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Editorial

Artificial Intelligence in Fault Diagnosis and Signal Processing
Andres Bustillo 1,* and Athanasios Karlis 2

1 Department of Computer Engineering, Universidad de Burgos, 09006 Burgos, Spain
2 Department of Electrical and Computer Engineering, Democritus University of Thrace, 67100 Xanthi, Greece;

akarlis@ee.duth.gr
* Correspondence: abustillo@ubu.es

1. Introduction
Industry 4.0 has become a driving force in both the research and improvement of

manufacturing processes within industrial environments. However, this term serves as an
umbrella under which different technologies converge with a common goal: enhancing
industrial conditions in terms of productivity, reliability, ecological impact, and worker’s
safety [1]. Within this umbrella is the integration of various advanced technologies, such
as robotics, digitalization, the Internet of Things (IoT), extended reality (XR), 3D printing,
artificial intelligence (AI), and digital twin (DT) technology [2]. Each of these advancements
plays a distinct yet complementary role in the evolution of industrial automation. For
example, robotics and 3D printing increase the automation of manufacturing processes,
while others, such as IoT and AI, provide tools to manage and extract valuable insights
from large volumes of data [3]. Additionally, some technologies focus directly on workers’
safety and training, such as extended reality [4]. Although these technologies may seem
disconnected at first glance, all of them play a major and complementary role in the
common goal of industry automatization and advancement. For instance, the inclusion of
biosensors in XR simulators to improve workers skills and their productivity will require
the use of IoT to extract real data from their performance and AI tools to adapt the XR
simulators in real time to the worker’s emotional state and cognitive workload [5]. Digital
twins (DTs) replicate physical assets in near-real-time, integrating real-world sensor data
with advanced modeling for enhanced analysis. In fault prognostics, they aid by simulating
expected operational behavior or potentially destructive cases, enabling early diagnostics
and risk assessment. AI further benefits from the resulting data augmentation, improving
predictive accuracy and decision-making [6].

To maximize industrial process reliability, the detection and diagnosis of faults is
essential. Early fault detection in machinery will avoid damage in both critical machine
components and workpieces. Additionally, in terms of industrial safety, this would facil-
itate safer operations, reducing the risk to plant workers. Therefore, the early detection
and correct diagnosis of faults will facilitate decision-making that allows corrective actions
to be taken to repair damaged components. In recent years, fault detection techniques,
combining artificial intelligence and signal processing, have emerged to achieve this goal
for different industrial processes, such as energy generation [7], machining [8], or chemical
processes [9]. However, the topic continues to generate new trends [10] in methodologies
related to multiple fault detection, novelty detection, data mining, hardware development,
etc. Continuous advancements in this domain have led to the integration of more sophis-
ticated methodologies that leverage domain-specific knowledge to enhance multi-fault
classification and predictive maintenance capabilities. These developments highlight the
increasing role of feature engineering and specialized knowledge in refining AI-driven
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fault detection strategies, contributing to more accurate and computationally efficient
solutions [11].

This Special Issue aims to compile novel research findings merging artificial intel-
ligence and signal processing techniques to boost fault diagnosis. The selected works
consider not only the development of new techniques but also their industrial implementa-
tion, with real-world industrial requirements in mind.

2. An Overview of Published Articles
This Special Issue compiles 15 research works and one review focusing on artificial in-

telligence and signal processing techniques applied to fault diagnosis in different industrial
problems and environments.

In these works, different signals are acquired and processed. Signals extracted from
most of the most widely used sensors are considered: linear strain gauges, temperature
sensors, vibration and acoustic sensors, among others. These signals address a vari-
ety of real-world problems, such as data imbalance, management of missing data and
outliers, data augmentation, pseudo-anomaly sample generation, and the creation of
benchmark datasets.

In addition, different signal processing techniques and artificial intelligence techniques
have been proposed as the most suitable solutions for modeling and extracting information
from signals of different natures. Most systems combine time-series data analysis methods
for preprocessing with supervised or unsupervised learning methods for system prediction.
Some examples of the time-series data analysis methods for preprocessing proposed in
these works are cluster-based segmentation or Mel-frequency cepstral coefficients, discrete
wavelet transform, and hybridization of principal component analysis and kernel regression
methods based on mutual information. The learning methods for system prediction
proposed in these works are cutting-edge solutions, such as convolutional neural networks,
extreme learning machine classifiers, the YOLOv8 deep neural network, deep support
vector data description models, and one-dimensional convolutional neural networks.

Finally, this combination of artificial intelligence and signal processing techniques has
been applied to different fault diagnosis cases. Some of these cases are related to high-
end industries, such as the fault detection of next-generation chemical reaction devices,
temperature-based warnings in high-speed trains, or defect detection in the manufacturing
of laminated composites or printed circuit boards. Some others are focused on well-
spread moving devices with a high impact on our society, such as real-time monitoring
of conveyor belt damage, engine fault detection of traditional vehicles, fault detection of
gears in machinery systems, or positional accuracy degradation in industrial robots. Lastly,
others are focused on mechanically fixed structures, such as superficial defect detection
for concrete bridges or submerged structure–foundation systems. In this way, this Special
Issue covers a wide range of highly demanding applications.

To support this descriptive analysis, a bibliometric analysis was conducted on the 16
manuscripts included in this Special Issue. Figure 1 shows a cloud graph of the words
included in the keywords of these works. Firstly, this figure outlines the orientation of all
works with the Special Issue topic, being the words machine learning and those words
related to fault diagnosis (predictive maintenance, faults diagnosis, and detection) the
most relevant. Secondly, it includes words related to the most promising machine learning
techniques for these purposes, such as deep learning, convolutional neural networks, or
adversarial learning. Thirdly, it includes words about the main signals to be taken into
consideration in this field, such as temperature, vibration, or acoustic. Fourthly, it includes
words that highlight the main challenges of machine learning in this field of application,
such as data imbalance, benchmark datasets, or cluster detection. Finally, it includes

2
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words related to the final application of these techniques to this research field, such as belt
conveyors, circuit boards, or failure analysis. In summary, Figure 1 shows the convergence
of published keywords in the works included in the Special Issue, by means of using
different machine learning techniques and sensors’ signals in different industrial problems
but facing the same challenges and finding generalizable solutions.
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cessing of complex systems. These techniques help overcome intrinsic limitations in fault
diagnosis, such as dataset imbalance, the scarcity of rare fault instances, signal deviations
caused by component wear over time, and the lack of labeling processes due to time and
cost constraints [12]. Addressing these challenges effectively and implementing these
techniques in industrial settings will aid in the broader adoption of Industry 4.0 paradigms,
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An Enhanced Contrastive Ensemble Learning Method for
Anomaly Sound Detection
Jingneng Liao 1,2, Fei Yang 1,2,* and Xiaoqing Lu 1,2
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2 School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China
* Correspondence: f.yang@whu.edu.cn

Abstract: This paper proposes an enhanced contrastive ensemble learning method for
anomaly sound detection. The proposed method achieves approximately 6% in the AUC
metric in some categories and achieves state-of-the-art performance among self-supervised
models on multiple benchmark datasets. The proposed method is effective in automatically
monitoring the operating conditions of the production equipment by detecting the sounds
emitted by the machine, to provide an early warning of potential production accidents.
This method can significantly reduce industrial monitoring costs and increase monitoring
efficiency to improve manufacturing facility productivity effectively. Existing detection
methods face challenges with data imbalance caused by the scarcity of anomalous samples,
leading to performance degradation. This paper proposes an enhanced data augmentation
method that improves model robustness by allowing the data to retain the original features
while adding noise close to the real environment through a simple operation. Secondly,
model feature extraction is enhanced by using channel attention to fuse time-frequency
features. Thirdly, this paper proposes a simple anomaly sample generation method, which
can automatically generate real pseudo anomaly samples to help the model gain anomaly
detection capability and reduce the impact of data imbalance. Finally, this paper proposes
a statistical-based bias compensation that further mitigates the impact of data imbalance
by distributing samples through statistical induction. Experimental verification confirms
that these changes enhance anomalous sound detection capability.

Keywords: anomaly sound detection; deep learning; self-supervised learning; fault diagnosis

1. Introduction
Anomaly sound detection (ASD) is an algorithm used to ascertain whether the sound

emitted by an object under test is in an abnormal state. This algorithm is widely applied
in various fields, particularly in the industrial manufacturing systems [1,2]. Machine
equipment generates sounds during operation, which reflect its current working status.
Utilizing ASD algorithms can effectively monitor the operational conditions of the ma-
chines being tested and issue early warnings for potential anomalies, thereby preemptively
averting potential production accidents and machine failures. However, in reality, it is
often challenging to obtain a large number of valid anomaly sound samples. Consequently,
anomaly sound detection tasks frequently encounter the issue of extreme data imbalance.
This imbalance also leads to a blurred definition boundary between normal and anomaly
samples, which will affect the accuracy of anomaly sound detection methods.

ASD generally requires sufficient positive and negative samples. However, in the
real-world scenarios, collecting comprehensive and representative negative samples can

Appl. Sci. 2025, 15, 1624 https://doi.org/10.3390/app15031624
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be challenging due to their inherent diversity and scarcity. Consequently, many existing
studies exploit only positive samples instead [3,4]. One of the most common methods
is based on statistics, such as the outlier detection [5], K-means [6] and density-based
detection method [7]. This method assesses whether the input sample is anomalous by
measuring the distance from the observation to the centroid of each sample cluster. In
recent decades, classifier-based methods have become a trend. For example, deep learning-
based methods [8,9] train a neural network to find the relationships between the sound
representations and the equipment status. A classifier is then used to detect anomalies.
What is more, reconstruction-based methods can also be applied to anomaly detection, such
as autoencoder [10] and Generative Adversarial Networks (GANs) [11]. This method per-
forms anomaly detection by calculating the reconstruction error between the reconstructed
sample and the input sample. After training, the model can only accurately reconstruct and
map normal samples. Therefore, abnormal samples often cannot be reconstructed properly,
resulting in a larger reconstruction error.

Although these methods are effective, they still have many drawbacks. For example,
statistical-based methods directly adopt feature reduction techniques, which may fail to ac-
curately capture the distribution of complex real-life data. This can lead to excessively large
clusters, thereby compromising the anomaly detection capability. Similarly, reconstruction-
based methods are also struggle with complex and high-dimensional data, making it
difficult to efficiently distinguish between normal and abnormal samples when determin-
ing the decision boundary, which affects the model’s judgment results. While GANs can
mitigate this shortcoming, most GAN models have strict requirements for training samples,
and the performance of the generator and discriminator affect each other. These issues also
contribute to poor model performance. With the development of deep learning networks,
using complex neural network models can effectively fit high-dimensional data to obtain
a more accurate feature distribution. However, in reality, it is often difficult to collect a
large and diverse set of abnormal samples. This results in complex neural network models
performing anomaly detection in the absence of abnormal samples, leading to a significant
reduction in model performance as the model is unable to understand the distribution of
abnormal samples and potentially causing overfitting. Additionally, due to data imbalance,
the model may develop bias, leading to degraded detection performance or even model
collapse, resulting in trivial solutions. Although numerous methods [12,13] exist to address
the bias problem in neural networks caused by data imbalance, most of these methods are
based on federated learning. Therefore, when applied in real manufacturing environments,
they are constantly faced with communication and device heterogeneity issues, while these
methods may be difficult to apply in large-scale industrial deployment environments.

Therefore, this paper proposes a novel self-supervised learning approach. The pro-
posed network is not only able to learn the feature representations of normal samples while
mitigating the bias arising from the imbalanced dataset, but it is also able to swiftly generate
effective abnormal samples and attend to learn the feature distribution of the potentially
real-life abnormal samples. The detailed contributions are as follows. Firstly, this paper em-
ploys a novel improved spectrogram augmentation method and proposes a cross-domain
data representation approach specifically for original audio format data, encompassing
features in the time domain, frequency domain and statistical domain. Secondly, this
paper proposes an improved novel self-supervised learning network for anomaly sound
detection tasks. After being tested on multiple datasets, the model demonstrates excellent
performance. Lastly, this paper proposes a simple method for generating anomaly sam-
ples, which can effectively assist the model in learning the features of potential real-life
anomaly samples.
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2. Materials and Methods
2.1. Motivation

As neural networks continue to evolve, neural network-based deep learning methods
have increasingly become the primary approach for ASD. However, in real-life industrial
manufacturing environments, it is difficult to obtain accurate data labels, making it difficult
for common deep learning approaches to perform. This results in the formulation of a
solution based on a self-supervised approach. The self-supervised learning process enables
the model to effectively capture the global feature distribution. Self-supervised learning
methods spontaneously mine feature information based on auxiliary tasks through the
construction of these tasks, and generalize this to general features, thereby accomplishing
the modeling of the model’s global feature distribution. In the task of ASD, common
self-supervised learning approaches employ auxiliary classification methods or contrastive
learning techniques. For example, reference [14] collects phase and amplitude features
from the data, utilizing a self-supervised classification network and attention method for
auxiliary classification, thereby enabling the model to acquire feature modeling of normal
sample data and realize the capability of abnormal sound detection; reference [15] employs
a flow-based density estimation model, integrating self-supervised classification methods
with unsupervised density likelihood estimation approaches to enhance the model’s ca-
pability for ASD; reference [16] employs contrastive learning method by calculating the
cosine angle between positive and negative samples, enabling the model to simultaneously
learn the distributions of normal and abnormal features.

Although these techniques may prove effective in the detection of anomalies, the
resulting precision may be compromised. This is because the issue of neural network bias,
which is caused by the imbalance in the amount of data, is not taken into account in the
feature representation. Furthermore, the problem of model collapse, which occurs in the
absence of valid anomaly samples, is also overlooked. Consequently, this paper presents a
novel model that addresses these issues. It is capable of gathering more comprehensive
feature data, rectifying the bias issue inherent to neural networks, and performing multi-
domain fusion and adaptive weighting of multi-domain information. Furthermore, it can
quickly and effectively generate high-quality anomaly samples during the training process,
thereby enhancing the model’s overall anomaly detection capabilities. The model has
been subjected to extensive experimentation with multiple datasets, and a comparative
analysis of the experimental results has demonstrated its efficacy in anomaly detection
and generalization.

2.2. Data Processing

To enhance the performance of the model in capturing the features of the original data,
this paper implements multi-domain data processing in the source audio data, encom-
passing not only the time domain but also the frequency domain and statistical domain.
This enables the model to obtain a more comprehensive representation of the data in low
dimensions, facilitating a more nuanced and comprehensive understanding of the data. In
this paper, the log-mel transform [17] is employed for frequency domain feature analysis
and extracts the log-mel power spectrogram and the log-mel magnitude spectrogram from
the input audio signals. In contrast, the Mel spectrogram is used to represent the features
of the statistical domain.

2.3. Data Augmentation

In order to improve the model’s generalization ability, this paper used a mixup [18]
based on the audio clipping augmentation approach. For the spectral feature maps, the
target spectrograms were randomly cropped at the top left and bottom right, and the
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clipped portion was spliced with other spectrograms, while mixup enhancement was used
to increase the diversity of the data and reduce model overfitting. The procedure is shown
in Figure 1. Compared to other cropping augmentation approaches such as cutout [19], the
method proposed in this paper ensures the possession of both original and interference
features at every time pin and every frequency value. In order to maximize the introduction
of interference factors without significantly disturbing the original feature information, the
cutting points on the frequency domain axis and the time domain axis are designed to be
complementary during the shearing process. The methodology is as follows:

x ∈ (1,
3
4

F),

y ∈ (1,
3
4

T),
(1)

where F represents the frequency domain axis length, T represents the time domain axis
length, x and y represent the random cropping points on their respective axes, respectively.

Figure 1. Spec1 and Spec2 represent two different spectrograms, and the cropping points for each
axis in each spectrogram are complementary.

Subsequently, a mixup-based augmentation was conducted on the two cropped spec-
trograms, utilizing a mixing ratio factor to combine the two inputs and the corresponding
labels in a specified ratio. The mixup-based augmentation is as follows:

x = (1 − λ)x1 + λx2,

y = (1 − λ)y1 + λy2,
(2)

where x1, x2 refers to input samples and y1, y2 refers to their corresponding labels. x, y
refer to the mixed sample and its label.

2.4. Contrastive-Based Spectrogram Domain Model

For the raw data, this paper transforms the signal data into log-mel power spectrogram
and log-mel energy spectrogram via log-mel transformation [17], and then concatenates
these two spectrograms via channel dimension, which enhances information features of
frequency domain at minimal cost.

After that, this paper designs an improved contrastive learning-based model. The
structure is depicted in Figure 2. This model is divided into a pre-training feature con-
trastive training and anomalous samples fine-tuning model. The aim of the pre-training
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process is to allow the model to gain feature extraction capability for each category of sound
frequency domain data by increasing the similarity of two samples of the same category.
The purpose of the fine-tuning process is to generate anomaly samples through the anomaly
sample generator to give the model anomaly detection capability and to improve the fit of
the anomaly decision boundary.

Figure 2. Model structure: The model is divided in two sections, the upper section is the pre-trained
model and the lower is the fine-tuned model.

2.4.1. Pre-Train Progress

During the pre-training progress, a multi-task learning approach is used to improve
model performance and help the model to converge. The pre-training structure is improved
from the Simple Siamese network (Simsiam) [20]. This paper not only calculates the cosine
similarity, but also employs a self-supervised classification task to further enhance the
model feature representation capabilities. This paper employs GhostnetV2 [21] model as
the feature embedding network which can not only accurately capture features but also
reduce the number of model parameters, thereby enhancing computational speed. For this
backbone network, this paper only uses the front feature extraction convolutional layer
without using the last fully connected classification layer. Moreover, to further improve
the model generalization ability and data diversity, this paper randomly employs signal
transformations such as time shift, pitch shift, fade in/out and add noise. The time shift
transformation shifts the audio signal either forward or backward. In this paper, the time
shift rate is chosen from the range of 0–56. The pitch shift transformation shifts the pitch
of the waveform. In this paper, the step to shift the waveform is set to −20. The fade
in/out transformation adds a fade in or fade out to a waveform at its beginning or end.
This paper uses two types of fading: exponential and half sinusoidal. And adding noise
transformation inserts a white Gaussian noise in the waveform. In this paper, the signal-to-
noise ratio (SNR) is chosen in the range of [−10, 10]. After applying these transformations,
the input spectrogram maps are then fed into the Simsiam structure. By maximizing the
similarity of the same class samples, the backbone model can efficiently model sample
features. Moreover, in order to improve the model performance better, this paper designs a
self-supervised classification task for this backbone model.
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For the contrastive learning pre-trained model, the total cosine similarity can be
calculated as follows:

L =
1
2

D(p1, z2) +
1
2

D(p2, z1),

D(d1, d2) = − d1

∥d1∥2
· d2

∥d2∥2
,

(3)

where p and z represent two feature vectors, and D represents the cosine similarity function.
However, due to the lack of different class samples, the model will collapse easily during
the training progress. Therefore, to avoid this problem, a stop-gradient operation [20]
is imposed on one of the feature vectors. So the final cosine similarity loss functions is
reformulated as follows:

L =
1
2

D(p1, stopgrad(z2)) +
1
2

D(p2, stopgrad(z1)), (4)

After the contrastive learning progress, the backbone is trained with an auxiliary
classification task. In the auxiliary classification task, the feature vectors of the input
spectrograms from the Siamese network are fed into the embedding head, which outputs
the predicted label values. Subsequently, the ArcFace [22] loss function is utilized to
calculate the loss. The arcrface loss functions is as follows:

L = − 1
N

N

∑
i=1

log
es(cos(θyi+m))

es(cos(θyi+m)) + ∑K
k=1,k ̸=yi

escosθk
, (5)

where N represents the batch size number, s represents the scale parameter, m represents
the margin parameter, θyi represents the angle value of the target category corresponding
to the sample yi, θk represents the angle value of the non-target category corresponding to
sample yi and K represents the number of non-target categories.

2.4.2. Fine-Tune Progress

After pre-training, the backbone model is immediately fine-tuned. This paper employs
a simple novel negative generator which can generate pseudo-negative samples from
normal samples. This paper uses two simple methods to generate fake samples. The first
is Spectrogram Flip (SF) and the second is Spectrogram Plus (SP). The pseudo-anomaly
sample example is shown in Figure 3.

Figure 3. Negative examples: SF denotes spectrogram flip, SP denotes spectrogram plus. The color
represents the energy at each sampling point, with brighter colors indicating higher energy levels.

SF: This paper inverted the top and bottom for the input spectrogram. This operation
allows the normal information highlighted in the normal sample to be overwritten. For
example, in such cases wherein the regular data are a high-frequency sound, the corre-
sponding anomalous data may be a low-frequency sound. Flipping can then be applied to
generate negative samples that are similar to the real negative samples. This is achieved by
shifting the energy from the high-frequency portion of the sample to the low-frequency
portion. As a result, the low-frequency portion becomes more prominent than the high-
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frequency portion, and the energy of the high-frequency portion is displaced by the energy
of the low-frequency portion. As a result, the flipped sample can be considered as a real
negative sample.

SP: This paper performed a stacking operation for the input spectrogram. Within the
spectrograms, the normal features of the sound is often prominent, while the environmental
noise features are relatively inconspicuous. During the stacking process, the original sound
features may exceed their original normal range due to multiple stacking, leading to over-
noise anomalies and the formation of noise. Furthermore, after stacking, some of the
originally weak noise features may replace the original sound features, causing the model’s
focus to shift from normal features to environmental noise features.

After generating pseudo samples, in order to help the model achieve precise anomaly
detection boundaries while improving its generalization capability, this paper establishes
three sample clusters. Among them, the original samples are designated as the main
anchor cluster, the samples generated by the generator form the anomaly cluster and the
samples enhanced through signal augmentation constitute the generalization cluster. After
generating three different categories of clusters, this paper then employs an improved
similarity loss function to train the encoder backbone. The improved loss function takes into
account both cosine angle and Euclidean distance, and this loss function can adequately
generalize the separation of vector angles and spatial distances between clusters with
different attributes which can improve the model performance. The improved loss function
is as follows:

Lcos = −D(xanchor, xpos) + D(xanchor, xneg),

Ldis = ∥xanchor − xpos∥2
2 − ∥xanchor − xneg∥2

2 + m,

Lloss =
1
N

N

∑
1
(Ldis + α) exp(sLcos+β),

(6)

where α, β and s are three scale parameters, m represents a distance margin, xanchor repre-
sents the original anchor sample, xpos represents the augmented positive sample against
the anchor sample and xneg represents the negative anomaly sample against the anchor
sample. In this paper, m is set to 0.05, s is set to 1, α is set to 0.01 and β is set to 0.005.

2.5. Time Domain Model

Although spectrogram-based networks are capable of effectively extracting features,
due to the nature of convolution calculations, spectral-based network models tend to
capture only frequency domain features while neglecting the causality and correlation
of time domain features. In order to fully represent the features of the input data, this
paper used not only the frequency features, but also the time domain features. This paper
designs a time domain CNN model, the model framework of which is summarized in
Table 1. In this model, the first convolutional layer takes a convolutional kernel of size 256.
The reason for using a large convolutional kernel is to take into account the fact that the
sampling frequency of the input samples is 16KHz, so a small kernel size will not only
affect the response speed of the model, but also reduce the global feature extraction ability
of the shallow network. The model then utilizes multiple blocks for subsequent feature
extraction. The structure of the block is shown in Figure 4. In each block, all the layers
employ depthwise separable convolutions, which can ensure feature extraction capabilities
while simultaneously reducing computational load and enhancing computational speed.
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Table 1. Temporal model structure: The block contains three convolutional blocks which form an
inverted residue module. In each block, t represents intermediate dimension scale factor of the
inverted residual module of the block, c represents output dimension of each layer and s stands for
the stride size of each layer

Input Operator
Parameters

t c s

1 × 160,000 Conv1d (k = 256) - 16 64
1 × 1250 block 3 32 1
1 × 1250 block 3 32 2
1 × 625 block 3 32 2
1 × 313 block 2 64 3
1 × 105 block 2 128 2
1 × 53 block 2 256 1
1 × 53 block 2 256 2
1 × 27 block 2 256 2
1 × 14 block 2 256 2
1 × 7 block 2 256 1
1 × 7 Avgpool (k = 7) - 512 1

Figure 4. Block structure: This block contains three convolutional sub-blocks which together form
an inverted residual module. In each inverted residual module, there is a dimension-increasing
layer with a 1 × 1 convolution, a feature extraction layer with a 3 × 3 convolution and a dimension-
decreasing layer with a 1 × 1 convolution. After each convolutional kernel, batchnorm and leakyrelu
activation functions are employed. When stride is set to one, the block uses shortcut connection.

2.6. Domain Fusion Model

In order to be able to unite the time-frequency domain features, this paper ensembles
the feature extraction backbone networks from the frequency domain and time domain
models. The fusion method is illustrated in Figure 5. The fusion model first concatenates
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the feature vectors from both time and frequency domains along the channel dimension.
Subsequently, the concatenated feature vector is fed into a classifier. This classifier employs
multiple Squeeze-and-Excitation Blocks (SEBlock) [23] to perform channel-wise adaptive
weighting on the input features. Finally, for the classification prediction output, the ArcFace
function is used to calculate the loss value for model convergence. During the training
process, neither the time domain model nor the frequency domain model participates in
gradient updates; only the classifier participates in the back-propagation process. The
aim is to ensure that the feature representation capabilities of the two models remain
unchanged, thereby guaranteeing optimal feature modeling capability. In this paper, the
channel attention-based fusion method is employed instead of directly utilizing time-
frequency features. This is because the direct utilization of time-frequency domain features
may not be able to specifically represent the feature distribution of the input samples. By
using the channel attention mechanism, the model can automatically extract the correlation
between each feature channel and automatically weight the channels according to the
degree of importance, which can help the model focus on feature maps that are more
critical to the target task than directly extracting features from the time-frequency domain,
thus improving the model performance. The overall fusion classifier structure is shown
in Table 2.

Figure 5. Time-Spec domain fusion model: w and h represent the shape of feature map, c represents
the number of channels. During Squeeze-Excitation, the model first squeezes the feature map along
the channel dimension, then derives weights for each channel and finally applies these weights to the
corresponding channels of the original map.

Table 2. The fusion classifier structure: FC represents the fully connected layer, layer represents the
convolutional layer and SEBlock represents the channel attention block. The batchnorm is used in
each convolutional layer, and the PRELU activation function is used in the first two convolutional
layers. In each SEBlock, the mid-channel factor is set to 0.5.

Layer In Channel Out Channel Kernel Size

layer1 2 16 1
SEBlock 16 16 1
layer2 16 64 3

SEBlock 64 64 1
layer3 64 256 3
layer4 256 512 6
layer5 512 128 1

FC 128 16 -
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2.7. Statistics Domain Model

In most anomaly detection tasks, models often encounter the issue of severe data
imbalance. Even with the introduction of generators, it remains difficult to mitigate the
model bias caused by the imbalance in the original data, which subsequently degrades the
model’s performance. Therefore, to address this issue, this paper proposes a method of
using statistically weighted average frequency-domain features to correct feature bias. For
the spectrogram of the input data, this paper calculates the global average value of each
frequency along the time axis. Finally, a global weighting is applied based on the magnitude
of each frequency’s average value, meaning that frequencies with larger average values
will receive greater weights, while those with smaller average values will receive smaller
weights. Compared to statistical feature representation methods based on extreme values,
the method used in this paper not only reflects the average performance of each frequency
across the entire time axis but also highlights the importance of different frequencies based
on their weighted weights. The average frequency index can be calculated using the
following formula:

yi =
1
N

N

∑
j=1

xj, (7)

where N represents the batch size number, i represents the frequency bin and xj represents
each sample bin. The global weighting factors are calculated as follows:

λi =
yi

∑M
f=1 y f

, i ∈ (1, M), (8)

where i represents the frequency bin, M represents the total frequency bin numbers and yi

represents the average frequency index of the current current frequency. The full process is
shown in Figure 6.

Figure 6. Global weight average pooling process.

2.8. Ensemble Evaluator Model

This paper employs an ensemble approach for anomaly assessment on the input
data. The anomaly scores are obtained through a Gaussian Mixture Model (GMM), which
combines multiple Gaussian distributions. By adjusting the parameters of the GMM, the
model can approximate almost any data distribution. After evaluating both the statistical
domain model and the time-frequency domain fusion mode, an ensemble method is utilized
to obtain the final evaluation score. The calculation method is described as follows:
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Score =
2

∑
i=1

λiGMMi, (9)

where λ is weight parameter and i represents the i-th model. In this paper, the weight
for the fusion model is set to 0.9, with the aim of fulling leveraging the discriminative
performance of the model. For the statistical domain model, the weight is assigned as 0.1.
This is because the role of the statistical model is merely to introduce statistical features
and reduce the bias caused by data imbalance. Therefore, only a partial detection capability
of this model is needed. Although this paper applies fixed discriminant weights to the two
models, several tests indicate that better model performance can be achieved by adjusting
the weights according to the characteristics of different test objects. However, since the
interference noise in the original data is not adequately considered when using statistical
factors, if the statistical model assigns a larger weight to some categories of data, it will
instead reduce the model’s detection ability.

3. Results
3.1. Dataset

To fully test the capability of the proposed model, the MIMII dataset [24], DCASE2020
task2 dataset and MIMII DUE dataset [25] are used for validation experiments. In ASD
tasks, the primary official evaluation metric is the Area Under the Curve (AUC) value,
which reflects the area under the ROC curve. In the MIMII dataset and the DCASE2020
task2 dataset, the primary focus of testing was the model’s ability to detect anomalies
without training on anomalous samples. In the MIMII DUE dataset, the main objective was
to evaluate the model’s capability for transfer anomaly sound detection without applying
domain adaptation, thereby assessing the model’s robustness and generalization ability. In
the MIMII dataset, there are only four different categories. In the DCASE2020 task2 dataset,
it contains the MIMII dataset and Toyadmos dataset, with six different categories. In the
MIMII DUE dataset, it contains five different categories. Within each category, the normal
data for the source domain and a small amount of data for the target domain are included.

In these datasets, the machine objects included are common types of machines found
in industrial environments, such as slide rails, pumps, fans and so on. In the training set,
only normal samples are included. In each training sample, the sound data are captured in
a realistic manufacturing environment, which means that each audio datum contains not
only the primary feature data of the machine being evaluated but also numerous disturb-
ing noises from the surrounding environment, including the disruptive sounds of other
industrial machines and parts of human voices. In the test set, the data consist of normal
and abnormal sound samples, which are also derived from the real manufacturing system
environment and covers a number of different types of anomalies in order to simulate the
manufacturing environment under real-life conditions. In addition to this, in some test sets,
to further satisfy the reality of the manufacturing environment, the test data also include
the sound of the manufacturing machine under different production conditions, such as
different temperatures, humidity and weather. Therefore, by considering these characteris-
tics, these benchmark datasets are selected in this paper to validate the performance of the
proposed model.

3.2. Implementation

During the data mixup augmentation, the mixing ratio factor is set to 0.4. In the
process of spectrogram transformation, the number of Mel filters is set to 224, the hop
length is set to 512 and the number of FFT points is set to 2048.
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For the frequency domain network model, during the pre-training stage, the number
of training epochs is 50, with a batch size of 128. The backbone network employs the
SGD optimizer, with an initial learning rate of 0.05, a weight decay factor of 0.005 and a
momentum factor of 0.9. The auxiliary network uses the AdamW optimizer [26] with an
initial learning rate of 0.01. Additionally, to ensure good convergence stability, this paper
applies cosine decay specifically for this network. During the fine-tuning comparison stage,
the AdamW optimizer is used with an initial learning rate of 0.001, a weight decay factor
of 0.0005, a batch size of 64 and a number of training epochs of 50.

For the time domain network model, the AdamW optimizer is used with an initial
learning rate of 0.005, a weight decay factor of 0.0005, a batch size of 128 and a number of
training epochs of 200.

For the time-frequency domain hybrid model, the SGD optimizer is used with a
learning rate of 0.05, a weight decay factor of 0.005, a momentum factor of 0.9, a batch size
of 128 and a number of training epochs of 20.

For the two GMM estimators, the number of mixing components is set to 1 and the
number of EM iterations is set to 1000.

3.3. Experiment Results

The AUC test results for the model are presented in Table 3 below. Furthermore, to
fully demonstrate the performance of the proposed model in this paper, we also calculated
the partial-AUC (pAUC) value and recall score within the MIMII dataset and plotted the
FAR-FRR curve. In this paper, the pAUC is calculated as the AUC over a low false-positive
rate p, as this score reflects the reliability of the model. In this paper, the p is set to 0.1. The
pAUC score and recall scores are shown in Table 4, and the FAR-FRR curve is shown in
Figure 7. FAR represents False Acceptance Rate and FRR represents False Rejection Rate,
while FRR is the likelihood that a legitimate user will be rejected by the system, and FAR is
the likelihood that an impostor will be accepted by the system. In the evaluation of any
classification model, the FAR-FRR curve can represent the model performance.

Table 3. AUC scores in three datasets: Since most open-source papers and code evaluation metrics
only provide the AUC value, the AUC is primarily used as the main indicator for performance
comparison. Meanwhile, to ensure fairness, all models only used the development dataset to train.

Dataset Algorithm Fan Pump Slider Valve Toycar Toyconveyor Gearbox

MIMII

AE [27] 63.24% 61.92% 66.74% 53.41%
IDNN [28] 64.64% 61.48% 69.8% 59.37%

MobilenetV2 [27] 80.61% 83.23% 96.26% 91.26%
AADCL [16] 80.11% 70.12% 77.43% 84.17%
SLFE-AE [29] 80.0% 88.5% 95.4% 93.1%

Complex-network [14] 89.55% 96.4% 98.75% 96.87%
This research 95.56% 93.56% 98.86% 98.75%

DCASE2020

Self-encoder [30] 69.92% 59.57% 95.79% 94.31% 92.74% 80.85%
Reference [31] 59.64% 60.32% 76.29% 85.42% 79.30% 61.72%
Glow-aff [15] 75.90% 83.40% 94.60% 91.40% 92.20% 71.50%

STGram-MFN [32] 80.14% 80.4% 97.09% 82.5% 91.80% 70.90%
Reference [33] 90.07% 86.44% 91.84 % 97.67% 89.84% 67.64%
LMTnet [34] 88.81% 87.83% 94.27% 91.04% 90.05% 62.45%
This research 94.47% 91.93% 95.79% 95.31% 92.74% 79.85%

MIMII DUE

AE [35] 64.36% 63.66% 58.09% 52.7% 66.7%
MobilenetV2 [35] 63.65% 64.12% 64.62% 54.01% 68.4%

UADA [36] 65.31% 62.32% 59.19% 69.05% 71.05%
This research 68.72% 64.62% 72.72% 65.98% 70.07%

16



Appl. Sci. 2025, 15, 1624

Table 4. The proposed model exhibits a high pAUC value and recall rate, which demonstrates
its effectiveness in accurately detecting abnormal samples while avoiding the misclassification of
positive samples. These results indicate the high reliability of the proposed model.

Fan Pump Slider Valve

pAUC 87.27% 78.91% 96.53% 96.3%
Recall 89.85% 86.25% 97.5% 97.75%

Figure 7. FAR-FRR curve within the MIMII datset.

3.4. Ablation Experiment

Meanwhile, to validate the positive effects of the time-frequency domain fusion model,
this paper conducted experiments on the fusion model, with the experimental results
presented in the following Table 5.

Table 5. AUC scores with/out fusion model within the MIMII dataset.

Fan Pump Slider Valve

With 95.56% 93.56% 98.86% 98.75%
Without 94.9% 91.57% 98.83% 98.79%

To verify the impact of models based on statistical features, this paper also compares
the AUC results within the MIMII dataset when statistical features are utilized. The results
are shown in Table 6.

Table 6. AUC scores with/out statistical features within the MIMII dataset.

Fan Pump Slider Valve

With 95.56% 93.56% 98.86% 98.75%
Without 93.38% 92.56% 94.86% 96.37%
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4. Discussion
Based on the experimental results, the proposed model exhibits superior performance

compared to traditional classification models and reconstruction methods. Within the
MIMII dataset, compared with other existing methods, the test AUC results of the proposed
method remained stable among the four machine categories, with the maximum difference
in AUC within 5.1% while the other methods could reach from 9.2% to 15.4%. Based on
the data of the fan, the proposed method is able to achieve the highest increase in AUC
value. In the DCASE2020 task2 dataset, the model also exhibits excellent anomaly detection
performance. In the MIMII DUE dataset, the proposed model can effectively perform
anomaly detection under domain shift without using any domain adaptation operations
and outperform several baseline models.

Meanwhile, based on the ablation results, it can be observed that the model utiliz-
ing the fusion method achieves better performance in terms of detection accuracy for
certain categories. This is attributed to the model allocating greater weight to feature chan-
nels with more prominent feature expressions, thereby effectively enhancing the model’s
overall performance.

Based on the results of the above multiple experiments, it can be demonstrated that the
proposed model exhibits excellent anomaly sound detection performance under multiple
public datasets. The proposed time-frequency domain fusion model and statistical feature
model can effectively conduct abnormal detection without being trained with real abnormal
samples in reality, and avoid the model bias problem caused by data imbalance. Moreover,
by learning the pseudo-anomaly samples generated by the abnormal sample generator, the
model can also spontaneously explore the feature distribution of potential real anomaly
samples. At the same time, considering the resource constraints that may exist in real
manufacturing environments, the proposed model adopts multiple lightweight design
approaches that enable it to resolve potential resource conflicts.

Despite the excellent ASD performance of the proposed model, there are still some
issues that need to be addressed. For example, the proposed model employs a statistical-
based approach to counteract the effect of data imbalance, but based on the result of the
ablation experiment, it can be found that the approach is not effective in providing accurate
feature induction information to help the model significantly improve its performance
when facing some of the non-stationary signals. Meanwhile, since the input samples may
contain noise information, the use of the statistical approach may surround too much
disturbing information and affect the model performance instead. Furthermore, taking into
account the influences of temperature and humidity on sound and production machines,
when the manufacturing system is subjected to drastic weather variations, the informative
features of the sound are changed, thereby leading to a decline in the model’s performance.

Even though the statistical model is employed without fully accounting for the noise
in the data, the issue of the feature space distribution becoming overly concentrated is seen
as the data expand.However, the proposed method employs an ensemble discriminant-
based approach in the inference stage, and the weight assigned to the statistical model is
considerably lower than that of the neural network model. Therefore, although noise can
affect the modeling capability of the statistical model, it does not affect the overall detection
performance of the ensemble model.

5. Conclusions
This paper proposed an enhanced contrastive ensemble learning model for anomaly

sound detection. Firstly, this paper proposes a new data augmentation method, which can
effectively preserve the original audio feature information while adding diverse noises to
fully simulate the disturbances in the real environment, in order to further improve the
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model performance and generalization capability. Secondly, this paper employs a cross-
domain fusion model based on channel attention. This model integrates time-frequency
domain feature vectors and utilizes a channel attention mechanism to enable the model to
adaptively assign different weights to different feature channels, thus achieving feature
fusion in the time-frequency domain and helping the model to learn the feature correlations
between the time and frequency domains. This approach can effectively enhance model
performance and improve its generalization capability. In addition, in order to reduce the
data imbalance problem due to the lack of real anomaly samples, this paper designs an
anomaly sample generator to help the model understand the potential anomaly distribution
and gain the ability to model against potentially realistic anomaly samples. Finally, to
further alleviate the impact of data imbalance, this paper adopts a statistical-based model.
This model conducts feature modeling by directly generalizing the global characteristics of
the data. As a result, this approach can directly avoid the model bias problem caused by
data imbalance. At the same time, due to the lightweight design of the overall model, it can
be quickly and easily deployed in resource-limited industrial manufacturing environments.
The proposed method is tested on multiple benchmark datasets, and the results of the
experiments demonstrate that the proposed model exhibits superior anomaly detection
performance and domain adaptation capabilities.
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Abstract: The accurate and efficient detection of printed circuit board (PCB) surface de-
fects is crucial to the electronic information manufacturing industry. However, current
approaches to PCB defect detection face challenges, including large model sizes and dif-
ficulties in balancing detection accuracy with speed. To address these challenges, this
paper proposes a novel PCB surface defect detection algorithm, named DVCW-YOLO. First,
all standard convolutions in the backbone and neck networks of YOLOv8n are replaced
with lightweight DWConv convolutions. In addition, a self-designed C2fCBAM module is
introduced to the backbone network for extracting features. Next, within the neck structure,
the C2f module is substituted with the more lightweight VOVGSCSP module, thereby
reducing model redundancy, simplifying model complexity, and enhancing detection speed.
By enhancing prominent features and suppressing less important ones, this modification
allows the model to better focus on key regions, thereby improving feature representation
capabilities. Finally, the WIoU loss function is implemented to replace the traditional CIoU
function in YOLOv8n. This adjustment addresses issues related to low generalization
and poor detection performance for small objects or complex backgrounds, while also
mitigating the impact of low-quality or extreme samples on model accuracy. Experimen-
tal results demonstrate that the DVCW-YOLO model achieves a mean average precision
(mAP) of 99.3% and a detection speed of 43.3 frames per second (FPS), which represent
improvements of 4% and 4.08%, respectively, over the YOLOv8n model. These results
confirm that the proposed model meets the real-time PCB defect detection requirements of
small and medium-sized enterprises.

Keywords: PCB board defect detection; YOLOv8n model; DVCW-YOLO model; C2fCBAM
structure; WIoU loss function

1. Introduction
Printed circuit boards (PCBs) are extensively employed in integrated circuits. However,

the inherent instability of the production process, coupled with environmental factors and
equipment conditions, frequently leads to the emergence of various defects, including
missing holes, rat bites, and open circuits. These defects have a detrimental impact on both
product performance and safety [1]. Consequently, there is a growing demand for efficient,
accurate, and cost-effective PCB defect inspection systems.
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In recent years, deep learning-based models for PCB surface defect detection have
garnered significant attention. Current PCB defect detection methods using vision technol-
ogy can be broadly classified into two categories: two-stage object detection algorithms
and single-stage object detection algorithms [2]. Two-stage object detection algorithms
first locate the target and generate detection boxes, followed by the classification of the
detected boxes to refine the target categories and positions. Notable models include the
region-based convolutional neural networks (R-CNNs) [3–5]. For example, Ren et al. [5]
developed an object detection framework that combines the strengths of R-CNN and a
new region proposal network (RPN) to improve the speed and accuracy of object detection.
Kumar and Singh [6] address the challenge of detecting defects by introducing a two-stage
object detection network based on region proposal network (RPN) for PCB defect detection.
This type of two-stage detection algorithm presents several challenges, including limited
inference speed and susceptibility to interference from background noise. In contrast,
single-stage object detection algorithms combine feature extraction with prediction frame
positioning, enabling the direct determination of target categories and detection frame
positions. Examples include SSD [7] and YOLO [8]. Kumar and Singh [9] leveraged the SSD
architecture for PCB defect detection, providing a detailed account of the training process,
evaluation metrics, and the effectiveness of SSD in identifying various defects, including
soldering issues and component misplacements. Liao et al. [10] introduced a cost-effective
detection model based on YOLOv4, which improves the activation function in the backbone
and neck prediction networks, reducing both the model size and the number of parameters.
Qing et al. [11] proposed an improved PCB component detection model based on YOLOv8,
which utilizes the C2Focal module as the core of the backbone network, combining fine-
grained local features with coarse-grained global features. Chen et al. [12] introduced
the W-YOLOv8 model, which uses a gradient gain allocation strategy with a dynamic
non-monotonic focusing mechanism to direct the model’s attention to anchor frames of or-
dinary mass, improving overall performance. While these studies have enhanced detection
accuracy, a balance between detection performance and model size remains elusive.

In response to the challenges posed by small target sizes, missed detections, and
excessive model parameters in PCB surface detection, this study introduces an enhanced
detection model based on YOLOv8, called DVCW-YOLO. This model significantly miti-
gates parameter redundancy and model complexity through the integration of depthwise
convolution (DWConv), VOVGSCSP modules, a self-constructed C2fCBAM module, and a
weighted intersection over union (WIoU) loss function. The specific contributions of this
work are outlined as follows:

1. The C2fCBAM module is developed by synergistically combining the C2f architecture
with the convolutional block attention module (CBAM) mechanism. This integration
enables the detection model to effectively prioritize critical regions by enhancing
salient features while attenuating less relevant ones. Consequently, a novel backbone
network is established to facilitate the extraction of key features.

2. A neck network is designed by incorporating the VOVGSCSP module and DWConv.
The implementation of the WIoU loss function during training serves to alleviate
the adverse effects of low-quality and extreme samples, thereby improving model
accuracy, accelerating convergence, and reducing the high rate of missed detections
commonly associated with PCB defect identification.

3. We augmented the dataset and executed comparative experiments involving nine
detection algorithms, which substantiate that the proposed DVCW-YOLO consistently
outperforms its counterparts in most cases.

The main contributions of this paper are outlined as follows. Section 2 introduces the
architecture of the proposed DVCW-YOLO defect detection model. Section 3 presents the

23



Appl. Sci. 2025, 15, 327

dataset construction, including data presentation, augmentation, and defect distribution
characteristics. Section 4 details the experimental setup, parameter settings, detection
results, and analysis. Finally, Section 5 concludes the paper with a summary of key findings.

2. Methodology
To achieve accurate PCB defect detection, we integrate the YOLOv8n framework with

a self-designed C2fCBAM module, the VOVGSCSP module and DWConv to enhance de-
tection performance. The following section details these approaches and their construction
to address the challenges of PCB defect detection.

2.1. Proposed DVCW-YOLO Network

YOLOv8 [13] is a widely utilized detector in the field of target detection. It incorpo-
rates the cross stage partial (CSP) structure within backbone network, along with the spatial
pyramid pooling with factorized convolutions (SPPF) module at its output stage. The neck
network features a bidirectional path aggregation network (PAN-FPN) for efficient feature
integration [14]. However, the backbone and neck networks of YOLOv8 exhibit several
limitations, including the restricted feature extraction capability of C2f module, high com-
putational complexity, and a substantial number of standard convolution parameters [15].
Additionally, the complete intersection over union (CIoU) loss function does not adequately
account for the characteristics of the background region, which may lead to the neglect of
surrounding contextual information, consequently diminishing detection performance [16].

To address these challenges, including the large model size in fire detection tasks and
the difficulty in balancing detection accuracy with model efficiency, this paper achieves
several improvements to the backbone network, neck network, and loss function based on
the YOLOv8n architecture, and develops the DVCW-YOLO detection model. The overall
architecture of the DVCW-YOLO model is illustrated in Figure 1. All standard convolutions
in both the backbone and neck networks are replaced with the more lightweight DWConv.
Additionally, we introduce the C2fCBAM module in the backbone network, which incorpo-
rates the CBAM attention mechanism at both the input and output ends of the C2f module.
This new module replaces the original C2f module, enhancing the model’s ability to extract
features from key areas by emphasizing salient features and suppressing less important
features. Secondly, the C2f module is replaced with global structure-aware convolution
(GSConv) and the more efficient VOVGSCSP module in the neck structure, reducing both
the number of model parameters and the overall model complexity. Finally, the WIoU loss
function is used to replace the traditional CIoU loss function. This modification ensures
that the improved model focuses more on normal and high-probability samples, thereby
enhancing detection accuracy.

2.2. C2fCBAM Model

When the background on the surface of the PCB is complex, it can be easily confused
with the actual defect areas, leading to false detections. To address this issue and enable the
detection model to focus more on key information in the input features while minimizing
attention to background noise, this paper optimizes the backbone network by designing
and implementing the C2fCBAM module. The CBAM attention mechanism is added to
both the input and output ends of the original C2f module [17], as shown in Figure 2. This
structure enables the model to prioritize critical regions by enhancing salient features while
suppressing less relevant ones, thereby facilitating the differentiation between normal and
defective areas. This capability is particularly beneficial in scenarios where defects are
subtle or when there is substantial background interference.
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Figure 1. DVCW-YOLO model structure diagram.

Figure 2. C2fCBAM module structure diagram.

The CBAM consists of two components: the channel attention module and the spa-
tial attention module [17]. The channel attention module assigns weights to the feature
channels, adaptively adjusting the importance of each channel to improve the network’s
ability to capture specific features. Conversely, the spatial attention module focuses on the
spatial dimensions of the feature map, enhancing the network’s capacity to perceive spatial
locations by adaptively adjusting the importance of each spatial position. By incorporating
CBAM, the network can better learn the distinguishing features of the input data, thereby
improving its ability to differentiate between various objects and backgrounds.

2.3. Neck Network

In the context of PCB defect detection, the traditional YOLOv8n model suffers from
large model parameters and limited detection accuracy. To address these limitations, this
paper reduces the model parameters by integrating DWConv convolutions and VOVGSCSP
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modules, thereby improving detection speed. Specifically, all standard convolutions in
the neck structure are replaced with lighter DWConv convolutions. Additionally, due
to the redundant processing of input features in the C2f module, a significant residual
redundancy issue arises. To mitigate this, the C2f module is replaced with the more efficient
VOVGSCSP module, further reducing model parameters and enhancing detection speed.

2.3.1. DWConv Convolution

DWConv [18] is a specialized convolution technique, and its structure is illustrated
in Figure 3. Unlike standard convolution, where all channels share a single convolutional
kernel, DWConv assigns a unique convolutional kernel to each channel. This technique
groups the input feature maps and applies convolution within each group independently.
Assuming the current number of groups is N, the number of parameters required for
DWConv is only 1/N of the parameters required for standard convolution. Consequently,
the use of DWConv significantly reduces the number of model parameters, resulting in a
more lightweight model.

Figure 3. Depthwise separable convolution structure diagram.

2.3.2. VOVGSCSP Module

The VOVGSCSP module [19], in contrast to the C2f module, primarily consists of mul-
tiple GSConv and standard Conv convolutions, which are connected through residual links.
The GSConv module integrates several techniques, including standard Conv, DWConv,
and shuffle operations [20]. The shuffle operation enables the combination of standard
Conv with DWConv by mixing features across channels, which helps to reduce computa-
tional costs. As the number of input feature channels increases, the computational cost of
GSConv becomes significantly lower than that of standard Conv, approximately halving
the computational burden, while still preserving the feature extraction capabilities of the
original convolutional operation. This structure of the VOVGSCSP module is depicted in
Figure 4. The computational costs associated with standard Conv and GSConv are outlined
as follows:

GFLOPs1 = W × H × K × K × 1 × Cout (1)

GFLOPs2 = W × H × K × K × 1 × Cout

2
(Cin + 1) (2)

For a given input feature map with size W ×H, K is the size of the convolution kernel,
Cin is number of input channels, and Cout denotes the output channels. As the number
of output channels increases, the computational advantage of DWConv over standard
convolution becomes more pronounced. The VOVGSCSP structure effectively leverages
these properties, achieving efficient feature extraction and processing.
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Figure 4. Structure diagram of VOVGSCSP module with GSConv.

2.4. WIoU Loss Function

The CIoU loss function [21] in the YOLOv8 model performs suboptimally when
detecting low-quality samples, such as small defects, and exhibits limited generalization
ability. To address these issues, the WIoU loss function [22,23] in the DVCW-YOLO
model incorporates dynamic and non-monotonic focusing mechanisms. These mechanisms
enhance the model’s ability to handle small objects or complex backgrounds by improving
generalization and detection quality. The WIoU function assesses anchor frame quality by
considering outliers in the dataset and adjusting sample weights to reduce the impact of
low-quality samples.

LWIoU = RWIoU LIoU (3)

RWIoU = exp(
(x − xgt)

2 + (y − ygt)
2

(W2
g + H2

g)
) (4)

LIoU = 1 − IoU (5)

Specifically, LWIoU denotes the modified loss function, while (X, Y) are the horizontal
and vertical coordinates of the predicted bounding box center, respectively. (Xgt, Ygt)
represent the center coordinates of the true bounding box, and (Hgt, Wgt) denote the
height and width of the true bounding box, respectively. The loss RWIoU is computed
using an exponential function, which increases the weight of anchor boxes that are closer
to the true bounding box while reducing the impact of those farther away. This loss I IoU
complements the IoU between the predicted bounding box and the true bounding box,
focusing on improving the overlap quality.

3. Dataset Building
In this study, we utilize the open-source dataset from the Open Laboratory of Intelli-

gent Robotics at Peking University, which contains six types of PCB board defects: missing
hole, mouse bite, open circuit, short circuit, spurious copper, and spur. A subset of the
dataset is shown in Figure 5. The dataset consists of 693 images with pixel dimensions of
2777 × 2138, with each image containing 3–6 defects. The defects occupy approximately
0.24% of the total pixel area in each image. Due to the limited size of this publicly available
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dataset, the small number of samples poses a challenge for effective PCB defect detection.
To address this issue, we apply data augmentation techniques, including mosaic enhance-
ment, flipping, random noise addition, and brightness adjustment, to randomly expand the
dataset and improve the generalization ability of the detection model. After augmentation,
the dataset contains a total of 10,688 images, and the ratio of the training set, validation set,
and test set is 7:2:1. Some instances of these augmentations are shown in Figure 6.

Figure 5. Instances of PCB surface defects.

Figure 6. Data augmentation instances.

To gain an intuitive understanding of the defect information after data augmenta-
tion, we analyzed the overall distribution, size, and quantity of defects, as depicted in
Figure 7. As depicted in Figure 7a, the augmented dataset generated through random data
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augmentation, the number of images across the six defect categories varies, although the
differences are relatively small. The number of missing holes, mouse bites, open circuits,
short circuits, spurs, and spurious copper are 2883, 2935, 2798, 2805, 2915, 3000, respectively.
Figure 7b illustrates the positions of the center points of all defect detection bounding
boxes within the augmented images. From Figure 7b, it is evident that the defect center
points of all augmentations are widely dispersed, suggesting that the defects do not follow
a clear spatial pattern. Figure 7c presents the width and height of all bounding boxes
in the augmented dataset. As seen in Figure 7c, the majority of the bounding boxes are
concentrated near the origin, with their dimensions primarily in the range of [0.025, 0.05].
This indicates that most of the detection bounding boxes are small, with the majority of the
defects being small-sized targets.

Figure 7. Defect distribution information of augmentation.

4. Experiments and Analysis of Results
In the following section, we discuss the experiment and evaluate the proposed

DVCW-YOLO detection model using the augmented dataset. We performed three val-
idation experiments to assess the performance of the model and determine key evalua-
tion metrics and model parameters. The first experiment tested the effectiveness of the
C2fCBAM module in the optimized backbone network, comparing its performance with
different attention mechanisms. The second experiment conducted ablation studies on
the DWConv, C2fCBAM, VOVGSCSP, and WIoU components designed for the backbone
network and neck network, respectively, to evaluate the impact of each optimization on
model performance. The third experiment compared the proposed DVCW-YOLO detection
model with several state-of-the-art models, including Faster R-CNN, SSD, YOLOv3-tiny,
YOLOv4-tiny, YOLOv5s, YOLOv7, YOLO-G, and YOLOv8-PCB, to demonstrate the perfor-
mance advantages of the DVCW-YOLO model.

4.1. Evaluation Indicators

To comprehensively evaluate the performance of the model, six evaluation metrics
are employed: precision (P) [24], recall (R) [25], mAP [26], floating point operations
(FLOPs) [27], parameters [28], and FPS [29]. Precision is defined as the ratio of correctly
detected positive samples to the total number of detected positives, including false posi-
tives. Recall, on the other hand, measures the ratio of correctly detected positive samples
to the total number of actual positive samples, including undetected positives. The mAP
represents the average precision across multiple categories and recall levels. FLOPs and
the number of parameters are indicators of model complexity. FLOPs measure the compu-
tational complexity, with a higher number of FLOPs indicating a greater computational
cost and increased demand for computing resources. The parameters metric refers to the

29



Appl. Sci. 2025, 15, 327

number of model parameters, which provides insight into the model’s memory usage
and overall size. Finally, FPS is used to assess the model’s detection speed, indicating
the timeliness of the model’s performance. The formula for calculating these metrics is
as follows:

P =
TP

TP + FP
(6)

R =
TP

TP + FN
(7)

AP =

1∫

0

P(R)dR (8)

mAP =
1
N ∑N

i=1 APi (9)

where TP (true positive) refers to the number of correctly identified positive targets. FN
(false negative) represents the number of positive targets that were missed or incorrectly
classified. FP (false positive) denotes the number of non-positive targets incorrectly identi-
fied as positive. N is the total number of categories. t indicates the average detection time
for each image, which is used to calculate FPS.

4.2. Experimental Environment and Parameter Settings

The experiments were conducted on an Ubuntu 18.04 platform with the following
specifications: Intel (R) Xeon (R) Platinum 8255C CPU @ 2.50GHz, NVIDIA RTX 2080 Ti
(11 GB GPU), PyTorch version 1.8.1, Python 3.8.0, and the VSCode-integrated development
environment. Anaconda 4.13.0 was used to create a virtual environment.

Model training parameters directly influence the accuracy and performance of the
model. To ensure consistency and reliability, all models were tested under the same training
conditions. The specific parameter settings are as follows: learning rate (LR) = 0.001; batch
size = 32; momentum factor = 0.937; and weight decay = 0.0005. The dataset was split
into training, validation, and test sets at a 7:2:1 ratio. All models were initialized using
transfer learning with the pre-trained weights of YOLOv8n. The training process variation
curves for the bounding box loss (Box_Loss) and the categorical loss (Cls_Loss) are shown
in Figure 8.

Figure 8. Loss curve during training.

As shown in Figure 8, both the bounding box loss and classification loss of the model
gradually decrease as the number of training iterations increases. In the early stages of
training, the learning rate is higher, leading to a faster reduction in loss. In Figure 8a, it
illustrates that the bounding box loss curve begins to flatten after 180 epochs. Similarly,
Figure 8b shows that the classification loss curve decreases more slowly after 100 epochs
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and becomes stable around 180 epochs. Based on these observations, this study sets the
total number of training epochs to 200.

4.3. Experimental Comparative Analysis
4.3.1. Comparative Experiments on Attention Mechanisms

To evaluate the detection performance of the C2fCBAM module in the YOLOv8n
backbone network, comparative experiments are conducted with the gated attention mod-
ule (GAM) [30] and learned spatial kernel (LSK) attention modules [31]. The detection
performance of each module is analyzed, and the experimental results are presented in
Table 1.

Table 1. Performance comparison of three attention mechanisms.

Attention Mechanism of
YOLOV8n Model

Backbone Network
P/% R/% mAP0.5/% FPS (f/s) FLOPs/G Parameters/M

NONE 96.1 95.0 95.3 41.6 8.9 3.15
+GAM 98.2 99.0 99.0 18.8 18.0 7.87
+LSK 98.2 99.0 99.1 35.7 9.3 3.35

+CBAM 98.4 99.4 99.3 41.2 8.9 3.17

From Table 1, it is evident that the C2fCBAM module, when utilizing the CBAM
attention mechanism, demonstrates significant advantages in detection accuracy and model
complexity. The mAP50 with the CBAM attention mechanism was 99.3%, which is 4.1%,
0.3%, and 0.2% higher than the mAP50 values for YOLOv8n, GAM, and LSK without an
attention mechanism, respectively. Additionally, the P and R values for the CBAM attention
mechanism were 98.4% and 99.4%, representing increases of 2.3%, 0.2%, and 0.2%, and 4.6%,
0.4%, and 0.4%, respectively, compared to YOLOv8n, GAM, and LSK without attention
mechanisms. Moreover, adopting the CBAM attention mechanism resulted in a minimal
increase of 0.02 M in model parameters, which is a negligible increment for the original
model. In conclusion, the C2fCBAM module, based on the CBAM attention mechanism,
effectively enhances the detection accuracy of the YOLOv8n backbone network without
significantly increasing the model size, while also maintaining computational efficiency.

4.3.2. Optimize the Module Ablation Experiment

To verify the performance of each optimization operation, ablation experiments were
conducted on DWConv, C2fCBAM, VOVGSCSP, and WIOU loss functions in the backbone
and neck networks, respectively. Four sets of experiments were designed to evaluate
different optimization strategies by incorporating various modules into the YOLOv8n
model, with each experiment using identical training parameters. The experimental results
are presented in Table 2.

An analysis of Table 2 reveals several key performance improvements when comparing
the YOLOv8n-D model to YOLOv8n. Specifically, the mAP of YOLOv8n-D increased by
3.9%, the FPS improved by 0.5, the model’s FLOPs decreased by 1.2 G, and the number of
parameters was reduced by 0.57 M. These findings indicate that the incorporation of the
DWConv convolution operation not only enhances detection accuracy but also reduces the
model’s parameter count, contributing to a lighter model. When comparing YOLOv8n-DV
to YOLOv8n-D, the mAP of YOLOv8n-DV slightly decreased by 0.4%, but FPS increased
by 1.5, FLOPs reduced by 0.7 G, and the number of parameters decreased by 0.12 M. This
suggests that while the addition of VOVGSCSP leads to a minor reduction in detection
accuracy, it effectively boosts detection speed and reduces model complexity. The further
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comparison of YOLOv8n-DVM with YOLOv8n-DV shows a 0.4% improvement in mAP,
with no changes in detection speed or model complexity. These results indicate that the
YOLOv8n-DVM model, optimized with the WIOU loss function, enhances the quality of
detection anchor frames, improves the model’s attention to small samples, and ultimately
boosts detection accuracy. Finally, in comparison with YOLOv8n-DVW, the DVCW-YOLO
model shows a 0.2% increase in mAP, a slight decrease of 0.3 in FPS, no change in FLOPs,
and a marginal increase of 0.01 M in parameters. This suggests that the C2fCBAM structure
used in DVCW-YOLO effectively improves detection accuracy, with only a minimal increase
in model size.

Table 2. Performance comparison of ablation experiment.

Model DWConv VOVGSCSP WIOU C2fCBAM P/% R/% mAP0.5/% FPS
(f/s)

FLOPs
/G

Params
/M

YOLOV8N × × × × 96.1 95.0 95.3 41.6 8.9 3.15
YOLOV8N-D

√ × × × 98.2 99.0 99.1 42.1 7.7 2.58
YOLOV8N-DV

√ √ × × 98.5 98.5 98.7 43.6 7.0 2.46
YOLOV8N-DVW

√ √ √ × 98.6 98.7 99.1 43.6 7.0 2.46
DVCW-YOLO

√ √ √ √
99.1 99.4 99.3 43.3 7.0 2.47

To further analyze the impact of different modules on model performance, the trends of
the detection loss value and mAP for each detection model were compared across training
iterations, as shown in Figure 9. Under the same threshold, the DVCW-YOLO model
outperforms the other models. As seen in Figure 9a, after 50 iterations, the loss curves for
all models fluctuate within a small range, but the DVCW-YOLO model consistently exhibits
the lowest loss, indicating that the model’s predictions are closer to the actual labels in
the training data. Additionally, the DVCW-YOLO model and the YOLOv8n-DVW model
converge significantly faster than YOLOv8n-DV, YOLOv8n-D, and YOLOv8n, suggesting
that the C2fCBAM and WIOU loss functions facilitate optimization efficiency. Figure 9b
illustrates that the mAP value of DVCW-YOLO model converges more quickly than the
other four models and tends to stabilize after training 50 epochs. This confirms that the
DVCW-YOLO model effectively performs PCB defect detection and exhibits clear overall
performance advantages.

Figure 9. Comparison curve of different models.

4.3.3. Performance Comparison of Different Detection Algorithms

To further assess the object detection performance of the DVCW-YOLO model pro-
posed in this study, it was compared with several state-of-the-art models, including
Faster R-CNN, SSD, YOLOv3-tiny, YOLOv4-tiny, YOLOv5s, YOLOv7, YOLO-G [32], and
YOLOv8-PCB [33]. The detailed comparison results are presented in Table 3.
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Table 3. Performance comparative results of different models.

Model mAP0.5/a% FPS (f/s) FLOPs/G

Faster-RCNN 89.1 1.2 129
SSD 76.8 23.3 31.5

YOLOv3-tiny 79.6 26.7 26.4
YOLOv4-tiny 85.9 30.1 21.2

YOLOv5s 93.6 32.1 16.4
YOLOv7 94.6 32.5 9.8

YOLO-G [32] 99.0 - 13.2
YOLOv8-PCB [33] 98.37 8.8 -

YOLOv8n 95.3 41.6 8.9
DVCW-YOLO 99.3 43.3 7.0

The DVCW-YOLO model achieved the highest mAP@0.5 of 99.3% among all the
models evaluated. This represents improvements of 11.4%, 29.2%, 24.7%, 15.5%, 6%, 4.9%,
0.3%, 0.9%, and 4.1% over faster R-CNN, SSD, YOLOv3-tiny, YOLOv4-tiny, YOLOv5s,
YOLOv7, YOLO-G, and YOLOv8n, respectively. In addition to its superior accuracy, the
DVCW-YOLO model also demonstrates a remarkable efficiency, with a FLOPs value of
only 7.0 G. In comparison, it shows a significant advantage in computational efficiency,
reducing FLOPs by 122 G, 24.5 G, 19.4 G, 14.2 G, 9.4 G, 2.8 G, and 6.2 G over faster
R-CNN, SSD, YOLOv3-tiny, YOLOv4-tiny, YOLOv5s, YOLOv7, YOLO-G, and YOLOv8n,
respectively. DVCW-YOLO also had significant advantage in detection speed, and its FPS
value was greater by 42.1, 20, 16.6, 13.2, 11.2, 10.8, 34.5, 1.7 than those of faster R-CNN, SSD,
YOLOv3-tiny, YOLOv4-tiny, YOLOv5s, YOLOv7, YOLOv8-PCB and YOLOv8ns. Overall,
the results indicate that the DVCW-YOLO model offers clear advantages in both detection
accuracy and speed compared to other models, demonstrating its superior performance in
object detection tasks.

4.3.4. The Analysis of Detection Results

To further analyze the detection effect of proposed DVCW-YOLO model, we classify
the detection results for various defects in the test set, including missing holes, open circuits,
short circuits, and spurious copper. The detection outcomes of the DVCW-YOLO model
and the original YOLOv8n model are presented in Figures 10 and 11.

Figure 10. Detection results of YOLOv8n.
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Figure 11. Detection results of DVCW-YOLO.

As illustrated in Figures 10a–c and 11a–c, the DVCW-YOLO model shows higher
confidence in detecting defects such as PCB missing holes, open circuits, and short circuits
compared to the YOLOv8n model. The mentioned four defects are detectable using
the Yolov8n with a confidence score around 0.8. The use of DVCW-YOLO can not only
effectively detect these defects but can also achieve a detection confidence of about 0.9.
Notably, in Figure 10d, YOLOv8n misses a defect, while in Figure 11d, the DVCW-YOLO
model accurately detects all defects. These results highlight the significant improvement
in detection accuracy achieved by the DVCW-YOLO model, as well as its effectiveness in
reducing the missed detection rate. This makes the DVCW-YOLO model more suitable for
practical PCB defect detection applications.

5. Conclusions
To tackle the challenges of balancing large model sizes and high missed detection

rates that commonly afflict traditional detection methods, we propose an advanced defect
detection model for PCBs based on the YOLOv8n architecture. Our approach involves
replacing all conventional convolutional layers in the YOLOv8n backbone with lightweight
DWConv. Additionally, we introduce the C2fCBAM module into the backbone network
to enhance the extraction of salient features while reducing the influence of secondary
features. This modification allows the model to focus more effectively on critical regions,
thereby improving its ability to accurately characterize and extract features of the detected
objects, particularly addressing the challenge of high false detection rates for small targets.
In the neck network, we substitute the C2f module with a more efficient VOVGSCSP
module to optimize the trade-off between model accuracy, detection speed, and overall
model size. Moreover, we implement the WIoU loss function instead of the traditional
CIoU loss function, which helps alleviate the impact of low-quality and extreme samples,
thereby enhancing model accuracy, accelerating convergence, and reducing the high missed
detection rate typically encountered in PCB defect detection. Our experimental results on
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self-augmented datasets indicate that the DVCW-YOLO model achieves mAP of 99.3%,
along with a detection speed of 43.3 FPS.

In future work, we plan to expand the dataset to include a broader range of defect
types and various inspection objects. This initiative aims to improve the generalization and
applicability of the detection model, thereby providing a solid theoretical framework for
real-time industrial defect detection.
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Featured Application: This work can potentially be applied to industrial belt conveyors of any
type. The tested system can be used for real-time monitoring in order to identify and prevent
overloads, misalignments, growing damage to the belt in the early stages, and other trends that
may cause failure.

Abstract: This paper is devoted to the real-time monitoring of close transportation devices, namely,
belt conveyors. It presents a novel measurement system based on the linear strain gauges placed on
the tail pulley surface. These gauges enable the monitoring and continuous collection and processing
of data related to the process. An initial assessment of the machine learning application to the
load identification was made. Among the tested algorithms that utilized machine learning, some
exhibited a classification accuracy as high as 100% when identifying the load placed on the moving
belt. Similarly, identification of the preset damage was possible using machine learning algorithms,
demonstrating the feasibility of the system for fault diagnosis and predictive maintenance.

Keywords: machine learning; real-time monitoring; belt conveyor; fault diagnosis; predictive maintenance

1. Introduction

It can be stated that belt conveyors are the most common type of conveyor since they
are relatively cheap, versatile, and easy to maintain [1,2]. There are systems consisting of a
single belt conveyor, but there are also long transport lines with a number of conveyors [3].
Belts are a crucial component of conveyor systems [4], which are subject to degradation and
failure under normal work conditions due to the dynamic contact between the transported
material on the belt’s surface and between the belt and its supporting components [5].
Degradation is increased and accelerated under multiple physical, chemical, or biological
factors [6], but also under thermal shocks, humidity, or aging [7]. Apart from safety
hazards, unplanned shutdowns lead to significant losses [8]. Thus, degradation must be
continuously monitored by collecting real-time data from various sensors [9]. This task
is not trivial since belts are one of the most complex and most difficult components to
diagnose [10]. In general, there are two methods for the detection of conveyor belt damage:
(i) contact methods with an extra mechanical component embedded into the conveyor
belt’s components and (ii) non-contact methods like the ones based on machine vision [11]
or acoustic emission analysis [12]. Monitoring the state and condition of the conveyor belt
during its work is of great importance because it enables one to discover the appearance of
possible damage and failure early on [13]. From the published data [14], it is known that
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expenses on conveyor monitoring equipment were, in 2018, as high as USD 200 million,
and they are expected to exceed USD 0.25 trillion in 2024.

