan Active
Beauty F

PrimalHyal™ 300 Hydrolyzed Hyaluronic Acid
Antistatic/humectant/

skin condition-
ing/moisturizing

Givaudan Active
Beauty F

Gatuline
Link n Lift

Fructose (and) Glycerin (and)
Water (and) Aesculus
hippocastanum (Horse

chestnut) Extract

Active ingredient/
anti-ageing Gattefossé E

* INCI Key A > 50%; 1% < E ≤ 5%; 0.1% < F < 1%.

3.2. Quality Control of the Anti-Ageing Eye Serum—Physicochemical Characterization and
Microbiological Evaluation

Considering the quality characteristics, several evaluations were conducted, in order
to demonstrate the physicochemical and pharmacotechnical properties of the developed
anti-ageing eye serum. The results demonstrated the stability of the developed formulation
under the performed study and conditions, and they showed that it possesses adequate
physicochemical properties. Table 3 presents the results of the physicochemical tests of the
anti-ageing eye serum, initially and after 30 days, while the formulation was maintained
alternatively at different temperatures (4, 20, and 40 ◦C).

Table 3. Anti-ageing eye serum physicochemical properties.

Parameter Unit
Results

Initial After 30 Days

Viscosity at 20 ◦C
(Brookfield DV-III Ultra) mPa·s 6.43 ± 0.07 7.47 ± 0.08

Density at 20 ◦C
(PB-155 ed. I of 02.05.2012) g/cm3 1.016 ± 0.003 1.015 ± 0.003

Organoleptic testing
(ISO 6658:2005 p. 5.4.2)

Appearance W/O mixture * Liquid **
Color Beige Light yellow

Odor Specific of cosmetic
ingredients

Characteristic of
ingredients

Consistency Liquid Liquid
pH

(PB-234 ed. I of 03.10.2013r.) 5.5 ± 0.2 5.6 ± 0.2

* W/O—water in oil; **—without mechanical impurities.

The microbiological quality of the eye serum was confirmed, and the determinations
are presented in Table 4. Also, the challenge test performed evidenced the effectiveness of
the antimicrobial protection of the developed cosmetic formulation (Figure 2).
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Table 4. Microbiological evaluation of the developed anti-ageing serum.

Parameter Standard Result
(CFU/g)

Admissibility
Limit

(CFU/g)
Concordance

Enumeration and
detection of aerobic
mesophilic bacteria

ISO 21149:2017 [41] <10 <100
√

Yeast and mold count ISO 16212:2017 [42] <10 <10
√

Staphylococcus
aureus detection ISO 22718:2016 [43] - -

√

Candida albicans
detection ISO 18416:2016 [44] - -

√

Escherichia coli
detection ISO 21150:2016 [45] - -

√

Pseudomonas
aeruginosa detection ISO 22717:2016 [46] - -

√

“-”—absent; CFU—colony-forming units.
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Figure 2. Anti-ageing serum challenge test results. D7—after 7 days; D14—after 14 days; D28—after
28 days. −−− antimicrobial protection,−−− standard minimum effectiveness.

3.3. Safety Assessment of the Developed Anti-Ageing Eye Serum
3.3.1. In Silico Assessment for the Safety Evaluation of Cosmetic Ingredients and Risk
Assessment of the Formulation

The SpheraCosmolife software provided a summary table (Table 5) of the results for
the ingredients incorporated in the eye serum. The results depend on the product type and
on the presumed concentrations of the ingredients. The software shows ingredients present
in any of the Annexes of the Cosmetics Regulation. Also, it presents the mutagenicity
(Ames test), skin sensitization, the dermal absorption according to the Kroes approach, the
MoS, and the TTC.
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For instance, in the developed cosmetic formulation, phenoxyethanol is the only re-
stricted ingredient listed in Annex V of the Cosmetic Regulation (the maximum admissible
concentration is 1%). A lower concentration than 1% (in our case 0.9%) must be introduced
in the software and used, so that the formulation is safe and complies with the legisla-
tion. Moreover, in the “details” section regarding the provided regulatory aspects, the
software checked if the ingredient is classified according to the Classification, Labelling
and Packaging (CLP) regulation (EC N◦1272/2008) (Figure 3).
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Figure 3. Regulatory information provided by the SpheraCosmolife software for phenoxyethanol
(*—Phenoxyethanol could cause serious eye irritation, considering the hazard statement according to
ECHA).

The safety of phenoxyethanol, which was considered as a preservative complex to-
gether with ethylhexylglycerin in the developed formulation, was also supported by the
MoS value calculated by the applied software, which in this case was much higher than 100
(MoS = 460.28), meaning it can be concluded that phenoxyethanol is safe at the proposed
concentration.

The SpheraCosmolife software provided valuable data for mutagenicity and skin
sensitization hazard identification and characterization, especially for hydrolyzed HA
(LMW- and MMW-HA) at a concentration of 0.7% in a cosmetic formulation specifically
recommended for the periorbital area. The software reported values for HA regarding
mutagenicity (Ames integrated model) and skin sensitization (Caesar, DT model, and
integrated model). Figure 4 presents information on the hazard assessment for the above-
mentioned example. The provided values are highlighted with green or light green when
they predict the ingredient as safe, while the other values are marked with pale red and
predict a low reliability for skin sensitization.
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3.3.2. Anti-Ageing Serum Skin Tolerance—Dermatological Semi-Open Test

A very good skin tolerance was demonstrated for the developed cosmetic formulation.
According to the patch test performed under dermatological control, none of the subjects
included in this study reported any allergic reactions and/or irritation at T1 (48 h after
product application) or at T2 (72 h after product application). Considering nonpositive skin
reactions of the subjects at T1/T2, no further evaluation was performed at T3 (96 h after
application). The sum of negative reactions (erythema and edema) represents the average
irritation index (Xav), calculated as the average of readings obtained on the subject panel
(n = 25). The irritant potential of the tested formulation according to Xav was evaluated
considering a four-scale classification (Xav < 0.50—“not irritating”, 0.50 ≤ Xav < 2.00—
“slightly irritating”, 2.00 ≤ Xav < 5.00—“moderately irritating”, and 5.00 ≤ Xav—“highly
irritating”). Based on this evaluation, it can be concluded that the developed anti-ageing
serum meets the requirements of the skin compatibility test and can be described as “not
irritating” (Xav < 0.50) (Table 6).

Table 6. Skin responses of the 25 subjects included in the semi-open test for the assessment of the
irritating and sensitizing effects of the developed anti-ageing eye serum, expressed as the average
irritation index (Xav).

T1
(48 h after

Application)

T2
(72 h after

Application)

T3
(96 h after

Application)

Erythema 0 0 Examination ignored

Edema 0 0 Examination ignored

Xav 0 0
0 values in columns T1 and T2 refer to the sum of negative reactions (n = 25). Xav—represents the average irritation
index (sum of negative reactions (erythema and edema)).

4. Discussion

The purpose of the Cosmetic Regulation is to protect consumers from potential health
hazards and help them make informed decisions when purchasing cosmetic products.
According to the present regulation, three main aspects are essential regarding a cosmetic
formulation: quality, safety, and efficacy [2,3,38].

Hyaluronic acid represents a popular active ingredient, which is used in skin care
products due to its topical benefits recognized as moisturizing, regenerating, or anti-ageing,
depending on the molecular weight. Used in combination with other active ingredients,
HA or HA derivates incorporated into cosmetic formulations can claim supplementary
effects [16]. In the developed formulation presented in this study, LMW-HA and MMW-HA,
together with a botanical active complex, were incorporated to sustain the claimed effect of
the eye serum. LMW-HA stimulates tight junction protein synthesis, increasing moisturiza-
tion, and sustains collagen type I synthesis, providing skin firmness. MMW-HA increases
fibroblasts and keratinocytes’ proliferation, sustaining the skin cellular regeneration pro-
cess [15,17,53]. The extract based on Aesculus hippocastanum rich in flavonoids provides
periorbital-wrinkle-reducing properties, claiming an anti-ageing effect by sustaining the
dermo-epidermal junction integrity, increasing the synthesis of type IV and VII collagen,
and holding a smoothing capacity [18,20,54].

Significant data about the ingredients’ safety levels and concentration limits were first
accessed through the CosIng, CIR, and COSMILE databases, according to the selection
and incorporation of cosmetic ingredients in the developed eye serum, as described in
this study.

The quality of a cosmetic preparation is related to the provision of specifications
with the expected compliance, such as aspect, color and odor, physicochemical properties,
stability, control of contaminants (for, e.g., pathogenic micro-organisms), etc. [55].
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In the study performed, a stability test was conducted by exposing samples of the de-
veloped cosmetic formulation under accelerated temperature conditions, followed by evalu-
ations of various parameters to observe any physical, chemical, or microbiological changes.

Also, interactions between the cosmetic formulation and the primary packaging should
be considered for a complete safety assessment and according to current legislation [38,55].

Safety can be considered the provision of safe products for the general population
under normal use conditions, which can be based on three main aspects, namely, ingredient
safety, finished product safety, and cosmetovigilance (post-/in-market safety) [3].

The assurance of the safety of a formulation starts from the safe use of ingredients
and can comprise two major points: (I) a risk-based assessment of the ingredients, and
(II) compliance of the cosmetic product formulation with specific ingredient restrictions
according to the current legislative framework [23].

In the European Union, the safety of a cosmetic formulation depends on the safety
of the ingredients [56]. Each ingredient incorporated into the cosmetic formulation must
prove a toxicological profile [39] broadly described in the MSDS. Generally, the SCCS cos-
metic product safety evaluation relies on the principles and practices of the risk assessment
process commonly applicable to individual cosmetic ingredients. This risk evaluation proce-
dure is subdivided into four parts: (i) hazard identification, (ii) dose–response assessment,
(iii) exposure assessment, and (iv) risk characterization [57,58].

The systemic effects of each ingredient, when evaluating all significant routes of ab-
sorption (dermal, oral, or inhalation) and the calculated MoS according to the No Observed
Adverse Effect Level (NOAEL), must be considered for the safety profile of a cosmetic
ingredient [39]. The SpheraCosmolife software provided data considering the exposure
to the individual ingredients, which depended on the inputs in the system, that is, the
formulation type and ingredient concentrations. The exposure was calculated for diverse
scenarios (based on the parameters defined by the SCCS NoG): (i) absorption of 100%
(oral or inhalation), (ii) absorption of 50% (a default value for dermal exposure), or (iii)
the more realistic case for dermal absorption based on skin permeation models (the soft-
ware provides the output of two models for skin permeation, choosing the worst scenario,
considering the most conservative of those two values). With the aid of the software, we
reported values (experimental or predicted) related to mutagenicity and skin sensitization,
and the calculated MoS and the TTC were obtained, assessing the risk associated with the
formulation’s ingredients and demonstrating their safe use in the developed anti-ageing
eye serum.

A special case of a restricted cosmetic ingredient in the developed formulation that
should be taken into consideration is phenoxyethanol, a widely used preservative up to 1%
in leave-on and rinse-off cosmetics. It presents high skin penetration, with an existing SCCS
opinion confirming the safe use of this substance [27]. However, phenoxyethanol is men-
tioned in Annex V of the Cosmetics Regulation. Phenoxyethanol is not classified as a skin
sensitizer by the European Chemicals Agency, although it showed rare sensitizer proper-
ties [59]. When used as a preservative complex with ethylhexylglycerin, phenoxyethanol at
a final concentration of 0.9% was demonstrated to be safe according to its toxicity estimation
in the developed formulation and in compliance with the legislation.

Skin sensitization, particularly followed by the development of allergic contact der-
matitis, is probably the most important adverse reaction to cosmetic ingredients and/or
products, considering their dermal route [60,61]. A substantial demand for risk assessment
of cosmetic ingredients is to demonstrate that human exposure does not cause skin sensiti-
zation [60,62]. Evaluation of skin sensitization was previously performed based on a guinea
pig assay (Magnusson and Kligman, Buehler), which was afterwords replaced by a more
accurate method, namely the mouse local lymph node assay (LLNA). Nowadays, NAMs
are widely applied for the risk evaluation of skin sensitizers [7,60]. In this sense, a very
interesting research study was performed and presented by Kalicinska et al., describing
an in silico model for the prediction of the sensitizing potential of cosmetic ingredients,
especially haptens [63]. According to the values provided by the SpheraCosmolife software,
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considering the product type and the concentrations used of LMW- and MMW-HA, low
skin sensitization was evidenced.

Finished product safety evaluations ensure that the product is safe, based on the safety
profiles of the ingredients, as well as considering the product type and its normal conditions
of use and exposure, complemented by a confirmatory safety assessment of the cosmetic
formulation. The image in Figure 5 provides an overview of all aspects of the safety as-
sessment for the developed formulation denominated an anti-ageing eye serum, including
the special criteria of “ingredients’ safety” and “compatibility of the finished product”,
including the “experience from the market” (market surveillance, cosmetovigilance), which
should be considered according to the legal framework.
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The above-described safety details provide useful information supporting the formu-
lation’s consumer safety. The results of the screening evaluation methodology applied for
the assessment of the novel cosmetic formulation confirmed the safety of the individual
ingredients and the formulation and the skin compatibility.

Further in vivo efficacy assessment, for, e.g., skin microrelief evaluation and/or perior-
bital wrinkles’ length and depth reduction, confirmed the cosmetic claim of the anti-ageing
formulation, completing our comprehensive characterization and evaluation according to
the current legal framework.

5. Conclusions

The safety of cosmetic formulations represents an essential and mandatory legislative
requirement and also a major industry priority. Cosmetic safety evaluation, implying
testing of the ingredients and continuous improvement of the assessment capabilities, is a
constant focus of innovation and research activities. The databases that we used review
relevant data regarding the safety profiles of the cosmetic ingredients selected for the newly
developed anti-ageing eye serum, and it can be stated that they are safe in their current
usage. Compliance with the microbiological specifications was confirmed and we found
that the physicochemical characteristics were adequate for the developed formulation. With
the aid of the SpheraCosmolife software, risk characterization of the cosmetic raw materials
used in the developed anti-ageing serum was performed, according to the process defined

130



Toxics 2024, 12, 451

within the SCCS NoG. The MoS and TTC were calculated, together with the evaluation of
other toxicological properties (mutagenicity and skin sensitization), confirming the safety
of the cosmetic ingredients used. Phenoxyethanol, incorporated as a preservative in the
developed cosmetic formulation, is the only restricted ingredient, listed in Annex V of
the Cosmetic Regulation, but when used at a correct concentration level below 1%, it is
confirmed to be safe. The SpheraCosmolife software provided valuable data regarding skin
sensitization, especially for hydrolyzed HA, which in the proposed concentration of 0.7%
and incorporated in a cosmetic product formulated for the periorbital area, showed low
sensitizing properties. In vivo evaluation proved the skin compatibility through a lack of a
sensitizing/irritant effect under a patch test for the developed cosmetic formulation.

Based on the complexity of these data, a screening safety evaluation method was
performed by identifying individual ingredients, together with skin compatibility confir-
mation through in vivo evaluation. A combined risk assessment approach is still needed,
considering that alternative testing methods are not always fully appropriate for multicom-
ponent ingredients/formulations, with this representing the main disadvantage compared
to in vivo evaluation.
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Abstract: Biologics, including monoclonal antibodies (mAb), have proved to be effective and success-
ful therapeutic agents, particularly in the treatment of cancer and immune-inflammatory conditions,
as well as allergies and infections. However, their use carries an inherent risk of an immune-mediated
adverse drug reaction. In this study, we describe the use of a novel pre-clinical human in vitro skin
explant test for predicting skin sensitization and adverse immune reactions. The skin explant test was
used to investigate the effects of therapeutic antibodies, which are known to cause a limited reaction
in a small number of patients or more severe reactions. Material and Methods: Immune responses
were determined by T cell proliferation and multiplex cytokine analysis, as well as histopathological
analysis of skin damage (grades I–IV in increasing severity), predicting a negative (grade I) or positive
(grade ≥ II) response for an adverse skin sensitization effect. Results: T cell proliferation responses
were significantly increased in the positive group (p < 0.004). Multiplex cytokine analysis showed
significantly increased levels of IFNγ, TNFα, IL-10, IL-12, IL-13, IL-1β, and IL-4 in the positive
response group compared with the negative response group (p < 0.0001, p < 0.0001, p < 0.002, p < 0.01,
p < 0.04, p < 0.006, and p < 0.004, respectively). Conclusions: Overall, the skin explant test correctly
predicted the clinical outcome of 13 out of 16 therapeutic monoclonal antibodies with a correlation
coefficient of 0.770 (p = 0.0001). This assay therefore provides a valuable pre-clinical test for predicting
adverse immune reactions, including T cell proliferation and cytokine release, both associated with
skin sensitization to monoclonal antibodies.

Keywords: skin explant; adverse event; T cell proliferation; monoclonal antibodies; cytokine release

1. Introduction

Biologics, including monoclonal antibodies (mAbs), are widely used as therapeutic
agents for the treatment of disease. The development of therapeutic antibodies has ad-
vanced over the last few decades. The transition from mouse monoclonal antibodies [1] to
humanized forms [2,3] has resulted in reduced immunotoxicity and improved safety and
efficacy. However, a low number of adverse events still occur, halting clinical trials, despite
the improvement in the use of humanized monoclonal antibodies. Common adverse events
include, but are not limited to, skin sensitization, infusion reactions, anaphylaxis, rash,
anti-drug antibody (ADA) development, and cytokine release syndrome, as well as other
complications [4].

