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Preface

This Special Issue focuses on the use of MRI in diagnosing and managing prostate cancer. Prostate
cancer is one of the most common types of cancer in men, and it is estimated that one in nine men
will be diagnosed with it in their lifetime, representing a major public health concern. While technical
developments are ongoing, magnetic resonance imaging (MRI) has increasingly been used to diagnose
and monitor prostate cancer. This Special Issue also covers a range of topics, such as the use of MRI for
prostate cancer screening, technical developments in MRI sequences and post-processing methods,
the relationship of MRI metrics with prostate cancer biology, and the role of radiomics in diagnosing
prostate cancer. This Special Issue provides an invaluable resource for researchers, clinicians, and

patients interested in the use of MRI in diagnosing and managing prostate cancer.

Milica Medved and Aritrick Chatterjee
Guest Editors
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Simple Summary: In this study, we built clinical- and radiomics-based models to predict lesions/patients
at low risk based on a combined clinical-genomic classification system. Eighty-three multi-parametric MRI
exams from 78 men were analyzed. Several models for lesion classification were built using a minimal
clinical variables subset and radiomic features from the lesion and normal tissues. The models were also
evaluated for patient classification. In all cases, the radiomic features improved the performance. To the
best of our knowledge, this is the first study to demonstrate that machine learning radiomics-based models
can predict patients’ risk using combined clinical-genomic classification.

Abstract: The utilization of multi-parametric MRI (mpMRI) in clinical decisions regarding prostate
cancer patients’ management has recently increased. After biopsy, clinicians can assess risk using Na-
tional Comprehensive Cancer Network (NCCN) risk stratification schema and commercially available
genomic classifiers, such as Decipher. We built radiomics-based models to predict lesions/patients
at low risk prior to biopsy based on an established three-tier clinical-genomic classification system.
Radiomic features were extracted from regions of positive biopsies and Normally Appearing Tissues
(NAT) on T2-weighted and Diffusion-weighted Imaging. Using only clinical information available
prior to biopsy, five models for predicting low-risk lesions/patients were evaluated, based on: 1: Clin-
ical variables; 2: Lesion-based radiomic features; 3: Lesion and NAT radiomics; 4: Clinical and
lesion-based radiomics; and 5: Clinical, lesion and NAT radiomic features. Eighty-three mpMRI
exams from 78 men were analyzed. Models 1 and 2 performed similarly (Area under the receiver op-
erating characteristic curve were 0.835 and 0.838, respectively), but radiomics significantly improved
the lesion-based performance of the model in a subset analysis of patients with a negative Digital
Rectal Exam (DRE). Adding normal tissue radiomics significantly improved the performance in all
cases. Similar patterns were observed on patient-level models. To the best of our knowledge, this is
the first study to demonstrate that machine learning radiomics-based models can predict patients’
risk using combined clinical-genomic classification.

Keywords: prostate cancer; multiparametric MRI; radiomics; Decipher; clinical-genomic risk classification

Cancers 2023, 15, 5240. https:/ /doi.org/10.3390/ cancers15215240 1 https://www.mdpi.com/journal/cancers
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1. Introduction

Prostate cancer is the most common cancer in American men. In 2022, more than a
quarter of a million men was diagnosed with the disease [1]. Clinical decisions related to
the choice of treatment, including active surveillance (AS), are multifactorial and complex.
Prostate cancer risk assessment governs these decisions across a spectrum of local-regional
diseases, from whether to biopsy to whether to intensify treatment using multimodality
therapy. RNA transcript marker-based signatures have rapidly been incorporated into
such determinations, along with Gleason Score (GS), now termed Grade Group (GG) [2].
While GG remains the standard of care, there has been a paradigm shift to incorporate
transcriptomic signatures into clinical decision making. In particular, patients with GG1-
3 cancer may be recommended to have either intensified or de-intensified treatment based
on a genomic risk score [3,4].

Prostate needle biopsy carried out under multi-parametric MRI (mpMRI) guidance
has gained acceptance as a key component of patient management. From the biopsy tissue,
both histopathological and genomic biomarkers are used in clinical management. After
prostate biopsy, clinicians have various tools for risk assessment, including the National
Comprehensive Cancer Network (NCCN) [5] risk stratification schema. The primary
goal of the NCCN risk assessment is to predict biochemical recurrence (BCR) rather than
survival outcomes such as distant metastasis (DM). To improve the prediction of adverse
events, the NCCN classifications were integrated into a three-tier classification system
with a commercially available genomic classifier, Decipher (Veracyte Inc., San Francisco,
CA, USA) [6], which was optimized to predict the risk of DM [7]. The resultant clinical-
genomic classification system, referred to as the Spratt criteria, stratifies patients into low-,
intermediate- and high-risk groups [7].

Active surveillance (AS) has emerged as a safe alternative to immediate treatment in
low-risk patients [8-10]. AS has been incorporated into many prostate cancer management
guidelines, which reduces the burden of overtreatment. While initially reserved for men
with low-risk cancer (GS6 or GG1), there has been an increase in the inclusion of men
with low-volume favorable intermediate-risk prostate cancer [11]. However, there is still
a concern about missing the window for cure in men with greater than GG2 disease, as
emerging data with long follow-up show an increased risk of metastasis [12]. Prostate
cancer multifocality and heterogeneity [13] are the Achilles heel of prostate cancer risk strat-
ification, and standard ultrasound template biopsies have proven to have poor Negative
Predictive Value (NPV) for the detection of clinically significant prostate cancer [14]. We
hypothesize that with improved techniques for tumor identification, targeting for biopsies,
and classification using quantitative imaging, good candidates for AS would be reliably
identified, including some with GG2 disease. We also hypothesize that patients in the
low-risk group by the Spratt criteria will constitute patients who are good candidates for
active surveillance. The low-risk classification is defined as either (i) low-risk based on
NCCN and low- or intermediate-risk based on Decipher; or (ii) low-or-intermediate NCCN
risk group and low Decipher group (Supplementary Figure S1).

The use of mpMRI for the detection and classification of prostate cancer is rapidly
evolving due to its growing availability and the efforts in the radiology community to
standardize the reporting of suspicious prostate lesions (Prostate Imaging Reporting and
Data System (PI-RADS) [15] (current version PI-RADSv.2.1) [16]. Computer-aided diag-
nosis (CAD) techniques for quantitative mpMRI analysis have also been developed for
prostate cancer detection and diagnosis [17-22]. The CAD efforts can be divided into two
categories based on the main objectives for the analysis: (i) detection/segmentation of
the suspicious lesion; and/or (ii) assessment of the aggressiveness of prostate cancer. The
Habitat Risk Score (HRS) approach was developed to automatically identify suspicious
lesions on mpMRI of the prostate and score the pixels within these regions by aggressive-
ness [23]. Advanced quantitative mpMRI features, also referred to as radiomic features, are
extracted from the lesion volumes, and these variables are then used to build descriptive
and predictive models [23].
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In this manuscript, we combine clinical and radiomic features to develop a model
to classify lesions and, consequently, patients prior to biopsy as low risk according to the
Spratt criteria [7]. We utilize HRS to automatically segment on mpMRI the areas of the
prostate biopsy and, using our radiomics pipeline [24], extract quantitative imaging features
from the segmented region on multiple mpMRI sequences. Patients are classified as low
risk if all mpMRI lesions are classified as low risk. To recreate a realistic scenario, only
clinical features available a priori to biopsy are considered. The importance of the approach
is that this model will allow non-invasive assessment prior to biopsy for patients who are
good candidates for AS and may help delay biopsy or de-escalate surveillance biopsies.

2. Materials and Methods
2.1. Study Population

The study cohort comprised patients participating in two institutionally approved
and registered trials: a single-arm active surveillance (AS) trial “MRI-Guided Biopsy Se-
lection of Prostate Cancer Patients for Active Surveillance versus Treatment: The Miami
MAST Trial“(ClinicalTrials.gov: NCT02242773) and a phase II randomized clinical trial
“MRI-Guided Prostate Boosts Via Initial Lattice Stereotactic vs. Daily Moderately Hypofrac-
tionated Radiotherapy (BLaStM)” (ClinicalTrials.gov: NCT02307058). Both trials were
approved by the Institutional Review Board at the University of Miami and all patients
signed appropriate informed consent for treatment and the analysis of MRI and biopsy
tissue for research purposes. Patients in both trials underwent mpMRI followed by MRI-
ultrasound (MRI-US) fusion biopsies. Patients also agreed to have their tissue sent to
Veracyte Inc. (San Francisco, CA, USA), and their data are included in this research. During
the initial phase of the trials between 2014 and 2017, all cancer-positive biopsy cores with
larger than 1 mm of cancer were sent to Veracyte for gene expression analysis. In addition,
if available, positive cores from the patient’s diagnostic biopsy (prior to enrollment in the
MAST /BLaStM clinical trials) were also sent.

2.2. Multiparametric-MRI of the Prostate

MRI sequences and sequence parameters were consistent with the recommendations
for PI-RADSV2 [16]. The exams consisted of axial T2-weighted (T2W) MRI of the male
pelvis, Diffusion-Weighted Imaging (DWI) with the generation of Apparent Diffusion
Coefficient (ADC) maps and Dynamic Contrast-Enhanced (DCE)-MRI. mpMRI data was
acquired using 3T Discovery MR750 (GE, Waukesha, WI, USA), 3T MR Magnetom Trio,
Skyra and 1.5T Symphony (Siemens, Erlangen, Germany) magnets. Acquisition parameters
of the individual sequences of mpMRI are given in Supplementary Table S1.

2.3. Workflow for Co-Registration of Genomic and Radiomic Data

The image segmentation and the co-registration of the biopsy/gene expression and
radiomics of the lesion are illustrated in Figure 1. Prostate and suspicious-for-cancer
regions were outlined in Dynacad 5.1 (InVivo, Gainsville, FL, USA) by radiologists with
more than ten years of experience in genitourinary (GU) malignancies using PI-RADSv2.
The findings were also confirmed by heatmaps generated by HRS, described in detail in
Stoyanova et al. [23]. Briefly, HRS is an approach that automatically assigns a score from 1
to 10 to each pixel in the prostate in an increasing fashion related to tumor aggressiveness.
HRS combines quantitative characteristics from the diffusion and perfusion sequences of
mpMRI and is displayed as a heat map overlaid on the T2-weighted images. HRS was
developed in reference to prostatectomy GS and, in particular, HRS6, i.e., the volume
comprised by pixels with HRS = 6, which were concordant with the tumor volumes from
radical prostatectomy [23].
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T2-weighted MRI DCE-MRI ADC High b-value HRS HRS6 + biopsy

Figure 1. Co-registration of biopsy and segmentation of volumes for radiomics analysis. The
radiogenomic pipeline is illustrated in the mpMRI from two patients (A,B). The lesion is marked
with a red arrow on T2-weighted MRI, early enhancing Dynamic Contrast Enhancing (DCE)-MRI,
Apparent Diffusion Coefficient (ADC) and High b-value (BVAL) image from the Diffusion-Weighted
Imaging (DWI) sequence. Habitat Risk score (HRS) heat maps for HRS > 5, associated with the lesion
are overlaid on T2-weighted MRI. The last image illustrates the HRS6 volume in yellow, overlapping
with the needle track (green dot, yellow arrow).

MRI-US biopsies were carried out in UroNav (InVivo, Gainsville, FL, USA). Tissue
from the identified targets was obtained for pathology and gene expression analysis. For
patients in BLaStM, only suspicious areas seen on mpMRI were sampled. For patients in
MAST, standard template biopsies were also collected.

The biopsy needle track coordinates (beginning and end) were recorded and trans-
ferred in MIM 7.2.3 (MIM Software, Cleveland, OH, USA). The tumor Regions of Interest
(ROIs) were assigned as the volumes of HRS = 6 coinciding with the individual needle
tracks (Figure 1). In cases where the needle tracks were not recorded, the recorded location
of the biopsy was used as a guide for selecting the biopsy ROIs. Two regions, representa-
tive of the normally appearing tissue peripheral zone PZ (NAPZ) and transition zone TZ
(NATZ), were manually selected.

2.4. Normalization of T2W and BVAL Intensities

For normalization of the T2-weighted MRI intensities, a multireference normalization
approach was utilized [25]. Using the “Region Growing Utility” in MIM, three reference
contours were selected in the gluteus maximus (GM), femoral head, and bladder. The
average intensity values from these contours were assigned a fixed reference value. For
each patient, a spline function between the average and reference values was fitted. GM
was the only anatomical structure that was consistently identified on high b-value images
(BVAL) for all patients. BVAL images were normalized by GM.

2.5. Radiomic Analysis

Radiomic features were extracted as described in Kwon et al. [24] using a Java-based
plugin in MIM. ROIs intensities (first-order radiomic features) on the three image modalities
T2W, ADC and BVAL were characterized using nine histogram descriptors: 10%, 25%, 50%,
75%, 90%, mean, standard deviation, kurtosis, and skewness. Five texture (second-order
radiomics) features: energy, entropy, correlation, homogeneity, and contrast, were extracted
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from T2W, ADC and BVAL using Haralick texture descriptors [26]. The features were cal-
culated using the grey level co-occurrence matrices (GLCM) for each voxel underlying the
contoured regions in the image. Voxel-wise texture measures were computed in 3D by sliding
a window of size 5 X 5 x 5 across the image region enclosing the tumor volume. Image
intensities were rescaled within a 0-255 range within the 5 x 5 x 5 window. The rationale
for this local normalization, rather than global volume normalization, is that the objective
was to obtain texture estimates in the normal-appearing tissues in addition to the tumor
volumes. The GLCM was then computed in 3D using 128 binsina 5 x 5 x 5 patch centered
at each voxel [27]. The texture values for the whole tumor were then summarized using the
voxel-wise textures. The nine histogram descriptors described above were calculated for each
texture feature. The texture features were computed using C++ and the publicly available
Insight ToolKit (ITK 5.2.1) software libraries for imaging (Kitware, Carrboro, NC, USA).

In summary, 162 quantitative imaging variables (Table 1) were analyzed: 3 modalities
(T2W, ADC and BVAL) X 6 features (first-order: intensity (int) and second-order: energy (ene),
entropy (ent), contrast(con), correlation (cor), and homogeneity (hom)) x 9 descriptors (10%,
25%, 50%, 75%, 90%, mean, standard deviation (SD), kurtosis (Kurt), and skewness (Skew)).
In addition, 162 variables were extracted for NAPZ and NATZ, bringing the total analyzed
radiomic features to 486. Here, and in the rest of the text, the imaging variables” names
are constructed by concatenating the abbreviations of the pertinent ROI (tumor, NATZ or
NAPZ), image sequence, radiomics feature, and histogram descriptor (Table 1). For instance,
L_ADC_int_50 refers to the 50% of the ADC intensity in the lesion (biopsy ROI).

Table 1. Radiomic variables and the abbreviations used in radiomic variables name-convention *.

ROI Image Sequence  Radiomics Feature = Histogram Descriptor
Lesion (L) T2-weighted (12) Intensity (int) 10%
Normal Appearing ADC (adc) Contrast (con) 25%
Peripheral Zone (NAPZ)  High b-value (b) Correlation (cor) 50%
Normal Appearing Energy (ene) 75%
Transition Zone (NATZ) Entropy (ent) 90%

Homogeneity (hom) mean
standard deviation (SD)
kurtosis (Kurt)
skewness (Skew)

Abbreviations: ROI = Region of Interest; ADC = Apparent Diffusion Coefficient. * Variable names are the
concatenation of ROI, image sequence, radiomics feature and histogram descriptor for that feature. For example,
the lesions” ROI 90% energy texture on ADC will be L_adc_ene_90. Alternatively, NATZ_t2_cor_50 refers to the
50% of the correlation texture variable in NATZ on T2W MRIL

2.6. Genomic Analysis

Tissue microdissection, RNA extraction, and amplification and microarray hybridiza-
tion were performed in a Clinical Laboratory Improvement Amendments (CLIA)-certified
laboratory facility, as described previously in [28]. Amplified products were fragmented
and labeled using the Encore Biotin Module (NuGen, San Carlos, CA, USA) and hybridized
to Human Exon 1.0 ST GeneChips (Affymetrix, Santa Clara, CA, USA). The Decipher Score
is a 22-gene fixed signature or algorithm that ranges from 0.0 to 1.0, with higher scores
related to an increased risk of prostate cancer metastasis. The test uses 0.45 and 0.6 as
cutoff points to differentiate between low- versus intermediate- and intermediate- versus
high-risk, respectively [29].

2.7. Calculation of Spratt Score

The Spratt clinical-genomic risk score is calculated by assigning a numeric value of
0,1, 2 and 3 to the low, favorable intermediate, unfavorable intermediate, and high/very
high NCCN risk groups, respectively [7], and a numeric value of 0, 1, or 2 to the low,
intermediate, and high risk Decipher genomic classifier, respectively, and then adding these
two values to obtain a clinical-genomic risk group (see Supplemental Figure S1). The Spratt
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Score can be reported as either a six-tier or a three-tier risk stratification, with higher scores
indicating higher risk.

2.8. Modeling and Statistical Analysis

To evaluate the contribution of radiomic variables to the predictive value of the clinical
variables, we evaluated five models for predicting low-risk lesions/patients as defined
by Spratt’s criteria (Supplementary Figure S1). In Figure 2, the derivation of the outcome
labels, model input variables and development, and the concept of future use are presented.
The following models were generated:

A. Biopsy Based Spratt Risk Classification (Outcome Variable)

" Clinical Variables
| TumorGrade | o

Tumor Grade Risk
Classification

Decipher Score

Biopsy

B. Training of a Pre-Biopsy Model for Prediction of Spratt Risk Classification

Pre-Biopsy

Clinical Age, PSAD, PIRADS, DRE

Variable

Biopsy Lesion,

NAPZ, NATZ Radiomics Ab2 ATz
ROIs Segmentation Trained Models
C. Biopsy-free Prediction for Low-Risk Lesions/Patients Not a Low-
Age Risk Patient
" PSAD

PIRADS Lesion
DRE Classifica Risk

tion Patient
Radiomics

Any Lesion

Automatic ROIs Segmentation Trained Model

Figure 2. Modeling and analysis design. (A) Each biopsy is labeled using the Spratt criteria; (B) Five
different models are trained, using the Spratt criteria’s classification from (A) to predict low-risk
disease. The input parameters to the models are minimal clinical variables subset and radiomic
features from the lesion, NAPZ and NATZ; (C) The developed models will be used to classify patients
at low risk. Abbreviations: NCCN = National Comprehensive Cancer Network; NAPZ = normally
appearing peripheral zone; NATZ = normally appearing transition zone; ROI = Region of Interest;
PSA = Prostate Specific Antigen, PSAD = PSA density; DRE = digital rectal exam.

Model 1: A clinical model using patient’s age, PSA density (PSAD), digital rectal exam
(DRE), and PI-RADS for input. Importantly, this model did not incorporate the results
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of biopsy tissue, as we wanted to simulate a pre-biopsy clinical scenario and limited the
variables to the initial prostate exam.

Model 2: Lesion-based radiomics model.

Model 3: Lesion and NAPZ/NATZ radiomics model.

Model 4: A combined clinical and lesion radiomics model.

Model 5: A combined clinical and lesion/NAPZ/NATZ radiomics model.

For Model 1, all pre-biopsy clinical variables were used. For the radiomics models,
since imaging data are highly correlated and multi-dimensional, we used a penalized
logistic regression model (GLMNET) to select important imaging variables that predict
low-risk lesions [30]. Radiomics imaging data were standardized for feature selection.
The volume of HRS6 (tumor volume) was added to all radiomics models. The variables
were selected based on the adaptive LASSO method. Logistic regression analysis, using all
clinical variables for Model 1 and the selected radiomic variables for Model 2 and Model 3,
was used to predict low-risk lesions. For patient-level prediction, we selected the lesion
with the highest three-tier score and evaluated the models. The performance of the models
was also evaluated on a subset of patients that had negative DRE. The rationale for this
subgroup analysis was to eliminate patients that most likely are not at low-risk.

The area under the receiver operating characteristic (ROC) curve (AUC) is reported as
a performance measure for each trained model. AUC comparison is performed using the
Venkatraman and Begg method [31]. For each model, bootstrap-based optimism-corrected
AUC was calculated using 1000 runs [32]. Analysis was performed using corresponding R
4.2.3 packages (R Foundation for Statistical Computing, www.R-project.org (accessed on
1 May 2023)).

3. Results

A total of 231 biopsy cores from 78 men were analyzed for this study, with 46 men
coming from the MAST active surveillance trial and 32 from the BlaStM primary radiation
trial. (Tables 2 and 3). As the patients in MAST were of low risk and in BlaStM of
intermediate and high risk, the differences in the T-stage, PSA, DRE, GS/GG, Decipher,
and the three-tier risk groups were statistically significant between the patients in the two
trials.

A total of 83 mpMRI exams were analyzed. When available, both the diagnostic and
protocol biopsies were matched with their corresponding mpMRIs. Thus, for five patients
two mpMRI exams were analyzed. A detailed breakdown by MRI instruments is given in
Table 2. The majority of the exams were acquired using Discovery, GE (50.6%), and Skyra,
Siemens (39.8%) magnets.

In Table 4, the variables used for training each model are shown. All three pre-biopsy
clinical variables were used in Model 1. Thirteen variables were selected for Model 2: Lesion
Radiomics and 33 for Model 3: Lesion + NAPZ/NATZ Radiomics. The image intensity-
based features (first-order radiomic features) were overrepresented (yellow highlight) in
the lists of the significant variables; while they are one/sixth of all radiomic features,
more than a third of the variables on both lists are related to image-intensities. For the
lesion RO, these variables are related to low T2 (L_t2_int_10) and high BVAL (L_b_int_75).
In Supplementary Figure S2, four lesion imaging features used in the models: HRS6,
L_t2_int 10, L_adc_int 50 and L_b_int_75 are displayed as box plots of the distribution
of these features in low and intermediate/high-risk lesions. HRS6 (a surrogate of tumor
volume) and BVAL were significantly higher, and T2 and ADC were significantly lower in
intermediate/high risk in comparison with low-risk lesions.
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Table 2. Patient characteristics for study cohort organized by the clinical trial.

Variable TOTAL (N (%)) MAST (N (%)) BLASTM (N (%)) p-Value ?
Patients 78 46 32
Age (median, range) years 64.5 (44-82) 64.0 (44-82) 67.5 (44-79) 0.237
Age groups 0.559
<44 years 2 (2.6) 1(2.2) 1(3.1)
45 to 54 years 7 (9.0) 5(10.9) 2 (6.3)
55 to 64 years 30 (38.5) 20 (43.5) 10 (31.3)
65 to 74 years 31(39.7) 17 (37.0) 14 (43.8)
>75 years 8 (10.3) 3 (6.5) 5 (15.6)
Race/ethnicity 0.218
Non-Hispanic White 37 (47.4) 25 (54.3) 12 (37.5)
Non-Hispanic Black 11 (14.1) 6 (13.0) 5 (15.6)
Hispanic/Latino 28 (35.9) 15 (32.6) 13 (40.6)
Others 2(2.6) 0(0) 2(6.3)
PSA, ng/mL, median, range 6 (1.3-77.7) 4.7 (1.3-16.7) 9.7 (1.5-77.7) 0.0004
PSA groups, ng/mL 0.001
<10 57 (73.1) 40 (87.0) 17 (53.1)
10-20 15 (19.2) 6 (13.0) 9 (21.8)
>20 6(7.7) - 6(18.8)
Grade Group <0.0001
1 40 (51.3) 36 (78.3) 4(12.5)
2 15 (19.2) 7 (15.2) 8 (25.0)
3 10 (12.8) 3(6.5) 7 (21.9)
4-5 13 (16.7) 0(0.0) 13 (40.6)
T stage <0.0001
T1 58 (74.4) 46 (100) 12 (37.5)
T2-T3 20 (25.6) 0(0) 20 (62.5)
N of biopsy 0.3748
1 25 (32.1) 16 (34.8) 9(28.1)
2 10 (12.8) 7 (15.2) 3094)
3 3(25.6) 13 (28.3) 7 (21.9)
4 9(11.5) 5(10.9) 4 (12.5)
>5 14 (17.9) 5(10.9) 9(28.1)
DRE? <0.0001
0 55 (70.5) 46 (100) 9(28.1)
1 18 (23.1) 0(0.0) 18 (56.3)
2 5 (6.4) 0(0.0) 5(15.6)
PI-RADSv.2.1 0.0002
1-2 28 (35.9) 22 (47.8) 6(18.8)
3 8 (10.3) 7 (15.2) 1(3.1)
4 23 (29.5) 12 (26.1) 11 (34.3)
5 19 (24.3) 5(10.9) 14 (43.8)
MRI scanner (Vendor) 0.2029
3T Discovery (GE) 42 (50.6) 21 (42.0) 21 (63.6)
3T Skyra (Siemens) 33 (39.8) 24 (48.0) 9 (27.3)
3T TimTrio (Siemens) 6(7.2) 4 (8.0) 2 (6.1)
1.5T Symphony (Siemens) 2(2.4) 1(2.0) 1(3.0)

Abbreviations: PSA = Prostate Specific Antigen; DRE = Digital Rectal Exam; T = Tesla. ? p-values from t-test
for continuous variables or Fisher’s exact test for categorical variables; ® DRE categories are: 0 = No palpable
abnormality in the prostate or rectum; 1 = Palpable abnormality; 2 = Palpable abnormality, suggestive for

extraprostatic extension.



Cancers 2023, 15, 5240

Table 3. Biopsy characteristics for study cohort organized by clinical trial.

Variable TOTALIN  pasT (v ey BEASTMIN ) Vatye @
(%)) (%))
Biopsy N 231 124 107
Grade Group <0.0001
1 123 (53.2) 102 (82.3) 21 (19.6)
2 46 (19.9) 18 (14.5) 28 (26.2)
3 21 (9.1) 4 (3.2) 17 (15.9)
4-5 41 (17.7) - 41 (38.3)
Biopsy Type 0.656
Diagnostic 75 (32.5) 23 (18.5) 52 (48.6)
Trial 156 (67.5) 101 (81.5) 55 (51.4)
Decipher <0.0001
Low risk 161 (69.7) 114 (91.9) 47 (43.9)
Intermediate risk 23 (10.0) 7 (5.7) 16 (15.0)
High Risk 47 (20.3) 3(2.4) 44 (41.1)
NCCN <0.0001
Group 1 90 (39.0) 79 (63.7) 11 (10.3)
Group 2 48 (20.8) 28 (22.6) 20 (18.7)
Group 3 41 (17.7) 14 (11.3) 27 (25.2)
Group 4 52 (22.5) 3(24) 49 (45.8)
3-tier classification <0.0001
system
Low risk 133 (57.6) 103 (83.1) 30 (28.0)
Intermediate risk 61 (26.4) 21 (16.9) 40 (37.4)
High Risk 37 (16.0) - 37 (34.6)

Abbreviations: MAST = “MIAMI MRI selection for Active surveillance versus Treatment” Clinical Trial;
BlaStM = “MRI-Guided Prostate Boosts Via Initial Lattice Stereotactic versus Daily Moderately Hypo-fractionated
Radiotherapy” Phase II clinical Trial. # p-values from ¢-test for continuous variables or Fisher’s exact test for
categorical variables.

ROC curves and AUCs for the five trained models in all patients and subset analysis
for patients with negative DRE (DRE = 0) are shown in Figures 3 and 4. In each figure,
the left panel shows the performance of the models on a biopsy level and on the right, it
is shown on a patient level. In Figure 3, all lesions were analyzed: 133 low risk vs. 98 in-
termediate /high risk by the Spratt criteria. Interestingly, the clinical features performed
similarly to the lesion radiomics. When the NAPZ/NATZ features were added to the
model, there was a significant improvement in the performance, resulting in AUC of 0.95
for the best-performing Model 5. Similar patterns were observed on patient-level models
(78 patients: 56 low-risk vs. 22 intermediate/high-risk). When only patients with DRE = 0
were considered, 149 lesions (110 low-risk vs. 39 intermediate/high risk) were analyzed
(Figure 4). The prediction based on clinical variables degraded, indicating that positive
DRE was a major driver in the performance in the previous models. The addition of the
lesion radiomic features both in biopsy- and patient-level (55 patients: 48 low-risk vs.
7 intermediate /high-risk) significantly improved the classification.

Due to the high performance of the intensity’s features, we tested the value of using
only first-order radiomics by re-creating models Model 1-5. There is a major advantage of
using only intensities, assuming that the resultant model is not substantially underperform-
ing relative to the full variable selection. Intensity futures are easy to compute, and they
are highly reproducible between groups and software. The results from the intensities-only
analysis are given in the Supplement. In Supplemental Table S2, the variables used for
training each model are shown. All three clinical variables were used in Model 1. Six vari-
ables were selected for Model 2, and three of these variables overlapped with the ones
selected in Table 4. In addition, L_t2_int_25 is strongly correlated with L_t2_int_10 (Table 4).
Thirteen variables were selected for Model 3 and the lesion features were >50% of the total;
from the normal-appearing tissues, only TZ features were selected. ROC curves and AUCs
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for the five trained models in all patients and subset analysis for patients with negative
DRE (DRE = 0) are shown in Supplemental Figures S3 and S4. The overall performance for
lesion-classification was in the range of 0.727 to 0.884 and the radiomic models degraded
relatively to full-variable selection in all instances. The addition of the radiomic variables
to the clinical improved the prediction only in Model 5 in the subset analysis.

Table 4. Variables for the three models for prediction. Variables in yellow are image-intensity related.

Clinical Variables Lesion Radiomic Variables Lesu.)nll\!APZ/.N ATZ
Radiomic Variables
Model 1 Model 2
Model 3
Age (continuous) HRS6 (volume) HRS6 (volume)
PSAD (continuous) L_t2_int_10 L_t2_int_10*
DRE (0 vs. 1-2) L_adc_int_50 L_adc_int_Ske *

PI-RADS (1-2 vs. 3,4,5)

L_adc_int_Kur
L_adc_int_Ske
L b_int 75
L_t2_con_25
L_adc_con_90
L_t2_ene_SD
L_adc_ene_SD
L_b_ene_25
L_b_ene_50
L_adc_ent_10
L_t2_hom_90

L_adc_con_90*
L_adc_cor_90
L_adc_ene_25
L_adc_ene SD*
L_b_ene_75
L_b_ent_10
L_t2_hom_90*
NATZ_t2_int_SD
NATZ_t2_int_Ske
NATZ_adc_int_90
NATZ_b_int_90
NATZ_b_int_SD
NATZ_t2_con_SD
NATZ_adc_con_10
NATZ_adc_cor_50
NATZ_t2_ene_SD
NATZ_b_ene_75
NATZ_t2_ent_50
NATZ_b_hom_50
NAPZ_t2_int_75
NAPZ_t2_int_Kur
NAPZ_t2_int_Ske
NAPZ_b_int_90
NAPZ_b_int_Kur
NAPZ_t2_con_75
NAPZ_adc_con_10
NAPZ_b_con_10
NAPZ_t2_cor_50
NAPZ_adc_cor_25
NAPZ_adc_ene_75
NAPZ_t2_ent_90
NAPZ_b_ent_10
NAPZ_t2_hom_90
NAPZ_t2_hom_SD
NAPZ_b_hom_10
NAPZ_b_hom_SD

Abbreviations: PSAD = Prostate Specific Antigen density; DRE = Digital Rectal Exam; NAPZ = Normal Appearing
Peripheral Zone; NATZ = Normal Appearing Transition Zone; HRS6 = Volume defined by pixels with Habitat
Risk Score = 6. * Variables that are on both “Lesion” and “Lesion and NAPZ/NATZ" lists.
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Figure 3. ROC curves and AUCs from five models: Model 1: Clinical model; Model 2: Lesion
radiomics; Model 3: Lesion and NAPZ/NATZ radiomics; Model 4: Clinical variables with Lesion
radiomics; Model 5: Clinical variables with Lesion and NAPZ/NATZ radiomics. (A) Lesion-based
prediction for low risk, based on 231 lesions (133 low risk vs. 98 intermediate/high risk); (B) Patient-
based prediction for low risk, based on 78 patients (56 low risk vs. 22 intermediate/high risk). The
tables below the graphs show AUC, p-values and Optimism-Corrected (O-C) AUC.
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Figure 4. ROC curves and AUCs from five models in patients with negative DRE: Model 1: Clinical
model; Model 2: Lesion radiomics; Model 3: Lesion and NAPZ/NATZ radiomics; Model 4: Clin-
ical variables with Lesion radiomics; Model 5: Clinical variables with Lesion and NAPZ/NATZ
radiomics. (A) Lesion-based prediction for low risk, based on 149 lesions (110 low risk vs. 39 inter-

mediate/high risk); (B) Patient-based prediction for low risk, based on 55 patients (48 low risk vs. 7

intermediate /high risk). The tables below the graphs show AUC, p-values and Optimism-Corrected

(O-C) AUC.
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4. Discussion

Image-based automated prostate cancer classification is an area of active investigation.
The standard underlying schema of the approach consists of feature extraction and classifica-
tion. In the majority of radiomic applications, the goal is to predict the Gleason Score/Group
Grade (see recent review by Castillo et al. [33]). Here, we investigated the ability of a radiomic
model to predict the low-risk group of patients based on a novel clinical-genomic classifier that
is increasingly relevant to making clinical decisions. Such a model can prospectively improve
patients’ selection for prostate biopsy and potentially tailor individual treatment decisions.

The main finding of our study is that it is feasible to build radiomics-based models
that can predict the patient risk based on a clinical-genomic classifier. The performance of
the lesion radiomics model (Model 2, AUC = 0.842) did not outperform the clinical Model 1,
AUC = 0.8353. We hypothesized that the DRE results are driving the high performance
of the clinical factors because of the strong association with abnormal DRE in high-risk
patients. In a subsequent subset analysis, only of patients with negative findings on
DRE (DRE = 0), Model 2’s AUC = 0.832 was markedly, albeit not significantly, higher
than Model 1’s AUC = 0.763. In both cases, the AUCs of the lesion radiomic variables
were almost the same, indicating the robustness of the model, while the exclusion of
the DRE deteriorated the performance of the clinical variables. The combined models
based on radiomics and clinical characteristics in all comparisons improved the predictive
performance. Interestingly, radiomic features of the lesion environment, NAPZ and NATZ,
contributed significantly to the overall model performance. In particular, the AUC of
Model 1 (clinical variables) increased modestly, albeit significantly, from 0.835 to 0.871 in
Model 4 (clinical + lesion radiomics). However, when the radiomics of PZ/TZ was added
(Model 5), the AUC markedly increased to 0.962. The same pattern was observed in the
subset analysis of patients with DRE = 0. Clinical decisions, on the other hand, are made
on a per-patient basis rather than per-lesion. The outlined trends in model improvement
after combining radiomic and clinical variables in Model 5 is also evident in per-patient
models (Figures 3 and 4, second panels).

As a topic of research interest, radiomics of prostate cancer has received increasing
attention in recent years. The translation the identification of quantitative imaging features
in the clinical workflow is the main driver for these developments. With this goal in mind,
despite the promising results, these efforts largely have not been successful. One of the
main challenges in our view is that the majority of the radiomic models are trained on
predicating GS/GG. The histopathology cancer grade, although currently the best available
predictor for disease outcome, is still a surrogate factor for the disease. Biopsies, and, hence
GS/GG, are part of the clinical workflow; thus, an optimal radiomic model, fulfilling an
unmet clinical need, should provide additional diagnostic/prognostic information. Finally,
there is a serious problem with the reproducibility and generalizability of the radiomic
features on images acquired under different acquisition sequence parameters and magnets.

To the best of our knowledge, this is the first report addressing the clinical decision-
making related to biopsy for patients on active surveillance in the context of a clinical-
genomic classifier. In realistic scenarios, we evaluated models, combining radiomics with
the available clinical data after a mpMRI exam and before a biopsy. In Woznicki et al., a
similar approach to the one used here for Model 4 was used to evaluate models based
on clinical characteristics (PI-RADS, PSAD and DRE) and radiomics, and the reported
results discriminated between (i) malignant vs. benign prostate lesion (AUC = 0.889)
and (ii) clinically significant prostate cancer (csPCa) vs. clinically insignificant prostate
cancer (cisPCa) (AUC = 0.844) [34] (csPCa is defined as GG grade 2 or higher [35]). They
also conducted a subgroup analysis of patients with lesions <0.5 cc (of note, only the
index lesion with the highest PI-RADS score or the biggest lesion volume was selected
for analysis). The performance of the model for small lesions degraded: (i) malignant vs.
benign prostate lesion (AUC = 0.678) and (ii) csPCa vs. cisPCa (AUC = 0.686). Here, we
conducted a similar subgroup analysis but selected patients with negative DRE. DRE has
low efficacy for prostate cancer detection with a pooled sensitivity of 0.51 and specificity
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of 0.59, as reported in a recent meta-analysis study [36]. However, a clearly abnormal
DRE is highly associated with bulky and aggressive cancer and in the realistic scenario for
selecting low-risk patients, patients with abnormal DRE will be excluded. In this sense, our
subgroup analysis is more clinically relevant, as tumor volume is not readily available to
be considered in patient management decisions.

The associations between prostate mpMRI features and gene expression have been
investigated before [28]. We demonstrated that there are significant correlations between the
quantitative imaging features and genes of three commercial signatures for prostate cancer
assessment: Decipher®6, Prolaris® Cell Cycle Progression (CCP) (Myriad Genetics, Salt
Lake City, UT, USA) [37] and Genomic Prostate Score (GPS®) (Genomic Health, Redwood
City, CA, USA) [38]. The presence of prostate cancer genomic prognostic signal in imaging
was confirmed by Beksac et al. [39] and Hectors et al. [40]. Both studies identify individual
sets of radiomic features that significantly correlate with GS and genomic signatures. Here,
we report on models that predict clinical and genomic risk simultaneously.

Similar to our previous work [28], we analyzed multiple lesions per patient. This
approach remains unique in the field, where typically only the index lesion is considered. In
light of the genomic heterogeneity from different biopsy cores [13], the individual imaging
characteristics of the biopsy locations need to be investigated in order to guide the prostate
sampling to the highest-grade core with the highest genomic risk level.

Another unique aspect of our approach is the inclusion of NAPZ and NATZ in the
radiomics pipeline. This was motivated by our previous gene ontology analysis that identi-
fied specific radiomic features, including from the tumor micro-environment, associated
with immune/inflammatory response, metabolism, cell, and biological adhesion [28]. In-
deed, as discussed above, when the radiomics of NAPZ/NATZ was considered (Model 5),
the performance of the model significantly increased.

Despite the large heterogeneity in terms of magnets and manufacturers, about one-
third of the variables on both lists are related to image intensities (Table 4, yellow high-
light). For the tumor RO, these variables are related to low T2 (L_t2_int_10) and BVAL
(L_b_int_75). These characteristics: low T2-weighted and high intensities on the high b-
value images, are used routinely by the radiologist in evaluating prostate mpMRI. As these
radiomic variables are clearly related to the current practice for prostate mpMRI evaluation,
we believe that this will increase the confidence of clinicians to use our models. We also
developed models using only first-order radiomic features, and while the performance was
satisfactory, it degraded significantly from the full variable selection setting.

Radiomic features were not extracted from the DCE sequence in mpMRI. One of the rea-
sons is the high variability in DCE acquisitions and subsequent analysis. Computer-Aided
Diagnosis (CAD) systems are hindered by an absence of standardization for DCE-MRI
analysis. The Quantitative Imaging Network (QIN) at the National Cancer Institute (NCI)
conducted two challenges among premier academic medical centers, and the evaluated
pharmaco-kinetic parameters K", v, and kep were quite variable [41,42]. However,
the areas of relatively fast contrast wash-in and subsequent wash-out were utilized in
the automatic tumor volume delineation (HRS6) [23]. In addition, there is a growing
body of scientific articles reporting no performance difference for studies that included T2,
diffusion-weighted imaging (DWI), and ADC images as compared to studies that added
a DCE sequence. The DCE sequence is included in the PI-RADSv2; however, there is a
debate about its added value [43]. In Monti et al. [44], radiomic models using T2W and
ADC images performed better than an advanced model with additional diffusion kurtosis
imaging and DCE for prostate cancer detection.

Our study has several limitations, including the relatively small sample size, preclud-
ing analysis of a separate validation set. Evaluation in a larger prospective cohort would
be beneficial to validate these preliminary findings. This study was conducted within a
single-institution academic setting with subspecialized multidisciplinary expertise and the
performance of the created models may not be generalizable to community practice. In the
analysis, we included only first- and second-order radiomic features to avoid overfitting.
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5. Conclusions

In conclusion, our study demonstrated that a machine-learning radiomics-based
model is capable of predicting novel clinical-genomic classifications. While there are several
reports on the association of radiomic variables with GS/GG, to the best of our knowledge,
this is the first report for predicting an integrated clinical-genomic classification.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/ cancers15215240/s1, Figure S1: Clinic-genomic Classifier (Spratt criteria):
Schema, modified from Spratt et al. [7], for combining National Comprehensive Cancer Network
(NCCN) risk groups with Decipher groups to develop clinical-genomic point system, resulting in clinical-
genomic 3-tier risk groups. The goal is to create clinical-radiomics model to predict lesions/patients at
low risk. Figure S2: Significantly different quantitative imaging features in low vs intermediate/high
risk lesions. Box and whisker plots comparing HRS6, T2-weighted, ADC, and high B-value features in
low and intermediate /high risk. Abbreviations: a.u. = arbitrary units. Figure S3: ROC curves and AUCs
from five models using intensities features only: Model 1: Clinical model; Model 2: Lesion radiomics;
Model 3: Lesion and NAPZ/NATZ radiomics; Model 4: Clinical variables with Lesion radiomics; Model
5: Clinical variables with Lesion and NAPZ/NATZ radiomics. (A) Lesion-based prediction for low
risk, based on 231 lesions (133 low risk vs 98 intermediate/high risk); (B) Patient-based prediction for
low risk, based on 78 patients (56 low risk vs 22 intermediate/high risk). The tables below the graphs
show AUC, p-values and Optimism-Corrected (O-C) AUC. Figure S4: ROC curves and AUCs from
five models using intensities features only in patients with negative DRE: Model 1: Clinical model;
Model 2: Lesion radiomics; Model 3: Lesion and NAPZ/NATZ radiomics; Model 4: Clinical variables
with Lesion radiomics; Model 5: Clinical variables with Lesion and NAPZ/NATZ radiomics. (A)
Lesion-based prediction for low risk, based on 149 lesions (110 low risk vs 39 intermediate /high risk);
(B) Patient-based prediction for low risk, based on 55 patients (48 low risk vs 7 intermediate /high
risk). The tables below the graphs show AUC, p-values and Optimism-Corrected (O-C) AUC. Table S1:
MRI acquisition parameters for mpMRI sequences. Table S2: Variables for the three models using only
intensity-based radiomics features for prediction.
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Simple Summary: Targeted biopsies of suspicious lesions detected in magnetic resonance imaging
are crucial to discover clinically significant prostate cancer, especially those corresponding to index
lesions. However, the optimal scheme for targeted biopsies remains unclear, despite the fact that a
two- to four-core scheme is usually recommended. Saturated biopsies of the prostate gland have
shown high efficiency in detecting significant PCa. In this article, we report a better efficacy for
mapping using a 0.5 mm core biopsy scheme than that using the two- to four-core scheme for
detecting clinically significant prostate cancer in magnetic resonance index lesions.

Abstract: Since the optimal scheme for targeted biopsies of magnetic resonance imaging (MRI)
suspicious lesions remains unclear, we compare the efficacy of two schemes for these index lesions. A
prospective trial was conducted in 1161 men with Prostate Imaging Reporting and Data System v 2.1
3-5 undergoing targeted and 12-core systematic biopsy in four centers between 2021 and 2023. Two-
to four-core MRI-transrectal ultrasound fusion-targeted biopsies via the transperineal route were
conducted in 900 men in three centers, while a mapping per 0.5 mm core method (saturated scheme)
was employed in 261 men biopsied in another center. A propensity-matched 261 paired cases were
selected for avoiding confounders other than the targeted biopsy scheme. CsPCa (grade group > 2)
was identified in 125 index lesions (41.1%) when the two- to four-core scheme was employed, while
in 187 (71.9%) when the saturated biopsy (p < 0.001) was used. Insignificant PCa (iPCa) was detected
in 18 and 11.1%, respectively (p = 0.019). Rates of csPCa and iPCa remained similar in systematic
biopsies. CsPCa detected only in systematic biopsies were 5 and 1.5%, respectively (p = 0.035) in
each group. The saturated scheme for targeted biopsies detected more csPCa and less iPCa than did
the two- to four-core scheme in the index lesions. The rate of csPCa detected only in the systematic
biopsies decreased when the saturated scheme was employed.

Keywords: prostate cancer; targeted biopsy; index lesion; number of cores
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1. Introduction

Risk-stratified prostate cancer (PCa) screening, based on serum prostate-specific anti-
gen (PSA) testing and magnetic resonance imaging (MRI) scanning as a follow-up measure,
is currently recommended by the European Union [1]. This new paradigm of PCa screening
is focused on maximizing the early detection of clinically significant PCa (csPCa), while
minimizing the number of prostate biopsies and the over-detection of insignificant prostate
cancer (iPCa) [2-5].

The Prostate Imaging Reporting and Data System (PI-RADS) predicts the risk of csPCa
according to the imaging characteristics of lesions detected in MRI scans [6-8]. Men with
PI-RADS < 3 have a very low probability of csPCa, and consequently, in this case, prostate
biopsies can usually be avoided [9,10]. MRI can visualize most lesions containing csPCa,
reporting them as PI-RADS 3 to 5, with an intermediate, high, and very high-risk of csPCa,
respectively [11]. PI-RADS 3 is considered the gray zone of a PI-RADS score, since the
csPCa detection rate is 18.5%, with a 95% confidence interval between 16.6 and 20.3%, but
a range between 3.4 and 46.5% [12]. A significant contribution of MRI is the possibility of
conducting targeted biopsies for suspicious lesions through MRI-transrectal ultrasound
(TRUS) fusion images [13]. However, a small percentage of csPCa are not visualized in MRI
scans and are detected only in systematic biopsies, which is the reason why these biopsies
are still recommended [14].

The recommendation for changing the approach of prostate biopsies from the classic
transrectal to the transperineal route has reduced the infrequent but dangerous infectious
complications and the inappropriate use of antibiotics [15,16] accompanying this method.
It is known that a prostate biopsy scheme for avoiding the upgrading of csPCa in radical
prostatectomy specimens requires a mapping biopsy per 0.5 mm, with additional targeted
biopsies of suspicious lesions detected by MRI [17]. However, systematic biopsies com-
plementing targeted biopsies for suspicious lesions causes significant over-detection of
iPCa [18].

The currently recommended prostate biopsy scheme suggests obtaining a two- to
four-core targeted biopsy of suspicious lesions and a 12-core systematic biopsy [14,19-21].
However, the appropriate number of cores obtained from targeted biopsies remains unclear.
Two studies have examined the correlation between the PCa grade groups detected in
prostate biopsies and those observed in radical prostatectomy specimens, suggesting that
obtaining more cores from suspicious lesions reduces the likelihood of upgrading [22,23].
Other studies, conducted in men undergoing transperineal prostate biopsies, suggest the
improved detection of csPCa when a saturation scheme for targeted biopsies is employed;
however, the results are not uniform [24-27]. The potential of the index lesion, defined from
MRI as the largest lesion with the highest PI-RADS score, for defining the aggressiveness
of PCa is known [28-30]. However, an appropriate biopsy scheme for the index lesion
could minimized unnecessary biopsies from other areas of the prostate gland, as well as
systematic biopsies [31]. Mainly, the specifics regarding the differences between the two- to
four-core and the saturated scheme for targeted biopsies is the rationale of mapping each
0.5 mm, which has been shown to be the most appropriate scheme for avoiding upgrading
in radical prostatectomy specimens [13,22-27].