However, apart from collecting the signal from a monitoring system conveying the
belt’s actual condition, a proper analysis of the registered signals should be performed, and
the relevant decision should follow [15]. Among others, machine learning (ML) algorithms
are widely applied for this purpose. For instance, Andrejiova and co-authors attempted
to identify the correlations between significant damage to the rubber–textile material of
the conveyor belt and some parameters, such as the type of material and the impact
height [16]. Using multispectral imaging, Zhou et al. assessed a conveyor belt’s wear
condition, classifying it into three wear states using a deep learning approach [17]. In
order to prevent the belt from flipping over, Rumin, together with the team, proposed an
algorithm based on machine learning and analytical algorithms to determine the forces
acting on the individual components of the conveyor and subsequently make a decision on
classifying the category of the obtained results [18]. Zhang and co-authors reported the
application of a new detection method able to simultaneously detect multiple faults using
a special dataset for various types of damage to the conveyor belt [19]. Guo and colleagues
proposed a novel method for conveyor belt damage detection based on fusion knowledge
distillation and a deep neural network using the data collected via an image acquisition
module [20]. Signals obtained from both machine vision [21] and acoustic systems [22]
were reported to be analyzed with a machine learning algorithm. Pulcini and Modoni
proposed a digital twin to perform a predictive maintenance approach through the analysis
of data collected from various sensors placed along an operating conveyor belt, exploiting
a machine learning algorithm [23]. Also, Soares and co-authors reported the application
of a combination of wavelet packet decomposition and gradient boosting decision tree
for the diagnosis of failure modes, including the surface wear of laboratory belt conveyor
idlers [24].

In this paper, a novel system for conveyor belt monitoring is presented based on strain
gauges. Strain gauges provide a continuous signal corresponding to the belt’s tension in
different work conditions. Considering some of the features of the registered signals, an
attempt was undertaken to identify them using several machine learning algorithms.

2. Materials and Methods

The materials and methods consisted of a model of the belt conveyor, a measurement
system for real-time monitoring, and machine learning algorithms that helped to classify
the loads and damage types of the belt.

2.1. Monitoring System

The proposed monitoring system is a type of contact method for the detection of
conveyor belt damage. It is based on strain gauges, exploiting the principle described
in [25]. However, for the current research, the system was modified and patented [26]. In
this solution, the long, flexible RP-L-170-type thin-film sensor [27] produced by DFRobot
(Chengdu, China) was applied. Figure 1a illustrates the strain gauge, and Figure 1b shows
its position on the tail pulley surface.
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The resistance RT of a strain gauge is directly dependent on the pressing force applied
by the belt RT = (Fn). To register the signal from the strain gauges, a special electronic
unit was projected and built into the hollow tail pulley. Figure 2a shows the holder of
the printed circuit board (PCB) fitted to the inside of the pulley. Figure 2b shows the PCB
designed to collect, transmit, and process the signals initially so that the results can be
presented in a remote laptop in the form of graphs and data tables for further analysis.
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In principle, the electronic system was similar to the one described in [25]. Its tasks
were to collect signals generated by the force F between the conveyor belt and the strain
gauges placed on the pulley surface, to transmit the signal through the Bluetooth port, and
to process collected data with a dedicated LabView program. The entire system underwent
calibration as described in [28], and the Type A expanded uncertainty was below 1% of
the measured value for the 99% gradient boosting decision tree, while the approximation
error was ca. 8%. These results cover all of the uncertainty sources, including the electronic
unit. The monitoring system was expected to support a predictive maintenance strategy
able to safeguard the continuous operation of the conveyor and to minimize supply chain
disruptions in agreement with the Industry 4.0 concept [29].

2.2. The Test Model of the Belt Conveyor

In order to perform the necessary experiments, the test rig was built. It consisted of
a driving pulley with an adjustable electric motor and a tail pulley with a built-in strain
gauge measuring system. Figure 3 demonstrates the end part of the test rig with the belt
placed on the tail pulley.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 3 of 13 
 

designed to collect, transmit, and process the signals initially so that the results can be 
presented in a remote laptop in the form of graphs and data tables for further analysis. 

  
(a) (b) 

Figure 1. The strain gauges used in the conveyor belt monitoring system: (a) view and dimensions; 
(b) the positioning of three strain gauges on the tail pulley surface. 

  
(a) (b) 

Figure 2. Details of the built-in electronic system: (a) a drawing of the PCB holder placed inside the 
tail pulley; (b) the printed circuit ready to be mounted into the pulley. 

In principle, the electronic system was similar to the one described in [25]. Its tasks 
were to collect signals generated by the force F between the conveyor belt and the strain 
gauges placed on the pulley surface, to transmit the signal through the Bluetooth port, 
and to process collected data with a dedicated LabView program. The entire system un-
derwent calibration as described in [28], and the Type A expanded uncertainty was be-
low 1% of the measured value for the 99% gradient boosting decision tree, while the ap-
proximation error was ca. 8%. These results cover all of the uncertainty sources, including 
the electronic unit. The monitoring system was expected to support a predictive 
maintenance strategy able to safeguard the continuous operation of the conveyor and to 
minimize supply chain disruptions in agreement with the Industry 4.0 concept [29]. 

2.2. The Test Model of the Belt Conveyor 
In order to perform the necessary experiments, the test rig was built. It consisted of a 

driving pulley with an adjustable electric motor and a tail pulley with a built-in strain 
gauge measuring system. Figure 3 demonstrates the end part of the test rig with the belt 
placed on the tail pulley. 
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The rubber belt enabled us to imitate the work conditions of a belt conveyor with
different speeds, tensions, loads, and even damages. The inclinometer allowed for the
registration of the rotational angle of the pulley, which was important because only part of
the strain gauge underwent pressure.
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In the experiments, a typical belt material, EDV08PB-AS 2.0, was used, made by Enitra
Sp. z o.o. (Wałbrzych, Poland). Before the experiments, the material underwent a detailed
analysis reported elsewhere [30]. Its important feature is the anisotropy of the strength
characteristics, especially the ones related to damages. In particular, the samples with
transverse preset damages exhibited ca. 60% lower breaking force than the ones with
longitudinal preset damages.

2.3. Damages Identification

The work of the belt conveyor was imitated using the abovementioned test rig. The
test campaign first included the work of the belt without loads and damages, and then
the loaded work, and, finally, the work with intentionally made damages. The tests
were performed at three different rotary speeds of the tail pulley, namely, n1 = 159 rpm,
n2 = 318 rpm, and n3 = 520 rpm. Finally, the machine learning (ML) algorithms were
tested for the rotary speed of n1 = 159 rpm, which corresponded with a linear belt speed of
v1 = 0.5 m/s.

Since it is widely recognized that longitudinal and transverse tears belong to the
main types of catastrophic failures, and the longitudinal ones appear more commonly than
transverse ones [31], the damages were made in two stages as follows:

• First, three cuts were made, namely, two longitudinal cuts through UW I and UW II,
which were 50 mm and 70 mm long, respectively, and one partial longitudinal cut UW
III, which was 45 mm long and 1 mm deep.

• Then, two more cuts were added, namely, a longitudinal partial cut through UW IV
which was 50 mm long and 1.5 mm deep, and a transverse cut through UP I, which
was 10 mm long in the middle of the belt.

Thus, three different states of the belt were analyzed: the undamaged one, the one
with three cuts, and the one with five cuts.

In order to avoid additional uncertainty propagation due to the calculations, rounding,
and approximations, the data were analyzed in analog-to-digital units (ADUs) obtained
from the analog-to-digital converter. It should be noted that a higher value in ADUs
corresponded with smaller pressure on the strain gauge.

To train a machine learning (ML) model, usually a batch of data are used [32]. The
respective data collected from the electronic system were analyzed from the perspective of
belt state monitoring. Statistical parameters were calculated, including standard deviation
and kurtosis, and the data were imported to MatLAb (R2024b). From the Classification Lerner
application, 10 algorithms were used, and a typical number of folds for the cross-validation
was chosen, namely, kv = 5 [33].

Then, the analysis of 18 features was performed with the Diagnostic Feature Designer
application. The purpose of the test was to determine which features are the most significant
for machine learning, and a one-way analysis of variance (ANOVA) model [34] was found
to be useful for this analysis.

3. Results and Discussion

The results were analyzed in two stages. First, the graphical visualization of the
registered signals in time t was studied, comparing the simultaneous indications of three
strain gauges in order to assess the features related directly to the loads and damages. Then,
the ML algorithms were tested, assessing their ability to classify the loads and damages.

3.1. Registered Monitoring Signal

An example of a registered signal is shown in Figure 4. It corresponds with the tail
pulley rotary speed of n1 = 159 rpm. On the left, the strain gauge indications are expressed
in ADUs, while on the right, they are recalculated to the force units N. However, it should
be noted that these are the values of the force pressing directly on the strain gauge surface,
not to be confused with the belt tension or the belt pressure on the pulley.
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Figure 4. An example of the registered signal from strain gauges T1, T2, and T3.

During the measurement time, some typical registered characteristics appeared, which
can be seen in the graph in relation to the damages. The most noticeable one is the “jump”
of all three strain gauge indications when the belt joint was in contact with the tail pulley
after the fourth second of measurement. At that moment, the indication of strain gauge
T1 jumped from ca. 700 ADU to ca. 2400 ADU, which corresponded with the drop in the
pressing force. Quite predictably, the central strain gauge, T2, experienced a smaller drop
in the pressing force, which corresponded with the increase in indications from 400 ADU
to 1400 ADU.

Another obvious characteristic is the one related to the cut UP I in the middle of the
belt width. This one reached the pulley at the seventh second of the experiment and caused
a significant drop in the pressing force on the central strain gauge, T2, from ca. 42 N to
almost 3 N. Gauge T2 was directly under the cut, so the pressing force was very small.
Other preset damages had different impacts on each strain gauge, making it possible to
identify their presence from a comparison of the three signals.

3.2. The Application of the Machine Learning Algorithms

The possibility of damage identification was tested using statistical data from the
registered signal of each strain gauge, namely, T1, T2, and T3, for the belt without damage,
the one with three defects, and the one with five defects, respectively, as described in
Section 2.3. The statistical parameters were as follows: The mean value for each strain
gauge is

x =
1
N ∑N

n=1|x(n)|, (1)

where x(n) is the amplitude of each sampling, and N is the number of samples.
The respective equations for the mean square value Xms, standard deviation σ, and

kurtosis Xk for each strain gauge were used as follows:

Xms =

√
1
N ∑N

n=1[x(n)]
2, (2)

σ =

√
1
N ∑N

n=1[x(n)− x]2, (3)

Xk =
1
N ∑N

n=1[x(n)− x]4
(

1
N ∑N

n=1[x(n)− x]2
)2 . (4)
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Thus, with six statistical parameters for three strain gauges, 20 repetitions provided
360 statistical datapoints covering three states of the belt. Table 1 contains the data for
repetitions No. 1, 19, and 20 for each parameter, calculated for each strain gauge. Table 2
presents the list of the algorithms tested, specifying the accuracy of damage identification
and the respective numbers of the cases erroneously classified.

Table 1. The characterization of the collected signals from three strain gauges, namely, T1, T2, and T3,
after 20 repetitions, ADU.

Repetition 1 . . . 19 20 1 . . . 19 20 1 . . . 19 20

State Undamaged Belt 3 Defects on the Belt 5 Defects on the Belt

Mean
x

T1 862.6 . . . 831.3 765.2 1044.6 . . . 959.3 1021.4 1440.3 . . . 1331.3 1419.4
T2 406.3 . . . 317.5 316.2 442.1 . . . 385.3 430.0 668.1 . . . 580.9 668.3
T3 735.9 . . . 750.3 761.4 787.6 . . . 751.5 773.8 856.0 . . . 843.7 863.4

Min
T1 569 . . . 520 487 619 . . . 637 642 828 . . . 799 848
T2 223 . . . 213 222 221 . . . 193 144 247 . . . 239 209
T3 580 . . . 602 615 660 . . . 625 642 670 . . . 592 671

Max
T1 1330 . . . 1298 1376 2209 . . . 1553 1907 2987 . . . 2306 2505
T2 845 . . . 519 538 1301 . . . 1119 1087 3429 . . . 3052 3073
T3 1136 . . . 1066 1140 1030 . . . 1069 1081 1322 . . . 1337 1371

Mean square
Xms

T1 876.4 . . . 772.9 555.9 923.7 . . . 932.2 835.4 1460.1 . . . 1294.9 1423.5
T2 414.7 . . . 293.6 226.0 411.7 . . . 391.8 368.7 784.7 . . . 629.3 755.8
T3 744.8 . . . 690.8 543.6 679.5 . . . 725.3 626.1 850.0 . . . 815.0 860.8

Std. dev.
σ

T1 155.0 . . . 160.4 182.3 253.7 . . . 154.2 192.6 361.1 . . . 253.5 275.3
T2 82.9 . . . 51.1 47.5 184.8 . . . 135.5 159.8 436.5 . . . 310.5 377.9
T3 114.6 . . . 98.6 109.0 70.7 . . . 82.3 89.8 120.5 . . . 125.2 137.7

Kurtosis
Xk

T1 −0.5 . . . −0.7 −0.1 4.3 . . . 1.0 2.5 2.2 . . . 1.9 0.3
T2 3.6 . . . 0.6 2.3 3.3 . . . 5.4 1.5 13.2 . . . 18.3 10.2
T3 0.1 . . . 0.1 0.5 0.4 . . . 1.0 0.8 1.2 . . . 0.4 0.1

Table 2. Machine learning results for different algorithms.

Algorithm Classification Accuracy Number of Wrongly
Classified Cases

Fine Tree 100.00% 0
Medium Tree 100.00% 0
Coarse Tree 100.00% 0

Ensemble Bagged Trees 100.00% 0
Ensemble Subspace KNN 98.33% 1

Linear Discriminant 96.67% 2
Coarse Gaussian SVM 96.67% 2

Coarse KNN 33.33% 40
Ensemble Boosted Trees 33.33% 40

Ensemble RUSBoosted trees 33.33% 40

Notably, four algorithms based on a decision tree reached 100% of damage identifica-
tion. It is known that “A decision tree is a hierarchical model composed of discriminant
functions, or decision rules, that are applied recursively to partition the feature space of a
dataset into pure, single class subspaces” [35].

As shown in Figure 5, decision trees have branch nodes represented by triangles, and
each of them is the parent to two children leaf nodes represented by circles. A line between
the parent and children nodes represents a decision pathway. In the present research, the
single feature was T1_mean, with the boundary values of the features being 880.604 and
1194.04 ADU. The inequality expressions given close to the branch nodes describe the
decision boundaries.
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Thus, if the value of the new analyzed sample is smaller than 880.604 ADU, the sample
travels the pathway and is directed to the leaf node to be classified as “undamaged” based
on the set of training samples. Usually, “the class represented by the majority of training
samples within the leaf node subspace dictates sample classification” [35].

The analysis of 18 features was performed using the Diagnostic Feature Designer ap-
plication and a one-way ANOVA. This sort of test requires the assumptions of a normal
distribution and homogeneity of variance for all groups. To test the effect of a single factor
on the results, it assumes the presence of one independent variable, represented by the
groups studied in the experiments, and one dependent variable, represented by the results
of the study. Hypotheses regarding the equality of means are tested if there are more than
two analyzed groups [36].

When the abovementioned assumptions are not met, the result may become unreliable.
Data transformation can be a method that allows for data normalization and variance
stabilization. However, when such actions do not provide a positive result, non-parametric
tests become an alternative, e.g., the Kruskal–Wallis test, which is equivalent to a one-way
analysis of variance [37]. The non-parametric Kruskal–Wallis test corresponds with the
parametric one-way ANOVA test and allows for post hoc testing when the null hypothesis
of equality of means in the analyzed groups is rejected. When the assumptions of a
parametric test are met and the distribution is normal, parametric tests appear to be more
powerful than the comparable non-parametric ones, i.e., a non-parametric test is less likely
to correctly define a statistically significant result [38]. Thus, it is recommended to first
apply a parametric test, and if it appears improper, then a non-parametric test should be
used [37].

In this research, we decided to use the Laplacian Score, variance, and monotonicity
tests. The Laplacian Score used the nearest neighboring graph to determine the local data
structure and the respective value for each feature. A feature with a higher Laplacian
Score indicated its importance for localization [39]. Variance is the classical method of
differentiation for its evaluation and has no statistical interpretation. However, it can be
used for the construction of other parameters, such as central moments or the standard
deviation. It is expressed as the arithmetic mean of the squares of deviations of individual
values of the feature from their arithmetic mean [40]. Monotonicity is the rating method
available in Diagnostic Feature Designer, with values ranging from 0 to 1 to describe the
trend of the given function during the system’s evolution.

The results of the tests obtained from the five different abovementioned models are
shown in Figure 6, ranked in decreasing order for different features according to the results
of the one-way ANOVA. Generally, all of the tests indicated similar trends in significance,
even though the particular results differed greatly from one model to another.
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Figure 6. The ratings of the results for different features evaluated with different models.

It is seen in Figure 6 that the mean value from the T1 strain gauge was the most
significant feature, which was confirmed by all four models applied. In turn, the kurtosis
of the T3 strain gauge indications was found to be the least significant for the identification
of the conveyor belt state. On the other hand, Laplacian Score method provided the highest
values for test results, with one exception being the T2 Std.dev., while the ANOVA method
gave the lowest values for the tested parameters with three exceptions.

Figure 7a,b show examples of distribution graphs for the features found to be highly
significant. In Figure 7a, the results for the T2 Max and T1 Mean are collected, while in
Figure 7b, the T2 standard deviation and T1 Mean Square points are presented. In both
diagrams, the areas of concentration of the points can be clearly distinguished. These points
were used for state identification and damage classification for the analyzed belt.
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Figure 7. Examples of dispersion diagrams for significant features: (a) T1 Mean and T2 Max; (b) T1
Mean Square and T2 standard deviation.

For better visualization of the performance of the tested algorithms, the results are
also presented in the form of a confusion matrix in Figure 8. It represents the models that
reached 100% of classification for all three cases, including the undamaged belt, the one
with three defects, and the one with five defects. Each row represents the results of actual
classification, and each column corresponds with a predicted class. For the cross-validation,
the confusion matrix was calculated using the predictions for the validation observations.
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Figure 8. Confusion matrix for models that reached 100% classification.

The cells located diagonally in the matrix indicate where the actual and predicted
classes match. In order to check the performance of the classifier in individual classes,
the function was selected, showing the true positive rates (TPRs) and false negative rates
(FNRs). The TPR represents the percentage of correctly classified observations per true
class, while the FNR shows the percentage of incorrectly classified observations per true
class. The obtained confusion matrix confirmed the possibility of identifying the state
of the conveyor belt from the analysis of signals generated by the strain gauge-based
monitoring system.
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In order to compare the features of the obtained belt state observations and to illustrate
the relationships between them, a parallel coordinate plot (PCP) is presented in Figure 9.
PCPs are widely recognized as a powerful technique allowing for the visual analysis of
large sets reaching some millions of datapoints with multiple parameters associated with
them [41]. The range scaling method was used to make the data fit into a certain pre-defined
interval with the same minimum and maximum limits. The graph shows predictions for
the Coarse Tree model using eight features that exhibited the highest significance.
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Figure 9. The parallel coordinate plot for the Coarse Tree model.

The most significant features were specified based on Figure 9. These features precisely
show the ranges of values for three different states of the conveyor belt. The variables
indicating a belt with five defects are marked in red. Apart from a dozen values, one
distinctive area can be seen in the upper part of the graph. The values in the middle part
have the greatest dispersion, and this area corresponds with the belt with three defects.
The belt without damages is characterized by the variables in the lower part of the graph,
which are marked in yellow and exhibited the smallest dispersion. In the graph, three
areas corresponding with the states of the conveyor belt can be distinguished clearly, which
overlapped only to a small extent.

The results indicate that the data collected from the strain gauge-based monitoring
system are closely related to the actual state of the conveyor and the reflected condition
of the rubber belt. As such, these data can also be analyzed for the speed and quality
aspects of the manufacturing process in terms of a production efficiency analysis [42].
From the collection of records, major faults and critical failures can be assessed using the
Fault Tree Analysis (FTA) method through a graphical representation of the faults’ causes
and potential countermeasures [43]. Moreover, continually collected data can be used for
the prediction of the remaining useful life and for appropriate optimized maintenance
decisions [44].
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4. Conclusions

The analysis proved that the strain gauge-based measurement system provided a
reliable sequence of signals for the real-time monitoring of the conveyor belt work. As a
result of continuous monitoring of the belt operation, the system generated a significant
amount of data that underwent an extended analysis based on the machine learning (ML)
algorithms. The signals were collected from three strain gauges, namely, T1, T2, and T3,
after 20 repetitions, and statistical parameters were calculated accordingly. It was found
that for damage monitoring, the most significant features were the arithmetic mean value
from the T1 strain gauge, followed by the T1 Root Mean Square, T2 Root Mean Square
T2 Mean, and T2 standard deviation. The results indicate the existence of an identifiable
correlation between the actual condition of the rubber belt and the signal recorded by the
strain gauge system. So, it was experimentally proven that the strain gauge-based system
could be successfully used for the real-time monitoring of the conveyor belt operation.

A further analysis of 18 features was performed using 10 ML algorithms. Four of them
were able to correctly classify the undamaged belt, the belt with three preset defects, and
the one with five defects. Thus, it can be concluded that the system provided real-time
information enabling the detection of the belt damages that appeared during the conveyor
operation. It is planned to test more ML algorithms in future research. Moreover, it is
important to investigate the possibility of detecting damages appearing and dynamically
developing during the belt’s operation in order to prevent failures.

5. Patents

The work reported in this manuscript resulted in the Polish patent No. P.447569
Method and a device for the supervision of the tension and wear of conveyor rubber belts.
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Abstract: A microreactor is a chemical reaction device that mixes liquids in a very narrow channel
and continuously generates reactions. They are attracting attention as next-generation chemical
reaction devices because of their ability to achieve small-scale and highly efficient reactions compared
to the conventional badge method. However, the challenge is to design a control system that is
tolerant of faults in some of the enormous number of sensors in order to achieve parallel production
by numbering up. In a previous study, a simultaneous control system for two different temperatures
was proposed in an experimental system that imitated the microreactor cooled by Peltier devices.
In addition, a fault-tolerant control system for one area has also been proposed. However, the
fault-tolerant control system could not be applied to the control system of two temperatures in the
previous study. In this paper, we extend it to a two-input, two-output fault-tolerant control system.
We also use a fault detection system that combines ChangeFinder, a time-series data analysis method,
and One-Class SVM, an unsupervised learning method. Finally, the effectiveness of the proposed
method is confirmed by experiments.

Keywords: microreactor; fault detection method; operator theory; nonlinear control; right coprime
factorization; fault-tolerant control

1. Introduction

In recent years, microreactors, in which reactions are continuously carried out in tiny
liquid channels, have attracted attention as a next-generation chemical reaction device based
on flow methods. Because microreactors have a large surface area ratio where liquids come
into contact with each other, they can facilitate chemical reactions with greater efficiency and
faster reaction rates than conventional batch methods. In addition, microreactors contribute
to the miniaturization of production facilities and are expected to be applied to high-mix,
low-volume production processes. Furthermore, by numbering up multiple microreactors
in parallel, large-scale production is possible [1,2]. Experiments have been conducted with
the made microreactors, and the effectiveness of their hydrodynamic and chemical reaction
properties has been confirmed [3,4]. Microreactors have attracted attention for their ability
to achieve precise temperature control because of the advantages of their extremely narrow
liquid flow paths and their ability to maintain uniform temperatures of the reaction liquid.
The experimental equipment used in this study uses a Peltier device as the actuator that
performs the cooling. Although nonlinear characteristics have been confirmed to exist in
the heat absorption of Peltier devices [5,6], precise temperature control of the aluminum
plate by electric current has been confirmed [7,8].

In recent years, industrial plants have become larger and larger, and more and more
attention is being paid to technologies that enable safe and economical plant operation.
The effectiveness of model-based studies of fault detection and isolation has been reported
in the field of control engineering [9,10]. When microreactors are used for continuous flow
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production, the number of sensors and actuators is expected to increase due to numbering
up. As the number of devices in a system grows, the likelihood of individual component
failure also increases, but it is impractical to repair each time a fault occurs. To avoid
such economic losses, it has become common for redundant sensors and actuators to
be implemented in plants. Therefore, even if some of the systems fail, such redundant
equipment can be used to realize the control system with redundant operation against
faults. A control system with redundancy against fault is called a fault-tolerant control
system. However, from the viewpoint of safety, the system that can quickly identify the
equipment in which the fault has occurred is required [11,12].

In addition, the use of time-series data to detect faults in production plants has been
attracting attention. As production plants become larger and include more sophisticated
systems as a result of advances in science and technology, the labor and cost involved in
monitoring them has become an issue. Therefore, the construction of a system that senses
each condition and automatically analyzes the data will enable real-time fault detection
without human intervention [13]. ChangeFinder is a data analysis method that has been
attracting attention for its ability to capture changes in behavior (change-points) in a time
series rather than the data values themselves, and to calculate a score for the likelihood of a
change-point in the time-series data. If time-series data show stationarity during normal
conditions, the change-points detected by ChangeFinder may be equipment anomalies [14].

In a previous study, the fault-tolerant control system based on operator theory consider-
ing Bounded-Input Bounded-Output (BIBO) stability was proposed for minor temperature
sensor faults in microreactors, aiming to continue control even in the event of the fault [15].
The fault-tolerant control system based on operator theory that takes into account BIBO
stability has been proposed for the purpose of maintaining control even in the event of
minor faults in temperature sensors of microreactors. Operator theory is a nonlinear control
theory that expresses inputs and outputs in terms of maps (operators) [16]. Nonlinear
control theory makes it possible to design control systems without linear approximation.

However, fault detection is required in general fault-tolerant control systems because
the control loop is switched between faulty and normal conditions. Prior research has
applied One-Class SVM, which is unsupervised learning, and proposed fault detection
that does not require a signal at fault in advance. However, the challenge is to accurately
determine whether the cause of fluctuations in the signal output from the sensor is a fault
or a characteristic of the control target. Early fault detection is a trade-off with the incidence
of false detection of faults due to noise and other factors, and from the standpoint of safety,
even more accurate and early fault detection is a challenge [15].

Therefore, in this study, we will perform two tasks: detecting faults in temperature sen-
sors and constructing a fault-tolerant control system using the microreactor system cooled
by Peltier devices as the control target. For fault detection, the unsupervised fault detection
system combining ChangeFinder and One-Class SVM was used. This is because we aimed
to improve detection performance by providing explicit features from data analysis to the
input of the One-Class SVM. A supervised classification system combining ChangeFinder
and SVM was proposed in previous research [17]. Since the hyperparameters are not
optimized in the previous method, the fault classification performance will be improved by
optimizing the hyperparameters using a real-coded genetic algorithm. In addition, the fault
detection system is effective for only one temperature sensor in the microreactor system
in the conventional method. On the other hand, in this paper, a fault detection system is
constructed for multiple sensors. Similarly, in designing the fault-tolerant control system,
we will design a fault-tolerant control system that is effective for multiple sensors. The
effectiveness of this system is confirmed by simulation and actual experiments, assuming
that a sensor fault occurs during temperature control such that the sensor is damaged and
shows a measured value that is different from the original temperature.
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2. Experimental System

The experimental apparatus used in this study is shown in Figure 1a. A schematic
diagram of the microreactor system is shown in Figure 1b. The microreactor system was
made in Okayama University, Okayama, Japan. The Peltier devices used were TES1-12739-
T100-SS-TF01-AIO from Thermonamic Electronics (Jiangxi) Corp, Jiangxi, China. The
syringe pump was a kds101 made in the U.S. by KD Scientific Inc. (Holliston, MA, USA).
The experimental apparatus consists of the microreactor system and a syringe pump for
water flow, as shown in Figure 1a. The microreactor system consists of an aluminum heat
spreader and a tube passing through the center, which is the water flow path. A Peltier
device is installed to cool the heat spreader. The goal of this research is to control the
temperature of the tube. A syringe pump is used to supply a constant flow of water to the
tubes. The flow rate of room temperature water in this study is 0.5 [mL/min], which is the
maximum flow rate.

(a) (b)
Figure 1. Experimental system: (a) external view. (b) Schematic diagram of the microreactor system.

3. Problem Statement

This chapter describes the problem setup for this study. In this study, we assume a case
in which a tube temperature sensor fails during temperature control of the microreactor
system. In this case, we aim to construct a system that allows temperature control to
continue without shutting down the entire plant, even during the temperature sensor fault.
The following two steps are required:

1. A system that determines in real time whether the temperature sensor of a tube is
normal or abnormal (fault detection system).

2. A control system that compensates for tracking to the reference input in the event of a
tube temperature sensor fault (fault-tolerant control systemm)

The fault detection system consists of a One-Class SVM with some of its inputs added
to ChangeFinder’s outputs. The discriminant model trained only on normal data learns the
relationship between the control input, temperature sensor measurements, and the change-
point scores of the temperature sensor measurements by ChangeFinder. If the observed
data do not fit the learned relationship, the model discriminates abnormal conditions. This
enables fault detection without requiring prior fault data and without specializing in a
particular pattern of faults.

The fault-tolerant control system is a nonlinear control system that considers Bounded-
Input Bounded-Output (BIBO) stability based on operator theory. The system assumes that
an unknown fault factor is added to the normal measured value of the temperature sensor
that has failed, and the system operates in such a way that the fault factor is removed. If
the control system can remove the fault elements, the temperature of the controlled object
can follow the reference input even in the event of an abnormality. However, fault-tolerant
control systems require the fault detection system to be activated. Early fault detection is
necessary from the standpoint of stability.

Assumed Temperature Sensor Fault Conditions

The following is an explanation of the temperature sensor fault situation assumed
in this study. As it is difficult to intentionally cause a sensor fault, the fault is emulated
using the measured values of a normal sensor. Various types of sensor faults have been
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reported [18]. In this study, we consider the case where the sensor deviates from its
predetermined position due to a situation such as the sensor being unglued, and shows a
measured value that is different from the original temperature of the controlled object. This
situation is shown in Figure 2. The fault is represented as a step-like fault element dw added
to the original temperature y for the measured value y f , as shown in Equations (1) and (2).
Note that A is the amplitude of the fault signal, B is the time constant of the fault signal, and
TF is the fault time. The reason for this is explained below. When the position of the sensor
suddenly changes as shown in Figure 2b, the ambient temperature of the sensor changes.
The Fourier law and thermal radiation create a thermal gradient in the surrounding area.
Therefore, a step-like offset change generally occurs while the sensor is moving. Step-like
changes also occur due to the thermal inertia of the sensor itself. In temperature, where
heat transfer and heat conduction are dominant compared to thermal radiation, the offset
change during the fault is expected to be a first-order delay due to the thermal inertia of
the sensor. Only fault patterns with such offsets will be considered. The original measured
value y is not used in the experiment and y f is used in all control systems.

y f = y + dw (1)
{

dw = 0 (T < TF)
dw = A(1− exp(−B(T− TF))) (T ≥ TF)

(2)

An example of the normal and faulty measured deviation at that time is shown in
Figure 2.

(a) (b)
Figure 2. Assumed temperature sensor fault conditions: (a) deviation of normal and faulty sensor
readings from the correct values. (b) Temperature sensor fault condition.

4. Modeling

This chapter describes the modeling of the entire microreactor system, including the
microreactor(tube) and auxiliary cooling system [19]. Define the multiple area (Part) in the
device, as shown in Figure 3. Three Parts are defined for each tube and heat spreader, and
the sensor to measure the temperature is installed. The parameters used in the modeling
of heat spreaders and tubes are listed in Table 1. The corresponding area parameters in
Figure 3 are shown in Table 2. The parameters in Tables 1 and 2 refer to previous study [19],
with some modifications.

Figure 3. Area (Part) definition of microreactor system.
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Table 1. Parameters of modeling.

Symbol Description Value/Unit

T0 Initial temperature (outside temperature) [K]
Tc Heat-absorbing surface temperature of Peltier device [K]
Th Heat dissipation surface temperature of Peltier device [K]
Tan Temperature of Part An [K]
Twk Temperature of Part Wk [K]

i Input current of Peltier device [A]
S Seebeck coefficient of Peltier device 0.053 V/K
K Thermal conductivity of Peltier device 0.63 W/K
R Resistance of Peltier device 2.0 Ω
εa Emissivity of Aluminum 0.2
εw Emissivity of water 0.93
σ Stefan–Boltzmann constant 5.67× 10−8 W/(m2 ·K4)
α Heat transfer coefficient of air 180 W/(m2 ·K)

αw Heat transfer coefficient of water W/(m2 ·K)
λa Thermal conductivity of aluminum 135 W/(m ·K)
λw Thermal conductivity of water 0.602 W/(m ·K)
ca Specific heat of aluminum 900 J/(kg ·K)
cw Specific heat of water 4180 J/(kg ·K)
ma Mass of aluminum [kg]
mw Mass of water [kg]

Table 2. Parameters of area.

Symbol Value Unit Symbol Value Unit

S1 2.6× 10−3 m2 S2 7.0× 10−4 m2

S3 9.8× 10−3 m2 S4 9.0× 10−4 m2

S5 9.0π × 10−6 m2 S6 3.0π × 10−4 m2

S7 1.4× 10−3 m2 S8 2.8× 10−4 m2

S9 1.2π × 10−4 m2

4.1. Thermal Models of Heat Spreader

In this section, heat spreaders are modeled based on the laws of heat transfer. The three
heat transfer laws used are Fourier’s law, Newton’s cooling law, and Stefan–Boltzmann’s
law. The relational equation for heat conduction in Part An(n = 1, 2, 3) is obtained using
the heat transfer laws and Tables 1 and 2 as follows. For the left side of the model equation,
it is the time derivative of the thermal energy of the Part. The left-hand side shows the
total amount of heat energy exchanged by external factors, indicating the heat energy
transfer per unit time. Note that since the defined Parts are adjacent to each other, there is
interference due to heat transfer. Note that S′ = 2S1 + 2S2 + S3 − S5. In addition, ud1 and
ud3 are the heat absorbed from the Peltier device and are discussed in Section 4.3.

Part A1 :
d(T0 − Ta1)maca

dt
=2ud1 − αS′(T0 − Ta1) + αωS6(Ta1 − Tω1) +

λaS3(Ta1 − Ta2)

dx
+ εaσS′(T4

a1
− T4

0 ) (3)

Part A2 :
d(T0 − Ta2)maca

dt
=− α(T0 − Ta2)(2S7 + 2S8) + αωS9(Ta2 − Tω2)−

λaS3(Ta1 − Ta2)

dx

− λaS3(Ta3 − Ta2)

dx
+ εaσ(T4

a2
− T4

0 )(2S7 + 2S8) (4)

Part A3 :
d(T0 − Ta3)maca

dt
=2ud3 − αS′(T0 − Ta3) + αωS6(Ta3 − Tω3) +

λaS3(Ta3 − Ta2)

dx
+ εaσS′(T4

a3
− T4

0 ) (5)
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4.2. Thermal Model of Tube

Similarly, the thermal model in Part Wn(n = 1, 2, 3) is as follows.

Part W1 :
d(T0 − Tω1)mωcω

dt
=− λωS5((Tω0 − Tω1)− (Tω0 − Tω2))

dx
+ αωS6(Tω1 − Ta1) (6)

Part W2 :
d(T0 − Tω2)mωcω

dt
=− λωS5(2(Tω0 − Tω2)− (Tω0 − Tω1)− (Tω0 − Tω3))

dx
+ αωS9(Tω2 − Ta2) (7)

Part W3 :
d(T0 − Tω3)mωcω

dt
=− λωS5((Tω0 − Tω3)− (Tω0 − Tω2))

dx
+ αωS6(Tω3 − Ta3) (8)

4.3. Heat Absorption by Peltier Device

In this study, the control target is cooled by heat absorption from the Peltier device.
For the modeling of the heat spreader performed in Section 3, the control input is the heat
absorption udn from the Peltier device. In this section, the thermal model of the Peltier
device is presented and the calculation method of the current input to the experimental
device is described.

The heat absorption of the Peltier device is defined as positive. The model of the heat
absorption ud[W] is shown in Equation (9). Similarly, the model of heat dissipation uh[W]
when heat dissipation is defined as positive is shown in Equation (10).

ud = STci− K(Th − Tc)−
1
2

Ri2 (9)

uh = SThi− K(Th − Tc) +
1
2

Ri2 (10)

The command value given to the experimental apparatus is the current in. When
expressed as above, we consider determining the current flowing through the Peltier device
based on the heat absorption udn to be referred to. In this case, the current in is obtained by
solving the Equation (9) for in as follows.

i =
STc ±

√
(STc)2 − R(2K(Th − Tc) + 2ud)

R
(11)

Thermal Model Deformation

Equivalent transformations are performed for the models shown in Section 3, and the
transformation is made into an easy-to-handle form. Defining the temperature drop of the
controlled object from the outside temperature yan(t) = T0 − Tan(n = 1, 2, 3), the model for
the heat spreader is as follows.

Part An :
dyan(t)

dt
= ωan(t) +

4

∑
m=1

(−1)m Aanm ym
an(t) (12)

In this case, ωan(t) (n = 1, 2, 3) is as follows. The A11 to A34 are constants obtained by
Equation transformation.

ωa1(t) =
2ud1(t) + αwS6y1(t) +

λaS3
dx ya2(t)

maca
(13)

ωa2(t) =
αwS9y2(t) +

λaS3
dx ya1(t) +

λaS3
dx ya3(t)

maca
(14)

ωa3(t) =
2ud1(t) + αwS6y3(t) +

λaS3
dx ya2(t)

maca
(15)
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Similar to the Section 4.2, the equation transformation is performed for the model for
the tube Part. Defining the temperature yk = T0 − Twk (k = 1, 2, 3) of the drop from the
outside temperature to be controlled, the model for the tube is as follows.

Part Wk :
dyk(t)

dt
= ωwk (t)− Awk yk(t) (k = 1, 2, 3) (16)

In this case, ωwk (k = 1, 2, 3) are expressed as follows. Aw1 to Aw3 are constants
obtained by equation transformation.

ωw1(t) =
αwS6ya1(t)

mw1 cw
ωw2(t) =

αwS9ya2(t)
mw2 cw

ωw3(t) =
αwS6ya3(t)

mw3 cw
(17)

5. Control Design

In this chapter, we describe the design of a two-input, two-output temperature control
system for the three-division model.

5.1. Right Factorization

Right factorization [16] of the model of the control target described above is performed
based on operator theory. Define the heat input including interference in the heat spreader
as zan and the heat input of the tube as zwk . The derived model is subjected to right
factorization based on operator theory. First, from Equations (12)–(16), ωan , ωwk are shown.

ωan(t) =
zan(t)
maca

ωwk(t) =
zwk (t)
mwcw

(18)

Defining zan and zwk in Equation (18), Part An and Part Wk can be shown as in
Equations (19) and (20).

Part An : ẏan(t) =
zan(t)
maca

+
4

∑
m=1

(−1)m Aanm ym
an(t) (19)

Part Wk : ẏk(t) =
zwk (t)
mwcw

− Awk yk(t) (20)

Here, yAn is the temperature of the heat spreader Part An. Also, yk is the temperature
of the tube Part Wk. yAn and yk can be observed from the installed temperature sensors.

Equations (21)–(23) are shown for the heat input zan and zωn including the interference
of each plant.

za1(t) = 2ud1(t) +
λaS3

dx
ya2(t) + αwS6y1(t) zw1 = αwS6ya1(t) +

λwS5

dx
y2(t) (21)

za2(t) =
λaS3

dx
ya1(t) +

λaS3

dx
ya2(t) + αwS6y2(t) zw2(t) = αwS6ya2(t) +

λwS5

dx
(y1(t) + y2(t)) (22)

za3(t) = 2ud3(t) +
λaS3

dx
ya2(t) + αwS6y3(t) zw3(t) = αwS6ya3(t) +

λwS5

dx
y2(t) (23)

Based on operator theory, the plant under control is right factorized into invertible operator
D−1

n and stable operator Ñan . The heat spreader Part An is expressed as the following operator.

Dan : {zan(t) = macaωan(t) (24)

Nan :





ẋan(t) = ωan(t) +
4

∑
m=1

(−1)m Aanm ym
an(t)

yan(t) = xan(t)
(25)
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5.2. Control Design with Right-Coprime Factorization

In this section, the stability of the entire control system is guaranteed by designing a
controller based on operator theory for the control target with right factorization [16]. In
addition, a controller that compensates for tracking to the reference input in the outer loop
is designed to guarantee tracking. The designed controller is shown in Figure 4. Figure 4
shows the control system in vector, for example R−1

w = (R−1
w1

, R−1
w2

, R−1
w3

). Here, the plants
to be controlled are D−1

an and Nan representing heat spreaders and Pwn representing tubes.
We further define a new operator Ñwn = Pwn Nan .

In designing the control system, the controller design is performed under the condi-
tions of n = (1.3), k = (1, 3), and n = k. This is because there are only two regions where
the amount of heat absorption can be input from the Peltier device: Part A1 and Part A3.
Therefore, the system cools and controls Part An by heat transfer from Part Wn. All other
heat transfers that occur between the other Part are interferences. In this section, the design
is performed for the nominal model.

Figure 4. Control system based on operator theory.

Design the operators according to the Bezout identity in Equation (A12). Designing
the operators Sn and Rn so that they satisfy the Beozut identity compensates for the BIBO
stability of the nonlinear system. Then Sn and Rn become right-coprime factorizations. In
Equation (A12), I is the identity operator and outputs the input signal as it is.

Swn Ñwn + Rwn Dan = I (26)

The designed operators are shown in Equations (27) and (28). However, a constant
Bk(0 < Bk < 1) is used as the design parameter.

Swn = (1− Bk)Ñ−1
wn (27)

Rwn =
Bk

maca
(28)

From the above, the BIBO stability of the inner loop is guaranteed. However, the design
of Equation (A12) cannot perform reference input tracking. Therefore, the reference input
tracking is achieved by designing a tracking compensation controller as in Equation (29).
Here, KPn and KIn are the design gains.

Cwn(en)(t) = KPn en(t) + KIn

∫ t

0
en(τ)dτ (29)

5.3. Fault-Tolerant Control System

In this section, we design a control system that can follow a reference input even
in the event of a tube-mounted temperature sensor fault by activating the sensor in the
event of the fault. The fault-tolerant control system in this study consists of the fault
detection system and the fault signal compensation control system. The control system
described is the fault-tolerant control system that is extended from the one-input, one-
output fault-tolerant control system of the two-partition model of the previous study [15]
to a three-partition model. The fault signal compensation control system used in this study
is shown in Figure 5. As in the Section 5.2, only n = k = (1, 3) is explained. Here, FD in
Figure 5 denotes the fault detection system, which switches to the fault-tolerant control
system. Operator Qn is an operator that outputs a signal to compensate for faults and is
enabled by the fault detection system.
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Figure 5. Fault-tolerant control system.

In the case of a sensor fault, the fault signal fn is shown as in Equation (30) using the
fault element dωn .

fn(t) = Bn(yn + dωn)(t)− An(udn)(t) (30)

Here, when Qn is enabled, the output of the tracking compensation controller Cwk is
organized as in Equation (31).

(Swk Ñwk −QBnÑwk )Ñ−1
wk

(yn)(t)

=Cwk (ek)(t)− (Rwk Dan + QAnDan)Ñ−1
wk

(yn + dwn)(t) (31)

In this case, design An and Bn so that the left side is Ñwk and the term including the
fault element on the right side is O operator, respectively. Since the model equation for An
is the same as for Part An, the variable An(udn) uses the temperature sensor measurements
of Part An.

An(udn)(t) = Nan D−1
an (udn)(t) (32)

Bn(yn + dwn)(t) = P−1
wk

(yn + dwn)(t) (33)

When operators An, Bn satisfying the conditions are designed as in Equations (32)
and (33), operator Qn is shown as in Equation (34).

Qn( fn)(t) = −Ñ−1
ωk

Rwk Dan Pwk ( fn)(t) (34)

Substituting Equations (32)–(34) into Equation (31) again, a relational expression such
as Equation (35) is shown.

(Swk Ñwk + Rwk Dan)Ñ−1
wk

(yn)(t) = Cwk (ek)(t) (35)

The design of the operator as in Equation (A12) also shows the relationship as in
Equation (36).

Ñ−1
wk

(yn)(t) = Cwk (ek)(t) (36)

The relationship in Equation (36) transforms the operator Qn into an operator with a
tracking compensation operator Cwk. However, to account for thermal disturbances caused
by modeling errors of the control target and thermal disturbances caused by thermal
transfer with the liquid flowing in the channel, it is transformed like an operator with Mwk
whose gain of Cwk is adjusted separately.

Qn( fn)(t) = −Mwk Rwk Dan Pwk ( fn)(t) (37)

The relationship in Equation (36) removes the fault element from the output, allowing
it to follow the reference input even in the event of a fault. Note that Qn( fn)(t) = 0 when
the sensor is determined to be normal.

58



Appl. Sci. 2024, 14, 9907

5.4. Consideration of Coupling Effects

The design of the Sections 5.2 and 5.3 assumes that the two-input two-output control
system is n = k = (1, 3) interference-free independent two subsystems. In reality, however,
there is interference due to heat transfer between adjacent parts. We consider removing the
effect of interference by compensating for this interference with the input from the actuator.
The control system considering the removal of couplings is shown in Figure 6.

Figure 6. Control system to remove coupling effects.

Here, P̃a = (P̃a1 , P̃a2 , . . . P̃an) is the heat transfer model of the heat spreader, P̃w = (P̃w1 ,
P̃w2 , . . . P̃wk ) is the tube heat transfer model. When there is no effect of coupling, zi = udi
is valid, and the control system design is performed with this as a target. The operators
designed in Figure 6 are shown in Equations (38) and (39) below. Here, each operator is
assumed to have a bounded signal input and is defined as αai and αwi . Here, na and nw are
design parameters and φa = (φa1 , φa2 . . . , φan ), φw = (φw1 , φw2 . . . , φwk ) is a linear operator
such that φi(αi(t))→ 0 for any bounded input signal. I is the identity operator.

φ−1
ai

(αai )(t) =
1
na

αai φ−1
wi

(αwi )(t) =
1

nw
αwi (38)

Aa = I Aw = I (39)

The equation for zi is rearranged as in Equation (40).

zi(t) =udi
(t) + di(t) + φ−1

ai
Aai P̃ai (udi

)(t)

+ φ−1
wi

Awi P̃wi P̃ai (udi
)(t)− φ−1

ai
Aai Pai (zi)(t)− φ−1

wi
Awi Pwi Pai (zi)(t)

(40)

Furthermore, a transformation of Equation (40) leads to Equation (41).

φ−1
ai

(φai + Aai Pai )(zi)(t) + φ−1
wi

(φwi + Awi Pwi Pai )(zi)(t)

= di(t) + φ−1
ai

(φai + Aai P̃ai )(udi
)(t) + φ−1

wi
(φwi + Awi P̃wi P̃ai )(udi

)(t)
(41)

Since φai (αai (t)) → 0 and φwi (αwi (t)) → 0, the Equation (42) is achieved. This
eliminates the effect of coupling.

zi(t)→ udi
(t) (42)

However, if the tube’s temperature sensor is determined to have failed, the output of
the nominal heat transfer model is used instead of the measured value from the temperature
sensor for yi.

5.5. Overall Control System

To summarize the above, the block diagram of the entire control system is shown in
Figure 7. Here, in Figure 7, Ga is the operator indicating Ga =

λaS3
dx and Gaw is the operator

indicating Gaw = λaS3
dx and Gw is the operator indicating Gw = αωS6.
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Figure 7. Overall control system.

6. Fault Detection System

This chapter presents the fault detection system for detecting tube temperature sensor
faults. Here, the fault is represented by the control system designed in Section 5.2, shown
in Figure 8. The purpose of fault detection in this study is to switch the control loop to the
fault-signal-compensating control system described in Section 5.3 in the event of the fault.
The goal is to detect the temperature sensor fault in the tube represented by y f in Figure 8.
The using fault detection system is a combination of ChangeFinder and One-Class SVM.
One-Class SVM is described in Appendix A and ChangeFinder is described in Appendix B.
If the change-points detected by ChangeFinder are considered as anomalies, the system has
the advantage of reliably detecting change-points even for minor faults. On the other hand,
if the reference input changes during control, it is also detected as a change-point. This
has the disadvantage that an abnormality cannot be detected during the transient period
until it is tracked again. Abnormality detection by One-Class SVM alone has the advantage
that detection is effective even for unknown anomalies. It has the disadvantage that it is
difficult to detect small faults; for example, when the distance between the normal data
during training and the observed anomaly data is small. Therefore, we aim to construct a
system that complements each other’s weak points by adding the output of ChangeFinder
to the input of One-Class SVM. The following two processes are required for anomaly
detection.

1. Anomaly classification modeling with One-Class SVM. An anomaly discrimination
model is constructed by preparing training data and having One-Class SVM learn
them. The explanation is given in Sections 6.1 and 6.2.

2. Anomaly detection by anomaly discrimination model. Anomaly detection of acquired
real-time data is performed using a discriminant model created in advance. The
explanation is given in Section 6.3.
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Figure 8. Representation of temperature sensor faults in control systems.

6.1. Creation of Classification Models by Learning

The fault detection system uses a combination of One-Class SVM and ChangeFinder to
perform fault detection. In this section, we explain how to construct a classification model
for One-Class SVM, which classifies observed data as normal or faulty. One-Class SVM can
classify normal classes and abnormal classes by using an abnormality classification model
learned using only previously acquired normal data. This makes it effective for plants
for which faulty data are difficult to obtain or for which the faulty pattern is unknown.
Therefore, training data that have the same dimensions as the data to be input during
classification are required during training.

The discriminant model is constructed by training the One-Class SVM with previously
observed training data. An overview of the process is shown in Figure 9.

Figure 9. Training data learning.

As shown in Figure 9, the training data include the input ud of the heat absorption of
the Peltier device, the measured temperature of the tube y f , and the change-point score of
y f calculated by ChangeFinder. Since the thermal model of the microreactor is a dynamic
system, past values affect the current values. In a dynamic system, if a classification model
is built using only the current information, the plant characteristics will not be learned
correctly and there is a risk of false positives. Therefore, by including time-shifted past
data in the learning vector, it is possible to construct the classification model that takes the
dynamic system into account. The variable to be trained is as in Equation (43). Note that
CF(x) denotes the change-point score of time-series data x by ChangeFinder.

X = [ud1(t), ud3(t), y1(t), y2(t), . . . , y3(t− l), CF(y1(t)), CF(y3(t))]

∈ RN×(1+(l+1)) (43)

ud1(t) = [ud1(1), ud1(2), . . . , ud1(N)]T ∈ RN (44)

ud3(t) = [ud3(1), ud3(2), . . . , ud3(N)]T ∈ RN (45)

y1(t) = [y1(1), y1(2), . . . , y1(N)]T ∈ RN (46)

y3(t) = [y3(1), y3(2), . . . , y3(N)]T ∈ RN (47)

Here, N is the number of training data and l = 2 is the number of time shifts. In other
words, four types of training data are used: input, output, output before one step, and
output before two steps. The proposed method detects temperature sensors in Part W1
and Part W3, whereas the conventional method detects a single temperature sensor located
at the center of the tube. In the thermal model of the microreactor, there is interference
between adjacent parts, and this is the reason for this detection method.

6.2. Hyperparameter Optimization of One-Class SVM to Improve Classification Performance

One-Class SVM have parameters that must be specified as design parameters during
training, called hyperparameters. The two hyperparameters in One-Class SVM are the
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kernel parameter γ and the normalization parameter ν. Hyperparameters have a strong
influence on the classification performance of the constructed model, and thus need to be
optimized in order to construct a more accurate classification model.

This parameter optimization problem can be treated as an objective function max-
imization problem with the performance of the constructed classification model as the
objective function. In this study, we use a real-coded genetic algorithm [20,21] as one of
the optimization methods on a continuous search space. The real-coded genetic algorithm
is an optimization algorithm inspired by the evolutionary process of living organisms, in
which a real-coded vector is an individual and the value of the objective function is the
strength of the individual. Real-coded genetic algorithms are characterized by the fact that
they do not explicitly use the gradient of the objective function. Therefore, optimization
is possible even for functions for which the gradient of the objective function cannot be
obtained, such as the classification performance evaluation in this study. Figure 10 shows
the process of hyperparameter optimization using the real-coded genetic algorithm.

Figure 10. Hyperparameter optimization process using the real-coded genetic algorithm.

The process of Figure 10 is described in detail as follows.

1. Obtain input/output data in advance by experiment as training data.
2. Add the expected fault elements to some of the previously acquired input/output

data to create test data in the event of the fault.
3. Obtain the hyperparameters to be tested using the real-coded genetic algorithm.
4. Construct a tentative classification model by training using the training data and the

hyperparameters obtained.
5. Calculate the classification performance evaluation value from the classification model

and test data.
6. The real-coded genetic algorithm determines the hyperparameters to try next.
7. Repeat the process from 3 to 6 for the product of the number of individuals and the

number of generations to obtain the optimized hyperparameters.

Let z be the hyperparameter to be tried. The maximization problem for improving
the classification performance of this study is shown in Equation (48). ppre is the precision.
It is the pattern ratio in which the correct answer is anomalous when it is determined to
be anomalous. Similarly, Prec is the recall. It is the proportion of patterns for which the
discriminant model was able to discriminate an abnormality out of the patterns for which
the correct answer was abnormality. Therefore, the penalty for false positives increases as
the value of r is increased.

max
z
− 1

rppre + (1− r)prec
(48)

s.t. 0 < r < 1

The above process improves the performance of the classification model by optimizing
the hyperparameters of the One-Class SVM.

6.3. Fault and Normal Classification with One-Class SVM and ChangeFinder

In this section, we show how to perform anomaly detection using the discriminant
model constructed in Section 6.1. Fault detection is achieved in real time by performing
fault detection for each control step. The process for each control step is shown below.

62



Appl. Sci. 2024, 14, 9907

1. The temperature is measured by sensors.
2. Control inputs and change-point scores are calculated from temperature measurements.
3. Similar to Equation (43), a variable X is created for anomaly determination, to be input

to OCSVM.
4. If classified as faulty in 3, the fault tolerance control system is activated.

7. Simulation Results

In this chapter, the effectiveness of the proposed control and fault detection systems
is verified by simulation. Simulations were performed using MATLAB 2023b. One-Class
SVM used ocsvm function. ChangeFinder and real-coded genetic algorithms were self-
developed. In the simulation, a normally distributed noise with mean 0 and variance 0.0005
is added to yn assuming the measurement noise of the temperature sensor. The target
temperature is (outside temperature - reference input). Simulations were performed for the
following two cases. The parameters are also shown in Table 3.

1. Part W1 increased 3.2 ◦C from 500 s and Part W3 increased 3.6 ◦C from 500 s.
2. Part W3 increased 0.2 ◦C from 500 s.

Table 3. Condition parameters of simulations.

Symbol Description Value Unit

Tn smoothing scale 10 −
T0 Outside temperature (initial temperature) 26 ◦C
dt Control cycle 1 s
TF Fault occurrence time 500 s
B Time constant of a fault element 0.2 s

A1 Fault element amplitude of PartW1 − ◦C
A3 Fault element amplitude of PartW3 − ◦C
r Oblivion coefficient 0.03 −
r1 Reference input of PartW1 3.7 ◦C
r2 Reference input of PartW3 4 ◦C
k SDAR model order 1 −

Bn Design parameter 0.9999 −
nwn Design parameter 50 −
kCp Proportional gain of Cwn 0.0140 −
kCi Integral gain of Cwn 0.0003 −
kMp Proportional gain of Mwn 0.0140 −
kMi Integral gain of A Mwn 0.0003 −
nan Design parameter 50 −

7.1. Part W1 Increased 3.2 ◦C from 500 s and Part W3 Increased 3.6 ◦C from 500 s

Figure 11 shows the results of temperature control using the proposed control system.
Figure 12 also shows the results of the real-time fault classification. Figure 11b shows that
the value of the fault sensor fluctuates due to the faults that occurred during the 500 s.
However, as Figure 11a shows, the temperature of the controlled object continues to track
the reference input. The control input jumps up at 500 s due to the sensor fault. However,
it returns to the appropriate input by switching to the fault-tolerant control system.

Discussing the results for Figure 12a, ChangeFinder’s change-point score jumped at
503 s, 3 s after the fault. Figure 12b shows that One-Class SVM detected the fault at 500 s,
the control cycle in which the fault data were first measured; One-Class SVM detected the
fault before ChangeFinder’s score jumped. Thus, ChangeFinder contributed little to fault
detection. In addition, there were no false positives.
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(a) (b) (c)
Figure 11. Simulation results under condition where Part W1 increased 3.2 ◦C from 500 s and Part
W3 increased 3.6 ◦C from 500 s: (a) temperature. (b) Measurements of faulty sensors. (c) Control
input.

(a) (b)
Figure 12. Simulation results under condition where Part W1 increased 3.2 ◦C from 500 s and Part
W3 increased 3.6 ◦C from 500 s: (a) change-point scores. (b) Classification of fault detection.

7.2. Part W3 Increased 3 ◦C from 500 s

Similarly, Figure 13 shows the results of temperature control and Figure 14 shows
the results of real-time fault detection. In Figure 13a, the temperature of the controlled
object continues to track the reference input. In Figure 13b, the temperature change due
to the fault was small. However, ChangeFinder detected the change-point and increased
its score at 503 s. One-Class SVM also detected a fault at 503 s, 3 s after the fault occurred,
coinciding in time with the increase in ChangeFinder’s change-point score. This confirms
the effectiveness of the fault detection system that combines the One-Class SVM input with
the ChangeFinder output. No detection was made until the change-point score increased.
Thus, it indicates that One-Class SVM alone could not detect faults of this small amplitude.
However, as the ChangeFinder change-point score decreased, the fault detection system
classified the fault condition as normal.

(a) (b) (c)
Figure 13. Simulation results under condition where Part W3 increased 0.2 ◦C from 500 s: (a) temper-
ature. (b) Measurements of faulty sensors. (c) Control input.
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(a) (b)
Figure 14. Simulation results under condition where Part W3 increased 0.2 ◦C from 500 s: (a) change-
point scores. (b) Classification of fault detection.

8. Experimental Results

In this chapter, we present the results of an experiment on an actual machine. In
the experiment, the outside temperature was 22.591 °C. The measured temperature of
Part A2 immediately before the start of the experiment is defined as the constant outside
temperature. The goal was to cool Part W1 by 3 °C and Part W3 by 4 °C from the outside
temperature. The fault element was added to the temperature sensor values, assuming
that the fault occurred in 601 s. Table 4 shows the differences in the parameters during the
experiment compared to the simulation run. Figure 15 shows the results of the temper-
ature control with the proposed control system. Figure 16 shows the results of the fault
classification performed in real time.

As in the experiment, it was confirmed that the system could follow the reference
input by switching to the fault-tolerant control system. In addition, fault detection during
the 601 s was possible for faults that occurred in the 601 s.

Table 4. Parameters of experiment.

Symbol Description Value Unit

r Oblivion coefficient 0.03 −
T0 Outside temperature (initial temperature) 22.591 ◦C
k SDAR model order 1 −
dt Control cycle 1 s
TF Fault occurrence time 601 s
B Time constant of a fault element 0.2 s

A1 Fault element amplitude of PartW1 3 ◦C
A3 Fault element amplitude of PartW3 3.5 ◦C
r1 Reference input of PartW1 3.0 ◦C
r2 Reference input of PartW3 4.0 ◦C
Bn Design parameter 0.9999 −
nan Design parameter 50 −
nwn Design parameter 150 −
kCp Proportional gain of Cwn 0.0185 −
kCi Integral gain of Cwn 0.00025 −

kMp1
Proportional gain of Mw1 0.0185 −

kMp3
Proportional gain of Mw3 0.0185 −

kMi1
Integral gain of Mw1 0.000249 −

kMi3
Integral gain of Mw3 0.000241 −
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(a) (b) (c)
Figure 15. Experimental results under condition where Part W1 increased 3.0 ◦C from 601 s
and Part W3 increased 3.5 ◦C from 601 s: (a) temperature. (b) Measurements of faulty sensors.
(c) Control input.

(a) (b)
Figure 16. Experimental results under condition where Part W1 increased 3.0 ◦C from 601 s and Part
W3 increased 3.5 ◦C from 601 s: (a) change-point scores. (b) Classification of fault detection.

Comparison of Simulation and Experiment

The simulation results shown in Section 7.1 are compared with the experiment results.
However, since the target temperatures and fault requirements are different, the comparison
is made based on the average absolute error from the reference input after the time of the
fault. Specifically, the simulation is calculated using temperatures from 500 to 800 s, while
the experiment is calculated using results from 601 to 1000 s. As shown in Table 5, the mean
absolute error is smaller for the simulation. Therefore, the simulation results are superior
in this comparison.

Table 5. Comparison of simulation and experiment.

Description Value/Unit Description Value/Unit

Mean absolute error
of Part W1

(Simulation)
0.0181 ◦C

Mean absolute error
of Part W3

(Simulation)
0.0173 ◦C

Mean absolute error
of Part W1

(Experiment)
0.0735 ◦C

Mean absolute error
of Part W3

(Experiment)
0.0700 ◦C

9. Conclusions

In this study, the fault-tolerant control system was designed for the MIMO system
that controls the temperature of two regions of the microreactor system. This extends the
fault-tolerant control system, which was effective for only one region in previous studies.
In addition, the fault detection system combining One-Class SVM and ChangeFinder was
applied to detect faults; for training the One-Class SVM, the evaluation function for the
classification model was created, and the hyperparameters were optimized by the real-
coded genetic algorithm. Finally, the effectiveness of the system was verified through
simulations and experiments. The fault detection system combining One-Class SVM and
ChangeFinder detected faults even when the amplitude of the fault elements was small.
The results show that the system is more effective than One-Class SVM alone in detecting
failures in microreactor systems.
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Appendix A. One-Class SVM

One-Class SVM, a one-class classification method [22,23], is described. The algorithm
is described below. First, the training data xi∈[l] are prepared, and the inner product of the
projection data by φ is defined as a kernel function as in Equation (A1). In this study, the
RBF kernel is used.

k(xi, xj) = φ(xi)
Tφ(xj) (A1)

Assuming that the normal and abnormal data are linearly separable in the high-
dimensional space after mapping, the separation plane is expressed as Equation (A2) using
the weight coefficient ω and bias ρ.

ωTφ(x)− ρ = 0 (A2)

To allow for misclassification, a slack variable ξi ≥ 0 is introduced. In this case, we
consider maximizing the distance from the origin with respect to the classification plane.
Converting the maximization problem into a minimization problem, it is shown as follows,
including the constraints using the normalization parameter ν ∈ (0, 1).

min
ω,ξi ,ρ

1
2
‖ω‖2 − ρ +

1
lν ∑

i∈[l]
ξi (A3)

s.t. (ωT ·φ(xi)) ≥ (ρ− ξi), ξi ≥ 0, ∀i ∈ [l]

Also, introducing the new variables αi, βi ≥ 0, i ∈ [l] and Equation for the minimiza-
tion problem, the Lagrangian function is shown as follows.

L(ω, ξ, ρ, α, β) =
1
2
‖ω‖2 − ρ +

1
lν ∑

i∈[l]
ξi

− ∑
i∈[l]

αi((ω
T ·φ(xi))− ρ + ξi)− ∑

i∈[l]
βiξi (A4)

The minimization problem becomes a α-only problem, as follows.

min
α

1
2 ∑

i,j
αiαjk

(
xi, xj

)
(A5)

s.t. 0 < αi ≥
1

nν
, ∀i ∈ [n], ∑

i∈[l]
αi = 1
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Using the final optimized Lagrange multiplier αi, the decision function for the un-
known data x are as follows.

f (x) = sgn

(
∑

i∈[l]
αik(xi, x)− ρ

)
(A6)

The outlier-likeness of unknown input patterns mapped to a higher-dimensional space
increases as the distance from the origin is shortened. Therefore, input patterns that are
placed closer to the origin than the classification plane do not belong to a class and are
judged to be outliers.

Appendix B. ChangeFinder

ChangeFinder is an algorithm that computes the likelihood of change-points in time-
series data. A change-point is a time when the behavior of time-series data changes
significantly. In this study, we use the SDAR model, which has a forgetting function and
can deal with non-stationary data to some extent. The SDAR model is effective in detecting
essential change-points because it suppresses the increase in change-point scores caused by
noise through two-stage learning [14]. The calculation procedure for each time-series data
is as follows.

1. Reading time-series data xt.
2. Learning SDAR model and computing probability density function pt.
3. Calculation of outlier scores during one-step learning

Score1(xt) = − logpt−1
(xt) (A7)

4. Smoothing of scores and derivation of moving average yt using smoothing width T1.

yt =
1
T1

t

∑
i=t−T1+1

Score1(xi) (A8)

5. Apply SDAR to yt and calculate the probability density function qt for two-step learning.
6. Smoothing again yields the moving average at time t as the change-point score.

Score(t) =
1
T2

t

∑
i=t−T2+1

(− logqi−1
(yi)) (A9)

The higher the score, the greater the degree to which it is a change point. The following
is a description of the SDAR algorithm.

1. Read the time-series data xt.
2. The computed estimator µ is used to update the estimate of the statistic to be used.

Where r ∈ (0, 1) is the forgetting coefficient. The higher the forgetting coefficient, the
greater the influence of the past state.

µ̂t = (1− r)µ̂t−1 + rµ̂ (A10)

Cjt = (1− r)Cjt−1 + r(xt − µ̂t)(xt−jµ̂t)
T (A11)

3. Solve the Yule–Walker equation for ωi.




C0t C1t · · · Ck−1t
C0t C0t · · · Ck−2t

...
...

. . .
...

Ck−1t Ck−2t · · · C0t







ω1
ω2
...

ωk


 =




C1t

C2t
...

Ckt


 (A12)
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4. Compute the variables used in the score calculation.

Σ̂t = (1− r)Σ̂t−1 + r(xt − x̂t)(xt − x̂t)
T (A13)

x̂t =
k

∑
i=1

ωi(xi−j − µ̂t) + µ̂t (A14)
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Abstract: As the fleet of high-speed rail vehicles expands, ensuring train safety is of the utmost
importance, emphasizing the critical need to enhance the precision of axel temperature warning
systems. Yet, the limited availability of data on the unique features of high thermal axis temperature
conditions in railway systems hinders the optimal performance of intelligent algorithms in alarm
detection models. To address these challenges, this study introduces a novel dynamic principal
component analysis preprocessing technique for tolerance temperature data to effectively manage
missing data and outliers. Furthermore, a customized generative adversarial network is devised to
generate distinct data related to high thermal axis temperature, focusing on optimizing the network’s
objective functions and distinctions to bolster the efficiency and diversity of the generated data.
Finally, an integrated model with an optimized transformer module is established to accurately
classify alarm levels, provide a comprehensive solution to pressing train safety issues, and, in a timely
manner, notify drivers and maintenance departments (DEPOs) of high-temperature warnings.

Keywords: data generation; algorithm model; axle temperature alarm; early warning; fault diagnosis

1. Introduction

Railway transportation plays a crucial role in contemporary social development [1]. In
recent years, rail transit, represented by high-speed rail, has developed rapidly. As a high-
quality “name card” of China, it has promoted the development and realization of the “belt
and road” strategy and the “going global” strategy of China’s high-speed railway [2]. In
the context of railway systems, a train is typically classified as “high-speed” if it can travel
at speeds of 250 km/h (155 mph) or more on newly built tracks, or 200 km/h (124 mph)
on existing tracks. This classification is essentially based on international standards set
by organizations such as the International Union of Railways (UIC) and is crucial for
differentiating between conventional and high-speed rail systems. The axles of high-speed
trains are specifically designed to withstand these higher operational speeds, which requires
enhanced durability and safety standards. How to incorporate the rapid development of
big data technology to enhance the safety of train operations has become the top priority
of current high-speed train development. As a crucial part of the train, the train bearing
and axle box must withstand all the train’s weight. Since the train should commonly run
at high speed during operation, the vibration shock due to the rough track and irregular
road crossings could exhibit a remarkable impact on the bearing, so the most vulnerable
parts of the train include the bearings and the axle box [3]. In general, high-speed train
bearings are also the main pieces of equipment to ensure the safe operation of trains [4].
When the bearing fails and deteriorates quickly, it even endangers the safety of the train
operation [5]. Therefore, effective monitoring and fault diagnosis of high-speed train
bearings is an essential way to ensure the safety of train operations [6]. High-speed train
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axles are subject to significant mechanical and thermal stress during operation, making
temperature monitoring crucial for ensuring safety and performance. While much attention
has been paid to bearing temperatures, other key components, such as brake systems, also
experience substantial thermal loads. In particular, brake friction pairs can be exposed to
extreme temperatures, especially under conditions of brake blockage or malfunction. In
such scenarios, excessive heat can be generated, which could potentially impact axle safety
and performance. Therefore, comprehensive temperature monitoring, which includes the
thermal behavior of both bearings and brake systems, is essential to effectively detect and
mitigate risks. At present, the bearing fault diagnosis method mainly includes the diagnosis
approach based on temperature data [7], the diagnostic method based on fault signal (such
as acoustic signal [8,9] and vibration signal [10–12]), the detection and diagnosis method
based on ferro-spectral analysis, the oil-based diagnosis method [13], and the diagnosis
method based on oil film resistance monitoring. However, in practical application, the
bearing monitoring method, which is extensively accepted in China, collects the axial
temperature data through the bearing monitoring system’s sensor [14].