Hypersensitivity involves cytokine release and symptoms, which can range from skin
sensitization and rashes to anaphylaxis and organ failure and are classified from type I
to IV [5]. Type I immediate adverse response is associated with IgE antibody release and
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anaphylaxis [6]. A type II response is an antibody-dependent cytotoxic response [7], and a
type IV response is a delayed T cell-mediated hypersensitivity response [8]. Marketed mon-
oclonal antibody therapeutics have been associated with hypersensitivity reactions [9,10]
involving elevated levels of circulating cytokines (Cytokine Release Syndrome (CRS)) and
subsequent serious adverse reactions, including anaphylaxis [11].

Current practices for preclinical safety evaluation of mAbs or biopharmaceuticals
involve the use of in vivo animal studies, followed by standard in vitro toxicity studies [12].
The main aim of these pre-clinical studies is to determine the immunotoxic properties of
mAbs and determine a safe first-in-human dose to conduct Phase I clinical trials. However,
the success of the use of these methods is limited to the selection of relevant animal species
and the correct interpretation of animal study data for humans [13,14]. However, this
approach can lead to misleading data, as in the case of TeGenero in 2006 [15]. In this
trial, cynomolgus and rhesus monkeys were chosen to perform preclinical in vivo studies
because of the similarity in their CD28 receptor to the human CD28 receptor and their
binding affinity to the TGN1412 antibody [16]. A repeat dose study was performed, and no
adverse reactions or toxicity were observed. The immunotoxicity of the TGN1412 antibody,
however, did not become apparent until administration to Phase I volunteers, resulting
in severe cytokine release syndrome (CRS) and organ failure. There is a pressing need to
develop preclinical human in vitro tests that can predict the immunotoxic properties of
biologics. To this end, we have developed a novel human in vitro skin explant test to predict
cytokine-associated adverse responses, skin sensitization, or immunotoxic properties of
biologics as a first-in-man test. The test has been used to predict adverse immune reactions
to sensitizers and non-sensitizers [17] as well as hypersensitivity responses to low molecular
weight (LMW) drugs [18]. In the current study, the skin explant test was further modified
for the safety assessment of biologics. The test mimics the in vivo immunological response
upon exposure to a mAb, with the elicitation of an immune response in the form of
histopathological skin damage (skin sensitization reactions). The predictive endpoint of
the test is based on the observed histopathological tissue damage, which is scored (grades
I–IV) in order of increasing severity of damage in the skin [19]. Furthermore, the grading of
damage in the skin allows for the determination of dose response. This novel endpoint has
not been previously described for any tests predicting cytokine-associated adverse events
or direct skin sensitization.

In this study, we investigated the effects of 16 known therapeutic mAbs, each with the
potential to stimulate a different arm of the immune system (Fab or Fc).

2. Materials and Methods
2.1. Healthy Volunteers

This study involved the use of blood (60 mL) and skin biopsies (two 4 mm punch
biopsies) taken from 10 healthy volunteers with informed consent at a dermatology clinic
by a National Health Service research nurse who also conducted a questionnaire to ensure
the volunteers had no underlying condition and were fit and healthy. Each set of blood
and skin biopsies was used to test each mAb. This research was approved by the Local
Research Ethics Committee (LREC).

2.2. Antibodies

Sixteen test antibodies were provided by the National Institute of Biological Standards
and Control (NIBSC). Antibodies were selected based on the known ability of the antibody,
as defined by the box warnings, to give rise to responses ranging from extreme to weak in
the form of a subcutaneous rash or a systemic response causing organ toxicity (Table 1).
These included 11 antibodies of the IgG1 subclass: campath-1H (alemtuzumab), mabthera
(rituximab), remicade (infliximab), remsima (infliximab), inflectra (infliximab), embrel
(etanercept), humira (adalimumab), simulect (basliximab), erbitux (cetuximab), arzerra
(ofatumumab), simponi (golimumab), 2 antibodies of the IgG2 subclass orthoclon-OKT3
(muromonab) and vectibix (panitumumab), and 2 antibodies of the IgG4 subclass: tysabri
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(natalizumab) and a TGN1412 homolog. Finally, the biological PEGylated fragment of the
monoclonal antibody cimzia (certolizumab) was also tested. All antibodies were tested at
1 µg/mL. This dose was recommended by colleagues at the NIBSC and was also shown to
be within the optimal range in assays for assessment of monoclonal antibodies as published
by Stebbings et al. [20], but it was also the minimum dose in pilot studies that produced
negative skin explant grades (Grades 0–I) with the weak positive control antibody tysabri
and positive grades II–III with the positive antibody OKT3. Human isotype controls were
used in all assays; this included IgG1 (A50183H, AMS Biotechnology, Abingdon, UK)
for 11 biologics, IgG2 (HCA193, Bio-Rad, formerly AbD Serotec, Hercules, CA, USA) for
panitumumab and muromonab, and finally, IgG4 (A01241H, AMS Biotechnology) for
natalizumab and TGN1412.

2.3. Skin Explant Test

The skin explant tests were performed on a minimum of 10 healthy volunteers. Whole
blood (60 mL) was used to isolate peripheral blood mononuclear cells (PBMCs) using the
Lymphoprep™ (Gibco, Grand Island, NY, USA) method and density gradient centrifuga-
tion. Five ml of whole blood was used to collect serum, which was heat inactivated (56 ◦C
for 30 min) prior to use. Two 4 mm skin biopsies were collected in X-Vivo-10 medium
(Lonza, Basel, Switzerland) and were cut into 12 equal sections prior to use. The antibody
of interest was co-cultured at 1 µg/mL concentration with or without PBMCs (1 × 106)
and autologous skin sections in RPMI 1640 (Gibco, London, UK) containing 100 IU/mL
penicillin, 100 µg/mL streptomycin (Gibco UK), and 2 mM L-glutamine (Gibco UK) sup-
plemented with 20% heat-inactivated autologous serum for 3 days. Routinely, all PBMC
showed greater than 95% viability with the addition of PBMC to the assay. Background
control skin was cultured with medium alone [21]. To determine non-specific binding, the
antibody isotype was used as a negative control to assess background histopathological
damage. Following the 3-day incubation, supernatants were collected for cytokine analysis,
and the skin was paraffin embedded, sectioned, and stained with hematoxylin and eosin.
Skin explants were examined blindly by two independent observers for histopathological
damage. Using the Lerner histological grading system [19], the damage observed was
assigned a grade (I–IV) relative to the severity of the damage observed (Figure 1). The grad-
ing system was as previously described [21] and as follows: a grade I response is considered
a negative reaction with normal skin pathology but may show some mild vacuolization of
cells. Grades II–IV are considered positive reactions. Grade II is like a skin sensitization
rash and shows damage in the form of vacuolization of keratinocytes and dyskeratotic
bodies. Grade III is analogous to blistering and damage at the dermal/epidermal junction
with cleft formation. Grade IV is similar to skin peeling and displays complete separation
of the dermis from the epidermis.
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tensive sub-epidermal damage with separation of the dermis and epidermis. 
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(Gibco UK), and 2 mM L-glutamine (Gibco UK) supplemented with 10% heat-inactivated 
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tory Panel 1 for human IFNγ, TNFα, IL-10, IL-12, IL-13, IL-1β, IL-2, IL-4, and IL-6. 
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Skin explant results were assigned grading scores for histopathological damage, and 

this positive or negative score was then compared with clinical responses and box warn-

ings as reported for each test antibody. The classification of the data was as follows, with 

the clinical comparison given in brackets. An antibody was a strong positive if 71% or 

more of the total tests performed gave a grade ≥II response (frequent > 10%), a positive if 

31–70% of the total tests performed gave a ≥grade II (common 1–10%), and a weak positive 

if 10–30% of the total tests performed gave a ≥grade II (uncommon event 0.1–1%). Pear-

son’s correlation coefficient was used to correlate skin explant grades with clinical out-

come data, i.e., frequent, common, uncommon, or rare clinical events. Additionally, aver-

age grades over 10 donors for each tested compound were calculated. An aggregate score 
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Where relevant, p-values were adjusted for the false discovery rate using a Benja-

mini-Hochberg correction. The adjusted values are indicated on the individual graphs. 

(2) T Cell Proliferation Responses 

Figure 1. Lerner grading scheme for sub-epidermal lesions in the skin explant assay. The Grade II
arrows indicate epidermal skin damage with vascularization and dyskeratosis; the Grade III arrows
show Grade II damage as well as sub-epidermal cleft formation; Grade IV arrows show extensive
sub-epidermal damage with separation of the dermis and epidermis.
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2.4. [3H]-Thymidine T Cell Proliferation Measurement

T cell proliferation responses were measured in the same donors for the skin explant
tests following exposure of PBMC’s to the biologics at 1 µg/mL concentration. T cell
responses were correlated to a negative response (grade I) or a positive response (≥grade II)
in the skin explant tests for each donor (n = 10) and each test antibody. PBMC’s were
incubated with the test antibody isotype or control antibody (1 µg/mL) for 5 days in tripli-
cate in RPMI 1640 (Gibco, UK) containing 100 IU/mL penicillin, 100 µg/mL streptomycin
(Gibco UK), and 2 mM L-glutamine (Gibco UK) supplemented with 10% heat-inactivated
fetal calf serum. Cells were harvested and [3H] Thymidine added for the last 16–18 h.
[3H]-thymidine primary stock was stored at 37 MBq and used at 3.7 MBq (1/10 dilution),
and subsequent uptake was measured using a microbeta-scintillation counter in counts
per minute (cpm). Data were interpreted using Prism GraphPad software (V5, San Diego,
CA, USA).

2.5. Analysis of Cytokine Concentration in Cell Culture Supernatants

Supernatants collected from the skin explant cultures were measured according to
the manufacturer’s instructions by Meso Scale Discovery (MSD) V-PLEX Proinflammatory
Panel 1 for human IFNγ, TNFα, IL-10, IL-12, IL-13, IL-1β, IL-2, IL-4, and IL-6.

2.6. Statistical Analysis

(1) Skin Explant Data

Skin explant results were assigned grading scores for histopathological damage, and
this positive or negative score was then compared with clinical responses and box warnings
as reported for each test antibody. The classification of the data was as follows, with the
clinical comparison given in brackets. An antibody was a strong positive if 71% or more of
the total tests performed gave a grade ≥II response (frequent > 10%), a positive if 31–70%
of the total tests performed gave a ≥grade II (common 1–10%), and a weak positive if
10–30% of the total tests performed gave a ≥grade II (uncommon event 0.1–1%). Pearson’s
correlation coefficient was used to correlate skin explant grades with clinical outcome data,
i.e., frequent, common, uncommon, or rare clinical events. Additionally, average grades
over 10 donors for each tested compound were calculated. An aggregate score was then
derived by multiplying the average grades by the percentage of positive donors. The
classifications and aggregate scores are in-set predictions. The aggregate score was then
compared against the clinical frequency classification above using Pearson’s correlation.

Where relevant, p-values were adjusted for the false discovery rate using a Benjamini-
Hochberg correction. The adjusted values are indicated on the individual graphs.

(2) T Cell Proliferation Responses

T cell proliferation data was obtained by determining the mean cpm from triplicate
culture wells of [3H] thymidine incorporation, converted to a log-fold increase to allow
for equal distribution of data. T cell proliferation stimulation indices were matched to the
graded response observed in the skin explant tests for each donor. Responses were grouped
as negative (grade I) or positive (grade ≥ II). T cell proliferation responses were compared
between the two groups, and statistical analysis was performed with an unpaired t test.

(3) Cytokine Levels in Cell Culture Supernatants

Cytokine levels in cell culture supernatants were measured as concentrations of
pg/mL. Cytokine levels were compared between the two groups, and statistical anal-
ysis was performed with an unpaired t test. A p-value of <0.05 was statistically significant.
Correlation coefficients were determined using Statistical Package for Social Sciences (SPSS)
Statistics 7. Unpaired t-tests were replicated in R (R Studio Build 402), and false discovery
rate correction was applied using the Benjamini-Hochberg method. The q-values did not
significantly modify the t-test p-values.
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3. Results
3.1. Skin Explant Test Demonstrates a Positive Correlation with Clinical Responses in 14/16
Therapeutic Antibodies

Results for each test biologic are summarized in Table 1, and representative images of
the biologics showing positive and negative responses and controls are shown in Figure 2.
The three Infliximab antibodies are represented as one image, as they all showed the same
average grades. Positive reactions presented histopathological damage in the skin consist-
ing of vacuolization of basal cells with some dyskeratotic bodies (grade II) (Figure 2E–I)
or sub-epidermal cleft formation (grade III) (Figure 2K–N). Negative reactions showed a
grade I response in the skin (Figure 2A–D and J). Isotype antibodies or skin cultured in
medium alone were used as negative controls and gave a negative response (grade I) in all
tests (Figure 2O–Q).

13 out of the total 16 tested monoclonal antibodies were correctly categorized by
the skin explant test according to the box warnings and clinically relevant classifications
(frequent, common, uncommon, and rare) observed in clinical trials for immunological
reactivity (Table 1). The skin explant categorization was an in-set prediction.

Biologics that were correctly predicted positive were TGN1412 homolog (9 of 10 tests
showed a grade ≥ II positive response), OKT3 was positive in 9 of 10 initial experiments
and was then subsequently used as a positive control in all tests of the therapeutic an-
tibodies. OKT3 was positive in 29 of 30 tests with a grade >II response. Alemtuzumab
showed a grade ≥ II positive response in 7 of 10 tests. Rituximab, cetuximab, ofatumumab,
and bevacizumab also showed a positive response (5 of 10 tests were positive, respec-
tively), and Simponi (4 of 10 tests showed a ≥grade II). Panitumumab, infliximab, and
certolizumab (3 of 10 tests positive) were also categorized as positive; however, the grading
was generally weaker.

Natalizumab (8 of 10 tests showed a grade I negative response) and etanercept (9 of
10 tests showed a grade I negative response) were categorized as weakly positive.

The three incorrectly categorized compounds were simulect and panitumumab, which
were overclassified, and etanercept, which was under classified, respectively.

A strong Pearson’s correlation coefficient of r = 0.834 and a p value of <0.0001 were
observed between the two comparatives (skin explant and clinical outcome data). Further-
more, the percentage of donors positive for a skin explant test reaction strongly correlated
with the average grade across all 10 donors (r = 0.896).

3.2. T Cell and IGNG Responses Correlated with Responses Induced by Therapeutic Biologics and
Histopathological Damage Observed in Skin Explants

The mean T cell proliferation observed in the positive group was 0.79 ((Log2) ± 1.28
SEM) and in the negative group −4.15 ((Log2) ± 1.23 SEM). A significant increase in T cell
proliferation was observed in the positive response group (p < 0.004) compared with the
negative response group. Results showed a correlation coefficient of 0.61 (p < 0.0001) with
IFNG levels and skin explant grades (Figure 3).

3.3. Cytokines were Increased in Cell Culture Supernatants from Positive Skin Explant Tests

Cytokines, IFNγ, TNFα, IL-10, IL-12, IL-13, IL-1β, IL-6, IL-4, and IL-2 were measured
(Figure 4) in cell culture supernatants collected from skin explant assays. Cytokine levels
were correlated to negative (grade I) or positive (grade ≥ II) responses in the skin explant
tests. Significantly increased levels of IFNγ, TNFα, IL-10, IL-12, IL-13, IL-1β, and IL-4 were
observed in the positive response group compared with the negative response (p < 0.0001,
p < 0.0001, p < 0.002, p < 0.01, p < 0.04, p < 0.006, and p < 0.004, respectively). No differences
were observed in IL-2 and IL-6 levels between the positive and negative groups. In the
later case, this was due to increased IL-6 levels being produced in normal skin cultures in
medium alone (Figure 4).
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Figure 2. Skin explant results gave either a negative response (grade I) or positive response indicated 

by black arrows (grades II–III). (A) Etanercept grade I; (B) Erbitux grade I; (C) Vectibix grade I; (D) Figure 2. Skin explant results gave either a negative response (grade I) or positive response indicated
by black arrows (grades II–III). (A) Etanercept grade I; (B) Erbitux grade I; (C) Vectibix grade I;
(D) Infliximab, all brands, grade I; (E) Simponi grade II; (F) Arzerra grade II; (G) Rituximab grade II;
(H) Basiliximab grade II; (I) Alemtuzumab grade II with vacuolarization and dyskeratosis of the
epidermis; (J) Natalizumab grade I; (K) Cimzia grade II/III; (L) Adalimumab grade III; (M) TGN1412
grade III with separation of the dermis and epidermis; (N) OKT3 grade III; with vaculorization and
dyskeratosis of the epidermis; (O) Media grade I; (P) IgG1 isotype control grade I; (Q) IgG4 isotype
control grade I.
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Figure 3. T cell proliferation responses (left) correlated with responses observed in skin explant tests.
T cell proliferation responses were measured following incubation of PBMCs with test biologics. The
graph shows a comparison of Log2 stimulation indices of T cell proliferation, calculated from the
base line T cell proliferation responses, to responses observed in the skin explant tests. Data show
a significant increase (p < 0.004) in T cell proliferation in the positive (grade >II; square symbols)
skin explant group compared with the negative (grade I; round symbols) skin explant group. IFNγ

responses (right) were measured in cell culture supernatants from the skin explant tests. The graph
shows Log2 IFNγ levels (pg/mL). IFNγ responses showed a significant increase (p < 0.0001) in the
positive skin explant group (grade ≥ II) compared with the negative skin explant group (grade I).
The p-values are FDR-adjusted after a Benjamini-Hochberg correction.
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Figure 4. Levels of cytokines in skin explant cell culture supernatants following exposure to mAbs.
Cytokine levels were determined in the skin explant test cell culture supernatants. Graphs show
cytokine levels (Log2 pg/mL). A significant increase was observed for (A) IFNγ (p < 0.0001), (B) TNFα
(p < 0.0001), (C) IL-10 (p < 0.01), (D) IL-12 (p < 0.01), (E) IL-13 (p < 0.05), (F) IL-1β (p < 0.001) (G) IL-6,
(H) IL-4 (p < 0.001), and (I) IL-2 (p < 0.05). The p-values are FDR-adjusted after Benjamini-Hochberg
correction. The square symbols represent the positive group and the round symbols represent the
negative group.
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3.4. TGN1412 Showed a Delayed Time Response In Vitro

TGN1412 was co-cultured with healthy skin and autologous PBMC over a period
of 3 days. A skin sample was removed every 24 h, and histopathological analysis was
performed. Data (n = 4) clearly showed TGN1412 exposure did not cause any damage to
skin until day 3 following antibody co-incubation with skin and autologous cells. Negative
controls (medium alone incubated with skin, autologous T cells incubated with skin, or the
IgG4 isotype antibody incubated with skin in the absence of autologous cells) showed a
grade I negative response over the 3 days. TGN1412 exerted a significant immune response,
showing an increase in histopathological damage from a grade I negative response at 24 h
to a grade III positive response by 72 h (Figure 5), in 2/3 tests, indicating a time-dependent
response relationship.
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Figure 5. (A) In vitro responses (n = 4) of TGN1412 over a 3-day time period, day 1 (black bar), day
2 (white bar), and day 3 (grey bar). (B) Skin incubated in medium control or with autologous cells
or an IgG4 isotype antibody gave a grade I negative response in the skin explant tests on days 1, 2,
and 3. TGN1412 gave a grade I negative response on days 1 and 2. On day 3, a grade III positive
response was observed in 2/3 tests (as shown by the arrows) and a grade I negative response in the
day 1 test. (B) Representative images of (1) medium day 3, (2) autologous cells day 3, (3) IgG4 day 3,
(4) TGN1412 day 1, (5) TGN1412 a day 3.

