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Abstract: The integration of renewable energy sources (RESs) is rapidly increasing within energy
systems worldwide. However, this shift introduces intermittency and uncertainty on the supply side.
To hedge against RES intermittency, demand-side flexibility introduces a practical solution. Therefore,
further studies are required to unleash demand-side flexibility in power systems. This flexibility
is relevant across various sectors of power systems, including residential, industrial, commercial,
and agricultural sectors. This paper reviews the key aspects of demand-side flexibility within the
residential sector. To achieve this objective, a general introduction to demand flexibility across the
four sectors is provided. As a contribution of this paper, and in comparison with previous studies,
household appliances are classified based on their flexibility and controllability. The flexibility
potential of key residential demands, including heat pumps, district heating, electric vehicles, and
battery systems, is then reviewed. Another contribution of this paper is the exploration of demand-
side flexibility scheduling under uncertainty, examining three approaches: stochastic programming,
robust optimization, and information-gap decision theory. Additionally, the integration of demand
flexibility into short-term electricity markets with high-RES penetration is discussed. Finally, the key
objective functions and simulation software used in the study of demand-side flexibility are reviewed.

Keywords: battery storage; demand flexibility; electric vehicle; heat pump; residential; uncertainty

1. Introduction
1.1. Why Demand Flexibility?

In the last decade, the penetration of renewable power, including wind and solar, has
been increasing in power systems worldwide. Some countries have scheduled plans to
increase the penetration of renewable energy sources (RESs) up to 100%. For example,
Denmark has committed to a 100% renewable power supply by 2050 [1]. In this way, many
fossil fuel power plants are retired and replaced with renewable ones. Increasing RES pene-
tration, the intermittency and volatility of the supply side increase noticeably. In addition
to the phase-out of fossil fuel power plants, due to growing concerns about environmental
problems, the use of fossil fuel vehicles is decreasing in the world. Instead, the penetration
of electric vehicles (EVs) is increasing gradually. EVs are highly mobile electrical demands
with variable connection points to power grids [2]. Therefore, the imperfect data of the
connection points introduces significant uncertainty in power systems. As a result, future
power systems will encounter considerable uncertain data not only on the supply side
but also on the demand side. To hedge against intermittent generation and consumption,
future power systems need demand-side flexibility in power system management.

Based on the above-mentioned facts, there are two main reasons to emphasize demand-
side flexibility in power systems. The reasons can be summarized as follows:

1. The phase-out of fossil fuel power plants and vehicles.
2. The phase-in of RESs and EVs with intermittent power generation and consumption.

Energies 2024, 17, 4670. https://doi.org/10.3390/en17184670 https://www.mdpi.com/journal/energies1
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1.2. Flexibility in Demand Sectors

Demand-side flexibility is the portion of demand that can be changed, i.e., reduced,
increased, shifted, or curtailed, in response to external stimuli. The stimuli can be price-
based or incentive-based demand response programs (DRPs) [3] to encourage consumers to
change their electricity consumption. In power systems, there is a wide variety of electricity
consumption on the demand side. To unlock power flexibility, the demand side should first
be split into different sectors, including residential, commercial, industrial, and agricultural.
This classification makes it possible to schedule DRPs for each sector based on its electricity
consumption characteristics. Expert knowledge is therefore required to understand the
key characteristics of electricity consumption. Flexibility studies should be conducted for
each sector individually because demand profiles, load patterns, and flexibility potentials
exhibit significant variability across the different sectors. Moreover, each sector has different
operational constraints, energy consumption behaviors, and regulatory frameworks, which
impact their response to demand-side management strategies. It is worth mentioning
that multi-carrier energy systems, e.g., integrated gas and electricity [4] and hydrogen
systems [5], exhibit significant flexibility potentials.

In the residential sector, there is significant flexibility potential in the electricity con-
sumption of Heat, Ventilation, and Air Conditioning (HVAC). Additionally, in recent years,
electrically operated heat pumps (HPs) have been replacing conventional fossil fuel heat-
ing systems. HPs are an economical alternative, not only reducing energy consumption
costs but also facilitating the integration of renewables into power systems [6]. Therefore,
much more flexibility potential can be extracted from residential buildings. In addition, by
increasing the use of smart household appliances, the electricity consumption of shiftable
devices, such as washing machines, can be scheduled to align with the flexibility require-
ments of the supply side [7]. Moreover, heating and cooling systems [8], water heaters [9],
EVs, household appliances, and home batteries [10] are introduced as the main sources of
demand flexibility in the residential sector. Furthermore, small renewable self-generation
facilities, such as photovoltaic panels [11] and micro wind turbines can facilitate demand
flexibility in the residential sector.

In the industrial sector, many processes in both light and heavy industries can offer
considerable demand flexibility to the grid. Generally, industrial plants consist of energy-
intensive processes. By unlocking power flexibility in these processes, significant demand
response (DR) can be injected into the supply side. Some heavy industries, such as cement
manufacturing plants, include interruptible processes [12]. Therefore, these processes can
be interrupted in response to the flexibility requirements of the power system. In this way,
uninterruptible processes can be supplied by feedstock from storage. Storage facilities can
increase the flexibility of such industries. In the case of light industries, there is significant
flexibility potential in food industries, such as dairy processing plants, which consume both
power and heat in their internal processes [13]. Recently, cement manufacturing plants [14],
metal and aluminum smelting [15], pulp and paper milling [16], and oil refineries [17]
have been extensively discussed in the literature for their potential demand flexibility. In
addition, many industries are equipped with Combined Heat and Power (CHP) units that
can be scheduled to provide heat-to-power flexibility for both industrial operations and the
upstream power grid [18].

In the agricultural sector, there are many flexibility opportunities in open-air farms,
such as water irrigation systems and poultry farms. On farms and in greenhouses, water
irrigation pumps can be operated based on the flexibility requirements of the supply
side. Energy-intensive groundwater pumps can be turned off or down during renewable
power shortages. Water booster pumps with Variable Frequency Drives (VFDs) can adjust
water pressure to provide up/down-regulation for the power system during surpluses
or shortages of renewable power [19]. In poultry farms, electrically operated HPs can be
installed to adjust electricity consumption in response to renewable power availability
on the supply side. In these farms, heat controllers play a key role in flexible power
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consumption. To integrate the flexibility potential of the agricultural sector into power
systems, a major restructuring is required in this sector [20].

Related to the commercial sector, recently, the use of EVs has increased considerably. EVs
are mobile electrical storages that can act as prosumers in power systems. Since EVs are parked
for long hours during the day, the electrical storage capacity of their batteries can be used to
provide power flexibility. The charging and discharging capacity of EVs can be used for the
up- and down-regulation of the power system during their dwell time [21]. Smart charging
stations, including those in private and public parking lots, can optimize the charging and
discharging strategies of EVs, not only to provide flexibility to the power system but also to
generate profit for EV owners [22]. Many parking lots in commercial shopping centers and
airports now accommodate EVs for extended periods. When equipped with smart charging
stations, these parked EVs can serve as a reliable flexibility resource for power systems with
high-RES penetration [23]. In a recent study, public parking lots were considered virtual power
plants supplying the commercial sector and shopping malls [24]. Furthermore, hypermarket
refrigerators [25] can provide demand flexibility to local grids in the commercial sector.

Based on the abovementioned facts, power flexibility in demand sectors requires expert
knowledge. Therefore, flexibility opportunities should be aggregated separately in each
demand sector. Segregated flexibilities may not meet power system requirements. To ad-
dress this, a Demand Response Aggregator (DRA) is introduced to coordinate demand-side
flexibilities based on the technical requirements of the supply side. The DRA is defined as a
marketer, broker, public agency, city, county, or special district that combines loads of multiple
end-use customers to facilitate the sale and purchase of electrical energy, transmission, and
other services on their behalf [26].

The DRA provides contracted consumers with opportunities to understand their demand
flexibility on one side and integrate the aggregated flexibility potentials into power systems on
the other side. Based on expert knowledge, residential, commercial, industrial, and agricultural
DRAs, i.e., RDRA, CDRA, IDRA, and ADRA, are identified. Additionally, Parking Lot Aggrega-
tors (PLAs) are introduced to coordinate the charging and discharging strategies of EV fleets
in response to power system requirements. Figure 1 depicts a schematic diagram showing the
role of DRAs as intermediary agents in power systems. This figure illustrates how flexibility
potentials are aggregated on the demand side and integrated into the supply side.
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1.3. Paper Structure and Contributions

This paper reviews the key concepts of demand-side flexibility with an emphasis on
the residential sector. The main contributions of the paper are as follows:

(1) Classification of household appliances: a classification of household appliances from
the perspectives of flexibility and controllability is provided, along with a compre-
hensive review of the most important residential demands, including HPs, district
heating, EVs, and PV-battery systems.

(2) Survey of demand flexibility under uncertainty: a survey of demand flexibility un-
der uncertainty is conducted, focusing on three recent models, including stochastic
programming, robust optimization, and information-gap decision theory.

(3) Review of objectives and simulation software: a comprehensive review of the main
objectives of demand flexibility and the software tools used for scheduling demand
flexibility is carried out.

The rest of the paper is organized as follows: Section 2 reviews demand flexibility in
the residential sector and home energy management systems. Section 3 addresses demand
flexibility under uncertainty. Section 4 discusses the integration of demand flexibility into
short-term electricity markets. Section 5 reviews the key objective functions, communication
and data exchange, and software simulations. The challenges and limitations of current
technologies for demand-side flexibility, as well as future works, are discussed in Section 6.
Finally, Section 7 concludes this study. Figure 2 shows the main contents of the paper.
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2. Demand Flexibility in Residential Sector

From 1974 until now, electricity consumption has been increasing across demand sec-
tors worldwide. In 2018, the residential sector consumed 6008 TWh of electrical energy [28].
In comparison with other sectors, this represents 27% of the total electricity consumption.
The high share of power consumption in the residential sector is a key factor contributing
to power system flexibility.

To fully harness the flexibility potential of residential demand, it is first necessary
to identify and classify flexible demand based on its controllability. In the following
subsections, after providing a general classification, the flexibility potential of the most
important residential demands is reviewed.

2.1. Classification of Household Appliances

In residential buildings, electricity consumption varies widely from energy-intensive
appliances, such as HVAC systems, to low-power devices, such as LED lamps. Some house-
hold appliances, such as HVAC systems, can store energy during daily operations. This
energy storage capability is reflected in the building’s thermal dynamics [29]. The operation
of certain appliances can be shifted to specific times without causing inconvenience. For
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example, washing machines and tumble dryers are shiftable appliances [30]. To investigate
the flexibility potential of residential buildings, household appliances can be classified into
three distinct categories, as follows:

(1) Thermostatically controllable appliances (TCAs)
(2) Controllable non-thermal appliances (CNTAs)
(3) Uncontrollable appliances (UAs)

TCAs are appliances whose energy consumption follows thermal dynamics. Examples
include HVAC systems, electric water heaters (EWHs), HPs, and refrigerators. The flexibility
potential of TCAs is reflected in their thermal dynamics, which are described by Differen-
tial Equations (DEs) [31]. Therefore, to unlock the power flexibility of TCAs, sophisticated
controllers are needed to optimize these DEs [32]. The power consumption of HPs can be
optimized to unlock the flexibility of both space heating and domestic hot water consump-
tion [33]. In addition, the power consumption of household refrigerators can be optimized by
addressing door-opening patterns to provide peak shaving for power grids [34].

CNTAs are electrical appliances whose operational flexibility is independent of thermal
dynamics. Examples include lighting systems, dishwashers, and washing machines. This
group can be divided into two subgroups: (1) deferrable CNTAs and (2) curtailable CNTAs.
Deferrable CNTAs, such as washing machines and dishwashers, are devices whose operations
can be shifted to times outside of DR events, such as during low-price hours. In this case,
the CNTA operation is deferred to off-peak hours without changing the total electricity con-
sumption [35]. In contrast, curtailable CNTAs include appliances whose power consumption
can be adjusted (increased or decreased) in response to DR requests. In this situation, the
power consumption changes, but there is no expectation to shift the remaining consumption
to other times. For example, when the power consumption of a lighting system is adjusted
in response to DR requests, there is no expectation to shift the power consumption to other
hours to compensate for reduced lighting [36].

In contrast to the aforementioned appliances, UAs are inflexible devices, such as TVs,
ovens, and computers. This group of appliances barely responds to DR plans because their
daily operation is closely related to residents’ comfort. Therefore, unlocking the flexibility
of UAs without compromising occupants’ comfort is challenging. To summarize, Figure 3
illustrates household appliances from the perspective of power flexibility.
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2.2. Home Energy Management System

The home energy management system (HEMS) is an advanced framework designed
to monitor, control, and optimize the operation of household appliances, including TCAs
and CNTAs. The system aims to balance two competing objectives: (1) meeting flexibility
requirements on the supply side and (2) ensuring residents’ comfort on the demand
side [37]. The HEMS features a communication system with the grid system operator,
such as the Distribution System Operator (DSO). However, this setup varies by country, as
different entities may be responsible for data exchange in some regions. The DSO informs
the HEMS of DR events, which may include peak hours, off-peak hours, price-based, and
incentive-based DR plans. Conversely, the HEMS receives comfort parameters from home
residents, such as reference indoor temperature, hot water temperature, and laundry time.
Thus, the main duty of the HEMS is to provide power flexibility for the supply side while
maintaining the comfort conditions for the occupants.

Regarding the communication system, the HEMS typically uses a Power Line Carrier
(PLC) or standard communication networks [38]. The PLC allows communication with the
DSO in remote areas, where conventional networks are unavailable.

Smart controllers are the core components of the HEMS. These controllers, equipped
with computer processors, optimize the operation of household appliances. Their primary
function is to balance the flexibility requirements of the supply side with the comfort
conditions of the demand side. Residents set their comfort preferences through a user-
friendly interface. In this panel, occupants can specify their preferences for appliance
operation, such as indoor temperature. Flexibility requirements, including price signals
and critical hours, are received from the DSO. In [39], a smart HEMS is suggested to unlock
the flexibility potentials of BESS, photovoltaic systems, and EVs. To provide a general
overview of the HEMS, Figure 4 depicts a schematic diagram of a module-based HEMS.
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Figure 4. The module-based structure of the HEMS [40].

