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process. We hope that this Special Issue will be a valuable resource for researchers in nanomaterials
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Hybridizing Fabrications of Gd-CeO2 Thin Films Prepared by
EPD and SILAR-A+ for Solid Electrolytes
Taeyoon Kim 1, Yun Bin Kim 1, Sungjun Yang 2 and Sangmoon Park 1,3,4,*

1 Department of Engineering in Energy Materials, Graduate School, Silla University,
Busan 46958, Republic of Korea

2 UNIST Central Research Facilities, Ulsan National Institute of Science and Technology,
Ulsan 44919, Republic of Korea

3 Department of Environmental Energy & Chemistry, College of Engineering, Silla University,
Busan 46958, Republic of Korea

4 Department of Fire Protection and Safety Management, College of Health and Welfare, Silla University,
Busan 46958, Republic of Korea

* Correspondence: spark@silla.ac.kr; Tel.: +82-51-999-5891

Abstract: Thin films of gadolinium-doped ceria (GDC) nanoparticles were fabricated as
electrolytes for low-temperature solid oxide fuel cells (SOFCs) by combining electrophoretic
deposition (EPD) and the successive ionic layer adsorption and reaction-air spray plus
(SILAR-A+) method. The Ce1−xGdxO2−x/2 solid solution was synthesized using hydrother-
mal (HY) and solid-state (SS) procedures to produce high-quality GDC nanoparticles
suitable for EPD fabrication. The crystalline structure, cell parameters, and phases of
the GDC products were analyzed using X-ray diffraction. Variations in oxygen vacancy
concentrations in the GDC samples were achieved through the two synthetic methods. The
ionic conductivities of pressed pellets from the HY, SS, and commercial G0.2DC samples,
measured at 150 ◦C, were 0.6 × 10−6, 2.6 × 10−6, and 2.9 × 10−6 S/cm, respectively. These
values were determined using electrochemical impedance spectroscopy (EIS) with a simpli-
fied equivalent circuit method. The morphologies of G0.2DC thin films prepared via EPD
and SILAR-A+ processes were characterized, with particular attention to surface cracking.
Crack-free GDC thin films, approximately 730–1200 nm thick, were successfully fabricated
on conductive substrates through the hybridization of EPD and SILAR-A+, followed by
hydrothermal annealing. EIS and ionic conductivity (1.39 × 10−9 S/cm) measurements of
the G0.2DC thin films with thicknesses of 733 nm were performed at 300 ◦C.

Keywords: gadolinium doped ceria; thin film; SILAR-A+; EPD; hydrothermal annealing

1. Introduction
Since the first investigation of a solid electrolyte for solid oxide fuel cells (SOFCs)

in 1937, oxide-ion (O2−)-conducting materials fueled by hydrogen have been extensively
studied as solid electrolytes in SOFCs due to their appropriate electrochemical reactions
at working temperatures [1–8]. One of the primary challenges in developing suitable
O2−-conducting solid electrolytes is overcoming the high operating temperature limitation
to reduce maintenance costs and improve system stability. SOFCs are categorized into high
(~1000 ◦C), intermediate (600–800 ◦C), and low (<600 ◦C) temperature ranges based on
their operating conditions [1–8]. While yttrium-stabilized zirconia (YSZ) has demonstrated
excellent O2− conductivity along with thermal, chemical, and mechanical stability, its effec-
tiveness is constrained to high operating temperatures (~1000 ◦C). Efforts to address this

Molecules 2025, 30, 456 https://doi.org/10.3390/molecules30030456
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limitation have included fabricating ultrathin YSZ films via atomic layer deposition, which
reduces operating temperatures by minimizing ohmic losses [9]. In parallel, intermediate-
temperature electrolytes with superior O2− conductivity have been developed, such as
samarium-doped ceria (SDC) and gadolinium-doped ceria (GDC) [5–8]. The ceria (CeO2)
structure, which enables oxygen conductivity through the formation of oxygen vacancies,
adopts a fluorite-type (F-structure, Fm-3m) crystal lattice, as shown in Figure 1 [10,11].
When Sm3+ or Gd3+ ions substitute Ce4+ in the CeO2 lattice, the introduction of oxygen
vacancies significantly enhances ionic conductivity [5–8]. However, as the concentration of
Sm3+ or Gd3+ increases, the F-structure gradually transitions to a cubic C-structure (Ia-3)
typical of Sm2O3 or Gd2O3, as depicted in Figure 1 [5–8,10,11]. Additionally, the Ce-O8

bonds in the F-structure transform into Ce(Gd,Sm)-O6 bonds with reduced coordination as
Sm3+ or Gd3+ ions accumulate.
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Figure 1. The structures of CeO2 (F-structure, Fm-3m) and Gd2O3 (C-structure, Ia-3).

Thin films of these electrolytes have been prepared using techniques such as sput-
tering, spin-coating, pulsed laser deposition, and chemical vapor deposition [9,12–17].
In a previous study, crack-free YSZ thin films were achieved using the successive ionic
layer adsorption and reaction-air spray plus (SILAR-A+) method, which integrates SILAR
with air spray steps [18,19]. This method enables the formation of thin films composed of
nanoparticles via dehydration and crystallization during post-hydrothermal annealing at
temperatures below 200 ◦C. Repeated cycles of adsorption, rinsing, precipitation, and air
spray deposition on oxidized substrates allow for the fabrication of ultrathin films. In this
study, thin films of crystallized GDC nanoparticles were successfully fabricated using a
hybrid deposition process combining electrophoretic deposition (EPD) with the SILAR-A+
method, followed by post-hydrothermal annealing. The structure, surface morphology, and
ionic conductivity of the GDC films were characterized using X-ray diffraction, scanning
electron microscopy, and electrochemical impedance spectroscopy, respectively.

2. Results and Discussion
Gd3+ ions were doped into the CeO2 host lattice (Ce1−xGdxO2−x/2 (GxDC),

x = 0.1–0.5) to prepare solid electrolytes for low-temperature solid oxide fuel cells (SOFCs)
using hydrothermal (HY) and solid-state (SS) methods. As shown in Figure 2a,b, the
gradual increase in Gd3+ ion content in CeO2 caused shifts in the X-ray diffraction (XRD)
patterns to lower and higher angles, particularly in the Bragg reflection positions around
2θ = 28–29◦ for both HY and SS methods. The calculated lattice parameter (a) of GDC
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showed a nonlinear trend, initially increasing and then decreasing with the increase in Gd3+

ion content, as depicted in Figure 2c and Table S1. Rp values, indicating good agreement
between the observed and calculated reflections, ranging from 6.9 to 11.1%, are observed
in all samples prepared using both HY and SS methods. The a values reached their maxi-
mum at x = 3 for the SS method and x = 4 for the HY method. Interestingly, the unit cell
of GDC synthesized via the SS method was significantly smaller than that prepared by
the HY method. This difference is likely due to the formation of more oxygen vacancies
in the SS GDC lattice, which are induced by the high-temperature conditions of the SS
synthesis process.

Molecules 2025, 30, x FOR PEER REVIEW 3 of 11 
 

 

trend, initially increasing and then decreasing with the increase in Gd3⁺ ion content, as 
depicted in Figures 2c and Table S1. Rp values, indicating good agreement between the 
observed and calculated reflections, ranging from 6.9 to 11.1%, are observed in all samples 
prepared using both HY and SS methods. The a values reached their maximum at x = 3 for 
the SS method and x = 4 for the HY method. Interestingly, the unit cell of GDC synthesized 
via the SS method was significantly smaller than that prepared by the HY method. This 
difference is likely due to the formation of more oxygen vacancies in the SS GDC lattice, 
which are induced by the high-temperature conditions of the SS synthesis process. 

  
(a) (b) 

 
(c) 

Figure 2. The calculated X-ray powder diffraction (XRD) patterns of cubic CeO2 (ICSD 28753) phase 
and the obtained XRD patterns of Ce1-xGdxO2-x/2 (GxDC, x = 0(A), 0.1(B), 0.2(C), 0.3(D), 0.4(E), 0.5(F)) 
powders prepared by (a) hydrothermal and (b) solid-state methods and (c) the cell parameters as a 
function of Gd3+ contents. 

The synchrotron powder XRD data for the G0.2DC samples (Ce0.8Gd0.2O1.9; commer-
cial, HY, SS) are shown in Figures 3a and Table S2. The full width at half maximum 
(FWHM) of the XRD peaks for both the commercial and HY samples is noticeably broader 
compared to that of the SS sample due to the particle sizes. Rp values below 4.44% were 
observed in all the G0.2DC samples. The chi-square (χ2) values of the refined G0.2DC sam-
ples represent goodness of fit, as shown in Table S2. The χ2 values for HY and commercial 
G0.2DC samples (7.16 and 10.5, respectively) are larger than that of the SS G0.2DC sample 
(0.979). Figure 3b presents the cell parameter (a) and oxygen occupancy, along with SEM 
images, for the HY, SS, and commercial G0.2DCs, respectively. 

  

Figure 2. The calculated X-ray powder diffraction (XRD) patterns of cubic CeO2 (ICSD 28753) phase
and the obtained XRD patterns of Ce1−xGdxO2−x/2 (GxDC, x = 0(A), 0.1(B), 0.2(C), 0.3(D), 0.4(E),
0.5(F)) powders prepared by (a) hydrothermal and (b) solid-state methods and (c) the cell parameters
as a function of Gd3+ contents.

The synchrotron powder XRD data for the G0.2DC samples (Ce0.8Gd0.2O1.9; commer-
cial, HY, SS) are shown in Figure 3a and Table S2. The full width at half maximum (FWHM)
of the XRD peaks for both the commercial and HY samples is noticeably broader compared
to that of the SS sample due to the particle sizes. Rp values below 4.44% were observed in
all the G0.2DC samples. The chi-square (χ2) values of the refined G0.2DC samples represent
goodness of fit, as shown in Table S2. The χ2 values for HY and commercial G0.2DC samples
(7.16 and 10.5, respectively) are larger than that of the SS G0.2DC sample (0.979). Figure 3b
presents the cell parameter (a) and oxygen occupancy, along with SEM images, for the HY,
SS, and commercial G0.2DCs, respectively.
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The a values and oxygen occupancies were derived from synchrotron powder XRD
analysis and energy dispersive X-ray spectroscopy (EDS), respectively. The cell parameter
and oxygen occupancy values for HY and commercial G0.2DCs were similar, measured
as 5.426(2) Å and 5.421(3) Å, and 0.89 and 0.85, respectively. However, the SS G0.2DC
sample exhibited significantly lower values, with a = 5.40761(4) Å and oxygen occupancy
of 0.73. In the SS G0.2DC sample, peak splitting was observed in the XRD patterns at higher
angular resolution (2θ), as shown in Figure 3a. This peak splitting suggests the coexistence
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of mixed phases: the F-structure of CeO2 and the C-structure of Gd2O3, resulting in distinct
cell parameter and oxygen vacancy characteristics. For the GDC prepared using the HY
method, the lattice parameter (a) as a function of Gd³+ ion content exhibited nonlinear
behavior, as shown in Figure 2c. This trend may be attributed to a reduction in the
average connectivity of Ce-O8; in the F-structure, driven by a decrease in the coordination
number around Ce4+ cations, which generates oxygen anion vacancies. Electrochemical
impedance spectroscopies (EISs) for pressed pellets of HY and SS GxDC (x = 0.2, 0.3, 0.4),
and commercial G0.2DC powders are shown in Figure 4a,b, respectively. The total (σTotal),
which is combination of bulk (σbulk) and grain boundary (σgb) contributions, conductivity
was calculated from the EIS fits at 150 ◦C in Figures 4c and S1 and Table S3.
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x = 0.2(B), 0.3(C), 0.4(D)), (c) their ionic conductivities with commercial sources at 150 ◦C, and (d) EIS
data of G0.2DC samples fitted via an equivalent circuit.

The σTotal values for HY and SS GxDC (x = 0.2, 0.3, 0.4) were 1.4 × 10−6, 1.7 × 10−6,
1.4 × 10−6 and 2.8 × 10−6, 1.8 × 10−6, 1.9 × 10−6 S/cm, respectively (Figure S1 and
Table S3). In addition, the σTotal for the commercial G0.2DC sample was 3.1 × 10−6 S/cm
(Figure S1 and Table S3). Among the HY, SS, and commercial samples, the HY G0.2DC
exhibited a relatively low σTotal value, which may be attributed to its smaller grain size
(Figure S2), resulting in enhanced interfacial resistance [20]. The EIS raw data for G0.2DC
samples were analyzed using a simplified equivalent circuit model, comprising a capacitor,
bulk resistance (RBulk), and grain boundary resistance (RGB). The analysis was performed
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using the EIS Spectrum Analyzer, as shown in Figures 4d and S1 and Table S3 [21–23]. The
σTotal values obtained from the fitting process for HY, SS, and commercial G0.2DC samples
were 1.6 × 10−6, 2.6 × 10−6, and 2.9 × 10−6 S/cm, respectively (Figure S1 and Table S3).
The ionic conductivity values derived from the raw and the fitted data exhibited differences
in the range of 6–12%.

The HY, SS, and commercial G0.2DC particles were deposited on ITO glass using the
electrophoretic deposition (EPD) method. The deposition utilized a suspension containing
0.1 g of G0.2DC and 0.02 g of iodine in 50 mL of acetone, with a DC power supply applied
at 20 V for 15 s. Figure 5a(A–C) shows SEM images of the surface morphologies for HY,
SS, and commercial G0.2DCs, respectively. The particles were fully coated on the ITO
substrate. HY G0.2DC particles were uniformly deposited, while the SEM images of SS
and commercial G0.2DCs exhibited large grains and aggregation, respectively. Figure 5b
illustrates G0.2DC thin films prepared using two methods: successive ionic layer adsorption
and reaction (SILAR, A and B) and SILAR-air spray plus (SILAR-A+, C and D), with
150 cycles.
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Figure 5. (a) Surface SEM images of the electrophoretic depositions (EPDs) of G0.2DC prepared by
A. HY, B. SS, C. Commercial sources and (b) surface and cross-sectional SEM images of G0.2DC thin
films by SILAR (A,B-1 to 4) and SILAR-A+ (C, D-1 to 4) methods (as-made (A, C) and subsequent
hydrothermal annealing (B, D) at 175 ◦C).

During each cycle of the SILAR process, the glass substrate was sequentially immersed
in a Gd3+/Ce4+ cation solution for adsorption, rinsed in water to remove spectator an-
ions, transferred to an OH− anion solution for precipitation, and then rinsed again to
eliminate residual layers. SEM images in Figure 5(A–D) represent G0.2DC films without
post-annealing (A, C) and with additional post-hydrothermal annealing at 175 ◦C (B, D).

6



Molecules 2025, 30, 456

Each set of images (A, B, C, D-1 and D-2) was magnified by 1500× and 5000× to observe
surface cracks. Figure 5 (A,B,C,D-3) shows crack and crack-free SEM images in white
and black contrasts. In as-made films (A-3 and C-3), surface cracks were clearly reduced
from 15.7% to 4.4%, and from 10% to 0% after annealing (B-3 and D-3), demonstrating the
effectiveness of the SILAR-A+ process combined with post-hydrothermal annealing in pro-
ducing crack-free G0.2DC films. Figure 5b (A,B,C,D-4) presents cross-sectional SEM images
showing the thickness of G0.2DC thin films, accompanied by bar graphs. The thicknesses of
films produced via the as-made SILAR and SILAR-A+ processes (A-4 and C-4) were 9.2 µm
and 0.628 µm (628 nm), respectively, while those of post-hydrothermally annealed films
(B-4 and D-4) were 8.04 µm and 0.347 µm (347 nm), respectively. Hydrothermal annealing
removed crystallized hydroxyl and water layers, resulting in thinner cross-sections, as
observed in SEM images. The reduced thickness and crack formation in the films were
attributed to the efficient removal of diffusion layers during the air-spray process and the
subsequent exclusion of hydroxyl and water layers through hydrothermal annealing at
175 ◦C. In a previous report, freestanding YSZ (Y-doped ZrO2) membranes with thicknesses
ranging from 500 nm to 2 µm were fabricated to test power density at 600 ◦C [24]. Further
advancements reduced the thickness of YSZ membranes to 50 nm, enabling SOFCs to
operate at lower temperatures, around 350 ◦C [24]. Deposition techniques such as pulsed
laser deposition, chemical vapor deposition, spin coating, and physical vapor deposition
were utilized to produce these solid membranes. For low-temperature SOFC applications,
G0.2DC thin films were fabricated on conductive Pt/ITO substrates. These were prepared
using the EPD method with commercial and HY G0.2DC powders, followed by the SILAR-
A+ process and post-hydrothermal annealing. The SILAR-A+ technique proved effective
in producing thin, smooth solid membranes, although it is primarily efficient in oxidizing
surface environments due to its successive ionic adsorption mechanism. To address this
limitation, EPD on the Pt metal surface was conducted prior to SILAR-A+ deposition
to form GDC thin films. Figure 6a shows SEM images of hybridized films produced
through EPD (using commercial and HY G0.2DC powders) followed by the SILAR-A+
process and post-hydrothermal annealing. The surface morphology of films fabricated
using EPD with HY G0.2DC and the SILAR-A+/hydrothermal method exhibited a much
smoother and more homogeneous surface compared to other methods. The cross-sectional
SEM images reveal the film thicknesses from the hybridization processes: 2.6 µm for EPD
(commercial)/SILAR-A+-as-made, 1.5 µm for EPD (HY)/SILAR-A+-as-made, 1.2 µm after
post-hydrothermal annealing of the EPD (commercial)/SILAR-A+ film, and 0.733 µm
(733 nm) for the annealed EPD (HY)/SILAR-A+ film. Figure 6b presents the EIS and ionic
conductivity measurements for Pt/G0.2DC/Pt-ITO films (1 cm × 1 cm).

The total conductivity (σTotal) values of the films with thicknesses of 1.2 µm and
733 nm were 2.68 × 10−10 S/cm and 1.39 × 10−9 S/cm at 300 ◦C, respectively (Figure S1
and Table S3). The successful fabrication of G0.2DC thin films using a hybrid approach
combining EPD (HY GDC) and SILAR-A+ with post-hydrothermal annealing highlights the
potential of these membranes as promising solid electrolyte candidates for low-temperature
SOFC applications.
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3. Experimental Procedure
The GDC powders were prepared using the solid-state (SS) method by mixing CeO2

(Alfa, 99.9%; Thermo Fisher Scientific Inc. Seoul, Republic of Korea) and Gd2O3 (Alfa,
99.9%), followed by annealing at 1400 ◦C for 3 h in air. Additionally, GDC powders were
synthesized via the hydrothermal (HY) technique using precursors of 0.1 M Ce(CH3COO)3

(Alfa, 99.9%), 0.1 M Gd(NO3)3·6H2O (Alfa, 99.9%), and 0.1 M NaOH (Alfa, 98%) at 180 ◦C
for 18 h. Phase identification of the synthesized powders was conducted using a Shimadzu
XRD-6000 powder diffraction system (SHIMADZU CORPORATION, Kyoto, Japan) with
Cu-Kα radiation. High-resolution synchrotron X-ray powder diffraction data were collected
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at the PLS-II 8D-XRS POSCO beamline of the Pohang Accelerator Laboratory (PAL). For the
crystallization process, the hydrothermal synthesis was performed at 175 ◦C for 18 h. GDC
thin films were fabricated on substrates using three methods: EPD, SILAR, and SILAR-
A+. For the EPD process, 0.1 g of GDC powders (prepared by SS, HY, and commercial
sources) was dispersed in 50 mL of acetone containing 0.02 g of iodine as an electrolyte.
The dispersion underwent ultrasonication for 8 min, followed by electrophoretic deposition
(EPD) using a DC power supply of 20 V for 15 s. For the SILAR method, 0.03 M solutions
of Ce(CH3COO)3 Gd(NO3)3·6H2O, and NaOH were used as precursors. The substrate was
attached to the arm of a Gilson 223 XYZ robotic sample changer for sequential adsorption
(0.1 min), rinsing (0.1 min), and precipitation (0.1 min) reactions. Substrate surface pre-
treatment involved 10 min of UVC exposure using an Omniscience UVC-150 system.
The SILAR-A+ process incorporated an air-spraying step (0.1 min) at an air speed of
150 m/s as the final stage of the SILAR cycle. Thin film formation involved repeating
the cycle 150 times in a sequence of cation adsorption, rinsing, anion reaction, rinsing,
and air spraying. Hybridization of the EPD and SILAR-A+ methods was conducted on
Pt/ITO substrates. The morphology of the GDC powders and films was characterized
using scanning electron microscopy (SEM, Hitachi S-4200, Tokyo, Japan). The proportion
of cracked versus crack-free areas in SEM images was quantified using the ImageJ (ver.
1.54k) program. Electrochemical impedance spectroscopy (EIS) was performed using a
potentiostat (Ametek VERSASTAT3-500, AMETEK PAR(Princeton Applied Research), Oak,
Ridge, TN, USA) over a frequency range of 1 MHz to 100 mHz. The ionic conductivity (σ)
of GDC samples was calculated using the following equation:

σ = L/R·A

where σ, L, R, and A represent the ionic conductivity, the thickness of the GDC samples, the
total resistance, and the contact area of the electrode with the samples, respectively [3,8].

4. Conclusions
Gd-doped CeO2 (GDC) nanoparticles were successfully prepared using three methods:

hydrothermal synthesis, solid-state synthesis, and commercial sourcing. X-ray diffraction
analysis and energy-dispersive X-ray spectroscopy were employed to characterize the
F- and C-phase structures of CeO2/Gd2O3 system, along with the presence of oxygen
vacancies. Thin, crack-free GDC films were fabricated using a combined approach of
electrophoretic deposition (EPD) and the successive ionic layer adsorption and reaction-air
spray plus (SILAR-A+) methods. Hydrothermal treatment further enhanced the film quality,
as confirmed by SEM surface and cross-sectional imaging. Oxide-ion conductivities of the
GDC pellets and thin films were measured using electrochemical impedance spectroscopy.
The GDC pellets exhibited conductivity at 150 ◦C, while the thin films demonstrated
conductivity at 300 ◦C. Additionally, G0.2DC thin films, approximately 730 nm thick, were
successfully fabricated on Pt-ITO substrates, demonstrating their potential for use as solid
electrolytes in low-temperature SOFC applications.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/molecules30030456/s1, Table S1. Cell parameters of Ce1−xGdxO2−x/2 syn-
thesized by hydrothermal and solid-stat methods and commercial G0.2DC; Table S2. Rietveld refinement
and crystal data and refined atomic coordinates for Ce0.8Gd0.2O1.9 prepared by solid-state, hydrothermal,
and commercial source; Figure S1. Ionic conductivities of Ce1−xGdxO2−x/2 pellets prepared by HY, SS,
and commercial sources at 150 ◦C and fitted via an equivalent circuit, and hybridizing G0.2DC thin-films
at 300 ◦C; Table S3. Ionic conductivities of Ce1−xGdxO2−x/2 pellets prepared by HY, SS, and commercial
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sources at 150 ◦C and fitted via an equivalent circuit, and hybridizing G0.2DC thin-films at 300 ◦C;
Figure S2. SEM images of G0.2DC powders prepared by HY(A), SS(B), Commercial(C) sources.
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Abstract: Niobium pentoxide (T-Nb2O5) is a promising anode material for dual-ion batter-
ies due to its high lithium capacity and fast ion storage and release mechanism. However,
T-Nb2O5 suffers from the disadvantages of poor electrical conductivity and fast cycling
capacity decay. Herein, a nitrogen-doped three-dimensional porous carbon (RMF) was
prepared for loading niobium pentoxide to construct a composite system with excellent elec-
trochemical performance. The obtained T-Nb2O5/RMF composites have a well-developed
pore structure and a high specific surface area of 1568.5 m2 g−1, which could effectively
increase the contact area between the material and electrolyte, improving the electrode
reaction and lithium-ion transfer diffusion. Nitrogen doping increased surface polarity,
creating more active sites and accelerating the electrode reaction rate. The introduction of
T-Nb2O5 imparted high power density and excellent cycling stability to the battery. The
composites exhibited good electrochemical performance when used as dual-ion battery
anode, with a stable cycle life of 207.2 mA h g−1 at 1 A g−1 current density after 650 cycles
and great rate performance of 181.5 mA h g−1 at 5A g−1 was also obtained. This work
provides the possibility for applying T-Nb2O5/RMF as an anode for a high-performance
dual-ion battery.

Keywords: dual-ion batteries; Nb2O5; anode; structure design; Nitrogen doping

1. Introduction
The current depletion of fossil fuel reserves and the growing problem of environmental

pollution have prompted extensive research into the development and storage of new
green energy sources [1,2]. The intermittent nature of renewable solar and wind energy
necessitates the development of energy storage solutions [3,4]. Lithium-ion batteries have
gained widespread commercial applications due to their good energy storage performance
and stability [5]. However, limited and unsustainable lithium and cobalt resources, high
costs and safety concerns remain [6–10]. Consequently, it is essential to investigate new
electrochemical energy storage devices that offer high safety, low cost, and environmental
sustainability, as well as high energy density and long cycle life.

Dual-ion batteries (DIBs) represent a promising class of energy storage technologies,
distinct from traditional alkali-metal ion batteries that operate on the ‘rocking chair’ mech-
anism [11]. In this case, cations shuttle between the positive and negative electrodes during
charging and discharging. In contrast, DIBs involve both cations and anions during charg-
ing and discharging. Cations and anions enter the anode and cathode simultaneously

Molecules 2025, 30, 227 https://doi.org/10.3390/molecules30020227
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during charging, and then released from the electrodes simultaneously during discharg-
ing [12–14]. This unique mechanism contributes to the high energy density of DIBs, similar
to that of lithium-ion batteries, while also offering a higher operating voltage and improved
environmental friendliness [15,16]. Consequently, DIBs have become an active area of re-
search in recent years. The electrode material is a crucial factor limiting the development of
DIBs, with the anode material typically responsible for the intercalation and deintercalation
of cations. Graphite is commonly utilized as the anode material in DIBs due to its layered
structure, which facilitates the reversible intercalation of various cations. While graphite
helps reduce the overall cost of DIBs, it has limitations in terms of lithium intercalation
capacity and cycling stability. Specifically, graphite has a relatively low lithium intercalation
capacity of 372 mAh g−1 and a low intercalation potential (~0.1 V vs. Li/Li+), which is close
to the lithium deposition potential. This proximity increases the risk of dendrite formation
during cycling, which can compromise battery safety by causing short circuits [17,18].
Furthermore, the cycling stability of graphite is also a concern, as the structural integrity
of its layered framework is prone to degradation during the insertion and extraction of
lithium ions [19,20]. Therefore, in this work, it is desired to prepare a DIBs anode material
to improve the lithium intercalation capacity, cycling stability and structural recovery.

The anode ion storage mechanism of dual-ion batteries is similar to that of lithium-
ion batteries [21], and is also divided into intercalation [22,23], alloying [23,24], conver-
sion [25,26], and organic [27,28] anodes materials [29]. For dual-ion batteries, an ideal
anode material should demonstrate a favorable cation reduction reaction and rapid ion
transport kinetics, aligning with the swift insertion kinetics of anions on the cathode side
to maintain robust electrochemical performance, even under high current densities [30–32].
Additionally, the anode material must exhibit a strong binding capacity to prevent the
spontaneous release of active ions, thereby reducing the self-discharge rate [33]. Good
compatibility with the electrolyte is also necessary, allowing for the rapid formation of a
solid electrolyte interface (SEI) that enhances cation transport efficiency and extends the
electrode’s operational lifespan [34,35]. The electrolyte can be stabilized and concentrated
under high pressure. The orthorhombic crystal system of Nb2O5 (T-Nb2O5) has been
identified as a conversion anode with a unique pseudo-capacitance effect [36,37]. The
insertion and detachment of lithium ions in this material are characterized by a fast charge
storage process, which can produce high energy density without phase transition [38].
Nevertheless, it is important to acknowledge that pure Nb2O5 also exhibits certain limi-
tations as an anode material. These include large potential lag during cycling, low initial
cycling coulombic efficiency, rapid capacity decay, and poor rate performance [36,39,40].
To compensate for these problems, Nb2O5-based nanocomposites require more conductive
networks to achieve higher performance.

Based on these, in this work, T-Nb2O5/nitrogen-doped three-dimensional porous
carbon composites were synthesized by in-situ growth of T-Nb2O5 nanoparticles on the
surface and inside the pores of a nitrogen-doped mesoporous carbon (RMF). The loading
could be easily controlled by adjusting the ratio of ammonium niobium oxalate and RMF.
The nitrogen-doped mesoporous carbon has a highly developed pore structure, which
possesses a large amount of space for the embedding of T-Nb2O5. The constructed three-
dimensional mesh skeleton provides excellent structural stability. Meanwhile, the growth
of T-Nb2O5 in the pore channels makes the larger pores into micropores with smaller
pore diameters and larger specific surface area, which can effectively increase the contact
area between the material and electrolyte. This is conducive to the electrode reaction
and lithium-ion transfer diffusion at the electrode interface. Meanwhile, the doping of
nitrogen breaks the uniform arrangement of electrons on the surface of the carbon structure,
which enhances the surface polarity of the material, helps the conduction of charge in
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the composite structure, and accelerates the reaction kinetics. In addition, T-Nb2O5 has a
unique pseudocapacitance property that provides a high-speed ion embedding mechanism
and good electrochemical stability. Therefore, the dual-ion battery with T-Nb2O5/RMF as
the anode was able to achieve an initial specific capacity of 332.8 mA h g−1 at a high current
density of 1 C, and still retained a specific capacity of 207.2 mA h g−1 after 650 cycles, with
a decay rate of only 0.058% per cycle. The T-Nb2O5/RMF composites prepared in this work
are able to achieve high electrochemical performance as a simple and effective strategy for
the practical application of dual-ion battery anodes.

2. Results and Discussion
2.1. Synthesis and Characterization of Materials

The approximate synthetic route of T-Nb2O5/RMF is shown in Figure 1. The RMF was
synthesized using SiO2 as a template, resorcinol-formaldehyde resin as a carbon source,
and melamine as a nitrogen source. Subsequently, T-Nb2O5 was loaded on the RMF by
a simple water bath using niobium ammonium oxalate as a niobium source. A series of
materials were prepared by varying the ratios of ammonium niobium oxalate and RMF. As
a comparison, in addition to T-Nb2O5/RMF loaded with T-Nb2O5 on 3D porous carbon
RMF, T-Nb2O5/CNTs loaded with T-Nb2O5 on 1D carbon nanotubes and T-Nb2O5/GO
loaded with T-Nb2O5 on 2D graphene were also prepared in this work. The synthesized
three-dimensional porous carbon RMF has a high specific surface area and abundant
pore structure, which can effectively load T-Nb2O5. Nitrogen doping destroys the surface
polarity of the carbon material, which makes it exhibit more active sites and accelerates
the electrode reaction rate. The T-Nb2O5/RMF loaded with T-Nb2O5 has a higher specific
surface area and a developed porechannel structure, which provides a place for lithium-ion
storage and transport and improves the battery performance.
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In order to clearly observe the microscopic morphology of the samples in different
scales and the dispersion state of T-Nb2O5 in the mesoporous carbon materials. The
scanning electron micrographs (SEM) and transmission electron micrographs (TEM) were
taken for the samples. As can be seen from Figure 2a, the RMFs prepared after selective
etching of the silicon templates with NaOH solution show a three-dimensional reticulated
structure with fairly well-developed pores. Through Figure 2b–e, it can be found that the
pore size of the material tends to decrease gradually with the increasing proportion of
niobium source added, which is due to the fact that the addition of more T-Nb2O5 fills
up the pores with larger internal diameters of the carbon material. This also shows that
T-Nb2O5 can effectively grow on the surface and inside the pores of the mesoporous carbon
material. Further observation of the micromorphology by transmission electron microscopy
in Figure 2f–i shows that T-Nb2O5 nanoparticles can be found to be uniformly dispersed in
the composite with a diameter of about 10 nm, and their lattice can be clearly observed.
T-Nb2O5 grows uniformly on the surface and inside the pores of mesoporous carbon,
which provides a more stable spatial structure for T-Nb2O5 nanoparticles. Meanwhile, the
three-dimensional reticulated carbon skeleton enhances the charge transfer rate, and the
developed pore structure offers a place for the storage and transport of lithium ions, which
is conducive to improving the performance and dynamics of the battery. T-Nb2O5/GO and
T-Nb2O5/CNTs were also characterized by SEM and TEM, as shown in Figures S1 and S2.
From Figure S1, the layered structure of graphene and T-Nb2O5 nanoparticles dispersed on
the surface of graphene can be clearly seen. The layered structure of graphene has been
curled to a certain extent and even formed a more complex reticular structure. Figure S2
shows that the carbon nanotubes are irregularly interwoven, and the T-Nb2O5 nanoparticles
are bound on the surface and inside of the carbon nanotubes. Thus, the as-prepared T-
Nb2O5/CNTs composites construct a complex interwoven mesh carbon skeleton with
carbon nanotubes randomly interwoven.
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In order to further analyze the composition and lattice conditions of the composites,
the samples with different amounts of T-Nb2O5 were subjected to XRD and Raman charac-
terization, and the results are shown in Figure 3. Figure 3a presents a comparative XRD
analysis of T-Nb2O5/RMF. The XRD curves of RMF exhibit a wide range of disordered
carbon characteristic peaks in the range of 20◦–30◦, while the diffraction peaks of T-Nb2O5

gradually become more pronounced with the increase in the introduction of T-Nb2O5. At
a T-Nb2O5/RMF ratio of 1:1, the characteristic peaks exhibit a clear correspondence with
the standard card of T-Nb2O5 (PDF:30-0873), indicating that T-Nb2O5 had been effectively
synthesized and loaded into the mesoporous carbon material. As illustrated in Figure 3b,
the Raman spectra of the composites exhibit two broad carbon peaks, which are the disor-
dered carbon peak (D peak) and the ordered carbon peak (G peak). Generally, the D peak
is attributable to the defects resulting from heteroatoms and functional groups, while the G
peak is related to the in-plane tensile vibration of sp2-hybridized carbon atoms [41,42]. The
intensity ratio of the D peak to the G peak can be employed as an indicator of the degree of
defectification of the material surface. The calculation of the peak intensities of the Raman
spectra of different materials reveals that the ID/IG values of the composites gradually
increase with the ratio of T-Nb2O5/RMF. This indicates that the introduction of T-Nb2O5

effectively increases the degree of defectivation on the surface of the material. The presence
of metal oxides breaks the neatly distributed electronic arrays on the surface of the carbon,
enhances the surface polarity of the carbon material, and thus improves the electrical
conductivity of the composite material. Figure S3a,b illustrate the XRD and Raman analysis
profiles of T-Nb2O5 when loaded on 1D, 2D, and 3D carbon materials. As illustrated in
Figure S3a, the 2D T-Nb2O5/GO exhibits the most pronounced T-Nb2O5 characteristic
peaks, followed by the 1D T-Nb2O5/CNTs. However, the T-Nb2O5/CNTs display the most
prominent 26◦ carbon peaks. Figure S3b illustrates that the 2D T-Nb2O5/GO has the largest
ID/IG, the 3D T-Nb2O5/RMF the second largest, and the 1D T-Nb2O5/CNTs the smallest.
It has been demonstrated that an appropriate degree of carbon surface defects enhances
the surface polarity of the carbon material and improves the overall electrical conductivity
of the composite.

Figure 3c–f demonstrate the nitrogen adsorption/desorption curves with pore size
distribution data for the samples. Based on the nitrogen isothermal adsorption/desorption
curves of the materials, the specific surface area, total pore volume and average pore
diameter of the composites were calculated, as shown in Table 1. It can be seen that
RMF exhibits an obvious type IV adsorption/desorption curve and H3 hysteresis loop,
indicating that it has a rich mesoporous structure. The specific surface area of RMF is
1008.6 m2 g−1, and its pore size is mainly distributed around 15 nm, with a pore volume of
4.51 cm3 g−1. After the introduction of T-Nb2O5 nanoparticles, the specific surface area of
T-Nb2O5/RMF increased to 1568.5 m2 g−1, the pore size was mainly distributed around
4 nm, and the pore volume was reduced to 2.79 cm3 g−1, which may be due to the fact
that T-Nb2O5 nanoparticles split the larger pores into smaller pores with a more complex
structure and larger internal surface area. The smaller pores can improve the contact
effect between the composite and the electrolyte, as well as the lithium-ion transport rate
at the electrode material–electrolyte interface. Comparing the BET data of the T-Nb2O5

composites with different carbon supports, it can be observed that the specific surface
areas show an increasing trend from 1D, 2D to 3D composites, which are 135.3 m2 g−1,
263.9 m2 g−1 and 1568.5 m2 g−1, respectively. The main pore structure size of all three
composites is mesoporous, and the pore volume and main pore size distribution also tend
to increase with dimension.
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Table 1. Porosity parameters of T-Nb2O5/C composite and RMF.

Samples SBET (m2/g) Vt (cm3/g) Dmeso (nm)

RMF 1008.6 4.51 15.13
T-Nb2O5/RMF 1568.5 2.79 7.56
T-Nb2O5/GO 263.9 0.61 4.11

T-Nb2O5/CNTs 135.3 0.40 3.78

X-ray photoelectron spectroscopy (XPS) characterization determines the elemental
composition and chemical bonding energy of the T-Nb2O5/RMF composites, as shown
in Figure 4. XPS analysis reveals the presence of four elements in the composite sample:
carbon (C), nitrogen (N), oxygen (O) and niobium (Nb). It can be seen that the C, N and
O elements are present in the RMF, and the Nb element is introduced by the compositing
process with T-Nb2O5. By analyzing the fine spectra of the different elements with peak

17



Molecules 2025, 30, 227

fitting, it is possible to obtain the different valence patterns of the element. As illustrated in
Figure 4c for Nb 3d, the Nb 3d spectrum is primarily comprised of two peaks, corresponding
to the Nb 3d5/2 orbital at 207.3 eV and the Nb 3d3/2 orbital at 210.1 eV, respectively. By
fitting the analysis in Figure 4d, it can be demonstrated that there are C–C/C=C, C–O,
C=C, and C–N bonding modes for the C elements in the material. In Figure 4e, the N 1s
are categorized into four forms: N–O, C–N, C=N, and graphitic N. Among these, C–N
and C=N confirm that the N element was successfully doped on the surface of the carbon
material, which effectively enhances the surface polarity. In the fine spectrum of O 1s,
the split-peak fitting yields C–O/N–O, Ov, and Nb–O, corresponding to binding energies
at 532.9 eV, 532.1 eV, and 530.8 eV, respectively; Ov represents the presence of oxygen
vacancies. Figure S5 demonstrates the XPS spectra of T-Nb2O5/GO, and Nb2O5/CNTs;
comparing the three composites reveals that T-Nb2O5/GO has a stronger O peak. This may
be due to the presence of oxygen-containing functional groups hydroxyl and epoxy groups
in graphene oxide.
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In order to accurately determine the mass ratio of carbon to metal elements in the
T-Nb2O5/RMF composites, thermogravimetric analyses were performed in air, and the
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thermogravimetric data are presented in Figure S4. From the thermogravimetric curves,
it is observed that the composites exhibit a significant weight loss at approximately 550
◦C. It is also noted that the peak temperature of weight loss increased with the increase in
metal content.

2.2. Battery Dynamics Analysis

In order to investigate the electrochemical performance of the T-Nb2O5 composite
electrode, a half-cell was prepared using a 2025 button cell with lithium metal as the counter
electrode and reference electrode. As illustrated in Figure 5a, the electrochemical properties
of T-Nb2O5/RMF show a trend of 1:6 > 1:10 > RMF > 1:2 > 1:1, which proves that the
appropriate amount of T-Nb2O5 loading plays an important role in the electrochemical
properties of the composites. The introduction of excessive metal oxides leads to the
blockage of the pores of RMF itself, which seriously reduces the migration rate of lithium
ions and deteriorates the wettability of the electrolyte, resulting in a significant reduction
of the capacity, while the introduction of too little metal oxides results in less active
material and a decrease in the lithium storage capacity. Therefore, the best electrochemical
properties were obtained at the ratio 1:6, exhibiting an initial capacity of 1320.8 mA h
g−1 at 0.1 C and subsequently stabilizing at 945.2 mA h g−1 after 100 cycles. Figure 5b
shows that when charging and discharging at a high current density of 1 C, the initial
specific capacity of 332.8 mA h g−1 is obtained. The specific capacity of 207.2 mA h g−1

is still maintained after 650 cycles, with a decay rate of 0.058% per cycle, which shows
good cyclability. In addition, the material also exhibits good rate performance, as shown in
Figure 5c. The discharge-specific capacities are found to be 663.3 mA h g−1, 463.5 mA h g−1,
379.6 mA h g−1, 291.3 mA h g−1, 228.1 mA h g−1, and 181.5 mA h g−1 at 0.1 C, 0.2 C, 0.5
C, 1 C, 2 C and 5 C current densities, respectively. When the current density drops from 5
C to 0.1 C, the battery shows a great recovery capacity of 817.6 mA h g−1, which is even
better than the initial discharge specific capacity. This may be due to the fact that with
the increase of the cycling time, the active material of the electrode can be fully contacted
with the electrolyte to form a thicker and more stable SEI film. The SEI film effectively
improves the capacity of the composite material of the deep-embedded lithium and the
diffusion rate of lithium ions inside the electrode. Figure 5d shows the capacity–voltage
curves of T-Nb2O5/RMF 1:6 composites at different current rates. The result demonstrates
that the batteries assembled with these materials can effectively adjust their reaction rates
to accommodate the accelerated charge transfer rates associated with variations in charge
and discharge current densities. From Table 2, by comparing the electrochemical properties
with other anode materials prepared in the literature for dual-ion batteries, it can be
seen that the T-Nb2O5/RMF composites prepared in this work have a very high specific
capacity at low current densities, which provides a great advantage for the preparation of
high-performance dual-ion batteries.