4. Discussion

Adverse reactions in response to biological drugs can present in several ways. To fur-
ther complicate this matter, the true incidence of occurrence is largely unknown. Reaction
incidences are reported as variable, influenced by drug dosage, multiple drug administra-
tions [22,23], and even geographical location [24]. Additionally, studies are often reported
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in small patient groups. In vitro tests such as patch tests, skin prick tests, and intradermal
tests are sometimes used; however, some patients still present with adverse immune reac-
tions, including skin sensitization, despite obtaining a negative result in in vitro diagnostic
tests [25–27]. Steroid drug administration is a frequently used strategy to dampen adverse
effects of drugs; for example, adalimumab has been shown to cause an adverse reaction in
up to 12% of rheumatoid arthritis (RA) patients [28] when administered alone, and this has
been seen to be reduced to 1% when co-administered with methotrexate [29,30].

During the TeGenero (TGN1412) clinical trial, the adverse events in response to
TGN1412 started to present as early as 3 h post-infusion, with multiple organ failure
occurring by 12 h [21]. We used the skin explant assay to determine if the response period
of the immune system in vitro was similar to that observed in vivo. The TGN1412 homolog
antibody was tested at 1 µg/mL, the estimated concentration to be present in the blood
of individuals during the Northwick Park trial [22]. An interesting skin explant assay
result was the delay in the response in vitro to the TGN1412 mAb in comparison to the
early response reported in vivo. This delayed response may well not be specific to that of
TGN1412 and may be related to the fact that autologous PBMCs, which are immature, were
used and required a period following activation to become effectors and cause damage.

Following the TGN1412 Northwick Park trial, the need and usefulness of human
in vitro studies to determine human safety data and dose ranges have become increasingly
recognized. This is illustrated by the work of Stebbings et al. (2007) [20], where they
compared several protocols to assess cytokine release, with the most successful being
when TGN1412 was immobilized on endothelial cells and demonstrated that the simple
interaction of TGN1412 with peripheral blood lymphocytes was not sufficient to cause
cytokine release as shown in vivo. The need for improved in vitro assays to predict adverse
immune reactions to biologics occurring in vivo has also been debated for some time [31].
This was recently highlighted last year by the FDA in their new Modernization Act to reduce
reliance on animal model systems and develop new ways to de-risk novel therapeutics.
The key aim of our study was to develop and evaluate a suitable pre-clinical human
in vitro test that could predict cytokine release associated with immunotoxicity and other
immunological reactions in humans as a first-in-man test to bridge the gap between animal
studies and human studies and to avoid a similar occurrence as observed in the TeGenero
trial, or skin sensitization or injection site reactions that could halt a clinical trial.

We have shown that the human in vitro skin explant test is able to detect an unwanted
immune response to a therapeutic monoclonal antibody. By using an autologous PBMC
population and co-culturing these with autologous skin in the presence of the test biologics,
we observed histopathological damage in the skin if the therapeutic had caused an adverse
immune response in the clinic. As a result, the test distinguished between extreme positive
or limited adverse responses to mAbs. In conjunction with other in vitro tests, this test
could prove to be valuable during both the early and preclinical development stages of
mAbs. It can offer the opportunity to further test modified compounds, for example, protein
modification, to decrease any immunotoxic potential and enable compound elimination
early in the drug development pipeline.

The skin explant test is dissimilar to alternative tests available for immunotoxicity
testing in that it offers observation of histological changes in the skin tissue and observation
of skin sensitization as a direct result of immune cell activation and cytokine release. The
use of autologous immune cells in this model allows the model to closely mimic an in vivo
immune response in vitro.

Cytokine release assays are recognized as a valuable alternative to determining a
risk-based evaluation [32] and as early indicators of cytokine release syndrome. Cytokine
release observed in the positive Mab skin explants corresponded to Th1 (IFNγ and TNFα)
and Th2 (IL-13, IL-10, and IL-4) type responses. Our results were able to replicate previous
reports of increased IFNγ [20] or TNFα [31] levels, but not IL-2. T cell proliferation upon
exposure to positive mAbs gave positive responses, as previously reported [30].
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In an attempt to develop safer biologics, predictive modeling has attracted much
interest as a tool for the identification of potential health hazards. A large number of
these models are based primarily on the use of drug molecular structure and its activity
in a quantifiable approach known as quantitative structure-activity relationship (QSAR)
models [33]. They do, however, have limitations. [34]. Another approach involves the
development of algorithms allowing T cell epitope mapping to predict or identify immuno-
toxic epitopes [35,36]. In comparison to in vivo studies, which are time-consuming and
expensive, the speed and low cost of these protein immunotoxicology tools make them very
attractive. However, they do not provide any information with regard to T cell activation
or the prediction of cytokine release.

Recent efforts have also combined the use of in silico and in vitro prediction tools
to develop better models to predict adverse reactions, such as the Epibase® in silico and
in vitro tools. In vivo animal studies also face much criticism for the pre-clinical assessment
of drugs, as animal models can often fail to predict the human immune response, as
highlighted by the 2006 TGN1412 clinical trial [37]. There are regulatory and ethical
issues around the use of animals in pre-clinical research, as well as the interpretation of
the cross-species barrier, and the effectiveness of these models is an important topic of
debate [38].

The skin explant test, which effectively distinguishes between monoclonal antibodies
showing extreme positive or limited responses, could be used as a valuable preclinical tool
in the safety assessment of biologics.

Three compounds were incorrectly categorized, namely simulect and panitumumab,
overestimated and etanercept underestimated. Panitumumab carries a box warning for
dermatological toxicities and induces a severe skin reaction in approximately 16% of
patients. It is therefore likely that the misclassification of panitumumab from uncommon
(clinical) to common (skin explant test) was due to the skin-related pathology rather than
predicting a more generally immune-mediated reaction. Similarly, Simulect carries a box
warning for skin ulceration [39].

Skin-specific reactions are not uncommon for the majority of the biologics tested in
this study, including injection site reactions, rash, and inflammation, which are commonly
observed [39].

In an exploratory approach to further stratify the skin explant test classification
(Table 1), the grading over 10 donors was averaged, using 1–4 rather than the I–IV classifi-
cation. The grades were grouped as <1.2 for negative reactions, 1.3–2.0 for weak positives,
and 2.0–3.0 for strong positives. The percentages were grouped as <10% for negative
reactions, 10–30 for weak positives, 31–70 for positives, and 71–100 for extreme reactions.
Hypothetically, the product of percentage positive donors and average grade would pro-
duce an aggregated score that is more comprehensive than either parameter alone. Due to
the strong correlation between both groups (r = 0.770), the aggregated score strongly reflects
the percentage group. However, the percentage group parameter does not account for edge
cases where 1 or 2 out of 10 donors may be grade 3, or 10 out of 10 donors may be grade 2,
whereas the aggregated score rates the former as 1.5 and the latter as a 2. The aggregate
score would represent severity and occurrence, where high occurrences of low grades are
as noteworthy as low occurrences of high grades. The classifications were derived in-set,
and the strong Pearson’s correlation between the various parameters could partially be due
to overfitting of the predictions. Further ongoing testing of the skin explant test assay using
a targeted selection of novel therapeutics, graded by blinded observers and correlated
against clinical trial data, has indicated that the skin explant test assay is predictive. The
classification and correlation analysis performed for the 16 therapeutic antibodies analyzed
in this study will be repeated with other therapeutics in on-going studies.

Another point to consider is that testing was performed in a healthy donor population,
and responses in clinical patients may differ. As a large proportion of monoclonal antibodies
are targeted towards immune-related disorders, patients with these disorders may have

145



Toxics 2024, 12, 401

altered or enhanced immune responses. This could be one reason why commonly positive
biologics such as etanercept were classified as weak positives in this test.

As of 2023, the FDA no longer requires animal testing for new therapeutics. It is
anticipated that ex vivo human disease models, instead of murine models, will gradually
be seen as more relevant models of human diseases. The skin explant assay is a patented
technology (traded as Skimune®), and additional validation data is ongoing through
the testing of blinded compounds from industry where clinical outcomes are known.
As demonstrated, the classification criteria are strongly correlated to the histopathology
grades. Thus, for underpowered studies with fewer than 10 donors, the average grades
are a good indicator of a positive or negative response in the assay and can be used as a
pre-clinical screen with the understanding that no mAb is completely negative and that a
very small population may show weak positivity with regard to adverse immune events.
This, however, does not preclude them from being marketable products.

Further work is being performed to stratify the skin explant assay grading between
subepidermal damage and epidermal damage, such as toxic epidermal necrolysis [40,41],
and to include acantholysis as demonstrated in palmar-plantar erythrodysesthesia.

5. Conclusions

Overall, the results suggest that the skin explant test could be an effective tool in
bridging the gap between animal studies and first-in-human clinical trials. The skin
explant assay involves the skin sensitization pathway, a molecular initiating event, an
inflammatory response and release of cytokines, and an adverse event in the form of
keratinocyte activation culminating in skin damage. The assay, therefore, significantly
mimics the adverse event pathway of skin sensitization. This assay accurately predicts
the adverse reaction incidence rate for a variety of biological therapeutics with varying
mechanisms of action and provides a valuable and ethical alternative to animal studies for
immunological activity evaluation. The test could also reduce the time and cost of the drug
development process by identifying hazardous biological candidates likely to fail in Phase
I clinical trials and identifying early skin sensitization reactions implicated in their failure.

6. Patents

Alcyomics holds patents on the skin explant assay (trading as Skimune®). See the
table below.

Case Code Applicant Country Status Official Number Title

P131663CH Alcyomics Limited Switzerland Granted ‘EP2524227 Skin Explant Assay
P131663DE Alcyomics Limited Germany Granted ‘602011004834 Skin Explant Assay
P131663DK Alcyomics Limited Denmark Granted ‘EP2524227 Skin Explant Assay
P131663ES Alcyomics Limited Spain Granted ‘EP2524227 Skin Explant Assay
P131663FR Alcyomics Limited France Granted ‘EP2524227 Skin Explant Assay

P131663GB1 Alcyomics Limited United Kingdom Granted ‘EP2524227 Skin Explant Assay
P131663IT Alcyomics Limited Italy Granted ‘502014902254005 Skin Explant Assay
P131663US Alcyomics Limited USA Granted ‘9,651,544 Skin Explant Assay

P131663USD1 Alcyomics Limited USA Granted ‘10,073,084 Skin Explant Assay
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Abstract: Introduction: Monoclonal antibodies (mAbs) are important therapeutics. However, the
enhanced potential for aggregation has become a critical quality parameter during the production of
mAbs. Furthermore, mAb aggregation may also present a potential health risk in a clinical setting
during the administration of mAb therapeutics to patients. While the extent of immunotoxicity in
patient populations is uncertain, reports show it can lead to immune responses via cell activation and
cytokine release. In this study, an autologous in vitro skin test designed to predict adverse immune
events, including skin sensitization, was used as a novel assay for the assessment of immunotoxicity
caused by mAb aggregation. Material and Methods: Aggregation of mAbs was induced by a heat
stress protocol, followed by characterization of protein content by analytical ultra-centrifugation
and transmission electron microscopy, revealing a 4% aggregation level of total protein content.
Immunotoxicity and potential skin sensitization caused by the aggregates, were then tested in a skin
explant assay. Results: Aggregated Herceptin and Rituximab caused skin sensitization, as shown by
histopathological damage (grade II–III positive response) together with positive staining for Heat
Shock Protein 70 (HSP70). Changes in T cell proliferation were not observed. Cytokine analysis
revealed a significant increase of IL-10 for the most extreme condition of aggregation (65 ◦C at pH3)
and a trend for an overall increase of IFN-γ, especially in response to Rituximab. Conclusions:
The skin explant assay demonstrated that aggregated mAbs showed adverse immune reactions, as
demonstrated as skin sensitization, with histopathological grades II-III. The assay may, therefore, be
a novel tool for assessing immunotoxicity and skin sensitization caused by mAb aggregation.

Keywords: mAb aggregation; skin sensitization; immunotoxicity; in vitro test; T-cell proliferation;
cell death; skin explant; safety assessment; immunotoxicity

1. Introduction

mAb industrial production is a complex process where several stress factors must
be taken into consideration during industrial scale-up and manufacturing of therapeutic
antibody proteins. Temperature is one such critical parameter since thermal changes can
affect the conformational structure and stability of the IgG mAb molecule [1]. This poses
a serious cost issue due to production failure, as it can lead to epitope loss and loss of
antibody efficacy together with irreversible aggregation events. At high temperatures, the
disulphide bridges, binding the polypeptide chains of the antibody, start to weaken and
denature. This leads to an unfolding of the overall structure and an unstable conformational
state [1–4]. pH can also induce antibody aggregation via protein instability [2,5,6]. Acid-
induced changes can promote loss of native structure by means of secondary structure

Toxics 2024, 12, 332. https://doi.org/10.3390/toxics12050332 https://www.mdpi.com/journal/toxics149



Toxics 2024, 12, 332

refolding [6]. More specifically, one study showed [2] that while the Fab fragment was
very sensitive to heat stress, the Fc region was more sensitive to acidic pH. Physical or
mechanical stress can also potentiate antibody aggregation. This stress can be caused by
agitation during manufacture [7], storage [8], shipping, or shaking during administration of
the antibody [9]. Commercially available mAbs are formulated to be very stable endpoint
products, but exposure to temperature, pH, or stirring stress factors can compromise mAb
stability, ultimately potentially having effects on clinical safety.

Considering the size of protein aggregates (ranging from 100 to 1000 kDa), their char-
acterization becomes quite complex. Therefore, multi-technique analysis or a combination
approach provides more reliable information. New analytical techniques, include, ana-
lytical ultracentrifugation (AUC) [10], size exclusion chromatography-multi angle light
scattering (SEC-MALS) [11], and asymmetric flow field-flow fractionation multi-angle light
scattering [12].

Asymmetric flow field-flow fractionation (AF4) is a technique that offers the possi-
bility to physically separate biomolecules across a wide size range. AF4 can be used in
combination with different types of detectors depending on the information required and
becomes especially powerful when combined with multi-angle light scattering (MALS) [13]
and (AF4-MALS) [14] are the current most reliable methods for quantifying low levels of
protein aggregates. AUC allows for the quantification of protein aggregation and the for-
mulation of large supramolecular complexes based on their sedimentation properties [15].
Sedimentation velocity (SV)-AUC is a hydrodynamic approach that provides details of
particle mass and shape and is particularly useful for studying multicomponent irreversible
and reversible mixtures of species [15]. In this study, SV-AUC was used to explore the
formation of stable and metastable oligomers, irreversible aggregates, and degradation
products due to storage and thermal stress.

There is a concern that protein and antibody aggregation may represent a potentially
serious cause of adverse immunotoxicity in humans when administered therapeutically. For
example, one study investigating the instability of antibodies during aerosolization of lung
mucosa in mice found the development of aggregates, which led to pro-inflammatory and
cytotoxic effects [16]. The Clinical Oncology Society of Australia Position Statement [17]
also reviews the safe handling of monoclonal antibodies in the health care setting where
distinct exposure mechanisms, dermal, mucosal, inhalation, and oral, were discussed with
regard to health risk, e.g., dermatitis and skin sensitization.