We hypothesize than the saturated scheme for targeted biopsies detects more csPCa in
the index lesions than does the recommended two- to four-core scheme. The objectives of
this study are to compare the rates of csPCa and iPCa detection in both targeted biopsy
schemes and to assess the rates of csPCa detected only in systematic biopsies.

2. Materials and Methods
2.1. Design, Setting, and Participants

A prospective non-randomized trial including 1161 consecutive men suspected of
having PCa, based on a serum PSA > 3.0 ng/mL, was conducted in four centers participa-

ting in the csPCa opportunistic early detection program of Catalonia (Spain) between 1
January 2021 and 30 June 2023. All included men exhibited PI-RADS v 2.1 lesions 3 to 5
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in pre-biopsy multiparametric MRI (mpMRI), undergoing targeted biopsy of suspicious
lesions and 12-core systematic biopsy. Three participant centers, always obtaining two- to
four-cores from each suspicious lesion, reported 900 cases, while 261 cases were reported
in another center, where a mapping per 0.5 mm core scheme was always employed. Due
to the possible influence on csPCa detection, men undergoing treatment with 5-alpha
reductase inhibitors and those with prior history of PCa, atypical small acinar proliferation,
or multifocal high-grade prostatic intraepithelial neoplasia were not included in this study.

2.2. Diagnostic Approach for csPCa Detection

MpMRI using a 3 Tesla scan was performed in each participant center using a pelvic
phased-array surface coil. The acquisition protocol included T2-weighted imaging (T2W),
diffusion-weighted imaging (DWI), and dynamic contrast-enhanced (DCE) imaging, ac-
cording to the guidelines of the European Society of Urogenital Radiology [6]. MpMRI
exams were reported by local expert radiologists using the PI-RADS v 2.1 [8]. Local experi-
enced operators performed prostate biopsies using the Koelis Trinity® hands-free MRI/TUS
prostate biopsy system (Koelis Inc., Grenoble, France) in the centers conducting targeted
biopsies with the two- to four-core scheme, while the Artemis® hands-free MRI/TUS
prostate biopsy system (Eigen Inc., Grass Valley, CA, USA) was used in the center perform-
ing the mapping per 0.5 mm core scheme. Experienced local uropathologists exa-mined
the biopsy material in each pathology department, reporting PCa using the International
Society of Urologic Pathology grade group (GG) classification. CsPCa was considered
when the GG was >2 [32]. Baseline characteristics of the study cohort are summarized in
Table 1.

Table 1. Characteristics of cohort study.

Characteristic Measurement
Number of men 1161
Median age, years (IQR) 67 (61-73)
Median serum PSA, ng/mL (IQR) 6.7 (5.1-9.9)

Abnormal DRE, 7 (%) 200 (25.8)
Median prostate volume, ml (IQR) 50 (36-70)
Prior negative prostate biopsy, 1 (%) 403 (34.7)
Family history of PCa, n (%) 96 (8.3%)

Median suspicious lesions, 1 (IQR) 1(1-2)
Median length of suspicious lesions, mm (IQR) 11 (5-17)

Localization of the index lesion, 1 (%)

Peripheral zone 835 (71.9)
Central-transition zone 278 (23.9)

Anterior zone 48 (4.2)

PI-RADS score of the index lesion, # (%)

3 260 (22.4)
4 587 (50.4)
5 315 (27.1)

Median cores obtained in targeted biopsy, n 3(1-7)

(IQR) index lesion, 1 (IQR)
Overall PCa detection, 1 (%) 815 (70.2)
csPCa 601 (51.8)
iPCa 241 (18.4)
IOQR = interquartile range; n = number; PCa = prostate cancer; csPCa = clinically significant PCa; iPCa = insignifi-

cant PCa.

2.3. Variables in the Study and Outcome Variables

Age (years), first degree PCa family history (no vs. yes), type of prostate biopsy (initial
vs. repeated), serum PSA (ng/mL), DRE (normal vs. suspicious), MRI-prostate volume
(mL), PI-RADS score v 2.1 (3 to 5), size and localization of the index lesion, targeted biopsy
scheme (two- to four-core vs. mapping per 0.5-core) were predictive variables in the study.
Outcome variables were csPCa and iPCa detection.
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2.4. Statistical Analysis

Statistical analysis was conducted after harmonization of the anonymized datasets.
Data were prospectively collected and reported according to the Standards of Reporting for
MRI-Targeted Biopsy Studies (START) to describe the study population [33]. Quantitative
variables are described using medians and interquartile ranges (IQR: 25th—75th percentile),
while qualitative variables are described using numbers and percentages. Quantitative
variables were compared between groups using the Mann—-Whitney U test. Qua-litative
variables were compared between groups using Pearson’s chi-square test. Relative risk
(RR) of csPCa and 95% confidence intervals (CI) were assessed. A logistic regression
analysis conducted for detecting independent predictive variables of csPCa, in addition
to the targeted biopsy scheme, showed that PI-RADS score, prostate volume, age, serum
PSA, location, and size of the index lesion were independent predictors of csPCa and were
potential confounders for csPCa detection (Table 2).

Table 2. Multivariate analysis searching confounder variables for csPCa detection in the index lesion,
in addition to the targeted biopsy scheme employed.

Predictive Variable Odds Ratio (95% CI) p Value

Age, Ref. year 1.061 (1.036-1.086) <0.001

Serum PSA, Ref. ng/mL 1.062 (1.027-1.099) <0.001

DRE, Ref. normal 1.154 (0.775-1.718) =0.481

Type of biopsy, Ref. initial 0.960 (0.695-1.429) =0.841

PCa family history, Ref. no 1.258 (0.749-2.111) =0.386

Prostate volume, Ref. mL 0.972 (0.065-0.979) <0.001

Number of suspicious lesions, Ref. one 1.387 (0.863-2.231) =0.177
PI-RADS score of the index lesion, Ref. 3 2.718 (2.032-3.365) <0.001
Size of the index lesion. Ref. mm 1.071 (1.030-1.113) <0.001
Localization of the index lesion, Ref. peripheral zone 0.611 (0.438-0.852) =0.004
Targeted prostate biopsy scheme, Ref. 2- to 4-core 2.137 (1.869-3.439) <0.001

CI = confidence interval; PSA = prostate specific antigen; DRE = digital rectal examination; PCa = prostate cancer;
PI-RADS = Prostate Imaging Reporting and Data System.

A randomized 1:1 matched group from all predictive variables was selected using the
R package matching v 4.10, a multivariate and propensity score matching software with
automated balance optimization (R Foundation for Statistical Computing, Vienna, Austria).
In a subset of 522 men, the two- to four-core scheme was employed, and the mapping per
0.5 mm core scheme was used in the other 261 men. Table 3 shows the sui-tability of this
matched paired group for analysis, since all baseline confounder characte-ristics for csPCa
detection were equally distributed in both study subsets. A p value of <0.05 was considered
statistically significant. The data were analyzed using the Statistical Package for the Social
Sciences (version 29.0; IBM Corp., Armonk, NY, USA).

Table 3. Baseline characteristics of the paired matched study group and a comparative analysis
between them, according to biopsy scheme applied for targeted biopsy of the index lesions.

Biopsy Scheme of the Index Lesion

Baseline Characteristic p Value
Two- to Four-Core Mapping x 0.5 mm Core

Number of men, 1 (%) 261 (50.0) 261 (50.0) -
Median age, years (IQR) 67 (61-73) 67 (61-73) =1.000
Median serum PSA, ng/mL (IQR) 6.7 (5.0-9.6) 6.7 (5.0-9.6) =1.000
Abnormal DRE, 7 (%) 65 (24.9) 67 (25.7) =0.678
Medjian prostate volume, ml (IQR) 45 (33-62) 45 (33-62) =1.000
Prior negative prostate biopsy, 1 (%) 63 (24.1) 68 (26.0) =0.357
Family history of PCa, 1 (%) 30 (11.5%) 28 (10.7) =0.419
Median suspicious lesions, n (IQR) 1(1-2) 1(1-2) =1.000
Median length of the index lesion, mm (IQR) 12 (9-18) 12 (9-18) =1.000
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Table 3. Cont.

Biopsy Scheme of the Index Lesion

Baseline Characteristic p Value
Two- to Four-Core Mapping x 0.5 mm Core
Index lesion localization, 1 (%)
Peripheral zone 179 (68.6) 179 (68.6) =1.000
Central/transition zone 62 (23.8) 62(23.8) =1.000
Anterior zone 20 (7.7) 20 (7.7) =1.000
PI-RADS score of index lesion, 1 (%)
3 71 (27.2) 71 (27.2) =1.000
4 118 (45.2) 118 (45.2) =1.000
5 72 (27.6) 72 (27.6) =1.000
Median number of cores in the index lesion, n
(IQR) obtained, n (IQR) 2(1-3) 9 (5-12) =0.016
Overall PCa detection, n (%) 328 (63.9) 216 (82.7) <0.001
csPCa, 1 (%) 235 (45.8) 187 (71.6) <0.001
iPCa, n (%) 93 (18.1) 29 (11.1) =0.012

IQR = interquartile range; 7 = number; PI-RADS = Prostate Imaging Reporting and Data System; PCa = prostate
cancer; csPCa = clinically significant PCa; iPCa = insignificant PCa.

3. Results
3.1. Baseline Characteristics of the Study Population

The baseline characteristics of the propensity-matched group comprising 522 men,
including 261 men who underwent targeted biopsies employing the two- to four-core
scheme and 261 who underwent the mapping per 0.5 mm core scheme, were similar except
in regards to the median number of cores utilized in each targeted biopsy scheme, which
were 2 (IQR 1-2) and 9 (IQR 5-12), respectively (p = 0.016). The detection rate of PCa in the
index lesion and the 12-core systematic biopsies, according to the employed scheme, were
63.6 and 82.7%, respectively (p < 0.001), with 45.8 and 71.6% csPCa, and 18.1 and 11.1%
iPCa, respectively (p = 0.012), Table 3.

3.2. CsPCa Detection in the Index Lesions according to the PI-RADS Score and the Biopsy Scheme

Among 142 men with a PI-RADS score of 3, csPCa was identified in 13 of 71 (18.3%)
index lesions biopsied using the two- to four-core scheme, while in 26 of 71 (26.8%) when the
mapping per 0.5 mm core scheme was employed, with an RR of 1.298 (95% CI 0.824-2.045),
p = 0.158. Among 236 men with a PI-RADS score of 4, these rates were 47.4% and 87.3%,
respectively, with an RR of 2.286 (95% CI 1.802-2.900), p = 0.001. Among 144 men with a
PI-RADS score of 5, the rates were 77.8% and 90.3%, respectively, with an RR of 1.503 (95%
CI 1.079-2.094), p < 0.001 (Figure 1).
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Figure 1. CsPCa detection in the index lesion targeted biopsies, according to the employed two- to
four-core and mapping x 0.5 mm core schemes and the PI-RADS score.
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3.3. Detection of csPCa and iPCa in the Index Lesions, According to the Employed Biopsy Scheme
and Those Detected in Systematic Biopsies

Figure 2 summarizes the csPCa and iPCa detection in the targeted biopsies of the index
lesions and systematic biopsies, according to the employed targeted biopsy scheme. CsPCa
detection in the index lesions was 47.9% when two- to four-core scheme was applied, while
71.9% when mapping per 0.5 mm core scheme was used, with an RR of 1.616 (95% CI
1.366-1.913), p < 0.001. IPCa detected in the index lesions were 18.8 and 11.1%, respectively,
with an RR of 0.760 (9% CI 0.624-0.925), p = 0.006. The csPCa detection rates in systematic
biopsies, according to the biopsy scheme employed in the targeted biopsies, corresponded
to 28.0%, when the two- to four-core scheme was used, and 26.8%, when the mapping per
0.5 mm core scheme was employed, with an RR of 0.829 (95% CI 0.789-1.121), p = 0.228.
The IPCa detection rates in systematic biopsies were 19.2% and 21.5%, respectively, with an
RR of 1.191 (95% CI 0.940-1.909), p = 0.187.
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Figure 2. Detection of csPCa and iPCa in the index lesion targeted biopsies and the 12-core syste-matic
biopsies, according to the two- to four-core and mapping x 0.5 mm core schemes employed in the
targeted biopsies.

CsPCa was detected only in 12-core systematic biopsies in 5.0% of cases when the
two- to four-core scheme was applied in the targeted biopsies, while it decreased to 1.5%
when the mapping per 0.5 mm core scheme was employed, with an RR of 0.642 (95% CI
0.486-0.848), p = 0.213 (Figure 3).
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Figure 3. CsPCa detection in only the 12-core systematic biopsies, according to the two- to four-core
and mapping x 0.5 mm core schemes employed in the targeted biopsies.
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4. Discussion

The analysis of this prospective and multicenter trial was conducted in a propensity-
paired matched group to avoid the influence of existing confounder variables for csPCa
detection other than the targeted biopsy scheme. Our main findings were, (i) the csPCa
detection in the index lesions improved when the saturated mapping per 0.5 mm core
targeted biopsy scheme was employed, compared with the results for the currently rec-
ommended two- to four-core scheme; (ii) this improvement was observed in all PI-RADS
categories, although it was significant only in categories 4 and 5; (iii) the iPCa detection
rates in the index lesions decreased when the saturated scheme was employed, compared
with the results for the two- to four-core scheme; (iv) the percentage of csPCa detected only
in systematic biopsies decreased when the saturated scheme was employed compared to
the results for the two- to four-core scheme.

In 2013, the Ginsburg Study Group first proposed obtaining two to four cores in
targeted biopsies of suspicious lesions in MRI-TRUS fusion prostate biopsies conducted
via the transperineal route. This group also proposed at least 4-core biopsies of the anterior,
mid, posterior, and basal sectors of the right and left prostate lobules, resulting in 24 cores
for prostate glands of less than 30 mL, 32 cores for those of 30 to 50 mL, and 38 additional
cores for prostate glands of more than 50 mL [17]. In 2016, Radtke et al. observed that
the Ginsburg approach was able to identify 97% of csPCa detected in 120 radical prosta-
tectomy specimens, while only 79% of them were identified in systematic biopsies, and
88% were found in targeted biopsies alone [22]. In 2018, Calio et al. examined 122 men
who underwent targeted MRI-TRUS index lesion biopsies employing a two-core scheme
and 86 men who underwent a mapping per 0.6 mm core scheme. Additionally, all men
underwent a 12-core systematic biopsy. The authors observed a surgical specimen upgrad-
ing of 40.9% with systematic biopsies, 23.6% with two-core targeted biopsies, and 13.8%
with mapping per 0.6 mm core targeted biopsies [23]. Many studies have focused their
attention on the findings in the index lesions, due to its high predictive power for defining
PCa aggressiveness [28-30].

It is difficult to compare our results with those observed in previous reports due to
the variability of study designs. In 2020, Hansen et al. analyzed 487 men who underwent
transperineal MRI-TRUS prostate biopsies following the Ginsburg approach. Targeted
biopsies of suspicious lesions using the two-core scheme only detected 67% of csPCa. In
contrast, extended targeted biopsies obtaining two additional cores from sectors adjacent
to the index lesion detected 76% of csPCa, and targeted biopsies using a six-core scheme
detected 91% of csPCa [24]. This study suggested that obtaining more cores from targeted
biopsies of the index lesion improved csPCa detection. In 2021, Tschirdewahn et al. reported
a study conducted in 213 men who underwent targeted biopsies of suspicious MRI lesions,
employing the Ginsburg approach, between 2016 and 2018. Targeted biopsies were collected
using a four-core scheme. Targeted biopsies involved collecting 4 cores from suspicious
lesions and additional cores from adjacent sectors, and systematic biopsies obtained 9
to 10 cores. Targeted saturated biopsies detected 99% of 134 csPCa, while non-saturated
targeted biopsies detected 87%, and systematic biopsies detected 82% [25]. This study also
confirms that greater core obtention in targeted biopsies increases csPCa detection.

In 2023, Cetin et al. reported an analysis of 167 men in whom targeted biopsies
obtained two cores from the center of the suspicious lesions and two additional cores from
the periphery. One central core identified 65.6% of csPCa, two central cores identified 92.2%,
two central cores and one peripheral core identified 96.9%, and two central cores and two
peripheral cores identified 100% of csPCa. These authors concluded that the two central
cores scheme was sufficient to detect the vast majority of csPCa because the diffe-rence
between two and four cores was non-significant [25].

Finally, in 2023, Sanner et al. reported a prospective single-center trial randomizing
170 men who underwent transperineal targeted biopsy of suspicious lesions employing
a four-core scheme compared to targeted saturated biopsies using a nine-core scheme.
Both schemes were complemented with a 24-core systematic biopsy. Targeted biopsies
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detected 91.7% of csPCa, while targeted saturated biopsies detected 100%. Because this
difference was non-significant, the authors concluded that csPCa detection did not differ
between targeted and saturated targeted biopsies [27]. The results of this prospective
and randomized trial contradict the previous retrospective study reported by the same
authors [24]. A recently reported study has noted the importance of only biopsying the
index lesion with an appropriate scheme for avoiding targeted biopsies of secondary lesions
and systematic biopsies [31]. Additionally, our results suggest that saturated targeted
biopsies reduce the rate of csPCa detected only in systematic biopsies. This finding requires
confirmation in additional studies.

Our study is limited by its non-randomized design, although the propensity-matched
paired group selection minimized the effect of confounder variables for csPCa detection.
The utilization of different devices for MRI-TRUS biopsies and the level of experience of the
surgeon performing the two different types of prostate biopsies can influence the results,
as can the inter-variability between pathologists. The csPCa outcome va-riable detected in
prostate biopsies does not represent the true csPCa detected in the radical prostatectomy
specimens. Since we decided to conduct this study using the index lesions, a limitation
exists in regards to recommending the saturated targeted biopsy scheme for all suspicious
lesions. A limitation exists for recommending a prostate biopsy approach based only on a
saturated targeted scheme of the index lesion, since the current knowledge suggests the
importance of perilesional biopsies for avoiding ipsilateral systematic biopsies [34-37].

One of the strengths of this study is that it is conducted using matched pairs of
men suspected of having PCa in order to avoid the influence of confounders for csPCa
detection. One of the study’s weakness is that it is retrospective, with a non-randomized
design. However, new evidence is generated for recommending saturated targeted biopsies,
possibly without systematic biopsies, if perilesional biopsies are obtained. Well-designed
prospective and multicenter randomized trials identifying the most effective and least
aggressive prostate biopsy scheme for transperineal prostate biopsy are needed for maxi-
mizing the detection of csPCa, minimizing the over-detection of iPCa, and reducing prostate
biopsy site effects.

5. Conclusions

Saturated targeted biopsies, using a mapping per 0.5 mm core scheme, were able to
detect more csPCa and less iPCa than the recommended two- to four-core scheme in the
index lesions. This advantage was particularly notable in individuals with PI-RADS scores
above 3. The rate of csPCa detected only in 12-core systematic biopsies decreased when the
mapping per 0.5 mm core scheme for targeted biopsies was employed.
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Simple Summary: This study investigated whether quantitative MRI and histology of the prostate
reveal differences between races that can affect diagnosis. The cancer signal enhancement rate («) on
dynamic contrast-enhanced MRI (DCE-MRI) was significantly higher for African Americans (AAs)
compared to Caucasian Americans (CAs). The signal washout rate () was significantly lower in
benign tissue in AAs and significantly elevated in cancers in AAs. However, no significant differences
were found for ADC and T2. The ROC analysis showed that the apparent diffusion coefficient
(ADC) and T2 are slightly less effective in AAs compared to CAs. DCE significantly improves the
differentiation of PCa from benign in AAs (x: 52%, 3: 62% more effective in AAs compared to CAs).
Histologic analysis showed that cancers have a greater proportion of epithelium and lower lumen
in AAs compared to CAs. This study shows that the different races have different quantitative MRI
values and histologic makeup. Quantitative DCE-MRI is highly effective and improves PCa diagnosis
in African Americans.

Abstract: Purpose: This study investigates whether quantitative MRI and histology of the prostate re-
veal differences between races, specifically African Americans (AAs) and Caucasian Americans (CAs),
that can affect diagnosis. Materials and Methods: Patients (98 CAs, 47 AAs) with known or suspected
prostate cancer (PCa) underwent 3T MRI (T2W, DWI, and DCE-MRI) prior to biopsy or prostatectomy.
Quantitative mpMRI metrics: ADC, T2, and DCE empirical mathematical model parameters were
calculated. Results: AAs had a greater percentage of higher Gleason-grade lesions compared to CAs.
There were no significant differences in the quantitative ADC and T2 values between AAs and CAs.
The cancer signal enhancement rate («) on DCE-MRI was significantly higher for AAs compared
to CAs (AAs: 13.3 + 9.3 vs. CAs: 6.1 47571, p < 0.001). The DCE signal washout rate (3) was
significantly lower in benign tissue of AAs (AAs: 0.01 & 0.09 s71vs. CAs: 0.07 £ 0.07s7L, p <0.001)
and significantly elevated in cancer tissue in AAs (AAs: 0.12 £ 0.07 s~! vs. CAs: 0.07 £0.08 571,
p = 0.02). DCE significantly improves the differentiation of PCa from benign in AAs (o:: 52%, f:
62% more effective in AAs compared to CAs). Histologic analysis showed cancers have a greater
proportion (p = 0.04) of epithelium (50.9 + 12.3 vs. 44.7 £ 12.8%) and lower lumen (10.5 & 6.9 vs.
16.2 + 6.8%) in CAs compared to AAs. Conclusions: This study shows that AAs have different
quantitative DCE-MRI values for benign prostate and prostate cancer and different histologic makeup
in PCa compared to CAs. Quantitative DCE-MRI can significantly improve the performance of MRI
for PCa diagnosis in African Americans but is much less effective for Caucasian Americans.

Keywords: prostate cancer; MRI; racial differences; quantitative; DCE-MRI; African Americans;

Caucasian Americans
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1. Introduction

Prostate cancer (PCa) is the second most commonly diagnosed cancer in men, with
1 in 8 men diagnosed with it, and is one of the leading causes of cancer-related deaths
worldwide [1,2]. PCa incidence and mortality are strongly associated with age, with
an average age of diagnosis at 67 years old [3]. In addition to age, there are inherited
and genetic risk factors for prostate cancer. Men with a family history of prostate cancer
(inherited risk factors), genetic risk factors (germline mutations—BRCAZ2 gene), and specific
race (African ancestry) have an elevated risk for developing prostate cancer [3-6].

Race is an important factor in prostate cancer risk and incidence. African Americans
(AAs) have a higher risk and incidence for prostate cancer compared to Caucasian Ameri-
cans (CAs), while PCa occurs less often in Asian Americans, Hispanics, and Latino men
than in non-Hispanic Caucasian men. Specifically for AAs, this higher risk for PCa is
likely due to a combination of factors, including underlying tumor differences (aggres-
siveness), genetic factors, and racial disparities in access to healthcare [5,7-9]. This is a
critical problem, especially because PCa detected in AAs is typically more aggressive and
advanced compared to PCa in CAs, and the mortality rate for AAs with PCa compared
to CAs is significantly higher, even after adjusting for prognostic factors (PSA level, age,
clinical stage, and Gleason score) [10,11]. A recent study found that racial disparities were
greatest in non-clinically significant low-grade Gleason 6 disease, in which AA men were
twice as likely to die of Gleason 6 tumors compared to men from other ethnicities [5]. There
are no studies that have clearly established racial differences in prostate cancer biology and
physiology that could affect diagnosis using imaging methods.

MRI can play an important role in the diagnosis and management of PCa because it is
non-invasive, can reliably detect clinically significant tumors, and can provide information
regarding tumor size, location, and grade [12]. The current diagnostic radiology guideline
for prostate MRI is the Prostate Imaging—Reporting and Data System (PI-RADS v2.1) [13].
This system utilizes T2-weighted (T2W) imaging and diffusion-weighting imaging (DWI)
as the primary sequences, while there is less emphasis on dynamic contrast-enhanced
(DCE) MRI, which is used as a secondary sequence. It is also important to note that the
PI-RADS guidelines were recommended by a steering committee that is almost entirely
comprised of experts from the US and Europe, and most of the published prostate MRI
research has been carried out predominantly on Caucasian populations [14]. While the
PI-RADS guidelines may provide accurate diagnoses for certain populations (Caucasians),
we should not assume that the same solution will work for other patient populations as
well, such as African Americans who are at a higher risk for PCa [15] and Asians who are
at a lower risk for PCa [16]. This is especially important, as physician decision bias and
disparities in access to healthcare exist for AA patients. AAs are less likely to undergo MRI
imaging following an elevated prostate-specific antigen (PSA) compared to CAs [17].

A recent study by Mahran et al. [18] showed a racial disparity in the utility of qualita-
tive multi-parametric MRI for the diagnosis of PCa. It is likely that the poor performance in
PCa diagnosis is due, in part, to the failure to account for racial differences in prostate and
PCa biology and physiology. However, no studies have evaluated the racial differences in
biomarkers/parameters from quantitative MRI. Whether PCas have different MR character-
istics in AA versus CA men has yet to be determined. MRI-based quantitative biomarkers
that account for racial differences could be used to create MRI protocols specifically for
different racial groups. Therefore, this study investigates whether quantitative MRI and
quantitative histology of the prostate reveal differences between races, specifically African
Americans and Caucasian Americans, that can affect diagnosis.

2. Materials and Methods

Study participants: This study involved retrospective analysis of prospectively ac-
quired data. This study was approved by the institutional review board and conducted
with informed patient consent, and was HIPPA compliant. Inclusion criteria for the study
included patients with known or suspected PCa who underwent prostate mpMRI between
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February 2014 and November 2021 at the MRI Research Center prior to undergoing prosta-
tectomy or biopsy. Patients were excluded from the study if they had undergone radiation,
chemotherapy, or hormonal therapy, as these therapies can alter the MRI signal. Patients
self-reported their race. For further analysis, we chose the two races in this cohort with the
largest sample size: Caucasian Americans and African Americans.

MRI Acquisition: Patients underwent a preoperative mpMRI scan on the 3T Philips
Ingenia or Achieva MR scanners with the use of a 16-channel phased array coil around their
pelvis (Philips, Eindhoven, The Netherlands) and an endorectal coil (Medrad, Warrendale,
PA, USA). The MR protocol included T2-weighted images (axial, coronal) and axial multi-
echo T2-weighted, diffusion-weighted, and dynamic contrast-enhanced images (DCE). For
DCE MR imaging, either gadobenate dimeglumine (Multihance, Bracco, Milan, Italy) or
gadoterate meglumine (Dotarem, Guerbet, Paris, France) of 0.1 mmol/kg was injected,
followed by a 20 mL saline flush. Since the quantitative MR parameters depend on
imaging parameters (b-value, echo time, etc.) [19-21], we chose a cohort where all patients
underwent a very similar MRI protocol so that the quantitative parameters could be
compared. Typical imaging parameters for the cohort used in this study are described
in Table 1.

Table 1. Typical MR imaging parameters.

In-Plane Slice

Imaging Pulse FOV Scan Matrlx Resolution TE TR Thickness Flip lokngle

Sequence Sequence (mm) Size (ms) (ms) )
(mm) (mm)
Axial T2W SE-TSE 180 x 180 450 x 450 04 x04 115 or 150 4800 3 90
. 30, 60, 90,
Ivf¥12tlr;1e‘:h0i:2yv SE-TSE 160 x 160 212 x 212 0.75 x 0.75 120, 150, 180, 7850 3 90
apping 210, 240, 270

DWI? SE-EPI 180 x 180 120 x 120 1.5 x 15 80 5000 3 90
DCE-MRI® T1-FFE 220 x 260 148 x 171 1.5x 15 15 3.1 3 10

SE—spin echo; TSE—turbo spin echo; EPI—echo planar imaging; FFE—fast field echo; DCE-MRI—dynamic
contrast-enhanced MRI. 2 b-values used: 0, 50, 150, 990, and 1500 s/mm?. b Contrast agent: gadoterate meglumine
(Dotarem, Guerbet, France) or gadobenate dimeglumine (Multihance, Bracco, Minneapolis, MN, USA) was
injected at a rate of 2.0 mL/s followed by a 20 mL saline flush. The contrast dose amount was based on the
patient’s weight (0.1 mmol/kg). DCE-MRI T1-weighted images were taken with a temporal resolution of ~6.4 s at
60 dynamic scan points over 6.4 min.

Reference standard: Post imaging, patients with known cancer underwent radical
prostatectomy, and patients with suspected cancer underwent 12 core systematic biopsies
along with MR-TRUS biopsies based on the assessment of radiologists using the PI-RADS
guidelines. The prostatectomy samples were fixed overnight in 10% buffered formalin,
transversally sectioned every 4 mm, and then used to create whole-mount histology slides.
The biopsy samples from patients with suspected PCa were also processed to create histo-
logical slides. All slides were H&E stained and evaluated for cancer by an expert pathologist
(TA, 18 years experience). Cancers were outlined, and the Gleason score for each lesion was
assigned. The prostatectomy slides were also digitized at 20 x magnification using a bright-
field Olympus VS120 whole-mount digital microscope (Olympus, Waltham, MA, USA),
which was to be used for the subsequent quantitative histologic analyses described later.

MRI analysis: Histology slides and MR images were correlated with the consensus
of an expert radiologist, a pathologist, and a medical physicist (AO, TA, and AC with
20, 18, and 9 years of experience, respectively). Only cancers larger than the threshold
5 mm x 5 mm on the prostatectomy specimens and 5 mm on mpMRI for the biopsy cases
were used for analysis. Using a custom PCampReviewer module on a 3D slicer [22] and
T2-weighted images as a reference, the apparent diffusion coefficient (ADC) and DCE
MR images were co-registered and matched with the corresponding histological portions.
The axial T2-weighted images were marked by a radiologist (AO, 20 years experience)
for sections with a pathologist-verified PCa and benign tissue. The radiologist used the
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pathology whole-mount histology cancer outlines as a guide to drawing ROIs on the T2-
weighted MR images. These ROIs were then transferred to the other mpMRI sequences
using 3D Slicer to maintain the same PCa shape and size.

Quantitative analysis of the mpMRI data was performed in MATLAB (MathWorks,
Natick, MA, USA) using in-house programs. This code calculated the ADC and quan-
titative T2 (T2 relaxation or spin—spin relaxation time) maps using a mono-exponential
signal decay model on a voxel-by-voxel basis using the diffusion-weighted and multi-echo
T2-weighted images. Quantitative analysis of the DCE-MRI data was conducted using the
empirical mathematical model (EMM) as described in Fan et al. [23]. The EMM makes
no assumptions about the underlying physiology of a tumor and provides quantitative
analysis of the kinetics that the radiologist sees on visual assessment. The percent signal
enhancement (PSE) curve was calculated using the formula below where Sy = the baseline
signal intensity and S(t) = the DCE signal at time ‘t'.

5(t)

—So
—~_ " x1
5 x 100

PSE(t) =

Then, PSE vs. the time curves were analyzed using the following equation
PSE(t) = A(1 — e *)e P!

to estimate the amplitude of the relative percent signal enhancement or PSE curve or A, the
signal enhancement rate or &, and the signal washout rate or S.

Quantitative histology: We used the digitized H&E stained prostatectomy samples
for subsequent quantitative histologic analysis, similar to previous work that validated this
approach [24,25]. ROIs were selected using Image] (National Institutes of Health, Bethesda,
MD, USA) for the confirmed cancers and benign tissue in the peripheral and transition
zones corresponding to the ROIs taken for quantitative MRI analysis earlier. Using the
“Smart Segment” functionality in Image Pro (Media Cybernetics, Rockville, MD, USA), the
images were segmented into the three constituents that make up prostate tissue: stroma,
epithelium, and lumen on the basis of color, intensity, morphology, and background. The
results were iteratively rectified semi-automatically by the consensus of a pathologist and
medical physicist until the final segmented image was determined to have an error of less
than 5%. Then, using the “Count” functionality, the percentage volumes of these prostatic
tissue components were calculated.

Statistical analysis: Statistical analysis was performed using SPSS v29 (IBM Corpora-
tion, Armonk, NY, USA). The difference in measured mpMRI and quantitative histoloygy
parameters between AAs and CAs was assessed by f-test. The chi-squared test was used to
test if the distribution was different between the two cohorts. Receiver operating charac-
teristic (ROC) analysis was used to evaluate the performance of the quantitative mpMRI
parameters in diagnosing PCa. The area under the ROC curve (AUC) and ideal cutoff
point or the Youdens index with associated sensitivity and specificity were reported. The
Z-score test was used to determine the significant difference in the AUC value between the
two populations.

3. Results

Patient and lesion characteristics: The final cohort for this study included 47 African
American and 98 Caucasian American subjects. No significant difference in age (p = 0.29) and
PSA level (p = 0.94) was found between the AAs (age = 60 & 7 years, PSA = 8.5 = 5.9 ng/mL)
versus CAs (age = 58 £ 8 years, PSA = 8.6 & 9.9 ng/mL). The percentage of patients
undergoing biopsy and prostatectomy were similar (p = 0.89) between the two groups, with
25 biopsies (53%) and 22 prostatectomy cases (47%) for AAs and 51 (52%) and 47 (48%),
respectively, in CA patients. AAs (29% Gleason 3 + 3, 36% Gleason 3 + 4, 22% Gleason 4 + 3,
11% Gleason 4 + 4, 2% Gleason 4 + 5) had a greater (p = 0.01) percentage of higher Gleason-
grade lesions compared to CAs (29% Gleason 3 + 3, 57% Gleason 3 + 4, 11% Gleason 4 + 3,

30



Cancers 2024, 16, 3499

1% Gleason 4 + 4, 2% Gleason 4 + 5). Detailed patient and lesion characteristics can be
found in Table 2.

Table 2. Patient characteristics.

African Americans ,f(&:;antcraiiiajlt p
Age (years) 60 + 7 58 + 8 0.29
PSA (ng/mL) 85+59 8.6 9.9 0.94
Biopsy 25 (53%) 51 (52%) 0.89
Patients Prostatectomy 22 (47%) 47 (48%)
Total 47 98 -
Cancer 45 (32%) 99 (34%)
ROIs Benign 94 (68%) 196 (66%) 081
Total 139 295 -
1 (Gleason 3 + 3) 13 (29%) 29 (29%)
2 (Gleason 3 + 4) 16 (36%) 56 (57%)
Is(gfeigiigf;p 3 (Gleason 4 + 3) 10 (22%) 11 (11%) 0.01
4 (Gleason 4 + 4) 5 (11%) 1 (1%)
5 (Gleason 4 + 5) 1 (2%) 2 (2%)

Quantitative mpMRI results: Representative figures depicting prostate MRI for a typi-
cal AA and CA patient in this study are shown in Figures 1 and 2, respectively. We found no
significant difference in the quantitative ADC values (Cancers: 1.03 + 0.32 um? /ms in AA
vs. 1.07 4 0.34 um? /ms in CA, p = 0.75, Benign: 1.53 + 0.37in AA vs. 1.62 4 0.37 um?/ms in
CA, p = 0.12) and T2 values (Cancer: 107.5 + 55.8 ms in AA vs. 99.7 £ 27.7 ms, in CA
p = 0.25, Benign: 151.9 & 96.5 ms for AA, 159.1 & 73.2 ms for CA, p = 0.70) between AAs
and CAs for cancer and benign tissue. However, the ADC and T2 values for cancers were
nominally higher in AAs than in CAs despite the higher Gleason-grade cancers in the
AA cohort. No significant difference was found between AAs and CAs for these metrics
when compared for each Gleason score category. The detailed results for quantitative MRI
metrics measured in this study can be found in Table 3.

However, significant differences were found in the quantitative DCE metrics between
the two cohorts. The DCE signal enhancement rate () was significantly higher in cancerous
tissue for AAs compared to CAs (AA: 13.3 £9.3s7 ! vs. CA: 6.1 4.7, p <0.001). Sim-
ilarly, differences were found across all Gleason scores (Gleason 3 + 3: 10.3 + 4.4 vs.
49 +29 s 1 p = 0.002; Gleason 3 + 4: 11.7 £ 6.5 vs. 6.7 £ 5.6 s 1 p = 0.04;, and
Gleason > 4 + 3: 15.6 + 11.7 and 6.2 + 2.9 s~!, p = 0.02, respectively) where the sig-
nal enhancement rate was significantly higher in AAs than CAs. No significant differ-
ences in the signal enhancement rate were found in benign tissue (5.1 £ 4.6 for AA vs.
4.9 +29s ! for CA,p=0.81).

The DCE signal washout rate (3) was significantly lower in the benign tissue of AAs
(AA:0.01 £ 0.09 s~ vs. CA: 0.07 £+ 0.07 s~1, p < 0.001) and was significantly elevated in
cancer tissue in AAs (AA: 0.12 £ 0.07 s~ ! vs. CA: 0.07 £ 0.08 s~ !, p = 0.02). However, while
these differences were found to be significant in cancer ROIs overall for AAs versus CAs,
no significant differences were found across the Gleason score categories.
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Figure 1. 52-year-old African American patient with Gleason 4 + 3 cancer in the left apex in the
peripheral zone (red arrows on MRI). The lesion is seen as a hypo-intense region on the T2W image,
T2 (87.9 + 16.4 ms), and mildly hypo-intense on ADC (1.32 = 0.20 pm? /ms) maps with early focal
enhancement on DCE-MRI, evidenced by high signal enhancement rate (19.3 s~1) and rapid washout
rate (0.07 s~ 1). Surrounding benign tissue in the peripheral zone had ADC = 2.05 £ 0.10 pum?/ms,
T2 =308.9 + 62.6 ms, « = 2.87 s71, and p = 0.04 s~1. Another relevant finding is the presence of
Gleason 3 + 3 cancers in the right apex. Cancers are outlined in blue on histology sections.

Significant differences in the DCE signal enhancement amplitude (A) were found
between different Gleason grades between AAs and CAs, except for Gleason 3 + 4 tumors.
In the cancer ROIs overall, the AA signal enhancement amplitude (181.1 £ 44.8%) was
significantly higher (p < 0.001) compared to CAs (120.2 £ 47.4%). In benign tissue, the
amplitude was also significantly higher (p < 0.001) for AAs (157.6 £ 82.6%) compared to
CAs (126.1 + 51.2%) for CAs.

Diagnostic performance: The diagnostic performance, as evidenced by the area under
the ROC curve, showed that ADC (AA =0.79 vs. CA =0.87, p =0.21) and T2 (AA = 0.68
vs. CA =0.79, p = 0.15) were statistically equally effective in differentiation between the
benign and cancer tissues in both CAs and AAs. However, it should be noted that the ADC
(AUC 10% lower in AAs) and T2 (AUC 16% lower in AAs) were nominally less effective
in AAs compared to CAs for the diagnosis of PCa in CAs despite a higher proportion
of high-grade cancer in the AA cohort. DCE, on the other hand, significantly improved
the differentiation of PCa from benign in AAs but was found to be ineffective in CAs.
The area under the ROC curve showed that the DCE signal enhancement rate (AUC for
AAs =0.88 vs. CAs =0.58, p < 0.001) and signal washout rate (AUC for AAs = 0.81 vs.
CAs =0.50, p < 0.001) were 52% and 62% significantly more effective (p < 0.001), respectively,
in diagnosing PCa in AA patients. In addition, the cutoff values based on the Youdens
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index for the quantitative mpMRI parameters were different for the two cohorts. This leads
to a different sensitivity and specificity measured using these cutoffs (the detailed results
are in Table 4).

(A) Histology (B) T2-weighted MRI

Gleason
3+3

..nl. }

443

(C) ADC map (D) Early phase DCE-MRI

Figure 2. 52-year-old Caucasian American patient with Gleason 3 + 4 cancer in the right apex
in the peripheral zone (red arrows on mpMRI). The lesion is seen as a hypo-intense region on
the T2W image, T2 (112.4 + 54.6 ms), and mildly hypo-intense on ADC (0.86 + 0.12 um? /ms)
maps with only diffuse early enhancement on DCE-MRI, evidenced by low signal enhancement
rate (3.50 s~1) and washout rate (0.03 s~ 1). Surrounding benign tissue in the peripheral zone had
ADC =1.16 £+ 0.19 pm?/ms, T2 = 125.1 £ 34.5ms, x =3.20 s~ 1, and § = 0.01 s~ L. Cancers are outlined
in blue on histology sections.

Quantitative histology: The histology analysis for prostate tissue composition showed
a similar breakdown of tissue components between AAs (epithelium 28.7 &£ 9.0%, lumen
28.8 £ 13.3%, stroma 42.3 £ 10.2%) and CAs (epithelium 29.6 £ 9.2%, lumen 27.4 £ 11.1%,
stroma 43.1 £ 12.1%) for benign tissue. However, in cancerous tissue, there were greater
proportions of epithelium and lower lumen (p = 0.04) in CAs (epithelium 50.9 £ 12.3%,
lumen 10.5 + 6.9%) compared to AAs (epithelium 44.7 £+ 12.8%, lumen 16.2 + 6.8%),
suggesting differences in the histologic makeup and micro-anatomy of PCa in AAs versus
CAs. No difference in stroma volume was found for cancer between the two groups. The
detailed results are in Table 5.
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Table 3. Quantitative mpMRI results from both populations.

African Caucasian Value
Americans Americans P
Benign 1.53 +£0.37 1.62 +0.37 0.12
Cancer 1.03 £ 0.32 1.07 = 0.34 0.75
ADC
(umz/ms) Gleason 3 + 3 1.23 £0.27 1.22 +0.34 0.88
Gleason 3 + 4 1.12 +£0.29 1.06 +0.33 0.55
Gleason >4 +3 0.85 +0.28 0.81 +0.27 0.62
Benign 151.9 £ 96.5 159.1 £ 73.2 0.70
Cancer 107.5 £ 55.8 99.8 + 27.5 0.25
T2
(ms) Gleason 3 + 3 110.8 +£40.2 112.7 £ 31.2 0.89
Gleason 3 + 4 108.0 + 26.5 96.9 + 26.6 0.31
Gleason >4 +3 104.9 £ 745 85.7 +£12.8 0.35
Benign 157.6 + 82.6 126.1 &= 51.2 0.01
DCE Cancer 1811+ 448  1202+474  <0.001
Signal enhancement Gleason 3 + 3 200.9 & 64.1 114.8 £ 28.44 <0.001
litud A (%
amplitude or A (%) Gleason3+4  1585+282 1233 +55.6 0.18
Gleason >4+ 3 179.1 £ 35.3 125.4 + 35.6 0.03
Benign 51+4.6 49+29 0.81
c Cancer 13.3 £ 9.3 6.1 4.7 <0.001
DCE
Signal enhancement rate s~ Gleason 3 + 3 10.3 + 44 49 +29 0.002
Gleason 3 + 4 11.7 £+ 6.5 6.7 + 5.6 0.04
Gleason >4 +3 15.6 + 11.7 6.2 +29 0.02
Benign 0.01 + 0.09 0.07 £ 0.07 <0.001
Cancer 0.12 £ 0.07 0.07 £ 0.08 0.02
DCE
Signal washout rate (Sil) Gleason 3 + 3 0.10 &+ 0.09 0.04 £ 0.08 0.12
Gleason 3 + 4 0.11 £+ 0.07 0.09 &+ 0.08 0.62
Gleason >4 +3 0.13 £+ 0.07 0.08 4+ 0.03 0.13
Table 4. ROC analysis for differentiating cancer from benign prostate tissue.
African Americans Caucasian Americans p-Value *
AUC =0.79 AUC =0.87
95% CI = [0.69, 0.88] 95% CI =[0.81, 0.92]
ADC Cutoff = 1.00 um?/ms  Cutoff = 1.23 um?/ms 0.06 *
Sensitivity = 93% Sensitivity = 89%
Specificity = 56% Specificity = 74%
AUC =0.68 AUC =0.79
95% CI = [0.56, 0.78] 95% CI =[0.72, 0.86]
T2 Cutoff = 136.2 ms Cutoff =116.9 ms 0.10 *
Sensitivity = 45% Sensitivity = 67%
Specificity = 88% Specificity = 80%
AUC =0.88 AUC = 0.58*
DCE 95% CI =[0.81, 0.96] 95% CI =[0.48, 0.69]
Cutoff =6.0s~1 Cutoff =6.3 571 <0.001

Signal enhancement rate

Sensitivity = 96%
Specificity = 73%

Sensitivity = 38%
Specificity = 79%
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Table 4. Cont.

African Americans  Caucasian Americans p-Value *
AUC =0.81 AUC = 0.50*
DCE 95% CI =[0.73, 0.91] 95% CI =[0.39, 0.60]
Signal washout rate Cutoff = 0.02s~! Cutoff=0.10s~! <0.001
Sensitivity = 96% Sensitivity = 38%
Specificity = 52% Specificity = 69%

* not significant (p > 0.05). * p-value comparing if performance is better in one population over the other.

Table 5. Quantitative histology results from both populations.

African Caucasian Value
Americans Americans P

Beni 423 4+10.2 431 +12.1 44

Stroma enign 3+10 3 0
Cancer 39.1 +£11.5 38.6 £12.4 0.46
Epithelium Benign 28.7 £9.0 29.6 9.2 0.41
Cancer 44.7 +12.8 50.9 £+ 12.3 0.04

Beni 28.8 + 13. 274 4+11.1 .
Lumen enign 8.8 £13.3 0.38
Cancer 16.2 £ 6.8 10.5 £ 6.9 0.04

4. Discussion

The results of our study show that the cancer signal enhancement rate (o) of prostate
cancer is significantly higher for AAs compared to CAs. The DCE signal washout rate (j3)
is significantly lower in the benign tissue of AAs and significantly elevated in the cancer
tissue of AAs. Due to these differences, DCE significantly improves the differentiation
of PCa from benign prostate tissue in AAs but not in CAs. There were no significant
differences in the quantitative ADC and T2 values between AAs and CAs. The histologic
analysis showed that cancers have a greater proportion of epithelium and lower lumen in
CAs compared to AAs. These findings underscore the importance of considering racial
differences when developing screening or diagnostic guidelines, especially as bi-parametric
MRI is increasingly being proposed for population screening.

PCa detected in AAs tends to have higher Gleason score lesions (more aggressive
and advanced, Gleason 4 + 3 and above) compared to sPCa in CAs [10,11]. We found a
similar trend in our cohort. Despite having more high-grade lesions in AA, cancers in AAs
tend to have very similar ADC and T2 values to CAs. The background benign tissue has a
nominally lower T2 and ADC in AAs. This potentially decreases the contrast between the
cancer and normal regions in the prostate and can make the cancer less conspicuous. [26]
This is evidenced by the lower AUC values for cancer detection using ADC and T2 in AAs.
This is consistent with the qualitative mpMRI results from Mahran et al., where the negative
predictive value for AAs using mpMRI is lower than that for CAs [18]. Our quantitative
histology results showed that cancer in AAs tend to be less dense cancers that have lower
epithelium (epithelium is associated with lower ADC and T2 values) and higher lumen
(lumen is associated with higher ADC and T2 values), making them less conspicuous on T2
and ADC. In addition, increased inflammation in the tumor microenvironment of prostate
cancer in AA men has been noted; this is a driver of disparate clinical outcomes [27]. From
the MRI literature, we also know that inflammation affects T2 relaxometry and diffusion
measures and can mimic prostate cancer, making cancer diagnosis more difficult [28].