Table 2. Comparison of electrochemical performances of different dual-ion battery anodes.

Electrolyte Specific Capacity Reference

T-Nb2O5/RMF 945 mA h g−1 after 100 cycles at 100 mA g−1 This work
Co3O4/carbon fiber paper (CFP) 488 mA h g−1 after 40 cycles at 200 mA g−1 [43]
MoSe2/nitrogen-doped carbon (NC) 759 mA h g−1 after 100 cycles at 100 mA g−1 [44]
MoO2/carbon matrix 734 mA h g−1 after 350 cycles at 50 mA g−1 [45]
SnO2 613 mA h g−1 after 60 cycles at 60 mA g−1 [46]
Li6C12O12 730 mA h g−1 after 100 cycles at 210 mA g−1 [47]
Sb2O3@MCNF 626.9 mA h g−1 after 80 cycles at 100 mA g−1 [42]
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The CV curves of T-Nb2O5/RMF 1:6 were tested in the range of 0.01–3 V at a scan
rate of 0.1–5 mV s−1, as illustrated in Figure 6a. It is observed that the cathodic peaks and
anodic peaks at 1.48 V and 1.98 V, respectively, correlated with the lithium embedding
and delithiation behaviors of T-Nb2O5 during electrochemical processes. This indicates
that the composites exhibit a highly reversible lithium storage process. Figure 6b presents
the AC impedance spectra and the fitted equivalent circuit diagrams for T-Nb2O5 loaded
on carbon substrates of different dimensions. As shown in Figure 6b, all three composite
materials exhibit a semicircular feature in the high-frequency region and a linear feature in
the low-frequency region. The resistance between the electrode and the electrolyte, known
as the solution resistance (Rb), is reflected by the intersection point between the EIS curve
and the x-axis. The high-frequency semicircle corresponds to the charge transfer resistance
(Rct), while the low-frequency linear portion is associated with the Warburg impedance
(Zw), which reflects the diffusion of lithium ions in the active anode material. Among the
three materials, Nb2O5/RMF shows the smallest impedance, while Nb2O5/CNTs shows
the largest, further confirming the performance differences among the materials. Figure 6c
shows a comparison of the cycling performance of the three composites at 0.5 C. The cells
were run for 5 revolutions at 0.1 C and 0.2 C, respectively, and then elevated to the level
of 0.5 C to promote the formation of the SEI film. Hence, the sudden drop is formed in
the front part of the curve. According to the curves, it can be seen that T-Nb2O5/RMF
has the best cycling performance of 411.4 mA h g−1 in 200 cycles. Figure 6d shows the
comparison of the rate performance of the three composites. At 0.1 C, the specific capacity
of T-Nb2O5/RMF was as high as 702.4 mA h g−1, which was the highest among the three,
followed by Nb2O5/GO, and Nb2O5/CNTs was the lowest. With the increase of the current
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density, the rate of Nb2O5/GO exhibits the least capacity weakening trend, and even the
specific capacity is comparable to that of Nb2O5/RMF at high current densities, which is
attributed to the extremely high electrical conductivity and electron mobility of graphene.
All three materials showed good capacity recovery when the current density recovered
from 5 C to 0.1 C. The highly developed pore structure and large specific surface area of
Nb2O5/RMF provided enough space for contact between the active ingredient and the
electrolyte. The three-dimensional reticulated carbon skeleton gives the composite material
excellent structural stability, and the introduced T-Nb2O5 nanoparticles are firmly anchored
within the pores of the material. The composite material has a good degree of surface
defects and a well-connected carbon skeleton, which offers a more convenient path for
the conduction of lithium ions and charge and accelerates the overall reaction kinetics of
the battery. Therefore, among the three kinds of spatial structures, the three-dimensional
mesh carbon skeleton structure has a better nanoparticle composite effect and excellent
electrochemical performance, which has a good prospect for the application of dual-ion
battery electrode materials.
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In order to cope with the various conditions of practical applications, this work also
carried out low-temperature electrochemical performance tests at 0 ◦C. T-Nb2O5/RMF
1:6 composites were selected as the electrode materials to be assembled into a half cell,
which had previously shown the best performance. As shown in Figure 7a,b, the composite
material can achieve an initial discharge specific capacity of 435 mA h g−1 at 0.1 C, and
after 100 cycles, the specific capacity can be stabilized at 283.6 mA h g−1. At various
current densities from 0.1 to 5 C, the composite material can achieve 383.2 mA h g−1,
293.2 mA h g−1, 242.5 mA h g−1, 203.6 mA h g−1, 167. 6 mA h g−1, 123.3 mA h g−1,
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respectively. The specific capacity gradually stabilizes at 311.2 mA h g−1 when the current
density is returned to 0.1 C. The specific capacity did not increase greatly when the specific
capacity was restored from high to low current density at low temperatures, suggesting that
temperature may affect the electrochemical behavior of the materials and the formation of
SEI films to some extent. This indicates that the composite electrodes can still achieve stable
cycling performance and excellent rate performance even at low ambient temperatures.
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In this work, the T-Nb2O5/RMF 1:6 composite was also used as the anode material
of the dual-ion battery full cell, matched with graphite cathode, and the full-cell perfor-
mance was tested, in which the voltage range of the test was 3–5 V. The full-cell cycling
performance curve at 0.1 C is shown in Figure 7c. It shows that the initial capacity of this
dual-ion full-cell battery at 0.1 C was 99.6 mA h g−1. The capacity stability was 93.3 mA
h g−1 after 200 cycles, with a capacity decay rate of 0.031% per cycle, which shows the
dual-ion battery has excellent cycling stability. Figure 7d shows the rate performance of the
full cell at 0.1 C to 5 C. The specific capacities at different current density platforms are 93.8
mA h g−1, 83.3 mA h g−1, 77.3 mA h g−1, 70.5 mA h g−1, 66.9 mA h g−1, and 62.4 mA h
g−1, respectively. The specific capacity is 97.2 mA h g−1 when getting back to 0.1 C; the
overall capacity change trend is not obvious with the change of current density, indicating
that the battery has excellent rate capability. Figure S6 shows the results of AC impedance
testing of a dual-ion battery with T-Nb2O5/RMF 1:6 as the anode material and graphite as
the cathode material before and after 50 charge/discharge cycles. The result indicates a
noticeable increase in the radius of the semicircle in the high-frequency region and a change
in the slope of the line in the low-frequency region, suggesting that both the charge transfer
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resistance and lithium-ion diffusion resistance within the full-cell battery increase after
cycling. This effect is attributed to the irreversible phase transformation of the electrode
material during charge/discharge cycles, leading to a gradual decline in battery capacity
over time. This is related to the irreversible phase transition of the electrode material in
the charge/discharge cycle so that the battery will have a certain capacity decay in the
cycling process.

In order to clearly observe the structural stability of T-Nb2O5/RMF composites during
charge/discharge cycling, the electrode sheets coated with T-Nb2O5/RMF composites
before and after cycling were characterized by SEM images from Figure 8. It can be seen
that the surface of the electrode is relatively flat and the pore structure on the surface can be
observed after magnification in Figure 8a,b. Compared with the SEM image of the surface
of the electrode pole piece after cycling in Figure 8c, the amorphous porous carbon structure
of the composite was not obviously damaged, in the porous structure of the material can
still be clearly observed from the magnified Figure 8d. The T-Nb2O5 nanoparticles are still
uniformly dispersed in the pore channels, which effectively avoids the phenomenon of
pulverization of the metal material. Meanwhile, the large specific surface area provided by
the porous structure is conducive to the contact of the active substance with the electrolyte,
which ensures the structural stability of the composite material and improves the transport
rate of lithium ions at the electrode material–electrolyte interface.
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3. Materials and Methods
Ammonium niobate oxalate hydrate was purchased from Shanghai Dibber Chemical

Technology Co., Ltd. (Shanghai, China), resorcinol, melamine, formaldehyde and sodium
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hydroxide were purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China),
and silica sol was purchased from Shanghai McLean Biochemical Technology Co. (Shanghai,
China). Graphene oxide solution and carbon nanotubes were purchased from Shanxi
Institute of Coal Chemistry, Chinese Academy of Sciences (Taiyuan, China); hydrochloric
acid solution and N-methylpyrrolidone were purchased from Shanghai Taitan Science and
Technology Co Ltd. (Shanghai, China); polypropylene (PP) diaphragm was purchased from
Celgard Corporation (Concord, NC, USA); and polyvinylidene fluoride was purchased
from Arkema France (Paris, France).

The hard template method for the preparation of nitrogen-doped mesoporous carbon
materials (RMF) was carried out as follows: in 20 mL of deionized water, 4.85 g of resorcinol
and 7.15 g of formaldehyde solution were added and dissolved with stirring in a water
bath at 40 ◦C to obtain the RF solution. In 20 mL of deionized water, 5.56 g of melamine
and 10.73 g of formaldehyde were added again and dissolved with stirring in a water bath
at 70 ◦C, then cooled to room temperature to obtain the MF solution. The RF solution was
mixed with the MF solution, and 70 g of SM-30 (silica sol) was added, and then mixed,
stirred again for 5 min at room temperature, poured into a plastic bottle, and then sealed
and reacted at 80 ◦C for 3 days, after which it was freeze-dried to obtain the nitrogen-doped
mesoporous carbon precursor containing silicon.

The precursor was placed in a high-temperature tube furnace with nitrogen venting at
a rate of 2 ◦C min−1 to 400 ◦C for 1 h and then continued to 800 ◦C for 3 h. The precursor
was then cooled down to room temperature naturally. The carbonized samples were placed
in plastic bottles and etched with 2 mol L−1 NaOH solution for about 3 days, during which
time the etched supernatant was removed and replaced with a freshly prepared 2 mol
L−1 NaOH solution to ensure adequate removal of the SiO2 template. After the etching,
the sample was washed several times with deionized water and ethanol until neutral pH.
Subsequently, it was freeze-dried in a lyophilizer to obtain nitrogen-doped mesoporous
carbon materials (RMFs) with well-developed pore structures, which were abbreviated as
RMFs because they were prepared from resorcinol melamine-formaldehyde.

In order to reach Nb/C mass ratios of 1:1, 1:2, 1:6, and 1:10, 0.6 g, 0.3 g, 0.1 g, and 0.06
g of niobium ammonium oxalate hydrate were added to 10 mL of deionized water and
stirred thoroughly for 30 min. After that, 0.4 g of the previously prepared nitrogen-doped
mesoporous carbon material (RMF) was dispersed in the above aqueous solution and
ultrasonicated for 20 min. The resulting mixture was stirred magnetically in a water bath
heated at 60 ◦C for 8 h and then washed and freeze-dried. After drying, the samples were
carbonized in a tube furnace under nitrogen ventilation at a temperature of 700 ◦C and a
residence time of 3 h. The T-Nb2O5/RMF composites were finally obtained.

4. Conclusions
In summary, nitrogen-containing mesoporous carbon materials were synthesized

by hard template method using resorcinol, melamine and formaldehyde solutions as
raw materials. The prepared composites present a three-dimensional reticulated skeleton
structure with excellent stability and a highly developed pore structure, which facilitates
the diffusion and transfer of lithium ions on the electrode surface. The nitrogen-doped
porous carbon and T-Nb2O5 show good synergistic effects, and the Nb2O5 nanoparticles
can not only effectively shorten the ion/electron transport distance in RMF but also alleviate
the strain and stress caused by the volume change in the lithiation/delithiation process.
The doping of nitrogen and the introduction of T-Nb2O5 enhance the surface polarity of
the composites by destroying the uniform electronic arrangement on the surface of the
carbon material, making it possess more active sites and accelerating the electrode reaction
rate. The synergistic effect of nitrogen doping with carbon substrate can further improve
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the electronic conductivity and pseudocapacitive behavior of the active materials. The
composite material exhibits a high specific capacity of 945.2 mA h g−1 at 0.1 C. At a high
current density of 1 C, the initial specific capacity of the battery assembled with the T-
Nb2O5/RMF composite material is 332.8 mA h g−1. The specific capacity of 207.2 mA h g−1

is still retained after 650 cycles, with a decay rate of 0.058% per cycle, which is very excellent
in cycle stability. At a low temperature of 0 ◦C, the battery still achieves an initial discharge
specific capacity of 435 mA h g−1 at 0.1 C, which is stabilized at 283.6 mA h g−1 after
100 cycles, and a specific capacity of 123.3 mA h g−1 at a high current density of 5 C,
which recovers to 311.2 mA h g−1 when the current density returns to 0.1 C. The initial
specific capacity of the full-cell dual-ion battery assembled with graphite cathode was
99.6 mA h g−1 at 0.1 C, and the capacity stabilized at 93.3 mA h g−1 after 200 cycles with a
capacity decay rate of 0.031% per cycle. Good low-temperature performance and full-cell
performance also open up possibilities for practical battery applications. This composite
material provides a feasible idea for the synthetics of the anode of dual-ion batteries.

Supplementary Materials: The following are the Supporting Information to this article: https:
//www.mdpi.com/article/10.3390/molecules30020227/s1, The experimental part is described in
detail, including the preparation methods of Nb2O5/GO, and Nb2O5/CNTs; instrumental parameters
used for SEM, TEM, XRD, RAMAN, BET, and XPS characterization; electrode sheet preparation
for assembling the button cell, and slurry ratios; instrumental parameters used for CV, EIS, and
electrochemical performance testing; Nb2O5/GO and Nb2O5/CNTs; SEM and TEM plots; XRD and
RAMAN spectra of Nb2O5/RMF, Nb2O5/GO, and Nb2O5/CNTs; weightlessness analysis curves of
different ratios of Nb2O5/RMF in air atmosphere; XPS spectra of Nb2O5/GO and Nb2O5/CNTs; EIS
curves before and after 50 cycles of dual-ion battery full cell with T-Nb2O5/RMF 1:6 as anode and
graphite as cathode. Figure S1 (a,b) SEM images and (c–f) TEM images of T-Nb2O5/GO composites.
Figure S2 (a,b) SEM images and (c–f) TEM images of T-Nb2O5/CNTs composites. Figure S3 (a) XRD
pattern (b) Raman pattern of different T-Nb2O5/C composites. Figure S4 (a) TG curves and (b) the
thermogravimetric rate curves of RMF and different proportions of T-Nb2O5/RMF composites in
air atmosphere. Figure S5 (a–d) XPS spectrum of T-Nb2O5/GO composite. (e–f) XPS spectrum of
T-Nb2O5/CNTs composite. Figure S6 EIS curves before and after 50 cycles of dual-ion battery full
cell with T-Nb2O5/RMF 1:6 as anode and graphite as cathode.
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Abstract: Phase change energy storage microcapsules were synthesized in situ by using melamine-
formaldehyde–urea co-condensation resin (MUF) as wall material, n-octadecane (C18) as core material
and styryl-maleic anhydride copolymer (SMA) as emulsifier. Fourier transform infrared spectroscopy,
scanning electron microscopy, differential scanning calorimetry and thermogravimetric analysis
were used to study the effects of emulsifier type, emulsifier dosage, core–wall ratio and pH on the
morphology and thermal properties of microcapsules. The results show that the pH of core material
and the ratio of core to wall have a great influence on the performance of microcapsules. SMA
emulsifiers and MUF are suitable for the encapsulation of C18. When the pH is 4.5 and the core–wall
ratio is 2/1, the latent heat and encapsulation efficiency of phase transition reaches 207.3 J g−1 and
84.7%, respectively. The prepared phase-change microcapsules also have good shape stability and
thermal stability.

Keywords: phase change; microcapsules; emulsifier; latent heat; encapsulate

1. Introduction

In the process of phase transformation, organic solid–liquid phase variable materials
can store or release a large amount of latent heat at almost isothermal temperature. At
present, a variety of organic solid–liquid phase variable materials have been used for
thermal energy storage, such as organic alkanes, organic fatty acids, polyols and so on.
Among these materials, organic alkanes are very popular due to their many advantages,
including high energy storage density, good chemical stability, non-corrosion, non-toxicity,
non-phase separation and low subcooling, making them ideal materials for many heat
storage applications [1,2]. However, leakage in the solid–liquid phase transformation
process is an inherent defect of the phase change energy storage microcapsules (PCM),
which greatly limits its application range. The use of microencapsulation technology to
encapsulate phase-change materials in a sealed tiny container to make core–shell structure
phase-change microcapsules can effectively prevent the leakage of phase-change materials
and improve their shape stability [3].

Microencapsulation not only enables the PCM to maintain its macroscopic solid state
when the solid–liquid phase changes, but also provides sufficient protection for the PCM
from harmful interactions and interference of the surrounding environment [4–6]. In addi-
tion, microencapsulation can provide more heat transfer area for the phase-change material,
resulting in significantly enhanced heat transfer and thermal response [7]. Therefore, mi-
croencapsulation has been recognized as a reliable phase-change material encapsulation
technology. The shell material used to encapsulate the phase-change material should
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meet the requirements of no chemical reactivity with the phase-change material, good
sealing, good chemical stability and thermal stability so as to provide good shape stability
for the phase-change material. At present, many studies have been carried out on the
encapsulation of phase-variant materials with various shell materials, including melamine-
formaldehyde–urea co-condensation resin (MUF), melamine-formaldehyde resin (MF),
urea-formaldehyde resin (UF), polystyrene (PS), polymethyl methacrylate (PMMA), silicon
dioxide (SiO2), titanium dioxide (TiO2), calcium carbonate (CaCO3), etc. [8–13]. Com-
pared with the case materials, poor sealing of inorganic materials may lead to leakage of
phase-change materials. Therefore, organic materials are ideal shells for encapsulating
phase-change materials [14]. In the case of materials, MUF is widely used to encapsu-
late phase-change materials because of its good sealing, thermal stability and excellent
waterproof performance. MUF also has good mechanical properties and a certain tough-
ness [15–17]. In addition, the MUF synthesis process is simple and the price is reasonable,
so it has a broader prospect in large-scale applications. Wang et al. [18] prepared microcap-
sule phase-change materials by coating paraffin with nano Fe3O4-modified melamine urea
formaldehyde resin (MUF). Similarly, Han et al. [19] prepared phase-change microcapsules
with paraffin as the core material and MUF as the shell.

In the preparation of phase-change microcapsules, the control of the pH value is very
important because it affects the emulsification process, polymerization reaction and the
properties of the final product. During the emulsification process, the pH value will affect
the performance of the emulsifier and the stability of the emulsion. For different emulsifiers,
there is a specific optimal pH range. For example, some ionic emulsifiers have better surface
activity in a specific pH range so that a more stable emulsion can be formed. In acidic
environments, MF prepolymers are positively charged due to the reaction of hydroxyl
methyl groups with hydrogen ions. The positively charged prepolymer is strongly attracted
to the nuclear particles with a negative electron field by an anionic SMA emulsifier, and
under the action of acid and heat, a microencapsulated reaction occurs on the surface
of the nuclear particles to form a microencapsulated film. In the system containing the
cationic SMA emulsifier, MF prepolymer is repelled by core particles with the same positive
charge and does not enclose the core material. In the non-ionic SMA emulsifier system,
the positively charged MF prepolymer is partially attracted to the core particle surface,
and the encapsulation is not complete. In the system without the emulsifier, due to the
weak hydrogen bond, a small amount of MF prepolymer interacts with the hydroxyl group
and is deposited on the surface of core particles [20]. In the interfacial polymerization
process, the pH value affects the ionization state of the monomer, thus affecting the rate
and efficiency of the polymerization reaction [21]. For example, when using polyamide or
polyurethane as a wall material, the pH value needs to be controlled in the acidic or alkaline
range to facilitate the reaction. In in situ polymerization, pH values affect the solubility and
reaction rate of monomers [22]. Chang et al. [23] synthesized phase-change microcapsules
using N-tetradecane as the core material and SDS as the emulsifier and concluded that the
microcapsules prepared when the mass fraction of SDS was 1.2 wt%, the pH was 3.5 and
the core–shell mass ratio was 2:1 had the best performance. Huang et al. [24] prepared
carboxymethyl cellulose-modified phase-change microcapsules with urea–formaldehyde
resin as the shell, and explored the effects of curing the pH value, emulsifier dosage and
emulsification rate on the properties of microcapsules.

The core–wall ratio refers to the mass ratio of the phase-change material to the wall
material in microcapsules. Generally speaking, the higher the core material content, the
greater the latent heat of the phase transition microcapsules, and the higher core–wall
ratio means that the microcapsules contain more PCM, thus increasing the energy storage
capacity. However, too high a core–wall ratio may lead to too thin a wall material, which
makes it easy for the PCM to break or leak during use, affecting the structural stability
and mechanical strength of microcapsules [25,26]. The thermal conductivity of the phase-
change material is usually higher than that of the wall material, and a higher core–wall ratio
usually improves the thermal conductivity of the microcapsule, but if the wall material is
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too thin, it may not be able to effectively isolate the temperature change of the external
environment, resulting in the phase-change material releasing or absorbing heat too quickly
and failing to achieve the desired temperature control effect [27].

Many scholars have improved the performance of the phase-change microcapsules
by modifying the shell material, adding thermal conductivity enhancers and changing
the packaging method, but they may have overlooked the most basic synthesis process
of microcapsules. Based on the synthesis process of microcapsules, it is possible to better
improve their defects and seek the changing patterns of microcapsule morphology, latent
heat, shape stability, etc. In this work, the effects of emulsifier type, emulsifier dosage,
core–shell ratio and pH on the morphology and thermal properties of microcapsules were
studied. As shown in Figure 1, phase-change microcapsules of C18 with a MUF shell were
successfully prepared. The morphology of the C18 phase-change microcapsules prepared
by different technologies was mainly observed by scanning electron microscopy, and their
latent heat was carefully analyzed by DSC. The phase-change microcapsules prepared in
this work are compatible with building materials and can be applied in building thermal
storage fields such as exterior wall insulation and building roofs.
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Figure 1. Schematic diagram of MUF-n-octadecane phase-change microcapsules.

2. Results
2.1. Microcapsule Morphology Analysis

Scanning electron microscopy (SEM) was used to observe the microcapsule morphol-
ogy, as shown in Figure 2a,b,d,e,g,h. The microcapsule morphology is prepared when
the pH is 3.5, 4.5 and 5.5. It can be seen from the figure that the microcapsule as a whole
presents a regular spherical appearance. When the pH is 3.5, more irregular particles
appear on the surface of microcapsules. As can be seen from the local magnification of
Figure 2b, there is adhesion between the microcapsules. This is because when the initial
pH is too low, the polycondensation rate of wall material prepolymers will accelerate,
resulting in the self-polymerization of MUF resin. As a result, microcapsules adhere to
each other and produce irregular particles on the surface. The wall material itself has no
energy storage effect but occupies a part of the volume of the microcapsule. Therefore, the
aggregation of excessively thick wall materials will reduce the overall latent heat value of
the microcapsule and affect the energy storage effect. Figure 2d,e shows the microscopic
morphology of the microcapsules prepared at pH 4.5. It can be seen from the figure that
the surface of the microcapsules is smooth and well coated, and they are independent of
each other without adhesion, indicating that the microcapsules have a good coating effect
at pH 4.5. Figure 2g,h shows the microcapsule prepared at pH 5.5. At this pH value, a large
number of microcapsules are broken, and it can be observed from the broken section of
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the wall material that the thickness of the wall material is very thin. This is because the
polymerization speed of the prepolymer is very slow at this pH value, which leads to the
instability in the synthesis process of the microcapsule. And the synthesis process has been
accompanied by the shear force generated by the electric stirrer so that the microcapsule has
a large number of broken phenomena and the core material cannot be effectively coated.
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Figure 2d,e,i,j,l,m shows the microscopic morphology of microcapsules prepared with
a core–wall ratio of 2/1, 1/1 and 4/1, respectively. When the core–wall material ratio is
1/1, there is a slight adhesion between microcapsules, and the cross-section of the wall
material shows that the wall material of the microcapsules is thicker, as can clearly be seen
in Figure 2j. This is because the number of prepolymers is more than the number of core
molecules. When the core–wall ratio reaches 2/1, the surface impurities of microcapsules
are significantly reduced, the surface impurities are smoother, there is no adhesion between
each other and the dispersion is enhanced. As the core–wall ratio continues to increase to
4/1, the wall material cannot completely cover the core material, and a large number of
microcapsules appear damaged, which will cause the core material to flow out from the
damaged area, resulting in the leakage of the core material. Therefore, when the core–wall
ratio is 2/1, the microcapsule has better coating and dispersion. SMA was selected as the
emulsifier and emulsified at different dosages (5%, 10% and 15%). When the emulsifier
dosage was 5%, n-octadecane could not be emulsified to form a stable emulsion and could
not be successfully synthesized into microcapsules, so its microscopic morphology could
not be observed.

Figure 2d,e,o,p shows the micromorphology of the microcapsules when the dosage
is 10% and 15%. It can be seen that both of them show a relatively complete spherical
appearance without fracture phenomenon, indicating that 10% emulsifier dosage is enough
to emulsify the core material into a stable emulsion, so 10% is the optimal dosage. SMA,
SDBS and SDS were, respectively, used for emulsification, and SMA could form a uniform
and stable emulsion system for the core material, while the emulsion formed by SDBS
and SDS would produce demulsification, which was not conducive to the synthesis of
microcapsules in the next step. Therefore, the microcapsules prepared by using SMA
emulsification to form emulsions had the best effect. Figure 2c,f,k,n,q shows the particle
size diagram of microcapsules under different conditions. The microcapsules synthesized at
pH 5.5 were broken too much, so it was impossible to use software to analyze their particle
size. It can be seen that the average particle size of microcapsules was 6–8 µm, and different
experimental conditions did not regularly affect the particle size of microcapsules. In
addition, almost all microcapsules show different degrees of depression, which is because
when the core material inside the microcapsule is cooled below the phase transition point,
the core material will solidify and shrink in volume, while the area of the wall material
basically remains unchanged, resulting in different degrees of microcapsule shrinkage [28].

2.2. Leak-Proof Analysis of Microcapsules

The macro-leakage resistance of microcapsules at different pH values was tested. At
80 ◦C (higher than the melting temperature of n-octadecane), with the increase in time,
the macro-leakage resistance of microcapsules is shown in Figure 3. From left to right is
the leakage of the sample at 0 min, 10 min and 20 min. Among them, the microcapsules
synthesized at pH 5.5 were blocky macroscopically. Combined with the SEM figure in the
previous section, the microcapsules synthesized under this condition had poor coating
properties and would solidify together when n-octadecane crystallized, resulting in the
microcapsules being blocky macroscopically. As can be seen from Figure 3, n-octadecane
began to melt gradually when heated at 80 ◦C for 10 min, resulting in leakage. At this
time, the microcapsule materials could maintain good shape stability, and no leakage
of n-octadecane was observed. When heated for 20 min, n-octadecane was completely
melted. This instability will seriously affect the practical application of phase-change
materials. While pH 3.5 and pH 4.5 microcapsules can still maintain good shape stability, no
leakage of the internal core material was observed, but the bottom of pH 5.5 microcapsules
also showed signs of leakage. Therefore, microcapsules with a pH of 3.5 and 4.5 have
good leak-proof performance. Combined with the SEM diagram in the previous section,
microcapsules have good microscopic morphology and excellent leak-proof performance
when the pH is 4.5.
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2.3. Chemical Structure of Microcapsules

Fourier transform infrared spectroscopy was used to analyze the chemical structure
of the microcapsules. The infrared spectra of MUF, n-octadecane and microcapsules are
shown in Figure 4. Among them, the superposition of O-H and N-H tensile vibrations
in MUF resin resulted in a strong and wide absorption peak near 3400 cm−1 [29]. The
characteristic absorption peak at 1675 cm−1 is due to the C=O tensile vibration of urea
in MUF resin. The tensile vibration of C-N is 1555 cm−1 [30]. The characteristic peak at
1365 cm−1 is caused by an O-H bending vibration. The characteristic peak at 1000 cm−1

is related to C-O tensile vibration. Due to the bending vibration of the triazine ring in
MUF resin, there is a significant absorption peak at 1492 cm−1 and 812 cm−1. The above
peaks are basically consistent with the IR spectra of the polymerization products of urea,
melamine and formaldehyde. In the spectrum of n-octadecane, there are three characteristic
peaks at 2955, 2915 and 2847 cm−1, which belong to the tensile vibrations of -CH, -CH3
and -CH2, respectively. The peaks at 1467 cm−1 and 1369 cm−1 are caused by flexural
vibrations of -CH2 and -CH3, respectively. In addition, the peak at 721 cm−1 is considered
to be a typical peak of the alkyl (CH2) n (n ≥ 4) group [31]. In addition to the characteristic
peaks of n-octadecane and MUF resin described above, no other characteristic peaks were
observed in the spectrum of the microcapsule, indicating that the microcapsule has been
successfully synthesized, the wall material is physically coated with the core material and
there is no chemical reaction between the two.
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Figure 5 shows the X-ray diffraction pattern of n-octadecane, MUF resin and microcap-
sules. The diffraction curve of n-octadecane has four distinct characteristic diffraction peaks
at 19.3◦, 19.7◦, 23.4◦ and 24.7◦, corresponding to the four characteristic crystal faces (010),
(011), (100) and (111) in the triclinic system [32]. In the XRD pattern of MUF resin, a wide
band can be observed only at 2θ = 15–30◦, indicating that MUF resin is amorphous. In the
XRD pattern of the microcapsule in Figure 5, only the diffraction peak of n-octadecane is ob-
served, which is caused by the amorphous structure of the MUF shell. Combined with SEM
and IR spectra, it can be said that n-octadecane is successfully coated in the microcapsule.
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2.4. Thermal Properties Analysis of Microcapsules

The thermal properties of n-octadecane, MUF and microcapsules were measured
using a differential scanning calorimeter, as shown in Figure 6, and the results are shown in
Table 1. In the range of 5–55 ◦C, MUF does not have an absorption/exothermic peak, which
indicates that the thermal effect of the microcapsule is mainly caused by the n-octadecane
inside. As can be seen from Figure 6b, bimodal crystallization behavior occurred in both
bulk n-octadecane and microcapsule samples during the crystallization process. The
presence of two exothermal peaks is due to the fact that melt surface crystallization reduces
molecular interactions before the complete crystallization of n-octadecane in bulk and
microcapsules, resulting in the generation of metastable rotating phases [33–35]. The
melting process has only a significant endothermic peak because both solid-metastable
solids and metastable solid–liquids occur at close temperatures [36].

Table 1. Thermal properties of microcapsules.

Sample
Melting Cooling

Een (%)
Tom/(◦C) Tpm/(◦C) Tem/(◦C) ∆Hm/(J/g) Toc/(◦C) Tpc/(◦C) Tec/(◦C) ∆Hc/(J/g)

C18 26.4 28.8 35.7 244.8 25.4 23.5 17.1 244.2

MUF - - - - - - - - -

pH3.5 23.9 30.5 33.4 120.9 25.7 24.5 15.9 88.2 49.4

pH4.5 24.4 32.0 37.0 207.3 25.8 23.7 15.9 181.6 84.7

pH5.5 24.8 31.3 35.1 219.8 25.8 23.7 16.7 208.8 89.8

4/1 23.7 31.2 35.6 192.4 25.9 23.7 18.9 177.4 78.6

1/1 24.5 30.6 33.5 140.2 26.0 24.7 21.4 138.1 52.3

34



Molecules 2024, 29, 4794
Molecules 2024, 29, x FOR PEER REVIEW 9 of 14 
 

 

 

Figure 6. DSC curve of microcapsules: (a) melting, (b) cooling (−15–55 °C, heating/cooling rate = ±5 

°C min−1). 

Table 1. Thermal properties of microcapsules. 

Sample 
Melting Cooling 

Een (%) 
Tom/(°C) Tpm/(°C) Tem/(°C) ΔHm/(J/g) Toc/(°C) Tpc/(°C) Tec/(°C) ΔHc/(J/g) 

C18 26.4 28.8 35.7 244.8 25.4 23.5 17.1 244.2  

MUF - - - - - - - - - 

pH3.5 23.9 30.5 33.4 120.9 25.7 24.5 15.9 88.2 49.4 

pH4.5 24.4 32.0 37.0 207.3 25.8 23.7 15.9 181.6 84.7 

pH5.5 24.8 31.3 35.1 219.8 25.8 23.7 16.7 208.8 89.8 

4/1 23.7 31.2 35.6 192.4 25.9 23.7 18.9 177.4 78.6 

1/1 24.5 30.6 33.5 140.2 26.0 24.7 21.4 138.1 52.3 

2.5. Thermal Stability Analysis of Microcapsules 

The range of applications and uses of microcapsules largely depend on their thermal 

stability [37,38]. The thermal degradation behavior of n-octadecane, MUF resin and mi-

crocapsules was studied using TGA, and the TGA and DTG curves are shown in Figure 

7a,b. The TGA curve shows that n-octadecane exhibits a typical one-step degradation 

curve under heating conditions, that is, from 99 °C to 221 °C, the weight decomposition of 

n-octadecane approaches 100%, which means that n-octadecane is almost completely de-

composed. In contrast, the TGA curve of microcapsule samples showed a two-step ther-

mal degradation process. The evaporation of n-octadecane and the degradation of MUF 

resin could be clearly seen in the TGA curve of the microcapsule. The evaporation of n-

octadecane led to the first step of degradation, which occurred between 131 and 66 °C. 

MUF is broken, so the weightlessness of microcapsules in this step is significant. After this, 

a further weight loss occurs between 270 and 335 °C, which is due to the decomposition 

of the MUF shell. As can be seen from the DTG curve, due to the protection of the MUF 

shell on n-octadecane, the decomposition of n-octadecane in microcapsules has a temper-

ature lag compared with that of n-octadecane in bulk. Therefore, the thermal stability of 

microcapsules is improved compared with that of bulk n-octadecane. When the pH is 4.5, 

the maximum degradation rate temperature reaches 224.3 °C, which is 28.1 °C higher than 

bulk n-octadecane. 

With the increase in the core–wall ratio and pH during the synthesis of microcap-

sules, the wall material cannot provide better barrier protection for the inner core material, 

and the thermal stability of microcapsules also decreases. In addition, the TGA curve of 

the microcapsule synthesized under the conditions of pH 3.5 and core–wall ratio of 1/1 

shows that there is still about 5% weight residue when the temperature reaches 750 °C, 

which is because the MUF resin as the wall material will be left after high-temperature 

Figure 6. DSC curve of microcapsules: (a) melting, (b) cooling (−15–55 ◦C, heating/cooling
rate = ±5 ◦C min−1).

Table 1 shows that the latent heat of melting and crystallization (∆Hm and ∆Hc) of
n-octadecane are 244.8 J g−1 and 244.2 J g−1, respectively. After encapsulation, the ∆Hm
and ∆Hc of microcapsules decreased, because the wall material in microcapsules occupied
a part of the volume but had no heat storage and release capacity, so the addition of wall
material would reduce the volume of n-octadecane per unit volume of microcapsules, and
thus reduce the latent heat. According to Formula (1), the encapsulation rate of microcap-
sules can be calculated. It can be found that with the decrease in pH, the encapsulation
rate and latent heat value of microcapsules show a downward trend. This is because the
polymerization of prepolymers is more rapid and sufficient under a low pH environment,
and the self-polymerization of prepolymers may occur, which increases the volume ratio oc-
cupied by wall materials and thus reduces the latent heat value of microcapsules. Although
the latent heat value of microcapsules is the highest at pH5.5, combined with the SEM
image and anti-leakage performance test, the microcapsules at this time have a leakage
risk and poor coating properties. When the pH was 4.5, the surface of the microcapsule
was intact without leakage, the encapsulation rate reached 84.7%, and the latent heat value
was still above 200 J g−1, maintaining a high level, and the overall performance was good.
With the increase in the core–wall ratio, the encapsulation rate and latent heat value of the
microcapsule gradually increase. However, when the core–wall ratio reaches 4/1, there
are defects on the surface of the microcapsule, and the core material cannot be completely
coated, resulting in the waste of a part of n-octadecane. Therefore, the core–wall ratio of
2/1 is a relatively ideal condition.

Our work was compared with the phase transition temperature and latent heat of
microencapsulated phase change materials with C18 as the core material reported in recent
years (Table 2). The result shows that our work is excellent.

This is example 1 of an equation:

Een =
∆Hm,MEPM

∆Hm, PCM
× 100% (1)

where ∆Hm,PCM, ∆Hm,MEPCM are the latent heat of the melting of massive n-octadecane and
n-octadecane microcapsules, respectively.

2.5. Thermal Stability Analysis of Microcapsules

The range of applications and uses of microcapsules largely depend on their thermal
stability [37,38]. The thermal degradation behavior of n-octadecane, MUF resin and micro-
capsules was studied using TGA, and the TGA and DTG curves are shown in Figure 7a,b.
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The TGA curve shows that n-octadecane exhibits a typical one-step degradation curve
under heating conditions, that is, from 99 ◦C to 221 ◦C, the weight decomposition of
n-octadecane approaches 100%, which means that n-octadecane is almost completely
decomposed. In contrast, the TGA curve of microcapsule samples showed a two-step
thermal degradation process. The evaporation of n-octadecane and the degradation of
MUF resin could be clearly seen in the TGA curve of the microcapsule. The evaporation of
n-octadecane led to the first step of degradation, which occurred between 131 and 66 ◦C.
MUF is broken, so the weightlessness of microcapsules in this step is significant. After this,
a further weight loss occurs between 270 and 335 ◦C, which is due to the decomposition
of the MUF shell. As can be seen from the DTG curve, due to the protection of the MUF
shell on n-octadecane, the decomposition of n-octadecane in microcapsules has a temper-
ature lag compared with that of n-octadecane in bulk. Therefore, the thermal stability of
microcapsules is improved compared with that of bulk n-octadecane. When the pH is 4.5,
the maximum degradation rate temperature reaches 224.3 ◦C, which is 28.1 ◦C higher than
bulk n-octadecane.
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With the increase in the core–wall ratio and pH during the synthesis of microcapsules,
the wall material cannot provide better barrier protection for the inner core material, and
the thermal stability of microcapsules also decreases. In addition, the TGA curve of the
microcapsule synthesized under the conditions of pH 3.5 and core–wall ratio of 1/1 shows
that there is still about 5% weight residue when the temperature reaches 750 ◦C, which is
because the MUF resin as the wall material will be left after high-temperature heating. The
wall material synthesized under this condition accounts for a relatively large proportion of
the microcapsule wall material, and the amount of residual carbon after high-temperature
decomposition is correspondingly more. The operating temperature of the microcapsule
is below 100 ◦C, at which time the microcapsule loses only 0.12% of its volume weight.
From another perspective, the initial decomposition temperature of the microcapsule is
significantly higher than its operating temperature. Therefore, it can be determined that
the microcapsule has a high thermal stability in its operating temperature range.
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Table 2. Comparison with the literature on phase-change microcapsules with n-octadecane as
core material.

Core Component
Melting Cooling

Ref
Tpm/(◦C) ∆Hm/(J/g) Tpc/(◦C) ∆Hc/(J/g)

C18 20.5 184.6 30.7 185.6 [39]

C18/C28 51.9 187.9 48.8 187.7 [40]

C18 29.0 114.5 23.1 118.8 [41]

C18/C22 39.8 100.8 - - [42]

C18 29.9 116.5 27.0 124.7 [43]

C18/C-PODMA 24.1 111.6 16.7 112.6 [44]

C24-C18 26.0 156.4 26.0 152.8 [45]

C19-C18 26.4 114.1 26.5 113.4 [46]

C18 30.6 171.9 25.3 172.4 [47]

C18 - 125.9 - - [48]

C18 32.0 207.3 23.7 181.6 This work

3. Materials and Methods
3.1. Materials

N-octadecane (C18) (AR), melamine (AR), formaldehyde solution (37–40 wt%) and
urea were purchased (AR) from Shanghai Aladdin Biochemical Technology (Shanghai,
China) Co., Ltd. Styrene–Maleic anhydride (SMA) (95%) was purchased from Nanjing
Yinxin (Nanjing, China) Chemical Co., Ltd. Sodium hydroxide (AR), triethanolamine
(AR) and urea (AR) were also purchased from Aladdin Biochemical (Shanghai, China)
Technology Co., Ltd.