2.3. Heat Pumps

In recent years, HPs’ popularity has increased due to their energy efficiency. They
can typically produce 3–5 times more heat energy than the electricity they consume. Addi-
tionally, they can recover heat waste from the ground, outdoor environment, and sewage
water [41]. The flexibility of HPs is addressed for both cooling and heating purposes [42].
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The flexibility potential of HPs depends on the thermodynamic characteristics of
buildings. Therefore, in many studies, the thermal dynamics of buildings are calculated
to design an HP controller. Among them, the Continuous-Time Stochastic Model (CTSM)
was developed by the DTU Compute [43] and was used in many studies to design HP
controllers [44]. The HP controller aims to unlock HPs’ flexibility in response to external
signals, such as electricity prices, while maintaining the indoor air within the comfort range,
e.g., between 20–25 ◦C. The controller receives the indoor air setpoint from the resident and
communicates with the local DSO to obtain flexibility requirement data, electricity prices,
and meteorological data such as the outdoor temperature and solar irradiation.

In many studies, model predictive control (MPC) is designed for HVAC, taking
weather data forecasts into account to optimize future control actions [45]. Some studies
suggest economic MPC (EMPC) for HPs to minimize household energy consumption
costs [46].

HP compressors can be turned up or down in response to flexibility signals. Although
the compressors can quickly respond to electricity price changes, the indoor temperature
remains stable due to the longer time constant of thermal dynamics, compared to electrical
dynamics. Many studies suggest using heat storage to increase the flexibility potential
of HPs. Heat storage can be in the form of water tanks [47] or phase-change materials
(PCMs) [48]. Regardless of the type, heat storage allows the HP to operate when electricity
prices are low, i.e., down-regulation is required for power system imbalance, and then
supply the heating system from the heat storage during high electricity prices when up-
regulation is required for power system imbalance.

2.4. District Heating

District Heating (DH) consists of a distributed heat network where heat is generated
at a central location and distributed to residential buildings through insulated pipes. The
heat is used for space heating and hot water. Generally, DH heat sources can be classified
into electricity, fossil fuels, solar-thermal, biomass, geothermal, and waste heat [49].

For electrically operated DH systems, HPs and electric boilers offer significant flex-
ibility potential [50]. Fuel-based DH systems are divided into heat-only units and CHP
units. Heat-only units, such as gas boilers, have no demand flexibility for power systems.
In contrast, CHP units can provide power flexibility for the electricity grids [51]. Solar–
thermal, biomass, and geothermal DH systems are non-electrical and thus offer limited
power flexibility. In some cases, DH systems utilize waste heat from electrical consumers,
such as industries and data centers [52]. Although this type of DH has no direct power
flexibility, it may indirectly unlock power flexibility from the main heat source.

In DH systems with electricity-based heat sources, there are three types of heat flexibility:

(1) The flexibility of thermal inertia of buildings: This is reflected in the thermal dynamics
of buildings. Buildings contain thermal mass, such as walls and windows, which can
store heat energy [53]. Consequently, indoor temperatures can be adjusted in response
to electricity price variations and/or renewable power availability on the supply side.

(2) The flexibility of thermal storage devices: These are specifically designed to store
heat energy. Common storage devices in DH systems include water tanks, boreholes,
chemical storage, and aquifers [54]. Heat energy can be stored during low-price hours
(excess power) and used during high-price hours (power shortages).

(3) The flexibility of the heat network: This is reflected in the temperature of the heat
carrier. Adjusting the heat carrier temperature can provide power flexibility. However,
temperature variation can accelerate pipe aging and material fatigue, particularly at
weak joints, which is a limiting factor [55].

To provide a general insight into the flexibility potential of DH systems, Figure 5
presents a schematic diagram from the flexibility perspective.
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2.5. Electric Vehicles

EVs are mobile electric consumers and storage units which, unlike fixed demand,
can be connected to different points of distribution grids. As the penetration of EVs
increases and fossil fuel cars are retired, the distribution grid comes under pressure, causing
transformer overload and congestion in power lines [56]. This can threaten the reliable
operation of distribution grids. However, if the charging and discharging of EVs are
coordinated, they will not compromise the reliability of the power system. Instead, they
can enhance the system’s reliability by providing a workable electrical storage backup for
the power system.

To unlock EV flexibility, smart charging stations are required. These charging sta-
tions can work in both vehicle-to-grid (V2G) and grid-to-vehicle (G2V) modes. Common
charging stations are G2V, while V2G is less common due to technical barriers. Smart G2V
stations encourage charging during times when electricity prices are low, corresponding to
an excess of renewable power availability. Therefore, charging tariffs are important signals
to unleash EV flexibility. While G2V stations can provide down-regulation to the power
network [57], V2G stations can provide up-regulation when the grid encounters a deficit
of renewable energy or system reliability is jeopardized due to failure or unscheduled
maintenance [58].

Nowadays, local DSOs/aggregators/retailers use mobile apps to inform EV owners of
the charging and discharging prices for the next 24 h. Charging and discharging tariffs can
be designed adaptively based on the flexibility requirements of the local grid. For example,
during peak (off-peak) hours, charging tariffs are set high (low) to discourage (encourage)
EV owners from charging, aiming to provide peak shaving (valley filling). Here, the IoT
and communication play a key role in unlocking EV flexibility.

EV flexibility can be discussed for private [59] and public parking lots [60]. Private
parking refers to residential parking where EVs are parked typically after working hours.
Therefore, the dwell time is usually limited to nighttime hours, with capacities of 2.3, 7.4,
11, and even 22 kW. On the other hand, public parking lots serve a wide variety of EVs
with different time characteristics, i.e., arrival time, dwell time, and departure time [61].
Among them, office parking lots typically see EVs arriving around 8 am, departing at 4
pm, and having an 8 h dwell time. Food court parking experiences two rush times, during
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lunch and dinner, with a one-hour dwell time. Entertainment complexes have arrival and
departure times after working hours, for example, from 6 pm to 11 pm. Therefore, if the
charging and discharging operations of public parking lots are coordinated, they can act as
a virtual storage plant 24 h a day.

2.6. Photovoltaic and Battery Storage

Photovoltaic (PV) systems play a key role in enhancing power system flexibility.
In residential areas, rooftop PV systems are practical solutions for decentralized power
generation. They help reduce stress on the power system during peak demands and can
supply local demands [62], preventing power line congestion in weak areas [63]. As a
result, they can postpone power system reinforcement to increase the capacity of power
transformers and line flows [64].

PV systems can operate alone or be integrated with battery energy storage systems
(BESSs). In the former, PV power generation is injected into the grid or consumed by local
demands directly. In the latter, the PV system is linked with a BESS and a smart energy
management system (SEMS) [65]. This way, the PV-BESS can respond to real-time demand
and supply conditions to either store solar power in the battery or inject it into the local
grid. Therefore, the PV-BESS can provide peak shaving and valley filling [66]. Some studies
suggest using the PV-BESS to provide frequency regulation [67] and voltage support [68].

3. Demand Flexibility under Uncertainty

The long-term aim of demand-side flexibility is to facilitate the integration of renew-
ables into power systems. The intermittency and volatility of renewable power introduce
significant uncertainty into power systems. In this context, deterministic approaches of-
ten fail to fully leverage demand-side flexibility. Therefore, to manage the uncertainties
associated with renewable power, non-deterministic methodologies should be adopted.
Stochastic programming, robust optimization, and information-gap decision theory (IGDT)
are commonly used in such studies. These non-deterministic methodologies allow for the
incorporation of imperfect data regarding uncertain variables into the flexibility problem.

To select an appropriate non-deterministic approach, two key questions should
be addressed:

(1) How complete is our information about the uncertain variables?
(2) How precise do the strategies need to be for the final plan?

The first question pertains to the information available about uncertain variables,
such as the availability of historical data, Probability Distribution Functions (PDFs), and
possible scenarios. For instance, in power system studies, wind velocity regimes are
typically described using the Weibull PDF [69]. Therefore, when definite PDFs are available,
non-deterministic approaches that utilize these distributions can be applied. Conversely,
in some studies, there is no perfect information about the probability distribution of
certain uncertain variables, such as electricity prices. In these cases, non-probabilistic
quantification of the uncertain variables is required. Thus, non-deterministic approaches
that accommodate non-probabilistic models of uncertainties are adopted.

The second question addresses the main objective of the operator in studying the
problem under uncertainty. In some studies, the operator aims to determine the optimal
responses of the system to all possible realizations of uncertain variables. For these sce-
narios, non-deterministic approaches that optimize the problem across various possible
trajectories of the uncertain variables are used. On the other hand, if the operator is not
concerned with all realizations of the uncertain variables, the focus shifts to optimizing
strategies under best-case and/or worst-case scenarios. In such cases, non-deterministic
approaches that address the gaps between favorable and unfavorable aspects of uncertain
variables, rather than considering the entire PDF, are employed.

Based on the above facts, three non-deterministic approaches—stochastic program-
ming, robust optimization, and IGDT—are commonly used in power system studies under
uncertainty. These approaches are elaborated on in the following subsections.
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3.1. Stochastic Programming

Stochastic programming is a probabilistic approach that provides the system operator
with detailed information about different realizations of uncertain variables [70]. In this
approach, different sets of scenarios are generated to cover the uncertain range of the
stochastic variable. These scenarios are typically based on historical data and selected using
the best-fitted PDFs. Each scenario is characterized by a magnitude and a probability value.
When the problem involves multiple uncertain variables, different permutations of scenar-
ios create possible trajectories. The problem is then optimized across all these trajectories,
providing decision-makers with optimized strategies for all potential scenarios. Although
this approach offers detailed information about optimized strategies, it requires accurate
data on the distribution of uncertain variables. Additionally, due to the large number of
scenarios, stochastic programming can impose a heavy computational burden, making it
less suitable for near real-time analysis. In recent studies, stochastic programming has been
extensively utilized in two-stage [71], three-stage [72], and multi-stage approaches [73]
to provide demand flexibility in power systems. In [74], multilayer iterative stochastic
dynamic programming is introduced to optimize energy management in smart residential
areas considering EV systems.

3.2. Robust Optimization

In robust optimization, the uncertain range of the uncertain variable is defined by
lower and upper thresholds. The problem is then optimized for the worst-case realization
within these bounds [75]. In this approach, no PDF or probability is defined for the
uncertain variables. Due to the absence of scenarios, this approach is very efficient in
terms of execution time. However, it fails to determine optimal strategies for different
realizations of the uncertain variables. Unlike stochastic programming, which addresses
various uncertain variables, robust optimization focuses on determining robust strategies
against the worst-case realization of the key uncertain variable. Therefore, the most critical
uncertain variable is used to develop these robust strategies. In [76], robust optimization
is employed to aggregate substantial power flexibility from a large number of distributed
energy resources. This approach is further applied to optimize the flexible operation of
active distribution grids with bidirectional EV fleets [77]. Robust optimization is also used
to model electricity price uncertainty in flexibility-constrained smart HEMSs with roof-top
PV systems and BESSs [78]. In [79], robust optimization is applied to building heating
systems and HPs for demand response control considering the uncertainty of building
demand. In [80], robust optimization is discussed to optimize the HEMS’s operation with
EVs, addressing the uncertainties associated with real-time electricity prices.

3.3. Information-Gap Decision Theory

IGDT is a non-probabilistic approach that addresses both the adverse and favorable
aspects of severe uncertain variables. To establish two threshold strategies, IGDT uses
two immunity functions: the robustness function and the opportuneness function [81].
Similar to robust optimization, IGDT considers an uncertain range, known as the envelope
bound, for the uncertain variable. IGDT aims to find robust strategies that can handle both
catastrophic failures and windfall successes. The working points of the problem are located
within the gap between the adverse and favorable states. This approach has recently been
used in several studies to facilitate the integration of flexibility in power systems. In [82],
IGDT is employed to manage the risk associated with uncertain wind power generation
in flexible power system operation. This approach is further addressed to model strategic
decisions of a price-maker virtual power plant considering demand flexibility [83]. In [84],
the IGDT is applied to optimize the charging and discharging of EVs to cope with the
uncertainty of distributed generation in active distribution grids.

Although this paper discussed only the three abovementioned non-deterministic
models, but they are not limited to these. For example, interval optimization is addressed in
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power system studies to model uncertainties associated with renewable energy output [85]
and load demands [86].

Figure 6 depicts a general overview of scenario characterization for the three non-
deterministic approaches. In subfigure (a), it is shown how different trajectories are formed
by different scenarios through a scenario graph in stochastic programming. In subfigure (b),
the lower and upper bounds of the robust optimization are shown to determine the worst-
case realization of the uncertain variable. In subfigure (c), the pernicious and propitious
facets of the uncertain envelope are depicted in the IGDT.
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4. Integration of Demand Flexibility to Electricity Market

In power systems with high-RES penetration, the uncertainty of power generation
decreases as the power delivery time approaches. As the delivery time nears, the supply-
side uncertainty gradually diminishes. To address the intermittent nature of RES, power
balancing between generation and consumption is managed hierarchically, from one day
ahead to real-time. This approach allows for the unlocking of flexibility potentials in
different time slots based on renewable power availability.

Typically, in short-term electricity markets, three trading periods are scheduled to
manage RES intermittency over 24 h:

(1) Day-ahead market: conducted 24 h before the power delivery time, this market deter-
mines electricity prices based on the intersection of supply and demand curves [87].

(2) Intraday market: Held 60 to 10 min before the power delivery time, this market,
also known as the adjustment market, allows participants to adjust their power
procurement strategies based on updated flexibility requirements. Participants can
buy or sell parts of their power portfolio, originally procured from the day-ahead
market, in response to RES availability [88].
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(3) Balancing market (real-time market): conducted a few seconds before the energy de-
livery time, this market provides final up-/down-regulation to the power system [89].

Demand-side flexibilities are integrated into these three trading periods. The challenge
is to align the flexibility potentials of demand sectors with the timing of these market
periods. The time response of different demand flexibilities varies: some can be unlocked
on short notice and integrated into near real-time markets, while others may require longer
notice and thus are suited for day-ahead markets. For example, in the metal smelting
industry, the operation of smelting pots cannot be interrupted once the process has begun,
making them unsuitable for short-notice flexibility; therefore, they are inappropriate for the
intraday and balancing markets [90]. In contrast, crushers in cement manufacturing plants
can be interrupted on short notice, allowing them to provide near real-time flexibility in
balancing markets [91].

Based on these considerations, demand-side flexibilities should be categorized into
different classes based on their response times to long, mid, and short advance notices. This
categorization is fundamental to analyzing flexibility in demand sectors and determining
which flexibility opportunities can be integrated into the hierarchical electricity market
floors. Figure 7 illustrates the hierarchical integration of demand flexibilities into the three
market floors according to long, mid, and short notice periods.
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5. Key Concepts of Flexibility Scheduling

In this section, some key concepts of demand flexibility scheduling are reviewed. They
include objective functions of demand flexibility, communication and data exchange, and
simulation software.