Quantitative DCE-MRI using EMM has been shown to be effective in the diagnosis
of PCa [29,30]. The results of this study demonstrate that EMM is even more effective
for differentiating PCa from benign tissue in AAs, with the AUCs for « and 3 being 52%
and 62% greater, respectively, in AAs compared to CAs. Numerous studies have noted
inherent molecular and biological differences in cancer of AA patients [31,32]. The observed
difference in contrast uptake and washout can be attributed to the tumor microenvironment.
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Most importantly, neo-angiogenesis or higher microvessel density (MVD) in cancer of AA
subjects compared to CAs has been reported [32]. These blood vessels, produced by cancers,
allow an increased blood flow, which results in rapid contrast uptake and quick washout.
The increased blood flow brings increased oxygen and nutrients that support tumor growth,
invasion, and metastatic progression. This is consistent with findings of increased tumor
progression and worse clinical outcomes in AAs [33].

This study found that the ideal cutoff values (Youdens index) for the quantitative
mpMRI parameters were very different for AAs vs. CAs, showing that the standard
diagnostic model is not optimal for AAs. This also suggests the more general hypothesis
that quantitative MRI protocols and thresholds for PCa diagnosis for different races should
be determined independently. The current PI-RADS v2.1 guideline [13] utilizes T2-weighted
(T2W) imaging and diffusion-weighting imaging (DWI) as the primary sequences while
giving less emphasis to dynamic contrast-enhanced (DCE) MRI. The results showing that
DCE-MRlI is highly effective for PCa diagnosis in African Americans suggest that the PI-
RADS guidelines should be modified to include a greater emphasis on DCE-MRI for AAs.
However, the current results must be verified in a larger cohort in a multi-center setting.

There is growing interest in bi-parametric MRI, with T2-weighted images and DWI
images only, leaving out DCE-MRI completely [34,35]. This would have advantages in
terms of cost, efficiency, and accessibility [35]. However, the results of this study suggest
that bi-parametric MRI would not produce optimal outcomes for African Americans and
perhaps also be sub-optimal for other groups that are at risk for aggressive PCa. In addition,
there is also increasing interest in quantitative MR imaging and analysis methods and
artificial intelligence (Al) tools for PCa diagnosis [36,37]. Machine learning and other Al
technologies can only perform well when constructed from representative and appropriate
training sets. As such, training sets that do not include relevant information on potential
confounding variables such as race may produce biased models. Therefore, bi-parametric
MRI, quantitative MRI, and Al tools should be considered substitutes for conventional
mpMRI and should account for the racial differences in prostate and PCa physiology
and biology. Future studies should compare the current results with results for races or
genetic sub-groups with lower incidences of PCa, e.g., the Asian population. MRI-based
quantitative biomarkers that account for racial differences could be used to optimize the
MRI protocols specifically for different racial groups. This will be a critical step towards
personalized PCa screening.

There are a few limitations to this study. First, this study is a retrospective single-center
study with a relatively small sample size. Therefore, these results should be validated
in a multi-center setting with a large sample size. Second, we used equipment and soft-
ware from a single MR vendor. Similar studies are needed using scanners from other
vendors as hardware and imaging parameters have been shown to affect quantitative MRI
results [19-21]. Third, quantitative histology was performed on a subset of patients under-
going prostatectomy. Therefore, due to the small sample size, a comparison of quantitative
histology in the two populations stratified by the Gleason score could not be performed.
Fourth, we did not have the histological specimens to confirm an increased vessel density
in cancers in African Americans, where a DCE analysis suggests increased blood flow [38].
This should be tested in future studies. Fifth, the use of a combined cohort of prostatec-
tomy and biopsy can introduce potential bias while comparing the two populations when
stratifying cancers by the Gleason score. This is due to the fact that a significant number of
cancers are upgraded when biopsy subjects undergo prostatectomy [39].

5. Conclusions

This study shows that AAs have different quantitative DCE-MRI values for benign
prostate and prostate cancer compared to CAs. Quantitative DCE-MRI is highly effective
and improves PCa diagnosis in African Americans. These findings should be confirmed
in larger studies, but we believe they are particularly important to consider, especially as
bi-parametric MRI, which excludes DCE, is attracting increasing interest as a replacement
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for mpMRI. There are also some quantitative histologic differences between the cancers in
AAs and CAs. The results also suggest that other racial groups may have differing prostate
biology and physiology and may require specialized MRI screening methods. Racial
differences should be taken into account when creating screening or diagnostic guidelines,
particularly as bi-parametric MRI is being increasingly suggested for population screening.
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Simple Summary: Nonlinear curve fitting of the pharmacokinetic model to DCE-MRI concentration
curves is highly time-consuming. The estimation of highly non-linear dispersion-related parameter
in MR dispersion imaging (MRDI) makes the process even more tedious. The fast MRDI (fMRDI)
model is proposed to simplify and accelerate the MRDI model by representing the dispersion-applied
arterial input function (AIF) as the weighted-sum of a fast and a slow population-based AIFs. A deep
learning-based two-stage inference method is proposed to accelerate quantitative MRDI. The deep
learning model makes a initial estimation of the parameters directly from the concentration curves
and the parameters is then refined by a number of iterative optimization.

Abstract: Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) measures microvas-
cular perfusion by capturing the temporal changes of an MRI contrast agent in a target tissue,
and it provides valuable information for the diagnosis and prognosis of a wide range of tumors.
Quantitative DCE-MRI analysis commonly relies on the nonlinear least square (NLLS) fitting of
a pharmacokinetic (PK) model to concentration curves. However, the voxel-wise application of
such nonlinear curve fitting is highly time-consuming. The arterial input function (AIF) needs to
be utilized in quantitative DCE-MRI analysis. and in practice, a population-based arterial AIF is
often used in PK modeling. The contribution of intravascular dispersion to the measured signal
enhancement is assumed to be negligible. The MR dispersion imaging (MRDI) model was recently
proposed to account for intravascular dispersion, enabling more accurate PK modeling. However,
the complexity of the MRDI hinders its practical usability and makes quantitative PK modeling even
more time-consuming. In this paper, we propose fast MR dispersion imaging (fMRDI) to effectively
represent the intravascular dispersion and highly accelerated PK parameter estimation. We also
propose a deep learning-based, two-stage framework to accelerate PK parameter estimation. We
used a deep neural network (NN) to estimate PK parameters directly from enhancement curves. The
estimation from NN was further refined using several steps of NLLS, which is significantly faster
than performing NLLS from random initializations. A data synthesis module is proposed to generate
synthetic training data for the NN. Two data-processing modules were introduced to improve the
model’s stability against noise and variations. Experiments on our in-house clinical prostate MRI
dataset demonstrated that our method significantly reduces the processing time, produces a better
distinction between normal and clinically significant prostate cancer (csPCa) lesions, and is more
robust against noise than conventional DCE-MRI analysis methods.

Keywords: MRI; DCE-MRI; dispersion imaging; prostate cancer; deep learning; transformer
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1. Introduction

Tumor development is associated with the growth of new irregular microvessels, a
process known as angiogenesis [1]. The angiogenic microvessels are characterized by leaky
vessel walls and, therefore, a high degree of permeability [2]. Increased microvascular
density and permeability [3,4] have been reported in several studies to correlate with
cancer aggressiveness [5,6]. In the prostate, increased microvascular density and perme-
ability can be characterized by dynamic contrast-enhanced magnetic resonance imaging
(DCE-MRI) [7-9]. Prostate DCE-MRI acquires a time series of T1-weighted images before,
during, and after the injection of a contrast agent (CA, e.g., gadolinium-based contrast
agents [10]). After the bolus injection, the CA leaks across the vascular wall to the extra-
cellular extravascular space (EES), resulting in MR enhancement uptakes. The temporal
variations in MRI signals provide information about permeability and angiogenesis, which
can be quantified as the leakage from the vessel to EES [2,11]. As illustrated in Figure 1,
there is a noticeable disparity in tissue-concentration curves between clinically significant
prostate cancer (csPCa) and normal prostate tissue. The concentration curve in the tumor
exhibits a significantly faster uptake compared to normal tissue, which could be attributed
to leaky vascular walls in the tumor [1,12].

Quantitative DCE-MRI analysis aims to extract physiological parameters that reflect
the permeability and microvascular density of the underlying tissue. This can be achieved
by fitting a pharmacokinetic (PK) model to time-series concentration curves using nonlinear
least square (NLLS) curve fitting. The standard Tofts model [10] is a widely used PK model
for prostate DCE-MRL. It formulates the tissue concentration, C¢(t), as the convolution of
the plasma concentration (or arterial input function, AIF), C,(t), and the tissue impulse
response. The tissue-imposed response is characterized by several PK parameters related
to microvascular permeability, such as the forward volume transfer constant, K, and
the flux rate, kep.
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Figure 1. (a) T2-weighted MR slice with annotated prostate (gray), normal tissue (blue), and a
tumor (red). (b) Corresponding histopathology image. (c) Concentration curves for the three regions
demonstrate different contrast-agent concentrations, C;(#), in three different ROIs.

The accurate quantification of AlFs is critical to PK modeling [9,13-15]. Either the AIF
can be measured [15,16] or a population-based AIF can be assumed [14,17,18]. Measuring
the AIF necessitates a high temporal resolution [19] and a wide dynamic range [20], which
is not always possible in clinical settings [21]. In practice, a population-based AIF is often
assumed across patients [14,17,18]. In particular, a line of AIF models [14,22,23] has been
proposed to achieve an analytical solution to the convolution in the Tofts model and, there-
fore, simplify the computation. However, the AIF has a significant impact on the estimated
PK parameters [9,16], and location-specific AIFs can improve the estimation [15,16].

Recently, the MR dispersion imaging (MRDI) model [24] has been introduced to char-
acterize the intravascular dispersion of the contrast agent. The quantification of intravas-
cular dispersion inherently yields dispersion-related parameters, which were calculated
by applying voxel-wise dispersion to AlFs within the prostate [8,24,25]. Adopting the
dispersion-applied AIF in PK modeling is considered to improve the model and parameter
estimation precision [8,24-28]. In addition, dispersion-related parameters can be used to
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identify clinically significant prostate cancer (csPCa) [26,29]. The dispersion-related param-
eters, either alone [8,24,26] or combined with other PK parameters [25,28], have been shown
to be indicative of prostate cancer. In Turco’s study [8], dispersion-related parameters were
suggested to outperform other DCE parameters for prostate cancer detection.

The modified MRDI (mMRDI) model [25] simplified the dispersion-applied AIF as a
convolution parameterized by a dispersion-related parameter. mMRDI effectively approxi-
mates the dispersion-applied AlFs with a reduced number of parameters. Additionally,
the dispersion-related parameter in the mMRDI model can be used alongside the volume
transfer constant (K" for prostate cancer diagnosis [25]. However, mMRDI still requires
an AIF estimation, and the high computation of MRDI and mMRDI limits their practical
usability in prostate DCE-MRIL.

Performing voxel-wise curve fitting of the nonlinear PK model can be
time-consuming [30-32], particularly in prostate DCE-MRI, where a large number of voxels
have to be processed in a multi-slice scan. Murase proposed using the simplex method [33]
to efficiently fit the PK model, but this method requires a fixed AIF and low sampling
interval, limiting its practical application. Moreover, the iterative fitting of a nonlinear
PK model is susceptible to noise and initialization [34-37], and improper initializations
could result in suboptimal results. Several workarounds have been used to find proper
initializations [25,35]. Dikaios et al. [35] iteratively searched for the initialization values
until convergence was achieved. Sung [25] repeated the optimization with ten different
initializations and then selected the best results to avoid improper initializations. However,
these workarounds introduced extra computation time.

Recently, a line of studies has demonstrated the advantages of using deep learn-
ing for fast PK parameter estimation [37-39]. Bliesener et al. [37] used deep Bayesian
learning to estimate both PK parameters and uncertainty in longitudinal brain DCE-MRL
Ottens et al. [38] compared various deep-learning models for PK parameter estimation
in pancreatic cancer detection. Witowski et al. [39] proposed a supervised method that
directly localizes lesions from DCE-MRI data for breast cancer detection. These methods
either rely on a particular AIF [37,38] or annotated data [38,39], making them less flexible.
Directly estimating the parameters of a complicated PK model from noisy DCE-MRI data
is challenging, and the estimations of these methods are less accurate [37,38].

In this paper, we introduce the fast MR dispersion imaging (fMRDI) model, which
further simplifies the MRDI model and simulates the dispersion-applied AIF with the
weighted sum of AIFs of different dispersion levels. An AIF with greater dispersion
exhibits a slow uptake, and an AIF with less dispersion has a fast uptake [25]. Therefore,
fMRDI can effectively account for voxel-wise AlFs with various dispersion levels, yielding
estimates of the intravascular dispersion-related parameter. As shown in Figure 2, the
weighted-sum AIF (Figure 2d) essentially mimics various dispersion levels in MRDI and
mMRDI (Figure 2a,b) in a simple form.

The benefits of fMRDI are twofold. First, it resembles intravascular dispersion in a
simpler form, making it easier to optimize and less computational. Second, as suggested
by [8,24,25], the dispersion parameter A can be used along with other pharmacokinetic
(PK) parameters to differentiate between csPCa and normal tissue. Experiments on clinical
prostate DCE-MRI data showed that A improves the overall csPCa detection accuracy
(see Section 3.2).

To accelerate the time-consuming NLLS while maintaining its accuracy, we propose
a deep-learning-based, two-stage framework for PK parameter estimation. In particular,
we used a transformer-based [40] deep neural network to achieve a coarse estimation
of the PK parameters, which serve as the initializations of subsequent NLLS. With the
coarse estimation as the initialization, the subsequent NLLS converges in a few steps,
significantly reducing the iteration steps compared to plain NLLS. Our network is trained
with synthetical DCE-MRI concentration curves. We also designed two data-preprocessing
modules, the time series pyramid, and sinusoidal normalization, to improve the robustness
of our model against the noise in DCE-MRI dynamic images.
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(a): Dispersion (b): Modified dispersion (c): Fast and slow AIF (d): Fast dispersion
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Figure 2. Various dispersion-applied AIFs in MRDI [24] (a) and mMRDI [25] (b) with different
dispersion parameters, x and A. Our fMRDI model uses a weighted sum of slow and fast AIFs (c) to
achieve similar AIFs of different dispersion levels (d).

We conducted experiments on our in-house clinical DCE-MRI dataset of 182 patients
who underwent prostate MRI prior to radical prostatectomy. We used linear discriminant
analysis (LDA) to test the precision of csPCa detection using PK parameters from different
methods. Additionally, we experimented with digital reference objects (DROs) to test the
quality and robustness of different fitting methods. The experimental results show that
our fMRDI model produces PK parameters with high contrast between csPCa and normal
tissue. Our method is significantly faster and more robust against noise compared to NLLS.
In summary, our method enjoys the following favorable properties:

1.  The fMRDI model resembles intravascular dispersion with a simple linear combination
of slow and fast AIFs, which is easier to optimize and requires less computation.

2. The dispersion parameter in our fMRDI model can be used to differentiate csPCa
from normal tissue and improve the overall performance of csPCa identification
(Section 3.2).

3. The two-stage estimation framework is fast, accurate, flexible, and more robust against
noise and initializations. It does not restrict the form of the AIF or the sampling interval.
It operates significantly faster than NLLS and achieves more accurate fitting results.

The rest of this paper is organized as follows. Section 2.1 briefly reviews the stan-
dard Tofts model, as well as the MRDI and mMRDI models, and then it introduces our
fast MRDI model. Section 2 systematically presents our deep learning-based framework
for PK parameter estimation. Section 2.6 outlines the clinical DCE-MRI data used in our
experiments. Section 3 reports and analyzes the experimental results and makes compar-
isons against other methods. Sections 4 and 5 examine the motivation and background
context of our study, discusses potential limitations and areas for future work, and presents
concluding remarks.

2. Methods and Materials
2.1. From Tofts Model to Fast MRDI Model

We first review the classical Tofts PK model, the modified MRDI model, and our fast
MRDI model.

2.1.1. The Tofts Model

In the classical Tofts model [10], the tissue contrast agent (CA) concentration, denoted
as C, is represented by the convolution of the plasma CA concentration, also known as
arterial input function (AIF), denoted as C;, and the tissue impulse response:

t
Ci(t) = /O Cp (T — to) - KHrmse=ka(=7) g, (1)
AIF impulse response

where t is the bolus arrival time. The tissue impulse response, K!"S¢~kert is character-
ized by a few PK parameters, such as the volume-transfer constant (K"**5, measured in
min~!) and the rate constant (kep, measured in min~!), that are relevant to tissue perfusion
and permeability. Ktrans and kep, which measure the CA wash-in and wash-out, are com-
monly associated with csPCa, as indicated by studies such as those of Fiitterer et al. [41],
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Kuenen et al. [24], and Sung et al. [25]. They can enhance lesion visibility, according to the
Prostate Imaging Reporting and Data System (PI-RADS) [7].

The classical Tofts model assumes that the intravascular contribution to the measured
MR signal is negligible, and constant population-averaged AlFs [17,18,20,38,42] are often
used for PK modeling. A recent work [38] assumed an exponential-based AIF obtained
from [42] so that the convolution in Equation (1) could be analytically expressed and the
estimation could be simplified. However, assuming a constant AIF across all patients is not
accurate because AlFs may vary across patients or locations within the same patient.

2.1.2. MRDI and mMRDI: Dispersion-Applied AlFs

The MR dispersion model [24] considered the intravascular dispersion in the prostate
and, therefore, characterized location-specific AIFs within the prostate. In particular, the
dispersion-applied AIF is formulated as follows:

—x(t —tg — u)?

MRDI __ K
GO = o) exp ( 20— t)

where « (s7!) is the dispersion parameter, y is the average transit time from the injection
site to the detection site, and « is the integral of C;.

In the modified MRDI (mMRDI) model [25], the dispersion-applied AIF is formulated
as the convolution of a vascular transport function:

>~

1 _
CpMRPT — C\(t) @ ~e™ )

T ®)

where Cp(t) is a population-based AIF and A is the dispersion coefficient, (e.g., the larger
the A, the larger the dispersion). mMRDI characterizes intravascular dispersion with a
simpler formulation and improves practical usability.

However, the convolution in Equation (3) is nonlinear, and the dispersion parameter
A in the denominator typically makes optimization more challenging. This is because
the denominator introduces nonlinearity and discontinuity, which can complicate and
destabilize the optimization process [43].

To address optimization instability, mMRDI [25] repeatedly performed NLLS with
various initializations and selected the best fit for each voxel. This process can be very
tedious, and it takes hours to process a patient.

2.1.3. fMRDI: Fast MRDI Model

To simplify the formulation and ease the optimization, we propose the fast MRDI
(fMRDI) model, which represents dispersion-applied AIF as the weighted sum of two AIFs
of different dispersion levels.

CIMRPT — ACK(t — to) + (1 — V) C2(t — to), )

where C; is the ‘fast” AIF with less dispersion, and C% is the ‘slow’ AIF with greater
dispersion. A € [0, 1] is the intravascular dispersion parameter balancing the summation.
To achieve AlFs of different dispersion levels, we used the dispersion-applied AIF (C{OVIRD I
in Equation (2)) with x = 0.3 s™%, 4 = 10 s as the fast AIF (Cj),and x = 0.1s™!, =20 s as
the slow AIF (C%). The two bases were selected according to the distribution of the two
parameters in our dataset. Specifically, we calculated y and x using the MRDI model on
our dataset, and we chose ¥ = 0.3 s_l,y =10sand x = 0.1s71, # = 20 s because more
than 99% of the voxel parameters fell within this range. Figure 2a,b,d demonstrate various
dispersion-applied AIFs in MRDI [24], mMRDI [25], and our fMRDI model. Figure 2c
shows the slow and fast AlFs in fMRDI. Figure 2d shows that the AIFs with various
dispersion factors can be similarly achieved using fMRDI with different A parameters.
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As per previous studies [8,25], AIFs in csPCa exhibit lower dispersion levels and
faster uptakes, whereas the AIFs of normal tissue have higher dispersion levels and slower
uptakes. Therefore, A is close to 1 in ¢csPCa and close to 0 in normal tissue. This is verified
by the results in Figures 11, 13 and 14.

With the simplified dispersion-applied AIF, we can derive the fast MRDI model by
substituting Equation (4) for Equation (1):

t
Ci(t) = /0 (ACh+ (1= A)C2) -Kmseken(t=Dg, ®)

weighted-sum AIF

The derivation of Equation (5) is similar to Equation (4) in [8]. The fMRDI model in Equation (5)
provides an assessment of the microvascular architecture using the dispersion parameter A
and of microvascular permeability using K" and k.

For simplicity of notation, we will refer to the fast MRDI model as follows:

C; = fMRDI(P) (6)

where P = {KI""s, kep, to, A} € ]Ri are the PK parameters to be estimated. The PK pa-
rameter estimation from DCE-MRI data is essentially the reverse of Equation (6), which
estimates P from C;.

We introduce our deep learning-based framework for PK parameter estimation. In
Section 2.2, we introduce our overall pipeline, including training and inference workflows.
Then, we describe how we synthesize data for model training in Section 2.3. Section 2.4
provides a brief description of the model architecture and training procedure. And finally,
we introduce two novel data-preprocessing modules, sinusoidal normalization and time
series pyramid, in Section 2.4.2. The overall workflows are illustrated in Figure 3.

[3 X 1]Eq.7 [75 x 1]

GYRELIRC ModelHo |8 (Loss -
" Data Synth 175 x 8

— Train— Test _)®_> __»® 11 Ea.8
=g | (Refing(B)

Iterative refinement

Figure 3. The overall workflow of our proposed method for PK parameter estimation. Circles
represent the processed data, and the shape of the data is indicated near each circle. In training, the
random PK parameter P is sampled to synthesize the training data, C;. After preprocessing, the
data are fed into the neural network, and the estimated parameter Py is compared against P for loss
computation. In testing, the model takes clinical DCE-MRI concentration curves, C;, as input, and the
subsequent ‘iterative refinement’ takes Py as the starting point of the iteration and refines the initial
estimation with NLLS.

2.2. Overall Workflows

Our overall workflows are illustrated in Figure 3. In general, there are three key
components in our framework: a data synthesis module, the neural network (NN), and
iterative refinement. During training, the data synthesis module synthesizes the training
curves C; for the NN. The NN takes the synthetical data C; as input and predicts the initial
coarse estimation Py, which is then compared against the randomly sampled parameter P
that was used for data synthesis. There are two crucial preprocessing modules in the neural
network model that will be described in detail in Section 2.4.2. During inference, the model
takes clinical concentration curves as input and produces the initial estimation of the PK
parameters, Py, which is then refined via iterative curve fitting. The final PK parameters
after iterative refinement are denoted as Pr, where T = 20 is the number of iterations.
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2.3. Training Data Synthesis

Let C; € RL be the time-series DCE-MRI data, where L is the length of the time
series (L = 75 in our case). Our model learns a mapping from the time series to the

PK parameters:
P=H(C)

where H(-) : Rl — R4 is our model, which learns to reverse Equation (6). To train such a
model, we need the pairwise training datasets {(C}, P!), (C?, P?),...,(CN, PN)}. Instead of
collecting training datasets from clinical scans, we designed a data synthesis framework to
generate unlimited training data for our neural network. A similar synthesis process was
also used in [38,44] for model training. In general, the data synthesis module is composed
of three steps.

1. Sample random PK parameters Ktrans kep, to, and A from designated distributions.

2. Synthesize smooth time series using the fMRDI formulated in Equation (5).

3. Add Gaussian noise to the smooth time series to close the gap between synthetical
and real data.

The overall pipeline of data synthesis is illustrated in Figure 4, the distributions used
to sample PK parameters are shown in Figure 5, and some examples of synthetical and real
data can be found in Figure 6.

(a) (b)
Random Tofts Add noise
= =
P Model

Figure 4. The pipeline of concentration-curve synthesis. (a) random PK parameters are sampled to
synthesize smooth curves (b). (c) noise is added to the smooth curves to simulate the real cases.

(1) Sample PK parameters As a statistical model, the predictions from neural networks
are highly related to the statistics of the training data. To mimic the statistics of real DCE-
MRI data, we first analyzed the PK parameters of clinical DCE-MRI cases. Specifically,
we estimated the PK parameters of 20 patients using conventional nonlinear least square
(NLLS) curve fitting and then constructed their histograms. As shown in Figure 5 (top), the
histograms closely resemble specific beta distributions. Then, we used beta distributions,
to sample PK parameters for data synthesis. The beta distributions used for data synthesis
are shown in Figure 5 (bottom). ¢( is sampled from a uniform distribution, U(0,0.1).

(2) Synthesize smooth time series Let P be the randomly sampled PK parameter from
designated distributions. We synthesized a smooth time series using the fMRDI model
defined in Equation (6). Example smooth curves are demonstrated in Figure 4.

(8) Add Gaussian noise In order to close the gap between real and synthetical time
series, we added random Gaussian noise to the smooth time series. The data synthesis can
be formulated as follows:

¢(1) = | IMRDI(P) x (1 + M (0,7))], @)

where NV(0,7) € Rl is the Gaussian noise with zero mean, and the standard deviation of
the noise is randomly sampled to achieve synthetical data with a signal-to-noise ratio (SNR)
between 4 and 32. || is the rectification operator that rectifies all values less than zero as
zero because the DCE-MRI data are always greater than zero. Example noisy synthetical
curves are demonstrated in Figure 6.
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Figure 5. Histograms of pharmacokinetic parameters (top) and distributions used for data
synthesis (bottom).
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Figure 6. Real (top) and synthetic concentration curves (bottom). Curves of each column share the

same PK parameters.

2.4. Model Training Workflow
2.4.1. Model Architecture

We utilized the transformer architecture, which is renowned for its outstanding per-
formance using sequential data. We used a three-layer transformer network, and a similar
network has been widely used in computer vision [45] and natural language processing [40].
As shown in Figure 7, the input time-series C; first passes through preprocessing modules,
which is detailed in Section 2.4.2, after which the position embedding is added. Afterward,
three transformer layers process the high-dimensional inputs, and then a feedforward
network produces the predictions. Rectified linear unit (ReLU) activation is used in the end
to ensure positive predictions. ReLU is an activation function that retains positive input
values while setting negative inputs to zero. The detailed architecture of a transformer
layer is illustrated on the left side of Figure 7.

Add & Norm

Transformer

Layer x3

Multi-head
Attention

Position
embed

Figure 7. The architecture of the transformer neural network used in our experiments. ReLU
activation was used in the last of the network to ensure positive estimations.
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2.4.2. Preprocessing for Robust Neural Networks

The time-series dynamic images are noisy, unnormalized, and presented as one-dimensional
time series, posing challenges in training deep neural networks. We propose two crucial
data preprocessing modules to stabilize the training process and enhance the model’s
performance. The purposes of the two preprocessing modules are threefold:

1. To enhance the model’s robustness against the noise and capture information at
various scales.

2. Toincrease the data dimension and project the one-dimensional time series into high-
dimensional space.

3. Tonormalize the time series data into a fixed range with zero mean and constant variance.

The experimental results in Table 1 demonstrate that the proposed preprocessing
modules improve the estimation accuracy.

Table 1. Squared errors are assessed by incrementally adding model components. The baseline
model, labeled ‘NN + Parker’, represents the NN model without the proposed preprocessing or WS

AlF.
NN + Parker AIF 0.6681 +2.2015
+WS AIF 0.5982 - 1.9383
+Pyramid 0.5892 +1.9012
+Sinusoidal 0.5801 £+ 1.8729
+Refine 0.4114 +1.5181

Without a loss of generality, let RE*D be the shape of input to each preprocessing
module, where L is the length of the time series and D is the feature dimension (which
is one for C). The preprocessing modules process each row of the input independently
and generate N rows based on a single input row, leading to output data with the shape
of REX(D'N) N is the scaling factor, which means that the module increases the feature
dimension of the input by a certain factor.

The scaling factor is set to N = 5 in the time series pyramid, and N = 16 is used in
the sinusoidal normalization. In general, the DCE-MRI time series has a shape of L x 1
and will be sequentially processed through the time-series pyramid and the sinusoidal
normalization. The data shape after the time-series pyramid is L x 5, and after sinusoidal
normalization, the shape becomes L x 80.

Time series pyramid Our first preprocessing module is the time series pyramid, which
convolves C; with kernels of different scales to depress the noise and capture information
at various contextual scales. This operation draws deep inspiration from the seminal
concept of an image pyramid [46] in image processing and computer vision. The image
pyramid provides a flexible and convenient multiresolution format that closely resembles
the multi-scale processing in the human perceptual system.

We construct the time series pyramid, similar to the image pyramid, by convolving
the original time series with Gaussian kernels of different variances (sigmas). Let K be the
Gaussian kernel, where ¢ is the variance of the kernel, and 20 + 1 is the kernel size. The
convolved time series is denoted as C{ = C; ® K7. We construct the time series pyramid by
stacking several convolutions. Let N be the number of Gaussian kernels used to construct
the pyramid. For arbitrary input C; € R+5*D, where L is the length of the time series, and
D is the feature dimension, the dimension of the pyramid would be C; R4L*(DxN),

In practice, we used N = 5 different kernels with o = 0,2,4,8,10, where 0 = 0
corresponds to the original signal. The time series pyramid takes raw DCE-MRI data
as input (with shape L x 1), and the output shape is L x 5. Example pyramids and
corresponding Gaussian kernels can be found in Figure 8.

Sinusoidal normalization Data normalization is critical to deep neural networks.
Normalization techniques rescale input data in a fixed range with zero mean and constant
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variance, which accelerates the convergence and improves the performance [47,48] of deep
neural networks.

d\
/H\

kernels

Figure 8. The time series pyramid with different o and respective Gaussian kernels.

In DCE-MR]I, the magnitude range exhibits significant variations among time series
from different locations. Additionally, the intensity values are highly biased and follow a
long-tail distribution. We employ simple sinusoidal functions to normalize the input data
into a fixed range of [—1, 1]. To normalize the input data while maintaining an injective
mapping between the input and output, we utilize a series of sinusoidal functions with
different frequencies: [sin(1wpx), cos(lwpx), ..., sin(8wpx), cos(8wpx)]. where wy = 27r/100
is the fundamental frequency. The sinusoidal functions project the input into higher-
dimensional spaces and ensure a one-to-one mapping between the input and output. The
signals after the sinusoidal functions fall within a fixed range and possess a zero mean with
constant variance. The input to sinusoidal normalization is the output of the time series
pyramid, which has a shape of L x 5. The output of sinusoidal normalization has a shape
of L x 80.

2.4.3. Model Training

Let Hgy(-) be our model parameterized by 6. Our model is trained with synthetical
data introduced in Section 2.3. Suppose (Ct, P) is the training data pair; the model takes
C; as input and predicts Py, as shown in Figure 3. Our model is trained by minimizing
the L; discrepancy between the estimated PK parameter Py and the one used for data
synthesis P: £ = ‘15 — P|, where L is the training loss. The loss is computed separately for
each sample (concentration curve) and then averaged across the batch. We use the ADAM
algorithm to optimize the neural network. The model is trained for 100,000 iterations with
a fixed learning rate of 10~* and a batch size of 256.

2.5. Model Inference Workflow
2.5.1. From MRI Signal to CA Concentration

Before any pharmacokinetic analysis can take place, the CA concentration, C;, has
to be calculated from the MRI signal enhancement. T is reduced from the pre-contrast
value Ty by the presence of CA: T% = %0 + r1C, where rq is the relaxivity, and usually an
in vitro value of 4.5 L x mmol ™! x s~ is used. The CA concentration C; can be expressed
as C(t) = (%(t) — ﬁ)/ r1, where Ty is the precontrast T; that can be obtained from the
variable flip-angle method [25,49].

2.5.2. Initial Coarse Estimation

Given the CA concentration curve, C;(t), the initial estimation of the PK parameters is
made via the neural network: By = H(C;).

2.5.3. Coarse-to-Fine via Iterative Fitting

We refine the initial estimation, Py, with iterative curve fitting. Specifically, we use
the square of the residual as the objective and iteratively update Pr to minimize the
discrepancy between fitting and the observation using gradient descent. The PK parameter
P; is updated based on the following rule:

R . O|fMRDI(P;) — G
Pr— v ~

|2
PT+1 = I'r ap
T

®)
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where 7 is the step index, and v = 0.01 is the learning rate (or step size). In our experi-
ments, Equation (8) converges significantly faster than starting from scratch. The running
time, starting from the initial estimation and starting from scratch, can be found in Table 2.

Table 2. Squared errors, iterations required to converge, and per-patient times of different fitting
methods and PK models. fMRDI achieves significantly lower errors compared to the Tofts model,
and the two-stage fitting method also outperforms NLLS in both fitting errors and running time.

Fitting Method Ottens NLLS NN + NLLS Refine
PK Model Tofts + Exp Tofts + Parker MRDI  fMRDI Tofts + Parker MRDI fMRDI
E 0.6723 0.6184 04272  0.4261 0.5917 04175 04114
rror +2.2209 +1.9867 +1.6618 15687 +2.1221 +15212 15181
Iterations N/A 200 300 200 20 50 30
Time (per-patient) 109 s 480's 644 s 480's 71s 115s 176 s

2.6. Study Population and DCE-MRI Data

Our retrospective study was conducted in compliance with the 1996 Health Insurance
Portability and Accountability Act (HIPAA) and approved by the Institutional Review
Board (IRB) of the University of California, Los Angeles, with a waiver of the require-
ment for informed consent. All methods were performed in accordance with the relevant
guidelines and regulations.

The study cohort was derived from patients who underwent 3T mpMRI exams prior to
robotic-assisted radical prostatectomy at a single academic center between December 2010
and July 2019. Patients with prior radiotherapy or partial prostate resection, and those
with technical limitations, were excluded from the study. The complete dataset comprised
182 patients who had whole-mount histopathology (WMHP) conformed with prostate
cancer lesions (PCa). Patient-specific, 3D-printed prostate molds were used to hold the
surgically excised prostate glands in the same orientation observed in vivo MRIL.

All imaging, including T2W, DWI, and DCE-MRI, was performed on several 3T MRI
scanners using a pelvic phased-array coil. The DCE-MRI protocol consisted of precontrast
T1(T10) mapping and dynamic imaging. The variable flip angle (VFA) imaging was used
for T10 mapping for the conversion of signal intensity to contrast agent concentration.
With a temporal resolution of 4~5 s, dynamic 3D images were acquired before, during,
and after a single-dose injection of gadopentetate dimeglumine (Magnevist; Bayer, Wayne,
NJ, USA) at a dose of 0.1 mmol/kg through an eripheral vein at a rate of 2 mL/s via a
mechanical injector. Additionally, 6~10 precontrast frames (total acquisition time to be
around 24~50 s), and a total of 75 frames were acquired sequentially without a delay
between acquisitions. The last frame of precontrast acquisitions was located by searching
for the largest gradient concentration curves in the first 15 frames. All concentration values
in precontrast acquisitions were set to zero for ease of optimization. A total of 1500 images
were acquired, and the dimension of the DCE-MRI data was 160 x 160 x 20 x 75, where
160 x 160 is the in-plane resolution, 20 is the number of slices, and 75 is the number
of frames.

Each prostate MRI scan was reviewed by genitourinary (GU) radiologists (10+ years
of clinical prostate MRI reading experience) as part of the standard clinical care, following
the PI- RADS v2.1 guideline. All clinically significant PCa (csPCa) lesions were initially
annotated on T2-weighted MRI, and later, research fellows (K.Z. and K.P.) supervised by an
MRI scientist (K.S. with 15+ years of experience analyzing DCE-MRI) refined the regions of
interest (ROIs) on DCE-MRI using MRI and WMHP as references.

3. Experiments and Results

We compared our method with conventional NLLS and a deep learning-based method [38].
We used the CNN architecture for the baseline deep learning-based method [38] due to its
simplicity and higher performance. For NLLS, we used the trust region-refective algorithm
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with a step tolerance of 1072, a function tolerance of 103, and a minimum gradient change
of 0.1. All implementations were based on the PyTorch framework.

3.1. Running Time and Quality of Fitting
3.1.1. Running Time and Fitting Errors

We first compared the quantitative fitting errors and running time. Let P be the
estimated PK parameter; then, we used Equation (6) to get the fitting curves, C; = MRDI(P).
The fitting quality was quantified according to the squared error between the reconstructed

and the original concentration curves: error = |C; — G ’2. We measured the per-patient
processing time on an Intel(R) Xeon(R) W-2123 CPU@3.60GHz CPU. For each iterative
method, we stopped the iteration if the loss reduction was less than 0.5% for five consecutive
iterations. The fitting error, average number of iterations, and running time are summarized
in Table 2.

In Table 2, ‘NLLS’, ‘NN, and ‘NN + NLLS refine’ denote different curve-fitting
methods, where ‘NN’ denotes the direct estimation of PK parameters with neural networks,
and ‘NN + NLLS refine” denotes our proposed two-stage method that refines the NN
estimation with subsequent NLLS iterations. When starting from scratch, NLLS was
performed for 240 iterations. When using ‘NN + NLLS’, we ran 20 iterations.

In general, with the same fitting method, such as NLLS, our fMRDI model significantly
reduced the fitting error compared to the Tofts model with the Parker AIF. Furthermore,
using the same PK model, such as Tofts + Parker, the two-stage ‘NN + NLLS’ fitting method
significantly reduced the running time by a factor of more than four while achieving a
lower fitting error. These results demonstrate the strong efficiency and accuracy of our
method in PK modeling.

The running time and fitting error are summarized in Table 2, and some example
fitting results are in Figure 9.
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Figure 9. Example fitting results of different methods. Methods with Parker AIF do not fit data with
slow uptakes well. fMRDI model achieves the best overall fittings that match the data points the best.

We also tested the fitting error with different components: the fMRDI model, the
NN inference + iterative refinement pipeline, and the two preprocessing modules. The results
in Table 1 clearly demonstrate that each individual component contributes incrementally to
the quality of fitting and plays a role in our method. The results in Table 1 were confirmed
with the paired t-test with p < 0.01 to verify the effectiveness of each component.

3.1.2. Compared with MRDI and mMRDI

We compared the fitting quality of our method with MRDI and mMRDI and evaluated
their robustness. In particular, we fit our fMRDI, MRDI [24], and mMRDI [25] models with
NLLS and various numbers of random initializations. For each model, we repeated NLLS
with different random initializations and then selected the best fitting for each voxel. The
model is considered more stable if it achieves higher performance with fewer repeats.

As shown in Figure 10, fMRDI is more stable and less susceptible to initialization, as it
achieves a lower error with fewer repeats. This is because the linear weighted sum AIF is
much simpler than MRDI and mMRDI, making it easier to optimize. When a saturated
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number of repeats is performed, the three models perform similarly, with MRDI slightly
better than the other two, as MRDI has more free parameters.

= 0.44 - —— MRDI
o mMRDI
fj 0.43 7 —— {MRDI
D]
2 0.42 -
=
o
T .41 -
1 2 5 10
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Figure 10. The squared error of fitting with different numbers of repeats. We performed NLLS fitting
various times with random initializations and then picked the best fitting for each voxel.

3.2. ¢sPCa Lesions with K!rans

We compared PK parametric maps derived from different methods and evaluated
the contrast of PK parameters in csPCa and normal tissue. Both the conventional NLLS
and the baseline deep learning-based method with exponential AIF [38] were included
for comparison. We first visualized different parametric maps and then quantitatively
compared the parameter values in csPCa and normal tissue. Linear discrimination analysis
(LDA) was lastly performed to quantitatively evaluate the discrimination of csPCa from
normal tissue.

Since the volume-transfer constant (K", min~!) [7] and the dispersion parameter
A [8,24,25] were considered to be indicative of csPCa, we only visualized K" and A.

3.2.1. Qualitative Visualization of K'"*"* Maps.

Figure 11 displays several exemplary K#** maps (1-5 columns), along with corre-
sponding histopathological maps (last column) that indicate the tumor locations. ‘Ours’
represents the fMRDI model with the NN+refine fitting method. Each row represents maps
of the same patient generated using different methods. Since the tumor spans across multi-
ple slices, we visualized the maximum intensity projection (MIP) of two to five consecutive
slices. The specific number of slices in MIP varies among patients. As shown in Figure 11,
our K" maps generally have better contrast in identifying csPCa lesions and are less
noisy than other methods.

3.2.2. Quantitative Comparison of Tissue Contrast

In addition to qualitative visualization, we quantitatively analyzed the contrast be-
tween the csPCa and normal tissue. The quantitative analysis was conducted on the
ROl-averaged parametric maps.

Due to severe misalignment in the prostate tumor delineation between T2W images
and DCE [50], the annotations on T2W could not be propagated to K. Instead, we
annotated csPCa lesions on K" maps with histopathological images as a reference. As
shown in Figure 12, we first annotated hyperintensity regions as lesions (red ROIs) with
T2W and histopathological images as references. To ensure a fair comparison that did
not favor our method, the ROIs were annotated on K4 maps derived from NLLS with
the standard Tofts model and Parker AIF and then propagated to other parameter maps
(e.g., ktrans, k., and A maps derived from different methods). In addition to lesions, we
also annotated the corresponding ROI of normal tissue (blue ROIs in Figure 12) in the same
zone (transitional zone or peripheral zone) for contrast analysis. The ROI annotation could
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be biased due to being annotated on Ktrans maps. However, it is not biased toward any
specific DCE-MRI analysis method, ensuring that the comparisons are fair.

After the annotation, ROI-averaged PK parameters are calculated for ROI-wise quanti-
tative evaluations. For each patient, we annotate a representative lesion and a correspond-
ing normal tissue. There are 135 lesions in the peripheral zone (PZ) and 47 lesions in the
transitional zone (TZ).

Ottens (Kfmm) NLLS (K'%) - Qurs (K"s)

9%

=
R

Ours (A) Il-I()istopathology

0.6

1.2
1.0
0.8
0.6
0.4
0.2
0.0 0.0

0.0

Figure 11. Visualization of PK parametric maps generated using different methods and the beta K74
maps proposed in our study. The T2-weighted images are used as a background, and corresponding
histopathological images are provided in the right-most column for reference to identify the location
of the lesion.

The scatter plot in Figure 13 depicts the K" and A values of csPCa and normal tissue
in PZ and TZ. Not unexpectedly, as demonstrated in Figure 13a,b, csPCa ROIs generally
have larger values for both K" and A. csPCa and normal tissue are more separable when
simultaneously considering K" and A, as demonstrated in Figure 13c.

T2W Krans Histopathology

T e

norma

0.8
0.6
0.4
0.2
0.0

Figure 12. Tllustration of how we annotated csPCa and normal tissue ROIs on K% maps. Using the

T2W annotations and the histopathological images as references, we annotated hyperintensity areas
on K% maps as lesions, and then we annotated normal tissue in the same zone on the K#** maps.

53



Cancers 2024, 16, 2983

We applied the linear discriminant analysis (LDA) to quantitatively analyze the dis-
crimination of csPCa from normal tissue in PZ and TZ. The ROI-averaged PK parameters
(Ktrans, kep, to, and M) values derived from different methods were used for the classification
of csPCa from normal tissue. The performance of each DCE-MRI analysis model was
evaluated using 5-fold cross-validation, and the average results are reported. Sensitiv-
ity and specificity values were calculated from the cut-off points on the ROC curves by
maximizing Youden’s index. The specificity-Osensitivity curves are shown in Figure 14,
and the specificity, sensitivity, and AUC values are summarized in Table 3. In particular,
in Figure 14, for ‘NLLS’, we employed the Tofts model with Ktrans kep, to as the input to the
LDA model. For ‘Ours’, we used our fMRDI model and K", kep, to as the input. And for
‘Ours (with 1), we used the fMRDI model with K7, kep, to, and A as the input.

0.6 (b) . @ -
-+ +
1-; .1'. o""# i‘.
. 04 + csPCa (PZ) o * fagh O 36
5 ....'I- o '.
g + normal (PZ) ‘:#_ . (¥ X
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0.0 1

00 02 04 06 08 1.0
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Figure 13. Scatter plot of ROI-averaged K" and A values in TZ and PZ. When applied individually,
both A (a) and K% (b) can differentiate csPCa lesions from normal tissue, while K" performs
better. When applied jointly (c), the lesions and normal tissue can be better separated.
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Figure 14. Specificity-sensitivity curves of csPCa detection in the peripheral zone (PZ), the transitional
zone (TZ), and the whole prostate (PZ+TZ). Different colors represent different pharmacokinetic
models. ‘Ours’ represents the fMRDI model with NN + refine curve fitting.

Table 3. Sensitivity, specificity, and AUC values of different methods in the PZ, the TZ, and the whole
prostate. The sensitivity and specificity values are calculated by maximizing Youden’s index.

Method Ottens [38] NLLS+Tofts+Parker MRDI fMRDI (Ours)
Zone Pz TZ PZ+TZ Pz TZ PZ+TZ Pz TZ PZ+TZ Pz TZ PZ+TZ
AUC 0.784 0.754 0.753 0.852 0.826 0.830 0.934 0.823 0.892 0.939 0.871 0.904

1-specificity 0.236 0.288 0.179  0.109 0.152 0.183 0.109 0227 0204 0.069 0.167 0.167
Sensitivity ~ 0.690 0.773 0583 0.730 0.697 0.742 0.862 0.788 0.858 0.822 0.788  0.842

The results in Figure 14 and Table 3 demonstrate the following: (1) using the same
PK parameters, our fMRDI model (‘Ours’) improves the csPCa detection performance
compared to Ottens and NLLS. (2) the detection performance is further improved by using
A as additional input (‘Ours (with A)"). The AUCs in Table 3 were compared via DeLong’s
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test with a 95% confidence interval, and the specificity and sensitivity were compared via
the Chi-squared test (p < 0.05).

Figure 15 demonstrates the ROCs of different combinations of PK parameters. When
applied individually, K" performed the best, followed by A and k.. And t; can barely dif-
ferentiate csPCa from normal tissue. When applied individually, the inclusion of A noticeably
improved the performance.

(2)

1.0
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— k’ep
5
to
0.0 - T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
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06 _ Ktrans + kep + 5
— Ktrans + kep
04 N — Ktrans
r

0.0 0.2 0.4 0.6 0.8 1.0

Figure 15. ROC curves from LDA analysis were generated for the entire prostate (PZ + TZ) using
various combinations of PK parameters. (a) When analyzed individually, K" exhibited the highest
performance, followed by A and then k.. Conversely, fg demonstrated the lowest performance and
could only differentiate lesions from normal tissue to a limited extent. (b) When analyzed collec-
tively, excluding ty barely impacted the performance, and the inclusion of A moderately improved
the performance.

3.3. Validation with Digital Reference Objects

Our two-phase inference pipeline is more resilient to noise because the neural net-
work provides a stable initial state for subsequent iterative refinement. In this exper-
iment, we tested the robustness of different methods against data noise using digital
reference objects (DROs). The DROs are synthetical input data that are generated simi-
larly to our training data using Equation (7) with two exceptions: (1) we used the plain
Tofts model without A for DRO synthesis for a fair comparison; (2) the parameters K"
and k., were sampled from uniform distributions U(0,0.4) and U(0, 2) to cover a wider
range of possible inputs. The noise level of DROs was controlled via v in Equation (7),
whereas a larger 7 indicates a higher level of noise. We synthesized 100K DROs that
are grouped into 100 = 10 x 10 discrete bins according to their K" and k., values. Let

PeR?= {K”A"”S, k;p} be the estimated parameter and P be the ‘ground-truth’, which was
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used to synthesize the corresponding DRO; the estimation error is calculated as follows:
_ [P-pPp
error =

noise levels in Figure 16. For example, the first bin comprises 1000 DROs with K"
ranging from 0 to 0.1 and k), ranging from 0 to 0.2.

SNR=24 SNR=8 SNR=6

2
'k ﬂ I 0.2
0
2

L 0.1
< |
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Figure 16. The fitting error of different methods under different noise levels using DROs. The heat
maps show fitting errors at different Ktrans and kep bins. The table summarizes the average errors at
different noise levels.