Indeed, the aggregation of proteins is a complex multifactorial process that includes
conformational change, nucleation, and the growth of protein particles. Protein-based
vaccines, for example, are a demonstration of when immunogenicity is desirable as they
are more effective at eliciting an immune response as aggregated in an adjuvant particle.
However, in the case of immunogenicity, the aggregation of proteins can be undesirable
and cause an adverse immune response [18]. In this instance, immunotoxicity can be
defined as an adverse immune activation event, including T cell proliferation and cytokine
stimulation caused by aggregated mAb therapeutics. However, little is known about
mAb aggregation following patient administration. Indeed, previous studies have shown
that there is a significant chance that mAb preparations alone will cause some degree of
immunotoxicity [19–21]. Other reports have shown that aggregated mAb have been found
in human biological fluids, including serum [22,23] and plasma [22]. mAb aggregation can,
therefore, appear to increase the likelihood of an adverse immune response.

In vitro, cell-based assays that mimic the normal immune response have demonstrated
that exposure to aggregated mAbs can induce cell activation, proliferation, and cytokine
secretion of immune system components through the activation of dendritic cells [24] and T
cells [25–28]. In vivo, responses to mAb aggregates from animal-based studies showed that
heat-aggregated IgG immune complexes lead to cellular activation and immune complex
formation [29,30].

In this study, we have used a very sensitive human in vitro skin assay, previously
described for predicting adverse immune events to chemicals [31] and small molecule
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drugs [32], to assess the immunotoxicity and skin sensitization caused by mAb aggregation.
This assay is sensitive as it includes dermal exposure of the aggregated monoclonal anti-
body, T cell activation, cytokine release, and histopathological skin damage as parameters
for the detection of adverse immune responses and skin sensitization. In this current
study, two commercially available monoclonal antibodies, Herceptin and Rituximab, were
subjected to thermal stress conditions to induce aggregation, followed by characterization
of protein aggregates. Immune activation was assessed by testing the heat-stressed mAb
samples in both T cell proliferation and cytokine release assays alongside a human in vitro
skin explant assay [31,32].

2. Materials and Methods
2.1. Degradation of mAb Samples

Herceptin (Trastuzumab) and Rituximab (Mabthera) monoclonal antibodies (IgG1
class) were used at a concentration of 1 mg/mL and exposed to three different heat stress
conditions: 4 ◦C (fridge), 37 ◦C (incubator) and 40 ◦C (water bath) for the following time
points: 0, 3, 6, 12, 24 and 48 h. A positive control for aggregation was also prepared for each
mAb by leaving the samples at 65 ◦C for one hour in an acidic buffer (pH3). Samples were
given a 3-digit code name for identification, with the first digit representing the mAb tested
(Rituximab, R or Herceptin, H), the second digit representing the temperature exposed
(4, 37, or 40 ◦C), and the third digit representing the time of exposure (0, 3, 6, 12, 24 or 48 h).
Samples were stored immediately after the heat stress protocol at 4 ◦C until further analysis.

2.2. Protein Analysis of Stressed mAb Samples

The protein content of the heat-stressed mAb samples was quantified by sedimenta-
tion velocity-analytic ultra-centrifugation (SV-AUC). Sedimentation analysis was carried
out using a ProteomeLab XL-I analytical centrifuge (Beckman Coulter, Palo Alto, CA, USA).
The following conditions were used in all centrifugation runs: 40,000-rpm angular velocity,
20 ◦C rotor temperature, and 280-nm absorbance scanned. Absorbance and interference
data were collected for each experiment with a minimum of 65 scans. Protein quantification
(percentage of monomers, dimers, and larger molecules) was calculated using SEDNTERP
software (2.01). Sedimentation velocity profiles were treated using size-distribution mod-
els and refined with Bayesian statistics. Root mean square deviation (RMSD) was also
calculated as the sample standard deviation of the differences between predicted and
observed values. This quantification was carried out using Newcastle University Protein
and Proteome Analysis (NUPPA) service facilities.

Protein characterization was analyzed using transmission electron microscopy (TEM).
10 µL of the mAb stressed samples were deposited on carbon-coated TEM grids, after which
the grids were stained with uranyl acetate for negative staining. The grid was air-dried,
and the excessive staining was removed from the grid specimens. The grids were then
analyzed under an acceleration voltage of 100 kV under a Philips CM100 TEM.

2.3. Human Blood and Skin Samples

This study was approved by the Local Research Ethics Committee (LREC). A total of
five donor human blood and skin biopsy samples were obtained from healthy volunteers
after informed consent by a research nurse at a National Health Service dermatology clinic.
Each volunteer donated 60 mL of peripheral blood, collected in heparin (455051, Greiner
bio-one), and two 4-mm skin biopsies, which were used for the in vitro skin explant
assay. Peripheral blood mononuclear cells (PBMCs) were isolated by density-gradient
centrifugation from fresh blood. Skin biopsies (abdominal area) were collected fresh in
X-Vivo™ medium (Lonza, Basel, Switzerland) and processed by washing in PBS (Sigma,
Burlington, MA, USA), then trimmed of excess fat and dissected into small sections for use
in the skin explant assay.
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2.4. Detection of Aggregated mAb-Induced Immune Activation by T-Cell Proliferation Assay

A 2× 105 PBMC/well was incubated with aggregated mAb samples at 1 and 10 µg/mL
for 3 days. A negative isotype control (IgG1) and a positive control for immune activa-
tion (OKT3) [33] were used in each test. Cells were harvested, and [3H] Thymidine was
added for the last 16–18 h. [3H] Thymidine primary stock was stored at 37 MBq and
used at 3.7 MBq (1/10 dilution), and subsequent uptake was measured using a Micro Beta
β-scintillation counter in counts per minute (cpm). Data were interpreted using Prism
GraphPad software (V5, Fremont, CA, USA).

2.5. Aggregated mAb-Induced Immunotoxicity, including Skin Sensitization Using the Skin
Explant Assay

The 4 mm skin biopsies, obtained from volunteers, were cut into multiple smaller
sections of approximately 1 mm2 for analysis. Each test condition utilized 1 piece of 1 mm2

of healthy skin from each volunteer. Skin biopsy sections were incubated in a medium sup-
plemented with autologous, heat-inactivated serum containing both 1 × 106 PBMCs/well
and treated mAb samples at a concentration of either 1 or 10 µg/mL for 3 days at 37 ◦C,
5% CO2, 95% humidity. Skin biopsies were then fixed in formalin prior to being paraffin-
embedded, sectioned, and stained with haematoxylin and eosin (H&E). Negative controls
consisted of co-culture of PBMCs and autologous skin alone and co-culture of the skin with
the isotype antibody IgG1. The positive control was OKT3, which has previously been
shown to give rise to grade II or III response in skin explant assays [34] Controls were in-
cluded in all assays. The endpoint of the assay was the assessment of the histopathological
damage observed in the skin tissue caused by exposure to the mAb sample. This output
was measured as skin grades (grades I to IV) according to the severity of the skin tissue
damage observed (Figure 1) [35]. Grade I is considered negative, with an intact upper
keratinocyte layer. Grade II includes dyskeratosis and vacuolization of the epidermis and
dyskeratotic bodies. Grade III shows more severe damage to the epidermal layer, with the
initial separation of the epidermal and dermal layers observed as cleft formation. Grade
IV refers to severe damage, with complete separation of the epidermal and dermal layers.
Grade II or higher is regarded as a positive response. Grading was performed blind by
2 individual assessors.
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Figure 1. Lerner grading scheme for sub-epidermal lesions in the skin explant assay.

2.6. Multiplex Cytokine Analysis

Multiplex cytokine analysis was performed on the skin explant assay supernatants us-
ing MSD V-Plex kits (Meso Scale Diagnostics, Rockville, MD, USA) following the manufac-
turer’s instructions. The biomarkers included in this panel were IFN-γ, IL-10, and TNF-α.

2.7. Immunofluorescence Labelling

Anti-Hsp70 (Heat-Shock protein 70) (1:20 dilution) antibody (Abcam, Cambridge, UK)
was used to detect apoptosis in the skin explant biopsies. Heat shock proteins (HSPs) have
a wide array of functions in apoptosis, leading to the suppression of apoptotic pathways.
However, stress signals that trigger apoptosis also stimulate the expression and release of
HSPs [36]. In this study, we investigated the expression of HsP70, which has been shown
in previous studies of skin explants to correlate with increased immune responses [37].
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Alexa Fluor 488 (A488, Life Technologies, Carlsbad, CA, USA) was used as the secondary
antibody at a concentration of 1 µg/mL. 4′,6-diamidino-2-phenylindole (DAPI) staining
was used at a concentration of 1.5 µg/mL, with VECTASHIELD® Mounting Medium
(Vector Laboratories, Newark, CA, USA).

2.8. Statistical Analysis

Skin explant, T cell proliferation assays, and cytokine assessment were performed
using samples from five healthy donors (n = 5). The T cell proliferation assay endpoint was
a log fold-increase together with Stimulation Indices (SI) in response to exposure to the test
compound. SI was measured using the ratio between the test conditions (mAb exposure)
and the untreated control (no mAb exposure). The cut-off SI value for a positive response
was a log 2-fold increase [32]. Statistical analysis was carried out using repeated measures
one-way ANOVA.

For the skin explant test, using the histopathological grading classification, statistical
analysis was performed to firstly to compare the mAb concentration (1 and 10 µg/mL) in
the same donor by a repeated measures two-way ANOVA with a Bonferroni correction
(post-test) and then to see the effect of the different mAb temperature conditions in the same
donor by a one-way repeated measures ANOVA with a Bonferroni correction post-test.

Cytokine assessment was analyzed using the MSD Workbench software, then statisti-
cally analyzed using a one-way repeated measures ANOVA with a Bonferroni correction
post-test.

All statistical tests were carried out using Prism GraphPad software (version 5). Statis-
tical differences were considered significant if p-value < 0.05 = *, <0.005 = **.

3. Results

In this study, two therapeutic antibodies—Rituximab (chimeric IgG1 mAb) and Her-
ceptin (humanized IgG1 mAb), were exposed to a heat stress protocol. The testing tem-
peratures were intended to mimic storage conditions at 4 ◦C, 37 ◦C (normal physiological
temperature), and 40 ◦C (elevated body temperature during an infectious episode). The
selected heat stress conditions ensured that mAb degradation mimicked storage or in vivo
conditions rather than industrial manufacturing.

3.1. Protein Analysis of the Stressed mAb Samples

The aggregated samples were analyzed by SV-AUC to determine the protein content
of the heat-stressed mAb samples. Only the control and extreme testing conditions were
analyzed at the following time points: 4 ◦C for 0 h, 37 ◦C for 48 h, 40 ◦C for 48 h, and 65 ◦C
for 1 h (positive control for aggregation) (Table 1). Overall, the loss of monomers by heat
stress at 4 ◦C, 37 ◦C and 40 ◦C was found to be very low, with up to <6% aggregation of
the total protein content, including dimers and larger molecules at 4 ◦C, 37 ◦C and 40 ◦C
(Table 1). This result is in concordance with previously reported studies, where a low level
(<3%) of total protein content was reported as aggregated [38]. The positive controls (65 ◦C),
however, showed a high loss of monomers of >97% in both instances.

The 4 ◦C for 0 h was considered as the baseline condition and showed more than 97%
of the protein content in the monomer form in both heat-stressed Rituximab and Herceptin.
Rituximab showed little variation in the monomer content throughout the different heat
stress conditions, with 97.38% monomer content at 37 ◦C for 48 h and 97.73% at 40 ◦C
for 48 h. Dimer content at baseline was 1.14% of the overall protein content, with a small
increase to 1.61% after 37 ◦C and 1.15% after 40 ◦C. For the larger molecules, e.g., trimers,
tetramers, and heavier molecules, Rituximab demonstrated a small increase from 0.93%
at baseline to 1.48% at 37 ◦C and 1.44% at 40 ◦C. The decrease in monomer content for
Herceptin was more evident. At baseline, the monomer content was 97%, which was
reduced to 94.8% at 37 ◦C and to 95.51% at 40 ◦C. Correspondingly, the dimer content
increased from 1.701% at baseline to 2.854% after 37 ◦C and 2.611% at 40 ◦C. There was
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also an increase in larger molecules, ranging from 0.468% at baseline to 2.653% at 37 ◦C
and to 1.929% at 40 ◦C.

Table 1. Quantification of the aggregated content of heat-stressed mAb samples by analytical ultra-
centrifugation (SV-AUC).

Monomer Dimer Larger
Molecules RMSD

Temp
(◦C)

Time
(h)

Sedimentation
(S)

Mass
(kDa) % Sedimentation

(S)
Mass
(kDa) % %

R
it

ux
im

ab

4
0 6.412 152.1 97.92 9.25 263.653 1.14 0.93 0.015

48 6.415 138.3 97.72 9.715 257.707 1.7 0.58 0.017

37

0 6.411 153.4 96.16 9.089 258.781 2.69 1.15 0.014
3 6.411 149.9 97.41 9.27 274.93 1.68 0.91 0.013
6 6.408 152.5 96.88 9.19 261.938 2.07 1.05 0.011

12 6.413 149.3 96.69 9.522 270.064 2.28 1.11 0.010
24 6.426 146.8 99 - - - 1 0.018
48 6.424 148.3 97.38 8.34 229.272 1.61 1.48 0.014

40

0 6.415 153 97.26 9.042 262.435 2.23 1.24 0.016
3 6.407 147.4 98.34 8.997 262.004 1.18 1.3 0.017
6 6.399 149.5 98.16 8.768 249.582 1.15 1.04 0.017

12 6.397 155.3 98.40 - - - 1.60 0.017
24 6.425 150.3 97.38 9.461 281.061 1.32 1.42 0.018
48 6.42 147.6 97.73 9.649 281.75 1.15 1.44 0.016

65 1 1.587 13.11 0.706 6.503 108.75 2.544 73.01 -

H
er

ce
pt

in 4 0 * 6.441 149 97.96 9.432 263.977 1.701 0.468 0.010
37 48 6.427 148.1 94.8 9.109 249.839 2.854 2.653 0.010
40 48 6.421 148.1 95.51 9.235 255.364 2.611 1.929 0.011
65 1 6.346 132.6 2.661 9.862 256.928 6.107 69.246 0.010

Quantification of monomers, dimers, and larger molecules in Rituximab and Herceptin monoclonal antibodies
(at 1 mg/mL) after exposure to a heat-stress protocol (4, 37, and 40 ◦C for 0, 3, 6, 12, 24, and 48 h). Time 0 * for
Herceptin was identical for the temperature ranges (4–40 ◦C). Quantification by sedimentation velocity (S), mass
(kDa), and percentage in overall mAb sample (%) based on absorbance data. Standard deviation is calculated as
Root Mean Square Deviation (RMSD). Missing values (-).

Size distribution of the sedimentation velocity of aggregated Rituximab (Figure 2A)
and Herceptin (Figure 2B) showed a good distribution of the monomer, dimer, and larger
molecule forms across the different temperature ranges. Size distribution showed that the
majority of monomeric species sedimented at 6.3S with a molecular weight of 152 kDa
when present in the solution, alongside some dimeric species. The dimeric species had
different stoichiometry with both elongated configuration and sedimentation close to 8S
and more globular configuration with sedimentation just below 10S. At 37 ◦C, even larger
species were observed with sedimentation up to 15S. This change in protein size reflected
the heat stress, causing the mAb to become heavier as it aggregated. As a result, the
sedimentation velocity increased when compared to non-aggregated samples.

The internal positive control for aggregation (65 ◦C incubation for one hour in acidic
conditions) aggregated very easily, as expected, with 73% content of larger molecules for Rit-
uximab and 69% for Herceptin. Size-distribution showed a lower number of monomer con-
tent and an increased number of trimers, tetramers, and larger molecules (up to 10–15 mers),
demonstrating a more aggregated state of this sample.

Overall, the results from the SV-AUC showed that Rituximab was less susceptible
to thermodynamic changes when compared to Herceptin, since only Herceptin showed
variation in content of monomer, dimer, and large structure molecules throughout the heat
stress protocol. These results correlate with the outcome predicted by the Bayesian model.
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Figure 2. Size distribution based on sedimentation coefficient of the heat-stressed aggregated samples
of Rituximab and Herceptin. Quantification of the aggregation state of heat-stressed (A) Rituximab
and (B) Herceptin samples at 4 ◦C for 0 h, 37 ◦C for 48 h, 40 ◦C for 48 h, and 65 ◦C for 1 h (black line).
The results fit the Bayesian prediction model (red dotted line). Monomer species are at around 6S,
with elongated dimers appearing at 8S and globular dimers appearing at 10S.

3.2. Visual Characterization of Aggregates

Transmission Electron Microscopy (TEM) was performed to allow visual characteriza-
tion of the aggregated heat-stressed mAb samples and provide a more qualitative analysis
of aggregation. As depicted in Figure 3, the unstressed mAb samples at 4 ◦C contained
almost no microscopic particles, whereas the heat-stressed samples at 40 ◦C showed small
aggregates (black arrows). The number of detectable aggregates was even greater in the
positive control for aggregation (65 ◦C). These results confirm the earlier results reported
for protein analysis. Together, the two protein quantification methods indicated that heat
stress modified the secondary structure of the mAb and promoted low levels of aggregation.
Furthermore, the intensity of the heat stress protocol, as in the case of the positive control
at 65 ◦C, exacerbated the level of aggregation.
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When comparing the protein content observed between heat stressed Herceptin and
Rituximab, Herceptin showed a slightly increased aggregation level compared to Rituximab.
Differences in the primary sequence of these mAbs may explain the differences in the degree
of aggregation since Rituximab is a chimeric mAb and Herceptin is a humanized mAb [37].

3.3. Aggregated mAb Samples Induce Immune Activation and Skin Sensitization

In view of the observations that heat stress can alter mAb structure and induce
aggregation, it was important to understand if this aggregation could lead to immunotoxic
responses and potential skin sensitization. The effect of the heat stressed mAbs on immune
activation was assessed by a human skin explant assay, T cell proliferation and cytokine
release assays. PBMCs and skin biopsies from five healthy donors were stimulated with
heat stressed aggregated samples of Rituximab and Herceptin (at 1 and 10 µg/mL) and
assessed for increased immune activation.