5.1. Objective Functions

The DR programs are designed to unleash the heat and power demand flexibility with
the aim of achieving specific objectives. From a mathematical point of view, the objective
function can be constructed in either a linear or non-linear function depending on the
demand model and corresponding constraints. The linear functions can be optimized
by mathematical approaches called linear programming (LP). The non-linear objective
functions are optimized by non-linear programming (NLP) and metaheuristic algorithms,
e.g., Genetic Algorithm.

In the demand response literature, more specific objective functions are discussed.
Among them, the most important objectives include energy consumption cost minimiza-
tion [93] and self-consumption maximization [94], maximization of renewable power
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penetration [95], minimization of greenhouse gas emissions [96] and carbon emission con-
trol [97], maximization of power system reliability [98], voltage regulation [99], frequency
control [100], increasing power quality [101], congestion management [102], peak shaving
and valley filling [103], and increasing energy efficiency [104].

In addition to the aforementioned objectives, some studies highlight grid balancing
as the aim of demand flexibility. Demand flexibility primarily contributes to supply–
demand balancing in power systems during periods of surplus and deficit of renewable
energy [105]. This role becomes especially critical in power systems with high levels of RES
penetration, where the supply side is subject to the intermittency of wind and solar power.
Thus, demand flexibility is specifically coordinated to provide up- and down-regulation to
counteract positive and negative imbalances in the power system.

In some studies, demand flexibility is designed to respond to operational needs within
local distribution grids such as failures in power supply and equipment [106]. When
anomalies such as equipment failures or operational abnormalities are detected in the local
grid, the local DSO collaborates with the DRAs in different demand sectors to address the
technical problems of the local grid. This involves responding to fault detection mechanisms
with appropriate and timely actions aimed at restoring the distribution grid or preventing
the spread of faults to other areas. These actions may include demand curtailment or
adjustment, as well as maneuvers to reconfigure power flows within the distribution grid,
thereby mitigating the risk of cascading failures. Thus, the MPC is extensively used to
design a fault-tolerant energy management system (EMS) in power systems with high-
RES penetration [107]. To sum up, Table 1 summarizes the main objective functions of
demand-side flexibility in some recent studies.

Table 1. Some key objective functions of demand-side flexibility in recent studies.

References The Key Objective Function

[93] Energy consumption cost minimization
[94] Self-consumption maximization
[95] Maximization of renewable power penetration

[96,97] Minimization of greenhouse gas emissions and carbon emission control
[98] Maximization of power system reliability
[99] Voltage regulation
[100] Frequency control
[101] Increasing power quality
[102] Congestion management
[103] Peak shaving and valley filling
[104] Increasing energy efficiency

5.2. Communication and Data Exchange

To optimize the operation of local energy communities, the objective function may
require real-time data from various sources. These include electricity market data such as
electricity prices [108], meteorological data [109] such as forecasts of wind speed and out-
door temperature, and grid operator data such as voltage magnitude and line power flows.
Additionally, data from measurement sensors, such as domestic hot water and indoor air
temperatures in residential buildings, are essential for a HEMS [110]. Therefore, to unlock
demand flexibility, either one-way or two-way communication units are required [111].

To provide a general overview of the communication and data exchange, Figure 8
depicts a schematic diagram of a smart irrigation system designed for agricultural farms.
The predictive controller within this system gathers data and information from multiple
sources, including the local grid operator, meteorological office, as well as local measure-
ment sensors and setpoints provided by farmers. The objective function of the controller
is to run the water pumps when the electricity price is low and the surplus of renewable
power is available and to turn down the water pumps during the high electricity prices
corresponding to the deficit of renewable power availability.
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simulate the HP controller and unleash the heat demand flexibility. “UPPAAL is an inte-
grated tool environment for modeling, validation, and verification of real-time systems 
modeled as networks of timed automata and was developed in collaboration between the 
Uppsala University, Sweden, and the Aalborg University, Denmark” [114]. Recently, it 
was used at Aalborg University to design HP controllers. 
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Figure 8. Schematic diagram of a controller for the smart irrigation of farms, with communication
and data exchange units.

5.3. Simulation Software

In order to model demand flexibility, simulation software is used. On these software
platforms, various energy sources and demands can be modeled. For example, to unlock
demand flexibility in a smart building, a smart HEMS can be modeled in a simulation. This
model can simulate the electric demand of HPs, EVs, and household appliances, including
controllable ones, such as washing machines and tumble dryers, and non-controllable ones,
such as audio systems, TVs, and lighting systems. In [112], to unlock the heat-to-power
flexibility of a residential HP, sensor measurements are first exported to R software to
simulate the building’s thermal dynamics. These thermal dynamics are then exported to
a model-checking software, UPPAAL-STRATEGO [112] and MATLAB [113], to simulate
the HP controller and unleash the heat demand flexibility. “UPPAAL is an integrated tool
environment for modeling, validation, and verification of real-time systems modeled as
networks of timed automata and was developed in collaboration between the Uppsala
University, Sweden, and the Aalborg University, Denmark” [114]. Recently, it was used at
Aalborg University to design HP controllers.

In addition to demand, the model can include self-generation facilities, such as PV
systems and BESSs. The simulation software can also simulate the comfort needs of
residents. For example, for the HP controller, the simulation software can translate the
preferred indoor air temperature into a range with lower and upper thresholds. For EVs,
it can obtain the preferred departure time and minimum departure state of charge (SoC)
from the PDF of in-driving and out-driving EV fleets. The software can then optimize
the charging and discharging of the EVs during dwell time to minimize power costs and
provide flexibility to power grids.

Various software tools are suggested in studies for simulating demand flexibility.
Among them are MATLAB, Simulink [115], MATPOWER [116], GAMS [117], DIgSI-
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LENT [118], GridLAB-D [119], OpenDSS [120], EnergyPlus [121], and EnergyPro [122].
Among them, MATPOWER and DIgSILENT can be used to model active distribution grids
with the aim of congestion management and voltage regulation. GAMS is a general-purpose
software for mathematical modeling and optimization, enabling the implementation of
stochastic programming and robust optimization.

After simulation, the demand flexibility is tested in real-time simulators for real-world
validation. This process allows for the flexibility potentials to be evaluated in a controlled
and realistic environment to ensure their effectiveness. Subsequently, this demand flexibility
undergoes limited real-world field tests to further confirm its performance and reliability in
practical applications. In the literature, different real-time simulators are discussed to test
the demand flexibility, including OPAL-RT [123], RTDS [124], Typhoon HIL [125], PLECS
RT Box [126], dSPACE [127], and xPC [128].

To sum up, Table 2 compares the main features of some scoping studies in recent years
in comparison to the current study.

Table 2. The main features of some recent scoping studies for demand-side flexibility.

Reference Addressed Demand Flexibility and Related Concepts

[129]

- Building flexibility
- HVAC
- EWH
- Refrigerators
- Wet appliances
- Lighting

[130] Flexibility potentials for industrial, residential, agricultural and
commercial sectors

[131]

- Demand flexibility in northern Europe, Sweden, Denmark, Norway,
Finland, Estonia, Lativia, Lithuania
- Flexibility of industrial, residential, commercial sectors
- Flexibility of heating system, shopping centers, office buildings

[132]

- District heating
- Heat resources
- Control methods of flexible heat demands
- Integration of heat flexibility into electricity markets

[133]

- Energy efficiency
- Price-based and incentive-based demand response programs
- Hardware and communication technology for demand flexibility
- Soft computing such as neural network and fuzzy logic
- Optimization approaches for scheduling demand flexibility

6. Limitations and Future Works

Although demand-side flexibility is discussed for the residential sector, there are
some limitations and challenges for the actual implementation associated with current
technologies. Among them, the most important limitations can be stated as follows:

(1) Consumer awareness and engagement in demand response programs;
(2) Lack of standardizations for smart HEMSs;
(3) Insufficient grid infrastructures for communication and data exchange;
(4) Lack of market and regulatory mechanisms;
(5) Vulnerability to cybersecurity attacks.

Although a comprehensive review is conducted for the residential demand flexibility,
future directions can involve enhancing digitalization and smart technologies to over-
come the current technological barrier. Among them, artificial intelligence and machine
learning, as well as automated demand response, can be integrated to the future demand
response technologies.
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7. Conclusions

This paper reviewed demand-side flexibility in power systems, with a particular
emphasis on the residential sector. To highlight the importance of demand flexibility
in power systems, flexibility potentials were examined across four sectors: residential,
industrial, commercial, and agricultural. It was concluded that harnessing sector-specific
flexibility potential requires expert knowledge. Moreover, for demand flexibility to be
effective in bulk power systems, sectoral demand flexibility should be aggregated through
demand response aggregators.

The focus then shifted to demand flexibility within the residential sector. Household
appliances were categorized into three groups based on flexibility and controllability:
thermostatically controllable appliances, controllable non-thermal appliances, and uncon-
trollable appliances. The role of home energy management systems in enhancing building
demand flexibility was also discussed. Heat pumps were identified as significant sources of
flexibility in residential buildings, with their potential being controllable through thermal
dynamics and model predictive controls. The district heating system was highlighted as a
key factor in increasing renewable energy integration into the residential sector, particularly
through the application of central and booster heat pumps. Additionally, the flexibility
potential of EVs in residential and parking lots was examined, noting how EVs can address
local distribution grid issues through smart charging and discharging schedules. The roles
of PV systems and battery energy management systems were also reviewed, demonstrating
how these technologies can facilitate demand flexibility and postpone the need for local
distribution grid reinforcement.

The discussion then turned to demand flexibility scheduling under uncertainty, cov-
ering three common non-deterministic approaches: stochastic programming, robust opti-
mization, and information-gap decision theory. The integration of demand flexibility into
short-term electricity markets was also reviewed, with flexibility potentials classified into
short-, mid-, and long-term advance notices for participation in day-ahead, adjustment,
and balancing markets.

Finally, three key concepts of flexibility scheduling were examined: objective func-
tions, communication and data exchange, and simulation software. It was concluded
that communication systems are critical for unlocking demand flexibility, as they enable
the necessary real-time or short-notice data exchange before integrating flexibility into
upstream power grids.
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Abstract: Shared energy storage system provides an attractive solution to the high configuration
cost and low utilization rate of multi-microgrid energy storage system. In this paper, an electricity-
heat integrated energy storage supplier (EHIESS) containing electricity and heat storage devices is
proposed to provide shared energy storage services for multi-microgrid system in order to realize
mutual profits for different subjects. To this end, electric boiler (EB) is introduced into EHIESS to
realize the electricity-heat coupling of EHIESS and improve the energy utilization rate of electricity
and heat storage equipment. Secondly, due to the problem of the uncertainty in user-side operation
of multi-microgrid system, a price-based demand response (DR) mechanism is proposed to further
optimize the resource allocation of shared electricity and heat energy storage devices. On this basis,
a bi-level optimization model considering the capacity configuration of EHIESS and the optimal
scheduling of multi-microgrid system is proposed, with the objectives of maximizing the profits of
energy storage suppliers in upper-level and minimizing the operation costs of the multi-microgrid
system in lower-level, and solved based on the Karush-Kuhn-Tucker (KKT) condition and Big-M
method. The simulation results show that in case of demand response, the total operation cost of
multi-microgrid system and the total operation profit of EHIESS are 51,687.73 and 11,983.88 CNY,
respectively; and the corresponding electricity storage unit capacity is 9730.80 kWh. The proposed
model realizes the mutual profits of EHIESS and multi-microgrid system.

Keywords: multi-microgrid system; electricity-heat integrated energy storage supplier; demand
response; bi-level optimization model

1. Introduction

In recent years, with the overuse of fossil energy and the increase of greenhouse gas
emissions, the energy crisis as well as the climate warming is intensified. The development
of traditional electricity industry is limited by conditions such as the environment and
resources, and is in urgent need of transformation [1,2]. Meanwhile, renewable energy
generation such as wind power and photovoltaic are developing rapidly, and the penetra-
tion rate of renewable energy is increasing, which brings certain challenges to the stable
operation of power system [3,4]. Microgrid stand to meet these challenges by virtue of their
renewable energy consumption capacity and flexibility. With the growing market size of
microgrid, the demand for microgrid construction and renovation has gradually increased.
Individual microgrid faces the problem of high operation cost. To this end, the concept
of multi-microgrid system has emerged [5,6]. Multi-microgrid system can optimize the
distribution of resources and benefits among different subjects by interconnecting with
the upper-level grid, effectively compensating for the impact of randomness and volatility

Energies 2024, 17, 5436. https://doi.org/10.3390/en17215436 https://www.mdpi.com/journal/energies23



Energies 2024, 17, 5436

of distributed energy sources on the system, and further improving the energy utiliza-
tion rate and the stability of system operation [7,8]. Ref. [9] constructs a multi-microgrid
system to address load demand variations due to the stochastic character of renewable
energy generation. Ref. [10] achieves multi-energy complementary co-optimization in
multi-microgrid systems and proposes a benefit distribution strategy balancing fairness
and stability. Ref. [11] uses a two-layer optimization structure for multi-microgrid sys-
tem day-ahead and real-time energy scheduling, respectively, where energy interactions
between adjacent microgrids reduce the total operation cost. In Ref. [12], the planning
problem of multi-microgrid system coupled with electricity, heat and hydrogen is studied,
which significantly reduces carbon emissions and environmental pollution. Ref. [13] specif-
ically addresses the optimization of the design and operation of islanded multi-microgrid
system, using a column and constraint generation based approach to address both the de-
sign and operation phases. Energy storage equipment can be used to solve the problem of
time inconsistency between renewable energy generation and load demand [14]. However,
configuring separate energy storage system for each microgrid can significantly increase
the construction cost, and the utilization rate of the corresponding energy storage is low.
Accordingly, shared energy storage has become a hot research topic for the past few years.