. We compared the fitting error of NLLS and our method under different

NLLS

Ours

In the heat maps of Figure 16, we calculated the average estimation error within each
bin. We conducted the paired sample t-test to verify that our method achieves lower fitting
errors. And the p-values (p < 0.001) confirmed the significance of our hypothesis. In general,
the fitting errors surge with a higher level of noise. Under the same noise level, the fitting
errors increase with the raising of K" and k. Our approach consistently provides more
accurate results by reducing estimation errors, especially when dealing with higher levels of
noise. This showcases the robustness and superiority of our method in handling noisy data.

4. Discussion

This study introduced the fast MRDI model and a deep learning-based, two-stage
framework for efficient prostate DCE-MRI analysis. Existing quantitative DCE-MRI analy-
sis methods rely on the time-consuming, iterative optimization of a pharmacokinetic (PK)
model, e.g., the Tofts model [10]. PK modeling requires the characterization of arterial
input functions (AlFs), and a population-based AIF is often assumed across patients. MR
dispersion imaging (MRDI) [24] characterizes the intravascular dispersion of the contrast
agent, yielding voxel-specific AIFs with various dispersion levels. The mMRDI [25] ap-
proximates the dispersion-applied AlIFs with fewer dispersion-related parameters. The
formulation of these models is highly nonlinear and poses difficulty in optimization.

In this study, we first introduced the fast MR dispersion imaging (fMRDI) model
that simulates the dispersion-applied AlFs using a weighted sum of a slow and a fast
AIF and that effectively forms location-specific AIFs with various dispersion levels, yield-
ing estimates of the intravascular dispersion-related parameter A. fMRDI is much sim-
pler and easier to optimize compared to MRDI and mMRDI. Additionally, we proposed
a deep-learning-based, two-stage framework for PK parameter estimation. We used a
transformer-based neural network (NN) to perform a coarse estimation of the PK pa-
rameters, and then we used iterative NLLS to further refine the coarse estimation. The
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NN estimation essentially serves as an initialization for the subsequent NLLS, and our
two-stage framework significantly speeds up and enhances the accuracy of PK modeling.
A data-synthesis module was designed to generate synthetic data for neural network
training. Two data-preprocessing modules were proposed to enhance the stability of the
neural network.

Experimental results on our in-house clinical prostate MRI dataset demonstrated
that the fMRDI model improves the fitting accuracy, and the dispersion parameter A is
able to improve the differentiation of csPCa from normal tissue. Our two-stage, deep
learning-based method significantly accelerates the quantitative DCE-MRI analysis with
more stable estimation.

There were several limitations in the current study. In the quantitative contrast
analysis, the regions of interest (ROIs) were annotated on pharmacokinetic (PK) maps
instead of being propagated from T2, potentially introducing bias in ROI annotation. Our
data acquisition protocol did not include the first pass of the bolus, and the acquisition
time was relatively short, which may not have been enough to measure the extra-vascular
extracellular space, v.. This poses challenges in extending our method to other organs,
e.g., the liver. Future work will include employing advanced techniques such as neural
differentiation equations for continuous-time DCE analysis, as well as extending and
applying the proposed computational method to other DCE applications.

5. Conclusions

In conclusion, this study has made two contributions to improve prostate MR dis-
persion imaging: (i) Introducing the fMRDI model, which efficiently represents AIFs of
different dispersion levels using a weighted-sum AIF. (ii) Developing a deep learning-based,
two-stage method for estimating PK parameters. We believe the proposed techniques will
improve the practical utility of DCE-MRI in oncological applications.
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Simple Summary: This multicenter, retrospective study assessed the added value of magnetic
resonance dispersion imaging (MRDI), a quantitative analysis of dynamic contrast-enhanced MRI
(DCE-MRI), alongside standard multiparametric MRI (mpMRI) for detecting clinically significant
prostate cancer (csPCa). Seventy-six patients, including fifty-one with csPCa, who underwent
mpMRI and radical prostatectomy, were included. Two radiologists evaluated mpMRI, MRDI and
a combination of both, with histopathology serving as the reference standard. The study found
that MRDI improved inter-observer agreement and enhanced csPCa detection when combined with
mpMRI. MRDI enabled the detection of up to 20% more cases compared to mpMRI alone. With the
role of DCE-MRI in the context of mpMRI being debated, this study suggests that quantitative analysis
of DCE-MRI by MRDI could enhance csPCa detection and reduce variability between observers.

Abstract: In this multicenter, retrospective study, we evaluated the added value of magnetic res-
onance dispersion imaging (MRDI) to standard multiparametric MRI (mpMRI) for PCa detection.
The study included 76 patients, including 51 with clinically significant prostate cancer (csPCa),
who underwent radical prostatectomy and had an mpMRI including dynamic contrast-enhanced
MRI. Two radiologists performed three separate randomized scorings based on mpMRI, MRDI and
mpMRI+MRDI. Radical prostatectomy histopathology was used as the reference standard. Imaging
and histopathology were both scored according to the Prostate Imaging-Reporting and Data System
V2.0 sector map. Sensitivity and specificity for PCa detection were evaluated for mpMRI, MRDI
and mpMRI+MRDI. Inter- and intra-observer variability for both radiologists was evaluated using
Cohen’s Kappa. On a per-patient level, sensitivity for csPCa for radiologist 1 (R1) for mpMRI, MRDI
and mpMRI+MRDI was 0.94, 0.82 and 0.94, respectively. For the second radiologist (R2), these were
0.78, 0.94 and 0.96. R1 detected 4% additional csPCa cases using MRDI compared to mpMRI, and R2
detected 20% extra csPCa cases using MRDI. Inter-observer agreement was significant only for MRDI
(Cohen’s Kappa = 0.4250, p = 0.004). The results of this study show the potential of MRDI to improve
inter-observer variability and the detection of csPCa.

Keywords: prostate cancer; pharmacokinetic analysis; dynamic constrast-enhanced MRL; multiparametric
MRI
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1. Introduction

Prostate cancer (PCa) is the most commonly diagnosed cancer in males, accounting for
nearly one in three new cancer diagnoses in the United States in 2024 [1]. In recent years,
multiparametric magnetic resonance imaging (mpMRI) has established itself as a reliable
diagnostic tool for PCa detection. There is strong evidence (level 1a) supporting the accuracy
of mpMRI in detecting clinically significant PCa (csPCa), with sensitivities reaching up to
91% when compared to template biopsy [2]. Several large-scale clinical trials have further
confirmed the benefits of incorporating mpMRI into the prostate cancer evaluation process,
with MRI-targeted biopsy (MRI-TBx) finding an additional 6.3% to 7.6% csPCa compared to
conventional systematic biopsy (SBx) [2—4]. As a result, the use of pre-biopsy mpMRI has
become a standard practice in many institutions for evaluating patients suspected of having
PCa.

Traditionally, the prostate MRI protocol consists of T2-weighted imaging (T2W), diffusion-
weighted imaging (DWI) and dynamic contrast-enhanced imaging (DCE). While the role of
T2W and DWI sequences is well established, the added value of DCE for PCa detection is cur-
rently debated [5]. Biparametric MRI (bpMRI), an alternative to mpMRI that does not include
DCE, is gaining popularity due to its reduced imaging time and cost. Currently published
data on the diagnostic accuracy of bpMRI show mixed results. Multiple recent meta-analyses
comparing bpMRI and mpMRI show no difference in diagnostic accuracy [6-8]. However,
caution is warranted considering that these data originate from single-center studies, and
there are no large, prospective, randomized controlled trials available. Other studies show
that DCE MRI does improve sensitivity for csPCa detection [9-11]. DCE can play an especially
important role in further characterizing PI-RADS 3 lesions located in the peripheral zone (PZ),
with Greer et al. finding an odds ratio of 2.0 (p = 0.27) for csPCa detection. In the Prostate
Imaging—Reporting and Data System (PI-RADS) V2, DCE is considered to be of secondary
importance to T2W and DWI [5]. However, the updated PI-RADS V2.1 protocol states that
DCE can still be of value for csPCa detection, especially when either the T2ZW or DWI sequence
is of suboptimal quality (e.g., artifacts or inadequate signal-to-noise ratio) [12]. Additionally,
the PI-RADS Steering Committee voices their concerns that widespread implementation of
bpMRI can lead to missed csPCa cases [12].

In DCE-MR], a bolus of gadolinium-based contrast agent is administered intravenously
during rapid T1-weighted imaging. The contrast flows through the microvasculature, where it is
temporarily confined, after which it diffuses into the extracellular space, or “leakage space” [13].
The rate at which inflow and diffusion take place depends on multiple factors related to the
microvascular structure [13]. In PCa, angiogenesis causes alternations to this microvascular
structure, leading to abnormalities in perfusion and permeability [14]. These abnormalities can
be observed on DCE-MRI as early focal contrast enhancement and fast contrast washout [13].
While visual or qualitative assessment is the most commonly performed method for DCE-MRI
assessment, it is subjective and susceptible to inter-observer variability [11]. To increase the
reproducibility of DCE-MRI, semi-quantitative and quantitative analysis methods have been
proposed. Semi-quantitative analysis of the extracted time-intensity curves provides parameters
describing tissue enhancement (e.g., peak enhancement, wash-in, wash-out) as a predictor of
malignancy [15]. However, these parameters are subject to high interpatient variability and are
difficult to generalize due to variations in acquisition protocols and sequences [16,17].

Quantitative analysis of DCE-MRI is based on the quantification of intravascular contrast
leakage to the extracellular space. This can be accomplished using compartmental pharma-
cokinetic modeling devised by Tofts et al. [18]. The Tofts model (TM) describes two main
pharmacokinetics (PK) parameters. These parameters can quantify contrast leakage from
plasma to tissue and have shown to be significantly increased in cancerous prostate tissue [19].
The major advantage of quantitative DCE-MRI over qualitative and semi-quantitative analysis is
that it does not depend on the MRI scanner brand or model, pulse sequence, observer experience
or contrast administration protocol [20]. However, the reliability of the parameters is limited by
other factors. TM relies on the Arterial Impulse Function (AIF) for PK parameter estimation.
The AIF represents the concentration of the contrast agent in the plasma [21]. When evaluating
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the AIF determination in a multicenter setting, significant variations are found [22,23]. These
variations have a considerable impact on PK parameter estimation and therefore limit the
reliability of TM [20]. Studies comparing TM for quantitative DCE-MRI to the semi-quantitative
and qualitative methods have thus far not shown an improvement in PCa detection [24].

In an effort to overcome the current limitations of TM, novel methods for quantitative
analysis for DCE-MRI are being developed [25,26]. One of these methods is magnetic resonance
dispersion imaging (MRDI) [27-29]. This method quantifies the dispersion of an extravascular
contrast agent by the local dispersion parameter k at each voxel in the prostate. The dispersion
parameter k is highly dependent on the microvascular changes caused by angiogenesis and
can therefore be used to construct parametric maps that are suitable for PCa detection [28,29].
Contrary to TM, MRDI does not require AIF determination, thus preventing variation in the
parameter estimates caused by AIF inaccuracies [20].

Two previous studies comparing MRDI to whole-gland prostate histopathology have
proven the potential of MRDI for PCa detection and localization [28,29], with MRDI outper-
forming all TM parameters and reaching a sensitivity of 91% [28]. To prove the clinical utility
of MRD], further validation is necessary. The aim of this study is to evaluate the diagnostic
potential of quantitative DCE-MRI analysis by MRDI for the detection and localization of csPCa
as a separate imaging modality and as an addition to mpMRI, using histopathology from radical
prostatectomy specimens as the reference standard.

2. Materials and Methods
2.1. Patient Population and Data Acquisition

Participants in this study were recruited from three tertiary healthcare centers in the
Netherlands within the framework of the Prostate Cancer Molecular Medicine (PCMM) project.
Ethical approval for data utilization was granted by the medical ethics review committee
of Erasmus MC (Rotterdam, The Netherlands) under the reference number N1.32105.078.10.
The PCMM project systematically gathered mpMRI and pathology data from men diagnosed
with localized PCa, who were scheduled for prostatectomy. Data collection was performed
prospectively from 7 February 2011 to 30 June 2015. All study participants provided written
informed consent to have data from their medical records used in research.

The adopted pre-biopsy prostate MRI protocol depended on the center of acquisition.
Table 1 gives an overview of the MRI acquisition details for each participating center.

Table 1. mpMRI acquisition details per center of inclusion. TR = repetition time, TE = echo time.

T2W DWI DCE
Parameter Center 1 Center 2 Center 3 Center 1 Center 2 Center 3 Center 1 Center 2 Center 3
TR (ms) 375202%‘ 150335 4000-6050 40004800  3429-4498  2500-4200 50 455 3.85-36
TE (ms) 108 120 99-104 87 67-69 60-90 4 1-2 1.40
Thickness (cm) 3 3 34 3-3.6 3 34 4-5 6 3-4.5
Width (voxels) 512 512 320-512 136 176 84-160 144 176-256 128-160
Height (voxels) 512 512 320-512 160 176 106-168 192 176-256 128-160
Field strength 1.50 3.00 3.00 1.50 3.00 3.00 1.50 3.00 3.00
(Tesla)
Flip angle 150 90 117-160 90 90 90 70 8-15 12-14
(degrees)
Endorectal coil
(Yes/No) Yes Yes No Yes Yes No Yes Yes No
. SIEMENS e SIEMENS e SIEMENS
MRI scanner model SIEMENS Ph1l_1ps Skyra/ SIEMENS Phl%lps Skyra/ SIEMENS Phl%lps Skyra/
Avanto Achieva e Avanto Achieva S Avanto Achieva S
TrioTim TrioTim TrioTim
Voxel size (mm) 0.31 0.27 0.31-0.80 1.63 1.03 1.40-2.00 1.67 1.02-2.05 1.50-1.63
Spin . .
Turbo Spin Echo—  Spin Echo— . . .
Spin Turbo Spin ~ Turbo Spin Echo—Echo Echo Planar  Echo Planar SP01led SPOﬂed SPoﬂed
MRI sequence Planar . . Gradient Echo  Gradient Echo  Gradient Echo
Echo Echo (TSE) Echo (TSE) Imaging (EPT Imaging Imaging (FLASH) (T1-FFE) (FLASH)
(TSE) gsgg) (SE-EPI) (EPI SE)
Temporal - - - - - - 3.09-3.12 2.90-3.67 3.31-4.24
resolution (s)
Gadobutrol Gadoterate Gadobutrol

Contrast agent

(0.1 mmol/kg)

meglumine
(0.1 mmol/kg)

(0.1 mmol/kg)
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2.2. MRDI Analysis

Time-intensity curves were obtained from DCE-MRI images for each pixel and con-
verted to concentration—time curves as explained in [28]. Quantitative analysis was per-
formed by fitting each concentration-time curve by the reduced dispersion model, accord-
ing to a previously described method known as MRDI [27-29]. Parametric maps of the
local dispersion parameter x were obtained and visualized as color-coded maps using a
custom-made software tool (Figure 1a).

(a) (b)
Figure 1. (a) Example of MRDI map; (b) sector map of PIRADS 2.0 used for scoring.

2.3. MRI and MRDI Scoring

Assessment was performed by two radiologists, R1 and R2, with 9 and 5 years of
experience in PIRADS scoring, respectively, who were blinded to the histopathology results.
Scoring was performed according to the PIRADS V2.0 prostate sector map (Figure 1b).
PIRDS V2.0 was adopted because the development of the protocols and the start of the
study occurred before the publication of the updated PIRADS V2.1 [12]. Each radiologist
performed three randomized scorings by evaluating mpMRI alone, MRDI maps alone and
mpMRI and MRDI in conjunction (mpMRI+MRDI). To reduce the risk of bias, the study
protocol dictated a pause of at least 2 weeks between performing the different scoring
methods. Moreover, patient numbers and order were randomized for each scoring:

mpMRI: The scoring was performed according to the PIRADS V2.0 guidelines [5].
MRDI: MRDI maps were scored from 0 (no lesion) to 5 according to custom guidelines
summarized in Table 2. No size criterium is given for scoring MRD], as it is based on the
assessment of angiogenic vascularization within and surrounding the tumor [28,29].

e  mpMRI+MRDI: The scoring was performed by integrating the information provided
by mpMRI and MRD], according to the separate scoring models for each modality. In
the case of a discrepancy between mpMRI and MRDI scores, the final score was at the
radiologist’s discretion.

Table 2. MRDI map scoring guidelines.

Score Assessment Category MRDI Map Features
0 None (benign) Continuous area with values below 1
1 Very low (clinically significant cancer is highly unlikely to Continuous area with values between 1 and 2.
be present) Non-continuous area with values mostly below 2
’ Low (clinically significant cancer is Continuous area with values between 2 and 3.
unlikely to be present) Non-continuous area with values mostly below 3

Intermediate (the presence of clinically

e e . . Non-continuous area with values between 2 and 4
significant cancer is equivocal)
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Table 2. Cont.

Score Assessment Category MRDI Map Features
4 High (clinically significant cancer is Continuous area with values between 3 and 4.
likely to be present) Non-continuous area with values mostly above 4
5 Very high (clinically significant cancer is highly likely to Contintous area with values above 4

be present)

For all scoring methods, a score >3 was considered positive (e.g., suspicious for
csPCa), while a score <3 was considered to be not suspicious for the presence of csPCa.

2.4. Prostate Histopathology

All patients underwent radical prostatectomy (RP) at their respective institutions,
and histopathologic analysis was performed on each prostate specimen after resection.
After fixation in formalin, the prostate specimens were cut into slices with a thickness
of approximately 4 mm by a pathologist who marked cancer areas on the basis of the
microscopic analysis of cellular differentiation (Figure 2). For each patient, at least the
index lesion was graded by the pathologist according to the 2005 International Society of
Urological Pathology (ISUP) Gleason grading system [30], and the corresponding Gleason
score (GS) was noted. Based on the histopathological analysis, each sector in the PIRADS
sector map (Figure 1b) was scored in consensus by two uropathologists, who were blinded
for MRI and MRDI results, according to the criteria summarized in Table 3.

1 Apex

. )'

o
Wir s

Q

11 Basis

1) GS 3+4=7 @ 16x10x8 mm Intracapsulaire incisie RV 8 mm, EPE-, VS- pT2cR1

2) GS 3=3=6 @ 12x4x4 mm

Figure 2. Example of histopathology result.
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Table 3. Guidelines for scoring radical prostatectomy histopathology. Size (%) = tumor volume in the
corresponding sector. GS = Gleason score.

Score Histology
e GS5<3+3-6
1 o  Size <25%
e GS5<3+3=6
2 o Size>25% & <50&
e G5<3+3=6 o GS=3+4=7
3 e Size>50% e Size <50%
o GS>3+4=7 e GS=3+4=7
4 e  Size<50% e Size>50%
. GS>3+4=7
5 e Size>50%

2.5. Evaluation of Diagnostic Performance

The added value of quantitative DCE-MRI analysis by MRDI to the standard mpMRI
protocol for csPCa detection was evaluated on a per-patient level, using RP specimen
histopathology as the reference standard. A positive mpMRI, MRDI or mpMRI+MRDI
(e.g., suspicious for csPCa) was defined as at least one sector scored as 3 or higher. This
was considered a true positive when csPCa, defined as any GS > 3 + 4 =7, was present in
the RP histopathology.

Performance of mpMRI and MRDI was also separately evaluated to determine the
number of csPCa prostates missed by mpMRI and detected by MRDI and vice versa.

2.6. Prostate Cancer Localization

The ability to localize csPCa was assessed on a per-sextant level. Sextants were created
by dividing each prostate slice from the PIRADS V2.0 prostate sector map (apex, mid, base)
into left and right, thereby creating six areas (sextants). The diagnostic performance of
mpMRI and MRDI was evaluated using the RP specimen pathology scoring as the reference
standard for the corresponding sextants. For mpMRI and MRD], a sextant was considered
to contain csPCa if at least one sector in the sextant was scored >3; for the pathology scoring,
this was >4. To reduce the influence of mismatching errors, a correction was applied by
looking at each sector with csPCa in the pathology and considering the corresponding
MRDI/mpMRI/MRDI+mpMRI sector to contain csPCa also when the sector adjacent to it
in the same slice or the same sector in an adjacent slice (apex-mid or mid-base) contained
csPCa. The correction was applied before aggregating the results for each sextant.

2.7. Statistical Analysis

Diagnostic performance was expressed as sensitivity and specificity for both the
per-patient and per-sextant analysis. Performance was evaluated for mpMRI, MRDI
and MRDI+mpMRIL. Statistically significant differences in sensitivity and specificity were
evaluated using the McNemar Chi-squared test with Yates’s correction. Discrepancies
between mpMRI and MRDI were evaluated on a per-case basis.

Inter- and intra-observer variability for the radiologists were evaluated for each scoring
method using Cohen’s Kappa on a per-patient level.

3. Results
3.1. Patient Population

The PCMM database consisted of 90 patients. After exclusion for insufficient temporal
resolution of the DCE exam for MRDI analysis, movement artifacts and missing DICOM
files, a total of 76 patients were included for analysis. Table 4 gives an overview of
patient characteristics and histopathology findings [31]. Table 5 shows PI-RADS scores for
both radiologists.
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Table 4. Demographics and histopathological characteristics of the dataset. pT-stage and ISUP
grading is based on radical prostatectomy histopathology. PSA = prostate-specific antigen,
ISUP = International Society of Urological Pathology.

Patient Characteristics

Number of patients 76
Age at diagnosis (mean = std years) 62+6
PSA at biopsy (mean =+ std ng/mL) 9+6
Prostate volume (mean =+ std mL) 44 + 18

pT-stage, n (%)

T2ab 19 (25)
T2c 32 (42)
T3 25 (33)

ISUP grade group [31], n (%)
1 25 (33)
2 27 (36)
3 15 (20)
4 4(5)
5 5(6)

Table 5. PI-RADS scores for radiologists R1 and R2 and corresponding histopathology results. PI-
RADS = Prostate Imaging-Reporting and Data System, csPCa = clinically significant prostate cancer.

R1 R2

PI-RADS

N % N csPCa % csPCa PI-RADS N % N csPCa

% csPCa

=W N =

a1

Total

2 2.6 1 50.0 0 0.0 0
5 6.6 2 40.0 22 28.9 11
13 17.1 8 61.5 21.1 10
27 355 19 70.4 23 30.3 16
29 38.2 21 72.4 15 19.7 14
76 100.0 51 Total 76 100.0 51

Tl W N =
—
[

0.0
50.0
62.5
69.6
93.3

3.2. Diagnostic Performance

Most csPCa lesions were found by both mpMRI and MRDI; however, each technique
showed additional value above the other. For R1, 16% (8 out of 51) of csPCa was detected on
mpMRI only, and 4% (2 out of 51) of csPCa was detected on MRDI only. For R2, this was 4%
(2 out of 51) and 20% (10 out of 51), respectively. These results are also described in Figure 3.
Two example cases of mpMRI imaging, MRDI maps and corresponding histopathology are
shown in Figure 4. The selected histopathology slice was visually matched to the mpMRI. For
the case in (a), both R1 and R2 missed the clinically significant lesion (GS = 3 + 4) on MRDI
but found it on mpMRI. For the case in (b), both R1 and R2 missed the clinically significant
lesion (GS = 3 + 4) on mpMRI but found it on MRDIL

Tables 6 and 7 show the sensitivity, specificity, and accuracy for the csPCa detection of
each imaging technique on a per-patient and a per-sextant level, respectively. The per-sextant
analysis provides an indication of the localization performance. No significant differences were
found in the performance of mpMRI, MRDI and mpMRI+MRDI for either of the radiologists.

Table 6. Diagnostic performance in terms of sensitivity, specificity and accuracy on a patient level.
TP = true positive, TN = true negative, FN = false negative, FP = false positive, N = ground-truth
negative (TN + FP), P = ground-truth positive (TP + FN).

Sensitivity (TP/P) Specificity (TN/N) Accuracy (TN + TP/N + P)

Radiologist

mpMRI+
MRDI

mpMRI+

mpMRI MRDI MRDI

mpMRI MRDI mpMRI MRDI

mpMRI+
MRDI

R1

094 (48/51)  0.82(42/51) 094 (48/51)  0.16 (4/25) 0.32 (8/25) 0.16 (4/25)  0.68 (52/76)  0.66 (50/76)

0.68 (52/76)

R2

078 (40/51)  0.94 (48/51) 096 (49/51)  0.68(17/25)  0.16 (4/25) 0.04(1/25  0.67(51/76)  0.68 (52/76)

0.66 (50/76)
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Table 7. Diagnostic performance in terms of sensitivity, specificity and accuracy on a sextant level.
TP = true positive, TN = true negative, FN = false negative, FP = false positive, N = ground-truth
negative (TN + FP), P = ground-truth positive (TP + FN).

Sensitivity (TP/P) Specificity (TN/N) Accuracy (TN + TP/N + P)
. . mpMRI+ mpMRI+ mpMRI+
Radiologist mpMRI MRDI MRDI mpMRI MRDI MRDI mpMRI MRDI MRDI

a1 0.81 0.56 0.81 0.85 0.83 0.85 0.84 0.75 0.84
(103/127) (71/127) (103/127) (279/329) (273/329) (279/329) (382/456) (344/456) (382/456)

0.51 0.54 0.92 0.84 0.85 0.80 0.76 0.79
R2 (65/127) ©/127y  0OLT7/127) 505309 (276/329) (281/329) (367/456) (345/456) (359/456)

True positives True positives
(@) (b)

True negatives

D mpMRI (d)
|:| MRDI \

\

N=3 | N=1 |

R1 R2

Figure 3. Schematic representation comparing the performance of mpMRI and MRDI. (a,b) represents
the true positives found by mpMRI alone (dark blue), MRDI alone (light blue) and both MRDI and
mpMRI (MRDI N mpMRI, mid-tone blue) for radiologists 1 and 2, respectively; (c,d) represents the
true negatives found by mpMRI alone (dark orange), MRDI alone (light orange) and both MRDI and
mpMRI (MRDI N mpMRI, mid-tone orange) for radiologists 1 and 2, respectively.

T2 weighted ADC map DCE wash-in MRDI map Histology

Figure 4. Example cases for two patients showing mpMRI images, MRDI maps and the corresponding
visually matched histopathology slice. For both cases, the lesion was diagnosed as Gleason score
4 + 3. For (a), both R1 and R2 missed csPCa on MRDI but found it on mpMRI, while for (b), both R1
and R2 missed csPCa on mpMRI but found it on MRDI.
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3.3. Per-Patient Discrepancies between Imaging and Pathology

For R1, two (3.9%) csPCa cases were missed by mpMRI only, eight (15.6%) on MRDI
only and one (2.0%) on both. R2 missed 10 (19.6%) cases of csPCa on mpMRI only, 2 (3.9%)
on MRDI only and 1 (2.0%) on both. Table 8 gives an overview of the missed cases
per scoring method and corresponding pathology results. Note that the ISUP > 1 is
considered csPCa.

Table 8. Diagnostic performance in terms of sensitivity and specificity on a patient level. TP = true
positive, TN = true negative, FN = false negative, FP = false positive, N = ground-truth negative
(TN + FP), P = ground-truth positive (TP + FN).

Number of Missed csPCa

R1 R2

ISUP mpMRI MRDI Missed by mpMRI MRDI Missed by
Only Only Both Only Only Both
2 1/27 5/27 1/27 5/27 0/27 1/27
3 1/15 2/15 0/15 4/15 2/15 0/15
4 0/4 0/4 0/4 1/4 0/4 0/4
5 0/5 1/5 0/5 0/5 0/5 0/5
Total 2/51 8/51 1/51 10/51 2/51 1/51

3.4. Per-Patient Inter-Observer Variability

Inter-observer agreement between R1 and R2 was fair for mpMRI (k = 0.1456, p = 0.054),
moderate for MRDI (k = 0.4250, p = 0.004) and poor for mpMRI+MRDI (k = —0.0585,
p = 0.681). Significant inter-observer agreement was only found for MRDIL

Intra-observer agreement for R1 was slight for mpMRI vs. MRDI (k = 0.1375, p = 0.365),
perfect for mpMRI vs. mpMRI+MRDI (k = 1, p = 0.000) and slight for MRDI vs. mpMRI+MRDI
(k =0.1375, p = 0.365). For R2, intra-observer agreement was slight for mpMRI vs. MRDI
(k =0.1582, p = 0.340), poor for mpMRI vs. mpMRI+MRDI (k = —0.0747, p = 0.707) and poor
for MRDI vs. mpMRI+MRDI (k = —0.0585, p = 0.681). Significant intra-observer agreement
was only found for mpMRI vs. mpMRI+MRDI for R1.

4. Discussion

This study presents the first assessment of radiologists” experience with interpreting
MRDI in combination with mpMRI in patients undergoing radical prostatectomy (RP). The
aim was to determine the additional value of MRDI for the detection of clinically significant
prostate cancer (csPCa) compared to the current standard of care, mpMRI. The results of
the study suggest that MRDI can be of additional value for PCa diagnosis as there were
cases where the radiologist correctly identified csPCa on MRDI, which were not detected
on mpMRIL

The sensitivity for csPCa detection varied between the two radiologists, with R1
detecting more csPCa using mpMRI and R2 detecting more csPCa using MRDI. However,
for R2, the combined reading of mpMRI and MRDI led to a substantial improvement in
csPCa detection compared to mpMRI alone, while R1 did not show any improvement. The
differences in added value between the radiologists could be attributed to the challenges
of interpreting a new imaging modality, and more extensive training is necessary to fully
utilize the potential of MRDI. This is demonstrated by Figure 4a, where both radiologists
missed a clear lesion on MRDI. To achieve optimal results, it is important to continuously
improve the interpretation and integration of MRDI and mpMRI information.

The low specificity of both imaging modalities on a per-patient level can be attributed
to the highly selected patient population in this study. The 25 patients who were deemed
negative for csPCa were all treated by RP due to ISUP 1 PCa. ISUP 1 PCa lesions can be
visible on mpMRI and are often interpreted as significant lesions, especially in the case
of larger ISUP 1 tumors [32]. Bratan et al. evaluated PCa detection by mpMRI using full-
mount histopathology as the reference and found that 70% of ISUP 1 tumors larger than 2cc
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were detected on mpMRI [32]. Therefore, the patient-level specificity in the current study
is not representative of the accuracy of the imaging modalities used. This is substantiated
by the higher sextant-based specificities.

In this study, we found fair agreement between R1 and R2 for mpMRI (k = 0.146,
p = 0.054). The agreement between R1 and R2 for MRDI was substantially higher, reaching
significant moderate agreement (k = 0.425, p = 0.004). A possible explanation is the relatively
easily (compared to mpMRI) interpretable visualization used in quantitative imaging
methods, such as MRDI (see Figure 1a). Furthermore, the accessibility of MRDI could
also positively impact the steep learning curve generally associated with mpMRI. This
is particularly relevant considering the growing need for skilled radiologists due to the
increasing adoption of mpMRI for PCa detection and the increasing incidence of PCa [1,33].

This study has several limitations. First, there is an increased risk for selection bias
due to the inclusion of RP patients only, with a larger prevalence of aggressive prostate
cancer expected in this population. Based on the current guidelines [34,35], with mpMRI
being recommended for pre-biopsy risk stratification of intermediate and high-risk patients,
future prospective studies are warranted to validate the proposed approach in biopsy-naive
patients, e.g., for biopsy targeting. Second, due to the deformation of the prostate after RP
and because of the difference in the slicing angle of pathology and MRI, mismatching errors
can occur when correlating imaging to pathology. By dividing the prostate into sextants,
we attempted to minimize this error. Lastly, due to its retrospective design and limited
sample size, the results cannot yet be extrapolated to general practice. However, this is
the first study reporting on a cohort evaluated with MRDI; future prospective studies will
need to prove the utility of MRDI in clinical practice. Given the recent advances in other
imaging modalities, such as multiparametric ultrasound and micro-ultrasound [36,37], the
investigation of multimodal imaging approaches, leveraging mpMRI image fusion with
these emerging techniques, is also warranted.

5. Conclusions

In this study, we reported the results of the first experience with using MRDI for
csPCa detection in patients undergoing RP. The results showed that MRDI has the po-
tential to further increase the diagnostic accuracy of mpMRI, with sensitivity of up to
0.96 achieved with the combination of MRDI and mpMRI. Notably, MRDI could potentially
lead to an improvement in detection rate of up to 20% and a reduction in missed csPCa
of up to 17% when combined with mpMRI. The quantitative MRDI maps could prove
to be especially useful for less-experienced radiologists and for improving inter-observer
agreement. However, further validation in a larger, pre-biopsy cohort is necessary before
clinical implementation.
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Simple Summary: Multi-parametric MR is a first-line imaging modality for prostate cancer detection.
Magnetic resonance elastography (MRE) is a useful tool for measuring parenchymal stiffness to
diagnose liver fibrosis. A known physical characteristic of prostate cancer is that it is harder than a
normal prostate gland. We hypothesized that the quantitative stiffness value derived from MRE could
be used to discriminate prostate cancer from benign prostate hyperplasia and normal parenchyma.
Until now, the application of MRE to prostate cancer has been sporadic; it has only been used for
investigational purposes due to the uncomfortable perineal placement of the acoustic device and
inconvenience to patients during preparation. Therefore, we attempted to place an acoustic driver on
the lower abdominal wall and determined that detecting and classifying prostate cancer via MRE
is feasible. Our observation of 75 consecutive patients revealed that the stiffness value of prostate
cancer was significantly different from normal parenchyma, and an accuracy of 87% was estimated
at a cutoff value of 4.2 kPa in discriminating prostate cancer from normal parenchyma. In terms of
differentiating prostate cancer from benign prostate hyperplasia, an accuracy of 62% was estimated.
Additionally, the stiffness values tended to increase as the ISUP grade increased. This observation
suggests that the stiffness value derived from pelvic MRE is helpful for detecting and classifying
prostate cancer and could be an adjunct to multi-parametric MRI.

Abstract: We investigated the feasibility of magnetic resonance elastography (MRE) using a pelvic acoustic
driver for the detection and classification of prostate cancer (PCa). A total of 75 consecutive patients (mean
age, 70; range, 56-86) suspected of having PCa and who underwent multi-parametric MRI including MRE
and subsequent surgical resection were included. The analyzed regions consisted of cancer (n = 69), benign
prostatic hyperplasia (BPH) (n = 70), and normal parenchyma (n = 70). A histopathologic topographic
map served as the reference standard for each region. One radiologist and one pathologist performed
radiologic—pathologic correlation, and the radiologist measured stiffness values in each region of interest
on elastograms automatically generated by dedicated software. Paired t-tests were used to compare
stiffness values between two regions. ROC curve analysis was also used to extract a cutoff value between
two regions. The stiffness value of PCa (unit, kilopascal (kPa); 4.9 & 1.1) was significantly different to that
of normal parenchyma (3.6 £ 0.3, p < 0.0001) and BPH (4.5 & 1.4, p = 0.0454). Under a cutoff value of
4.2 kPa, a maximum accuracy of 87% was estimated, with a sensitivity of 73%, a specificity of 99%, and
an AUC of 0.839 for discriminating PCa from normal parenchyma. Between PCa and BPH, a maximum
accuracy of 62%, a sensitivity of 70%, a specificity of 56%, and an AUC of 0.598 were estimated at a 4.5 kPa
cutoff. The stiffness values tended to increase as the ISUP grade increased. In conclusion, it is feasible to
detect and classify PCa using pelvic MRE. Our observations suggest that MRE could be a supplement to
multi-parametric MRI for PCa detection.

Keywords: magnetic resonance imaging (MRI); magnetic resonance elastography (MRE); prostate
gland; prostate cancer
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1. Introduction

Multi-parametric magnetic resonance imaging (MRI), including T2-weighted imaging
(T2WI) and diffusion-weighted imaging (DWI), is a first-line imaging modality in the detection
and local staging of prostate cancer (PCa) [1-3]. Management of PCa is individually tailored
by several factors such as the patient’s age, prostate specific antigen (PSA) level, and Gleason
score (GS). In particular, GS is a PCa classification system based on the structure of PCa and is
related to tumor aggressiveness. Combining of Gleason scores into a three-tiered grouping (6,
7,8-10) is used most frequently for prognostic and therapeutic purposes [4].

Recent advances in MRI include techniques such as diffusion, perfusion, and texture
for acquisition of the physical properties of specific tissues [5-7]. Magnetic resonance
elastography (MRE) is an emerging technique for measuring liver stiffness and has shown
promising results for staging liver fibrosis [8-10]. Moreover, the prostate gland is one of the
organs other than the liver in which MRE could be implemented, considering the previous
observation that PCa causes the prostate to have a higher stiffness value than the normal
prostate gland [11-13].

MRE is a non-invasive method that can evaluate the mechanical properties of tissues,
making it useful for diagnosing and monitoring various diseases. The basic principle of
MRE is to transmit external mechanical vibrations to the tissue and measure the resulting
displacements to calculate tissue stiffness. As tissue stiffness varies, the phase values of
the magnetic resonance (MR) signal change accordingly—stiffer tissues result in greater
phase shifts. These phase changes are then inverted to calculate stiffness values. Accurate
calculation of these values relies heavily on high signal-to-noise ratios in the base images
and phase-contrast imaging. Effective transmission of vibrations and visualization of these
small changes are crucial for evaluating the mechanical properties of tissues non-invasively.

Previous studies on prostate gland MRE have used a passive acoustic driver placed
in the patient’s urethra, rectum, or perineum [14-16]. However, the uncomfortable place-
ment of the acoustic device and inconvenience to patients during preparation is an issue.
Therefore, we attempted to place an acoustic driver on the lower abdominal wall and
investigated whether this could detect and classify PCa. To our knowledge, this has rarely
been attempted for PCa [17-19]; moreover, studies have used relatively small populations
and systematic biopsy as the gold standard rather than pathologic whole mount after
radical prostatectomy. Our hypothesis was that the quantitative stiffness value derived
from MRE could be used to discriminate PCa from benign prostatic hyperplasia (BPH) and
normal parenchyma. Thus, the aim of this study was to investigate the feasibility of MRE
combined with a pelvic acoustic driver for the detection and classification of PCa with
topographic maps as the reference standard.

2. Materials and Methods

Our institutional review board approved this study (IRB 2024-03-016-002), and in-
formed consent was waived due to the extremely low risk to patients associated with this
retrospective study.

2.1. Patient Selection Criteria

A total of 151 patients who had suspected PCa and underwent prostate MRI between
August 2023 and May 2024 were initially eligible for this study. Patients who satisfied the
following inclusion criteria were selected: (1) patients who underwent MRE; (2) patients
who underwent subsequent robot-assisted laparoscopic radical prostatectomy; (3) patients
who had histopathologic whole mount and relevant full pathologic information including
GS. From this population, 56 patients who had undergone systematic biopsy only were
excluded. In addition, 19 patients whose tumor size was less than 1 cm were excluded due
to the inherent limitations of MRE in detecting small tumors. One patient was excluded
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due to technical errors during MRE. Finally, 75 patients (mean age, 70; range, 56-86) were
included and analyzed. The patient accrual process is presented in Figure 1.

Eligible population
Patients having suspicious prostate caner and
undergoing prostate MRI between August 2023 and
May 2024 (n = 151)

Inclusion criteria

1) MR elastography included in prostate MRI

2) Patients underwent radical prostatectomy
3) Available histopathologic topographic map and
Gleason score

Exclusion criteria (n = 76)

+ Systemic biopsy only (n=56)

* No elastogram obtained due to technical error (n=1)

« Tumor detection failure due to small size (< 1cm) (n=19)

Final population

75 consecutive patients

Figure 1. Flowchart of the case-accrual process.

2.2. Magnetic Resonance Imaging

All MRI scans were performed using a 3.0-T MR machine (Signa Architect, GE Health-
Care, Chicago, IL, USA) with a torso coil (AIRTM Anterior Array, GE HealthCare Coils,
Aurora, OH, USA). The scan protocol comprised bi-parametric MRI including T2WTI in
the axial, sagittal, and coronal planes, axial DWI sequences (b-values of 0, 100, 1000, and
2000 s/mm?), and corresponding apparent diffusion coefficient (ADC) maps.

2.3. Magnetic Resonance Elastography

The MRE system consisted of active and passive drivers. The active driver (RESOUN-
DANT, benchmark electronics Inc. Rochester MN, USA) generates continuous acoustic
vibrations at a 60 to 120 Hz frequency, transmitted via a flexible vinyl tube to the passive
driver positioned on the patient’s lower abdomen. The passive driver converts these
vibrations into mechanical waves that propagate through the tissues. These waves are syn-
chronized with a modified two-dimensional (D) spin-echo (SE) echo planar imaging (EPI)
pulse sequence, allowing phase-contrast imaging to measure tissue displacements. Since
these displacements are proportional to tissue stiffness, this method provides valuable
relative stiffness information.

A 2D SE EPI-based phase-contrast sequence was employed to capture the phase
displacements correlated with tissue stiffness. The pulse sequence was modified with
an oscillating motion-encoding gradient (MEG), applied in the slice direction at 90 Hz.
The MEG duration matched the mechanical vibration period, leading to phase shifts in
the MR signal corresponding to mechanical excursions. These phase shifts were inverted
voxel by voxel to calculate stiffness values using the multi-model direct inversion (MMDI)
algorithm. Given that the prostate is a small structure, and to differentiate the lesions
within it, relatively shorter wavelengths are required. However, using higher frequencies
to achieve shorter wavelengths results in reduced penetration depth, making it challenging
for the vibrations to effectively reach the prostate. Therefore, under the current imaging
conditions and available MR hardware, a 90 Hz frequency was determined to be optimal
for clinical application to the prostate. Future improvements in MR hardware or pulse
sequences could allow for effective imaging with even shorter wavelengths.
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The MRE acquisition parameters were a TR/TE of 2000/70.5 ms, FOV of 240 mm,
matrix size of 80 x 80, and slice thickness of 3.0 mm, with a reconstructed voxel size of
1.5 x 1.5 x 3.0 mm. The imaging sequence utilized chemical fat saturation, a number of
excitations (NEX) of 8, a bandwidth of 250 kHz, a temporal phase of 4, an MEG and driver
frequency of 90 Hz in the slice direction, and a free-breathing scan time of 2 min and 16 s.
The scan parameters are presented in detail in Table 1.

Table 1. MRI sequence parameters.

T2WI (Axial, Sagittal, DWI (b = 0, 100, 1000

Parameter and Coronal) and 2000 s/mm?) MR Elastography
TR 4680~4930 5260 2000
TE 75~100 88.5 70.5
ETL 15 2 2
Slice thickness 3.0 mm 3.0 mm 3.0 mm
Slice gap 0.3 mm 0.3 mm 0.3 mm
Matrix size (axial) 400 x 320 120 x 120 80 x 80
NEX 1 2,2,4,8 8
FOV (mm) 220 x 220 240 x 240 240 x 240
Acquisition time 1 min 28 s~1 min 51 s 7 min 53 s 2min16s

Repetition time (TR); Echo time (TE); Echo train length (ETL); Field of view (FOV); Number of excitations (NEX);
Diffusion-weighted imaging (DWI); MR elastography was performed by utilizing 2-dimensional spin-echo echo
planar imaging pulse sequence.

2.4. Image Analysis

Data processing was performed using MR-touch in ReadyView, which is installed
within the AW system (AW server 3.2 Ext. 4.9, GE HealthCare). Region-of-interest (ROI)
measurements were taken from color-coded elastograms (maximum 8 kilopascals) fused
with T2WI using rigid registration, as the elastogram images alone were not sufficient for
viewing small anatomical structures. Using the fused images of T2WI and stiffness maps,
along with wave images for reference, a freehand ROI was employed to measure the whole
tumor volume by tracing the tumor margin across all visible slices.

2.5. Reference Standard

All patients underwent robot-assisted radical prostatectomy. Resected specimens were
evaluated by a dedicated pathologist. Histopathologic topographic maps served as the
reference standard for the radiologic—pathologic correlation of PCa.

2.6. Statistical Analysis

All the statistical analyses were performed with MedCalc software for Windows
(MedCalc Software version 22.032, Mariakerke, Belgium). When the calculated p-value was
less than 0.05, it was considered a statistically significant difference. Paired t-tests were used
to compare stiffness values between two regions. Receiver operating characteristic (ROC)
curve analysis was also used to extract an optimal cutoff value between two regions. The
area under the ROC curve (AUC) was calculated and represented diagnostic performances.

3. Results
3.1. Patient Demographics

The analyzed regions consisted of cancer (n = 69), benign prostatic hyperplasia (BPH)
(n =70), and normal parenchyma (n = 70). Six patients had high grade prostatic intraep-
ithelial neoplasia, which is considered as the precursor of PCa. The mean interval from
preoperative prostate MRI and radical prostatectomy was 58 days (range: 7-137 days), and
the mean PSA level was 21.0 ng/mL (range: 0.25-527). Patients were grouped according
to International Society of Urologic Pathologists (ISUP) grades and GSs as follows: ISUP
grade 1 (GS6, n = 18), ISUP grade 2 (GS3 + 4, n = 24), ISUP grade 3 (G54 + 3, n = 19), ISUP
grade 4 (GS8, n = 4), and ISUP grade 5 (GS9, n = 4). PCa was not found in six patients.
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The tumor locations included the peripheral zone (PZ, n = 35), transition zone (TZ, n = 22),
diffuse involvement (n = 10), and anterior fibrous stroma (n = 2). The detailed demographic
data are summarized in Table 2.

Table 2. Demographic data of the study population.

Parameter Study Population (n = 75)
Mean age, years [range] 70 (56-86)
Mean PSA, ng/mL [range] 21.0 (0.25-527)
Mean interval from MRI to radical prostatectomy, days [range] 58 (7-137)
Gleason score of prostate cancer

6 18

7 43

3+4 24

4+3 19

8 4

9 4
High grade prostatic intraepithelial neoplasia 6

Tumor location

Peripheral zone 35
Transition zone 22
Anterior fibromuscular stroma 2
Diffuse 10

Prostate-specific antigen (PSA).

3.2. Comparison of Stiffness Values among Three Groups

The stiffness value for PCa (unit, kilopascal; 4.9 £ 1.1) was significantly higher than
that for normal parenchyma (3.6 = 0.3, p < 0.0001) and BPH (4.5 £ 1.4, p = 0.0454) (Figure 2).
At a 4.2 kPa cutoff, a maximum accuracy of 87% was estimated, with a sensitivity of 73%, a
specificity of 99%, and an AUC of 0.839 for discriminating PCa from normal parenchyma.
Between PCa and BPH, a maximum accuracy of 62%, a sensitivity of 70%, a specificity of
56%, and an AUC of 0.598 were estimated at a 4.5 kPa cutoff.

Figure 2. A representative case of a 72-year-old man with prostate cancer with a Gleason score of 7
(4 + 3) in the transition zone. (a) T2-weighted image shows a 3 cm low-signal-intensity (SI) lesion
(large arrow) in the left transition zone (TZ) with an extension (small arrow) to the neighboring

76



Cancers 2024, 16, 3494

peripheral zone (PZ). It is difficult to demarcate low SI in the benign prostatic hyperplasia (BPH)
nodule in the right TZ. (b) Diffusion-weighted image (b value, 2000 s/ mm?) showing a heterogeneous
high SI. (¢) Corresponding apparent diffusion coefficient map also showing a reciprocal low SI in the
tumor. Some diffusion-restricted areas are also seen in the BPH nodule in the right TZ. (d) Elastogram
fused with T2-weighted image showing a high stiffness value (red area, white arrow) in the tumor.
Compared with the stiffness value of 7.3 kilopascals in the tumor, the BPH nodule (yellow arrow) was
measured at 4.1 kilopascals and normal parenchyma in the PZ (green arrow) indicated 3.2 kilopascals.