Since train operation monitoring and fault diagnosis technology plays a significant role
in railway transportation, companies and investigators at home and abroad significantly
contribute to the research of train operation monitoring and fault diagnosis technology.
In the 1980s, the United States developed a bypass acoustic detection system. Through
the analysis of the sound signal of the train bearings, it was combined with the infrared
thermal shaft detection system to achieve the effect of detecting bearing faults in advance.
SKF in Sweden proposed to use the vibration signal and shaft temperature data of bearings
to monitor the working state of the axle system. The on-board fault diagnosis system was
investigated at the University of Southampton, installed on a passenger train, and then
utilized Perpetuum wireless sensors to measure train vibrations. The system transmits
raw data and calculates measurement data to the cloud, with train number, wheel position,
recording time, speed, position, direction, ambient temperature, and bearing and wheel
health indexes. The operators and maintenance personnel can access real-time data through
the website, monitor the health status of bearings and wheels, and determine whether
failures occur [15]. Until the end of the 20th century, the railways in China began to pay
attention to the detection and fault diagnosis of train bearings by utilizing the infrared
axle temperature detection system and on-mounted axle temperature detection device.
China Railway also adopts monitoring technology at the infrastructure management level
as a diagnostic solution to improve the safety and reliability of railway operations. By
deploying a large number of sensors and intelligent monitoring systems along the railway,
these devices can monitor the vibration, temperature, stress, and other parameters during
the operation of the train, especially the health of the axles and the status of the welding
points. Although these systems are useful for fault warning, usually when the alarm is
issued, the bearing damage has typically advanced to a more serious stage, still posing
significant safety risks [16].

Based on the above reasons, herein, the obtained data are first methodically pre-
processed, which mainly includes missing values’ treatment, outlier treatment, and nor-
malization treatment. The axial temperature feature data with a strong thermal level is
difficult to obtain, which is generated by the optimized adversary-generated network,
and the objective function and discriminator in the network are optimized to enhance the
effectiveness and diversity of the generated data. Finally, an optimal integration model
based on the transformer module is designed to detect the alarm level. The novelty of this
approach lies in the utilization of an optimized adversary-generated network to create real-
istic and diverse strong heat state data, overcoming the scarcity of such data. This approach
ensures better generalization and robustness in the model’s performance, enhancing its
ability to accurately detect alarm levels. In this way, when the abnormal increase in bearing
temperature is detected, the system will immediately issue a high-temperature warning,
and convey in a timely manner the warning information to the driver and relevant service
departments (such as maintenance workshop, DEPO), to ensure that potential problems
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are quickly responded to and dealt with, and ensure the safe operation of the train and the
maintenance efficiency of the equipment to the greatest extent.

2. Data Processing

The train’s advanced on-board axle temperature monitoring system ensures the accu-
rate collection of bearing temperature data. Using the axle temperature host, the system
effectively captures temperature data transmitted by sensors on the bearings and axle
boxes. These critical data can then be efficiently transmitted through the network to ground
storage or downloaded by personnel using the on-board temperature detection system [17].
The axle temperature data collected by the on-board axle temperature monitoring system
on the train often exhibit some deficiencies. In particular, the following two issues are
more common:

(1) Communication anomalies often result in partial periods of missing bearing tem-
perature data when the train passes through tunnels or areas with weak network signals.

(2) Temperature sensor failure due to poor connections, electromagnetic interference,
and other factors can lead to transient abnormalities in certain axle temperature variables
that subsequently recover. These anomalies usually do not occur simultaneously in multiple
sensors and therefore lead to outliers in the bearing temperature data.

The proposed methodology here is essentially based on a data-driven latent structure
approach that requires normalized data during modeling. Introducing a small amount
of missing axle temperature data or outliers during the modeling process could lead to
noticeable modeling errors and thus affect the accuracy of fault diagnosis. As a result,
appropriate data preprocessing is also performed on the acquired axle temperature data.

2.1. Missing Data Handling

In cases where there are low-density missing values in the data, common approaches
include missing data removal, manual completion, regression estimation completion, or
data interpolation for handling. Removing missing data can ensure data integrity but may
lead to a significant waste of data resources and affect the objectivity and accuracy of the
results. Manual completion is labor-intensive and not very accurate, while completing the
regression estimate is complex for data with low densities of missing values. Therefore, we
herein choose to use linear interpolation, a data interpolation method, as a suitable approach
to deal with missing values. Common data interpolation methodologies include spline
interpolation, mean imputation, multiple imputation, and maximum likelihood estimation
imputation. In the present paper, linear interpolation is employed to interpolate the missing
data. The main idea is that, after obtaining the historical bearing temperature data, the axial
temperature data and the previous moment of the missing data are selected to estimate the
missing data value. In practical applications, the reported temperature typically represents
an average or maximum value, which provides a general indication of the thermal state of
the axle without delving into the complexities of spatial variations. However, it is crucial
to recognize the significance of temperature gradients along the axle. These gradients can
cause differential expansion and contraction, leading to additional stresses and potential
damage over time [18]. Studies have shown that temperature variations can indeed impact
the mechanical properties and longevity of axles [19,20]. Furthermore, the temperature field
along the axles is generally both time-varying and spatial-varying. The temperature field is
able to vary significantly across the diameter and length of the axle, leading to gradients
that may induce forces and stresses, potentially affecting the service life of the axle. These
spatial and temporal variations are critical for understanding the thermal behavior of the
axle but have not been accurately taken into account in the linear interpolation model used
for handling missing data. Linear interpolation, while effective for simple data gaps, does
not capture the complex variations in the temperature field. Future research could focus on
developing more sophisticated models that account for these spatial temperature variations
to enhance predictive maintenance strategies. Advanced interpolation techniques or models
that consider both time-varying and spatial-varying characteristics could improve the
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accuracy and reliability of temperature data reconstruction, thereby providing a more
comprehensive understanding of the axle’s thermal behavior and contributing to better
maintenance and safety strategies.

The experimental data for this study were obtained from an on-board axle temperature
monitoring system. We collected axle temperature data using 36 sensors. Data from the first
10 days were utilized to train a neural network model, and 1 day was randomly selected
from eight typical locations for missing data processing. Initially, the axle temperature data
collected from the temperature sensors on the train bearings were transmitted to the axle
temperature monitoring system and then submitted to the ground system through network
transmission. Let us assume that the train operating temperature data are represented as
a data matrix X∈RN×m, where N represents the number of samples, and m denotes the
number of bearing temperature variables. In addition, the period of missing data is denoted
by t∈[t1,t2], where t1 represents the start time of the missing data period, and t2 denotes
the end time of the missing data period. The sampled values of bearing temperature within
the period of missing data are empty. Let X be denoted as follows:

X =




x1(1) x2(1) · · · xm(1)
x1(2) x2(2) · · · xm(2)

...
...

...
x1(N) x2(N) · · · xm(N)


 (1)

where each row represents the axle temperature data collected at the same time for dif-
ferent bearing temperature variables, while each column denotes the axle temperature
data collected at different times for the same bearing temperature variable. Assum-
ing xi(k) to xi(k + ∂) for 0 < ∂ < N − k is represented as a segment of missing data.
Firstly, locate the nearest data segments before and after the missing data xi(k′) and
xi(k′′ )(k′ < k, k + ∂ < k′′ ).

xi,L(k) = x
(
k′
)
+

xi(k′′ )− x(k′)
k′′ − k′

(
k− k′

)
(2)

where xi,L(k) denotes the estimated value of the missing data segment from xi(k) to
xi(k + ∂), which is the result value that should be inserted into the time period with
missing data. The data matrix after the interpolation of the missing data segments is
denoted by Xs.

The experimental data in this article are derived from the on-board axle temperature
monitoring system. During transmission, data defects may occur at points with missing
data due to weak network signals when the train passes through such areas. Figure 1
shows the shaft temperature data of the vehicle after startup and before storage. A data
preprocessing method based on linear interpolation is adopted to properly fill in the missing
data points in the bearing temperature data. The missing values in the bearing temperature
data exhibit characteristics of sparse points. Interpolation results of missing data are shown
in Figure 1.

After interpolation is completed, it is also necessary to verify whether the interpolated
data are significantly different from the original data. At this time, the Kolmogorov–
Smirnov test (K-S test) is a commonly utilized non-parametric statistical method used to
compare whether the distribution of the two sets of data is significantly different. The
detailed step of the K-S one-sample test method is to exploit the actual cumulative distribu-
tion of sample sampling with the comparison of the hypothetical theoretical distribution,
calculate the cumulative distribution function of the two functions, and then evaluate
the maximum value D of the distance between the distribution function, and check the
D-value distribution table to determine the confidence interval of the D value. If the D
value is placed in the corresponding confidence interval, that is, when the maximum dif-
ference value D is in the specified numerical range, you can determine the data sample
by approximately obeying or obeying the distribution of the hypothesis. However, when
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the difference exceeds the specified range when testing that the two data samples have a
remarkable difference, the detected data samples do not meet the requirements.
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In the K-S test, the primary task is to calculate the cumulative empirical distribution
function of the two sets of observed data. Assuming that the samples of the datasets are
expressed as (x1, x2, x3,. . ., xn), the cumulative distribution function is expressed as:

Fn(x) =
1
n

i

∑
i=1

I[−∞,x](xi) (3)

where I represents the indicator function, expressed by:

I[−∞,x](xi) =

{
1, xi ≤ x;
0, xi > x;

(4)
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The K-S test generates a p-value for judging the distribution of the two sets of data.
If the p-value is large, it means that the interpolation possesses less influence on the data
distribution, and the interpolated data can be taken as consistent with the original data.

2.2. Outlier Treatment

To ensure the accuracy of the modeling and subsequent monitoring and fault diagnosis,
outlier treatment is performed on the transient anomalies in certain axle temperature
variable data caused by factors such as weak connections and electromagnetic interference
in the collected bearing temperature data. Based on industry standards and our findings,
the typical operational limit for axle-bearing temperatures in passenger trains usually
ranges from 80 ◦C to 120 ◦C under normal conditions. However, temperatures could reach
up to 140 ◦C under extreme situations without immediate risk when cooling systems and
monitoring mechanisms are in place. Outliers are usually points that are significantly
different from the surrounding data, so that a gradually varying temperature gradient
should not be considered as outliers. This can happen by considering the continuity
of the data, namely that this phenomenon should not be regarded as abnormal if the
temperature value gradually rises or decreases. Smooth methods, such as moving window
or sliding average, are used to identify progressive trends and avoid misidentification of
temperature gradient changes as anomalies. For the anomaly detected automatically by the
program, the anomaly is confirmed by manual secondary verification or a more detailed
physical measurement. This can effectively prevent the true temperature change from
being misjudged.

The outliers present in the data can also be considered as a type of fault. In 2014, Li
et al. [21] proposed a reconstruction-based contribution method based on dynamic principal
component analysis (DPCA), namely the multi-directional reconstruction contribution
method. Using a continuous stirred-tank reactor (CSTR) as an example, the effectiveness
of their proposed method was validated. By combining the dynamic characteristics of
the axle temperature data used in this study and the long-term scale axle temperature
data, the outliers belong to sparse points. Therefore, the present study also attempts to
propose an effective approach for outlier reconstruction by combining DPCA and principal
component search, mainly dynamic principal component search (DPCS) [22]. To this end,
we commence with integrating the DPCA-based approach with variable delay expansion
to extract the dynamic relationships between variables, and the matrix Xd of delayed data
is obtained from Xs based on the delay time d in the following form:

Xd =




XT
s (1 : N − d + 1, 1 : m)

XT
s (2 : N − d + 2, 1 : m)

XT
s (d : N, 1 : m)


 (5)

Based on the delayed data matrix, Xd is decomposed into Xd = L+S+N as per the
formula, where L,S, andNrepresent the low-rank data matrix, the sparse outlier data, and
noise, respectively. By combining DPCA with DPCS via L1-norm and convex optimiza-
tion [23], the method could reconstruct the outlier data to obtain a matrix Xr of normal axle
temperature data. The results of the outlier treatment of the axial temperature data used in
this experiment are shown in Figures 2 and 3.

In order to reduce the experimental error and improve the performance and general-
ization ability of the machine learning model, this paper selected the k-fold cross-validation
method, and the ratio of the training set, validation set, and test set was 7:2:1, and the
number of iterations was 50. The original dataset was randomly split into 3 equal-sized
sub-cross validation sets, with 2 sub-cross validation sets used for model training and the
remaining sub-cross validation set for model testing. The above process was repeated three
times, and finally three independent model performance assessments were obtained. Using
k-fold cross-validation ensured that the program had consistent performance on different
subsets of the data, avoiding overfitting or underfitting.
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2.3. Normalization Processing

Due to the various dimensions and magnitudes among various types of data (such
as train speed, train axle temperature, and train load), the direct analysis of diverse data
would affect the analysis results. Similarly, if there is a significant difference in magnitude
between the data used, it would greatly affect the analysis results. To guarantee precise
data analysis and reliable data modeling results, it is therefore crucial to first preprocess the
raw axle temperature data by addressing missing values and outliers and then applying
normalization processing. Normalization processing is able to standardize data of various
types on the same scale. In the present investigation, the normalization method applied to
the axle temperature data matrix after missing value handling is standard deviation nor-
malization, which makes the data conform to a standard normal distribution with a mean
of 0 and a standard deviation of 1 [24]. For the data matrix that has not been normalized,
normalization processing is conducted to obtain the normalized data matrix Xp:

Xp =
Xs − µ

σ
(6)
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3. Screening and Regeneration of Strong Thermal Grade Characteristic Data

Due to the infrequent occurrence of strong heat states in trains, the characteristic
axle temperature data for such states are relatively scarce. Using a significant amount of
normal and mild heat state data alongside a limited quantity of strong heat state data could
lead to poor generalization abilities of the trained model. To acquire more data regarding
high-intensity heat levels in axle temperature characteristics, this chapter focuses on data
generation for robust heat features and presents a methodology for generating simulated
data. Based on the processed data, the results are divided into datasets that facilitate the
generation of simulated data, ensuring a more balanced and comprehensive representation
of high-intensity heat levels.

3.1. Selection of Axle Temperature Features

According to Chinese domestic axle temperature designs, an axle temperature raised
to a level in the range of 40–60 ◦C is taken as mild heat, the so-called alert level; exceeding
60 ◦C is regarded as intense heat, classified as the alarm level [25]. However, this discrimi-
nation approach faces issues. Firstly, it involves numerous parameters such as train weight
and speed, which interact and intersect with each other. Secondly, the mixture of old and
new bearing types broadens the normal operating temperature range. Therefore, this study
selects the temperature rise, column temperature rise difference, and vehicle temperature
rise difference as the main features of the axle temperature status. By employing the same
train and same car approach, the present study is capable of eliminating the influence of
some crucial factors such as vehicle type, speed, and load on the axle temperature. These
three indicators also serve as the main basis for axle temperature discrimination by the
current HDBS-III type infrared detection equipment, validated through years of on-site
experiments for their scientific validity.

The present study utilizes the Pearson correlation coefficient method for feature
selection. The collected features related to axle temperature are evaluated via the Pearson
correlation coefficient method to determine the correlation coefficient γ between the features
and the axle temperature [26]. The range of γ is set as [−1, 1], where a higher correlation
coefficient γ indicates a stronger correlation between the feature and the axle temperature.
By employing this approach, irrelevant or weakly related features with the target feature
are removed from the sample set. The formula for calculating the Pearson correlation
coefficient can be provided as:

γ =
N∑ xiyi −∑ xi∑ yi√

N∑ x2
i − (∑ xi)

2
√

N∑ y2
i − (∑ yi)

2
(7)

where N represents the number of feature samples, xi denotes the axle temperature at the
i-th instance, and yi signifies the feature value at the i-th instance.

In this study, there exists a total of 500 data points for normal and mild heat-level
axle temperature states and 200 data points for intense heat-level axle temperature states.
Initially, it is necessary to expand the 200 data points for intense heat-level axle temperature
states to 500 to serve as the final dataset for intense heat axle temperature states.

3.2. Generation of Intense Heat-Level Axle Temperature Feature Data

Different to the traditional generative network, the adversarial generative network
consists of a generative model that captures the training set distribution and a discriminant
model that tests the truth and falsehood of the data. The main task of the generative model
is to receive a random noise vector as input and translate it into features similar to the real
data. The initial output of the generative model may be very random, but as the number of
model training epochs increases, it gradually generates more realistic samples. The training
goal of the generative model is to deceive the discriminant model, making it impossible
to accurately distinguish the generated samples from the real samples. The discriminant
model is commonly employed to evaluate the authenticity of the input sample, and it is
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essentially a dichotomous model. It receives data from the generative model and real data
and attempts to correctly classify them as “true” or “false” samples. The training goal of
the discriminative model is to distinguish between the generated data and the real data as
accurately as possible, forcing the output of the generated model to be more realistic.

This paper utilizes generative adversarial networks (GANs) for data generation. Wang
et al. [27] established a fault sample generation approach with heterogeneous imbalanced
monitoring data proposed by a modified GAN (the so-called mixed dual discriminator
GAN, MD2GAN). As in this article, the first discriminator D is utilized to discriminate
whether the generated sample is real, whereas the second discriminator F is employed to
discriminate whether the generated sample is a faulty one. During the training process, the
generative and discriminator models engage in adversarial learning, until the generated
examples are realistic enough that the discriminator cannot effectively distinguish between
real and fake examples, reaching a Nash equilibrium [28]. Finally, during sample generation,
only the model generator is utilized for the generation process. The flowchart of the overall
procedure is presented in Figure 4.
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3.3. Discriminative Model Optimization for the Adversarial Generative Model

The reason for the pattern collapse of the GAN network is that the real data often
possess a multimodal distribution, but the scoring output of the discrimination model can
only be utilized to distinguish whether the input is real data or generated data, and the
difference between the characteristics of the data cannot be known. This will cause the
generated feature data to be concentrated at the peak of the distribution, while the data at
the peak of the other distribution are almost absent. To solve this problem, in this study,
an optimization layer is added to its discriminant model, so that different samples can be
connected to each other, thus avoiding the pattern collapse. The schematic representation
of the added optimization layer is presented in Figure 5.

For the input X∈RN×A of the optimization layer, it is obtained after the input of the
whole discriminant model goes through a fully connected layer. In the optimization layer,
it first passes through a trainable 3D matrix T∈RA×B×C to obtain M∈RN×B×C, where N
represents the total number of samples of the input discriminator. Each sample has B
features, and the length of each feature is C. Taking the B feature as an example, the sum
of the difference of the B feature of the current sample and the B feature of all samples
should be appropriately calculated. The formula is presented in Equation (6). At present,
the difference between the two samples is evaluated via the paradigm distance formula L1:

cb
(

xi, xj
)
= exp(−

∥∥∥Mi,b − Mj,b

∥∥∥
L1
)

o(xi)b = ∑N
j=1 cb(xi, xj)

(8)
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Each feature of each sample is calculated according to the above expression, and the
sum of distance differences between the i-th sample and the corresponding features of the
other sample is taken as the output o(xi) of the sample after the optimization layer, whose
expression is illustrated in Equation (7):

o(xi) = [o(xi)1, o(xi)2, . . . , o(xi)B ] (9)

At this time, the output of the optimization layer for all samples is described by
Y∈RN×B, whose expression is given by Equation (8):

Y = [o(x1), o(x2), . . . , o(xN)] (10)

Finally, the optimization layer of output and input after combining columns as the
input is included, and the optimization layer of the output and the basic output of the
generated network are added. Thereafter, each sample will receive a score to judge the
input data after iteration according to the target function of the model parameters.
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3.4. Generation of the Strong Thermal Signature Data

One of the aims of this study is to generate 500 intense heat state feature data based
on the existing 200 intense heat state feature data. During the model training process, the
shapes of the input noise for the generator are (Batch and Feature), where batch represents
the batch of input noise to the generator model, and feature denotes the dimension of
the noise shape. At this stage, the Batch value is 40 and the Feature value is 16. During
parameter iteration, the detector parameters are fixed when the generator model parameters
are updated, and, similarly, the generator parameters are frozen when the detector model
parameters are updated [29]. Both models utilize the Adam optimizer with beta parameters
(0.5, 0.999). The training phase includes a total of 2000 iterations, where the model storage
is performed every 200 iterations. Upon the completion of model training, generating
intense heat axle temperature state features only requires the use of the generator model.
At this stage, 10,000 noise features of length 16 are input for generation, and 500 generated
feature data are randomly selected according to the criteria of concern.

For the three features of temperature rise, column temperature rise difference, and
vehicle temperature rise difference, the temperature rise value must be greater than both
the temperature rise differences of the column and the vehicle. This limitation is very im-
portant. To ensure that the generated intense heat-level feature data demonstrate diversity,
the Euclidean distance between the samples generated by the generator G must exceed 2,
which ensures great dissimilarity between the samples. In addition, a random selection of
generated and authentic intense heat samples can be performed, followed by dimensional-
ity reduction to two dimensions using the T-SNE method, to facilitate subsequent training
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of the alarm system model [30]. Subsequently, the reduced dimensional data for real and
generated data are extracted separately and visualized, as depicted in Figure 5.

The left shows the feature data generated using the adversarial generative network be-
fore optimization, and the left demonstrates the optimized feature data on the right. In fact,
the principle of T-SNE is a probabilistic-based approach to measure the similarity between
high dimensional data points and try to preserve these similarities in low dimensional
space. Therefore, the results of the feature data of the real strong thermal axis temperature
state in the two graphs after employing the T-SNE algorithm are not identical, but this does
not affect the distinction between the distribution of the strong thermal feature data gener-
ated before and after optimization and the real feature distribution. After comparison, the
two graphs show that the data distribution of the optimized adversarial generated network
is closer to the distribution of real data compared with the unoptimized generated data.

In the optimized adversarial generated network according to the definition of ad-
versarial generative network, in the process of network training, the parameters of the
discriminative model are iterated by comparing the real feature data and the feature data
generated by the generative model through the difference output after the discriminative
model. With the increase in the iterations of the adversarial generation network, the differ-
ence between the two will gradually decrease, making it impossible for the discriminant
model to judge whether the data are generated or real. Based on this idea, the quality of
the generated data is judged by the comparison of the difference between the output of
the generated feature data and the real data input. The experimental results show that the
absolute difference of the output before optimization is 0.39 and the optimized output is
0.25, indicating that the quality of the strong thermal axis temperature state feature data
generated after optimization is higher.

Figure 6 indicates on the right side that the strong thermal-level axial temperature
data can generate the characteristic data, and the real characteristic data distribution is
roughly the same. After dimension reduction in many real feature data distributions,
denser peaks exhibit more generated feature data. In addition, these data indicate that it is
easier to identify the strong thermal-level of axial temperature data, generated in the peak
connection and the rest of the axial temperature state of the strong thermal characteristic
data. The addition of these axial temperature data could assist the alarm model to better
distinguish between the two states of strong heat and micro heat.
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4. Intelligent Algorithm Model for Determination of the Axle Temperature Alarm
Level
4.1. Training the Axle Temperature Alarm-Level Discrimination Model

This paper adopts a discriminative approach that determines the relationship weights
between sequences through the collective action of multiple attention mechanism layers
and finally integrates the results of each attention mechanism layer to obtain the final
information [31]. In terms of training the alarm level discrimination network, the whole
discrimination model consists of a transformer module and an output layer. To construct
the transformer, the most crucial aspect of the whole model is the selection of the number
of layers of the attention mechanism and the number of neurons in the hidden layer.
Since the number of input features is small, only one transformer module is utilized to
extract information from the input sequence samples. The components of a transformer are
presented in Table 1.

Table 1. Test set accuracy and loss values.

The Fold Times k Loss Value/% Precision/%

1 4.63 98.62
2 9.52 97.88
3 7.36 98.03

Average 7.17 98.17

As shown in Table 2, is a component of a Transformer. For the basic axle temperature
alarm-level determination model, since the total number of parameters in the model is very
small, with only fifty thousand learnable parameters, the excessive number of neurons
in the hidden layer could lead to overfitting of the discrimination model [31]. Therefore,
the number of neurons in the hidden layer is herein set as 64. Additionally, to ensure the
effectiveness of the multi-head attention mechanism layer, the dimensions of the Q, K, and
V vectors for each attention mechanism cannot be too low. Simultaneously, the number
of neurons in the hidden layer must be divisible by the number of attention layers in the
multi-head attention mechanism layer. Therefore, the number of attention layers in the
multi-head attention mechanism layer is set to 2, which means that the dimensions of the
Q, K, and V vectors for each attention mechanism are 32.

Table 2. Structure of the transformer model.

Layer Type Output Type Parameter Value

Embedding (Batch, 3, 3) 256
Multi-head attention (Batch, 3, 64) 16,640

Add (Batch, 3, 64) 0
Layer norm (Batch, 3, 64) 0

FFN (Batch, 3, 64) 33,088
Add (Batch, 3, 64) 0

Layer norm (Batch, 3, 64) 0
Output (Batch, 3, 4) 260

The alarm-level discrimination model benefits from two sets of inputs: the sequence
features of the input sequence and the position vector of the detection station. The sequence
features of the input sequence, denoted by X in the model training phase, have the form
(Batch, Seq, Feature), where the first, second, and third dimensions represent the data batch
processed simultaneously, the number of detection stations considered, and the selected
number of features, respectively. In the model training stage, Batch in X can be selected
based on the computer performance, while Seq and Feature sizes are fixed at 3. For instance,
consider the i-th sample Xi within a sequence of samples X as follows: Xi = (x1, x2, x3),
where Xi represents a vector of axle temperature features detected by the detection station,
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with corresponding values (f1, f2, f3). Specifically, the arrangement of axle temperature
feature data obtained by the i-th detection station in order are temperature rise, column
temperature rise difference, and vehicle temperature rise difference. For the sequence
length in the alarm rule Seq less than 3 optimized timing sample data, the missing part of
the corresponding vector is [−2, −2, −2]. For example, for a training sample, only the first
detection station of axial temperature characteristic information, then for the second and
three detection stations corresponding to the vector [−2, −2,−2]. For another discriminant
model, the input position vector is denoted by P, which is a fixed vector [1, 2, 3], so the
input formula of the multi-head attention mechanism layer is given by:

E = drop
(
WxeX + WpeP

)
(11)

In Formula (9), Wxe is the timing of the input feature vector by embedding layer
mapping to hidden layer neurons a number of the weight matrix, Wpe is used for position
information mapping weight matrix, eventually both and through the dropout layer con-
taining the output of position information and characteristic information of E, after the
long attention mechanism layer and the residual connection for the first time.

MultiHead(Q, K, V) = Concat(head1, . . . , headh)Wo (12)

headi = Attention
(

QWQ
i , KWK

i , VWV
i

)
(13)

Attention(Q, K, V)= so f tmax(QKT/
√

dk

)
V (14)

A = E + Norm(MultiHead(Q, K, V)) (15)

The first formula above represents the output of the multi-head attention mechanism
layer composed of the output of multiple attention mechanism layers. Wo is the output
transformation matrix. h represents the number of attention mechanism layers contained in
the multi-head attention mechanism layer. The output of each header can be expressed by
the second formula, where Wi

Q, Wi
K, and Wi

V are the query, key, and value transformation
matrix of the i-th head. Q, K, and V represent the query vector, the key vector, and the value
vector, respectively. In this study, since the self-attention mechanism is used, the values
of Q, K, and V are all from E. The output of the attention mechanism layer is calculated
as shown in the third formula, where dk is the dimensional size of the vector Q. The final
output is shown in the fourth formula, where the residual connection and norm layer
normalization are used to improve the generalization ability of the model.

Then, there is a normalization layer, which is composed of two fully connected layers,
and the final output result is obtained through the second residual connection.

4.2. Axle Temperature Alarm-Level Discrimination

For the prediction stage, the input is the same as the training stage, but, at this point,
the Batch value of X is fixed to 1, Feature to 3, and Seq can be of any length. Figure 7
illustrates the input scenario during the model’s decision-making process.

The entire section in Figure 7 represents the sequence of input features X to the
model during the prediction process. Taking a time window as an example, the width of
the time window corresponds to the sequence length Seq in the training process of the
discrimination model, while the height represents the selected number of features, the
so-called Feature. As the time window continuously slides, the single-time feature samples
obtained by detection station 3 will integrate the axle temperature feature information
obtained by the previous two detection stations. In the case of a train start-up, when the
sequence length Seq is less than 3, only the feature data obtained by the current detection
station are considered. In the final validation process of this study, the accuracy of detection
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is considered based on various sequence lengths of feature data input to the discrimination
model. The values of the input sequence length range from 1 to 10, which ensures the
efficiency of the model in predicting alarm levels.
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4.3. Optimization of the Axle Temperature Alarm-Level AdamW-Based Discriminator Model

In the former process of determination of the axle temperature alarm level, only
the prediction and evaluation of axle temperature alarm levels are conducted. At this
stage, the model acquires the probability values associated with various levels of alarm
grades through three main steps. Firstly, useful information is extracted through the
transformer model, and after passing through a fully connected layer, the output 0 is
obtained. The shape of 0 is (Batch, 3, 4). After that, the maximum sequence corresponding
to the predictions from the second dimension 0 is extracted (from right to left, where the
rightmost is the first dimension), resulting in the prediction results in Pr with a shape of
(Batch, 4). Finally, Pr is normalized along the first dimension to obtain the probability
values of the model’s judgments at various alarm levels of the input data. In this step, the
indicators used for model parameter iteration include the model-predicted probabilities of
axle temperature alarm levels and the corresponding cross-entropy loss function values for
the real alarm levels.

To optimize the existing loss function, the value of the cross-entropy loss function is
therefore included between the predicted probability of axle temperature states based on
the detection station judgment and the true axle temperature state labels. Consequently,
for the output of the transformer module in the model, two distinct fully connected layers
are required to extract the probabilities of each axle temperature alarm level and the
probabilities of the axle temperature states for the three detection stations, as shown in
Figure 8.
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Due to the sequential nature of detection at detection stations, the input feature vector
of the current detection station to the model should only interact with the features obtained
from previous detection stations through the attention mechanism (i.e., interaction with
the features obtained from subsequent detection stations should not occur). It is hence
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crucial to optimize the multi-head attention mechanism in the alarm-level discrimination
by incorporating the masked multi-head attention mechanism. The loss function at this
point can be calculated through the following formula:

L =
N

∑
n=1
− log(y(n)i ) + ω

N

∑
n=1
−λ1 log(p(n)1 )− λ2 log(p(n)2 )− λ3 log(p(n)3 ) (16)

In Equation (6), the first term on the right-hand side signifies the loss caused by the
prediction of axle temperature alarm levels for the current batch of feature data, whereas the
remaining terms denote the loss caused by the axle temperature states of the three detection
stations. In addition, ω represents the proportion of the axle temperature state prediction to
the total loss. The factors λ1, λ2, and λ3 denote the weights of the entire axle temperature
state loss pertinent to the first, second, and third detection stations, respectively, while
p(n)1 , p(n)2 , and p(n)3 represent the model output probabilities associated with the correct
axle temperature states for the first, second, and third detections. It should be herein
emphasized that, in the case of a train just starting up or restarting (when the sequence
length is less than 3 and the missing parts are replaced with vectors all set to −2), the
corresponding loss should be removed.

The iteration curves for the training and validation sets at λ1, λ2, and λ3 (correspond-
ing to 1, 3, and 9) are presented in Figure 9.
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The plotted results in Figure 9 reveal that, when the number of iterations reaches
4000, the validation loss and training loss become almost stabilized. At this stage, the
accuracy of the training set reaches 87.8% and the accuracy of the validation set touches
90.9%. Subsequently, using the remaining 10% of “normal”- and “mild”-level feature
data, along with all the real “intense”-level feature data, a test set sample is constructed
via the same methodology and input in the trained model. The obtained results are
indicative of the accuracy of the test set being 86.9% compared with designing an axle
temperature alarm system based solely on the axle temperature states detected at each
monitoring station, which yields an alarm accuracy of 76.8%, exhibiting an accuracy
increase of 13.2%. In addition to the AdamW optimizer, incorporating momentum-based
optimizers like Nesterov accelerated gradient (NAG) or using optimization algorithms
such as RMSprop or AdaGrad might yield faster convergence. It should be emphasized
here that gradient clipping could prevent exploding gradients, enhancing stability during
training. Furthermore, for the trained model at this stage, predicting the axle temperature
alarm level at time T only requires inputting the current detected axle temperature feature
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data. The model automatically combines previous axle temperature feature data to provide
an alarm level at time T.

5. Conclusions and Perspectives

This study conducted data preprocessing on the collected data to effectively utilize
temperature rise features, along with column and vehicle temperature rise difference fea-
tures for axle temperature alarms. It also integrated the existing method of axle temperature
alarm-level discrimination based on these features. Addressing the challenges posed by
the infrequent occurrence and difficulty in obtaining data related to intense heat axle tem-
perature states in trains, which results in a scarcity of intense heat axle temperature feature
data and hinders the training of a generalized axle temperature alarm-level discrimination
model, this study developed an optimized generative adversarial network (GAN) for
simulating the generation of limited intense heat feature data. Subsequently, the generated
intense heat feature data were integrated with existing intense heat, mild heat, and normal
feature data to generate sequence feature data for the warning-level discrimination model.
Finally, using a transformer block, the alarm-level discrimination model enhanced the
loss function by introducing cross-entropy loss based on the axle temperature states. The
present study aims to provide comprehensive training, validation, prediction, and in-depth
analysis on hyperparameter design, loss function optimization, and model integration.
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Abstract: The health of mechanical components can be assessed by analyzing the vibration and
acoustic signals they produce. These signals contain valuable information about the component’s
condition, often encoded within specific frequency bands. However, extracting this information is
challenging due to noise contamination from various sources. Narrow-band amplitude demodulation
presents a robust technique for isolating fault-related information within the signal. This work
proposes a novel approach based on cluster-based segmentation for demodulating the signal and
extracting the frequency band of interest. The segmentation process leverages the criteria of maximum
L-kurtosis and minimum entropy. L-kurtosis maximizes impulsiveness in the signal, while minimum
entropy signifies a low degree of randomness and high cyclo-stationarity, and both characteristics
are crucial for identifying the desired frequency band. Simulations and experimental tests using
vibration signals from different gears demonstrate the effectiveness of this technique. The processed
envelope of the signal exhibits distinct improvements, highlighting the ability to accurately extract the
fault-related information embedded within the complex noise-ridden signals. This approach offers a
promising solution for accurate and efficient fault diagnosis in mechanical systems, contributing to
enhanced reliability and reduced downtime.

Keywords: frequency band; demodulation; cluster-based segmentation; vibration signal; gear

1. Introduction

The condition monitoring and fault diagnosis of rotary components remains a crucial
area of research within the scientific community. The ability to accurately assess the health
of these components is essential for ensuring operational reliability, preventing catastrophic
failures, and minimizing downtime in industrial processes [1–3].

Vibration and acoustic signals emitted by mechanical components offer a rich source
of information about their health status. These signals contain valuable clues about the
internal condition of the component, including wear, damage, or impending failure. The
presence of specific frequency components in these signals can be directly linked to specific
faults within the component [4–6].

Vibration-based techniques have emerged as a powerful tool for fault diagnosis in ro-
tating machinery [7–9]. These techniques leverage the relationship between the frequencies
present in the vibration signal and the corresponding faults within the machine. Spec-
tral analysis of the vibration signal is a fundamental approach for extracting this crucial
information [10]. For instance, Sepulveda and Sinha [11] successfully demonstrated the
viability of a two-step artificial neural network approach for condition monitoring and fault
diagnosis in rotating machinery. This approach has the potential to significantly improve
operational efficiency by enabling proactive maintenance and minimizing costly downtime
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caused by unexpected breakdowns. Almutairi et al. [12] presented a compelling approach
to vibration-based fault detection in rotating machinery, demonstrating the effectiveness
of integrating the poly-coherent composite spectrum (pCCS) with machine learning tech-
niques. By effectively condensing multi-location vibration data into a single spectrum,
pCCS significantly reduces the computational burden associated with large datasets, while
preserving critical amplitude and phase information. Bendjama [13] presented a novel
and effective feature extraction method for enhancing the accuracy of rolling bearing fault
diagnosis under time-varying operating conditions. By combining the complementary en-
semble empirical mode decomposition (CEEMD), Teager–Kaiser energy operator (TKEO),
and self-organizing map (SOM), the proposed approach effectively removes unwanted
noise components and extracts relevant bearing characteristics from the vibration signal.
Tahmasbi et al. [14] demonstrated the successful diagnosis and root cause analysis of bear-
ing failure in a 2300 kW motor, highlighting the importance of a comprehensive approach
that considers both vibration and lubrication factors.

However, the conventional approach provides a robust framework for fault diagnosis
in rotating machines but limitations arise from the presence of noise and the complex nature
of real-world signals. Recent research focuses on developing advanced signal-processing
techniques and machine learning algorithms to enhance the accuracy and efficiency of fault
diagnosis in rotating machinery.

The accurate demodulation of vibration signals is crucial for extracting fault-related
information. The selection of the appropriate frequency band for filtering plays a vital
role in achieving this accuracy. Several techniques have been developed in recent years
to effectively extract the informative frequency band. Antoni’s Spectral Kurtosis (SK)
method has proven to be highly effective for detecting transient events and pinpointing
their location within the frequency spectrum. Notably, SK exhibits robustness against
additive stationary noise. This technique provides a valuable tool for isolating the relevant
frequency band within the vibration signal, paving the way for more precise fault diagno-
sis in rotating machinery [15–19]. Borghesani et al. [20] investigated the effectiveness of
cepstrum pre-whitening as a technique for enhancing rolling element-bearing diagnostics,
particularly in industrial settings where heterogeneous vibration sources introduce chal-
lenges for traditional signal processing methods. The study demonstrated that cepstrum
pre-whitening, with its low computational requirements and simplicity, offers a promising
alternative to traditional pre-whitening techniques like linear prediction filters and spectral
kurtosis. Sacerdoti et al. [21] presented a comprehensive comparative study of signal
analysis techniques for rolling element-bearing diagnostics, focusing on fault detection,
diagnosis, and prognosis. The study revealed that statistical parameters like RMS, kurtosis,
and detectivity are effective in detecting the onset of faults in bearings.

Antoni and Randall proposed the first systematic approach of band selection using
kurtogram. The optimal central frequency fc and bandwidth of the band pass filter can
be determined by maximizing the kurtogram [22]. Berrouche et al. [23] proposed a Single
Ensemble Empirical Mode Decomposition (SEEMD) method, which demonstrates a sig-
nificant advancement in fault detection for rolling element bearings, particularly within
the challenging context of mining industry signals. Wang et al. [24] proposed a novel and
effective method for enhancing early weak fault features in rolling element bearings by com-
bining resonance sparse decomposition with multi-objective information frequency band
selection (MIFBS). This approach effectively addresses the challenge of interference com-
ponents obscuring early fault signatures in vibration signals. Hebda-Sobkowicz et al. [25]
provided a comprehensive comparative analysis of various signal-processing techniques
designed to extract the signal of interest (SOI) from non-Gaussian noise in vibration signals
acquired from machinery. Schmidt et al. [26] addressed the critical challenge of identifying
informative frequency bands for extracting weak damage components in vibration sig-
nals acquired from rotating machines operating under time-varying conditions. A novel
framework is proposed that leverages angle-frequency instantaneous power spectrum
and order-frequency cyclic modulation spectrum to construct consistent feature planes.
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Zhao et al. [27] proposed a novel and effective method for early fault detection in rolling
element bearings, addressing the challenge of weak fault features being masked by en-
vironmental noise. The proposed method integrates the negative entropy of the square
envelope spectrum approach with optimized stochastic resonance (SR) signal enhancement.
Wu et al. [28] presented a novel approach to constructing envelope spectra for the surveil-
lance and diagnostics of rotating machinery, addressing limitations of existing methods
like narrowband demodulation and cyclo-stationary analysis. The proposed Combined
Weighted Envelope Spectrum (CWES) framework is designed to extract specific char-
acteristic frequencies, effectively mitigating challenges posed by low SNR conditions,
non-Gaussian noise, and cyclo-stationary noise.

However, the current methods often struggle with non-stationary noise, common in
real-world scenarios. This limits their accuracy and reliability, particularly for early fault
detection. Many techniques rely on predefined or manually selected frequency bands, which
may not be optimal for all fault types or operating conditions. Developing adaptive methods
that automatically identify the most informative frequency bands is crucial. The existing
techniques often assume stationary operating conditions, which are not representative of
real-world machinery, especially in industries like wind turbines. Further research is needed
to develop methods that can reliably function under time-varying conditions.

Thus, an attempt is made in this work to address these issues. In this current work,
cluster-based segmentation is used to divide signals into different segments. The frequency
band and their central frequencies are automatically estimated using fuzzy C-mean clus-
tering. The informative frequency band among the different segments was selected based
on a combination of maximum L-kurtosis and minimum entropy in the segments [29].
This informative frequency band is further utilized to design a band pass filter to filter the
original signal. Hilbert’s transform-based envelope spectrum is applied to demodulate the
filtered signals for extraction of the fault frequency.

2. Background
2.1. Clustering-Based Segmentation

Clustering-based segmentation is a powerful technique for dividing data into distinct
groups based on similarities within the data points. This method is particularly useful for
analyzing complex signals, such as those generated by mechanical components, where
identifying specific frequency bands containing relevant information is crucial for fault
diagnosis. The process involves grouping data points that share similar characteristics,
such as frequency, amplitude, or other relevant features. These clusters represent dis-
tinct segments within the signal, each potentially holding unique information about the
system’s health.

Clustering algorithms, like K-means, hierarchical clustering, or density-based cluster-
ing, are employed to group data points based on distance or similarity metrics. The choice
of algorithm depends on the specific dataset and desired outcome. Once the clusters are
formed, each segment can be analyzed independently, allowing for more targeted signal
processing and the extraction of meaningful information related to faults or other system
anomalies. Clustering-based segmentation, therefore, provides a valuable tool for isolating
relevant frequency bands, enhancing signal quality, and ultimately improving the accuracy
and efficiency of condition monitoring and fault diagnosis in various applications.

2.2. Fuzzy C-Mean

Fuzzy C-mean (FCM) is a popular clustering algorithm that allows data points to
belong to multiple clusters with varying degrees of membership. Unlike traditional hard
clustering methods where a data point belongs solely to one cluster, FCM assigns fuzzy
membership values, ranging from 0 to 1, reflecting the degree of belonging to each cluster.
This flexibility is particularly valuable when dealing with complex data where boundaries
between clusters are not well-defined. FCM utilizes an iterative process to optimize the
cluster centers and membership values, minimizing an objective function that balances
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the distances between data points and cluster centers while considering the degree of
membership. This approach leads to more robust and informative cluster assignments,
particularly in noisy or overlapping data situations, making it a valuable tool for data
analysis and pattern recognition. The main target of the FCM algorithm is to minimize an
objective function. The objective function is the weighted sum of squared errors within
groups and is defined as follows:

J(U) =
n

∑
i=1

c

∑
j=1

um
ij d2

ij (1)

J(U, r) =
n

∑
i=1

c

∑
j=1

um
ij
∥∥xi − rj

∥∥2 (2)

where n is the number of data points, m is the number of clusters, m is any real number
greater than or equal to 1, xi is the ith data point in a multi-dimensional space, rj is the
jth cluster center, dij =

∥∥xi − rj
∥∥ is the distance or dissimilarity between data point xi and

cluster center rj, and uij is the membership degree of data object xi in cluster cj (0 ≤ uij ≤ 1).

3. Methodology

A signal-processing scheme was developed for identification of the fault frequencies,
as shown in Figure 1. A raw signal was converted into frequency domain using envelope
spectrum and decomposed into segments using fuzzy C-mean (FCM) segmentation. Each
segment of the signal was converted into a time domain signal. Selection of the frequency
band of interest was based on the two criterions: the first is the highest L-kurtosis (max-
imum impulsiveness in the signal) of the segment and the second is the lowest entropy
(low degree of randomness or high cyclo-stationarity in the signal) of the segment among
all the segments. Using this selection of frequency band of interest, a band pass filter was
developed to filter the raw signal. Then, the envelope spectrum of the signal was extracted
to identify the various frequencies of interest.

Figure 1. Proposed signal-processing scheme.

4. Results and Discussion

The proposed scheme was implemented in the simulated signal with a fault frequency
of 16 Hz. A sampling rate of 20 kHz was considered and a white noise of signal-to-noise
ratio (SNR) equal to -5 was added to the simulated signal as shown in Figure 2a. The
envelope spectrum of the simulated signal is shown in Figure 2b, where the fault frequency
of 16 Hz is not clearly visible.
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Figure 2. (a) Simulated signal (considered as raw signal). (b) Envelope spectrum of simulated signal.
(c) Segmentation of the simulated signal. (d) Reconstructed signal using band-pass filter. (e) Envelope
spectrum of the reconstructed signal.

The envelope spectrum of the signal was divided into six segments using FCM seg-
mentation, as shown in Figure 2c. The frequency band and their central frequencies are
automatically estimated using fuzzy C-mean clustering. Each segment was reconstructed
as a time domain signal using inverse FFT and L-kurtosis, and the entropy of each re-
constructed signal was extracted. The informative frequency band among the different
segments was selected based on a combination of maximum L-kurtosis and minimum
entropy of the segment. This informative frequency band was further utilized to design a
bandpass filter. The original signal was reconstructed using this bandpass filter, as shown
in Figure 2d. Hilbert’s transform-based envelope spectrum is applied to demodulate the
filtered signals for extraction of the fault frequency, as shown in Figure 2e, where a fault
frequency of 16 Hz and its harmonics are clearly visible.

The effectiveness of the proposed scheme is further validated through its application
to an experimental dataset obtained from a worm and wheel gearbox test rig (as depicted
in Figure 3). The experimental setup utilizes a single-stage worm and wheel gearbox with a
20:1 gear ratio. The wheel, featuring 20 teeth and a pitch circle diameter of 65 mm, is driven
by a 50 Hz, 1 hp DC motor (WAFRO) operating at 2880 rpm. Flexible coupling ensures the
smooth transmission of power between the motor shaft and the gearbox. More details of
the worm gearbox are tabulated in Table 1.
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Figure 3. A typical photograph of the worm gearbox test rig.

Table 1. Details of worm gear test rig.

S. No. Components Specifications

1. Motor DCmotor; power: 1 hp.; maximum speed: 2880 rpm.
2. Worm gearbox Single stage; worm and wheel; gear ratio 20:1.

To capture vibration signals, a piezoelectric uniaxial PCB accelerometer with a sen-
sitivity of 100 mV/g is strategically placed on the bearing seat of the wheel shaft. This
accelerometer operates based on internal excitation, ensuring accurate measurement. A
seeded pitting tooth fault, as illustrated in Figure 4, is deliberately introduced on a tooth of
the wheel, simulating a common failure scenario.

Figure 4. Gear wheel with pitting tooth seeded defect.

The experiment focuses on acquiring data under three distinct speeds: 1600 rpm,
1800 rpm, and 2000 rpm, all sampled at a rate of 20 kHz. The proposed scheme is then
employed to process this acquired data. Figure 5a displays the raw signal obtained, while
Figure 5b presents its corresponding envelope spectrum.
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Figure 5. Processing of the signal of worm gearbox. (a) Raw signal. (b) Envelope spectrum of raw
signal. (c) Segmentation of the signal. (d) Reconstructed signal using band pass filter. (e) Envelope
spectrum of the reconstructed signal.

An analysis of the envelope spectrum reveals prominent frequency components associ-
ated with the Gear Meshing Frequency (GMF) at 26 Hz and its harmonics. This observation
highlights the presence of regular tooth engagement within the gearbox. However, a crucial
finding emerges: no identifiable fault signature related to the seeded pitting tooth fault
is present in the spectrum. This absence of a discernible fault signature underscores the
inherent challenges of detecting such faults in the presence of significant noise and complex
gear meshing dynamics.

While the proposed scheme effectively captures the overall gear meshing behavior,
its ability to accurately detect and characterize the specific pitting fault remains limited
in this experimental scenario. The absence of a clear fault signature suggests the need for
further refinement of the scheme or exploration of alternative techniques for effective fault
identification in such complex systems. The proposed method is then employed to analyze
the measured signal. From Figure 5c, the maximum L-kurtosis and minimum entropy of
the frequency domain are 4.32 and 1.11, respectively, for the second segment among all
the segments. As a result, this band is used as the passband of the filter with a frequency
ranging from 1585 Hz to 3282 Hz, as shown in Figure 5d.

Applying the Hilbert transform to the filtered signal yields the frequency spectrum
of the envelope signal plotted in Figure 5e, where the fault frequency (FF) of 1.25 Hz is
clearly observable.
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The robustness of the proposed scheme is further demonstrated through its application
to a real-world scenario involving a three-stage helical gearbox. This gearbox features
reduction ratios of 7, 3.2, and 3.1, resulting in a complex transmission system with multiple
gear meshing frequencies. The schematic diagram of this gearbox is presented in Figure 6,
whereas the detailing of the helical gearbox is tabulated in Table 2.

Figure 6. A schematic of helical gearbox and a photograph of seeded wear tooth defect.

Table 2. Detail of helical gear test rig.

S. No. Components Specifications

1. Motor DCmotor; power: 1 hp.; maximum speed: 2880 rpm.
2. Helical gearbox Three stages; helical gears; reduction ratio 7:3.2:3.1.

To introduce a controlled fault condition, a wear tooth defect is deliberately seeded on
the gear of the intermediate shaft, which possesses 41 teeth (as shown in Figure 6). Vibration
data are acquired at a motor speed of 2100 rpm (35 Hz), providing a representative operating
condition for analysis.

The three stages of the gearbox lead to distinct gear meshing frequencies (GMFs)
corresponding to the rotational frequencies of each shaft. These frequencies are calculated
as 210 Hz (input shaft), 65 Hz (intermediate shaft), and 20 Hz (output shaft), based on the
motor speed of 35 Hz and the gearbox reduction ratios.

The acquired vibration signal from the helical gearbox is displayed in Figure 7a, while
its envelope spectrum is presented in Figure 7b. Initial analysis of the envelope spectrum
reveals the presence of the characteristic frequency of the motor shaft (35 Hz, the rotational
frequency of the input shaft) and its harmonics. However, the expected gear meshing
frequencies (210 Hz, 65 Hz, and 20 Hz) and the fault frequency related to the wear tooth
defect are conspicuously absent from the spectrum. This initial observation highlights

94



Appl. Sci. 2024, 14, 8342

the challenge of detecting subtle fault signatures amidst the complex vibration signals
generated by the gearbox.

Figure 7. Processing of signal of helical gearbox. (a) Raw signal. (b) Envelope spectrum of raw signal.
(c) Segmentation of the signal. (d) Reconstructed signal using band pass filter. (e) Envelope spectrum
of the reconstructed signal.

To overcome this challenge, a segmentation strategy is implemented in the acquired
signal. Segment one of the signal exhibits the highest L-kurtosis value and the lowest
entropy, indicating potential significance in terms of fault information (as illustrated in
Figure 7c). This segment, spanning a frequency range of 0 Hz to 5542 Hz, is selected as a
passband filter for filtering the raw vibration signal (shown in Figure 7d).

The filtered signal is then subjected to the Hilbert transform, and the envelope spec-
trum of the resulting signal reveals key frequencies (Figure 7e). Crucially, the spectrum
now exhibits not only the previously observed characteristic frequency of the motor shaft
and its harmonics but also the three gear meshing frequencies (GMF1, GMF2, and GMF3)
corresponding to the three stages of the gearbox. Most importantly, the fault frequency of
1.6 Hz associated with the seeded wear tooth defect is now clearly visible in the spectrum.

This successful identification of the fault frequency through the proposed scheme
demonstrates its efficacy in extracting valuable fault information from complex gearbox
vibration data. The combination of segmentation based on statistical features (L-kurtosis
and entropy), passband filtering, and the Hilbert transform envelope analysis proves to be
highly effective in isolating and highlighting subtle fault signatures that would otherwise
be masked by noise and complex gear meshing dynamics.
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5. Conclusions

This paper presents a novel signal-processing scheme for extracting fault-related infor-
mation from vibration signals, leveraging cluster-based segmentation as a key component.
This method utilizes the inherent capability of clustering algorithms to automatically divide
the signal into a predetermined number of distinct segments.

The identification of the segment containing the most valuable fault-related informa-
tion is based on two crucial criteria: maximum L-kurtosis and minimum entropy. L-kurtosis,
a measure of impulsiveness, highlights segments characterized by sharp, transient events,
often indicative of incipient faults. Conversely, minimum entropy identifies segments ex-
hibiting a high degree of cyclo-stationarity, suggesting a strong periodic pattern related to
the machine’s operating conditions. By focusing on the segment exhibiting both maximum
L-kurtosis and minimum entropy, the proposed scheme pinpoints the frequency range
containing the most relevant fault-related information.

To further refine the signal and extract this crucial information, a passband filter is
specifically designed for the identified frequency range. This filtering process effectively
isolates the desired information, enriching the signal with impulsive and cyclo-stationary
components directly related to the fault.

The proposed scheme has been successfully validated through fault detection experi-
ments on various gearbox types. Its ability to automatically segment signals, identify the
most informative frequency range, and enhance the signal with fault-related components
demonstrates its robustness and versatility as a tool for condition monitoring and fault
diagnosis in mechanical systems.
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Abstract: This manuscript presents an analysis of machine learning (ML) usage in the Frequency
Symbolic Method (FSM) to enhance the diagnosis of faults in parametric circuit analysis and op-
timization, with a particular focus on Linear Periodically Time-Variable (LPTV) systems. We put
forth a few ML-based approaches for fault diagnosis (including anomaly detection), invisible feature
detection, and the prediction of FSM output. These methodologies concentrate on identifying and
diagnosing faults by evaluating particular ML techniques, extracting pertinent features, and deter-
mining the desired diagnostic outputs. The use cases of ML application considered in this paper
demonstrate that machine learning can enhance fault detection and diagnosis, reduce human errors
and identify previously unnoticed anomalies within the FSM framework. ML has never been used in
FSM before, so the key aim of this paper is to consider possible use cases of AI application in FSM.
Additionally, feature extraction, required as an input stage for the ML model, is proposed based on
FSM peculiarities. This work can be considered a study of ML application in FSM.

Keywords: machine learning; frequency symbolic method; linear periodically time-variable circuits

1. Introduction

A linear time-varying (LTV) system is a non-stationary deterministic system defined
by parameters that vary over time. These systems, also known as parametric systems or
LTV systems, feature time-dependent coefficients, referred to as parametric functions.

A multitude of theoretical studies [1,2] and practical applications have concentrated
on these systems, as they are regarded as suitable models for real-world scenarios. Sys-
tems that have been modeled by time-varying circuits are extensively utilized in modern
electrical circuits [3], communication systems [4], and automatic control [5]. In particular,
parametric systems are applied to the analysis of analog and digital signal processing
systems [2], especially as models of sampling systems and modulation [6]. Moreover,
parametric systems are used in current compensation in power grids [7], wideband low-
noise amplifiers [8], filter systems and noise reduction [9,10] generators [11], and medical
devices [12]. Furthermore, the modeling of circuits directly in the time domain serves as a
foundation for functional testing and fault diagnosis, where time-domain excitation and/or
circuit response constitute key data [13]. The implementation of LTV systems has a number
of benefits, the most important of which are the improvement of system dynamics and
the reduction of transients. Consequently, the modeling of parametric systems remains a
highly relevant task.
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It is a well-known fact in circuit theory that there are two basic ways to analyze linear
and time-invariant (LTI) systems. The first method is to analyze systems in the time domain,
either by solving differential equations describing the systems or by using convolution
techniques. The second group of methods, called frequency analysis, is based on the use of
Laplace or Fourier transforms.

LTV systems represent a direct generalization of classical linear and time-invariant
(LTI) systems. Accordingly, an analysis of their dynamic and frequency properties can
be performed in both the time and frequency domains. Furthermore, the concepts of
impulse response, frequency response, and transmission, familiar from the theory of
stationary systems, can be generalized to non-stationary systems. In the time domain,
parametric systems can be described using two different methods. The first method
involves representing systems in the time domain using a parametric linear differential
Equation (1) [7,9,14]:

an(t)y(n)(t) + an−1(t)y(n−1)(t) + . . . + a1(t)y′ + a0(t)y(t) = x(t), (1)

where x(t), y(t), are the input and output signals, t is the independent variable (time),
and ai(t) are the time-varying coefficients of the differential equation, which are called
parametric functions. Except for a few special cases, there are no well-established analytical
methods for solving this equation. The authors’ current research focuses on a class of
parametric systems with periodically varying coefficients known as LPTV, or Linear Time
Periodic Systems [15].

The alternative method of describing an LTV system in the time domain, as opposed
to the parametric differential equation approach, is a parametric convolution using the
impulse response h(t,τ) as the kernel:

y(t) =
t∫

0

h(t, τ)x(τ)dτ. (2)

It is important to note that the impulse response of LTV systems differs from that of
time-invariant systems in that it depends not only on the time t, but also on the instant τ at
which an excitation is applied to the input of the circuit.

In the frequency domain, two approaches may be used to describe a parametric circuit.
The first is identical to that of LTI systems and is defined as the ratio of the complex
output signal y(t) to the complex input signal, which is the monoharmonic function ejωt.
The second method requires knowledge of the system’s impulse response function and is
expressed by the following equations:

W(jω, t) = F{h(t, τ)} =
t∫

0

h(t, τ)e−jωτdτ (3)

W(s, t) = L{h(t, τ)} =
t∫

0

h(t, τ)e−sτdτ (4)

From a mathematical perspective, Formulas (3) and (4) define the classical Fourier and
Laplace transforms of the impulse response with respect to the variable τ.

The main difference between the time-frequency analysis of LTV systems and that of
stationary systems is the inability to proceed directly from differential equations to transfer
functions. In this conventional approach, the determination of the impulse response
function or the system response to an arbitrary input is of paramount importance in
determining the frequency characteristics of LTV systems. The main challenge is to find
fundamental solutions to the homogeneous parametric differential equations satisfying
Equation (1).
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Analytical solutions to differential equations are available only in specific cases, which
heavily depend on the equation’s order and the form of the parametric functions.

The fundamental solutions of these equations, even for first or second order, are highly
intricate and can be represented by special functions from mathematical physics, such as
Bessel functions of the first and second kind with non-integral orders, as well as confluent
hypergeometric functions [16]. Assuming periodic variation of the parameters of LPTV
systems (with the constraint that they are at most second-order systems), well-known
equations from mathematical physics, such as the Mathieu, Meissner, or Hill equations,
can be used. However, the key issue remains the stability of these solutions. Depending
on the choice of the coefficient variation over time, the systems can show instabilities.
Furthermore, in most cases, the solutions to these equations are not available in closed
form (analytically), requiring support from numerical computations in the analysis. While
the exact analytical determination of this function is feasible in a limited number of cases,
even then, the function is represented by special functions, rendering further analysis
exceedingly challenging. The authors emphasize that while the theory of differential
equations provides fundamental solutions (in some cases) through integral equations,
the determination of closed-form solutions—such as the response of the system to a non-
zero external forcing or an impulse response function—is often analytically intractable.
Consequently, these solutions typically require the use of analytical numerical methods,
and one must often rely on approximate solutions to effectively address the problem.

Given these complexities, the Frequency Symbolic Method (FSM), introduced by
the authors in their earlier works [15] and briefly summarized in Section 2, becomes a
valuable tool for describing and analyzing LPTV systems in the frequency domain, as it
enables the frequency description of a specific class of parametric systems with periodically
varying parameters in conjunction with the L.A. Zadeh equation [1]. The FSM allows direct
formulation and analysis in the frequency domain, eliminating the need to solve time-
domain differential equations. This approach is particularly advantageous as it avoids the
intermediate step of time-domain analysis, which can be both complex and computationally
expensive for systems with periodically varying parameters (LPTV). The FSM is applied
using the L.A. Zadeh matrix equation, which provides a more organized and symbolic
representation of LPTV systems. This matrix-based approach decomposes the problem
into several independent matrix equations, making analysis easier and allowing a more
methodical approach to solving the system.

Although the authors are well-versed in the frequency analysis methodology em-
ployed using this approach, there is a need for appropriate methods and computational
algorithms to minimize the time required to determine the frequency response coefficients
of the system. One can observe that LPTV circuits often describe circuits functioning at a
variable operating point with properties that depend strictly on time-varying coefficients.
Therefore, minimizing computational time is essential for the optimal selection of the
variation waveform of the parametric functions. This necessity gives rise to the concept
of implementing machine learning estimation, a branch of artificial intelligence (AI), in
the context of the frequency-domain method of symbolic parametric circuit analysis and
optimization. When implemented using specialized techniques such as d-trees, FSM offers
significant improvements in both computational time and complexity management com-
pared to standard methods such as MATLAB. This makes FSM a more practical choice for
tackling large-scale problems where traditional methods may become impractical due to
computational limitations.

2. About the Frequency Symbolic Method

The frequency symbolic method (FSM) is based on the following fundamental con-
cepts [15]:

1. Consider the LPTV circuit where:

• There are one or more parametric elements, whose parameters change periodi-
cally over time with the same period T (in the simplest version),
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• There is one input with an input signal x(t) and one output with a response y(t).

2. Such an LPTV circuit in the time domain can be described by the symbolic system of
linear differential equations (SSLDE).

3. By eliminating internal variables in the SSLDR using one of the known methods, one
can obtain a differential Equation (1) describing the circuit.

an(t)y(n) + an−1(t)y(n−1) + . . . + a0(t)y = bm(t)x(m)+bm−1(t)x(m−1) + . . . + b0(t)x, (5)

where y(t) is the output (sought) and x(t) is the input (set) variable, t is the independent
variable (time), and ai(t), bj(t) are parametric functions of time t.

4. For an LPTV circuit described by the differential Equation (5), using the equation of
L.A. Zadeh [1], we determine the differential equation describing this circuit in the
frequency domain:

1
n!

dn A(s, t)
dsn

dnW(s, t)
dtn + ... +

dA(s, t)
ds

dW(s, t)
dt

+ A(s, t)W(s, t) = B(s, t), (6)

where:

W(s, t) =
Y(s, t)
X(s, t)

, (7)

is the transfer function of the LPTV circuit, and:

A(s, t) = an(t)sn + ... + a1(t)s + a0(t), (8)

B(s, t) = bm(t)sm + ... + b1(t)s + b0(t), (9)

are the corresponding time-dependent periodic functions of time t with period T
coefficients of Equation (1), whereas Y(s,t) and X(s,t) are the images of the output and
input variables in the frequency domain, respectively, and s is a complex variable.

5. In general, Equation (6) does not have an exact analytical solution, so one must find
an approximate solution that accounts for both the known properties of the desired
transfer function W(s,t) and the specifics of the algorithm used for its determination:

(a) The approximation Ŵ(s,t) of the transfer function W(s,t) must achieve a prede-
fined accuracy level of choice,

(b) Given that Ŵ(s,t) needs to undergo n-times differentiation when inserted
into (6), it should be represented by a function that allows straightforward
differentiation (i.e., intricate fractions, etc.). Consequently, for solving (6),
one can suggest an approximation of the transfer function by a trigonometric
Fourier series:

W(s, t) = W0(s) + ∑k
i=1 [Wci(s)cos(Ωt) + Wsi(s)sin(Ωt)], Ω =

2π

T
, (10)

or in a complex form:

Ŵ(s, t) = W0(s) + ∑k
i=1[W−i(s)exp(iΩt) + W+i(s)exp(iΩt)]. (11)

The frequency symbolic method of solution to (6) finding is as follows:
Step 1. One of the expressions (11) or (13), for instance, Equation (11) is differentiated

n times with respect to the variable t. The resulting derivatives, along with the original
expression, are then substituted into (6).

Step 2. By transferring the right-hand side of expression (6) to the left side, one can
obtain the following algebraic expression:

δ(W0, Wc1, Ws1, Wc2, Ws2, ..., Wck, Wsk) = 0. (12)
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The functional δ(·) described by (13) is periodic with period T and contains (2k + 1)
unknowns W0, Wc1, Ws1, Wc2, Ws2, . . ., Wck, Wsk, which need to be determined.

Step 3. As the functional δ(·) is periodic, we decompose it into a Fourier series with
period T. According to (13), we equate k harmonics and the constant component of this
series to zero. This results in a system of (2k + 1) linear algebraic equations, which form a
symbolic system of linear algebraic equations (SSLAE) of the (2k + 1) order with (2k + 1)
unknowns.

Step 4. The solution of the resulting SSLAE determines the desired unknowns of
expression (8) and approximates (11) or (12).

The features of the frequency symbolic method of analyzing LPTV circuits described
above are as follows:

1. Regarding the choice of the number of k harmonics (step 3), it should be noted that, as
a rule, the first k harmonics are typically chosen. However, there are algorithms that
allow solutions to be obtained even when the number of equations is greater than
the number of unknowns. In our opinion, the choice of harmonics and the number
of equations in each case should be left to the specialist who designs and studies the
given LPTV circuit.

2. The solution obtained in step 4 of the SSLAE (in the form of M×W = P matrix) has its
own peculiarities, as some or all elements of the matrix M and vector P are symbolic.
Therefore, symbolic methods should be used to solve the SSLAE.

3. The approximation selection of Equations (11) or (12) is not fundamentally important.
However, empirical experience of using the approximation described by Equation
(12), has shown that the matrix M is sparser than with approximation (11) of the same
order. This is significant in the symbolic solution of the SLAP. Therefore, approxima-
tion (12) is more beneficial, in our opinion. The values of W0(s), Wci(s), Wsi(s) or W0(s),
W+i(s), W−i(s) in this case are fractional rational expressions, where the denominators
are identical and correspond to the determinant of the M matrix. The numerators
are the determinants of the modified matrices M, where the corresponding column is
replaced by the vector P.
The peculiarity of steps 1–4 is that several (or even all) of the parameters of the ana-
lyzed circuit, including s, Ω, and other parametric element coefficients, are specified
symbolically. Therefore, the differentiation of the approximating function, substitu-
tion of it and its derivatives into the equation (6), determination of k harmonics with
(2k+1)-fold integration of the expression (13) products into the corresponding orthog-
onal functions, and solving the SSLAE in symbolically is very cumbersome. In this
context, the sophisticated symbolic computation capabilities of contemporary CAD
software (MATLAB 2014a) proved invaluable, enabling the calculations described in
this manuscript to be carried out with a high degree of feasibility [15].

4. The symbolic solution of the SLAE is performed in the system user-defined functions
MAOPCs [15] using standard functions of the MATLAB environment.

Figure 1 shows the most commonly used steps of the FSM procedure. There are
other possible steps depending on the input data for FSM, but they are not detailed in
this manuscript. Figure 1 also presents the division of feature sets that could be extracted,
which are described in Section 3.
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3. Results
3.1. Consideration of Feature Extraction Required for Machine Learning Applications

This section considers the feature extraction required for machine learning (ML)
applications based on the frequency symbolic method. The subsequent sections detail the
specific use cases, including the inputs, outputs, and ML approaches to be employed for
each case.

The basic steps in any artificial intelligence (AI) system development are as follows:

1. Data Collection.
2. Feature Extraction (Data Conversion for applicable inputs of the ML system).
3. Target Definition (what is the target of the ML system?).
4. Model Selection.
5. Model Training.
6. Model Evaluation.
7. Parameter Tuning.
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The key purpose of this work is to estimate the feature extraction and target definition
steps from the list above. The data collection step could be accomplished by analyzing
a set of parametric circuits with different parameters and configurations or by collecting
statistics on configurations applied during FSM usage by researchers. The next steps, such
as selection, training, and evaluation of the model are out of scope of this work and will
be considered in further phases of the research. The feature extraction step in ML system
development is devoted to converting input data into a vector of features, which later
become the direct inputs to the ML model. The feature data type should typically be one of
two types: numerical or categorical. Numerical values can take any continuous or discrete
value within a given range. Categorical values can take one of the predefined values, such
as [“Yes”, “No”] or [“Low”, “Medium”, “High”]. Figure 1 shows the feature sets that can
be extracted at different steps of FSM usage.

The aforementioned feature sets are delineated and designated with unique identifiers:

• I1 (Input type 1)—features extracted from the system of differential equations.
• I2 (Input type 2)—features extracted from the transfer equation.
• M1 (Method features 1)—features extracted from the System of Linear Algebraic

Equations (SLAE) obtained using FSM.
• O1 (Output features 1)—features extracted from the symbolic transfer function ob-

tained using FSM.

In consideration of the FSM steps illustrated in Figure 1, we present the selected list of
features in Tables 1–4. As the ML application to the FSM progresses, we will provide more
precise details regarding these features.

Table 1. Proposed list of features set I1 extracted in machine learning application to FSM.

Feature ID and Short Name Description Data Type Valid Range

I1.1
Number of LC components

Number of LC components (except
parametric) in the system of

differential equations describing the
circuit.

Numerical Positive integer number

I1.2
Percentage of non-zero

elements

Relation of non-zero elements to all
elements. Numerical Positive integer [0, 100]

I1.3
Count of symbolic parameters

Total number of parameters in
symbolic form. Numerical Positive integer number

I1.4
Percentage of symbolic cells to

the numerical cells

Relation of cells number in the
system of differential equations
containing at least one symbolic

variable to the total number of cells.