Shared energy storage has become a more attractive way of energy storage config-
uration in multi-microgrid system by virtue of its flexibility and economic advantages,
which makes up for the regulation needs on the microgrid side and ensures the stable
operation of renewable energy power system [15,16]. Currently, the research on shared
energy storage is mainly distributed in the planning of energy storage capacity and the
optimization of operation mode [17]. Ref. [18] presents a shared energy storage capacity
planning model for multi-microgrid system considering PV generation accommodation
and loading capacity, and obtains a better economic return. Ref. [19] proposes a market
game model for peer-to-peer (P2P) energy trading between residential user side and shared
energy storage configuration, which allocates the optimal energy storage capacity with
considering the competition between users, and the obtained results achieve a further
reduction of energy costs. Ref. [20] proposes a business model of shared energy storage
in data center cluster and considers the uncertainty of renewable energy output, which
effectively reduce the investment of energy storage unit, and promote the consumption of
renewable energy. Ref. [21] considers shared energy storage to provide storage capacity
leasing services for large-scale photovoltaic base stations, and solves a two-stage joint opti-
mization problem for capacity planning and operation cost optimization. The optimization
results achieve coordinated operation and cost sharing between shared energy storage
and base station. Studies mentioned above have thoroughly studied the configuration
and operation of shared electricity energy storage services. However, users not only have
electricity load demand, but their demand for heat, especially in winter, is still a non-
negligible part. The high-frequency use of heating equipment in winter further increases
the users’ need for thermal energy storage. Refs. [22–24] focus on the application of shared
thermal energy storage. Ref. [22] combines the advantages of distributed and centralized
structures of energy storage system, and proposes an optimal scheduling model for an
integrated energy microgrid system containing electricity and thermal storage unit, which
minimizes the waste of electricity and thermal energy and obtains the optimal economic
benefits. In Ref. [23], three different configurations of combined heat and power units are
set up with multiple energy storage units, which improve energy utilization while reducing
production costs and carbon emissions. Ref. [24] set up a hybrid power system containing
wind-photovoltaic-battery-thermal energy storage, which utilizes the economic benefits
and working flexibility of thermal storage units and batteries to improve the intermittently
output of renewable energy. Shared electricity and thermal storage units are considered as
independent devices in the above literatures, but the coupling characteristic of electricity
and thermal energy in them is neglected. For shared energy storage system, the realization
of the coupling of electricity and thermal energy can further enhance their flexibility and
economic efficiency.

24



Energies 2024, 17, 5436

Most studies mentioned above focus on the optimization of the energy supply side
problem, while the independence of users on the load side is rarely included. Load fluctua-
tions during the actual electricity consumption by users can also affect the stable operation
of the multi-microgrid system [25]. In order to maximize the profits of microgrid users,
Ref. [26] proposes a novel demand response model considering the different electricity
consumption behaviors of different customers during peak and valley periods, and a
new algorithm called hybrid hybrid crow search algorithm—jaya algorithm (CSAJAYA) is
proposed, which verifies that the demand response has a positive effect on the reduction
of the system’s power generation cost. Ref. [27] addresses the problem of sudden energy
interruptions in an islanded microgrid by proposing a novel energy management tool for
isolating the microgrid and incorporating demand response program, which ultimately
reduces the system operation cost by 3% and increases the allowed cumulative faults by
13 h. Ref. [28] proposes an optimal scheduling model with combined cooling heating and
power (CCHP) and carbon capture devices considering demand response, which reduces
the carbon emissions of the system as well as the energy purchases of users through the
dual optimization of the demand response mechanism and the carbon trading mechanism,
thus contributing significantly to the protection of the environment and the reduction of
costs. The user-side uncertainties make the actual operation of multi-microgrid system
difficult to predict, which usually leads to difficulties in optimizing the configuration of
shared energy storage system as expected, and in many cases with low utilization of the
storage equipment.

Based on the summary of existing literature in Table 1, we note that: (1) Multi-
microgrid system is acknowledged for its ability to consume renewable energy and flexibil-
ity of operation. Energy storage device can solve the problem of temporal inconsistency
between renewable energy generation and load demand, but configuring separate storage
systems for each microgrid leads to the high cost and low utilization problem. (2) Although
various studies have been conducted on the configuration and optimization of shared
energy storage, there is still a lack of research on the synergistic utilization of shared
electricity and thermal storage unit, especially ignoring the coupling of electricity and
thermal energy therein. (3) Uncertainty on the user side makes the actual operation of
multi-microgrid system difficult to predict, which usually leads to difficulties in optimizing
the configuration of shared energy storage system as expected, and in many cases the
utilization of energy storage devices is low. In response to the research gaps presented
above, this paper makes the following significant contributions:

Table 1. Details of the proposed problem of this paper compared to other studies.

Reference Multi-Microgrid Shared Energy Storage Demand Objective
System Electricity/Heat/Coupling Response Storage Configuration/Operation Optimization

[11]
√ ×/×/× √ ×/

√
[20] × √

/×/× × ×/
√

[21] × √
/×/× × √

/
√

[22]
√ √

/
√

/× × ×/
√

[24] × √
/
√

/× × ×/
√

[26]
√ ×/×/× √ ×/

√

(1) An electricity-heat integrated energy storage supplier (EHIESS) specialized in
providing electricity and heat storage services for multi-microgrid system is proposed. A
bi-level planning model considering EHIESS capacity configuration and optimal operation
of multi-microgrid system is established, and solved based on Karush-Kuhn-Tucker (KKT)
condition and Big-M method.

(2) Electric boiler (EB) is introduced into EHIESS and leverages its electricity-heat
coupling characteristics to realize the enhancement of the integrated electricity-heat effi-
ciency of EHIESS. As well, the economic benefits of multi-microgrid system and EHIESS
are maximized.
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(3) Aiming at the volatility of user-side loads, a price-based load demand response
mechanism is introduced into multi-microgrid system to dynamically regulate the loads
and improve the utilization rate of shared energy storage equipment.

The rest of the paper is organized as follows. Section 2 introduces the multi-microgrid
system model considering EHIESS. Section 3 introduces the price-based DR model. In
Section 4, the simulation analysis is carried out. Finally, the main conclusions are summa-
rized in Section 5.

2. Multi-Microgrid System Model Sharing EHIESS
2.1. Electricity-Heat-Gas Coupled Microgrid Model

The microgrid model constructed in this paper is shown in Figure 1, which consists of
photovoltaic, wind turbine, CCHP, electric refrigerator, and electricity, heat and cooling
loads. The microgrid model is connected to the upper energy grid (upstream network
and natural gas grid). CCHP unit consists of gas turbine, gas boiler, waste heat boiler
(WHB), heat exchange and lithium bromide absorption chiller (LBAC). In this section, the
mathematical model of each device in the microgrid is presented as follows.

Figure 1. Topology of electricity-heat-gas coupled microgrid.

2.1.1. Combined Cooling Heating and Power

CCHP refers to the joint production of three different forms of energy for electricity,
heat and cooling. CCHP provides a cost-effective way to increase energy utilization and
improve environmental issues [29].

In CCHP, gas turbine generates electricity and heat by consuming natural gas. The
electricity generated is used to supply electricity loads and the heat is processed by WHB
and ultimately delivered to LBAC and heat exchange. The electricity and heat generated
by gas turbine can be expressed as:

Pt,i
GT = ηGT · Lgas ·Vt,i

GT (1)

Qt,i
GT = γGT · Pt,i

GT (2)

where Pt,i
GT and Qt,i

GT are the electricity and heat generated by gas turbine in microgrid i
(MG i) during hour t, respectively; ηGT and γGT are the electricity and heat generation
efficiency of gas turbine, respectively; Lgas is the heat value of natural gas, which is taken
as 9.7 kWh/m3; Vt,i

GT is the gas consumption volume of gas turbine in MG i during hour t.
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Gas boiler can be used as a heat generation device in conjunction with gas turbine,
and all heat it generates is used to supply the heat load. The heat generated by gas boiler in
MG i during hour t, Qt,i

GB, can be calculated according to the following equation:

Qt,i
GB = ηGB · Lgas ·Vt,i

GB (3)

where ηGB is the heat generation efficiency of gas boiler; Vt,i
GB is the gas consumption volume

of gas boiler in MG i during hour t.
In CCHP, WHB can recycle the waste heat generated by gas turbine, and then deliver

the resulting heat to heat exchange and LBAC, which can be expressed as:

Qt,i
WHB = ηWHB ·Qt,i

GT (4)

where Qt,i
WHB is the heat absorbed by WHB in MG i during hour t; ηWHB is the heat

absorption efficiency of WHB.
Heat exchange and LBAC can convert heat energy delivered by WHB to generate heat

energy and cooling energy for users, respectively. The model of heat exchange and LBAC
can be formulated as follows:

Qt,i
HE = ηHE · α ·Qt,i

WHB (5)

Qt,i
AC = ηAC · (1− α) ·Qt,i

WHB (6)

where Qt,i
HE is the heat output of heat exchange in MG i during hour t; Qt,i

AC is the cooling
output of LBAC in MG i during hour t; ηHE and ηAC are the energy utilization rates of
heat exchange and LBAC, respectively; α is the proportion of heat energy supplied to heat
exchange by WHB.

2.1.2. Electric Refrigerator

Electric refrigerator, as a commonly used refrigeration equipment, supplies cooling
load by consuming electricity. The cooling power generated by electric refrigerator in MG i
during hour t, Qt,i

ER, can be calculated according to the following equation:

Qt,i
ER = ηER · Pt,i

ER (7)

where Pt,i
ER is the power consumption of electric refrigerator in MG i during hour t; ηER is

the cooling efficiency of electric refrigerator.

2.2. Electricity-Heat Integrated Energy Storage Supplier Model

EHIESS forms a bi-level structure with multi-microgrid system, which can calculate
the required capacity of energy storage equipments and the charging and discharging
electricity and heat according to the energy consumption of multi-microgrid users, and
carry out the construction and maintenance of energy storage equipments, thus providing
shared energy storage service for multi-microgrid system, and earning profits from the
energy trading and service fees. Specifically, the input of EB enables EHIESS more fully
to utilize the complementarities and differences of different microgrid user loads, so that
the capacity configuration of electricity and thermal storage unit is more reasonable, and
to realize satisfying user’s demand for energy storage capacity with less investment, and
the economy of EHIESS can be further improved. The electricity and thermal storage units
in EHIESS are connected to the multi-microgrid system through buses, and the electricity
and heat interactions between microgrids are carried out through the buses, as shown
in Figure 2 EHIESS is connected to MG 1 to MG n (n = 1, 2, . . . , N), and each microgrid
is connected to upstream network and natural gas grid, respectively. Microgrid users
who have excess electricity and heat use the energy storage service of EHIESS to store
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excess electricity and heat, and the microgrid users who are short of electricity and heat are
supplied with electricity and heat by EHIESS.

Figure 2. Multi-microgrid system shared EHIESS model.

The electricity stored in ESU during hour t, Et, can be calculated as follows:

Et = Et−1 + ηabs · Pt−1
ch −

1
ηre
· Pt−1

dis − Pt−1
EB (8)

where ηabs and ηre are the charging and discharging efficiencies of ESU, respectively;
Pt−1

ch and Pt−1
dis are the charging and discharging electricity of EHIESS during hour t− 1,

respectively; Pt−1
EB is the power consumption of EB during hour t− 1.

The heat stored in TSU during hour t, Ht, can be calculated as follows:

Ht = Ht−1 + ωabs ·Qt−1
ch −

1
ωre
·Qt−1

dis + Qt−1
EB (9)

where ωabs and ωre are the heat charging and discharging efficiencies of TSU, respec-
tively; Qt−1

ch and Qt−1
dis are the charging and discharging heat of EHIESS during hour t− 1,

respectively; Qt−1
EB is the heat produced by EB during hour t− 1.

In this paper, the initial storage capacity of the energy storage equipment is set to be
20% of the total capacity, which can be expressed as:

E0 = 20% · Emax, H0 = 20% · Hmax (10)

where E0 and H0 are the capacities of ESU and TSU at the initial time, respectively; Emax

and Hmax are the maximum capacities of ESU and TSU, respectively.
EB can connect ESU and TSU to convert heat into electricity when the heat load is

high or ESU reaches its capacity limit. By incorporating EB equipment, the flexibility of
EHIESS has been improved, resulting in higher profit for EHIESS. The model of EB can be
expressed as follows:

Qt
EB = ηEB · Pt

EB (11)

where ηEB is the conversion efficiency of EB.

2.3. Price-Based Demand Response

Different kinds of electricity loads have different sensitivities to the electricity price in
practical work for multi-microgrid system, and the operation risk of microgrid and cost of
users will increase without considering the different sensitivities of loads. Therefore, we
considered the price-based DR in the load side. Price-based DR means that the upstream
network guides users to use electricity reasonably by setting different electricity prices in
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different time periods, so as to achieve the purpose of smoothing the load curve, reducing
the system operation risk, and decreasing the user’s energy cost [30].

Currently, the ways that can be modeled to reflect the user’s response behavior to
the price are price elasticity coefficient matrix, consumer psychology and so on. Among
them, the method of price elasticity coefficient matrix can accurately reflect the response
behavior of users to different electricity prices [31]. Price elasticity coefficient is an index
that measures the influence of price changes to load demands. When the price changes
in a certain time period, it will not only affect the demand in this time period, but also
indirectly change the demand in other time periods. The price elasticity coefficient includes
the self-demand elasticity coefficient and cross-elasticity coefficient.

The elements of the price elasticity matrix, et,j, represent the elasticity coefficients of
the electricity load during hour i with respect to the price of electricity during hour j, can
be calculated as follows [32]:

et,j =
∆Pt

L
Pt

L,0

ρ
j
0

∆ρj (12)

where ∆Pt
L is the electricity load changes after DR during hour t; Pt

L,0 is the initial electricity

load; ∆ρj is the electricity price changes after DR during hour j; ρ
j
0 is the initial electricity

price during hour j. When t equals j, et,j is the self-demand elasticity coefficient, when t
and j are not equal, et,j is the cross-elasticity coefficient.

2.3.1. Curtailable Load

Loads are categorized into curtailable load (CL) and shiftable load (SL) based on differ-
ences in sensitivity to prices. CL can choose whether or not to engage in load curtailment by
comparing the price of electricity before and after considering DR for a given time period.
The changes of CL after DR during hour t is given as follows:

∆Pt
CL = P0

CL

[
24

∑
j=1

ECL(t, j)
ρj − ρ

j
0

ρ
j
0

]
(13)

where P0
CL is the initial CL quantity; ECL(t, j) is the price elasticity matrix with respect of

CL; ρj is the electricity price during hour j.

2.3.2. Shiftable Load

SL can compare the prices before and after DR and flexibly choose whether to adjust
the working hours or not. Customers will shift the load from peak hours into valley hours
based on the time-of-use price. The change of SL after DR during hour t is given as follows:

∆Pt
SL = P0

SL

[
24

∑
j=1

ESL(t, j)
ρj − ρ

j
0

ρ
j
0

]
(14)

where P0
SL is the initial SL quantity; ESL(t, j) is the price elasticity matrix with respect of SL.