3.3. Comparison of Stiffness Values According to Tumor Location

In PZ cancer, the stiffness value for PCa (4.6 & 1.1) was higher than that for normal
parenchyma (3.6 £ 0.3, p = 0.0001) but was not significantly different to that for BPH
(4.4 1.2, p=0.3350). A similar trend was observed for TZ cancer between PCa (5.2 + 1.0)
and normal parenchyma (3.7 £ 0.3, p < 0.0001) as well as BPH (4.5 & 1.6, p = 0.1400). Box
and whisker plots are presented in Figure 3, and the detailed results are summarized in

Table 3.
p = 0.0001 p = 0.0001
a ! p=0.3350 p =0.0005 ! b ! p=0.1400 p=0.0035 !
so00k- | I | ool I - |
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Figure 3. Box and whisker plots comparing the stiffness values of prostate cancer, benign prostatic
hyperplasia (BPH), and normal parenchyma according to tumor location. For both peripheral-zone
(a) and transition-zone cancers (b), the stiffness value of prostate cancer was higher than normal
parenchyma; however, it did not show a significant difference compared to BPH. The middle line in
each box represents the median. The lower and upper boundaries of the boxes represent the lower
and upper quartiles (25th and 75th percentiles, respectively). The whiskers indicate the range from
the maximum to the minimum calculated stiffness values in pascals.

Table 3. Comparison of stiffness values of three groups according to cancer location.

. PZ Cancer TZ Cancer
Location
. Stiffness
Stiffness Value p Value Value p Value
Prostate cancer 46+11 0.3350 * 52+1.0 0.1400 *
BPH 44412 0.0005 45+ 1.6 0.0035 *
Normal parenchyma 3.6 0.3 0.0001 ¥ 07+03 0.0001 ¥

* comparison between prostate cancer and BPH; ¥ comparison between BPH and normal parenchyma; ¥ compari-
son between prostate cancer and normal parenchyma; PZ cancer, peripheral zone cancer; TZ cancer, transition
zone cancer; BPH, benign prostatic hyperplasia.

3.4. Comparison of Stiffness Values According to ISUP Grade Group

Stiffness values tended to increase as the ISUP grade increased. The mean stiffness
values between grade 1 (4.5 & 0.8) and grades 4 and 5 (5.1 £ 1.0) were not significantly
different (p = 0.2243). This was also true between grade 1 and grade 2 (4.7 = 1.0, p = 0.5821)
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and between grade 2 and grade 3 (5.2 + 1.4, p = 0.2574). A box and whisker plot is presented
in Figure 4, and the detailed results are described in Table 4.

p=0.2243
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Figure 4. A box and whisker plot comparing the stiffness values of prostate cancer according to
International Society of Urologic Pathologists (ISUP) grade group. The mean stiffness value of
prostate cancer shows an increasing tendency as ISUP grade increases. The middle line in each
box represents the median. The lower and upper boundaries of the boxes represent the lower and
upper quartiles (25th and 75th percentiles, respectively). The whiskers indicate the range from the
maximum to the minimum calculated stiffness values in pascals.

Table 4. Comparison of stiffness values according to ISUP grade group.

ISUP Grade Stiffness Value (unit, kilopascal) p Value
Grade 1 (GS 6) 45408 0.5821 *
Grade 2 (GS 3 + 4) 474+1.0 0.2574 1
Grade 3 (GS 4 +3) 52414 0.9147 %
Gr.4 (GS8) & Gr.5(GS9) 51+1.0 0.2243 8

* comparison between Gr. 1 and Gr. 2; ¥ comparison between Gr. 2 and Gr. 3; ¥ comparison between Gr. 3 and Gr.
4and 5;8 comparison between Gr. 1 and Gr. 4 and 5; Data are presented as mean = standard deviations; ISUP,
international society of urologic pathologists; GS, Gleason score.

4. Discussion

Our study found that the stiffness value for PCa was higher than that for normal
parenchyma, regardless of location. Our observation corresponds well with previous
studies [13,18,19]. Previous studies have reported that the stiffness of PCa was higher than
that of normal parenchyma. Li et al. reported that the shear wave velocity that corresponds
to the tissue stiffness value for PCa was higher than that for normal parenchyma (unit,
m/sec, 3.4 £ 06,2.2 £ 0.1, p < 0.001) according to multi-frequency MRE [19]. In addition,
this finding has also been observed with sonoelastography [11,12]. The stiffness of PCa
was also found to be higher than that of normal parenchyma (unit, kPa, 8.7 £ 3.4, 3.6 &+ 1.3)
in a small study population (less than 10 patients in each group).

The difference between PCa and normal parenchyma can be explained from a histo-
logic perspective [20-23]. The epithelium-stroma interaction has a major role in maintain-
ing the structure and function of normal tissue. In carcinomas, this balance is disrupted,
leading to the generation of an abnormal tumor microenvironment consisting of fibrob-
lasts, immune cells, and extracellular matrix proteins [20]. Cancer cells interact with these
stromal components through many signaling factors [21]. In particular, cancer-associated
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fibroblasts (CAFs) play an essential role in PCa by overproducing various extracellular ma-
trix components such as collagens, consequently increasing matrix stiffening and thereby
promoting tumor growth and invasion [22-24].

Although the overall results comparing PCa and BPH showed a difference in the
stiffness values, our subgroup analyses found that the stiffness values for PCa were not
different from those for BPH in both PZ and TZ. These results differ from those of previous
studies [18,19,25], which observed that the stiffness of PCa was higher than that of BPH.
Li et al. observed that TZ cancers had a higher shear wave velocity (stiffness value) than
did BPH (unit, m/s; 3.1 £ 0.4, 2.6 = 0.3, p < 0.001) [19]. Lee et al. also reported stiffness
values for PCa and BPH nodules (unit, kPa; 5.99 + 1.46, 4.67 &+ 1.54, p = 0.045) based
on systematic biopsy rather than radical prostatectomy specimens [25]. However, these
studies have limited generalizability due either to their small study population (19 PCa
and 10 BPH nodules) [25] or their gold standard being based on cognitive fusion biopsy
rather than histologic topographic maps of the excised specimens [19].

Therefore, the substantial overlap of stiffness values between PCa and BPH might have
been overlooked in previous studies. In our opinion, the discrepancy with previous studies
could be explained by two factors: the measurement method for ROIs and the heterogeneity
of PCa and BPH. In terms of measuring the stiffness values of focal prostate lesions
including PCa and BPH, the previous studies have used either one single slice covering the
focal lesion [25] or three consecutive slices [19]. However, this method could not represent
the whole BPH nodule volume. To overcome this drawback, we used the whole volume
measurement method instead, which is known to be robust and the most reproducible
among the various quantitative measurement methods in the field of oncology [26]. Based
on our observation, we suggest that the wide range of stiffness values for BPH could be
attributed to some overlap with PCa. Our observation is supported by a recent study [27]
by Reiter et al., who also reported that PCa is characterized by a homogeneous stiff
biomechanical signature, possibly due to the unique nondestructive growth pattern of
PCa with intervening stroma. Increased heterogeneity in neighboring BPH was also
observed [27]. The larger the BPH nodule, the wider the range of heterogeneity of the
BPH nodule. In this regard, we suggest that the stiffness value measured by MRE has an
inherent limitation in discriminating PCa from BPH, particularly in the TZ (Figure 5). Our
opinion can be supported by the histopathologic explanation of BPH. Histological BPH can
be defined as epithelial and stromal proliferation in the prostate TZ, with a predominance
of stromal cells. Compared with normal prostatic tissue, the balance between the growth
and apoptosis of stromal cells in hyperplastic nodules is lost, resulting in an increase in
stromal volume, which leads to the increased stiffness of BPH [28].

In terms of differentiating ISUP grade groups, the diagnostic performance of the
imaging technique is important in treatment planning and risk stratification in patients
with PCa. Various MRI techniques have been used to discriminate clinically significant
cancer (CSC, GS > 7) from non-CSC (GS6) [5-7]. Our study revealed that the stiffness
value tended to increase as the ISUP grade increased. Similar results were reported in a
previous study [13]. Reiter et al. also observed a similar increasing tendency for stiffness as
the GS increased from GS6 to GS8/9. However, the diagnostic task of discriminating CSC
from non-CSC is challenging when using other imaging modalities, in light of the inherent
limitations in analyzing the tumor microenvironment. This is the case with MRE. Based on
our observation, the potential use of MRE to discriminate ISUP grade 2 (GS 3 + 4) from
grade 3 (GS 4 + 3) is also limited.

In this study, we validated the technical feasibility of MRE with a pelvic acoustic driver.
In contrast to the other acoustic drivers used in previous studies that may cause discomfort
associated with their endo-rectal, perineal, or transurethral placement and inconvenience
to patients during preparation [14-16], the placement of the acoustic driver on the low
abdominal wall can be easily adopted and incorporated into clinical practice, with good
compliance of patients.

79



Cancers 2024, 16, 3494

8000.00

b

ol M

-

‘ 0.00

MR=Touch/EP]

Figure 5. A representative case of a 73-year-old man with a benign prostatic hyperplasia (BPH) nodule
(arrows) showing the internal heterogeneity of the stiffness value. (a) T2-weighted image shows
a large BPH nodule with heterogeneous signal intensity (SI) in the transition zone. (b) Diffusion-
weighted image (b value, 2000 s/mm?) showing a heterogeneous high SI in the BPH nodule. (c) The
corresponding apparent diffusion coefficient map also shows a reciprocal heterogeneous low SI in the
BPH nodule. (d) Elastogram fused with T2-weighted image shows a wide range of stiffness values in
the BPH nodule. Some portions indicate a stiffness value of 8 kilopascals, which is similar to that of
prostate cancer.

Several limitations in our study should be acknowledged. First, there could be se-
lection bias associated with the retrospective study design. Patients undergoing systemic
biopsy were excluded in this study. However, radical prostatectomy was necessary to
obtain a topographic map, which was a ground truth for the segmentation of PCa, BPH,
and normal parenchyma. We believe that the histologic whole mount is an ideal guide
for radiologic—pathologic correlation. Moreover, measurement was performed based on
a relatively large study population compared with previous studies, which is a merit of
this study. Another limitation is that we excluded small PCa (less than 1 cm) from further
analyses based on our experience and previous observations [25]. In this study, we used a
high frequency of 90 Hz for prostate imaging, which provided shorter wavelengths and
better resolution, which is crucial for assessing smaller structures. However, it was chal-
lenging to measure tumors smaller than 1 cm with MRE. This limitation suggests that using
frequencies higher than 90 Hz to produce shorter wavelengths could improve resolution
and potentially solve this issue. However, higher frequencies result in reduced penetration
depth, making it difficult for the vibrations to effectively reach the prostate gland. Lastly,
we did not compare the diagnostic performance of MRE with that of other techniques,
including DWI and corresponding ADC maps, for specific tasks such as discriminating
CSC from non-CSC. It would be intriguing to compare the diagnostic efficacy of MRE with
that of DWI and corresponding ADC for incorporation into clinical practice. However, this
task is beyond the scope of this study; thus, we focused on the feasibility of MRE with a
pelvic acoustic driver. Further efficacy studies are warranted.

5. Conclusions

In conclusion, it is feasible to detect PCa via MRE with a pelvic acoustic driver. Our
observations suggest that MRE could be a supplement to multi-parametric MRI for PCa
detection. In addition, the wide range of stiffness values for BPH could be attributed to the
substantial overlap between PCa and BPH.
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Simple Summary: We investigated why some prostate cancers (PCas) are not identified on multipara-
metric MRI (mpMRI) by using ground truth reference from whole-mount prostatectomy specimens.
A total of 61 patients with PCa underwent 3T mpMRI followed by prostatectomy. Lesions visible
on MRI prospectively or retrospectively identified after correlating with histology were considered
“identified cancers” (ICs). Lesions that could not be identified on mpMRI were considered “unidenti-
fied cancers” (UCs). Pathologists marked the Gleason score, stage, size, and density of cancer glands
and performed quantitative histology to calculate the tissue composition. The UCs were significantly
smaller, had lower Gleason scores and clinical stage lesions, with a lower density of cancer glands,
compared with the ICs. Independent from size and Gleason score, tissue composition differences,
specifically, the higher lumen and lower epithelium in UCs (associated with higher T2 and ADC), can
explain why some of the prostate cancers cannot be identified on mpMRI.

Abstract: We investigated why some prostate cancers (PCas) are not identified on multiparametric
MRI (mpMRI) by using ground truth reference from whole-mount prostatectomy specimens. A
total of 61 patients with biopsy-confirmed PCa underwent 3T mpMRI followed by prostatectomy.
Lesions visible on MRI prospectively or retrospectively identified after correlating with histology
were considered “identified cancers” (ICs). Lesions that could not be identified on mpMRI were
considered “unidentified cancers” (UCs). Pathologists marked the Gleason score, stage, size, and
density of the cancer glands and performed quantitative histology to calculate the tissue composition.
Out of 115 cancers, 19 were unidentified on MRI. The UCs were significantly smaller and had lower
Gleason scores and clinical stage lesions compared with the ICs. The UCs had significantly (p < 0.05)
higher ADC (1.34 £ 0.38 vs. 1.02 £ 0.30 pum?/ms) and T2 (117.0 & 31.1 vs. 97.1 & 25.1 ms) compared
with the ICs. The density of the cancer glands was significantly (p = 0.04) lower in the UCs. The
percentage of the Gleason 4 component in Gleason 3 + 4 lesions was nominally (p = 0.15) higher in
the ICs (20 & 12%) compared with the UCs (15 £ 8%). The UCs had a significantly lower epithelium
(32.9 £21.5 vs. 47.6 + 13.1%, p = 0.034) and higher lumen volume (20.4 £ 10.0 vs. 13.3 £ 4.1%,
p = 0.021) compared with the ICs. Independent from size and Gleason score, the tissue composition
differences, specifically, the higher lumen and lower epithelium in UCs, can explain why some of the
prostate cancers cannot be identified on mpMRI.

Keywords: prostate cancer; MRI; invisible lesion; tissue composition
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1. Introduction

Prostate cancer (PCa) is the most common non-cutaneous cancer in men in the United
States, with one out of nine men affected by it [1]. Magnetic resonance imaging (MRI)
is increasingly being used for prostate cancer diagnosis and for guiding biopsies due to
its advantages over traditional prostate-specific antigen (PSA) screening and transrectal
ultrasound (TRUS)-guided biopsies in its ability to reliably visualize the whole prostate
noninvasively [2-4]. MRI not only provides information about the presence of PCa, but
also about the location and size of PCa lesions [5,6]. Despite MRI’s good soft tissue con-
trast, higher sensitivity, and negative predictive value for PCa detection, a large number
of prostate cancers still go undetected [3,7-9]. It has been noted that up to 30% of clin-
ically significant cancers can be missed even by expert radiologists on multiparametric
MRI (mpMRI) using the PIRADS guidelines [9-12], with a large variation seen between
radiologists and imaging centers [13,14].

An improved understanding of why some lesions are missed by mpMRI may be
critical to improving prostate MR imaging protocol and may lead to increased diagnostic
accuracy. The few studies that have looked into the characteristics of these missed cancers
suggest that missed cancers tend to be of smaller size or volume, have a lower Gleason score
and PSA density, and are located in a specific location (apical or anterior) compared with
cancer lesions that were identified on mpMRI [9,10,12,15-18]. However, only a handful
of studies have investigated histologic differences between identified and unidentified
cancer lesions [19,20]. A significant fraction of missed cancers cannot be explained by their
small size or low Gleason score, and some biophysical explanation as to why some cancers
are missed is needed. In addition, mpMRI is also known to underestimate the true index
lesion pathological volume [21,22] and represents the foundation to further investigate
invisible vs. visible tumors. Because the contrast on prostate MRI scans heavily depends
on the tissue’s microstructures and their distinct MR properties [23], we hypothesize that
histological features (such as tissue composition and cancer cell density) may impact the MR
visibility of certain cancers. Therefore, this study aims to investigate why some prostate
cancers are not identified on mpMRI using ground truth reference from whole-mount
prostatectomy specimens.

2. Materials and Methods
2.1. Study Patients

This institutional-review-board-approved study involved a retrospective analysis
of prospectively acquired data. It was conducted with prior informed patient consent
and was HIPAA compliant. Inclusion criteria for this study included patients with prior
biopsy-proven prostate cancer that underwent prostate mpMRI on a 3T scanner, followed
by subsequent radical prostatectomy with whole-mount processing and digitization of
histology slides. Exclusion criteria included the receipt of radiation or hormonal therapy
prior to MRI that could have led to alterations in prostatic signal on MRI and impaired
renal function (glomerular filtration rate or GFR less than 60 mL/min). Of the 108 patients
that had initially consented and were imaged at our research center between March 2014
and June 2017, only 61 patients that fit the criteria were recruited for this study. There
is an overlap between some of the research subjects used in this study and some of our
previously published works [24,25], but none of the previous papers investigated why
some prostate cancers are not identified on mpMRI

2.2. MR Imaging

Patients underwent preoperative multiparametric MRI using a 3T Philips Achieva MR
scanner along with an endorectal coil (Medrad, Warrendale, PA, USA) and a 16-channel
phased array coil (Philips, Eindhoven, Netherlands) placed around the pelvis. The prostate
mpMRI protocol included axial and coronal T2-weighted, axial multi-echo T2-weighted, ax-
ial diffusion-weighted, and axial dynamic contrast-enhanced images. Typical MR imaging
parameters that were used are described in further detail in Table 1.

84



Cancers 2023, 15, 5825

Table 1. MR imaging parameters.

Imaging Pulse FOV Scar} In Pla1.1e TE TR sllce Flip Angle
Matrix Resolution Thickness o
Sequence Sequence (mm) . (ms) (ms) ©)
Size (mm) (mm)
Axial T2W SE-TSE 160 x 160 400 x 400 04 x 0.4 115 8230 3 90
Multi-echo T2W 30, 60, 90, 120, 150,
(T2 mapping) SE-TSE 160 x 160 212 x 212 0.75 x 0.75 180, 210, 240, 270 7850 3 90
DWI? SE-EPI 180 x 180 120 x 120 15 x15 80 6093 3 90
DCE-MRI P T1-FFE = 250 x 385 200 x 308 1.25 x 1.25 33 438 35 10

SE—spin echo; TSE—turbo spin echo; EPI—echo planar imaging; FFE—fast field echo. # b-values used: 0, 50, 150,
990, 1500 s/mm?, 5/A = ms. P Contrast agent: gadobenate dimeglumine (MultiHance, Bracco, Minneapolis, MI,
USA) was injected at a rate of 2.0 mL/s followed by a 20-mL saline flush. Contrast dose amount was based on
patient’s weight (0.1 mmol/kg). DCE-MRI T1-weigthed images were taken with temporal resolution of ~8.3 s at
60 dynamic scan points over 8.2 min.

2.3. Histology Processing

The subjects underwent radical prostatectomy. The excised prostate specimens were
fixed overnight in 10% buffered formalin. The fixed organ was then serially sectioned
transversely (4 mm slice thickness), approximately in the same plane as the axial MR
images. Sectioned tissue was embedded in paraffin and microtomed into 5 um sections,
and whole-mount hematoxylin and eosin (H&E) stained slides were made. The slides
were evaluated for prostate cancer by expert pathologists (T.A. and A.G., 15 and 5 years’
experience, respectively) and all PCas were marked on the histologic slides for correlation
with MR images. However, only cancer lesions meeting the minimum size criteria of
5mm x 5 mm were included in the analysis. The whole-mount sections were scanned and
digitized using a brightfield Olympus VS120 whole-mount digital microscope (Olympus
Corporation, Waltham, MA, USA) at 20x magnification.

2.4. MR Image Analysis

MRI and histology sections were matched by the consensus of an experienced radi-
ologist (18 years’” experience with prostate MRI), pathologist (15 years’ experience), and
medical physicist (8 years” experience). The lesions that were visible on conventional multi-
parametric MRI (T2-weighted, diffusion-weighted images along with apparent diffusion
coefficient maps and dynamic contrast-enhanced images) and were prospectively (blinded
to pathology results) or retrospectively identified after correlating with histology were
considered “identified cancers”. Lesions that could not be identified (invisible) on mpMRI
even after radiological-pathological correlation were considered “unidentified cancers”.

Using the axial T2-weighted images as the reference image, other mpMRI sequences—
diffusion-weighted and contrast-enhanced MRI—were co-registered using rigid registration
in 3D Slicer (https://github.com/rcc-uchicago/PCampReview, accessed on 1 November
2016) and matched with corresponding histological sections. Subsequently, MR images
were analyzed by an expert radiologist (A.O., 15 years’ experience with prostate MRI), and
regions of interest (ROIs) were marked on axial T2-weighted images on regions of known
PCa verified on whole prostatectomy sections. The ROIs for the cancer lesions were drawn
by the radiologist based on outlines by pathologists on whole-mount histologic sections.
These ROIs drawn on T2W images were then transferred to other mpMRI sequences,
keeping the same shape and size as on the T2W images using 3D Slicer, similar to previous
studies [24-26].

Quantitative analysis of MRI data was performed using in-house programs in MAT-
LAB v2019a (Mathworks, Natick, MA, USA) and Interactive Data Language (IDL, Harris
Geospatial Solutions, Boulder, CO, USA). Apparent diffusion coefficient (ADC) and quan-
titative T2 maps were calculated from diffusion-weighted and multi-echo T2-weighted
images, respectively, using a mono-exponential signal decay model using custom written
code in MATLAB on a voxel-by-voxel basis, and mean values (ADC and T2) for the ROIs
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were calculated. For DCE-MRI, the percent signal enhancement (PSE) curve (relative to
unenhanced image intensity) is calculated using the formula

S(t) -

PSE(t) = 9 %100

0
where S is the baseline signal intensity and S(t) is the DCE signal at each time point (t).
Subsequently, PSE vs. time curves were analyzed in IDL using the empirical mathematical
model (EMM) described in Fan et al. [27] with the following equation:

PSE(t) = A(1—e *t)e P!

where A (%) is the amplitude of the relative percent signal enhancement curve or PSE, «
describes the signal enhancement due to contrast agent uptake, and 3 is the washout rate.

2.5. Pathology Image Analysis

Two experienced, board-certified genitourinary pathologists (T.A. and A.G., with 15
and 5 years of experience with prostate pathology, respectively), working in consensus,
marked the Gleason score, pathologic stage, and size (dimensions at the section of largest
extent) for all cancers.

We further investigated all cancers that were undetected, along with identified cancers
with matching size and grade (Gleason 3 + 3 and 3 + 4). The relative density, which
is defined as the density of cancer glands with respect to surrounding tissue (category
or scale 1-5, with 5 being highly dense compared with surrounding tissue), and the
absolute density scale, which is defined as how sparse or dense the cancer glands are in
the lesion [28] (category 1-4, with 4 being highly dense cancer), were determined visually
by the experienced pathologists. In cancers with Gleason score 3 + 4, the percentage of
Gleason pattern 4 was also determined.

The cancer regions of interest (rectangular area) were extracted from digitized whole-
mount images using the BIOP VSI reader plugin on Image] v1.51(National Institutes of
Health, Bethesda, MD, USA). The software was used to crop the intended area and convert
the digitized pathology slides from the proprietary virtual slide image (.vsi) file format
(Olympus proprietary format) to the commonly used tagged image file format (TIFF).
To avoid errors during tissue segmentation, luminal secretions were removed from the
glandular space using Microsoft Paint (https:/ /mspaint.humanhead.com/, accessed on
1 November 2016) (Microsoft Corporation, Redmond, WA, USA). Quantitative histology
was then performed to calculate fractional volumes of tissue components using image
segmentation of H&E-stained prostate tissue to separate the stroma, epithelium, and lumen
using Image Pro Premier v9.2. This was performed on the basis of color, intensity, mor-
phology, and background using the “Smart Segment” functionality, which was described
in a previous study [23]. Like in the previous study, segmentation performed with the
software was visually inspected by the consensus of a pathologist and medical physicist
and rectified iteratively until the final segmented image was determined to have fewer than
5% errors. The tissue fractional volumes were calculated using the “Count” functionality
and defined as the percentage of image pixels that were segmented as that tissue type. The
segmentation function of this tool has been validated to estimate prostate tissue composi-
tion and used in previous studies with reported correlation greater than 0.9 with manual
segmentation [23,29,30].

2.6. Statistical Analysis

Statistical analysis was performed using SPSS v28 (IBM Corporation, Armonk, NY,
USA). A one-sided t-test (parametric test for scalar data: lesion size, ADC, T2, DCE
parameters, proportion of Gleason 4 pattern, and tissue volumes) or Mann-Whitney U test
(nonparametric test for categorical /ordinal data: Gleason score, stage, and relative and
absolute density of lesions) was performed to determine whether any significant differences
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between the identified and unidentified cancers were present. The significance level was
set as p < 0.05.

3. Results
3.1. Participant and Tumor Characteristics

A total of 61 patients who fit the criteria (imaged at our research center, followed by
subsequent prostatectomy and digitized pathology) were recruited for this study. The
mean age (+ standard deviation) of all included men was 59 + 8 years (range 40-76 years),
and mean PSA was 8.2 + 7.9 ng/mL (range 0.8-66.1 ng/mL). A total of 115 confirmed
cancers met the minimum size criteria and were included in the study.

Only 19 of 115 (17%) confirmed cancerous lesions were unidentified on mpMRI.
These unidentified cancers came from 17 subjects, while the identified lesions came from
57 subjects. Of the 96 identified lesions, 83 lesions were found prospectively on mpMRI
(blinded to pathology results) and 13 were retrospectively identified after correlating with
histology. However, no difference in quantitative mpMRI parameters was found for the
identified cancer lesions. Representative images of identified and unidentified cancers are
shown in Figures 1 and 2.

Histology T2 weighted MRI

- d )

Gleason
L 3+4

-

3+4

Figure 1. A 67-year-old patient with PSA of 9.5 ng/mL with a Gleason 3 + 4 anterior lesion
(green arrow) that was clearly identified on mpMRI. The lesion was highly hypointense on T2W
(T2 = 61 & 8 ms) and ADC (0.58 %+ 0.09 um?/ms) and showed focal enhancement on early-phase
DCE-MRI. However, another Gleason 3 + 4 lesion in the left peripheral zone (red arrow) was uniden-
tified on MRI. The lesion was isointense on T2W (T2 = 194 =+ 34 ms) and ADC (1.51 & 0.25 um?/ms)
and showed no focal enhancement on early-phase DCE-MRI. It was found to have lower glandular
density than the surrounding benign tissue and was interspersed between atrophic benign glands.
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Of the identified lesions, 78 lesions (81%) were primarily in the peripheral zone, while
18 lesions (19%) were in the transition zone. A similar zonal distribution was found for
the unidentified lesions, with 15 (79%) peripheral zone lesions and 4 (21%) transition zone
lesions. The unidentified cancers (1.4 + 1.0 cm x 0.7 & 0.4 cm) were significantly smaller
(p < 0.001) in size compared with the identified cancers (2.1 1.2 cm x 1.0 £ 0.5 cm). The
unidentified cancers were predominantly low grade (p < 0.001) (11 Gleason 3 + 3, 8 Gleason
3 + 4) and stage (p < 0.01) (all 19 were stage T2) compared with the identified cancers
(Grade: 20 Gleason 3 + 3, 59 Gleason 3 + 4, 13 Gleason 4 + 3, 4 Gleason 4 + 5; Stage: 68 Stage
T2, 27 Stage T3). Additional details can be found in Table 2.

Histology T2 weighted MRI

Gleason
3+4

Gleason
3+4

DCE-MRI (early phase)

Figure 2. A 53-year-old patient with PSA of 5.1 ng/mL with a Gleason 3 + 4 lesion (green arrow) in
the left peripheral zone that was identified on mpMRI. The lesion was focally hypointense on T2W
(T2 =94 + 34 ms) and ADC (1.13 + 0.26 um?/ms) but showed no focal enhancement on early-phase
DCE-MRI. However, another Gleason 3 + 4 lesion in the right transition zone (red arrows) was
unidentified on MRI (no focal area of abnormal MR signal that correlates with cancer presence).
The lesion was isointense on T2W (T2 = 138 + 52 ms) and ADC (1.45 + 0.41 pm?/ms) and showed
no focal enhancement on early-phase DCE-MRI, making it indistinguishable from the surrounding
benign tissue. Even though it was found to have high glandular density, it was adjacent to very dense
benign glands.
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Table 2. Cancer lesion properties.

Gleason Score

Identified Cancers

Unidentified Cancers

All Cancers

3+3 20 11 31
3+4 59 8 67
4+3 13 - 13
4+5 4 - 4
Overall 96 19 115
Relative density
Relative density category Identified Cancers * Unidentified Cancers All Cancers
Significantly less glandular density than 0 1 1
surrounding benign tissue (Category 1)
Somewhat less glandular density than
surrounding benign tissue 0 3 3
(Category 2)
Similar glandular density to surrounding
benign tissue 4 3 7
(Category 3)
Somewhat higher glandular density than
surrounding benign tissue 12 9 21
(Category 4)
Significantly higher glandular density than
surrounding benign tissue 9 3 12
(Category 5)
Overall 25 19 44
Absolute density
Absolute den51tylcategory Identified Cancers * Unidentified Cancers All Cancers
(% of cancer tissue)
Highly sparse (0-25%) 0 1 1
(Category 1)
Sparse (25-50%)
(Category 2) 2 7 ?
Dense (50-75%)
(Category 3) 16 7 23
Highly dense (75-100%)
(Category 4) 7 4 1
Overall 25 19 44

* Only size and Gleason score matched identified cancers used in this analysis.

3.2. Quantitative MRI Characteristics

Unidentified cancers had significantly higher ADC (1.34 4= 0.38 vs. 1.02 4= 0.30 um?/ms,
p < 0.001) and T2 (117.0 £ 31.1 vs. 97.1 £ 25.1 ms, p = 0.005) compared with cancers
identified on MRI (Figure 3). However, the DCE-MRI parameters from EMM analysis, A or
amplitude (110.7 £ 45.3 vs. 129.2 + 51.1%, p = 0.206), o or enhancement rate (5.24 £ 2.84 vs.
6.79 £ 5.08% per s, p = 0.263), and (3 or washout rate (0.031 £ 0.083 vs. 0.081 £ 0.072% per s,
p = 0.222), were not significantly different between the unidentified and identified cancers.
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Figure 3. Unidentified cancers had significantly higher ADC (1.34 & 0.38 vs. 1.02 & 0.30 pmz/ ms,
p <0.001) and T2 (117.0 £ 31.1 vs. 97.1 £ 25.1 ms, p = 0.005) compared with cancers identified
on MRL

3.3. Pathologic Characteristics

Nineteen unidentified cancers and twenty-five identified cancers with similar sizes
and grades were selected for analysis. While investigating all undetected cancers along
with size and grade (Gleason 3 + 3 and 3 + 4) matched identified cancers, the relative
density and absolute density of cancer glands were found to be significantly (p = 0.04)
higher in the cancers identified on MRI compared with the unidentified cancers. A large
percentage of the unidentified cancers tended to have lower relative density compared with
the surrounding tissue (4/19 = 21% vs. 0/25 = 0%) and to be categorized as sparse cancers
(8/19 = 42% vs. 2/25 = 8%) compared with the MR-visible cancers. Detailed results can be
found in Table 2. However, the percentage of the Gleason 4 component in Gleason 3 + 4
lesions was only nominally (p = 0.15) higher in the identified cancers (20 & 12%) compared
with the unidentified cancers on MRI (15 £ 8%).

An investigation into the tissue composition of these cancers using matching lesion
size and grade showed that nonvisible cancers on MRI had significantly lower epithelium
volume, 32.9 £ 21.5 vs. 47.6 & 13.1% (p = 0.034), and higher lumen volume, 20.4 £ 10.0
vs. 13.3 £ 4.1% (p = 0.021), compared with identified cancers. However, no difference in
stroma volume was found between the unidentified and identified cancers (46.6 + 19.9 vs.
39.1 £ 13.3%, p = 0.154). Representative examples of histologic images and corresponding
segmented images for a cancer identified on MRI and a cancer undefined on MRI can
be seen in Figure 4. Box plots showing the differences in tissue composition (fractional
volumes of stroma, epithelium, and lumen) between identified and unidentified cancers
are shown in Figure 5.
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Histology Segmented Image

Identified Gleason 3+4 cancer

Identified Gleason 3+4 cancer

Figure 4. The identified Gleason 3 + 4 cancer from the posterior peripheral zone from the apex
midline (top) had higher glandular density compared with the MR-unidentified Gleason 3 + 4 cancer
from the right peripheral zone (bottom) from the same patient (76 years old). Tissue components
were segmented into stroma (green), epithelium (red), and lumen (blue). The tissue composition in
the identified cancer and the unidentified cancer was different: stroma, 21.5 vs. 45.7%; epithelium,
60.6 vs. 34.0%; and lumen, 17.9 vs. 20.4%. In addition, the identified cancer (40%) had a greater
proportion of Gleason pattern 4 than the unidentified cancer (10%).

Some additional observations by pathologists, possibly explaining why some cancers
were not identified, were: cystic changes adjacent to the cancer lesions (1 = 2), small cancer
focus (n = 2), cancers being interspersed between atrophic (# = 2) or benign glands (n = 4),
and dense glands surrounding the cancer (n = 1).
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Figure 5. An investigation into the tissue composition of these cancers as presented in these box-plots
showed that unidentified cancers had significantly lower epithelium volume (B), 32.9 £ 21.5 vs.
47.6 +13.1% (p = 0.034), and significantly higher lumen volume (C), 20.4 £ 10.0 vs. 13.3 + 4.1%
(p = 0.021), compared with identified cancers. However, no difference in stroma volume (A) was
found between the unidentified and identified cancers (46.6 = 19.9 vs. 39.1 & 13.3%, p = 0.154).
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4. Discussion

In this study, we investigated why some prostate cancers are not identified on mpMRI
by using ground truth reference from whole-mount prostatectomy specimens. Our results
showed that unidentified cancers tend to exhibit a lower Gleason score and pathologic
stage, smaller size, and lower density of glands compared with the surrounding tissue
(sparse cancer lesions), and they have different tissue compositions compared with cancer
lesions identified on MRI. Independent from size and Gleason score, tissue composition
differences, specifically, a higher proportion of lumen (associated with high T2 and ADC
values) and lower epithelium (associated with lower T2 and ADC) in unidentified cancers
compared with identified cancers, can explain why some of the prostate cancers cannot be
identified on mpMRL

The unidentified cancers are smaller in size and have predominantly lower Gleason
scores. These results are in agreement with previous studies, including the large multicenter
PROMIS study [9,10,12,15-18]. The fact that we see that a higher percentage of the uniden-
tified cancers is non-clinically significant cancer reinforces the role mpMRI plays in risk
stratification of men with suspected prostate cancer: detecting clinically significant cancers
(Gleason 3 + 4 and above) while missing non-clinically significant cancers (Gleason 3 + 3).
Future studies may consider looking at the oncological implications of mpMRI visible
versus invisible lesions and whether that may affect decisions on treatment options. A
negative correlation between the cancer Gleason score and the ADC [31] and T2 [32] has
been noted in the literature. This can also be attributed to tissue composition differences in
different Gleason patterns, as shown by a previous study [23], which showed that Gleason
pattern 3 is closely similar to normal prostate (preserved glandular morphology), whereas
in pattern 4 and higher, there is gradually less lumen and more dense epithelial cells. This
leads to a reduction in MR contrast in ADC and T2 maps and T2-weighted images in
lower-grade lesions, making detection challenging.

Differences in quantitative mpMRI parameters were also found. The unidentified
cancers had significantly higher ADC and T2 compared with the identified cancers, con-
firming why these lesions were not visualized on mpMRI. Conversely, the DCE-MRI
parameters were not significantly different between the identified and nonidentified can-
cers. Considering DCE-MRI is used as a secondary sequence to T2W and DWI (primary
sequences) for prostate cancer diagnosis, and that up to 50% of prostate lesions are not seen
on DCE-MRI [33], it is not surprising that a number of lesions remained invisible on DCE
as well.

We chose identified cancers with sizes and Gleason scores similar to the unidentified
cancers for subsequent analysis. While looking at size- and Gleason score-matched cancers,
the relative density and absolute density of cancer glands were higher in the identified
cancers compared with the unidentified cancers. A large percentage of the unidentified
cancers tended to have lower relative density compared with the surrounding tissue, and
were categorized as sparse cancers, compared with the identified cancers. This is consistent
with a study by Langer et al. [28] that showed that sparse prostate tumors have similar
mpMRI (ADC and T2 values) to those of benign peripheral zone tissue, which may limit
their detection and the assessment of tumor volume of these sparse cancer lesions in mpMRL
Another study by van Houdt et. al. also reported lower tumor density and heterogeneous
tumor morphology in undetected prostate cancers on MRI [20], while Miyai et. al. reported
that cancer cells cover a larger area in detected cancers (60.9%) versus undetected cancers
(42.7%) [34]. Other histologic differences, such as loose or desmoplastic stroma and the
presence of intermixed benign glands, along with cancer glands that represent sparse
cancers, have also been reported [19].
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We found that the percentage of the Gleason 4 component in the Gleason 3 + 4
lesions was not significantly higher in the identified cancers (20 £ 12%) compared with
the unidentified cancers (15 £ 8%). While this result is similar to another study [34], the
percentage of Gleason pattern 4 reported was higher for lesions in that study due to a
slightly different definition of unidentified cancers and the cohort containing Gleason
4 + 3 unidentified lesions (which, by definition, are expected to have more than 50%
Gleason 4 pattern).

Most importantly, tissue composition differences, specifically, the higher lumen and
lower epithelium in unidentified cancers, are likely to be the major contributor to clinically
observed variations in different appearances of identified and unidentified cancers on
mpMRI and may explain why these lesions were missed on MRI. Most prostate cancers are
epithelial in nature and are characterized by rapidly proliferating cancer epithelial cells
that concomitantly replace the surrounding stromal cells and luminal space. Epithelial
cells are associated with low ADC and T2, while lumen is associated with high ADC and
T2. Our results show that identified cancers have similarly higher epithelium and reduced
lumen compared with unidentified cancers; therefore, identified cancers have lower ADC
and T2, making them easily visible on mpMRI, unlike unidentified cancers. In addition,
comparing tissue composition with the previous literature [23,35], the tissue composition
of identified cancers in this study (47.6 & 13.1% epithelium, 13.3 & 4.1% lumen) matches
well with the literature values for Gleason pattern 3 and 4 cancers visualized on MRI and
confirmed by pathology (~52-58% epithelium, 11-16% lumen). However, unidentified
cancers (32.9 £ 21.5% epithelium, 20.4 £ 10.0% lumen) were found to have tissue com-
positions closely similar to benign prostatic tissue (~33% epithelium, ~27% lumen), and
thus, appear similar to the surrounding benign tissue and remain undetected. Therefore,
the biophysical basis of MRI signal changes in prostate tissue can be attributed to tissue
composition changes, namely, in differences in the proportions of lumen, epithelium, and
stroma. Conventional imaging, measuring ADC and T2 using the mono-exponential signal
model, may not be able to isolate signals specific to the cancer cells due to signal averaging
when tissue composition changes are not spread out. However, a multicompartment tissue
model of the prostate (using the components stroma, epithelium, and lumen) can exploit the
distinct biophysical properties of each of these tissue components. This is a basis of some
of the newer tissue microstructural imaging models, such as hybrid multidimensional MRI
(HM-MRI) [36,37], luminal water imaging [38], VERDICT [39], etc., as well as high b-value
non-Gaussian DWI models that have the potential to better identify focal areas of tissue
where the tissue composition starts to deviate from the surrounding benign tissue and
thus, potentially, to detect lesions that cannot be detected on conventional mpMRI. These
results may also suggest the need to develop MRI methods that detect intrinsic properties
of cancer cells (i.e., the properties of individual cells) rather than extrinsic properties such
as cell density. For example, quadrant analysis of hybrid multidimensional MRI detects
signals from enlarged nuclei associated with rapidly growing cancers [40]. Even if cancer
cells are dispersed within a voxel, the aggregate signal from these enlarged nuclei may be
detectable. However, if cancer cells are dispersed within a voxel, they may not produce a
low ADC, but they may have a distinct and detectable signal from cancers cells in quadrant
analysis. The use of machine-learning-based or deep-learning-based methods has shown
promise in identifying a greater percentage of clinically significant prostate cancers [41,42],
and the use of these methods to identify these unidentified lesions may also be considered
for future studies.

There are a few limitations to this study. First, this study is a retrospective single-
center study, where MRIs were performed using a single MR vendor with a standardized
imaging protocol. Additionally, any changes in hardware or imaging parameters may
affect image contrast and thus affect whether a lesion is identified on MRI. Therefore, it
would be preferable to validate these results for invisible cancers in both a multivendor
and multicenter setting using a large sample size (especially that of MR-invisible lesions),
including consideration such as the use of independent measures, such that only one lesion
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is considered for each patient. Third, because whole-mount prostatectomy specimens were
needed for the analysis, there is an intrinsic selection bias in the cohort of MR-invisible
cancers, as only subjects referred to surgery were enrolled. These may not reflect the popu-
lation of men with MR-unidentified prostate cancer who did not undergo surgery. Fourth,
there may be small uncertainty in the radiology—pathology correlation. The sectioning of
the prostate was performed in approximately the same plane as the MRI images, without
the use of any patient-specific sectioning mold. In addition, formalin fixation results in
tissue shrinkage, which may affect radiology—pathology registration, but this is not unique
to our work. Finally, the labeling of unidentified cancers can be subjective as per the
visual interpretation of mpMRI, which has been shown to have large inter-reader variation.
Combining the prospectively identified lesions and the lesions retrospectively identified
after correlating with histology as identified lesions may introduce a bias. The intention
was to have a cohort of MR-unidentifiable lesions that are truly MR-invisible lesions, as
some of these retrospectively identified lesions could possibly have been identified by
other radiologists. While no differences were found for the identified cancer lesions found
prospectively on mpMRI or retrospectively identified after correlating with histology, this
could be influenced by background signal in the surrounding benign tissue [43].

5. Conclusions

Our study reveals that, independent from size and Gleason score, there are tissue
composition differences, specifically, a higher lumen (associated with high T2 and ADC)
and a lower epithelium (associated with lower T2 and ADC) in unidentified cancers
compared with identified cancers, which might explain why some of the prostate cancers
cannot be identified on mpMRI. Some of the newer tissue microstructural imaging models,
such as hybrid multidimensional MRI [44], luminal water imaging [38], VERDICT [39],
etc., or the development of new MRI methods that detect the intrinsic properties of cancer
cells, may have the potential to detect these lesions that cannot be detected on conventional
mpMRI
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Simple Summary: There is still an overdiagnosis of indolent prostate cancer (iPCa) lesions using the
Prostate Imaging-Reporting and Data System (PI-RADS), and radiomics has emerged as a promising
tool to improve the diagnosis of clinically significant prostate cancer (csPCa) lesions. However, the
current state and applicability of radiomics remains a challenge. This systematic review aims at
evaluating the evidence of handcrafted and deep radiomics in differentiating lesions at risk of having
csPCa from those with iPCa and benign pathology. The review highlighted a good performance
of radiomics but without significant differences with radiologist assessment (PI-RADS), as well as
several methodological limitations in the reported studies, which might induce bias. Future studies
should improve methodological aspects to ensure the clinical applicability of radiomics, especially
the need for clinical prospective studies and the comparison with PI-RADS.

Abstract: Early detection of clinically significant prostate cancer (csPCa) has substantially improved
with the latest PI-RADS versions. However, there is still an overdiagnosis of indolent lesions (iPCa),
and radiomics has emerged as a potential solution. The aim of this systematic review is to evaluate
the role of handcrafted and deep radiomics in differentiating lesions with csPCa from those with iPCa
and benign lesions on prostate MRI assessed with PI-RADS v2 and/or 2.1. The literature search was
conducted in PubMed, Cochrane, and Web of Science databases to select relevant studies. Quality
assessment was carried out with Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2),
Radiomic Quality Score (RQS), and Checklist for Artificial Intelligence in Medical Imaging (CLAIM)
tools. A total of 14 studies were deemed as relevant from 411 publications. The results highlighted
a good performance of handcrafted and deep radiomics methods for csPCa detection, but without
significant differences compared to radiologists (PI-RADS) in the few studies in which it was assessed.
Moreover, heterogeneity and restrictions were found in the studies and quality analysis, which
might induce bias. Future studies should tackle these problems to encourage clinical applicability.
Prospective studies and comparison with radiologists (PI-RADS) are needed to better understand
its potential.

Keywords: clinically significant prostate cancer; PI-RADS; magnetic resonance imaging; radiomics;

deep learning; machine learning; systematic review; prediction

Cancers 2024, 16, 2951. https:/ /doi.org/10.3390/cancers16172951 99 https://www.mdpi.com/journal/cancers



Cancers 2024, 16, 2951

1. Introduction

Prostate cancer (PCa) is the most frequent malignant tumor diagnosed in men, and
the second cause of cancer-related death among men [1]. The modified Gleason Score is
the recommended PCa grading, and it is based on the microscopic patterns seen in sample
tissues obtained from prostate biopsies, ranging from 6 (better prognosis) to 10 (worse
prognosis). In 2014, the ISUP Gleason Grading Conference on Gleason Grading of PCa
introduced grade groups to better stratify men with PCa, ranging from 1 to 5. ISUP grade 1
(equivalent to Gleason Score of 6) carcinomas have a better prognosis than ISUP grade > 1
(equivalent to Gleason Score of 7 or above) carcinomas [2]. Men with ISUP grade 1 PCa
have a better prognosis and can benefit from active surveillance programs in the right
conditions, while men with ISUP grade > 1 PCa tend to require curative treatment and
follow-up. Consequently, PCa can be further divided into indolent PCa (iPCa), which
has an ISUP grade 1, and clinically significant PCa (csPCa), which has an ISUP grade > 1.
Risk-stratified PCa screening focuses on improving early detection of csPCa and reducing
the overdetection of iPCa, thus avoiding unnecessary prostate biopsies and related side
effects [3-5].

Much of the progress in the early detection of csPCa comes from multiparametric or
biparametric prostate magnetic resonance imaging (mpMRI or bpMRI) performed before
prostate biopsy, which allows the identification of suspicious lesions and the estimation of
a semiquantitative risk of csPCa through the Prostate Imaging-Report and Data System
(PI-RADS), currently in its version 2.1 [6]. The indication for prostate biopsy is established
when the PI-RADS is >3 since the negative predictive value of MRI when using PI-RADS
2.1 ranges between 96% and 98% for PI-RADS 1 and 2, respectively. The positive predictive
value of PI-RADS 3 is 20%, that of PI-RADS 4 is 52%, and that of PI-RADS 5 is 89% [7,8].
Moreover, MRI increases sensitivity for the detection of csPCa by enabling targeted biopsies
of suspicious lesions, although it is complemented by the classic systematic biopsy since
a small percentage of csPCa is found only in this type of biopsy [9]. Such is the evidence
that the European Union recommends PCa screening based on serum prostate-specific
antigen (PSA) and MRI [3]. Therefore, the current approach is to perform an MRI in men
with a serum PSA > 3.0 ng/mL and/or an abnormal digital rectal examination (DRE),
followed by a targeted biopsy of PI-RADS >3 lesions, complemented with a systematic
prostate biopsy [10]. Even though the paradigm of early diagnosis has radically changed
thanks to the introduction of MRI, there are still limitations in the application of the latest
PI-RADS version [11]. Moreover, there is still important inter-reader variability when
assessing prostate lesions using PI-RADS version 2 and 2.1 [12,13], and the overdiagnosis
of iPCa in PI-RADS 3 lesions remains a challenge [8]. Consequently, there is a need for new
biomarkers and csPCa predictive models to reduce the number of false positives [14].