Numerical Positive integer [0, 100]

I1.5
Time-varying function type

Time-varying function type as one of
single harmonic, bi-harmonic,

multi-harmonic, etc.
Categorical [Harm, biharm, multiharm]

Table 2. Proposed list of feature set I2 extracted in machine learning application to FSM.

Feature ID
and Short Name Description Data Type Valid Range

I2.1
Order of the left part Order of the left part of the transfer equation. Numerical Positive integer number

I2.2
Order of the right part Order of the right part of the transfer equation. Numerical Positive integer number
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Table 2. Cont.

Feature ID
and Short Name Description Data Type Valid Range

I2.3
Count of symbolic parameters Total number of parameters in symbolic form. Numerical Positive integer number

I2.4
Complexity of expression

Numerical value representing the complexity
of the symbolic expression. For example, a

function depending on the number of
multiplications, exponents, logarithmic

operation, and so on.

Numerical Positive integer number 1

1 Justification: It is assumed that the assigned weights in a binary expression tree are positive integer numbers,
and that the resulting complexity will also be a positive integer.

Table 3. Proposed list of feature set M1 extracted in machine learning application to FSM.

Feature ID
and Short Name Description Data Type Valid Range

M1.1
Order of the SLAE (2k + 1)

Order of the SLAE
obtained using FSM. Numerical Positive integer number

M1.2
Complexity of SLAE

Numerical value representing the
complexity of SLAE, i.e., some functions

depend on the average complexity of
cells in SLAE. The complexity of each

SLAE cell could be calculated as binary
expression tree complexity.

Numerical Positive integer number 1

1 Justification: It is assumed that the assigned weights in a binary expression tree are positive integer numbers,
and that the resulting complexity will also be a positive integer.

Table 4. Proposed list of feature set O1 extracted in machine learning application to FSM.

Feature ID
and Short Name Description Data Type Valid Range

O1.1
Number of terms in the

transfer function
Number of terms in the transfer function. Numerical Positive integer number

O1.2
Complexity of transfer

function

Numerical value representing the
complexity of the transfer function. For
example, some functions depend on the

average complexity of each term.

Numerical Positive integer number 1

O1.3
Maximal complexity of one

term

Numerical value representing the
complexity of the most complex term in
the transfer function. For example, some

functions depend on the number of
multiplications or exponentiations of

symbolic variables.

Numerical Positive integer number 1

1 Justification: It is assumed that the assigned weights in a binary expression tree are positive integer numbers,
and that the resulting complexity will also be a positive integer.

An example of the calculation of the complexity of a symbolic expression is shown in
a separate chapter at the end of this article.

Target Definition. This step is appointed to determine data and its type that is desired
as output of the ML system. The output data can also be of numerical or categorical type.
An example of target values is shown in Table 5.
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Table 5. Example target definitions of the ML system applied to FSM.

Target ID
and Short Name Description Data Type Valid Range

T1.1
Integral deviation of obtained
transfer function from desired

Integral deviation of the obtained transfer
function from desired. It is obtained after

substitution of the numerical values (may be
also optimization applied) into the symbolic

transfer function and integral comparison with
the target transfer function.

Numerical Floating-point number

T1.2
Local deviation of obtained

transfer function from desired

Like above but evaluated in a specified local
range of time or frequency. Numerical Floating-point number

T1.3
Amplification possibility

Is it possible that module of transfer function
causes signal amplification? Categorical [“Yes”, “No”].

T1.4
Possible non-stability

Is the non-stability of the system/circuit
possible? Categorical [“Yes”, “No”]

3.2. Use Case of Parametric Circuits Synthesis

This use case is mainly based on a reinforcement learning type (Figure 2). In such a case,
the ML system tries to prepare a symbolic transfer function and receives a corresponding
“reward” according to the level of how this transfer function fits the desired output.
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Figure 2. Use case of circuit synthesis using FSM and AI.

The “new step” in Figure 2 could involve adding or removing an existing electric
component (e.g., R, L, C) to specific nodes of the electrical circuit. The steps are as follows:

• AI tries to put electronic components in a semi-random place in the schematic consid-
ering its previous experience.

• Calculate the symbolic expression of the transfer function.
• Try to optimize component values with some constraints.
• Check the best result with the target frequency characteristic and provide the corre-

sponding “reward”.
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At each iteration, AI adjusts its coefficients and remembers the change in the schematic
and corresponding impact. The Q-learning ML method could be used for remembering
previous experiences.

The reward is the criterion for how well the obtained FSM output matches the desired
output. For example, the targets defined in Table 5 could be used.

3.3. Use Case of Invisible Features Detection by Clusterization

This approach was appointed to find unseen by human features of FSM usage through
clusterization of results based on predefined criteria. The idea, as shown in Figure 3, is
to collect a large dataset of simulation results using FSM and use Unsupervised Machine
Learning approach. AI will perform clusterization of the obtained results and allow for the
identification of new features based on new clusters.
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3.4. Use Case of Prediction of FSM Output

This idea is like the previous one but uses Supervised Machine Learning. Figure 4
shows the use case when ML is already trained. For training, the dataset consists of feature
sets of type I1 and I2, corresponding to feature sets of type O1.
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For example, the complexity of the transfer function is not provided as an input. Here,
AI tries to predict the symbolic expression’s complexity based on previous experience.
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3.5. Use Case of Assistance in Frequency Symbolic Method Usage Based on Anomaly Detection

The idea, as shown in Figure 5, is to use a trained ML system as an “Assistant” for users
of FSM implementation. For training, Supervised Machine Learning should be used. First,
AI is trained by collecting a dataset of symbolic expression (obtained using FSM) features
to corresponding inputs. Once trained, it could be used as an “Assistant” (supervisor) for
the following FSM usage. For example, the ML system can detect anomalies and inform the
user. An anomaly could be a human mistake, for example, when the conductivity matrix is
not as usual or a parametric element is incorrectly connected.
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3.6. Use Case of Fault Diagnosis and Testing

The merging of the proposed methods with AI techniques opens new avenues for
enhancing the analysis and optimization of LPTV circuits. The incorporation of AI, par-
ticularly machine learning (ML), offers significant advantages in handling the complex
and computationally intensive tasks associated with the frequency symbolic method. A
special case is fault diagnosis which should be differentiated from typical functional testing.
It is possible for the circuit to be in a faulty state but still pass functional test, which is
equivalent to behavioral test. In such a case, one or more elements can have parameters,
e.g., beyond the tolerance range. This can mark the beginning of a component’s degrada-
tion process (due to aging or environmental influence) and can affect the circuit (system)
lifetime (or Mean-Time Between Failure parameter, MTBF). Successful fault diagnosis can
be an important part of predictive maintenance, especially in cases of a component’s soft
fault (parameter beyond the tolerance range while still operating), as it can be a step before
hard fault (malfunction), often leading to circuit (system) malfunction. Exemplary areas
are as follows:

1. Fault Diagnosis in Electrical/Electronic Circuits:

• Predictive Maintenance: AI can be used to predict potential failures in circuits
by analyzing patterns and anomalies in frequency responses. By training ML
models on historical data of circuit performance, it is possible to foresee faults
before they occur, allowing for proactive maintenance [13,17].

• Anomaly Detection: AI systems can be employed to detect anomalies in circuit
behavior that may indicate faults. Machine learning models can learn the normal
operating conditions of circuits and flag deviations from these norms, thus
identifying potential issues in real-time.
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2. Testing and Validation:

• Automated Testing: AI-driven automated testing procedures can significantly
reduce the time and effort required for validating circuit designs. By using
reinforcement learning techniques, AI systems can optimize test scenarios to
cover a wide range of operating conditions, ensuring robust performance.

• Simulation-Based Testing (SBT): AI can enhance simulation-based testing by
rapidly generating and evaluating numerous test cases, thus providing compre-
hensive insights into circuit behavior under various conditions. This approach
can help identify edge cases and potential weaknesses in the design.

• Parameter Tuning: AI techniques can be used to optimize the parameters of
LPTV circuits. Genetic algorithms and other optimization techniques can help
find the best parameter values that improve circuit performance while meeting
design constraints.

By integrating AI techniques with the frequency symbolic method, the processes of
circuit analysis, fault diagnosis, testing, and optimization can be improved. This integration
not only enhances efficiency but also provides a deeper understanding of the complex be-
haviors of LPTV circuits, paving the way for more reliable electrical and electronic systems.

3.7. Example of Symbolic Transfer Function Complexity Calculation

This chapter contains an example of symbolic expression complexity calculation based
on a transfer function obtained in symbolic form using the FSM. Specifically, it shows
the extraction of feature O1.2, “Complexity of transfer function”. The complexity value
obtained is an integer number, which could be used in a similar way to extract the features
with IDs I2.4, M1.2, O1.2, and O1.3 described above. For this example, the one-circuit
parametric amplifier shown in Figure 6 has been selected.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 12 of 17 
 

models on historical data of circuit performance, it is possible to foresee faults 
before they occur, allowing for proactive maintenance [13,17]. 

• Anomaly Detection: AI systems can be employed to detect anomalies in circuit 
behavior that may indicate faults. Machine learning models can learn the normal 
operating conditions of circuits and flag deviations from these norms, thus iden-
tifying potential issues in real-time. 

2. Testing and Validation: 
• Automated Testing: AI-driven automated testing procedures can significantly 

reduce the time and effort required for validating circuit designs. By using rein-
forcement learning techniques, AI systems can optimize test scenarios to cover 
a wide range of operating conditions, ensuring robust performance. 

• Simulation-Based Testing (SBT): AI can enhance simulation-based testing by 
rapidly generating and evaluating numerous test cases, thus providing compre-
hensive insights into circuit behavior under various conditions. This approach 
can help identify edge cases and potential weaknesses in the design. 

• Parameter Tuning: AI techniques can be used to optimize the parameters of 
LPTV circuits. Genetic algorithms and other optimization techniques can help 
find the best parameter values that improve circuit performance while meeting 
design constraints. 

By integrating AI techniques with the frequency symbolic method, the processes of 
circuit analysis, fault diagnosis, testing, and optimization can be improved. This integra-
tion not only enhances efficiency but also provides a deeper understanding of the complex 
behaviors of LPTV circuits, paving the way for more reliable electrical and electronic sys-
tems. 

3.7. Example of Symbolic Transfer Function Complexity Calculation 
This chapter contains an example of symbolic expression complexity calculation 

based on a transfer function obtained in symbolic form using the FSM. Specifically, it 
shows the extraction of feature O1.2, “Complexity of transfer function”. The complexity 
value obtained is an integer number, which could be used in a similar way to extract the 
features with IDs I2.4, M1.2, O1.2, and O1.3 described above. For this example, the one-
circuit parametric amplifier shown in Figure 6 has been selected. 

 
Figure 6. Model of a single parametric-variable circuit. 

A parametric circuit with a single varying coefficient, shown in Figure 6, has been 
analyzed. The time-dependent parameter c(t) of the system is the capacitance, which is 
represented by a function: 𝑐(𝑡) = 𝐶ሼ1 + 𝑚cos (Ω𝑡)ሽ, 𝐶 = 10 pF. (13) 

The parameters of the LPTV circuit shown in Figure 6 are as follows: a constant an-
gular frequency Ω for the parametric function c(t): Ω = 2πf, where f = 200 MHz, and a 
modulation coefficient mc = 0.01. The inductance is L = 253.3 nH, and the conductance 
values are Y1 = 0.25 S and Y2 = 0.4 mS. A monoharmonic input signal is a current i(t) with 
a time waveform: 𝑖(𝑡) = 𝐼 cos(𝜔𝑡 + 𝜑),  𝐼 = 0.1 mA, 𝜑 = 45∘, 𝜔 = 2𝜋𝑓, 𝑓 = 100 MHz. (14) 

Figure 6. Model of a single parametric-variable circuit.

A parametric circuit with a single varying coefficient, shown in Figure 6, has been
analyzed. The time-dependent parameter c(t) of the system is the capacitance, which is
represented by a function:

c(t) = C0{1 + mccos(Ωt)}, C0 = 10 pF. (13)

The parameters of the LPTV circuit shown in Figure 6 are as follows: a constant
angular frequency Ω for the parametric function c(t): Ω = 2πf, where f = 200 MHz, and
a modulation coefficient mc = 0.01. The inductance is L = 253.3 nH, and the conductance
values are Y1 = 0.25 S and Y2 = 0.4 mS. A monoharmonic input signal is a current i(t) with
a time waveform:

i(t) = Imcos (ωt + ϕ0), Im = 0.1 mA, ϕ0 = 45
◦
, ω = 2π fin, fin = 100 MHz. (14)

Three parameters remain in symbolic form: time t, constant angular frequency of the
parametric function Ω, and mc—modulation coefficient of the time-varying capacitance
c. Using FSM, the transfer function was obtained for three cases: 1, 2, and 3 harmonics
used to approximate the transfer function. It can be noted that the FSM makes it possible to
obtain the approximation of the transfer function using Fourier series with a predetermined
number of harmonics. Figure 7 (magnitude) and Figure 8 (phase) present plots of the
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transfer function (with 1 harmonic approximation) for presented circuit. It can be observed
that there is an influence of variable capacitance at frequency f = 200 MHz.
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The following formula is proposed to calculate the complexity C of an expression
(transfer function):

C = ∑K
k=1 wi·Ni, (15)

where:

Ni is number of particular operations (for i-th mathematical operand),
wi is complexity weight of the i-th operand,
K is total number of distinguished operands (depending on the case).
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There following operands are distinguished (with abbreviations): addition (add), subtrac-
tion (sub), multiplication (mul), division (div), and exponentiation (exp). Negative numbers
are not counted as subtraction (they have assumed particular hardware representation).

Deciding on the weights of each operation is a debatable topic, as it depends very
much on the tools, algorithms, hardware implementation, etc. Therefore, the following
assumptions have been made for this example, which may not apply to other environments:

1. Every number in the expression in the generic case is a complex number and it serves
as our reference.

2. The addition or subtraction of two complex numbers has the same complexity as two
additions/subtractions of real numbers and is considered as a unit weight with value
wadd = wsub = 1.

3. Multiplication of two real numbers typically uses hardware acceleration, resulting in
a weight of 1.

4. Complex multiplication involves two multiplications and one addition, and based on
the assumptions above, its weight is wmul = 3.

5. The division of two complex numbers uses multiplication by the conjugate, and its
weight is wdiv = 7.

6. Binary exponentiation is calculated with complexity O(2 · log2n). The real and imagi-
nary parts of the complex number are stored as 32-bit values, so log2n = 32, therefore
the weight of the exponentiation is wexp = 64.

Summary of weights for complexity calculation is presented in Table 6.

Table 6. Assumed complexity weights for particular mathematical operations.

Operation Weight

add 1
sub 1
mul 3
div 7
exp 64

Table 7 shows the number of operations and the complexity calculated using expres-
sion (11) and the assumptions considered above for the transfer functions obtained using
FSM with 1 harmonic approximation. Tables 8 and 9 show the calculation complexities for
transfer function calculation using 2 and 3 harmonics, respectively.

It can be observed that the required complexity increases rapidly with the number of
harmonics used to find a particular transfer function.

Table 7. Result of transfer function complexity calculation using FSM for 1 harmonic.

Operation Number of Operations Cost

add 48 48
sub 33 33
mul 67 201
div 3 21
exp 44 2816

Total 3119
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Table 8. Result of transfer function complexity calculation using FSM for 2 harmonics.

Operation Number of Operations Cost

add 240 240
sub 238 238
mul 433 1299
div 5 35
exp 373 23,872

Total 25,684

Table 9. Result of transfer function complexity calculation using FSM for 3 harmonics.

Operation Number of Operations Cost

add 722 722
sub 626 626
mul 1213 3639
div 7 49
exp 1081 69,184

Total 74,220

4. Conclusions

This paper examines five instances of machine learning (ML) applications to the FSM
method. For each use case, the requisite feature sets, learning type, benefits, and potential
issues are analyzed. A summary is presented in Table 10.

Table 10. Use cases summary.

Use Case Benefit Learning Type Difficulties/Problems

Parametric circuits synthesis Circuit could be synthesized
automatically. Reinforcement learning

Could be time consuming.
Big database is needed for ML

experience storage.

New features detection

Identify not visible features of
the FSM method or its

implementation by specific
clusters occurrences.

Unsupervised learning
At the moment, it is not clear

which clusters could be
obtained.

Prediction

Could predict the result based
on previous experience
without modeling and

simulation.

Supervised learning
For some not typical inputs,
the result could be predicted

incorrectly.

Anomaly detection
Human mistakes could be

detected. This use case acts as
an assistant.

Supervised learning
Could accidentally report an

anomaly when the correct
approach is used.

The initial use case is parametric circuit synthesis, in which a circuit can be syn-
thesized automatically through reinforcement learning. The primary challenges are the
time-consuming process and the necessity for a substantial database for ML experience
storage. The second use case pertains to the detection of new features, which involves
identifying features of the FSM method or its implementation that are not visible or can-
not be discerned from specific cluster occurrences. This use case employs unsupervised
learning, but it is currently unclear which clusters could be obtained. The third use case is
prediction, where results can be predicted based on previous experience without the need
for modeling and simulation. This use case employs supervised learning, but the result
may be incorrectly predicted for atypical inputs. The fourth use case involves an assistant
that could detect human mistakes through unsupervised learning.
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However, there was a potential problem of inadvertently reporting an anomaly when
the correct approach was used. The fifth use case was fault detection, which allowed
the identification of faults not detected by standard functional tests. This use case used
supervised learning but required a sufficient circuit model (simulation). There are other
issues that must always be properly addressed, such as data preparation, model selection,
training, and evaluation, with the aim of improving the overall efficiency of the diagnostic
system, but these are all circuit-dependent and must be chosen by a test designer, engineer,
or AI expert. Therefore, there is no single or best solution for a particular test case, so we
have proposed a set of real-world applications that should reduce the time taken to develop
a single test for a custom circuit.
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Abstract: This study presents a convolutional neural network (CNN) deep learning approach for
identifying damage in submerged structure-foundation systems using vibration data. Firstly, founda-
tion damage in a lab-scale caisson-foundation system is simulated to measure time-history responses.
Singular value decomposition (SVD) responses are derived from the time-history responses. Secondly,
the 1-D CNN deep learning model is trained using both the time-history responses and SVD re-
sponses. Finally, the trained CNN models are implemented to evaluate the foundation damage under
conditions of noise contamination and partially untrained data. The experimental results demonstrate
the effectiveness of CNN models for damage identification and highlight the comparative strengths
of time-history and SVD data. The CNN model trained using SVD data outperforms the other model
when under noise contamination conditions, while the CNN model trained using time-history data
maintains better accuracy in partially untrained data conditions. Integrating both types of data
enhances the accuracy of damage classification.

Keywords: submerged structure-foundation system; vibration monitoring; time-history response;
singular value decomposition response; 1-D CNN; deep learning; damage identification

1. Introduction

Submerged structure-foundation systems, such as caisson breakwater systems, face
significant challenges from extreme conditions like earthquakes and storm surges over
their operational lifespan [1]. Caisson systems consist of an above-water concrete cap,
the submerged caisson, and the foundation. Over time, several issues can develop in the
foundation, such as settlement, overturning, and sliding [2,3]. Additionally, the caisson can
suffer from large storm surges, causing severe cracking and material leakage [4]. Due to
the inaccessibility of underwater components, innovative evaluation methods are required
to assess their structural integrity.

Among several structural health monitoring techniques, vibration-based monitoring
has emerged as an effective method for assessing the damage in submerged structures [5–7].
Most studies have focused on manual damage identification using vibration features [8–10].
Vibration features are complicated and are affected by foundation conditions and environ-
mental factors [11,12]. As a result, assessing submerged structure-foundation systems has
remained challenging due to the uncertainties associated with field parameters. Further
research is needed to address these complexities and improve the reliability of structural
integrity assessments.

Recent studies have demonstrated the effectiveness of 1-D convolutional neural net-
works (CNNs) in real-time applications and the ability to learn complex tasks. Such 1-D
CNN models can be trained using vibration features such as singular value decomposition
(SVD) and time-history responses. SVD data are obtained from multiple preprocessing
steps for each damage level [13]. As an alternative approach, time-history responses from
accelerometers can be directly utilized for the CNN model, bypassing several preprocessing
steps, thereby enhancing speed and reducing computational costs [14–16].
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There has been a lack of research comparing CNN models trained using different
vibration features, and investigating how integrating results could improve prediction
performance. This study uses both time-history responses and SVD responses for the CNN
model. The advantages and disadvantages of each type of training data are identified
by evaluating the CNN model under noise contamination and partially untrained data
conditions. The main contributions of this study are as follows:

• A CNN deep learning approach is developed to identify damage in submerged
structure-foundation systems using both time-history and SVD data.

• The performance of the CNN model is evaluated with partially untrained cases, where
certain damage levels were excluded from the training and validation datasets.

• A comparative study between CNN trained using time-history and SVD data is
conducted. The results from the two models are integrated to strengthen the damage
classification performance.

To achieve these objectives, a CNN deep learning approach for identifying damage
in submerged structure-foundation systems using both time-history and SVD data is de-
veloped. Firstly, foundation damage in a lab-scale caisson-foundation system is simulated
to measure time-history responses. SVD responses are derived from the time-history
responses. Secondly, the 1-D CNN deep learning model is trained using both the time-
history responses and SVD responses. Finally, the trained CNN models are implemented
to evaluate the foundation damage under conditions of noise contamination and partially
untrained data.

2. Literature Reviews
2.1. Vibration-Based Techniques for Caisson-Foundation Systems

Many researchers have utilized vibration-based techniques to handle the transient
interactions between waves, structures, and foundations [3,8]. For caisson-foundation
structures, vital structural information can be obtained from a few sensors strategically
placed in the small above-water section [5–7]. Ming et al. [17] studied the dynamic response
of a caisson breakwater using a rigid body on an elastic foundation model under wave
action. Lee et al. [8] employed vibration-based methods to detect damage at the interface
between the caisson and the foundation. Huynh et al. [9,10] combined simplified analytical
approaches with in situ vibration measurements to assess caisson-foundation system
integrity. Lee et al. [11,12] developed a practical scheme to differentiate the impact of
foundation conditions and environmental factors on the vibration characteristics of the
breakwater system. Pham et al. [13] proposed the pseudo-wave method superposing the
vibration responses from several man-made excitations to simulate the wave impact on the
caisson system.

2.2. 1-D CNN Deep Learning and Data Acquisition

The compact 1-D CNN excels in extracting features from vibration data with minimal
training required [18,19]. The vibration data (i.e., time-history and SVD responses) are
one-dimensional arrays with inherent order. The 1-D CNN model is suitable for processing
1-D and sequential input data, as it can effectively learn the ordered patterns by capturing
local dependencies. Teng et al. [14] applied 1-D CNNs trained using vibration signals from
a numerical model to detect damage in a steel bridge. Huang et al. [15] employed a CNN
model to quantify the dynamic stiffness of railway tracks using vibration data. Li et al. [16]
implemented an adaptive CNN model for bearing-fault diagnosis in noisy environments.

The vibration data for the CNN model can be obtained by two approaches. In the
first approach, vibration data are collected directly from damaged caissons after extreme
events such as storms or tsunamis. These data are labeled according to the severity of the
damage and used for training. In the second approach, vibration data are collected indi-
rectly through foundation damage simulation. Pham et al. [13] proposed a method called
pseudo-damage simulation, where concrete weights were applied on top of the caisson
to mimic the effect of foundation damage. In their study, experiments were conducted
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under laboratory conditions. The location, shape, and severity of foundation damage levels
were predetermined.

3. Methodology
3.1. Research Framework

Detecting damage using conventional methods is challenging due to the complexity
of the responses. The 1-D CNN approach can be practical to overcome this challenge. The
1-D CNN method trained using vibration data (i.e., time-history and SVD responses) is
applied to automate the feature extraction process and to facilitate real-time monitoring.

Figure 1 illustrates the CNN deep learning model scheme for caisson-foundation
system using vibration data. This scheme comprises three phases: (1) data acquisition via
the vibration technique, (2) construction of the 1-D CNN model for the caisson-foundation
system, and (3) evaluation of the 1-D CNN model. In Phase 1, the databanks corresponding
to foundation damage on the caisson system are generated for deep learning models. The
foundation damage simulation involves removing a certain amount of sand and gravel
from the existing foundation. The vibration data (i.e., time-history and SVD responses)
are acquired by accelerometers under man-made excitation. The time-history responses
obtained from several accelerometers are concatenated to form one continuous response.
The SVD responses are derived from the time-history responses using the frequency domain
decomposition (FDD) method. The vibration data are processed with data augmentation to
form a databank and used for the CNN model in the subsequent phases.
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Figure 1. Scheme of CNN deep learning model for a caisson-foundation system using vibration data.

In Phase 2, a 1-D CNN model is developed to detect damage in the caisson-foundation
system. The databank is augmented by introducing noise to the vibration. The 1-D CNN
model processes the vibration data through several hidden layers to classify the damage
levels in the foundation. In Phase 3, the effectiveness of the 1-D CNN model is evaluated
for noise-contaminated and untrained damage cases.

3.2. Vibration-Data Acquisition Technique
3.2.1. Vibration Monitoring Method

Figure 2 illustrates a vibration monitoring setup on a submerged caisson-foundation
system. This system has three main components: an above-water concrete cap, a submerged
caisson, and a foundation. The foundation is constructed with a sand mound and gravel
armor. The caisson is oriented perpendicular to the direction of wave propagation and
is subjected to impulsive breaking wave forces. The vibration test for in situ submerged
caisson-foundation systems uses wave forces as the excitation source. Alternatively, a
tugboat with adjustable weight and speed can be used to generate controlled artificial
excitation for the vibration tests.
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Figure 2. Vibration monitoring setup on a submerged caisson-foundation system.

Figure 3 illustrates vibration monitoring for a caisson-foundation system. Several
accelerometers are strategically installed on the above-water concrete cap of the caisson to
obtain vibration data. These accelerometers are oriented in three directions (x, y, and z) to
capture all caisson motions, including heave, sway, and roll. In this study, the time-history
responses are acquired by five accelerometers (i.e., ACC 1z, ACC 2z, ACC 2x, ACC 3x, and
ACC 2y) for 15 s at a sampling rate of 1 kHz. Only 1000 data points that contain the most
important information (i.e., 100 data points before the impact load and 900 data points
after) are chosen. These time-history responses from the five sensors are then concatenated
to form one continuous response, as shown in Figure 3b. The concatenating technique
transforms the data into a 1-D array which is well-suited for the 1-D CNN model. The
concatenated signal contains the information of all five accelerations with inherent order.
The 1-D CNN model can simultaneously learn the characteristics of time-history responses
from all sensors. In addition, concatenating allows the 1-D CNN model to capture the
relation movements of five sensors.
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Figure 3. Vibration measurements for a caisson-foundation system: (a) accelerometer setup and
impact load; (b) Concatenated time-history response.

3.2.2. Vibration Feature Extraction

Since frequency domain decomposition (FDD) theory was first described by Brincker
et al. [20], the method has become popular due to its robustness and efficiency. The FDD
method decomposes the vibration response into a series of independent single-degree-of-
freedom systems. This is achieved by applying the SVD to the cross-spectral density (CSD)
matrix [20,21], which outputs the natural frequencies and mode shapes of the system.
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There are four main steps in the FDD method. In the first step, the CSD matrix is
computed from the acceleration responses collected from n sensors on the structure. The
general form of the CSD matrix Syy(ω) is as follows:

Syy(ω) =




S11(ω) S12(ω)
S21(ω) S22(ω)

. . . S1n(ω)

. . . S2n(ω)
...

...
Sn1(ω) Sn2(ω)

. . .
...

. . . Snn(ω)


 (1)

In the second step, the CSD matrix is decomposed into unitary matrices (i.e., U(ω),
V(ω)), and diagonal matrix ∑(ω)) using the SVD. Due to the symmetricity of Syy(ω), the
unitary matrices U(ω) and U(ω) are identical. The diagonal matrix ∑(ω) = diag{σn(ω)}
contains singular values σn(ω) in descending order, with the first value, σ1(ω), representing
the highest energy of the dynamic system. The new form of the CSD matrix Syy(ω) is
as follows:

Syy(ω) = U(ω)T ∑(ω) V(ω) (2)

In the third step, natural frequencies are identified by selecting peak frequencies ωp
on the singular value chart. The final step involves extracting mode shapes from the first
column vector of U

(
ωp
)

at these peak frequencies.
Considered as a linear structural system with light damping, the caisson system

exhibits sharp resonance peaks in the SVD chart [22]. These peaks contain critical structural
information, making them more significant compared to other regions of the frequency
spectrum. To fully exploit the informational content within the SVD responses, a min–max
normalization in a logarithmic scale technique is employed as follows [13]:

x′ =
log(x)− log

(
10−6)

log(10−1)− log(10−6)
(3)

where the range from 10−6 to 10−1 for normalization is empirically chosen to suit the
specific characteristics of the data used for deep learning.

3.3. Architecture of a 1-D CNN Model

Figure 4a illustrates the architecture of a 1-D CNN classification model designed to
detect foundation damage. The 1-D CNN model trained using time-history data receives
1 × 5000 input data, while the 1-D CNN model trained using SVD data receives 1 × 2048
input data. The 1-D CNN model extracts essential features of vibration data (i.e., concate-
nated time-history and SVD responses) through multiple CNN layers before providing
classification results for the level of foundation damage. The configuration of the 1-D
CNN layers is empirically chosen for the specific data characteristics, as detailed in Table 1.
The CNN model includes three convolution layers, three max-pool layers, three ReLU
layers, one flatten layer, and three dense layers. Convolutional layers are responsible for
feature extraction from the input signals. Max-pooling layers then down-sample these
features to reduce computational load and mitigate overfitting risks. ReLU layers introduce
non-linearity to the network by converting all negative values to zero. The flatten layer
reshapes the extracted features into a format suitable for the dense layers. Each node
in a dense layer is connected to every node in the previous layer, with each connection
associated with a learnable weight parameter. The CNN models are trained with 40 epochs,
a learning rate of 0.001, and a batch size of 1. During training, the model minimizes the
difference between the predicted and actual labels using the categorical cross-entropy loss
function. The accuracy metric is utilized to evaluate the classification performance of the
trained model.
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Figure 4. Schematic of a 1-D CNN classification model: (a) 1-D CNN architecture; (b) data preparation
and training procedures.

Table 1. Specification of 1-D CNN layers.

No. Type Depth Filter Stride No. Type Depth Filter Stride

1 Conv1 6 1 × 4 1 8 ReLU - - -
2 ReLU - - - 9 Maxpool3 - 1 × 2 2
3 Maxpool1 - 1 × 2 2 10 Flatten
4 Conv2 4 1 × 4 1 11 Fc1 48 - -
5 ReLU - - - 12 Fc2 16 - -
6 Maxpool2 - 1 × 2 2 13 Fc3 4 - -
7 Conv3 5 1 × 8 1 14 Classification - - -

Figure 4b shows the data preparation and training procedure for a caisson-foundation
system. The time-history responses obtained under foundation damage cases are concate-
nated and are input into the CNN model. The time-history responses are used to extract the
SVD responses. The extracted responses are used for the CNN model trained using SVD
data. The prediction results of two CNN models are integrated for damage identification
of the caisson-foundation system.

Robustness of the model can be achieved by ensuring the consistency and sensitivity
of the training data. To ensure data consistency, experimental variations such as impact
load magnitude, temperature fluctuations, and ambient noise are carefully controlled
in lab-scale conditions. To achieve the high sensitivity of the training data, the training
data are focused on regions susceptible to damage variations (i.e., here, 1000 data points
surrounding the impact event were selected for the time-history analysis, and 211 = 2048
data points for the SVD analysis).

To enhance the model’s performance and prevent overfitting issue, data shuffling and
early-stopping techniques are implemented [23]. Data shuffling helps to prevent the model
from learning the order of the data, and the early-stopping halts training when the model’s
performance on the validation set begins to degrade.

3.4. Foundation-Damage Classification Approach
3.4.1. Deep Learning of Noise-Contaminated Databank

Several factors can affect the vibration test, such as noise (including environmental
noise and electrical noise from the monitoring devices) and inconsistencies in the excitation
source. The data are enriched by obtaining a large number of ensembles to capture as much
variation in the excitation source as possible. Despite efforts to control the noise and the
magnitude of the vibration source, variations in vibration data are inevitable. Conducting
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comprehensive experiments that account for all of these variables is challenging and costly.
Data augmentation by injecting Gaussian noise into the measured signals is a practical
solution for simulating realistic measurement conditions. Introducing noise into the data
is also an effective method for enriching the dataset. Several noise levels injected ensure
that the CNN model is exposed to a wider range of data during training. It leads to a more
robust and general model that can perform on unseen and real-world vibration data.

Figure 5 illustrates the process for configuring the noise-contaminated databank. The
vibration data were obtained in 15 ensembles for each foundation damage level. Eighty
percent (80%) of the total vibration data was used for training and validation datasets.
Data generation used Gaussian noise with standard deviations of 0%, 1%, 2%, 3%, 4%,
and 5% of the signal amplitude. The remaining 20% of the total vibration data had noise
levels injected ranging from 1% to 16% (in 1% increments) to form the evaluation dataset.
This evaluation dataset was used to examine the effect of noise on the accuracy of the 1-D
CNN model.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 7 of 27 
 

much variation in the excitation source as possible. Despite efforts to control the noise and 
the magnitude of the vibration source, variations in vibration data are inevitable. Con-
ducting comprehensive experiments that account for all of these variables is challenging 
and costly. Data augmentation by injecting Gaussian noise into the measured signals is a 
practical solution for simulating realistic measurement conditions. Introducing noise into 
the data is also an effective method for enriching the dataset. Several noise levels injected 
ensure that the CNN model is exposed to a wider range of data during training. It leads 
to a more robust and general model that can perform on unseen and real-world vibration 
data. 

Figure 5 illustrates the process for configuring the noise-contaminated databank. The 
vibration data were obtained in 15 ensembles for each foundation damage level. Eighty 
percent (80%) of the total vibration data was used for training and validation datasets. 
Data generation used Gaussian noise with standard deviations of 0%, 1%, 2%, 3%, 4%, 
and 5% of the signal amplitude. The remaining 20% of the total vibration data had noise 
levels injected ranging from 1% to 16% (in 1% increments) to form the evaluation dataset. 
This evaluation dataset was used to examine the effect of noise on the accuracy of the 1-D 
CNN model. 

 

 
Figure 5. Configuration of the noise-contaminated databank. 

3.4.2. Deep Learning of Partially Untrained Databanks 
The foundation of the caisson system sustains various types of damage after extreme 

events such as storms or tsunamis. For training a CNN model, vibration data can be col-
lected directly from these damaged caissons and labeled according to the severity of the 
damage. However, a concern is the availability of such data. With variations in shape, 
location, and severity of foundation damage, each collected sample differs and may not 
correctly represent feasible damage scenarios. Therefore, it is necessary to train the CNN 
model by utilizing limited data as well as to recognize unseen damage cases by classifying 
them into the trained databank of the CNN model. To assess the capability of the 1-D 
CNN model, certain damage levels were excluded to create partially untrained databanks. 

As shown in Figure 6, noise levels ranging from 1% to 5% were added to the 12 en-
sembles to create the training and validation datasets. Three untrained cases were de-
signed to examine the effect of missing data on the performance of the 1-D CNN. In Case 
1, the training and validation set excluded three damage levels: D2, D4, and D6 (from eight 
damage levels D0–D7), while in Case 2 and Case 3, the training and validation set ex-
cluded four damage levels (Case 2: D1, D3, D5, and D7; Case 3: D1, D2, D5, and D6). For 
the evaluation dataset, the remaining three ensembles were injected with noise levels from 
1% to 5% with intervals of 1%. 

 

12 data / 
damage level

3 data / 
damage level

Training 
dataset Validation 

dataset

Evaluation dataset

Vibration data

Data generation
Std = 0–5%

Noise contamination
Std = 0–10%

1-D CNN model

Databank

80
%

20
%

Figure 5. Configuration of the noise-contaminated databank.

3.4.2. Deep Learning of Partially Untrained Databanks

The foundation of the caisson system sustains various types of damage after extreme
events such as storms or tsunamis. For training a CNN model, vibration data can be
collected directly from these damaged caissons and labeled according to the severity of
the damage. However, a concern is the availability of such data. With variations in shape,
location, and severity of foundation damage, each collected sample differs and may not
correctly represent feasible damage scenarios. Therefore, it is necessary to train the CNN
model by utilizing limited data as well as to recognize unseen damage cases by classifying
them into the trained databank of the CNN model. To assess the capability of the 1-D CNN
model, certain damage levels were excluded to create partially untrained databanks.

As shown in Figure 6, noise levels ranging from 1% to 5% were added to the 12 ensem-
bles to create the training and validation datasets. Three untrained cases were designed
to examine the effect of missing data on the performance of the 1-D CNN. In Case 1, the
training and validation set excluded three damage levels: D2, D4, and D6 (from eight
damage levels D0–D7), while in Case 2 and Case 3, the training and validation set excluded
four damage levels (Case 2: D1, D3, D5, and D7; Case 3: D1, D2, D5, and D6). For the
evaluation dataset, the remaining three ensembles were injected with noise levels from 1%
to 5% with intervals of 1%.
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4. Experiment on a Lab-Scale Caisson-Foundation System
4.1. Vibration Test on a Lab-Scale Caisson System

Figure 7a shows an Oryuk-do caisson-foundation system investigated by Lee et al. [12].
The submerged breakwater system consists of 50 caisson units and has a total length of
1004 m. Each caisson unit is 20 m in width, 20 m in length, and 20.78 m in height. As
detailed in Figure 7b, the concrete caisson in the lab-scale experiment was scaled down to
1/20 of the real size, with measurements of 1200 mm in width, 1100 mm in length, and
1300 mm in height. The foundation mound of the lab-scale system is made of a sand layer
of 480 mm and an armor gravel layer of 100 mm.
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Figure 7. Parameters of the caisson breakwater system: (a) Oryuk-do caisson breakwater system [19];
(b) lab-scale caisson-foundation model [13].

Figure 8 shows the experimental setup for the vibration test on the lab-scale caisson-
foundation system. The foundation consisted of a sand mound and gravel armor. The sand
mound was precisely dimensioned and compacted to guarantee the stability of the caisson
system. The caisson was placed on top of the mound, featuring shear keys to ensure precise
alignment and secure interlocking. To further reinforce the structural integrity, a 100 mm
layer of gravel was applied on top of the sand mound.

Accelerometers (model PCB 393B04) (i.e., ACC x, ACC y, ACC z) were installed on
top of the caisson via steel cubes to measure vibrations along the x, y, and z directions. In
this setup, two sensors were placed in the x-direction (labeled as 2x and 3x), one sensor in
the y-direction (labeled as 2y), and two sensors in the z-direction (labeled as 1z and 2z).

The data acquisition system comprised a signal conditioner (model 481A, PCB Piezotronics,
New York, United States), a terminal block (BNC 2090A), a DAQ card (model 6036E), and a
laptop. A steel block suspended from a 1300 mm rope was swung freely from a distance
of 400 mm to simulate the impact load on the caisson. The time-history responses were
collected in 15 ensembles. The obtained time-history responses were then concatenated
according to the previously described methodology.

4.2. Foundation-Damage Scenarios

The foundation damage was simulated to mimic a variety of damage scenarios caused
by scouring during extreme storm surge events. Figure 9 shows eight levels of foundation
damage simulated by sequentially removing various amounts of gravel armor and sand
from the foundation mound.

As shown in Figure 9a, the cut-off width was set to 60 cm (i.e., half of the caisson
width). Damage 1 to Damage 4 were introduced by removing the depth of the mound up
to 10 cm, 20 cm, 30 cm, and 35 cm, respectively. Damage 1 removed 0.37 kN of gravel,
which was approximately 2.3% of the armor gravel. Damage 2 removed a total of 0.90 kN
material from foundation. It involved 0.46 kN of gravel (about 2.8% of the armor gravel)
and 0.44 kN of sand (about 0.7% of the sand mound). Damage 3 resulted in the removal of
0.56 kN gravel (about 3.4% of the armor gravel) and 0.91 kN sand (about 1.5% of the sand
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mound). Damage 4 removed another 50 mm layer, bringing the total to 0.58 kN of gravel
(about 3.6% of the armor gravel) and 1.14 kN of sand (about 1.9% of the sand mound).
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As shown in Figure 9b, Damage 5 to Damage 7 expanded the damage to foundation–
caisson interface with dug hole depths ranging from 100 mm to 300 mm. This resulted
in total extracted sand weights of 1.35 kN, 1.56 kN, and 1.77 kN (about 2.2%, 2.5%, and
2.9% of the sand mound), while the removed gravel remained constant at 0.58 kN. The
configuration of the foundation damage scenarios is summarized in Table 2.

Table 2. Configuration of foundation damage scenarios.

Case Gravel Removed
(% of Gravel Armor)

Sand Removed
(% of Sand Mound) Descriptions

D0 - - Undamaged intact state

D1 0.37 kN (2.3%) -

Damage in front slopeD2 0.46 kN (2.8%) 0.44 kN (0.7%)
D3 0.56 kN (3.4%) 0.91 kN (1.5%)
D4 0.58 kN (3.6%) 1.14 kN (1.9%)

D5 0.58 kN (3.6%) 1.35 kN (2.2%)
Damage expanded to

foundation–caisson interface
D6 0.58 kN (3.6%) 1.56 kN (2.5%)
D7 0.58 kN (3.6%) 1.77 kN (2.9%)

4.3. Vibration Data Acquired from Accelerometers

The time-history responses were acquired at a sampling rate of 1.0 kHz. For each
impact load, the time-history responses of five sensors (i.e., ACC1z, ACC 2z, ACC 2x, ACC
3x, and ACC 2y) were recorded simultaneously. The observation period was set to 1 s,
resulting in 1000 data points per response (90 data points before and 910 data points after
the impact load). Comparing the five accelerometers on each caisson, the acceleration
magnitude in the z-direction was smaller than in the x- and y-directions. The time-history
responses from the five sensors were then concatenated into a single response of 5000 data
points. The representative time-history responses of five accelerometer sensors in eight
foundation damage levels (D0–D7) are plotted in Figure 10.
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Figure 10. Time-history responses of five accelerometer sensors.

The FFD method was used to extract the SVD from the time-history responses.
Figure 11 plots the SVD responses calculated simultaneously from all five accelerome-
ters (i.e., 1z, 2z, 2x, 3x, and 2y). The SVD responses were relatively uniform under all
foundation damage levels (D0–D7). Three peaks were identified to represent the caisson’s
behavior: the first peak frequencies ranged from 25.9 to 27.3 Hz, the second from 183.6 to
186.8 Hz, and the third from 279.8 to 281.2 Hz.
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Figure 11. SVD responses of five accelerometer sensors.

5. Development of 1-D CNN Models
5.1. 1-D CNN Model Using Time-History Response
5.1.1. Databank of Time-History Responses

The concatenated time-history responses were processed with controlled noise con-
tamination to improve the CNN model’s adaptability to real-world conditions. Noise was
introduced at 1–10% standard deviation levels across ten iterations. Figure 12 illustrates
examples of contaminated responses compared to their original responses.
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The time-history responses were used to generate datasets for CNN model devel-
opment. The responses were acquired in 15 ensembles for each damage level, of which
80% were used for training and validation and 20% reserved for evaluation. A total of
120 responses obtained from eight levels (D0–D7) were divided into 96 responses for
training/validation and 24 responses for evaluation. The noise-contamination process
generated 4800 responses from the 96 original responses, resulting in a dataset of 4896 re-
sponses for training and validation. The evaluation dataset was constructed using the same
method to maintain the consistency of the databank structure. The evaluation dataset had
1224 responses, consisting of 24 original responses and 1200 responses generated through
noise contamination.

Figure 13 shows the 4896 responses from the foundation damage levels (D0–D7) used
for training and validation. Each response consisted of 5000 data points with magnitudes
ranging from –0.6 to 0.6. The time-history responses from eight damage levels were labeled
accordingly before input into the 1-D CNN model.
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5.1.2. Training Procedures of Time-History Responses

Figure 14 shows the loss values of the CNN model trained by time-history responses.
Training loss decreased in the first five iterations and then converged until the end of
training. Validation losses sharply decreased in the initial five iterations and maintained
stable status until the end at 40th iteration. In general, the training and validation losses
performed well and converged after only a few epochs.
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5.1.3. Evaluation of 1-D CNN Model Using Time-History Responses

The 1-D CNN model was evaluated using 20% of the time-history responses from the
eight damage levels. As shown in Figure 15, confusion matrices were used to quantify
the classification performance. The elements on the diagonal positions represent correct
classifications (true positives, TP). The off-diagonal elements indicate incorrect classifica-
tions (false negatives, FN, and false positives, FP). True positive rate (TPR, so-called ‘recall’)
was calculated as TPR = TP/(TP + FN), while false negative rate (FNR) was calculated as
FNR = FN/(FN + TP). Precision was calculated as Precision = TP/(TP + FP), and accuracy
was calculated as Accuracy = TP/(TP + FP + FN). F1-score was calculated as F1 = (2 ×
Precision × Recall)/(Precision + Recall).
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Figure 15a plots the damage classification results of the CNN model using the time-
history databank for a trained noise level of 1%. The red tick (3) denotes the correct
level of inflicted damage. All data were classified correctly except in damage levels D1
(nine misclassifications) and D3 (one misclassifications), resulting in an overall accuracy
of 93.75%. Figure 15b plots the damage classification results of the CNN model for a
trained noise level of 5%. There were one to six misclassifications in each damage level, and
the accuracy of the classification was reduced to 87.50%; nevertheless, the CNN model’s
reliability was demonstrated, with the majority of classifications being correct.

Figure 15c shows the damage classification results of the CNN model using time-
history databank for an untrained noise level of 6%. Misclassifications appeared in all
damage levels except for the intact level (D0). Noticeably, more than half of the data
in damage levels D1 and D6 were misclassified. The overall accuracy of classification
decreased to 76.88%. For an untrained noise level of 10%, more than half of the data in
several damage levels were misclassified, as shown in Figure 15d. The accuracy of the
results dropped to 53.12%. Despite this, most data fell in the nearby neighbor classes of
the correct ones, suggesting that the CNN model can handle high noise levels with an
acceptable error. However, there is a need to develop a technique that can minimize errors
and improve the accuracy of the classification.
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Figure 16 summarizes the accuracy metrics of the CNN model using time-history
databank under the effect of noise. Accuracy, false positive rate (FPR), false negative rate
(FNR), and F1-score were chosen to be analyzed (see Figure 16a–d). A better damage
classification result was indicated by higher accuracy and F1-score value, and lower FPR
and FNR. The accuracy values of the CNN model corresponding to noise levels of 0–5%
ranged from 94–87%, followed by a constant decrease until they reached 53% at a noise level
of 10%. The FPR value ranged from 4–11% for trained noise levels (0–5%) and abruptly
increased to 20% at a noise level of 6%. The FPR continued to rise, reaching 41% at a
noise level of 10%. Similarly, the FNR value was below 12.5% for noise levels 0–5% and
then significantly increased for noise levels of 6–10%, with a maximum error of 47% at a
noise level of 10%. The F1-score remained around 0.92 for trained noise levels 1–5%, then
constantly decreased in untrained noise levels until reaching 0.79 at a noise level of 10%.
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Figure 16. Noise effect on the 1-D CNN model trained by time-history data: (a) accuracy; (b) false
positive rate; (c) false negative rate; (d) F1-score.

The CNN model trained by time-history response data demonstrated its feasibility in
damage detection and monitoring. It maintained good performance with high noise levels
(up to 5%). However, the model showed limitations when confronting untrained noise
levels (6–10%).

5.2. 1-D CNN Model Using SVD Responses
5.2.1. Databank of SVD Responses

Figure 17 shows examples of contaminated SVD responses compared to their original
ones. The training, validation, and evaluation datasets for the CNN model were generated
from 120 SVD responses obtained from eight damage levels (D0–D7), for which 80% of the
data (96 responses) were used for training and validation, and 20% of the data (24 responses)
were used for evaluation. Noise was introduced at 1–10% standard deviation levels to
SVD responses across ten generating iterations. After the noise contamination process,
the training and validation datasets consisted of 4896 data, and the evaluation dataset
consisted of 1224 data.
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Figure 17. Illustration of noise contamination to SVD responses: (a) 5% noise; (b) 10% noise.

Figure 18 visualizes 4896 data points in training and validation datasets for eight
foundation damage levels (D0–D7). Each response comprises 5000 data points ranging in
magnitude from 0 to 1. These SVD responses were labeled accordingly before input into
the 1-D CNN model.
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Figure 18. Visualization of SVD responses for training and evaluation of the CNN model.

5.2.2. Training Procedures of SVD Responses

Figure 19 shows loss values of the CNN model trained by SVD responses. Both the
training and validation losses consistently decreased over 40 iterations and converged to
nearly zero by the end of training. The CNN model designed with a compact architecture
demonstrated efficient convergence after only a few epochs.

5.2.3. Evaluation of the 1-D CNN Model Using SVD Responses

Figure 20a plots the damage classification results of the CNN model using the SVD
databank for the trained noise level of 1%. There were five misclassifications in damage
level D3 and two misclassifications in damage level D4. The accuracy of classification
reached 95.62%. As the noise level increased up to 5% (Figure 20b), the accuracy decreased
to 90%, with one to nine misclassifications in damage levels D1–D4.
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Figure 19. Loss values of the 1-D CNN model trained by SVD responses.
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Figure 20. Damage classification results of the 1-D CNN model using SVD databank: (a) trained 1%
noise; (b) trained 5% noise; (c) untrained 6% noise; (d) untrained 10% noise. The red tick (3) denotes
the correct level of inflicted damage.

Figure 20c shows the damage classification results of the CNN model using the SVD
databank for the untrained noise level of 6%. Misclassifications appeared at all damage
levels except for the intact level (D0). The overall accuracy of classification was 86.88%. As
the noise level increased to 10% (see Figure 20d), the accuracy decreased to 71.25%. There
were fewer than five misclassifications out of 20 data for each damage level, except for
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damage levels D3 and D4. The number of misclassifications was significantly smaller than
the model trained using time-history responses at the same noise level.

Figure 21 summarizes the accuracy metrics of the CNN model trained using SVD
responses under the effect of noise. Accuracy, false positive rate, false negative rate, and
F1-score were analyzed (see Figure 21a–d), and the results were compared to the accuracy
metrics of the CNN model trained using time-history responses.
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Figure 21. Noise effect on the 1-D CNN model trained using SVD responses compared to the model
trained using time-history responses (grey lines): (a) accuracy; (b) false positive rate; (c) false negative
rate; (d) F1-score.

The accuracy of the CNN model trained by SVD responses ranged from 91% to 96%
for noise levels 0–5%. It slightly outperformed the CNN model trained using time-history
responses, but the difference in accuracy between the two models was not significant. The
performance divergence became clearer at higher noise levels (6–10%). At a noise level
of 10%, the accuracy of the CNN model trained using SVD responses decreased to 71%
compared to 53% using the time-history responses, suggesting that the CNN model trained
with SVD responses exhibited improved robustness against untrained noise levels.

For trained noise levels (0–5%), FPR values ranged from 4% to 11% and increased
significantly to 20% at a noise level of 6% and continued to rise to 41% at a noise level of
10%. Similarly, FNR values remained below 12.5% for noise levels 0–5%, but increased
significantly to a maximum of 47% at noise level 10%.

In Figure 21d, the F1-score of the CNN model trained using SVD responses was
above 0.9 for trained noise levels 0–5%. The F1-score rapidly declined for the untrained
noise levels and dropped to 0.72 at a noise level of 10%. The F1-score indicated that the
performance is not as strong as the CNN model trained using time-history responses.

The p-value of the one-tailed t-test [24] was employed to evaluate the difference
in performance of two approaches. A low p-value (typically ≤ 0.05) indicates that the
differences in performance are statistically significant. In Figure 21d, the p-value of the
F1-score was greater than 0.05, indicating that the performance comparison based on the
F1-score was not statistically significant. As shown in Figure 21a–c, the p-values of accuracy,
FPR, and FNR were less than 0.05, indicating that using SVD data improved the CNN
performance significantly.
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In summary, the CNN model trained with SVD responses demonstrated its efficacy
in damage detection and monitoring. It maintained good performance even with noise
levels up to 5%. This matched the performance of the CNN model trained with time-
history responses. However, the model trained with SVD responses demonstrated better
performance when dealing with untrained noise levels (6–10%).

The computations were performed on a desktop computer (CPU—Intel Core i7-10700F
2.9 GHz). The training times for the CNN model using time-history and SVD data were
7 and 4 min, respectively. Both approaches demonstrate computational efficiency that is
suitable for real-time monitoring applications. With the relatively short training times,
models can be quickly updated or retrained when new data are available.

6. Evaluation of 1-D CNN Models for Untrained Damage Cases
6.1. Damage Classification by 1-D CNN Model Using Time-History Responses

Three untrained damage cases were established, as outlined in Table 3. To create
partially untrained data scenarios, certain damage levels were excluded from the training
and validation datasets. For Case 1, the damage levels D2, D4, and D6 were excluded
from among the eight damage levels (D0–D7), resulting in 3060 responses remaining in the
training and validation datasets. For Case 2, the training and validation datasets excluded
four damage levels (D1, D3, D5, and D7). Case 3 excluded data from damage levels D1, D2,
D5, and D6, leaving 2448 responses in the training and validation datasets.

Table 3. Untrained damage cases for evaluating the 1-D CNN model.

Case Scenario
Data Type

Training & Validation Datasets Evaluation Dataset

1 Excluding damage levels D2, D4, and D6 3060
12242 Excluding damage levels D1, D3, D5, and D7 2448

3 Excluding damage levels D1, D2, D5, and D6 2448

Figure 22 shows the loss values of the CNN models using partially untrained time-
history databanks. For all three cases, the training and validation losses decreased sharply
in a few initial iterations and converged by the end of the 40 iterations. The training and
validation losses demonstrated good performance of all three CNN models.
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Figure 22. Loss values of the 1-D CNN model using partially untrained time-history databanks:
(a) Case 1; (b) Case 2; (c) Case 3.

Figure 23 shows the damage classification results of the CNN model using partially
untrained time-history databanks. The red ticks indicate the correct level of the inflicted
damage. With untrained cases, the CNN model was limited in accessibility to certain
damage levels. When encountering an unseen damage level, the CNN model could not
directly classify data to untrained levels. Instead, it was expected to return the classification
results in the most similar trained damage levels (the green ticks).
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In practice, only a finite number of damage levels can be provided for model training. 
The results with partially untrained databank demonstrated the CNN model’s ability to 
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son systems. 
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time-history responses as shown in Table 3. Figure 24 shows the loss values of the CNN 
model trained using partially untrained SVD databanks. In both Case 1 and Case 2, the 
training and validation losses exhibited a sharp decrease in the first ten iterations, fol-
lowed by convergence to near-zero values by the 40th iteration. For Case 3, the training 
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by minor fluctuations until the end of training. 

Figure 23. Damage classification results of the 1-D CNN model using partially untrained time-history
databank: (a) Case 1; (b) Case 2; (c) Case 3. The red ticks indicate the correct level of the inflicted
damage. When the CNN model could not directly classify data to untrained levels, it returned the
classification results in the most similar trained damage levels (green ticks).

Figure 23a shows the damage classification results for the untrained Case 1. The data
in all trained damage levels wasaccurate, with no misclassifications. The untrained damage
levels were classified to nearby ones: D2 was classified to D3; D4 was classified to D3 and
D5; D6 was classified to D5 and D7. Figure 23b shows the damage classification results
for the untrained Case 2. There was no misclassification in the classification results for
trained levels (i.e., D0, D2, D4, and D6). The untrained damage levels were classified into
nearby ones: data from D1 and D3 were classified as D2; and data from D5 and D7 were
classified as D6. Figure 23c shows the untrained Case 3. The distance between trained
damage levels increased to two levels when D1, D2, D5, and D6 were neglected. The CNN
model maintained its ability to make correct classifications for trained damage levels. The
untrained damage levels D1 and D2 were classified as the nearest damage level D3, while
untrained damage levels D5 and D6 were classified as the nearest damage level D7.
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In practice, only a finite number of damage levels can be provided for model training.
The results with partially untrained databank demonstrated the CNN model’s ability to
classify unseen damage levels into nearly similar damage levels. This reduced the need
to provide many training cases, making the CNN model feasible for real applications in
caisson systems.

6.2. Damage Classification by 1-D CNN Models Using SVD Responses

For SVD responses, three partially untrained datasets were generated similarly to
time-history responses as shown in Table 3. Figure 24 shows the loss values of the CNN
model trained using partially untrained SVD databanks. In both Case 1 and Case 2, the
training and validation losses exhibited a sharp decrease in the first ten iterations, followed
by convergence to near-zero values by the 40th iteration. For Case 3, the training and
validation losses showed a slower initial decline over the first 20 iterations, followed by
minor fluctuations until the end of training.
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Figure 24. Loss values of the 1-D CNN model using partially untrained SVD databanks: (a) Case 1;
(b) Case 2; (c) Case 3.

Figure 25 shows the damage classification results of the CNN model with partially
untrained SVD databanks. For Case 1 (Figure 25a), all results for trained levels showed
no misclassification. The damage levels D2, D4, and D6 were classified to nearby levels
D1, D3, and D7, respectively. Case 2 (Figure 25b) demonstrated no misclassification in
the results for trained levels (i.e., D0, D2, D4, and D6). The untrained damage levels D1,
D3, and D7 were classified into nearby levels D2, D4, and D6, respectively. The untrained
damage level D5 was classified into D4 and D6.

In Case 3 (Figure 25c), results for trained levels D0 and D7 showed no misclassification,
but 50% of the data for D3 and D4 was misclassified. The untrained damage levels D1
and D2 were classified to the nearest damage level D3; untrained damage level D5 was
classified to the nearest damage level D4; and D6 was classified to the nearest damage
level D7.

6.3. Discussion on Damage Classification Results

In Figure 26, the damage classification results of CNN models (shown in Figures 23 and 25)
are analyzed for untrained Case 1 using the normal probability density function (PDF) [25].
In Figure 26a, the classification results are depicted in blue (based on time-history data)
and red (based on SVD data), while the combined results are shown in green. The shaded
region represents the range within one standard deviation (σ) from the mean value (µ)
and encompasses 68.8% of the observed values from the central tendency of the prediction.

For the untrained damage D2 in Case 1, the damage classification results (see
Figures 23a and 25a) were assessed as shown in the PDF chart in Figure 26a. In the figure,
the blue-shaded region indicates damage level D3 based on the time-history data. The
red-shaded region indicates damage level D1 based on the SVD data. Combining the two
results, the green-shaded region indicates that the damage level was classified to D2.
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Figure 25. Damage classification results of the 1-D CNN model using partially untrained SVD
databanks: (a) Case 1; (b) Case 2; (c) Case 3. The red ticks indicate the correct level of the inflicted
damage. When the CNN model could not directly classify data to untrained levels, it returned the
classification results in the most similar trained damage levels (green ticks).

For the untrained damage D4 in Case 1 (Figure 26b), the blue-shaded region indicated
damage levels D4–D5 based on the time-history data, where the mean value leans towards
D5. All classification results based on SVD data indicated damage level D3, hence their
normal PDF chart is not shown. The combined results in the green-shaded region indicate
that the damage level was classified to D4.

For the untrained damage level D6 in Case 1 (Figure 26c), both blue and red-shaded
regions indicate damage level D7. Consequently, the green-shaded region for the combined
results indicates that the damage level belonged to D7.

In Figure 27, the damage classification results (see Figures 23b and 25b) are analyzed
for Case 2 using the PDF chart. For the untrained damage level D1 in Case 2, all results
indicated the nearest trained damage level D3. Similar to untrained damage level D7 in
Case 2 (Figure 27d), all results indicated the nearest trained damage level D6. The normal
PDF chart is not shown for these cases.
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Figure 26. Probability assessment of damage classification results: Case 1: (a) untrained D2; (b) un-
trained D4; (c) untrained D6. The blue-shaded region shows results based on time-history data,
the red-shaded region shows results based on SVD data, and the green-shaded region shows com-
bined results.
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Figure 27. Probability assessment of damage classification results: Case 2: (a) untrained D1; (b) un-
trained D3; (c) untrained D5; (d) untrained D7. The blue-shaded region shows results based on
time-history data, the red-shaded region shows results based on SVD data, and the green-shaded
region shows combined results.
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For the untrained damage level D3 in Case 2 (Figure 27b), the results based on time-
history and SVD data indicated damage levels D2 and D4, respectively. Combining the two
results, the green-shaded region indicates that the damage level was classified to D3. For
the untrained damage level D5 in Case 2 (see Figure 27c), all three shaded regions indicate
that the damage level fell between D5 and D6, with the mean value leaning towards D6.

In Figure 28, the damage classification results (see Figures 23c and 25c) are analyzed
for Case 3. For the untrained damage levels D1 and D2 in Case 3 (see Figure 28a,b), almost
all results based on time-history and SVD data indicated the nearest trained damage level
D3. The green-shade region indicates that the damage belonged to D3.
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Figure 28. Probability assessment of damage classification results: Case 3: (a) untrained D1; (b) un-
trained D2; (c) untrained D5; (d) untrained D6. The blue-shaded region shows results based on
time-history data, the red-shaded region shows results based on SVD data, and the green-shaded
region shows combined results.

Figure 28c shows the probability assessment for the untrained damage level D5 in
Case 3. In the figure, the blue-shaded region indicates the damage level D7 based on
time-history data. The red-shaded region indicates the damage level D4 based on SVD
data. Combining the two results, the green-shaded region indicates that the damage level
belongs to D5 and D6, with the mean value leaning towards D5. For the untrained damage
level D6 in Case 3 (see Figure 28d), all three shaded regions indicate that the damage level
belonged to D7.

This visualization highlights the CNN models’ performance with partially untrained
data and demonstrates their capability to classify untrained damage levels into the most
similar trained levels. Additionally, combining results from two approaches using time-
history and SVD data could strengthen classification results and provide additional insights
for investigators.

Figure 29 compares the accuracy of CNN models trained using time-history and SVD
data under three untrained cases. All CNN models achieved high accuracy. For Case 1 and
Case 2, the CNN models trained using time-history responses achieved accuracies of 99.6%
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and 99.9%, respectively. Meanwhile, the CNN models trained using SVD responses had an
accuracy of 100% for both cases. For Case 3, the CNN model trained using time-history
data maintained high accuracy at 99.5%. However, the accuracy of the CNN model trained
using SVD data fell to 86.9%. Note that the misclassification mainly came from the trained
damage levels (i.e., D3 and D4). This comparison reveals that each approach adapted to
particular situations. Therefore, using both approaches and integrating their results could
provide better insights and enhance overall classification accuracy.
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7. Conclusions

This study introduced a novel approach that applies CNN deep learning to both time-
history and SVD responses for identifying damage in submerged structure-foundation
systems. Firstly, various foundation damage levels were simulated in a lab-scale caisson-
foundation system, and corresponding time-history responses were recorded using ac-
celerometers. Secondly, the 1-D CNN deep learning model was trained using time-history
responses. Thirdly, the 1-D CNN model was trained using the SVD responses derived
from time-history responses. Finally, the trained CNN models were implemented to evalu-
ate the damage within the system’s foundation under noise contamination and partially
untrained data.

Four main conclusions of the study are summarized as follows:

(1) The CNN deep learning model trained using time-history and SVD responses suc-
cessfully classified the foundation damage of the caisson system.

(2) The t-test evaluation on performance metrics indicated that the CNN model trained
using SVD responses outperformed the CNN model trained using time-history re-
sponses, particularly when dealing with untrained noise levels. The findings under-
score the effectiveness of using additional vibration features such as SVD data.

(3) The performance of the CNN model was maintained with partially untrained cases.
The CNN models trained using time-history and SVD responses successfully classified
the untrained damage levels as the most similar trained damage levels. This outcome
demonstrates the robustness and potential effectiveness of the CNN model under in
situ conditions.

(4) Integrating the time-history and SVD responses strengthened the damage classifica-
tion results and provided additional insights for investigators.

The proposed approach can be directly integrated into existing monitoring systems as
a post-processing and decision-making phase. The CNN deep learning technique requires
no additional hardware and only a one-time setup, with the ability to be automatically
updated as new data become available. By reducing reliance on manual decision-making,
this approach mitigates risks associated with human error and offers long-term benefits
by saving expert labor costs. By collaborating with industrial partners, vibration data
for training can be collected directly from in situ damaged caissons. The CNN model is
continuously updated with variations in the shape, location, and severity of foundation

138



Appl. Sci. 2024, 14, 7508

damage. The ongoing refinement and expansion of the dataset enhances the reliability of
the CNN model, improving its accuracy and robustness in real-world conditions.

Despite the effectiveness of the developed method for damage detection and moni-
toring, some aspects need to be resolved. Firstly, the feasibility of the method was proven
with experiments on a lab-scaled caisson system. It now needs to be verified with the in
situ caisson-foundation systems. Secondly, future investigations should consider different
types of noise and the influence of environmental factors. Several other data augmenta-
tion techniques such as shifting, amplitude scaling, and window slicing could be applied
besides Gaussian noise contamination. Thirdly, the verification of the method should be
extended to other machine learning models. Although integrating various vibration fea-
tures has proven effective for the CNN model, further evaluation is necessary to assess its
compatibility with alternative machine learning models. Finally, the investigation showed
the dependence of CNN models on the availability of vibration data (i.e., time-history and
SVD responses). For real caisson systems, simulating damage to submerged foundations
is challenging. Additional research on generating training data through indirect methods
such as numerical models and pseudo-damage simulation is needed.
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Abstract: Traditional vehicle fault diagnosis methods rely heavily on the expertise of mechanics
or diagnostic tools available at service centers, which can be costly, time-consuming, and may not
always provide accurate results. This study presents a comprehensive vehicle fault diagnosis frame-
work, which utilized Mel-Frequency Cepstral Coefficients (MFCCs), Discrete Wavelet Transform
(DWT)-based features, and the Extreme Learning Machine (ELM) classifier. To address the limita-
tions of previous works, the proposed framework leverages a large, diverse dataset encompassing
various vehicle models and real-world operating conditions. Significantly improved robustness
and generalizability of the fault diagnosis system were achieved. The results of the experiments
demonstrate the superiority of the MFCC-based features combined with the ELM classifier, achieving
the highest performance metrics in terms of accuracy, precision, recall, F1-score, macro F1-score, and
weighted F1-score, which are 92.17%, 92.24%, 92.22%, 92.10%, and 92.06%, respectively. Slightly
lower performance was obtained while employing the DWT-based features compared to employing
MFCC-based features. Additionally, frequency analysis was conducted to identify specific frequency
bins, which are the most indicative of different fault types in providing valuable guidance for future
diagnostic efforts. Overall, the proposed framework provides a reliable and practical solution for
accurate vehicle fault detection, paving the way for future advancements in automotive diagnostics.

Keywords: vehicle fault detection; extreme learning machines; mel-frequency cepstral coefficients;
wavelet transform

1. Introduction

Car faults are an unfortunate reality for many drivers, with unexpected vehicle repairs
being a common occurrence in the automotive industry. These faults can range from minor
issues (e.g., a blown fuse, a flat tire) to more serious problems that can impact vehicle
safety and performance. For instance, a faulty brake system or a malfunctioning engine
can pose significant risks to drivers and passengers and can result in costly repairs. In fact,
according to a report by the American Automobile Association, the average expenditure
on unexpected vehicle repairs in the United States was between USD 500 and USD 600 per
vehicle in 2017 [1]. However, this figure can vary widely based on several factors, such as
the age, and model of the vehicle, as well as driving habits and conditions.

Traditional car fault diagnosis methods have relied heavily on the expertise of me-
chanics or diagnostic tools, which may be available at service centers [2,3]. These methods
often involve manual inspections, computerized scanning, or diagnostic tests to identify
and address potential issues in vehicles, such as engine faults, front-end assembly faults,
airflow faults, spark plug, and electrical faults. However, these traditional methods are
often costly, time-consuming, and may not always provide accurate results [4]. Recently,
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there has been a surge of interest in machine learning-based fault diagnosis systems [5–7].
Leveraging advancements in artificial intelligence and data analytics, these systems aim to
automate fault detection processes, enhance accuracy, and enable proactive maintenance
strategies [8,9].

The general structure of machine learning-based fault diagnosis methods encompasses
several stages, i.e., data acquisition, preprocessing, feature extraction, and classification [10,11].
Data acquisition involves gathering relevant information from vehicles, such as sensor
readings and diagnostic codes, and recording relevant signals [12]. Preprocessing focuses
on cleaning and organizing the data to eliminate noise and inconsistencies [13]. Feature ex-
traction aims to identify key parameters or characteristics indicative of potential faults [14].
Finally, classification algorithms are applied to categorize the data into different fault types
or states [15].

Two primary types of signals, which are vibration and sound signals, are employed in
fault diagnosis [16]. Vibration signals capture mechanical movements and dynamics within
the vehicle and provide insights into structural integrity and component performance. On
the other hand, sound signals reflect acoustic emissions associated with engine operation
and component interactions and offer valuable clues about the health and functionality of
various vehicle parts.