2.4. Energy Balance in Microgrid

The three types of energy flow in the microgrid, electricity, heat and cooling, should
satisfy the corresponding energy balance relationship. The expression for the electrical
balance of the microgrid is as follows:

Pt,i
GT + Pt,i

WT + Pt,i
PV + Pt,i

grid + Pt,i
mg,b = Pt,i

mg,s + Pt,i
ER + Pt,i

el (15)

where Pt,i
WT and Pt,i

PV are the electricity generated by WT and PV of MG i during hour t,
respectively; Pt,i

grid is the electricity purchased by the MG i from the upstream network;
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Pt,i
mg,b and Pt,i

mg,s are the electricity purchased and sold by MG i, respectively; Pt,i
el is the

electricity load of MG i.
The cooling balance expression for the microgrid is given below:

Qt,i
ER + Qt,i

AC = Qt,i
cl (16)

where Qt,i
cl is the cooling load of MG i during hour t.

The heat balance expression for the microgrid is given below:

Qt,i
GB + Qt,i

HE + Qt,i
mg,b = Qt,i

hl + Qt,i
mg,s (17)

where Qt,i
hl is the heat load of MG i during hour t; Qt,i

mg,b and Qt,i
mg,s are the heat purchased

and sold by MG i, respectively.

3. A Bi-Level Optimizing Model Considering Capacity Configuration of EHIESS and
Optimal Operation of Multi-Microgrid System

In order to realize the win-win situation of multi-microgrid system and EHIESS, A bi-
level optimization model is established considering capacity configuration of EHIESS and
optimal operation of multi-microgrid system. The upper-level model is used to solve the
optimal configuration problem of EHIESS, and the lower-level model is used to solve the
optimal operation problem of multi-microgrid system. The upper-level model transfers the
optimized EHEISS configuration information to the lower-level model, and then, in lower-
level model, each microgrid interacts with EHIESS to optimize its own energy scheduling
based on its own energy consumption and EHIESS optimal configuration information.
Finally, EHIESS updates its configuration based on the microgrid’s scheduling data, which
ultimately satisfies the bi-level optimization model and obtains the optimal results.

3.1. Upper Level Optimization Model
3.1.1. Objective Function

The objective function of the upper-level model is to maximize the profits of EHIESS
over the scheduling period, the optimization variables include the capacity configurations
of ESU and TSU as well as the maximum charging and discharging power. The objective
function for the upper-level model is as follows:

max Cupper = Cbuy − Csale − Cinv + Cserve (18)

where Cupper is the total profits of EHIESS; Cbuy is the cost of purchasing energy from the
multi-microgrid system; Csale is the profit of selling energy to the multi-microgrid system;
Cinv is the investment and maintenance costs of the energy storage equipment in EHIESS;
Cserve is the service fees charged by EHIESS.

The cost of purchasing energy from the microgrid includes the costs of purchasing
electricity and heat, which can be expressed as:

Cbuy =
N

∑
i=1

NT

∑
t=1

(λt · Pt,i
mg,b + φt ·Qt,i

mg,b) (19)

where N denotes the number of microgrids; NT is the length of the scheduling period; λt is
the price of electricity purchased from ESU during hour t; φt is the price of heat purchased
from TSU during hour t.

Multi-microgrid system sells electricity and heat to EHIESS to generate profits, which
can be expressed as follows:

Csale =
N

∑
i=1

NT

∑
t=1

(δt · Pt,i
mg,s + γt ·Qt,i

mg,s) (20)
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where δt is the price of electricity sold to ESU during time t; γt is the price of heat sold to
TSU during hour t.

The investment and maintenance costs of ESU and TSU can be calculated as:

Cinv =
ηpPmax

es + ηeEmax

TESU
+ CESU +

ηqQmax
es + ηhHmax

TTSU
+ CTSU (21)

where ηp and ηe are the electricity power cost and capacity cost of ESU, respectively; Pmax
es

is the maximum charging and discharging power of ESU; ηq and ηh are the heat power cost
and capacity cost of TSU, respectively; Qmax

es is the maximum charging and discharging
heat power of TSU; TESU and TTSU is the operating life of ESU and TSU, respectively; CESU
and CTSU is the daily maintenance cost of ESU and TSU, respectively.

The service fees gained by EHIESS from multi-microgrid system, Cserve, can be calcu-
lated as:

Cserve =
N

∑
i=1

NT

∑
t=1

θt ·
(

Pt,i
mg,b + Pt,i

mg,s + Qt,i
mg,b + Qt,i

mg,s

)
(22)

where θt is the price of the service fees received by EHIESS during hour t.

3.1.2. Constraints

In the upper-level, we consider the storage capacity and charging/discharging power
of each scheduling period of ESU and TSU in EHIESS operation, and set the upper limit con-
straint of storage capacity, charging/discharging power constraint and EB power constraint.
The model of ESU and TSU can be formulated as follows:

Emax = ηESU · Pmax
es (23)

Hmax = ηTSU ·Qmax
es (24)

The maximum capacity of ESU, Emax, and the maximum capacity of TSU, Hmax, are
given by Equations (23) and (24), where ηESU and ηTSU is the energy multiplication factor
of ESU and TSU, respectively.

Equations (25) and (26) are the storage capacity constraints for ESU and TSU. In order
to ensure the stability, efficiency, and prolong the service life of the equipments, the state of
charge (SOC) limits are set to 0.1 and 0.9, respectively.

10% · Emax ≤ Et ≤ 90% · Emax (25)

10% · Hmax ≤ Ht ≤ 90% · Hmax (26)

The charging and discharging electricity of ESU, and the charging and discharging
heat of TSU constraints during hour t can be expressed as follows:

0 ≤ Pt
ch ≤ Ut

abs · Pmax
es , 0 ≤ Pt

dis ≤ Ut
re · Pmax

es (27)

0 ≤ Qt
ch ≤ Vt

abs ·Qmax
es , 0 ≤ Qt

dis ≤ Vt
re ·Qmax

es (28)

where Ut
abs and Ut

re are the charging and discharging states of ESU, respectively. When ESU
is charging during hour t, Ut

abs is taken as 1 and Ut
re is taken as 0. When ESU is discharging

during hour t, Ut
abs is taken as 0 and Ut

re is taken as 1. Vt
abs and Vt

re are the charging and
discharging heat states of TSU. When TSU is charging during hour t, Vt

abs is taken as 1 and
Vt

re is taken as 0, when TSU is discharging during hour t, Vt
abs is taken as 0 and Vt

re is taken
as 1. Charging and discharging states cannot be performed at the same time.

The electricity consumption of EB during hour t is constrained as follows:
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Pmin
EB ≤ Pt

EB ≤ Pmax
EB (29)

where Pmin
EB and Pmax

EB are the minimum and maximum power consumption of EB during
hour t, respectively.

3.2. Lower Level Optimization Model
3.2.1. Objective Function

The objective function of the lower-level model is to minimize the operation costs of
the multi-microgrid system in scheduling period. The decision variables include the power
purchased from the upstream network, the output power of the equipments in CCHP, the
electricity consumption of electric refrigerator and the power of the microgrids trading
with EHEISS. The objective function of the lower-level model can be expressed as:

min Clower = Cgrid + Cgas + Cbuy − Csale + Cserve + Ct,i
ca (30)

where Cgrid is the cost of electricity purchased from the upstream network; Cgas is the cost
of purchasing natural gas, which can be expressed separately as follows:

Cgrid =
N

∑
i=1

NT

∑
t=1

τt
grid · Pt,i

grid (31)

Cgas =
N

∑
i=1

NT

∑
t=1

τt
gas · (Vt,i

GT + Vt,i
GB) (32)

where τt
grid is the electricity price of the upstream network; τt

gas is the price of natural gas.

3.2.2. Constraints

In the multi-microgrid system scheduling model, expect for the electricity, cooling,
and heat power balance constraints, the output constraints of each device such as mi-
crogrid purchase and sale power constraints are also considered. The electricity and
heat sold/purchased by multi-microgrid during hour t should be the sum of the ex-
cess/insufficient energy of individual microgrid, can be expressed as follows:

Pt
dis − Pt

ch =
N

∑
i=1

(Pt,i
mg,b − Pt,i

mg,s) (33)

Qt
dis −Qt

ch =
N

∑
i=1

(Qt,i
mg,b −Qt,i

mg,s) (34)

The output constraints for each device in the microgrid are as follows:




Pmin
GT ≤ Pt,i

GT ≤ Pmax
GT

Qmin
AC ≤ Qt,i

AC ≤ Qmax
AC

Qmin
ER ≤ Qt,i

ER ≤ Qmax
ER

Qmin
GB ≤ Qt,i

GB ≤ Qmax
GB

Qmin
HE ≤ Qt,i

HE ≤ Qmax
HE

(35)

The power constraint for energy transfer from the upstream network to MG i during
hour t is given as follow:

0 ≤ Pt,i
grid ≤ Pmax

grid (36)

where Pmax
grid is the maximum power purchased from the upstream network.

The energy trading constraints of EHIESS and multi-microgrid system are as follows:
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0 ≤ Pt,i
mg,s ≤ Pmax

mg ·Ut,i
sale, 0 ≤ Pt,i

mg,b ≤ Pmax
mg ·Ut,i

buy

0 ≤ Qt,i
mg,s ≤ Qmax

mg ·Vt,i
sale, 0 ≤ Qt,i

mg,b ≤ Qmax
mg ·Vt,i

buy

Ut,i
sale + Ut,i

buy ≤ 1, Vt,i
sale + Vt,i

buy ≤ 1

(37)

where Ut,i
sale and Ut,i

buy are the electricity purchase state bits of the MG i. When the MG i

sells electricity to ESU, Ut,i
sale is equal to 1 and Ut,i

buy is equal to 0. When the MG i purchases

electricity from ESU, Ut,i
sale is equal to 0 and Ut,i

buy is equal to 1. Vt,i
sale and Vt,i

buy are the heat

purchase state bits of the MG i. When the MG i sells heat to TSU, Vt,i
sale is equal to 1 and

Vt,i
buy is equal to 0. When the MG i purchases electricity from ESU, Vt,i

sale is equal to 0 and

Vt,i
buy is equal to 1.

3.3. Solution Process

The solution process of the bi-level optimization model constructed in this paper
is shown in Figure 3. It is difficult to solve the bi-level optimization problem directly
because of the interaction between the upper-level model and the lower-level model. In
this paper, we first construct the Lagrange function according to the objective function and
constraints of the lower-level model [33], and then transform the lower-level model into the
constraints of the upper-level model through the Karush-Kuhn-Tucker (KKT) optimization
condition, which transforms a mixed integer linear problem into a single level nonlinear
problem. Then the bi-level optimization model changes into a single level mixed integer
linear problem according to the Big-M method [34]. Finally, the model is constructed under
the MATLAB2021a platform and solved by invoking CPLEX and YALMIP. The specific
solution procedure is shown below:

Step 1: The Lagrange function for the lower model is constructed as follows [35]:

min C =
N
∑

i=1

NT
∑

t=1
∆t

{
τt

grid · P
t,i
grid + τt

gas ·
Pt,i

GT
ηGTLgas

+ τt
gas

Qt,i
GT

ηGBLgas
+ λt · Pt,i

mg,b + φt ·Qt,i
mg,b

−δt · Pt,i
mg,s − γt ·Qt,i

mg,s +θt · (Pt,i
mg,b + Pt,i

mg,s + Qt,i
mg,b + Qt,i

mg,s)
}
+ λt,i

1

[
Pt,i

GT + Pt,i
WT +

Pt,i
PV + Pt,i

grid + Pt,i
mg,b − Pt,i

mg,s − Pt,i
ER − Pt,i

el

]
+ λt,i

2

[
Qt,i

ER + Qt,i
AC −Qt,i

cl

]

+λt,i
3

[
Qt,i

GB +Qt,i
HE + Qt,i

mg,b −Qt,i
hl −Qt,i

mg,s

]
+ λt,i

4

[
Qt,i

HE
ηHE

+
Qt,i

AC
ηAC
− ηWHB ·Qt,i

GT

]

+λt,i
5

[
Pt

dis − Pt
ch −

N
∑

i=1

(
Pt,i

mg,b − Pt,i
mg,s

)]
+ λt,i

6

[
Qt

dis −Qt
ch −

N
∑

i=1

(
Qt,i

mg,b −Qt,i
mg,s

)]

+µmin
1

[
Pmin

GT − Pt,i
GT

]
+ µmax

1

[
Pt,i

GT − Pmax
GT

]
+ µmin

2

[
Qmin

AC −Qt,i
AC

]
+ µmax

2

[
Qt,i

AC −Qmax
AC

]

+µmin
3

[
Qmin

ER −Qt,i
ER

]
+ µmax

3

[
Qt,i

ER −Qmax
ER

]
+ µmin

4

[
Qmin

GB −Qt,i
GB

]
+ µmax

4

[
Qt,i

GB −Qmax
GB

]

+µmin
5

[
Qmin

HE −Qt,i
HE

]
+ µmax

5

[
Qt,i

HE −Qmax
HE

]
− µmin

6 · Pt,i
grid + µmax

6

[
Pt,i

grid − Pmax
grid

]

−µmin
7 · Pt,i

mg,s + µmax
7

[
Pt,i

mg,s − Pmax
mg ·Ut,i

sale

]
+ µmin

8 · Pt,i
mg,b + µmax

8

[
Pt,i

mg,b − Pmax
mg ·Ut,i

buy

]

+µmax
9

[
Vt,i

sale+Vt,i
buy−1

]
− µmin

10 ·Qt,i
mg,s + µmax

10

[
Qt,i

mg,s −Qmax
mg ·Vt,i

sale

]
+ µmin

11 ·Qt,i
mg,b

+µmax
11

[
Qt,i

mg,b −Qmax
mg ·Vt,i

buy

]
+µmax

12

[
Vt,i

sale+Vt,i
buy−1

]

(38)

Step 2: Based on the constructed Lagrange function (38) and the complementary
relaxation conditions of the lower-level model, the lower-level model can be transformed
into an additional constraint for the upper model, given as follows:
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τt
grid + λt,i

1 + µmax
6 − µmin

6 = 0
τt

gas
ηGTLgas

+ λt,i
1 + µmax

1 − µmin
1 = 0

τt
gas

ηGBLgas
− λt,i

4 · ηWHB = 0

λt + θt + λt,i
1 − λt,i

5 + µmax
8 − µmin

8 = 0
φt + θt + λt,i

3 − λt,i
6 + µmax

11 − µmin
11 = 0

−δt + θt − λt,i
1 − λt,i

5 + µmax
7 − µmin

7 = 0
−γt + θt − λt,i

3 − λt,i
6 + µmax

10 − µmin
10 = 0

λt,i
2 +

λt,i
4

ηAC
+ µmax

2 − µmin
2 = 0

λt,i
2 + µmax

3 − µmin
3 = 0

λt,i
3 + µmax

4 − µmin
4 = 0

λt,i
3 +

λt,i
4

ηHE
+ µmax

5 − µmin
5 = 0

−µmax
7 · Pmax

mg + µmax
9 = 0

−µmax
8 · Pmax

mg + µmax
9 = 0

−µmax
10 ·Qmax

mg + µmax
12 = 0

−µmax
11 ·Qmax

mg + µmax
12 = 0

(39)