Radiomics is the extraction of quantitative imaging features from radiological images
that are imperceptible to radiologists with the use of specific artificial intelligence (AI)
software. These mineable high-dimensional data maximize the information that can be
extracted from medical images, as a diagnostic tool or even as prognostic one to improve
clinical decisions in the context of personalized precision medicine [15]. Traditional defined
and well-known quantitative features known as handcrafted radiomics have been widely
used in medical imaging [15]. However, the inception of deep learning algorithms has
allowed the automatic extraction of new unknown quantitative features, known as deep
radiomics, which might overcome the classical approach [16].

Radiomics has shown promising results in computed tomography (CT) and MRI for
improving PCa detection, PCa risk-group classification, risk of biochemical recurrence, and
risk of metastatic disease, as well as the identification of extra-prostatic extension or even
the evaluation of treatment toxicity, among others [17]. The discrimination between csPCa
and iPCa is the main field of research in radiomics applied to PCa [17,18] due to the current
diagnostic limitations previously highlighted. A radiomic or multivariable model capable
of improving the prediction of PI-RADS in detecting csPCa might help in reducing the
number of false positives and unnecessary biopsies in men with iPCa.
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Due to this, the European Society of Urogenital Radiology (ESUR) and European
Association of Urology (EAU) have advocated for developing robust Al models to overcome
these limitations [19]. However, there is still limited evidence of the role of radiomics in
real clinical scenarios, as well as its role in predictive models using other clinical variables
and the comparison with the PI-RADS.

The main aim of this systematic review is to evaluate the current evidence of the role
of handcrafted and deep radiomics in differentiating lesions with csPCa from those with
iPCa and benign lesions on prostate MRI assessed with PI-RADS v2 and/or 2.1. Secondary
objectives include the comparison between radiomic models and radiologists reporting
through the latest PI-RADS versions, as well as the performance in predictive models when
combined with other clinical variables.

2. Evidence Acquisition
2.1. Literature Search

The search was conducted in PubMed, Cochrane, and Web of Science databases to
select relevant studies for assessing the aims of this review which were published before
30 April 2024. The Boolean strings and keywords used in the search were (Radiomic OR
Machine Learning OR Deep Learning) AND Clinically Significant Prostate Cancer AND
(Magnetic Resonance Imaging OR PI-RADS). Two independent reviewers, A.A. and ].M.,
double-blind-reviewed the retrieved reports according to the eligibility criteria. In case
of disagreement, consensus was achieved by mutual accordance between both reviewers.
References of selected articles were also manually reviewed for additional citations. The
Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) criteria
were followed for conducting this systematic review [20]. This systematic review was
registered in PROSPERO (International Prospective Register of Systematic Reviews), with
the ID number CRD42024527768. A narrative synthesis was chosen for this systematic
review due to the heterogeneity of the selected studies.

2.2. Eligibility Criteria

The eligible studies were selected according to inclusion criteria based on the Pop-
ulation, Intervention, Comparator, Outcome (PICO) framework [21], with the detailed
breakdown depicted in Supplementary Table S1. The inclusion criteria derived from PICO
were (i) men with suspected PCa with consequent evaluation with prostatic mpMRI or
bpMRI; (ii) retrospective or prospective assignment of prostatic lesions with PI-RADS v2
or v2.1; (iii) targeted +/— systematic biopsy or radical prostatectomy performed after the
mpMRI or bpMRI; (iv) diagnosis of PCa based on histopathological findings, defining
csPCa as International Society of Urogenital Pathology (ISUP) grade group > 1 and iPCa
as ISUP grade group 1 [2]; (v) outcome measured as diagnostic performance of a hand-
crafted or deep radiomics model for differentiating csPCa from iPCa and benign lesions
with a measurable metric: area under the curve (AUC), sensitivity, specificity, accuracy,
positive predictive value (PPV), and negative predictive value (NPV). Exclusion criteria
were (i) men in active surveillance or with prior prostate cancer treatment (if specified in
the methodology); (ii) studies derived from public datasets (excluding external validation
sets). Men with only systematic biopsies were incorporated if no positive findings were
detected in bpMRI or mpMRIL

Observational studies were included in this review due to the current lack of random-
ized clinical trials using Al in clinical settings. Systematic reviews, meta-analyses, letters,
conference abstracts and unpublished manuscripts were excluded. In the case of different
studies using the same population or datasets, the best methodological study was selected
and the rest were discharged. Studies not written in English were excluded.
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2.3. Quality Assessment

Risk of bias assessment was analyzed with the Quality Assessment of Diagnostic
Accuracy Studies 2 (QUADAS-2) tool [22]. The risk was evaluated by two independent
reviewers (A.A. and ].M.) as unclear, low, or high. In case of disagreement, consensus was
achieved by mutual accordance between both reviewers. If all the domains were regarded
as low risk, the study was given a low risk of bias. If the study had one or more unclear risk
of bias, it was considered as an unclear risk of bias. If the study contained any high-risk
domain, it was considered as having a high risk.

2.4. Artificial Intelligence Quality Assessment

In addition to the QUADAS-2 [22] risk of bias assessment, each study was also re-
viewed with specific Al-quality standards guidelines. For studies using handcrafted
radiomics and traditional machine learning (ML) methods, the quality was evaluated
using the Radiomics Quality Score (RQS), giving a score out of 36 points for each paper
included [15]. The RQS v2.0 was not used since it was still under development at the time
of this systematic review. Studies using deep radiomics were assessed using the Checklist
for Artificial Intelligence in Medical Imaging (CLAIM) [23]. The 42-item checklist of this
guideline was evaluated in each case, regarded as fulfilled or not. The 2024 update was not
available at the time of this systematic review.

2.5. Data Collection

The data to be extracted were agreed upon between A.A. and .M. before the beginning
of the extraction, detailed in Supplementary File S2. Both authors were responsible for data
collection of the studies included. A tabular structure was used to display the results of
individual studies, referenced based on author and year of publication. A comprehensive
synthesis of the main findings based on each table was then performed, adding extra
information not included in the tables.

3. Evidence Synthesis
3.1. Study Selection

A total of 411 titles were obtained according to the search strategy, and 250 were
excluded because of duplicates. The remaining 161 were analyzed based on the title and
abstract, and 39 were deemed as relevant. A total of 21 reviews, systematic reviews, and
meta-analyses were discarded, as well as three editorials and 10 conference-related papers.
Three articles were written in a different language than English and were also discarded.
The full texts were finally reviewed for definite inclusion, with a final number of 13 studies
fulfilling the required criteria. An extra study was incorporated from the references of the
analyzed papers, for a total of 14 selected studies [24-37]. The flow diagram is depicted in
Figure 1.

3.2. QUADAS-2 Risk of Bias Assessment

The results of the QUADAS-2 [22] assessment for each paper included are presented
in Figure 2. A total of 4 out of 14 (29%) studies [26,29-31] had low risk of bias, while
7 out of 14 (50%) [24,25,27,32-34,36] had high risk of bias. The remaining three studies
(21%) [28,35,37] had an unclear risk of bias. All papers had low applicability concerns.
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(n=14) treatment (n=1)

Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA 2020) flow
diagram for the selection of relevant studies based on the search strategy.

Among the seven studies with high risk of bias, four of them had inadequate patient se-
lection [24,25,33,36] because of inappropriate exclusion criteria (exclusion of lesions < 5 mm
or advanced stages) [24,25,36] or case—control design [33], which might overestimate the
results and conclusions. Moreover, there was also a high risk of bias in the index test in two
studies [25,32] because the threshold used was not clearly specified to the best of our knowl-
edge. There was also a high risk of bias in flow and timing in another two studies [27,34]
because the period between the MRI and the prostate biopsy or radical prostatectomy
exceeded three months in some cases. This might underestimate the risk of csPCa based
on MRI interpretation because of a potential tumor progression during the waiting time.
Finally, two studies (21%) had an unclear risk of bias in patient selection because the
enrollment of the patients and/or exclusion criteria were not clear/reported [32,37].
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Figure 2. QUADAS-2 risk of bias and applicability concerns of the selected studies (top, [24-37]) and

its corresponding graphical representation (bottom).

3.3. Quality Assessment Based on RQS and CLAIM

The results of Al-specific quality assessment are first presented for the studies based
on handcrafted radiomics using RQS [15], detailing the overall score and the specific results
for each item in the checklist. Afterwards, the results of the studies based on deep radiomics
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are presented using CLAIM [23], highlighting the most important or controversial items of
the checklist.

Eight studies (57%) used handcrafted radiomics for extracting image features [24-26,29,33-35].
The overall quality based on RQS [15] was low, with a median of 10.5 and interquartile
range (IQR) of 2.5, out of a maximum of 36 points. All the studies reported the image quality
protocol (item 1) and feature reduction or adjustment for multiple testing (item 4). However,
none of them performed phantom studies (item 3), imaging at multiple timepoints (item 4),
biological correlation (item 7), prospective studies (item 11), potential clinical applications
(item 14), or cost-effectiveness analysis (item 15). Three studies (38%) performed multiple
segmentations and/or feature robustness assessments (item 2) [26,29,36]. Multivariable
analysis was performed in five studies [24,25,29,34,36], while the rest opted for an exclusive
radiomic model [26,33,35]. Interestingly, four studies also made a comparison of the ra-
diomic model or multivariable model with the PI-RADS classification (item 6) [24,25,29,35],
albeit in only two was a statistical comparison between both given [24,29]. Moreover, only
three studies conducted external validation (item 12) [26,29,35]. Discrimination statistics
(item 9) were given in all the studies, although the confidence intervals were not reported in
a single study [25]. Cut-off analysis (item 8) and calibration statistics (item 9) were reported
in three [24,34,36] and two [26,29] studies, respectively. Lastly, a single study published the
code used for creating the model [33].

Six studies (43%) used deep radiomics for extracting image features [27,28,30-32,37],
and were assessed with CLAIM [23]. Among the different items in the methods section,
none of the studies reported deidentification methods (item 12) nor how missing data
were handled (item 13), although no study reported missing data, per se. The intended
sample size and how it was determined (item 19) was also not specified in any of the
studies, nor was robustness analysis (item 30). Although annotations were generally well
explained, measurement of inter- and intrareader variability was not well reported. A
detailed description of the model and its training (items 22 to 25) was generally well
reported, although the initialization of model parameters (item 24) was only reported in
one study [37], which used transfer learning. Metrics of model performance (item 28)
were reported in all the studies, with the corresponding statistical measures of significance
(item 29) except in a single study [28]. External validation (item 32) was carried out in half
of the studies [27,28,31]. Importantly, a single study used explainability or interpretability
methods (item 31) [27]. In the results section, two studies did not present the flow of
participants in a diagram (item 33) [32,37]. The demographic and clinical characteristics
in each partition (item 34) was partially, or not, performed in two studies [30,37]. Failure
analysis of incorrectly classified cases was only properly conducted in a single study [31].
Finally, in the discussion and other information section, it is important to note that two
studies used open code [27,31].

3.4. Study Characteristics

The characteristics of the selected studies are represented in five consecutive tables
(Tables 1-5) following a continuous flow from the main clinical and demographic charac-
teristics to specific details of the radiomic pipeline and, lastly, the metrics of the radiomic,
clinical, or combined models developed in each paper.
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Table 1 presents the main clinical, demographic, and radiological characteristics of the
different cohorts included in the 14 selected studies [24-37]. The number of participants,
origin (i.e., United States of America), and whether it was a unicentric or multicentric
study is depicted, as well as the years in which the dataset was obtained. The amount
of csPCa included in each paper and the number of lesions in the peripheral zone is also
summarized. The MRI manufacturer and the magnetic field strength used for each cohort
are represented, as well as the PI-RADS score of the lesions reported. Finally, the reference
standard (prostate biopsy or radical prostatectomy) as well as the biopsy technique and the
time between the MRI and the procedure are specified.

As seen in this table, most of the selected papers (10 of 14, 71%) used data from single
institutions [24,25,27,28,30-32,34,36,37]. The number of men included ranged from 86 to
1230 patients, with a median of 294 and an IQR of 262 [24-37]. Two of the studies had more
than 1000 patients [27,31]. All the studies were retrospective, in which eight (57%) had data
collected for >4 years [24,27-29,31,32,34,37]. There was a general disbalance in the number
of csPCa cases of the selected studies. Four studies had between 40 and 60% of csPCa
cases [25,27,35,37], while the rest were more disbalanced, with 12% of csPCa cases as the
lowest percentage [34] and 77% as the highest [24]. Almost half or more of the lesions were
in the peripheral zone [24,26-33,35], with a median of 61% and IQR of 19%. The second
most common location was the transitional zone, with a median of 33% and IQR of 7%.
Five studies included a few lesions in other locations such as anterior fibromuscular stroma,
central zone, or diffuse [27-29,32,35]. Four studies did not report the specific prostate
location of the lesions [25,34,36,37].

Half of the selected studies included images from more than one MRI vendor (7 of
13, 54%) [26,28,29,31,33-35]. One study did not report the specific vendor [32] and another
reported multiple vendors, but the brand was not specified [28]. Siemens and Philips were
the most frequent vendors, present in 10 of the 12 studies (83%) [24-27,31,33-37]. A total
of 12 of the 14 studies (86%) used a 3 Tesla as the magnetic field [24,26-34,36,37], and one
used a 1.5 Tesla machine [25]. The remaining study used MRIs with both magnitudes [35].
Only two studies included some patients in which an endorectal coil was used [35,37]. A
total of 10 of 14 studies specified the PI-RADS of the lesions included [24-29,31-35]. Seven
(70%) included PI-RADS 3 and/or higher lesions [24-26,28,32-34], of which three included
only PI-RADS 3 lesions [26,34,36].

Most of the studies (9 of 14, 64%) were based on prostate biopsy as the reference
standard [24-27,30,31,33,34], and the remaining five (36%) were based on radical prostate-
ctomy [28,29,32,35,37]. All of them had the procedure performed after the MRI, but half
of the studies did not report the period between the MRI and the procedure. It ranged
from four weeks to 12 months in the studies in which it was reported [25-27,29-31,33].
Transrectal ultrasound (US) was the preferred approach for performing the prostate biopsy
in all the studies except in one case, which was not reported [27]. Five studies specified
MRI/US fusion technique as the preferred choice [24-26,31,34] while only two preferred
cognitive targeting [30,33]. The remaining two studies did not specify [27,36].

Table 2 describes the basic characteristics of the radiomic pipeline. As such, the
technique used for extracting the features, either handcrafted radiomics or deep radiomics,
is specified. The MRI sequences in which the radiomic features were obtained are given,
as well as the origin (i.e., lesion segmentation or other parts of the prostate). Furthermore,
several steps in a machine learning process such as image preprocessing, data imbalance or
augmentation techniques, feature selection, and train/test split ratio are detailed. Finally,
the algorithm used for constructing the model is also depicted.

Eight studies (57%) used handcrafted radiomics for extracting image features [24-26,29,33-36],
while the remaining six (43%) relied on deep radiomics [27,28,30-32,37]. All the se-
lected studies extracted the features from MRI T2 and/or ADC sequences, and in five
(36%) [26,27,29,31,35], they were also extracted from high b-value DWI sequences. None of
the studies extracted features from dynamic contrast-enhanced (DCE) sequences. Imaging
features were extracted in all the selected studies from the lesion segmentations. Additional
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prostate segmentations were performed in four studies (29%) [27-29,31], although in only
one study were they used for extracting image biomarkers [29]. The peripheral and tran-
sitional zones were also additionally segmented in one study [27]. All the segmentations
were manually carried out except in one study, in which a predefined bounding box was
created around the annotated lesions, and the prostate and prostate zones were automati-
cally segmented with nn-Unet [27]. OsiriX was the most used software for performing the
manual segmentations, which was used in three studies (21%) [25,32,37]. Slicer [24,33] and
ITK-SNAP [26,30] were the second most used software tools. One study did not report the
tool [34]. The radiologist experience was specified in all but one study [37], ranging from
3 to more than 10 years of experience. In three studies [25,33,34], the segmentations and/or
relabeling of the lesions were performed by a single radiologist.

Image preprocessing was reported and performed in 11 studies (79%) [26-32,34-37].
One study reported that image preprocessing was not needed since all the images were
acquired with the same protocol and resolution [24]. Intensity normalization and resam-
pling were the most frequently performed. Image registration was reported in four studies
(29%) [26,30-32], in which the images were spatially matched using Elastix software in
two of them [26,31]. In contrast, data imbalance techniques and data augmentation were
barely reported. The former was reported in five studies (36%) [26,28,34,35,37]. The most
common method was synthetic minority oversampling technique (SMOTE) [26,34]. In one
study it was regarded as not necessary [37]. Data augmentation was performed in five
studies [27,29,31,35,37].

Among the eight studies that used handcrafted radiomics [24-26,29,33-36], PyRa-
diomics was the most used library for extracting the imaging features [24,29,33,34]. Feature
robustness was assessed in three of them (38%) [26,29,36]. Feature normalization was also
reported in three studies (38%) [24,26,35], with z-Score as the method used. Feature har-
monization was reported in one study [35], which used ComBat. Finally, feature selection
was performed in the eight studies [24-26,29,33-36], with different algorithms specified
in Table 2. Train—test split was the preferred method for training the model in 12 of the
selected studies [24,26-32,34-37], with 80/20% being the most common partition. The re-
maining two studies performed a cross-validation [25,33]. The algorithm used for creating
the model varied between studies, but classic machine learning algorithms were used for
handcrafted radiomics studies, and deep neural networks were used for deep radiomic
studies.

Tables 3 and 4 depict the overall results of the radiomic models, divided into studies
that use handcrafted radiomics (in Table 3) or deep radiomics (in Table 4). In both tables,
the validation strategy (i.e., internal or external validation) and the specific analysis (i.e.,
per index lesion) are detailed. The AUC, sensitivity, and specificity of the best radiomic
model for csPCa prediction are also given, alongside the MRI sequences in which the
image features were extracted that proved to be the most relevant for the prediction. For
comparison, the metrics of the PI-RADS evaluation are also depicted if it was assessed, with
the threshold considered as csPCa in such cases (i.e., csPCa is considered if PI-RADS > 4).

In the studies based on handcrafted radiomics [24-26,29,33-36], index lesion was the
preferred analysis except in one case in which the analysis was based on all the lesions [33].
Three of the eight studies (38%) performed an external validation [26,29,35]. The AUC was
reported in all the studies and ranged from 0.72 to 0.98 for index lesions in the internal
validation. The results for the external validation sets were similar to the ones obtained
in the internal validation, being 0.75 and 0.95. Sensitivity and specificity were reported
in five of the eight handcrafted radiomics studies [26,29,35,36]. In the studies based on
deep radiomics [27,28,30-32,37], the preferred analysis was more diverse since it included
the index lesion and all the lesions, as well as a sextant-level analysis in one study [30].
Three of the six studies (50%) conducted an external validation [27,28,31], albeit two [27,31]
were based on the PROSTATEx public dataset [38]. The AUC was reported in all but one
study [30], which ranged from 0.73 to 0.85 for index lesions and 0.73 to 0.89 for all lesions in
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internal validation. The values were 0.63 for index lesions and 0.86 and 0.87 for all lesions
in the external validation.

The PI-RADS performance was evaluated in half of the studies [24,25,29-32,35,37], in
which five reported the AUC, sensitivity, and specificity [29,31,32,35,37]. The statistical com-
parison between the radiomic model and PI-RADS was assessed in four studies [30-32,37].
Zhu et al. [30] reported no significant differences in sensitivity between both models
(considering PI-RADS > 3 as csPCa) at index lesion, sextant-level, and all-lesions-level
analysis. Liu et al. [32] reported a similar performance between both models (considering
PI-RADS > 4 as csPCa) at index lesion based on AUC, but the radiomic model performed
significantly better than PI-RADS in all lesion-level analysis. Zhong et al. [37] reported no
significant differences between both models (considering PI-RADS > 4 as csPCa) based
on AUC at all lesion levels. In contrast, Jiang et al. [31] reported a significantly better
performance of the PI-RADS model (considering PI-RADS > 3 as csPCa) in the internal
validation and similar in external validation, based on AUC.

Table 5 assesses other tested models such as clinical models and /or combined models
(clinical variables with radiomic features), and it is displayed in a similar way to Tables 3 and 4
with the validation strategy, specific analysis, and metrics detailed.

In six studies [24-26,29,34,36], PSA density (PSA-D), clinical models, and combined
models were also assessed. Dominguez et al. [24] reported a significantly better perfor-
mance of the combined model in comparison to PI-RADS (cut-off not reported) and PSA-D
in the cross-validation. Jing et al. [29] also reported a significantly better performance of the
combined model in comparison to PI-RADS (cut-off not reported) in internal and external
validation. Li et al. [36] showed no significant differences between the radiomic model and
combined models, but both were better than the clinical model.

4. Discussion

This systematic review evaluated the current evidence of deep and handcrafted ra-
diomics models in distinguishing csPCa from iPCa and benign lesions in prostate MRIs
assessed with PI-RADS v2 and/or v2.1. The selected studies demonstrated good perfor-
mance for index lesion classification, with handcrafted radiomics models achieving AUCs
ranging from 0.72 to 0.98, and deep radiomics models achieving AUCs from 0.73 to 0.85.
A meta-analysis was not conducted due to the significant heterogeneity in the datasets,
methodologies, model development, and validation of the selected studies, preventing
definitive conclusions. Nevertheless, there is no clear difference between the performance
of both approaches, nor between internal and external validations, consistent with other
reviews [39]. A meta-analysis published in 2019 favored handcrafted over deep radiomics
models [40], although the authors noted that the low number of participants in the selected
studies might have favored handcrafted methods. Developing deep learning models to
achieve expert performance requires large amounts of data [41], so we believe that deep
radiomic models will surpass handcrafted ones in the future as recent studies incorporate
progressively more data. A recent review published in 2022 slightly favored deep radiomic
methods over traditional ones, despite not being a meta-analysis [42].

The substantial heterogeneity of the included studies is also observed in other similar
reviews [39,40,42-44]. Specific eligibility criteria were designed to mitigate this limitation.
First, studies with preprocedure MRI were included to avoid misinterpretation due to
hemorrhage, which can affect radiologist judgment and induce bias [45]. Second, only stud-
ies using PI-RADS v2 and/or v2.1 for lesion assignment were included, as these provide
better interpretability than PI-RADS v1 or Likert score [46,47]. Third, targeted biopsies
(combined or not with systematic biopsies) or radical prostatectomies were the chosen
reference standards. Exclusive systematic biopsies were excluded due to their inferior
performance compared to targeted biopsies [48], which has been a source of heterogeneity
in past reviews [40,42]. Moreover, mixing targeted biopsies and radical prostatectomies was
avoided to homogenize the data, despite no clear pathological upgrading of radical prosta-
tectomy compared to targeted prostate biopsy [49]. A recent study showed no differences
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in model performance based on reference standard [50], but further assessment is needed.
Studies involving men in active surveillance or with prior prostate cancer treatment were
excluded to prevent bias towards higher-risk patients. Finally, studies based on public
repository datasets were excluded to ensure multicentric and larger studies, addressing
issues highlighted in past reviews [40,42]. However, public repositories will be crucial in
the future due to the current lack of sufficient multicentric data. Significant efforts are being
made in this area [51], which are beyond the scope of this review. Despite these efforts,
significant heterogeneity and restrictions were found in the data extracted and the quality
analysis using QUADAS-2 [22], RQS [15], and CLAIM [23] tools, which will be discussed
in the following paragraphs, along with recommendations for future studies.

First, there were several methodological constraints that might introduce bias into
radiomics models, starting with data issues. Most of the studies were based on single-
center datasets and exhibited data imbalance, with an overrepresentation of csPCa cases
and a predominance of peripheral zone lesions. Data imbalance and lack of multicentric
datasets are common problems in Al in medical imaging, which can introduce bias [52,53].
Although this is intrinsic to the collected data and difficult to overcome in healthcare
due to data scarcity, few of the selected studies applied techniques to address data im-
balance [26,28,34,35,37] or used data augmentation techniques [27,30,31,35,37]. Moreover,
some studies excluded lesions smaller than 5 mm or advanced stages, introducing a bias by
reducing false positives and excluding high-risk patients [24,25,36]. This reduces data rep-
resentativity and may lead to bias, contributing to high-risk assessments in the QUADAS-2
evaluation [22]. Similarly, most studies used images from only one or two different MRI
vendors and a magnetic field strength of 3T, which also reduces data representativity. Some
nonselected studies reported no significant differences in performance based on magnetic
field strength or MRI vendor [50,54,55], but further assessment is needed. Additionally,
despite efforts to mitigate bias due to the chosen reference standard, few studies reported
the time between the MRI and the procedure, or exceeded three months, contributing to
unclear and high-risk bias, respectively [24,27,28,32-37]. It is also important to emphasize
the interobserver variability between pathologists when assessing the Gleason Score, so the
pathologist’s experience should be reported [56].

Secondly, the review highlighted sources of bias in the radiomic pipeline. One of the
most notable was the limited data on interobserver/inter-reader agreement when segment-
ing lesions, as noted in the RQS [15] and CLAIM [23] evaluations. Manual segmentations
performed by multiple radiologists introduce heterogeneity and influence model perfor-
mance. Although radiologist experience was specified in all but one paper [37], there was
limited evaluation of interobserver/inter-reader variability in most cases. Similarly, in
studies based on handcrafted radiomics, feature robustness was rarely assessed. This is
important because radiomic features have low reproducibility and repeatability [57,58],
introducing clear bias. In contrast, feature selection was performed in all the handcrafted
radiomic studies, and the top selected features were reported except in two studies [33,35].
Image preprocessing was also well defined in most of the included studies, allowing repro-
ducibility. None of the studies extracted features from dynamic contrast-enhanced (DCE)
sequences. There has been a progressive decline in the number of studies that extract
features from DCE in favor of T2 and/or ADC, as noted in similar reviews [39,42]. There is
no clear added value in comparison to T2 and ADC [39]. All the studies extracted features
from T2 and/or ADC sequences, and four of them from high-b value DWI [26,27,31,35].
While high-b values are better than low-b values for detecting PCa [59], there is controversy
about the added value of DWI if features are already extracted from ADC, leading to
potential bias [60]. In the studies that included both sequences, there was no clear drop in
performance, but further assessment is needed [26,31,35].

Thirdly, there were important limitations in the training/validation of the models.
The most significant one is the lack of external validation cohorts. Past similar reviews
also highlighted this problem [39,40,42—-44], which limits model applicability and robust-
ness [61]. Six studies used external validation sets [26-29,31,35], but two of them were
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from public repositories [25,29]. Calibration studies should also be performed in external
cohorts, but only two studies reported them [26,29]. There were also other constraints
regarding the training/validation of the models, such as no mention of the minimum
sample size needed to detect a clinically significant effect size and make comparisons [62],
as well as poor reporting of how thresholds were chosen or reported. Moreover, all the
studies were retrospective, which inherently induces bias due to the design and limited
data. Prospective studies are needed to better assess the potential of Al models in clinical
practice. Efforts are being made in this regard, and some prospective studies are being
published with encouraging results [63]. Additionally, open-source code should be used to
favor transparency and reproducibility, as specified in the RQS [15] and CLAIM [23] tools.
Only three studies used open-source code [27,31,33]. Potential clinical applications should
also be discussed, such as using the models as a second reader [64]. Explainability methods
are also required to facilitate clinical implementation. In this review, only one study used
interpretability methods [27].

Lastly, other objectives of this review were to compare radiomic models, radiologists,
and multivariable models. This issue has been noted in past reviews [39,40] since there
is a lack of comparisons between Al-based models and current clinical practice [65]. In
fact, only four studies conducted a statistical comparison between the radiomic model
and the PI-RADS classification [30-32,37], using PI-RADS > 3 or >4 as the thresholds
for detecting csPCa. Overall, there was no clear difference between the performance of
PI-RADS and the models. Liu et al. [32] reported significantly better performance of
the radiomic model at all lesion levels but not at the index lesion level. Jiang et al. [31]
reported a significantly better performance of PI-RADS in the internal validation set but
found no differences at external validation. Future studies should assess this issue to
favor clinical implementation, as well as comparing the performance based on radiologist
expertise. Hamm et al. [27] reported better performance of nonexpert readers when using
the Al assistance, especially in PI-RADS 3 lesions, which represents a challenge due to the
overdiagnosis of iPCa [8]. It is important to consider that there is also inherent inter-reader
variability in MRI interpretation with PI-RADS system among radiologists [12,13], as well
as limitations of the PI-RADS v2.1 [11], but these limitations are beyond the scope of this
review. Four studies created multivariable models that incorporated clinical variables
(including PI-RADS in some cases) [24,25,29,36]. Dominguez et al. [24] and Jing et al. [29]
reported significantly better performance of the combined model than the PI-RADS. Future
studies are needed to better assess the role of radiomics in combined models to improve
the current standard based on PI-RADS.

In the light of the above, we offer the following recommendations for future studies to
assess the constraints and heterogeneity and encourage clinical applicability: (i) large and
multicentric datasets with representative and balanced data for the clinical aim of the model
should be used; (ii) clear inclusion and exclusion criteria should be well specified, avoiding
criteria that make nonrepresentative or biased data such as exclusion of advanced stages;
(iii) detailed methodology, preferably following published Al guidelines for medical imag-
ing (such as CLAIM [23]); (iv) robust reference standard, such as targeted biopsy or radical
prostatectomy; (v) prospective design is desired; (vi) assessment of interobserver/inter-
reader variability in manual segmentations, as well as feature robustness; (vii) detailed
statistical methods, including sample size calculation and appropriate discrimination met-
rics with statistical significance and information about selected thresholds; (viii) validation
on external datasets; (ix) open source and explainability methods are encouraged; (x) com-
parison of the model with current PI-RADS version, as well as development of combined
models with clinical variables (such as PSA-D, DRE or others).

This review had some limitations. First, the publication bias favors studies with
good performance that might overestimate the results. Second, relevant studies published
after the deadline of the review might have been missed. Third, the specific eligibility
criteria might have discharged relevant studies in which the methodology was not properly
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defined. Lastly, no direct comparisons and analysis were possible due to the heterogeneity
of the data.

5. Conclusions

This systematic review denotes promising results of radiomic models in the prediction
of csPCa in the included studies. However, the quality evaluation highlights significant
heterogeneity and constraints that limit the clinical application of these models. This
includes limited data representativity and methodological errors in the radiomic pipeline
such as proper evaluation of interobserver/inter-reader variability or feature robustness, as
well as a lack of prospective studies and external validation to evaluate the real performance
outside the internal dataset. Furthermore, more efforts are needed to compare these models
with radiologists and the integration of radiomics in combined models with other clinical
variables. Future studies should tackle these problems to better understand the potential of
radiomics in this field and ensure proper implementation in routine clinical practice.
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S

Simple Summary: The majority of patients with advanced prostate cancer who receive
hormone therapy ultimately progress to castration-resistant prostate cancer (CRPC), which
is associated with a significantly poorer prognosis. The current methods to predict CRPC
progression rely on invasive and highly time-consuming approaches. This study proposes
a multimodal fusion artificial intelligence model that combines multiparametric magnetic
resonance imaging data with baseline clinical characteristics of patients to predict whether
prostate cancer patients could progress to CRPC after 12 months of hormone therapy. A
dense multimodal fusion artificial intelligence (Dense-MFAI) model was developed and
validated in this study using data from 96 patients. The model demonstrated a high degree
of accuracy in predicting CRPC progression, with a prediction accuracy of 94.2%. This
non-invasive approach has the potential to assist urologists in making more informed
treatment decisions and developing appropriate prognostic measures for prostate cancer
patents, thereby improving patient prognosis through early intervention and personalized
treatment strategies.

Abstract: Objectives: The primary objective of this study was to identify whether patients
with prostate cancer (PCa) could progress to denervation-resistant prostate cancer (CRPC)
after 12 months of hormone therapy. Methods: A total of 96 PCa patients with baseline
clinical data who underwent multiparametric magnetic resonance imaging (MRI) between
September 2018 and September 2022 were included in this retrospective study. Patients
were classified as progressing or not progressing to CRPC on the basis of their outcome
after 12 months of hormone therapy. A dense multimodal fusion artificial intelligence
(Dense-MFAI) model was constructed by incorporating a squeeze-and-excitation block and
a spatial pyramid pooling layer into a dense convolutional network (DenseNet), as well as
integrating the eXtreme Gradient Boosting machine learning algorithm. The accuracy, sen-
sitivity, specificity, positive predictive value, negative predictive value, receiver operating
characteristic curves, area under the curve (AUC) and confusion matrices were used as clas-
sification performance metrics. Results: The Dense-MFAI model demonstrated an accuracy
of 94.2%, with an AUC of 0.945, when predicting the progression of patients with PCa to
CRPC after 12 months of hormone therapy. The experimental validation demonstrated that
combining radiomics feature mapping with baseline clinical characteristics significantly

Cancers 2025, 17, 1556 https://doi.org/10.3390/ cancers17091556
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improved the model’s classification performance, confirming the importance of multimodal
data. Conclusions: The Dense-MFAI model proposed in this study has the ability to more
accurately predict whether a PCa patient could progress to CRPC. This model can assist
urologists in developing the most appropriate treatment plan and prognostic measures.

Keywords: prostate cancer; castration-resistant prostate cancer; mpMRI; deep learning;
radiomics

1. Introduction

Prostate cancer (PCa) is the second most common cancer in men worldwide [1]. The
prostate cancer screening rate is lower in China than in other developed countries [2].
Consequently, the majority of initial diagnoses occur in the middle or late clinical stages,
resulting in a less favorable overall prognosis for prostate cancer patients [3]. Androgen
deprivation therapy is currently the primary treatment for men diagnosed with advanced
PCa [4]. However, after a median of 12 months of androgen deprivation therapy, almost all
advanced PCa patients progress to castration-resistant prostate cancer (CRPC) and the time
to progress to CRPC varies considerably between patients [5-7]. Once a patient reaches the
CRPC stage, the disease rapidly progresses and the prognosis is extremely poor [8].

The clinical progression of CRPC is currently determined by the following three
factors: serum testosterone reaching desmoplastic levels (i.e., <50 ng/dL or <1.7 nmol/L),
persistent elevation of prostate-specific antigen (PSA) and tumor progression visible in
images [9]. However, the use of single indicators such as PSA and serum testosterone for
judgments is inherently unreliable [10]. Therefore, there is a pressing need for a method
to predict at an early stage whether a patient could progress to CRPC within a specified
period following hormone therapy to facilitate clinical decision-making.

Despite significant advancements in precision medicine, proactively and accurately
predicting whether a patient could progress to CRPC within a specific time frame remains
challenging. A number of studies have predicted PCa progression by fusing multiparamet-
ric magnetic resonance imaging (mpMRI) and clinical features. Roest et al. [11] utilized a
U-Net model fusing these two modalities to predict clinically significant PCa progression.
In contrast to the utilization of a solitary deep learning modeling approach, our study
employed a staged and multi-module model design, accompanied by the further inte-
gration of information from radiomics. Currently, the majority of methods employed for
CRPC prediction utilize biomarkers, the expression of specific genes or proteins and tumor
immunohistochemistry [12-14]. Jun et al. [15] identified six genes, including NPEPL1 and
VWE, to be predictive of CRPC using screening and a regression analysis of 287 genes.
Scher et al. [12] demonstrated a strong correlation between the measured circulating tu-
mor cell counts and the progression of CRPC (r = 0.84). However, these methods are
associated with high costs, invasive procedures and additional time delays. In contrast,
mpMRI—specifically, radiomics feature mapping—and clinical parameters were employed
in the present study to construct a multimodal model for prediction. T2-weighted imag-
ing provides anatomical information regarding PCa and dynamic contrast-enhanced MRI
(DCE-MRI) aids in the detection of recurrent prostate disease by evaluating the character-
istics of the prostate microvascular system [16,17]. Radiomics using tumor heterogeneity
features can provide more comprehensive information to accurately predict tumor pro-
gression [18,19]. Furthermore, previous studies have demonstrated that baseline clinical
features may also provide crucial prognostic information to monitor disease progression in
prostate cancer patients [20]. Therefore, a quantitative analysis approach was employed
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in the present study to predict outcomes, thereby reducing the subjectivity inherent in
traditional methods while circumventing the laborious process of the manual testing of
genes and proteins that is needed.

Here, we propose an approach based on a multimodal fusion artificial intelligence
(MFAI) model to predict whether PCa could progress to CRPC at an earlier time point, at a
median of 12 months, on the basis of mpMRI, radiomic feature mapping and baseline clini-
cal data. The implementation of this model by urologists could enable early intervention in
high-risk patients and the development of more precise treatment and follow-up plans.

2. Materials and Methods
2.1. Patients

This retrospective study was approved by the Radiological Review Board of the
First Hospital of China Medical University, Shenyang, and adhered to the principles and
requirements of the Declaration of Helsinki. No further consent was required for the
study. This study involved a retrospective analysis of previously collected data from
PCa patients treated between September 2018 and September 2022 at our hospital. The
following clinical information was recorded: age, baseline PSA level, Gleason score and
clinical TNM stage. The following individuals were excluded from the study: (i) those
who did not undergo DCE-MRI prior to hormone therapy and biopsy; (ii) those with an
incomplete apparent diffusion coefficient sequence; (iii) those with a history of aggressive
malignancy or serious complications in the absence of complete information; (iv) those
with other tumor types, confirmed pathologically; (v) those lacking appropriate baseline
clinicopathological information; and (vi) those who underwent treatment or tissue biopsy
prior to MRI. A total of 96 patients (mean age = 65 years; range 4588 years) were enrolled
in this study; 58 patients did not progress to CRPC after 12 months of hormone therapy
and 38 patients progressed to CRPC. The patient recruitment process is shown in Figure 1.

Patients with PCa from September 2018 to
September 2022 (n=134)

Patients excluded due to not having a DCE-MRI
prior to hormone therapy (n=11)

Patients excluded due to no complete ADC
sequence(n=4)

Patients excluded due to having other types of
tumors (n=14)

Patients excluded due to incomplete
clinicopathologic information at baseline (n=9)

Study cohort consisted of all eligible patients (7=96)

CRPC patients (n=38) non-CRPC patients (n=58)

Figure 1. Flowchart of patient selection. PCa: prostate cancer; DCE-MRI: dynamic contrast-
enhanced magnetic resonance imaging; ADC: apparent diffusion coefficient; CRPC: castration-
resistant prostate cancer.
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2.2. Image Acquisition

MRI was performed using a Siemens VIDA 3T MRI scanner (Siemens Healthineers,
Erlangen, Germany). The mpMRI protocols included T2-weighted imaging, diffusion-
weighted imaging (DWI) and DCE-MRI. DWI used SPAIR (SPectral Attenuated Inversion
Recovery) fat suppression and b-values of 10, 50, 100, 150, 200, 400, 600, 800, 1000 and
1500 s/mm?. DCE-MRI data were acquired at a temporal resolution of 7 s. The total
amount of gadopentetate dimeglumine injected was calculated on the basis of the patient’s
weight (0.2 mmol/kg) and the imaging time was 4.3 min. The specific parameters of the
MRI are presented in Table 1.

Table 1. Magnetic resonance imaging parameters.

Imaging FOV Scan Matnx TE (ms) TR (ms) Slice Thickness Interval Flip 1O&ng1e

Sequence (mm) Size (mm) (mm) )
T2WI 200 512 x 512 128 500 3 0.6 90
DWI 260 120 x 96 72 400 3 0.6 /
DCE 340 203 x 320 1.3 3.4 3.5 0 9

FOV: field of view; TE: echo time; TR: repetition time; T2WI: T2-weighted imaging; DWI: diffusion-weighted
imaging; DCE: dynamic contrast-enhanced.

2.3. Data Analysis

The DCE-MRI signal enhancement rate (), apparent diffusion coefficient (ADC)
values and T2 values were calculated on the basis of mpMRI. Previous studies have also
demonstrated the effectiveness of these parameters at identifying lesions [21]. Consequently,
the three quantitative parameters were selected for the purpose of predicting whether a
patient could progress to CRPC.

2.3.1. a-Mapping Acquisition

The percentage signal enhancement (PSE) per pixel in DCE-MRI was calculated as
shown in Equation (1), where S(¢) is the signal intensity curve and Sy is the baseline signal
before contrast-agent injection.

S(i’) — Sy .

PSE(t) = 2
0

100 1)

Then, an empirical mathematical model was used to fit the PSE(t) as follows:
PSE(t) = A(1—e *)e P )

where A is the amplitude of the PSE, « is the rate of signal enhancement and p is the elution
rate. Instead of performing overall averaging directly over the ROI, this process first
calculates the percentage signal enhancement profile (PSE(t)) (Equation (1)) independently
for each voxel of the DCE-MRI sequence and then fits the parameter « (Equation (2)) to
that voxel based on an empirical mathematical model. Then, we averaged the values for all
the voxels in the ROI for our analysis.
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2.3.2. T2 Mapping Acquisition

The T2 value was calculated from multi-spin—echo images via a monoexponential
signal model according to Equation (3), as follows:

S =25y exp(—?;) 3)

where TE is the echo time, S is the signal strength corresponding with different echo times
and Sy is the signal strength at the moment when TE = 0.

2.3.3. Apparent Diffusion Coefficient Mapping Acquisition

The apparent diffusion coefficient value was calculated from diffusion-weighted
imaging via Equation (4), as follows:

S = Spexp(—b-ADC) 4)

where b is the diffusion weighting factor, Sy is the undiffused spin—echo signal and S is the
diffusion-weighted attenuated spin—echo signal. The b-values of this experiment were 10,
50, 100, 150, 200, 400, 600, 800, 1000 and 1500 s/mm?.

2.3.4. Long-Run High Gray-Level Emphasis Mapping Acquisition

Our research team previously reported that the long-run high gray-level emphasis
(LRHGLE) features calculated on the basis of the gray-level contour matrix in x-parameter
mapping are significantly influencing factors for determining sensitive resistance to hor-
mone therapy in prostate cancer [22]. Consequently, we also calculated the radiomic feature
mapping. Each pixel was designated as the center of a matrix with a size of 5 x 5, which
was used to calculate the LRHGLE features. The average value was then assigned to the
center pixel. In this manner, the LRHGLE texture feature mapping was constructed.

2.4. Data Preparation

In this study, index lesions were manually and independently marked as regions
of interest using a semi-automated method involving two experienced radiologists on
the basis of the patient’s diagnostic report. In the event of a Dice similarity coefficient
for tumor contours less than 0.80 for two radiologists, the contour was considered to be
significantly different, prompting a consultation to reach a consensus. To ensure consistency
and reliability, the tumor contours delineated by a radiologist with greater experience were
used for all subsequent analyses after a consensus was reached. Neither of the radiologists
had access to the pathological reports. The regions of interest (ROIs) were based on
the sequence that showed the greatest extent of the cancer. They were mapped using
T2WI and transferred to other sequences [23]. The ROIs were subsequently mapped
from the T2-weighted image to the ADC mapping and DCE-MRI via image alignment.
Despite the demonstrated variability in ROI mapping across different MRI sequences, the
relatively fixed position of the prostate and its limited mobility enhanced the reliability
of the alignment process [24,25]. Moreover, the accuracy of ROIs has been validated
by experienced radiologists following the alignment procedure. The protocol for tumor
marking is delineated in Figure 2. Subsequently, following the execution of feature mapping
calculations, the ROIs were extracted, normalized and combined using extraction. These
were then input into the model. The data preparation process is depicted in Figure 3a.
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Reference Images

DCE

T2W

o
Figure 2. The protocol for tumor marking. The tumor-marking process was executed in T2W images

and aligned with DCE and ADC images. T2W: T2-weighted; ADC: apparent diffusion coefficient;
DCE: dynamic contrast-enhanced.

ROI extraction

T2 ROI

ROI extraction Normalization =}

a ROI

Combination

LRHGLE ROI

\ I! BN I/ ReLU I! Conv I/' SE Block L SPP Layer J

Figure 3. Data preparation process (a) and SE-SPP-DenseNet structure (b). (a) The preparation process

included the extraction of ROIs from parametric mapping, normalization and the combination of
ROIs. (b) The preprocessed images were input into SE-SPP-DenseNet, which uses DenseNet as
the network skeleton, and the SE block and SPP layer were added to the model. ROI: region of
interest; SE block: squeeze-and-excitation block; SPP layer: spatial pyramid pooling layer; BN: batch
normalization; ReLU: rectified linear units; Conv: convolutional layer; GAP: global average pooling;
FC: fully connected.
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2.5. Deep Learning Model Construction

The deep learning models used in this study were implemented via the PyTorch 1.13.1
framework and Python 3.10 (Python Software Foundation, Fredericksburg, VA, USA) and
were trained using a single workstation with an Intel Core i9-13900H processor (Intel, Santa
Clara, CA, USA), an NVIDIA 4060 graphics card (NVIDIA, Santa Clara, CA, USA) and
8 GB of random-access memory.

In this study, we first constructed a pure deep learning classification model based on
SE-SPP-DenseNet. The dataset was randomly divided into five equal-sized subsets. The
dataset for each subset was divided into a training—validation—test set ratio of 0.8:0.1:0.1.
The prediction accuracy was calculated from the average of five rounds of training and
testing, which ensured the stability of the results and eliminated the effect of random-
ness. In each round, four subsets were utilized for the training set and one subset was
allocated for the validation and testing sets. This approach was implemented once for each
round until the entire cohort dataset, comprising 96 patients, was used as the testing set
(n = 50) and validation set (n = 46). Data equalization and expansion were performed on
the training and validation sets for both categories of patients (no data equalization or
expansion were performed on the test set). The Med Augment algorithm was employed
for data augmentation. This algorithm has been shown to be both efficient and effective
in the context of automatic augmentation [26]. The framework used the following two
transformation spaces: six pixel-level (photometric) transformations and eight spatial
(geometric) transformations.

In this study, we employed the dense convolutional network (DenseNet) model, whose
structure is depicted in Figure 3b [27]. The DenseNet architecture is predicated on a series
of dense blocks, with each block comprising multiple convolutional layers. Each dense
block receives the output of all preceding blocks, thereby establishing a dense pattern of
connections between all the layers of the network. This configuration facilitates the efficient
flow of information through the network. In selecting DenseNet121 as the backbone of the
convolutional neural network, we considered the complexity of the data. Furthermore, in
previous studies, we found that incorporating the squeeze-and-excitation block and spatial
pyramid pooling layer into convolutional neural network models could markedly enhance
the performance of deep learning models [28-30]. Consequently, we integrated them into
the model. The structure of the squeeze-and-excitation block is illustrated in Figure 3b. The
input convolutional layer was output after four operations. The squeeze-and-excitation
block was applied to each convolutional block and its output was used as the input for the
next convolutional block.

The pooling layer in the DenseNet output was replaced with the spatial pyramid
pooling layer. The spatial pyramid pooling layer was implemented in three steps. First,
the input feature maps were pooled using kernels of different sizes to obtain various
output feature maps. Second, a fixed-size feature vector was obtained by merging the
output feature maps of different sizes. Finally, the feature vectors were fed into the fully
connected layer for classification, enabling the input of multiscale images that could then be
processed and fed into a fixed-size fully connected layer. The multimodal image extracted
10,752 features following the spatial pyramid pooling layer. Notably, the images generated
for this experiment were resized to 224 x 224 pixels utilizing the bilinear method for the
interpolation of the images. The average size of the input ROIs was 54 x 48 pixels.
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The more traditional deep residual network (ResNet)18 model and the Swin Trans-
former model were also used for training purposes [31-33]. The ResNet18 model is capable
of capturing a greater range of features at varying depths within a dataset through the
introduction of additional network layers. Concurrently, the ResNet18 model incorporates
regularization to prevent gradient dispersion or explosion. The ResNet18 model was
augmented with the squeeze-and-excitation block and spatial pyramid pooling layer. The
squeeze-and-excitation block was employed as the output of each convolutional block
and as the input of the subsequent convolutional layer. The spatial pyramid pooling layer
replaced the global average pooling layer in the ResNet18 model and output the prediction
results from its fully connected layer. The Swin Transformer model employs a hierarchi-
cal construction methodology and incorporates a sliding window mechanism, enabling
information from multiple windows to be collected. Images undergo downsampling at 4, 8
and 16 times their original resolution as they pass through the patch partition block. This
approach facilitates target classification and enables the model to process super-resolution
images, focusing on both global and local information. The three-channel images were lin-
early transformed via the linear embedding layer in the model. The feature maps resulting
from image chunking were doubled in depth and halved in width through the use of the
patch merging layer.