3.2. Preparation of n-Octadecane-SMA Core Material

Add 0.05 g NaOH into the three-neck flask, stir with 40 mL deionized water until
the NaOH is completely dissolved, then add 0.25 g styrene–maleic anhydride copolymer
(SMA) into the flask and place the three-neck flask in a constant temperature water bath at
90 ◦C. Use an electric mixer at 600 rpm to stir until the SMA is completely dissolved, and
then cool to room temperature to obtain the SMA solution. The pH of the SMA solution
was adjusted to 3.5~5.5 with 10 wt% citric acid solution, and then 5 g n-octadecane was
added to the SMA solution and transferred to a constant temperature water bath at 70 ◦C.
When the n-octadecane was completely melted, a homogenized n-octadecane emulsion
was obtained by emulsifying at 13,000 rpm for 30 min using a high-speed homogenizer.

3.3. Preparation of MUF Shell

Add 3.12 g formaldehyde solution to the three-mouth flask, add 19.9 g deionized
water, adjust the pH to 8.5 with 10 wt% triethanolamine solution and then add 0.69 g
melamine. The three-neck flask was transferred to a constant temperature water bath at
75 ◦C and the solution was stirred with an electric mixer at 600 rpm until the solution was
clarified. Then, 0.58 g urea was added and the reaction was continued for 20 min under the
above experimental conditions to obtain the MUF prepolymer solution.

3.4. Synthesis of Microcapsules

The n-octadecane emulsion was placed in a constant temperature water bath at 70 ◦C,
and the MUF prepolymer solution was slowly added to the n-octadecane emulsion with an
electric mixer at the stirring speed of 600 rpm. After the drip was completed for 15 min, the
reaction was carried out at 70 ◦C and 600 rpm for 3 h, and then the reaction system was
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taken out and left at room temperature for 12 h. Due to the low density of n-octadecane,
the upper layer is a n-octadecane microcapsule. The impurities in the microcapsule are
removed by rinsing with deionized water and ethanol at 80 ◦C 3–5 times, and then the
microcapsule is dried in a vacuum drying oven at 80 ◦C for 24 h to obtain n-octadecane
microcapsule powder.

3.5. Characterization
3.5.1. Scanning Electron Microscopy (FE-SEM)

A scanning electron microscope (SEM, FEI Quanta 200, Fremont, CA, USA) was used
to observe the micromorphology of microcapsules. Image J (v 1.8.0) software was used to
analyze the size distribution and average particle size of microcapsules.

3.5.2. Fourier Transform Infrared Spectroscopy (FTIR)

The functional groups of the sample were determined using Fourier transform infrared
spectroscopy (FTIR, IRAffinity-1S, SHIMADZU, Tokyo, Japan) with a wavelength range of
500–4000 cm−1. The MUF, paraffin and paraffin/MUF microcapsules obtained under the
best conditions were pressed into ultra-thin particles.

3.5.3. Thermogravimetric Analysis (TGA)

Thermogravimetric analysis of MUF, paraffin and paraffin/MUF microcapsules ob-
tained under optimal conditions was performed using a thermogravimetric analyzer (TGA,
NETZSCH, TG209 F3, Selb, Germany). Each sample (~8 mg) was measured with dry pure
N2 (50 mL min−1) at elevated temperatures (25~750 ◦C, 10 ◦C min−1).

3.5.4. X-ray Diffractometer (XRD)

X-ray diffractometry (XRD, ARL EQUINOX 1000, Waltham, MA, USA) was used
to characterize the crystal structure of the sample with a scanning angle of 5–80 ◦ and a
scanning speed of 4 ◦/min.

3.5.5. Differential Scanning Calorimetry (DSC)

A differential scanning calorimeter (DSC4000, PerkinElmer, Waltham, MA, USA)
(−15–55 ◦C, heating/cooling rate = ±5 ◦C min−1) was used to analyze the phase transition
characteristics of paraffin and paraffin/MUF microcapsules. Nitrogen was used as a
protection and purification gas. For DSC analysis, each sample (~6 mg) was measured in
an aluminum crucible. The melting temperature (Tm) and latent heat of melting (∆Hm)
were determined by the heating scan, and the crystallization temperature (Tc) and latent
heat of crystallization (∆Hc) were determined by the cooling scan.

4. Conclusions

Using the pH of the core material and the core-to-wall ratio as entry points for studying
the performance of phase-change microcapsules, octadecane core layer phase-change
microcapsules with a MUF shell were prepared by the in situ polymerization method. The
emulsifier content and the initial pH value of the core material have a decisive role in the
shape and encapsulation efficiency of the microcapsule. The content of the core material
and the core–wall ratio of the phase-change microcapsule also have a huge impact on the
latent heat and structural stability of the microcapsule. By adjusting these parameters in the
experimental system, we were surprised to find that when the pH = 4.5 and the core–wall
ratio is 2/1, the prepared MUF shell-coated octadecane phase-change microcapsule has
the most ideal performance. Specifically, the phase-change microcapsule at this time has
a perfect spherical core–shell structure, the encapsulation efficiency is 84.7% higher than
that of the unpacked octadecane phase-change material and it also has excellent thermal
stability, shape stability and thermal conductivity (0.1288 W/m·K). We also found that
with the decrease in the pH and core-to-wall ratio, although the leakproof and thermal
stability of microcapsules were improved, their heat storage capacity decreased. When the
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pH is 4.5 and the core-to-wall ratio is 2/1, the latent heat of the prepared MUF shell-coated
octadecane phase-change microcapsules can still reach 207.3 J g−1.
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Abstract: Silicon (Si) has attracted worldwide attention for its ultrahigh theoretical storage capacity
(4200 mA h g−1), low mass density (2.33 g cm−3), low operating potential (0.4 V vs. Li/Li+), abundant
reserves, environmentally benign nature, and low cost. It is a promising high-energy-density anode
material for next-generation lithium-ion batteries (LIBs), offering a replacement for graphite anodes
owing to the escalating energy demands in booming automobile and energy storage applications.
Unfortunately, the commercialization of silicon anodes is stringently hindered by large volume
expansion during lithiation–delithiation, the unstable and detrimental growth of electrode/electrolyte
interface layers, sluggish Li-ion diffusion, poor rate performance, and inherently low ion/electron
conductivity. These present major safety challenges lead to quick capacity degradation in LIBs.
Herein, we present the synergistic effects of nanostructured silicon and SrTiO3 (STO) for use as
anodes in Li-ion batteries. Si and STO nanoparticles were incorporated into a multiwalled carbon
nanotube (CNT) matrix using a planetary ball-milling process. The mechanical stress resulting
from the expansion of Si was transferred via the CNT matrix to the STO. We discovered that the
introduction of STO can improve the electrochemical performance of Si/CNT nanocomposite anodes.
Experimental measurements and electrochemical impedance spectroscopy provide evidence for
the enhanced mobility of Li-ions facilitated by STO. Hence, incorporating STO into the Si@CNT
anode yields promising results, exhibiting a high initial Coulombic efficiency of approximately 85%, a
reversible specific capacity of ~800 mA h g−1 after 100 cycles at 100 mA g−1, and a high-rate capability
of 1400 mA g−1 with a capacity of 800 mA h g−1. Interestingly, it exhibits a capacity of 350 mAh g−1

after 1000 lithiation and delithiation cycles at a high rate of 600 mA hg−1. This result unveils and
sheds light on the design of a scalable method for manufacturing Si anodes for next-generation LIBs.

Keywords: Si; SrTiO3; CNTs; large volume expansion; ion/electron conductivity; lithium-ion batteries

1. Introduction

Since their commercial debut thirty years ago, lithium-ion batteries (LIBs), a portable,
high-density, and Nobel Prize-winning energy storage technology, have become an integral
part of modern life and have revolutionized the fields of consumer portable electronics,
electric vehicles (EVs), hybrid electric vehicles (HEVs), and large-scale renewable energy
storage systems [1–4]. Despite significant advancements in technology, including an impres-
sive thirty-fold price reduction between 1991 and 2018, the most substantial improvements
have predominantly occurred on the lithium-metal-oxide cathode side [5–8]. The graphite
anodes of LIBs, by contrast, have largely remained unchanged. However, the pursuit of
higher energy densities and enhanced battery performance has driven extensive research
into advanced alternative energy-dense anode materials [9–12]. The limited specific capaci-
ties of commercial graphite anodes (372 mA h g−1) [13] and lithium cobalt oxide cathodes
(LiCoO2) (140 mA h g−1) [14,15] are significant barriers to achieving higher performance,
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driving the exploration of innovative electrode materials. State-of-the-art LIBs utilizing
graphite anodes are nearing the upper threshold of their practical specific energy density.

The energy density of LIBs is predominantly influenced by the specific capacity of
the electrode materials. Over the past decade, commercial graphite has been the predom-
inant anode material for LIBs due to its low operational potential (~0.1 V vs. Li/Li+),
cost-effectiveness, and robust cycling stability [16]. However, graphite poses several crit-
ical limitations. Primarily, it has a moderate specific capacity, which constrains the over-
all energy density of LIBs. Additionally, the lithium intercalation potential of graphite
(~0.1 V vs. Li/Li+) is close to the lithium metal plating potential (~0 V vs. Li/Li+), rais-
ing significant safety concerns, particularly under conditions of fast charging or low
temperatures [16–18]. Consequently, the development of alternative anode materi-
als with higher specific capacities and elevated reaction potentials is imperative for
advancing LIB technology [19–21]. Among these, silicon (Si) anodes have attracted
worldwide attention due to their remarkably high theoretical specific capacity, Li22Si5
(4200 mA h g−1) [22] or Li15Si4 (3579 mAh g−1) [23], which is nearly ten times that of con-
ventional graphite (372 mA h g−1 vs. Li/Li+), their low mass density of 2.33 g cm−3 [24],
and favorable operating potential (0.4 V versus Li/Li+) [25]. When integrated with high
capacity and high-voltage cathodes, such as 5 V spinel (LiMnxNiyO4, LMNO) [26], Ni-
rich LiNixMnyCozO2 (NMC) [27], or multi-valent conversion cathodes such as metal fluo-
rides [28] and sulfur [29], Si is expected to achieve specific energy levels of 500 W h kg−1

or higher at the cell level [30]. Despite these advantages, the practical application of Si
anodes poses significant challenges, including substantial volume expansion (>300%)
during lithiation–delithiation, the reactivity of the lithium silicide (LixSi) interface, and
issues such as delamination and pulverization, which can cause a loss of electrical con-
tact between active materials and current collectors, leading to mechanical degradation
and rapid capacity fading [31]. Addressing these challenges is crucial for unlocking the
full potential of Si anodes in next-generation LIBs. Hence, to enhance the electrochemical
performance of silicon anodes, it is crucial to mitigate the volume expansion effect and
boost conductivity.

The full potential of silicon anode materials has yet to be fully realized, indicating
a considerable journey ahead. Significant efforts have been dedicated to achieving sta-
ble silicon anodes (SiAs), mainly through the design of nanostructures, the synthesis
of composite materials, the improvement of polymer binders, and the optimization of
electrolytes [32]. Nanostructure design includes zero-dimensional nanoparticles, one-
dimensional nanowires (nanotubes), two-dimensional nanofilms, and three-dimensional
porous nanostructures [33]. In addition to nanostructure design, significant efforts have
been made to optimize electrolyte compositions. Encapsulating the Si interface within non-
reactive materials, such as carbon-based substances, polymers, oligomers, and metal oxides,
prevents adverse reactions without hindering the lithiation–delithiation processes. Specifi-
cally, engineered interfaces, such as ‘yolk-shell’ and ‘pomegranate’ structures, effectively
manage the 350% volume expansion during lithiation [33].

Polyvinylidene difluoride (PVDF) binders are prevalent in commercial applications
due to their chemical and electrochemical stability [34]. However, PVDF binders present
several challenges for Si anodes, including insufficient mechanical stretchability to ac-
commodate significant volume changes of Si particles, weak adhesion to Si particles and
the copper current collector, and the necessity of toxic organic solvents such as N-methyl
pyrrolidone (NMP) in slurry preparation [35,36]. To address these binder issues, research
has focused on developing water-based functional binders that can dissipate the stress on
Si anodes. Binders with polar groups, such as carboxymethyl cellulose (CMC), alginate,
poly(acrylic acid) (PAA), and poly(vinyl alcohol) (PVA), exhibit strong adhesive forces
toward Si particles via hydrogen bonding [37–39]. Additionally, combining elastic moieties
with polar functional groups in binders imparts the necessary mechanical properties to Si
anodes [40–42]. Recently, stress-dissipative elastic waterborne polyurethane (PU) binders
for Si anodes have shown promise, possessing both polar functional groups and elastic-
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ity [43]. However, the challenge of using toxic solvents, such as NMP, remains. Besides,
silicon-based anodes for LIBs, despite innovations, such as stress-dissipating conductive
polymer binders [44], accordion frameworks for free-standing, high silicon content [45], car-
bon fiber-confined yolk-shelled structures [46], and structural tailoring via electrospinning
technology [47], continue to be more costly and complex to produce.

Efforts to counteract the volume expansion and potential pulverization of Si have also
involved the creation of Si-based composite materials. These composites often include
conductive additives (e.g., polymer-based hard carbon, graphene, and carbon nanotubes)
or inactive materials (e.g., copper and titanium nitride (TiN)) [48,49]. Additionally, novel
architectures have been designed to provide buffering space [50]. Despite significant
progress, a trade-off persists between electrochemical performance and processing costs, as
achieving excellent properties often requires complex and expensive methods, whereas
simpler processes yield unsatisfactory performance [51].

In pursuit of low-cost and commercially viable methods, leveraging the large volume
expansion of Si has shown potential. In recent times, advanced energy-generating materials,
including ferroelectric, pyroelectric, piezoelectric compounds, as well as their composites,
have been increasingly employed in the development of cutting-edge energy conversion
technologies [52]. Among these, ferroelectric materials have been integrated into Li-ion
batteries to enhance electrochemical performance by generating an electric field in response
to mechanical stress [52]. For instance, Xue et al. reported a self-charging Li-ion battery
using a piezoelectric poly(vinylidene fluoride) (PVDF) film as a separator, where piezo-
electricity was induced by external mechanical stress [53]. In contrast, the current study
focuses on internal stress-induced piezoelectricity, where the volume expansion of Si is
transferred to a piezoelectric material, generating piezoelectric potential [52]. Furthermore,
experiments conducted by Byoung-Sun Lee et al. demonstrated that the piezoelectric
potential of the ferroelectric material barium titanate (BaTiO3) significantly enhances the
electrochemical performance of Si nanocomposite anodes by increasing Li-ion mobility,
resulting in improved discharge capacity and cycle performance [52]. However, Si@CNT
anodes exhibit poor cycling performance [52]. Additionally, Xuanmeng et al. utilized
ferroelectric STO in lithium–sulfur batteries and claimed that it can adsorb polysulfides,
effectively inhibiting the lithium–sulfur shuttle and reducing volume expansion during
cycles through the ferroelectric effect, leading to impressive long-cycle performance [54].

Herein, for the first time, we present the integration of high-purity, commercially
available ferroelectric STO with silicon nanopowder and multi-walled carbon nanotubes
(CNTs) using a facile solid-state planetary ball-milling technique. The electrochemical
performance of the resulting STO@Si@CNT composite was systematically examined for
Li+ ion intercalation, demonstrating substantial improvements in battery performance.
The CNT matrix functions as a mechanical stress mediator, effectively transferring the
volumetric expansion strain of Si to STO while preserving the integrity of conductive
pathways key for Li+ ion transport. STO nanoparticles provide a local ferroelectric potential
that is poled by the deformation of nanoparticles during lithiation. It also influences Li+

mobility [52,54]. Moreover, the optimization of a water-based sodium carboxymethyl
cellulose (CMC) binder, combined with a standard carbonate-based electrolyte (1M LiPF6
in EC:DMC, 1:1 wt% + 10% FEC additive), results in an anode exhibiting a remarkably high
specific capacity of ~1500 mA h g−1, a superior high-rate capability of ~1400 mA h g−1, and
exceptional cycling stability beyond 1000 cycles. These findings underline STO’s pivotal
role in alleviating the volumetric expansion of silicon anodes and enhancing lithium-ion
transport, thereby suggesting that it may hold untapped potential for further advancements
in silicon anode battery technologies.

2. Results and Discussion

Structural characterization of the Si/CNT/STO nanocomposite was conducted using
X-ray diffraction (XRD) analysis. The XRD spectrum, illustrated in Figure 1a, reveals
distinct diffraction peaks corresponding to the (100), (110), (111), (200), (210), and (220)
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crystallographic planes of strontium titanate (STO), as well as the (111) and (220) planes
of crystalline silicon. Notably, near 2θ ≈ 58◦, the (311) and (211) planes of Si and STO,
respectively, nearly overlap. As shown in Figure 1c, the XRD pattern of STO indicates
high purity [55]. It is important to highlight that STO can exhibit either cubic or tetragonal
crystal structures (Figure 1d), with the cubic phase predominating when the particle size is
below 100 nm. Given that the STO particle diameter in this system was below 100 nm, a
cubic structure was anticipated. Although distinct diffraction peaks indicative of the carbon
nanotube (CNT) microstructure (Figure 1b), such as C (002), were not sharply resolved, the
broad feature around 2θ ≈ 26◦ was ascribed to the presence of CNTs.
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Figure 1. Structural analysis: (a) XRD pattern of the Si@STO@CNT composite; (b) XRD pattern of
CNTs; (c) XRD pattern of STO; and (d) crystal structure of Si and STO, respectively.

Scanning electron microscopy (SEM) revealed that the nanocomposite surface consists
of fragmented CNTs, Si nanoparticles, and STO nanoparticles (Figure 2a,b). The ball-milling
process induced CNT breakage, reducing their average length to around 100–150 nm. The
SEM image highlights the dense packing of these three components post high-energy ball
milling, where the Si and STO regions are distinctly visible and the broken CNTs form a
matrix-like framework between them. Furthermore, SEM mapping confirmed a uniform
distribution of the Si and STO nanoparticles across the nanocomposite (Figure 2c–f).

The electrochemical performance of the Si/CNT/STO nanocomposite was measured
using galvanostatic charge/discharge (GCD) tests. As demonstrated in Figure 3a,e, the
voltage curves illustrate stable lithiation and delithiation of Li+ ions during thew cycles.
Characteristic lithiation and delithiation plateaus of silicon were observed at ~0.25 V during
discharge and ~0.5 V during charge. Since STO has a low specific capacity, the overall
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specific capacity was mainly determined by the Si and CNT content. Despite comprising
30 wt%, CNTs contributed less than 5% to the total specific capacity. Thus, the voltage
plateaus were primarily linked to the electrochemical activity of the Si nanoparticles.
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Figure 2. SEM analysis: (a) 100 nm; (b) 500 nm; and (c) SEM mapping of Si; (d) Sr; (e) Ti; and (f) O.

The Si/CNTs/STO nanocomposite exhibited behavior similar to Si/CNT composites
in the initial cycle, with a reversible capacity of approximately 1510 mA h g−1, as shown
in Figure 3a,e, and an initial Coulombic efficiency of 84.97%, which stabilized to around
98.3% after subsequent cycling. However, the Si/CNT nanocomposite demonstrated
cycling performance degradation upon repeated cycling, attributed to the pulverization
of the silicon particles and the subsequent loss of conductive pathways, which has been
previously reported [52]. In contrast, the Si/CNT/STO nanocomposites demonstrated
enhanced cycling stability, which we attribute to enhanced kinetic behavior resulting from
the incorporation of STO, as shown in Figure 3b. As depicted in the voltage profiles
in Figure 3e, the addition of STO facilitated the mitigation of performance degradation,
supporting more stable lithiation and stable electrochemical performance over time.

In addition to its high capacity and consistent performance, the Si@CNTs@STO anode
exhibited remarkable rate capabilities and prolonged cycling stability. As illustrated in
Figure 3d, the charge capacities recorded at various current densities of 100, 200, 350,
500, 800, 1000, 1200, and 1400 mA g−1 were 1238, 1174, 1068, 978, 880, 818, 766, and
729 mA h g−1, respectively. Notably, even at a high current density of 1400 mA g−1, the
charge capacity remained at 729 mA h g−1, which is approximately double the theoretical
specific capacity of graphite (372 mA h g−1). Upon resuming the original current density of
100 mA g−1, the charge capacity recovered to 896 mA h g−1, reflecting a recovery ratio of
approximately 73%. Figure 3c further depicts the charge/discharge profiles corresponding
to these current densities. Additionally, Figure 3b demonstrates the cycling performance at
100 mA g−1, where after 150 cycles, the capacity was sustained at 700 mA h g−1, with an
average Coulombic efficiency of 98.5%.
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Figure 3. Electrochemical performance of composite Si/STO/CNTs. (a) Galvanostatic charge–
discharge (GCD) curve at a low current density of 100 mA g−1; (b) cycling performance at a current
density of 100 mA g−1; (c) rate curve at a range of current densities from 100 to 1400 mA g−1; (d) rate
performance at a range of current densities from 100 to 1400 mA g−1; (e) cyclic voltammetry at a scan
rate of 0.1 mV s−1.

Figure 4a,b presents the cycling performance at current densities of 400 mA g−1

and 600 mA g−1, demonstrating consistent stability over more than 1000 cycles. This
substantial enhancement in performance can be attributed to the integration of the Si@STO
nanocomposite, coupled with the strategic optimization of binders and electrolytes.
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Electrochemical Impedance Spectroscopy (EIS) is a sophisticated technique for probing
the intricate electrochemical dynamics within LIBs. By measuring impedance, which is
essentially the resistance to alternating current across a broad frequency range, a detailed
analysis of multiple internal processes is provided. This technique is instrumental in
elucidating charge transfer mechanisms at the electrode–electrolyte interface, where Li+

ions shuttle between the anode and cathode during the lithiation–delithiation process. It
also offers insights into ion diffusion across the electrodes and electrolyte, particularly in
the low-frequency region, which is pivotal for understanding overall battery performance.
There are distinct key electrochemical parameters contributing to these processes, mainly
ohmic resistance (arising from the bulk properties of the electrode and electrolyte materials),
charge transfer resistance (Rct) at the electrode–electrolyte interfaces, and double-layer
capacitance at the electrode surface. Through careful interpretation of the impedance plot,
performance-limiting factors, such as material degradation, internal resistance buildup, and
diffusion inefficiencies, are revealed, thereby guiding the optimization of battery materials,
architecture, and operational strategies.

As depicted in Figure 5a, the Rct value is lower compared to that observed after
150 cycles in Figure 5b, which con-firms that the incorporation of STO significantly en-
hances the electrochemical stability and extends the cycling longevity of the system.
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3. Experimental Setup 

3.1. Synthesis 
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Figure 5. Electrochemical Impedance Spectroscopy analysis of composite Si/STO/CNTs. (a) Before
lithiation–delithiation and (b) after 150 lithiation–delithiation cycles.

3. Experimental Setup
3.1. Synthesis

The Si@@CNT@STO powder was synthesized utilizing a solid-state route. The
nanocomposite maintained a Si/CNT/STO mass ratio of 49:21:30. Precise proportions
of commercially sourced precursors, including Si nanopowder, SrTiO3, and multiwall
carbon nanotubes (Sigma-Aldrich, 99.97% purity, Chicago, IL, USA), were initially ground
together using a mortar and pestle for 1 h. Subsequently, these precursors were thoroughly
homogenized with a planetary ball mill equipped with zirconia balls (Across Interna-
tional, PQ-N04, Livingston, NJ, USA), operating at 45 Hz (2700 rpm) for 3 h. Finally, the
synthesized Si@CNT@STO powder was ground to achieve the desired consistency for
further applications.
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3.2. Structural Analysis

The structural characterization of the synthesized Si@CNT@STO powder was ana-
lyzed using an X-ray diffractometer (Rigaku Smart Lab, The Woodlands, TX, USA) with Cu
Kα radiation (λ = 1.5408 Å) over a 2θ range of 20◦ to 80◦ at a scan rate of 2◦ per minute. Ad-
ditionally, morphological assessment and chemical composition analyses were performed
using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS)
(JEOL, JSM 6480LV, Tokyo, Japan), respectively.

3.3. Electrochemical Fabrication and Cell Assembly

In order to perform the electrochemical testing, the anode slurry consisted of a
Si/CNT/STO nanocomposite and carboxymethyl cellulose (CMC) binder in distilled water,
with a nanocomposite-to-binder mass ratio of 9:1. This slurry was coated on a carbon-
coated copper foil substrate (thickness of 9 µm) using a doctor blade (MTI Corporation,
Richmond, CA, USA) and was subsequently dried at 80 ◦C overnight. No additional
conductive agent was required as the CNTs within the nanocomposites provided sufficient
conductivity. The 1 cm diameter anodes were then obtained from the foil, further dried
at 60 ◦C under vacuum for 3 h, and immediately transferred to the glovebox (MBRAUN,
Glovebox Workstations, Stratham, NH, USA). For assembling CR2032 coin-type half-cells,
lithium foil was used as the counter electrode and polypropylene ethylene as the separator.
For the electrolyte, we utilized 1 M LiPF6 in ethylene carbonate (EC)/diethyl carbonate
(DEC) [1:1] with 10% FEC additives. All electrochemical performance tests were carried
out using a lithium half-cell in the voltage range of 0.01–1.5 V vs. Li+/Li. A cyclic voltam-
metry (CV) analysis was conducted using various scan rates between 0.1 and 1 mV s−1

with an Arbin instrument, College Station, TX, USA. Furthermore, an electrochemical
impedance spectroscopy (EIS) analysis was performed using the Arbin instrument. All
charge–discharge tests were performed using a Landt battery tester.

4. Conclusions

Our investigation revealed that the incorporation of STO enhances the electrochemical
performance of Si/CNT nanocomposite anodes. Experimental data and electrochemical
impedance spectroscopy confirmed that STO facilitates improved Li+ ion mobility. Conse-
quently, the integration of STO into the Si@CNT anode delivers promising electrochemical
performance, with a high initial Coulombic efficiency of approximately 85%, a reversible
specific capacity of ~800 mA h g−1 after 100 cycles at 100 mA g−1, and an impressive
high-rate capability of 1400 mA g−1, maintaining a capacity of 800 mA h g−1. Remarkably,
the anode retained a capacity of 350 mA h g−1 even after 1000 lithiation–delithiation cycles
at a high rate of 600 mA g−1. These findings highlight a scalable pathway for the design
and production of Si-based anodes, offering significant potential for next-generation LIBs.
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Abstract: The ubiquitous, rising demand for energy storage devices with ultra-high storage capac-
ity and efficiency has drawn tremendous research interest in developing energy storage devices.
Dielectric polymers are one of the most suitable materials used to fabricate electrostatic capacitive
energy storage devices with thin-film geometry with high power density. In this work, we studied
the dielectric properties, electric polarization, and energy density of PMMA/2D Mica nanocomposite
capacitors where stratified 2D nanofillers are interfaced between the multiple layers of PMMA thin
films using two heterostructure designs of the capacitors, PMMA/2D Mica/PMMA (PMP) and
PMMA/2D Mica/PMMA/2D Mica/PMMA (PMPMP). The incorporation of a 2D Mica nanofiller in
the low-dielectric-constant PMMA leads to an enhancement in the dielectric constant, with ∆ε ~ 15%
and 53% for PMP and PMPMP heterostructures at room temperature. Additionally, a significant
improvement in discharged energy density was measured for the PMPMP capacitor (Ud ~ 38 J/cm3 at
825 MV/m) compared to the pristine PMMA (Ud ~ 9.5 J/cm3 at 522 MV/m) and PMP capacitors (Ud ~
19 J/cm3 at 740 MV/m). This excellent capacitive and energy storage performance of the PMMA/2D
Mica heterostructure nanocomposite may inform the fabrication of thin-film, high-density energy
storage capacitor devices for potential applications in various platforms.

Keywords: PMMA; 2D materials; mica; polymer composite; energy density; polarization

1. Introduction

The increasing demand for energy storage devices with ultra-high capacity and effi-
ciency has sparked significant research interest in energy storage materials such as lithium-
ion batteries, sodium-ion batteries, and dielectric capacitors [1–5]. Dielectric capacitors
present compelling advantages over lithium-ion and sodium-ion batteries, including rapid
charging, an extended lifespan, and enhanced efficiency, thereby attracting significant
attention in electrostatic energy storage research [6]. Polymer dielectrics are the most
favored material for the fabrication of electrostatic capacitors due to their efficient energy
storage, high dielectric strength, compactness, thermal stability, and cost effectiveness.
However, their low energy density, efficiency, and operating voltage limit the application of
polymer materials in practical devices [7–9]. The incorporation of various types of 2D filler
materials within polymer matrices has been a conventional method for overcoming the low
discharged energy density (Ud) and breakdown strength (EBD) of the polymer matrices [9].

Several dielectric polymers, such as polyvinylidene fluoride (PVDF), PVDF-TrFE-CFE,
poly(methyl methacrylate) (PMMA), and polyimides (PIs), are commonly used in the
fabrication of nanocomposite matrices using various nanofillers, such as hexagonal boron
nitride (h-BN), barium titanate nanosheet, Mica, titanium dioxide (TiO2), aluminum oxide
(Al2O3), molybdenum disulfide (MoS2), graphene oxide (GO), reduced graphene oxide
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(r-GO), MXene, etc. [9–19]. Discharged energy density (Ud), efficiency (η), and breakdown
strength (EBD) are the three critical parameters that determine the figure of merit of a
capacitor device. These parameters are intrinsically linked with the dielectric polarization
at the interface of the polymer and nanofiller entities and how the interface properties
change as a function of electric field, temperature, and filler content and configuration.
Thus, having a deeper understanding is essential to exploring these composite materials
for their potential applications.

The discharged energy density of a dielectric material can be obtained using the
area under the electric displacement vs. electric field loop (D-E loop) during discharging.
For a linear dielectric material, the maximum discharged energy density of a capacitor
Ud_max = 1

2 εrε0EBD
2, where εr is the dielectric constant of the material or polymer compos-

ites and EBD is the maximum electric field that the capacitor can sustain before the leakage
current increases. Thus, εr and EBD are the two essential parameters in the optimization of
Ud. However, simultaneously enhancing both Ud and EBD is still a challenging task, as EBD
degrades with the increasing behavior of εr [20]. A concurrent improvement in dielectric
properties along with ultra-high energy density was observed with the incorporation of
Mica in a high-dielectric-constant PVDF polymer [10]. Thin-layer Mica has a high band
gap [3–4 eV] and, along with its two-dimensional structure, offers a significant surface
area for interaction with the polymer matrix, resulting in improved mechanical strength,
thermal stability, and electrical insulation properties in nanocomposites [10]. Furthermore,
the fabrication of multilayer polymer nanocomposites originates interfacial polarization,
which contributes significantly to an increase in the value of Ud and EBD [21–24]. This
work encompasses both approaches: integrating 2D Mica into the PMMA polymer and
fabricating a Mica–PMMA multilayer nanocomposite device using a layer-by-layer method
where 2D fillers are aligned in a stratified geometry within the thin film of polymer layers.
A significant enhancement in the dielectric constant of up to 55% was observed in the
PMPMP devices. Moreover, an enhancement of Ud ~ 37.5 J/cm3 at 825 MV/m with higher
η ~ 93% and EBD ~ 865 MV/m was estimated in a multilayered stack of polymer and a 2D
filler device.

2. Results and Discussion

The optical images after exfoliation onto Si/SiO2 display 2D Mica flakes of different
thicknesses, sizes, and orientations in the 2D plane of the substrate are shown in Figure 1a,b.
These flakes were mechanically exfoliated using a scotch-tape method and transferred
onto the clean SiO2 substrate. The distribution of the flakes is non-uniform across the
substrate, which is generally observed in the mechanically exfoliated technique. Figure 1c,d
depict the optical images of PMMA-coated Mica flakes on Si/SiO2, confirming that the 2D
flakes remain intact on the substrate after spin coating. In Figure 1e,f, the surface of the
PMP capacitor reveals the integration of 2D flakes between two layers of polymer films,
highlighting their incorporation. The PMP and PMPMP capacitors are shown schematically
in Figure 2a,b respectively. The thickness of a single PMMA layer was measured as 200 nm
using the AFM tapping mode, recording the cross section of the polymer after making
a scratch on the film, as shown in Figure 2c. Figure 2d depicts the height profile of the
film thickness measured across the scratch, showing an average of 200 nm thick. The total
thickness of the PMP devices is 400 nm, while the PMPMP devices have a total thickness of
600 nm. We measured the dielectric constant of pure PMMA, PMP, and PMPMP capacitors
to understand the role of nanofillers within the polymer matrix.
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Figure 2. (a,b) Schematic of PMP and PMPMP heterostructure capacitors. PMP capacitor contained
one layer of exfoliated Mica fillers and PMPMP capacitor contained two layers of Mica fillers.
(c) AFM topography images of PMMA film showing cross-sectional mark. (d) Height variation in
corresponding PMMA film perpendicular to cross section.

Figure 3a–c show the variation in the dielectric constant and loss tangent of the
polymer nanocomposites between 30 and 100 ◦C, while the frequency varies from 100 Hz to
7 MHz. The dielectric constant gradually decreases with increasing frequency throughout
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the temperature range. As the frequency increases, the dielectric constant of polymer
nanocomposites decreases due to the weakening of the polarization components. At higher
frequencies, the dipoles have insufficient time to align with the direction of the electric
field, resulting in a lower dielectric constant value [25]. The dielectric constant of the pure
PMMA polymer varies between 4.5 at room temperature, 30 ◦C, and 5.1 at 100 ◦C. The PMP
shows an enhancement of 15% (ε ~ 6.1) and 19% (ε ~ 6.5) at the respective temperatures
30 ◦C and 100 ◦C, while the PMPMP exhibits more enhancements of 54% (ε ~ 7.1) and 56%
(ε ~ 7.5), shown in Figure 3d. The low enhancement of the PMP is probably due to the low
loading of nanofillers compared to the PMPMP capacitors, where the two layers of Mica
are stacked in heterostructure geometry. This enhancement is also lower than that of the
PVDF/2D Mica heterostructure capacitor reported recently [10,26]. The polarization at the
interface between PMMA, a low dielectric polymer, and Mica could be lower, which can be
one of the interesting topics to explore using theoretical studies.
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Figure 3. (a) Temperature-dependent dielectric constant and dielectric loss of PMMA (a), PMP
(b), and PMPMP (c) at different constant frequencies in the range between 2.5 kHz and 1 MHz.
(d) Histogram showing the enhancement of the dielectric constant (∆ε) of PMP and PMPMP with
respect to pure PMMA at a constant frequency of 10 kHz and different temperatures.

The enhancement of the dielectric constant in PMP and PMPMP devices can also be
attributed to the effect of interfacial polarization occurring at the polymer–polymer interface
and the Mica–polymer interface of the multilayer nanocomposite devices [21–24]. The

56



Molecules 2024, 29, 4671

phenomenon of dielectric constant enhancement can be analyzed using series capacitance
models of two dissimilar dielectric materials of different thicknesses and dielectric constants.
The dielectric constant (ε) of two different dielectric materials (here, PMMA and Mica) of
dielectric constants of ε1, ε2 and thicknesses of d1, d2 with heterojunction can be obtained
by the series capacitor model, ε=

ε1 ε2(d1+d2)
(d2ε1+d1ε2)

. The average thickness of the 2D Mica flakes is
20 nm, as reported in our previous work [10]. Taking ε1 ~ 4.5 (dielectric constant of PMMA),
ε2 ~ 7 (dielectric constant of Mica), and d1 = 200 nm, d2 = 20 nm, we obtain ε ∼ 4.65, which
is higher than the PMMA [27]. Hence, the presence of multiple layers of different dielectric
materials justifies the enhancement of the overall dielectric constant in the PMPMP bilayer
heterostructure.

At room temperature, the dielectric losses of PMMA, PMP, and PMPMP at 1 kHz
are 0.035, 0.038, and 0.028, respectively. Hence, the integration of one layer of Mica in the
PMP device does not significantly impact the dielectric loss of the polymer nanocomposite,
while the addition of a second layer of PMMA–Mica reduces the loss factor in the PMPMP
heterostructure, as shown in Figure 3a–c.

In general, there are two types of losses that play a role in a dielectric material: (a) con-
duction loss, which arises from the collision, trapping, and recombination of free charges
in charged capacitors; and (b) polarization loss, which occurs due to the displacement
of bound charges during polarization [28]. The presence of an additional interface and
insulating Mica layer in the PMPMP device results in a drop in dielectric loss [24]. The
presence of multiple interfaces deviates the electric trees along the interface plane, while
the insulating Mica weakens the propagation of the electric tree, restricting the motion of
the charge carrier [29–33]. The enhanced dielectric constant and reduced loss factor in the
PMP and PMPMP devices point toward improved performance.

Energy density is a key factor in energy storage devices [10,26,34]. We measured
the polarization vs. applied electric field to elucidate the energy storage property of
the capacitors. In contrast, Figure 4a shows the schematic of the typical P-E loop of a
ferroelectric materials capacitor with hysteresis loss (indicated by the pink color), discharge,
and charge energy densities. One would expect low hysteresis loss in non-ferroelectric
polymers compared to the ferroelectric materials. Figure 4b shows the electric field variation
in the electric displacement (D) of PMMA, PMP, and PMPMP heterostructure capacitors
at room temperature. The variation in D with the electric field shows a trend of higher
polarization and high field sustainability in the nanocomposites with the addition of a 2D
Mica filler. This enhancement in field sustainability is also a phenomenon observed in
2D material-based gas sensors [35,36], where the incorporation of layered nanomaterials
improves both sensitivity and stability. The energy densities in the charging and discharging
cycles are referred to as Ue and Ud, which are basically the areas under the charging and
discharging cycles in the D-E loop graph, as shown in the schematic in Figure 4a. The
discharged energy density can be calculated as Ud =

∫ Dmax
Dr

D.dE, and the area of the
D-E loop refers to the hysteresis loss (Ul). The charged energy density Ue = Ud + Ul.
The ratio of the energy densities at a particular electric field is referred to as efficiency,
η (%) = Ud

Ue
× 100. In optimizing a D-E loop for ultra-high Ud and η, it is necessary to boost

the maximum electric displacement (Dmax) and minimize the remnant electric displacement
(Dr) while maintaining a robust electric field sustainability. The PMMA exhibits a low
value for both Dr and Dmax, and high electric field sustainability varies between 400 and
750 MV/m. The capacitors also show minimum hysteresis loss. These combinations
result in a moderate Ud of 8 to 15 J/cm3, while efficiency remains relatively high up to
80% [33,37–40]. Hence, when obtaining a higher Dmax to elevate the Ud, it is essential to
improve the polarization of the polymer. Our capacitor shows the enhanced polarization
by introducing the 2D nanofillers between the polymer films. It is observed that the
remnant electric displacement (Dr) of the PMMA and PMP capacitor devices is close to
~ 0.5 µC/cm2, while it is reduced to 0.3 µC/cm2 for the PMPMP device. The maximum
electric displacement (Dmax) increases significantly with the loading of Mica layers between
the polymer layers, as shown in Figure 4c. The Dmax−Dr increases with the addition of
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Mica layers from 5 C/cm2 in the PMP to 9 C/cm2 in the PMPMP. This implies a reducing
loss feature from PMP to PMPMP capacitors, corroborating the dielectric loss versus
temperature variation observed earlier. Figure 4d shows the dynamics of Ud and η of the
PMMA, PMP, and PMPMP nanocomposites with the variation in electric field (E). The
discharged energy density of pure PMMA was calculated as Ud ~ 9.5 J/cm3 at 522 MV/m,
with η ~ 80.5%. The Ud and η at the same electric field for the PMP capacitor are 9.6 J/cm3

and 90%, and for the PMPMP they are 14 J/cm3 and 95%, respectively. The energy density
of pure PMMA is similar to the reported values in the literature [39].The highest energy
density and efficiency of the PMP device were calculated as Ud ~ 17.7 J/cm3 and η ~ 81.2%
at 720 MV/m. The addition of a second Mica–PMMA layer to the PMP capacitor enhances
the energy density and efficiency to 37.35 J/cm3 and 93% at the highest measured electric
field of 825 MV/m, as shown in Figure 4d. Polymer-based dielectrics are widely used as
insulation materials for high-voltage applications due to their intrinsic high breakdown
strength. Beyond that, these materials, with suitable filler combinations, can possess high
charge accumulation but exhibit high resistance to charge percolation by providing ordered
traps and scattering centers to mobile charges and by increasing path tortuosity for carrier
treeing propagation. We measured the breakdown voltages of the capacitors and used

a Weibull probability distribution P(E) = 1 − exp−( E
EBD

)
β

fitting to obtain the breakdown
fields (EBD) of these polymer nanocomposite film capacitors, where P is the cumulative
probability of failure, E is the electric field at dielectric failure, EBD is the breakdown
strength, which is the dielectric strength at 63.2% probability of failure, and β is a shape
parameter. The value of β in a Weibull fit indicates the shape or randomness of data points
in the distribution. Having a larger β implies a narrow distribution and higher consistency
of breakdown strength of the capacitor. A total of 10 data points were collected from various
capacitors to fit the Weibull probability distribution and determine the exact breakdown
strength. The PMMA shows high breakdown strength compared to other polymer matrices,
but the low polarization limits the discharged energy density (Ud) [16,33,38,41]. Zhang
et al. reported a maximum Ud ~ 14.6 J/cm3 with η ~ 73.47% at E ~ 809 MV/m for the
PMMA film [4]. In our study, it is observed that the EBD of the PMMA, PMP, and PMPMP
is 535, 672, and 866 MV/m, respectively, as shown in Figure 4e.