0 ≤ µmin
1 ⊥

(
Pt,i

GT − Pmin
GT

)
≥ 0, 0 ≤ µmax

1 ⊥
(

Pmax
GT − Pt,i

GT

)
≥ 0

0 ≤ µmin
2 ⊥

(
Qt,i

AC −Qmin
AC

)
≥ 0, 0 ≤ µmax

2 ⊥
(

Qmax
AC −Qt,i

AC

)
≥ 0

0 ≤ µmin
3 ⊥

(
Qt,i

ER −Qmin
ER

)
≥ 0, 0 ≤ µmax

3 ⊥
(

Qmax
ER −Qt,i

ER

)
≥ 0

0 ≤ µmin
4 ⊥

(
Qt,i

GB −Qmin
GB

)
≥ 0, 0 ≤ µmax

4 ⊥
(

Qmax
GB −Qt,i

GB

)
≥ 0

0 ≤ µmin
5 ⊥

(
Qt,i

HE −Qmin
HE

)
≥ 0, 0 ≤ µmax

5 ⊥
(

Qmax
HE −Qt,i

HE

)
≥ 0

0 ≤ µmin
6 ⊥Pt,i

grid ≥ 0, 0 ≤ µmax
6 ⊥

(
Pmax

grid − Pt,i
grid

)
≥ 0

0 ≤ µmin
7 ⊥Pt,i

mg,s ≥ 0, 0 ≤ µmax
7 ⊥

(
Pmax

mg ·Ut,i
sale − Pt,i

mg,s

)
≥ 0

0 ≤ µmin
8 ⊥Pt,i

mg,b ≥ 0, 0 ≤ µmax
8 ⊥

(
Pmax

mg ·Ut,i
buy − Pt,i

mg,b

)
≥ 0

0 ≤ µmax
9 ⊥

(
1−Ut,i

sale −Ut,i
buy

)
≥ 0

0 ≤ µmin
10 ⊥Qt,i

mg,s ≥ 0

0 ≤ µmin
11 ⊥Qt,i

mg,b ≥ 0, 0 ≤ µmax
11 ⊥

(
Qmax

mg ·Vt,i
buy −Qt,i

mg,b

)
≥ 0

0 ≤ µmax
12 ⊥

(
1−Vt,i

sale −Vt,i
buy

)
≥ 0

(40)

Step 3: Based on the transformed single-level model, as shown in Equations (39)
and (40), the Big-M method is used to introduce 0–1 variables to transform the nonlinear
constraints in the model into mixed-integer linear constraints, for example:

0 ≤ µmin
1 ≤ Mmin

µ vmin (41)

0 ≤ Pt,i
GT − Pmin

GT ≤ Mmin
µ (1− vmin) (42)

where Mmin
µ is a sufficiently large constant; vmin is a binary variable.
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Figure 3. Schematic diagram of the solution process.

4. Simulation Analysis
4.1. Parameter Settings

The multi-microgrid system in this paper consists of three microgrids equipped with
CCHP, wind turbine and photovoltaic, and is connected to EHIESS consisting of ESU,
TSU and EB. The predicted output data of wind turbine and photovoltaic for the three
microgrids in summer and winter, as well as three loads demands of electricity, heat and
cooling are shown in Figure 4 [36], where MG 3 is not equipped with WT. The scheduling
period is set to 24 h. The time-of-use price after DR and the transaction price between
the multi-microgrid system and ESU are shown in Table 2 [36]. The detailed operation
parameters of energy conversion equipment are shown in Table 3 [37]. The power cost of
ESU and TSU is $281.66/kW and $70.40/kW (The original data used CNY as the unit, for
reading convenience, this paper uses the RMB-USD exchange rate of 12 October 2024 to
convert the unit to USD. It will not be separately noted later.). The capacity of ESU and
TSU cost is $267.11/kWh and $26.753/kWh [37]. The service fees charged by EHIESS is
$0.0014/kW. The price of natural gas is taken as 0.31 $/m3. The price of heat sold to the
TSU is $0.014/kWh, and the price of heat purchased from the TSU is $0.056/kWh.

Table 2. Time-of-use price parameters.

Time Period
Electricity Price/($/kWh)

Upstream Network
Electricity Price

ESU’s Selling
Electricity Price

ESU’s Purchasing
Electricity Price

Peak period 08:00–13:00 0.19 0.16 0.1316:00–21:00

Flat period 13:00–16:00 0.12 0.11 0.0821:00–24:00

Valley period 00:00–08:00 0.05 0.06 0.03
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Figure 4. Loads demands and predicted power generation of PV and WT in multi-microgrid
system.

Table 3. Equipment parameters of the microgrid.

Parameters Numerical Value

Electricity generation efficiency of gas turbine, ηGT 0.3
Electricity-to-heat ratio of gas turbine, γGT 1.47

Heat generation efficiency of gas boiler, ηGB 0.9
Heat absorption efficiency of WHB, ηWHB 0.8

Cooling efficiency of electric refrigerator, ηER 4
Energy utilization rates of heat exchange, ηHE 0.9

Energy utilization rates of LBAC, ηAC 1.2
Electricity charging and discharging efficiencies of ESU 0.95

Heat charging and discharging efficiencies of TSU 0.95
Electricity-heat conversion efficiency of EB, ηEB 3

Energy multiplication factor of ESU, ηESU 2.7
Energy multiplication factor of TSU, ηTSU 0.2

Maximum power of gas turbine, kW 3000
Maximum power of LBAC, kW 4000

Maximum power of electric refrigerator, kW 4000
Maximum power of gas boiler, kW 4000

Maximum power of heat exchange, kW 4000
Maximum power transaction of multi-microgrid system, kW 4000
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4.2. Analysis of the Operation and Economic Scheduling of EHIESS

In this paper, the impact of EHIESS on the multi-microgrid system operation is com-
paratively analyzed by setting up the following three cases.

Case 1: The multi-microgrid system is connected only to ESU, with ESU providing the
electricity storage service.

Case 2: The multi-microgrid system is connected to ESU and TSU, with ESU and TSU
providing electricity and heat storage service, respectively.

Case 3: The multi-microgrid system is connected to EHIESS, which includes ESU, TSU,
and EB that can provide electricity and heat storage services, and realize
electricity-heat coupling.

Table 4 shows the operation costs of the multi-microgrid system and the profits of
EHIESS for three different cases. From Table 4, we can see that the profits of EHIESS keep
increasing while the operation costs of the multi-microgrid system keep decreasing after
adding TSU and EB devices in both summer and winter cases. Figure 5 reflects the charging
and discharging energy of EHIESS under three cases in summer, from which we can see that
the multi-microgrid system in Case 1 sells electricity to EHIESS during the lower load hours
of 01:00–4:00 and 10:00–14:00, and purchases electricity from EHIESS during the higher load
hours of 06:00–9:00 and 16:00–19:00. The addition of the TSU in Case 2 allows the multi-
microgrid system to trade heat with EHIES. TSU can store excess heat to reduce heat waste,
which reduces the heat production of CCHP in multi-microgrid system fairly, and reduces
the operation costs of the multi-microgrid system in summer from $10,352.25 to $9884.21 in
Case 1. Meanwhile, the operation costs of the multi-microgrid system in winter decreases
from $36,745.27 to $35,291.77, and the profits of EHIESS in winter rises from $3754.61 to
$6397.26. In Case 3, TSU is in heat discharging state for 23 h during the scheduling period,
which is due to the input of EB equipment makes part of the electricity in ESU converted
into heat. At this time, the profits of EHIESS in Case 3 are $1933.88 and $8825.53 in summer
and winter, respectively, which are 12.25% and 37.96% higher compared to Case 2. The
operation of EHIESS alleviates the heat production pressure and dependence on natural gas
of gas turbine and gas boiler in multi-microgrid system, and realizes synergistic operation
and complementary advantages between different microgrids.

Table 4. Profits of EHIESS and operation cost of multi-microgrid system in summer and winter.

Season Case Profits of EHIESS/$ Operation Costs of the
Multi-Microgrid System/$

1 489.27 10,352.25

Summer 2 1722.87 9884.21

3 1933.88 7799.96

1 3754.61 36,745.27

Winter 2 6397.26 35,291.77

3 8825.53 26,628.18

Table 5 reflects the energy purchases from upper level energy grid by multi-microgrid
system under Case 2 and Case 3. As can be seen from Table 5, the addition of the EB results
in a significant increase of the purchased power of the multi-microgrid system both in
summer and winter, whereas the purchased natural gas of the multi-microgrid system has
a significant decrease in summer and winter by 6757.1 kWh and 41,766.6 kWh, respectively.
The inclusion of EB realizes the coupled utilization of ESU and TSU so that the dependence
of the multi-microgrid system on the energy storage has reduced. Besides, because of the
higher construction cost of ESU relative to TSU, the configuration capacity of the ESU is
reduced accordingly. Meanwhile, the multi-microgrid system in Case 3 has lower energy
purchase costs in summer and winter compared to Case 2. The input of EB strengthens the
energy interaction between different microgrids, and improves the utilization rate of the
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energy storage equipment in EHIESS, which significantly improves the economics of both
the multi-microgrid system and EHIESS.

Figure 5. Charging and discharging energy EHIESS for Case 1 to Case 3 in summer.

Table 5. Energy purchase from upper-level energy grid for Case 2 and Case 3.

Season

Case2 Case3

Electricity
Purchase

/kWh

Natural Gas
Purchase

/kWh

Cost of
Energy

Purchase
/$

Electricity
Purchase

/kWh

Natural Gas
Purchase

/kWh

Cost of
Energy

Purchase
/$

Summer 8301.7 14,335.4 5609.60 14,059.3 7578.3 4880.98

Winter 57,091.5 62,568.8 27,420.73 79,857.7 20,802.2 13,092.99

In order to further evaluate the effectiveness of the shared energy storage optimal
configuration model proposed in this paper, simulations are conducted in two scenarios
of fixed energy storage capacity and optimal configuration of energy storage capacity
in EHIESS. Summer load demands, wind and photovoltaic data of three microgrids are
selected, and the optimal operation of EHIESS with the TSU capacity set to 10,000, 11,000,
12,000 kWh and TSU capacity set to 8000, 8500, 9000 kWh respectively is solved to compare
with the optimal configuration scenarios of EHIESS, and the obtained results are shown in
Table 6. When the ESU and TSU capacities are set to 10,000 kWh and 8000 kWh, respectively,
EHIESS cannot guarantee the stable supply of electricity and heat to multi-microgrid
systems, and the optimal solution cannot be obtained in this case. With the gradual increase
of ESU and TSU capacity configurations, the energy storage construction and maintenance
cost of EHIESS increases accordingly. Meanwhile, we find that as the storage capacity
configuration increases, the storage capacity utilization rate gradually decreases, and the
operation revenue of EHIESS during the scheduling period also gradually decreases.

Table 6. Operation results of EHIESS under fixed capacity configuration and optimal capacity
configuration scenarios for energy storage unit.

Scenario ESU
Capacity/kWh

TSU
Capacity/kWh Pmax

es /kW Qmax
es /kW Profit of EHIESS/$

Scenario 1 10,000 8000 - - -
ine Scenario 2 11,000 8500 4126.34 2833.33 1683.25

Scenario 3 12,000 9000 4501.46 3000 1654.28

Optimal
configuration 10,263.33 8290.79 3850 2763.60 1933.88
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4.3. Analysis of User-Side Price-Based Demand Response

Figure 6 shows the power balance and upstream network electricity price considering
DR in Case 3. In the multi-microgrid system, the electricity is mainly supplied by PV, WT,
and CCHP. The multi-microgrid system can trade energy with EHIESS, and each microgrid
transmits energy to each other through EHIESS.

Figure 6. Power balance and upstream network electricity price considering DR in Case 3.

As we can see in Figure 6, after the introduction of renewable energy generation
in conjunction with CCHP and the consideration of DR, the power generation of the
multi-microgrid system is more diversified, which effectively improves the flexibility of
the operation of the multi-microgrid system. Among them, electricity generation of PV
and WT in each MG can be completely consumed, while the stochastic problem of WT
and PV generation can be solved by EHIESS. In addition, the time-of-use price can guide
the trading behavior of the multi-microgrid system with EHIESS. Besides, the sum of
electricity generated by PV and WT and the output of CCHP is much larger than the
user’s demand from 01:00 to 08:00. In order to prevent the waste of energy, the time-
of-use price can guide users to transfer their electricity consumption behavior to period
01:00–08:00. The three MGs transfer their loads from 01:00 to 08:00, which are 964.3 kW,
1198.1 kW and 655.8 kW, respectively, and the multi-microgrid system can sell surplus
electricity to EHIESS to get profits. The 9:00–12:00 and 17:00–20:00 time periods are peak
periods, during which DR can drive users to slash their electricity consumption behavior
and prompt them to buy electricity from EHIESS, and the total load reduction of three
MGs in peak periods are 120.5 kW, 131.6 kW, and 69.1 kW, respectively. The 13:00–16:00
and 21:00–24:00 time periods are the flat periods, and the multi-microgrid system can sell
surplus electricity to EHIESS to gain profits. MG relies on the WT generation and electricity
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purchase from EHIESS to meet its own electricity load demands, and adjusts its electricity
consumption behavior.

Table 7 reflects the operation situation of the multi-microgrid system before and after
the implementation of DR in summer. From Table 6, it can be seen that the multi-microgrid
system has better economic benefits after the implementation of DR, in which the operation
cost of the multi-microgrid system is reduced by $522.05. In addition, the peak-to-valley
difference of electric loads in the multi-microgrid system is reduced after considering DR
in the user side, which leads to smoother load curves and more stable operation of the
multi-microgrid system. This follows the fact that the implementation of DR prompts
the users to shift the electricity load from the peak hours to other hours, which facilitates
peak shaving and valley filling, thus reducing the value of the electricity load in peak
periods. Finally, the capacity of ESU is reduced from 10,263.33 kWh to 9730.80 kWh after
the implementation of DR in the user side. The implementation of DR makes the generation
of each microgrid more compatible with the changes of electricity price, which reduces the
generation of excess electricity in certain extent, so that the transactions of multi-microgrid
system and EHIESS are reduced accordingly, and reduces the required capacity of the ESU.