2.6. Multimodal Fusion Artificial Intelligence Model Construction

Following the construction of a pure deep learning classification model, a multimodal
fusion artificial intelligence model that used deep learning and machine learning to inte-
grate patient image data and baseline clinical feature information is proposed in this study.
Consequently, the Dense-MFAI model was constructed. Baseline clinical information (age,
baseline PSA, Gleason score and clinical TNM stage) and the imaging data of each patient
were input into the model. The Dense-MFAI model is shown in Figure 4. Fusion learning
across two data streams is complex and involves the construction of two separate machine
learning channels. One channel is employed to accept the image features predicted by the
deep learning model as the input, whereas the other channel is utilized to transform the
clinical feature information into a one-dimensional numerical matrix as the input. The
outputs of the clinical data and image feature channels are subsequently concatenated
into a matrix input into the eXtreme Gradient Boosting classifier, which can then predict
whether a patient could progress to CRPC within a median time of 12 months [34]. This
study employed a two-stage training approach, wherein the deep learning model was
initially trained and the eXtreme Gradient Boosting model was subsequently trained for
classification. The data division across the two phases was identical. The eXtreme Gra-
dient Boosting model is an optimized distributed gradient boosting machine learning
algorithm designed to solve classification and regression problems efficiently, flexibly
and portably. The inputs into the image feature channel are transformed from the fully
connected layer of the deep learning model. The fully connected layer acts as a classifier
in a convolutional neural network, which maps the trained distributed features into the
sample labeling space, which is also a one-dimensional numerical matrix. The three deep
learning models in this experiment were exclusively trained on the imaging data. The
clinical data were extracted directly from the data tables and subsequently used for the
training of the machine learning model. Additionally, the integration of image features
and clinical features was performed by label correspondence. A more detailed study of
the deep learning model architectures involved in this research can be found on GitHub
(https:/ / github.com /2271371 / Dense-MFAI-model.git (accessed on 26 January 2025)).
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Age PSA Gleason | Gleason | Gleason
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Figure 4. Dense-MFAI structure. The Dense-MFAI model comprises two components, SE-SPP-

Q CRPC
® o
00060 Non-CRPC

XGBoost

DenseNet and XGBoost. Images and clinical features are input into the multimodal fusion model and
fused in the fully connected layer. PSA: prostate-specific antigen; XGBoost: eXtreme Gradient Boost-
ing.

2.7. Quantitative Assessment Metrics

In this study, a Kaplan-Meier curve was used to illustrate the progression of CRPC in
patients and comparisons between groups were made using the log-rank test. The accuracy,
sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV),
receiver operating characteristic (ROC) curves and confusion matrices were calculated for
the purpose of predicting patient progression to CRPC within 12 months for the MFAI
model described above using the test set. Additionally, the area under the curve (AUC)
was calculated.

3. Results
3.1. Patient Characteristics

Following data equalization and expansion, the image data consisted of 2454 images
(originally 270) for patients with CRPC and 3161 images (originally 391) for patients
without CRPC. The final training set comprised approximately 4900 images per round,
with 2200 images from CRPC patients and 2700 images from non-CRPC patients. The
validation set comprised approximately 690 images per round, with 270 images from CRPC
patients and 420 images from non-CRPC patients. The test set comprised approximately
60 images per round, with 25 images from CRPC patients and 35 images from non-CRPC
patients. It is noteworthy that the delineation of all subsets and datasets was performed at
the patient level.

3.2. Parameter Settings for Each Model

Following the comparison of the outcomes of a series of preliminary experiments, the
specific hyperparameters of the DenseNet, ResNet18 and Swin Transformer models were
established, as indicated in Table 2. The same hyperparameters were used for each model
in the five rounds of training. The hyperparameters were optimized based on the changes
in accuracy and loss during training and validation. The grid search method was selected
for the optimization process. The parameter combinations that performed the best in the
validation set were ultimately selected. During the training process, if the loss using the
validation set did not decrease after 10 epochs, the learning rate was adjusted to 0.5 times
the initial learning rate. During the preliminary experiments, all three deep learning models
converged before 50 epochs were reached when training. Consequently, the number of
epochs was fixed at 50. Furthermore, an early stopping strategy was implemented, whereby
training was terminated if the loss of the validation set did not decrease within 20 epochs
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to prevent overfitting. The stochastic gradient descent algorithm and the binary cross-
entropy loss function were selected as the network optimizer and loss function, respectively.
Additionally, during the training process, image enhancement was conducted, including
the reversal of the vertical orientation of the images and normalization of the images by
calculating the mean and variance for each set of images. Notably, image enhancement was
only applied to the training images; the images used for testing were not enhanced.

Table 2. Training parameters for the ResNet18, DenseNet and Swin Transformer models.

Parameter Epoch  Learning Rate Batch Size Momentum  Weight Decay Optimizer

ResNet18 50 0.001 48 0.9 0.0001 SGD

DenseNet 50 0.0001 48 0.9 0.0001 SGD
Swin Transformer 50 0.001 64 0.9 0.0001 SGD

SGD: stochastic gradient descent.

3.3. Predictive Performance of MFAI Models

This study proposes a multimodal fusion artificial intelligence detection framework
based on deep learning and machine learning techniques to predict whether a PCa patient
could progress to CRPC after 12 months of hormone therapy. This framework fused
multimodal data with mpMRI parametric profiles, texture feature profiles and clinical
feature information. The performance of three different MFAI models based on DenseNet,
ResNet18 and the Swin Transformer was investigated. The receiver operating characteristic
curves of the three models are shown in Figure 5b. The Dense-MFAI model achieved an
accuracy of 94.2%, a sensitivity of 100.0%, a specificity of 82.1%, a positive predictive value
of 89.6% and a negative predictive value of 100.0%. The Res-MFAI model achieved an
accuracy of 92.7%, a sensitivity of 87.5%, a specificity of 96.4%, a positive predictive value
of 97.5% and a negative predictive value of 84.1%. The Swin Transformer-MFAI model
demonstrated an accuracy of 85.2%, a sensitivity of 87.8%, a specificity of 81.4%, a positive
predictive value of 86.5% and a negative predictive value of 80.6%. The receiver operating
characteristic curves of the aforementioned three models are presented in Figure 5b, where
the AUCs of the Dense-MFAI, Res-MFAI and Swin Transformer-MFAI models were 0.945,
0.925 and 0.836, respectively. The confusion matrices to predict CRPC using the three
models are shown in Figure 5c—e.

3.4. Effectiveness of Radiomics Feature Mapping at Predicting CRPC Progression

We also performed ablation experiments to validate the effectiveness of radiomics
feature mapping at improving the prediction performance of the DenseNet, ResNet18 and
Swin Transformer models. The results of the ablation experiments are shown in Table 3.

Table 3. Prediction results of a pure deep learning model for images using only mpMRI parameter
mapping and after the fusion of radiomic feature mapping.

Accuracy Sensitivity Specificity PPV NPV

T2-ADC 76.3% 74.6% 80.3% 78.1% 75.7%

T2- 83.5% 80.3% 87.7% 87.3% 80.5%

SE-SPP- T2-ADC-« 85.2% 83.6% 87.0% 87.5% 83.6%
ResNet18 T2-ADC-LRHGLE 80.4% 80.7% 86.4% 86.7% 81.8%
T2-«-LRHGLE 90.3% 83.3% 100.0% 100.0%  81.6%

128



Cancers 2025, 17, 1556

Table 3. Cont.

Accuracy Sensitivity Specificity PPV NPV
T2-ADC 77.6% 80.5% 75.1% 77.2% 78.5%
SE.SPP T2- 85.1% 90.4% 75.2% 80.4% 91.2%
b - N' T2-ADC-« 87.7% 89.6% 87.8% 88.9% 88.7%
enseNet T2-ADC-LRHGLE 83.8% 82.4% 80.7% 81.2% 81.8%
T2-0-LRHGLE 91.2% 91.9% 87.3% 91.7% 87.8%
T2-ADC 67.9% 75.4% 54.7% 62.2% 69.3%
Swi T2- 73.1% 71.4% 75.4% 75.8% 70.5%
. V;’m T2-ADC- 75.5% 82.4% 68.7% 70.3% 76.7%
ranstormer T2-ADC-LRHGLE 71.5% 79.7% 62.7% 69.9% 74.0%
T2-0-LRHGLE 78.9% 98.1% 51.7% 73.3% 96.8%
a 104 b 10 >
08 08 - d
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Figure 5. Performance evaluation of the MFAI models. (a) Kaplan-Meier curve for patients; (b) ROC
curves for the prediction of CRPC via the Res-MFAI, Dense-MFAI and Swin Transformer-MFAI
models; (c) confusion matrices for the Res-MFAI model; (d) confusion matrices for the Dense-MFAI
model; (e) confusion matrices for the Swin Transformer-MFAI model.
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3.5. Importance of Baseline Clinical Features in Predicting CRPC Progression and Validation

of Visualization

Patient multimodal images fused with clinical features were used as multimodal

data for training and testing. However, current studies using artificial intelligence (AI)

approaches to predict patient CRPC progression have only used imaging data. To illus-

trate the importance of clinical features in predicting CRPC progression, we conducted

experiments using the three aforementioned pure deep learning methods for training and

testing.

The AUCs of the SE-SPP-DenseNet, SE-SPP-ResNet18 and Swin Transformer models
were 0.906, 0.896 and 0.807, respectively. The receiver operating characteristic curves and

quantitative results of the three models are shown in Table 4 and Figure 6a, respectively.

Table 4. Results of predictions using baseline clinical features, unimodal images composed of mpMRI

parameter maps and multimodal images fused with baseline clinical features.

Accuracy Sensitivity Specificity PPV NPV
Baseline Clinical Features 70.4% 87.1% 41.6% 72.5% 67.7%
SE-SPP-ResNet18 90.3% 83.3% 100.0% 100.0% 81.6%
SE-SPP-ResNet18 + MFAI 92.7% 87.5% 96.4% 97.5% 84.1%
SE-SPP-DenseNet 91.2% 91.9% 87.3% 91.7% 87.8%
SE-SPP-DenseNet + MFAI 94.2% 100.0% 82.1% 89.6% 100.0%
Swin Transformer 78.9% 98.1% 51.7% 73.3% 96.8%
Swin Transformer + MFAI 85.2% 87.8% 81.4% 86.5% 80.6%
a 1 b Original Image Region of Attention
0.8 { /"/
. CRPC
% 0.6 ///
0.2 o SE-SPP-ResNet18 ROC (AUC = 0.89 + 0.03)
~—— SE-SPP-DenseNet ROC (AUC = 0.91 + 0.05)
Swin Transformer ROC (AUC = 0.82 + 0.06) | Non-CRPC
0.0 -=-- Reference
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure 6. ROC curves and regions of attention. (a) ROC curves for CRPC prediction via the pure deep
learning models SE-SPP-DenseNet, SE-SPP-ResNet18 and Swin Transformer; (b) predicted regions of
attention using the SE-SPP-DenseNet model.

In addition, with regard to the validation study, the region of attention for the SE-SPP-

DenseNet model, which demonstrated the optimal prediction performance, was visualized

(see Figure 6b). The utilization of distinct colors indicated how much each region con-

tributed to the model: red and yellow (warm colors) indicated that the region contributed

the most to the final classification decision and the model “pays the most attention” to

these locations; green indicated moderate activation and the region had some influence

on the judgment but was not critical; and blue (cool colors) indicated that the region con-

tributed little to the output and the model was not sensitive to this part of the model. It

was observed that the attention region was predominantly concentrated in the inner region

of the tumor, while no activation was observed in the surrounding tissues of the tumor.
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4. Discussion

In this study, we developed a multimodal fusion Al model to predict whether PCa
patients could progress to CRPC after 12 months of hormone therapy. To our knowledge,
no previous study has used deep learning and machine learning to apply imaging profile
and clinical feature fusion to predict whether PCa patients could progress to CRPC. The
findings demonstrated that the Dense-MFAI model exhibited the highest accuracy (94.2%)
when predicting whether patients could progress to CRPC.

As illustrated in Figure 6a and Table 4, the prediction accuracy of DenseNet exceeded
that of ResNet because the DenseNet modules were interconnected with each other, leading
to the collection of information included from previous modules and the integration of
information from subsequent modules. In the construction of an MFAI model, the selection
of the deep learning model should be contingent upon the complexity of the data. In this
study, the ResNet18 and DenseNet121 models were utilized instead of a more complex
model. In addition to the potential for high model complexity, resulting in overfitting, an
increase in the network complexity leads to a more complex solution space, hindering the
identification of the optimal solution by the optimizer.

With limited arithmetic power, the accuracy of model prediction can be enhanced by
focusing the computational weights on the information of the regions that are more critical
to the current classification task. Therefore, we incorporated the squeeze-and-excitation
block into the model. Furthermore, the spatial pyramid pooling layer not only enabled the
model to adapt to different sizes of input data but also enhanced the classification accuracy
by addressing issues of object distortion and spatial layout variations through multilevel
pooling [30]. Consequently, the spatial pyramid pooling layer was also incorporated into
the model in this study.

In this study, we combined parametric and radiomic feature mapping and jointly
output them from the fully connected layer. As illustrated in Table 3, the incorporation
of radiomic feature mapping into the model input resulted in a notable enhancement
in the prediction outcomes. This finding demonstrates that multimodal image inputs
could provide more effective information to the model [35]. Furthermore, the ablation
experiments presented in Table 3 demonstrate that the prediction accuracy decreased
when a-mapping was replaced with apparent diffusion coefficient mapping. The observed
decline in accuracy could be attributed to the limitations of apparent diffusion coefficient
mapping, which is susceptible to higher image noise and a lower spatial resolution.

As illustrated in Figure 5 and Table 4, the Dense-MFAI model exhibited the highest
accuracy rate. The improved results could be attributed to the fact that the majority of
the clinical information selected for this study was based on current clinical measures
to determine whether a PCa patient has progressed to CRPC, as well as the assessment
metrics of the prostate cancer risk classification developed by the National Comprehensive
Cancer Network. Although it is essential to consider evolving patient data over time in
clinical diagnoses, experimental evidence has demonstrated that the utilization of baseline
clinical information can also provide valid insights to predict the progression of a patient
to CRPC to a certain extent.

Compared with existing prediction models, we utilized a distinct prediction methodol-
ogy and made further enhancements. Ali et al. [36] evaluated the performance of MR image
radiomics analyses for the detection of prostate cancer and constructed a robust predictive
model using a sophisticated hybrid descriptive inference approach. Zhou et al. [37] ex-
tracted 2553 texture features based on mpMRI parametric mapping via radiomics, resulting
in an AUC of 0.768 for the prediction of patient progression to CRPC. In our study, the
Dense-MFAI model was capable of extracting and learning features directly from raw
image data, in contrast to machine learning models that utilize radiomics. This approach
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enabled the construction of an end-to-end model. In a study by Park et al. [6], a phased long
short-term memory deep learning model was used for the prediction, with a final accuracy
of 88.6%. In a study by Jin and Zhang et al. [38,39], the prediction of prostate cancer bone
metastasis using clinical information, mpMRI and pathology images demonstrated that
multimodal data can effectively improve prediction accuracy. In a study by Zhou et al. [37],
a ResNet50 deep learning model combining radiomics and pathomics was used to predict
the progression of CRPC in patients, with a final AUC of 0.86. The Dense-MFAI model
proposed in this study employed patient clinical information in combination with imaging
data, thereby enhancing the predictive performance in this specific dataset when compared
with the other two methods and their respective datasets. Jun et al. [15] identified six gene
signatures to predict the risk of patient progression. However, this method was unable to
accurately identify patients. Furthermore, the study by Cairone et al. [40] demonstrated that
physicians can be assisted in radiomics analyses by semi-automated segmentation methods.
In a subsequent study, the semi-automatic segmentation method will be employed to
enhance the annotation efficiency and alleviate the workload of physicians.

Our study had several limitations. First, as we performed a retrospective study, only
patient cases within a four year period were selected as experimental data, which may
have resulted in biased results. Second, due to the limitation with the sample size, this
work was not validated with an independent test set. In the future, an external test set
will be required to validate the work robustness of the model in a multi-institutional
setting. Further research with larger datasets is needed to investigate the impact of the
tumor location on the model’s performance and to explore how the structural information
from different anatomical regions of the prostate influences quantitative imaging analyses.
Third, the mpMRI equipment utilized in this study was identical, which reduced the
variability of the data to some extent. Consequently, the results of this study require
validation using a wider range of PCa patients and MRI from multiple vendors. Fourthly,
the implementation of ROI delineation based on the sequence showing the maximum extent
of cancer in this study resulted in a local volume effect. In future studies, we will perform
systematic comparisons of different ROI delineation strategies (maximum, minimum or
semi-automatic segmentation) to further optimize the accuracy and reproducibility of
the model. Furthermore, subsequent studies could entail the ongoing development of
regression models as a complement to existing classification models. This could furnish
urologists with more comprehensive predictive information.

5. Conclusions

In this study, we proposed a multimodal fusion artificial intelligence model, Dense-
MFA], for the prediction of whether a PCa patient could progress to CRPC after 12 months of
hormone therapy. This approach utilized the patient’'s mpMRI parametric profile, radiomic
feature mapping and baseline clinical features. The ablation experiments demonstrated that
constructing a pure deep learning model via parametric mapping and radiomics feature
mapping could enhance the classification performance of the original model. Moreover,
the ablation experiments demonstrated that the fusion model constructed using baseline
clinical features and imaging data exhibited an enhanced prediction ability compared with
the pure deep learning model. The Dense-MFAI model accurately predicted whether PCa
patients could progress to CRPC after 12 months of hormone therapy, with a final accuracy
of 94.2% and an AUC of 0.945. We believe that urologists can use this model to assist with
diagnoses to determine the most appropriate treatment plan and prognostic measures on
the basis of whether a patient could progress to CRPC.
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PCa Prostate cancer
CRPC Castration-resistant prostate cancer
PSA Prostate-specific antigen
mpMRI Multiparametric magnetic resonance imaging
DCE-MRI  Dynamic contrast-enhanced MRI
MFAI Multimodal fusion artificial intelligence
DWI Diffusion-weighted imaging
ADC Apparent diffusion coefficient
FOV Field of view
TE Echo time

TR Repetition time
T2WI T2-weighted imaging
PSE Percentage signal enhancement

LRHGLE Long-run high gray-level emphasis
ROI Region of interest

SEblock  Squeeze-and-excitation block

SPP layer  Spatial pyramid pooling layer

BN Batch normalization
ReLU Rectified linear units
Conv Convolutional layer
GAP Global average pooling
FC Fully connected

DenseNet Dense convolutional network
ResNet Deep residual network

PPV Positive predictive value

NPV Negative predictive value

ROC Receiver operating characteristic
AUC Area under the curve

Al Artificial intelligence
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Simple Summary: Prostate cancer (PCa) is one of the leading causes of mortality for men worldwide.
PCa aggressiveness affects the patient’s prognosis, with less aggressive tumors, i.e., Grade Group
(GG) 1 and 2, having lower mortality and better outcomes. For this reason, the aim of this study is to
distinguish between GG < 2 and >3 PCa using an automatic and noninvasive approach based on
artificial intelligence methods. The results obtained are promising, as the system achieved robust
results on a multicenter external dataset. If further validated, this approach, combined with the
expert knowledge of urologists, could help identify PCa patients who have a better prognosis and
may benefit from less invasive treatments.

Abstract: In the last years, several studies demonstrated that low-aggressive (Grade Group
(GG) < 2) and high-aggressive (GG > 3) prostate cancers (PCas) have different prognoses and
mortality. Therefore, the aim of this study was to develop and externally validate a radiomic model
to noninvasively classify low-aggressive and high-aggressive PCas based on biparametric magnetic
resonance imaging (bpMRI). To this end, 283 patients were retrospectively enrolled from four centers.
Features were extracted from apparent diffusion coefficient (ADC) maps and T2-weighted (T2w)
sequences. A cross-validation (CV) strategy was adopted to assess the robustness of several classifiers
using two out of the four centers. Then, the best classifier was externally validated using the other
two centers. An explanation for the final radiomics signature was provided through Shapley additive
explanation (SHAP) values and partial dependence plots (PDP). The best combination was a naive
Bayes classifier trained with ten features that reached promising results, i.e., an area under the
receiver operating characteristic (ROC) curve (AUC) of 0.75 and 0.73 in the construction and external
validation set, respectively. The findings of our work suggest that our radiomics model could help
distinguish between low- and high-aggressive PCa. This noninvasive approach, if further validated
and integrated into a clinical decision support system able to automatically detect PCa, could help
clinicians managing men with suspicion of PCa.
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1. Introduction

Prostate cancer (PCa) is the most common cancer in men in Western countries, account-
ing for about 25% of new cancer diagnoses [1,2]. Since 2020, the European Association of
Urology added a strong recommendation to perform multiparametric magnetic resonance
imaging (mpMRI) in PCa patients before either planning a re-biopsy or in biopsy-naive
men [3] to better identify PCa suspicion and to target the biopsy to retrieve more precise
information about cancer aggressiveness [4]. However, biopsies are known to suffer from
limitations that negatively impact the therapeutic path and patients” outcomes [5]. Indeed,
they are known to be invasive, affected by large inter-observer variability, and not able to
provide information on spatial tumor heterogeneity [6,7].

In the last years, radiomics analysis to characterize PCa has been demonstrated as a
potential alternative to overcome the main biopsy drawbacks [8,9]. The radiomics approach
is challenging, and researchers have mainly focused on the identification of clinically
significant ones (GG > 2) [10], reaching considerably high performances [11]. However, a
more precise separation between GG2 and GG3 is necessary since GG3 PCas show more
aggressive behavior, with higher rates of biochemical failure, systemic recurrence, cancer-
specific death [12-14], and lower probability of 5-year biochemical risk-free survival [4].
Only a few studies have classified GG < 2 and GG > 3 PCas [15-18] through radiomics
analyses, but the generalization of their results has not been fully addressed yet. Moreover,
these studies did not adopt an explainable approach [15-18]. A not-explained approach
limits transparency, trustworthiness, and, therefore, application in real-world clinical
practice [19]. To our knowledge, there is no study validating a machine learning classifier to
predict GG < 2 and GG > 3 PCas on an external validation set and proposing an explainable
Al approach.

The aims of this study are to develop a model to noninvasively distinguish between
GG <2 and GG > 3 PCa through a radiomics signature based on bpMRI and to validate
this model on a multicenter dataset composed of images acquired with different MRI
manufacturers, including both 1.5T and 3T scanners, also providing an explanation for the
signature. The proposed pipeline is noninvasive, as it uses already available acquisitions
from MRI without endorectal coil and contrast agent administration. Our model showed
robust results on the external validation set, suggesting that, if further validated, it could be
used as a noninvasive tool to select low-aggressive PCas, which, if confirmed by additional
clinical evaluations, could avoid destructive and invasive treatments.

2. Materials and Methods
2.1. Patients

This is a multicenter retrospective study that includes four institutes: University
Hospital “Citta della Salute e della Scienza” of Turin (center A), “Mauriziano Umberto I1”
Hospital of Turin (center B), Candiolo Cancer Institute (center C), and Federico II Hospital
of Naples (center D). Patients who underwent prostate MRI between November 2015 and
October 2018 at sites A, B, and D and between May 2017 and February 2020 at site C were
included in the study. The following inclusion criteria were applied: (1) patients with
suspicion of PCa; (2) patients who underwent MRI examination before biopsy, including
at least diffusion-weighted (DWI) and T2-weighted (T2w) axial images; and (3) imaging
performed without endorectal coil. Exclusion criteria were as follows: (1) the presence
of strong artifacts on the MRI examination; (2) patients who underwent transurethral
resection of the prostate (TURP); (3) no match between the tumor location detected by the
biopsy and the MRI's findings; and (4) absence of pathologically confirmed (either biopsy
or prostatectomy) PCa.
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2.2. MRI Acquisition and Reference Standard

MRI examinations were performed using 1.5T scanners at centers A, B, and C (Achieva
Philips Medical Systems, Ingenia Philips Medical Systems, and Optimae GE Healthcare,
respectively) and a 3T scanner at center D (Magnetom Trio Siemens Medical Solutions).
The reference standard for this study was the GG obtained after targeted biopsy or prosta-
tectomy, when available, on the lesions detected on MRI. More information on scanner
parameters can be found in Supplementary Section S1. For patients with available prosta-
tectomy results, the exact location of the tumor was found by comparing the MRI with
the microscopic slices of the surgical specimen [19]. When the results of the prostatectomy
were not available, the tumor was localized on MRI using the detailed report provided
by uropathologists [20]. Dedicated uropathologists examined the hematoxylin- and eosin-
stained slides and recorded the GG. Finally, PCas were dichotomized into low-(GG < 2)
and high-(GG > 3) aggressive cancers, hereafter considered as the negative and positive
class, respectively.

2.3. Tumor Segmentation and Feature Extraction

Four radiologists (one for each of the recruiting centers) with more than 5 years
of experience manually segmented on T2w imaging all PCas using ITK Snap 3.8 [21]
(www.itksnap.org, accessed on 29 December 2023), and the available contouring or report
provided by uropathologists as a reference, as previously described in [22]. During the
segmentation step, the radiologist checked that the mask of the tumor also matched the
tumor on the ADC maps, and in case of misalignment, they reviewed the mask to segment
only the common areas, as previously reported [22]. Then, an experienced senior radiologist
reviewed and eventually corrected all the segmentations from the four centers. After a
step of image preprocessing where both T2w sequences and ADC maps were normalized
and pixels showing outlier signal intensities were removed, 169 first and second-order
features were extracted (more details are available in Supplementary Section S2). Features
were extracted in Python 3.8 using the open-source Python package Pyradiomics 3.0.1 [23],
compliant with the Image Biomarker Standardization Initiative [24]. Figure 1A reports the
main steps from image acquisition to feature extraction.
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Figure 1. Pipeline of the study including (A) preprocessing, (B) model development, and (C) validation
steps. ADC = apparent diffusion coefficient, T2w = T2-weighted, MRI = magnetic resonance imaging.
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2.4. Model Development and Validation

During the development of the radiomics signature, 26 combinations of feature se-
lection (FS) methods and classifiers/regressors were fine-tuned using only patients from
centers A and B (construction dataset). Specifically, the feature selection methods included
(1) minimum redundance maximum relevance, (2) affinity propagation, feature ranking
based on (3) chi-squared test or (4) Mann-Whitney U test, and (5) stepwise binomial logistic
regressor. These 5 FS methods were combined with the following classifiers/regressors:
(1) decision tree, (2) support vector machine, (3) ensemble learner (e.g., random forest),
(4) naive Bayes, and (5) binomial logistic regression. In addition, we evaluated the LASSO
logistic regressor. Before performing the FS step, all features were normalized between
0 and 1 using the min-max scaling. The radiomics pipeline is reported in Figure 1. All
algorithms were implemented in MATLAB® 2021b.

To select the best-performing model, a cross-validation (CV) strategy has been adopted,
in which 4 folds (training a stratified 5-fold cross-set) were iteratively used to train a
model that was subsequently tested on the left-out fold (test set). During the CV, all the
combinations of FS and classifiers were evaluated. The parameters of the models were
tuned, and models not reaching a mean area under the receiver operating characteristic
(ROC) curve (AUC) > 0.6 on the left-out folds were discarded. More details about the FS
methods and classifiers are described in Supplementary Section S3.

Once all the FS/classifier /parameters combinations were tested, the one reaching
the highest mean AUC on the left-out folds was selected and re-trained using the whole
construction set (Figure 1B).

The validation step was performed by applying the previously selected model on the
validation set, which included only patients that were left out from the model development
phase, i.e., from centers C and D (Figure 1C). We decided to use centers A and B as
the construction set to develop the model on a strong reference standard since all their
patients had the prostatectomy results available and to train a model on 1.5T MRI images
and evaluate its generalization capability on both 1.5T and 3T (center D) MRI images.
The validation set was normalized using the min-max scaling, with the maximum and
minimum values of the construction set.

2.5. Statistical Analysis

Correlation between all pairs of features employed in the best model was computed
using Spearman’s correlation test (MATLAB® 2022b). Balanced accuracy, sensitivity, speci-
ficity, positive predictive value (PPV), and negative predictive value (NPV) obtained using
the cut-off corresponding to the Youden Index on the construction set were computed
as an example of general model performances. Sensitivity was defined as the number of
correctly classified high-aggressive PCas over the total number of high-aggressive PCas;
specificity was defined as the number of correctly classified low-aggressive PCas over the
total number of low-aggressive PCas; NPV was defined as the number of correctly classified
low-aggressive PCas over the total number of patients classified as low-aggressive PCas;
and PPV was defined as the number of correctly classified high-aggressive PCas over the
total number of patients classified as high-aggressive PCas.

For the 5-fold CV, the difference in the mean of the six performance indexes between
train and test sets was calculated to evaluate the robustness of the models and exclude those
combinations that tend to overfit. Since in the literature, there is no commonly accepted
criterion to identify overfitting models, in this analysis, a decrease in performances from
the training set to the test set greater than 30% was considered overfitting. For the final
classifier, changes in the performances obtained between the construction set and the
validation set and between centers C and D were evaluated using the N—1 chi-squared
test performed for each of the performance metrics, while AUCs were compared based on
the DeLong test. A p-value < 0.05 was considered statistically significant. All the statistical
analyses were computed on MedCalc Statistical Software version 20.105 (MedCalc Software
bv, Ostend, Belgium).
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2.6. Explanation of the Classification Model

To better understand the signature of the final radiomics model and the role of the
selected features in the classification task, Shapley additive explanation (SHAP) values
were computed for the external validation set. The SHAP values of a feature explain the role
of that feature in “pushing” the model output toward positive or negative predictions [25].
Then, the feature importance was calculated as the average of the absolute SHAP values per
feature across the external validation set. In addition to features explanation, we provided
a global interpretation of the signature by computing the partial dependence plot (PDP) of
each feature employed in the model. The PDP displays the marginal effect that a feature
has on the predicted outcome, showing whether the relationship between the output and
that feature is linear or more complex (see also Supplementary Section S4).

3. Results
3.1. Patient Characteristics

The multicenter dataset included a total of 299 PCas from 283 patients. The construc-
tion set included 175 PCas (132 from A and 43 from B, 77 low- and 98 high-aggressive),
while the validation set was composed of 124 PCas (78 from C and 46 from D, 69 low-
and 55 high-aggressive). More details are described in Figure 2. GG was derived from
prostatectomy in 86% (243/283) of patients, while in the remaining patients, we used the
GG provided by targeted biopsy. The review of the segmentations performed by the expert
senior radiologist resulted in less than 10% of changes in the tumor masks provided by the
four centers.

Center D
n=46
(20 low and 26 high)

Center B
n=43
(22 low and 21 high)

Center C
n=388
(56 low and 32 high)

Center A
n=175
(71 low and 104 high)

GGl GG2 GG3 GG4 GGS

O

GGl GG2 GG3 GG4 GGS GGl GG2 GG3 GG4 GGS Gl GG2 GG3 GG4 GGS

@?@ 00000 00)

n=39 strong artifacts and
d MRI sequence:

n=4 TURP

n=10 strong artifacts and

A

misaligned MRI sequences

A 4

Center A
n=132

Center D
n=46

Center B
n=43

Center C
n=78

(55 low and 77 high)

GGl GG2 GG3 GG4 GGS

(22 low and 21 high)

(49 low and 29 high)

(20 low and 26 high)

GGl GG2 GG3 GG4 GGS

GGl GG2 GG3 GG4 GGS

GGl GG2 GG3 GG4 GGS5

OEHG® 00, o0 o0

\ 4 A 4

External validation set
n=124
(69 low and 55 high)

Construction set
n=175
(77 low and 98 high)

GGl1 GG2 GG3 GG4 GG5 GGl GG2 GG3 GG4 GG5

Figure 2. Flowchart of dataset division. In each box: N is the total number of PCas; in parentheses are
reported the number of low-and high-aggressive PCas. Under each box: the number of lesions for
each of the 5 GGs is reported in the circles. GG = grade group, MRI = magnetic resonance imaging,
TURP = transurethral resection of the prostate.

3.2. Best Model

The naive Bayes classifier trained using ten features selected by the affinity propa-
gation algorithm was chosen as the best model based on its AUC of the left-out folder
(Section 2.4) (see Supplementary Sections S5 and S6 for more details). The Spearman corre-
lation coefficient (r) for the different combinations of the ten selected features showed a fair
correlation (r < 0.50) [26] for 40/45 pairs and a moderate correlation (0.50 < r < 0.70) only
in 5/45 pair comparisons. No highly correlated features, i.e., higher than 0.70, were found
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in the selected subset. The results of the final classifier trained with all patients enrolled
from centers A and B and then externally validated with the cases from centers C and D
are reported in Table 1. On the validation set, the classifier achieved results comparable
to those obtained on the construction set, i.e., AUC of 0.75 and 0.73, respectively. No
significant differences were found in the performance metrics between the construction and
external validation sets (Table 1). In the comparison of the performances between centers
C and D, only specificity was significantly lower in center D (p-value < 0.05) (Table 1).
Figure 3 shows the discrete non-smoothed ROC curves of the construction and valida-
tion set. For completeness and transparency of reports of the diagnostic accuracy of this
study, we reported the Standards for Reporting of Diagnostic Accuracy Studies (STARD)
diagram [27] in Supplementary Section S7. The waterfall plots of the output signature of
the classifier for the construction and validation sets are displayed in Figure 3. As we can
see, the classifier is highly accurate when assigning a likelihood of a high-aggressive tumor
equal to zero (<1%). Indeed, 11 out of 15 lesions of the training set (Figure 4A) and all
15 lesions of the validation set (Figure 4B) with assigned likelihood equal to zero are true
low-aggressive PCas.

Table 1. Performances of the best model and results of the N—1 chi-squared test for the comparison of
two proportions and of the DeLong test for the comparison of AUCs. Numbers in brackets represent
the number of correctly classified cases over the total number of each class. Specifically, the resulting
p-value, performances, and their differences are reported for centers A + B (construction set) and
centers C + D (validation set) and individually for center C and center D. In bold, p-value < 0.05.
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AUC = area under the receiver operating characteristic curve, CI = confidence interval, Diff = difference,
PPV = positive predictive value, NPV = negative predictive value.
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Figure 3. Receiver operating characteristic (ROC) curve of construction (blue) and validation set (red).
The blue point corresponds to the cut-off based on the Youden Index. AUC = area under the ROC curve.
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Figure 4. Waterfall plot of the output probabilities of the final classifier for construction set and
validation set. The circles (A,B) highlight the lesions with zero likelihood of being high-aggressive.
GG = grade group.

3.3. Explanation of the Best Model

Figure 5 displays the bar diagram reporting features in decreasing order of importance.
The ‘ADC-GLRLM- Run Length Non-Uniformity’ was the most important feature, changing
the predicted high-aggressive PCa probability, on average, by 14.5 percentage points,
followed by the “ADC-GLRLM- Run entropy’ changing the prediction, on average, by
7.2 percentage points. The SHAP summary plot is reported in Figure 6, displaying on
the y-axis all features of the NB classifier ordered by importance and on the x-axis their
corresponding SHAP values, with color representing the value assumed by the feature,
from low (red) to high (blue). It can be seen how the highest absolute SHAP values
of the first most important feature were positive, meaning that the feature contributed
more to the high-aggressive PCa predictions than to the low-aggressive ones. Vice versa,
the second most important feature is characterized mainly by negative SHAP values,
highlighting that it mainly contributed to the low-aggressive PCa predictions. Interestingly,
low values of “ADC-GLRLM- Run entropy’ reduce the predicted high-aggressive PCa risk.
In Figure 7, a local visualization of the SHAP values of a true positive and true negative
prediction randomly selected from the external validation set is shown. As a corroboration
of what has been deduced from the SHAP summary plot, the local visualization shows
how, in the case of a true positive prediction (Figure 7a), the most important feature in
Figure 5 has the highest SHAP value (0.434), thus highlighting its relevant contribution to
that final prediction of a high-aggressive PCa. Similarly, for the true negative prediction
example (Figure 7b), the second most important feature contributed far more than the
others to the final classification, decreasing the predicted high-aggressive PCa probability of
24 percentage points, thus pushing the predictions toward the low-aggressive class.
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Figure 5. Ten features employed in the model ranked by their impact on model output. ADC = apparent
diffusion coefficient, GLCM = grey-level co-occurrence matrix, GLRLM = grey-level run length matrix,
GLSZM = grey-level size zone matrix, SHAP = Shapley additive explanation, T2w = T2-weighted.
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Figure 6. Shapley additive explanation (SHAP) summary plot for the construction (a) and vali-

dation (b) sets. ADC = apparent diffusion coefficient, GLCM = grey-level co-occurrence matrix,
GLRLM = grey-level run length matrix, GLSZM = grey-level size zone matrix, SHAP = Shapley
additive explanation, T2w = T2-weighted.
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Figure 7. Shapley values of a true positive prediction (a) and a true negative prediction (b), randomly
selected from the validation set. For each feature, the corresponding value is reported in parentheses.
ADC = apparent diffusion coefficient, GG = grade group, GLCM = grey-level co-occurrence matrix,
GLRLM = grey-level run length matrix, GLSZM = grey-level size zone matrix, SHAP = Shapley
additive explanation, T2w = T2-weighted.

4. Discussion

In this study, we developed and validated a radiomics model to distinguish between
GG <2 and GG > 3 PCas using bpMRI. Regarding the classification GG < 2 and GG > 3,
to the best of our knowledge, this is the first study that externally validated a classification
model and that provided an explanation for the model’s output. External validation is
a challenging task since MRI suffers from high variability due to differences in scanners
and acquisition protocols and researchers are struggling to develop Al-based models
dealing with multicenter datasets. However, thanks to the engineering of the pipeline
that we used to obtain the most robust and generalizable model, we reached promising
results on both the construction and the external validation set, which included different
scanners and magnetic field strengths. An important element of our system is that we
provided, together with the binary classification, the likelihood of the tumor being high-
aggressive. The latter can be considered to tune the classification output to maximize either
NPV or PPV. Considering the value of this score, our studies showed an important result:
all 15 lesions in the validation set having a likelihood of being high-aggressive equal to zero
were indeed either GG1 or GG2 lesions. If further validated on a larger dataset, this might
impact the management of this subgroup of patients for whom an invasive procedure
might be avoided.

In the literature, several studies developed Al-based algorithms to characterize PCa
aggressiveness, mainly focusing on distinguishing clinically significant PCas (GG1 vs. GG
> 2) [10] and reaching promising results in multicenter datasets [11]. However, only a
few studies focused on the distinction of GG1/GG2 lesions from higher aggressive PCas,
obtaining a cross-validated AUC from 0.75 to 0.77 using different machine learning algo-
rithms [16,17]. Cuocolo et al. [18] evaluated the relationship between shape features and
low /high aggressive tumors through a multivariable logistic analysis, reaching an AUC
of 0.78 with a specificity and sensitivity of 97% and 56%, respectively, on the training set.
Bertelli et al. [15] developed an ensemble learner classifier obtaining an AUC of 0.79 on an
internal validation set, i.e., using a monocenter dataset. However, all these studies included
only one center in their dataset, and none of them validated their results on an external set.
Our results are comparable to those in the literature but with the remarkable advantage of
keeping two centers as an external validation set, demonstrating the generalization capabil-
ity of the radiomics classifier (no significant differences were found in the performances of
the construction and validation set). As an additional strength of this work, we obtained a
radiomics quality score (RQS) [8] of 11 (Supplementary Section S8), which is higher than
the average RQS score of 7.93 previously calculated for prostate radiomics studies [28].

Finally, the innovative side of this study is that we have provided an explainable model,
deriving relevant information about the importance of selected features. More specifically,
seven out of ten features used by the best model were extracted from the ADC map,
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including the ADC mean, whose value was demonstrated to have a negative relationship
with the probability of high-aggressive PCa (Figure 6 and Supplementary Section S5).
This is consistent with the literature since ADC values are demonstrated to be moderately
correlated to GG of peripheral zone lesions [29] and to have a role in differentiating GG2 and
PCa with higher grades [16,30-32]. Moreover, it was demonstrated that high-aggressive
peripheral zone tumors are associated, on the ADC map, with high values of entropy
and low values of energy [33]. Interestingly, considering features individually, we found
that entropy plays a crucial role in distinguishing between low and high aggressive PCas,
also in our algorithm. Indeed, the ‘"ADC-GLRLM-Run Entropy’, the second feature in
decreasing order of importance (Figure 5) that measures the uncertainty /randomness in
the distribution of run lengths, i.e., sequences in a straight scan direction of pixels with
identical image value, and gray levels, was found to play a relevant role in the prediction of
low-aggressive PCas. Low values of this feature, i.e., high homogeneity, were found to push
predictions towards a lower probability of high-aggressive PCas (Figure 6). Conversely,
the most important feature of the model, the "ADC-GLRLM- Run Length Non-Uniformity”’
(Figure 5), drives the classification of PCa towards the high-aggressive class.

Nevertheless, our study has some limitations. The first limitation regards the limited
sample size of the four centers, which affected several aspects of the results of this study.
First, the sample size of center D not only impacts the robustness of the results of center D,
but it might also be responsible for the significant difference in specificities that we found
between centers C and D of the validation set. Indeed, it is important to notice that center D
includes only 20 low-aggressive lesions, and therefore, the obtained p-value, close to 0.05, is
highly influenced by the sample size. An increase in the number of low-aggressive lesions
acquired with a 3T scanner would be beneficial to either confirm or reject the hypothesis
that specificities between 1.5T and 3T datasets are significantly different. Second, an
increase in the sample size of all four centers would have allowed us to perform cross-
validation, permuting two centers in the construction set and then externally validating the
models on the two remaining ones. This permutation strategy was implemented as our first
attempt at the radiomic pipeline, but it did not result in acceptable performances, probably
due to the low sample size and the unbalanced number of patients per class across the
different centers. Third, we found that all of the 15 lesions of the validation set with a null
likelihood of being high-aggressive were indeed GG < 2; however, this was not true in the
construction set, where 4/15 lesions with a null likelihood of being high-aggressive were
misclassified. This difference may be due to the number of GG1 PCa in the validation set
(n =20), which was higher than in the construction set (n = 1). Therefore, an increase in the
sample size of the centers would be of key importance to confirm the generalizability of the
model in classifying low-aggressive PCas. A second limitation is that we did not perform a
preliminary step of detection of outliers, which affected the values of some features. As
can be seen in the colors of the SHAP plot of the construction and validation sets, since the
construction set contained some elements with particularly high or low values of some
features, after min-max normalization, these features were skewed towards, respectively,
low or high values. However, we believe that this does not affect the predictions since
for those methods using the distribution of values (e.g., Bayesian), the distribution is not
impacted by the presence of one/two outliers, while for those methods using hyperplanes
(e.g., SVM), again, the position of the hyperplanes is not influenced by the presence of a few
outliers. A third limitation is that the reference standard of 14% of patients was based on
target biopsy. However, the model was trained using only patients having prostatectomy
as the reference standard; therefore, bias might be introduced only in the validation set.
Finally, we did not account for intra-lesion heterogeneity to stratify GG2 and GG3 PCas
according to the percentage of Gleason pattern 4. In the future, it would be useful to
provide a probability map of tumor grade heterogeneity together with the aggressiveness
index to spatially characterize different tissue characteristics.
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avoiding biopsy discomfort and related complications.
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Simple Summary: Given the variable aggressiveness of PCa, patients with indolent PCa do not
require intervention, but rather require active surveillance and close lifelong follow-up, while those
with invasive PCa require surgery, various types of radiation therapy, androgen-deprivation therapy
(ADT), or multimodal treatment. Hence, it is critical to accurately distinguish indolent from invasive
PCa for prognosis evaluation and treatment decision-making. The aim of the present study was to
investigate the value of MR radiomics feature-based machine learning (ML) models in predicting
the Ki67 index and Gleason grade group (GGG) of PCa. Biparametric magnetic resonance imaging
(bpMRI) radiomics-based ML models to predict immuno-histochemically-determined Ki67 expression
and the GGG demonstrated the ability to identify aggressive PCa. A preliminary exploration was
performed in the conjoint analysis, laying the theoretical foundation for models predicting two or
more variables; such models are expected to provide more comprehensive pathological information
and provide valuable guidance for clinical decision-making in a noninvasive, synchronous, and
objective manner.

Abstract: Purpose: The Ki67 index and the Gleason grade group (GGG) are vital prognostic indicators
of prostate cancer (PCa). This study investigated the value of biparametric magnetic resonance
imaging (bpMRI) radiomics feature-based machine learning (ML) models in predicting the Ki67
index and GGG of PCa. Methods: A total of 122 patients with pathologically proven PCa who had
undergone preoperative MRI were retrospectively included. Radiomics features were extracted from
T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI), and apparent diffusion coefficient
(ADC) maps. Then, recursive feature elimination (RFE) was applied to remove redundant features.
ML models for predicting Ki67 expression and GGG were constructed based on bpMRI and different
algorithms, including logistic regression (LR), support vector machine (SVM), random forest (RF),
and K-nearest neighbor (KNN). The performances of different models were evaluated with receiver
operating characteristic (ROC) analysis. In addition, a joint analysis of Ki67 expression and GGG
was performed by assessing their Spearman correlation and calculating the diagnostic accuracy for
both indices. Results: The ML model based on LR and ADC + T2 (LR_ADC + T2, AUC = 0.8882)
performed best in predicting Ki67 expression, and ADC_wavelet-LHH_firstorder_Maximum had
the highest feature weighting. The SVM_DWTI + T2 (AUC = 0.9248) performed best in predicting
GGG, and DWI_wavelet HLL_glecm_SumAverage had the highest feature weighting. The Ki67 and
GGG exhibited a weak positive correlation (r = 0.382, p < 0.001), and LR_ADC + DWI had the highest
diagnostic accuracy in predicting both (0.6230). Conclusion: The proposed ML models are suitable for
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predicting both Ki67 expression and GGG in PCa. This algorithm could be used to identify indolent
or invasive PCa with a noninvasive, repeatable, and accurate diagnostic method.

Keywords: prostate cancer; MRI; Gleason grade group; Ki67; machine learning

1. Introduction

Prostate cancer (PCa) accounts for an estimated 29% of all new incident cases and
has become the second leading cause of cancer-related deaths (11%), according to the
American Cancer Society (ACS) [1]. Given the variable aggressiveness of PCa, patients
with indolent PCa do not require intervention, but rather require active surveillance (AS)
and close lifelong follow-up, while those with invasive PCa require surgery, various types
of radiation therapy, androgen-deprivation therapy (ADT), or multimodal treatment [2-4].
Hence, it is critical to accurately distinguish indolent from invasive PCa for prognosis
evaluation and treatment decision-making.

The Gleason score (GS), as a widely recognized indicator of PCa aggressiveness,
reflects the differentiation degree and heterogeneity of prostate tumor cells [5-7]. Tumors
with lower GSs are predominantly associated with indolent PCa, whereas tumors with
higher GSs exhibit greater aggressiveness due to dysplastic, fused, or cribriform glands. The
new Gleason grade group (GGG) scale reflects PCa biology and predicts tumor progression
more accurately than the Gleason score system, according to the International Society of
Urological Pathology (ISUP). Studies have demonstrated that the hazard ratios of GGG 2,
3,4, and 5 relative to GGG 1 are 2.2, 7.3, 12.3, and 23.9, respectively, and the corresponding
5-year biochemical risk-free survival rates are 96%, 88%, 63%, 48%, and 26%. The GGG
is an important indicator for prognostic assessment, treatment regimen formulation, and
survival prediction in PCa [7].