Studies indicate that multilayered polymer films consistently exhibit higher electrical
breakdown strength compared to their individual-film counterparts [42,43]. There are three
important possible mechanisms working behind the ultra-high breakdown field of the
PMPMP device: (a) the presence of multiple PMMA and 2D filler layers, (b) the addition of
coverage of 2D Mica in a stratified geometry where two-dimensional surfaces of Mica are
perpendicular to the applied electric field, and (c) the large surface area interaction between
2D fillers and polymers (interface polarization) between the 2D Mica in the nanocomposite.

During the electrical treeing process in a multilayer dielectric nanocomposite subjected
to high electric fields, the propagation of electrical trees diverges at multiple interfaces
along the in-plane direction [44,45]. Furthermore, the multilayer configuration restricts the
free movement of carriers within the films, which in turn reduces the leakage current and
enhances the breakdown strength [37,46–49]. The addition of second layers of Mica–PMMA
(MP) onto the PMP device covers more space with 2D fillers by increasing the fillers on the
surface while looking perpendicular to the film or along the direction of the applied electric
field, resulting in enhanced breakdown strength of the PMPMP device. Therefore, the
bilayer 2D Mica filler device (or PMPMP device) is resistant to high electric fields, exhibiting
elevated EBD and thereby enhancing Ud. The inclusion of a second layer of 2D Mica also
increases the interface between polymer and 2D Mica, leading to the enhancement of the
film [10,26].
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Figure 4. (a) Schematic diagram outlining the charging and discharging cycles of a D-E loop, including
Dr, Dmax, and discharged energy density (Ud), (b) field-dependent variation in electric displacement
(D) of PMMA, PMP, and PMPMP, (c) remnant electric displacement (Dr) and maximum electric
displacement (Dmax) of the polymer and polymer nanocomposites, (d) variation in discharged energy
density (Ud) and efficiency (η) with electric field, (e) Weibull probability fit showing the calculated
breakdown strength (EBD) and shape parameter (β), (f) maximum discharged energy density (Udmax)
of different capacitors of the polymer and polymer nanocomposites with electric field.

Our observations showed that 2D fillers oriented perpendicular to the direction of
the electric field are more effective at preventing the expansion of electric breakdown
paths through the nanocomposite, in contrast to randomly dispersed nanofillers [44,50].
The introduction of in-plane-oriented Mica nanofillers into the PMMA via mechanical
exfoliation methods has contributed to improving the breakdown strength of the composite.

The calculated shape parameter (β) for the PMMA, PMP, and PMPMP is 7.2, 6.5, and
13.7, respectively, as shown in Figure 4e. The increase in energy density in multilayer
polymer nanocomposites can be attributed to three major factors. (i) Increased dielectric
constant: When these 2D nanofillers are integrated within the polymer layers, they can
significantly increase the overall dielectric constant of the composite, as discussed earlier in
the dielectric constant measurement. The maximum stored energy density (U) in a capacitor
is proportional to the dielectric constant (ε) of the material. Therefore, a higher dielectric
constant leads to a higher energy density at the same electric field strength. (ii) Improved
polarization: The types of polarization that can occur in a polymer nanocomposite include
electronic polarization, interfacial polarization, dipolar polarization, and ionic polariza-
tion [51]. Due to the substantial difference in dielectric constants between the PMMA
and Mica, Maxwell–Wagner–Sillars interfacial polarization can develop at their interface.
This phenomenon leads to an additional enhancement of interfacial polarization, and the
overall polarization increases in the polymer nanocomposite, leading to an enhancement of
discharged energy density. (iii) Improvement of breakdown strength: Multilayer polymer
structures incorporated with insulating 2D filler render the electrical treeing process more
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effective and reduce the leakage current. This leads to an enhancement in breakdown
strength and, hence, the energy density, of the nanocomposites.

3. Materials and Methods

In this study, 2D Mica flakes of varying thicknesses (single atomic layers to 30 nm
thick) and sizes (1 m to 30 m) were exfoliated onto clean Si/SiO2. The thin layer of
PMMA was spin coated on top of exfoliated Mica at 3000 rpm for 30 s followed by a
short time annealing at 100 ◦C for 5 min. The PMMA-coated 2D Mica layer was etched
out using 30 wt % KOH solutions and transferred onto a PMMA-coated ITO wafer to
form a PMMA/2D Mica/PMMA (PMP) capacitor. We subsequently transferred a second
2D and PMMA layer using the same procedure onto the 1st PMMA/2D Mica/PMMA
capacitor to form a PMMA/2D Mica/PMMA/2D Mica/PPMA (PMPMP) capacitor. Finally,
the capacitor devices were annealed at 120 ◦C inside a vacuum chamber for 2 h. The
distribution of the exfoliated 2D Mica flakes was visualized through an optical microscope.
The thicknesses of the polymer and the 2D polymer nanocomposite were measured by
a Veeco Dimension 3100 atomic force microscope. The temperature-dependent dielectric
properties of 2D-nanocomposite films were measured by a HIOKI LCR tester (3522) at
frequencies from 1 KHz to 7 MHz. The polarization and breakdown strength measurements
were performed using a Radiant ferroelectric precession II instrument with a high-voltage
power source (10 kV). Silver electrodes, with diameters ranging between 200 and 300 µm,
were placed on top of the devices to serve as the top electrode (and capacitor area) in the
experiments. We placed several devices throughout the film to discern the uniformity of
the fillers’ film quality as well as their effects on dielectric and energy storage properties.

4. Conclusions

This study delved into the dielectric properties and electric polarization of PMMA/Mica
nanocomposite fabricating multilayer capacitor devices. The incorporation of a 2D Mica
nanofiller led to a remarkable increase in the dielectric constant, with improvements of
approximately 15% and 54% observed for PMP and PMPMP structures, respectively, at
room temperature. The pursuit of high discharged energy density and efficiency at a
high operating electric field was witnessed in the multilayer nanocomposite PMP and
PMPMP capacitor devices. Notably, the discharged energy density in the PMPMP reached
approximately 38 J/cm3 at 825 MV/m, surpassing previously reported values for PMMA-
based composite capacitors. The presence of interfacial polarization and insulating Mica
filler within the polymer contributes to enhanced efficiency and increased breakdown
strength. The enhancement of the dielectric constant with the dimensions of loss factor in
the PMPMP device also justifies the high energy density and efficiency of the device. The
exceptional capacitive and energy storage performance exhibited by these materials opens
new avenues for advancing energy storage technologies, paving the way for more efficient
and reliable energy storage solutions to meet the growing demands of modern society.
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Abstract: Transition metal oxides are considered to be highly promising anode materials for high-
energy lithium-ion batteries. While carbon matrices have demonstrated effectiveness in enhancing
the electrical conductivity and accommodating the volume expansion of transition metal oxide-based
anode materials in lithium-ion batteries (LIBs), achieving an optimized utilization ratio remains a
challenging obstacle. In this investigation, we have devised a straightforward synthesis approach to
fabricate CuO nano powder integrated with carbon matrix. We found that with the use of a sodium
carboxymethyl cellulose (CMC) based binder and fluoroethylene carbonate additives, this anode
exhibits enhanced performance compared to acrylonitrile multi-copolymer binder (LA133) based
electrodes. CuO@CMC electrodes reveal a notable capacity ~1100 mA h g−1 at 100 mA g−1 following
170 cycles, and exhibit prolonged cycling stability, with a capacity of 450 mA h g−1 at current density
300 mA g−1 over 500 cycles. Furthermore, they demonstrated outstanding rate performance and
reduced charge transfer resistance. This study offers a viable approach for fabricating electrode
materials for next-generation, high energy storage devices.

Keywords: CuO; sodium carboxymethyl cellulose; carbon matrix; lithium-ion batteries; electrochemical
reactions

1. Introduction

In the incessant pursuit of greener and more highly efficient energy solutions, lithium-
ion batteries (LIBs) have become an indispensable part of modern life and revolutionized
energy storage technologies, powering portable electronics to electric vehicles (EVs) or
hybrid electric vehicles (HEVs), due to their reasonable energy density (150–200 W h kg−1)
and exceptional cycling stability [1–5]. Given the escalating demands for long-range electric
vehicles, it is imperative to engineer batteries with superhigh energy densities (350–500 Wh
kg−1) [6–10]. Lithium metal is one of the best selections for the anode material in next-
generation lithium-air (3862 mA h g−1) [11], lithium-sulfur (1675 mA h g−1) [12], lithium
metal batteries and solid-state lithium-based batteries, which have drawn worldwide
attention within the battery community, owing to their high theoretical specific capacity of
3860 mA h g−1 and low potential of−3.04 V vs. the standard hydrogen electrode (SHE) [13].
Nevertheless, there are critical questions that need to be addressed before lithium metal can
be commercially adopted as an anode on a widespread scale. For example, lithium metal
is susceptible to dendrite formation, resulting in cell short-circuits and low Coulombic
efficiency [14]. The persistent solid–solid interface issue in solid-state electrolytes poses
a substantial challenge to contemporary battery manufacturing technology. Thus, the
continued development of LIBs with enhanced energy densities remains an appealing
option, until the full commercialization of lithium metal or solid-state batteries occurs.

The energy density of a battery primarily depends on the specific capacity of its
electrode materials. Presently, existing commercial graphite stands as the dominant anode
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material for lithium-ion batteries (LIBs), owing to its low operational potential (~0.1 V
vs. Li/Li+), cost-effectiveness, and robust cycling stability [15,16]. However, graphite
faces several drawbacks. Mainly, its modest specific capacity of 372 mA h g−1 limits the
energy density of LIBs. Another drawback is that graphite’s Li-insertion potential (~0.1 V
vs. Li/Li+) approximates that of Li metal plating (~0 V vs. Li/Li+), which raises safety
concerns, especially during fast charging and in low-temperature environments [15,17].
Nevertheless, these promising battery systems encounter inherent difficulties that are hard
to overcome quickly. Hence, there is pressing demand to innovate high-performance anode
materials, possessing a higher capacity, appropriate reaction potential, and environmentally
sustainable materials [18,19].

Over the past two decades, there have been tremendous efforts using alloy-based ma-
terials in the search for suitable anode materials, notably silicon (Si) (4200 mA h g−1) [20],
tin (Sn) (993 mA h g−1) [21], aluminum (Al) (993 mA h g−1) [22], antimony (Sb) (600 mA h
g−1) [23], Germanium (Ge) (1624 mA h g−1) [24], and Bismuth (Bi) (385 mA h g−1). [25]
Among these, silicon-based anode materials have gained global attention from research
communities and manufacturers, owing to their potential for nearly tenfold greater specific
(gravimetric) capacity compared to commercial graphite anodes (Si~4200 mA h g−1 vs.
372 mA h g−1 for graphite), but these silicon-based anode materials undergo a volumetric
expansion of up to 300% during lithiation and delithiation processes [26,27]. However,
mitigating the substantial capacity degradation of silicon electrodes poses a complex and
multifaceted challenge. This capacity fading primarily stems from two distinct factors:
primarily, silicon grain disintegration and fracture of the electrode integration, leading
to a broken electrical contact with the active material’s current collector, and an unstable
solid–electrolyte interphase (SEI) that results in electrolyte deformation. Similarly, all other
alloy materials often experience significant volume expansion (100–300%), leading to the
formation of SEI cracks, thereby compromising cycling stability [28]. There have been
extensive efforts made to tackle these issues. Furthermore, there are also several anode
materials that undergo a conversion-alloy reaction, involving an initial conversion followed
by an alloy reaction. Oxides with high theoretical capacities, namely tin oxide (SnO2)
(1490 mA h g−1), silicon oxide (SiOx), and bismuth ferrite (BiFeO3) (770 mA h g−1) are
common materials undergoing a conversion-alloy reaction [29–31]. Research indicates
that these anode materials demonstrate improved cycling performance compared to pure
alloy materials, owing to the formation of lithium oxide (Li2O), which effectively alleviates
electrode volume changes [32].

On the other hand, conversion-based transition-metal (TM) oxide materials emerge
as promising candidates for anode materials in lithium-ion batteries (LIBs). It is denoted
as TMxOy (where TM = Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, etc.). These oxides present
high reversible capacities by undergoing a redox mechanism with lithium (TMxOy +
2yLi = yLi2O + xTM) [33–35]. These materials exhibit 2–3 time greater specific capacity
than commercial graphite anode. This phenomenon serves as motivation to optimize
compounds within the conversion-based material family, aiming to foster the development
of high-energy, high-rate capability, and sustainable materials for LIBs [34,36].

Copper oxide (CuO) is an interesting material, with a monoclinic structure and semi-
conducting properties, but with poor electrical conductivity, which impedes efficient charge
transfer [37]. Additionally, CuO-based electrodes suffer from substantial volume expansion
and dispersion of copper elements within the Li2O matrix during charge–discharge process,
leading to significant mechanical stress and rapid deterioration in capacity [38]. Enhanced
electrochemical performance of CuO-based anodes is crucial to meet the demands of next
generation lithium-ion batteries (LIBs). Considerable efforts have been made to bolster the
performance of CuO-based electrodes via morphology modification, designing nanostruc-
tured configuration and hybridization with composite materials, resulting in materials that
exhibit promising electrochemical performance and distinctive structures [38–41]. This ma-
terial distinguishes itself for its cost-effectiveness and environmentally benign nature. This
material is attractive as a high-capacity anode for battery applications, due to its potential
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for a 2-electron conversion reaction mechanism, resulting in a high theoretical capacity of
approximately 670 mA h g−1, nearly doubling the capacity of graphite [39]. The average
insertion potential in CuO is approximately ~1.32 V vs. Li+/Li, higher than that of graphite
but lower than that of Li4Ti5O12 (~1.55 V vs. Li+/Li), making it suitable for anodes [39,42].
Numerous publications have addressed the lithium-ion battery (LIB) performance of this
material, albeit through methods that may be cost-prohibitive. Consequently, it becomes
imperative to revisit this material and unveil its complete potential for LIB applications,
utilizing commercially viable techniques [38–41,43–46].

In recent years, water-soluble binders have attracted substantial scientific interest
as binders for lithium-ion batteries (LIBs), which are imperative for cost-efficient and
environmentally sustainable electrode fabrication methodologies [47,48]. Conventionally,
N-methyl-2-pyrrolidone (NMP) is utilized as a solvent to prepare slurries for cathode or
anode materials, a conductive carbon additive, a traditional poly(vinylidene difluoride)
(PVDF) binder, and NMP itself. Notably, NMP is classified as a carcinogenic compound
with reproductive toxicity, necessitating stringent recycling protocols to mitigate atmo-
spheric contamination [49,50]. Consequently, there is a pronounced shift towards adopting
aqueous fabrication processes. Moreover, ongoing research endeavors are extensively
investigating the deployment of water-soluble or aqueous binders across both anode and
cathode configurations [48,51]. Polymer binders constitute a minor fraction (<5 wt%) of
commercial lithium-ion battery (LIB) electrodes, functioning primarily as an adhesive to
integrate active materials, conductive agents, and current collectors, thereby preserving
both electrical conductivity and mechanical stability within the electrodes [52]. The most
commonly employed polymer binders, such as poly(vinylidene difluoride) (PVDF), sodium
carboxymethyl cellulose (CMC), and CMC/styrene-butadiene rubber (SBR) blends, have
proven effective in graphite anodes due to graphite’s limited volumetric expansion (~10%)
upon full lithiation, enabling stable long-term cycling [53,54]. However, in the context of
Si-based anodes, PVDF-based binder undergoes significant volume expansion, and the
inadequate binding capacity of PVDF results in pronounced silicon particle pulverization,
huge expansion, and poor cycling performance. Numerous studies indicate that the cycling
stability of Si-based anodes is highly contingent on the choice of polymer binder [55–57].
For instance, Si and carbon-coated Si nanoparticle (SiNP) anodes demonstrate markedly
improved cycling stability with CMC binders, compared to PVDF. Building on this under-
standing, our investigation focused on optimizing the performance of a CuO anode by
incorporating a CMC binder, enhanced with fluoroethylene carbonate (FEC), as an addi-
tive with carbonate-based electrolyte. Comparative analysis was conducted against two
binders—CMC and LA133—to evaluate their stabilizing effects on a CuO anode for LIBs.

The molecular structure of PVDF, CMC, and LA133 are depicted in Figure 1a–c. PVDF
is characterized as a linear crystalline polymer with a repeating unit of –CH2–CF2–. The
bonding mechanism of PVDF involves the formation of hydrogen bonds with electrode
components, via the fluorine atoms along its extended polymer chains; Carboxymethyl
CMC features a backbone comprised of D-glucose residues, interconnected through β-1,4-
glycosidic linkages. LA133 is a water-soluble polybasic copolymer, primarily based on
polyacrylonitrile. The substantial intermolecular forces in LA133 are attributed to the high
polarity of the cyano (–CN) groups within its structure [58]. In contrast, this backbone is
modified by carboxymethyl groups (-CH2-COOH), attached to some hydroxyl groups of
the glucopyranose units, endowing it with high viscosity and pronounced hydrophilicity.

In this study, we utilized high-purity, commercially available CuO compounds, and ex-
amined their electrochemical Li-ion insertion performance via a simple solid-state method.
Through the optimization of the binder sodium carboxymethyl cellulose (CMC) and elec-
trolyte additives (fluoroethylene carbonate, FEC), we observed a significant enhancement
in battery performance. Specifically, the CuO anode demonstrated a remarkable capacity
of ~800 mA h g−1, an impressive rate capability ~1200 mA g−1, and exceptional cycling
stability with ~500 cycles (~99% retention). Our findings underscore the potential of CuO
as a high-capacity and long-lasting anode material for lithium-ion batteries.
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Figure 1. (a) PVDF. (b) LA133. (c) CMC.

2. Result and Discussion

The commercial CuO nano powder presents as a finely powdered material with a
black color Figure 2a (inset). To ascertain its quality and crystalline structure, we conducted
X-ray diffraction (XRD) analysis at a scan rate of 2◦ per minute.
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Figure 2a demonstrates that all XRD patterns align closely with the standard CuO
compound (JCPDS No. 48-1548, space group C2/c) [59], with minor characteristic peaks
indicating traces of impurities (*) from orthorhombic-phase Cu (OH)2 (JCPDS No. 13-
420) [60]. However, these impurities are negligible, suggesting a predominantly pure
CuO formation. The material behaves as a typical p-type semiconductor, featuring a
narrow band gap, ranging from 1.2–1.8 eV, which is suitable for LIBs [61]. The crystal
structure depicted in Figure 2b exhibits monoclinic CuO, characterized by lattice constants
a = 4.6837 Å, b = 3.4226 Å, and c = 5.1288 Å, with angles β = 99.54◦ and α = γ = 90◦ [62].
Within this structure, Cu+ ions coordinate with four coplanar oxygen atoms arranged at
the corners of a rectangular parallelogram, forming chains through edge-sharing [63]. The
presence of heavy Cu ions contributes to a high crystal density of 6.31 g cm−3, superior to
that of graphite, and thus enhancing volumetric energy density [64].

Our investigation extended to the morphology and structural properties of CuO,
using scanning electron microscopy (SEM) and Energy dispersive spectroscopy (EDS).
Energy dispersive spectroscopy (EDS) analysis at Figure 3a confirms the presence of only
Cu and O elements within the sample. Figure 3b–e illustrates the quasi-spherical and
mixed morphology of CuO particles, with a size averaging 100–200 nm. Furthermore,
elemental mapping results at Figure 3f–h demonstrate homogeneous distribution of Cu
and O elements throughout the sample, affirming its purity.
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To date, investigations have extensively explored the electrochemical performance of
CuO-based anodes in various morphologies, including nanowires [65], nanosheets [66],
and nanorods [67], as well as distinctive structures such as mesoporous [68], porous [69],
hierarchical [70] core/shell architectures [71], and hollow [72]. Additionally, CuO-based
composites have been synthesized by incorporating conductive carbonaceous materials
and polymers, such as carbon nanotubes [73], graphene [74], and polypyrrole (PPy) [75],
aimed at enhancing electronic conductivity cycles. Furthermore, CuO has been combined
with high-capacity anode materials, such as TiO2 [76], ZnO [77], SnO2 [78], and Fe2O3 [79]
to achieve superior lithium storage capabilities.

Despite considerable efforts dedicated to synthesizing various morphologies and
compounds, researchers still fail to fully meet the commercially viable approach and the
desirable performance standards of LIBs. Therefore, there persists a need for more extensive
research into developing CuO with novel, cost-effective, and commercially viable synthesis
techniques, alongside efforts to enhance electrochemical performance. To gain a clearer
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insight into the current state of research, we outline the testing conditions and performance
metrics of reported CuO in Table 1. It is apparent that each of these reports exhibits some
limitations, which are shown in Table 1 with our work.

Table 1. Comparative analysis of this work with previously reported CuO-based anode materials.

Ref. Samples Rate Cycles Capacity Notes

[80] Hollow CuO
nanoparticles 100 100 630 Time and energy consuming and expensive

synthesis route

[46] CuO/Cu2O/C
composites 200 600 260 Energy consuming method

[81] CuxO/C anode 100 100 335 Time and energy consuming

[82] CuO/tube-like carbon 100 100 650 Complicated and expensive synthesis approach

[83] CuO@Cu microspheres 100 100 876 Sensitive route and time consuming

[65] CuO nanowire arrays 300 100 550 Complicated synthesis approach

[74] CuO nanosheets 100 100 600 Poor performance and expensive method

[39] CuO@C 100
500

100
700 1024 Toxic and energy consuming process

[44] Peony shaped CuO
nanosheets

100
1000

80
100

780
441 Time consuming

This
work

Commercial CuO nano
powder

100
300

170
500

800
450

Safe, simple, cost-effective, scalable, and
financially sustainable strategy for battery

production.

It is widely acknowledged that the selection of binders and electrolyte additives
significantly affects the performance of anodes, particularly those made of conversion-
alloy, conversion, and alloy-based materials prone to substantial volume expansion [84,85].
Previous studies, as summarized in Table 1, predominantly employed poly(vinylidene
fluoride) (PVDF) as the binder, which lacks the ability to effectively accommodate the
expansion of electrode volume [86]. Additionally, conventional carbonate electrolytes
without additives were commonly used, resulting in the failure to establish a robust solid–
electrolyte interphase (SEI) [87]. Therefore, our study focuses on investigating two distinct
combinations to evaluate the impact of binders and electrolytes on CuO anode performance:
the utilization of CMC (carboxymethyl cellulose) as a non-toxic water-based binder in a
regular carbonate electrolyte with fluoroethylene carbonate (FEC) additives [1M LiPF6/EC-
DMC + 10% FEC]; and the use of LA133, a non-toxic water-based binder, combined with
carbonate electrolyte containing FEC additive [1M LiPF6/EC-DMC + 10% FEC].

As depicted in Figure 4a,b, at 100 mA g−1 current density, the CuO@CMC electrode
initially exhibits a charge capacity of approximately 80 mA h g−1 in the first cycle, gradually
increasing to ~1100 mA h g−1 over 170 cycles. This behavior aligns with prior literature,
due to material activation. The average Coulombic efficiency stands at 99%. Notably, the
incorporation of the CMC binder with FEC additive demonstrates superior performance,
making it the preferred choice for CuO-based anodes. The initial lithiation and delithiation
specific capacities are measured at 2138.6 and 807.2 mA h g−1, respectively, correspond-
ing to an initial Coulombic efficiency of 37.7%. The significant irreversible capacity loss
during the first cycle is largely due to SEI film formation. Notably, the initial lithiation
and subsequent specific capacity exceed the theoretical capacity (674 mA h g−1) [39], a
phenomenon observed in a previous study [39]. In this study, the additional capacity is
likely attributed to lithium insertion into a considerable quantity of ketjen black conducting
agent or nanopores, interfacial lithium storage, and the formation of SEI.
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100 mA g−1. (a) Galvanostatic charge-discharge (GCD) curve of CuO@CMC. (b) Cycling performance
of CuO@CMC. (c) Galvanostatic charge-discharge curves of CuO@LA133. (d) Cycling performance
of CuO@LA132.

On the other hand, the CuO@LA133 electrode demonstrates a comparable capac-
ity, with slightly enhanced cycling performance, as illustrated in Figure 4c,d. However,
after 75 cycles, the charge capacity and average Coulombic efficiency stabilize around
~375 mA h g−1 and 98%, respectively. The LA133 binder’s inadequacy in handling the
significant volume changes of CuO anodes leads to particle disintegration, compromising
electrical conductivity, and overall performance.

As depicted in Figure 5a, the CuO@LA133 electrode exhibits an initial charge capacity
of approximately 700 mA h g−1 at low current density of 100 mA g−1, as shown in Figure 4d.
This capacity remains stable at 700 mA h g−1 for the first 7 cycles. However, when
subjected to a higher current density of 300 mA g−1, the capacity rapidly declines to about
300 mA h g−1 over 54 cycles. The average Coulombic efficiency observed is 98.31%. This
indicates that the LA133 binder is inadequate in accommodating the significant volumetric
changes of the CuO anodes, failing to maintain particle cohesion, which is crucial for
preserving electrical conductivity and electrochemical stability.

In contrast, as shown in Figure 5d, the CuO@CMC electrode demonstrates an initial
charge capacity of around 800 mA h g−1, maintaining this capacity for the first 7 cycles.
Upon increasing the current density to 300 mA g−1, the electrode maintains a stable capacity
of approximately 450 mA h g−1 over ~500 cycles, with an average Coulombic efficiency
of 99.10%. This superior performance highlights the effectiveness of the CMC binder in
managing the volumetric expansion of CuO anodes, ensuring particle integrity, sustained
electrical conductivity, and better electrochemical performance.
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vs. Li+/Li. (a) Cycling performance of CuO@LA133 at 300 mA g−1. (b) Rate curve of CuO@CMC
from 100–1200 mA g−1 current density. (c) Rate curve of CuO@LA132 from 100–1200 mA g−1 current
density. (d) Cycling performance of CuO@CMC at 300 mA g−1. (e) Comparison of rate performance
of CuO@CMC and CuO@LA133 binders.

In addition to exhibiting high capacity and stable performance, the CuO@CMC anode
demonstrates superior rate performance and long-term cycling stability. As illustrated in
Figure 5b, the charge capacities of CuO@CMC-based electrodes are 761, 618, 515, 435, 345,
297, and 258 mA h g−1 at current densities of 100, 200, 350, 500, 800, 1000, and 1200 mA g−1,
respectively. Notably, even at 1200 mA g−1 current density, the charge capacity remains at
258 mA h g−1, which is comparable to that of graphite. Upon reverting the current density
to 1000, 800, 500, 350, 200, and 100 mA g−1, the charge capacities recover to 294, 350, 477,
544, 693, and 853 mA h g−1, respectively, achieving a recovery ratio of approximately 100%,
indicative of excellent rate performance as depicted in Figure 5e, and in separate Figure 6a.
Conversely, as shown in Figure 5c, the charge capacities of CuO@LA133-based electrodes
are 698, 562, 420, 295, 178, 137, and 111 mA h g−1 at current densities of 100, 200, 350, 500,
800, 1000, and 1200 mA g−1, respectively. When the current density is reduced back to 1000,
800, 500, 350, 200, and 100 mA g−1, the charge capacities recover to 135, 164, 266, 355, 530,
and 681 mA h g−1, respectively, corresponding to a recovery ratio of approximately 98%.
However, this exhibits inferior rate performance, as shown in Figure 5e, and in separate
Figure 6b.
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To obtain a more detailed understanding of the Li-insertion mechanism in CuO using
both CMC and LA133 binders, we performed a cyclic voltammetry (CV) analysis. Figure 7a
illustrates the cyclic voltammetry (CV) profiles obtained at a scan rate of 0.1 mV s−1 within
a potential window of 0.01–3.0 V. During the initial cathodic sweep, three distinct reduction
peaks are observed at 2.08, 1.24, and 0.82 V. These peaks correspond to the stepwise
reduction of CuO: the first peak represents the reduction of CuO to an intermediate phase
(CuII

1−xCuI
xO1−x/2 (0 ≤ x ≤ 0.4), the second peak indicates further reduction to Cu2O,

and the third peak signifies the conversion to metallic Cu and Li2O. In the subsequent
anodic sweep, oxidation peaks appear at 1.36, 2.56, and 2.6 V, which are associated with the
oxidation of Cu back to Cu2O and the reformation of CuO [44]. The reaction mechanisms
involved are described by their respective electrochemical equations [44]:
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Discharging

CuO + xLi+ + xe− → CuII
1−xCuI

xO1−x/2 + x/2Li2O (0 ≤ x ≤ 0.4) (1)

CuII
1−xCuI

xO1−x/2 + (1− x) Li+ + (1− x)e− → Cu2O + (1− x)/2Li2O (0 ≤ x ≤ 0.4) (2)

1/2Cu2O + Li+ + e− → Cu + 1/2Li2O (3)

Charging
Cu + 1/2Li2O→ 1/2Cu2O + Li+ + e− (4)

1/2Cu2O + 1/2Li2O→ CuO+ + Li+ + e− (5)

The difference in peak areas between the first cycle and subsequent cycles can be
attributed to the formation of the solid-electrolyte interface (SEI) film and electrolyte
decomposition [88]. A slight positive shift in potential observed during the second and
third cycles indicates structural rearrangements occurring during the initial lithium-ion
insertion [39,43]. From the second cycle onwards, the CV curves demonstrate consistent
reproducibility, highlighting the superior electrochemical reversibility of the CuO@CMC
(Figure 7a) electrode relative to the CuO@LA133 (Figure 7b) electrode, as can be observed
in the comparative CV curve in Figure 7c. Figure 4a showcases the charge/discharge
voltage profiles for the first six cycles at a current density of 100 mA g−1, revealing three
distinct voltage plateaus (2.0–1.28, 1.29–1.26, and 1.27–0.03 V) during the initial discharge,
which corroborate the multi-step conversion process of CuO to Cu in the presence of Li, as
reflected in the CV results.

From an electrochemical perspective, Electrochemical Impedance Spectroscopy
(EIS) was utilized to elucidate the kinetic processes governing the electrode reactions.
Figure 8a and 8c present the Nyquist plots for the CuO@CMC and CuO@LA133 elec-
trodes, respectively, prior to cycling at a current density of 100 mA g−1. Both spectra
are characterized by the presence of two semicircles and a sloping line. Notably, the
CuO@LA133 electrode exhibits a significantly larger semicircle prior to cycling. As depicted
in Figure 8c, charge transfer resistance (Rct) is 3.031 × 103 Ω, indicating slower kinetics
in the CuO@LA133 electrode. The semicircles observed at high and high-to-medium fre-
quencies correspond to the resistance of the solid electrolyte interphase (SEI) film and
the Rct at the electrode/electrolyte interface, respectively. But, as shown in Figure 8a,
CuO@CMC electrode Rct value is 2.30 × 102 Ω, which is lower than that of LA133 based
electrode. The sloping line at low frequencies is indicative of Li+ diffusion within the solid
state. Importantly, the CuO@CMC electrode (Figure 8b) after 100 cycles demonstrates the
smallest semicircle diameter before cycling, signifying the lowest Rct value 21 Ω relative to
the CuO@LA133 electrode (Figure 8d) Rct values is 77 Ω. This observation suggests that the
CuO@CMC electrode exhibits the lowest polarization and the most rapid reaction kinetics.

Furthermore, SEM analysis was employed to assess the morphological analysis of
CuO@CMC and CuO@LA132 electrodes both prior to and following cycling. As depicted
in Figure 9a–c, the CuO@CMC electrode exhibits no cracks before cycling, after 40 cycles,
and even after 400 cycles. Notably, the SEM image in Figure 9d reveals a smooth, gel-like
film on the surface after 400 cycles, indicating increased stability and density.

This improved morphology enhances the electrochemical environment, leading to
extended cell lifespan, improved storage performance, and overall superior electrochemical
performance. Conversely, Figure 9d–f illustrate the CuO@LA133 electrode before cycling
and after 10 cycles, with no visible cracks. However, by 135 cycles, a significant crack is
observed, as highlighted by the red circle in Figure 9f, demonstrating that the LA133 binder
is not suitable for CuO anode material in LIBs.
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Figure 8. Electrochemical impedance spectroscopy. (a) CuO@CMC before cycling. (b) CuO@CMC
after 100 cycles. (c) CuO@LA133 before cycle. (d) CuO@LA133 after 100 cycles.
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The enhanced performance of CuO@CMC electrodes in lithium-ion batteries (LIBs)
can be attributed to several factors. The hydrophilic nature of CMC enhances the elec-
trode’s wettability with the electrolyte, resulting in improved ionic conductivity, and more
efficient ion transport within the electrode. This reduces internal resistance and boosts
the battery’s overall performance. CMC’s superior mechanical flexibility, compared with
PVDF, allows it to accommodate the volume changes and stress associated with CuO’s
lithiation and delithiation processes [89–91]. This flexibility minimizes electrode cracking
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and maintains structural integrity, leading to longer cycle life and stable performance.
Moreover, CMC ensures a homogeneous distribution of CuO particles within the electrode
matrix, preventing agglomeration and promoting consistent and efficient electrochemical
reactions throughout the electrode, thereby enhancing capacity and efficiency [48,91]. CMC
also forms a conductive network that improves electron transport within the electrode,
facilitating efficient electron transfer during charge and discharge processes. This con-
tributes to higher rate capabilities and overall better electrochemical performance [92,93].
The strong adhesion provided by CMC between CuO particles and the current collector, as
well as among the active materials, maintains electrode integrity during cycling, reducing
the likelihood of active material detachment and capacity loss [47,94]. CMC’s compatibility
with aqueous processing minimizes side reactions often associated with organic solvents
used in PVDF-based electrodes, leading to a more stable electrochemical environment
and extending the battery’s lifespan. Additionally, the use of water as a solvent in CMC-
based electrodes eliminates the need for hazardous organic solvents like NMP, making
the manufacturing process safer, more environmentally friendly, and cost-effective. In
brief, the scientific reasons for the improved performance of CuO@CMC electrodes in LIBs
include enhanced ionic and electron conductivity, superior mechanical flexibility, improved
dispersion of active materials, stronger adhesion, and minimized side reactions. These
factors collectively contribute to higher capacity, better cycle stability, and overall improved
electrochemical performance. Furthermore, the environmental and cost benefits associated
with aqueous processing make CMC a highly attractive binder for advanced LIB appli-
cations. It is well known that the incorporation of fluoroethylene carbonate (FEC) as an
additive in lithium-ion battery (LIB) anodes brings significant advantages, particularly in
enhancing performance and extending battery lifespan. A critical benefit is the promotion
of a stable and uniform solid electrolyte interphase (SEI) layer, which is especially impor-
tant for graphite- and silicon-based anodes. This robust SEI layer mitigates continuous
electrolyte decomposition, thereby improving battery efficiency. Moreover, the enhanced
stability of the SEI with FEC contributes to superior cycling stability by minimizing active
lithium loss, a crucial factor for high-capacity anodes like silicon that experience substantial
volume expansion. FEC also improves the first-cycle Coulombic efficiency by reducing
lithium consumption during initial SEI formation, leading to better overall battery perfor-
mance. Additionally, it reduces capacity fade over extended cycles by stabilizing the SEI
and limiting electrolyte degradation, thus helping the battery maintain its capacity across
numerous charge–discharge cycles. Another key advantage is the suppression of lithium
dendrite formation, a critical concern in high-energy-density anodes, thereby lowering
the risk of short circuits, and enhancing battery safety. Finally, FEC is compatible with
high-voltage electrolyte systems, making it well-suited for advanced LIB chemistries that
operate at elevated voltages, which in turn increases energy density.

3. Materials and Methods
3.1. Synthesis

Commercially available CuO nano powder (Sigma-Aldrich, 99.99% purity, Rockville,
MD, USA) was utilized as the anode material for this experimental investigation, without
any additional modifications.

3.2. Characterization

Structural examination of the CuO nano powder was conducted using an X-ray diffrac-
tometer (Rigaku SmartLab, The Woodlands, TX, USA), equipped with Cu Kα radiation
(λ = 1.5408 Å), over a range from 20–80◦ at a scan rate of 2◦ per minute. Additionally,
scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) were
employed, equipped with a backscattered secondary electron detector (SEI) operating at an
accelerating voltage of 20 kV and Dry SD30 detector for morphological examination and
chemical composition identification, respectively, utilizing a JEOL JSM 6480LV instrument
(JEOL, Akishima, Tokyo).
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3.3. Cell Fabrication & Electrochemical Measurement

To conduct the electrochemical testing, the anode was prepared by mixing 50% (w/w)
of the active material, CuO, with 25% (w/w) Ketjen black as a conducting agent, and
25% (w/w) binder [either LA133 or CMC]. Both slurries were prepared using water as
a solvent. The resulting slurries were spread onto a copper foil (9 µm thickness, MTI
Corporation, Richmond, CA, USA), using a doctor blade (MTI Corporation, Richmond, CA,
USA). The coated foil was then dried overnight at 60 ◦C for 16 h. Anodes with a diameter
of 1 cm were punched (MTI Corporation, Richmond, CA, USA) from the dried coated
foil, and further dried at 60 ◦C under vacuum for 12 h before being transferred into the
glovebox (MBRAUN Glovebox Workstations, Stratham, NH, USA). The average active
mass loading of electrodes is in the range of 1.2–1.7 mg. For assembling CR2032 coin-type
half-cells, lithium chips (MSE Supplies LLC, Tucson, AZ, USA) were used as the counter
electrode, and polypropylene ethylene was used as the separator. Regarding the electrolyte,
a commercial solution of 1 M LiPF6 in ethylene carbonate (EC) and diethyl carbonate (DEC)
[1:1] with 10% fluoroethylene carbonate (FEC) additives was prepared. Subsequently,
the electrochemical performance of CuO for both LA133 and CMC-based electrodes was
evaluated. We employed the Landt battery tester (LANDT Instruments, Vestal, NY, USA)
to conduct electrochemical measurements, setting the voltage range at 0.01–3.0 V. Cyclic
voltammetry (CV) was performed within the same range, while electrochemical impedance
spectroscopy (EIS) was measured using the Arbin tester (Arbin Instruments, College Station,
TX, USA) across a frequency range from 0.01 Hz to 100 kHz.

4. Conclusions

In this study, we introduce an efficient and cost-effective method for producing CuO
electrode material. CuO@CMC based electrodes demonstrate remarkable electrochemical
performance as compared to CuO@LA133 based electrodes, revealing a high specific
capacity of approximately ~1100 mA h g−1 at a current density of 100 mA g−1 after
170 cycles, impressive rate performance of around 325 mA h g−1 at high current density
1200 mA g−1, and excellent long-term stability of about 450 mA h g−1 at 300 mA g−1

for over ~500 cycles. By employing CuO nanoparticles in combination with a suitable
amount of high surface area conducting ketjen black carbon, and an appropriate amount of
CMC binder, along with the addition of 10% FEC additive to a regular carbonate-based
electrolyte, we effectively address the volume expansion issue encountered in CuO anodes
for lithium-ion batteries (LIBs). Additionally, this strategy enhances both electron and ion
conductivity. Our findings offer a novel and facile approach for manufacturing transition
metal oxide (TMO) anode materials with enhanced energy density, thereby facilitating their
widespread adoption in advanced energy storage technologies.
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Abstract: Transition metal selenides have the leading position in the field of energy storage and
conversion due to their high theoretical capacity, good electrical conductivity, and cycling stability.
Nickel is widely used for the construction of positive electrodes in devices due to its good conductivity,
variable valence state, and ideal redox activity. NiSe materials have high internal resistance and are
prone to volume change during charging and discharging, thus affecting the practical application of
this electrode material, and the reported NiSe materials have not achieved a more desirable capacity
value. Therefore, in this study, N, P-NiSe nanoelectrode materials were prepared using nickel foam
as the nickel source and hexachlorocyclotriphonitrile as the nitrogen and phosphorus dopant using
an efficient, energy-saving, and simple microwave method. It was also characterised by XRD and
XPS to confirm the successful preparation of N, P-NiSe materials. In addition, the material yielded a
high capacitance value (3184 F g−1) and good cycling stability (72% of the initial capacitance value
was retained after 4000 cycles) in electrochemical tests. To demonstrate its excellent suitability for
practical applications, an asymmetric supercapacitor was assembled using N, P-NiSe as the anode
and activated carbon as the cathode. At an operating voltage of 1.6 V, the device achieved an energy
density of 289.06 Wh kg−1 and a power density of 799.26 W kg−1 and retained 80% of its initial
capacity after 20,000 cycles.