Table 7. The operation situation of the multi-microgrid system before and after DR in summer.

Scenario
Operation Costs

of Multiple
Microgrids/$

Profits of
EHIESS/$

Peak-to-Valley Difference in
Electricity Loads/kW ESU Capacity

Configuration
/kWh

MG1 MG2 MG3

Before DR 7799.96 1933.88 1830.00 1930.00 1150.00 10,263.33

After DR 7277.91 1687.40 1762.06 1804.60 927.48 9730.80

User satisfaction is an essential consideration in the operation of the multi-microgrid
system, which is related to the changing magnitude of SL and CL. According to Ref. [38],
the user satisfaction, Su, can be expressed as follows:

Su =
P0

L −
∣∣∆Pt

CL

∣∣−
∣∣∆Pt

SL

∣∣
P0

L
× 100% (43)

Simulations are carried out for different load shares of CL and SL in total load demands
to analyze the impact on the system’s operation. Figure 7 shows the operation costs of
the multi-microgrid system and the customer satisfaction in the case of CL and SL each
with a share of 5% to 25%. From Figure 7, it can be seen that as the share of CL and SL
increases, the operation costs of the multi-microgrid system gradually decreases from
$8558.33 to $7369.94, and the customer satisfaction gradually decreases from 98.44% to
92.22%. With the total microgrid load demand remaining unchanged, the DR behavior of
multi-microgrid system increases as the CL and SL share gradually increases, prompting
more load shifting from the peak hours to the valley hours and reducing the operation
costs of the multi-microgrid system. Whereas, price-based DR forces users to shift the time
of electricity consumption, which is contrary to the customer’s willingness, and thus the
increase of CL and SL share reduces the customer satisfaction.
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Figure 7. Operation costs and customer satisfaction of microgrids with different load shares after
considering DR under Case3.

4.4. Analysis of Sensitivity

The variation range of variables (i.e., electricity price and load demands of multi-
microgrid system, etc.) is set to −20–20%, based on Case 3 in summer, and the results of the
sensitivity analysis of these variables on the results of the energy storage configuration, the
EHIESS operation revenue, and the operation costs of multi-microgrid system are shown
in Tables 8 and 9. As shown in Table 9, within the range of changes in electricity, with
each 10% increase, EHIESS operation revenue and multi-microgrid system operation cost
increase slightly, and ESU and TSU capacity configurations remain essentially unchanged.
The sensitivity of electricity price to EHIESS operation revenue and operation cost of multi-
microgrid system is relatively insignificant. For the load demand of multi-microgrid users,
as shown in Table 9, with the loads changed by −20%, −10%, 10%, and 20%, the EHIESS
operation revenue changed by−49.2%, −24.1%, 24.5%, and 46.9%, and the multi-microgrid
system operation cost increased by −37.7%, −17.3%, 19.3% and 33.9%, respectively. As can
be seen in Table 9, the sensitivity of the change in load demand to the EHIESS operation
revenue and the operation cost of multi-microgrid system is more significant.

Table 8. Influence of electricity price changes on operation results.

Electricity Price Profits of
EHIESS/$ Operation Costs of Multi-Microgrid System/$ ESU

Capacity/kWh
TSU

Capacity/kWh

−20% 1930.89 7310.84 10,263.33 9090.23

−10% 1931.56 7484.73 10,263.33 8290.79

0% 1933.88 7799.96 10,263.33 8290.79

10% 1935.75 8537.65 10,263.33 8170.36

20% 1938.23 8620.57 10,263.33 8170.36

Table 9. Influence of load demand changes on operation results.

Electricity Price Profits of
EHIESS/$ Operation Costs of Multi-Microgrid System/$ ESU

Capacity/kWh
TSU

Capacity/kWh

−20% 981.87 4860.88 12,355.98 12,273.05

−10% 1468.40 6457.18 10,765.48 9090.23

0% 1933.88 7799.96 10,263.33 8290.79

10% 2408.21 9308.22 9863.46 6560.43

20% 2840.66 10,442.00 9463.59 6036.65
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4.5. Analysis of Comparison of Solution Methods

In order to verify the effectiveness of the KKT condition and Big-M optimization
method used in this paper to solve the bi-level planning problem of optimizing the shared
energy storage configuration of multi-microgrid system, the computational efficiencies of
the transformed single-level model and the original bi-level model are compared and ana-
lyzed. The computational results of the two solution methods are shown in Table 10. Since
the original bi-level optimization model is a nonlinear optimization model, it is necessary
to adopt corresponding intelligent algorithms to solve iteratively, which is easy to fall into
the local optimal solution and consumes a large amount of computing time. It can be seen
from the table that the computational time is significantly reduced after transforming into
single-level optimization model, which also leads to a relative increase in the operation
revenue of EHIESS and a decrease in the operation cost of multi-microgrid users.

Table 10. Calculation results of two solution methods.

Season Calculation Time/s Profits of EHIESS/$ Operation Costs of Multi-Microgrid System/$

Original bi-level model 319.6 1876.45 8209.87

Single-level model 8.6 1933.88 7799.96

5. Conclusions

In this paper, a bi-level optimization model considering EHIESS capacity configuration
and optimal scheduling of multi-microgrid system is proposed to maximize the profits
of EHIESS and minimize the operation costs of multi-microgrid system. The case studies
demonstrate the effectiveness of the proposed methodology in solving the problem of high
cost and low utilization of energy storage equipment configuration in multi-microgrid
system. The main research results are as follows:

The introduction of EB in EHIESS makes the electricity-heat coupling in EHIESS more
flexible, significantly improves the energy utilization rate of the storage equipment, and
brings better economic benefits to the multi-microgrid system. Compared to the scenario
considering only the separate configuration of electricity and heat energy storage, the
addition of EB improves the total profits of EHIESS in one scheduling period by $211.01
and $2428.27 in summer and winter, respectively, and reduces the total operation costs
of the multi-microgrid system by $2084.25 and $8663.59, respectively. In addition, DR
provides an effective solution to the problem of load demand uncertainty on the user
side, and users adjust their own electricity consumption behavior based on time-of-use
price, which smooths out load fluctuations and effectively improves the flexibility of the
operation of the multi-microgrid system. After the implementation of the price-based DR
mechanism, the configuration of ESU and TSU in EHIESS is reduced by 532.53 kW, which
further improves the economic efficiency of multi-microgrid system and EHIESS. In this
case, the total operation cost of multi-microgrid system is reduced by $522.05.

This paper focuses on multi-microgrid shared energy storage systems, and future
research can be extended to a wider range of application scenarios and consider different
sizes and types of energy systems to provide broader application guidance and decision
support. The main limitation of the proposed model is that it does not fully analyze the
impact of renewable energy uncertainty on shared storage capacity allocation. In future
research work, we will further consider the issue of evaluating the impact of multiple
uncertainties, such as wind power and photovoltaic, on multi-microgrid shared energy
storage systems. Besides, cost sharing between EHIESS and multi-microgrid system users
will be further studied and explored, and game-based pricing mechanisms for service fees
will be discussed.
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Nomenclature
Acronyms
CCHP combined cooling heating and power
DR demand response
EB electric boiler
EHIESS electricity-heat integrated energy storage supplier
ESU electricity storage unit
KKT Karush-Kuhn-Tucker
LBAC lithium bromide absorption chiller
TSU thermal storage unit
WHB waste heat boiler
Variables
Et the electricity stored in ESU during hour t, MW
Ht the heat stored in TSU during hour t, MW
Pt

ch the electricity purchased by ESU during hour t, MW
Pt

dis the electricity sold by ESU during hour t, MW
Pt

EB the power consumption of EB during hour t, MW
Pt,i

grid the electricity purchased of MG i from the upstream network during hour t, MW

Pt,i
GT the electricity generated by gas turbine of MG i during hour t, MW

Pt,i
mg,b the electricity purchased from EHIESS of MG i during hour t, MW

Pt,i
mg,s the electricity sold to EHIESS of MG i during hour t, MW

Qt,i
AC the cooling output of LBAC in MG i during hour t, MW

Qt
ch the heat purchased by TSU during hour t, MW

Qt
dis the heat sold by TSU during hour t, MW

Qt,i
EB the heat produced by EB during hour t, MW

Qt,i
ER the cooling output of ER in MG i during hour t, MW

Qt,i
GB the heat generation of gas boiler in MG i during hour t, MW

Qt,i
GT the heat generation of gas turbine in MG i during hour t, MW

Qt,i
HE the heat output of heat exchange in MG i during hour t, MW

Qt,i
mg,b the heat purchased from EHIESS of MG i during hour t, MW

Qt,i
mg,s the heat sold to EHIESS of MG i during hour t, MW

Qt,i
WHB the heat absorbed by WHB of MG i during hour t, MW

Vt,i
GB the gas consumption volume of gas boiler in MG i during hour t, MW

Vt,i
GT the gas consumption volume of gas turbine in MG i during hour t, MW

∆Pt
CL the changes of curtailable load after DR during hour t, MW

∆Pt
SL the changes of shiftable load after DR during hour t, MW
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Parameters
Lgas the heat value of natural gas, kWh

/
m3

ηAC the heat utilization rate of LBAC
ηEB the conversion efficiency of EB
ηER the cooling efficiency of electric refrigerator
ηGB the heat generation efficiency of gas boiler
ηGT the electricity generation efficiency of gas turbine
ηHE the heat utilization rate of heat exchange
ηWHB the heat absorption efficiency of WHB
ηabs the charging efficiency of ESU
ηre the discharging efficiency of ESU
ωabs the charging efficiency of TSU
ωre the discharging efficiency of TSU
γGT the heat generation efficiency of gas turbine
λt the price of electricity purchased from ESU during hour t, CNY/MW
φt the price of heat purchased from TSU during hour t, CNY/MW
δt the price of electricity sold to ESU during hour t, CNY/MW
γt the price of heat sold to TSU during hour t, CNY/MW
θt the price of service fees received by EHIESS during hour t, CNY/MW
τt

grid the electricity price of the upstream network, CNY/MW
τt

gas the price of natural gas, CNY/m3
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Abstract: With the construction of the UHV (Ultra High Voltage) AC/DC hybrid power grid and
the large-scale access to renewable energy such as wind power, frequency dynamic fluctuation has
become a prominent problem affecting the safe and stable operation of large power grids. The
expansion of the scale of the power system makes it impossible to use traditional fine modeling to
analyze the power system. In order to reduce the calculation scale and storage capacity of power
system frequency dynamic simulation, it is necessary to make appropriate equivalent simplification
of the external system, so the appropriate dynamic equivalent method is of great significance. This
paper mainly studies the equivalent model suitable for frequency dynamic analysis of large power
grids. Firstly, the typical models of generator set and load are simplified, and the parameters that
have a great influence on frequency in the simplified model are obtained through characteristic
analysis. Then, a dynamic aggregation method of generator governor and prime mover parameters
and load parameters based on regulation performance weighting (the parameters of the generator or
load are weighted and summed according to its regulation ability on the system) is proposed. This
method is applied to the simulation example of the East China Power Grid. The simulation proves
that the frequency of the East China Power Grid before and after equivalence can be consistent under
four different faults, which verifies the effectiveness of the equivalent method proposed in this paper
in the frequency dynamic analysis of large power grids.

Keywords: frequency analysis; regulation performance weighting method; governor and prime
mover equivalent; load equivalence

1. Introduction

One of the most important parameters in the power system is frequency, which can
reflect the operation quality of the power grid [1]. To make the power grid safe and
stable, it is necessary to maintain the frequency within a reasonable range [2]. Because
the power system has a certain particularity, it is impossible to directly test the actual
power grid to study the frequency problem, and it must be studied through modeling and
simulation. The dynamic equivalence method of the power system is inseparable from
the physical problems that need to be studied after equivalence. According to different
research problems, dynamic equivalence can be divided into three methods: the coherency
equivalence method [3,4], the mode equivalence method [5] and the online identification
method [6].

There are four main models in the power system [7], including the generator model,
excitation system model, prime mover-governor model and load model. So far, the first two
of these four models have well-studied models because their models are mainly electrical
quantities that can be obtained through actual measurements [8–10]. This paper mainly
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studies the latter two models. Because the power system is developing rapidly and the
scale is expanding, a large number of additional governors, loads and other components
must be taken into account. Therefore, the traditional comprehensive and refined modeling
of the power system [11–13] is no longer applicable. It is necessary to make appropriate
equivalent simplification of the external system. Therefore, the appropriate dynamic
equivalent method is of great significance.

With the integration of large-scale renewable energy, such as wind power, into the
power system, its instability will inevitably have an unpredictable impact on the grid
frequency. This paper also studies the general model of wind power generation system,
including four modules: wind turbine model, pitch angle controller, converter controller
and generator model [14,15], so as to further study the frequency dynamic analysis of large
power grids with new energy. The simulation results of the power system can be used
as the reference data for the planning and construction of the power grid, but different
simulation models will have different degrees of influence on the results of the simulation
calculation [16–18]. In particular, the accuracy of the load model will play a crucial role in
the final simulation results of the power grid [19]. It can be seen from references [20–22]
that with the change in the power grid and power supply structure and load type, the
frequency characteristics of the system will also change, and the security and stability of
the power grid will also face new threats.

In this paper, a method of dynamic aggregation of generator governor-primitive
motor parameters and load parameters based on adjustment performance weighting is
proposed. This method overcomes the uncertainty of human experience values and has fast
aggregation speed and high engineering accuracy. Table 1 shows the comparison between
the regulation performance weighting method and other main equivalence methods. Using
this method, the actual power grid can be equivalent to a single generator and a single
load, which is convenient for system frequency simulation analysis. Finally, the method
is applied to the East China Power Grid. The equivalent method of this paper is used to
equalize the generator and load of the East China Power Grid. The simulation proves
that the frequency of the East China Power Grid can be consistent before and after the
equivalence under four different faults, which verifies the effectiveness of the equivalent
method in the dynamic analysis of the large power grid frequency.

Table 1. The comparison of regulation performance weighting method and other methods.

Regulation Performance
Weighting Method

Other Coherency-Based
Equivalence Method

Polymerization rates Faster Fast

Reliability Overcome the uncertainty of
human experience Relying on human experience

Accuracy High Low

2. Equivalence Method for Governor and Prime Mover Based on Regulation
Performance Weighting
2.1. Aggregation Equivalence Modeling for Governor and Prime Mover of Steam Turbine

Taking the governor and prime mover models commonly used in steam turbines as
an example, the governor model is analyzed in detail and simplified reasonably. The gover-
nor and prime mover models commonly used in PSD-BPA (Power System Department-
Bonneville Power Administration) are shown in Figures 1 and 2 [23].
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In Figure 1, T1 represents the time constant of rotational speed measurement, Pre f
represents the given power reference value and TC represents the opening time constant of
the oil motor.