The nuclear protein Ki67 is a nonspecific marker of cell proliferation expressed only in
the cell proliferation cycle, which contributes to evaluating the tumor growth fraction [8].
The assessment of Ki67 has made great contributions to the evaluation of tumor prolifera-
tion and invasion, especially in breast cancer, since it was first applied to lymphoma in 1984.
Higher Ki67 expression is strongly associated with a higher GS, more advanced cancer,
seminal vesicle invasion, extracapsular extension, poorer survival, and a higher risk of fatal
cancer [9-17]; Matthew K. Tollefson et al. found that, in PCa, the risk of disease-specific
death increased by nearly 12% with each 1% increase in Ki67 expression after adjusting for
perineural invasion and GS [18].

Although Ki67 expression and the GGG are important indicators for assessing tumor
invasiveness, there are limitations to their independent application. For instance, PCa
is usually a multifocal tumor, and the GS is determined by the highest score among
the tumors, which may lead to an overestimation of the overall GGG. Ki67 evaluation
alone is not recommended for outcome prediction due to the high heterogeneity and
variability of PCa, although it has great value in low-risk/indolent PCa [13]. Ki67 is,
however, considered a good supplement to the GS [14-16]. The combination of Ki67 and
GSs may be the best indicator for long-term PCa outcome assessment [18] and may offer
more comprehensive preoperative information. Nevertheless, both the GGG and Ki67
expression are obtained through histopathology, which requires an invasive procedure
that may result in complications such as postsurgical hemorrhage, pain, infection, and
prolonged hospital stay. Therefore, noninvasive methods for Ki67 and GGG assessment
need to be explored. Biomarker analysis and magnetic resonance imaging (MRI) were
recommended as alternatives to conventional biopsy at the 23rd Annual Conference of the
National Comprehensive Cancer Network (NCCN) [19].

Considering the demonstrated advantages of MRI, it is widely used for tumor charac-
terization, staging, treatment planning, targeted therapy, treatment response assessment,
and surveillance. However, interobserver differences are a nonnegligible limitation of
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the technique [20]. With the development of artificial intelligence, radiomics combined
with machine learning (ML) has become a novel approach in medical image analysis, by
which a large amount of high-quality and quantitative data are obtained noninvasively and
objectively. Therefore, radiomics-based ML has emerged as a field of high research interest
in recent years, and great achievements have been made in numerous areas, especially in
the assessment of malignant tumors [21-27]. There have been relatively few studies on
predicting Ki67 and GGG. Duc Fehr et al. presented an ML-based automatic classification of
GS that combines apparent diffusion coefficient (ADC)- and T2-weighted imaging (T2WI)-
based texture features [28]. Fan et al. constructed innovative ML models for predicting
Ki67 based on T2WI, diffusion-weighted imagine (DWI) and dynamic contrast-enhanced
(DCE) MRI, which contributed to the risk stratification evaluation of PCa [29]. However,
most studies to date have focused on the use of single clinical or pathological variables.
Considering the great clinical value of the GGG combined with Ki67, the ultimate goal of
this study is to shift the prognostic assessment and treatment decision-making paradigm in
PCa from an invasive, subjective process to a noninvasive, objective process by predicting
Ki67 expression and the GGG through ML-based image analysis.

2. Materials and Methods
2.1. Patients

The institutional review board of our hospital approved this retrospective study and
waived the requirement for informed consent (decision number (2019) 289). Patients who
underwent prostate MRI scanning between August 2016 and May 2021 were screened for
inclusion according to the following criteria: (1) PCa confirmed by pathology, (2) sufficient
tissue samples for immunohistochemical Ki67 and GGG analyses, and (3) systematic biopsy
performed within 3 months after the MRI examination. The exclusion criteria were as
follows: (1) operation or endocrine treatment before MRI examination (1 = 16) and (2) poor
MR image quality (n = 2). The details are summarized in Figure 1.

PCa patients with complete imaging data between August 2016 and May 2021
(n=140)

Inclusion criteria:
Exclusion criteria (n=18):
(1) Lesions confirmed by pathology;
(a) Operation or endocrine treatment

(2) Pathological data (Ki67 and GGG) before MRI examination (n=16);

were completed;

b) Poor MRI image quality (n=2);
(3) Systematic biopsy was performed ®) e ¥ @=2)

within 3 months after the MRI
examination

Study population

(n=122)
Task 1_Ki67: Task 2_GGG:
® <10% (n=67) ® GGG 1-2 (n=37)
@ >10% (n=55) ©® GGG 3-5 (n=85)

Conjoint analysis

Figure 1. Flowchart of patient selection. PCa = prostate cancer, GGG = Gleason grade group.
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2.2. MRI Protocol

The biparametric magnetic resonance (bpMR) images were acquired using a 3.0 T
MRI scanner (MAGNETOM Prisma; SIEMENS A Tim Dot System) and an 8-channel
phased-array software coil. The scan covered the prostate gland, the seminal vesicles,
and as many adjoining structures as possible. The parameters for fat suppression (FS)
axial T2WI were as follows: repetition time (TR)—3090 ms; echo time (TE)—77 ms; slice
thickness—3 mm; number of excitations (NEX)—2; field of view (FOV)—20 x 20 cm; and
acquisition matrix—320 x 240. Axial DWI was performed in the same orientation and
location as in axial T2WI using axial echo-planar imaging (EPI) sequences as follows:
TR—3800 ms; TE—84 ms; slice thickness—3 mm; NEX—2; FOV—20 x 20 cm; acquisition
matrix—118 x 118; and b value—1400 s/mm?. ADC maps were automatically generated
from intravoxel incoherent motion (IVIM) imaging on a designated workstation (Version
syngo MR E11; Siemens software packages (syngo.via VB20A_HF06); NUMARIS/4), in
which the low b-value was 0 s/mm? and the intermediate b-value was 1000 s/mm?.

2.3. Pathology

All patients underwent transrectal ultrasound (TRUS)-guided 12-core systematic
biopsy within 3 months after the MRI examinations. The Ki67 expression of all prostatic
parenchymal tissue samples was re-evaluated by a pathologist with more than 15 years
of experience. To determine the immunohistochemical evaluation standard for Ki67, the
percentage of stained cells in three hotspots (the areas with the most intense proliferation)
was calculated, and the average value was taken. When there were multiple tumors, the
maximum value was taken [16,17]. The data were classified into 2 subgroups in task
1 and task 2 according to the pathological results: (1) Task 1_Ki67—the patients were
divided into a high-expression group (>10%) and a low-expression group (<10%), using
the median value as the cutoff [12,29]; (2) Task 2_GGG—the patients were classified into
low-grade (GGG 1-2) and high-grade (GGG 3-5) groups according to strict evaluation using
the Gleason Grade Conference standards of the 2019 ISUP [7].

2.4. Radiomics Feature Extraction

All original T2W, DW, and ADC images, stored in DICOM format, were imported
into Artificial Intelligence Kit software (A.K. software; GE Healthcare) for delineating the
region of interest (ROI) of tumor areas and extracting features. Two doctors (a radiologist
with 5 years of experience in abdominal imaging and an attending doctor with 10 years of
experience in urinary imaging) read the original images together and then drafted the lesion
ROI segmentation plan by discussion until a consensus was reached. If any disagreements
could not be resolved, the final judgment was conducted by a third reviewer with extensive
seniority, possessing over 15 years of experience in urinary system imaging. The ROI
delineation encompassed the entire tumor while excluding the invasion of the urethra and
adjacent structures. For multifocal tumors, only the largest lesion was segmented. An
example of ROI segmentation and the corresponding pathological images (GGG and Ki67)
are shown in Figure 2. Following the application of gray-level discretization with a bin
size of 5, a total of 107 radiomics features were extracted, including first-order features
(n = 18), shape features (n = 14), and texture features (1 = 75); the latter, used to describe
the internal and surface textures of the lesions, consisted of the gray-level cooccurrence
matrix (GLCM) (n = 24), the gray-level size zone matrix (GLSZM) (n = 16), the gray-level
dependence matrix (GLDM) (n = 5), the gray-level run length matrix (GLRLM) (n = 16), and
the neighborhood gray tone difference matrix (NGTDM) (n = 14) features. Subsequently,
by employing wavelet transformation (level = 1), 851 radiomic features were extracted
from each of the T2WI, DWI, and ADC images. In total, 2553 radiomic features were
ultimately obtained.
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Figure 2. Region of interest (ROI) segmentation and corresponding pathological pictures. (a) ROI
segmentation, (b) Loupe image of hematoxylin—eosin stain shows the GS =4 + 3 (x20), (c) Loupe
image of immunohistochemical stain shows the percentage.

2.5. Preprocessing of Radiomic Features

The data were normalized, scaled, and dimensionally reduced for subsequent com-
parison. Recursive feature elimination (RFE) was conducted to eliminate redundant and
irrelevant features by fitting a given ML algorithm used in the core model, computing and
ranking the importance of each feature, and discarding the least important features. This
process was repeated until the optimal combination of radiomic features was obtained.
Following feature elimination, each model was constructed using a selected set of 20 fea-
tures. The synthetic minority oversampling technique (SMOTE) was used to resolve data
imbalance problems, and 5-fold cross-validation was applied to validate the performance
of the ML models. The dataset was randomly divided into a training and testing set with
an 8:2 ratio. The code for models training and testing was implemented on Python 3.6,
and the common libraries included numpy 1.19.2, cv 2 4.5.1, SimplelTK 2.0.2, pandas 1.1.5,
and scikit-learn 0.24.2. This process was repeated five times, and the average of the five
iterations was taken as the final experimental result of this study.

2.6. Construction of ML Models

Twenty-eight ML models were established to predict Ki67 expression and GGG based
on four ML algorithms and seven different sequences or sequence combinations. The
classification algorithms included logistic regression (LR), support vector machine (SVM),
random forest (RF), and K-nearest neighbor (KNN). The sequences included T2WI, DWI,
ADC, and 4 combinations thereof (T2+DWI, T2+ADC, ADC+DWI, ADC+DWI+T2). Subse-
quently, the feature compositions of the best models for the two tasks were analyzed. A
technical flowchart of this study is presented in Figure 3.
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Figure 3. Technical flowchart. RFE = recursive feature elimination, SMOTE = synthetic minority
oversampling technique, LR = logistic regression, SVM = support vector machine, RF = random
forest, KNN = K-nearest neighbor, ML = machine learning, GGG = Gleason grade group.

2.7. Statistical Analysis

All statistical analyses were performed with SPSS software (version 25; IBM Corpora-
tion, Armonk, NY, USA) and Python codes. Comparisons among groups were performed
by the independent-sample ¢-test. Normally distributed variables are shown as the mean
=+ standard deviation (SD). Non-normally distributed variables are expressed as the me-
dian with the interquartile range in parentheses (25th and 75th percentiles). p < 0.05 was
considered statistically significant. The performance of the ML models was evaluated by
using receiver operating characteristic (ROC) curve analysis, including calculation of the
area under the curve (AUC), sensitivity, and specificity. The Spearman correlation test
was applied to analyze the correlation between Ki67 expression and GGGs. Finally, a joint
analysis of the two tasks was performed by calculating the diagnostic accuracy.

3. Results
3.1. Baseline Characteristics

A total of 122 patients were enrolled in this study, including 31 with tumors located
in the peripheral zone (PZ), 27 with tumors located in the transition zone (TZ), and 64

154




Cancers 2023, 15, 4536

with cross-zone tumors, occupying both the PZ and TZ. For task 1, the Ki67 < 10% group
included 67 patients (average age 72.7 £ 8.6 years), and the Ki67 > 10% group included
55 patients (average age 71.4 & 8.7 years). For task 2, the GGG 1-2 group had 37 pa-
tients (average age 72.4 £ 8.8 years), and the GGG 3-5 group had 85 patients (average
age 72.0 & 8.6 years). There was no statistically significant age difference between the
subgroups in either task 1 (t = 0.801, p = 0.425) or task 2 (t = 0.213, p = 0.832). The median
(25th—75th percentile) prostate-specific antigen (PSA) and free PSA (fPSA) levels were 47.3
(16.4-136.5) ng/mL and 4.00 (1.37-13.35) ng/mL, respectively.

3.2. Task 1: ML Models for Predicting Ki67 Expression

The comparisons of the 28 ML models are displayed in Table 1 and Figure 4. LR had the
best performance, especially for the combination sequences. LR_T2+ADC (AUC = 0.8882,
sensitivity = 0.7636, specificity = 0.8657) achieved the optimal performance among the
28 ML models.

Table 1. Ki67 prediction based on four machine learning algorithms and seven sequences *.

. LR SVM RF KNN
mages

AUC Sens. Spec. AUC Sens. Spec. AUC Sens. Spec. AUC Sens. Spec.
T2 0.7383 0.6364 0.7463 0.7913 0.7091 0.7463 0.6946 0.5455 0.6567 0.6425 0.6000 0.6119
DWI 0.8578 0.7091 0.8209 0.8152 0.7455 0.7612 0.6408 0.5273 0.7910 0.6832 0.6182 0.7164
ADC 0.7715 0.7273 0.7612 0.7449 0.7273 0.6716 0.6689 0.5455 0.6866 0.5986 0.4364 0.6716
T2 + DWI 0.8285 0.7273 0.7761 0.7984 0.7455 0.7015 0.6634 0.5455 0.7015 0.6408 0.5455 0.6716
T2 + ADC 0.8882 0.7636 0.8657 0.8475 0.7091 0.7910 0.6965 0.5818 0.7164 0.6650 0.5818 0.7612
ADC + DWI 0.8516 0.7636 0.8209 0.7874 0.7091 0.7164 0.7115 0.5636 0.7015 0.6837 0.6000 0.7164
ADC + DWI + T2 0.8673 0.8182 0.8358 0.8336 0.8727 0.7463 0.6925 0.5636 0.7015 0.6794 0.5818 0.7015

* LR = logistic regression, SVM = support vector machine, RF = random forest, KNN = K-nearest neighbor,
AUC = area under the curve, Sens. = sensitivity, Spec. = specificity, T2WI = T2-weighted imaging, DWI = diffusion-
weighted imaging, ADC = apparent diffusion coefficient.
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Figure 4. ROC curves of the twenty-eight ML models (based on four algorithms and seven sequences)
for predicting Ki67 expression *. (a) Logistic regression-, (b) support vector machine-, (c¢) random
forest-, and (d) K-nearest neighbor-based model ROC curves. * ROC = receiver operating charac-
teristic, ML = machine learning, T2WI = T2-weighted imaging, DWI = diffusion-weighted imaging,
ADC = apparent diffusion coefficient.
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The radiomics features of LR_T2+ADC are illustrated in Figure 5. Of the 20 features, 11
were derived from ADC imaging, and the other 9 were from T2WI, including 7 first-order
features, 2 shape features, and 11 texture features. Among them, ADC_wavelet-LHH_ first-
order_Maximum had the highest weight in predicting Ki67 expression.

Ki67 LR_T2+ADC

v

B 1 ADC_wavelet-LHH_firstorder Maximum B 2 T2 wavelet-LLL_glrlm_GrayLevelNonUniformityNormalized
B 3 ADC_wavelet-LLL_glszm_SmallAreaLowGrayLevelEmphasis M 4 T2_original_glcm_Imcl
5 ADC_original_shape_Maximum2DDiameterRow 6 ADC_wavelet-HHL_glszm_GrayLevelNonUniformity
7 ADC_wavelet-LLL_glcm_DifferenceVariance 8 T2_wavelet-HHH_glszm_SmallAreaLowGrayLevelEmphasis
9 T2_wavelet-HHL_glszm_ZoneEntropy 10 ADC_wavelet-LLL_glem MCC
11 T2_original_shape_Elongation 112 ADC_wavelet-HHH_ngtdm_Strength
1 13 T2_wavelet-HLL_firstorder_Median W 14 T2_wavelet-HHL_firstorder_Skewness
B 15 ADC_wavelet-LHL_firstorder_Skewness W 16 T2_wavelet-HLH_glcm_Imcl
B 17 ADC_original_glcm_ClusterShade B 18 T2_wavelet-LLL_firstorder_Uniformity
B 19 ADC_wavelet-LHH_ firstorder_Minimum 20 ADC_wavelet-LHH_firstorder_Range

Figure 5. Optimal combined ML model (LR_T2+ADC) for task 1 (Ki67 expression prediction). Differ-
ent colors represent different radiomics features, and the area represents the weighted contribution
of each radiomics feature in the ML model. The feature with the highest weight for Ki67 expression
prediction was ADC_wavelet-LHH_first-order_Maximum. ML = machine learning, LR = logistic
regression, T2 = T2-weighted imaging, ADC = apparent diffusion coefficient.

3.3. Task 2: ML Models for Predicting GGG

The comparison results for the four ML algorithms and seven sequences are displayed
in Table 2 and Figure 6. SVM and LR performed better than KNN and RE. Among the
28 ML models, the optimal model was SVM_T2+DWI (AUC = 0.9248, sensitivity = 0.8588,
specificity = 0.7838).
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Table 2. GGG prediction based on four machine learning algorithms and seven sequences *.

LR SVM RF KNN
I

mages AUC Sens. Spec. AUC Sens. Spec. AUC Sens. Spec. AUC Sens. Spec.
T2 0.7994 0.8706 0.5946 0.6951 0.7765 0.5946 0.7690 0.8824 0.4595 0.7041 0.8471 0.4054
DWI 0.7736 0.8824 0.4595 0.6652 0.7294 0.4324 0.6060 0.9059 0.2973 0.6068 0.7765 0.3243
ADC 0.8016 0.8706 0.5135 0.7866 0.8000 0.6216 0.6835 0.8824 0.6835 0.6490 0.8941 0.3784
T2 + DWI 0.9072 0.8706 0.6216 0.9248 0.8588 0.7838 0.7232 0.8000 0.3514 0.7065 0.8353 0.4054
T2 + ADC 0.8006 0.8471 0.4865 0.7975 0.7529 0.6757 0.7078 0.9059 0.4595 0.6701 0.9059 0.2703
ADC + DWI 0.8658 0.8824 0.5946 0.8324 0.7765 0.6757 0.6466 0.8235 0.2432 0.6677 0.8471 0.3243
ADC + DWI + T2 0.6162 0.7765 0.1892 0.4019 0.6353 0.3514 0.6013 0.8118 0.2973 0.6073 0.7647 0.3514

* GGG = Gleason grade group, LR = logistic regression, SVM = support vector machine, RF = random forest,
KNN = K-nearest neighbor, AUC = area under the curve, Sens. = sensitivity, Spec. = specificity, T2ZWI = T2-
weighted imaging, DWI = diffusion-weighted imaging, ADC = apparent diffusion coefficient.
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Figure 6. ROC curves of the twenty-eight ML models (based on four algorithms and seven se-
quences) for GGG prediction. (a) Logistic regression-, (b) support vector machine-, (c) random
forest-, and (d) K-nearest neighbor-based model ROC curves. ROC = receiver operating char-
acteristic, ML = machine learning, GGG = Gleason grade group, T2WI = T2-weighted imaging,
DWI = diffusion-weighted imaging, ADC = apparent diffusion coefficient.

The radiomics feature analysis of SVM_T2 + DWI is presented in Figure 7. The
20 radiomics features consisted of 4 first-order features and 16 texture features, with 18 from
DWI and 2 from T2WI. The radiomics feature with the highest weight was DWI_wavelet-
HLL_glecm_SumAverage.
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B 20 DWI_wavelet-HLL_glem_JointAverage

Figure 7. Optimal combined ML model (SVM_T2+DWI) for task 2 (GGG prediction). Different
colors represent different radiomics features, and the area indicates the weighted contribution of
each radiomics feature in the ML model. DWI_wavelet-HLL_glem_SumAverage had the highest
weight of all the radiomics features. ML = machine learning, SVM = support vector machine,
T2WI = T2-weighted imaging, DWI = diffusion-weighted imaging, GGG = Gleason grade group.

3.4. Conjoint Analysis of the Ki67 and GGG Tasks

The Ki67 and GGG exhibited a weak positive correlated (¥ = 0.382, p < 0.001). Then, the di-
agnostic accuracies of the combined task (task 1 and task 2) were calculated. LR_ADC + DWI
performed best, with an accuracy of 0.6230, in making correct predictions in both task 1
and task 2, as illustrated in Table 3.

A detailed feature comparison for LR_ADC+DWTI in the combined task is shown in
Figure 8. The feature comparison consisted of four parts, which yielded the following
findings. First, the features were extracted from both ADC (n = 6) and DWI (n = 14) in
two tasks with the same extraction ratio. Second, most of the features were subjected to
a wavelet transform (Ki67 = 16/20, GGG = 19/20). Third, the proportions of first-order,
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shape, and texture features are similar (Ki67 = 3/1/16, GGG = 4/1/15). Fourth, seven
features were shared between the two tasks.

Table 3. Prediction accuracy of the combined task *.

Images LR SVM RF KNN

T2 0.5080 0.4670 0.4340 0.4340

DWI 0.5820 0.4840 0.4920 0.4670
ADC 0.5660 0.5570 0.4590 0.4260
T2+DWI 0.5900 0.6230 0.4260 0.4430
T2+ADC 0.6070 0.5820 0.5250 0.4670
ADC+DWI 0.6230 0.5490 0.4020 0.4670
ADC+DWI+T2 0.5000 0.4340 0.3850 0.4020

* LR = logistic regression, SVM = support vector machine, RF = random forest, KNN = K-nearest neighbor,
T2WI = T2-weighted imaging, DWI = diffusion-weighted imaging, ADC = apparent diffusion coefficient.
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Figure 8. Comparative analysis of the radiomic features of LR_ADC+DWI. (a) The sources of the
radiomics features. (b) Use of wavelet transformation for the radiomics feature. (¢) Radiomics
feature categories (first-order, shape, or texture). (d) Radiomics feature similarity between Ki67
expression and GGG prediction. LR = logistic regression, ADC = apparent diffusion coefficient,
DWI = diffusion-weighted imaging, GGG = Gleason grade group.

4. Discussion

In this study, we constructed bpMRI radiomics-based ML models to predict Ki67
expression and GGGs in PCa, and we performed a conjoint analysis of the two correspond-
ing tasks, establishing a foundation for the prediction of multiple pathological indicators.
The results demonstrated that the best model for predicting Ki67 expression (task 1) was
LR_T2+ADC, the best model for predicting GGGs (task 2) was SVM_T2+DWI, and the
highest-performing model in the conjoint analysis was LR_ADC+DWI. These bpMRI ra-
diomics ML models could be applied in clinical practice to obtain pathology information
noninvasively and objectively for PCa assessment and treatment-related decision-making.

Four ML algorithms were used in this study to predict Ki67 and GGGs. Overall,
the LR- and SVM-based models were superior to the KNN- and RF-based models. LR
(AUC = 0.8882) was the best-performing classification algorithm in task 1. However, Xuhui
Fan et al. found that RF was the best-performing algorithm in their study (AUC = 0.87) [29].
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We speculate that the reason for this discrepancy is that LR, as a supervised classifier, is
adept at binary classification tasks, and the training result is mainly influenced by feature
weights. The use of adequate high-weight radiomic features in our study might have
improved the performance of the LR model. This speculation was confirmed by Lili Zhou
et al. [30], who indicated that LR yielded superior results when the key information in
the sample was sufficient for predicting Ki67 in medulloblastoma. SVM (AUC = 0.9248)
had the best predictive performance in task 2, consistent with the results from D.F. and
H.V. et al. [28] SVM considers the interactions among all features and removes features
whose effects might offset each other during each iteration in the training until the best
performance is achieved.

The images of bpMRI (T2, DWI, ADC) were included individually and in different
combinations in this study to comprehensively evaluate the predictive ability of the mod-
els. T2+ADC (AUC = 0.8882) was the highest-performing model in task 1, followed by
ADC+DWI+T2 (AUC = 0.8673). In a study by Xuhui Fan et al., the T2+DWI+DCE-based
model (AUC = 0.87) significantly outperformed the T2 + DWI model (AUC = 0.8285) [29].
We speculate that DCE exerts a large effect associated with neovascularization in PCa.
However, our T2+ ADC-based model achieved comparable or even better performance
without the use of contrast agents. One potential explanation for this outcome could
be the fourth dimension (time) present in DCE, which poses challenges in aligning and
matching two-dimensional anatomical images like T2WI and DWI. Additionally, extracting
information on contrast media arrival and distribution, serving as a surrogate marker for
microvascular density, requires the use of semi-quantitative or quantitative pharmacoki-
netic models, thereby introducing further complexity in post-processing [31]. BpMRI offers
the advantage of avoiding potential harmful effects associated with gadolinium contrast
agents while also enhancing confidence in the additional value of bpMRI in radiomics
research [32]. In contrast to the results for the Ki67 task, the T2+DWI (AUC = 0.9248)
was the highest-performing model in the GGG task. Previous studies have placed greater
emphasis on T2 and ADC sequences [28,33-36]. Ahmad Chaddad et al. constructed a
predictive model for predicting GS based on T2+ADC, with an AUC value of 0.8235 [34].
We surmise that finer grouping may lead to slightly decreased performance. On the other
hand, most of the features were from DWI (n = 18) rather than T2 (n = 2) in this study.
One of the reasons might be that some heavily weighted radiomic features from DWI
better represented the characteristics of cell atypia and increased tumor cell density with
increasing GGG. Frustratingly, ADC+DWI+T2 had the worst performance in predicting
GGG, even lower than that of any of the individual sequences. A potential explanation is
that the higher-weight features might cancel each other out, but this possibility remains to
be studied thoroughly.

We further analyzed the radiomic features and found that wavelet features had a
particularly high proportion among the best models for all tasks (>80%), similar to the
research of Xu Huifan et al. [29]. Another study on rectal cancer reported that wavelet
features accounted for the highest proportion of features in models predicting Ki67 (75%),
HER-2 (70%), and lymph node metastasis (80%) [37]. It appears to us that wavelet features
have strong predictive ability, effectively representing tumor heterogeneity. In the feature-
type analyses, texture features were the most common, comprising 55.5% of all features
for the Ki67 task, 80% for the GGG task, and 80% for the Ki67+GGG task. First-order and
shape features represent the distribution of voxel intensities and 3D shapes, which are
more or less reliant on manual segmentation, an inevitable source of bias. Studies have
demonstrated that texture features can be used to accurately classify GGGs [34] and can be
stably extracted from the original image.

The best ML algorithms in the conjoint analysis were LR and SVM, but the highest
accuracy was only 0.6230. We speculate that the reason may be as follows. First, Ki67 and
GGG are excellent predictors of the invasiveness of PCa, but they are essentially different,
with Ki67 representing the proliferative capacity of tumor cells and GGG representing
cell atypia and differentiation capacity. The five texture features that overlapped between
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the two tasks (SmallAreaLowGrayLevelEmphasis, Maximum, Minimum, ZoneEntropy,
and Skewness) are the most frequently mentioned features in the literature [28,29,33,34].
Second, the complexity of the calculation increased when the tasks were superimposed.
Particularly in patients with high Ki67 /low GGG and low Ki67/high GGG, even small
changes in proportions may affect the calculations of the models. Much more research and
analysis is necessary to achieve the prediction of two or more variables.

This study had some limitations that should be noted. First, ROI segmentation could
be optimized in follow-up studies using semiautomatic or automatic methods instead
of manual segmentation. Second, the pathological specimens in this study were derived
from systematic biopsy, which might lead to underestimation, sampling errors, and bias.
This shortcoming may be improved by performing radical prostatectomy and targeted
biopsy. Third, while Ki67 and GGG are of significant importance in preoperative and
prognostic assessments, their inherent limitations and inability to encompass all clinical
information suggest that utilizing 5-year overall survival (OS) or disease-free survival (DFS)
as prognostic indicators might be a more optimal choice. Furthermore, our study received
a radiomics quality score (RQS) of 8 according to the assessment [38], which is comparable
to the reported score for prostate imaging (7.93) [39] and slightly higher than the general
one (7.56) [40]. However, the main factor affecting the RQS of this study is the lack of
external validation. By introducing external validation, the credibility of this single-center
retrospective observational study can be significantly enhanced. Each of these points is
worthy of further study.

5. Conclusions

In this study, nonenhanced MRI radiomics-based ML models that were used to predict
immunohistochemically determined Ki67 expression and the GGG demonstrated the
ability to identify aggressive PCa. A preliminary exploration was performed in the conjoint
analysis, laying the theoretical foundation for models predicting two or more variables;
such models are expected to provide more comprehensive pathological information and
provide valuable guidance for clinical decision-making in a noninvasive, synchronous, and
objective manner.
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Simple Summary: MRI uses magnetic pulses to create images of the body. PET scans use radioactive
chemicals to determine what kinds of processes are going on in the body. PSMA is a chemical that
is abundant on prostate cancer cells, so a PET scan using a radioactive chemical that attaches to
PSMA shows where prostate cancer is, but this test has drawbacks: it is not widely available, it is
expensive, and it exposes patients to radiation. However, a recent study found that PSMA PET was
more accurate than MRI for finding areas where prostate cancer spreads. This study looks at the
“false negative” cases—the specific cases where the MRI did not find prostate cancer when PSMA
PET did—and how reading MRI can be improved.

Abstract: Background: PSMA PET has emerged as a “gold standard” imaging modality for assessing
prostate cancer metastases. However, it is not universally available, and this limits its impact. In
contrast, whole-body MRI is much more widely available but misses more lesions. This study aims
to improve the interpretation of whole-body MRI by comparing false negative scans retrospectively
to PSMA PET. Methods: This study was a retrospective sub-analysis of a prospectively collected
database of patients who participated in a clinical trial of PSMA PET/MRI comparing PSMA PET and
whole-body MRI from 2018-2021. Subjects whose separately read PSMA PET and MRI diagnostic
reports showed discrepancies (“false negative” MRI cases) were selected for sub-analysis. The cases
were reviewed by the same attending radiologist who originally read the scans. The radiologist noted
specific features on MRI indicating metastatic disease that were initially missed. Results: Of 263 cases,
38 (14%) met the inclusion criteria and were reviewed. Six classes of mpMRI false negatives were
identified: anatomically normal (18, 47%), atypical MRI appearance (6, 16%), mischaracterization
(1, 3%), undercall (6, 16%), obscured (4, 11%), and no abnormality on MRI (3, 8%). Considering that
the atypical and undercalled cases could have been adjusted in retrospect, and that 4 additional
cases had positive lesions to the same extent and 11 further cases had disease confined to the
pelvis, only 11 (4%) of the original 263 would have had disease outside of a conventional radiation
treatment plan. Conclusion: Notably, almost 50% of the cases, including most lymph node metastases,
were anatomically normal using standard criteria. This suggests that current anatomic criteria for
evaluating prostate cancer lymph node metastases are not ideal, and there is a need for improved
criteria. In addition, 32% of cases involved some element of human interpretive error, and, therefore,
improving reader training may lead to more accurate results.

Keywords: prostate; cancer; MRI; PET; PSMA; whole-body
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1. Introduction

Prostate cancer is the most common cancer in men and the second leading cause of
male cancer mortality in the United States [1]. The lifetime risk of developing prostate
cancer for a man living in the United States is estimated at 1 in 8. While prostate cancer
often has a relatively indolent course, metastatic disease is not uncommon and carries a
high mortality burden. The 5-year survival rate for patients with only local or regionally
advanced prostate cancer is close to 100%, while the 5-year survival rate for patients with
metastatic disease is only 30% [2].

Thus, it is clinically important to assess the presence and extent of metastasis in patients
with prostate cancer. This has a major impact on treatment planning: patients with early-
stage disease are eligible for surgical excision and localized radiotherapy, while patients
with metastatic disease are generally limited to chemotherapy or androgen-deprivation
therapy [3,4].

The assessment of prostate cancer metastasis has traditionally been performed by
radionuclide bone scan and CT. However, these imaging methods cannot always accurately
detect non-localized disease, resulting in disease recurrence even in patients initially treated
with curative intent [5,6]. Meanwhile, magnetic resonance imaging (MRI) has been gaining
increased recognition as a useful method of evaluating lymph nodes and distant metastases
in patients with various cancers, including prostate cancer [7,8]. Yet, MRI, despite its
advances, also still misses clinically relevant metastatic disease.

In recent years, a new imaging method has emerged for primary staging and assess-
ment of metastatic prostate cancer. ®®Ga-PSMA-HBED-CC positron emission tomography
(PET) imaging uses gallium-radiolabeled prostate-specific membrane antigen (PSMA), a
peptide largely specific to prostatic tissue, including prostate cancer [9]. Although the
spatial resolution of PET is lower than MRI, with lesions smaller than 6 mm not reliably
detected, this is offset by its superior contrast-to-background. The major limitation of
PSMA PET is that it requires the administration of novel radiotracers such as ®®Ga-PSMA-
11. As a result, it is not widely available outside of large, resource-rich medical centers
equipped with adequate infrastructure, and this limits its utility. Especially given that
there is an order of magnitude more MRI units compared with PET units in the United
States, with many states having only two or fewer centers providing this service and with
many countries in the “global south” lacking PET altogether, one cannot count on PSMA
PET availability despite the FDA having approved more than one formulation [10-12]. In
contrast, while MRI is much more widely available, it misses a higher percentage of lesions
compared to PSMA PET [13].

There is therefore a valuable opportunity to use PSMA PET as a standard of reference
to improve the interpretation of MRI. This project aims to investigate whether the ability
of MRI scans to detect metastatic prostate cancer can be enhanced using retrospective
information provided by concomitant PSMA PET scans. To our knowledge, such an
approach has not yet been taken. Improving the interpretation of MRI will allow more
timely and effective diagnosis of metastatic prostate cancer in settings that lack PSMA PET
imaging, and it will greatly benefit patients by allowing them to receive earlier treatment.

2. Materials and Methods

This study was a sub-analysis of an IRB-approved, HIPA A-compliant prospectively col-
lected database of 263 patients who provided written informed consent for and participated
in a clinical trial of ®¥Ga-PSMA-HBED-CC PET/MRI comparing separately read PSMA PET
and whole-body MRI and multiparametric MRI (mpMRI) of the prostate/prostatic bed from
2018 and 2021 at a single institution. Patients underwent concomitant PSMA PET/MRI for
one of two general indications: (1) treatment planning or (2) biochemical recurrence based
on serum prostate specific antigen (PSA) levels (defined either as PSA > 0.2 ng/mL in
radical prostatectomy patients or as 2 ng/mL greater than the nadir PSA in post-radiation
therapy patients). Demographics are listed in Table 1. A formal description of the PSMA
PET scanning technique has been previously reported, and 30 of the subjects analyzed
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herein overlap with this prior study, which focused only on subjects with biochemical

recurrence [14].

Table 1. Demographics.

Subjects 263 Total 38 Met Criteria
Indications (analyzed subjects only)
BCR, conventional imaging equivocal/suggestive for metastasis 2 (5.2%)
BCR, conventional imaging negative for metastasis 20 (52.6%)
High-risk primary cancer for surgical planning 3(7.9%)
Radiation/focal therapy planning for primary cancer 4 (10.5%)
Biopsy planning for primary lesion 1(2.6%)
Other indication (not specified) 8 (21.0%)
Age Average 69 years range 46-88
Serum PSA range 0.21-143 ng/mL
Ethnicity reported 62%
Hispanic/Latino 3%
Race reported 50%
White 91%
Black/African American 6%
Asian /Pacific Islander 3%

In each case, the PSMA PET was read without first reviewing the MRI and vice versa,
and the results were recorded. Subjects whose PSMA PET and MRI diagnostic reports
showed discrepancies were selected for sub-analysis. Inclusion criteria included all patients
whose PSMA PET was positive for metastases in the lymph node(s), bone, and /or other
tissues while the corresponding MRI was negative.

Cases were excluded if (1) data were missing for one or both scans; (2) data could not
be interpreted for one or both scans; (3) the MRI was found upon review to have correctly
identified the lesion in question; or (4) the PSMA PET was a false positive based on biopsy
results (with no subjects in this last category). See Figure 1.

Relevant cases were reviewed by the same attending radiologist who originally read
the scans. The attending radiologist reviewed both the PSMA PET and MRI images
and noted any common or stereotypical features on MRI (e.g., lesion size, location, or
morphology) indicating metastatic disease that was initially missed. Six classes of false
negative MRI were considered (Table 2).

Table 2. False negative classes.

False Negative Class (Number of Cases, %) Description

This type of false negative occurred exclusively with lymph node metastases.
The affected lymph node showed PSMA PET uptake but was anatomically
normal in size (<10 mm in short axis for oval/reniform nodes or <8 mm in

diameter for spherical nodes) and physiologic in shape on mpMRI.

Anatomically normal

mpMRI appearance was abnormal but not suspicious and was not

Atypical MRI appearance prospectively described.

Mischaracterization The lesion was suspicious on mpMRI but was not initially reported.

mpMRI appearance was abnormal but was described as “equivocal” or

Undercall ” e
low suspicion”.

Relevant area was difficult was to visualize on MRI because of technical or

Obscured patient factors (e.g., hip replacement).

Negative There was no focal structure on MRI to correlate with PSMA PET uptake.
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Original Database:
263

Data missing: 86
(33%)

Data Available: 177
(67%)

[ Data uninterpret—
able: 1 (<1 %)
Data interpretable:
176 (67%)
True positive/ negative MRI:
133 (51%)

Potential false negative
MRI: 43 (16%)

IA True negatve MRI: 5 (2%)

Confirmed false negative:
38 (14%)

Figure 1. Flow diagram.

3. Results

Of the 263 subjects in the database, we identified 38 (14%) “MRI false negative” subjects
that both met inclusion criteria and were not excluded by exclusion criteria. The average
age at time of scan was 69 years (range 46-88). The maximum PSA at time of scan was
recorded for 33 of 38 patients and ranged from 0.21-143 ng/mL.

The indications for imaging were the following (number of patients, %): conventional
imaging equivocal or suggestive of prostate cancer metastatic disease (2, 5.2%); elevated
PSA with no conventional imaging suggestive of metastatic or recurrent disease (20, 52.6%);
planned for surgical extirpation (high-risk primary disease) (3, 7.9%); planned serial follow-
up (i.e., focal therapy) with or without radiation therapy (4, 10.5%); planned for targeted
biopsy of primary lesion (1, 2.6%); and other (8, 21.0%).

After the PSMA PET/MRI and mpMRI images were reviewed for each case, the
38 MRI false negative cases were found to fall into six broad classes. The common features
associated with each class are outlined below in Table 3 and Figure 2.

Table 3. Breakdown of the six classes of MRI false negative.

False Negative Class (Number of Cases, %)

Anatomically normal (18, 47%)
Atypical MRI appearance (6, 16%)
Mischaracterization (1, 3%)
Undercall (6, 16%)
Obscured (4, 11%)
Negative (3, 8%)
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CLASSES OF FALSE NEGATIVE MRI

Normal

Mischaracterized

Figure 2. Six classes of MRI false negatives.

Upon further review, of those cases that were “false negative” on MRI, other sites of
disease were found such that the degree of extent (local, regional, or distant) would not
change in 4 cases (11%), such that management would not be altered. Additionally, 12 cases
(32%) were either atypical or “undercalled”, such that a change in reporting could have
resulted in these cases being correctly classified. Regardless, the remaining 22 cases (58%)
may have had disease not otherwise reported. However, of these cases, half (11, or 29% of
38) would have disease that would not have been included in a traditional pelvic lymph
node and prostate bed radiation field. Compared to the entire dataset of 263 subjects, this
results in 4% with undiagnosed extrapelvic disease.

3.1. Example 1—Anatomically Normal Lymph Node Metastasis

As seen in Figure 3, the largest class, comprising half of the cases, was anatomically
normal. In other words, the size and morphology of the metastatic focus did not suggest
an abnormality on MRI. This description applied to many false negative cases involving
lymph node metastases. In this case, the initial mpMRI was negative for the lymph node
metastases by size criteria, while the PSMA PET showed a PSMA-avid, subcentimeter,
left-sided lesion (Figure 3C). Detailed review of the mpMRI confirmed that the lymph node
in question measured well under 1.0 cm in short axis, with a similar “cold” contralateral
lymph node with essentially the same characteristics (Figure 3A,B). There were no other
features in the mpMRI that were suspicious for metastatic disease.
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Dl 0.93cm
Dia2: 0.34cm

(B)

©

Figure 3. Post-contrast fat-saturated gradient T1-weighted image (A), diffusion-weighted imaging
with b = 900 s/mm? (DWI) (B), and fused PET/ single-shot T2-weighted imaging (C) through the
pelvis. In Figure 3A, the lesion is marked with measurement calipers. In Figure 3B,C, the lesion is
denoted with a red arrow. Yellow arrows indicate the ureters, which show physiologic PSMA PET
uptake.
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3.2. Example 2—Mischaracterization of Lymph Node Metastasis

Among the cases included in this analysis, there was only one example of a characteriza-
tion issue, defined as an instance where a lymph node was suspicious on MRI on the basis of
size but was not prospectively included in the report (Figure 4). This case involved a lymph
node metastasis. The PSMA PET showed a PSMA-avid node in the left supraclavicular region
(Figure 4C). The lymph node measured > 1.0 cm in short axis (Figure 4A). However, it also
exhibited a benign morphology with an oval shape and a fatty hilum.

Name: BO3
Dia1l: 1.55cm
_._Dia2: 1.12cm

(B)

©

Figure 4. Post-contrast fat-saturated gradient T1 (A), DWI (B), and fused PET (C) images. In
Figure 4A, the lesion is retrospectively measured (calipers). In Figure 4C, the lesion is denoted with a

red arrow.
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In terms of “atypical” and “undercalled” findings, with six of each, there were four
“atypical” bone lesions: two rib lesions, one with signal loss but no T2 lengthening or
restricted diffusion, and another with high signal on fat-suppressed T1/T2 but low signal
on native T1/T2 and possible diffusion-restriction vs. T2 shine-through; one case of sternal
subtle T1/T2 lengthening and possibly diffusion restriction also attributed to T2 shine-
through; and one case of ischial T2-lengthening with an equivocal defect on T1 but no
diffusion restriction. The other two “atypical” cases included asymmetric enhancement
without restricted diffusion or a discrete mass in the seminal vesicles after radiation therapy,
and thoracic lymph nodes that were slightly distorted from susceptibility artifact. The
“undercalled” cases included five cases of lymph nodes that did not meet the size criteria
but were either considered equivocal on the basis of round shape or short axis > 5 mm in the
pelvic “landing zone” distribution, and one case where not all of the osseous lesions were
identified. Obscured lesions included three cases of lymph nodes obscured by susceptibility
artifact, either from lungs or metal, and one case where extensive degenerative bony change
obscured an underlying focus that was PSMA-avid.

4. Discussion

This study aimed to classify major causes of MRI “misses” of metastatic prostate
cancer when compared to PSMA PET, which was used as the standard of reference. In our
analysis, the primary reason (47% of cases) why MRI missed metastatic lesions that were
radiotracer-avid on PSMA PET/MRI was simply due to the lesions’ normal appearance
by existing anatomic size criteria. Although MRI has been shown to be comparable in
sensitivity and specificity to some forms of traditional PET/CT, such as FDG-PET/CT and
F18-choline PET/CT, and it is one of the most common methods of evaluating prostate
cancer metastases, MRI interpretation still relies heavily on size as the main criteria for the
evaluation of lymph nodes [15,16].

Our results suggest that the current standards for evaluating potentially metastatic
prostate cancer lesions, particularly for metastatic lymph nodes, are not ideal. Current prac-
tice generally considers oval lymph nodes > 1.0 cm in short axis or round nodes > 0.8 cm in
diameter as indicators of metastasis. However, these guidelines are optimized for increased
specificity, not sensitivity [17]. As a result, MRI fairly frequently misses small metastases in
“normal”-sized lymph nodes [13,18]. In contrast, PSMA PET, because it relies on PSMA
expression and not solely on size criteria, shows superior performance in situations where
metastatic lesions are more likely to be small. For example, PSMA PET has been demon-
strated to have higher sensitivity than MRI in patients with low PSA values [19], as well as
in patients with biochemical recurrence following radical prostatectomy [14]. Guberina
et al. also found that PSMA PET/MRI was superior in detecting locally recurrent disease
when compared to PSMA PET/CT [20].

Given the fact that MRI more easily misses smaller lesions using anatomic criteria
alone, there is a need for multiparametric criteria to identify lesions that are functionally or
biologically abnormal, instead of using purely size-based methods. One such alternative cri-
teria has been proposed by Conlin et al. [21] Their group suggests using a four-compartment
signal model of whole-body diffusion-weighted imaging, which appears to have promising
potential to evaluate prostate cancer bone metastases

Additionally, 32% of the false negative cases analyzed were either characterization
issues, atypical, or undercalled. In these cases, the lesions in question were initially seen on
MRI but not given enough weight, often because they appeared in unexpected contexts.
The one mischaracterized lesion, while significant by the size criteria, had a physiologic
shape. Moreover, the supraclavicular region is an unusual location for solitary prostate
cancer metastasis. These unusual features may have resulted in the initial interpretation
of the lymph node as non-metastatic. Since there is some element of human interpretive
error involved, improving reader training in terms of gauging suspicion may lead to more
accurate results. The potential exists for clinical suspicion to inform the degree to which
lesions are deemed suspicious on MRL
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The single case of “mischaracterization”, where the single-reader failed to identify a
lymph node in an atypical location but where the lymph note was clearly suspicious based
on the size criteria, falls within normal radiology performance given the 263 prospectively
enrolled subjects. The veracity of this finding could be reinforced by having a dual-reader
or repeat single-reader analysis for inter-rater versus intra-rater assessment, respectively,
but this was not part of the experimental design.

Ultimately, it is crucial to improve MRI interpretation because PSMA PET, though
undoubtedly more powerful and superior to traditional methods, is currently limited by
availability to high-resource regions [10-12]. PSMA imaging requires the use of radiotrac-
ers, which must be produced through a relatively laborious manufacturing process and
which have relatively short half-lives [22-25]. Improving the interpretation of mpMRI has
significant potential to positively impact the diagnosis and treatment of metastatic prostate
cancer for many patients in developing and sparsely populated regions.

Future avenues of investigation include a deeper review of pulse sequence-specific
features (e.g., diffusion restriction) to determine whether subtle pulse-specific abnormalities
that indicate metastatic disease are present on the MRI. If present, such features may
reveal new abnormalities in “normal” cases to help with diagnosis. Additionally, such
features could be a valuable resource to improve reader training for atypical and potentially
undercalled cases.

This study was limited by a fairly small sample size; out of 263 PSMA PET/MRI
scans, only 38 cases (14%) had a false negative MRI result compared to PSMA. In addition,
the cases consisted of patients with diverse clinical circumstances—some planning for
initial therapy, others who had already received surgical and/or radiation therapy. This
somewhat heterogenous sample size may also complicate retrospective MRI interpretation
and could introduce bias in terms of analysis from a skewed population. Additionally,
some of these cases (e.g., planning for focal therapy) might not normally entail whole-body
MRI were it not for their participation in the prospective clinical trial. Whole-body MRI
remains a relatively uncommon procedure, and while it holds the potential to be more
widespread than PET scanning, issues including costs, time requirements, and expertise
limit its value. Lastly, there is a possibility that some cases were “PSMA false positive” as
pathologic confirmation was only available for a minority of cases.

5. Conclusions

In conclusion, it is rare that MRI will miss metastatic disease caught by PSMA PET,
and rarer still that, if one does not consider atypical and equivocal cases falsely negative,
only 4% of this cohort would have disease missed by conventional treatment planning.
Regardless, improving multiparametric characterization of small lymph nodes holds the
greatest promise to compensate for this, the most common class of false negative MRIL
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