Keywords: N, P doped; microwave method; supercapacitors

1. Introduction

Energy storage technology represents one of the most effective solutions to the grow-
ing energy crisis and environmental protection problems facing the world today [1]. Among
the commonly used green energy storage technologies, supercapacitors have been widely
noticed and researched due to their excellent capacitance storage capacity and cycle stabil-
ity [2,3]. The key technology for the development of supercapacitors is the development of
high-performance electrode materials [4–7]. Currently, the most commonly used electrode
materials include carbon materials [8–10], polyaniline (PANI) [11], polypyrrole (PPy) [12],
transition metal oxides [13], manganese dioxide and other active electrode materials [14].
However, the electrochemical properties of these electrode materials are not ideal. There-
fore, the design and development of high-performance supercapacitor electrode materials
is still a crucial topic in the field of green energy storage.

Nickel selenide, a semiconductor material, has received considerable attention in the
fields of catalysis and energy storage due to its significant electronic and magnetic proper-
ties [15–17]. In 2012, Gao et al. prepared NiSe using a hydrothermal method and used it as
a catalyst for electrochemical hydrogen production [18]. In 2017, Tian et al. prepared NiSe
nanorods using a hydrothermal method, obtaining a specific capacitance of 6.81 F cm−2
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(current density 5 mA cm−2) and demonstrating their good cycling stability. Furthermore,
the capacitance retention was 90.09% after 3000 cycles (current density 3.6 A g−1) [19].
Younas et al. successfully prepared Ni0.85Se nanosheets. The hexagonal-phase structure of
Ni0.85Se nanosheets exhibited excellent electrochemical performance in supercapacitors, as
demonstrated with a fast microwave method. The nanosheet morphology shortened the
diffusion of the ion transfer paths, thereby increasing the reaction kinetics. The assembled
device exhibited a high energy density of 63.5 Wh kg−1 and excellent cycling performance
(95% of the starting capacitance value after 8000 cycles) [20].

However, single nickel selenide materials often do not exhibit desirable capacitance val-
ues, and researchers have attempted to make greater progress by introducing heteroatoms
to modify their performance [21–23]. Liu et al. prepared P-NiSe2 using a hydrothermal
method. The results of electrochemical tests demonstrated that P doping could markedly
enhance the HER-catalysed activity of NiSe2 nanomaterials and reduce their hydrogen
precipitation reaction overpotentials [24]. Yan et al. demonstrated that N doping disrupted
the octahedral coordination environment of the Ni atoms in NiSe, resulting in a decrease in
the simplicity of orbitals and an upward band centre shift. This improved interfacial charge
transfer kinetics and enhanced redox kinetics. The assembled Li-S batteries exhibited high
performance (682.6 mA h g−1 at 5 C) and a low capacity decay rate, with the inclusion of
N-NiSe [25]. In 2022, Wang prepared NiSe-RGo using a hydrothermal method. This method
resulted in the homogeneous distribution of NiSe on graphene, which was beneficial for
the electrochemical performance of the battery. This resulted in faster charge transport
and the diffusion of NiSe-RGO nanohybrids, as well as an abundance of NiSe-RGO with
a high capacitance value (781 C g−1 at 1 A g−1) and good cycling stability (90% of the
initial capacitance after 5000 cycles) [26]. It can be concluded that doping with heteroatoms
can alter the electrochemical properties of composites, demonstrating great potential for
energy storage. The incorporation of heteroatoms not only alters the lattice structure to
a greater extent, thereby exposing more active sites, but also induces stronger electronic
interactions and optimises its free energy. Secondly, doping other elements can regulate
the microstructure of the electrode material and prevent the structure from collapsing and
affecting its performance during the electrolysis process.

In this study, nickel foam (NF) served as the nickel source, while hexachlorocyclot-
riphosphonitrile (HCCP) was employed as the nitrogen–phosphorus source. These com-
ponents were utilised in the synthesis of nitrogen–phosphorus-doped nickel selenide (N,
P-NiSe) electrode materials with self-supported structures. The self-supported structure
reduced the loss of electron transport in the bonding agent, and the reticulated structure of
nickel foam provided a larger surface area for electrochemical reactions, thus increasing the
availability of active sites to enhance electrochemical performance. In this study, the prop-
erties were optimised through the introduction of N and P elements, and the preparation
method was optimised to improve the quality and performance of the resulting materials.
In comparison to the conventional synthesis method characterised by a lengthy reaction
time and a significant energy expenditure, the (N, P-NiSe) rod-shaped nanocomposite
electrode materials were successfully synthesised through the precise control of microwave
power and microwave time. The specific capacitance of the N, P-NiSe electrode reached
3184 F g−1 at 1 A g−1 and retained 72% of its initial capacity after 4000 (10 A g−1) cycles.
Furthermore, an asymmetric supercapacitor (ASC) was prepared with N, P-NiSe as the
anode and activated carbon (AC) as the cathode. The ASC demonstrated a power density
of 799.26 W kg−1 and an energy density of 289.06 Wh kg−1. Additionally, 80% of the initial
capacity was retained after 20,000 cycles.

2. Results
2.1. Morphology and Microstructure

Figure 1a shows the SEM images of the product prepared under the following condi-
tions: 800 W, 90 s (W1). As the microwave heating time was relatively short, the N, P-NiSe
nanorods were formed less and were distributed unevenly. As illustrated in Figure 1b,
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with the increase in reaction time (800 W, 120 s) (W2), the nanorod particles of N, P-NiSe
exhibit a uniform distribution. As shown in Figure 1c,d, when the microwave heating time
is further increased or the power is increased, the rod particles aggregate on the nickel
foam and eventually agglomerate into irregular shapes. The microscopic morphology of N,
P-NiSe particles can be regulated by microwave power and time, with this morphology
having a significant impact on electrochemical performance. The formation of agglomerates
or uneven dispersion can lead to a deterioration in electrochemical performance. This
is consistent with the subsequent electrochemical performance tests, where the highest
capacitance values were also obtained for uniform rod-like nanomorphology observed at
800 W, 120 s (W2). The results demonstrated that the microstructure could be modulated by
microwave power and time and directly affected electrochemical properties. As illustrated
in Figure 1e, nitrogen (N) and phosphorus (P) were evenly distributed throughout the
product, indicating successful doping. In addition, the presence of a large amount of Au
elements in the EDX spectra is due to the fact that the samples were sprayed with Au in
order to obtain a clearer imaging effect when performing electron microscopy. The presence
of potassium is due to the use of a small amount of KOH solution to dissolve the Se powder
during sample preparation, resulting in a small amount of K in the sample. Oxygen was
detected because the air itself contains a large amount of oxygen.
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Figure 1. SEM images and EDS pattern of N, P-NiSe electrode material: (a–d) products prepared at
800 W 90 s (W1), 800 W 120 s (W2), 800W 150 s (W3), and 1000 W 120 s (W4), respectively; (e) the
electronic energy pattern of the product prepared at 800 W 120 s (W2).

The nanostructures within the N, P-NiSe samples (W2) were examined using TEM. As
illustrated in Figure 2a, the N, P-NiSe nanorods (W2) (approximately 30 nm in width and
150–200 nm in length) are uniformly distributed on the nickel foam. The peculiar morphology
and structure are further confirmed with the HRTEM images in Figure 2b,c. The lattice fringes
of NiSe were 2.72 nm (101) and those of Ni were 2.02 nm (111), which is consistent with the
strongest crystalline surface results of XRD. This provides further evidence of the formation
of the N, P-NiSe nanorods on nickel foam. Figure 2d illustrates the result of the selected area
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electron diffraction (SAED) analysis, revealing the presence of dispersed bright crystalline
spots, thereby confirming that N, P-NiSe is a single-crystal structure.
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Figure 2. TEM images of N, P-NiSe electrode material (W2): (a) TEM image; (b,c) HRTEM images,
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diffraction (SAED) image.

The composition and structure of the N, P-NiSe electrode material (NiSe, W2, and
W4) were investigated by X-ray powder diffraction (XRD), and the results are presented in
Figure 3. The diffraction peaks of NiSe were observed at 2θ angles of 28.13◦, 32.85◦, 44.37◦,
49.79◦, 59.61◦, 60.93◦, and 68.87◦, and could be attributed to the (100), (101), (102), (110),
(103), (201), and (202) crystal faces of NiSe. The other diffraction peaks labelled with an
asterisk (*) were located at 35.58◦, 40.92◦, 42.58◦, and 53.96◦, all of which can be attributed
to Ni5Se5, another crystalline form of NiSe. The XRD spectra of W2 and W4 samples are
also shown in Figure 3. The results show that most of the diffraction peaks can be attributed
to NiSe and Ni5Se5. In addition, the impurity peaks appearing in the XRD spectra of the
W2 and W4 samples (diffraction angles of 51.51◦ and 76.20◦, respectively) were most likely
owing to N and P doping.

Further analysis of the elemental valence and elemental composition of N, P-NiSe (W2)
was conducted using XPS. Figure 4a shows the full spectrum of the N, P-NiSe electrode
material, which revealed the presence of Ni, Se, N, P, and C elements. Figure 4b depicts
the Se 3D spectrum. The binding energies of SeOx and Se 3d5/2 correspond to 58.91 eV
and 54.32 eV, representing the metal–selenide bond (Ni-Se Ni2+, Se2−) [27,28]. Figure 4c
presents the P 2p spectrum, with binding energies at 133.4 eV and 136.8 eV. Figure 4d
displays the N 1s spectrum, with the binding energy of pyrrole N corresponding to
399.5 eV, indicating the presence of both N and P elements. Figure 4e shows the spectra
of Ni 2p, with binding energies at 855.83 eV and 873.35 eV for Ni 2p3/2 and Ni 2p1/2,
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representing the characteristics of Ni2+ for NiSe [27,28]. Additionally, binding energies at
the satellite peaks of Ni 2p were observed at 879.16 eV and 861.74 eV, respectively. The
XPS analyses indicated the successful preparation of nickel foam self-supported N, P-NiSe
electrode materials.
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2.2. Electrochemical Performance Analysis
2.2.1. Electrochemical Properties of the Three-Electrode System

The electrochemical performance of the N, P-NiSe/NF electrode was tested in the
three-electrode system with 6 M KOH under different conditions. The variation in the
cyclic voltammetry (CV) curves for sample W2 at different scan rates is shown in Figure 5a.
It can be seen in Figure 5a that the oxidation peak shifts to the right (from 0.44 to 0.56 V)
and the reduction peak shifts to the left (from 0.22 to 0.17 V) as the scan rate increases.
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This is due to the fact that the electrode material exhibits increased resistance as the scan
rate increases, which hinders the diffusion of ions and electrolytes between the electrodes.
Figure 5b shows a GCD curve of sample W2. The capacity of the N, P-NiSe material was
calculated to be 3184 F g−1 at a current density of 1 A g−1. A clear charge–discharge
plateau can be observed in this curve, indicating that there was pseudocapacitance in the N,
P-NiSe material and that it exhibited a pronounced cell-type behaviour [29]. The N, P-NiSe
electrode presents a pseudocapacitive nature, and its charge storage mechanism is purely a
faradaic redox reaction. Its proposed reaction mechanism is explained in [27–29].

NiSe+ OH−1 → NiSeOH + e−1 (1)
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Figure 5. (a) CV curve of N, P-NiSe under optimal conditions (800 W/120 S) (W2); (b) GCD curve
of (sample W2); (c) Nernquist diagram of N, P-NiSe under different reaction parameters (W1, W2,
W3, and W4); (d) CV curves of N, P-NiSe under different microwave conditions (W1, W2, W3,
and W4); (e) GCD curves of N, P-NiSe under different reaction parameters (W1, W2, W3, and W4);
(f) the specific capacity of N, P-NiSe samples under different preparation conditions (W1, W2, W3,
and W4); (g) N, P-NiSe charge storage dynamics calculation (W2); (h) capacity share of N, P-NiSe
energy storage at 100 mV−1 (W2); (i) relative contribution of capacitance and diffusion-controlled
charge storage (W2).

The differences in the internal resistance of the samples under different reaction
conditions are shown in Figure 5c. Sample W2 exhibited a smaller solution resistance in the
low-frequency region compared with the material under other conditions. Figure 5d shows
the CV curves of N, P-NiSe materials under a variety of reaction conditions, from which it
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can be seen that the mathematical integral area of the CV curve is greatest for sample W2.
Figure 5e illustrates the GCD curves of N, P-NiSe under different conditions. This figure
also confirms that sample W2 exhibits a longer discharge time and superior Coulombic
efficiency compared to the other samples. The capacitance values of samples W1, W3, and
W4 were 1816 F g−1, 2130 F g−1, and 2242 F g−1, respectively, which were in agreement
with the results of CV tests. Figure 5f presents the line graphs of the capacitance values
of N, P-NiSe at different current densities for different conditions. It can be observed that
120 s has the highest capacitance value regardless of the condition of 800 W. The charge
storage mechanism of N, P-NiSe material was investigated by fitting and calculating cyclic
voltammetry curves [30]. The relationship between the peak current (I) and the scan rate
(v) was determined using the following formula:

I = a × vb (2)

where b is the slope of the fitted straight line. If b = 1, it can be concluded that a non-Faraday
process controls charge storage. Conversely, if b = 0.5, it can be inferred that a Faraday
process controls charge storage. As shown in Figure 5g, the fitted b values for the anodic
oxidation and cathodic reduction peaks of N, P-NiSe were 0.50554 and 0.5267, respectively.
This finding suggests that diffusion-controlled Faraday processes (cell behaviour) dominate
charge storage. Furthermore, the total charge storage contribution can be determined using
the following equation:

i (v) = k1v + k2v1/2 (3)

where k1v represents the surface control capacitance, and k2v1/2 is the diffusion control
capacitance [31]. As shown in Figure 5h, the surface control capacitance accounted for
67% of the total capacity at 100 mV s−1. Figure 5i illustrates the capacitance occupancy at
varying sweep rates, demonstrating that the capacitive behaviour dominates the charge
storage mechanism of N, P-NiSe/NF as the sweep rate increases. The doping of the
N, P elements provides a plethora of active sites for electron storage, endowing the N,
P-NiSe/NF with excellent reversible pseudocapacitive charge storage capability.

In addition, with the preparation condition of 800 W and 120 S, we performed compar-
ison experiments with the dosage of 5 mg, 10 mg, and 15 mg of hexachlorocyclotriphospho-
nitrile as the dopant precursor and found that the total amount of N and P doping could
be adjusted, but due to the small amount, it was difficult to determine the accurate total
amount of N and P doping directly. In order to explore the effect of N and p doping on
the electrochemical performance of the electrodes, cyclic voltammetry and galvanostatic
charge–discharge tests were carried out on the samples with different dopant precursor
amounts (as shown in Figure S1, Supplementary Materials). The specific capacitance values
for precursor doping amounts of 5 mg, 10 mg, and 15 mg were 2340, 3184, and 2280 F g−1,
respectively, indicating that the optimal precursor doping amount was 10 mg.

The electrochemical properties of N, P-NiSe electrode materials and the undoped
single NiSe were compared. The cyclic voltammetry (CV), galvanostatic charge–discharge
(GCD), and electrochemical impedance spectroscopy (EIS) plots of the NiSe and N, P-NiSe
(W2) materials are shown in Figure 6a, Figure 6b, and Figure 6c, respectively. There is a
significant difference between the two CV plots at 100 mV s−1. The N, P-NiSe integral
area is larger than that of NiSe, indicating that N, P doping improves the electrochemical
performance. In comparison to the maximum specific capacitance value of NiSe (514 F g−1

at 1 A g−1), the capacitance value of N, P-doped NiSe reached 3184 F g−1 at the same cur-
rent density. This can be attributed to the distortion of the lattice of the electrode material
caused by the doping of N, P elements, which generates more electrochemically active
sites and thus increases the capacitance value. The introduction of electrochemically active
sites, which increased the capacitance value dramatically, is evident in the electrochemical
impedance spectroscopy (EIS) impedance plots. The resistance (Rs) of the N, P-doped NiSe
electrode material and that of the NiSe electrode material were 0.53 Ω and 0.58 Ω, respec-
tively. This indicates an increase in conductivity after doping, which is consistent with the
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large capacitance values obtained for N, P-doped NiSe. As illustrated in Figure 6d, the N,
P-NiSe electrode material exhibits excellent cycling stability, with a capacitance retention of
above 72% following a 4000-cycle performance test at 15 A g−1. Figure 6e illustrates that,
despite the notable enhancement in stability, it is still possible that the internal volume of
N, P-NiSe underwent expansion due to repeated charging and discharging cycles. This
may have resulted in the irreversible oxidation of some electrodes, which led to a decline
in performance. Furthermore, a slight increase in the internal resistance was observed. The
multiplicative performance of N, P-NiSe is demonstrated in Figure 6f, which illustrates that
after multiple charging and discharging cycles at different current densities, the capacitance
retention of N, P-NiSe remains at more than 72% after 4000 cycles. The capacitance value of
sample W2 was maintained at 3184 F g−1 at 1 A g−1 after several charge–discharge cycles,
indicating that the material has good multiplicative properties. A comparison of N, P-NiSe
with the same type of material is presented in Table 1.
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Table 1. Comparison of electrochemical properties of N, P-NiSe (W2) with other materials.

Material Method Specific Capacity Retention Rate Ref.

NiSe microspheres Hydrothermal 492 F g−1 (0.5 A g−1) 200 cycles, 84.6% [32]
NiSe2@rGO Microwave 580 F g−1 (1 A g−1) 5000 cycles, 78.13% [33]

NiSe@MoSe2 Hydrothermal 223 Fg−1 (1 g−11) 1000 cycles, 93.7% [34]
Ni0.85Se@MoSe2 Hydrothermal 774 g−1 (1 A g−1) 5000 cycles, 88% [35]

NiSe@RGO Hydrothermal 781 C g−1 (1 A g−1) 5000 cycles, 90% [26]
N, P-NiSe Microwave 3184 F g−1 (1 Ag−1) 4000 cycles, 72% This Work

2.2.2. Electrochemical Properties of the Two-Electrode System

In order to explore the performance of the N, P-NiSe electrode material in greater
depth, sample W2 and activated carbon were combined to form an asymmetric super-
capacitor. Figure 7a–d illustrate the electrochemical performance of the N, P-NiSe//AC
supercapacitor, which comprises sample W2 and activated carbon in a liquid electrolyte.

88



Molecules 2024, 29, 3224

The mass ratios of the AC electrode and the N, P-NiSe (sample W2) electrode were adjusted
according to Equation (4). Figure 7a illustrates the cyclic voltammetry (CV) curves of
the AC electrode (operating at −1 to 0 V) and the N, P-NiSe electrode (operating at 0 to
0.6 V) in the N, P-NiSe//AC configuration. This configuration was based on the comple-
mentary relationship between the working electrodes, which comprise a bilayer and exhibit
pseudocapacitance. Figure 7b shows the CV curves of N, P-NiSe//AC, with no discernible
distortion, indicating that it has good current responsiveness. N, P-NiSe//AC was capable
of functioning properly at 1.6 V. Figure 7c illustrates the CV curves of N, P-NiSe//AC at
10–100 mV s−1. Figure 7d shows the constant current GCD curves at different voltages
(1.3–1.7 V). It can be observed that the shape of the curve changes at 1.7 V, which may be
attributed to electrode polarisation. Consequently, the optimum operating voltage window
for this device was 1.6 V. Figure 7e illustrates the constant current GCD curves at varying
current densities. Figure 7f presents a line graph of the capacitance values at different cur-
rent densities. Figure 7g depicts the cycling performance of N, P-NiSe//AC, demonstrating
that the capacitance retention remains high even after 20,000 consecutive charge–discharge
cycles. Figure 7h illustrates the change in the internal resistance of the solution following
20,000 cycles. The p-value of N, P-NiSe//AC was 289.06 W kg−1, and the corresponding
E-value was 799.26 Wh kg−1, indicating that the N, P-NiSe//AC has a high energy density.
The Ragone diagrams of N, P-NiSe//AC with other electrode materials are shown in
Figure 7i. Furthermore, the E-value of N, P-NiSe//AC is demonstrably higher than that of
other related materials reported in the literature [32–34,36,37], thereby indicating that the
electrochemical performance of N, P-NiSe//AC is superior.
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stability and coulomb efficiency after 20,000 cycles; (h) EIS image before and after 20,000 cycles;
(i) energy–power density diagram of different devices.
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3. Materials and Methods
3.1. Material Preparation

Nickel foam (NF) was purchased from Long Sheng Bao Products Company (Guangzhou,
China). Prior to the experiment, NF was ultrasonically cleaned with hydrochloric acid,
ethanol, and ultrapure water to ensure that it was free of impurities. It was then vacuum-
dried at 80 ◦C. Selenium powder was purchased from Aladdin Industries. The hexachloro-
cyclotriphosphonitrile (HCCP) was sourced from Leyan (Shanghai, China). Anhydrous
ethanol, ethylene glycol (EG), ethylenediamine (EDA), and potassium hydroxide (KOH)
were procured from the Tianjin Damao Chemical Company (Tianjin, China).

3.2. Preparation of N, P-NiSe/Ni

Briefly, 20 mg of selenium powder, 10 mg of hexachlorocyclotriphosphonitrile powder,
300 µL of potassium hydroxide (6 M), 2 mL of C2H8N2, and 1 mL of C2H6O were dissolved
by stirring to obtain a purplish-black liquid. Subsequently, nickel foam was immersed in
the solution and sonicated for 15 min. The foam was then transferred to a heat-resistant
crucible (10 mL). After being kept in a microwave oven at a certain power and time, the
nickel foam was washed with deionised water and anhydrous ethanol and further dried
(80 ◦C, 12 h). The preparation process is illustrated in Figure 8, and the different reaction
conditions are presented in Table 2.

Molecules 2024, 29, x FOR PEER REVIEW 11 of 14 
 

 

time, the nickel foam was washed with deionised water and anhydrous ethanol and fur-
ther dried (80 °C, 12 h). The preparation process is illustrated in Figure 8, and the different 
reaction conditions are presented in Table 2. 

 
Figure 8. The preparation process of N, P-NiSe/Ni. 

Table 2. Specific capacitance values of N, P-NiSe/Ni under different reaction conditions. 

Sample Microwave 
Watts/W 

Microwave Duration/s Duration/s Capacitance/F g−1 

(1 A g −1) 
W1 800 W 90 S 1816 F g−1 
W2 800 W 120 S 3184 F g−1 
W3 800 W 150 S 2130 F g−1 
W4 1000 W 120 S 2242 F g−1 

3.3. Preparation of N, P-NiSe/Ni//AC 
N, P-NiSe/Ni was employed as the positive electrode, while a 1 × 1 cm2 commercial 

AC electrode served as the negative electrode, and the resulting device was tested in 6 M 
potassium hydroxide. The negative electrode was prepared as follows: Activated carbon, 
acetylene black, and PVDF were mixed into a homogeneous slurry in a mass ratio of 
80:10:10. The slurry was uniformly applied to 1 cm2 NF, dried at 100 °C for 10 h, and finally 
pressed into the electrode sheet. 

3.4. Characterisation of N, P-NiSe 
The crystal structure of the resulting samples was characterised by powder X-ray dif-

fraction (XRD). The surface morphology and microscopic internal structure of the samples 
were determined by scanning electron microscopy (SEM) and transmission electron mi-
croscopy (TEM). X-ray photoelectron spectroscopy (XPS) and energy-dispersive spectros-
copy (EDS) were used to identify the elemental composition and distribution of the sam-
ples. 

3.5. Electrochemical Testing 
The electrochemical properties of N, P-NiSe composites were tested by cyclic volt-

ammetry (CV), constant current charge–discharge (GCD), and electrochemical impedance 
spectroscopy (EIS) in 6 M potassium hydroxide. A platinum sheet was used as the counter 
electrode, and a mercuric oxide electrode was used as the reference electrode. An electro-
chemical workstation (CHI660E) was utilised for electrochemical data testing. The cycling 
stability of the materials was evaluated using the Landt battery test system (CT2001A). 
The capacitance values were calculated using the following equation: 

C (F g−1) = I ∆t/(m ∆V)  (4)

Figure 8. The preparation process of N, P-NiSe/Ni.

Table 2. Specific capacitance values of N, P-NiSe/Ni under different reaction conditions.

Sample Microwave Watts/W Microwave
Duration/s

Duration/s
Capacitance/F g−1

(1 A g −1)

W1 800 W 90 S 1816 F g−1

W2 800 W 120 S 3184 F g−1

W3 800 W 150 S 2130 F g−1

W4 1000 W 120 S 2242 F g−1

3.3. Preparation of N, P-NiSe/Ni//AC

N, P-NiSe/Ni was employed as the positive electrode, while a 1 × 1 cm2 commercial
AC electrode served as the negative electrode, and the resulting device was tested in 6 M
potassium hydroxide. The negative electrode was prepared as follows: Activated carbon,
acetylene black, and PVDF were mixed into a homogeneous slurry in a mass ratio of
80:10:10. The slurry was uniformly applied to 1 cm2 NF, dried at 100 ◦C for 10 h, and finally
pressed into the electrode sheet.

3.4. Characterisation of N, P-NiSe

The crystal structure of the resulting samples was characterised by powder X-ray
diffraction (XRD). The surface morphology and microscopic internal structure of the sam-
ples were determined by scanning electron microscopy (SEM) and transmission elec-
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tron microscopy (TEM). X-ray photoelectron spectroscopy (XPS) and energy-dispersive
spectroscopy (EDS) were used to identify the elemental composition and distribution of
the samples.

3.5. Electrochemical Testing

The electrochemical properties of N, P-NiSe composites were tested by cyclic voltam-
metry (CV), constant current charge–discharge (GCD), and electrochemical impedance
spectroscopy (EIS) in 6 M potassium hydroxide. A platinum sheet was used as the counter
electrode, and a mercuric oxide electrode was used as the reference electrode. An electro-
chemical workstation (CHI660E) was utilised for electrochemical data testing. The cycling
stability of the materials was evaluated using the Landt battery test system (CT2001A). The
capacitance values were calculated using the following equation:

C (F g−1) = I ∆t/(m ∆V) (4)

A two-electrode test system was assembled with AC as the negative electrode and the
synthetic material as the positive electrode. In this case, the mass ratio between the positive
and negative electrodes was determined with the following equation:

m+⁄m− = C− ∆V−/C+∆V+ (5)

The energy density (E) and power density (P) were calculated using the
following equations:

E = C ∆V2/7.2 (6)

P = 3600 E/∆t (7)

4. Conclusions

In summary, N, P-NiSe composites were prepared using the microwave method,
exhibiting excellent capacitance performance and remarkable capacitance retention at high
current density and long operation time. The synergistic interaction between N, P and NiSe
resulted in the excellent electrochemical properties of N, P-NiSe. The capacitance values of
the material were up to 3184 F g−1 (1 A g−1), and it was observed that 72% of the original
capacitance value was maintained through 4,000 charge–discharge cycles. Furthermore,
the practical application of the electrode was demonstrated through the assembly of
devices comprising N, P-NiSe//AC, which exhibited an energy density of 289.06 W h kg−1

and a power density of 799.26 W kg−1 and retained 80% of the initial capacitance after
20,000 cycles. These outcomes not only offer novel insights into the optimisation of NiSe
but also facilitate the advancement of novel supercapacitors.
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Abstract: The mass content of expanded graphite (EG) in fatty acid/expanded graphite composite
phase-change materials (CPCMs) affects their thermal properties. In this study, a series of capric–
myristic acid/expanded graphite CPCMs with different EG mass content (1%, 3%, 5%, 8%, 12%,
16%, and 20%) were prepared. The adsorption performance effect of EG on the PCMs was observed
and analyzed. The structure and thermal properties of the prepared CPCMs were characterized via
scanning electron microscopy, differential scanning calorimetry, thermal conductivity measurements,
and heat energy storage/release experiments. The results show that the minimum mass content of
EG in the CPCMs is 7.6%. The phase-change temperature of the CPCMs is close to that of the PCMs,
at around 19 ◦C. The latent heat of phase change is equivalent to that of the PCM at the corresponding
mass content, and that of phase change with an EG mass content of 8% is 138.0 J/g. The CPCMs
exhibit a large increase in thermal conductivity and a significant decrease in storage/release time
as the expanded graphite mass content increases. The thermal conductivity of the CPCM with a
mass content of 20% is 418.5% higher than that with a mass content of 5%. With an increase in the
EG mass content in CPCMs, the heat transfer mainly transitions from phase-change heat transfer to
thermal conductivity.

Keywords: expanded graphite; thermal properties; composite phase-change materials; thermal
energy storage

1. Introduction

Energy scarcity and environmental pollution are global challenges. The main means of
solving the current energy crisis and environmental pollution problems are to save energy
and rapidly develop renewable and clean energy, and thermal energy storage technology
cannot be ignored in these measures [1]. Sensible energy storage, latent energy storage, and
chemical energy storage are the three main types of thermal energy storage techniques [2].
Latent heat storage is the utilization of heat absorbed or released by energy storage mate-
rials during phase changes, and the amount of heat stored mainly depends on the latent
heat of the phase change of the energy storage materials. A high energy storage density,
minimal temperature fluctuations, strong material stability, and increased safety are some
of the attributes of latent heat storage [3,4]. Therefore, it is widely used in building energy
conservation, power peak shifting and valley filling, industrial waste heat and waste heat
recovery, electronic device overheating protection, solar and geothermal energy utilization,
and other thermal energy storage and temperature control fields [5–7]. At the core of
latent heat energy storage are phase-change materials, and various inorganic, organic, and
mixed phase-change materials have been studied in building energy conservation, such
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as paraffin [8,9], polyols [10,11], inorganic salts [12,13], and fatty acids [14,15]. Fatty acids
have garnered significant interest because of their favorable phase transition temperature,
high latent phase transition heat, lack of toxicity, corrosion, low undercooling, minimal or
no volume change, excellent thermal stability, and wide-ranging raw material availabil-
ity [16,17]. In addition, two or more fatty acids can form low-eutectic mixtures and obtain
different phase-change temperatures to adapt to different temperature requirements in
engineering practice. They are frequently utilized in low-temperature thermal energy stor-
age systems, which include those used for building energy conservation and solar energy
usage [18,19]. Although the thermal behavior of eutectic mixes of fatty acids is good, the
thermal conductivity is low, and the material is more likely to leak out of the container when
it undergoes a phase change from a solid to a liquid form. Therefore, it is necessary to mix
and shape fatty acid eutectic mixtures, prevent leakage, and improve thermal conductivity.
To create composite phase-change materials with good thermal conductivity, high-thermal-
conductivity media are typically added to phase-change materials. Carbon materials (such
as expanded graphite and carbon nanotubes) and metal particles and oxides are the most
prevalent materials employed as high-thermal-conductivity media. Metal materials and
metal oxides have excellent thermal conductivity; therefore, Fe, Cu, Al, Ag, Al2O3, Fe2O3,
Fe3O4, CuO, MgO, TiO2, etc., are often used as thermal-conductivity-enhancing media
for phase-change materials [20]. The addition of porous structural elements with high
thermal conductivity to fatty acid phase-change materials is a technology that is currently
being employed, and it not only improves the poor thermal conductivity of fatty acids but
also stops fatty acid leakage during phase change [21–24]. Expanded graphite (EG) is a
high-thermal-conductivity material with a porous structure and stable morphology at high
temperatures, making it one of the most commonly used materials [25,26].

Zhu, H et al. prepared a lauric acid–stearic acid/EG (LA–SA/EG) CPCM using
different mass fractions of LA–SA as PCMs and the addition of 10 wt.% EG to improve
the thermal conductivity. The test results showed that, after the addition of EG, the
thermal conductivity was nearly 10 times higher than before [27]. Wang, Z et al. also
prepared an LA–SA/EG CPCM. Their results demonstrated that the heat storage and
release effects of the heat storage device were optimal at an EG ratio of 10% weight percent
and that the phase-change temperature and latent heat of the CPCM were stable when
the EG content exceeded 5% [28]. Meng, X et al. used a eutectic mixture of CA, LA, and
PA as PCMs to make fatty acid/expanded graphite CPCMs; as a result, the composite
materials’ thermal conductivity was greatly increased [29]. Wen RL et al. prepared CA–
LA/EP (capric acid–lauric acid/expanded property) and CA–LA/EVM (capric acid–lauric
acid/expanded verticillite), which were predicted to have an expanded property and
expanded verticillite, and added 5 wt.% expanded graphite to both PCMs. They found
that the thermal conductivity of CA–LA/EP and CA–LA/EVM increased by 89.14% and
87.41%, respectively [30]. Luo, K. et al. used expanded graphite as a heat-conductive
material, gas-phase silica (FS) as a carrier material, and LA–SA as a PCM to make lauric
acid–stearic acid gas-phase silica expanded graphite (LA–SA–FS–EG). They compared
this with an LA–SA–FS composite material without the addition of EG, and it was found
that the thermal conductivity of LA–SA–FS–EG–7% containing 7% EG increased by 454%,
the thermal storage rate increased by 46.1%, and the thermal release rate increased by
59.4% [31]. Fei, H et al. prepared a series of composite phase-change materials of capric
acid–stearic acid octadecanol/expanded graphite (CSOD/EG), and they determined the
optimal mass ratio of CSOD to be 81.9:9.1:9. The test results showed that CSOD was evenly
breathed into porous EG without causing a chemical reaction and CSOD/EG exhibited
good thermal reliability and chemical structural stability after 1000 cycles [32]. Fei, H et al.
prepared MA–PA–TD/EG (myristic acid-palmitic acid-tetradecanol/expanded graphic)
and MA–SA–LA/EG (myristic acid-stearic acid-lauric acid/expanded graphic CPCM),
and the results showed that both CPCMs had good stability and were suitable for use
in the field of building energy conservation [33]. Badenhorst, H believes that graphite
materials can potentially alleviate the low-thermal-conductivity problem in phase-change
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materials (PCMs) when used for solar thermal energy storage, and the most economical
option appears to be compressed expanded graphite composite materials [34]. Liu S et al.
prepared a CA–SA/EG CPCM, and the results showed that the thermal conductivity of the
CPCM with a 10% EG mass content was 3.28 times higher than that of the CA–SA PCM [35].
Ao, C et al. prepared SA–EG/EG CPCMs at different ratios, and the results showed that
the CPCMs had a heat release rate 3.1 times that of SA and a heat storage rate 2.3 times
that of SA [36]. Sari, A prepared PA/EG CPCMs with different mass contents (5%, 10%,
15%, and 20%), and the results showed that, when the mass content of EG was 20%, the
thermal conductivity of the CPCM was 60 W/(m·k), which was 3.5 times that of PA [37].
The research on graphite or other materials as supporting materials in previous works and
in this study is summarized in Table 1.

Table 1. The research on graphite or other materials as supporting materials in previous works and
this study.

PCM Supporting Material Mass Content Tm (◦C) ∆Hm (J/g) Application Literature

Stearic acid (SA) +
benzamide (BN)

Boron nitride +
expanded graphite (BG)

15 wt.% BN +
20 wt.% BG 65.21 132.35 Solar hot-water system [38]

PA
Polyvinyl butyral +
expanded graphite

3 wt.% EG 59.1 125.88

Low-temperature solar energy systems [39]5 wt.% EG 58.5 124.99

7 wt.% EG 56.1 122.05

Paraffin wax
Graphite 0–7 wt.% / /

TOS device applications [40]
Graphene 0.001–0.07 wt.% / /

Paraffin wax
Graphite 0.007–7 wt.% Around 52 143.03–131.35 Future networks and electric noise-free

remote aerial laser switching applications [41]
Graphene 0.001–0.7 wt.% 59.7–52.1 134.4–108.8

Capric acid +
myristic acid Expanded graphite

0 wt.% 19.4 150.9

Low-temperature LHTES systems and
backfill materials in ground source heat

pump systems
This study

1 wt.% 18.4 148.4

3 wt.% 18.8 142.5

5 wt.% 18.5 142.8

8 wt.% 18.5 138.0

12 wt.% 18.6 129.9

16 wt.% 19.2 128.8

20 wt.% 19.2 111.8

Numerous studies have shown that adding an appropriate amount of EG to fatty
acid PCMs can significantly improve the thermal conductivity of composite materials, and
composite materials have good thermal reliability and thermal cycling stability. However,
there are few reports on the impact of the EG mass content on the thermal performance of
CPCMs in systematic research. In this study, a series of fatty acid CPCMs with different
EG mass contents (1%, 3%, 5%, 8%, 12%, 16%, and 20%) were prepared by taking capric–
myristic acid/expanded graphite as an example. The minimum EG mass content in the
CPCMs was determined using the diffusion–exudation circle method, and the structure
and thermal properties of the prepared CPCMs were characterized. To verify the thermal
conductivity of the composite materials, further tests to determine heat storage and release
were conducted. This research represents an interesting background for the application of
fatty acid phase-change materials in building energy-saving systems.

2. Materials and Methods
2.1. Materials

Shanghai Shanpu Chemical Co., Ltd., Shanghai, China, supplied the following acids:
capric acid (CA, ≥98.5% purity), lauric acid (LA, ≥98.5% purity), myristic acid (MA,
≥98.5% purity), palmitic acid (PA, ≥98.5% purity), and stearic acid (SA, ≥98.5% purity).
Table 2 displays the characteristics of the CA, LA, MA, PA, and SA. We bought expandable
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graphite from Qingdao Hengrunda Graphite Products Co, Ltd. in Qingdao, China. It had
350 meshes, a 100 mL/g expansion rate, a 99% carbon content, and a density of 1.1 g/cm3.

Table 2. Thermal properties of capric, lauric, myristic, palmitic, and stearic acids.

Fatty Acid
Melting Freezing

Tm (◦C) ∆Hm (J/g) Tf (◦C) ∆Hf (J/g)

Capric acid 31.40 169.4 31.69 170.3
Lauric acid 43.10 183.6 44.06 183.2

Myristic acid 52.68 188.6 51.63 193.1
Palmitic acid 60.60 198.1 61.10 199.3
Stearic acid 68.90 209.8 67.60 202.2

2.2. Preparation of Fatty Acid Binary Eutectic Mixtures/EG CPCMs

A specific volume of expandable graphite was subjected to a drying process in a
vacuum drying oven. After drying, the expanded graphite could be obtained via high-
temperature heating in a muffle furnace, with an expansion temperature of 900 ◦C and an
expansion time of 30–50 s. The apparent density of the expanded graphite was estimated
to be about 10 kg/m3, the pore diameter was 2–100 nm, and the specific pore surface area
was about 30 m2/g. Binary low-eutectic mixtures of fatty acids were created by combining
melt mixing and ultrasonic oscillation with the raw materials of the CA, LA, MA, PA, and
SA [42,43].

The prepared binary low-eutectic mixture of fatty acids and expanded graphite was
mixed in a beaker, thoroughly stirred, sealed with a thin film, and placed in a vacuum
drying oven at 50 ◦C. The low-eutectic mixture of the binary fatty acid/EG composite
phase-change energy storage material was obtained by heating the combination for 48 h,
stirring it every 2 h, and cooling it to room temperature [44]. This process ensured that the
mixture uniformly adsorbed EG.

2.3. Methods

The thermal properties of the CPCMs were measured by using a differential scanning
calorimeter (DSC, NETSZCH 214Polyma, Selb, Germany) at a heating rate of 5 ◦C/min
from 0 ◦C to 100 ◦C under a nitrogen atmosphere. The surface morphological structure of
the CPCM samples was observed using a scanning electron microscope (SEM, phenom LE,
Thermo Fisher Scientific, Waltham, MA, USA). The thermostability of the CPCM samples
was investigated using thermogravimetric analysis (TGA, TA TGA5000IR, New Castle, DE,
USA). The samples were heated at a rate of 10 ◦C/min, from 20 to 400 ◦C, in a nitrogen
atmosphere, with an error of ±0.2%. A Fourier transform infrared spectrometer (FT–IR,
Thermo Scientific Nicolet iS10, Waltham, MA, USA), operating in the 400–4000 cm−1 range
with a resolution of 2 cm−1, was used to examine the material’s chemical structure.

The thermal conductivity of the CPCM samples was measured at room temperature
using a DRE–III thermal conductivity tester (Xiangtan Xiangyi Instrument & Instrument
Co., Ltd., Xiangtan, China) based on the transient plane heat source technique, with a
measurement accuracy within ±3%. A dry sample and a probe were placed within a
cake-shaped mold with a 3 cm diameter, and this was placed on a test bench after pressing
it to the necessary density. After adjusting the settings based on the sample, the device was
turned on to heat the probe. The software (Transient planar heat source method thermal
conductivity testing system 2019.01) swiftly and precisely analyzed the sample, reported the
results, and recorded the voltage and temperature increases over the measurement period.