Responses in the skin explant assay showed tissue damage in response to both aggre-
gated Rituximab and Herceptin samples (Figures 4 and 5). Using Lerner’s skin damage
classification, skin damage classified as a grade II or higher response is indicative of an
adverse immune reaction (Figure 1). At a concentration of 1 µg/mL, Herceptin caused
significant tissue damage (p < 0.005) with grade III damage in three out of five tests at the
40 ◦C/48 h testing condition when compared to the negative control (Figure 4).

Herceptin 1 µg/mL tested at 4 ◦C and 37 ◦C, caused either a grade I or grade II skin
damage response in all tests, with the exception to one test which showed a grade III
positive response at 37 ◦C/48 h. Responses observed at 4 ◦C and 37 ◦C were not statistically
different from the negative control. Similarly, at 10 µg/mL concentration, Herceptin caused
significant tissue damage at 40 ◦C/48 h (p < 0.05), with grade III skin damage observed in
four tests and a grade II skin damage response observed in one out of five tests. OKT3, as
the positive control for skin damage, caused significant grade III skin damage at both 1 and
10 µg/mL (p < 0.05). The positive control for aggregation at 60 ◦C (pH = 3) caused grade II
damage in three out of five tests at both 1 µg/mL and 10 µg/mL and a grade III response
in one out of five tests at 10 µg/mL While still considered positive for skin damage, it was,
however, not statistically significant from the negative control. These differences in the
responses may be related to donor variability.

At 1 µg/mL, Rituximab did not cause any significant skin damage at the testing
condition of 4 ◦C/0 h, where a grade I response was observed in all tests, whereas, at
4 ◦C/48 h, three of the five tests showed grade II skin damage. At 37 ◦C/0 h, three
tests showed grade II skin damage, and one showed grade III skin damage, whereas, at
37 ◦C/48 h, only two tests of the five showed grade II skin damage response. At 40 ◦C/0 h,
one test showed a grade II and one test showed a grade III skin damage, whereas, at
40 ◦C/48 h, only one test showed a positive response (grade II). OKT3 caused significant
damage (p < 0.05), with a grade II response in four out of five tests and a grade III response
in one test. At 10 µg/mL, Rituximab tested at 4 ◦C/0 h, 4 ◦C/48 h, and 37 ◦C/0 h showed
a negative (grade I) response in all five tests. At 37 ◦C/48 h, a grade III response was
observed in one test, and a grade II response was observed in one test of the five tests. At
40 ◦C/0 h, one test showed a grade III response, whereas the remaining four of the five
tests showed a negative response. At 40 ◦C/48 h, a grade III response was observed in
three tests, and a grade II response was observed in 1 out of five tests. Grade II positive
responses were observed in response to OKT3.

The fact that Herceptin caused significant skin damage at both 1 and 10 µg/mL while
Rituximab only caused significant damage at 10 µg/mL, suggested aggregated Herceptin
and Rituximab have different immunotoxic potency profiles due to their aggregation status.
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Figure 4. Skin explant assay results from exposure to heat-stressed mAb samples. Heat-stressed
samples of Herceptin and Rituximab (1 and 10 µg/mL) were incubated with peripheral blood
mononuclear cells (PBMCs) and autologous skin biopsies from healthy donors (n = 5) in the skin
explant assay. The severity of the histopathological damage was graded using Lerner grades I–IV)
Based on the damage observed, the boxes represent the median in the 25th and 75th percentiles with
min and max whiskers. A significant increase (** p < 0.005 and * p < 0.05) in tissue damage response
was observed at 1 µg/mL and 10 µg/mL Herceptin when compared to the negative control (skin in
medium alone) at the 40 ◦C/48 h testing condition. Rituximab showed significant tissue damage at
40 ◦C/48 h when compared to the negative control (* p < 0.05). The data were assessed by one-way
ANOVA and Bonferroni’s post-hoc test.

Figure 5 shows representative H&E images of each of the treatment conditions for Rit-
uximab and Herceptin. Black arrows indicate histological changes on the dermal/epidermal
junction relevant to the grading process, namely epidermal disruption. T cell proliferation
assays showed no significant increase in T cell proliferation upon exposure to aggregated
Herceptin or Rituximab (Figure 6) in any of the testing conditions. The positive control,
OKT3, elicited a T cell stimulation index above the log 2-fold threshold in both mAbs at
1 and 10 µg/mL.

Cytokine levels measured in cell culture supernatants from samples tested with
1 µg/mL (Figure 7) and 10 µg/mL (Figure 8) showed that IL-10, IFN-γ, and TNF-α levels
were significantly elevated after exposure to OKT3 at both test concentrations (p < 0.05).
Aggregated Rituximab and Herceptin tests, when compared to IgG1 controls, showed no
significant increase in cytokine levels at both 1 and 10 µg/mL. However, increased yet
non-significant IFN-γ levels were observed in response to 10 µg/mL in the Rituximab test
when compared to the negative control. The positive control for aggregation (pH3) showed
non significantly increased IL-10 levels when tested at 10 µg/mL (Figure 8) in response to
Herceptin compared to a significant increased in response to Rituximab (p < 0.05).
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Figure 5. Histopathological damage from exposure to heat-stressed mAb samples. H&E staining of
skin tissue after incubation with the heat-stressed samples (60 ◦C, pH3) of Herceptin and Rituximab
at 1 and 10 µg/mL. Black arrows represent histopathological damage on the dermal/epidermal
junction in the form of vacuolization of keratinocytes (Grade II positive reaction) and cleft formation
leading to separation of the dermis and epidermis (Grade III positive reaction). Scale bars represent
200 µm.
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Figure 6. T-cell proliferation assessment resulting from exposure to heat-stressed mAb samples. Heat-
stressed samples of Herceptin and Rituximab (1 and 10 µg/mL) were incubated with donor-derived
PBMC (n = 5 for each condition). T-cell proliferation assessment alone was not capable of detecting
an increased immunological profile induced through protein aggregation. The boxes represent the
median with the 25th and 75th percentile with min and max whiskers. * p < 0.05 Bonferroni’s post-hoc
test after One-way ANOVA. The log 2-fold positive threshold is indicated by the dotted line.
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Figure 7. Multiplex cytokine panel analysis of experimental conditions tested at 1 µg/mL. For each
condition (n = 6), the median is represented by a red line. The log 2-fold positive threshold is indicated
by the dotted line. * p < 0.05 Bonferroni’s post-hoc test after One-way ANOVA.
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used heat stress protocols with temperatures as high as 65 °C (25), 70 °C (26), or 80 °C 
[24,33]. In comparison, the maximum temperature condition set for this study was 40 °C. 
The temperature test points were chosen for their relevance to an in vivo scenario based 
on normal and fever-induced body temperatures. Our results demonstrated that temper-
ature treatment of both Herceptin and Rituximab induced changes in the aggregative sta-
tus of the tested samples. It could be suggested that a level of protein unfolding and con-
sequent rearrangement of the mAb secondary structure was primarily responsible for the 
presence of larger molecules in the aggregated samples (as demonstrated by SV-AUC 

Figure 8. Multiplex cytokine panel analysis of experimental conditions tested at 10 µg/mL. For
each condition (n = 6), the median is represented by a red line. The log 2-fold positive threshold is
indicated by the dotted line. * p < 0.05 Bonferroni’s post-hoc test after One-way ANOVA.

While no significant increases in T cell proliferation responses were observed upon
exposure to heat-stressed mAbs, histopathological damage showing grade II and III positive
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responses were observed in the in vitro skin explant assay. To determine if apoptosis was
occurring within the tissue sections, Heat Shock Protein (HSP) 70 staining was performed
(Figure 9). Positive HSP 70 staining (bright green) was observed in the 37 ◦C and 40 ◦C
conditions in both Herceptin and Rituximab at 10 µg/mL. Positive control for aggregation
at 60 ◦C (pH3) also showed positive expression of HSP70.
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Figure 9. Apoptosis caused by mAb aggregation. Heat stressed aggregated samples of Herceptin
and Rituximab were stained for heat shock protein 70 (HSP70) by immunofluorescence. DAPI was
used as nuclear marker (blue). White arrows indicate areas of positive staining.

4. Discussion

Previous studies addressing the immunotoxic potential of mAb aggregation have used
heat stress protocols with temperatures as high as 65 ◦C (25), 70 ◦C (26), or 80 ◦C [24,33].
In comparison, the maximum temperature condition set for this study was 40 ◦C. The
temperature test points were chosen for their relevance to an in vivo scenario based on
normal and fever-induced body temperatures. Our results demonstrated that temperature
treatment of both Herceptin and Rituximab induced changes in the aggregative status of
the tested samples. It could be suggested that a level of protein unfolding and consequent
rearrangement of the mAb secondary structure was primarily responsible for the presence
of larger molecules in the aggregated samples (as demonstrated by SV-AUC results). TEM
analysis of aggregated mAbs demonstrated this effect visually, with clear changes in
aggregation observed in heat-treated samples, especially at higher temperatures of 65 ◦C.
These thermodynamic changes accounted for less than 4% aggregation of the total protein
content, which is in accordance with previous reports of 3% aggregation [26] of the total
protein content under heat stress conditions.

There is evidence that protein aggregation can occur at different stages of mAb pro-
duction or during later storage, imposing a health risk to patients upon administration
of therapeutic mAbs [38]. We have studied the potential immunotoxic effect of mAb ag-
gregation by investigating histopathological assessment of cell damage in a novel in vitro
skin explant assay, T cell proliferation, and cytokine release. Overall, our data shows heat
stressed Herceptin and Rituximab samples did not enhance T cell proliferation rates. T cell
proliferative induction is primarily stimulated through increased dendritic cell activity [28].
Our assay could be improved through the incorporation of dendritic cell activity alongside
T cell proliferative responses. This would allow us to gain a more complete assessment
of the ongoing processes within the assay and provide an additional data point to further
improve the validity of our predictive outcome. Furthermore, the composition of PBMC
populations can vary significantly across individuals. In this study, PBMC populations
were not assessed and normalized prior to use in stimulatory experiments. Characteriza-
tion of the PBMC population prior to use within the assay could allow for a level of data
normalizing, which could further improve assay reliance and sensitivity.

A trend for elevated expression of IFN-γ was observed at 10 µg/mL in Rituximab
test conditions. IL-10 is an immunosuppressive cytokine which inhibits expression of
pro-inflammatory cytokines [38]. Elevated expression of IL-10 in the 10 µg/mL Rituximab
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positive control could suggest that cells are actively forming a protection mechanism from
the damage caused by the aggregated mAbs, by dampening the immune response and
sustaining normal tissue homeostasis.

Previously published data [31,32] based on the human tissue explant assay used in
this study has resulted in convincing prediction of adverse immune events in response to
chemical [31] and small molecule drug stimulation [32]. The histopathological damage
assessment shown here suggests that heat-stressed Rituximab and Herceptin do cause some
degree of immune activation. These results do not fully corroborate previously published
studies, where it was shown that mAb aggregation by heat stress elicits in vitro innate and
late-stage T cell responses [27], activates dendritic cells to stimulate T cells [24] and induces
CD4+ T cell proliferation via pro-inflammatory cytokine release [25].

Heat shock protein 70 (HSP70) serves as a molecular chaperone in cases of cell stress
(as heat shock or oxidative stress). HSP70 is crucial for cell survival after apoptotic stim-
uli [39,40], as shown by Mosser et al. [40] in which macrophages heat-stressed for up to two
hours at 43 ◦C, showed protection of DNA fragmentation in the presence of HSP70 [39].
HSP70 was shown to be significantly upregulated in all treated samples and absent in
negative controls. This suggests that some level of inflammatory stress was being imparted
throughout the assay conditions. HSP70 is most likely involved in the protein refolding
after exposure to the aggregated Herceptin and Rituximab, and its overexpression may
rescue cells from apoptotic cell death. Skin explant assay samples were tested at 4 ◦C, 37 ◦C
and 40 ◦C temperature conditions. Centrifugal analysis of aggregate formation at these
temperatures only showed relatively moderate changes in aggregated antibody levels with
the vast majority of mAbs still present in the monomer formation. This suggests that, at
best, only a mild immune stimulatory effect would be observed and that this, alongside
HSP70’s anti-apoptotic effects, may partly explain why mild histological damage was
observed in aggregated antibody-treated conditions.

Overall, only the highest testing temperature (40 ◦C) caused significant histopatholog-
ical damage in comparison to the baseline condition whereby grade III skin damage was
observed in most of the donors, while at 4 ◦C and 37 ◦C an overall grade II was observed.
While the outcome is not a severe grade, these results still show positive skin damage
caused by heat-stressed aggregated mAbs. The higher condition of heat stress (40 ◦C) did
cause more severe histopathological damage than the positive control (pH3). We could hy-
pothesize that highly aggregated mAbs (as in the case of the positive control for aggregation,
pH = 3) can affect the normal binding of these antibodies to the antigen-presenting cells [24].
It has been shown that the structural mAb rearrangements that result from exposure to
temperature shock can lead to neo-epitopes [41] (new epitopes formed during aggregation),
glycosylation/pegylation changes [42] and other post-translational modifications that break
tolerance towards these mAbs, thus causing immunotoxicity. Furthermore, it has been
shown that only covalently modified aggregates can induce immunotoxicity [29]. However,
for aggregated mAbs to cause an immunotoxic response, it is vital that conformation of the
protein’s active site remains preserved regardless of aggregation [43].

Thus, we can speculate that the low pH (pH3) internal positive control denatured the
antibodies to such an extent that protein conformation was lost by denaturation during
heat stress. The consequential aggregation occurring after denaturation impeded the
preservation of the protein’s active site. These results also highlight the fact that protein
aggregation does not always directly imply immunotoxicity. While structural changes
might occur due to aggregation, it does not mean that protein functionality is compromised.
Previous studies showed that immunotoxicity is only achieved if the primary structure of
the mAb protein is deeply modified after aggregation stress [23]. Therefore, it can be argued
that the positive low pH control for aggregation did not cause a high level of immune
activation/cell death due to the new structural rearrangement of the protein, hiding its
active site.

Further work is required to better understand the potential use of the skin explant
assay in the assessment of the immunotoxicity of aggregated antibodies. The data presented
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here represents a small study looking at relatively few aggregative conditions and only
2 mAbs. Nevertheless, it should still be emphasized that this novel assay was able to
detect some immune activation through histological damage assessment directly brought
about by immune cell activity within the assays. Further work is required to elucidate
the mechanistic actions around aggregate formation and the effect of aggregate presence
on immune cell activation. Future work involving this assay should focus on expanding
the donor replicates within the explant assays and should include a greater range of
temperatures to induce aggregate formation. Additionally, a larger sample size of mAbs
based on different therapeutic areas and mechanistic action could elucidate additional
areas of study interest.

5. Conclusions

This study was aimed at testing a novel in vitro test method for assessment of skin
sensitization and adverse immune events relevant to human safety and has provided
new insights for potentially reducing animal testing in the future. Our method was able
to predict immune activation facilitated through temperature-mediated mAb aggregate
formation in two antibody systems with a reasonable level of accuracy.

6. Patents

Alcyomics holds patents on the skin explant assay (trading as Skimune®) see table

Case Code Applicant Country Status Official Number Title
P131663CH Alcyomics Limited Switzerland Granted ‘EP2524227 Skin Explant Assay
P131663DE Alcyomics Limited Germany Granted ‘602011004834 Skin Explant Assay
P131663DK Alcyomics Limited Denmark Granted ‘EP2524227 Skin Explant Assay
P131663ES Alcyomics Limited Spain Granted ‘EP2524227 Skin Explant Assay
P131663FR Alcyomics Limited France Granted ‘EP2524227 Skin Explant Assay

P131663GB1 Alcyomics Limited United Kingdom Granted ‘EP2524227 Skin Explant Assay
P131663IT Alcyomics Limited Italy Granted ‘502014902254005 Skin Explant Assay
P131663US Alcyomics Limited USA Granted ‘9,651,544 Skin Explant Assay

P131663USD1 Alcyomics Limited USA Granted ‘10,073,084 Skin Explant Assay
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Abstract: T cell activation is the final key event (KE4) in the adverse outcome pathway (AOP) of
skin sensitization. However, validated new approach methodologies (NAMs) for evaluating this
step are missing. Accordingly, chemicals that activate an unusually high frequency of T cells, as
does the most prevalent metal allergen nickel, are not yet identified in a regulatory context. T cell
reactivity to chemical sensitizers might be especially relevant in real-life scenarios, where skin injury,
co-exposure to irritants in chemical mixtures, or infections may trigger the heterologous innate
immune stimulation necessary to induce adaptive T cell responses. Additionally, cross-reactivity,
which underlies cross-allergies, can only be assessed by T cell tests. To date, several experimental T
cell tests are available that use primary naïve and memory CD4+ and CD8+ T cells from human blood.
These include priming and lymphocyte proliferation tests and, most recently, activation-induced
marker (AIM) assays. All approaches are challenged by chemical-mediated toxicity, inefficient or
unknown generation of T cell epitopes, and a low throughput. Here, we summarize solutions and
strategies to confirm in vitro T cell signals. Broader application and standardization are necessary to
possibly define chemical applicability domains and to strengthen the role of T cell tests in regulatory
risk assessment.