Several studies have explored fault diagnosis using vibration signals and demonstrate
the versatility and effectiveness of this approach. For example, Jegadeeshwaran and Sug-
umaran [17] presented a method of vibration-based continuous monitoring system and
analysis using a machine learning approach. Their study focused on fault diagnosis in
hydraulic braking systems by acquiring vibration signals from a piezoelectric transducer
under both good and faulty brake conditions. They employed decision tree algorithms to
identify the most relevant features among different faulty conditions and they achieved a
classification accuracy of 97.45%. Similarly, Barbieri et al. [18] aimed to identify damages
and diagnose damaged components in automotive gearboxes by comparing vibration
signals of damaged and undamaged systems. They employed various signal analysis tech-
niques (e.g., wavelet transform and mathematic morphology) to verify damage presence
and used a signal processing technique combining pattern spectrum and selective filtering
for component failure identification. Jafarian et al. [19] explored vibration analysis for fault
detection in an internal combustion engine and focused on detecting faults related to pop-
pet valve clearance and incomplete combustion. They utilized four accelerometers on the
engine body, applied the Principal Component Analysis (PCA) technique for data analysis,
and achieved high efficiency in fault classification and detection. These studies collectively
highlight the wide applicability and effectiveness of vibration-based fault diagnosis in
diverse automotive systems. A summary of studies employing vibration signals is given in
Table 1.

Table 1. Summary of studies on vehicle fault detection using vibration signals.

Reference Dataset Methodology Key Findings

Jegadeeshwaran and
Sugumaran [17]

550 signals recorded from a
brake system in a controlled

environment,
8 brake fault types

Statistical feature extraction
and decision trees Overall accuracy of 97.5%

Barbieri et al. [18]

Multi-step recording of
signals from 13 gearboxes in a

lab environment, 3 gearbox
fault types

Wavelet transform-based
feature extraction and

comparison-based
classification

Significant differences
between signals recorded
from gearboxes with and

without damage
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Table 1. Cont.

Reference Dataset Methodology Key Findings

Jafarian et al. [19]
Signals recorded from a car

engine in a controlled
environment

Statistical features of PCA
components and

comparison-based
classification

High accuracy in fault
classification

Ahmed et al. [20]

600 signals recorded from a
car engine in a lab

environment, 7 engine
fault types

Time–frequency domain
feature extraction and

artificial neural networks
Overall accuracy of 97%

Taghizadeh-Alisaraei and
Mahdavian [21]

Signals recorded from a car
engine in a lab environment,
in cases involving faulty and

healthy injectors

Time–frequency analysis

Significant differences
between signals recorded
from the engine with and
without faulty injectors

Wang et al. [22]
411 signals recorded from

8 valve train states in a
controlled environment

Time–frequency analysis and
probabilistic neural networks Overall accuracy of 97.6%

Although high success rates have been reported in vibration signals, it is hard to
implement them in a real-word system. Therefore, a practical method is required to
distinguish the faults. Sound signals offer distinct advantages in fault diagnosis due to their
ease of recording using commonly available devices such as cell phones or microphones.
Therefore, this makes sound analysis a practical and cost-effective approach to diagnosing
vehicle faults. Studies conducted by various researchers further exemplify the potential
of sound-based fault diagnosis in automotive systems. For instance, Madain et al. [23]
identified distinct sounds associated with specific engine malfunctions and developed
an algorithm using sound techniques in diagnosis. They reported high error detection
rates through analysis of engine sound samples collected from a laboratory environment.
Similarly, Jian-Da Wu and Chiu-Hong Liu [24] developed a fault diagnosis system for
internal combustion engines based on the discrete wavelet transform technique applied to
sound emission signals and showcased its effectiveness in fault recognition under diverse
engine operating conditions. Another study that delved into the application of acoustic
signal processing methods for assessing internal combustion engine technical conditions
proposed new algorithms for automatic detection of valve clearance issues based on
acoustic signal components [25]. Additionally, Mofleh et al. [26] conducted a study aimed
at detecting faults in spark-ignition engines using acoustic signals and an Artificial Neural
Network (ANN) system. It highlighted the high potential of ANN-based fault detection in
internal combustion engines using acoustic signals, particularly in identifying simulated
spark plug and misfire faults. These studies collectively underscore the practicality and
efficacy of sound-based fault diagnosis methods in the automotive industry and offer
valuable insights for developing reliable diagnostic systems. A summary of such studies
employing sound signals is provided in Table 2.

Despite recent advancements, current studies in vehicle fault diagnosis often en-
counter significant drawbacks. These limitations include the reliance on data recorded
in controlled laboratory settings, which may not fully represent real-world vehicle con-
ditions. Furthermore, many studies are constrained to specific car models or fault types,
limiting the generalizability and applicability of their findings. There is a pressing need
for a comprehensive dataset that encompasses diverse vehicle models, real-world vehicle
conditions, and a wide range of fault scenarios to enhance the effectiveness and accuracy
of fault diagnosis systems.
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Table 2. Summary of studies on vehicle fault detection using sound signals.

Reference Dataset Methodology Key Findings

Madain et al. [23]
Few signals recorded from
two cars, 2 types of faults

(shell bearing and exhaust)

RPM-based dominant
frequency and

comparison-based
classification

100% accuracy for the first car
and 90% for the second

Wu and Liu [24]
300 signals recorded from

one engine,
5 engine-related faults

Wavelet transform-based
feature extraction and

artificial neural networks
Overall accuracy of 99%

Figlus et al. [25]
Signals recorded from

two engines, one fault type
(excessive valve clearance)

Wavelet transform-based
feature extraction and

comparison-based
classification

Efficiency of the
algorithm presented

Mofleh et al. [26]
60 signals recorded from

one engine,
2 spark-ignition faults

Frequency domain feature
extraction and artificial

neural networks
Overall accuracy of 73.3%

Nevea and Sybingco [27]
36 signals recorded from the

1996–2000 model Honda Civic,
3 engine-related faults

Fourier transform and power
spectrum density for feature

extraction and fuzzy logic
inference for classification

Overall accuracy of 56%

Wang et al. [5] 140 signal recordings from
Santana 2000 model vehicle

Hilbert–Huang transform for
feature extraction and support

vector machines for
classification

Overall accuracy of 90%

Siegel et al. [28]
992 2.5-long signals recorded

from 4 cars, one type of
engine fault

Fourier, Wavelet, and
MFCC-based feature

extraction and support
vector machines

Overall accuracy of 99%

Yılmaz et al. [29]
100 signals recorded from

various cars, 2
engine-related faults

Wavelet transform-based
feature extraction and

k-nearest neighborhood
Overall accuracy of 91.8%

Our study directly addresses these challenges by leveraging a diverse and extensive
dataset comprising real-life vehicle sounds. This dataset captures a wide array of vehicle
conditions various vehicle models, and an extensive range of fault scenarios encountered
in everyday driving. We employ advanced signal processing techniques, including Mel-
Frequency Cepstral Coefficients (MFCCs), Wavelet Transform, and Relief-F methods, for
robust feature extraction and feature selection, while using Extreme Learning Machines
(ELM) for the classification.

The summary of our study’s approach and key contributions is as follows:

• Instead of employing a laboratory-collected dataset, comprehensive data were col-
lected from real-life vehicle conditions and diverse vehicle models.

• In order to increase the success of the proposed approach, advanced signal processing
techniques, which are MFCC, Wavelet Transform, and Relief-F, were employed.

• A thorough frequency analysis was conducted in each fault type, and specific fre-
quency components, which are associated with different types of faults, were identified.

This paper is structured as follows. Section 2 gives details about utilized data collection
methods and focuses on how sound signals were acquired from vehicular systems under
various operating conditions. Section 3 elaborates on employed methodology encompass-
ing employed signal processing techniques and feature extraction methodologies that are
used in vehicle fault diagnosis based on sound signals. In Section 4, we present the obtained
experimental results, which includes performance evaluations of the employed diagnostic
system, comparisons with existing methods in the literature, and a detailed frequency
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analysis of each identified fault type. Furthermore, the implications of our findings and
insights gained from the experimental outcomes are discussed. Finally, Section 5 serves
as the conclusion of this study and summarizes key contributions made in this research,
and proposes directions for future research and development in the field of vehicle fault
diagnosis by sound signal analysis.

2. Dataset

Audio signal recordings were collected from vehicles, which were serviced at official
Ford or Toyota service centers and ensured a diverse range of cars from these reputable
brands. A cellphone served as the recording device, which captured sounds, while the cars
were stationary, and their engines were idling at ideal operating temperatures. As seen
in Figure 1, the cellphone was positioned 15 cm above the hood and centered, with the
hood closed to mimic real-world conditions. Engine sounds were recorded for 30 s each,
sampling at a frequency of 48 kHz to capture detailed acoustic information.
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Professional mechanics diagnosed the cars as either healthy or with one of the follow-
ing faults: spark plug issues, airflow irregularities, electrical malfunctions, engine/turbo
problems, or front-end problems. The distribution of each diagnostic class is outlined in
Table 3.

Table 3. Distribution of vehicle diagnostic classes.

Diagnostic Class Number of Cases

Healthy 50
Spark Plug Issues 40

Airflow Irregularities 52
Engine/Turbo Problems 44

Front-End Problems 48
Electrical Malfunctions 46

Spark Plug Issue: Typically related to ignition problems, which result in misfires,
rough idling, and decreased engine performance.

Airflow Irregularities: Pertaining to issues with the air intake system that affect engine
combustion and efficiency.

Electrical Malfunctions: Encompassing faults within the vehicle’s electrical system
that directly impact engine performance. This may include issues with sensors, wiring, or
other electrical components that affect engine operation and efficiency.

Engine/Turbo Problems: Referring to issues within the engine or turbocharger system
that impact power delivery and overall engine performance.
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Front-End Problems: Including issues with steering, suspension, or other components
affecting the vehicle’s front-end operation.

The collected dataset comprises audio signals, which were collected from a wide range
of gasoline-engine vehicles such as Ford Focus (2014–2021), Ford Kuga (2020–2021), Ford
Ecosport (2021), Ford Mondeo (2016), Toyota Corolla (2015), and Toyota Auris (2010). It was
aimed to ensure diversity in vehicle models to capture a comprehensive range of engine
sounds and fault types.

In addition, an example signal for each vehicle diagnostic class is provided in Figure 2
in order to demonstrate the characteristics of the recorded audio signals for each class.
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3. Methodology
3.1. Overview

This paper presents a framework comprising data acquisition, preprocessing, feature
extraction, fine-tuning, and classification, as illustrated in Figure 3. Data acquisition
details are explained in Section 2. In the preprocessing phase, each audio signal was
normalized and trimmed to 5 s to ensure consistency. Feature extraction was performed
using Mel-Frequency Cepstral Coefficients (MFCCs) and Discrete Wavelet Transform (DWT)
techniques, capturing important acoustic characteristics for fault diagnosis. The fine-tuning
process involves Grid Search optimization to find optimal hyperparameters for machine
learning models, while Extreme Learning Machines (ELM) are utilized for efficient and
accurate classification of vehicle fault diagnostic classes. Additionally, Fourier transform-
based feature extraction and Relief-f feature selection algorithm are employed for frequency
analysis of each fault type, aimed at uncovering crucial frequency components associated
with different fault types.
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3.2. Feature Extraction

Feature extraction is a critical step in audio signal processing for fault diagnosis in
vehicle systems. This section outlines two widely used techniques: MFCC and DWT.

MFCC is a prominent technique in audio signal processing. The process involves
several steps [30]:

• Windowing the audio signal into short segments using Equation (1).

W(n) = 0.54 − 0.46 cos
(

2πn
N − 1

)
N − 1 ≥ n ≥ 0 (1)

• Applying the Discrete Fourier Transform (DFT) to each frame to convert the time-
domain signal into the frequency domain. DFT can be defined for a frame X compris-
ing of N samples as in Equation (2).

Xn =
N−1

∑
k=0

Xke−
2π jkn

N , n = 0, 1, 2, 3 . . . , N − 1 (2)

• Mapping the frequency spectrum to the Mel-scale to approximate human auditory
perception using Equation (3).

fmel = 2595 log10

(
1 +

flineer
700

)
(3)

• Applying logarithmic compression to the Mel spectrum.
• Computing the Discrete Cosine Transform (DCT) to obtain the MFCC coefficients

as follows:

Ck =
N−1

∑
n=0

log(Sn)cos
[

kπ
(2n + 1)

2N

]
(4)
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where Ck represents the k-th MFCC coefficient, N represents the total number of mel-
frequency filters, Sn represents the energy of the n-th mel-frequency filter bank, and k
is the index of the MFCC coefficient, usually ranging from 0 to k − 1.

These MFCC coefficients capture essential spectral features of the audio signal, such
as pitch, timbre, and formants, which are crucial for fault diagnosis in vehicle systems. In
this study, the mean of each coefficient over each frame was calculated as a feature. Details
regarding MFCC parameters are provided in Section 4.

DWT is a powerful tool for analyzing signals in both time and frequency domains
simultaneously [31]. The process involves the following:

• Decomposing the audio signal into different frequency bands using wavelet functions,
such as Daubechies and Symlets wavelets. For an input signal x(t), the approximation
coefficients Aj and detail coefficients Dj at level j are computed using:

Aj+1(k) = ∑
n

h(n − 2k)Aj(n) (5)

Dj+1(k) = ∑
n

g(n − 2k)Aj(n) (6)

where h and g are the low-pass and high-pass filter coefficients, respectively, corre-
sponding to the wavelet function.

• Extracting features from each level of decomposition.

These features provide insights into the time–frequency characteristics of the signal,
aiding in fault detection and classification in vehicle systems. In this study, we calculated
the energy, standard deviation, and entropy of each coefficient to serve as features for the
classification task. Details regarding the decomposition levels and wavelets employed are
given in Section 4.

3.3. Classification and Fine-Tuning

For the classification of vehicle fault diagnostic classes, we employed ELM, a ma-
chine learning algorithm based on a single hidden layer feedforward neural network
architecture [32–35]. In the ELM algorithm, the input layer weights and thresholds are as-
signed randomly, while the output layer weights are calculated based on these assignments.
ELM training consists of two parts: (1) generating random hidden layer parameters from a
predefined range, and (2) calculating the generalized inverse output weight matrix [36].
ELM is popular due to its fast learning speed, generalization ability, and simplicity. As
illustrated in Figure 4, the ELM inputs map the features to the hidden layer, which are then
passed on to the output layer. The output from ELM learning can be used for various tasks
such as classification, regression, and clustering.

ELM transforms input vector x = [x1, x2, . . . , xn] into the hidden layer representation
using the weight matrix W and the bias vector b. Each neuron in the hidden layer uses an
activation function g(.). The connections between the hidden layer outputs and the output
layer are represented by the weights β. In ELM, the weights and bias values for the hidden
layer are randomly assigned and kept fixed. The weights β for the output layer are learned
using the least squares method. The relationship between the input and output of the ELM
is calculated as summarized in Equations (7)–(9).

H = g(W·X + b) (7)

Y = H·β (8)

β = H+·T (9)
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where H is the matrix of hidden layer outputs, Y denotes the output vector, H+ represents
the Moore–Penrose pseudoinverse of the matrix H, and T is the target vector.
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To optimize the performance of our ELM classifier, we utilized Grid Search, a hyper-
parameter optimization technique [37]. Grid Search systematically explores a predefined
set of hyperparameters, evaluating each combination using 5-fold cross-validation to deter-
mine the optimal parameters that yield the highest classification accuracy. This method
allows for a thorough examination of the model’s performance across various settings,
ensuring the selection of the most effective parameter set. The specific parameters used for
Grid Search, such as the number of hidden neurons and activation functions, are outlined
in Table 4. This exhaustive search process ensures that our model is finely tuned, enhancing
its robustness and reliability in delivering accurate fault diagnosis results.

Table 4. Grid search parameters for optimizing ELM classifier.

Hyperparameter Values

Number of hidden neurons 2, 3, 4, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100

Activation Function sigmoid, sine, triangular basis, radial basis, and hard
limit function

3.4. Performance Evaluation

The performance of the classification model is assessed using standard metrics, in-
cluding accuracy, precision, recall, macro, and weighted averaged F1-scores. These metrics
provide a comprehensive understanding of the model’s effectiveness in correctly diag-
nosing vehicle faults. Accuracy measures the overall correctness of the model, precision
indicates the proportion of true positive diagnoses out of all positive diagnoses, recall (or
sensitivity) assesses the model’s ability to identify true positives, and F1-score is the har-
monic mean of precision and recall, offering a balanced evaluation metric [38]. Each metric
is calculated as outlined in Equations (10)–(14). Five-fold cross-validation is employed in
the performance analysis to provide a reliable estimate of the model’s effectiveness across
different subsets of the data. This method helps in ensuring that the evaluation is not
biased by any particular partitioning of the data.

Accuracy =
Number o f correct predictions
Total number o f predictions

(10)
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Precision (PR) =
1
N

N

∑
i=1

TPi
TPi + FPi

(11)

where N is the number of classes, TPi is the number of true positives for class i and FPi is
the number of false positives for class i.

Recall (RE) =
1
N

N

∑
i=1

TPi
TPi + FNi

(12)

where FNi is the number of false negatives for class i.

Macro F1-Score =
1
N

N

∑
i=1

2·PRi·REi
PRi + REi

(13)

Weighted F1-Score =
N

∑
i=1

wi
2·PRi·REi
PRi + REi

(14)

where PRi and REi are the precision and recall for class i, respectively. Additionally,
confusion matrices, which display the model’s classification results, were constructed
to provide a detailed view of how well the classifier distinguishes between fault classes.
This visual representation is crucial for understanding the classifier’s strengths and areas
needing improvement.

3.5. Relief-F Algorithm and Frequency Analysis

In this section, we detail the process of feature selection using the Relief-F algorithm
and the subsequent frequency analysis conducted to identify the most relevant frequency
components for each fault type.

The Relief-F algorithm is a powerful feature selection method that helps identify
and rank the most relevant features in a dataset, making it particularly useful for high-
dimensional data [39]. Relief-F works by iteratively sampling instances from the dataset
and comparing the sampled instance with its nearest neighbors of the same and different
classes. For each feature, it increases the relevance score if the feature value of the instance
is similar to that of its nearest neighbor from the same class and decreases the score if the
feature value is similar to that of its nearest neighbor from a different class. This process
effectively highlights features that are consistently good at distinguishing between classes
while ignoring irrelevant or redundant features.

To understand the frequency characteristics of the audio signals and identify the most
diagnostically relevant frequencies for each fault type, we conducted a detailed frequency
analysis using the following steps:

1. Frequency Spectrum Calculation: The frequency spectrum of each audio signal was
calculated using the Fast Fourier Transform (FFT). FFT transforms the time-domain
signal into its frequency-domain representation, providing insight into the signal’s
frequency components.

2. Spectrum Binning: The resulting frequency spectrum was divided into bins, each
100 Hz wide. This binning process organizes the frequency data into manageable seg-
ments. As there are very limited frequency components beyond 15 kHz, a frequency
range of 0–15 kHz was considered.

3. Power Calculation: For each 100 Hz bin, the total power was calculated. This step
involves summing the squared magnitudes of the frequency components within each
bin, giving a measure of the signal’s energy within that frequency range.

4. Relevance Determination: For each fault type, the Relief-F feature selection algorithm
was applied to the binned frequency spectrum. By evaluating the relevance scores of
the bins, Relief-F identified the 5 most relevant bins that contributed most significantly
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to distinguishing between faulty and healthy conditions. These relevant bins highlight
specific frequency components that are key indicators of each fault type.

4. Results and Discussion

In this section, the vehicle fault diagnosis framework was presented and discussed.
The performance metrics and analysis are provided for models utilizing MFCC-based
features and DWT-based features. Additionally, a detailed frequency analysis to identify
the most relevant frequency components for each fault type, was given. Obtained results
are also compared with existing studies to highlight the effectiveness and improvements
achieved by the employed methodology.

4.1. Results for MFCC-Based Features

The performance of the vehicle fault diagnosis model using MFCC-based features
is evaluated and summarized in Table 5. Various configurations of MFCC parameters,
including the number of coefficients and window length, were tested to identify the optimal
settings. The table also presents the best hyperparameters found through Grid Search for
the ELM classifier, such as the activation function and number of neurons, alongside the
resulting precision, recall, F1-score, and accuracy metrics. A 50% window overlap was
used in all experiments to enhance feature extraction.

Table 5. Performance results for MFCC-Based features. Values given for window length are in
seconds. 50% window overlap is used for all experiments. The bold indicates the highest score.

MFCC Parameters Best ELM
Hyperparameters Performance Results

Number of
Coefs.

Window
Length

Activation
Function

Number of
Neurons Precision Recall Macro

F1-Score
Weighted
F1-Score Accuracy

5 0.02 tribas 100 86.19 85.60 85.70 85.72 85.71
10 0.02 sig 100 90.09 89.24 89.34 89.31 89.29
20 0.02 sin 100 89.95 90.02 89.91 89.88 90.00
30 0.02 sin 100 89.81 89.73 89.51 89.45 89.64
5 0.03 radbas 80 85.74 84.59 84.73 84.73 84.64
10 0.03 sig 90 89.71 89.83 89.69 89.65 89.64
20 0.03 sin 100 92.24 92.22 92.10 92.06 92.14
30 0.03 sin 90 90.43 89.77 89.65 89.59 89.64
5 0.04 tribas 100 88.37 87.67 87.87 87.98 87.86
10 0.04 sig 90 91.45 91.12 91.11 91.11 91.07
20 0.04 sig 100 91.14 90.79 90.69 90.61 90.71
30 0.04 sig 80 89.67 89.37 89.16 89.00 89.29

The results, which are given in Table 5, indicate that using 20 MFCC coefficients with a
window length of 0.03 s and a sine activation function yielded the highest performance with
a precision of 92.24%, recall of 92.22%, F1-score of 92.10%, and accuracy of 92.14%. This
demonstrates that the choice of MFCC parameters and ELM hyperparameters significantly
impacts the classification performance.

From the table, it can be observed that the number of MFCC coefficients and window
length significantly affect the performance of the proposed method up to a certain point.
Specifically, increasing the number of MFCC coefficients from 5 to 20 generally leads to
an improvement in precision, recall, F1-score, and accuracy. However, further increasing
the number of coefficients to 30 does not seem to result in any significant improvement.
Similarly, increasing the window length from 0.02 to 0.03 or 0.04 generally leads to an
improvement in performance, with the best results achieved at a window length of 0.03
for most MFCC parameter configurations. However, the choice of activation function
and the number of neurons in the ELM classifier also seem to play a role in achieving the
best performance.
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The confusion matrix for the model with 20 MFCC coefficients and a window length of
0.02 s, shown in Figure 5, provides additional insights into the model’s performance. Each
cell in the matrix represents the number of instances for which the true class is represented
by the row and the predicted class is represented by the column.
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Overall, the confusion matrix confirms that the model performs well across most
fault types, with particularly high accuracy for airflow, front-end, and spark plug faults.
Specifically, the model achieves the highest performance in detecting airflow faults with
an accuracy of 98.1%, correctly identifying 51 out of 52 cases. However, the model shows
the lowest performance in identifying healthy cases, with an accuracy of 80.0%, correctly
predicting 40 out of 50 instances. This suggests that healthy cases are more prone to being
misclassified as faults, indicating an area for further refinement.

The results of the experiments using MFCC-based features demonstrate the effective-
ness of the proposed method for fault diagnosis in vehicles. The method can accurately
diagnose different types of faults using the extracted MFCC features and the ELM classifier.
The results also provide insights into the optimal combination of MFCC parameters and
ELM hyperparameters, which can be used to improve the performance of the method
in future studies. These findings demonstrate the model’s effectiveness in vehicle fault
diagnosis and highlight areas for further optimization.

4.2. Results for DWT-Based Features

The performance of the vehicle fault diagnosis model using DWT-based features
is evaluated and summarized in Table 6. Various configurations of DWT parameters,
including the decomposition level and widely used wavelets such as db4, db8, db20, sym3,
and sym8, were tested to identify the optimal settings [24,40]. The table also presents
the best hyperparameters found through Grid Search for the ELM classifier, such as the
activation function and number of neurons, alongside the resulting precision, recall, F1-
score, and accuracy metrics.
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Table 6. Performance results for DWT-based features. The bold indicates the highest score.

DWT Parameters Best ELM
Hyperparameters Performance Results

Level Wavelet Activation
Function

Number of
Neurons Precision Recall Macro

F1-Score
Weighted
F1-Score Accuracy

2 db4 sig 80 82.11 81.09 81.30 81.69 81.43
3 db4 sin 90 82.84 80.63 81.11 81.43 81.07
4 db4 sin 100 78.46 77.44 77.24 77.25 77.50
5 db4 sin 100 81.72 80.95 80.79 80.98 81.07
2 db8 sig 90 82.22 80.99 81.19 81.47 81.43
3 db8 sin 70 83.51 82.42 82.64 82.77 82.86
4 db8 sin 100 77.57 77.16 76.94 77.09 77.14
5 db8 sin 100 79.62 78.05 78.29 78.25 78.21
2 db20 sin 100 84.88 83.27 83.54 83.52 83.57
3 db20 sin 80 83.00 82.37 82.45 82.46 82.50
4 db20 sin 100 77.68 75.93 76.00 76.04 76.07
5 db20 sin 100 80.57 79.93 79.97 80.21 80.00
2 sym3 sig 80 81.13 80.58 80.48 80.63 80.71
3 sym3 sin 90 84.36 83.32 83.46 83.52 83.57
4 sym3 sin 100 74.76 74.39 74.19 74.05 74.29
5 sym3 sig 50 78.48 77.46 77.43 75.55 77.50
2 sym8 sin 80 83.19 82.33 82.42 82.45 82.50
3 sym8 sin 70 84.17 83.60 83.72 83.86 83.93
4 sym8 sin 100 76.20 75.77 75.37 75.52 75.71
5 sym8 sin 100 77.10 75.98 76.07 76.26 76.07

From the table, it is clear that different combinations of DWT parameters and ELM hy-
perparameters result in varying levels of performance. The highest accuracy was achieved
using a decomposition level of 3 and a sym8 wavelet with a sine activation function, yielding
a precision of 84.17%, recall of 83.60%, F1-score of 83.72%, and accuracy of 83.93%. This
suggests that the choice of wavelet and decomposition level significantly influences the
classification performance.

The confusion matrix in Figure 6 provides further insights into the classification
performance for the best configuration (decomposition level of 3 and sym8 wavelet). The
model achieves high accuracy for electrical faults (93.5%) and front-end faults (91.7%),
indicating strong performance in these categories. However, the model shows lower
accuracy for spark plug faults (65.0%), suggesting that distinguishing spark plug faults
from other fault types remains a challenge. Additionally, healthy cases are identified
with an accuracy of 74.0%, indicating some misclassification into fault categories, which
highlights an area for further improvement.

Overall, the results of the experiments using DWT-based features demonstrate the
effectiveness of the proposed method for fault diagnosis in vehicles. While the method
shows strong performance in certain fault categories, it achieved lower performance overall
compared to MFCC-based features. These findings provide insights into the optimal
combination of DWT parameters and ELM hyperparameters and highlight areas for further
optimization to enhance the performance of the method in future studies.
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4.3. Results for Frequency Analysis

In this section, the results of the frequency analysis, which was conducted to identify
the most relevant frequency components for each fault type, are presented. Different
types of engine faults often exhibit distinct frequency components. These components
emerge due to the engine’s physical structure and operational principles, with each fault
generating unique sounds or vibrations at specific frequency ranges. Therefore, examining
these frequency components is crucial for accurate fault diagnosis using sound analysis.
Table 7 comprehensively outlines the relationship between the fault categories and their
associated frequency groups.

Table 7. The most relevant frequencies for each fault type.

Fault Type
Most Relevant Frequency Bins (kHz)

Bin 1 Bin 2 Bin 3 Bin 4 Bin 5

Spark Plug Issues 5.2–5.3 9.4–9.5 12.4–12.5 13.2–13.3 14.1–14.2
Airflow Irregularities 3.0–3.1 9.1–9.2 9.2–9.3 10.0–10.1 12.2–12.3

Engine/Turbo Problems 0.7–0.8 4.8–4.9 9.5–9.6 12.1–12.2 12.5–12.6
Front-End Problems 6.6–6.7 8.5–8.6 8.9–9.0 11.6–11.7 13.5–13.6

Electrical Malfunctions 2.1–2.2 11.2–11.3 11.4–11.5 12.1–12.2 14.3–14.4

For spark plug issues, the most relevant frequency bin is 5.2 to 5.3 kHz, indicating that
monitoring this high-frequency range is crucial for accurate detection. Airflow irregularities
are most prominently indicated by the 3.0 to 3.1 kHz bin, highlighting the need for precise
analysis in this low-frequency range. Engine/turbo problems are best identified by the
0.7 to 0.8 kHz bin, suggesting these faults manifest through specific low-frequency sounds.
Front-end problems are primarily associated with the 6.6 to 6.7 kHz bin, essential for
identifying issues related to components such as the suspension or chassis. Electrical
malfunctions affecting the engine show the highest relevance at the 2.1 to 2.2 kHz bin,
possibly due to distinctive noise patterns. These findings underscore the importance of
focusing on these key frequencies for accurate fault detection.
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Overall, the frequency analysis confirms that different fault types are associated with
specific and most relevant frequency bins. The identification of these relevant frequency
bins provides valuable guidance for future diagnostic efforts, suggesting that including
these specific frequencies in the analysis can lead to better and more reliable fault detection
outcomes. This insight into the frequency components of various faults enhances our
understanding and ability to diagnose vehicle issues more accurately and efficiently.

4.4. Comparison with Other Studies

Numerous publications have addressed the diagnosis of vehicle malfunctions through
engine sound analysis, employing a diverse array of methods. For instance, Navea and
Sybingco [27] used Fourier transform and power spectral density to detect engine starting
issues, drive belt problems, and valve-related faults, achieving a detection accuracy of
56% using recordings from the 1996–2000 Honda Civic model. Siegel et al. [28] focused
on misfire faults in four vehicles, using Fourier transform, wavelet transform, and MFCC
with SVM, resulting in a 99% accuracy rate. Wang et al. [5] recorded audio from a Santana
2000’s engine cylinder head, using Hilbert–Huang transform and SVMs, achieving up
to 90% accuracy. Kemalkar and Bairagi [41] studied lubrication, chain, crank, and valve
faults in Honda Unicorn and Bajaj Pulsar motorcycles, employing MFCC and achieving
accuracy rates between 50% and 75%. The reported results in the literature are summarized
in Table 8.

Table 8. Reported results in the literature.

Reference Dataset Methodology Key Findings

Wang et al. [5] 140 signal recordings from
Santana 2000 model vehicle

Hilbert–Huang transform for
feature extraction and support

vector machines for
classification

Overall accuracy of 90%

Nevea and Sybingco [27]
36 signals recorded from the

1996–2000 model Honda Civic,
3 engine-related faults

Fourier transform and power
spectrum density for feature

extraction and fuzzy logic
inference for classification

Overall accuracy of 56%

Siegel et al. [28]
992 2.5-long signals recorded

from 4 cars, one type of
engine fault

Fourier, wavelet transform,
and MFCC-based feature

extraction and support
vector machines

Overall accuracy of 99%

Kemalkar and Bairagi [41]

Sound samples of motorcycles
under idling conditions are

recorded using a voice
recorder with 44.1-kHz

sampling frequency and 16-bit
quantization.

Liner predictive coding,
hidden Markov model,

artificial neural network

Accuracy rates between 50%
and 75

A significant drawback of previous works is their reliance on data from controlled
laboratory settings, often using the same brand of vehicles or a limited number of fault
types. These controlled conditions do not adequately capture the variability and complexity
of real-world scenarios, leading to models that may not perform well outside the specific
conditions under which they were trained. Furthermore, the homogeneity of vehicle models
in these studies limits the generalizability of their findings, as the diagnostic methods may
not be applicable to different vehicle makes and models.

This dataset includes various types of faults and different environmental settings,
thereby enhancing the robustness and generalizability of our fault diagnosis framework.
By utilizing data from multiple vehicle brands and real-world conditions, the employed
approach is designed to reflect the true complexity and variability of vehicle faults.
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5. Conclusions

The proposed study presents a comprehensive vehicle fault diagnosis framework
utilizing MFCC-based features and DWT-based features. The results demonstrate the
efficacy of MFCC features combined with an ELM classifier, achieving the highest perfor-
mance metrics. DWT-based features, while effective, showed slightly lower performance
compared to MFCC features. Frequency analysis identified specific frequency bins most
indicative of different fault types, providing valuable guidance for future diagnostic efforts.
Additionally, by addressing the limitations of previous studies through the introduction of
a large, diverse dataset encompassing various vehicle models and real-world operating
conditions, we have significantly improved the robustness and generalizability of our fault
diagnosis system. This framework provides a reliable and practical solution for accurate
vehicle fault detection, paving the way for future advancements in automotive diagnostics.
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Abstract: The accuracy of detecting superficial bridge defects using the deep neural network approach
decreases significantly under light variation and weak texture conditions. To address these issues, an
enhanced intelligent detection method based on the YOLOv8 deep neural network is proposed in
this study. Firstly, multi-branch coordinate attention (MBCA) is proposed to improve the accuracy of
coordinate positioning by introducing a global perception module in coordinate attention mechanism.
Furthermore, a deformable convolution based on MBCA is developed to improve the adaptability
for complex feature shapes. Lastly, the deformable convolutional network attention YOLO (DCNA-
YOLO) detection algorithm is formed by replacing the deep C2F structure in the YOLOv8 architecture
with a deformable convolution. A supervised dataset consisting of 4794 bridge surface damage images
is employed to verify the proposed method, and the results show that it achieves improvements of
2.0% and 3.4% in mAP and R. Meanwhile, the model complexity decreases by 1.2G, increasing the
detection speed by 3.5/f·s−1.

Keywords: concrete surface defects; deep learning; YOLO; attention mechanism; deformable convolution

1. Introduction

Bridges, which are crucial to national economic development, play an important
role in the transport infrastructure. The number of constructed and operational bridges
has exceeded 1.2 million in China, of which more than 70% are concrete bridges. As the
service life increases, concrete bridges are inevitably subjected to various superficial defects
such as cracking, concrete spalling, and rebar corrosion due to the combined effects of
material aging, external loads, and the working environment [1]. These defects can affect
the load-bearing capacity, service life, and overall safety of bridge structures [2]. Due to the
large number and scale of concrete bridges, traditional manual inspections are inefficient to
meet the demands of routine inspections. In addition, structures such as high piers and
long spans require expensive auxiliary equipment for close-up inspection, which further
increases inspection costs. With the improvements in resolution and accuracy of cameras,
there is growing interest in using computer vision pattern recognition, including machine
learning and deep learning, [3] to automatically detect bridge defects [4–7].

Machine learning methods mainly rely on template matching for defect detection,
so such methods rely heavily on manual experience for sample feature extraction. In
addition, single-layer features constructed by these methods have limited recognition
ability when dealing with complex features and noise. Therefore, deep learning methods
that can adaptively learn and extract image features have become mainstream, which are
categorized into one-stage and two-stage methods based on the overall training conditions.
One-stage detection methods extract features directly in the network to predict object
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classification and location, including the You Only Look Once (YOLO) [8] and Single
Shot Multibox Detector (SSD) algorithms [9]. Two-stage methods typically use a Region
Proposal Network (RPN) to extract potential target area which typically exhibit higher
detection accuracy and stability as well as more computing resources, such as Regions
with Convolutional Neural Network (RCNN) [10], Fast RCNN [11], Faster RCNN [12], and
Mask RCNN [13].

The YOLO algorithm has been continuously improved since it was proposed by Joseph
Redmon et al. in 2016, whose detection accuracy and computing speed have been further
improved [8,14–21]. The main feature of the YOLO algorithm is that it transforms object
detection into a regression problem, dividing the image into s × s grids and directly pre-
dicting the class probabilities and position information within the corresponding bounding
box of each grid. YOLOv8 [21] adopts an anchor-free approach, combines the Task-Aligned
assigner positive sample assignment strategy [22] and decoupled head, and introduces a
C2F structure with a richer gradient flow and distribution focal loss, further improving
detection accuracy and speed. However, the YOLO algorithm was primarily designed for
general image classification. To improve its effectiveness in identifying concrete cracks,
Zhang XB et al. [23] proposed a YOLOv5 model enhanced with a fusion of spatial pyra-
mid pooling cross-stage partial connections (SPPCSPCs) and a transposed convolution to
detect cracks on bridge surfaces from different angles, demonstrating superior detection
performance compared to other models on the ZJU SYG dataset (a crack data set for object
detection based on deep learning provided by Zhejiang University). Yu Z et al. [24] intro-
duced a concrete structure crack detection method based on an improved YOLOv5, using a
threshold segmentation method based on Otsu’s maximum inter-class variance to remove
background noise in images, and optimizing the initial anchor box sizes with the K-means
method. The improved average accuracy in complex environments increased by 6.87%. Jin
Q et al. [25] proposed an improved YOLOv5 algorithm based on transformer heads and
the self-attention mechanism, which effectively improved the detection and classification
capabilities of concrete cracks, with a mean accuracy (mAP) of up to 99.5%. WU Y et al. [26]
presented a lightweight LCANet backbone and a novel efficient prototype mask branch
for crack detection based on the YOLOv8 instance segmentation model, reducing model
complexity. Specifically, under conditions of 129 frames per second (FPS), the results of
the case study showed the accuracy reached 94.5%, while the computational complexity
decreased by 51%, compared to the original model.

The improvements made to the YOLO algorithm focus on optimizing the model
structure, improving the loss functions and the feature extractors, and optimizing the
data pre- and post-processing methods. These improvements have enhanced detection
accuracy, speed, and robustness. However, in engineering applications, the underside
of concrete bridge structures, where significant forces are applied, is prone to cracking,
but these areas often have inadequate lighting conditions. In addition, structural corners
and edges are susceptible to defects such as honeycombing and exposed rebar due to
casting problems, but these areas have complex backgrounds and weak surface textures. In
such cases, the YOLO algorithm can suffer from missed detections and false positives. To
address these challenges, the deformable convolutional network attention YOLO (DCNA-
YOLO) algorithm based on YOLOv8s is proposed in this study. A multi-branch coordinate
attention mechanism (MBCA) is introduced to simultaneously incorporate spatial position
information and global information. The attention weights for direction perception, position
sensitivity, and global awareness are optimized to comprehensively improve the accuracy
of coordinate localization. This effectively highlights features of target defect areas with
uneven reflections and weak textures, thereby improving the representation and detection
effects of the target detection algorithm. Thus, the balance between detection performance,
speed, and model parameter size is achieved using MBCA. Furthermore, a deformable
convolution method, named MBCADC, based on MBCA is presented. By embedding
MBCA attention, this method improves the adaptability of the deformable convolution
to significant illumination changes and complex feature shapes in regions with uneven
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reflections. As a result, it better accommodates different image structures and texture
features. The complexity of the model is reduced, while recall (R) and average precision
are improved, and missed detections and false positives are reduced.

The paper is organized as follows. Firstly, an overview of the YOLO algorithm is given
for the problem under study, and the improvements of existing methods are compared.
Subsequently, an improved framework that incorporates deformable convolution (DC)
modules with the multi-branch coordinate attention (MBCA) mechanism is introduced.
Finally, this new framework is validated with a dataset containing 4794 damage images
and compared with other algorithms. Flowchart of study as shown in Figure 1.
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2. Basic Theory of the YOLOv8 Network

YOLOv8s was introduced in 2023 as the latest version of YOLO, which supports
image classification, object detection, and instance segmentation tasks. The model structure
consists of three main components: backbone, neck, and head, as shown in Figure 2. The
received training data are pre-processed using mosaic data augmentation before entering
the backbone network for feature extraction. Then, the backbone outputs three feature
maps of different scales to the neck structure for bidirectional feature fusion. Finally, the
head uses convolutional layers to scale the fused feature maps, producing outputs at three
different scales.

The backbone network consists of convolution batch normalization sigmoid linear
unit (CBS), cross-stage partial fusion (C2F), and spatial pyramid pooling fast (SPPF) mod-
ules [27], where the CBS module is primarily used to extract features from the input image,
the C2F module retains lightweight properties while capturing richer gradient flow infor-
mation, and the SPPF module employs spatial pyramid pooling by serially computing
three MaxPool2d operations with 5 × 5 convolutional kernels. The optimizations made
in this paper focus on this component; further information on YOLOv8s can be found in
reference [21].
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3. DCNA-YOLO Method Construction
3.1. Multi-Branch Coordinate Attention

Critical information about objects may be obscured by noise, image backgrounds,
and uneven lighting due to complex, blurry, and poorly lit environments. Therefore, en-
hancing the positional information of features is a significant challenge. To address this
issue, attention mechanisms [28] have been introduced in recent years. Among these meth-
ods, the coordinate attention mechanism (CAM) [29] effectively enhances the extraction
of structural information about objects by using two one-dimensional average pooling
operations to aggregate the feature maps vertically and horizontally into two separate
orientation-aware feature maps, which are subsequently encoded into an attention tensor
containing orientation–position information, and ultimately decomposed into a pair of
attention maps that are both orientation- and position-aware.

Although the CAM is effective in capturing long-range dependencies in local spatial
information, it overlooks the global dependencies necessary for understanding spatial
features. To address this limitation, a global context perception module is introduced
into the CAM, aiming to help the network acquire global information by considering the
overall context comprehensively. This results in more precise and comprehensive image
representations for processing tasks. Additionally, by optimizing attention weights for
direction awareness, position sensitivity, and global perception, the network can selectively
focus on key areas of the target, significantly improving coordinate localization accuracy.

As shown in Figure 3, the multi-branch coordinate attention (MBCA) principle is
described, which consists of two steps:

Step 1: In the information embedding phase, each channel of the input feature map X
is encoded using two spatial range pooling kernels: (H, 1) and (1, W) to embed coordinate
information. The kernels operate along the horizontal (width W) and vertical (height H)
coordinates, respectively.
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zh
c (h) =

1
W ∑

0≤i<W
xc(h, i)

zw
c (w) =

1
H ∑

0≤j<h
xc(j, w)

(1)

where h and w represent the height and width of the current input feature map, respectively.
c denotes the current input feature map’s channel. zh

c (h) denotes the output of channel c at
height h, and zw

c (w) denotes the output of channel c at width w.
The global information is additionally embedded in the CAM by encoding each

channel of the input feature map X through global average pooling (GAP).

Zc =
1

h× w

h

∑
i=1

w

∑
j=1

xc(i, j) (2)

where zc represents the global information output of channel c.
Step 2: At the coordinated and global attention generation phase, the aggregated

feature maps Zh and Zw generated from Equation (1) are firstly concatenated, and then
a 3 × 1 convolution operation is applied for information fusion, compressing feature
channels. After batch normalization and non-linear activation functions, the intermediate
feature map is split along the spatial dimension into two independent tensors f h and f w.
Subsequently, two 1 × 1 convolutions Fh and Fw are used to transform f h and f w into
tensors with the same number of channels as the input X. Furthermore, to fully utilize
the expressive representation of the aggregated feature maps and accurately highlight the
regions of interest, a feature map optimization module is proposed. This involves passing
the intermediate feature map f through a 1 × 1 convolutional transformation function
F1 to adjust the number of channels. After applying a non-linear activation function
and a sigmoid function, a feature map optimization weight matrix g1 is obtained. The
optimization weight matrix is then split along the spatial dimension into independent
weights gh

1 and gw
1 for the vertical and horizontal directions, respectively. Finally, the

two independent weights gh
1 and gw

1 are applied to the corresponding tensors, and after
passing through a sigmoid function, the outputs gh and gw are expanded and used as
attention weights. 




f = δ
(

F3×1

([
Zh, Zw

]))

g1 = σ(δ(F1( f )))
gh

1 = Fh(g1)
gw

1 = Fw(g1)

gh = σ
(

Fh

(
f h
)
× gh

1

)

gw = σ
(

Fw( f w)× gw
1
)

(3)

where [·,·] represents the concatenation operation along the spatial dimension. F3×1(·)
denotes the 3 × 1 convolution transformation function, δ(·) represents the non-linear
activation function hard_swish. f represents the intermediate feature map with horizontal
and vertical spatial information, where f εRC/r×(W+H). r is the reduction ratio, taken
as 16. Fh and Fw represent 1 × 1 convolution operations in the vertical and horizontal
directions, respectively. f h and f w represent intermediate feature maps in the vertical
and horizontal directions, where f hεRC/r×1×H and f wεRC/r×1×W . σ denotes the sigmoid
activation function. g1 represents the feature map optimization weight matrix. gh

1 and gw
1

represent optimization weights in the vertical and horizontal directions, respectively. gh

and gw represent attention weights in the vertical and horizontal directions, respectively.
For global attention generation, the global information feature map generated from

Equation (2) is multiplied element-wise by the average-weighted optimization weight
matrix g1. Subsequently, the result passes through a sigmoid function to obtain the global
attention weights gG. {

fc = δ(F1(Zc))
gG = σ(mean(g1)· fc)

(4)
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where F1(·) represents the 1 × 1 convolution transformation function. mean(·) represents
the mean function. fc represents the intermediate feature map with global information,
where fcεRC×1×1. g1 represents the feature map optimization weight matrix. gG represents
the global attention weights.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 6 of 18 
 

ቊ 𝑓 = 𝛿൫𝐹ଵ(𝑍)൯𝑔ீ = 𝜎(𝑚𝑒𝑎𝑛(𝑔ଵ) ∙  𝑓) (4)

where 𝐹ଵ(∙) represents the 1 × 1 convolution transformation function. 𝑚𝑒𝑎𝑛(∙) represents 
the mean function. 𝑓 represents the intermediate feature map with global information, 
where 𝑓𝜖𝑅×ଵ×ଵ . 𝑔ଵ  represents the feature map optimization weight matrix. 𝑔ீ  repre-
sents the global attention weights. 

The attention weights g are calculated by multiplying the vertical and horizontal di-
rection attention weights by the global attention weights. 𝑔 = 𝑔(𝑖) × 𝑔௪(𝑗) × 𝑔ீ (𝑖, 𝑗)  (5)

where 𝑔 represents the attention weight at channel c. 𝑔 represents the vertical direc-
tion attention weight at channel c. 𝑔௪ represents the horizontal direction attention weight 
at channel c. 𝑔ீ  represents the global attention weight at channel c. 

It computes the average of all elements within each feature map of the input, result-
ing in a feature map with a size of 1 × 1. When direct multiplication or addition operations 
are needed for the original input, reverse average pooling (UNAP) can be used to expand 
the feature map to the desired size. The specific pooling operations are illustrated in Fig-
ure 4. 

 
Figure 3. The principle of the multi-branch coordinate attention (MBCA) algorithm. 

H

W

H

W

C XAP

YAP

GAP

(C,W,H) (C,1,H)

(C,W,1)

(C,1,1)

(C,1,H+W) (C/r,1,H+W)

Cov1d
k:(3,1)

(C/r,1,H)

(C/r,W,1)

Split

(C,1,H)

(C,W,1)

(C,1,H+W)

Cov1d
k=1

(C,1,H+W)

Sigmoid

(C,1,H)

(C,W,1)

Split

sigmoid

sigmoid

UNAP

UNAP

Avg

×
UNAP

(C,1,1)

×

×

×

(C,1,H)

(C,W,1) (C,W,H)

(C,W,H)

(C,W,H)

(C,1,1)

(C,W,H)

(C,1,1)

Cov1d
k=1

Input

(C,W,H)

Output

×

(C,1,H)

Cov1d
k=1

(C,W,1)

Cov1d
k=1

 Coordinate Attention Mechanism

Attention Generation

Sigmoid

(C,1,1)

BN

h_swish

Optimization Module

GAP optimisation part 
proposed in this paper

Figure 3. The principle of the multi-branch coordinate attention (MBCA) algorithm.

The attention weights g are calculated by multiplying the vertical and horizontal
direction attention weights by the global attention weights.

gc = gh
c (i)× gw

c (j)× gG
c (i, j) (5)

where gc represents the attention weight at channel c. gh
c represents the vertical direction

attention weight at channel c. gw
c represents the horizontal direction attention weight at

channel c. gG
c represents the global attention weight at channel c.

It computes the average of all elements within each feature map of the input, resulting
in a feature map with a size of 1 × 1. When direct multiplication or addition operations are
needed for the original input, reverse average pooling (UNAP) can be used to expand the
feature map to the desired size. The specific pooling operations are illustrated in Figure 4.

The multi-branch coordinate attention (MBCA) mechanism is established by the two
steps above, introducing global-level information and optimizing the perception of specific
target positions at the local level.
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3.2. Deformable Convolution Based on MBCA

The features of the image become more complex and irregular due to weak texture or
lighting changes on the target surface with the detection of weak texture areas and uneven
reflection areas, making the fixed receptive field kernel insufficient to adapt complex
features. To address this issue, deformable convolution (DCNv2) [30] is applied to learn the
offset and modulation parameters for each pixel to better adjust to the sampling position of
the convolution kernel and to adapt to different image structures and texture features.

For each position p0 in the output feature map y, the deformable convolution structure
is defined as follows:

y(P0) = ∑pn∈R w(p0)·x(p0 + pn + ∆pn)·∆mn (6)

where the grid R defines the size and expansion rate of the receptive field. For a receptive
field of size 3 × 3 and a dilation rate of 1, R = {(−1,−1), (1, 0) · · · (0, 1), (1, 1)}. p0 corre-
sponds to mapping each point of the output feature map y to the center of the convolution
kernel, and then mapping it to the coordinates in the input feature map x; pn represents the
relative coordinates in R for p0. ω(·) denotes the sampling point weight, and x (·) denotes
the mapping of the coordinates in the input feature map x to feature vectors. The offset
{∆pn|n = 1, 2 · · · ·N}, N = |R|, and the modulation parameter ∆mn lies within [0, 1].

The offsets ∆pn and modulation parameters ∆mn of a deformable convolution are
obtained by applying a separate standard convolution layer to the same input feature map,
which results in insufficient spatial support range. As a consequence, the effective receptive
field of foreground nodes and the prominent region constrained by errors may include
background areas irrelevant to detection. The proposed multi-branch coordinate attention
(MBCA) is embedded during the process of generating the offsets ∆pn and modulation
parameters ∆mn, which is named MBCADC, to further enhance the ability of deformable
convolution DCNv2 to manipulate spatial support regions, as illustrated in Figure 5.
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Figure 5. Structure of original deformable convolution (DCNv2) and improved deformable convolu-
tion (MBCADC).

The MBCADC module consists of a Conv2d, MBCA attention, a DCN, BatchNorm2d,
and a SiLU activation function, where o1 and o2 represent learned offsets in the x- and
y-coordinate directions, respectively, and mask denotes the sampling weights at different
positions. The structure of the deformable convolution MBCADC is defined as follows:

y(P0) = ∑pn∈R w(p0)·x(p0 + pn + ∆pn·g)·∆mn·g (7)

where g represents the attention weights generated by multi-branch coordinate attention
(MBCA).

Figure 6 illustrates the process of MBCADC deformable convolution. From Figure 6,
it can be observed that the sampling matrix of deformable convolution is non-fixed and
deformable, with the offsets determined by algorithms that can better learn the geometric
properties of the objects to be detected.
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3.3. MBCADC2F Module

The MBCAC2F module is an improvement over the YOLOv8s backbone network’s
C2F module, integrating the multi-branch coordinate attention deformable convolution
(MBCADC) module. This module comprises two CBS modules and n Bottleneck modules,
where the Bottleneck module contains a residual structure with two MBCADC modules, as
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illustrated in Figure 7. By learning the parameters of deformable convolution, the model
can dynamically adjust the sampling positions of the convolution kernel based on the
actual shape and positional information of the target, allowing for more precise capture of
target features.
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3.4. Deformable Convolutional Network Attention YOLO Object Detection Network

The deformable convolutional network attention YOLO (DCNA-YOLO) algorithm
improves upon the YOLOv8s baseline model by modifying the backbone network. The
neck and head structures of the DCNA-YOLO model remain the same as those of the
baseline model. The model’s overall structure is illustrated in Figure 8. The DNCA-YOLO
backbone network comprises five CBS modules, two C2F modules, two MBCADC2F
modules, and one SPPF module. The structures of modules such as CBS, C2F, and SPPF
in the MBCADC2F module are identical to those of the corresponding modules in the
YOLOv8s baseline model. Each Bottleneck unit in the MBCADC2F module contains a
residual connection structure with two MBCADC modules.
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4. Example Verification
4.1. Experimental Dataset

We created a dataset of apparent damage to concrete bridges, consisting of 4794 images.
Domain experts annotated the dataset, which we used to evaluate the effectiveness of the
proposed method in identifying apparent damage to concrete bridges. According to the
regulations of China’s road and bridge maintenance standards and inspection standards,
apparent concrete damage was classified into seven types: cracks, spalling, honeycombing,
exposed reinforcement, water seepage, and voids. The constructed dataset included at least
one type of damage in each image. Augmenting the dataset enhances its diversity and
richness, making the model’s detection more effective. The original dataset was randomly
divided into training, validation, and testing sets with a ratio of 8:1:1. Data augmentation
techniques, such as flipping, rotation, and HSV (hue, saturation, and value) enhancement,
were then applied to the divided dataset. The dataset sizes were as follows: 14,528 images in
the training set, 1816 images in the validation set, and 1816 images in the testing set. Table 1
shows the statistical results of the number of annotated boxes for each type of damage.

Table 1. Number of Labels for Each Damage in the Dataset.

Labels (Damage) Number Labels (Damage) Number

liefeng (crack) 17,636 shenshui (seepage) 9244
boluo (spalling) 11,875 fengwo (comb surface) 8330

kongdong (cavity) 7082 lujin (steel exposed) 6584
mamian (pockmark) 8274

The images of the bridge’s apparent damage collected in the experimental dataset were
affected by the lighting environment, resulting in variations in image quality. Statistical
analysis was conducted on the grayscale histograms of the images, which allowed for the
categorization of the images into four lighting conditions:

(1) Well-lit images, which exhibit high clarity and rich details. The histogram of the
grayscale image displays a unimodal distribution, with grayscale values primarily ranging
from 150 to 250. The average grayscale value of the image is greater than 170.

(2) Partial shadow or occlusion images: The grayscale distribution is complex, with
areas of varying brightness. The histogram of the grayscale image displays a bimodal
distribution, with grayscale values primarily ranging from 50 to 100 and from 150 to 250.
The image’s average grayscale value is approximately 150.

(3) Low-lighting images: The overall low brightness can result in blurry or confusing
areas in the apparent damaged regions. The grayscale histogram of the image displays a
unimodal distribution, with grayscale values primarily distributed between 50 and 100.
The image’s average grayscale value is approximately 100.

(4) Dark-lighting images: The overall low brightness can make it challenging to
distinguish details of the apparent damage. The image’s grayscale histogram displays a
unimodal distribution, with grayscale values ranging from 0 to 50. The average grayscale
value of the image is below 30.

Figure 9 shows the grayscale histograms for the four distinct illumination conditions.
Table 2 presents a statistical study of the number of well-lit images, partial shadow or
occlusion images, low-lighting images, and dark-lighting images. Figure 10 illustrates
some examples of picture data.
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Table 2. Summary of Image Quantities Under Different Illumination Conditions.

Data Set Well-Lit
Images

Partial Shadow
or Occlusion

Images

Low-
Lighting
Images

Dark-
Lighting
Images

Total

Train 6697 1798 2608 3425 14,528
Val 923 239 298 356 1816
Test 876 225 326 389 1816
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4.2. Environmental Design and Evaluation Metrics

The computer hardware setup included an Intel Core i5-13600K CPU, 48 GB of RAM,
and an NVIDIA GeForce RTX4070 with a 12,282 Mib GPU. The experimental environment
consisted of Windows 10, CUDA 11.8, PyTorch 2.0.1, and Python 3.8.18. The training
parameter settings had an initial learning rate of 0.01, with a learning rate strategy that
employed cosine annealing. The number of training epochs was set to 300, with an initial
input size of the model at 640 × 640 and a batch size of 16. The optimization algorithm
used was SGD [31], with the loss function being cross-entropy. To prevent overfitting,
early stopping criteria were employed. The network training was halted if the validation
accuracy did not improve after 50 epochs.

To evaluate the model’s detection performance for seven types of visual damage, we
used precision (P), recall (R), mean average precision (mAP), model parameter quanti-
ties (parameters), floating-point operations (FLOPs), and frames per second (FPS) as the
evaluation metrics.

4.3. Experimental Results and Analysis
4.3.1. Ablation Experiment

To further validate the effectiveness of the proposed improvements in terms of the
number and placement of different enhancement modules, ablation experiments and
quantitative and qualitative analyses were performed using the generated dataset in the
same experimental environment to evaluate the benefits of key components in the model.
Among them, “MBCA” refers to the addition of MBCA attention after the last layer of
the backbone network SPPF; “DCNv2” refers to the replacement of the Bottleneck in the
C2F module of the eighth layer of the backbone network with deformable convolution
DCNv2; “Proposed method” refers to replacing the C2F module of the sixth and the eighth
layer of the backbone network with the MBCADC2F module proposed in this paper. The
experimental results are presented in Table 3.

Table 3. Results of ablation experiments.

Model Parameters/M FLOPs/G FPS/f·s−1 P/% R/% mAP0.5/% mAP0.5:0.95/%

YOLOv8s 11.1 28.7 70.9 89.1 82.0 87.4 68.9
+MBCA 11.2 28.7 68.9 90.2 82.7 87.9 68.9
+DCNv2 11.2 27.5 73.8 90.0 82.5 88.1 70.2

proposed method 11.3 27.5 74.4 91.3 85.4 89.4 73.3

A comparison of the data in the table shows that the MBCA attention mechanism
proposed in this study did not significantly increase the number of network parameters
or model complexity, but improved the model’s mAP0.5 value by 0.5%. The deformable
convolution DCNv2 was able to reduce the model complexity and improve the model
mAP0.5 without significantly increasing the model parameter count. The method proposed
in this paper achieved the best experimental results, with only a 0.2 M increase in model
parameters compared to the baseline model. Furthermore, floating-point operations were
reduced by 1.2G, precision increased by 1.8%, recall improved by 3.4%, and mAP0.5 and
mAP0.5:0.95 increased by 2.0% and 4.4%, respectively. In addition, the model’s speed of
detection increased by 3.5/f·s−1.

Figure 11 shows a comparison between the test results and the heatmap analysis of the
baseline model and the proposed method for well-lit images. The heatmaps were generated
using the Grad-CAM method. They show that both models achieved good detection results
for all seven types of surface defects in images with good lighting conditions. The proposed
method detected all defects, while the baseline model missed a small piece of exposed rebar
(fourth-row image). Furthermore, the accuracy of the detection results obtained by the
proposed method was consistently higher than that of the baseline model. A comparison
of the heatmaps shows that the proposed method provided a better representation, with
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the heatmaps better conforming to the shape of the target. These results indicate that the
proposed method was effective in improving the accuracy of detecting images with good
lighting conditions.
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Figure 11. Detection results and heatmaps of seven types of damage in well-lit images.

Figure 12 shows a comparison between the test results and the heatmap analysis of the
baseline model and the proposed method for images with partial shadows or occlusions. It
can be seen that the proposed method achieved better detection results than the baseline
model for images with partial shadows or occlusions. In images with partial shadows or
occlusions, there were areas of varying brightness due to significant changes in illumination
and uneven reflections on the target surface. The baseline model with fixed geometric
structures of convolutional kernels was not effective in capturing the spatial information
of the target in these regions. The proposed method used deformable convolution based
on multi-branch coordinate attention, which allowed the model to dynamically adjust the
sampling positions of the convolutional kernels according to the actual shape and position
information of the target. A comparison of the heatmaps shows that the proposed method
provided a better representation, with the heatmaps focusing more on the edge features of
the target, which effectively reduced the rates of missed detections and false positives in
images with partial shadows or occlusions.

Figure 13 shows the comparison between the test results and the heatmap analysis of
the baseline model and the proposed method. It can be seen that both the baseline model
and the proposed method could detect the class and location of defects in the image under
low-light conditions. However, the detection accuracy of the proposed method was higher
compared to the baseline model. The texture of the target region in the image may have
been relatively weak, resulting in the lower detection accuracy of the model. A comparison
of the heatmaps shows that the proposed method could effectively highlight the features of
the defective region, thus improving the detection accuracy of the model.

172



Appl. Sci. 2024, 14, 5497Appl. Sci. 2024, 14, x FOR PEER REVIEW 15 of 18 
 

Images YOLOv8s MBCA Proposed method MBCA 

     

     

     
Figure 12. Detection results and heatmaps of damage in partially shaded or occluded images. 

Figure 13 shows the comparison between the test results and the heatmap analysis of 
the baseline model and the proposed method. It can be seen that both the baseline model 
and the proposed method could detect the class and location of defects in the image under 
low-light conditions. However, the detection accuracy of the proposed method was higher 
compared to the baseline model. The texture of the target region in the image may have 
been relatively weak, resulting in the lower detection accuracy of the model. A compari-
son of the heatmaps shows that the proposed method could effectively highlight the fea-
tures of the defective region, thus improving the detection accuracy of the model. 

Images YOLOv8s MBCA Proposed method MBCA 

     

     

     
Figure 13. Detection results and thermograms of damage in low-light images. 

Figure 14 illustrates a comparison between the test results and the heatmap analysis 
of the baseline model and the proposed method for images with dark lighting conditions. 
From Figure 14, it can be seen that both the baseline model and the proposed method 
performed poorly on images with dark lighting conditions. In images with dark lighting 
conditions, the overall brightness was low, making it difficult to detect surface defect de-
tails. The models failed to learn useful information from the images, resulting in incorrect 
target category detection or no defect detection. 

  

Figure 12. Detection results and heatmaps of damage in partially shaded or occluded images.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 15 of 18 
 

Images YOLOv8s MBCA Proposed method MBCA 

     

     

     
Figure 12. Detection results and heatmaps of damage in partially shaded or occluded images. 

Figure 13 shows the comparison between the test results and the heatmap analysis of 
the baseline model and the proposed method. It can be seen that both the baseline model 
and the proposed method could detect the class and location of defects in the image under 
low-light conditions. However, the detection accuracy of the proposed method was higher 
compared to the baseline model. The texture of the target region in the image may have 
been relatively weak, resulting in the lower detection accuracy of the model. A compari-
son of the heatmaps shows that the proposed method could effectively highlight the fea-
tures of the defective region, thus improving the detection accuracy of the model. 

Images YOLOv8s MBCA Proposed method MBCA 

     

     

     
Figure 13. Detection results and thermograms of damage in low-light images. 

Figure 14 illustrates a comparison between the test results and the heatmap analysis 
of the baseline model and the proposed method for images with dark lighting conditions. 
From Figure 14, it can be seen that both the baseline model and the proposed method 
performed poorly on images with dark lighting conditions. In images with dark lighting 
conditions, the overall brightness was low, making it difficult to detect surface defect de-
tails. The models failed to learn useful information from the images, resulting in incorrect 
target category detection or no defect detection. 
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Figure 14 illustrates a comparison between the test results and the heatmap analysis
of the baseline model and the proposed method for images with dark lighting conditions.
From Figure 14, it can be seen that both the baseline model and the proposed method
performed poorly on images with dark lighting conditions. In images with dark lighting
conditions, the overall brightness was low, making it difficult to detect surface defect details.
The models failed to learn useful information from the images, resulting in incorrect target
category detection or no defect detection.
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In summary, the proposed method effectively improved the accuracy of detecting
images with good lighting conditions and those with poor lighting conditions, effectively
mitigating the problems of missed detections and false positives.

4.3.2. Comparison Experiment of Different Detection Algorithms

Considering the real-time performance and accuracy requirements for concrete bridge
surface defect detection tasks, the two-stage object detection models of the RCNN series and
the outdated SSD models were not included in the comparative experiments. Instead, more
widely used and advanced models from the YOLO series were selected as the benchmark
models. The results are presented in Table 4.

Table 4. Comparative experimental results of different network models.

Model Parameters/M FLOPs/G FPS/f·s−1 P/% R/% mAP0.5/% mAP0.5:0.95/%

YOLOv3-tiny 12.1 19.1 76.9 81.7 73.4 78.6 53.4
YOLOv5s 7.0 16.8 78.3 91.2 84.9 88.7 67.4
YOLOv6s 16.3 44.2 69.4 90.2 81.5 87.7 69.6
YOLOv8s 11.1 28.7 70.9 89.1 82.0 87.4 68.9

Proposed method 11.3 27.5 74.4 91.3 85.4 89.4 73.3

Comparing the data in Table 4, it is evident that the model proposed in this paper ex-
hibited more effective performance in terms of detection accuracy compared to the current
state-of-the-art (SOTA) models. The mAP0.5 value was improved by 11.1%, 0.7%, and 1.7%
compared to the classical YOLOv3-tiny, YOLOv5s, and YOLOv6s models, respectively.
Compared to the baseline model YOLOv8s, the proposed model achieved a 2.0% and 4.4%
improvement in average precision (mAP0.5 and mAP0.5:0.95, respectively), a 3.4% increase
in recall rate, an increase of 3.5/f·s−1 in detection speed, and a reduction in model com-
plexity by 1.2G. These results demonstrate that the proposed model had better detection
performance in concrete bridge surface defect detection.

5. Conclusions

The current work adopts a novel object detection algorithm termed DCNA-YOLO
based on multi-channel attention mechanisms and deformable convolutions. It is proposed
to address problems such as missed detections, false positives in regions with insufficient
illumination, complex backgrounds, and weak surface textures on concrete bridge surfaces.
The major findings of this work are concluded below:

(1) Multi-branch coordinate attention (MBCA) is adopted on the basis of CA with a
supplementation of the global information branch. MBCA is applied to obtain spatial coor-
dinate information and global information simultaneously, which improves the accuracy of
coordinate information in the attention mechanism.

(2) The MBCA mechanism is embedded with a deformable convolution, then used
to enhance the adaptability of the convolution kernel. This novel coordinated model
contributes the coordinate localization ability for better adaptation to different image
structures and texture features.

(3) The proposed framework (Figure 8) is validated through a self-constructed concrete
surface defect dataset. Our results effectively highlight the accuracy of detecting regions
with significant light variations, uneven reflections, and weak textures without increasing
the complexity. All of these mitigate the problems of missed detections and false alarms.

(4) The next plan is to prune and distill the knowledge of the DCNA-YOLO model
to develop a lighter model that can be deployed on resource-constrained concrete bridge
health inspection drones for efficient real-time inspection. This will improve the safety,
efficiency, and accuracy of the inspection and provide a scientific basis for the maintenance
and management of concrete bridges.
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Abstract: Time series data have characteristics such as high dimensionality, excessive noise, data
imbalance, etc. In the data preprocessing process, feature selection plays an important role in the
quantitative analysis of multidimensional time series data. Aiming at the problem of feature selection
of multidimensional time series data, a feature selection method for time series based on mutual
information (MI) is proposed. One of the difficulties of traditional MI methods is in searching for a
suitable target variable. To address this issue, the main innovation of this paper is the hybridization
of principal component analysis (PCA) and kernel regression (KR) methods based on MI. Firstly,
based on historical operational data, quantifiable system operability is constructed using PCA and
KR. The next step is to use the constructed system operability as the target variable for MI analysis
to extract the most useful features for the system data analysis. In order to verify the effectiveness
of the method, an experiment is conducted on the CMAPSS engine dataset, and the effectiveness of
condition recognition is tested based on the extracted features. The results indicate that the proposed
method can effectively achieve feature extraction of high-dimensional monitoring data.

Keywords: time series; feature extraction; mutual information; system operability; condition
identification

1. Introduction

Time series data mining has extensive and important applications in the field of ma-
chine learning, such as data classification, clustering, or prediction, which can help explore
the potential patterns in time series data that are useful for subsequent research. Currently,
most researchers mainly focus on the processing of univariate time series. However, with
the development of data collection technology, multidimensional time series data have be-
come increasingly common and contain a large amount of potentially valuable information.
Feature selection is an important step in data processing of high-dimensional data (such
as regression and classification). Its main function is to reduce computational complexity,
avoid the “curse of dimensionality” problem [1], reduce training time, and improve the
performance of the predictor [2]. Therefore, how to effectively extract system features is one
of the key issues in the field of time series analysis [3], which has been widely used in the fol-
lowing fields: image recognition [4,5], natural language processing [6,7], data mining [8,9],
fault diagnosis [10–12], remaining useful life prediction [13,14], microbes classification [15],
fatigue detection [16], image classification [17], intrusion detection [18–21], etc.

Feature selection methods can be roughly divided into three categories [22] including
filter, wrapper, and embedded, according to their relationship with learning methods [23,24].
On the other hand, according to the utilized training data, feature selection methods can
be divided into supervised [25], unsupervised, and semi-supervised models [26]. In this
paper, we focus on the feature selection of time series. At present, the feature selection of
time series, in most cases, is mainly conducted by observing the variable trends, amplitude,
noise, and other characteristics [27]. This kind of method has problems such as strong
subjectivity, inability to conduct quantitative analysis, and inaccuracy.
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To solve these problems, we propose a time series feature extraction method based
on mutual information. Mutual information is a measure of the interdependence between
two variables, which indicates how much information is shared between two variables [28].
The greater the mutual information between variables, the stronger the correlation. Firstly,
we determine the correlation between features and then select features with a strong corre-
lation with the target variable. This is an unsupervised feature selection method and has
become an important feature selection method [29]. In combination with other methods,
MI-based feature selection has derived many other methods, such as MI with a correlation
coefficient [30], variance impact factor [31], fisher score [32], binary butterfly optimiza-
tion algorithm [33], conditional mutual information [34], deep neural network [35,36], etc.
Among them, the authors of [37] proposed a deep generative network model for feature
extraction of multivariate time series and introduced mutual information into the loss
function to improve the expression capability and accuracy of the model. In the study [31],
the authors proposed a variable selection method based on mutual information and the
variance inflation factor (MI-VIF), which eliminated the variables based on MI and VIF,
respectively, and showed good prediction performance. A feature selection algorithm
based on MI and particle swarm optimization, which optimized the traditional particle
update mechanism and swarm initialization strategy, was proposed in the work [23]. The
study [38] proposed a novel fuzzy multi-information-based multi-label feature selection
approach that was suitable for multi-label learning. The authors of [39] proposed a condi-
tional multiple information-based feature selection algorithm for maximum reliability and
minimum redundancy.