Heat energy storage/release tests were carried out on the CPCM samples to confirm
that the addition of EG improved their thermal conductivity. The experimental setup is
shown in Figure 1. Temperature probes were placed into the center of the beaker with the
same volume of CPCM. Then, the beakers were put into the same constant-temperature
environment for a sufficient amount of time to achieve the set temperature at the center of
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the materials. The temperature was set to 42 ◦C for the heat energy release experiment and
12 ◦C for the heat energy storage experiment. Afterwards, the beakers were placed in a
water bath to start the testing process. A steady temperature was maintained in the water
bath throughout the testing procedure.
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2.4. Experimental Uncertainty

There was a degree of uncertainty surrounding the experiment because of the mea-
suring device’s precision. The uncertainty of the temperature measurement was assessed
using the root-sum-square (RSS) approach [45,46]. Temperature variations were measured
using a K-type thermocouple, which had an uncertainty of ±1.5 ◦C. The uncertainty of the
temperature data logger was ±0.5 ◦C. The accuracy of the constant-temperature water bath
was ±1.0 ◦C. The overall uncertainty eTemp of the temperature measurement system was
calculated as follows:

eTemp =
√

1.52 + 0.52 + 12 = 1.87 °C (1)

3. Results and Discussion
3.1. The Adsorption Properties of EG on PCMs

In fatty acid/expanded graphite CPCMs, fatty acids, as heat storage materials, are
adsorbed in porous graphite, a support material. The higher the mass content of the heat
storage material in the composite, the better the heat storage capacity of the CPCM. We
propose a diffusion–exudation circle method to determine the adsorption characteristics of
EG in PCMs [47]. Taking CA–MA/EG as an example, six groups of CA–MA/EG CPCMs
with different EG mass contents (1%, 3%, 5%, 8%, 12%, 16%, and 20%) were prepared. The
sample with a 1% EG mass content was obviously in a liquid form; hence, no heat treatment
test was conducted. The results of the other six groups before and after heat treatment
are depicted in Figure 2. Figure 2a shows an image before heat treatment, Figure 2b
shows an image after heat treatment, and Figure 2c shows an image after boiling off the
material. According to the method in Reference [47], a permeability stability evaluation
was conducted, and the calculation results are shown in Table 2. In Figure 2, it can be
observed that there was significant leakage in the samples with EG mass contents of 3%
and 5%, and a large amount of the PCM had still not been adsorbed into the pores. This is
because the adsorption capacity of the pores for the liquid PCM reached a saturation state.
The samples with an EG mass content of 8% had almost no leakage, while the samples
with an EG mass content of 10% or greater remained stable, without leakage. Based on
the above analysis and the results in Table 3, it could be determined that the minimum EG
mass content is around 8%. To ascertain the precise minimum mass content of EG in the
CA–MA/EG CPCM, we prepared four samples with mass contents of 7.2%, 7.4%, 7.6%,
and 7.8%, and we determined that the minimum mass content of EG in the CA–MA/EG
CPCM was 7.6% by employing the aforementioned method [48].

98



Molecules 2024, 29, 3146

Molecules 2024, 29, x FOR PEER REVIEW 6 of 15 
 

 

because the adsorption capacity of the pores for the liquid PCM reached a saturation state. 
The samples with an EG mass content of 8% had almost no leakage, while the samples 
with an EG mass content of 10% or greater remained stable, without leakage. Based on the 
above analysis and the results in Table 3, it could be determined that the minimum EG 
mass content is around 8%. To ascertain the precise minimum mass content of EG in the 
CA–MA/EG CPCM, we prepared four samples with mass contents of 7.2%, 7.4%, 7.6%, 
and 7.8%, and we determined that the minimum mass content of EG in the CA–MA/EG 
CPCM was 7.6% by employing the aforementioned method [48]. 

  

 
Figure 2. Photographs of CA–MA/EG CPCM samples with different EG mass contents before and 
after heat treatment. (a) Before heat treatment, (b) after heat treatment, (c) boiling off the material. 

Table 3. CA–MA/EG composite phase-change material seepage stability assessment. 

Mass Content of EG 
(%) 

Exudation Circle Average 
Diameter (mm) 

Leakage Percentage 
(%) 

Assessment 
Standard Assessment Result 

1% / / / / 
3% 88.0 193.0 Φ > 50 Extremely unstable 
5% 46.5 55.0 Φ > 50 Extremely unstable 
8% 0 0 Φ ≤ 0 Very stable 

12% 0 0 Φ ≤ 0 Very stable 
16% 0 0 Φ ≤ 0 Very stable 
20% 0 0 Φ ≤ 0 Very stable 

3.2. Thermal Properties of the CPCMs 
Taking the CA–MA/EG CPCM as an example, the DSC curves of the CA–MA/EG 

CPCMs with different EG mass contents are shown in Figure 3, and the phase-change 
temperature and latent heat are shown in Table 4. It can be seen from the table that the 
phase-change temperature of the CPCMs with the addition of EG changes very little, in-
dicating that the addition of EG has almost no effect on the phase-change temperature of 
CPCMs and that EG only plays a supporting role in the phase-change material. The latent 
heat of phase change can also be calculated using Equation (2). Table 4 and Figure 4 pre-
sent the theoretical latent heat of the phase-change calculation findings for the CA–
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Table 3. CA–MA/EG composite phase-change material seepage stability assessment.

Mass Content of EG (%)
Exudation Circle

Average Diameter
(mm)

Leakage Percentage (%) Assessment Standard Assessment Result

1% / / / /
3% 88.0 193.0 Φ > 50 Extremely unstable
5% 46.5 55.0 Φ > 50 Extremely unstable
8% 0 0 Φ ≤ 0 Very stable

12% 0 0 Φ ≤ 0 Very stable
16% 0 0 Φ ≤ 0 Very stable
20% 0 0 Φ ≤ 0 Very stable

3.2. Thermal Properties of the CPCMs

Taking the CA–MA/EG CPCM as an example, the DSC curves of the CA–MA/EG
CPCMs with different EG mass contents are shown in Figure 3, and the phase-change
temperature and latent heat are shown in Table 4. It can be seen from the table that the
phase-change temperature of the CPCMs with the addition of EG changes very little,
indicating that the addition of EG has almost no effect on the phase-change temperature of
CPCMs and that EG only plays a supporting role in the phase-change material. The latent
heat of phase change can also be calculated using Equation (2). Table 4 and Figure 4 present
the theoretical latent heat of the phase-change calculation findings for the CA–MA/EG
CPCMs with different EG mass contents and compare them with the experimental test data.

∆HCPCM = (1 − w)∆HPCM (2)

Here, ∆HCPCM is the calculated latent heat of the CA–MA/EG CPCMs, w is the EG
mass content in the CA–MA/EG CPCMs, and ∆HPCM is the mass percentage of MA in the
latent heat of CA–MA.
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Figure 3. DSC curves of CA–MA and CA–MA/EG CPCMs with different EG mass contents.

Table 4. Thermal properties of CA–MA/EG with different EG mass contents.

W (EG)%

Melting Freezing

Tm (◦C)
∆Hm

Tf (◦C)
∆Hf

Experimental
Value (J·g−1)

Calculated
Value (J·g−1)

Difference
(%)

Experimental
Value (J·g−1)

Calculated
Value (J·g−1)

Difference
(%)

0 19.4 150.9 / / 18.4 149.2 / /
1 18.4 148.4 149.4 0.66 19.6 146.8 147.7 0.61
3 18.8 142.5 146.4 2.65 19.4 143.0 144.7 1.19
5 18.5 142.8 143.4 0.39 17.6 141.2 141.7 0.38
8 18.5 138.0 138.8 0.60 18.3 135.4 137.3 1.36
12 18.6 129.9 132.8 2.18 17.7 125.0 131.3 4.80
16 19.2 128.8 126.8 –1.61 18.0 127.1 125.3 –1.41
20 19.2 111.8 120.7 7.39 17.7 110.0 119.4 7.84
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Figure 4. Comparison of the calculated and experimental values of phase transition latent heat for
CA–MA/EG CPCMs with different EG mass contents.

It can be seen in Table 3 and Figure 4 that the experimental data are very close to the
theoretical values, with a small error, within 10%, indicating that the addition of EG has
little effect on the latent heat of the CA–MA/EG CPCM. The latent heat of the CA–MA/EG
CPCM decreases with the increase in the EG mass content, and it shows an almost-linear
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relationship. For example, when the mass content of EG is 20%, the latent heat of the
sample is 109.8 J/g, while pure CA–MA has a latent heat of 150.9 J/g, with a ratio of
approximately 73%, which is close to the mass fraction of CA–MA in the CPCM of 80%.
This suggests that the adsorption of CA–MA in EG is only physical absorption and EG has
little effect on the phase-change latent heat.

3.3. Microstructure of the CPCMs

The CA–MA/EG CPCM samples with EG mass contents of 3%, 5%, 8%, 12%, 16%, and
20% were placed under a scanning electron microscope (SEM) to observe their microstruc-
tures. The SEM images can be seen in Figure 5. In Figure 5, it can be seen that EG is a
loose and porous worm-like grid structure with a large specific surface area, making it easy
for molten CA–MA to adsorb into its micro-porous structure. The network pore structure
of the EG is composed of graphite flakes and a large number of irregular pores. Under
the capillary force of the pores, the molten fatty acid PCM can be easily adsorbed into
the microporous structure of the EG. When the EG mass content in the CPCM is low, EG
adsorption becomes saturated, and its surface is covered by excess liquid fatty acids. After
the fatty acids solidify, block-like fatty acid clusters form on the surface of EG, covering its
worm-like structure. When the EG mass content in the CPCM is 8%, the liquid fatty acids
basically fill the micro-porous structure of EG, reaching a saturated state. However, as the
EG mass content in the CPCM increases to 12%, 16%, and 20%, the fatty acids uniformly
and completely adsorb into the pore size of EG. The liquid fatty acids do not completely fill
the micro-porous structure of EG, the CPCM still retains the original worm-like form of EG,
and the molten liquid fatty acids do not leak out from EG.
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Figure 5. SEM pictures of fatty acid/EG CPCMs with different EG mass contents.

3.4. Thermostability of the CPCMs

Figure 6 displays the TGA curves of CA–MA/EG with an EG mass content of 7.6%. It
is evident from this figure that, at a temperature of about 107.4 ◦C, CA–MA/EG started
to lose weight. As the temperature increased, there was a significant loss in mass. At a
temperature of roughly 205.2 ◦C, the PCM nearly entirely dissipated, while the weight
loss rate hit its maximum at 184.3 ◦C. Thus, in low-temperature applications below 100 ◦C,
CA–MA/EG composite materials exhibit good thermal stability.
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Figure 6. TGA curves of CA–MA/EG CPCMs.

3.5. Infrared Spectral Analysis

CA, MA, CA–MA, and CA–MA/EG were characterized using Fourier transform
infrared spectroscopy (FT–IR). Figure 7 displays the FT–IR curves. The spectra show that
the C=O absorption peak is around 1708 cm−1, and the bending vibration peak of –CH2– is
about 1463 cm−1. The absorption peak in the wavenumber range of about 2715–3105 cm−1

overlaps with the aliphatic group’s C–H stretching vibration absorption peak. The peak
that is absorbed by the hydroxyl O–H stretching vibration is this C–H one. The spectral
curves of CA, MA, CA–MA, and CA–MA/EG are comparable, and the characteristic peaks
correspond one on one, according to the data for C–O above. This shows that, following the
addition of expanded graphite, the structures of CA, MA, and CA–MA remained constant,
and no new compounds were produced.
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3.6. Heat Transfer Performance Experiments

The amount of EG added has a significant impact on the thermal conductivity of
form-stable phase-change materials. Figure 8 shows the thermal conductivity curves of
the CA–MA/EG CPCMs with EG mass contents of 5%, 8%, 12%, 16%, and 20%, and the
corresponding data are listed in Table 5. When the mass content of EG in the CPCM
was 1%, the CPCM was clearly a flowable liquid, and when the mass content of EG was
3%, the CPCM was a viscous fluid; therefore, the CPCMs with EG mass contents of 1%
and 3% were not measured. From Figure 8, we can see that the density of the CPCMs
used for measurement was 300 Kg/m3. The thermal conductivity of the CPCMs with
EG mass contents of 5%, 8%, 12%, 16%, and 20% was 0.2683, 0.3827, 0.7656, 1.1227, and
1.2130 W/(m·k), respectively. It can be seen that the thermal conductivity of the composite
material gradually increased with the increase in the EG mass content. The thermal
conductivity of the CPCM with a mass content of 20% was 418.5% higher than that with a
mass content of 5%. Table 4 also shows the thermal conductivity of CPCMs after adding
expanded graphite to the PCMs in some of the literature, which also indicates that EG can
effectively improve the heat transfer performance of fatty acid PCMs. As mentioned above,
when the mass content of EG in a CPCM is low, EG is in a state of adsorption saturation, its
surface is covered with excess liquid fatty acids, and heat transfer mainly occurs through
convection. As the mass content of EG in a CPCM increases, liquid fatty acids gradually fill
the micro-porous structure of EG until adsorption is completed, and heat transfer mainly
occurs through conduction.
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Figure 8. Variations in thermal conductivity of CPCMs with different EG mass contents.

Table 5. Thermal conductivity of CPCMs with different EG mass contents.

CPCMs Mass Content of EG Thermal Conductivity (W·m−1·k−1) Literature

LA–SA/EG
5% 0.466 [26]15% 0.585

CA–LA–PA/EG 5% 0.738 [27]

CA–LA/EP/EG 5% 0.244 [28]CA–LA/EVM/EG 5% 0.253

LA–SA–FA–EA
3% 2.545

[29]5% 3.229
7% 6.045

CSOD/EG 8.33% 3.136 [30]

CA–MA/EG

5% 0.2683

This study
8% 0.3827
12% 0.7656
16% 1.1227
20% 1.2130

103



Molecules 2024, 29, 3146

3.7. Heat Energy Storage and Release of the CPCMs

In the processes of storing and releasing heat energy, the temperature settings were
42 ◦C and 12 ◦C, respectively. The test results are shown in Figure 9, with Figure 9a
showing the heat energy storage curves and Figure 9b showing the heat energy release
curves. In Figure 9, it can be seen that, when the EG mass contents in the CPCMs were
3%, 5%, 8%, and 12%, the melting curves had a clear “sensible heat–latent heat–sensible
heat” three-stage characteristic similar to that of a pure PCM. However, as the EG mass
content in the CPCM increased, the latent heat stage characteristics gradually weakened.
When the EG mass contents were 16% and 20%, the latent heat stage times of the curve
were extremely short, and the curve changed almost linearly. The heat energy storage
times of the six sample groups were 4490 s, 4000 s, 3360 s, 2610 s, 1200 s, and 1140 s,
and the heat energy release times were 7430 s, 6490 s, 5320 s, 4420 s, 3310 s, and 3090 s,
respectively. From the morphological changes in the curves, it can be seen that the heat
transfer law of the CPCM changed with the increase in the EG mass content. The heat
transfer during the phase-change stage of the heat storage/release process was dominated
by the phase-change heat transfer of the CPCM, and the pore structure of EG played an
auxiliary role in enhancing the thermal conductivity. When the phase-change heat transfer
characteristics of the curves disappeared, the PCM wrapped in the pores of EG became
liquid, and the heat transfer of the material was dominated by the thermal conductivity
of EG.
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Figure 9. Heat energy storage and release curves of CA–MA/EG CPCMs with different EG mass
contents. (a) Heat energy storage, (b) heat energy release.

Figure 10 shows a comparison of the effect of EG on the completion time of heat
storage/release in the CA–MA/EG CPCM. It can be seen that, as the EG mass content
in the CPCM increases, the completion time of heat storage/release is shortened. The
rate of change in the completion time of heat storage/release is the highest when the
EG mass content in the CPCM increases from 3% to 15%. However, the optimization
effect of increasing the EG mass content in the CPCM from 15% to 20% is not significant.
Considering that leakage occurs when the EG mass content in the CPCM is less than 8%, it
can be considered that 8–10% is the optimal mass content range in the CA–MA/EG CPCM
for EG.
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Figure 10. Relationship between EG content in CA–MA/EG CPCMs and heat storage/release time.

4. Conclusions

In this study, a series of fatty acid composite phase-change materials with different
expanded graphite mass contents (1%, 3%, 5%, 8%, 12%, 16%, and 20%) were prepared
by taking capric–myristic acid/expanded graphite as an example. The main conclusions
drawn from the adsorption properties of expanded graphite on phase-change materials,
thermal properties, microstructure, thermostability, infrared spectral analysis, heat transfer
performance, and heat energy storage and release in composite phase-change materials are
as follows:

(1) The minimum expanded graphite mass content in capric–myristic acid/expanded
graphite composite phase-change materials is 7.6%. When the mass content of ex-
panded graphite in composite phase-change materials exceeds the minimum content,
the liquid fatty acid phase-change materials are completely filled into the porous
structure of expanded graphite. Following the addition of expanded graphite, the
structures of phase-change materials remain constant, and no new compounds are pro-
duced.

(2) The latent heat of composite phase-change materials decreases almost linearly with
an increase in the expanded graphite mass content, and expanded graphite has almost
no effect on the phase-change temperature. In low-temperature applications below
100 ◦C, capric–myristic acid/expanded graphite composite phase-change materials
exhibit good thermal stability.

(3) The thermal conductivity of composite phase-change materials gradually increases
with an increase in the expanded graphite mass content. With an increase in the
expanded graphite mass content in composite phase-change materials, the heat trans-
fer mainly transitions from phase-change heat transfer to thermal conductivity, but
when the expanded graphite mass content exceeds 15%, an increase in the expanded
graphite mass content has no significant effect on the composite phase-change material
heat storage/release time.

The research presented above leads us to the conclusion that the prepared composite
phase-change materials can be widely used in building energy-saving systems, such as
floors in floor radiation heating systems, and as backfill materials for buried pipe wells in
ground source heat pump systems. This will be explored by the authors in future work.
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Abstract: Sugar industries generate substantial quantities of waste biomass after the extraction of
sugar water from sugarcane stems, while biomass-derived porous carbon has currently received
huge research attention for its sustainable application in energy storage systems. Hence, we have
investigated waste sugarcane bagasse (WSB) as a cheap and potential source of porous carbon
for supercapacitors. The electrochemical capacitive performance of WSB-derived carbon was fur-
ther enhanced through hybridization with silicon dioxide (SiO2) as a cost-effective pseudocapac-
itance material. Porous WSB-C/SiO2 nanocomposites were prepared via the in situ pyrolysis of
tetraethyl orthosilicate (TEOS)-modified WSB biomass. The morphological analysis confirms the
pyrolytic growth of SiO2 nanospheres on WSB-C. The electrochemical performance of WSB-C/SiO2

nanocomposites was optimized by varying the SiO2 content, using two different electrolytes. The
capacitance of activated WSB-C was remarkably enhanced upon hybridization with SiO2, while
the nanocomposite electrode demonstrated superior specific capacitance in 6 M KOH electrolyte
compared to neutral Na2SO4 electrolyte. A maximum specific capacitance of 362.3 F/g at 0.25 A/g
was achieved for the WSB-C/SiO2 105 nanocomposite. The capacitance retention was slightly lower
in nanocomposite electrodes (91.7–86.9%) than in pure WSB-C (97.4%) but still satisfactory. A sym-
metric WSB-C/SiO2 105//WSB-C/SiO2 105 supercapacitor was fabricated and achieved an energy
density of 50.3 Wh kg−1 at a power density of 250 W kg−1, which is substantially higher than the
WSB-C//WSB-C supercapacitor (22.1 Wh kg−1).

Keywords: waste sugarcane bagasse; activated carbon; SiO2 nanospheres; capacitance; supercapacitors

1. Introduction

Globally, fossil fuel consumption has led to an increase in energy demand and envi-
ronmental sustainability [1–3]. Over the last few decades, a number of factors including
population growth, fossil fuel exhaustion, and waste material production have contributed
to the increasing demand for limitless energy sources and storage devices [4,5]. There is
a growing demand for environmentally friendly, affordable, and renewable energy sys-
tems. To make these systems reliable, an efficient and cost-effective energy storage system
is necessary for securing power at low cost [6,7]. Research and commercial interest are
growing in the use of waste biomass to produce porous carbon-based electrode materials
for cost-effective and efficient energy storage systems, since biomass-derived carbon offers
low cost, sustainability, porosity, and excellent electrical conductivity [8]. This strategy can

Molecules 2024, 29, 1569. https://doi.org/10.3390/molecules29071569 https://www.mdpi.com/journal/molecules109



Molecules 2024, 29, 1569

boost up the global economy as well as reduce the waste biomass-derived environmental
pollution [9]. Furthermore, it will help to reduce the environmental impact of burning
waste biomass for energy [10].

For supercapacitors, carbon is the most commonly used electrode material because it
offers excellent electrical conductivity, chemical resistance, and high thermal and mechani-
cal stability. Various carbon materials including carbon nanotubes, graphene, and activated
carbon have been widely investigated as electrode materials for supercapacitors [11]. For
supercapacitor manufacturers, low material costs are the most important issue, in addition
to different technical issues. Recently, biomass-derived carbon has become increasingly
popular for manufacturing supercapacitors, due to its low cost, abundance, and environ-
mental friendliness [12]. However, the capacitive performance of these carbon materials
is very much dependent on their physical properties such as surface area, mesoporosity,
electrical conductivity, and electrochemical stability [13–15]. Researchers have explored
various chemical and physical activation processes to manipulate the porosity and surface
area of biomass-derived carbon materials and thus enhance their electrochemical capacitive
performances [16]. However, the activation treatment can somewhat improve the specific
capacitance and charge–discharge capacity of biomass-derived carbon, but it requires fur-
ther improvement in the capacitance and energy density of biomass-derived carbon to
meet commercial demand [17,18].

Hybridization of biomass-derived carbon with redox-active materials can enhance
capacitance through the combined effects of electrical double-layer capacitance (EDLC)
and pseudocapacitance [19–21]. Numerous pseudocapacitance materials including tran-
sition metal oxides/sulfides [22–25], conducting polymers [26,27], and transition metal
MXenes [28–30] have been extensively investigated to enhance the electrochemical capaci-
tance of carbon materials via hybridization. Nonetheless, there have been limited attempts
to enhance the energy density of biomass-derived carbon by incorporating pseudocapaci-
tance materials. In two studies, Wu et al. [16] and Hu et al. [31], bamboo-derived carbon
was enhanced by hybridization with nickel hydroxide and copper oxide. Tang et al. [32]
achieved a specific capacitance of 234.2 F/g at 1 A/g and a rate capability of 71.4% at
20 A/g for bamboo shoot shell-derived carbon/SiC composites. Recently, the banana
peel-derived carbon/MnO2 composite demonstrated a specific capacitance of 139.6 F/g
at 300 mA/g with 92.3% capacitance retention after 1000 cycles [33]. Recently, agro-waste
biomass-derived carbon materials have gained increasing interest for supercapacitor appli-
cations because of their high surface area and tannable porosity [34–46]. Among various
agro-wastes, sugarcane bagasse (Sachharum officinarum) is a typical waste biomass gener-
ated in huge quantities in the sugar industries. Most of this waste sugarcane bagasse is
disposed of on land, causing serious environmental pollution. Hence, it is a great opportu-
nity to investigate these waste bagasse fibers as a possible precursor for producing porous
carbon and then to make use of this carbon as a supercapacitor electrode material. Earlier,
researchers studied the electrochemical capacitive performance of SB-derived carbon and
achieved low capacitance [47–50]. Recently, a few research groups tried to enhance the
capacitance of SB-derived carbon by the incorporation of pseudocapacitance materials like
metal oxides [51] and conducting polymers [52].

Indian sugar mills produce ~3 tons of waste sugarcane bagasse per annum, and
each mill discards this huge waste bagasse as residue or uses it as a source of heat to
meet the sugar mill’s heat demand. In the present investigation, we explored waste sug-
arcane bagasse as a cheap carbon source and SiO2 as an environmentally friendly and
cheap pseudocapacitance material to prepare WSB-C/SiO2 nanocomposites with enhanced
capacitive performance. The nanocomposites were prepared via the one-step pyrolytic
decomposition of TEOS-modified bagasse fibers. The effects of SiO2 concentrations on
the morphology and porosity of WSB-C/SiO2 nanocomposites were evaluated. The elec-
trochemical measurements of different formulated WSB-C/SiO2 nanocomposites were
studied on both alkaline and neutral electrolytes to compare their capacitive performance
and electrochemical stability.
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2. Results and Discussions

The functional groups generated in the different formulated waste SB-derived carbon
materials were identified by FTIR spectroscopic analysis. Figure 1a illustrates the FTIR
spectra of porous WSB-C and the different formulated WSB-C/SiO2 nanocomposites. Sev-
eral IR peaks appear in the FTIR spectrum of porous WSB-C (Figure 1a). In addition, a
strong peak at 1191 cm−1 and a weak peak at 907 cm−1 were observed for the stretching
and bending vibration of C-C bond conjugated to C=C bond, respectively, while a medium
IR band at 1643 cm−1 appeared for the stretching mode of C=C bonds [53]. The peak at
622 cm−1 raised in the spectra was perhaps due to the out-of-plane deformation of -OH
groups [54]. In contrast to C-SB, the WSB-C/SiO2 nanocomposites revealed many IR peaks
related to SiO2. The peaks at 1092 and 487 cm−1 can be attributed to the intrinsic vibra-
tion of Si-O-Si and Si-O bonds [30], indicating the pyrolytic formation SiO2 nanospheres
from TEOS. During the carbonization process of TEOS-modified SB fibers, the -O-Si(OEt)3
groups were detached from cellulose chains by the pyrolytic dissociation of C-O bonds,
which are weaker than Si-O bonds, followed by hydrolysis into orthosilicic acid (Si(OH)4)
and finally thermal decomposition into SiO2 [55,56]. Raman spectra of WSB-C and the dif-
ferent WSB-C/SiO2 nanocomposites are displayed in Figure 1b. Two characteristic Raman
active bands at around 1593 and 1356 cm−1 appeared for all nanocomposite samples. The
low frequency G band is related to graphitic lattice vibration with E2g mode, while the
D band represents defects in graphitic structure. The degree of disorder in the different
formulated samples was characterized by determining their ID/IG ratio [57]. As shown in
Figure 1b, the ID/IG value of WSB-C is significantly lower than that of the WSB-C/SiO2
nanocomposites, indicating that there is a greater degree of graphitization in WSB-C as
compared to the nanocomposites. The in situ pyrolytic growth of SiO2 nanospheres dur-
ing carbonization of the TEOS-modified SB matrix perhaps impedes the graphitization
kinetics. However, the higher ID/IG values of the nanocomposites suggest the greater
extent of an amorphous phase in the nanocomposites compared to WSB-C, which can
facilitate their electrochemical capacitive performances. The X-ray diffraction patterns
of the formulated WSB-C/SiO2 nanocomposites are illustrated in Figure 1c. The XRD
pattern of WSB-C reveals a strong peak at 2θ = 26.4◦, assigned to the (002) plane of the
graphite lattice [58]. This high intense graphitic (002) peak indicates the formation of
highly crystalline carbon as a result of the carbonization of SB-derived crystalline cellulose,
which was prepared by alkaline treatment of raw SB prior to the carbonization process. In
contrast, the WSB-C/SiO2 nanocomposites display several diffraction peaks at 2θ = 20.4◦,
36.5◦, 39.3◦, 40.2◦, 42.3◦, and 50◦ corresponding to the (100), (110), (102), (111), (200), and
(112) crystalline planes of SiO2, respectively [59], along with a (002) peak of crystalline
graphite. The intensity of the graphitic (002) peak gradually decreases with increasing SiO2
concentration in the nanocomposites, which might be related to the degree of graphitization
of the SB matrix. It can be noticed that the position of the (002) crystalline peak slightly
shifted toward lower 2θ values for the WSB-C/SiO2 nanocomposites compared to WSB-C.
The lower 2θ values of the WSB-C/SiO2 nanocomposites indicate their higher d-spacing
compared to WSB-C. The d-spacing of WSB-C, WSB-C/SiO2 1025, WSB-C/SiO2 105, and
WSB-C/SiO2 11 are calculated to be 0.33, 0.341, 0.358, and 0.347 nm, respectively. The
results indicate the disordered layer structure of graphite with multi-layered stacking [60],
which is well in agreement with the Raman spectroscopy results. The greater d-spacing
of the WSB-C/SiO2 nanocomposites can facilitate the easy diffusion of electrolyte ions
into electrodes during electrolysis, making them potential candidates for energy storage
applications. Furthermore, there is a weak and broad peak appearing in the 2θ range of
21–25◦ for the WSB-C/SiO2 nanocomposites, indicating some degree of amorphous SiO2
and carbon [61]. The surface characteristics of SB-derived carbon and its nanocomposites
were evaluated by BET analysis. The N2 adsorption–desorption isotherms of WSB-C and
the formulated WSB-C/SiO2 nanocomposites are illustrated in Figure 2a. A mixture of type
I and type IV isotherms is observed for both WSB-C and the WSB-C/SiO2 nanocomposites,
indicating a typical combination of micropores and mesopores [62]. The initial part of
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the isotherm follows type I adsorption, which is attributed to the controlled monolayer
adsorption by micropores [63]. However, the middle of the isotherm shows a characteristic
hysteresis loop indicating the presence of large mesopores with a wide pore size distri-
bution. The specific surface areas and total pore volumes of the different samples are
presented in Figure 1. The specific surface areas and pore volumes were decreased for
the WSB-C/SiO2 nanocomposites compared to WSB-C. The maximum SBET and total pore
volume of 342 m2/g and 0.0426 cm3/g were recorded for WSB-C, while the lowest values
of 115.7 m2/g and 0.0219 cm3/g were obtained for the WSB-C/SiO2 11 nanocomposite
containing higher concentrations of SiO2 nanoparticles. This could be attributed to the
blocking of micropores by SiO2 nanoparticles, as evidenced in the FE-SEM images. In
contrast to microporosity, the mesoporosity of the WSB-C/SiO2 nanocomposites is signif-
icantly increased compared to WSB-C, and the C/SiO2 105 nanocomposite exhibits the
highest amount of mesoporosity with 74.2%. The BJH pore size distributions of WSB-C
and the different formulated WSB-C/SiO2 nanocomposites are displayed in Figure 2b. The
average diameters of the pores of the different samples are presented in Table 1. The pore
size is gradually increased with increasing SiO2 content, which might be the result of pore
enlargement caused by heterogeneous shrinkage during the carbonization process [64].
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Figure 1. (a) FTIR spectra, (b) Raman spectra, and (c) XRD patterns of pure WSB−C and the different
formulated WSB−C/SiO2 nanocomposites.

Table 1. Summary of BET characteristics of the as-prepared WSB-C and its nanocomposites.

Sample WSB-C WSB-C/SiO2 1024 WSB-C/SiO2 105 WSB-C/SiO2 11

SBET (m2/g) 342.8 279.9 207.7 115.7
Vtotal (cm3/g) 0.0426 0.389 0.0288 0.0219
Mesopore (%) 44.7 57.4 74.2 68.8

Dav (nm) 3.46 3.63 3.92 4.47
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Figure 2. (a) Nitrogen adsorption and desorption isotherms and (b) Barrett−Joyner−Halenda (BJH)
pore size distribution of WSB−C and the WSB−C/SiO2 nanocomposites.

The surface chemical compositions of the as-synthesized WSB-C/SiO2 nanocompos-
ites were determined by XPS analysis. Figure 3a demonstrates the XPS survey curves of
activated SB-derived carbon and the different WSB-C/SiO2 nanocomposites. The XPS
signals for three major elements such as carbon (C), oxygen (O), and silicon (Si) at ~285 eV,
~531 eV, and ~104 eV are observed in the survey curves of the WSB-C/SiO2 nanocom-
posites, while WSB-C contained no elemental silicon. As is obvious, the peak intensity of
elemental Si for the nanocomposites gradually increased with increasing TEOS loading
in the modified-SB fibers. Figure 3b displays the core level Si 2p spectra of WSB-C/SiO2
105 consisting of a single Gaussian peak at 104.3 eV, corresponding to the Si-O-Si bond
of SiO2 nanospheres [62]. The C 1s spectra is deconvoluted into four peaks at 284.1 eV,
284.9 eV, and 287.5 eV, shown in Figure 3c, which are associated with C=C, C-C, and C=O
bonds, respectively. The atomic percentages of elemental C, Si, and O in the different
formulated carbon samples are demonstrated in Figure 3d. The results indicate that the
atomic percentage of carbon is reduced for the WSB-C/SiO2 nanocomposites compared
to WSB-C. The lowest yield of 77.21% was recorded for WSB-C/SiO2 11, which is 17%
lower than that achieved for WSB-C. Furthermore, the at% of carbon is gradually decreased
with increasing TEOS content in modified-SB. These findings suggest that the degree of
carbonization/graphitization of SB was affected by the in situ formation of SiO2, which
might be due to the change in the heat of carbonization during the pyrolysis process.

The microstructures of SB-derived carbon and its hybrids with SiO2 were observed
with SEM analysis and the resulting images are shown in Figure 4. The orderly aligned
channels appear in the cross-sectional images of the nanocomposites with multiple sizes of
pores on their surfaces. The top surface of the WSB-C displays slightly crumpled features
with multiple size pores (Figure 4a). In contrast, the WSB-C/SiO2 nanocomposites clearly
exhibit a uniform distribution of SiO2 nanospheres on the porous carbon surface. The
concentration of SiO2 nanospheres gradually increases with increasing TEOS loading in the
modified-SB precursor. For the WSB-C/SiO2 1025 and WSB-C/SiO2 105 nanocomposites,
the majority of SiO2 nanospheres remain discrete and embedded into the carbon matrix
(Figure 4d), while the SiO2 nanospheres are largely agglomerated in the WSB-C/SiO2 11
nanocomposite (Figure 4e). The extensive agglomeration of SiO2 nanospheres reduced
the specific surface area and limited the pseudocapacitive effects of the WSB-C/SiO2 11
nanocomposite, which have been observed in the BET and CV results. The cross-sectional
view of the WSB-C/SiO2 nanocomposites in Figure 4f–h exhibits three-dimensional (3D)
channels within the carbon matrix. This 3D structure provides plenty of space for growing
SiO2 nanospheres. Like tree trunks, these channels remain aligned along their longitudinal
axis, which can facilitate the transport of electrolyte through them. Furthermore, the
cross-sectional images reveal a uniform dispersion of SiO2 nanospheres throughout the
channel wall, which can facilitate the access of electrolyte ions to redox-active SiO2 and
thus enhance the capacitance efficiency of the nanocomposites.
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Figure 3. (a) XPS survey spectra of WSB-C and the WSB−C/SiO2 nanocomposites; the high-
resolution spectra of (b) Si 2p and (c) C 1s along with the fitting peaks of the as-prepared
WSB−C/SiO2 105; (d) atomic compositions of WSB−C and the WSB−C/SiO2 nanocomposites.

The effects of SiO2 nanospheres on the electrochemical properties of SB-derived
activated carbon were evaluated using CV and GCD measurements. Figure 5a demonstrates
the CV profiles of WSB-C and the different WSB-C/SiO2 nanocomposites in a potential
range of -1.0 to 0 V at 50 mV/s. The WSB-C electrode reveals a nearly rectangular CV
curve with no obvious redox peaks, suggesting the behavior of an electrical double-layer
capacitor with fast charge and discharge processes. On the other hand, the CV curves of the
WSB-C/SiO2 nanocomposite electrodes reveal a distorted rectangular shape with a pair of
faradaic redox peaks, suggesting both EDLC and pseudocapacitance characteristics of the
WSB-C/SiO2 electrode. The oxidation and reduction peaks appear at −0.12 and −0.30 V,
respectively. The redox reactions involved during the electrochemical process in the KOH
electrolyte can be illustrated as follows [65]:

SiI IO2 + K+ + e− ↔ SiI I IOOK (1)

For the WSB-C/SiO2 electrodes, the anodic peak current gradually increased for the
WSB-C/SiO2 1025 and WSB-C/SiO2 105 electrodes but it decreased for the WSB-C/SiO2 11
electrode. The WSB-C/SiO2 105 electrode exhibited better pseudocapacitive characteristics
in terms of current response to voltage. However, the decrease in anodic current of the
WSB-C/SiO2 11 electrode was the result of the agglomeration of SiO2 nanospheres (as
shown in the FE-SEM image) and the subsequent decrease in surface area of active SiO2.
The CV curves of the WSB-C electrode in a wide range of scan rates are displayed in
Figure 5b. The CV curves retained a nearly rectangular shape even at a high scan rate of
125 mV/s, indicating the fast and reversible EDLC behavior of the WSB-C electrode. The
shape of the CV profiles of the WSB-C/SiO2 105 electrode remained unchanged with a
small shift in redox peak position upon increasing the scan rate (Figure 5c), suggesting its
high-rate capability over a wide range of scan rates.
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Figure 5. (a) CV curves of WSB−C, WSB−C/SiO2 1025, WSB−C/SiO2 105, and WSB−C/SiO2 11
electrodes in 6 M KOH electrolyte at a scan rate of 50 mV/s; (b) CV profiles of the WSB−C electrode at
different scan rates; (c) CV curves of the WSB−C/SiO2 105 electrode at different scan rates; (d) linear
fitting curves between ln (i) vs. ln (sweep rate) for the WSB−C/SiO2 105 electrode; (e) Dunn’s
method analysis of the capacitance contribution of the WSB−C/SiO2 105 electrode at 10 mV/s; and
(f) contribution ratio of capacitive and diffusion-controlled processes at various scan rates.

It is necessary to study the kinetics of charge storage in WSB-C/SiO2 electrodes at
different potentials in order to identify the mechanism behind the charge stored in them.
In general, there are two different mechanisms through which the total charge is stored:
(i) diffusion mechanism (intercalation/deintercalation) and (ii) capacitive mechanism [64].
The Power’s law was used to characterize this phenomenon [65]:

i (V) = aϑb (2)

where ϑ is the scan rate and b is the slope of the linear plot of Log (i) vs. Log (ϑ). Two con-
ditions based on the b values determine the mechanism responsible for charge storage:
if b = 0.5, the diffusion-controlled intercalation process is dominant over the capacitive
process, and when b = 1.0, the capacitive contribution is higher than the diffusion contri-
bution. Figure 5d demonstrates the logarithmic linear plots between redox current and
scan rate. In the present case, the b values for anodic and cathodic processes are 0.6835
and 0.7386, respectively, which suggests that the charge storage process is governed by
both surface-controlled and diffusion-controlled mechanisms. Furthermore, the diffusion-
controlled faradaic process made a considerable contribution to enhancing the charge
storage capability of the WSB-C/SiO2 105 electrode. The large fraction of mesopores in the
WSB-C/SiO2 105 nanocomposite facilitated the intercalation/deintercalation of electrolyte
ions. The relative currents from the capacitive and diffusion processes at different scan
rates can be determined using the given equation [66]:

i (V) = k1(ϑ) + k2ϑ1/2 (3)

where k1(ϑ) and k2ϑ1/2 values correspond to the current contribution from the diffusion
and capacitive processes, respectively. Figure 5e reveals the percent contribution of the
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diffusion and capacitive processes to the CV area at 5 mV/s. The low scan rate favors
the diffusion process and thus diffusion is dominant over the capacitive contribution. As
scan rates increase, the diffusion contribution gradually decreases, and the capacitive
contribution steadily increases (Figure 5f).

The impedance analyses (EIS) were further carried out to investigate the ionic diffu-
sion kinetics for the as-synthesized WSB-C and its nanocomposites with SiO2 [67]. The
Nyquist plots, shown in Figure 6a, allow us to compare the impedance properties of the
different formulated electrode materials. WSB-C exhibits a solution resistance (Rs) of 2.86 Ω
due to the relatively low hydrophilicity of carbon material, while the low Rs values of the
WSB-C/SiO2 nanocomposites suggest their better hydrophilic characteristics. At high fre-
quencies, Nyquist plots represent charge-transfer resistance (RCT), while at low frequencies
a line with a 45◦ slope represents capacitive behavior. Table 2 presents the fitted values
for each component for each material. The charge-transfer resistance of WSB-C was sig-
nificantly reduced upon the inclusion of the SiO2 nanospheres. The lower charge-transfer
resistance of the WSB-C/SiO2 electrodes reflects their electrochemical performance. The
equivalent circuit model for WSB-C/SiO2 105 is shown in the inset of Figure 6a.
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Figure 6. (a) Nyquist plots of the WSB−C and the different WSB−C/SiO2 nanocomposite electrodes;
(b) GCD curves of the WSB−C and the different WSB-C/SiO2 nanocomposite electrodes in 6 M
KOH electrolyte; (c) GCD profiles of the WSB−C electrode at different current densities; (d) GCD
curves of the WSB−C/SiO2 105 electrode at different current densities; (e) variations in gravimetric
capacitances of the WSB−C and the different WSB−C/SiO2 nanocomposite electrodes as a function
of current density; (f) cyclic stability up to 10,000 cycles at 1 A/g for the WSB−C and the different
WSB−C/SiO2 nanocomposite electrodes.

Table 2. Calculated values of Rs, RCT, ZW, and CPE by fitting the experimental data.