Keywords: adverse outcome pathway; allergic contact dermatitis; chemical-induced T cell epitopes;
contact allergens; in vitro T cell test; key events; new approach methodologies; skin sensitization;
T cell receptor

1. Introduction

In our modern industrialized society, humans are regularly exposed to numerous
chemical compounds. Single or repeated skin contact with sensitizing chemicals may
induce contact allergies in susceptible individuals. Upon re-exposure, an inflammatory
skin condition known as allergic contact dermatitis (ACD) can develop [1–3]. Epidemic-like
occurrence of contact allergies has been reported in recent decades [4,5]. Rough estimations
claim that approximately 20% of the general population may be sensitized to at least one
contact allergen [6]. The widespread occurrence of ACD implies significant economic and
personal costs [7].

To prevent or reduce ACD, newly authorized chemicals must undergo skin sensiti-
zation testing to comply with national and international regulations on chemical safety.
For instance, in the European Union (EU), for all chemicals manufactured or imported in
quantities of ≥1 ton per year, information on skin sensitizing properties is required by the

Toxics 2024, 12, 802. https://doi.org/10.3390/toxics12110802 https://www.mdpi.com/journal/toxics165
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REACH regulation (Registration, Evaluation, Authorization and Restriction of Chemicals;
Regulation (EC) No. 1907/2006).

For decades, animal-based tests have been the gold standard to assess the skin sen-
sitizing properties of chemicals (Figure 1). Guinea pig tests, which address both the
sensitization and elicitation phase of ACD, have largely been replaced by the more animal-
friendly murine local lymph node assay (LLNA) that only considers the sensitization phase
(OECD TG 406; OECD 429) [8–10]. Early human patch tests designed to induce active
sensitization have been banned under REACH [11,12]. However, human repeated insult
patch tests (HRIPTs) are still used to confirm no-effect levels, mainly in the cosmetics,
household products, and pharmaceutical sectors [13–15].
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including skin sensitization assessment. In recent years, the concept of new approach 
methodologies (NAMs) has emerged to accommodate a higher throughput, reduce uncer-
tainties resulting from interspecies differences, and provide insights into molecular mech-
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Figure 1. History of tests for assessing chemical-induced T cell responses. Traditional in vivo meth-
ods for assessing T cell responses in animals are represented in the OECD test guidelines (upper
part) [8–10,12]. For a long time, these methods preceded the development of in vitro assays (lower
part). Nevertheless, T cell assays have significantly advanced over time [16–19]. The necessity of
alternative tests was demonstrated by the prohibition of animal testing for cosmetics in the EU in
2013 (red zigzag line). References were selected from among the earliest descriptions of these tests for
studying contact allergens. The terms ‘assay’ and ‘test’ are used interchangeably. Blue text indicates
human-based test systems, while dark gray denotes animal-based methods. EC—European Commis-
sion; EU—European Union; OECD—Organization for Economic Co-operation and Development;
TG—test guideline. Created in BioRender.com. Siewert, K. (2024) https://BioRender.com/h57s252,
accessed on 1 November 2024.

There is a growing need for alternative methods to replace or reduce in vivo testing,
including skin sensitization assessment. In recent years, the concept of new approach
methodologies (NAMs) has emerged to accommodate a higher throughput, reduce un-
certainties resulting from interspecies differences, and provide insights into molecular
mechanisms, while adhering to improved ethical standards [20–22]. Cutting-edge NAMs
for skin sensitization testing have been incorporated into REACH and other chemical
regulations, thereby allowing animal testing only when these alternative methods prove
inconclusive [23,24]. The EU’s implementation of a comprehensive ban on animal testing
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for cosmetics in 2013 underscores the ongoing evolution in the field of chemical regulation
(Regulation (EC) No. 1223/2009).

NAMs for skin sensitization have been developed for a series of biological key events
(KEs) considered essential to define the adverse outcome pathway (AOP) of skin sensitiza-
tion [25] (Figure 2). The molecular initiating event (MIE) covers the binding of chemicals to
endogenous skin proteins (KE1, haptenation) and can be addressed by in chemico peptide
reactivity assays (OECD TG 442C). Subsequently, keratinocytes and dendritic cells (DCs)
become activated (KE2 and 3, respectively), which can be analyzed by cellular in vitro tests
(OECD TGs 442D and 442E). Activated DCs are then thought to migrate to the draining
lymph nodes, where they present chemical-induced epitopes on their cell surface to prime
naïve T cells (KE4). Subsequently, antigen-specific proliferation and differentiation into
effector and memory T cells is induced, which terminates the sensitization phase [2,25,26].
For the final KE4, experimental assays are available, but have not yet been validated or
accepted for regulatory use (Figures 1 and 2).
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Figure 2. New approach methodologies (NAMs) address different key events (KEs) of the adverse
outcome pathway (AOP) of human skin sensitization. Currently, NAMs are available for KE1 to
3, which are also covered by OECD guidelines. KE4 describes T cell activation as the final step of
the AOP, but validated methods are still missing. This review describes approaches for measuring
chemical-induced T cell responses, which may be further developed into a regulatory accepted
predictive KE4 test method. ADRA—amino acid derivative reactivity assay; AIM—activation-
induced marker; DPRA—direct peptide reactivity assay; ELISpot—enzyme-linked immunosorbent
spot; EpiSensA—epidermal sensitization assay; GARDTM skin—genomic allergen rapid detection
for assessment of skin sensitizers; h-CLAT—human cell line activation test; hTCPA—human T cell
priming assay; IL-8 Luc—interleukin 8 reporter gene assay; kDPRA—kinetic direct peptide reactivity
assay; LPT—lymphocyte proliferation test; pMHC oligomers—peptide-major histocompatibility
complex class I and II oligomers; U-SENSTM—myeloid U937 skin sensitization test. Created in
BioRender.com. Siewert, K. (2024). https://BioRender.com/a64x125, accessed on 1 November 2024.
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So far, no individual NAM can replace in vivo testing for skin sensitization. Still,
NAM combinations for KE1 to 3 that also include in silico tools have been implemented
successfully as defined approaches (DAs) in OECD TG 497 and the related guidance docu-
ment (GD 256). These DAs can replace animal testing and allow classification according to
the globally harmonized system (GHS) of classification and labelling of chemicals within
their applicability domains. Further research to improve the available methods is ongo-
ing [27–29]. In this context, a validated T cell test is needed to fill a critical gap by resolving
discrepancies among KE1 to KE3 NAMs, LLNA, human HRIPT, and clinical data, as well
as to assess cross-reactivities. Still, T cell-mediated adaptive immunity exhibits unique
characteristics including clonal and phenotypic diversity, as well as special antigen recogni-
tion mechanisms, as outlined in Section 2. These factors have influenced and delayed T cell
test development.

In this review, we highlight key challenges due to the complexity of the underlying
biology and provide potential solutions to the technical difficulties involved in assay
development, expanding on previous work in this field [26,30–32].

2. Biological Basis of a Regulatory T Cell Test

A predictive T cell test for skin sensitizing properties is based on the assumption
that chemical-specific T cells are also present in non-sensitized individuals, even without
previous exposure. This phenomenon arises from the vast diversity of T cell receptors
(TCRs) and their polyspecificity in humans. Each T cell expresses a unique TCR consisting
of an α- and β-chain (or, more rarely, a γ- and δ-chain). The chains are generated in
the thymus through recombination of V(D)J gene segments, and random insertions and
deletions in the complementary determining region 3 (CDR3). These processes result in
a vast theoretical variability of ~1015–1061 possible TCRs [33,34]. From these theoretical
numbers, a huge and mainly unique TCR repertoire is realized in each person, estimated to
be about 100 million (108) TCRs [35].

TCR polyspecificity is also referred to as cross-reactivity. This property describes the
ability of a single TCR to react to multiple epitopes [36–38]. Consequently, the human TCR
repertoire covers virtually any epitope, but specific T cells for a certain allergen are only
available at low levels in the naïve T cell pool due to the high diversity (~1 specific among
5·104 to 107 non-specific T cells) [39,40]. A naïve T cell with a given TCR (a clonotype) is
represented by a low number of daughter cells (e.g., ~50 to 200 for murine CD8+ T cells)
that are circulating between the blood and lymphatic system [41]. Therefore, cells from one
naïve T cell clonotype are usually not detectable in several wells of an in vitro culture, a
phenomenon known as a sampling effect. In contrast, the effector and memory T cell pools
contain a broad range of individual clonotype frequencies, including some that are highly
expanded [42,43].

Epitopes recognized by TCRs consist of a peptide presented by a protein of the
highly polymorphic major histocompatibility complex (MHC), also known as human
leukocyte antigen (HLA) [44]. For most chemical-induced epitopes, the identity of the
HLA allele, the presented self-peptide, and the exact haptenation site and mechanism
remain unknown [45–48]. Covalent chemical binding via electrophile/nucleophile or
radical mechanisms (haptenation) as well as complex formation (i.e., chelation, also termed
pharmacological interaction, or p-i concept) are possible (see also Section 4.1) [3,49,50].

So far, reliable in vitro T cell signals have been observed for only a limited number
of contact allergens and drugs [45,47]. A prominent example is nickel (Ni2+ ions), which
astoundingly activates approximately ~1 in 1000 CD4+ T cells (at ~200 µM), due to the
interaction with certain common TCR antigen binding sites [19]. Similar observations
were published for cobalt (Co2+) and palladium (Pd2+) [51]. In an analogous manner, the
experimental contact allergen 2,4,6-trinitrobenzene-1-sulfonic acid (TNBS) has been shown
to activate many CD4+ and CD8+ T cells [52,53]. Here, the chemical moiety (trinitrophenyl
group) dominates the TCR interactions at specific positions, while the sequence of the
underlying MHC-presented peptides can vary. This mechanism allows the involvement of
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many TCRs, possibly with distinct CDR3 motifs [52,54]. While TCR repertoires are largely
unique among individuals, bias not only in thymic selection but also among reactive TCRs
exists. This encompasses the selection of common gene segments, amino acid motifs in the
CDR3, or a combination thereof [34,51,55–58].

A T cell test is indicated to determine the extent to which a chemical sensitizer activates
a broader range of T cells, as well as to distinguish signals from heterologous immune
stimulation. Sufficient stimulation of the innate immune system, required for an adaptive
T cell response, is thought to be mediated by the reactivity of the chemical and addressed
by KE1 to 3 methods [59]. In real-life scenarios, heterologous stimulation from skin injury,
barrier defects, infections, or co-exposure to other irritants in mixtures may contribute to
innate immune activation [60–62]. A prominent example is nickel, predicted to exhibit
a weak to moderate potency in available tests and displaying also some irritant charac-
teristics in vitro [63–65]. However, nickel allergy is strongly associated with skin injury
which is exceptionally immunogenic and could also provide the required heterologous
stimulation. Thus, broad T cell reactivity, combined with skin injury, may contribute to the
high prevalence of nickel allergy [66,67]. Heterologous immune stimulation is currently
not considered in any predictive testing. All reference data on skin sensitizing properties
are derived from human or animal models with an intact skin barrier, without the presence
of additional chemicals (mixtures) or pathogens, with the exception of sodium dodecyl
sulfate (SDS), which was used sometimes in the past. Taken together, the contribution of
heterologous immune stimulation to skin sensitization under real-life scenarios remains
unclear. However, T cell tests may help to dissect the contributions of innate and adaptive
immune activation to skin sensitization for a given sensitizing chemical.

3. Available T Cell-Based Assays

Human T cell tests use blood as a readily accessible source of primary T cells and
APCs [45]. All assays rely on autologous systems, where T cells and APCs derive from the
same donor to prevent reactions against polymorphic HLA proteins (mixed lymphocyte
reactions). This setting ensures that the detection of chemical-specific responses will not be
hindered by allogeneic stimulation. After antigen exposure, different readouts can be used
and the results are compared to cells treated with an unrelated chemical (specificity control)
and/or untreated cells (background control). The available tests can be categorized based
on their capacity to interrogate naïve, memory, or both T cell populations (Table 1).

Table 1. In vitro assays used for the identification of human chemical-specific T cells. The remark
column mentions general features and example references. In addition, variations, e.g., additional
readouts or key experimental details are listed from individual exemplary publications.

Assay Main Read-Out Remarks and Example
References

Limitations Example Chemicals

Naïve T cells
Priming assays proliferation phenotyping is possible

(CD4/CD8) requires professional
APCs to overcome
activation threshold of
naïve T cells,
time-intensive

BB, DNCB, DNBS,
Eugenol, FITC, HCA,
Isoeugenol, PPD, TNBS

APCs: cultured LCs [17]
APCs: MoDCs [68]

• hTCPA depletion of CD25+
regulatory T cells [69]
cytokine detection (IFN-γ,
TNF-α) [18,70]
clone characterization [71]

Memory T cells
LPT proliferation cytokines (inverse relation

of IL-5 and IL-8) [72]
radioactivity is the most
sensitive read-out but
prevents down-stream
analysis [73,74]

Mercury, Nickel

phenotyping is possible
(CD4/CD8) [75]
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Table 1. Cont.

Assay Main Read-Out Remarks and Example
References

Limitations Example Chemicals

Cytokine-based
assays

production of cytokines frequently analyzed
cytokines: IFN-γ, IL-10

not all specific T cells
produce a given cytokine

BB, Nickel, PPD

• ELISA
• Bead assays

in
supernatant

single cytokines (ELISA)
or multiple soluble
analytes (multiplex-bead
assays) [76,77]

no resolution at
single-cell level

• ELISpot cytokine detection on
single-cell level
[78], quantitative

prevents down-stream
analysis, no phenotyping
possible

• ICS cell-based Parallel analysis of
multiple cytokines and
phenotyping of responsive
cells on single cell level,
quantitative

fixation and
permeabilization
required, thus preventing
down-stream analysis of
living cells [79]

• Capture assays viable single cell analysis
enables down-stream
analysis [80]

limited cytokine analysis
[81]

Naïve and memory T cells
pMHC oligomers phenotyping and

downstream analysis of
viable, antigen-specific
cells [82]

epitope knowledge
required for (chemically
modified) peptide-MHC,
oligomer production

Nickel (mimotope)

Amplified T cells libraries proliferation identification of low
frequency clones, HTS
possible [83]

work- and time intensive,
amplification of single
clones may deviate from
real-life conditions

Autologous skin
explant test

histo-pathological analysis
of human skin

histopathological score for
damage induced in skin
explants added to
chemical-treated
MoDCs—T cell
co-cultures [84,85]

time intensive,
limited availability of
skin samples

Cinnamic alcohol,
oxazolone

AIM assay activation-
induced surface protein
expression

fast, sensitive,
quantitative, downstream
analysis of life specific T
cells (further phenotyping,
TCR repertoire analysis)
[19,51,52]

less established for
antigen-specific CD8 T
cells, fluorescence
interferences may limit
analysis of high chemical
concentrations

TNBS,
Nickel

AIM—activation-induced marker; APC—antigen presenting cell; BB—Brandowsky’s base; CD—cluster of
differentiation; DNBS—2,4-dinitrobenzenesulfonic acid; DNCB—2,4-dinitrochlorobenzene; ELISA—enzyme-
linked immunosorbent assay; ELISpot—enzyme-linked immunoSpot assay; FITC—fluorescein isothiocyanate;
HCA—α-hexylcinnamaldehyde; hTCPA—human T cell priming assay; HTS—high-throughput sequencing;
ICS—intracellular cytokine staining; IFN—interferon; IL—interleukin; LC—Langerhans cells; LPT—lymphocyte
proliferation test; MoDCs—monocyte-derived dendritic cells; pMHC—peptide major histocompatibility com-
plex; PPD—p-phenylenediamine; TCR—T cell receptor; TNBS—2,4,6-trinitrobenzenesulfonic acid; TNF—tumor
necrosis factor.

3.1. Detection of Naïve T Cells

Unlike memory T cells, naïve T cells require further signals beyond TCR engagement,
including co-stimulation via CD28 and cytokines like interleukin (IL)-2, for full activation
and proliferation [86–88]. Professional APCs like DCs supply essential co-stimulatory
molecules like CD86 or cytokines, which also drive the shift of T cells towards effector and
memory phenotypes including Th1, Th2, or Th17 subpopulations [89].

Priming assays, among the first tests developed for skin sensitizers, are currently the
only ones that mimic the sensitization phase in vitro. These assays involve the co-culture
of naïve human T cells with APCs in the presence of a chemical, integrating the necessary
co-stimulatory signals from the innate immune system [31,90]. This approach not only
activates naïve T cells but also potentially allows for the assessment of chemical-induced
shifts in immune responses [17]. After the initial priming, cells are restimulated at one or
several time points.
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T cell responses are primarily evaluated by cell proliferation, traditionally using [3H]-
thymidine incorporation into DNA [17,18,70]. Results are expressed as counts per minute
(cpm) and typically converted into a stimulation index. The stimulation index quantifies
cell proliferation by comparing chemical-treated cells to unstimulated control cells under
identical conditions, thus accounting for biological variations [69,70]. Alternative tech-
niques have been established to replace radioactive thymidine due to safety concerns and
limitations in single-cell resolution. The use of fluorescent dyes (e.g., carboxyfluorescein
succinimidyl ester (CFSE) or Oregon Green) as well as proliferation markers like 5-bromo-
2′-deoxyuridine (BrDU) or Ki67, along with the detection of cytokines provides better
specificity for cell identification and allows for detailed phenotyping [18,30,32]. However,
these alternatives offer a lower sensitivity and make them less suitable for the identification
of small populations of proliferating cells.