The above research mainly focuses on the improvement of the feature extraction
algorithm based on mutual information. However, for the feature extraction analysis of
time series, the main problem of the mutual information-based method is in finding the
most appropriate target variables, that is, the key to the mutual information-based method
is to find the target variables. In most cases, there is no intuitive or directly available target
information. PCA is a multivariate statistical analysis technique for data compression and
feature extraction, which can effectively remove linear correlations between data [40]. The
purpose of PCA is to discard a small portion of information using linear transformation
and replace the original variable with a few new comprehensive variables while ensuring
minimal data loss. Therefore, it is required that the principal components fully reflect
the information of the original variables, while PCA can eliminate the linear correlation
between variables and suppress noise by fusing multiple variables [41,42]. Based on the
above problems and the technical advantages of the PCA method, this paper uses the PCA
method to reduce dimensions and fuse sensor data to obtain the target variables that can
represent the system state.

Given the problem, this paper proposes a target information extraction method based
on PCA dimension reduction, and on this basis, mutual information is used to distinguish
and extract the suitable sensor signal. To validate the effectiveness of the method, analysis
and validation are conducted on NASA’s publicly available CMAPSS aircraft engine dataset,
and the effectiveness of operating condition recognition based on the extracted features is
tested. The specific content is as follows:

(1) We propose a time series feature selection method based on PCA dimension reduction
and MI. MI is used to quantify the correlation between two variables, but for time
series, it is difficult to obtain effective target variables. Therefore, PCA dimension
reduction is used to extract the target variables from the time series, and feature
selection of the time series is conducted based on this.

(2) We design a specific technical process for feature selection based on the above theoret-
ical methods. In this process, we focus on the construction of target variables and the
method of sensor selection and conduct experimental verification.

(3) The effectiveness of the proposed method is verified based on a publicly available
aviation engine operation dataset. The experimental results are compared with

178



Appl. Sci. 2024, 14, 1960

other methods to verify the feasibility of the proposed method, and experiments are
conducted on condition recognition based on the selected features.

The rest of this paper is organized as follows: In Section 2, we describe the basic
principle of the algorithm in detail and propose a feature extraction method flow based on
MI. In Section 3, we analyze the experimental dataset and conduct comparative experiments
using the algorithms, and in Section 4, we analyze the obtained result and compare the
proposed idea with existing approaches. Section 5 is the conclusion of this paper, which
includes recommendations for future work.

2. Methodology
2.1. Problem Description

This paper focuses on the feature selection of multivariate time series. Each sample
in the dataset is a set of time series, and the length of each time series may vary. A set of
univariate time series can generally be defined as follows:

T = t1, t2, · · · , tn (1)

where n represents the length of the time series. Correspondingly, an m-dimensional
multi-variable time series can be written as:

T1 = t11, t12, · · · , t1n1
T2 = t21, t22, · · · , t2n2

· · ·
Tm = tm1, tm2, · · · , tmnm

(2)

In the feature selection of time series, the dimension of the monitoring data is the
number of features in the time series. When processing time series data, if the number of
features in the dataset is too large, it can seriously affect the effectiveness of model training,
leading to the so-called “curse of dimension” [43]. Effective feature selection can lay a good
foundation for subsequent anomaly detection, fault diagnosis, condition identification,
remaining useful life prediction, etc.

2.2. Feature Selection Based on Mutual Information

Mutual information is a measure of the interdependence between two variables,
which mainly represents the correlation between them. Assuming that the joint probability
distribution of two random variables X and Y is p(x, y), and their marginal probability
distribution is p(x) and p(y), respectively, then the mutual information MI(X, Y) is the
Kullback–Leibler divergence of the joint probability distribution p(x, y) and the marginal
probability distribution p(x) and p(y), which is defined as follows [28]:

MI(X, Y) = −
∫

x

∫

y
fx,y(x, y) log

fx,y(x, y)
fx(x) fy(y)

dxdy (3)

From the above definition, when variables are completely independent or mutually
independent, their mutual information is the smallest, and the result is 0. The greater the
mutual information between variables, the stronger the correlation. In data processing,
features with large mutual information with the target variable should be selected as much
as possible to improve the prediction ability of the algorithm, and features with small
mutual information should be eliminated to reduce data redundancy, that is, so-called
feature selection based on maximum correlation and minimum redundancy [44].
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In the specific application of mutual information, the probability density estimation
function can be used to approximate the edge probability distribution to simplify the above
formula and express it as follow:

MI(X, Y) = − 1
N

N

∑
i=1

log
f̂x,y(xi, yi)

f̂x(xi) f̂y(yi)
(4)

where f̂x(xi) and f̂y(yi) are the probability density estimations of X and Y, f̂x,y(xi, yi) is the
joint probability density estimation function, and N is the number of data samples.

According to Equation (4), the key to mutual information is the estimation of the
probability density function. For the univariate edge probability distribution, the kernel
probability density estimation method can be used for its estimation. In this way, without
prior knowledge of the data distribution, the characteristics of the data distribution can
be learned based on the data samples themselves. This is a non-parametric method for
estimating probability density functions. For example, for variable X, suppose it has n
sample points x1, x2, · · · , xn, which are independent and identically distributed random
variables. Then, its kernel probability density estimation can be expressed as:

f̂x(x) =
1
n

n

∑
i=1

K
(

x− xi
h

)
(5)

where K( ) is the kernel function and h is the scale parameter of the kernel function, which
defines the similarity between samples. Usually, Gaussian kernel functions are used, which
can be expressed as:

K
(

x− xi
h

)
=

1√
2πh

exp

(
− (x− xi)

2

2h2

)
(6)

Therefore, the probability density function of sample points can be estimated as:

f̂x(x) =
1

Nhw

N

∑
i=1

1√
2πσx

exp

(
−
(
x− xj

)2

2σ2
x h2

)
(7)

where σx is the variance in variable X, and the scale parameter h can be determined
according to the following equation:

hw =

(
4

d + 2

)1/(d+4)
N−1(d+4) (8)

where d is the dimension of variable X, and for one-dimensional random variables, d is
equal to 1.

For the joint probability distribution f̂x,y(xi, yi), assuming z = [x y]T, the estimation of
the joint probability distribution can be expressed as:

f̂z(z) =
1

Nh

N

∑
i=1

K
(
u′
)

(9)

where:

u′ =
(z− zi)

TC−1
z (z− zi)

h2 (10)

K
(
u′
)
=

1

(2π)d/2det(Cz)
1/2 exp

(
−u′/2

)
(11)

where Cz is the covariance matrix of z and det(Cz) is the value of the determinant of Cz.
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2.3. Construction of the Time Series Target Variable Based on PCA

As mentioned before, for the feature selection problem of time series based on mutual
information, one of the difficulties is finding appropriate target variables. In response to
this issue, this paper proposes a time series target variable construction method based
on PCA. By performing dimensionality reduction processing on multidimensional time
series variables using PCA, variables that can characterize changes in system lifetime
performance, which can be referred to as system operability, are obtained. On this basis,
mutual information analysis is carried out between it and the monitoring variables of the
system to conduct feature selection, so as to ensure that the selected features can maximize
the prediction accuracy.

Assuming that the dataset X = (x1, x2, . . . , xL) contains L samples and x is an N-
dimensional variable, then the empirical mean of x can be expressed as:

u = (µ1, µ2, . . . , µN)
T (12)

µn =
1
L

L

∑
l=1

X[n, l] (13)

The covariance matrix of the samples can be expressed as:

C =
1

L− 1
(X− uh)·(X− uh)T (14)

where h is an N-dimensional vector that is all 1. The covariance matrix C is decomposed
into eigenvectors, and the first M eigenvectors are selected. The selection of the number
of eigenvectors M depends on the desired data variance. In this paper, in order to obtain
a one-dimensional objective variable that can characterize the system operability, M = 1
is chosen.

2.4. Workflow of the Proposed Feature Selection Method for Time Series

Figure 1 shows the proposed time series feature selection workflow. After obtaining
the system time series monitoring data, the sensor signals are initially screened and then
normalized. Afterward, in order to obtain the system target variables, PCA dimensionality
reduction is performed on the normalized data to obtain one-dimensional time variables
that can characterize the trend in the system operability. Then, the mutual information
between each time series features with the target variable, as well as between each time
series feature, is calculated. According to the value of mutual information, the time series
features with large correlations and small redundancy with the target variables are selected.

Figure 1. Workflow of the proposed feature selection method.

3. Experiments

To verify the effectiveness of the method proposed in this paper, the CMAPSS aircraft
engine simulation time series dataset published by NASA [45] is used to validate the pro-
posed method, which is then compared with different methods. All simulation experiments
are carried out in the Pycharm 2021 (Community Edition) environment on a PC with an
AMD Ryzen 7 3700X eight-core CPU and 16 GB memory.
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3.1. C-MAPPS Datasets

As shown in Figure 2, the structure diagram of the aero-engine based on CMAPSS
contains several components such as a fan, combustion chamber, high-/low-pressure
booster, turbine, nozzle, etc.

Figure 2. Structure diagram of the C-MAPPS aero-propulsion system.

Table 1 shows the relevant parameters of the C-MAPSS dataset and the monitoring
data for each work cycle. Gaussian white noise is added to the monitoring data to sim-
ulate the actual sensor noise. This dataset can realistically simulate engine systems with
high reliability.

Table 1. Engine sensor data description [45].

No. Symbol Description Unit

1 T2 Total temperature at the fan inlet ◦R
2 T24 Total temperature at the low-pressure booster outlet ◦R

3 T30 Total temperature at the high-pressure booster outlet
◦R
◦R

4 T50 Total temperature at the low-pressure turbine outlet ◦R
5 P2 Pressure at the fan inlet psia
6 P15 Total pressure of the external bypass psia
7 P30 Total pressure at the high-pressure booster outlet psia
8 Nf Physical speed of the fan rpm
9 Nc Physical speed of the core engine rpm

10 epr Engine pressure ratio (P50/P2) —
11 Ps30 Static pressure at the high-pressure booster outlet psia
12 Phi Ratio of fuel flow and P30 pps/psi
13 NRf Corrected speed of the fan ppm
14 NRc Corrected speed of the core engine rpm
15 BPR Bypass ratio —
16 farB Gas–air ratio of the combustion chamber —
17 htBleed Bleed air entropy —
18 Nf_dmd Set speed of the fan rpm
19 PCNfR_dmd Set corrected speed of the core engine rpm
20 W31 Cooling bleed air flow of the high-pressure turbine lbm/s
21 W32 Cooling bleed air flow of the low-pressure turbine lbm/s

In the CMAPSS dataset, some sensor signals are constant and do not vary with engine
operation. After removing these data, the CMAPSS dataset has 14 sensor signals in total,
that is, the data dimension of the original data space is reduced from 21 dimensions to
14 dimensions. Further, in order to reduce the redundancy between variables, based
on the idea of the feature selection of maximum correlation and minimum redundancy,
before feature selection, the variables with high redundancy are removed according to the
mutual information value between the variables. Figure 3 shows the mutual information
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thermogram of 14 sensor signals in the C-MAPSS dataset. The diagonal value of the
thermogram is 1, and it is symmetrical with the diagonal.

Figure 3. Mutual information matrix among variables (figure drawn by seaborn [46]).

From Figure 3, it can be seen that some sensor signals are highly correlated. For
example, the value of mutual information between s9 and s14 is 1, indicating that there is a
high degree of redundancy between them. From Table 1, it can be seen that s9 represents
the physical speed of the core engine, and s14 represents the corrected speed of the core
engine. The measured values of the two are highly correlated, and the calculated mutual
information is consistent in a physical sense. Based on the mutual information matrix,
the system features are further filtered. With 0.95 as the threshold (manually set), some
redundant features are deleted, and a total of nine sensor signals in the system can be
obtained, that is, from 21 dimensions of the original data space to 9 dimensions after mutual
information filtering among variables.

3.2. Data Normalization

Due to the different physical quantities measured by different sensors, the data need
to be normalized to make the variable range consistent, so as to achieve better classification
and prediction effects. This paper uses Z-score standardization to normalize the input data,
which can be expressed as:

X′ =
X− X

σ
(15)

where X is the time series data, X and σ are the average and variance of X, respectively,
and X′ is the normalized monitoring data. Figure 4 shows the trend in nine variables
after normalization.
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Figure 4. The trends in the 9 variables after normalization (figure drawn by matplotlib [47]).

3.3. Target Variable Construction

Two issues need to be considered in the construction of the target variable of the
system. One is that the variable needs to be able to reflect the change in system operability,
and the other is that the variable needs to ensure monotonicity and irreversibility in the
whole life cycle. For monitoring and control systems, in most cases, the monotonicity,
predictability, and irreversibility of a single sensor signal cannot be guaranteed, nor can it
fully reflect the system operability. Therefore, this paper uses the sensor information fusion
method based on PCA dimension reduction and kernel smoothing to extract the system
target variables, thus ensuring the monotonicity and irreversibility of the degradation
trajectory [48].

It should be noted that the degradation trajectory extracted using PCA and KR is the
system operability mentioned above, which reflects the overall operational status of the
system. The specific approach is to first fuse the multidimensional monitoring variables of
the system using PCA to extract the principal component that contains the most system
information. At the same time, in order to ensure the monotonicity and irreversibility of
the system operability, KR is used to smooth the extracted principal components, so as to
obtain the curve of system operability, as shown in Figure 5.

Figure 5. Target variables for engines 1 to 10 based on PCA dimensionality reduction (figure drawn
by matplotlib).

Figure 5 shows the system operability of engines from numbers 1 to 10 in the dataset.
It can be seen from the figure that by extracting the system degradation curve as the target
variable, the monotonicity and irreversibility of the variable can be guaranteed, and the
system operability can reflect the health status of the system to a certain extent.
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3.4. Calculation of the Mutual Information of Sensor Signals

The first engine data in the CMAPSS dataset is taken as an example to analyze the
mutual information values of different sensor signals with the target variable. It should
be noted that among the 21 sensor signals in Table 1, some sensor signals are constant
values, which do not vary with engine operation, such as s1, s5, s6, s10, s16, s18, and s19.
After removing these data, a total of 14 sensor signals are obtained in the C-MAPSS dataset.
Table 2 shows the mutual information values of the nine different sensor signals with the
target variable, and Figure 6 shows the histogram of the mutual information values of
sensor signals with the target variable.

Table 2. Value of mutual information between the sensor signal and the target variable.

Sensor Number Value of Mutual Information

2 0.570
7 0.697
8 0.597
9 1.000

11 0.951
12 0.705
13 0.682
17 0.485
20 0.506

Figure 6. Mutual information histogram of sensor signals with the target variable (figure drawn
by matplotlib).

It can be seen from Table 1 and Figure 6 that the five sensor signals with high mutual
information with the target variable are s7, s9, s11, s12, and s13, corresponding to the total
pressure at the high-pressure booster outlet, the physical speed of the core engine, the
static pressure at the high-pressure booster outlet, the ratio of fuel flow and P30, and the
corrected speed of the fan.

4. Result Analysis

Using the calculation in Section 3, we obtained the values of MI for each sensor signal
based on the target variable. To verify the effectiveness of the proposed method, we
compared and analyzed it with the scores obtained from the F-test score to clarify that the
proposed idea is better than the existing approach. On the other hand, in order to measure
the performance of the extracted features, we use the extracted features to identify six
different operating conditions of the engine in the CMAPSS dataset and verify them with
visual data clusters.

4.1. Comparative Analysis of the Selected Features

In order to verify the effect of the selected features, the correlation between the nine
sensor signals with the target variable is visualized, and the F-test scores between sensor
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signals and target variables are given, as shown in Figure 7. The F-test score [49] is used
to extract the linear relationship between the nine sensor signals with the target variable,
which can be mutually verified with feature selection based on mutual information to a
certain extent.

Figure 7. F-test and mutual information comparison of the nine sensor signals (figure drawn by mat-
plotlib).

As can be seen from Figure 6, the features selected based on the F-test are basically
consistent with those selected based on mutual information. For example, for sensor signal
s9, both give scores of 1 and for sensor signal s11, the scores given by both are 0.98 and
0.96, respectively. Obviously, this indicates a strong linear relationship between s9 and s11
with the target variable. However, the difference is that feature extraction based on mutual
information can better analyze and extract the nonlinear relationship between features
and target variables. For example, when s13, s17, and s20 do not show an obvious linear
relationship with the target variables, the value of mutual information is higher than the
F-test score. Based on the above analysis, the five time series characteristics that can best
represent the state of the system are obtained, and their value of mutual information is s9,
s11, s12, s7 and s13 from high to low.

4.2. Effect Analysis of Working Condition Recognition Based on the Selected Features

Figure 7 shows the effect of working condition recognition based on the selected
system time series features. In the CMAPSS dataset, there are a total of six different
operating conditions for the engines, and they continuously alternate between the six
different operating conditions throughout their entire lifetime. Accurately identifying the
system working conditions based on the selected sensor signals is an important foundation
for subsequent research such as system operability analysis, etc.

Figure 8a shows the effect of recognition based solely on sensor signal s9, Figure 8b
shows the effect of working condition recognition based on s9 and s11, and Figure 8c shows
working condition recognition based on s9, s11, and s12. From Figure 8, it can be seen
that Figure 8a,b can achieve working condition recognition to a certain extent. However,
there are some data points that overlap, which means that the system’s working condition
identification cannot be effectively and completely achieved. By selecting the first three

186



Appl. Sci. 2024, 14, 1960

features, the recognition of complex working conditions of the system can be effectively
realized, which shows the effectiveness of selecting time series features of the system based
on mutual information.

Figure 8. Recognition of working conditions based on the selected features (figure drawn by seaborn):
(a) working condition recognition based on s9; (b) working condition recognition based on s9 and
s11; and (c) working condition recognition based on s9, s11, and s12.

5. Conclusions

Extracting effective features of a system based on mutual information values is a
commonly used feature extraction method in the field of machine learning. However,
one of the most challenging issues with this method is finding suitable target variables.
Theoretically, these target variables must include the main performance indicators of
system operation to ensure that the extracted features can effectively reflect the multiple
characteristics of the system. Especially for time series, the historical data of system
operation contains a large amount of information, but at the same time, there is significant
redundancy and noise within this information. To solve this problem, this paper proposes
a method for feature selection based on MI, in which system operability is used as a
target variable. Firstly, the system operability is extracted based on PCA dimension
reduction and kernel smoothing, which is monotonic and irreversible. Using it as the
target variable for MI analysis is more credible compared to using individual sensor
signals as the target variable. On this basis, features are filtered based on the value
of mutual information between features and the target variable. In order to verify the
effectiveness of the method, comparisons and analyses were conducted with F-test scores.
The results show that feature extraction based on mutual information can better analyze and
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extract the non-linear relationship between features and target variables. Finally, to further
validate the effectiveness of the method, we conducted tests on condition recognition
based on the CMPASS dataset. The CMPASS dataset contains continuous operational
data of the engine throughout its entire life cycle under six different operating conditions.
Effectively partitioning these data between the six different operating conditions is crucial
for subsequent analysis. Therefore, based on the selected feature variables, the system
condition recognition was carried out. The results indicate that by using the first three
extracted feature variables, the complex condition recognition of the system can be achieved.
From the above analysis, we identified that the proposed method can effectively achieve
system feature extraction and is suitable for feature extraction problems of time series data.

However, it should be noted that one of the most critical steps of the method proposed
in this paper is constructing the system operability based on sufficient historical operational
data. Therefore, the method is mainly applicable to devices with a large amount of historical
operating data. If the data are insufficient, the constructed system operability may not
reflect the overall characteristics of the system, leading to inaccurate estimation of MI
values. For example, the CMAPSS dataset FD001 used in this paper contains monitoring
parameter information for the full life cycle status of 200 engines.

Regarding future work, we plan to study the construction of system operability based
on online data and the analysis of MI values, in order to reduce the dependence on historical
operating data and improve the applicability of this method.
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Abstract: Fault detection of machinery systems is a fundamental prerequisite to implementing
condition-based maintenance, which is the most eminent manufacturing equipment system man-
agement strategy. To build the fault detection model, one-class classification algorithms have been
used, which construct the decision boundary only using normal class. For more accurate one-class
classification, signal data have been used recently because the signal data directly reflect the condition
of the machinery system. To analyze the machinery condition effectively with the signal data, features
of signals should be extracted, and then, the one-class classifier is constructed with the features.
However, features separately extracted from one-class classification might not be optimized for the
fault detection tasks, and thus, it leads to unsatisfactory performance. To address this problem, deep
one-class classification methods can be used because the neural network structures can generate
the features specialized to fault detection tasks through the end-to-end learning manner. In this
study, we conducted a comprehensive experimental study with various fault signal datasets. The
experimental results demonstrated that the deep support vector data description model, which is
one of the most prominent deep one-class classification methods, outperforms its competitors and
traditional methods.

Keywords: condition-based maintenance; deep one-class classification; deep support vector data
description; fault signal detection; time series signal

1. Introduction

Modern industrial fields have furnished more complex and sophisticated machinery
systems. However, unexpected faults in these machinery systems bring about significant
losses in productivity and efficiency. To avoid the abrupt faults of machinery systems,
preventive maintenance (PM) has been widely adopted as a maintenance strategy in vari-
ous industrial fields [1,2]. These PM strategies attempt to conduct the maintenance (e.g.,
overhaul, refurbishment, and repair tasks) before the faults occur. In general, PM strategies
can be divided into time-based maintenance (TBM) and condition-based maintenance
(CBM) [3,4]. The TBM strategy periodically executes the maintenance activities in a pre-
defined schedule. However, the TBM strategy often causes expensive maintenance costs
because unnecessary maintenance activities are often performed [5]. Unlike, the CBM
strategy performs maintenance tasks only when machinery fault symptoms are detected.
Thus, it should entail a real-time diagnosis of the machinery status. Owing to its efficiency,
CBM has received considerable attention in various industrial fields in recent years [5,6].

The CBM procedure comprises three main tasks: data acquisition, data processing,
and fault diagnosis. (1) In the first step, sensor data that involve the health status of the
machinery system are collected in real-time. (2) Then, to analyze the sensor data more easily,
the collected raw data are preprocessed through feature engineering techniques. (3) Finally,
using the preprocessed data, the machinery operating status is diagnosed, and maintenance
is performed when the fault symptoms of the machinery systems are detected [1,7,8]. It
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is obvious that appropriately preprocessing the raw sensor data and accurately detecting
the fault symptoms are fundamental prerequisites for a successful CBM strategy [9,10].
Therefore, the main purpose of this study is to propose a fault detection framework with
deep neural network structures in order to implement a more efficient CBM strategy. The
deep neural network structures are specialized to the feature engineering for given learning
tasks [11,12]. Hence, the deep neural network-based approaches might show superior fault
detection performance.

Most of the previous studies on machinery fault detection have used the sensor
data obtained from both normal operating and fault statuses. However, the data from
the fault status are not available in general because the fault rarely occurs in many real
situations [13,14]. In addition, the operating status label information is not easy to obtain
because it requires expensive analytical costs on machinery operating status. Therefore,
in this study, we focus on the unsupervised deep neural network-based fault detection
methods, which only use the sensor data obtained from normal operating status.

In recent years, various time-series signal data, including vibration, acoustic, and
thermometric signals, have been widely used for fault detection [15,16]. These time-series
signal data explicitly reflect machinery operating status, and it helps to more accurately
detect the fault symptoms. Besides, owing to the rapid development of sensing and data
storage techniques, a large amount of time-series signal data can be easily collected in
real-time [8,17]. Therefore, utilizing these time-series signal data for fault detection has
been spotlighted by a number of machinery operators. Then, a fault detection model
can be constructed using one-class classification (OCC) methods. The OCC methods
construct a decision boundary solely using time-series signal data obtained from only
normal status (generally referred to as target signal), and the decision boundary finally
determines whether a newly collected time-series signal was generated from normal status
or not [18–20]. If the time-series signal is located outside the decision boundary, it is rejected
as a fault signal, which is considered that the machinery fault might occur, and appropriate
actions should be rapidly taken. Although the OCC methods have shown satisfactory
performance in fault signal detection, they require an additional procedure that derives
meaningful features from raw time-series signal data. This additional procedure is termed
feature extraction.

The feature extraction attempts to generate several latent variables summarizing in-
trinsic properties of raw time-series signals. In most previous studies, manually created
features (e.g., root mean square (RMS), kurtosis, and crest factor (CF)) have been widely
utilized [21–23]. On the other hand, traditional feature learning techniques, including prin-
cipal component analysis (PCA) [24] and kernel principal component analysis (KPCA) [25],
have also been successfully used as feature extraction methods. The raw time-series signals
are recorded at high sampling resolution and can be treated as high-dimensional data
because individual values of the signal recorded at each time point can be regarded as vari-
ables. Thus, these traditional feature learning techniques entail dimensionality reduction to
summarize the raw time-series signals of high dimensionality into smaller useful features.
In spite of its simplicity, the manually crafted features simply summarize information of
raw time-series signal data into a small number of values, and thus, it is difficult to reflect
various characteristics of complex and noisy signals having nonstationary and nonlinear
patterns [26,27]. For this reason, the manual feature creation may not be suitable for fault
signal detection tasks. In addition, several traditional feature-learning techniques cannot
accommodate the nonlinearity of target time-series signals, and kernel-based methods tend
to be sensitive to the kernel function settings [28]. Finally, the feature creation or feature
learning procedure is separately performed before fault detection model construction, and
hence, the generated features may not be specialized for fault detection tasks [29].

To address these limitations, in recent years, deep neural network structures have
been incorporated into OCC methods. In the deep neural network-based OCC methods
(referred to as deep OCC methods), the feature extraction procedure is simultaneously
performed with fault signal detection tasks in an end-to-end manner [11,12]. Thus, the
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deep neural network is basically designed to generate features optimized to a specified
loss function of its corresponding task. Owing to the end-to-end manner’s advantage,
deep neural network structures have been successfully used in OCC methods in recent
years. Among various OCC methods, the boundary-based OCC methods (e.g., support
vector data description (SVDD [30]) and one-class support vector machine (OCSVM [31]))
have been the most widely combined with the deep neural network because their objective
function can be easily reformulated for a loss function of the deep neural network. In
the boundary-based methods, the objective function is formulated to construct a compact
hypersphere enclosing the target class, and the hyperspheres can be used as a decision
boundary to discriminate the fault signals from target signals. By doing so, optimized
features through the deep neural network structure help build more sophisticated decision
boundaries by accommodating the inherent patterns of target signals.

The following are the main contributions of this study:

• The deep OCC methods can achieve superior fault detection performance, although
raw time-series signals are directly used as input data. In general, for more effectively
analyzing the time-series signals, signal processing techniques (e.g., short-time Fourier
transform (STFT [32,33]) or wavelet transform [34]) are used to transform the raw
signals. However, these signal-processing techniques require additional user-specified
hyperparameters, which should be carefully determined. In contrast, the deep OCC
methods do not need any signal processing techniques. This implies the efficiency of
the deep OCC methods in handling the raw time-series signal data.

• In the deep OCC methods, more useful features for fault signal detection can be
simultaneously extracted along with minimizing loss function on anomaly detection
tasks. By doing so, the fault signal detection performance can be improved.

• Finally, we applied the deep OCC methods to the widely used benchmark fault signal
datasets and the signal dataset collected from our own rolling element experimental
platform. By doing so, the effectiveness and applicability of the deep neural network-
based methods to real fault signal detection problems can be confirmed.

The remainder of this paper is organized as follows. Section 2 presents the related
works on the proposed study. In Section 3, we present a deep neural network-based fault
signal detection framework. The experimental settings, baseline of the comparison method,
and results are reported in Section 4. The concluding remarks are provided in Section 5.

2. Related Works

This section deals with the details of existing OCC methods. Most of them are closely
related to this study in that they can be used to fault signal detection problems. Later, we
will consider most of the OCC methods introduced in this section for the various fault
signal detection problems.

2.1. One-Class Classification Methods

Up to now, a number of OCC methods have been proposed, and they can be cat-
egorized according to the way to utilize the information on target signals, including
density-based, ensemble-based, and boundary-based methods [19,20]. Among them, we
focus on the boundary-based methods because they can generate more flexible decision
boundaries through a nonlinear feature mapping function, and an objective function to
build the optimal decision boundary can be explicitly formulated.

The SVDD is one of the most well-known boundary-based OCC methods. The SVDD
attempts to find the most compact hypersphere to enclose as many target signal data as
possible [30]. Then, if a signal falls outside of the hypersphere, it is rejected as a fault signal,
and vice versa for the signal located inside of the hypersphere. However, if the hypersphere
is constructed to involve all training target signals, the radius of the hypersphere might be
too large, and too many fault signals are accepted as normal ones. To avoid the hypersphere
being excessively large, the SVDD adopts slack variables, which allow a few training target
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signals to be located on the outer side of the hypersphere [30]. On the SVDD algorithm, the
optimal hypersphere can be obtained as follows:

minmize
R,a,ξi

R2 + C
n

∑
i=1

ξi

s.t. ‖φ(xi)− a‖2
Fk
≤ R2 + ξi, i = 1, . . . , n

ξi ≥ 0, i = 1, . . . , n,

(1)

where R2 is the radius of the hypersphere, a is the center of the hypersphere, and ξi
denotes the slack variable of the i-th training target signal. In addition, C is a regularization
parameter controlling the trade-off between the hypersphere’s volume and false positive
error that rejects the target signal as fault signals, and φ is a nonlinear feature mapping
function. The dual problem of Equation (1) can be formulated as follows:

maximize
α

n

∑
i=1

αi〈xi, xi〉 −
n

∑
i=1

n

∑
j=1

αiαj〈xi, xj〉

s.t. 0 ≤ αi ≤ C, i = 1, . . . , n
∑N

i=1 αi = 1, i = 1, . . . , n,

(2)

where αi represents a Lagrange multiplier of the object xi and K〈 , 〉 denotes the kernel
function corresponding to its own feature mapping function φ. After solving the dual
problem presented in Equation (2), the new time-series signal (xnew) is classified as a normal
or fault signal by calculating the distance between the new signal and the hypersphere
center, ‖φ(xnew) − a ‖2 [30]. If this distance is larger than R (i.e., the new signal falls outside
the hypersphere), it is finally rejected as a fault signal.

Although the support vector-based methods are the most popular OCC methods,
they are sensitive to the noisy patterns around the target class, and thus, when there are
several noises in training data, the support vector-based methods cannot capture target
class structures [19,20,35]. Moreover, they are still quite vulnerable to the model settings,
including the kernel function choice or regularization hyperparameters [36,37].

In addition to boundary-based methods, density-based and ensemble-based methods
have also been widely used for fault signal detection. The density-based methods estimate
a density that quantifies the representativeness of the target signal, and a signal having a
small density value is rejected as a fault signal. Generally, the density can be defined with
a probability function, and thus, the density-based methods involve probability function
estimation procedures. The kernel-density estimation (KDE [38]) is widely used to estimate
the probability function along with target class structures, and this method defines the
probability function as a weighted sum of the kernel function values centered at each
training target signal. The contribution of each signal to the probability function is denoted
by its kernel function value. This kernel function is computed by dividing the distance
between signals with the bandwidth. In the KDE method, the bandwidth determines
the shape of the kernel function and affects the smoothness of the estimated probability
function. For small bandwidth, the kernel function has a high peak and narrow width, and
the estimated probability function leads to a complicated decision boundary. Conversely,
if the bandwidth value is too large, the kernel function may have a broad width, and the
estimated probability function tends to generate a simple decision boundary.

On the other hand, ensemble-based methods have recently been proposed to overcome
the fundamental limitations of the single-one class classifier. These methods construct
multiple weak single one-class classifiers and aggregate them. By doing so, they help
reflect various characteristics of the target signal using smaller subsets. Isolation forest
(IsoForest [39]) is one of the most well-known ensemble-based methods, which builds
many random isolation trees. Isolation trees recursively partition the target signals using
random split conditions until the target signals are isolated in the individual isolation trees.
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IsoForest assumes that the fault signals require a small number of splits to be isolated
because they have a different pattern than the target signal. By employing this approach,
the anomaly score of IsoForest can be defined as the sum of the number of splits until it is
isolated, and if the new signal has a small average number of splits, it is determined as a
fault signal.

Although these traditional OCC methods have been well performed in the structured
tabular data, for the unstructured data (e.g., time-series signal, image and video, and text-
formatted data), appropriate features should be derived to apply them. However, these
features obtained from independent feature extraction procedures to the OCC methods
may not be specialized to detect anomalous patterns [40]. Hence, conventional OCC
methods might not produce satisfactory fault signal detection performance in that the
signal-typed data are the most representative unstructured data and require a careful
feature extraction procedure.

2.2. Deep Neural Network-Based One-Class Classification Methods

As mentioned earlier, for more successful fault signal detection, features specialized
for the fault signal detection tasks should be extracted. To this end, deep neural network
structures, which are designed to generate optimized features for given learning tasks, have
been successfully used for fault signal detection in recent years [11,12]. The deep neural
network structure is composed of multiple intermediate layers (referred to as hidden layers)
between input and output layers. These hidden layers generate features to minimize a loss
function corresponding to the learning task without additional preprocessing or feature
extraction procedures. Owing to this end-to-end learning manner, the deep neural network
structure used for fault signal detection helps to achieve superior performance in that it
can produce a specialized feature for anomalous signal detection tasks.

The deep neural network has been usually used for supervised learning tasks with
numerous labeled data. However, in many real situations, fault signals obtained from
machinery system faults or malfunctions rarely exist compared to the signals obtained from
normal operating status, and thus, label information on the machinery operating condition
might not be available [13,14]. Thus, these supervised deep neural networks cannot be used
for fault signal detection tasks. For the unsupervised fault detection problem settings, un-
supervised deep neural network-based OCC methods can be used. The unsupervised deep
neural network-based OCC methods can be categorized as reconstruction-based [19,20],
generative adversarial network (GAN)-based [41], and boundary-based methods, according
to the way to generate the features of input signals.

Among them, the reconstruction-based OCC methods are based on autoencoder (AE)-
based neural network structures. The AE-based neural network structures (e.g., stacked
AE [11] and convolutional autoencoder (CAE [42,43])) attempt to generate meaningful
features by reconstruction of the input signal data in the output layer. In the AE neural
network, the input signals are embedded into smaller dimensions of latent features (re-
ferred to as encoding), and the latent features reconstruct the input signals (referred to as
decoding). For a more accurate reconstruction of input signals into the output layer, the
latent features should retain the intrinsic properties of input signals as much as possible.
The stacked AE neural network [11] and CAE neural network [42,43] are the most widely
used reconstruction neural network structures. These neural network structures can be
used as OCC models by learning the neural network structures with only target signals (i.e.,
signals obtained from normal machinery status). Then, the errors between input signals and
reconstructed outcomes can be used to calculate anomaly scores, quantifying the chances
that the input signals are fault signals. That is to say; the target signals tend to have small
reconstruction errors because the AE structures are constructed only using the training
target signals. Conversely, the fault signals have larger reconstruction errors because the
encoding structures are trained with no information on the fault signals, and the latent
features cannot properly reconstruct the fault signals. In addition, the GAN-based OCC
methods, which utilize neural network structures composed of both generator and discrim-
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inator, have recently been proposed. The generator attempts to create artificial signals as
similar to input signals as possible, whereas the discriminator attempts to distinguish the
artificial signals produced by the generator from the input signal as accurately as possible.
Through an adversarial training scheme between the generator and discriminator, the GAN
can produce artificial signals that have characteristics similar to target signals. Anomaly
generative adversarial network (AnoGAN [44]), which is the most well-known GAN-based
OCC method, is trained only using target signals, and thus, the generator produces a
signal having similar patterns of normal operating status. Therefore, the generator can
only generate an artificial signal similar to the training target signals, and the anomaly
score of the newly collected signal is defined as the difference between the new signal and
the generated signal from the generator of the AnoGAN. Finally, a signal having a large
anomaly score is rejected as a fault signal. In addition to these methods, more recently,
deep neural network structures have been successfully used for unsupervised anomaly
detection problems in various unstructured datasets. For instance, Luo et al. proposed
a sparse recurrent neural network (sRNN [45]) method to detect anomalous patterns in
video datasets. Furthermore, self-supervised learning-based OCC methods have also been
used for anomaly detection problems in image-formatted datasets [46,47].

Although these existing deep neural network-based OCC methods render reasonable
results within the situations for which they were designed, no consensus exists regarding
the best all-around performer in real situations. Firstly, reconstruction-based methods
are designed to reproduce the original signal data simply by minimizing reconstruction
errors. However, the reconstruction of the input signal might not be directly associated
with the classification between target and fault signals [20,48]. Therefore, the reconstruction
errors cannot be properly used as anomaly scores. Moreover, the GAN-based methods
often generate inappropriate artificial signals because they often suffer from mode collapse
problems [49]. The mode collapse problem is that the generator part tends to be trained to
create only artificial signals with patterns that are almost similar to the most representative
training target signal in order to minimize the discriminator’s loss. The mode collapse
problem causes a lack of diversity of generated signals, and it eventually yields poor fault
signal detection performance of the GAN-based OCC methods. Finally, the most recently
proposed deep neural network-based OCC methods are designed for specific domains,
such as anomaly video detection (sRNN) or unusual image detection (self-supervised
approach-based methods). Therefore, these methods might not be properly utilized for
fault signal detection problems.

To overcome the above limitations, we propose to use deep support vector data
description (deep SVDD), the most well-known boundary-based method, for fault signal
detection problems. The deep SVDD method has shown superior anomaly detection
performance in various cases, only using the target class. Please note that Ruff et al. [50]
have extended the deep SVDD methods as deep semi-supervised anomaly detection (deep
SAD) methods, which use a limited number of anomaly samples. This deep neural network-
based OCC method encourages the anomaly samples to be located outside the hypersphere
as much as possible. By doing so, the decision boundary can be improved to discriminate
between target class and anomaly. However, this method cannot be applied to the problem
setting considered in this study, in which only the target class (i.e., time series signals
collected from normal status) is available in the training phase. Therefore, we propose to
use the deep SVDD as a fault signal detection method.

3. Fault Signal Detection with Deep Support Vector Data Description

In this study, we propose to utilize the deep SVDD method for the fault signal de-
tection framework. Hence, this section presents a more detailed description of the deep
SVDD method.

The deep SVDD [12] builds a hypersphere enclosing as many target signals as possible
in the latent feature space generated by deep neural network structures. In the deep SVDD,
the input time-series signal X ⊆ Rd (d denotes the dimension of time-series signal (i.e., the
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number of time points of the raw signal)) is mapped into the latent feature space F ⊆ Rp (p
is the length of latent feature vector) as φ(·;W) : X → F , the neural network structures
whose set of weights are W =

{
W1, . . . ,WL}. The Wl denotes the weights of l-th hidden

layer l ∈ {1, . . . , L} (L represents the number of total hidden layers). In the deep SVDD,
the latent feature space is analogous to the feature mapping function used in the traditional
SVDD model, and the features obtained from training the deep SVDD model comprise the
latent feature space. Thus, the deep SVDD attempts to generate better latent feature vectors
where the optimal hypersphere can be constructed. The overall training procedure on the
deep SVDD is illustrated in Figure 1.
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Figure 1. Graphical illustration of fault signal detection process using the deep SVDD.

As shown in Figure 1, the deep SVDD is trained by both pre-training and fine-tuning
procedures. In order to more appropriately find the optimal latent feature space, deep
SVDD first learns a stacked AE network as a pre-training procedure. The stacked AE
network is composed of both encoding and decoding parts. The encoding part attempts
to summarize the input time-series signal into smaller latent feature vectors, whereas the
decoding part is used to reconstruct the input signals from the encoded latent feature
vectors. The encoding part of the stacked AE is used as the initial network structure of the
deep SVDD, and it helps the latent feature space can accommodate the intrinsic properties
of the input time-series signal. By doing so, the initial weights of the neural network
structure for the deep SVDD can be used to construct the hypersphere with a more accurate
fault detection performance.

However, the stacked AE might not be localized characteristics of the time-series
signal in that the hidden layers of the stacked AE are fully connected to each other. Hence,
in this study, we propose to employ the one-dimensional CAE network instead of stacked
AE because the one-dimensional CAE (1D-CAE) structures can successfully handle the
time-series signal data owing to the convolutional layer and pooling layers [51,52]. In the
1D-CAE, the fully connected layers of the stacked AE are substituted as one-dimensional
convolutional layers and pooling layers. The convolutional layer helps to consider localized
properties within adjacent time points of input signals by using a convolutional kernel
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filter, and these convolutional kernel filters share weights across all regions of the input
time-series signals. The output feature map of the j-th channel in the l-th convolutional
layer, f lj , is calculated as follows:

f lj = σ




Cl−1

∑
m=1

f l−1
m ∗Wl

m, c + blc


, c = 1, 2, . . . , Cl , l = 1, 2 . . . , L, (3)

where f l−1
m is the output feature map of the m-th channel in the (l-1)-th layer transformed by

the kernel filter Wl
m,c of the c-th channel in the l-th layer. Cl is the number of convolutional

channels in l layer and blc is the bias of c-th channel in the l-th layer. In addition, * is
the convolutional operator, and σ(·) denotes the nonlinear activation function. Hence,
the output feature map having Cl number of convolutional channels is computed. In
general, each of the convolutional layers is followed by a pooling layer, which integrates
adjacent values within the feature map into one value. Among various pooling manners,
max-pooling, which picks the maximum value within a local region of the input feature
map, is the most widely used. By employing the pooling layer, the size of the feature
map and computational burden can be reduced. Both convolutional and max-pooling
layer pairs (referred to as a convolutional block) can be repeated multiple times in the
encoding part. At the end of the encoding part, the feature maps obtained by multiple
convolutional blocks are flattened into a one-dimensional vector, and the flattened vector is
finally mapped to a smaller latent features vector (dimension of latent feature vector (i.e.,
the number of latent features) is denoted as q) by the fully connected layer.

Then, in the decoding part, the input time-series signals are reconstructed from the
latent variables of input time-series signals. The decoding part of the 1D-CAE comprises
symmetrically arranged layers to the encoding part. In other words, the q-dimensional
latent features vector is connected to a fully connected layer and reshaped into a one-
dimensional feature map, and they are inversely reconstructed by transposed convolutional
layers and up-sampling layers, which substitute the convolutional layers and max-pooling
layers, respectively. The transposed convolutional layer expands the input feature map,
conversely to the convolutional layer in the encoding part. The input feature map of the
decoding part (i.e., the latent features vector) is transformed by a transposed convolutional
layer as follows:

∼
f
l

m = σ




Cl−1

∑
m=1

∼
f
l−1

m ~
∼
W

l

m,c +
∼
b
l

c


, c = 1, 2, 3, . . . , Cl , l = 1, 2 . . . , L, (4)

where ~ denotes the transposed convolutional operator which enlarges the input feature

map, and
∼
f
l−1

m and
∼
f
l

m represent the output feature map of the k-th channel in the (l-1)-th

layer and the c-th channel in the l-th layer, respectively. Further,
∼
W

l

m,c denotes the transpose

convolutional kernel filter of the c-th channel in the l-th layer and
∼
b
l

c is the bias of the c-th
channel in the l-th layer. All the weights of the 1D-CAE are obtained by minimizing the
reconstruction errors between the input time-series signal and its reconstructed ones. The

reconstruction error between input time-series signal, X, and reconstructed signals,
∼
X,

L
(
X,

∼
X

)
, as follows:

L
(
X,

∼
X

)
=

1
n

n

∑
i=1

(
Xi −

∼
Xi

)2
, (5)
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where Xi and
∼
Xi are the i-th input time-series signal and its reconstructed outcomes,

respectively, and n is the number of total input time-series signals. By the encoding part
of the 1D-CAE, the initial latent feature vectors can retain the intrinsic properties of input
time-series signals. Hence, the weight set in the encoding part, denoted as W, obtained
from the 1D-CAE training procedure are used as initial weights of the deep support vector
data description model φ(·;W).

Although the latent feature vector of the encoding part of the 1D-CAE neural network
structure can accommodate intrinsic properties of training target time-series signals, it
might not be optimized to detect anomalous signals. Thus, the deep neural network
structure should be improved for fault signal detection tasks. To this end, the weight set W
obtained from pre-training is updated to be optimized for the fault signal detection task.
The deep SVDD performs subsequent fine-tuning procedures to minimize a loss function
formulated for the fault signal detection task. The deep SVDD models can be divided into
soft-boundary deep SVDD and one-class deep SVDD, according to how the loss function
is defined.

(1) Soft-boundary deep SVDD

In the Soft-boundary deep SVDD model, the loss function is defined as follows:

minimize
R,W

R2 +
1

νn

n

∑
i=1

max{0, ‖φ(xi;W)− c‖2−R2}+ λ

2

L

∑
l=1

∥∥∥Wl
∥∥∥

2

F
, (6)

R represents the radius of hypersphere in the latent feature space, and φ(xi;W) denotes the
mapped signal to the q-dimensional latent feature space by neural network structures. In
addition, c is the center of the hypersphere, and W represents the weight set of the neural
network structures,

{
W1, . . . ,WL}. In this loss function, the first term minimizes R2 to find

the smallest volume of the hypersphere that can enclose most of the target signal data. The
second term is a slack term that allows for a few false positive errors that some mapped
signals can be located outside the hypersphere. By adding the second term, the deep SVDD
encourages the exclusion of a couple of anomalous target signals and prevents too many
fault signals from being accepted as target signals. In this term, the slack hyperparameter
ν ∈ (0, 1] controls the trade-off between the size of the hypersphere and errors of the deep
SVDD model. Finally, the third term is a weight decay regularizer for neural network
weights W with the hyperparameter λ > 0, where ‖·‖2

F indicates the Frobenius norm. By
adopting the third term, the overfitting problem of the deep neural network structures can
be alleviated.

(2) One-class deep SVDD

Under the assumption that the training data comprise only target signals, minimizing
the size of the hypersphere enclosing most of the target signals in the latent feature space
can be regarded as minimizing the average distances from the center of the hypersphere to
the target signals. Thus, the first and second terms in the soft-boundary deep SVDD can
be integrated as the sum of the average distance between the center and all training target
signals in the latent feature space. Then, the one-class deep SVDD model can be formulated
as follows:

minimize
R,W

1
n

n

∑
i=1
‖φ(xi;W)− c‖2 +

λ

2

L

∑
l=1

∥∥∥Wl
∥∥∥

2

F
. (7)

In the above equation, the first term attempts to minimize the average distance between
the center and all training target signals in the q-dimensional latent feature space. Through
this term, the neural network weights W can be updated to find latent feature space more
specialized for fault signal detection in that it encourages the building of a compact decision
boundary on the target signals. Compared with the soft-boundary deep SVDD, one-class
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deep SVDD can build ma more compact decision boundary by ignoring the slacks in
Equation (5). Besides, the second term helps to prevent the overfitting risk, the same
as the soft-boundary deep SVDD formulation. Finally, one-class deep SVDD does not
require hyperparameter in that the first and second terms of the soft-boundary deep SVDD
are integrated.

Please note that in the deep SVDD, the hypersphere center c should not be a free
variable to prevent trivial solutions from having all zero values. That is to say, if the
hypersphere center c is allowed to update during training of deep SVDD, c is estimated at
zero values, and the hypersphere radius also nearly converges into zero. This problem is
referred to as hypersphere collapse [12]. To avoid this problem, the hypersphere center c
is calculated as the mean vector of the mapped signal φ(xi;W) into the initial latent space
obtained from the pre-training procedure for the encoding part of 1D-CAE. Once it is
calculated, the hypersphere center c is then fixed during the fine-tuning procedure. In
addition, we also do not employ bias terms and bounded activation functions to prevent
the hypersphere collapse problem, as suggested by Ruff et al. [12].

After the deep SVDD structures are trained, they are finally used to determine whether
newly collected signals are faulty or not. To this end, the anomaly score for the new signal
xnew, denoted as s(xnew) and quantified as follows:

s(xnew) =
∥∥∥φ
(

xnew;W*
)
− c
∥∥∥

2
, (8)

where W* are the optimal parameter derived from training deep SVDD, φ
(
xnew;W*) is the

mapped signal xnew into the q-dimensional latent feature space. If new signal xnew having
large anomaly score is deemed as a fault signals, and an appropriate action should be taken
to cope with abnormality on the machinery status. Conversely, for the new signal having a
small score, it is classified as a target signal, and any actions are not taken.

4. Experimental Study
4.1. Experimental Settings

To demonstrate the superiority of the deep SVDD model for the fault signal detection
problems, we performed an experimental study with signal datasets in three cases. First,
we utilized the two datasets provided by Case Western Reserve University (CWRU) and
Paderborn University (PU), which are the most widely used benchmark fault signals
used in a number of previous studies. In addition to these two benchmark datasets, we
collected both vibration and acoustic signal datasets collected from our own rolling element
experiment platform. In this study, we used the time series signals collected from rolling
element bearing because the it is the most representative rotating machinery. Hence,
through this experimental study, we demonstrated the applicability of the deep SVDD in
real world machinery fault detection problems. More detailed description of each signal
datasets are presented as follows:

Case 1: Case Western Reserve University (CWRU) dataset—Vibration signal (The
CWRU benchmark dataset is available at: https://engineering.case.edu/bearingdatacenter/
download-data-file (accessed on: 20 December 2023)).

The CWRU bearing dataset was collected from the accelerometer sensor attached to
the bearing installed in fan end side of the test rig, as depicted in Figure 2.
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Figure 2. Test rig for the CWRU dataset (This figure is available at: https://engineering.case.edu/
bearingdatacenter/download-data-file (accessed on 20 December 2023)).

In this study, we used the signal datasets collected by the accelerometer sensor attached
in the fan end side. These benchmark signals are collected from various operating scenarios
by changing the rotating speeds and vertical loads because vibration signals collected from
different operating settings have different patterns. Table 1 shows the operating settings of
four scenarios in the CWRU dataset.

Table 1. Operating scenarios in CWRU benchmark signal datasets.

Rotating Speed Vertical Load

Scenario 1 1797 RPM 0 HP (No pressure)
Scenario 2 1772 RPM 1 HP
Scenario 3 1750 RPM 2 HP
Scenario 4 1730 RPM 3 HP

The raw signals in this benchmark dataset were recorded at a sampling rate of
12,000 Hz per second (i.e., each raw signal was recorded as 12,000 time points per second).
In addition, the dataset includes vibration signals from four types of bearing conditions:
normal, inner race fault, outer race fault, and ball element fault. In these benchmark
datasets, each fault type has four intensities corresponding fault diameters (e.g., 7 inch
(weak fault), 14 inch (medium fault), 21 inch (strong fault)). Therefore, the CWRU dataset
has ten bearing condition types, and signals from the normal condition are considered as
target signals for OCC methods.

In this benchmark dataset, the ten vibration signals corresponding to each condition
type were collected in approximately 10 to 20 s. In order to comprise the datasets having
a sufficient number of signals to train the fault signal detection model, we segmented
each raw signal into smaller ones. To this end, each raw signal is sliced in order for
individual signals to have 1024 time points, and the sliced signals are overlapped each
other with 768 time points. Then, the final fault signal detection model is constructed with
the segmented signals. An example of these segmented signals to each bearing type is
presented in Figure 3. As shown, the signals generated by the fault-bearing conditions have
different patterns compared to the signals obtained from normal conditions. In addition,
fault signal detection datasets of four scenarios in CWRU benchmark signal datasets are
summarized in Table 2.
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Table 2. The number of target and fault signals in CWRU benchmark signal datasets.

The Number of
Target Signals

(Normal Signals)

The Number of
All Fault Signals

Scenario 1 952 6108
Scenario 2 1888 5160
Scenario 3 1892 5172
Scenario 4 1896 5180

Case 2: Paderborn University (PU) dataset—Vibration signal (The PD benchmark
dataset is available at: https://mb.uni-paderborn.de/kat/forschung/kat-datacenter/bearing-
datacenter/data-sets-and-download (accessed on 20 December 2023)).
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The Paderborn University dataset was collected by Lessmeier et al. [53]. This dataset
is comprised of both vibration and current time series signals collected from the rolling
bearing test rig shown in Figure 4.
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Figure 4. Test rig for the PU dataset. It consists of five modules: (1) electric motor, (2) torque-
measurement shaft, (3) rolling bearing test module, (4) flywheel, and (5) load motor [53].

The vibration signals are collected by the accelerometer sensor installed at the top
end of the rolling bearing module. These benchmark signals are collected from various
operating scenarios by changing (1) rotating speed, (2) radial force onto the bearing, and (3)
load torque in the drive train because vibration signals collected from different operating
settings have different patterns. Table 3 shows the operating settings of four scenarios in
the PU dataset.

Table 3. Operating scenarios in PU benchmark signal datasets.

Rotating Speed Radial Force Load Torque

Scenario 1 1500 RPM 1000 N 0.7 Nm
Scenario 2 900 RPM 1000 N 0.7 Nm
Scenario 3 1500 RPM 1000 N 0.1 Nm
Scenario 4 1500 RPM 400 N 0.7 Nm

The dataset includes vibration signals from various types of bearing conditions: nor-
mal (Healthy), artificial inner race fault (AIR), artificial outer race fault (AOR), real inner
race fault (RIR), and real outer race fault (ROR). In addition, the artificial fault types (AIR
and AOR) are generated by electrical discharge machining (EDM), drilling, or electric en-
graver pitting, whereas real fault types (RIR and ROR) are made by accelerated life testing.
Finally, among the six normal condition bearings having different operation times (bearing
codes are K001, K002, K003, K004, K005, and K006), we employed the K003 bearing, which
is operated for one hour. Hence, the normal signals obtained from K003 are used as target
signals for OCC methods.

The raw signals in the PU dataset were collected for approximately 4 s at a sampling
rate of 64,000 Hz per second (i.e., each raw signal was recorded 256,000 times). Thus,
similar to the CWRU dataset, each raw signal is sliced in order for individual signals
to have 2048 time points (no overlap between signals) to comprise the datasets having
sufficient signals to train the fault signal detection model. Then, the final fault signal
detection model is constructed with the segmented signals. An example of these segmented
signals to each bearing condition type is presented in Figure 5.

As shown, the signals generated by the fault-bearing conditions have different patterns
and scales compared to the signal obtained from normal conditions. In addition, fault
signal detection datasets of four scenarios in PU benchmark signal datasets are summarized
in Table 4.

203



Appl. Sci. 2024, 14, 221Appl. Sci. 2024, 14, x FOR PEER REVIEW 14 of 26 
 

 
 

Figure 5. Example segmented signals of all bearing conditions in Scenario 1 of PU datasets. 

As shown, the signals generated by the fault-bearing conditions have different pat-
terns and scales compared to the signal obtained from normal conditions. In addition, 
fault signal detection datasets of four scenarios in PU benchmark signal datasets are sum-
marized in Table 4. 

Table 4. The number of target and fault signals in PD benchmark signal datasets. 

 
The Number of  
Target Signals  

(Normal Signals) 

The Number of  
All Fault Signals 

 
Scenario 1 

2500 51,660 Scenario 2 
Scenario 3 
Scenario 4 

Case 3: Rolling element experiment platform dataset—Vibration and acoustic signal 
In addition to the benchmark datasets, we also collected both vibration and acoustic 

signals from our own rolling element-bearing experimental platform, presented in Figure 
6. 

 
Figure 6. Rolling element experimental platform. 

Figure 5. Example segmented signals of all bearing conditions in Scenario 1 of PU datasets.

Table 4. The number of target and fault signals in PD benchmark signal datasets.

The Number of
Target Signals

(Normal Signals)

The Number of
All Fault Signals

Scenario 1

2500 51,660
Scenario 2
Scenario 3
Scenario 4

Case 3: Rolling element experiment platform dataset—Vibration and acoustic signal
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In this bearing experimental platform, both the vibration and acoustic signals were
simultaneously collected from the accelerometer sensor and preamplifier sensor, respec-
tively, with a sampling frequency of 10,240 Hz per unit second. In this case, individual
vibration and acoustic signals are collected per unit second. Hence, individual signals have
10,240-time points. In this experimental platform, a deep groove ball bearing is installed
in the bearing housing of the simulator, and its sizes of inner side diameter, outer side
diameter, and width are 35 mm, 72 mm, and 17 mm, respectively. In addition, the rotating
speed of the bearing is 1200 RPM (revolutions per minute), and the vertical loader presses
a bearing housing 150 kg (kilogram-force).
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Similar to the CWRU dataset, the signals are collected from normal, inner race fault,
outer race fault, and ball element fault conditions because these three faults are the most
representative fault types [54,55]. These three faults in the bearing were generated by an
electrical discharge machine. Furthermore, we also considered two fault intensity levels
(i.e., strong and weak) by different defect diameters for each fault type because the signal
patterns and amplitude scales differ from fault intensities. The examples of the vibration
and acoustic signals collected from various bearing conditions are presented in Figure 7
and Figure 8, respectively.
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The number of signals collected from both normal and all fault conditions is presented
in Table 5.

Table 5. The number of target and fault signals obtained from our own rolling element experiment
platform.

Signal Types
The Number of
Target Signals

(Normal Signals)

The Number of
All Fault Signals

Vibration
4850 21,050Acoustic
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In this study, we considered the traditional OCC methods as follows: SVDD, KDE,
and IsoForest, which are the most representative boundary-based, probability distribution-
based, and ensemble-based methods. For these traditional OCC methods, additional
feature extraction procedures should be performed beforehand. To this end, we used
three feature learning methods, principal component analysis (PCA), stacked autoencoder
(stacked AE), and convolutional autoencoder (CAE). Then, we applied the SVDD, KDE,
and IsoForest to the latent features obtained from those three methods. For the SVDD, we
used the radius basis function (RBF) kernel having a parameter γ. In addition to γ, the
traditional SVDD model requires other regularization hyperparameter C. In this study, we
explored the hyperparameter pair (γ, C) within the given range: γ ∈

{
2−10, 2−9, . . . , 2−1}

and C ∈ {0.01, 0.02, 0.03, . . . , 0.1}, respectively. For KDE, we also used a Gaussian kernel as
the kernel function having bandwidth h, and the hyperparameter h was chosen within the
range of h ∈

{
20.5, 21, . . . , 25}. Finally, for the IsoForest, we empirically selected the number

of isolation trees, B, within the range of B ∈ {50, 100, 200, 500, 1000}. For these traditional
OCC methods, we chose the optimal hyperparameter achieving the best performance
within these candidate sets. The hyperparameter optimization for the OCC methods is
not easy tasks because, as mentioned earlier, the fault detection is basically unsupervised
problem settings [36,37]. In other words, in these problem settings, the label information is
not available. To the best of our knowledge, there is lack of systematic ways to optimize
the hyperparameters in fault detection problems. Hence, as in previous studies [35,56], we
also picked the hyperparameters showing the highest AUROC values.

We also considered the following deep OCC methods for fault signal detection:
reconstruction-based, GAN-based, and boundary-based methods. For the reconstruction-
based methods, we trained stacked AE and CAE and computed the reconstruction error,
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‖x− x̂‖2, between the input signal (x) and reconstructed outcome (x̂) as an anomaly score.
In this study, we refer to these reconstruction-based OCC methods as anomaly scores with
reconstruction errors of the stacked AE (ReSAE) and the CAE (ReCAE), respectively. For
the GAN-based method, we utilized an AnoGAN-based convolutional neural network
structure to more effectively handle the signal-formatted data. We set the number of la-
tent features of the AnoGAN model as 256, as suggested by Schlegl et al. [44]. Finally,
we applied the two deep SVDD models, soft-boundary deep SVDD and one-class deep
SVDD, as boundary-based methods. In this study, we tried both stacked AE or CAE in
the pre-training procedure of the deep SVDD model, in order to indicate the efficacy of
convolutional blocks in order to analyze the signal data. In addition, to avoid the hyper-
sphere collapse problem, we removed the bias term and used the leaky rectified linear unit
activation function (Leaky ReLU). For the soft-boundary deep SVDD, we varied the hy-
perparameter ν within the range of ν ∈ {0.01, 0.02, 0.03, . . . , 0.1}, and selected one showed
the best performance. The architecture details of the neural network structure for the deep
SVDD are summarized in Table 6.

Table 6. Details of deep SVDD architecture.

Case Architecture Batch Size Optimizer
(Learning Rate)

CWRU dataset
(Case 1)

8 × (5 × 1)-filters + max pooling + Leaky ReLU
4 × (5 × 1)-filters + max pooling + Leaky ReLU
Dense layer of 16 units
(i.e., the number of latent features (q) is 16)

32

Adam optimizer
(η = 0.005)

PU dataset
(Case 2)

8 × (5 × 1)-filters + max pooling + Leaky ReLU
4 × (5 × 1)-filters + max pooling + Leaky ReLU
Dense layer of 16 units
(i.e., the number of latent features (q) is 16)

128

Rolling element experiment
platform dataset

(Case 3)

8 × (5 × 1)-filters + max pooling + Leaky ReLU
4 × (5 × 1)-filters + max pooling + Leaky ReLU
Dense layer of 16 units
(i.e., the number of latent features (q) is 16)

128

In the current study, the neural network hierarchy structures, such as the number
of convolutional and pooling layers and the sizes of filters, are specified the same as in
the original deep SVDD literature [12]. As suggested in [12], these network structures
have shown reasonable results in various cases. Accordingly, we also adopted the same
network hierarchy structures as [12]. Please note that the bounded activation functions,
including the sigmoid and hyperbolic tangent functions, tend to cause the hypersphere
collapse problem [12]. Therefore, we employed the Leaky ReLU, which is the most well-
known unbounded activation function. As for the deep SVDD, this method is imple-
mented by using open source code released to the public (The deep SVDD by using open
source code available at: https://github.com/lukasruff/Deep-SVDD-PyTorch (accessed
on 20 December 2023)). Finally, to conduct all experiments, we utilized an Intel® Core(TM)
i5-9400F CPU @ 2.90 GHZ and NVIDIA GeForce RTX 2060 with 32 GB of RAM. All the
DNN-based OCC methods were implemented with the GPU-accelerated Pytorch library
(version 1.12.1) in Python (version 3.9.13).

As mentioned earlier, the training dataset consists of only normal signals, and the
testing dataset is composed of the signals both in normal operating conditions and all
fault types. To this end, we composed the training dataset as randomly selected 80%
of the normal signals, and the testing dataset is composed of both all fault signals and
the remaining 20% of the normal signals. Then, we evaluate the fault signal detection
performance of each method through the area under the receiver operating characteristic
curve (AUROC) on the testing dataset. The ROC (receiver operating characteristic) curve
represents the trade-off between two types of errors, true positive and false positive, in fault
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signal detection problems. The true positive is the accuracy of classifying target signals as
normal signals correctly, whereas the false positive is the error of classifying target signals
as fault signals. It should be noted that a high true positive rate with a low false positive
rate results under the large threshold values, while a low true positive rate with a high
false positive rate results if the thresholds are set as small values. The ROC curve can be
obtained by changing the threshold to make a false positive rate from zero to one. The
AUROC is the area under the ROC curve, and the larger AUROC value indicates better
fault signal detection performance.

4.2. Experimental Results

Table 7 shows the comparative results of the AUROC values of all OCC methods
considered in the current study. We reported the averages and standard deviations of the
AUROCs from 10 repetitions of random splitting of training/testing datasets. In this table,
the highest average AUROC values are highlighted in bold.

Table 7. Average AUROC values of all OCC methods over ten time-series signal datasets (Scenario 1
to 4 of Case 1, Scenario 1 to 4 of Case 2, and vibration and acoustic signals of Case 3).

Methods

CWRU Dataset
(Case 1)

PU Dataset
(Case 2)

Rolling Element
Experiment Platform

Dataset
(Case 3)

Scenario
1

Scenario
2

Scenario
3

Scenario
4

Scenario
1

Scenario
2

Scenario
3

Scenario
4

Vibration
Signals

Acoustic
Signals

PCA + KDE 1.000
(0.000)

0.986
(0.005)

0.992
(0.005)

0.993
(0.001)

0.340
(0.006)

0.790
(0.005)

0.780
(0.005)

0.827
(0.004)

0.665
(0.005)

0.603
(0.009)

PCA + IF 0.995
(0.002)

0.994
(0.000)

0.994
(0.000)

0.994
(0.000)

0.349
(0.036)

0.782
(0.007)

0.778
(0.013)

0.822
(0.004)

0.722
(0.003)

0.618
(0.004)

PCA + SVDD 1.000
(0.000)

0.994
(0.000)

0.994
(0.000)

0.994
(0.000)

0.393
(0.101)

0.791
(0.005)

0.776
(0.017)

0.825
(0.004)

0.735
(0.003)

0.637
(0.005)

AE + KDE 0.883
(0.172)

0.548
(0.047)

0.524
(0.031)

0.391
(0.054)

0.681
(0.015)

0.730
(0.036)

0.733
(0.024)

0.748
(0.023)

0.519
(0.113)

0.534
(0.023)

AE + IF 0.870
(0.168)

0.084
(0.097)

0.092
(0.102)

0.122
(0.044)

0.707
(0.009)

0.748
(0.012)

0.749
(0.013)

0.746
(0.008)

0.264
(0.124)

0.551
(0.025)

AE + SVDD 0.858
(0.159)

0.286
(0.118)

0.530
(0.085)

0.535
(0.084)

0.717
(0.011)

0.684
(0.057)

0.650
(0.082)

0.700
(0.042)

0.412
(0.165)

0.530
(0.038)

CAE + KDE 0.978
(0.028)

0.993
(0.001)

0.993
(0.001)

0.993
(0.002)

0.987
(0.001)

0.847
(0.054)

0.869
(0.015)

0.867
(0.054)

0.921
(0.009)

0.801
(0.042)

CAE + IsoForest 0.962
(0.072)

0.998
(0.036)

0.988
(0.036)

0.974
(0.072)

0.980
(0.002)

0.860
(0.046)

0.883
(0.026)

0.870
(0.061)

0.924
(0.009)

0.819
(0.061)

CAE + SVDD 0.976
(0.047)

0.985
(0.042)

0.999
(0.001)

0.974
(0.072)

0.980
(0.004)

0.877
(0.038)

0.895
(0.024)

0.882
(0.056)

0.794
(0.048)

0.622
(0.070)

ReSAE 0.992
(0.001)

0.996
(0.002)

0.996
(0.003)

0.994
(0.000)

0.068
(0.011)

0.347
(0.022)

0.320
(0.017)

0.358
(0.024)

0.809
(0.038)

0.569
(0.021)

ReCAE 0.999
(0.002)

0.999
(0.001)

0.998
(0.002)

0.998
(0.001)

0.048
(0.001)

0.327
(0.003)

0.303
(0.002)

0.333
(0.003)

0.732
(0.002)

0.569
(0.007)

AnoGAN 0.765
(0.024)

0.567
(0.036)

0.570
(0.037)

0.604
(0.095)

0.216
(0.116)

0.452
(0.139)

0.399
(0.101)

0.417
(0.207)

0.722
(0.014)

0.691
(0.042)

Soft-boundary
deep SVDD
(AE pre-trained)

0.980
(0.005)

0.994
(0.003)

0.985
(0.002)

0.989
(0.003)

0.792
(0.007)

0.823
(0.007)

0.760
(0.004)

0.791
(0.007)

0.819
(0.079)

0.643
(0.091)

One-class deep
SVDD
(AE pre-trained)

0.980
(0.005)

0.993
(0.003)

0.985
(0.003)

0.988
(0.004)

0.775
(0.005)

0.793
(0.007)

0.762
(0.003)

0.759
(0.006)

0.859
(0.103)

0.683
(0.028)

Soft-boundary
deep SVDD
(CAE pre-trained;
Proposed)

0.985
(0.026)

1.000
(0.000)

1.000
(0.000)

1.000
(0.000)

0.991
(0.001)

0.936
(0.007)

0.941
(0.008)

0.940
(0.007)

0.985
(0.002)

0.912
(0.011)

One-class deep
SVDD
(CAE pre-trained;
Proposed)

1.000
(0.000)

1.000
(0.000)

1.000
(0.000)

1.000
(0.000)

0.991
(0.001)

0.939
(0.006)

0.944
(0.002)

0.939
(0.009)

0.985
(0.004)

0.922
(0.014)
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Table 7 shows that the traditional OCC methods with independently performed
feature extraction yielded lower AUROC values than deep neural network-based OCC
methods. Those results indicate that separate feature extraction procedures might not
generate specialized features for fault signal detection tasks. Conversely, the deep neural
network-based OCC methods generally perform better than traditional OCC methods
owing to their end-to-end learning manners for the fault signal detection tasks. In the deep
neural network structures, latent features are optimized for fault signal detection tasks in
that these features are simultaneously generated to minimize the loss functions for the fault
signal detection tasks. Therefore, it confirms that deep neural network-based methods are
more appropriate for detecting fault signals than traditional OCC methods with separate
feature extraction procedures. However, in the AnoGAN model, the generator part may
poorly generate artificial target signals due to the mode collapse problem, and it results in
undesirable fault signal detection performance. Besides, the reconstruction-based methods,
ReSAE and ReCAE, also cannot perform better than the deep SVDD models because the
reconstruction error of the input signal might not directly quantify the anomalous level
of the input signal. Hence, the weights of the stacked AE or CAE should be updated for
more accurate fault signal detection tasks. Conversely, both one-class deep SVDD and
soft boundary deep SVDD models outperform other deep neural network-based methods
because the more specialized features of fault signal detection can be derived as minimizing
loss functions for anomaly detection tasks. It should be noted that the pre-training with
CAE performs better than those with stacked AE because convolutional layers of the CAE
network help to draw temporal information of time-series signals because they combine the
signal values within adjacent time intervals. Therefore, the initial neural network structures
of the encoding part in CAE can accommodate the intrinsic properties of time-series signal
data, and it eventually helps to build more accurate decision boundaries for detecting
fault signals.