Sample WSB-C WSB-C/SiO2 1024 WSB-C/SiO2 105 WSB-C/SiO2 11

Rs (Ω) 2.17 0.876 0.114 0.064
RCT (Ω) 11.59 6.39 2.57 4.38
Zw (Ω/s0.5) 48.7 12.67 3.23 8.18
CPE (µF) 11.46 15.63 23.92 19.47
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The gravimetric charge–discharge (GCD) profiles of the pure WSB-C and the different
WSB-C/SiO2 nanocomposite electrodes at a current density of 1 A/g are demonstrated in
Figure 6b. A nearly symmetric triangular charge–discharge curve appears for the WSB-C
electrode, indicating pure non-faradaic EDLC behavior. The WSB-C electrode reveals
a Coulombic efficiency of 100.6% at 1 A/g, suggesting its excellent electrochemical re-
versibility. In contrast, the WSB-C/SiO2 nanocomposite electrodes display asymmetric
distorted triangular charge–discharge curves with an obvious discharge plateau at ~0.4 V,
suggesting faradaic contribution to the overall charge storage process. Furthermore, there
was a longer discharge time for the WSB-C/SiO2 electrodes than for the WSB-C electrodes,
indicating that the nanocomposites have superior capacity for storing charge than the
WSB-C electrodes. Among the nanocomposite electrodes, the WSB-C/SiO2 105 electrode
took the maximum time to discharge, indicating greater charge storage capability. Figure 6c
illustrates the GCD curves of the WSB-C electrode at different current densities. The sym-
metric features of the GCD curves remain unaffected upon increasing the current density,
indicating excellent rate capability. The GCD profiles of the WSB-C/SiO2 105 nanocom-
posite electrode at various current densities between 0.25 and 5 A/g are demonstrated in
Figure 6d. The asymmetric features of the GCD curves appear for all GCD curves due to
the pseudocapacitance effects. The gravimetric specific capacitances (Cgsp) of the WSB-C
and the WSB-C/SiO2 nanocomposite electrodes were calculated from their respective GCD
curves, using Equation (4):

Cgsp =
I∆t

m∆V
(4)

Figure 6e demonstrates the variation in specific capacitances as a function of current
densities for the different electrodes. The results clearly exhibit a significant improvement
in the specific capacitance of SB-derived carbon upon hybridization with SiO2. The specific
capacitances of the WSB-C/SiO2 1025, WSB-C/SiO2 105, and WSB-C/SiO2 11 electrodes are
~160%, ~240%, and ~210% higher than those of the pure WSB-C electrodes, respectively. The
highest specific capacitance of 362.3 F/g at 0.25 A/g was achieved for the WSB-C/SiO2 105
electrode. Table 3 presents that the specific capacitance of the WSB-C/SiO2 105 electrode
is higher than those previously reported for similar types of electrode materials. The
capacitance values gradually reduced from 362.3 to 220.6 F/g when the current density
increased from 0.25 to 5 A/g, indicating an excellent capacitance retention of 61% even with
a 20-fold increase in current density. However, a relative lower capacitance retention was
observed for WSB-C/SiO2 1025 (49% retention) and WSB-C/SiO2 11 (37% retention). The
lower capacitance retention in the WSB-C/SiO2 1025 and WSB-C/SiO2 11 electrodes might
be ascribed to the presence of a smaller fraction of mesopores and some fraction of unused
SiO2 at high current densities. The cycling stability of the WSB-C/SiO2 nanocomposite
electrodes was compared with that of the WSB-C electrode, shown in Figure 6f. The
nanocomposite electrodes revealed somewhat lower cycling stability than the WSB-C
electrode, which might be due to their limited pseudocapacitance contribution at higher
cycles [68]. The highest cycling stability of 97.4% was achieved for the WSB-C electrode,
while the cycling stability went down to 91.7% and 86.9% for the WSB-C/SiO2 105 and WSB-
C/SiO2 11 electrodes, respectively. This might be due to the relatively low electrochemical
stability of metal oxide compared to carbon.

Table 3. Comparison of the electrochemical performance of the present WSB−C/SiO2 composites
and those of similar biomass-derived carbon composite materials reported earlier.

Biomass
Biomass-Derived
Carbon (Cbiomass)

Composites
Electrolyte Potential Range

(V)
Sp. Capacitance

(F/g)
Cycling
Stability Ref.

Bamboo leaves Cbiomass/CuO/Cu2O 1 M HCl −1.0 to +0.3 147@1 A/g 93% after 5000 cycles [69]

Wasted litchi shell Cbiomass/MnO 6 M KOH −1.0 to +0.2 162.7@0.5 A/g 93.5% after
5000 cycles [70]
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Table 3. Cont.

Biomass
Biomass-Derived
Carbon (Cbiomass)

Composites
Electrolyte Potential Range

(V)
Sp. Capacitance

(F/g)
Cycling
Stability Ref.

Vegetable sponge Cbiomass/Mn3O4
Composite 1 M Na2SO4 0 to 1.0 162.8@0.5 A/g 89.5% after

4500 cycles [71]

Watermelon Cbiomass/MnO2 6 M KOH −1.0 to 0 123.5@0.5 A/g 60% after 1000 cycles [72]
Waste bamboo

shoot shells Cbiomass/PEDOT 1 M H2SO4 0 to 1.0 302.5@0.5 A/g 87% after
10,000 cycles [73]

Loofah Cbiomass/TiO2 1 M H2SO4 0 to 1.0 250.8@1 A/g 84% after 100 cycles [74]
Wheat flour Cbiomass/Co3O4 2 M KOH −0.8 to +0.4 161.4@0.5 A/g 80% after 1000 cycles [75]

Waste sugarcane
bagasse Cbiomass/SiO2 6 M KOH −1.0–0.0 307.1@0.5 A/g 91.7 after 10,000 cycles Present

The capacitive performance of the WSB-C/SiO2 105 electrode was further evaluated in
neutral electrolyte, i.e., 1 M Na2SO4, and the results were compared with those obtained in
alkaline electrolyte, i.e., 6 M KOH. The CV profiles of the WSB-C/SiO2 105 electrode over
the potential window of −1.0 to 0 V in 1 M Na2SO4 electrolyte at different scan rates are
illustrated in Figure 7a. Nearly rectangular-shaped CV curves with a pair of oxidation and
reduction peaks centered at −0.49 V and −0.64 V are observed, indicating the involvement
of both EDLC and pseudocapacitance mechanisms in the charge storage process. The redox
peaks are associated with the reactions given in Equation (5) [76]:

SiI IO2 + Na+ + e− ↔ SiI I IOONa (5)
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Figure 7. (a) CV profiles of the WSB−C/SiO2 105 nanocomposite electrode in 1 M Na2SO4; (b) GCD
profiles of the WSB−C/SiO2 105 nanocomposite electrode in 1 M Na2SO4; (c) variations in gravimet-
ric capacitances of the WSB−C/SiO2 105 electrode as a function of current density in two different
electrolytes; (d) cyclic stability up to 10,000 cycles at 1 A/g for WSB−C/SiO2 105 in two different
electrolytes; and (e) Ragone plots of the symmetric WSB−C/SiO2 105// WSB−C/SiO2 105 superca-
pacitor in two different electrolytes and the WSB−C//WSB−C supercapacitor in alkaline electrolyte.
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There is almost no change in the shape of the CV profiles when the scan rate is in-
creased from 5 to 125 mV/s, indicating the high-rate capability and electrochemical stability
of the nanocomposite electrode in Na2SO4 electrolyte. The total current gradually increases
with the increasing scan rate. The GCD profiles for the two-electrode system at various
current densities are displayed in Figure 7b. The distorted triangular shape of the GCD
curves with a voltage plateau further suggests the occurrence of faradaic surface-redox
reactions during the charge storage process. The Coulombic efficiency was determined
to be 100.9%. The specific capacitances at different current densities were determined
from the corresponding GCD curves, using Equation (4). Figure 7c reveals the gravimet-
ric specific capacitance of the WSB-C/SiO2 105 electrode at different current densities in
two different electrolytes, i.e., 6 M KOH and 1 M Na2SO4. The maximum specific capaci-
tance of 319.8 F/g at 0.25 A/g was achieved in 1 M Na2SO4 electrolyte. As can be seen in
Figure 7c, the capacitive performance of the nanocomposite electrode is somewhat lower
in the Na2SO4 electrolyte than in the KOH electrolyte. Compared to K+ ions, Na+ ions
have a bigger size and higher internal resistance, resulting in a slower transport rate, which
results in lower capacitance. With the Na2SO4 electrolyte, the WSB-C/SiO2 105 electrodes
show a lower rate capability of 46.8% than with the KOH electrolytes (61%). For hydrated
Na+ ions, their larger size is indeed unfavorable to smooth transportation and diffusion,
especially at higher current densities, resulting in lower capacitance. The nanocomposite
electrode exhibited superior cycling stability with capacitance retention of 95.6% after
10,000 cycles in 1 M Na2SO4 compared to that in 6 M KOH (91.7%), as shown in Figure 7d.
The relatively lower cycling stability in the alkaline electrolyte might be due to the harsh
and corrosive nature of the strong alkaline electrolyte (KOH) compared to the neutral
Na2SO4 electrolyte. Figure 7e demonstrates the Ragone plots for the as-assembled symmet-
ric WSB-C//WSB-C and WSB-C/SiO2 105//WSB-C/SiO2 105 devices in KOH and Na2SO4
electrolytes. The WSB-C/SiO2 105//WSB-C/SiO2 105 device in 6 M KOH electrolyte deliv-
ered a maximum energy density of 50.3 WH kg−1 at a power density of 250 W kg−1, which
is significantly greater than that produced by the WSB-C//WSB-C device (22.1 Wh kg−1

at 250 W kg−1). The as-achieved energy density is superior to earlier reported biomass-
derived carbon-based symmetric supercapacitors such as silkworm cocoon-derived carbon
(34.4 Wh kg−1) [77]; wheat bran-derived carbon (32.7 Wh kg−1) [78]; peanut meal-derived
carbon (24.9 Wh kg−1) [79]; rice straw-derived carbon (7.8 Wh kg−1) [80]; coconut shell-
derived carbon (14.7 Wh kg−1) [81]; sugarcane bagasse-derived carbon (37.5 Wh kg−1) [82];
and cornstalk-derived carbon (10 Wh kg−1) [83]. Furthermore, the SC device achieved
higher energy density in KOH electrolyte than in Na2SO4 electrolyte (44.4 Wh kg−1). The
mechanism of electrochemical process and LED lightening of the as-fabricated symmetric
WSB-C/SiO2 105//WSB-C/SiO2 105 device is displayed in Scheme 1. The LED bulb (1.5 V)
was lit with two symmetric WSB-C/SiO2 105//WSB-C/SiO2 105 electrodes after charging
to 1.5 V, where the dimension of each electrode used in the device was 1.5 × 1.5 cm2.
The LED bulb showed stable brightness for 30 min. The results indicate that the present
WSB-C/SiO2//WSB-C/SiO2 symmetric supercapacitors have great potential for energy
storage applications with impressive market value. This impressive energy density of
waste sugarcane bagasse-derived carbon/SiO2 105 makes it a potential cost-effective and
environmentally friendly electrode material for next-generation supercapacitors.
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3. Experimental
3.1. Materials

Waste sugarcane bagasse fibers were collected from a sugar mill in Uttar Pradesh,
India. Potassium hydroxide (KOH), glacial acetic acid, triethyl orthosilicate, ethanol, and
liquid ammonia solution were collected from Alfa Asare, India. All chemicals were utilized
without undergoing additional purification.

3.2. Activation and Chemical Modification of Sugarcane Bagasse Fibers

The as-collected WSB fibers were initially washed thoroughly with DI water and dried
at 60 ◦C. The dried WSB fibers were milled to size 40 mesh. For the activation process,
100 g WSB powder was dispersed in 500 mL 6 M KOH solution under stirring for 2 h.
Afterward, the WSB fibers were treated with glacial acetic acid and washed with DI water
to neutralize (pH = 7) them. The activated WSB fibers were then chemically modified
with TEOS, where activated WSB fibers were mixed with different concentrations of TEOS
(WSB fiber/WTEOS = 1/0.25, 1/0.5, and 1/1) in ethanol/water (80/20 v/v) and stirred for
3 h. Liquid NH3 was drop-wisely added to the solution for neutralization. The resulting
TEOS-modified WSB fibers were washed with DI water and thermally cured at 120 ◦C
for 3 h.

3.3. Carbonization of Activated SB and TEOS-Modified SB Fibers

The alkaline-activated WSB and TEOS-modified WSB fibers were carbonized at 600 ◦C
under nitrogen flow (20 mL/min) using a tube furnace. The carbonization of activated
WSB and TEOS-modified WSB fibers produced porous carbon (WSB-C) and carbon/SiO2
nanocomposites, respectively. The nanocomposites obtained from TEOS-modified WSB
fibers with fiber/TEOS ratios of 1/0.25, 1/0.5, and 1/1 are designated as WSB-C/SiO2 1025,
WSB-C/SiO2 105, and WSB-C/SiO2 11, respectively.

3.4. Structural Characterizations

FTIR and Raman analyses were conducted on Shimadzu IR-Prestige 21 (Shimadzu
Corp, Japan) and Renishaw Raman System 3000 spectrophotometers (Renishaw, UK), re-
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spectively, using powdered samples. The XRD patterns of the samples were obtained with
a Rigaku SmartLab diffractometer (Rigaku Corporation, Japan). The surface characteristics
of the as-prepared materials were evaluated using a Micromeritics ASAP 2020 adsorption
analyzer (Micromeritics Instrument Corporation, USA). An ESCA MultiLab 2000 spec-
troscopic analyzer (VG Systems Ltd. UK) was used to characterize the surface chemical
compositions of the materials. A field-emission scanning electron microscope (FE-SEM,
S-4700, Hitachi, Japan) was used to take microstructural images of the as-prepared samples.

3.5. Electrochemical Measurements

The electrochemical measurements were carried out in aqueous 6 M KOH electrolyte
at room temperature (25 ◦C) using 3-electrode and 2-electrode cells for cycling voltametric
(CV) and charge–discharge experiments, respectively. A potentiostat–galvanostat (SQUID-
STAT SOLO, Admiral Instruments, USA) was used for these measurements. For the
3-electrode cell, powdery sample-coated GCE with 2 µL Nafion solution (5 wt%), platinum
sheet, and calomel electrode served as working, counter, and reference electrodes, respec-
tively. For the 2-electrode configuration, two symmetric electrodes (1 × 1 cm2) consisting
of active material-loaded Ni-foam were superimposed with a separator. The electrode
was prepared by dispersing the WSB-C or WSB-C/SiO2 powder (~1.8 mg) on nickel foam
and pressing under pressure of 15 tons, using a hydraulic press. EIS measurements were
performed in a range of 100,000–0.1 Hz and an AC amplitude of 5 mV.

4. Conclusions

In summary, waste sugarcane bagasse-derived carbon/SiO2 nanocomposites were
prepared through carbonization of TEOS-modified activated bagasse fibers. The capacitive
performance of WSB-derived activated carbon was remarkably enhanced upon hybridiza-
tion with SiO2, indicating a significant pseudocapacitive contribution from redox-active
SiO2. A maximum capacitance of 362.3 F/g at 0.25 A/g was achieved for the WSB-C/SiO2
105 nanocomposite, which is around 2.5 times higher than that of the WSB-derived ac-
tivated carbon. However, higher SiO2 concentrations decrease the capacitance of the
nanocomposite due to the agglomeration of SiO2 particles, as shown for WSB-C/SiO2 11.
The nanocomposite electrode demonstrated superior capacitance and energy density in
KOH electrolyte compared to neutral Na2SO4 electrolyte. The WSB-C/SiO2 105//WSB-
C/SiO2 105 supercapacitor achieved an energy density of 50.3 Wh kg−1 at a power density
of 250 W kg−1 in 6 M KOH electrolyte, which is considerably higher than that achieved
in 1 M Na2SO4 (44.4 Wh kg−1). However, the cycling stability of the supercapacitor was
significantly higher in neutral Na2SO4 electrolyte than in alkaline electrolyte. Hence, the
WSB-C/SiO2 105 nanocomposite as an efficient, sustainable, and cheap electrode material
could potentially be used in next-generation energy storage devices.
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Abstract: Numerous theoretical calculations have demonstrated that polynitrogen with an extending
polymeric network is an ultrahigh-energy all-nitrogen material. Typical samples, such as cubic
gauche polynitrogen (cg-N), have been synthesized, but the thermal performance of polynitrogen has
not been unambiguously determined. Herein, macroscopic samples of polynitrogen were synthesized
utilizing a coated substrate, and their thermal decomposition behavior was investigated. Polyni-
trogen with carbon nanotubes was produced using a plasma-enhanced chemical vapor deposition
method and characterized using infrared, Raman, X-ray diffraction X-ray photoelectron spectroscopy
and transmission electron microscope. The results showed that the structure of the deposited polyni-
trogen was consistent with that of cg-N and the amount of deposition product obtained with coated
substrates increased significantly. Differential scanning calorimetry (DSC) at various heating rates
and TG-DSC-FTIR-MS analyses were performed. The thermal decomposition temperature of cg-N
was determined to be 429 ◦C. The apparent activation energy (Ea) of cg-N calculated by the Kissinger
and Ozawa equations was 84.7 kJ/mol and 91.9 kJ/mol, respectively, with a pre-exponential constant
(lnAk) of 12.8 min−1. In this study, cg-N was demonstrated to be an all-nitrogen material with good
thermal stability and application potential to high-energy-density materials.

Keywords: all-nitrogen material; polynitrogen; PECVD; thermal decomposition performance;
decomposition kinetics

1. Introduction

All-nitrogen materials have emerged as an important avenue for the development of
high-energy-density materials (HEDMs). There have been significant experimental and
theoretical advances in all-nitrogen materials, which are considered to be a strategic field
for energetic materials [1–3]. All-nitrogen materials release enormous quantities of energy
during decomposition into nitrogen because of the significant energy differences among
the N≡N triple bond (954 kJ/mol), N=N double bond (418 kJ/mol) and N–N single bond
(160 kJ/mol) [4]. Theoretical calculations have demonstrated the favorable performance of
all-nitrogen materials, such as cg-N polynitrogen with an extending polymeric network,
Td-N4 nitrogen clusters and cyclo-N5

− pentazolate anions. First-principles simulations on
cg-N polynitrogen have indicated a density of 3.9 g/cm3 and an energy 10.6 times that of
octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) [5]. The theoretical heat of formation
of a Td-N4 nitrogen cluster was determined to be 761 kJ/mol [6]. The detonation velocity
and pressure of LiN5 were 11,362 m/s and 40.9 GPa, respectively [7]. All-nitrogen materials
offer the advantages of a high density, high enthalpy of formation, ultrahigh energy, and
clean, nonpolluting blast and are therefore considered a new generation of HEDMs for use
in explosives and propellants.

Different preparation methods typically produce all-nitrogen materials with differ-
ent structures. Significant initial progress has been made in the chemical synthesis of
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all-nitrogen compounds since the end of the 20th century. Christe et al. successfully syn-
thesized a marginally stable all-nitrogen ion, N5

+[AsF6]− in 1999, which was followed by
successive synthesis of more pentazeniums, such as N5

+[SbF6]−, and N5
+[Sb2F11] [8,9]. In

2017, Hu et al. and Lu et al. reported the synthesis and characterization of an atmospheri-
cally stable cyclo-N5

− salt, (N5)6(H3O)3(NH4)4Cl [10,11]. Researchers have since synthe-
sized a series of metallic or nonmetallic salts of N5

− via ion exchange reactions [12,13].
Compounds containing all-nitrogen structural fragments, such as N8 (1,1′-azobis-1,2,3-
triazole), N10 (1,1′-azobis(5-methyltetrazole)) and N11 (1,1′-(triaz-1-ene-1,3-diyl)bis(1H-
tetrazol-5-amine)), have been synthesized successively [14,15], providing references for the
preparation of all-nitrogen materials.

Polynitrogen materials with extended polymeric network structures are typically
synthesized under extreme conditions of pressure and temperature. Under high pressure,
nitrogen molecules are converted into solid polynitrogen with various crystalline structures,
such as cg (cubic gauche), Cmcm (Cmcm chain), and ch (cis-transchain) [16,17]. The
development of the diamond anvil cell (DAC) experimental technique and laser heating
technology enabled cubic gauche nitrogen (cg-N) samples to be obtained for the first time
under extreme experimental conditions of more than 110 GPa and 2000 K by Eremets
et al. [18] in 2004. The major interplanar distances of cg-N at 115.4 GPa were found to
be 2.4434 Å, 1.7279 Å, 1.4103 Å, 1.2206 Å and 1.0918 Å, corresponding to Miller-indices
(hkl) of (110), (200), (211), (220) and (310), respectively. The Raman peak of cg-N at high
pressure was reported at approximately 830 cm−1 that shifted with decreasing pressure
at a rate of 1.53~1.57 cm−1/GPa [19,20]. This method was used in subsequent studies
to synthesize various polynitrogen samples. Additional polynitrogen structures, such as
hexagonal layered polynitrogen (HLP-N, 244 GPa and 3000 K) [21] and black phosphorus
polynitrogen (BP-N, 140 GPa and 2300 K) [22], were discovered with the experimental
pressure and temperature variation. In 2014, Yoo et al. [23] discovered a layered polymeric
structure polynitrogen (LP-N) at 150 GPa and 2000 K that had two colossal Raman bands at
1000 cm−1 and 1300 cm−1. Subsequently, Li et al. [24] observed the post-layered-polymeric
nitrogen (PLP-N) by further heating the LP-N to above 2300 K at 161 GPa.

Some all-nitrogen phases, such as cyclic N5 rings and pseudobenzene N6 hexagonal
rings, have also been discovered in studies on phase transitions at high pressures [25,26]. To
decrease the preparation pressure of polynitrogens, several researchers have used nitrogen-
rich compounds as alternative raw materials to nitrogen. Azide compounds, including
NaN3 [27], CsN3 [28], and KN3 [29], were initially tested as substrates for high-pressure
polynitrogen preparation. However, only high-pressure phases of azides, such as Phase I
and Phase II of NaN3 in the 0 GPa to 50 GPa range, have been found [27]. Conditions of
more than 100 GPa and 2000 K are still required to transform azides into an amorphous
polynitrogen structure.

Various novel methods for polynitrogen preparation under atmospheric conditions
have been recently reported. A series of nitrogen clusters, such as TiN12

+ [30], ZrN12
+ [31],

VNx
+(x = 8, 9, 10) [32], and LiNx

+ (x = 2, 4, 6, 8) [33], have been obtained by laser abla-
tion of nitrogen-rich compounds. Cyclic voltammetry (CV) has been used to synthesize
polynitrogen N8

− ions on pristine and boron-doped graphene, as well as on multiwalled
carbon nanotubes (CNTs) [34,35]. The use of plasma-enhanced chemical vapor deposition
(PECVD) to produce cg-N has opened an avenue for the synthesis of cg-N under ambient
conditions [36,37]. However, in-depth studies on the thermal behavior of polynitrogens
have not yet been conducted.

In conclusion, theoretical calculations prove that the cg-N polynitrogen is a high-
energy-density all-nitrogen material. Recent advances have also been made in preparing
cg-N polynitrogen at atmospheric pressure. However, the thermal stability and thermal de-
composition performance of cg-N polynitrogen, which are crucial for practical applications
in the field of energy materials, have not been determined. In this study, atmospherically
stable cg-N polynitrogen with multiwall carbon nanotubes (cg-N/CNT) was synthesized
by plasma-enhanced chemical vapor deposition. The deposition duration was optimized,
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and the product structures were characterized. The thermal properties of the polynitrogen
samples were characterized, and the decomposition kinetics of the samples were calculated
to investigate the application potential of polynitrogens as HEDMs.

2. Results and Discussion
2.1. X-ray Photoelectron Spectroscopy

The N 1s XPS spectrum of the NaN3/CNT substrate before and after the deposition
reaction is shown in Figure 1. Figure 1a shows that the spectrum of the NaN3/CNT
substrate exhibited two peaks at binding energies of 404.2 eV and 400.1 eV. Lorentz-
Gaussian fitting yielded a peak ratio of approximately 1:2. These two peaks were thus
determined to be generated by the azide ion of the raw material [36]. Figure 1b shows the
N 1s XPS spectrum of the product of the deposition reaction. The two peaks with binding
energies of 404.6 eV and 400.8 eV correspond to unreacted sodium azide. The slightly
higher binding energies of the peaks compared to those in the spectrum obtained before
deposition indicates that the sodium azide substrate may have undergone a solid-state
phase change during deposition, but the chemical environment of the azide ion did not
change significantly. Of particular interest is the peak with a binding energy of 397.9 eV,
which does not lie either within the oxynitride binding energy interval or the interval for
carbonitrides, such as pyridine or pyrrole [38]. Consequently, the 397.9 eV binding energy
was determined to correspond to a single N–N bond and a similar binding energy to that
determined by Benchafia et al. [36,39], confirming the presence of a nitrogenous product
with a new valence and the same chemical environment for each nitrogen atom.
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Figure 1. N 1s X-ray photoelectron spectrum of samples ((a) Before the deposition reaction, (b) after
the deposition reaction).

2.2. ATR-FTIR and Raman Spectroscopy

Both IR and Raman are valuable for identifying changes in the azide groups during
the deposition process because azide ions have active bending and asymmetric stretch
modes. Figure 2 shows the IR spectra of the samples of the substrate and products of
deposition with various reaction durations. The IR peaks at 2103 cm−1 and 638 cm−1 were
attributed to the ν2 mode and anti-symmetric ν3 mode of the azide anion. The peaks
at approximately 3300 cm−1 and 3390 cm−1 were assigned to the combination frequency
vibration of the 2ν2+ν3 mode. The spectrum of the sample obtained after plasma deposition
exhibited two prominent new peaks at approximately 1428 cm−1 and 879.8 cm−1. The
infrared peak at 879.8 cm−1 was determined to be the absorption peak of cg-N at close
to ambient pressure because of being identical to the T(TO) mode infrared absorption
peak at near zero pressure produced in theoretical simulations carried out by Caracas
et al. [40]. The prominent absorption peak near 1428 cm−1 was assigned to NaN3 Phase I

129



Molecules 2024, 29, 504

at atmospheric pressure [27]. The infrared spectrum demonstrated that absorption of cg-N
increased for two hours before decreasing. This result may have been caused by an increase
in the atmospheric temperature during the deposition process that made the products
disintegrate. Therefore, we selected a deposition duration of 2 h to ensure a sufficient
quantity of product was obtained.
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Figure 2. ATR-FTIR spectra of the samples before and after deposition at various reaction times.

The Raman spectra of the plasma samples before and after the two-hour deposition
reaction are shown in Figure 3. The Raman peaks of NaN3/CNT are shown by the black
line. The sharp peak near 1340 cm−1 and the peaks near 1585 cm−1 were assigned to
the D- and G-modes of the carbon nanotubes, respectively. The librational lattice mode,
the IR active bending ν2 mode, and the symmetric stretching ν1 mode of the unreacted
azide anion were characterized by three distinct, intense peaks at wavelengths of 117 cm−1,
1270 cm−1, and 1361 cm−1, respectively [25]. The red line indicates the spectrum obtained
after the deposition reaction: the new broad peak at 637 cm−1 and the weaker peak at
719 cm−1 correspond to the A mode and tilted vibration (T-TO) mode Raman absorption
estimated by Caracas [40]. The A-mode Raman peak of cg-N has also been experimentally
observed at high pressure, where the peak is shifted considerably toward lower wavenum-
bers as the pressure decreases [18–20]. Therefore, the broad peak at 637 cm−1 and the
sharp peak at 719 cm−1 in the spectrum of the deposition sample were determined to
be the A-mode and T-TO mode Raman peaks under the zero-pressure condition of cg-N,
respectively. The broad peaks at 210 cm−1 and 625 cm−1 were assigned to the nitrogen
network in Phase I of NaN3 at high pressure and temperature [27]. By comparing the
Raman peak fitting profiles of cg-N, the peak intensity ratio of cg-N to Phase I of NaN3 in
the product obtained from the coated substrate was 0.75, while that of the product obtained
from the powder substrate was 0.25. Preparation of the deposition substrate using the
coating method increased the content of the polymerized nitrogen product nearly threefold.

The three NaN3 peaks are also considerably broader and weaker in intensity in the
spectrum of the samples obtained after deposition than those obtained before deposition,
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indicating the dissociation of the azide anion and the formation of a nonmolecular nitrogen
network during the reaction. The simultaneous increase in the Id/Ig ratio for the CNT
peaks from 0.9 to 1.6 implies a significant increase in the defect density of CNTs. The
stabilizing effect of the carbon tubes on the internal cg-N is reduced, indicating that the
growth of cg-N during deposition results in an increase in carbon tube defects. This result
could also be a contributing factor to the rapid depletion of cg-N over time.
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Figure 3. Raman spectra of the samples before and after deposition.

2.3. X-ray Powder Diffraction

Figure 4 presents the XRD patterns obtained for the samples before (black line) and
after (red line) the plasma deposition reaction. In Figure 4a, the broad peaks (indicated by #)
at approximately 26◦ and 45◦ are the diffraction peaks of the (002) and (110) crystal planes
of the carbon nanotubes [41]. The series of strong peaks near 28◦, 31◦, and 36◦ correspond
to unreacted sodium azide. Three prominent new reflection peaks (indicated by *) appear
near 37◦, 66◦, and 77◦ in the spectrum of the sample obtained after plasma deposition.
These peaks are considerably weaker than the diffraction peaks of NaN3 because of the
lower crystallinity of the deposition products. Figure 4b shows the diffraction pattern
of the sample converted to a wavelength λ = 0.41686 Å, which is the parameter in the
diffraction cubic gauche polynitrogen reflection data measured by Eremets et al. [18]
The bulk modulus of cg-N can reach 261 GPa at atmospheric pressure [42], which by far
exceeds that of conventional ultrahard materials, such as silicon carbide. Therefore, the
lattice spacings of cg-N do not change significantly at atmospheric pressure. The three
diffraction peaks mentioned above were transformed into 2ndeta values of 9.8, 17.0, and
19.7. Comparison with the diffraction data of cg-N at 115 GPa shows that these new peaks
are reflections by the (110), (211), and (220) crystal planes of cg-N. However, the relative
intensities of these diffraction peaks are slightly different from those of cg-N, probably
because of the crystallographic orientation induced by the carbon nanotubes.
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Figure 4. X-ray powder diffraction patterns of plasma deposition samples. (a) Diffraction patterns
taken with λ ~ 1.54 Å, (b) diffraction pattern converted to λ = 0.41686 Å, (*) peaks of cg-N, (#) peaks
of CNT.

2.4. Transmission Electron Microscopy

TEM images and selected area electron diffraction (FFT) images of the plasma de-
posited samples are shown in Figure 5. In the high-resolution TEM images, the deposited
polynitrogen with a diameter of approximately 20–30 nm is distributed inside the multi-
walled carbon nanotubes. Figure 5b shows the fast Fourier transform (FFT) image of the
polynitrogen samples, from which the crystal plane spacing is measured as 1.75 Å. This
crystal plane spacing is very close to the (200) plane spacing of 1.73 Å for cg-N obtained by
Eremets et al. [18]. However, polynitrogen samples are considerably amorphous because
plasma-deposited samples have low crystallinity, which is consistent with the XRD data.
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2.5. Thermal Decomposition Performance of cg-N/CNT

To characterize the thermal stability of the samples, we measured the thermal de-
composition temperature of the cg-N/CNT sample and its substrates using differential
scanning calorimetry (DSC). Figure 6 presents the DSC curves obtained at a heating rate of
10 ◦C/min for the pure NaN3, NaN3/CNT and cg-N/CNT samples. The decomposition
peak of pure sodium azide occurs at 412 ◦C, which is in reasonable agreement with that
reported in the literature [43,44]. A broad exothermic peak between 275 ◦C and 350 ◦C
appears for the NaN3/CNT sample obtained by compounding sodium azide with carbon
nanotubes. The interaction of the carbon nanotubes with NaN3 in the interior decreases
the thermal stability and therefore the thermal decomposition temperature of NaN3. There
are two prominent exothermic peaks in the DSC curves of cg-N/CNT. The thermal decom-
position peak of cg-N obtained by deposition occurs at approximately 429 ◦C. This result
indicates that cg-N/CNT has superior thermal stability to the other two samples and a
similar decomposition temperature to that determined using temperature programmed
desorption (TPD) by Zhuang et al. [37]. Theoretical calculations suggest that carbon nan-
otubes stabilize polynitrogens, such as N8 oligomers [35], and may also contribute to the
high thermal decomposition temperature of cg-N.

Molecules 2024, 29, x FOR PEER REVIEW  7  of  13 
 

 

of 10 °C/min for the pure NaN3, NaN3/CNT and cg‐N/CNT samples. The decomposition 
peak of pure sodium azide occurs at 412 °C, which is in reasonable agreement with that 
reported  in  the  literature [43,44]. A broad exothermic peak between 275 °C and 350 °C 
appears for the NaN3/CNT sample obtained by compounding sodium azide with carbon 
nanotubes. The interaction of the carbon nanotubes with NaN3 in the interior decreases 
the thermal stability and therefore the thermal decomposition temperature of NaN3. There 
are two prominent exothermic peaks in the DSC curves of cg‐N/CNT. The thermal decom‐
position peak of cg‐N obtained by deposition occurs at approximately 429 °C. This result 
indicates  that cg‐N/CNT has superior  thermal stability  to  the other  two samples and a 
similar decomposition temperature to that determined using temperature programmed 
desorption (TPD) by Zhuang et al. [37]. Theoretical calculations suggest that carbon nano‐
tubes stabilize polynitrogens, such as N8 oligomers [35], and may also contribute to the 
high thermal decomposition temperature of cg‐N. 

 
Figure 6. DSC curves of pure NaN3, NaN3/CNT and cg‐N/CNT obtained at a heating  rate of 10 
°C/min. 

2.6. Non‐Isothermal Decomposition Kinetics 

To  further analyze  the behavior of  the different components of the sample during 
thermal decomposition, the nonisothermal kinetic parameters of the exothermic decom‐
position reaction were investigated. The apparent activation energy (Ea) was calculated 
using the Kissinger [45] and Ozawa [46] equations shown below: 

ln ൬
ఉ

೛்
మ൰ ൌ ln ቀ

஺ೖோ

ாೖ
ቁ െ  ாೖ

ோ ೛்
   (1)

lg𝛽 ൅  ଴.ସହ଺଻ா೚
ோ ೛்

ൌ 𝐶  (2)

where β is the heating rate for the sample, R is the gas constant (commonly taken as 8.3145 
J/mol∙K), and Tp  is  the  exothermic peak determined using  the heating  rate mentioned 
above. The apparent activation energy (Ea) of the reaction can be calculated from the slope 
of the linear fit between β and 1/Tp for the different equations. The preexponential constant 
(Ak) can be obtained from the intercepts of the plots. 

The DSC measurements obtained at different heating rates are shown  in Figure 7, 
and Table 1 shows the kinetic parameters of cg‐N/CNT determined for heating rates of 5, 
10, 20 and 25 °C/min. Substituting these parameters into the Kissinger and Ozawa equa‐
tions yields essentially equivalent Ea values. The apparent activation energy of cg‐N/CNT 
obtained by the Kissinger method is 84.7 kJ/mol, similar to the 91.9 kJ/mol obtained by the 
Ozawa method. The pre‐exponential factor of cg‐N/CNT is 12.8 min−1. Furthermore, the 

Figure 6. DSC curves of pure NaN3, NaN3/CNT and cg-N/CNT obtained at a heating rate of
10 ◦C/min.

2.6. Non-Isothermal Decomposition Kinetics

To further analyze the behavior of the different components of the sample during ther-
mal decomposition, the nonisothermal kinetic parameters of the exothermic decomposition
reaction were investigated. The apparent activation energy (Ea) was calculated using the
Kissinger [45] and Ozawa [46] equations shown below:
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where β is the heating rate for the sample, R is the gas constant (commonly taken as
8.3145 J/mol·K), and Tp is the exothermic peak determined using the heating rate men-
tioned above. The apparent activation energy (Ea) of the reaction can be calculated from the
slope of the linear fit between β and 1/Tp for the different equations. The preexponential
constant (Ak) can be obtained from the intercepts of the plots.

The DSC measurements obtained at different heating rates are shown in Figure 7, and
Table 1 shows the kinetic parameters of cg-N/CNT determined for heating rates of 5, 10, 20
and 25 ◦C/min. Substituting these parameters into the Kissinger and Ozawa equations
yields essentially equivalent Ea values. The apparent activation energy of cg-N/CNT
obtained by the Kissinger method is 84.7 kJ/mol, similar to the 91.9 kJ/mol obtained by
the Ozawa method. The pre-exponential factor of cg-N/CNT is 12.8 min−1. Furthermore,
the apparent activation energy of cg-N/CNT are lower than that of NaN3, which implies
that cg-N has a higher thermal stability and decomposition rate above the decomposition
temperature than NaN3.
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Table 1. The characteristic parameters for thermal decomposition processes of cg-N.

Sample
Component

Heating
Rate β

(◦C/min)

Exothermic
Peak Tp (◦C)

Apparent Activation
Energy Ea (kJ/mol) Pre-Exponential

Constant lnAk
Kissinger Ozawa

cg-N

5 408.1

84.7 91.9 12.8
10 429.0
20 464.8
25 476.9

NaN3

5 397.6

184.9 191.2 31.8
10 412.3
20 422.9
25 426.8
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2.7. TG-DSC-FTIR-MS Analysis

DSC-TG-FTIR-MS analysis was performed to characterize the heat released and the
composition of the volatile gas released during the thermal decomposition of cg-N/CNT.
Figure 8 shows the TG-DSC curve of cg-N/CNT obtained at a heating rate of 10 ◦C/min.
Three significant thermal weight loss processes can be observed during the decomposition
of the sample from room temperature to complete decomposition. The decomposition
of NaN3 in the carbon nanotubes occurs between 275 and 350 ◦C, corresponding to the
initial stage with an approximately 7.98 percent weight loss. The decomposition of the
individual sodium azide crystals begins around 400 ◦C, which corresponds to the second
stage with a weight loss of 12.01 percent. The disintegration of cg-N in the carbon nanotubes
corresponds to the third stage of thermal weight loss, which starts at approximately 430 ◦C
and results in a mass decrease of approximately 1.91 percent. Whereas XPS can only be
used to characterize the surface of a sample, the entire sample is characterized by thermal
analysis; thus, a significantly smaller mass percentage of cg-N is determined by thermal
analysis than by XPS. The original exothermic peaks were divided into two peaks based
on a Bigaussian function [47] to determine the ratios of the quantity of heat released by
the various components, where the curves with the fitted peaks are presented in Figure 8b.
Comparing the integration areas of the different curves results in an almost 3:2 ratio for the
heat released by cg-N to that of NaN3 with the CNT substrate in an argon gas atmosphere.
Considering that the mass ratio of cg-N to NaN3 is 6.3:1, the heat released per unit mass by
cg-N is more than four times that of NaN3. Although the proportion may not be precise
due to the small quantity of products tested, the heat release of cg-N polynitrogen is
considerably higher than that of NaN3.
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of cg-N/CNT at a heating rate of 10 ◦C/min. Charge ratios (m/z) of 28, 14, 44, 30, 29, and
27 were detected. Volatile gases with charge ratios of 28 and 14 were the main products
of the thermal decomposition of cg-N/CNT at 275–375 ◦C and 400–440 ◦C, respectively.
These thermal decomposition products were assumed to be gaseous and atomic nitrogen
because no other signals appeared in the FT-IR spectra. That is, the major gas product of
cg-N/CNT is nitrogen, which is considered a nonpolluting gas.
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3. Materials and Methods
3.1. Materials

Jiangsu Xianfeng Nanomaterials Technology Co., Ltd (Jiangsu, China). supplied mul-
tiwalled carbon nanotubes (CNTs) with an inner diameter of 10–20 nm and a length of
0.5–200 µm. Sodium azide (99.5%) was obtained from Sigma-Aldrich Co., LLC (Shanghai,
China). High-purity nitrogen and argon gases were provided by Xi’an Weiguang Tech-
nology Co. (Xi’an, China), which supplied multiwalled carbon nanotubes (CNTs) with an
inner diameter of 10–20 nm and a length of 0.5–200 µm.

3.2. Experimental Methods

Sodium azide (10 g) was dissolved in deionized water (15 g) at room temperature to
prepare a saturated aqueous solution of sodium azide. The sodium azide solution (10 g)
was added to a Pyrex tube containing short multiwall carbon nanotubes (200 mg). The
mixture was sonicated three times for 60 min each time. The resulting suspension was
coated on a quartz slide. and completely dried to yield the NaN3/CNT substrate.

The NaN3/CNT substrate (50 mg) was placed in a plasma vapor deposition chamber.
A gas mixture of 50% nitrogen (N2) and 50% argon (Ar) was introduced into the deposition
chamber at a rate of 30 mL/min for at least 30 min. The pressure in the deposition chamber
was adjusted to 40 ± 2 Pa, and a power of 70 W was applied. The reaction time was at least
0.5 h. The system was gradually restored to atmospheric pressure, and plasma-synthesized
samples were collected.