Various adjustments have been implemented to increase assay sensitivity, including
modification of T cell and APC populations. Blood monocyte-derived DCs (abbreviated
MDDCs or MoDCs) or monocyte-derived Langerhans cells (MoLCs) are commonly used
APCs [17,18,91,92]. In the human T cell priming assay (hTCPA), additional stimulation to
support effective T cell priming has been used, e.g., the addition of CD28 antibodies for T
cell co-stimulation or maturation of immature MoDCs with stimulators like lipopolysac-
charide (LPS) [18,70]. However, it is important to note that once MoDCs mature, they
exhibit a significant reduced phagocytic capacity, which may limit their ability to effec-
tively take up and process haptenated proteins [92]. Other modifications in experimental
protocols, such as the addition of cytokines for improved T cell survival, the depletion
of several immune-regulatory cells (e.g., CD56+ and CD25+ cells), and/or blocking of
inhibitory checkpoint receptors (e.g., programmed cell death ligand-1 (PD-L1) or cyto-
toxic T-lymphocyte-associated protein 4 (CTLA4)) may contribute to an improved assay
sensitivity [32,70,91].

Despite advancements, human priming assays still face difficulties in the reliable
identification of sensitizing chemicals. Multiple restimulations may increase background
levels due to uneven proliferation of individual T cell clones in samples without antigen
stimulation. Optimization for individual parameters within the complex protocol remains
labor-intensive and time consuming with prolonged cultivation periods, thus challenging
the high-throughput implementation of priming assays [32].

3.2. Detection of Memory T Cells

Assays that evaluate the secondary immune response mediated by expanded effector
or memory T cells usually aim to detect chemical-specific T cells in previously sensitized
individuals. Naïve T cells do not typically proliferate in PBMC cultures unless they receive
both antigen-specific TCR engagement and co-stimulatory signals along with cytokine
support due to insufficient priming stimulation [86–88,92]. On the other hand, effector or
memory T cells can be efficiently detected. However, in a regulatory context it is crucial to
reach the detection limit in non-allergic donors. For some chemicals, like metals, specific
T cells can easily be identified in vitro. In contrast, other chemicals are more challenging,
e.g., due to low frequencies of specific T cells and/or difficulties in epitope generation (see
Sections 4.1 and 4.4).

3.2.1. Lymphocyte Proliferation Test (LPT)

The lymphocyte proliferation test (LPT), also termed lymphocyte transformation test
(LTT) or lymphocyte stimulation test (LST), measures the antigen-specific response of
effector or memory T cell populations based on their in vitro proliferation [16,74,93–95]. It
is also referred to as a lymphocyte activation test (LAT) in some literature [96,97]. PBMCs,
including both T cells and mainly monocytes and B cells as APCs, are cultured with the
chemical of interest (or otherwise chemical-induced epitopes, see Section 4.1), usually using
replicates. Cell proliferation is measured after several days, typically by [3H]-thymidine
incorporation and subsequent determination of the stimulation index (see Section 3.1).
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Alternative readouts, like cytokine production or the expression of several activation
markers, can also be combined with the proliferation protocol [98,99]. The addition of
several cytokines in cell culture medium has been proposed to enhance assay sensitivity,
but their use remains controversial as it may skew overall T cell responses by selectively
activating or suppressing specific T cell subsets [99,100].

One main challenge of the LPT is that it does not provide information on original
specific cell frequencies unless performed in the setting of limiting dilution cultures. In
addition, the results of the LPT may reflect altered frequencies of T cell subpopulations due
to varying division speeds [101].

3.2.2. Cytokine-Based Tests

Cytokine-based assays aim to quantify cytokine production by TCR-activated effector
or memory T cells and are commonly used as an additional readout of LPT or priming
assays [18,77,78].

Among these methods, the enzyme-linked immunosorbent assay (ELISA) or bead-
based immunoassays are widely employed to measure cytokine concentrations in cell
supernatants. Depending on the applied method, a single cytokine (ELISA), or a variety of
soluble analytes (e.g., cytometric bead array (CBA)) can be detected at a time [72]. However,
supernatant analysis does not identify cytokine production at single-cell level. In contrast,
ELISpot assays visualize cytokine-releasing cells as colored spots, enabling the quantifica-
tion of responsive individual T cells, though without preserving cell viability [78,102]. In
most studies, IFN-γ and IL-10 are the main redout, although ELISpot enables the detection
of a variety of cytokines in parallel, e.g., IL-2, IL-4, IL-5 or IL-13, to improve qualifica-
tion of the induced response [103]. Capture assays, such as the cytokine secretion assay
(CSA), also termed cytokine catch assay, detect cytokines at individual cell level while
maintaining cell viability [80]. Another approach is intracellular cytokine staining (ICS)
using multiparameter flow cytometry. This method employs protein transport inhibitors to
prevent extracellular cytokine migration, followed by cell fixation and permeabilization to
allow the penetration of fluorochrome-conjugated antibodies. While ICS enables analysis
of multiple cytokines and the phenotyping of responsive cells, it does not preserve cell
viability [79,104]

The isolated quantification of cytokines as a single readout is associated with certain
limitations. The complex nature of cytokine production makes it difficult to efficiently
capture antigen-specific responses at any given time point, as not all chemical-specific
T cells produce all cytokines [105]. Additionally, elevated or altered baseline cytokine
levels, especially during active inflammatory processes, can affect assay interpretation.
Furthermore, the detection of T cell subsets with low cytokine profiles can be challenging,
leading to incomplete characterization of certain T cell responses [106].

3.3. Detection of Both Naïve and Memory T Cells
3.3.1. Peptide-Major Histocompatibility Complex Class I and II Oligomers

The peptide-MHC oligomer technique analyzes the binding of T cells to specific
antigens via the interaction between TCRs and recombinantly generated soluble peptide-
MHC complexes. Fluorescent tetramers, as well as dimers, pentamers, and higher-order
oligomers of MHC I and II molecules loaded with specific peptides, bind to CD8+ or CD4+
T cells, respectively. Antigen-specific T cells are then identified using multiparameter
flow cytometry, which also allows for T cell phenotyping and isolation of specific viable T
cells [82,107].

The multimer approach is necessary to overcome the low avidity of TCRs, particularly
for CD4+ T cells, and stabilize their interaction with MHC [108–110]. However, it remains
unclear whether MHC oligomers can efficiently capture all relevant T cells, regardless of
their activation state or epitope avidity [111,112]. Nevertheless, the adaptability of the
assay for detecting chemical-specific T cells has been demonstrated by the development of
a nickel mimotope tetramer [107].
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Optimized protocols with magnetic-bead enrichment improved assay detection ca-
pabilities, allowing for the analysis of rare antigen-specific T cells even in unexposed
individuals [110,112]. Besides, a combination with mass cytometry is possible. In this
approach, antibodies labeled with isotopically purified metal conjugates are measured by a
time-of-flight mass spectrometer. This offers a wider range of parameter detection than
flow cytometry and fewer variations in signal intensity between parameters [113,114].

The main bottleneck of the peptide-MHC oligomer technique is that all relevant
contributors need to be known, including the presented peptide, the presenting MHC
protein and, in the case of chemical sensitizers, the haptenated entity. Moreover, the
complex production of peptide-MHC tetramer complexes, especially for MHC II, restricts
its widespread use [113,115,116].

3.3.2. Amplified T Cell Libraries

The in vitro generation of amplified T cell libraries enables the quantitative and func-
tional analysis of naïve and memory antigen-specific CD4+ and CD8+ T cells [83]. Initially,
T cells are isolated based on their naïve or memory phenotype, followed by polyclonal
expansion and subsequent stimulation of fractions of the expanded pools with autologous
monocytes, in the presence of an antigen. T cell proliferation of expanded antigen-specific
T cell clones is assessed via [3H]-thymidine incorporation or flow cytometry and can be
combined with further TCR repertoire analysis and cytokine detection assays [83,117,118].

This method offers high sensitivity in the detection of rare antigen-specific T cells.
However, it involves a labor-intensive process with extended culture times that requires
advanced expertise. Additionally, the in vitro expansion of T cells may not accurately reflect
in vivo scenarios due to possible outgrowth or loss of certain specific clones. Moreover,
potential phenotypic or functional alterations in T cells induced by in vitro manipulation
may also limit reproducibility of real-life settings [40,117]. To date, this method has not
been applied to chemical allergens.

3.3.3. Autologous Skin Explant Test

The human in vitro skin explant assay presents an alternative approach to assess
the skin sensitization potential of chemicals through a co-culture of MoDCs and T cells
from healthy individuals combined with a skin explant from the same donor [84,85,119].
Not unlike priming assay, fast MoDCs are generated (day 1), matured with maturation
stimuli (day 2), modified with chemical allergens (day 3), and then co-cultured with T
cells (days 4–7). Here, a comprehensive T cell pool is used (CD14- PBMC fraction), which
include all T cell subpopulations. Thus, the T cell responses observed in the assay may
consist of either primed naïve T cells or (cross-reactive) memory responses and includes
CD4+ as well as CD8+ T cells. Then, skin biopsies are co-cultured for another 3 days
(days 8–10).

By including a skin explant besides dendritic cell models and T cells, this assay mim-
ics the human in vivo relevant cutaneous immune response more closely compared to
other tests. Histopathological damage is the major readout and evaluated according to
the Lerner criteria, using hematoxylin and eosin staining [120]. The visible damage in
histological sections mainly reflects the response of keratinocytes to the inflammatory
environment generated by the in vitro culture, likely dominated by the proliferated, acti-
vated chemical-specific T cells. Additional readouts from parallel MoDC-T cell co-cultures
include cytokine (IFN-γ) assessment in the cell culture supernatants and T cell proliferation
via [3H]-thymidine incorporation. The assay has also been applied to biologicals and
small-molecule drugs, besides a comparatively large pool of sensitizing chemicals [85,119].
However, the complexity of the in vitro system may also pose some challenges, such as the
necessary logistics to obtain autologous skin samples.
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3.3.4. Activation-Induced Marker (AIM) Assays

AIM assays offer a short-term functional approach for the detection, isolation, and
potential expansion of antigen-specific T cells, even from low original precursor frequencies.
These assays are based on the upregulation of surface proteins (activation markers) upon
TCR stimulation [40,121,122].

The background expression of the activation markers can complicate the accurate
distinction of low-frequency T cell subsets, which compromises assay sensitivity [123,124].
Ideally, these markers should be expressed only after TCR interaction, independently of
cytokine secretion or cell differentiation stages, with fast kinetics sustained for a reliable
period [40,125]. Some early activation markers like CD69 are intrinsically expressed on
several T cell subsets or can be induced by TCR-independent signals [124,126]. Late activa-
tion markers, including HLA-DR (HLA-DR) and CD38, show high expression variability
and are also prone to TCR-independent bystander activation [127–129]. In contrast, CD154
(CD40L) is transiently expressed after 5–7 h on activated CD4+, and to a lesser extent
among CD8+ T cells, upon TCR engagement, with minimal bystander activation within
this time window [130]. CD154 is rapidly internalized after interacting with CD40, so its de-
tection is only possible intracellularly or with the concomitant addition of a CD40-blocking
antibody [106,123,131,132]. Another well-known marker is CD137 (4–1BB), which is up-
regulated primarily in CD8+ but also CD4+ T cells. Its expression generally peaks around
24 h, with regulatory CD4+ T cells showing peak upregulation at approximately 5 h, and it
remains detectable for up to 5 days [125,133–135]. Other surface proteins described in the
literature include CD134 (OX40) and programmed death-ligand 1 (PD-L1, CD274), which
are typically upregulated after 18–24 h [105,133]. It often remains unclear whether the
expression of these activation markers varies between cell types or in response to different
antigens. The lack of comparative data hinders a comprehensive understanding and the
accurate characterization of immune responses, particularly concerning low-frequency T
cell subsets [122].

The co-staining of activation markers, e.g., CD154 or CD137 with CD69 and Nur77,
an intracellular marker for TCR-mediated activation, can further confirm T cell speci-
ficity [40,126,136]. Other markers allow for simultaneous analyses, such as cell prolifera-
tion, single-cell cytokine detection, or T cell phenotyping, which also informs on in vivo
relevance [19,40,51,52,105]. For instance, HLA-DR, a late activation marker, and Ki-67,
a nuclear protein only expressed during active cell division, are often detected among
antigen-specific T cells [19,137]. Increased co-expression of cutaneous leukocyte-associated
antigen (CLA) on activated cells indicates skin-homing responses [138,139]. However, if
the frequency of antigen-specific T cells is low, the analysis of further markers may not
be feasible.

Using flow cytometry, only a limited number of cells can be acquired and computation-
ally processed within a reasonable timeframe, which contrasts with the need for a sufficient
number of target events for statistically robust analysis, particularly for certain subpopu-
lations [140]. To address these limitations, the antigen-reactive T cell enrichment (ARTE)
protocol has been developed as a modification of the AIM assay. This protocol involves
magnetic pre-enrichment of activation marker-positive cells, allowing for the acquisition
and analysis of rare antigen-specific viable cells from large blood samples [121,140]. Cur-
rently, ARTE has successfully been established for CD154 and CD137 [124,141]. Another
approach for flow cytometry is to acquire events specifically from target T cell subpopula-
tions to reduce data volume [19,51]. In both options, a small fraction of cells is analyzed in
detail to capture original frequencies within parent populations, providing information
about cell phenotype and functionality.

Further optimization of AIM assays, e.g., in analogy to priming assays, is possible and
it has to be tested whether this leads to improved chemical-specific T cell detection, e.g.,
using co-stimulation with CD28 or depletion of regulatory T cells [142].

Overall, AIM assays offer promising advantages for both laboratory and clinical
applications. Their shorter experimental time leads to fast results and facilitates their
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large-scale application. Because T cells do not divide during short-term stimulation, T cell
frequencies, phenotypes, and TCR profiles obtained remain unbiased, accurately reflecting
the in vivo repertoire and frequencies [143]. Specifically, the CD154-based CD4+ AIM
assay has proven to be highly effective in the identification of chemical-specific T cells,
underscoring its value for monitoring chemical-related immune responses [19,36,52].

4. Critical Steps for T Cell Assay Development

Several crucial steps are involved in the development of T cell tests (Figure 3), which
are discussed in the following sections.
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1 November 2024.

4.1. Generation of T Cell Epitopes

For most sensitizers, the identity of the induced T cell epitope and the conditions
required for efficient in vitro generation are not well understood. This renders the devel-
opment of T cell tests for chemical sensitizers more challenging compared to those for
protein antigens. The physicochemical properties of the sensitizer drive the molecular
mechanisms of its interaction with cellular components. Different aspects need to be con-
sidered, including protein binding affinity at different sites, chemical reactivity (including
pre- or pro-haptens), or solubility [45,144]. Covalent protein binding (haptenation) can
occur on extracellular proteins, which are subsequently processed by APCs, resulting
in hapten-derived peptides being presented on MHC II molecules to CD4+ T cells [145–
147]. Cross-presentation enables the activation of CD8+ T cells due to presentation of
haptenized peptides on MHC I molecules. Some haptens can penetrate into the cell and
modify intracellular proteins to serve as an epitope source, which is subsequently shuffled
into the MHC I presentation pathway [146,147]. Moreover, some chemicals have been
shown to covalently modify peptides bound to MHC molecules, leading to the formation
of TCR epitopes in a processing-independent way [145,148]. Others may alter intracellular
processes to produce neo-epitopes without chemical contact of the TCR [36,149,150]. As
a second main mechanism for epitope formation, some chemical-derived epitopes are
formed in a processing-independent way [151]. This has been described for metal aller-
gens where epitopes are formed via complex formation (coordination bonds), also termed
pharmacological interaction (or p-i) in the context of drug hypersensitivity [36,49,152].

In real life, proteins in the skin are typically modified. Such skin proteins are rarely
available in in vitro assays, but this may not pose a problem. According to the concept of T
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cell polyspecificity, sufficiently similar modified proteins or peptides can be processed and
presented by the APCs in the assay, thus engaging a representative fraction of the relevant
chemical-specific TCR repertoire, similar to the in vivo skin responses [95,153,154].

Considering the possible molecular mechanism for epitope formation in vivo, the
following four major in vitro approaches can be distinguished in the literature: separate
modification of the APCs, modification of model proteins, which are provided to the
APCs, direct addition of a chemical to the culture medium, and chemical delivery by
nanomaterials (Figure 4).
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chemical properties of a substance influence which epitope formation approach may be the most
suitable. For instance, certain features, like binding via complex formation (chelation) or insolubility,
may require direct addition into the culture medium or benefit from nanomaterial-mediated delivery,
respectively. Human blood samples serve as the cell source (e.g., for PBMCs, indicated here as white
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blood, buffy coats, and leukocyte depletion filters. APC—antigen presenting cells; HSA—human
serum albumin. Created in BioRender.com. Siewert, K. (2024). https://BioRender.com/b98e522,
accessed on 1 November 2024.

For sensitizers that interact via covalent protein binding (haptenation), APC modifica-
tion or the addition of modified proteins (or peptides) to the APCs have been described.
APC modification, also termed pulsing, facilitates efficient antigen processing under culture
conditions. Additionally, pre-haptens, which require prior oxidation, or pro-haptens, which
require metabolic activation, can convert into their immunogenic reactive forms. In contrast,
a second way comprises a short-term incubation with a chemical for ~10 min in PBS which
may limit toxic effects due to the shorter exposure time. This latter approach allows for a
targeted modification of pre-existing surface peptide-MHC complexes, due to the lack of
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reactive proteins in the cell culture medium [52,70]. To determine if a chemical-induced
epitope requires antigen processing, APCs can be fixed with glutaraldehyde, which leads
to an immediate stop of antigen uptake and processing [18,70].