In addition, we conducted a post-analysis on performance differences through a
nonparametric statistical method. We applied the Wilcoxon signed rank test [57] regarding
the statistical difference in AUROC values among all the above 16 methods. Based on
p-values over all methods, the null hypothesis of performance equivalence between CAE
pre-trained one-class deep SVDD (the top-ranked method) and other ones is tested. The
results of the Wilcoxon signed rank test are provided in Table 8.

Table 8. Wilcoxon signed-rank test results.

Methods Average Rank p-Value Hypothesis
(α = 0.01)

One-class deep SVDD (CAE pre-trained;
Proposed) 1.1 - -

Soft-boundary deep SVDD (CAE pre-trained;
Proposed) 1.9 0.1056 Not reject

CAE + IsoForest 5.9 0.0059 Reject
CAE + KDE 6.0 0.0058 Reject
CAE + SVDD 6.7 0.0020 Reject
PCA + SVDD 6.8 0.0089 Reject
Soft-boundary deep SVDD (AE pre-trained) 7.8 0.0020 Reject
PCA + IF 7.9 0.0058 Reject
One-class deep SVDD (AE pre-trained) 8.2 0.0020 Reject
PCA + KDE 8.6 0.0092 Reject
ReSAE 9.9 0.0059 Reject
ReCAE 10.0 0.0059 Reject
AnoGAN 12.7 0.0020 Reject
AE + KDE 13.1 0.0020 Reject
AE + IF 13.5 0.0020 Reject
AE + SVDD 13.6 0.0020 Reject
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As shown in Table 8, both the CAE pre-trained one-class deep SVDD and soft-
boundary deep SVDD methods attained the best or second average rank. In addition,
the null hypothesis of performance equivalence was rejected with a significance level of
α = 0.01, and it implies that there is a significant difference in performance between the
CAE pre-trained deep SVDD (proposed) and other methods. Consequently, these results
denote that the proposed deep SVDD with CAE pre-training significantly outperformed
the others. Finally, there is no statistical difference between the two deep SVDD methods
pre-trained by CAE, which are not significant. In spite of their equivalent performance, we
suggest using the one-class deep SVDD because it alleviates the difficulty of selecting the
hyperparameter ν in the soft-boundary deep SVDD method.

In this study, we also conducted additional experimental studies to examine the effect
of a number of latent features on the fault signal detection performance by varying the
number of latent features from 16 to 256. The AUROC values over different numbers of
latent features in all cases are presented in Figure 9.
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As shown in Figure 9, the fault signal detection performance of the deep SVDD
model rarely differs by changing the number of latent features. Therefore, we specified the
number of latent features as 16 in order to prevent the overfitting problem and mitigate the
computational burden of the deep SVDD model.

Finally, in order to demonstrate the advantage of the deep SVDD method regarding
fault signal detection, we compared it with other feature extraction methods (PCA, AE, and
one-dimensional CAE). To this end, we visualized these 16 latent features extracted from
these four methods by facilitating the t-distributed stochastic neighborhood embedding
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(t-SNE [58]) technique. Figure 10 shows the two-dimensional t-SNE plots of latent features
obtained from four feature extraction methods.

As shown in Figure 10, in the latent features obtained from PCA and AE, normal and
fault signals are quite overlapped each other. The PCA cannot deal with the nonlinear
patterns, and thus, it might not properly deal with the complex time series signal data.
Moreover, in the AE, the layers are fully connected to each other, and these fully connected
structures also cannot accommodate the temporal properties of the time series signals.
For these reasons, these two feature extraction methods cannot accurately detect the
fault signals. Conversely, the one-dimensional CAE and deep SVDD pre-trained by one-
dimensional CAE more clearly discriminate the fault signals from normal ones than PCA
and AE. These results indicate that one-dimensional CAE can more properly handle the
time series signals because the convolutional blocks (i.e., convolutional-max pooling layer
pair) in CAE help to consider the temporal properties of the time series signals [51,52]. On
the other hand, latent features obtained from the deep SVDD more clearly separate the
fault signals and normal signals than those from one-dimensional CAE. In the fine-tuning
procedure of the deep SVDD, latent features are updated to be specialized for fault signal
detection. Therefore, the deep SVDD method can generate more useful features for fault
signal detection tasks than only using one-dimensional CAE.
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5. Conclusions

In this study, we present a fault signal detection framework based on deep SVDD
for the implementation of an efficient CBM strategy on machinery systems. To this end,
we utilize the raw time-series signal because it directly reveals the health status of the
machinery system. To handle the raw time-series signal data, the deep SVDD model is
trained by one-dimensional CAE as a pre-training procedure, and the encoding part of the
CAE structure is used as the initial network structure of the deep SVDD model.

The pre-training procedure helps to more accurately detect the decision boundary and
the fault signals because intrinsic properties of time-series signal data can be accommodated
to the neural network structures of the encoding part. Then, in the fine-tuning procedure,
the neural network structures for the deep SVDD model are updated to minimize the
loss function for the anomaly detection tasks. Through the fine-tuning procedure, the
latent features specialized to the fault signal detection can be generated, and it eventually
helps the deep SVDD model to achieve superior fault signal detection performance. To
demonstrate the efficacy of the deep SVDD model in fault signal detection, we used
a widely used benchmark signal dataset (CWRU dataset) and both the vibration and
acoustic signal datasets collected from our own rolling element experiment platform. In
this experimental study with these datasets, the deep SVDD model outperforms other OCC
methods, and these results confirm the applicability of the deep SVDD model in real fault
signal detection problems.

In spite of its superiority in fault signal detection problems, the decision boundary
of the deep SVDD model might be corrupted by the noisy or outlying time series signals,
which are generated by incomplete sampling or data transmission error [20,56]. Thus,
in further study, we will address the deep SVDD model’s vulnerability against noisy
or outlying time series signals. To this end, we will improve the deep SVDD model by
incorporating the relative density of individual signals because these noisy or outlying
time series signals tend to be located in sparse regions in feature space.
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Abstract: As laminated composites are applied more commonly, Prognostics and Health Management
(PHM) techniques for the maintenance of composite systems are also attracting attention. However,
applying PHM techniques to a composite system is challenging due to the data imbalance problem
from the lack of failure data and unpredictable failure cases. Despite numerous studies conducted to
address this limitation, including techniques like data augmentation and transfer learning, significant
challenges remain. In this study, the Wasserstein Generative Adversarial Network (WGAN) model
using a time-series data augmentation technique is proposed as a solution to the data imbalance prob-
lem. To ensure the performance of the WGAN model, time-series data augmentation of experimental
data is executed with a frequency analysis. After that, a One-Dimensional Convolutional Neural
Network (1D CNN) is used for fault diagnosis in laminated composites, validating the performance
improvement after data augmentation. The proposed data augmentation significantly elevated
the performance of the 1D CNN classification model compared to its non-augmented counterpart.
Specifically, the accuracy increased from 89.20% to 91.96%. The precision improved remarkably from
29.76% to 74.10%, and its sensitivity rose from 33.33% to 94.39%. Collectively, these enhancements
highlight the vital role of data augmentation in improving fault diagnosis performance.

Keywords: PHM; fault diagnosis; data imbalance; laminated composite; WGAN

1. Introduction

With their high specific strength, stiffness, and resistance to both corrosion and heat,
composite structures are increasingly replacing metallic structures in various engineering
applications, including aerospace, marine, automobile, and infrastructure [1,2]. Composite
structure has orthotropic, layered structure and complexity in the manufacturing process.
Due to these natural characteristics, various fault modes, such as matrix crack, fiber break-
age, and delamination, often occur, and this makes it difficult to apply composite structures
in the actual industrial field [3,4]. Among these various failure modes, delamination or
inter-ply separation is the most critical defect. These types of failure exist in the inner
surface and are not observable without technical equipment, leading to sudden fracture
of the structure and a huge loss of various resources [5,6]. To avoid structural failure and
severe loss, it is necessary to quickly detect damage in composite structures to prolong
their service life. PHM technology provides early damage detection and helps avoid the
deterioration of various industrial systems [7–12]. Recently, techniques for PHM based on
Machine Learning (ML) and Deep Learning (DL) using vibration signals have been contin-
uously adopted for fault diagnosis in various structures. They have the ability to detect
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unseen defects in the interior of the structure, and using the vibration data demonstrates
high fault diagnosis performance [13–16].

Initially, conventional Machine Learning (ML) model-based fault diagnosis was mainly
used, in which engineers manually extracted features related to the faults of the system and
diagnosed the condition of the system [17]. Features extracted from signals are generally
from the time domain, frequency domain, and time–frequency domain [18]. Time domain
features vary from conventional values, for example, the mean, standard deviation, peak,
amplitude square, and Root Mean Square (RMS), to combinations of these features, like
the waveform factor, peak factor, margin factor, and central moment [19,20]. For more
detailed information, frequency, as well as time–frequency domain features, could also be
derived from the Fourier transform, short-time Fourier transform, wavelet transform, and
wavelet packet transform [21–23]. Because features related to frequency analysis contain the
dynamic behavior of the system, they can offer more sensitive and thorough information
about the system. The extracted features are then utilized to predict whether the system is
in a normal or fault state. ML models, such as K-Nearest Neighbor (KNN), Support Vector
Machine (SVM), and Decision Tree, are trained by part of the extracted features, while the
rest of the features are exploited to test whether the trained model can properly decide the
health state of the system [24–26].

Although fault diagnosis using ML showed remarkable performance, it was time
consuming, and a massive theoretical background was needed to extract features manually
from the data. To overcome this limitation, Deep Learning (DL) techniques started to be
utilized for fault diagnosis. The DL model can extract features automatically by using
its neural network and classify the health state of the system. The Convolutional Neural
Network (CNN) model is generally used for fault diagnosis owing to its outstanding feature
extraction performance from motor current signals, vibration signals, and multi-variate
signals [27–30]. Raw signals are converted into images that can represent the health state
of the system, like spectrogram, scalogram, or various sorts of grey-scale images. The
CNN model extracts features from these images and then predicts whether the system is
in a normal state. The Vision Transformer (ViT) model is also utilized for fault diagnosis
using image data [31]. The ViT model can extract features from the local part of an image
and classify the health state of the system. Transfer learning models that are pretrained
on a large amount of image datasets are widely applied for fault diagnosis. Among the
various models, Residual Network-50 (Resnet-50) is generally used [32]. Long Short-Term
Memory (LSTM) and Bidirectional LSTM (BiLSTM) are other deep learning-based methods
for fault diagnosis. They have a unique ability to extract features from time series data;
they have remarkable performance in predicting Remaining Useful Life (RUL), as well as
fault diagnosis. The models use extracted features from the raw time-series signal itself or
preprocessed signals to perform fault diagnosis [33–36].

Although DL-based fault diagnosis has been explored by many researchers, numerous
limitations still remain. For general applications of fault diagnosis using DL models, further
research is required to address challenges, such as noise mitigation, data imbalance, and
various uncertainties. In particular, data imbalance, where certain classes in the dataset
have fewer instances, can significantly reduce the performance of the DL model. The model
may struggle to learn features of the minority class, resulting in lower accuracy for that
class [37]. In addition, since there is a myriad of unpredictable damage cases with a diverse
range of operating and environmental conditions, it is impractical to comprehensively
detect and anticipate all potential damages in advance. To cope with these challenges, it is
essential to generate synthetic data through experimentation, simulation, or data-driven
approaches. However, the process of data acquisition through experiments or simulations
can be both time-consuming and financially burdensome. Additionally, these methods
require an in-depth understanding of the physics of the composite structure [38]. To address
these challenges, a focus has been placed on developing data-driven approaches to generate
synthetic data. These methods require less in-depth understanding of the physics involved
and are less labor-intensive by leveraging advanced algorithms and DL techniques.
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Above all, there are some basic data augmentation techniques that use simple mathe-
matical calculations. For example, images from impact response data can be manipulated
by adding and multiplying by random numbers [39]. Similarly, adding Gaussian noise
to the images obtained from acoustic emission and guided wave signals was also per-
formed [40,41]. The advantage of this type of data augmentation method is the low level of
difficulty. They are easy to implement, and the corresponding algorithms are not complex.
Other simple methods—such as shifting, scaling, rotating, and random grid shuffling of the
images—are also performed [42]. These are also basic techniques for data augmentation for
images. However, in most engineering problems, images contain some dynamic character-
istics of the system, including time, amplitude, and frequency of the signal. Therefore, this
kind of augmentation technique should be applied with caution regarding the engineering
problem. Recently, data augmentation using the GAN model for image data has been
widely used [43–45]. By using the GAN model, it is possible to duplicate the dynamic
characteristics of the original data and thus generate synthetic image data properly.

Although these approaches can generate sufficient data for robust fault diagnosis
in composite structures, most of them rely on image-based data augmentation. Thus,
this approach necessitates proper preprocessing of raw data for their transformation into
2D images, making the process tedious and time-consuming. Therefore, data augmen-
tation of the raw time-series signal, not imagery, can benefit by eliminating the need for
excessive preprocessing, making the PHM process for composite structures simple and
computationally efficient.

To tackle the issues mentioned above, this paper proposes a time-series data augmen-
tation technique using the Wasserstein Generative Adversarial Network (WGAN) model.
WGAN is a type of DL model that can accurately capture the distribution of the training
data. Thus, it can generate synthetic data that maintain identical dynamic characteristics
with the training data. For this reason, an in-depth understanding of the physics of the
composite structures is less necessary to use the WGAN model to generate the synthetic
data. As a tool to validate the proposed data augmentation method, fault diagnosis in lami-
nated composite structure using the One-Dimensional Convolutional Neural Network (1D
CNN) model was implemented. The 1D CNN can extract features directly from time-series
signals, and no preprocessing is needed for the use of input data. Therefore, the total time
for both preprocessing and training is reduced.

To validate the proposed data augmentation methodology, an initial experiment was
conducted to obtain vibration data from composite specimens. Three different health
states of composite specimens—healthy, delamination 1, and delamination 2—were man-
ufactured. Vibration signals from these states were then captured using a shaker and
computer software. The amount of data collected for the healthy state was intentionally
made much larger than the damaged ones to simulate the data imbalance problem. Then,
data augmentation was performed across all health states. After data augmentation, a fault
diagnosis was conducted using the 1D CNN model on two different datasets: a dataset
consisting of only experimental data and a dataset composed of synthetic data. Then, the
two results were compared to assess the data augmentation capabilities of the WGAN
model. Afterward, a comparative analysis was performed to highlight the superior data
augmentation ability of the WGAN model by comparing it with various oversampling and
other data augmentation methods.

The rest of this paper is composed as follows: Section 2 presents the background
of previous methods for data augmentation and the fault diagnosis model for this re-
search. Section 3 illustrates the experimental setup to validate the suggested methodology.
Section 4 describes the fault diagnosis results and provides a comparative analysis. Finally,
Section 5 concludes this research, outlining its contributions and suggesting directions for
future research.
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2. Proposed Methodology
2.1. Overview

In this section, solutions for the data imbalance problem and fault diagnosis method-
ology are proposed. Section 2.2 briefly introduces the theoretical background of previous
methods for oversampling and data augmentation, which is later utilized in Section 4.
Then, Section 2.3 describes the mathematical formula of the WGAN model for time-series
vibration data augmentation. Finally, Section 2.4 explains the fundamental contents of the
1D CNN model for fault diagnosis.

2.2. Previous Works
2.2.1. Adaptive Synthetic Sampling

Although several techniques have been developed to address data imbalance, methods
that directly augment the minority class by generating synthetic data have gained signif-
icant attention. Adaptive Synthetic Sampling (ADASYN) is an oversampling technique
based on the K-Nearest Neighbor (KNN) algorithm, considering the distribution of the
minority and majority classes. ADASYN generates synthetic data by interpolating between
existing data points within the minority class rather than merely duplicating the original
data [46]. In the minority class, the basis data point is decided as a fixed point to apply the
KNN algorithm, and the nearest neighbor value is selected. After the nearest neighbors
are chosen, the linear interpolation method of Equation (1) is used to generate synthetic
data between the basis data point and the nearest neighbors, where α is a random value
from 0 to 1.

sj = (1− α)× pi + pij, i, j = 1, 2, 3 . . . (1)

Here, data points in the majority class, which exist in the inner area of the nearest
neighbor boundary, are considered. The ratio of data points within the majority class is
calculated according to Equation (2), where δi is the number of data points in the majority
class in the nearest neighbor boundary for the i-th nearest neighbor, and K is the total
number of nearest neighbors.

ri =
δi

K
, i = 1, 2, 3 . . . (2)

ADASYN generates more synthetic data if ri is larger than the others. Owing to this
comparison process of data distribution, synthetic data could be distributed to maintain
distinct characteristics compared to the data from other classes.

2.2.2. System Identification

While ADASYN focuses on generating synthetic data for the minority class based
on the distribution of classes and neighboring data points, another approach to tackle
data imbalance is through System Identification (SI). The SI process builds a mathematical
dynamic model of the system by using the measured input and output signals. The SI
technique is an important part of modern control theory [47] and has been used as a data
augmentation to overcome data imbalance and the data scarcity problem [48]. The input
and output signals of the system are used to reconstruct the discrete system matrix Ar, Br,
Cr, Dr, which is expressed as a state space model, where Ar is the realized system matrix,
Br is the realized input matrix, Cr is the realized output matrix, and Dr is the transmission
matrix [49]. After these matrices are defined, unseen signals are used as input for the
realized matrices. As a result, synthetic signals, which are augmented signals, could be
obtained. The SI technique can restore the system dynamics by using only single input and
output signals, which means that it does not need multiple pairs of signals. Because of this
advantage, it could be used as a great solution for data imbalance and the scarcity problem,
as mentioned above.
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2.2.3. Generative Adversarial Network

The GAN model, originally proposed to produce real-like images from Gaussian
noise input, has also been developed to generate synthetic time-series data [50–53]. The
GAN model is composed of two deep learning models: generator and discriminator. The
generator generates synthetic data by using Gaussian noise input. The discriminator gets
real data and synthetic data as input data and discriminates whether the input data are
real or synthetic. By using the training results of these models, parameters are updated to
produce realistic synthetic data, which means that the synthetic data distribution pz has a
similar distribution to the real data pdata(x). The loss function of the GAN model is written
as Equation (3), which is the deformed shape of the Jensen–Shannon Divergence (JSD),
where D(x) is the discriminator output, and G(z) is the generator output.

maxminV(D, G) = Ex∼pdata(x)
[log D(x)] + Ez∼pz(z)

[ log(1−D(G(z)) )] (3)

The generator and discriminator keep training to deceive each other until the mod-
els reach the Nash Equilibrium. Figure 1 illustrates the training process of the general
GAN model.
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Although the GAN model shows remarkable data augmentation performance, its
mathematical nature raises several critical points. There are two main limitations to
the application of the GAN model: gradient vanishing and mode collapse [54,55]. Both
problems arise from the loss function of the GAN model. The fundamental concept of
the GAN model is a minimax game in which the discriminator tries to maximize the loss
function while the generator attempts to minimize the loss function. In this process, if the
discriminator is trained better than the generator, the gradient of the generator becomes
0 according to Equation (3), and the generator cannot be trained properly. This is called
gradient vanishing. Also, when the generator generates synthetic data in multiple classes,
the generator only tries to deceive the discriminator and does not consider the information
about each class. As a result of this characteristic, the training process of the generator could
be biased to specific weights, which means the generator only generates data belonging
to a specific class, not evenly. Simply, the generator falls into a local minimum problem
and cannot imitate the distribution in any other classes except one class. This is called
mode collapse.

Due to the drawbacks mentioned above, instability in training the GAN model often
takes place. This makes it hard to converge the generator and discriminator, reducing
the performance of the GAN model. Numerous unrevealed factors may exist in this
instability, but one of the fundamental reasons is the loss function. The loss function
that uses JSD could output 0 or too large a number, as mentioned above, leading to the
submission of meaningless gradients to the generator and discriminator. To overcome these
vulnerabilities, various GAN models that use different loss functions have been introduced.
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2.3. Wasserstein Generative Adversarial Network

As outlined in Section 2.2.3, the limitations for GAN arise from the generator receiving
meaningless gradients. To provide the generator with meaningful gradients, employing
an alternative loss function is essential. WGAN uses Earth Mover’s Distance (EMD) or
Wasserstein distance as loss functions, which can be expressed as Equation (4).

W
(
Pr,Pg

)
= inf

γ∈Π(Pr,Pg)
E(x,y)∼γ[‖x− y‖] (4)

Here, Π
(
Pr,Pg

)
represents all sets of the joint distributions γ(x, y), which have Pr, Pg

as marginal individually. The intuitive definition of the Wasserstein distance means the
quantity of mass that must be transported from x to y for the distribution of the generated
data Pg to align with the distribution of real data Pr.

However, it is impossible to apply the Wasserstein distance in Equation (4) directly
as a loss function because it is almost impossible to find all the joint distributions and
minimum values. Due to this restriction, Kantorovich–Rubinstein duality is introduced,
which constrains the objective function by using the 1–Lipshitz method [56]. In this context,
since it is difficult to identify the exact function we want to constrain, the objective function
is approximated using a neural network. After applying the Kantorovich–Rubinstein
duality and 1–Lipshitz method, the loss function using Wasserstein distance turns into
Equation (5).

Loss function = max
w∈W

Ex∼Pr [fw(x)]−Ez∼p(z)[fw(gθ(z))] (5)

Here, fw denotes a function approximated by the neural network that has variables of
w, and similarly, gθ is a function that involves variables of θ. For brevity of the study, de-
tailed mathematical formulae of the Kantorovich–Rubinstein duality and Lipshitz method
are omitted.

The gradients for updating WGAN must be restricted because it does not use the
sigmoid function for the last layer of the discriminator. This could potentially lead to
unbounded output values and destabilizing gradients during the training process. For
this purpose, the ‘weight clipping’ technique is used to restrict the scale of the gradients
between −0.01 and 0.01. Because of this mathematical difference between the discriminator
in the conventional GAN and the discriminator in WGAN, the latter one is named the
‘critic’. Through this overall process in WGAN, the generator can obtain proper gradients,
and the training generator and critic can be balanced. Furthermore, through generating
meaningful gradients, the stability of the training process can be improved.

2.4. One-Dimensional Convolutional Neural Network

Over recent years, there has been significant research interest in the Two-Dimensional
Convolutional Neural Network (2D CNN) model-based fault diagnosis because it has a
remarkable ability to automatically extract features from the images [57,58]. However, 2D
CNN requires various data preprocessing techniques, especially when used with vibration
signals. For this application, the signal has to be converted into spectral images, making
the fault diagnosis procedure more complex and laborious. Also, 2D CNN takes a longer
time for training and testing, which may not be suitable for real-time fault diagnosis. For
these reasons, this research employs the One-Dimensional Convolutional Neural Network
(1D CNN), using time-series vibration signals directly as input for fault diagnosis.

The 1D CNN can directly extract features from time-series signals without data prepro-
cessing. Contrary to 2D CNN, convolution and pooling size can extract one-dimensional
features from a time-series signal. Also, the training speed of the 1D CNN is much quicker
than that of the 2D CNN because the input data size for the 1D CNN is smaller, and
1D CNN does not need additional preprocessing techniques since time-series data are
directly used as input. This makes the 1D CNN more resource-efficient, leading to cost
savings without decreasing the fault diagnosis performance. Owing to these advantages,
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1D CNN is continuously applied for fault diagnosis in various systems [59,60]. Details of
the structures of the 1D CNN used in this research are later discussed in Section 4.2.

3. Experimental Validation

Section 3 describes the experimental validation process to ensure the performance of
the suggested data augmentation and fault diagnosis techniques. Section 3.1 explains the
experimental setup to obtain the imbalanced vibration dataset, while Section 3.2 describes
the data augmentation process using the WGAN model to resolve the data imbalance
problem and the validation of the synthetic data involved.

3.1. Experimental Setup and Data Acquisition

Laminated composite plates are manufactured to obtain an imbalanced vibration
dataset. Eight layers of carbon prepreg (T700SC–12k–60E), which have dimensions of
35 cm × 30 cm, are stacked in [0/90/0/90]s order, as shown in Figure 2. Table 1 shows the
mechanical properties of the prepreg.
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Table 1. Mechanical properties of the carbon prepreg.

Tensile
Modulus

Tensile
Strength Elongation Thermal

Conductivity Density Filament
Diameter

230 GPa 4900 MPa 2.1% 9.4 W/m·K 1.8 g/cm3 7 µm

To imitate various health states of the laminated composites, Teflon film (Model
KSC−V1000) with a thickness of 0.03 mm and a usable heating range of 280 ◦C was
inserted between the fourth and fifth layers during the stacking. The film can act like
damage inside the laminated composite, so the presence of delamination could be imitated.
A total of three health states of composite plates are stacked: Healthy (H), which has no
delamination, and Delamination 1 (D1) and Delamination 2 (D2), which have delamination
in different locations inside of the specimens.

After stacking, the plates were cured using the hot press machine illustrated in
Figure 3a. The pressure of the machine was 20 kg/cm2, and the heating cycle of the
plate is in Figure 3b. The cured plates that have dimensions of 35 cm × 30 cm are then cut
into five pieces to receive a beam-shape of 35 cm × 5 cm, as shown in Figure 4. Thus, five
specimens for each health state, and a total of fifteen specimens, were manufactured for all
health states. The blue-colored area is used as the fixed part for the vibration experiment,
while the red-colored area indicates the presence of delamination.

Figure 5 shows the Data Acquisition system. Random vibration signals were generated
through MATLAB Simulink, and they were collected in the Data Acquisition (DAQ) unit
(DAQ1, model dSPACE/CLP1104). The magnitude of signals was enlarged through the
amplifier (model Labworks/PA-151). These amplified signals were then received by a
shaker (model Labworks/ET-126-4), which induced vibration in the specimen.
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Figure 5. Data acquisition system for the experiment.

Response signals were obtained with accelerometer (model Bruel & Kjaer/Type 4517-C)
sensors that were bonded on the top surface of the specimens. Herein, for the robustness of
variations in signals, signals were acquired through the same ten sensors but in different
locations. Figure 6 shows the locations of the accelerometers. The figure shows that
the sensors were bonded near the edges to consider the effects of twisting and bending
in the specimen.
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The response signals from the sensors were then put into the amplifier (model Bruel &
Kjaer/Type 2692-0s2) again, and after passing the DAQ (DAQ2, model NI/USB-6341), the
final response vibration signals were saved in the computer.

To simulate the imbalance problem in the experimental condition, a different number
of sensors were selected for each health state. For state H, sensors from P1 to P10 were used,
while for states D1 and D2, only P01 was used. For state H, 1000 signals were obtained for
each sensor, and 60 signals for D1 and D2 were acquired to maximize the data imbalance
problem. Because five specimens for each health state were utilized to obtain the dataset,
200 data instances for H and 12 data instances for D1 and D2 each were acquired from
each specimen. Table 2 shows the number of the dataset and length of the signals for
each health state.

Table 2. Description of dataset for each health state.

Healthy Delamination 1 Delamination 2

Number of sensors P01–P10 P01 P01
Number of data 1000 60 60

Signal length 1875 1875 1875

3.2. Data Augmentation Using WGAN Model

To validate the proposed method, data augmentation was performed using the WGAN
model illustrated in Figure 7. The structure of the WGAN model and model parameters
listed in Table 3 are determined through a process of trial and error because there is no
specific standard or technique.
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Table 3. Model parameters of the WGAN model for each health state.

Healthy Delamination 1 Delamination 2

Beta 1 0.5 0.5 0.5
Beta 2 0.9 0.9 0.9

Training critic/Training
generator 3 5 5

Learning rate 3 × 10−4 3 × 10−4 3 × 10−4

Epoch 2000 2000 2000
Batch size 8 8 8

For the Healthy state, since it takes a significant period to generate synthetic signals
for all pairs, signals from sensors in the same location have similar dynamic characteristics.
Thus, synthetic signals were generated by only considering sensor location. With data
augmentation, with 300 signals per sensor, a total of 3000 signals were generated. For
Delamination 1 state, three specimens, D1-1, D1-2, and D1-3, were utilized individually
to obtain 1000 synthetic signals per specimen. Similarly, Delamination 2 state used three
specimens and acquired 1000 signals per specimen. For delamination cases, delamination
in the specimens was manufactured by manually inserting the Teflon films. Therefore, there
are slight differences in dynamic characteristics for different specimens. In this perspective,
data augmentation for delamination cases was conducted for each specimen. There were
1000 synthetic signals for each specimen; a total of 3000 signals were generated.

4. Fault Diagnosis Results
4.1. Evaluation Metrics

Evaluation metrics are employed to evaluate the classification performance of a DL
model. These metrics are calculated by using the predicted labels from the DL model and
comparing them with the actual labels. Figure 8 shows the relationships and denotations
of these metrics, while Equations (6)–(9) provide the formulae for these evaluation metrics.
Accuracy is an intuitive metric with which to evaluate the classification performance; it
quantifies the proportion of predicted labels that match the actual labels, including both
true and false predictions. Precision is the ratio of actual true labels to the labels that the
model predicted as true. Sensitivity is the ratio of the labels that the model predicted
as true to the actual true labels. The F1 score is the harmonic average of the precision
and sensitivity. All metrics reinforce the weakness of others and thus can evaluate the
classification performance of the model.

Accuracy =
TP + TN

TP + FN + FP + TN
(6)

Precision =
TP

TP + FP
(7)

Sensitivity =
TP

TP + FN
(8)

F1 score = 2× Precision× Sensitivity
Precision + Sensitivity

(9)
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4.2. Fault Diagnosis Results

In this section, fault diagnosis was performed on the experimental data and synthetic
data to evaluate the effectiveness of data augmentation. Figure 9 shows the 1D CNN model
structure that was used for fault diagnosis, and Table 4 indicates the detailed information of
the model. To maintain the uniformity of the research, the same 1D CNN model structure
was applied in all instances of fault diagnosis. Considering complex embedded information
in the random signal, the model is constructed with several Convulotional–Maxpooling
pairs. To activate the nonlinearities from convolution layers, the ReLU activation function
was applied. After extracting features, the dropout layer was added after the dense layer to
reduce overfitting due to its complex model structure.
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Table 4. Detailed information of 1D CNN model for the research.

Network Layer Output Data Size Parameters

Input Layer 1875 × 1 1875 length signal input
Conv1D 1875 × 32 32 @ 3 × 1, stride = 1, activation = ReLU
Conv1D 1875 × 32 32 @ 3 × 1, stride = 1, activation = ReLU

Max pooling 1D 937 × 32 2 × 1, stride = 2, activation = ReLU
Conv1D 937 × 64 64 @ 3 × 1, stride = 1, activation = ReLU
Conv1D 937 × 64 64 @ 3 × 1, stride = 1, activation = ReLU

Max pooling 1D 468 × 64 2 × 1, stride = 2, activation = ReLU
Conv1D 468 × 128 128 @ 2 × 1, stride = 1, activation = ReLU

Max pooling 1D 234 × 128 2 × 1, stride = 2, activation = ReLU
Conv1D 234 × 128 128 @ 2 × 1, stride = 1, activation = ReLU

Max pooling 1D 117 × 128 2 × 1, stride = 2, activation = ReLU
Conv1D 117 × 256 256 @ 2 × 1, stride = 1, activation = ReLU

Max pooling 1D 58 × 256 2 × 1, stride = 2, activation = ReLU
Conv1D 58 × 256 256 @ 2 × 1, stride = 1, activation = ReLU

Max pooling 1D 29 × 256 2 × 1, stride = 2, activation = ReLU
Flatten Layer 1 × 7424 7424 neurons
Input Layer 1 × 7424 7424 neurons

Dense 1 × 1024 1024 neurons
Dropout 1 × 1024 Dropout rate: 0.4

Dense 1 × 512 512 neurons
Dropout 1 × 512 Dropout rate: 0.4

Dense 1 × 128 128 neurons
Dropout 1 × 128 Dropout rate: 0.4

Dense 1 × 3 128 neurons
SoftMax 1 × 3 Classification Layer

For the 1120 signals in the experiment, they were randomly divided into 60%, 20%,
and 20% for training, validation, and testing of the model while maintaining the proportion
of the data for each class. After generating synthetic signals with the WGAN model, as
written in Section 3.2, they were used for training and validation data with the same 1D
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CNN model structure. For each health state, 3000 signals were generated, 9000 in total.
Then, synthetic signals were randomly divided into a 60% allocation for training data and a
40% allocation for validation data while maintaining the class proportion. To demonstrate
the enhanced fault diagnosis performance, the test dataset for the experimental data case
was used for both cases. Because the data were divided randomly, test data may contain
some identical data used for data augmentation. However, this fault diagnosis result could
bring meaningful conclusions for the solution of the data imbalance problem.

The test results are shown in Figure 10. For the experimental data case, because of
the severe data imbalance problem, the training process of the 1D CNN model is biased
for a healthy state, dropping the fault diagnosis performance of fault states, as shown in
Figure 10a. This bias caused the 1D CNN model to diagnose the fault state improperly,
showing inferior fault diagnosis performance. The test result for synthetic data is depicted
in Figure 10b. Compared to the results from the experimental data, the performance for
the healthy state decreased slightly. However, the classification results for faulty states
increased dramatically; 23 cases were predicted correctly out of 24 cases. From this, it could
be concluded that the proposed data augmentation technique increased the overall fault
diagnosis performance.
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At first glance, the accuracy seems to show only a negligible improvement, rising from
89.29% to 91.96%. However, the other metrics, precision and sensitivity, showed much-
improved outcomes. The precision surged from 29.76% to 74.10%, while the sensitivity
soared from 33.33% to 94.39%. These differences in results across the metrics derive from
the imbalanced nature of the dataset. Imbalanced datasets can often lead to misleading
accuracy metrics, as the model might perform very well on the majority class but poorly
on the minority class. In such cases, precision and sensitivity provide a more accurate
understanding of the model’s performance, especially in identifying and classifying the
underrepresented class.

4.3. Comparative Analysis

To demonstrate that the WGAN model is the best solution for addressing the data
imbalance problem in the vibration signal, a comparative analysis was conducted between
the WGAN model and the other methods of ADASYN, SI, and GAN. Table 5 describes
the model parameters of the GAN model. The same structure of the discriminator and
generator as the WGAN model was used and the corresponding parameters were adjusted
by trial and error. Through the parameter optimizing results, it was observed that even
though the same discriminator and critic models were utilized, the parameters were
completely different according to the type of loss function.

227



Appl. Sci. 2023, 13, 11837

Table 5. Model parameters of the GAN model for each health state.

Healthy Delamination 1 Delamination 2

Beta 1 0.5 0.5 0.5
Beta 2 0.999 0.999 0.999

Learning rate 1 × 10−3 1 × 10−3 1 × 10−3

Epoch 1200 1200 1200
Batch size 8 8 8

Table 6 shows the number of synthetic data for each method. Basically, the ADASYN
algorithm is an oversampling method, which means that it can only generate minority class
data, the D1 and D2 cases in this research. Therefore, the total amount of data is different
from the other methods. For all the methods, synthetic data instances were randomly
divided into 60% and 40% for training and validation while maintaining the proportion of
each class.

Table 6. The number of synthetic data for training and validation using the different methods.

Healthy Delamination 1 Delamination 2

Experimental data only 800 48 48
ADASYN 800 793 798

SI 3000 3000 3000
GAN 3000 3000 3000

WGAN 3000 3000 3000

Table 7 shows the fault diagnosis results for the same test dataset as Section 4.2. The
accuracy of the WGAN model was the highest result at 91.96%. Also, the experimental data-
only case has relatively higher accuracy than the other methods. As mentioned above, this
originates from the data imbalance. The majority of the class data was classified properly;
thus, the accuracy itself turned out to be high. For precision, ADASYN was the highest, at
77.80%, with a difference of 3.70% compared to the WGAN model. For sensitivity, WGAN
had the highest value at 94.39%, which is 3.11% higher than the ADASYN. By comparing
the precision and sensitivity of the ADASYN and WGAN, WGAN seems to have a better
ability to identify fault states properly. The health state data for ADASYN may be classified
more properly than that for WGAN, and this point brought higher precision in ADASYN
but lower performance in sensitivity. For the F1 score, ADASYN and WGAN were the
highest at 0.81.

Table 7. Fault diagnosis result of each oversampling and augmentation method.

Accuracy (%) Precision (%) Sensitivity (%) F1 Score

Experimental data only 89.29 29.76 33.33 0.31
ADASYN 90.63 77.80 91.28 0.81

SI 5.80 35.13 35.00 0.04
GAN 86.61 53.83 55.83 0.55

WGAN 91.96 74.10 94.39 0.81

For overall analysis, the synthetic data generated with SI seems not to be proper for
this research because all evaluation metrics were much lower than the other methods. In the
case of ADASYN, because of the characteristic of oversampling, real data are contained in
the training and validation datasets, while the rest of them are only composed of synthetic
data. This could increase the fault diagnosis performance compared with the others. For
the ADASYN, GAN, and WGAN cases, the evaluation metrics increased significantly
compared to the experimental data case, but the WGAN model showed the best evaluation
metrics, which means that the WGAN model can generate signals that contain dynamic
characteristics that are the same as real signals.
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5. Conclusions

This study addresses the time-series data augmentation technique using the WGAN
model for the solution of the data imbalance problem and fault diagnosis using the 1D CNN
model. For time-series data augmentation, vibration signals were directly used as input data
for the WGAN model. To verify the performance increase in fault diagnosis by applying
the WGAN model, experiments using laminated composite beam specimens to obtain
vibration signals were conducted. For imitation of the data imbalance dataset, 1000 signals
for the healthy state and 60 signals for faulty states were obtained through the experiments,
and a total of 9000 synthetic signals were generated by using the WGAN model. To verify
the enhanced fault diagnosis performance, the results from a 1D CNN model using both
experimental and synthetic datasets were compared. The results demonstrated a significant
improvement in fault diagnosis. Furthermore, a comparative study revealed that data
augmentation with the WGAN model yielded the best diagnostic performance.

In contrast to previous works, this research has simplified the data augmentation and
fault diagnosis process by directly using time-series data as input. The simplification of the
process saves computational resources because both the WGAN and 1D CNN models use
time-series data, which has a smaller data size than the image data. Thus, training time, as
well as predicting time, are also much shorter, which means the enhanced probability of
applications in real-time fault diagnosis. For the last contribution, fault diagnosis could be
performed by inexpensive and simple experiments. The accelerometer is a cheap sensor
among various sensors, which means that data can be obtained efficiently.

Notwithstanding these contributions to the solution of the data imbalance problem
and the fault diagnosis process, some limitations still exist. After the advent of the GAN
model, much research related to GAN has been conducted, but a generalization of the
GAN model for various engineering problems is still one of the critical issues [61]. Thus,
the trial and error process is generally employed to optimize the parameters of GAN
models; however, it is a time-consuming and laborious method. A reasonable technique
or specific standard for optimizing the parameters of the GAN model is essential. For
the next limitation, the 1D CNN model can extract features and diagnose the health state
of the composite system, as mentioned above. However, because the 1D CNN model
is a black box model, it is unclear which part of the signal was considered, especially
for fault diagnosis. To improve this hardship in explainability, the eXplainable Artificial
Intelligence (XAI) algorithm will be used in future work. Through the XAI algorithm, it
is anticipated that the features that are considered more important in the fault diagnosis
process will be identified.

Also, this research focused on evaluating data augmentation performance. For future
research, a generalization of the fault diagnosis model will be conducted. For this purpose, a
large number of specimens with various conditions will be tested. Then, data augmentation
will be implemented for the training dataset to prove that the fault diagnosis model can
accurately classify the data that are not trained for the model.
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Abstract: Industrial processes involving manipulator robots require accurate positioning and ori-
enting for high-quality results. Any decrease in positional accuracy can result in resource wastage.
Machine learning methodologies have been proposed to analyze failures and wear in electronic and
mechanical components, affecting positional accuracy. These methods are typically implemented
in software for offline analysis. In this regard, this work proposes a methodology for detecting a
positional deviation in the robot’s joints and its implementation in a digital system of proprietary de-
sign based on a field-programmable gate array (FPGA) equipped with several developed intellectual
property cores (IPcores). The method implemented in FPGA consists of the analysis of current signals
from a UR5 robot using discrete wavelet transform (DWT), statistical indicators, and a neural network
classifier. IPcores are developed and tested with synthetic current signals, and their effectiveness is
validated using a real robot dataset. The results show that the system can classify the synthetic robot
signals for joints two and three with 97% accuracy and the real robot signals for joints five and six
with 100% accuracy. This system aims to be a high-speed reconfigurable tool to help detect robot
precision degradation and implement timely maintenance strategies.

Keywords: FPGA; positional accuracy; discrete wavelet transform; industrial robot; degradation;
neural networks

1. Introduction

Robotic systems have revolutionized the manufacturing industry by providing un-
precedented accuracy, precision, and speed. Accuracy is critical to ensure the robot can
position and orient itself to the required locations and repeat the task over a long time with
minimal error. One way to enhance the positioning accuracy of the robot is by focusing
on the design stage. For instance, Kelaiaia et al. [1], present a comprehensive review of
optimal design aspects for parallel manipulators and propose a methodology for achieving
the optimal design of such manipulators. Additionally, improving robot performance
indices can contribute to better accuracy. Brahmia et al. [2], propose a new dimensionless
sensitivity index for Parallel Kinematic Manipulators (PKM), based on the definition of the
local sensitivity index (LSI). This index aids in identifying the contribution of error sources
to the positioning error of the manipulator for a given task. By reducing geometric errors
in PKMs, this index can significantly enhance the positioning accuracy of the robot.

Despite their advanced capabilities, robots can still experience accuracy degradation
due to several factors such as environmental conditions, assembly errors, manufacturing
defects in the structure, backlash, and component wear [3]. Therefore, it is essential to
monitor and maintain the accuracy of robotic systems to ensure optimal performance over
time. Different factors involved in the positional degradation of industrial robots and
failures caused by wear in electrical and mechanical components are frequently studied. In
this regard, methods based on machine learning techniques have been proposed to identify
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failures, such as in [4] where the wavelet packet transform (WPT) and the hidden Markov
model (HMM) are used to analyze acoustic emissions (EA) and identify failures in a rotate
vector reducer (RV). A method based on artificial failure data, random forest regression
(RFR), support vector regression (SVR), and deep neural network regression (DNNR) is
proposed in [5] to identify overload anomalies in the robot’s end effector and their effect on
the joints. Moreover, in [6], a simulation of the torque degradation of the actuator of an
industrial robot is carried out, where it is determined that the robot controller cannot deal
with failures of this type. Other works related to methodologies that deal with mechanical
failures in robots can be consulted for gears [7–10] and RV [11].

Recent research on deep learning and fault detection techniques for robots includes
several noteworthy works. In [12], the authors propose a method that combines a sparse
auto-decoder with a support vector machine (SVM) to construct a fault detection model
for the robot’s reducer. They utilize signals obtained from an attitude sensor composed
of an accelerometer, gyroscope, and magnetometer. Another study, presented in [13],
introduces a method based on a one-dimensional convolutional neural network (1DCNN)
with matrix kernels. This approach is designed to diagnose faults in harmonic reducers
used in industrial robots by analyzing vibration signals. In addition, [14] describes a fault
diagnosis method that employs Deep Convolutional Neural Networks (DCNN) to detect
faults in the robot’s joints. The model is trained using a database generated by modeling
the actuators and sensors. Meanwhile, Ref. [15] presents a data-driven approach utilizing
Deep Residual Neural Networks (DRNN) to detect faults in robot joints, also based on
sensor and actuator modeling. Furthermore, Jiao and Zheng [16] propose a method for
detecting joint bearing failures in industrial robots. They utilize deep belief networks (DBN)
to analyze the robot joint vibration signals and identify potential issues.

On the other hand, there have been works that directly address the problem of posi-
tional degradation of industrial robots, e.g., in [3], the dependent errors present in the robot
produced by non-ideal deflections of the structure and movement are characterized using
polynomials of Chebyshev for an advanced error model. Taha et al. [17] use multivariable
regression adjustment (MRA) and deep long short-term memory (DLSTM) to predict and
model the displacement of an industrial robot and to estimate the residual error on the
end-effector. An expert system for detecting a deviation in the joints of a robot is proposed
in [18] and is based on DWT analysis, neural networks, and fractal and energy features.
Additionally, methods based on artificial vision systems to carry out studies on the de-
viation of the robot have been proposed in [19–22], they have even been complemented
with re-calibration methods through kinematic analysis of the robot as the work presented
in [23].

It is important to note that some of the presented methods involve performing analysis
on personal computers (PCs) after the necessary data acquisition, thus operating offline.
Therefore, integrating robot failure or position degradation analysis methods into reconfig-
urable processing systems, such as Field Programmable Gate Arrays (FPGAs), provides the
opportunity to perform non-invasive information analysis, online or offline, quickly and ef-
ficiently. In this sense, it is worth noting that numerous FPGA-based approaches have been
developed tailored for robotics. For example, Sun et al. [24] propose an FPGA-based torque
predictor control focused on legged robots. The torque estimation is performed considering
the delay in the calculation and measurement, improving the prediction and period of the
controller, and obtaining a better controller performance. The acceleration of the kinematic
models of a 6-degree-of-freedom (DOF) robot arm implemented in FPGA is presented
in [25], emphasizing the inverse kinematic model required in the robot motion. The speed
and accuracy of the processing of the proposed method demonstrate its effectiveness in
real-time robot motion. Besides, the implementation in FPGA of a control system for a
3DOF robot with pneumatic actuators is presented in [26]. Proportional integral derivative
controllers (PID) are used for air valve management and position control of the robot. As
well as a neural network is used to tune the position controller gains, and although it
obtains some disturbances attributed to the ANN tuning process, the results are satisfactory.
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Liu et al. [27] introduced a balance controller for a humanoid robot. The system, imple-
mented on an FPGA, comprises several stages, including external force detection, recovery
balance control, trajectory planning, and inverse kinematics. Their method enables the hu-
manoid robot to effectively recover its balance after experiencing external force. In addition,
in [28], a method based on artificial vision is proposed to detect the deviation in a conveyor
belt in real time using FPGAs and the Line Segment Detection algorithm (LSD), obtaining a
high value of images processed per second, which improves the performance in real-time
of the fault detection method. There have also been developed works focused on modular,
reconfigurable robots (MRR) as [29], where a distributed computing system for multiple
object tracking based on FPGA and Kalman filters is presented. It uses specialized compu-
tational cores (SCCs) and a strategy to use the least amount of FPGA resources for real-time
motion control tasks of MRR. They reconfigure the FPGA by replacing complex models
with simpler SCCs to reduce power consumption. The results show better performance,
resource usage, and computational accuracy than high-performance CPUs. Furthermore,
Plancher et al. [30] propose implementing the dynamic model of robots on CPU, GPU,
and FPGA through the Recursive Newton-Euler Algorithm (RNEA) computation. The
results demonstrate the superior performance of the GPU and FPGA over the CPU as
the number of computations increases. Furthermore, works have also been developed
on manufacturing equipment such as computer numerical control machines (CNC); for
example, Ref. [31] proposes an anomaly detection system in the milling process based on
FPGA. The extraction of features in the frequency domain of machine vibration signals is
performed using discrete Fourier transform (DFT), and this information is used to enter
an auto-associative neural network (AANN) for anomaly detection, reporting satisfactory
results offline. Other recent FPGA applications in robotics are agricultural robots [32],
reactive robotics [33], and grasping recognition [34], among others. The works presented
have demonstrated the usefulness and advantages of using FPGA processing systems in
robotics problems.

Considering the importance of the robot to perform tasks without losing its accuracy,
some of the mentioned works that address the issue of positional degradation and fault
detection require the use of external sensors such as cameras, lasers, or microphones to
acquire the signals for analysis. These external sensors can work correctly in controlled
environments, but in real environments, they are affected by various conditions such
as sensor size, noise, illumination, temperature, and humidity This makes it difficult
to implement in an industrial environment; however, a portable device of a small size
equipped with the necessary components to perform signal acquisition and real-time
processing presents an alternative to traditional methods of signal acquisition where data
processing is performed offline. In this sense, FPGA-based digital systems are an option to
perform the task of data acquisition and processing in a single, non-invasive device and
have the advantages of reconfiguration and high processing speed

In this context, the contribution of this work lies in proposing a methodology to
detect positional degradation in industrial robot joints that is suitable for implementation
in FPGA-based digital systems. The approach involves analyzing the current signals
of their actuators to identify any anomalous behaviors that may result in end-effector
deviation. For this purpose, the current signals from the robot actuators are generated
synthetically by modeling the UR5 robot dynamics. The synthetic dataset contains signals
with and without deviation. Then different noise levels (5 dB, 10 dB, 15 dB, and 20 dB)
are added to the signals to enhance the method’s robustness. Subsequently, the current
signal is processed for a time-frequency analysis using the DWT. Then statistical indices
are computed for the two last levels of decomposition. Finally, a neural network is trained
using the indices data to classify each robot joint. The proposed method is implemented
in a digital system board FPGA-based proprietary design and validated using a real UR5
robot dataset. For the synthetic case, the results show that the proposed method can classify
the states of the robot’s operation with and without deviation for the joints with more
significant intervention in the task. The results obtained with the real-world dataset (joint
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five) are supported by results reported in the literature. Implementing the method in
FPGA allows a quick classification of less than one second for all the joints of the robot,
providing a functional system with the advantage of being a high-frequency operating
system, reconfigurable, portable, and energy efficient.

2. Materials and Methods

The techniques used to carry out the proposed methodology and its implementation
in a digital system based on FPGA are presented below. A general review of robot theory,
the DWT time-frequency analysis technique, statistical indicators, and a quick look at
neural networks are conducted. On the other hand, a general description of the FPGA
device used for this work is made.

2.1. Robot Overview

The robot used for this paper is the UR5 robot by Universal Robotics; a graphic
representation of the robot is presented in Figure 1a,b.

Figure 1. (a) UR5 robot arm (figure generated using the library Robotics Toolbox for Python [35]).
(b) DH parameters for robot link lengths (c) Standard DH graphical representation.

It comprises six rotational joints providing six degrees of freedom. To approximate
the robot motors’ currents, the robot’s dynamic model and the torque-current relationship
are proposed to estimate the currents synthetically.

The Denavit-Hartenberg (DH) parameters presented in Table 1 allow the description
of the robot through four characteristics that enable the calculation of the positions of the
different joints of the robot using transformation matrices obtaining the kinematic model,
for which it is recommended to review the following source for the forward and inverse
models [36].

For Table 1 values, using DH notation Figure 1c:

• θi is the angle between the axes xi−1 and xi around zi−1, taken as positive in a counter-
clockwise rotation. The yi axis is located according to the right-hand rule.

• di is the coordinate of O′i along the axis zi−1.
• ai is the distance from Oi to O′i .
• αi is the angle between zi−1 and zi around xi, taken positive in a counter-clockwise

rotation.
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Table 1. Denavint-Hatenberg parameters for a UR5 manipulator.

Joint θi (rad) di (m) ai (m) αi (rad)

1 θ1 0.089159 0 π/2
2 θ2 0 −0.425 0
3 θ3 0 −0.039225 0
4 θ4 0.10915 0 π/2
5 θ5 0.09465 0 −π/2
6 θ6 0.0823 0 0

On the other hand, the dynamic model of the robot allows for estimating the robot’s
behavior considering the forces present in the system. Equation (1) describes the motion of
the robot

D(q)q̈ + C(q, q̇)q̇ + g(q) = τ, (1)

and it is composed by the inertia matrix D(q), Coriolis and centrifugal matrix C(q, q̇),
gravity vector g(q), torque vector τ,the articular position q, velocity q̇, and acceleration q̈
vectors. To implement the model, it is necessary to know additional information about the
physical properties of the joints and motors.

Table 2 shows each joint’s mass parameters, the center of mass coordinates, and the
corresponding inertia tensor.

Table 2. Dynamic parameters for the links of a UR5 robotic arm.

Link Mass (kg) Center of Mass xyz (m) Ixyz (kg m2)

1 3.7
[
0 −0.02561 0.00193

] [
0.00375 0.00765 0.00765

]

2 8.393
[
0.2125 0 0.11336

] [
0.0085 0.208 0.208

]

3 2.33
[
0.15 0 0.0265

] [
2.46× 10−4 0.00719 0.00719

]

4 1.219
[
0 −0.0018 0.01634

] [
9.09× 10−4 0.00119 0.00119

]

5 1.219
[
0 0.0018 0.01634

] [
9.09× 10−4 0.00119 0.00119

]

6 0.1879
[
0 0 −0.00159

] [
1.22× 10−4 8.21× 10−5 8.21× 10−5]

Table 3 shows the parameters corresponding to the motor inertia Jm, gear ratio G,
drive viscous friction B, and Coulomb friction Tc.

Table 3. Dynamic parameters for the motors of a UR5 robotic arm.

Link Jm (kg m2) G B (Nms rad−1) Tc [−,+] (Nm)

1 1.87× 10−8 101 1× 10−4 [
0.076 −0.076

]

2 1.87× 10−8 101 1× 10−4 [
0.083 −0.082

]

3 1.87× 10−8 101 1× 10−4 [
0.078 −0.077

]

4 2.7× 10−5 101 1× 10−4 [
0.014 −0.014

]

5 2.7× 10−5 101 1× 10−4 [
0.020 −0.019

]

6 2.7× 10−5 101 1× 10−4 [
0.020 −0.021

]

Note that the manufacturer provides all the parameters, except the drive viscous
friction B, in different media and can be consulted in summary form in [37]. Parameter B
has been proposed in a heuristic way since the calculation and modeling of the friction for
the joints of the robot are outside the main objective of this work.

From the Equation (1) τ also can be expressed in terms of the relationship between
torque and current (2):

τ̂ = Ktiiai, (2)

where τ̂ is the estimated torque of the model considering the effects of friction and without
the intervention of external forces, Kti and iai are the torque constants, and the motor
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current for the joint i, respectively. To estimate the motor current from the torque, a linear
model proposed in [38] is used, where the torque constants and an offset are obtained,
with which they establish a relationship between the modeled torque and the measured
current. These parameters are proposed to compute the inverse process and estimate the
motor current from a modeled torque. Equation (2) is reformatted as Equation (3):

τ̂ = KT
ti iai + bi, (3)

where the term bi represents the offset of the linear model for the respective joint i.
The values of the parameters for KT

ti = [7.5, 6.8, 7.1, 2.8, 3.2, 3.4], and for bi = [−0.61, 16,
4.5, 0.84, 0.064, 0.099].

The UR5 robot is commonly utilized in cooperative tasks and robotics research projects.
Additionally, there are toolboxes available for different platform software which facilitates
programming and controlling the robot. Moreover, there exists a publicly accessible dataset
specifically based on this robot, which has been utilized for exploring and studying robot
accuracy degradation.

2.2. Discrete Wavelet Transform

The discrete wavelet transform (DWT) is a mathematical method that gives time-
frequency information of a signal [39]. The signal is separated into different frequency
bands by passing through a filtering process. The process involves convolving the signal
of interest with a transform function known as the mother wavelet, which determines the
parameters of the high-pass and low-pass filters. In simpler terms, DWT allows a signal to
be separated into its frequency components, which makes it possible to identify frequency
changes over time. The complete process consists of two stages; first, the calculation of the
approximation and detail coefficients is made, and second, the signal at the required level
of decomposition is reconstructed using the coefficients of the previous stage in a process
known as inverse DWT.

Equation (4) defines the DWT of a discrete-time signal x(k) with k samples, and ψ
represents the discrete mother wavelet used for decomposition level i

DWTik = ∑ x(k)ψi,k(t). (4)

The selection of the wavelet mother family depends on the application; the most
common families are Meyer, Haar, and Daubechies, among others. The Daubechies family is
used in this work due to its characteristics of the higher number of vanishing moments [40],
compact support in the frequency domain, and conserving the energy of the signal [41].

DWT algorithm consists of the following steps and is represented in Figure 2a,b:

• Define the wavelet mother function or wavelet basis and the decomposition level i to
be used.

• The wavelet mother function provides the high-pass g[n] and low-pass h[m] filter
coefficients.

• Perform the convolution operation between the signal x[n] and the filters to separate
the signal into high and low-frequency bands.

• Downsample by two filtered signals obtained in the previous step, keeping the even-
indexed samples.

• The outputs of filtering and downsampling the signal provide the detail vector di
and the approximation vector ai of the high-pass and low-pass filtering, respectively,
at each decomposition level i.

• Repeat the filtering and downsampling process using the previous approximation
output as input for the next decomposition level until all levels are completed.

• To reconstruct the approximation and detail branches of the signal for a specific level i,
upsample the corresponding coefficient vectors ai and di by a factor of 2 (adding zeros
in the positions of the removed samples in the downsampling process, if necessary).
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• Apply the corresponding time-inverse high-pass g′[n] or low-pass h′[m] filter coeffi-
cients.

• The signal reconstruction x′[n] is obtained by the inverse process using the last ap-
proximation vector ai and all the detail vectors di, i = 1, 2, . . . , i.

Figure 2. Block diagram of (a) DWT decomposition process of a signal x[n]. (b) Inverse DWT
reconstruction diagram of a signal x′[n].

DWT’s recent applications include condition monitoring of slew bearings [42], evalua-
tion of plant growth status [43], and wind power prediction [44].

Robot operating conditions in industrial environments involve different factors such
as disturbances, noise, temperature, humidity, and others. The acquisition of robot signals
in a noisy environment requires the use of signal processing techniques to handle the
noise. In this sense, it is necessary to perform an analysis of the signal of interest to
determine, depending on its characteristics, which type of techniques to use, such as high-
pass or low-pass filtering. On the other hand, time-frequency analysis techniques such
as DWT allow the separation of the original signal into different parts that are already
filtered while preserving the original characteristics of the signal. DWT is used in this
work because it allows for the decomposition of a signal into different frequency bands
using a series of filters, which is useful when dealing with noisy signals. Each frequency
band can be independently analyzed, compressing the signal information and reducing
the computational burden for further analysis. Additionally, the DWT algorithm and its
inverse can be converted to matrix operations, facilitating its implementation in FPGA-
based digital systems.

2.3. Statistical Indicators

Statistical indicators are used to find characteristics that help to know the behavior of a
dynamic system. For this, they are applied to the signals of interest, and through these, it is
possible to determine if there are changes or variations in the system at different moments
in time. In this sense, the statistical indicators proposed in this work are the root mean
square (RMS) value and the variance.

The RMS and variance metrics are useful for identifying patterns or anomalies within
a signal. On one hand, RMS provides information about the signal’s amplitude or en-
ergy, while variance focuses on the signal’s dispersion around the average amplitude.
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Additionally, the calculation of both metrics is similar and can be easily implemented in
an FPGA-based system. This allows for the optimization of the structure to perform the
calculations of both metrics without the need for separate structures.

These indicators have been widely used in applications such as fault diagnosis in
transformers [45] and bearings [46], among others.

The Root Mean Square (RMS) defined by Equation (5) value of a dataset or a discrete-
time waveform is the square root of the arithmetic mean of the squares of the values

RMS =

√√√√ 1
N

N

∑
i=1

x2
i . (5)

The variance measures the dispersion of a data set with respect to the mean and is
defined by the Equation (6)

σ2 =
1
N

N

∑
i=1

(xi − µ)2. (6)

2.4. Artificial Neural Network

Artificial neural networks (ANN) emulate the computational processes performed by
neurons in the human brain, using mathematical models. At the core of an ANN is the
fundamental building block known as a simple perception and its structure is shown in
Figure 3a.

Figure 3. (a) General diagram of a simple perceptron. (b) Simplified diagram of an artificial neural
network, the connections between layers represent a multi-layer perception network.

A simple perceptron is a mathematical unit that represents a neuron. It takes in a vector
input x of size m and performs a series of operations. First, the input vector is multiplied
by a weight vector w, and the products are then summed together with a bias coefficient
b. The resulting value is then passed through an activation function f (·), such as binary
step, linear, sigmoid, or hyperbolic tangent, to produce the output y. An Artificial Neural
Network (ANN) consists of a collection of interconnected basic perceptions. The most
common is the multi-layer perceptron (MLP), which is a network where all the neurons in
the input, hidden, and output layers are interconnected. This configuration is shown in
Figure 3b.

ANNs find utility in classification, learning, and pattern recognition tasks and are
extensively employed across various scientific domains. For instance, some of their recent
uses are the early diagnosis of breast cancer [47] and the combination with bio-inspired
algorithms to improve the ANN training process [48].

Specifically, MLP possesses favorable attributes such as straightforward implementa-
tion, efficient training time, and the ability to generate high-quality models [49]. Addition-
ally, the hardware implementation of MLP is relatively simple compared to other neural
network architectures. Consequently, this work proposes the utilization of MLP based on
these advantageous characteristics.
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2.5. Proposed Methodology

The proposed methodology to determine if there is a deviation in the joints of a
manipulator robot through the analysis of its motor currents is presented in a general way
in Figure 4.

Figure 4. General diagram of the proposed methodology.

In this work, it is considered that the calibration conditions of the robot, as well as
its electromechanical components, are in optimal operating conditions. However, robot
calibration is a procedure that is performed with external sensors or with the tools provided
by the manufacturers. In this sense, the implementation of robot calibration algorithms
in FPGA involves not only the implementation of these but also the development and
implementation of control or communication systems to operate the robot along with all
subsystems that this entails, this aspect is subject to the limitation of the logical resources
of the FPGA device and the resolution of the processing of fixed point operations and it is
beyond the scope of this work.

The proposed method starts with the database of the robot to be analyzed; for this,
a synthetic and a real-world dataset are used. The current signals of the robot motors are
required when performing a repetitive trajectory or task for a prolonged time. Signals are
acquired at two different moments: at the beginning of the trajectory or task and hours after
the task’s start. In this way, the dataset contains signals with different operating conditions,
named cold operation (CO) for the initial state and hot operation (HO) for the second state.
Figure 5a–f shows the real-world dataset motor current signals of joints one to six during
the CO state.

In the pre-processing of the signals to provide robustness to the method, different
noise levels are added to the signals in the dataset. These noisy signals are then employed
in subsequent process stages as a dataset. The noise levels used are 5 dB, 10 dB, 15 dB,
and 20 dB. Figure 6a,b show the current signal for CO and HO states from the real-world
dataset, respectively, both with 5 dB of noise.
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Figure 5. Real-world dataset current joints signal. Plots (a–f) show the signal for joints one to six.

Figure 6. Real-world dataset joint one signal with 5 dB of noise. (a) CO state signal. (b) HO state signal.

Subsequently, the signals are divided into windows of 256 samples. In this point
according to Figure 4, there are two branches; the first branch involves the implementation
of the proposed method through software simulation, and its description is provided
below. The second branch focuses on the hardware implementation of the method using
an FPGA-based system, and this aspect is covered in the subsequent section. Since the
DWT maintains the characteristics of the original signal through the different frequency
bands, the windowed signals are processed with the DWT to find differences associated
with the joint deviation of the robot. The wavelet mother Daubechies order six is used to
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perform the analysis. However, as shown in [18], only the first four levels are considered
relevant for the analysis due to the amplitude and narrow frequency bands of the last two
decomposition levels. Additionally, due to the FPGA system memory resources, and the
DWT soft-core functionality, only levels three and four are used for the analysis. Figure 7
presents the DWT decomposition at level four for the joint one, with 5 dB noise added from
the real-world dataset. Figure 7a,b represent the approximation and details of the CO state,
respectively. On the other hand, Figure 7c,d display the results for the HO state.

Figure 7. Real-world dataset joint one with 5 dB of noise DWT decomposition level 4. (a) CO state
signal approximation components. (b) CO state signal details components. (c) HO state signal
approximation components. (d) HO state signal details components.

Afterward, for the approximations and details of levels 3 and 4 of each signal, the RMS
and variance indices are calculated; this process is repeated with each window that makes
up the original signal. Subsequently, the indicators corresponding to each signal are
averaged over the number of windows. This process is applied to each signal in the dataset,
and the obtained indices are used for training, validation, and testing of a classifier based
on ANN. To perform the complete robot analysis, the above process is replicated for each
robot joint exploiting the FPGA’s concurrent processing capability. In this case, for a UR5
robot, there are six classifiers based on ANN. In this way, each classifier keeps a simple
configuration and the resource consumption for the hardware implementation of the whole
process is kept below the capacity of the proprietary FPGA board.

Finally, the soft-cores for DWT, statistical features calculation, and neural network
classifier are developed to validate the method implementation in an FPGA system, and the
classifier results are displayed to the user in a command line terminal. The proposed
methodology is tested in two synthetic and one real scenario for this work. For the
synthetic scenario, the robot’s database is obtained through the dynamic modeling of the
robot and its simulation, performing a parametric trajectory as shown in Figure 8a.
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Figure 8. Trajectories followed by the robot. (a) Synthetic case. (b) Real case.

The trajectory parameters presented in Equation (7) are the radius of the helix r = 0.1 m,
the final height b = 0.025 m, the frequency of the helix f = 2, and time t = 8.1920 s.

x = 0.6 + rcos(2π f t), y = rsin(2π f t), z = 0.1 + bt. (7)

The sampling frequency of the UR5 robot is 125 Hz; therefore, with the above pa-
rameters, the synthetic signals of the simulated robot have a total of 1024 samples. In
the synthetic scenario, one data set consists of the trajectory signals without deviation,
which is the initial CO state. Six different data sets are generated for the HO state, and the
deviation at each of the different joints of the robot is added. A sinusoidal signal is added
to the robot’s joint position signal obtained by following the helix trajectory to simulate the
deviation. The sinusoidal signal has a randomly generated amplitude of 1 to 10% of the
maximum amplitude value of the robot’s joint position signal, a frequency of f = 2, and a
time of t = 8.1920 s. This way, six HO datasets with 50 synthetic signals are obtained; each
set contains random deviation levels in different joints. Each signal in the dataset generates
ten additional signals for each noise level by adding white Gaussian noise (5 dB, 10 dB,
15 dB, and 20 dB), resulting in 2000 signals for each HO state dataset. For the CO dataset,
one signal without deviation is processed similarly to obtain 500 signals per noise level.
Combining the HO and CO datasets gives 4000 signals for the cases with joint deviation.

On the other hand, for the real case, a public-access dataset provided by the National
Institute of Standards and Technology (NIST) is used [50]. Different speed levels test for
the robot are provided in the dataset (50% and 100% speed). In this work, the dataset
corresponding to the 100% speed of the robot is used. Like the synthetic case, the robot
used is the UR5. The signals from the robot actuators were received at the controller level.
The frequency was 125 Hz.

Figure 8b presents the trajectory used in this dataset. The robot continuously follows
the trajectory with a weight of 4.5 lb on its end-effector for approximately 2 h. The CO
status signals are captured when the robot has just started, and the HO status signals are
obtained after 2 h of continuous operation. Three signals are provided for each robot’s
operation state: CO and HO, and the size of the signals was adjusted to obtain exact powers
of 2 and to divide each signal into three parts of 2048 samples for a set of nine signals for
each CO and HO state.

As was done with the synthetic dataset and to augment the dataset size, 50 new signals
are generated from each of the nine original signals by applying white Gaussian noise
at each noise level. This results in 3600 signals, with 1800 for each HO and CO data set.
For each signal in the data set, the approximation and details of levels three and four are
used to calculate the variance and RMS features, which means that each signal has eight
features that are used as input to the neural network. So the datasets have a size of 4000 × 8
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and 3600 × 8. For the neural network classifier, the datasets are split as follows: 70% for
training, 15% for validation, and 15% for testing. The neural network comprises one input
layer of size eight, a hidden layer of 16 neurons, and an output layer of size two. Besides,
it is trained for 1000 epochs, using the Adam optimizer and the mean square error loss
function. The activation function for the hidden and output layers is sigmoid.

With the dataset of the synthetic and real scenarios prepared, we proceed to describe
the hardware implementation of the proposed method.

2.6. Positional Accuracy Degradation FPGA Implementation

Figure 9 shows a block diagram of the hardware implementation of the proposed
methodology to determine if there is a deviation in the joints of the robot through the
analysis of motor currents.

Figure 9. General scheme of the FPGA implementation of the proposed method.

Starting from the fact that there is a dataset of current signals from the robot’s mo-
tors, as previously mentioned, the signal to be processed is divided into windows; these
windowed signals are stored in the RAM of the processing card. The signal information
corresponding to its first window is loaded into the FPGA. Then DWT coefficients corre-
sponding to the first stage are loaded, and the DWT process is performed in the FPGA for
that particular stage. Subsequently, information on the frequency band obtained in this
process is moved to the calculation process of the RMS and variance statistical indicators.
The indicators obtained are saved in the device’s RAM at the end of the calculation. Later,
the previously described procedure is repeated until the four stages, which correspond to
the approximation and detail of decomposition levels three and four, are completed.

When the calculation and storage of the statistical indicators of the approximations
and details of levels three and four have been completed, they are moved to the FPGA
processing of the classifier based on neural networks, where the classification obtained
with the network is stored in the memory of the device. Subsequently, the window signal
for the next joint is loaded, and the entire process is repeated until all six articulations have
been completed.

245



Appl. Sci. 2023, 13, 8493

Figure 10 shows the general configuration of the system used to carry out the hard-
ware implementation.

Figure 10. General diagram of the FPGA system.

The system comprises firmware processing containing 16-bit microprocessor modules,
direct memory access (DMA), and Static Random Access Memory (SRAM). Whereas the
hardware processing part comprises the DWT, statistical, and neural network models
connected to the firmware processing through the data bus. Below are the modules corre-
sponding to the main processes implemented in the FPGA, such as the DWT, the calculation
of statistical indicators, and the neural network.