3.3. Characterization Methods

Fourier transform infrared spectroscopy (FT-IR) was performed using an infrared
spectrometer (Thermo Scientific (Waltham, MA, USA), ATR50) equipped with an attenu-
ated total reflectance (ATR) accessory. Raman spectra were obtained (HORIBA Labram
(Tokyo, Japan), HR Evolution) at a 532 nm laser excitation and a spectral resolution of
2 cm−1. Transmission electron microscopy (TEM) images and selected area electron diffrac-
tion images were obtained with a transmission electron microscope (Talos F200i). X-ray
diffraction (XRD) was conducted on an X-ray powder diffractometer (PANalytical (Almelo,
The Netherlands), EMPYREAN) in the 5◦ to 90◦ range using Cu Kα radiation (λ = 1.54 Å)
and a step size of 0.02◦. XPS data were collected using an X-ray photoelectron spectrome-
ter (Thermo Scientific (Waltham, MA, USA), K-Alpha) with Al Kα radiation (1486.6 eV)
operating at 225 W.

The thermal properties of the samples were investigated by differential scanning
calorimetry (METTLER TOLEDO (Giessen, Germany), DSC 2). The temperature ranged
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from ambient temperature to 600 ◦C, and argon gas at a flow rate of 50 mL/min was used.
Samples weighing 1.5 ± 0.2 mg were placed in an Al2O3 crucible. Pure sodium azide
and the NaN3/CNT samples were heated at a rate of 10 ◦C/min. The deposited samples
were heated at rates of 5, 10, 20, and 25 ◦C/min to determine the kinetic parameters.
DSC-TG-MS-FTIR analysis was performed on a simultaneous thermal analyzer (NETZSCH
(Selb, Germany) STA449F3 STA). The deposited samples weighing approximately 1 mg
were heated from 50 ◦C to 600 ◦C at a heating rate of 10 ◦C/min. The volatile products
were analyzed by mass spectrometry (NETZSCH (Selb, Germany), QMS403) and in situ IR
(Thermo Scientific (Waltham, MA, USA), NEXUS870).

4. Conclusions

Polynitrogen samples were synthesized under atmospheric pressure utilizing coated
substrates as precursor by plasma-enhanced chemical vapor deposition on carbon nan-
otubes. The characterization results of the deposition product were all consistent with those
of cg-N. The polnitrogen content increased nearly three times compared to the samples
obtained from the powder substrate. Thermal analysis at a heating rate of 10 ◦C/min
showed a decomposition temperature of 429 ◦C for the cg-N sample. The apparent activa-
tion energy of cg-N calculated by the Kissinger and Ozawa equations was 84.7 kJ/mol and
91.9 kJ/mol, respectively, with a pre-exponential constant of 12.8 min−1. Therefore, cg-N is
an all-nitrogen material with a high energy density and ideal thermal stability, for which
applications of high energy density materials are worth exploring.
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Abstract: This study investigates three carbide-derived carbon (CDC) materials (TiC, NbC, and Mo2C)
characterized by uni-, bi-, and tri-modal pore sizes, respectively, for energy storage in both neat and
acetonitrile-diluted 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. A distribution
of micro- and mesopores was studied through low-temperature N2 and CO2 adsorption. To elucidate
the relationships between porosity and the electrochemical properties of carbon materials, cyclic
voltammetry, galvanostatic cycling, and electrochemical impedance spectroscopy measurements were
conducted using three-electrode test cells. The ultramicroporous TiC-derived carbon is characterized
by a high packing density of 0.85 g cm−3, resulting in superior cathodic and anodic capacitances for
both neat ionic liquid (IL) and a 1.9 M IL/acetonitrile electrolyte (93.6 and 75.8 F cm−3, respectively,
in the dilute IL). However, the bi-modal pore-sized microporous NbC-derived carbon, with slightly
lower cathodic and anodic capacitances (i.e., 85.0 and 73.7 F cm−3 in the dilute IL, respectively), has a
lower pore resistance, making it more suitable for real-world applications. A symmetric two-electrode
capacitor incorporating microporous CDC-NbC electrodes revealed an acceptable cycle life. After
10,000 cycles, the cell retained approximately 75% of its original capacitance, while the equivalent
series resistance (ESR) only increased by 13%.

Keywords: nanoporous carbon; carbide-derived carbon; pore size distribution; electrical double-layer
capacitor; ionic liquid electrolytes

1. Introduction

The increasing global interest in high-performance energy storage devices has spurred
the exploration of various electrochemical storage solutions, including electrostatic, redox,
and hybrid storage systems. Among these, electrostatic energy storage devices, commonly
known as ultracapacitors (or supercapacitors), stand out as the most environmentally
friendly option with the longest cycle life. These devices comprise large-surface carbon
electrodes that can endure thousands of charge and discharge cycles. Their exceptionally
low internal resistance contributes to their outstanding power characteristics, giving them
a significant advantage over redox storage devices like secondary batteries. However, a
major challenge faced by ultracapacitor developers is the relatively low energy density,
which remains over 20 times lower than that of advanced lithium batteries.

The energy storage mechanism in ultracapacitors involves ion electrosorption on the
surface of porous carbon electrodes. In general, a fundamental principle dictates that the
larger the surface area accessible to the electrolyte, the greater the device’s capacity [1].
Nanoporous carbon stands out as the most appealing electrode material, primarily due
to its high surface-area-to-volume ratio. The impact of pore sizes on the capacitance
of carbon materials has garnered significant attention. Research has established that a
higher capacitance results from optimal matching between electrolyte ions and carbon pore
sizes [1–4]. Carbide-derived carbon (CDC), a well-recognized representative of nanoporous
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carbons, has consistently demonstrated its suitability for ultracapacitor applications [5,6].
The structure and porosity of CDC can be meticulously controlled by adjusting the structure
and composition of the precursor carbide and the synthesis conditions [2]. Moreover, the
textural properties of CDC can be finely adjusted during post-treatment using either
chemical methods [7–9] or physical activation techniques [10–13].

In accordance with the general definition of capacitance, a larger specific surface area
corresponds to a higher capacitance. However, it is crucial to consider that this relationship
is typically non-linear for materials with larger specific surface areas [14,15]. Therefore, it
is essential to account for the pore sizes of the material as well [2,3,16,17]. In recent years,
several studies [2,3,18,19] have introduced combined models for micro- and mesoporous
carbon materials to illustrate the relationship between capacitance and pore size. These
studies have demonstrated that both gravimetric [2,18] and volumetric [2,3] capacitance
can be effectively simulated using data obtained from CO2 and N2 adsorption experiments.

The primary requirements for ultracapacitor electrolytes include high ionic conduc-
tivity, chemical and electrochemical stability, a wide operating temperature range, low
resistance, and environmental compatibility [20]. Liquid electrolytes can be broadly catego-
rized into non-aqueous, aqueous, and ionic liquid electrolytes [20,21].

Finding an electrolyte that fulfills all requirements can be quite challenging. Aqueous
electrolytes offer high conductivity and capacitance but suffer from low energy density
due to a narrow applicable voltage window (approximately 1 V). In contrast, organic (non-
aqueous) electrolytes and ionic liquids (ILs) can operate at higher voltages but generally
exhibit lower ionic conductivity [20,22]. One drawback of organic electrolytes is the
larger size of their ions, which increases the specific resistance compared to water-based
electrolytes and necessitates electrodes with larger pore sizes, thus reducing the electrode
density [22]. Nevertheless, owing to their broader applicable voltage window (2.6–2.9 V),
organic electrolytes, primarily based on quaternary ammonium salts in propylene carbonate
(PC) or acetonitrile (ACN), currently dominate the field of commercial storage devices [1,
22,23].

Ionic liquids, which consist of asymmetric organic cations and anions, offer several
advantages over organic electrolytes. They exhibit high chemical, thermal, and electrochem-
ical stability, are non-flammable, and permit the use of a higher electrochemical stability
window (ESW), typically exceeding 3 V. In accordance with the characteristics commonly
observed in organic electrolytes, it is noteworthy that the reduction in ionic size within
ionic liquids (ILs) corresponds to decreased electrical resistance and an increase in specific
capacitance. This principle has been explored in previous studies, such as those referenced
in [24,25], in which the influence of cation size in IL electrolytes was investigated, and
in [26], which delves into the electrochemical performance of various anions. Furthermore,
an investigation was conducted employing three distinct ionic liquids (EMIm-TFSI, EMIm-
BF4, and BMIm-PF6) in conjunction with porous carbon electrodes characterized by an
average pore size of approximately 1.2 nm. This study revealed that smaller ions are more
involved in the charging mechanism near the potential of zero charge (pzc), whereas at
higher potential values, the mechanism shifts toward preferred counterion adsorption [27].

A notable drawback of IL-based electrolytes is their high viscosity, especially at lower
temperatures [1,20,23,28,29]. In order to address the viscosity challenge, ionic liquids can
be blended with low-viscosity organic solvents like PC or ACN [30]. Using a mixture of
1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIm-TFSI) and ACN,
mesopores were shown to facilitate fast ion transport in carbon electrodes, achieving a
specific capacitance of up to 130 F g−1 [31].

Largeot et al. investigated the relationship between carbon pore size and ion size
while employing EMIm-TFSI as an electrolyte. In this context, EMIm+ and TFSI− ions are
roughly comparable in size (0.7 and 0.79 nm in their longest dimensions). Their study
revealed that the maximum capacitance of 160 F g−1 (calculated from a galvanostatic
experiment conducted at 5 mA cm−2 in a neat EMIm-TFSI electrolyte at 60 ◦C using a
voltage window of 0–3 V) was attained with carbon possessing an average pore width of
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0.72 nm. This dimension closely matches the size of the EMIm+ and TFSI− ions, resulting in
optimal ion adsorption efficiency [4]. A separate study [32], employing TiC-derived CDC
as the electrode and a 2 M EMIm-TFSI/ACN mixture as the electrolyte in a three-electrode
configuration, also concluded that the maximum capacitance is achieved when the pore
size of the carbon closely aligns with the ion size. In smaller nanopores, ion adsorption,
especially of larger TFSI anions, was diffusion-controlled due to hindered accessibility
caused by size effects. A similar observation was reported regarding ion sizes and sub-
nanopore matching for EMIm-TFSI and EMIm-BF4, where secondary carbon nanopores of
0.50 nm were exclusively accessible to small BF4

− anions (0.48 nm) but not to larger TFSI−

ions (0.79 nm) [33].
The interaction between ionic liquid structures and various carbon materials and

their consequential effects have been the subject of prior investigations [34]. These studies
emphasized that the selection of a carbon electrode should not solely be based on pore
size and surface area; it should also consider the interaction between the surface chemistry
of the electrode and the electrolyte. While materials with high specific surface areas,
such as mesoporous and activated carbon, exhibited respectable specific capacitance and
energy density, materials resembling graphene and carbon nanotubes with open surfaces
demonstrated superior power density.

Härmas et al. have reported that ultramicroporous materials are unsuitable for high-
power and high-energy-density supercapacitors due to the slow establishment of adsorp-
tion equilibrium in viscous ionic liquids [35]. However, when the viscosity of the ionic
liquid is reduced by introducing an additional solvent like ACN, ultramicroporous ma-
terials become exceedingly attractive due to the increased density at the corresponding
electrodes, resulting in enhanced volumetric energy and power density [36].

Previously, the interconnectedness of porosity parameters in carbon materials and
their utility in quantitatively predicting EDLC across various organic electrolytes were
demonstrated [2,3]. In the present study, a preliminary investigation of three CDC materials,
originating from TiC, NbC, and Mo2C, characterized by unimodal, bimodal, and trimodal
pore size distributions, respectively, is undertaken. This investigation encompasses energy
storage within both undiluted and diluted ILs. The primary objective is to assess whether
the energy storage properties of ultramicroporous carbon materials, akin to the majority
of CDCs, are enhanced in IL environments due to the presence of larger transport pores
within the carbon material structure.

2. Results and Discussion

The three carbon materials (CDCs) with variable pore size distributions used in this
study were made by the chlorination of different metal carbides: TiC at a temperature of
500 ◦C [10], Mo2C at a temperature of 800 ◦C [37], and NbC at a temperature of 1000 ◦C [2].
The CDCs are distinguished as CDC-TiC, CDC-NbC, and CDC-Mo2C, respectively.

As previously shown [2,38], the structural order and porosity of CDCs are related to
the structure of the precursor carbide and the temperature of chlorination; the higher the
temperature, the higher the degree of graphitization and the larger the average pore size.
The microstructure has also been studied in CDCs derived from TiC [10,39], NbC [39], and
Mo2C [37,40]. In Figure 1a, one can observe that the N2 adsorption isotherm for CDC-TiC
corresponds to Type I (a) by IUPAC [41], characteristic of microporous materials with a
narrow pore size distribution. The CDC-NbC exhibits a Type I (b) isotherm, which shows a
broader pore size distribution in the micropore region. The CDC synthesized from Mo2C
(i.e., CDC-Mo2C) corresponds to Type IV (a), with a noticeable hysteresis loop indicating
the presence of mesopores.

The pore size distributions (PSDs) were calculated from the N2 isotherms and are
presented in Figure 1b. The PSD of all three CDCs contains a peak with pore sizes around
0.8 nm. CDC-NbC contains additional pores at 1.6 nm. CDC-Mo2C represents microme-
soporous carbon, whose PSD contains, in addition to micropores at 0.8 and 1.9 nm, a
considerable amount of mesopores at 3 nm.
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Figure 1. N2 adsorption isotherms (a) and the corresponding pore size distribution of CDC materials
calculated from N2 and CO2 isotherms (b).

The texture characteristics of the CDCs are collected in Table 1. Mo2C-CDC reveals the
largest specific surface area as well as total porosity (2204 m2g−1 and 1.67 cm3g−1, respec-
tively), whereas CDC-NbC has the most significant amount of micropores (0.90 cm3g−1).
Among all three CDCs, CDC-TiC has a majority of pores smaller than 1 nm. Also, the PSD
calculated from CO2 adsorption (inset on Figure 1b) confirms that the carbon made of TiC
has the highest proportion of sub-nanometer-sized pores.

Table 1. Specific surface area (SBET and Sdft) including micro- (Sdft,µ) and mesopore (Sdft,meso) ratios,
total pore volume (Vt), and volume of different pore size fractions (V< x nm) calculated from N2

adsorption isotherms.

ID SBET
(m2 g−1)

Sdft
(m2 g−1)

Sdft,µ
(m2 g−1)

Sdft,meso
(m2 g−1)

V tot
(cm3 g−1)

V1nm
(cm3 g−1)

V1.5nm
(cm3 g−1)

V2nm
(cm3 g−1)

CDC-TiC 1257 1318 1306 12 0.61 0.47 0.52 0.53
CDC-NbC 2247 1893 1765 128 1.17 0.40 0.68 0.9

CDC-Mo2C 2204 1951 1356 595 1.67 0.32 0.48 0.69

An electrochemical evaluation of the CDC electrodes was performed in a three-
electrode test cell using the neat ionic liquid EMIm-TFSI as the electrolyte at 60 ◦C and a
1.9 M EMIm-TFSI/ACN mixture at room temperature. A cyclic voltammetry (CV) study
was performed over a potential range of −1.4 V to +1.4 V vs. a carbon electrode.

Figure 2 presents the cyclic voltammetry curves of the CDC materials measured
at a voltage scan rate of 1 mV s−1 in a potential window of −1.4 V to +1.4 V. A visual
examination of these graphs (Figure 2a,b) reveals a characteristic flat minimum in the central
region of the curve, near 0 V, corresponding to the zero-charge potential of carbon. This is
caused by the fact that, as the electrode potential increases, the number of electrosorbed ions
on the surface increases too, which leads to an increase in the density of the electric charge
on the electrode surface, resulting in an increase in the capacitance of the electric double
layer. This minimum is located somewhat differently on various CDC materials, with the
flatness of the minimum increasing as the carbon material becomes more microporous.
For example, in the case of CDC-TiC in the EMIm-TFSI/ACN electrolyte, no zero-charge
minimum is observed at all. The flatness of this minimum is influenced by the electrolyte
viscosity, ion dimensions, and the micromesoporous nature of the carbon (cf. Table 1).
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Figure 2. Cycling voltammetry curves of CDC materials in neat IL (a) and IL/ACN mixture
(b), expressed as capacitance (Ccv) vs. potential at a scan rate of 1 mV s−1.

In addition to the minimum, the curves can be characterized by the current response
upon potential reversal, specifically the “backswing.” For example, it is evident that after
the potential reversal (after +1.4 V or −1.4 V) in the neat EMIm-TFSI (Figure 2a), the curves
exhibit a flatter curvature compared to dilute electrolyte solutions (Figure 2b). This is again
due to the significantly higher viscosity of the neat ionic liquid. Additionally, there is an
observable dependence of the slope on the carbon material, where a smaller average pore
size (1.23 nm) of CDC-NbC compared to 1.74 nm of CDC-Mo2C leads to a shallower slope.
For instance, a distinctive change in the slope (after potential reversal at +1.4 V) is observed
in cells with the neat IL electrolyte, where the slope increases in the sequence CDC-TiC,
CDC-NbC, and CDC-Mo2C. However, in the cathodic (negative potential) region, CDC-TiC
stands out due to its very high impedance at negative potentials, which is “amplified”
by the high viscosity of the IL and its low conductivity. Therefore, a change in potential
causes a sharp current drop to 0 and distorts the CV curve shape. In dilute electrolytes, the
slope after potential reversal is steeper, primarily due to the lower electrolyte viscosity and
higher conductivity mentioned earlier.

In the mixed IL/ACN electrolyte, when comparing the CV curves of CDC-NbC and
CDC-Mo2C (Figure 2b), they are quite similar, with CDC-TiC, the most microporous, show-
ing some differences. This may be attributed to the ion solvation effects and slightly larger
ion dimensions in the EMIm-TFSI/ACN electrolyte compared to the neat IL. Furthermore,
the lower anodic capacitance of the CDC-TiC material supports this hypothesis, influenced
by the larger dimensions of TFSI− anions compared to EMIm+ cations (0.6 × 0.9 nm vs.
0.5 × 0.8 nm [42]).

To evaluate the EDL capacitance of CDCs at different current densities (0.5 to 5 mA cm−2),
constant current (CC) charge–discharge measurements were conducted in the anodic and
cathodic potential ranges. A 5 min holding at the operating potential was applied in order
to achieve electrosorption equilibrium (i.e., maximum charging) at the given potential,
consequently leading to better reproducibility of the capacitance values. Characteristic CC
curves are shown in Figure 3, at a current density of 0.5 mA cm−2 and potential ranges
of 0 to +1.4 V and 0 to −1.4 V. In Figure 3, CDC-TiC, the most microporous material,
stands out somewhat at anodic potentials, manifesting as non-linear charge–discharge
curves in the neat IL electrolyte. This behavior is due to the high viscosity of the neat
IL (14.2 cP [43]) and the interaction between somewhat larger electrolyte anions and the
sub-nanometer-sized pores. After diluting the IL with ACN, the viscosity of the electrolyte
significantly decreases (by ~10-fold [43]), and the non-linearity of the charge–discharge
curves of CDC-TiC disappears.
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Table 2 provides the specific capacitance values of all three CDCs in this study, cal-
culated using the constant current method and measured in a neat ionic liquid electrolyte
at 60 ◦C. Comparing these values to the gravimetric capacitances, it can be observed that
CDC-Mo2C, with the largest pore dimensions, has nearly equal cathodic and anodic ca-
pacitances of 140 vs. 146 F g−1. A similar level of 145 F g−1 is achieved by CDC-NbC in
the cathodic direction. This uniform level is a result of these materials’ pore size and ion
dimensions having an almost “ideal” fit in the IL. Moreover, even the high viscosity of the
electrolyte does not impose limitations on achieving this capacitance level.

Table 2. Specific capacitance of CDCs at positively and negatively charged electrode potentials by
CC (0.5 mA cm−2) in EMIm-TFSI electrolyte.

Carbon Sample C−cc (F g−1) C+
cc (F g−1) C−cc (F cm−3) C+

cc (F cm−3)

CDC-TiC 127.3 113.3 99.9 88.9
CDC-NbC 145.1 110.0 81.6 61.8

CDC-Mo2C 140.1 146.0 63.2 65.9

The lower capacitance of the most microporous material (CDC-TiC) is due to its lower
specific surface area and significantly lower porosity. The anodic capacitance of CDC-TiC is
lower because the pore dimensions of its carbon are very close to the size of the electrolyte
anions, and not all micropores are accessible to the electrolyte ions. However, the limited
access to the micropores is compensated by the very high carbon packing density in the case
of CDC-TiC, which therefore reveals the highest volumetric capacitance values, ranging
from 89 to 100 F cm−3 for the anodic and cathodic capacitance, respectively. In contrast,
CDC-NbC, which has significantly higher overall porosity and surface area than CDC-TiC,
exhibits lower density and, therefore, lower volumetric capacitance compared to CDC-TiC.
As a rule, the larger the pore volume, the lower the material density (as more pores result
in a decrease in material density).

When comparing the capacitance values in the neat IL (Table 2) and the diluted
electrolyte (Table 3), it is evident that ion solvation by ACN shifts the capacitance values
in both directions, sometimes increasing and sometimes decreasing. For example, the
cathodic capacitance is increased in CDC-TiC (in the dilute electrolyte compared to the neat
IL), most probably due to a decrease in electrolyte viscosity, which improves ion diffusion
in the micropores, while the dilution of IL has a negligible effect on the anodic capacitance,
which is practically the same in both electrolytes (113 F g−1).
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Table 3. Specific capacitance of CDCs at positively and negatively charged electrode potentials by
CC (0.5 mA cm−2) in EMIm-TFSI/ACN electrolyte.

Carbon Sample C−cc (F g−1) C+
cc (F g−1) C−cc (F cm−3) C+

cc (F cm−3)

CDC-TiC 137.6 113.0 93.6 75.8
CDC-NbC 138.3 119.8 85.0 73.7

CDC-Mo2C 140.0 127.9 64.8 59.2

CDC-NbC behaves differently from TiC in terms of capacitance. In the dilute IL,
CDC-NbC cathodic capacitance is lower (138 vs. 145 F g−1) compared to the solvent-free
environment. However, in the case of anodic capacitance, the situation is reversed, with
~120 F g−1 vs. 110 F g−1 for the IL/ACN and neat IL, respectively. This shows that carbon
materials with sufficiently large micropores are suitable for achieving high capacitance in
ionic liquids, but in a solvent-diluted environment, the solvation of ions begins to limit the
capacitance, which is particularly pronounced in NbC at the anodic potential.

When comparing the capacitances of CDC-Mo2C in two different electrolytes (see
Tables 2 and 3), it appears that its large pores are not limiting and are suitable for cathodic
potential, but a capacitance decrease occurs at the anodic potential in the solvent-diluted
environment (i.e., capacitance decreases from 146 F g−1 to 128 F g−1). However, CDC-
Mo2C provides valuable information due to its very large pore dimensions when fitting
with the solvent effects and pore dimensions in the electrolyte. Nevertheless, CDC-Mo2C
has significantly lower volumetric capacitance (60–66 F cm−3) in comparison to the other
materials studied, making it less practical for EDL devices due to its low energy density.

The analysis of the CC capacitance vs. current density in the range 0.5–5.0 mA cm−2

was performed using ACN-diluted IL (cf. Figure 4). The findings from this study confirm
that the cathodic capacitance, attributed to the electrosorption of EMIm+ ions, surpasses the
anodic capacitance by approximately 20 F g−1. This phenomenon is particularly notable
due to the larger dimensions of the TFSI− anions. Furthermore, the influence of the ion
size becomes evident in the substantial discrepancy in capacitance observed between the
CDCs at the anode. This discrepancy suggests restricted accessibility to micropores when
the dimensions of the ions closely approach those of the micropores themselves.
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Figure 4. Specific capacitance (Ccc) of carbon materials calculated at negative −1.6 V (a) and positive
1.4 V (b) potentials at different current densities.

Cyclic voltammetry was utilized to investigate the behavior of electrode materials
at positive and negative electrode potentials. To ascertain electrochemical stability, mea-
surements were conducted over a wide electrochemical window, i.e., +1.8 V to 0 V and
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−1.8 V to 0 V vs. a carbon reference electrode. The CV diagrams for the materials studied
are presented in Figure 5.
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voltage limits. As these limits are not the same for different carbons, electrochemical 
window studies were conducted separately at positive and negative electrode potentials. 
In this process, the electrode potential was incrementally increased, starting from 1.0 V 
with a 200 mV step and gradually reaching 1.6 V, followed by smaller 100 mV increments 
up to 1.8 V.  

For the CDC-TiC material, its cathodic curves in the neat ionic liquid are relatively 
similar, and starting from −1.6 V, there is a gradual increase in current during charging 
(i.e., an increase in capacitance). Such an increase in current results in a flat peak in the 
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Figure 5. Cycling voltammetry curves (v = 1 mV s−1) for positively (red) and negatively (blue)
charged electrodes expressed as gravimetric capacitance (CCV) for CDC-TiC (a,b), CDC-NbC (c,d),
and CDC-Mo2C-CDC (e,f). Electrolyte and measurement temperature are shown on each graph.

Evaluating the electrochemical stability of materials is essential to determining the
voltage limits. As these limits are not the same for different carbons, electrochemical
window studies were conducted separately at positive and negative electrode potentials.
In this process, the electrode potential was incrementally increased, starting from 1.0 V
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with a 200 mV step and gradually reaching 1.6 V, followed by smaller 100 mV increments
up to 1.8 V.

For the CDC-TiC material, its cathodic curves in the neat ionic liquid are relatively
similar, and starting from −1.6 V, there is a gradual increase in current during charging
(i.e., an increase in capacitance). Such an increase in current results in a flat peak in the
reverse scan of the CV cycle in the −0.8 V to −0.6 V range, which slightly grows with an
expanding CV potential window, indicating a partially reversible process.

In the positive potential region for the CDC-TiC material, the CV curves up to
+1.4 V are relatively similar. With further potential increases beyond +1.6 V, the polarization
current increases rapidly, indicating electrolyte decomposition and potential partial surface
blocking by system degradation products. This process becomes especially evident in the
curve of +1.7 V. Therefore, the shape of the discharge at +1.7 V polarizations is significantly
different from lower potentials.

In the case of the EMIm-TSI/ACN electrolyte solution, the anodic end of the CV curve
of CDC-TiC is very stable and almost rectangular in shape. The complete absence of peaks
in the presence of ACN (Figure 5b) suggests that adding a solvent significantly improves
the stability of the carbon/electrolyte interface. In the cathodic CV polarization curves in
the dilute IL electrolyte, there is a similar trend as seen in the full-scan curves; achieving
capacitance during the reverse scan is faster (see Figure 2a,b), and the numerical value of
the specific capacitance is also higher in the dilute electrolyte compared to the neat IL.

The CDC-NbC curves appear relatively similar regardless of the neat or dilute elec-
trolyte used (Figure 5c,d). In both electrolytes, the increase in cathodic current at critical
potentials is lower compared to CDC-TiC and CDC-Mo2C. However, in the neat IL, there is
an inexplicable peak (−1.0 V) during the reverse scan of the cathodic region (also observed
in the −1.7 V curve), which is not present in the dilute IL electrolyte. Additionally, in
both electrolytes, there is a lower cathodic current peak during the reverse scan, around
−0.5 V, which is characteristic of all studied carbons. The anodic curves for CDC-NbC
show differences compared to the neat and dilute ILs. In the first one, after +1.7 and
+1.8 V, there is also a flat peak around +0.8 V, which could be attributed to the desorption
of TFSI− anions after passing higher potentials due to their specific adsorption in CDCs
with multi-modal pores (i.e., CDC-NbC and CDC-Mo2C), though this is not confirmed. In
the diluted electrolyte, with a lower ion concentration, such a distinct peak does not seem
to form with either material.

In the case of CDC-Mo2C (Figure 5e,f), the cathodic curve in the neat IL resembles the
shape of the CDC-TiC dependence on the CV curves obtained in the EMIm-TFSI/ACN
electrolyte. Despite the differences in porosities, it appears that solvated cations in CDC-TiC
and CDC-Mo2C exhibit similar electrosorption properties. The anodic curves of CDC-Mo2C
are clearly different depending on the electrolyte. For instance, in the neat IL, a flat peak
forms around +1.0 V during the anodic charging of the material after passing a wider
potential window > −1.6 V. However, a similar, albeit very small, peak also forms for
CDC-NbC after −1.8 V. However, the cathodic CV curves in CDC-Mo2C are very similar in
both electrolytes, except for a slight difference in the sharper increase in current at −1.8 V
during cathodic charging in the neat IL compared to the dilute IL. For CDC-Mo2C, the
anodic CV curves are similar to the anodic curves of CDC-NbC in the diluted electrolyte.
However, there is a significant difference after +1.8 V potential, similar to the cathodic
potential, indicating that this material has a somewhat smaller electrochemical window in
the ACN-containing electrolyte.

The Nyquist plot in different electrolytes (Figure 6) shows a clear differentiation of the
curves into two groups (in the neat IL electrolyte characterized by larger semicircles and in
the diluted solvent with smaller semicircles). The larger radius of the semicircle is clearly
due to the IL electrolyte having nearly 3× higher viscosity and about 2× lower electrical
conductivity compared to the ACN electrolyte. In the neat IL, the plot also reveals material-
related differences; for instance, the size of the semicircle (related to the charge transfer
resistance) is clearly correlated with the material’s porosity and the size of the material’s

148



Molecules 2023, 28, 7191

particles, which, in the present case, both increase in the order CDC-TiC (Ø < 4 µm), CDC-
NbC (Ø < 10 µm), and CDC-Mo2C (Ø < 20 µm). In addition to the semicircle, the most
microporous material also has the largest area of so-called pore resistance, with an angle
measuring less than 45◦. This lower angle characterizes the simultaneous occurrence
of mixed kinetic processes (partially impeded ion diffusion processes and adsorption
processes). The other two materials exhibit a noticeable 45◦ rise. In both electrolytes,
the vertical section of the CDC-TiC material does not reach a height of 90◦ due to steric
hindrance to the electrosorption of electrolyte ions in the nanoporous material.
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room temperature (RT).

The Rs values calculated for the uncharged material at a frequency of 1 kHz reveal that
the ultramicroporous CDC-TiC has very high electrical resistance (11.4 ohms) in the neat IL
electrolyte. This is due to hindered diffusion as observed in the section of the “45-degree
slope” (so-called pore resistance), on the Z′,Z′′ curve in Figure 6, which also causes heat
to be released during electrochemical cycling. However, in general, the capacitance of all
three CDCs is similar, manifesting in the range of 3.1–5.6 ohms, and it does not matter if
they are in solution or not.

For cycle life testing, a symmetric two-electrode cell assembled from CDC-NbC elec-
trode discs was subjected to cycling between 0 and 2.85 V using CV. The evolution of
capacitance over the cycles is depicted in Figure 7a. After completing 10,000 cycles, we
reversed the cell’s terminal polarities, followed by 10 cyclic voltammetry (CV) cycles from
0 to 2 V, referred to as ‘repolarization.’ Subsequently, we restored the original polarities,
and cycling continued within the voltage range of 0 to 2.85 V. During the 10,000 cycles, the
capacitance exhibited a reduction of approximately 22% from the initial value of 122 F g−1.
This gradual reduction in capacitance over time is a hallmark of most electric double-layer
(EDL) capacitors.

Immediately after repolarization, the capacitance recorded in the first cycle exhib-
ited a remarkable surge, almost returning to the initial capacitance level (98%). However,
this increase was transient, as subsequent cycling resulted in a rapid decline. This “over-
shoot” phenomenon can be attributed to the “cleaning” of the electrode surfaces from
adsorbed compounds following the polarity reversal [44]. The freshly exposed surface
momentarily regains its capacity for readsorbing electrolyte ions. Nevertheless, the rede-
position of additives occurs quite swiftly, and the attained capacitance level proves to be
temporally unstable.

In addition to the capacitance data obtained via the CV method, this test cell was
subjected to electrochemical impedance spectroscopy after varying numbers of cycles
(Figure 7b).
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short-term repolarization after 10,000 cycles.

In Figure 7b, a Nyquist plot is presented, obtained before and after a certain number
of full charge–discharge cycles. In this plot, the semicircles start from a single point,
indicating a very stable system and a constant resistance at the metal/carbon electrode
interface. Thus, changes in the carbon/aluminum resistance during the cycle life test can
be ruled out. The semicircle slightly grows after around 5000 cycles, suggesting some
alterations occurring on the carbon surface. However, the pore resistance (45◦ rise and
its length) remains relatively stable, indicating that any potential changes over time are
likely taking place on the external surface of the carbon particles. Furthermore, when
observing the vertical “tail”, it becomes less vertical just after repolarization (Figure 6b,
green curve) compared to the others, suggesting that this process might induce some
parallel reaction in the system. Nevertheless, these processes (reactions) ceased to manifest
after 2000 cycles of post-repolarization. It is possible that during cycling, surface oxides
may attach to cations through anodic hydrogen-bonding-like interactions, hindering anion
electrosorption. However, during the repolarization process, the breaking of these hydrogen
bonds occurs, resulting in the observed changes.

The values of the series resistance (Rs) measured at 1 kHz are 12.8, 14.2, and 14.5 ohms
after the 1st, 5000th, and 10,000th cycles, respectively. Immediately after repolarization,
an Rs of 14.9 ohms was measured, with 15.2 ohms after the next 2000 cycles. Therefore,
the overall change in cell resistance after completing 12,000 cycles is approximately 19%;
this represents only one-fifth of the allowable change in the Rs value, as stipulated by
conventional lifetime-testing agreements. In contrast, the decrease in capacitance over the
same number of cycles is approximately 20%.

Figure 7c represents the dependence of energy density on the applied power density,
also known as the Ragone plot, at the beginning of the cycle life test and immediately
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after repolarization. The data on the Ragone plot were derived from the dependencies
on different cycling rates using the CV method. It was shown that the maximum usable
energy of CDC-NbC in a symmetric two-electrode cell at low power is 125 J g−1, which
decreases to nearly 108 J g−1 after 10,000 cycles (includingrepolarization) at an operating
voltage of 2.85 V. The observed increase in power density after 10,000 cycles, particularly at
high currents, might be associated with repolarization and the rapid surge in capacitance.

3. Materials and Methods
3.1. Synthesis and Characterization of CDC Materials

The CDC samples of variable pore size distribution were made by a high-temperature
chlorination of TiC (H.C. Starck, Ø < 4 µm), NbC (Alfa Aesar, Ø < 10 µm), and Mo2C
(Reahim, Ø < 20 µm) at 500 ◦C, 1000 ◦C, and 800 ◦C, respectively. Carbide powder, placed
in the horizontal quartz tube, was reacted with chlorine (Linde Gas, 2.8, 1.5 L min−1) flow
at a fixed temperature. During heating and cooling, the reactor was purged with argon
(Linde Gas, 4.0, 2 L min−1) flow. After chlorination, the CDC product was additionally
treated with hydrogen (Linde Gas, 4.0, 1 L min−1) at 800 ◦C to deeply dechlorinate the
sample. The detailed synthesis conditions of CDC materials are described elsewhere [2].

Textural properties of CDC materials were determined by low-temperature N2 ad-
sorption at 77 K and CO2 adsorption at 273 K using a NOVAtouch LX2 (Quantachrome
Instruments, Boyton Beach, FL, USA). The BET surface area (SBET) was evaluated based
on the BET theory in the P/P0 interval of 0.02–0.2, and the total pore volume (Vtot) was
calculated at P/P0 of 0.97. The specific surface area (Sdft), pore size distribution (PSD),
and volume of micropores (Vµ) were calculated from N2 adsorption isotherms using a
quenched solid density functional theory (QSDFT) equilibrium model for slit-type pores.
The PSD from CO2 adsorption was determined using a non-local density functional theory
(NLDFT) model for slit-type pores. In all calculations, the software TouchWin ver. 1.1
was used.

3.2. Electrochemical Characterization

Electrochemical characterization of carbon materials was performed in three-electrode
test cells. Working electrodes with a visible surface area of 0.38 cm2 were made by pressing
a slurry of 90% CDC and 10% PTFE (Aldrich, Taufkirchen, Germany, 60% dispersion
in water) into a carbon sheet. The thickness of the working electrodes was ~100 µm.
The reference and counter electrodes were made from high-surface-area carbon sheets,
which, for better electrical contact, were coated on one side with a 2 µm layer of pure
Al using PVD. The counter and working electrodes were separated with two layers of
SWP glass mat-type separator (Anpei, Tainan, Taiwan, thickness ~1 mm). All electrodes
and separators were preliminary dried in vacuum (1 mbar) at 110 ◦C for a week. After
assembling, the cell was vacuumed overnight at 110 ◦C and filled with the electrolyte 1-
ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIm-TFSI, Sigma-Aldrich,
Taufkirchen, Germany, ≥98%) and a 1.9 M solution of EMIm-TFSI in acetonitrile (Sigma-
Aldrich, anhydrous 99.5%). The density of the electrolyte solution was 1.18 g cm−3. The
neat ionic liquid was used as is, and the IL/ACN mixture was kept on molecular sieves
(3 Å) for one week before use. Measurements with neat ionic liquid were performed at
60 ◦C and with EMIm-TFSI/ACN at room temperature; in both cases, the test cell was
soaked for 24 h before measurement.

The electrochemical characteristics of carbon materials were measured using cyclic
voltammetry (CV), galvanostatic (CC), and electrochemical impedance spectroscopy (EIS)
methods. The potentiostat–galvanostat 1286 with FRA 1255B (Solartron, Hampshire, UK)
was used for all electrochemical measurements. The integral capacitance (Ci) was calculated
from CC experiments according to the equation Ci = I∆t/∆U, where I is the discharge
current and ∆t is the discharge time in the potential range of ∆U. The specific capaci-
tance values of CDC ((F g−1), (F cm−3)) were calculated as CCC = Ci/m and CCC = Ci/V,

151



Molecules 2023, 28, 7191

where m is the weight of the CDC in a working electrode and V is the volume of the
working electrode.

The cycling stability of CDC-NbC was evaluated in a two-electrode cell assembled
from two electrodes of 7 mm in diameter separated with two layers of cellulose separator
TF44-25 (Nippon Kodoshi Corp., Nankoku-City, Kochi, Japan). The CV applying a voltage
scan rate of 50 mV s−1 was used to evaluate the cycling life in the voltage ranges of 0–2.85 V.
Prior to the test, the cell was preconditioned with CV cycling (v = 50 mV s−1), expanding
the potential window from 0–1.2 V to 0–2.85 V with an interval of 0.2 V. The capacitance
was calculated from CV plots as differential capacitance CD = j/ν = j(dE/dt), where j is
the current at a fixed cell voltage (1.5 V) and ν is the voltage scan rate. The CV data were
used to construct the experimental Ragone plots (energy density vs. power density). The
coulombic efficiency was calculated as η = Q (discharge)/Q (charge), where Q is the charge.
The changes in resistance were measured by EIS at 1 kHz using the ZView ver. 3.5i software
(Scribner Associates Inc., Southern Pines, NC, USA).

4. Conclusions

In this study, three carbide-derived carbon materials of TiC, NbC, and Mo2C origin,
characterized by uni-, bi-, and tri-modal pore sizes, respectively, were investigated for
energy storage in both neat EMIm-TFSI and 1.9 M ACN-diluted EMIm-TFSI electrolytes.
To elucidate the relationships between porosity and the electrochemical properties of car-
bon materials, cyclic voltammetry, galvanostatic cycling, and electrochemical impedance
spectroscopy measurements were performed using three-electrode test cells. It was demon-
strated that micromesoporous CDC-Mo2C, with a large fraction of 3–4 nm sized pores,
has good access to micropores and, therefore, excellent gravimetric capacitance in both
neat and dilute ILs. However, the low packing density of CDC-Mo2C results in the low
energy density of the corresponding storage device, which makes it impractical for large-
scale production. Ultramicroporous CDC-TiC exhibits a narrow pore size distribution at
approximately 0.8 nm. This carbon material is distinguished by its high packing density of
0.85 g cm−3 and demonstrates a notable volumetric capacitance of 93.6 and 75.8 F cm−3 for
the negatively and positively charged electrodes in the dilute IL, respectively. Regrettably,
the significant pore resistance arising from the absence of transport pores results in elevated
overall impedance for the associated energy storage device. This elevated impedance is
undesirable in numerous applications, particularly in sectors such as transportation. The bi-
modal pore-sized microporous CDC-NbC has a main fraction of micropores with the same
size as CDC-TiC. And although it has a slightly lower capacitance of 85.0 and 73.7 F cm−3

for the negatively and positively charged electrodes in the dilute IL, respectively, the lower
pore resistance due to the additional fraction of 1–2 nm micropores makes it more suitable
for real-world applications. A symmetric two-electrode capacitor incorporating micro-
porous CDC-NbC electrodes revealed an acceptable cycle life. After 10,000 cycles, the
cell retained ~75% of its original capacitance, while the ESR increased only by 13% at a
coulombic efficiency of 99%.
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