The use of haptenated model proteins provides an excess source of extracellular protein
for APC processing. Human serum albumin (HSA) is often used as a model protein due to
its several lysine and cysteine residues, which readily react with many sensitizers, including
nickel and 2,4-dinitrobenzenesulfonic acid [70,155]. Moreover, HSA is the most abundant
plasma protein and a common carrier protein in the skin [156,157]. The modification
of a single protein provides a limited number of functional groups and consequently,
a restricted range of potential T cell epitopes [153,158]. To better mimic the extensive
protein diversity encountered during skin sensitization, the modification of a well-defined
mix of model proteins (e.g., skin) may improve in vitro epitope formation [159]. Each
haptenated model protein or peptide should also be tested without chemical modification to
determine background T cell reactivity. Successful protein modifications can be determined
analytically, e.g., by mass spectrometry.

The direct addition of the chemicals to the cell culture medium is a straightforward
approach to induce T cell responses but requires careful controls for toxicity and cell
functions (see Section 4.2). For chemicals that form T cell epitopes via complex formation,
such a direct application is essential to maintain the reaction equilibrium.

As an additional approach, the encapsulation within nanomaterials potentially of-
fers an improved epitope formation for insoluble chemicals by maintaining availability,
dispersibility and stability in aqueous solutions. Nanomaterials may be taken up by the
APC and deliver chemicals for intracellular protein modification. This approach potentially
boosts T cell activation, further preventing chemical aggregation and protecting against
metabolic or oxidative degradation. It also enables the controlled release of haptens over
time, thus mimicking in vivo conditions [160–162]. As the use of nanomaterials is already
a dynamic field in drug delivery research, an adaptation to the assessment of chemical
sensitizers in T cell tests seems promising.

4.2. Determination of Suitable In Vitro Assay Conditions

For each chemical and epitope generation approach, suitable chemical concentration
ranges should be determined by performing a concentration-dependent stimulation to
assess assay interferences and potential toxic effects.

Autofluorescence, which is an inherent property of several chemicals, can compli-
cate the detection of fluorescence-based parameters. To address this issue, it is possible
to either select autofluorescence-free flow cytometry channels or to employ alternative
detection methods, such as cytometry by time-of-flight (CyTOF) or through [3H]-thymidine
incorporation. Moreover, chemical binding to the cell membrane can interfere with the
binding of viability stains or antibodies, thereby affecting flow cytometry results (unpub-
lished own observation) [163,164]. However, assay interferences due to reduced antibody
binding are unlikely to occur when modified APCs or proteins are used as the bases of
epitope formation.

Monitoring cell viability and functionality is essential for the accuracy and reliability
of T cell assays. Multiparameter flow cytometry is widely used for this purpose, as it allows
for the discrimination between viable, apoptotic, and necrotic cells across different cell types
and subpopulations [165]. Depending on the kind of epitope formation approach, monitor-
ing the functionality of the T cells and/or the APCs, often a more sensitive parameter than
cell viability, is necessary. Proper cell function can be assessed by concurrent incubation of
a positive control with the chemical concentrations of interest. The positive control should
trigger widespread activation in a processing-independent manner to determine if T cell
function is affected. A decrease in control-mediated T cell activation in response to increas-
ing chemical concentrations will indicate functional defects. For this purpose, polyclonal
stimulation controls, such as the superantigen staphylococcal enterotoxin B (SEB), have
been employed recently in AIM assays [51,52]. It is also imperative to monitor the viability
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and function of APCs, particularly with regard to the processing-dependent formation of
epitopes. Co-exposure to a universal, processing-dependent antigen may help to evaluate
APCs’ function (Seifert et al., in preparation). Of note, a preserved APC function during the
initial hours of antigen incubation can be sufficiently effective to generate chemical-induced
epitopes and specific T cell activation. In contrast, chemicals that act as pre- or pro-haptens
may require functional APCs for extended periods.

If solvents like dimethyl sulfoxide (DMSO) are used, their effects on cell viability
and function should be carefully monitored. To exclude solvent-related effects, a con-
sistent concentration of the solvent should be maintained throughout the experimental
protocol [166,167].

The tolerable concentration of a chemical in the assay can differ depending on the
incubation time and the type of cells used. For example, PBMCs in AIM assays may
tolerate higher chemical concentrations compared to PBMCs in proliferation assays, due
to the shorter experimental time. Careful adjustment of all the described parameters is
essential to ensure that assay conditions accurately reflect biological responses. Accordingly,
the concentration selected for the T cell assay should be the highest non-toxic level, for
example preserving 75–80% of the signal detected in the assay readout. Subsequently, lower
concentrations are expected to have no toxic effects. These adjustments will guarantee the
reliability and reproducibility of assays while minimizing potential confounding effects on
T cell function and assay outcomes.

4.3. Confirmation of Chemical-Specific T Cell Responses

Once a signal is obtained from a T cell test, it should be verified to distinguish be-
tween true TCR-mediated responses and bystander activation. For instance, higher nickel
concentrations were previously interpreted as nonspecific mitogenic effects [168,169]. How-
ever, AIM assay data confirmed that nickel-specific T cell responses are induced via the
interaction of Ni2+ ions with certain features of the TCR repertoire [19,51].

In most assays, the confirmation of T cell signals has traditionally relied on the gen-
eration of clones or lines from activated cells, followed by restimulation with the original
antigen. Since all T cell clones originate from a single T cell, they share the same TCR
sequence and antigen specificity. If these clones react positively upon re-exposure to
the original antigen, it confirms specific TCR involvement. These clones can be further
characterized for research purposes through cytokine and chemokine analysis or HLA
typing. In addition, this method allows for the assessment of potential cross-reactivities by
demonstrating positive responses to non-original but related antigens [40,51]. However,
the experimental protocol for generating clones is labor-intensive and time-consuming, in-
volving several steps such as culture with feeder cells, expansion, and splitting if necessary.
Furthermore, clone restimulation requires autologous APCs, like CD3-depleted PBMCs or
Epstein–Barr virus (EBV)-transformed B cells. This can be challenging due to the limited
availability of blood samples or the biosafety level 2 requirements, respectively [40,121,139].

To verify MHC restrictions, MHC-blocking antibodies or isotype controls can be
employed. These antibodies prevent T cell activation by targeting specific MHC molecules,
whether class II (HLA-DR, -DQ or DP) or class I (HLA-A, -B and -C) [40,51,52,170]. This
approach is most effective with T cell clones or lines, because blocking antibodies may not
be completely effective, particularly due to differences in HLA alleles. As a result, small
signals, such as those frequently obtained in assays using bulk PBMCs, may be less reliably
controlled by MHC blocking [40,51,52].

Distinctive TCR repertoire features or CDR3 motifs can also serve as indicators of
chemical specificity in activated T cells. For example, in nickel-specific T cells, an over-
representation of the TRAV9-2 gene segments (TAV9-2) and histidine in the CDR3 region
indicates TCR-mediated activation [19]. Similar results have been observed for cobalt and
palladium and the experimental allergen TNBS, but these features remain to be determined
for other chemicals [51,52].
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Lastly, differences in cytokine production, phenotypes, proliferation, or frequencies
of specific T cells between allergic and non-allergic individuals can indicate specific T
cell activation. Increased signals in allergic individuals also demonstrate that the in vitro
test accurately reflects in vivo immune responses, as has been shown for nickel or p-
phenylenediamine (PPD) [19,171].

4.4. T Cell Test as Diagnostic Tool

The gold standard for diagnosing ACD in clinical practice is the patch test which,
despite its widespread use, has several limitations. The patch test is an epicutaneous
provocation test in which the allergic skin responses of a patient to small amounts of
potential allergens on the back are evaluated at repeated time points. One difficulty is
that patients with active skin conditions may be unable to undergo testing. In addition,
there is a lack of test preparations for less common allergens, which are not included in the
predefined patch test panel [172,173]. Furthermore, some allergens may not penetrate the
skin efficiently. This phenomenon has been observed in studies examining the reactivity of
palladium, a metal allergen, and in investigations of tattoo ink reactions [174,175].

Blood-based in vitro T cell tests, particularly LPT and AIM assays, provide several
advantages over the current diagnostic standard [99,176]. They eliminate the discomfort
associated with patch testing and reduce the need for multiple visits in the clinic. Particu-
larly, AIM assays offer short processing times, which enables the evaluation of the allergic
state within ~48 h after blood sampling. Additionally, in vitro readouts provide a less
subjective result compared to patch tests readings and a wider range of potential allergens
beyond those applicable in patch test preparations can be tested. Since in vitro tests do
not rely on skin penetration, systemic reactions, like adverse drug reactions or implant
failure due to allergic reactions, may be more readily detectable with a blood-based assay.
Documented half-lives for antigen-specific memory T cells, as seen with vaccinations or
infections, and general clonal persistence in longitudinal studies indicate that increased
T cell frequencies can be detected over time [42,177–179]. In addition, acute eczema and
the related ongoing T cell responses may be more clearly identified and linked to the
causative allergen. For example, patients who recently underwent patch tests exhibited a
marked increase in nickel-specific CD154+CD4+ memory T cells that were also frequently
CLA-positive, likely associated with active skin eczema, compared to patients tested in
the distant past [19,180]. Thus, in vitro T cell tests would offer an accurate, comprehensive,
and more patient-friendly diagnosis of contact allergies. In addition, improved allergy
diagnosis can also provide data to further improve regulatory risk assessment.

Still, current challenges limit the replacement of patch tests by in vitro tests, which
are not yet accepted as diagnostic tools [181]. One key issue is how well blood reflects
the immune status of the skin, given that some T cells circulate between the two compart-
ments while others remain resident [43,182]. Other limitations include the need to better
understand and optimize the in vitro epitope generation and the selection of appropriate
concentrations for each chemical (see Sections 4.1 and 4.2). Particularly, the CD154- and
CD137-based AIM assays for antigen-specific CD4+ and CD8+ T cell detection have poten-
tial for further development as a diagnostic tool [19,125,140]. However, studies comparing
current clinical diagnostic methods, including patch testing, medical history, and relevance
assessment, with T cell test results are needed.

In general, positive results from diagnostic tests indicate sensitization, whereas the
actual manifestation of allergic symptoms, referred to as in vivo relevance, may vary. Con-
sequently, a positive patch test or induced T cell activation may not always accurately reflect
in vivo conditions. In vitro, excessively high chemical concentrations may lead to extended
T cell activation that may not reflect real-life scenarios, as described for palladium [51,174].
Therefore, determining the range of local in vivo concentrations of chemicals in the skin
and/or draining lymph nodes, known as exposure assessment in risk assessment, would
be crucial to interpret T cell test results. This topic, however, lies beyond the scope of
this review.
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5. Remaining Challenges and Future Directions

The regulatory implementation of predictive T cell tests for sensitizing chemicals
requires a strategic approach that overcomes several challenges. Ideally, chemical-specific
T cells will be detected using PBMCs from blood donations and thus likely non-allergic
individuals, which requires clarification of ethical issues. The number of required blood
samples that is needed to cover both intra- and inter-donor variations, arising from, e.g.,
sampling effects, differences in TCR repertoires, HLA haplotypes, or immune status and
age, still needs to be determined. If rarer alleles are involved, a test with a limited number
of donors will not reliably detect T cell responses associated with specific HLA haplo-
types. While no HLA associations have been identified for contact allergies, certain drug
hypersensitivities are linked to specific HLA haplotypes [47].

Another relevant question is whether to interrogate the naïve or memory T cell pool.
The naïve T cell pool is more diverse, but the memory pool may still contain a sufficiently
extensive TCR repertoire to detect chemical-specific T cells [19,26,45]. Memory T cells are
easier to handle, as they do not require priming. They have already been preselected for
antigen reactivity, which means they potentially comprise a higher proportion of responsive
TCRs. Pre-existing memory T cells may even be recruited during chemical sensitization
in vivo, as shown analogously for memory B cells [183]. However, it is difficult to trace
their specific involvement because TCRs do not undergo somatic hypermutation like B
cells. Moreover, memory T cells have already undergone differentiation and may not fully
translate innate signals from chemical-treated APCs into phenotypic changes as effectively
as naïve T cells when used in priming assays.

The assessment of T cell cross-reactivity to predict potential cross-allergies is a major
unmet regulatory need. Currently, the most commonly used method involves the genera-
tion, expansion, and restimulation of chemical-specific T cell clones or lines, which is highly
labor-intensive. In silico methods are not yet capable of predicting TCR reactivity [184].
Recently, bulk high-throughput TCR sequencing has emerged as a promising solution to
assess cross-reactivity among activated expanded memory T cell clonotypes identified by
the AIM assay. Cross-reactivity must be analyzed within the T cell pool from the same
individual, as TCR repertoires are unique to each person. The assessment of the β-chain is
sufficient to identify cross-reactive clonotypes, but additional α-chain analysis may reveal
unique binding sites [19,51].

A T cell assay could offer valuable insights in a tiered approach for hazard identi-
fication, particularly in the assessment of chemicals that show discrepancies or unclear
results in current KE1-3 NAM, LLNA, and human data. However, a negative T cell test
result remains inconclusive until more experience is gained with known skin sensitizing
chemicals. In this context, in vitro T cell assays may not always provide sufficient pre-
dictions of human clinical outcomes but rather complement existing approaches. T cell
tests alone may underestimate severe adverse reactions, if they do not effectively mimic
in vivo conditions for antigen presentation. This emphasizes the need for more compre-
hensive and integrated approaches for safety assessment beyond in vitro T cells tests alone.
As a final objective, the practical application of in vitro T cell assays within regulatory
frameworks would be highly beneficial. Currently, the state of T cell tests for regulatory
purposes could be assigned a regulatory readiness level (RLL) of 2 (mid research stage),
as reviewed and outlined by Haase et al. [185] The scientific relevance should be further
illustrated by case studies. Standardization and validation of these assays must follow a
structured pathway to ensure their acceptance and implementation. First, internal valida-
tion must be achieved with a clear protocol (SOP; standard operating procedure) with a
well-defined endpoint and applicability domain [32,185]. This preliminary process also
includes the validation of the accuracy and reproducibility of the assay. Next, large-scale
inter-laboratory validation studies should be conducted to further confirm the transferabil-
ity, reproducibility, and reliability of the assays. In these trials, participating laboratories
will adhere to the established protocol while conducting independent assays with their
own setups, to assess the effectiveness of the assays across diverse environments. To the
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best of our knowledge, there is currently no established standardization or inter-laboratory
collaboration specific to a regulatory T cell test. However, upon successful completion
and data analysis to determine accuracy, predictive capacity, applicability domain, and
performance standards of an assay under these settings, a final report can be submitted to
a recognized validation organism, such as the European Union Reference Laboratory for
Alternatives to Animal Testing (EURL ECVAM), which will evaluate whether the method
meets the necessary criteria for formal validation. After successful validation and potential
approval, the assays can be proposed for inclusion in the OECD test guidelines, facilitating
their acceptance in regulatory frameworks throughout the EU and other OECD member
countries [186,187]. Nevertheless, since not all NAMs can be prioritized for inclusion in
the OECD test guidelines, a potential alternative which is currently in evaluation is the
establishment of a qualification system. This system is assessed by experts to ensure that
NAMs are used effectively in suitable contexts and to help optimize them for regulatory
applications [185]. Besides, continuous monitoring of the assay protocol is essential to
maintain ongoing effectiveness and relevance. Looking ahead, it will be important also
to assess respiratory sensitizers and drugs, including biologicals [85,119]. Further, NAMs
should aim to replace or reduce the use of animal-derived products, such as bovine serum
or animal-derived antibodies, with several options already available [188,189].

An important emerging field comprises efforts towards a precise assessment of the
potency of skin sensitizers, i.e., the dose per cm2 of skin associated with a certain degree
of sensitization within a fraction of individuals, optimally measured on a continuous
scale [190–192]. This information is relevant as it should help to define safe levels and
enable risk assessment beyond hazard identification. Potency data are derived from dose-
response curves (hazard characterization). A combination of methods from the different
KEs in the skin sensitization AOP is likely needed to obtain reliable values. Integrating
findings from various testing methods, such as T cell assays, could lead to better-defined
applicability domains for chemicals, ultimately enhancing regulatory risk assessment. It is
still unknown to which extent immunological responses, which may include tolerance and
threshold mechanisms, follow conventional dose-response curves [193,194]. Concentration-
dependent T cell activation has been shown for metal allergens binding via complex
formation [19,51]. However, how and whether frequencies of in vitro reactive T cells can
be translated into potency data is still uncertain and further experience with additional
chemicals is needed [26,31,32].

6. Conclusions

Overall, T cell assays remain demanding experimental methods due to the intricacies
of chemical-induced epitope generation, combined with the need to identify specific T
cells among numerous irrelevant bystanders. Recently, AIM assays have been adapted
to investigate skin sensitizers [19,51,52]. Particularly, CD154-based AIM assays are fast,
highly sensitive, comprehensive, and directly quantitative methods for antigen-specific
CD4+ T cell responses, supporting an efficient optimization of experimental conditions
without prior knowledge of epitopes or cytokine secretion patterns. When combined with
bulk TCR high-throughput sequencing, AIM assays can assess T cell cross-reactivity more
efficiently than restimulation of specific T cell clones or lines [51].

The in vitro T cell tests presented here highlight the advantages and potential of NAMs
by being directly relevant to human conditions, offering ethical benefits, and providing
new insights not available from animal models. However, more resources are needed
to test more chemicals and facilitate regulatory implementation. While not all chemicals
or substances may require T cell testing, bridging the T cell-related gap in NAM-based
sensitizing chemical hazard identification could significantly complement and enhance
regulatory frameworks.
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