The proposed methodology was implemented in a digital system using a low-cost
proprietary designed board that is based on an FPGA. This framework is specifically
designed for in-situ online data processing, eliminating the need for external communi-
cation with other systems for data processing. The board is equipped with a low-cost
Spartan 6 XC6SLX45 FPGA with a clock frequency of 48 MHz; it also features static
random-access memory (RAM), communication ports such as the universal serial bus
(USB), and universal asynchronous receiver transmitter (UART), power management,
and flash memory. A 16-bit xQuP01v0 processor is embedded in the FPGA, besides an
interconnection in-system bus (ISB), both proprietary designs; a broader description of the
applications of the FPGA-based proprietary board can be found in [51,52]. The input data
used in the system is scaled to an input range of [−2, 2), and signal data are converted to a
binary stream in 2.14 fixed-point format saved in onboard flash memory. As the process
is executed, the microprocessor embedded in the FPGA uploads the data from the flash
to the hardware calculation units and, when finished, reports the result via a USB to a
user interface.

2.6.1. DWT Soft-Core FPGA Module

The DWT soft-core module calculates the decomposition of a signal in different
approximation and detail frequency bands and performs the original signal reconstruction.
This process is realized through a matrices multiplications. Figure 11 shows the module’s
architecture for the DWT process.
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Figure 11. Architecture diagram of the DWT soft-core.

Within this module, the data corresponding to the windowed signal of 256 samples
and the coefficient module are read from RAM. The coefficients module contains the
wavelet matrices with wavelet filter values for approximations and details of levels three
and four of the mother wavelet Daubechies order six. The “W. coef.” module stores the
wavelet coefficient vectors obtained by multiplying the wavelet matrix with the input
signal. For reconstruction, the stored data in “W. coef.” is read and multiplied by the
transposed wavelet matrix corresponding to the respective level, approximation, or detail.
These matrices are stored in “coefficients” in RAM. The result of the decomposition and
reconstruction of the frequency bands is saturated at 16 bits and is stored in the “Data” and
“W. coef.” modules. Figure 11 depicts the bit size changes after each operation. A finite state
machine (FSM) controls the signal decomposition and reconstruction process selection. It is
done through the SEL signal and memory addresses of the coefficients, data, and wavelet
coefficients modules. The address counters contain this information, and the FSM chooses
the active module using the OPC signal. The STR signal indicates to FSM the beginning
of the process, and once it is completed, the RDY signal is activated. To write and read
memory, the modules use the WRC, WR, RD, and RDC signals. DWT module performs the
process for the approximations and details of levels three and four of the signal stored in
“Data”. Once the process is finished, the reconstructed frequency bands are transferred to
the statistical module for further processing.

2.6.2. Statistics Soft-Core FPGA Module

The Statistics soft-core module calculates a discrete input signal’s RMS and variance
features. The module comprises a single structure, and different indicators can be calculated
by changing the data path. Figure 12a shows the general diagram of the architecture of
the statistics module. It comprises three blocks: a first-input first-output memory storage
block, the Datapath block where the index calculation is carried out, and an FSM block that
conducts the operation of the process.
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Figure 12. Architecture Statistics soft-core. (a) General core diagram. (b) Datapath module.

In the initial process, when the STR signal is activated in the FSM, the choice of
the statistical indicator to be calculated is made with the OPC signal. At the end of the
calculation, the RDY flag is activated. The input data to the module (Din) is stored in
memory in the FIFO block to enter the Datapath block later, and the Do1 and Do2 outputs
obtain the calculation of the index.

The process carried out within the datapath block is shown in a general way in
Figure 12b; it consists of four sections: subtraction, powers, accumulation, and adjustment.
A subtraction is performed between the sample xi, or the absolute value of the sample
|xi|, and the mean of the input signal x̄. Subsequently, in the powers section, the result
obtained in the subtraction is raised to different powers, as the case may be, from the first
to the fourth power. The accumulated value of the previous operation is stored in the
accumulator and divided by the number of samples N. Finally, the result is saturated to
adjust the required bit size and is output by y1; if it is necessary to apply the square root,
the output is made by y2.

Figure 13a shows the module Datapath configured to calculate the variance for an
input signal x; the connection is highlighted in red, and the operation’s progress is observed
in the different sections of the module.

Figure 13. Statistical features modules. (a) Variance module operation path. (b) RMS module
operation path.
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First, the difference between the sample and the mean of the signal is calculated;
second, it is squared in the powers section, the accumulation is divided by the number
of samples, and after saturation, the indicator completed by the output y1 is obtained. To
calculate the RMS index, the process is presented in Figure 13b, wherein the subtraction
section of the IPcore of the sample xi is subtracted with a zero, which does not modify
the value of the sample, then it is squared. In the powers section, the accumulated value
is divided by the number of samples; at saturation output, the square root is calculated,
and the result is delivered by y2. When the indicators of the approximation and detail
frequency bands of levels three and four have been calculated (eight indicators), they are
moved to the neural network-based classifier module.

2.6.3. Neural Network Soft-Core FPGA Module

The neural network soft-core module performs the process of a trained network for
classification; a description of its components is provided below. Figure 14a shows the
general diagram of a simple perceptron.

Figure 14. (a) Architecture diagram of a simple perceptron. (b) Diagram of neural layer core.
(c) Neural network layer architecture diagram.

It is composed of a multiplier where input xi is multiplied by the weights wji, where
i represents the input number, and j is the weight number. A register accumulates the
result, and the bias bj is added. Afterward, the operation result is saturated to maintain
the required bit size, and the activation function, contained in a look-up table (LUT), is
continued. Finally, the output is delivered via yi.

Figure 14b shows a general diagram of a set of perceptrons composing a neural
network layer. This module comprises different blocks: a block of weights, a block of
counters, FMS, bias, and an activation function. The block of weights contains the weights
wMN corresponding to neuron M and N number of neurons in the layer. Furthermore,
the counters block counts the number of neurons and their corresponding weights. The
bias block contains the biases for M neurons. Additionally, the activation function block
performs the procedure described above in the perceptron, and the FMS directs the entire
layer process. Signal STR indicates the start of the calculation, RD and WR are signals for
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reading and writing data in memory, and the RDY signal indicates that the calculation
is complete. Figure 14c presents the general diagram of the classifier based on neural
networks. In this network configuration, an input layer stores the data xN that the network
will evaluate in the FIFO 0 register through the Din input and the WR signal to control
write enable in memory. The process starts when the STR signal is high, and the xi samples
enter the structure presented in Figure 14b through the RD signal. Moreover, the hidden
layer’s output is stored in FIFO 1 register by the signal WR. Once all the samples are
complete, the RDY signal goes high and activates the next layer. The output layer of the
network receives the data stored in FIFO 1 and performs the same process as mentioned
in the hidden layer. The layer’s output is stored in the FIFO 2 register as the input data is
processed. These are accessible when the output layer RDY signal is high and are readable
by Dout and the RD control signal. Weights and biases of the hidden and output layers
and the activation functions are stored in the device’s RAM. Neural network configuration
consists of an input layer with eight inputs, a hidden layer of 16 neurons, and an output
layer with two outputs; the activation functions are sigmoid. Neural network training was
carried out in software independently, and the values of weights and bias were stored for
use in the FPGA device.

3. Results and Discussion

The results of the proposed methodology to determine joint deviation in the robot
using motor current analysis are presented below. The results are shown in the form of con-
fusion matrices, and a summary in tabular form is provided to help interpret the findings.
The confusion matrix chart has the correctly classified observations on its diagonal, while
the cells outside the diagonal show the incorrect observations. In both cases, the percentage
is shown. The last cell on the diagonal shows the average accuracy. Moving to the last
column, the first two cells specifically present the percentages of all samples that were
correctly and incorrectly classified for each class. These values correspond to precision and
false discovery rate, respectively. Lastly, focusing on the last row, the two cells highlight the
percentage of samples belonging to each class that were correctly and incorrectly classified.
These values are commonly referred to as recall and false negative rate, respectively. In
summary, the last cell of the confusion matrix diagonal shows the average number of
samples that the ANN correctly and incorrectly classified, providing an overall accuracy
measure for the classifier, this information for the real and synthetic cases is presented in
Table 4.

Table 4. Average accuracy obtained in the ANN validation process for the synthetic and real cases.

Accuracy Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6

Synthetic case 82.7% 98.2% 97.7% 89.8% 100% 82.7%
Real case 93.5% 66.5% 78.8% 88.7% 100% 100%

To evaluate the operation of the proposed method, a computer software simulation
of the different techniques that make up the methodology was carried out. Additionally,
to evaluate the classifiers 600 samples from each dataset were used for each corresponding
joint; these samples account for 15% of the dataset for each of the six scenarios in the
synthetic case. These samples were then separated from the original dataset and are treated
as unknown samples for the ANN classifiers.

Figure 15 shows the confusion matrices obtained from the classifiers based on neural
networks for the synthetic scenario and a summarized version is presented in Table 4.

250



Appl. Sci. 2023, 13, 8493

Figure 15. Confusion matrices obtained in the ANN validation process for the synthetic cases where
the deviation is induced in one of the robot joints at a time. (a–c) confusion matrices correspond to
joints one to three. (d–f) confusion matrices correspond to joints four to six.

Figure 15a–c corresponds to the cases of joints one to three, while Figure 15d–f corre-
sponds to joints four to six. In this sense, it is observed that the classifiers can differentiate
between the states of operation when there is a deviation in the joints with a minimum
average accuracy of 82.7% corresponding to joints one and six, while joint four has an
average value of 89.8%, joints two and three have an average accuracy of around 97% and
joint five has an average accuracy of 100%. It should be noted that for the synthetic scenario,
each case includes a deviation in the respective joint. For instance, in case one, only joint
one contains a deviation, while the other five joints remain unaffected. In this regard, joints
two and three are well differentiated by their respective classifiers; this can be attributed to
the fact that in the trajectory carried out, these joints have a more significant intervention
than the rest.

In addition, in the motion equations of the robot, these joints are closely related;
therefore, since this test is synthetic, the deviation of one joint can affect the behavior of the
other. Regarding joint five, which presents 100% accuracy, this is attributable to its minimal
intervention in the trajectory; therefore, by inducing deviation in the joint, the change
between both operating states is differentiable by the proposed methodology. For joints,
one, four, and six, the difference between their accuracy levels and those of the joints with
the best ranking result can be inflated by their level of intervention in the trajectory and the
fact that the synthetically induced deviation has a random amplitude.

On the other hand, for the real case, 540 samples were used to test the classifier. As
in the synthetic case, these samples also represent 15% of the respective datasets used
for training the classifiers and the samples are unknown to the classifiers. The confusion
matrices obtained are presented in Figure 16, where Figure 16a–c correspond to articulations
one to three and Figure 16d–f correspond to joints four through six and a summarized
version is presented in Table 4.
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Figure 16. Confusion matrices obtained in the ANN validation process for the real case where
the deviation at joint five is known. (a–c) confusion matrices correspond to joints one to three.
(d–f) confusion matrices correspond to joints four to six.

Figure 16 shows that for joints two and three, an average accuracy of 66.5% and 72.8%
is obtained, respectively. Whereas for joints one and four, an average accuracy greater than
88% is obtained.

Furthermore, joints five and six present an average accuracy of 100%. These results
are obtained from a real-world dataset; however, the dataset does not provide information
on the condition of the robot at the time of obtaining the signals, so it is not possible
to determine if there is a mechanical, electrical, or wear failure that has caused a joint
failure deviation in the robot. In this sense, the results obtained for joints two and three
indicate that the signals of the robot CO and HO’s operating states are not different.
Additionally, the other joints have results greater than 90% accuracy, for which the classifier
can distinguish the two states of operation and indicate a deviation. Emphasize that this
dataset has a time difference of 2 h between the initial and final operating states, in addition
to the fact that this robot performs a trajectory continuously with a mass of 4.5 lb and
operates at 100% of its maximum speed, for which these results could be attributed to the
additional inertia caused by the extra weight and speed of operation. The results obtained
in the synthetic case and in the real case show that the proposed method can process signals
with different noise levels using the DWT, using the DWT, which allows the noisy signal
to be decomposed into different frequency bands without losing the characteristics of the
original signal, thus enabling the utilization of the frequency band of interest.

Regarding the results of the implementation in the physical system, validation is made
that the calculations made in the FPGA device correspond to those obtained in the software
simulation. In this sense, Table 5 shows the performance obtained in the main modules
used to implement the methodology on hardware. The information in the Table 5 consists
of the clock cycles necessary to calculate the module and complete processing of the module
(calculation and copy of data to the buffers), as well as the calculation time and complete
processing of each module. It is observed that the module that requires less time to perform
complete processing is the neural network, while the DWT is the module with the most
extended duration. The DWT module decomposes and reconstructs the window of the
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signal to be analyzed; the module’s error for calculating the approximation levels is 0.006%,
while for the details, it is 0.02%. The complete system implemented in FPGA includes
the DWT, statistical, and neural network modules, the embedded microprocessor, internal
data bus, and device drivers such as flash memory, USB, RAM, bootloader, debugger,
and programmer, among others.

Table 5. Module performance in hardware implementation.

Soft-Core
Complete
Processing

(Clock Cycles)

Calculation
Processing

(Clock Cycles)

Complete
Processing

(Time)

Calculation
Processing

(Time)

DWT 265,577 178,280 5.53 ms 3.71 ms
Statistical 7970 5400 166 µs 112.5 µs

Neural Network 3940 3590 82 µs 78.8 µs

Table 6 presents the resources of the FPGA device used for the implementation; it
should be noted that this is a low-cost device and that, with the resources used, it is capable
of calculating the entire process in less than a second. The resources are referred to in the
“logic utilization” column. Specifically, the columns “Used”, “Available”, and “Utilization”
indicate the total number of elements implemented, available elements, and the percentage
of elements used, respectively. In general, according to the information in Table 6, it is
possible to say that the device used half of its resources for this implementation.

Table 6. System resource utilization.

Logic Utilization Used Available Utilization

Number of Slice Registers 10,090 54,576 18%
Number of Slice LUTs 12,521 27,288 45%
Number of fully used LUT-FF 4662 17,949 25%
Number of bonded IOBs 128 218 58%
Number of Block RAM/FIFO 59 116 50%
Number of BUFG/BUFGCTRLs 1 16 6%
Number of DSP48A1s 32 58 55%

The hardware-software execution time for the complete system is 564,720 ms. Before
the neural network classifier, the average error between the software (e.g., Matlab) and
the FPGA calculation for the modules before the classifier amounts to 0.87%. However,
the accuracy obtained by the neural network module reaches 83% compared to the accuracy
obtained in the software implementation. It should be noted that the accuracy obtained by
the neural network and the average error are attributable to the fixed point representation.
The results obtained from the hardware implementation validate the use of the proposed
method to detect deviations in the robot’s joints through the analysis of the motor currents.

Regarding the results obtained in this work, it should be noted that specifically for
joint five of the real case, the results coincide with those reported in [53], where the same
dataset was used, and a manual analysis of velocity and position graphs of the joint was
conducted without a systematic approach. In another study [17] MRA and DLSTM are used
to obtain the residual error of the end-effector of the robot. However, it is not determined
in which joint exhibited deviation causing the error in the end-effector. On the other hand
in [18] an expert system based on two neural networks, dimension reduction, and energy
and fractal indicators was presented. This system aimed to accurately detect deviations
in the robot’s joints. However, implementing the fractal approach in FPGA was found to
be more complex than the statistical indicators proposed in this current study. It’s worth
noting that the aforementioned studies were performed using software simulation and
offline analysis, which didn’t pose resource limitations or fixed-point operation issues,
in contrast with an FPGA system. The method proposed identifies in which joint of the
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robot there is deviation, uses techniques and algorithms that are easy to implement on
FPGA systems, and employs a low-cost self-designed board that operates independently
without the need for external systems which allows for systematic in-situ analysis.

4. Conclusions

The importance of robotic systems in modern manufacturing processes requires high
accuracy and precision to perform tasks with high-quality standards, such as painting,
welding, and machining. Achieving this level of precision is critical for the robot’s per-
formance, but various factors can degrade it, such as wear and failure of mechanical and
electrical components or environmental conditions. In this sense, a methodology for the
detection of joint deviation of the robot through the current analysis of the actuators and its
implementation in a digital system based on an FPGA is introduced in this work. Synthetic
signals, both with and without deviation, are generated using the dynamic model of a
UR5 robot. Real-world data from a UR5 robot validates the methodology. To enhance the
method’s robustness, the signals are contaminated with different noise levels. Then the
signals are processed using DWT to separate them into approximation and detail frequency
bands, and statistical indicators such as RMS and variance are calculated for each band.
Finally, the indicators are used to train and validate a classifier based on neural networks.
From the results is concluded that:

• The proposed method is able to work with signals containing noise due to the use of
the DWT to decompose the signal into different frequency bands, which allows an
analysis of the signals with a smaller amount of information than the original signal.
Its implementation in hardware allows the decomposition and reconstruction of the
signal with a single module, which allows better management of FPGA resources.

• The statistical indicators used have proven to be effective in the detection of non-visible
features in the analyzed signals, they are simple and their hardware implementation
has been carried out through a module with a versatile architecture that allows the
calculation of other statistical indicators if necessary.

• The classifier, based on an MLP network, showed its effectiveness in differentiating
between the different operating states of the signals provided by the statistical indica-
tors. In this sense, the classifier structure is simple with a reduced number of neurons
in the hidden layer, which makes its implementation in hardware not complex.

• For the particular case of joint five of the real case, the result is in line with the findings
reported in [53], which also highlights the deviation in that joint.

• The designed modules and architectures have been implemented in a low-cost pro-
prietary FPGA-based digital system and have demonstrated the feasibility of the
proposed method using about 50% of the resources. In addition to achieving a high
processing speed for all joints (less than one second) with minimal error attributed to
truncation and fixed point operations. Moreover, the use of an FPGA system allows
for concurrent execution and reconfiguration of the device; if an additional module is
required, it can be incorporated into the system.

Future work proposes the hardware implementation of a method capable of perform-
ing the analysis of the positional degradation of the robot using only a classifier based on
neural networks, as well as analyzing the classifier’s behavior when multiple joints deviate
simultaneously. Furthermore, the proposal includes the exploration of other non-linear
indicators, signal processing techniques, and methodologies based on machine learning
and deep learning.
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Abbreviations
The following abbreviations are used in this manuscript:

ANN Artificial Neural Network
BUFG Global Buffer
BUFGCTRLs Global Clock Control Buffer
CO Cold Operation
Din Data input
DMA Direct Memory Access
Do1 Data output 1
Do2 Data output 2
Dout Data output
DSP48A1s Digital Signal Processing element included on certain FPGAs
DWT Discrete Wavelet Transform
FIFO First-input First-output
FPGA Field Programmable Gate Array
FSM Finite State Machine
HO Hot Operation
IOBs Input Output Blocks
IPcore Intellectual Propriety Core
ISB In-System Bus
LUT Look-Up Table
LUT-FF Look-Up Table-Flip-Flop
MLP Multi-layer Perceptron
OPC Option Control signal
OPR Option Register signal
RAM Random Access Memory
RD Read signal
RDC Read Coefficient signal
RDY Ready signal
RMS Root Mean Squared
SEL Select signal
SRAM Static Random Access Memory
STR Start signal
UART Universal Asynchronous Receiver-Transmitter
Win Window input
Wout Window output
WR Write signal
WRC Write Coefficient signal
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Featured Application: Potential applications of the work include more reliable dedicated
AI-based predictive maintenance systems based on digital twins and generative AI.

Abstract: Generative AI (GenAI) is revolutionizing digital twins (DTs) for fault diagnosis
and predictive maintenance in Industry 4.0 and 5.0 by enabling real-time simulation,
data augmentation, and improved anomaly detection. DTs, virtual replicas of physical
systems, already use generative models to simulate various failure scenarios and rare
events, improving system resilience and failure prediction accuracy. They create synthetic
datasets that improve training quality while addressing data scarcity and data imbalance.
The aim of this paper was to present the current state of the art and perspectives for
using AI-based generative DTs for fault diagnosis for predictive maintenance in Industry
4.0/5.0. With GenAI, DTs enable proactive maintenance and minimize downtime, and their
latest implementations combine multimodal sensor data to generate more realistic and
actionable insights into system performance. This provides realistic operational profiles,
identifying potential failure scenarios that traditional methods may miss. New perspectives
in this area include the incorporation of Explainable AI (XAI) to increase transparency in
decision-making and improve reliability in key industries such as manufacturing, energy,
and healthcare. As Industry 5.0 emphasizes a human-centric approach, AI-based generative
DT can seamlessly integrate with human operators to support collaboration and decision-
making. The implementation of edge computing increases the scalability and real-time
capabilities of DTs in smart factories and industrial Internet of Things (IoT) systems. Future
advances may include federated learning to ensure data privacy while enabling data
exchange between enterprises for fault diagnostics, and the evolution of GenAI alongside
industrial systems, ensuring their long-term validity. However, challenges remain in
managing computational complexity, ensuring data security, and addressing ethical issues
during implementation.

Keywords: artificial intelligence; machine learning; industrial applications; Industry 4.0;
Industry 5.0; predictive maintenance; digital twin; generative AI; GenAI

1. Introduction
The Industry 3.0 paradigm introduced automation and early diagnostics. Predictive

maintenance is a method of forecasting and managing the condition of machines, devices,

Appl. Sci. 2025, 15, 3166 https://doi.org/10.3390/app15063166
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production lines based on historical data, mechanism models and domain knowledge
that predicts equipment trends, and behavioral patterns and correlations using statistics
or artificial intelligence (AI) models. This allows us to predict remaining useful life, up-
coming failures, and other key indicators in advance, improving the decision-making
process for maintenance activities, reducing the risks associated with failures and avoiding
unnecessary equipment downtime [1,2]. Predictive maintenance began with the advent
of automation in Industry 3.0, using sensors and condition monitoring systems to track
equipment performance. In this phase, techniques such as vibration analysis and thermal
imaging were used along with manual data logging for trend analysis, enabling basic
failure prediction. Scientists and engineers developed statistical models to predict fail-
ures based on historical data, introducing an early form of predictive maintenance. The
Industry 4.0 paradigm saw the transition to continuous, real-time data collection from
interconnected devices and systems, powered by the Internet of Things (IoT) and Big Data.
Machine learning (ML) algorithms began to analyze massive data sets collected from IoT
devices to detect patterns, predict failures, and recommend maintenance actions. Digital
twins (DTs) were introduced as virtual replicas of physical assets, integrating sensor data
and simulations for real-time monitoring and fault diagnosis. Predictive maintenance is
related to various areas of research and economic practice [3,4].

ML plays a crucial role in enhancing DT technology by enabling real-time data analy-
sis, predictive modeling, and automation. DTs, which are virtual replicas of physical assets,
leverage ML to process vast amounts of sensor data and detect anomalies [5]. By using pre-
dictive analytics, ML helps forecast potential failures and optimize maintenance schedules,
reducing downtime and costs [6]. In manufacturing, DTs powered by ML enhance produc-
tion efficiency by identifying inefficiencies and improving quality control [7]. Healthcare
applications benefit from AI-driven DTs that simulate patient conditions, allowing person-
alized treatment planning [8]. In smart cities, ML-based DTs optimize traffic flow, energy
usage, and infrastructure management [9]. The aerospace industry uses DTs to simulate
aircraft performance under various conditions, ensuring better safety and efficiency [10].
ML also improves DTs in supply chain management by predicting demand fluctuations
and optimizing logistics [11]. These AI-enhanced virtual models support sustainability
by analyzing environmental impacts and optimizing resource usage. ML significantly
enhances the capabilities of DTs, making them more accurate, intelligent, and beneficial
across industries.

Industry 4.0 also saw the rise in edge computing, which enabled predictive models to
process data locally, reducing latency and increasing responsiveness. In the Industry 5.0
paradigm, predictive maintenance has moved towards a collaborative human-AI approach,
emphasizing user-friendly tools and sustainable maintenance practices [12]. GenAI has
begun to enhance DTs by simulating complex scenarios, generating synthetic data, and
improving fault detection and predictive models [13]. DTs based on GenAI in Industry 5.0
focus on optimizing asset performance while adapting to environmental goals, which is the
latest advancement in predictive maintenance [14]. The future implications of GenAI, large
language models (LLM) and search-augmented generation (RAG) will influence practices
in such distant industrial sectors as construction, but also specialist education [15].

GenAI plays a significant transformational role in AI-based DTs for fault diagnostics,
driving the advancement of predictive maintenance for Industry 5.0. It enables realistic, yet
human-operator-level perceptual simulations of complex industrial systems by generating
synthetic data and scenarios, helping to predict and diagnose faults with greater accuracy.
This increases the ability of the operator—cyber-physical system to detect trends, upcoming
anomalies, identify their root causes and predict failures before they occur, compared to
solutions without GenAI [16]. GenAI also helps improve the quality and quantity of training
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data by addressing limitations in sensor data availability and improving the robustness of
the ML model [17]. Additionally, GenAI supports real-time updates to DTs by synthesizing
data from different sources, ensuring that the twin reflects the current state of the asset. It
facilitates the analysis of alternative “what if” scenarios by generating multiple potential
failure scenarios (instead of the most likely ones, as before), enabling proactive maintenance
strategies [18]. The technology improves decision-making by providing actionable insights
derived from patterns and correlations identified in the generated data. GenAI also helps
optimize system performance by simulating the impact of different maintenance actions,
allowing operators to select the most effective intervention [19]. As Industry 5.0 emphasizes
human-centric and sustainable solutions, GenAI in DTs aligns with these goals, enabling
smarter, more efficient, and less resource-intensive maintenance practices [20].

GenAI is a rapidly growing area of research in deep learning. GenAI algorithms gen-
erate new realistic data in various modalities (text, images, music, three-dimensional (3D)
models) and multimodalities [21]. Key features of GenAI include the ability to synthesize
data and learning distributions. GenAI systems can synthesize new data that has features
from other elements of the data set [22]. Thus, a GenAI model trained on images of dogs
can create new, realistic images of dogs that do not exist in the training set [23]. GenAI
models probability distributions of data, from which it can sample new instances that
follow learned patterns [24]. GenAI uses state-of-the-art deep learning architectures that
are rapidly evolving. The most important of them are the following:

• Generative Adversarial Networks (GANs)—involve the interaction between two neu-
ral networks: a generator and a discriminator. The generator creates synthetic data,
while the discriminator distinguishes real from fake data. Through iterative competi-
tion, GANs generate highly realistic results and are used for image synthesis (DeepArt,
DeepFake), video content generation, and style transfer (painting, photography);

• Variational Autoencoders (VAE)—encode input data into a latent representation and
decode it back, following a predefined distribution. This enables smooth interpolation
between data points for image reconstruction, anomaly detection, or drug discovery;

• Transformer models—use self-attention mechanisms to generate coherent and contex-
tually relevant sequences within language models (ChatGPT, BERT) or description-
based image synthesis (DALL-E);

• Diffusion models—an alternative to GANs, learn to reverse the noise process applied to
data, gradually producing realistic results in high-quality image synthesis or molecular
structure generation [25–27].

GenAI allows us to create content that integrates multiple modalities, e.g., generating
an image from a text description. It offers computationally efficient models that scale to
large data sets. For the above reasons, GenAI in a sense expands creativity, providing a
selection from a larger set of quickly generated data with similar characteristics [28]. This
allows us to generate synthetic data (industrial, medical, etc.) for training AI models or
DTs, including without concerns about privacy or security, creating unique narratives and
visualizations, accelerating discoveries by generating molecular structures, optimizing
engineering designs and simulating physical phenomena [29]. The biggest challenge is
still to provide users with greater control over the generated content and make the data
generation process more transparent (Table 1). GenAI expands the boundaries of what
machines can create, including in cooperation with humans, both as a tool for analysis and
as a partner in creation [30].
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Table 1. Research gaps observed in the state of the art in GenAI-based DTs for fault diagnosis for
predictive maintenance in Industry 4.0/5.0 (own version).

Area
Identified

Gap(s) Possibilities of Closing Gap(s)

Real-time data fusion and processing

Current methods struggle to effectively
integrate multimodal data (e.g., IoT sensor

readings, historical records, and
environmental factors) in real time to

achieve predictive accuracy.

Explore scalable architectures for real-time
data fusion using GenAI capabilities.

Explainability and interpretability
The “black box” nature of many GenAI

models limits trust and adoption in
industrial environments.

Develop interpretable GenAI models that
can explain failure prediction decisions in a

way that is understandable to human
operators.

Generating synthetic data for rare
faults

Industrial systems often lack sufficient
labeled data for rare but critical fault types.

Explore GenAI techniques to generate
high-quality synthetic datasets that mimic

rare fault conditions for robust training.

Adaptive learning in changing
environments

Current models are not suited for dynamic
industrial environments where machine
configurations and operating conditions

change frequently.

Develop an adaptive GenAI framework
that can learn continuously and update DTs

without complete retraining.

Integration of domain
knowledge

Many GenAI approaches neglect the
integration of domain expert knowledge,

leading to less reliable fault diagnosis.

Combine domain knowledge with
generative models to improve fault

diagnosis reliability and contextual validity.

Generalization across device(s) types
Existing GenAI models are often tailored to

specific machines and lack cross-device
generalization.

Design generalized GenAI-based DTs that
can transfer knowledge across different

device types and configurations.

Cybersecurity in GenAI-based DTs
Increased connectivity and dependency on
GenAI increase cybersecurity vulnerability

in DTs.

Develop secure GenAI frameworks that
protect sensitive industrial data while

maintaining predictive accuracy.

Low-power, edge-compatible
solutions

Many GenAI models are computationally
intensive, making them unsuitable for edge

deployments in smart factories.

Optimize GenAI algorithms for
resource-constrained environments,

enabling deployment on edge devices.

Multi-twin collaboration
Collaboration between multiple DTs for

complex systems or connected machines is
underexplored.

Explore a framework for GenAI-enabled
multi-twin ecosystems to improve fault
diagnostics in connected environments.

DTs lifecycle management
Limited research addresses long-term DT

lifecycle management, such as model
updates or retirement of outdated twins.

Develop methods for continuous evolution
and maintenance of GenAI-based DTs to

ensure continued accuracy and relevance.

To fill these gaps, interdisciplinary approaches combining advances in AI, edge com-
puting, industrial engineering, and cybersecurity are needed to fully leverage the potential
of GenAI-based DT for predictive maintenance in Industry 4.0/5.0 [31].

The motivation behind integrating GenAI with AI-based DTs in fault diagnosis for
predictive maintenance within Industry 4.0/5.0 stems from the need to enhance real-time
decision-making and predictive capabilities. With industrial systems becoming increasingly
complex and interconnected, traditional diagnostic methods struggle to cope with the sheer
volume and variety of data generated. The primary challenges include accurately modeling
dynamic systems, dealing with incomplete or noisy data, and providing timely predictions
to avoid costly downtime. GenAI offers a way to simulate various fault scenarios and
predict potential failures by creating realistic synthetic data that complement real-world
data. This approach can improve the robustness of DTs by enabling them to adapt and learn
from evolving system behaviors. A novel contribution of this work is leveraging GenAI to
continuously update and refine digital twin models, ensuring they remain accurate and
relevant. Additionally, integrating AI-driven anomaly detection with generative models
helps in identifying previously unseen faults. This synergy fosters a proactive maintenance
strategy, minimizing unexpected failures and optimizing maintenance schedules. By
embedding generative capabilities, the DTs evolve beyond static representations, becoming
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adaptive tools capable of scenario analysis and prescriptive insights. Consequently, this
advancement pushes the boundaries of what’s possible in predictive maintenance, aligning
closely with the smart, automated vision of Industry 5.0 [32].

GenAI is being integrated with AI-based DTs by enhancing their ability to simulate,
predict, and adapt to real-world conditions in industrial environments. This integration
involves using generative models such as VAEs and GANs to create synthetic datasets that
complement real-world sensor data, improving fault detection even when historical failure
data are sparse. Device states are described by feature vectors (at points in time) or feature
matrices (time-varying feature vectors) in edge computing and include all relevant features
(states, parameters) of both normal operation and impending wear and tear, failure, and
attack, for example. GenAI also enables anomaly detection by learning the normal behavior
of the system and generating deviations that signal potential failures before they become
critical failures. GenAI-powered DTs can run multiple failure simulations to predict the im-
pact of different faults, allowing industries to proactively optimize maintenance strategies.
One of the major issues they address is the challenge of incomplete or noisy data, as GenAI
can fill in missing information and remove signal noise to increase diagnostic accuracy. The
integration also mitigates the high costs and risks associated with physical fault testing
by creating realistic virtual failure scenarios for analysis. Another problem it addresses is
the inability of traditional AI models to generalize across machines and environments, as
generative models can adapt to changes in operating conditions. By continuously updating
DTs with new synthetic and live data, the system remains dynamic and responsive to
evolving industrial processes. This approach enhances predictive maintenance by reducing
false positives and false negatives, ensuring that maintenance actions are taken only when
necessary. In this way, generative AI empowers DTs, transforming them from static models
into self-learning, adaptive systems that provide more accurate and timely fault diagnosis
in Industry 4.0/5.0 [33].

This paper presents the current state of the art and prospects for using generative
AI-based DTs to diagnose faults for predictive maintenance in Industry 4.0/5.0.

2. Materials and Methods
2.1. Data Set

Our bibliometric analysis aimed to investigate the research landscape and current
knowledge and practices related to planning and implementing GenAI-based DTs for fault
diagnosis in predictive maintenance within the framework of Industry 4.0/5.0 paradigms.
To achieve this, we used bibliometric methods to examine scientific publications by defin-
ing research questions to identify key aspects, including the current state of the field, the
origin and evolution of research topics, sources of publications (institutions, countries,
and funding mechanisms), and the most influential authors and research teams. This
methodology provides a comprehensive overview of current research and industry trends
in GenAI-based DTs for fault diagnosis in predictive maintenance. By analyzing bibliomet-
ric data, this study contributes to the ongoing discussions and helps to establish a solid
foundation for future research, identifying priority directions and research teams to follow
in the coming years.

2.2. Methods

The study used the bibliographic databases Web of Science (WoS), Scopus, and dblp,
selected for their extensive research collection and rich citation data, which facilitated
a comprehensive bibliometric analysis of GenAI DT for failure diagnosis in predictive
maintenance under Industry 4.0/5.0 (Table 2). To ensure greater relevance of the results,
filters were applied to focus on original articles in English. Each of the selected articles was
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then manually reviewed to confirm its compliance with the inclusion criteria, refining the
final set of analyzed articles. Key features of the data set were then examined, including
prominent authors, research groups, institutions, countries, topic areas and emerging
trends. This analysis helped to trace the evolution of key terminology and major research
advances in the field. Furthermore, where possible, temporal trends were analyzed to
track changes in research coverage over time, and publications were categorized into topic
areas to discover relationships among different clusters of them. This process ultimately
highlighted significant themes and subfields within the overall domain of study.

Table 2. Bibliometric analysis procedure (own approach).

Stage Name Tasks
1 Defining research objectives Defining goals of the bibliometric analysis

2 Selecting databases and data collections Choosing appropriate data set(s) and developing research queries
according to the study goals

3 Data preprocessing Cleaning the collected date to remove duplicates and irrelevant
records

4 Bibliometric software selection Choosing suitable bibliometric software tools for analysis
5 Data analysis Description, author, journal, area/topics, institution/country, etc.
6 Visualization (where possible) Visualizing the analysis results to present insights
7 Interpretation and discussion Interpreting findings in the context of the research goals

This study followed specific elements of the PRISMA 2020 guidelines [34] for bibli-
ographic reviews (Supplementary Materials), focusing on key aspects such as rationale
(item 3), objectives (item 4), eligibility criteria (item 5), information sources (item 6), search
strategy (item 7), selection process (item 8), data collection (item 9), synthesis methods
(item 13a), synthesis results (item 20b), and discussion (item 23a). Bibliometric analysis was
performed using tools available in the Web of Science (WoS), Scopus, and dblp databases,
as well as the Biblioshiny tool from the Bibliometrix v.4.1.3 package. The results are pre-
sented in a table, which allows for flexible analysis and visualization. Considering the
interdisciplinary nature and complexity of the topic, the most important results of the
review are summarized in a concise table for clarity.

3. Results
3.1. Data Sources

To refine the search, advanced filtering techniques were used, limiting the results
to articles in English. In WoS, searches were performed using the “Subject” field, which
includes title, abstract, keyword plus, and additional keywords. In Scopus, searches were
performed using article title, abstract, and keywords, while in dblp, manual keyword
selection was used. Databases were searched using keywords such as “generative artificial
intelligence”, “digital twin”, and “Industry 4.0” or “Industry 5.0” (Table 3).

The selected set of publications was then further refined (see Figure 1) by manually
re-reviewing the article and removing irrelevant items and duplicates, which allowed us to
determine the final sample size.

The summary of the bibliographic analysis results is presented in Table 4. The
review included 21 articles (2023–2024) published in the last two years (no older ones
were included).
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Table 3. Detail search query over databases.

Parameter Description

Inclusion criteria Articles (original, reviews, communication, editorials) and chapters,
including conference proceedings, in English

Exclusion criteria Books older than 10 years, letters, conference abstracts without full text,
other languages than English

Keywords used Artificial intelligence, generative AI, digital twin, predictive
maintenance, Industry 4.0, Industry 5.0

Used field codes (WoS) “Subject” field (consisting of title, abstract, keyword plus, and other
keywords)

Used field codes (Sopus) Article title, abstract, and keywords
Used field codes (dblp) Manually

Boolean operators used Yes, e.g., “digital twin” AND (“Industry 4.0” OR “Industry 5.0”) AND
rehabilitation

Applied filters Results refined by publication year, document type (e.g., articles,
reviews), and subject area (e.g., industry, engineering)

Iteration and validation options Query run iteratively, refinement based on the results, and validation
by ensuring relevant articles appear among the top hits

Leverage truncation and wildcards used Used symbols like * for word variations (e.g., “digital twin *”) and ? for
alternative spellings (e.g., “Industry ?.0”)
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Table 4. Summary of results of bibliographic analysis (WoS, Scopus, dblp).

Parameter/Feature Value
Leading types of publication Conference review (50.0%), article (16.7%), conference paper (33.3%)

Leading areas of science Computer science (50.0%), Engineering (20.0%),
Mathematics (20.0%), Materials Science (10.0%)

Leading topics Industrial: Design and Manufacturing
Leading countries Bulgaria, Germany
Leading scientists Mateev, M., Jazdi, N., Weyrich, M., Xia, Y., Xiao, Z.

Leading affiliations
University of Architecture, Civil Engineering and Geodesy, Sofia,
Bulgaria,
Universitat Stuttgart, Germany

Leading funders (where information available) None

Sustainable development goals Industry Innovation and Infrastructure, Responsible Consumption
and Production

Successful establishment of DT requires high fidelity virtual modeling and strong
information interactions. GenAI can use advanced AI algorithms to automatically create,
manipulate, and modify the desired sparse, correct, and diverse data. However, the
implementation of this technology faces numerous challenges and perhaps should be
implemented more quickly in specific areas of Industry 4.0/5.0 [35].

3.2. IIoT Background and the Potential of GenAI-Driven DT

IIoT is revolutionizing industrial sectors by connecting machines, sensors, and devices
through networks, enabling real-time data acquisition and intelligent decision-making.
Industrial IoT can be used for process monitoring [36,37]. It emphasizes predictive main-
tenance, process optimization, and asset management, leveraging advanced analytics on
massive data sets collected from industrial operations. DTs, acting as virtual replicas of
physical systems, leverage IIoT data to model, simulate, and monitor performance [38–41].
By integrating IIoT and GenAI, enterprises can unlock new, higher levels of operational
intelligence and decision-making agility. GenAI introduces a new dimension to DTs by
enabling them to learn, predict, and generate new data scenarios, significantly increasing
their accuracy and usability. Unlike traditional DTs that rely on fixed data patterns, genera-
tive DTs powered by AI can model complex, nonlinear systems and propose innovative
solutions. This capability is especially transformative in industries such as manufacturing,
energy, and transportation, where high variability and system complexity require dynamic
adaptation. GenAI can simulate how machines will operate under unprecedented condi-
tions, reducing downtime and mitigating risk. It also enables real-time scenario analysis,
helping industries to adapt to disruptions very quickly or optimize resource allocation.
Additionally, these intelligent DTs facilitate sustainable practices by modeling energy ef-
ficiency and predicting the carbon footprint of industrial operations. This convergence
may redefine industry standards, supporting innovation and resilience in an era of rapid
technological advancement, not only within the Industry 4.0 and Industry 5.0 paradigms
but also their next generations [42].

Recent publications on GenAI in AI-based DTs for fault diagnosis and predictive
maintenance in Industry 4.0/5.0 show the growing focus on increasing predictive accuracy
and real-time decision-making. Researchers are increasingly exploring the integration
of GenAI with IoT, edge computing, and cloud-based architectures to improve system
responsiveness. Many studies emphasize the use of synthetic data generation to address
the problem of limited failure data in industrial environments. There is a noticeable shift
towards explainable AI (XAI) to improve transparency and trust in AI-based maintenance
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decisions. The most progressive topics include deep learning-based anomaly detection,
reinforcement learning for adaptive maintenance strategies, and hybrid AI models com-
bining physics-based and data-based approaches. Publications also emphasize the role of
GenAI in enabling self-learning DTs that evolve with operational data. This trend indicates
a shift towards more autonomous, scalable, and human-centric AI-based maintenance
solutions in smart industries [43].

3.3. Basic Methods of Generative AI-Driven DTs

GenAI-driven DTs leverage advanced ML techniques (such as GANs and VAEs) to
simulate and generate realistic data scenarios. These models learn patterns from IIoT data,
allowing them to predict, optimize, and replicate complex behaviors of real-world systems.
Reinforcement learning (RL) further enables DTs to adapt to dynamic environments by
testing and refining decision-making strategies. Natural language processing (NLP) tech-
niques allow these DTs to interpret and integrate textual data such as maintenance logs,
operator reports, and technical documentation into their analyses. Additionally, transfer
learning helps leverage pre-trained models to accelerate the development and deployment
of AI-driven generative DTs in various industrial contexts [44].

GANs enhance AI-based DTs by generating synthetic sensor data that replicates real-
world failure conditions, helping predictive maintenance models detect rare and complex
failure modes in Industry 4.0/5.0 environments. GANs create different failure scenarios by
learning statistical patterns of normal and faulty operating states, enabling digital twins
to improve fault diagnostic accuracy even when historical failure data are limited. The
generator synthesizes realistic fault signals, while the discriminator improves its ability
to distinguish between real and artificial faults, strengthening the fault detection and
anomaly recognition capabilities of the digital twin. By continuously learning from live
sensor data, GAN-based digital twins detect deviations from normal operation in real time,
enabling early failure prediction and reducing unplanned downtime. When combined
with reinforcement learning, GANs optimize maintenance decisions based on synthetic
fault simulations, while federated learning ensures secure model training across multiple
industrial sites without sharing sensitive operational data [45].

VAEs enhance AI-based DTs by learning the underlying distribution of normal oper-
ating data, enabling the detection of deviations that signal potential failures in predictive
maintenance for Industry 4.0/5.0. VAEs encode high-dimensional sensor data into a lower-
dimensional latent space, capturing salient features of machine behavior and facilitating
the identification of anomalies that indicate emerging failures. VAEs reconstruct sensor
signals from compressed latent representations, and when the reconstruction error exceeds
a threshold, it suggests the presence of an unknown or abnormal fault condition. Unlike
traditional deterministic models, VAEs generate probabilistic results, enabling digital twins
to assess the uncertainty of failure predictions and reduce false positives in predictive
maintenance. VAE can be combined with RL to optimize maintenance decisions based on
detected anomalies, while federated learning enables secure, decentralized model training
across multiple industrial facilities without the need to share raw sensor data [46].

Transformers, such as Bidirectional Encoder Representations from Transformers
(BERT), improve predictive maintenance by processing sensor data in large time series,
capturing complex relationships in industrial systems, and improving fault diagnostics
in Industry 4.0/5.0. Transformers’ self-driving mechanism enables AI-based digital twins
to analyze long-term relationships in sensor data, identifying subtle fault patterns that
traditional machine learning models may miss. Transformer models pre-trained on ex-
tensive industrial data sets can be tuned to specific device types, enabling more accurate
fault detection and predictive maintenance tailored to unique operating conditions. Trans-
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formers analyze streaming data in real time, learning about normal machine behavior
and flagging anomalies that indicate early signs of failure, reducing unplanned downtime
in manufacturing and industrial processes. Combined with generative AI, transformers
improve fault simulation and synthetic data generation, while RL optimizes maintenance
strategies by continuously adapting fault diagnosis models based on real-time feedback
from DTs [47].

RL enables AI-based DTs to optimize predictive maintenance by continuously learning
from real-time equipment data and adapting maintenance strategies based on Industry
4.0/5.0 fault diagnostics results. RL agents interact with digital twins to simulate different
maintenance actions, receiving rewards based on reduced downtime, increased fault detec-
tion accuracy, and minimized operating costs. Unlike traditional rule-based approaches,
RL-based digital twins dynamically refine fault diagnostics and maintenance strategies,
improving decision-making as more operational data are processed over time. By com-
bining RL with generative AI, digital twins can simulate rare fault conditions, enabling
the RL model to learn from different failure scenarios and make more accurate predictive
maintenance recommendations. In complex manufacturing environments, multi-agent RL
enables multiple AI-powered digital twins to collaborate, optimizing fault diagnosis and
predictive maintenance strategies for interconnected industrial assets [48].

Federated learning enables multiple industrial plants to jointly train predictive main-
tenance models while maintaining data privacy, and generative AI enhances this process
by generating synthetic fault data to increase model robustness in Industry 4.0/5.0. Instead
of sharing raw sensor data, federated learning enables AI-based digital twins to exchange
model updates, keeping sensitive operational data secure while leveraging collective intel-
ligence across manufacturing plants. Generative models such as GANs and VAEs generate
realistic fault scenarios to enrich federated learning models, compensating for imbalanced
data sets where certain failure conditions may be underrepresented. AI-based digital
twins within a federated learning network continuously update fault diagnostic models
using locally generated synthetic data, enabling real-time adaptation to unique operating
conditions in different industrial environments. By integrating federated learning with
generative AI, industrial systems develop more accurate, context-aware predictive mainte-
nance strategies that reduce downtime and improve fault detection without compromising
data security or requiring centralized data storage [49]. The generation of extended data to
improve error detection in images or time series signals has been proposed in [50,51].

Numerical comparisons of different generative AI methods in AI-based DTs for fault
diagnosis and predictive maintenance reveal distinct advantages based on accuracy, ef-
ficiency, and computational cost. GANs typically improve fault classification accuracy
by 5–15% by generating realistic failure data for training models. VAEs achieve anomaly
detection precision of 85–95% on average, depending on system complexity and available
data. Transformer-based models such as BERT time series variations outperform traditional
recursive models by 10–20% in predictive accuracy due to their ability to capture long-
range dependencies. Reinforcement learning (RL) approaches reduce maintenance costs by
20–40% by optimizing predictive scheduling strategies compared to rule-based systems.
Physics-based generative models reduce false positive rates by 30–50% because they com-
bine physical simulations with AI-based analyses to provide more reliable fault diagnosis.
Federated learning with Generative AI improves model generalization across multiple
industrial sites while maintaining accuracy at 95%+, although it may require 20–30% more
computational resources due to decentralized processing. These comparisons highlight
the trade-offs between accuracy, computational cost, and scalability, which is the basis for
selecting the right Generative AI techniques for different industrial applications [52,53].
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The increasing understanding of AI algorithms brings about a deeper understanding
and classification of them by researchers and practitioners, who can apply the appropriate
ones to obtain optimal results in the shortest possible time with less effort for their specific
application area problems in a novel and significant way [54].

Here are some important frameworks that can help understand generative AI for fault
diagnosis in AI-based digital twins for predictive maintenance in Industry 4.0/5.0:

1. Conceptual diagram of GenAI in DTs:

• Shows interaction between real-world industrial systems, IoT sensors, AI-based
digital twins, and predictive maintenance systems;

• Highlights how real-time data are collected, processed by GenAI models, and
used to predict faults.

2. Comparison chart of GenAI methods comparing GANs, VAEs, transformer-based
models, reinforcement learning, and physics-informed models based on accuracy,
computational cost, scalability, and fault detection capabilities.

3. Workflow of GenAI-Based fault diagnosis, i.e., a step-by-step process illustrating
the following:

■ Data collection from IoT sensors;
■ Preprocessing and feature extraction;
■ Model training using GenAI;
■ Fault detection and predictive maintenance actions.

4. Illustration of GANs vs. VAEs for anomaly detection showing how GANs gen-
erate synthetic failure data while VAEs reconstruct normal operation data to de-
tect anomalies.

5. Transformer-based time-series prediction showing how transformer models analyze
historical machine data and predict failures with multi-step forecasting.

6. Impact of GenAI on maintenance costs and downtime comparing reactive, preventive,
and predictive maintenance strategies, highlighting the efficiency gains achieved by
Generative AI.

7. Federated learning for cross-site fault diagnosis shows how decentralized AI models
share insights across multiple industrial sites while preserving data privacy [55,56].

The digitization of data throughout the product life cycle provided by DTs in cyber
physical systems enables a rapid transition from current industrial solutions to intelligent
and adaptive solutions. GenAI promotes the construction, modernization, and updating of
data in DTs to increase the predictive accuracy and ensure differentiated smart manufactur-
ing by detecting IIoT devices and sharing data. The problem here is the adverse selection
caused by information asymmetry. Here, a contract theory model based on a balanced
soft actor-critic algorithm based on diffusion is proposed. It provides the identification of
the optimal feasible contract and also reduces the number of actor network parameters
through the dynamic structural pruning technique [57].

It does this by analyzing huge amounts of data from various sources, such as sensors,
smart meters, and historical production and energy consumption patterns, and AI algo-
rithms can identify patterns and anomalies that are difficult for humans to detect. This
enables the development of predictive models that optimize production and consumption.

The reliability of data generated by Generative AI in AI-based DTs for fault diagnosis
and predictive maintenance is critical to ensuring accurate decision-making in Industry
4.0/5.0. One way to establish reliability is through rigorous validation techniques, such as
comparing generated data with real-world sensor readings to assess accuracy. Generative
models can be trained using high-quality, diverse data sets to reduce bias and improve
their ability to generalize across industrial environments. Another approach is uncertainty
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quantification, where confidence levels are assigned to generated results, helping main-
tenance teams assess the reliability of AI-generated predictions. Hybrid AI models that
combine generative approaches with physics-based simulations increase data reliability by
ensuring that the patterns generated are consistent with known system behaviors. Domain
adaptation techniques can further refine generative models to match specific machine
characteristics, increasing the relevance of synthetic data for fault diagnosis. Continuous
learning mechanisms enable generative models to be updated based on real-time feedback,
ensuring they evolve with changing system conditions and avoiding outdated or mislead-
ing predictions. Implementing explainability techniques such as attention mechanisms
or feature attribution can increase transparency and help engineers understand how the
model generates and uses synthetic data. Cross-validation with expert knowledge ensures
that AI-generated insights align with human expertise, reducing the risk of incorrect error
predictions. Finally, regulatory compliance and adherence to industry standards help build
trust in generative AI-powered DTs, ensuring that the generated data meets the reliability
and safety requirements for industrial applications.

A lightweight automatic data augmentation framework (ALADA) is proposed to
optimize data augmentation rules and industrial defect detection solutions. It provides
more efficient augmentation and generation of augmented images for joint optimization,
hyperparameter tuning for retraining with searched rules, and also reduces the risk of
defect failure in four situations: textured background, non-uniform brightness, low contrast,
and intra-class difference, which is validated on three industrial defect detection datasets,
namely Tianchi-TILE, GC10-DET, and NEU-DET [58].

Effective communication is the backbone of GenAI-driven DTs, enabling robust, adap-
tive, real-time industrial operations. Fast and error-free communication in AI-driven DTs is
essential for seamless interaction between physical and virtual systems. Data integration is
achieved through IIoT devices, where sensors and edge devices transmit real-time data
to DTs for analysis and simulation. Advanced protocols such as MQTT, OPC-UA, and 5G
networks facilitate low-latency and secure data transfer, ensuring synchronized operations
between physical and digital twins. It is worth nothing that GenAI-driven DTs leverage
cloud and edge computing for scalable and efficient communication, enabling rapid pro-
cessing of complex data streams. Interoperability standards and application programming
interfaces (APIs) are key, enabling DTs to interact with diverse systems, applications, and
stakeholders in industrial ecosystems. Bidirectional communication ensures that insights
or decisions generated by DT can be fed back to physical systems for execution or in-
tervention. GenAI enhances communication by interpreting unstructured data sources
(such as natural language maintenance reports, image data) and integrating them into the
DT model. User interfaces, including dashboards and voice command systems, enable
intuitive communication with human operators, making insights accessible and actionable.
Collaboration capabilities allow multiple GenAI-based DTs or systems to share insights,
enabling optimized performance at the network or organizational level.

Data management in GenAI-powered DTs is the foundation of their functionality and
effectiveness. It starts with robust data acquisition from IIoT devices, collecting real-time
information such as sensor readings, operational parameters, and environmental condi-
tions. These data are then preprocessed using techniques such as normalization, filtering,
and outlier detection to ensure quality and relevance. Centralized or distributed data archi-
tectures, often leveraging cloud and edge computing, are used to store and process massive
amounts of structured and unstructured data. Advanced data integration frameworks
enable the merging of heterogeneous data sources such as machine logs, video feeds, and
maintenance records into a unified platform, and multi-modal data are increasingly being
integrated. GenAI algorithms analyze and synthesize these data, generating predictive
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insights, simulations, or new system optimization scenarios. Metadata management (data
about data) is also critical, ensuring that data provenance, context, and relationships are
well documented to support the interpretability/explainability of GenAI. Security and
compliance protocols that protect sensitive industrial data implement encryption, access
controls, and compliance with regulations such as the General Data Protection Regulation
(GDPR) or industry standards. Scalable storage solutions and intelligent indexing facilitate
efficient retrieval and manipulation of data in real time. Periodic data collection and lifecy-
cle management ensure that DT operates on accurate, timely, and meaningful data sets. By
combining advanced analytics with disciplined data practices, AI-powered generative DT
can drive transformational improvements in industrial processes.

A Weighted Extreme Learning Machine (WELM) is proposed to provide balanced
class distribution and reduce data complexity by generating new samples and removing
overlapping noisy samples at class boundaries. The effectiveness of the above solution is
demonstrated by allocating the most efficient resources to the most urgent orders to avoid
delays in the supply chain [59].

GenAI extends DTs beyond their current capabilities into more dynamic, predictive,
and interactive tools that simulate complex scenarios and predict future conditions with
remarkable accuracy. Depending on the level of GenAI integration into DTs, DTs can be
extended to varying degrees to generate synthetic data sets, simulate events/scenarios
that have no previous equivalents (e.g., isolated failures), and provide second opinions
for decision-making based on LLM agent networks. This has varying implications for
operational efficiency, innovation, and decision-making processes [60]. Different GenAI
models allow for DT state emulation, function abstraction, and decision-making based
on the interaction between GAI-based and model-driven data processing [61]. Three
approaches have been proposed for network management:

• Light model weighting;
• Adaptive model selection;
• Data model-driven management [61].

Modeling in the absence of data, e.g., higher resolution photovoltaic (PV) systems
(down to individual households or hourly), is a huge obstacle to making informed and
accurate decisions. This requires new methods to generate detailed realistic data sets—
such as integrated ML models identifying PV users—and methods to augment data using
explainable AI techniques based on key features and their interactions and to generate
hourly solar energy production at the household level using an analytical model. The
synthetic data sets obtained by the above method are validated against real-world data
for DTs for further modeling tasks [62]. Depending on the type and method of providing
input data, predictive analysis within GenAI-based DT can be based on different LLM:
GPT, DALL-E, DAVINCI, or WHISPER.

3.4. Typical Applications

Typical applications include adaptive monitoring and diagnostics, and adaptive re-
sponse. Dynamic, evolving features of the physical world require a huge amount of data
transmission/exchange to ensure synchronization between the physical world and its
virtual image. Such a communication framework can be based on the “look only once”
(YOLO) principle. The YOLOv7-X object detector in the case of an apple orchard was used
to extract semantic information from captured images of edge devices, reducing the amount
of data needed to be transmitted. The meaning of each piece of semantic information is
determined based on the trust generated by the object detector. Two resource allocation
schemes are proposed:

• Trust-based scheme;
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• AI-generated scheme acrlong.

Diffusion models generate an optimal allocation scheme that outperforms the results
obtained from the schemes used separately. An additional improvement is provided by
the attention modules of the ELAN-H and SimAM layer aggregation network that reduce
model parameters and computational complexity when using edge devices with limited
performance [63]. The complexity of the supply chain poses a particular challenge due to
its lack of transparency, generally accepted standards, and regulations. A blockchain-based
process data management solution for recycling and reuse of used electronic devices is
proposed, combining DT and GenAI to solve the blockchain performance bottleneck by
predicting future data flows. This improves the adaptability and throughput of the system,
as well as traceability, prediction accuracy, and efficiency throughout the process [64].
GenAI-supported cellular network DT is also proposed to learn complex network data dis-
tribution (environmental, user, and service) from samples from the distribution [65]. GenAI
uses these data to generate different scenarios, improving flexibility and practically solving
network optimization [66,67]. The integration of GenAI and urban DTs is used to address
challenges in the planning and management of built environments, including various
urban subsystems (transportation, energy, water, and construction and infrastructure) [68].

Adaptive Response

Enabling sustainable development and efficient use of resources, especially expensive
energy, is becoming critical for today’s economy. This is due to a number of factors: climate
change, resource depletion, and the need for decarbonization and increased innovation in
solutions. GenAI, DTs, and big data can help the energy sector achieve greater efficiency,
optimize operations, and facilitate decision-making to optimize energy use and reduce
waste [69]. The confusion in construction stems from the need to differentiate between
two technologies: building information modeling (BIM) and DT, which differ in terms
of technologies, maturity levels, data layers, enablers, and functionalities. The research
emphasis here is on the convergence of BIM and DT, data integrity, their integration and
transmission, bidirectional interoperability, non-technical factors, and data security [12].
Asset Administration Shell (AAS) is a digital twin model in the context of Industry 4.0,
assuming that semantic-based communication and meaningful textual data generation
are directly related and that these processes are equivalent. An LLM-supported system
is implemented to generate standard DT models as instances from raw textual data col-
lected automatically from data sheets describing technical assets. The achievable effective
generation rate was 62–79%. The resulting AAS model can be integrated with compliant
DT software for data exchange and DT communication and interoperability in industrial
applications [70]. OpenAI GPT-4 Turbo with Vision LLM can interpret images and provide
textual answers to queries about those images by combining natural language processing
and visual understanding. This allows for intelligent extraction of key metadata from
images and videos to assess the state of real-world systems and propose sustainability
measures. This helps to implement efficient image analysis and prediction models and op-
timize the cost of the solution using a hybrid approach. GenAI in data analysis increasingly
offers efficient and cost-effective solutions for predictive analysis based on vector search
and other data analysis methods, including image analysis, case decomposition, hybrid
search, and generation of self-adaptive models to find trends and offer preventive actions,
even for smaller companies [71].

4. Discussion
AI is based on replicating human intelligence in machine control systems, enabling

them to perform tasks that require human cognitive abilities (perception, learning, reason-
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ing, and problem-solving). AI encompasses various methodologies and technologies such
as ML, natural language processing, computer vision, and robotics, and GenAI further
extends these capabilities with rapid creativity previously unavailable to humans [72].

Generative AI development in AI-based DTs for predictive maintenance fault diag-
nosis benefits the community by increasing industrial efficiency, reducing operational
costs and improving safety. By enabling early fault detection, it minimizes unexpected
equipment failures, leading to fewer disruptions in key sectors such as manufacturing,
energy, and transportation. The technology supports sustainability efforts by optimizing
resource utilization, reducing waste, and extending machine life. Small- and medium-sized
enterprises benefit from cost-effective predictive maintenance solutions that were previ-
ously available only to large corporations. The workforce also benefits from AI-assisted
maintenance by reducing unsafe manual checks and freeing skilled professionals to focus
on higher-value tasks. From a managerial perspective, integrating Generative AI with DTs
requires a shift to data-driven decision-making, which requires investment in AI knowledge
and infrastructure. Managers must ensure ethical AI implementation, balancing automa-
tion with human oversight to maintain accountability and transparency. Real-time insights
from DTs enable proactive maintenance planning, improved asset utilization, and reduced
downtime. Additionally, industries adopting this technology gain competitive advantage
by improving service reliability and customer satisfaction. Overall, the advancement of
Generative AI in DTs aligns with the Industry 5.0 vision of human-centric, sustainable, and
resilient industrial ecosystems [73].

Introducing Generative AI into AI-based DTs for fault diagnosis and predictive main-
tenance in Industry 4.0/5.0 raises several difficulties and scientific questions beyond the
usual technical AI challenges. One major issue is the interpretability of AI-generated
insights—how can engineers and decision-makers trust and understand the synthetic fault
scenarios generated by AI models? There is also a concern about data authenticity and bias,
as synthetic data might reinforce existing biases in training datasets, leading to skewed
predictions. A key scientific question is how to balance the trade-off between real-world
physics-based models and AI-generated simulations to ensure reliability without excessive
computational costs. The integration of Generative AI with human decision-making poses
an epistemological challenge: to what extent should AI-driven insights override human
expertise in maintenance decisions? Ethical considerations arise when AI is used to au-
tomate critical fault diagnosis, particularly regarding accountability in cases of incorrect
predictions leading to safety risks or economic losses. Standardization remains an unre-
solved issue—how can industries establish universal guidelines for using Generative AI
in DTs across different sectors? Organizational resistance is another difficulty, as indus-
tries must overcome skepticism from stakeholders who may not fully trust AI-generated
diagnostics. The scalability of this approach in highly diverse industrial settings raises
scientific questions about adaptability—how can generative models generalize across differ-
ent machine types and operational environments? Additionally, regulatory and compliance
concerns present challenges, as industries must ensure AI-driven fault diagnosis meets
safety and legal requirements. The economic implications of adopting Generative AI for
predictive maintenance need further exploration—how can businesses quantify the long-
term cost savings and return on investment from implementing these advanced AI-driven
systems [74]?

Improved fault diagnostics and data augmentation for robust models enables faster
and more reliable detection of anomalies in real time based on live sensor data, identifying
patterns that indicate, for example, early signs of equipment degradation. This allows
maintenance schedules to be dynamically adjusted based on real-time information, on
the one hand avoiding downtime and on the other reducing unnecessary maintenance.
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Clear, explainable GenAI models with easily interpretable results/hints are key to earning
operator trust and ensuring that generative AI-based fault predictions are consistent with
expert knowledge. Combining AI-generated insights with expert judgment improves
decision-making, ensuring that maintenance personnel can verify and refine GenAI-based
fault diagnosis recommendations. For these reasons, protecting sensor communications,
databases, and GenAI algorithms from attacks and data manipulation is essential to main-
taining reliable predictions [75].

4.1. Limitations of Current Solutions and Concepts

The modernity of technologies using GenAI in AI-based DTs for fault diagnostics
brings with it a number of limitations that must be taken into account when planning,
building, operating, modernizing, and decommissioning/replacing such systems. They are
presented in Table 5.

Table 5. Limitations of AI in AI-based DTs for fault diagnostics within Industry 4.0/5.0 paradigm
(own version).

Limitation Description

Dependence
on data quality

GenAI models rely heavily on the quality and diversity of training data, so
incomplete, uncertain, or biased data can lead to inaccurate simulations and

fault diagnoses.

Computational complexity

The computational power required to train and deploy GenAI models can be
significantly higher, making it challenging for real-time applications in

resource-constrained environments and cost- and energy-intensive. Regular
updates and retraining of GenAI models are necessary to keep them current,

which increases operational costs.

Scenarios validity
Generated data or scenarios may not always reflect realistic or physically

plausible conditions, which can lead to misleading conclusions. This often
requires consulting experts.

Model interpretability/explainability
GenAI models, especially those using DL, are often black boxes, making it

difficult to understand or undermining the trust in the decisions they
generate.

Integration challenges Integrating GenAI into existing DT frameworks can be complex and require
significant AI and domain-specific expertise.

Risk of overfitting Generative models can overfit to specific patterns in training data, reducing
their ability to generalize to unseen error conditions.

Lack of domain-specific context
Without sufficient domain expertise incorporated into the AI model,

generative AI may not account for the nuances of operational behavior of
specific industrial systems.

Dependence on AI expertise
Successful implementation requires skilled AI practitioners who understand

generative models and digital twin technologies, which can be a limiting
factor in many industries.

Ethics and security concerns Data generated by GenAI could potentially raise ethical issues or be used
maliciously, such as by creating misleading error scenarios.

Overcoming the above limitations, even partially, will increase the effectiveness of the
discussed group of systems and accelerate their full implementation [76,77].

4.2. Directions of Further Research

Complementing the overcoming of the fundamental limitations described above are
the most promising directions for further research on GenAI in AI-based DTs for fault diag-
nosis for predictive maintenance in Industry 4.0/5.0. Advances in generating high-fidelity
synthetic data that closely reflect real-world conditions can address data scarcity and
improve model performance [78]. Research into GenAI techniques that enable real-time up-
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dates and learning can make DTs more dynamic and responsive to changing system condi-
tions. Developing hybrid models that combine GenAI with physics/chemistry/mechanics-
based simulations can increase the realism and reliability of DTs for fault diagnosis [79].
Research into interpretable/explainable GenAI (XAI) models can help build trust and make
it easier to understand the insights provided by AI-based DTs. Adaptively tailoring GenAI
architectures to specific industries or assets can improve their accuracy and relevance in
predictive maintenance applications [80]. Furthermore, research into lightweight GenAI
models can enable scalability and real-time processing in resource-constrained industrial
environments. Exploring how GenAI can seamlessly integrate with IoT sensors and edge
computing can enhance data collection and error detection capabilities [81]. Collaborative
interdisciplinary research involving AI experts and industry practitioners can ensure that
GenAI solutions are practical and tailored to real-world needs [82]. Focusing on the secure
implementation of GenAI in DTs can prevent vulnerabilities related to data manipulation
and model exploitation [83]. Exploring how GenAI can optimize resource utilization and
minimize energy consumption aligns with Industry 5.0’s emphasis on sustainability and
human-centric approaches [84,85].

Future work on generative AI in AI-based DTs for fault diagnosis and predictive main-
tenance in Industry 4.0/5.0 will focus on increasing model adaptability, scalability, and
real-time decision-making capabilities. One key direction is to integrate multimodal data
sources, such as sensor data, historical maintenance logs, and expert knowledge, to increase
the accuracy and robustness of fault predictions. Advanced reinforcement learning tech-
niques can be combined with generative AI to enable self-learning DTs that continuously
evolve without human intervention. Future developments may also include federated
learning to ensure data privacy and enable collaborative intelligence across multiple indus-
trial sites. The use of quantum computing can further accelerate training and inference of
generative models, enabling more complex simulations and faster fault diagnosis. Another
promising extension is the implementation of AI-based edge computing, where generative
models run on localized devices to provide immediate fault predictions without relying on
cloud infrastructure. Generative AI can also enable synthetic data augmentation, improv-
ing model generalization for rare or invisible fault conditions. As AI-based DTs become
more advanced, they can integrate with augmented reality and virtual reality systems to
provide immersive diagnostics and training for maintenance personnel as part of Industry
5.0 [86,87]. Additionally, human-in-the-loop AI frameworks will be key to maintaining the
interpretability and trust of automated fault diagnostic systems. Future research should
also consider regulatory compliance, ethical issues, and standardization of AI-based pre-
dictive maintenance technologies to ensure safe and responsible implementation across
industries [88,89].

5. Conclusions
DT technologies, including those based on GenAI, enable early detection and correct

diagnosis of faults, which will facilitate corrective actions to replace predicted damaged
components before failures occur. The number of publications on GenAI-based DTs is not
large in relation to the needs, nor does it cover all the observed research gaps, which is why
there should be more emphasis on interdisciplinary scientific and economic cooperation in
this area. This applies to both collected and generated data, as well as entire environments
for their processing. This will not only allow for maintaining control over the develop-
ment of this group of solutions, but also for their standardization and synchronization of
development with the consideration of Explainable AI (XAI).

With respect to the previously observed knowledge and experience gaps, it can be
said that Generative AI plays a key role in AI-based DTs for fault diagnosis and pre-
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dictive maintenance in Industry 4.0 and 5.0. By creating realistic simulations, it enables
accurate modeling of machine behavior under different conditions. These AI-driven DTs
continuously learn from real-time data, enhancing the ability to detect and predict faults.
Generative AI helps in synthesizing missing or sparse failure data, improving diagnostic
accuracy. It also enables adaptive maintenance strategies by predicting potential failures
before they occur. This reduces downtime, minimizes maintenance costs, and optimizes
resource utilization. Moreover, the integration of Generative AI with IoT and edge com-
puting improves real-time monitoring and decision-making. The synergy between AI
and digital twins facilitates a proactive, data-driven approach to maintenance in smart
industries. As Industry 5.0 emphasizes human-AI collaboration, Generative AI increases
interpretability and decision support for human operators. Using Generative AI in DTs
transforms predictive maintenance, ensuring reliability, efficiency, and sustainability in
industrial operations.

In predictive maintenance, GenAI DTs enable realistic operational profiles, identifying
potential failure modes that traditional methods may miss. New opportunities in GenAI-
based DTs include:

• Incorporating XAI to enhance decision-making clarity and improve reliability in key
industries such as manufacturing, energy, and even employee healthcare as part of
preventive medicine;

• Emphasizing a human-centric approach, so GenAI-based DTs can better integrate with
human operators to support collaboration and decision-making;

• Implementation of edge AI and distributed computing further increases the scalability
and real-time capabilities of DT, and federated learning ensures data privacy.

In this way, increasingly effective DT technologies will increasingly cooperate with
operators within the Industry 5.0 paradigm. Challenges remain in managing computational
complexity, ensuring data security, and addressing ethical issues during implementation.
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