The transfer function of the electro-hydraulic servo actuator is as follows:

G2 =
PGV
PCV

=

(
KP + KDs + KI

s

)
. 1

To
. 1

s

1 +
(

KP + KDs + KI
s

)
. 1

To
. 1

s . 1
1+T2s

(1)

T2 represents the time of the oil motor travel feedback link, the typical value is 0.02 s;
TO represents the opening time constant of the oil motor, the typical value is 1–4 s; KP, KD
and KI are the proportional amplification link, differential link and integral link multiples
of the PID module, respectively. In general, KD and KI are all 0, and KP is about 10.

Under the typical parameters of the governor model, because PCV is a step signal, take
PCV = 1/s and the governor model is simplified to obtain the transfer function as shown
in Equation (2).

PGV =
KP. 1

To
. 1
s2

1 + KP. 1
To

. 1
s . 1

1+T2s
(2)

PGV is a step signal, so when PGV = 1/s, the transfer function of PM can be expressed
as Equation (3).

PM(s) =
1
s

[
1

TCHs + 1
FHP +

1
TCHs + 1

1
TRHs + 1

(1− FHP)

]
(3)

Therefore, the steam turbine governor-primitive engine model has seven main param-
eters: speed deviation magnification K, oil motor opening time constant TO, PID module
proportional magnification multiple KP, oil motor travel feedback link time T2, steam vol-
ume time constant TCH, reheater time constant TRH and high-pressure cylinder mechanical
power ratio coefficient FHP. Therefore, the frequency characteristics of these parameters
are analyzed to find out the parameters that have a greater impact on the frequency.

By analyzing Equation (1), taking KP = 7, T2 = 0.02, TO = 1.15 and 4, the PGV(t) curve
is obtained, as shown in Figure 3.
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Figure 3. Governor valve opening under different TO values.

From Figure 3, when TO increases from 1.15 to 4, the PGV(t) curve changes greatly.
It can be seen that the oil motor opening time constant TO has a great influence on the
characteristics of the steam turbine, and this parameter needs to be considered in the
equivalent modeling.

The frequency characteristics of the remaining parameters are analyzed according to
the same method, which is no longer shown here. Finally, it is concluded that the speed
deviation amplification factor K, the oil motor opening time constant TO, the reheater time
constant TRH and the high-pressure cylinder mechanical power proportional coefficient
FHP have a great influence on the frequency characteristics of the steam turbine. These four
parameters are mainly considered when equivalent.

The steps of the dynamic aggregation method of turbine governor-prime mover
parameters based on regulation performance weighting are shown in Figure 4:
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(1) The system to be analyzed is divided into an internal system that should remain
unchanged and an external system to be equivalent. The power flow calculation of the
power grid is carried out through BPA, and the parameter variables (rated output of
the generator prime mover Pei) and state variables (actual active power output of the
generator PGENi) of each generator in the external system that needs to be equivalent
are obtained.

(2) Through the calculation of the parameters of the M turbines to be aggregated, the
spinning reserve of each turbine generator and the equivalent turbine generator
are obtained.

According to (4), the spinning reserve of each turbine generator is obtained:

PSRi = PeiKMAXi − PGENi (4)

In Equation (4), Pei represents the rated output of the i-th turbine generator prime
mover, KMAXi represents the maximum regulating valve opening of the i-th turbine genera-
tor prime mover and PGENi represents the actual active output of the i-th turbine generator.

According to (5), the spinning reserve of the equivalent turbine generator PSReq
is obtained:

PSReq =
M

∑
i=1

PSRi (5)

(3) Organize the body model and parameters of M governors to be aggregated in the
external system and classify the governors of M steam turbine units according to the
commonly used n governor models (G1/G2/G3/.../Gn). According to the different
types of governors, the generators are classified, and the sum of the spins of turbo-
generators under different types of governors is obtained.





PG1 =
a
∑

i=1
PSRi

PG2 =
b
∑

i=1
PSRi

PG3 =
c
∑

i=1
PSRi

. . .

PGn =
n
∑

i=1
PSRi

(6)

Comparing the sum of the spins of n governor models, if the proportional of the sum
of the spins of a governor model to the sum of the spins of all models is less than 5%, the
governor is ignored, and the others are equivalent according to different governor types.

(4) Through the superposition calculation of the rated output power of the prime mover
of the M number of turbine generator sets to be aggregated, the rated output power
of the equivalent turbine generator is obtained. Through the total rated output power,
total actual active power and total spinning reserve of the unit to be aggregated, the
maximum valve opening of the prime mover of the equivalent governor is obtained.

The rated output power of the equivalent turbine generator is as follows:

PeM =
M

∑
i=1

Pei (7)

The actual active power of the equivalent turbine generator is as follows:

PGENM =
M

∑
i=1

PGENi (8)
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Maximum gate opening of prime mover of equivalent governor is as follows:

KMAXi =
PSReq + PGENi

PeM
(9)

(5) The parameters of the equivalent steam turbine governor-primitive engine model are
obtained by the method of dynamic aggregation of turbine governor-primitive engine
parameters based on the weighted adjustment performance.

Define the proportional coefficient of turbine speed regulation KPMi1:

KPMi1 =
FHPK

TRHTO
(10)

From the above analysis, it can be seen that the speed deviation amplification factor
K, the oil motor opening time constant TO, the reheater time constant TRH and the high-
pressure cylinder mechanical power proportional coefficient FHP in the turbine governor-
prime mover have a great influence on the characteristics of the turbine. Therefore,
Equation (10) is expressed as the product of these four parameters, where TO and TRH
takes the reciprocal form.

Define the turbine governor weight Ri:

Ri = PSRiKPMi1 (11)

The parameters in the turbine equivalent governor are aggregated as follows:

ε =

M
∑

i=1
εiRi

M
∑

i=1
Ri

(12)

In Equation (12), ε can be the amplification factor K of the equivalent machine speed
deviation, the opening time constant TO of the oil motor, the reheater time constant TRH
and the mechanical power proportional coefficient FHP of the high-pressure cylinder, and
εi are the corresponding parameters of the i-th generator governor.

2.2. Aggregation Equivalence Modeling for Governor and Prime Mover of Hydro-Turbine

The parameter aggregation method of the hydro-turbine governor and prime mover
model is similar to that of the steam turbine. However, due to the large difference be-
tween the governor and prime mover model of hydro-turbine and steam turbine, the
parameters are also different, so the aggregation steps are also different. The following
describes the different steps of hydro-turbine parameter aggregation and steam turbine
parameter aggregation.

In step 2 of the parameter aggregation method for steam turbine governors, the
maximum governor valve opening KMAXi of the steam turbine generator prime mover
is required to obtain the spinning PSRi of each generator. However, this parameter is not
available in the typical governor model of the hydro-turbine. Therefore, the spinning PSRi
of each hydro-generator is obtained according to Equation (13):

PSRi = Pei − PGENi (13)

In Equation (13), Pei represents the rated output of the prime mover of the i-th hydro-
generator and PGENi represents the actual active output of the i-th hydro-generator.

In step 4, only the rated output power of the equivalent hydro-generator and the
actual active power output of the equivalent hydro-generator are required.
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In step 5, because the parameters of the turbine governor are different from those of
the steam turbine, the proportional coefficient KPMi2 of the turbine governor is defined:

KPMi2 =
Dd

RTdTG(TW/2)
(14)

According to the same method as the steam turbine, the frequency characteristics of
hydro-turbine parameters are analyzed. It is found that the adjustment coefficient R, the
soft feedback link coefficient Dd, the soft feedback time constant Td, the governor response
time TG and the water hammer effect time constant TW/2 have a great influence on the
characteristics of the hydro-turbine. Therefore, KPMi2 in Equation (14) is expressed as the
product of these five parameters, where R, Td, TG and TW/2 are in the reciprocal form.

The other steps of the equivalent method of the hydro-turbine governor are the same
as those of the steam turbine. Finally, the adjustment coefficient R, the soft feedback link
coefficient Dd, the soft feedback time constant Td, the governor response time TG and the
water hammer effect time constant TW/2 in the hydraulic turbine equivalent governor can
be obtained by Equation (12).

2.3. Aggregation Equivalence Modeling for Prime Mover and Controller of Wind Turbine

The general model of wind turbines mainly includes four modules: a wind turbine
model, pitch angle controller, converter controller and generator model. The mechanical
power captured by a wind turbine can be expressed as follows [14]:

Pm =
1
2

ρπR2Cp(λ, β)v3 (15)

In the formula, ρ is the air density, R is the radius of the wind wheel, v is the wind
speed, λ is the tip speed ratio and Cp is the wind energy utilization coefficient.

In the general model, the wind turbine adopts the linear aerodynamic model, and the
wind speed is assumed to be constant [14]:

Pm = Pm0 − Kaβ(β− β0) (16)

In the formula, β is the slurry pitch angle, β0 is the initial pitch angle, Pm0 is the initial
mechanical power and Ka is the aerodynamic power coefficient.

The wind turbine drive shaft system model adopts a single mass model, and a rigid
body is used to simulate the wind turbine blade, the drive shaft and the rotor shaft of
the generator. Ignoring the internal differences of the shaft system, that is, the first-order
inertia link is used to simulate the transmission process of the shaft torque, as shown in
Equations (17) and (18):

TJ
dω

dt
= Tm − Te (17)

dTm

dt
=

1
th
(Tae − Tm) (18)

In the formulas, TJ is the total inertia time constant of the wind turbine and the
generator; Tm, Te and Tae denote the mechanical torque of the rotor, electromagnetic torque
of the generator and the torque of the shaft.

The pitch angle controller model and the converter-level controller model are shown
in Figures 5 and 6.
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In the formulas, JT  is the total inertia time constant of the wind turbine and the 

generator; mT , eT  and aeT  denote the mechanical torque of the rotor, electromagnetic 
torque of the generator and the torque of the shaft. 

The pitch angle controller model and the converter-level controller model are shown 
in Figures 5 and 6. 
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Figure 5. Simplified transfer function model of turbine prime mover. Where Tβ is the reaction time
constant of the blade; Pord is the set value of power; Pref is the reference power.
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Figure 6. Simplified transfer function model of turbine prime mover. Where Ps is the value of input
active power; us is the value of input voltage; Pre f is active power reference value; us_re f is the value of
reference voltage; uqr is the q-axis voltage of rotor and udr is the d-axis voltage of the rotor; u∗qr is the
q-axis voltage of rotor to be compensated and u∗dr is the d-axis voltage of the rotor to be compensated.

Suppose the intermediate variables are x1, x2, x3 and x4. The transfer function expres-
sions are shown as Equations (19)–(21):

β =
1

1 + sTβ
[(Kpc +

Kic
s
)∆P + (∆PKcc + ∆ω)(Kpw +

Kiw
s

)] (19)

uqr = Kp2(Kp1∆P + Ki1x1 − iqr) + Ki2x2 + sωsLmids + sωsLrriqr (20)

udr = Kp2(Kp3∆u + Ki3x3 − idr) + Ki2x4 − sωsLmiqs − sωsLrridr (21)

In the equation, Tβ is the reaction time constant of the blade; Lrr is the inductance of
the rotor winding; Lm is the mutual inductance between the stator and the rotor; ωs is the
electrical angular velocity of the stator. Kp1 and Ki1 are the proportional and integral coeffi-
cients of active power control; Kp2 and Ki2 are the proportional and integral coefficients
of rotor-side current control;Kp3 and Ki3 are the proportional and integral coefficients of
reactive power control.

Similarly, through the analysis of frequency characteristics, it is found that the inertia
time constant TJ , the blade reaction time constant Tβ, the active power control magnification
K1, the current control magnification K2 and the reactive power control magnification K3
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have a great influence on the frequency. Therefore, these five parameters are mainly
considered in the equivalence.

The parameter aggregation method of the wind turbine is similar to that of the hydro-
turbine, but the parameters are different due to the large difference between the wind
turbine and the hydro-turbine. The following describes the different steps of wind turbine
parameter aggregation and water turbine parameter aggregation.

In step 2, the wind turbine is similar to the hydro-turbine in obtaining the spinning
reserve of each unit, but the wind turbine must be grouped before aggregation. The
working characteristics of the wind turbine are different under different wind speeds. The
wind turbine is grouped according to the method based on critical wind speed and wind
speed similarity.

In step 5, because the parameters of the wind turbine are different from those of
the hydro-turbine, the proportional coefficient KPMi3 of wind turbine speed regulation
is defined:

KPMi3 =
K1K2K3

TJ Tβ
(22)

The other steps of the wind turbine equivalent method are the same as those of the
hydro-turbine. Finally, the parameters of the wind turbine can be obtained by Equation (12).

3. Equivalence Method for Load Based on Regulation Performance Weighting
3.1. Static Load Model

The static load model is mainly represented by the polynomial model, and the LB
(Load Balance) model is mainly used in BPA. The expression of the static load model is
shown in Equation (23):





P = P0

[
P1

(
V
V0

)2
+ P2

(
V
V0

)
+ P3

]
(1 + ∆ f · LDP)

Q = Q0

[
Q1

(
V
V0

)2
+ Q2

(
V
V0

)
+ Q3

](
1 + ∆ f · LDQ

) (23)

where the second order term represents the constant impedance term, the first order term
represents the constant current term, and the zeroth order term represents the constant
power term. P1, P2 and P3 are the active power proportional coefficients of each term, Q1, Q2
and Q3 are the reactive power proportional coefficients of each term and P1 + P2 + P3 = 1,
Q1 + Q2 + Q3 = 1. LDP is the frequency response factor of active load, and LDQ is the
frequency response factor of reactive load.

The frequency characteristics of the load are characterized by term (1 + ∆ f · LDP) and(
1 + ∆ f · LDQ

)
, so in the static load model, the main factors affecting the frequency are the

frequency response factor LDP of the active load and the frequency response factor LDQ of
the reactive load.

Assuming that there are M static loads in the system when the static load is equivalent,
the parameter aggregation steps of the equivalent model are as follows.

The capacity of the equivalent static load is the sum of the static load capacity (MVA)
of each node:

SM =
M

∑
i=1

Si (24)

The parameter aggregation method based on the adjustment performance weighting
method is also used to obtain the parameters of the equivalent static load.

Define the static load ratio coefficient:

KPMi3 = LDPLDQ (25)

Considering the frequency characteristics of the static load model, the main influencing
factors are the frequency response factor LDP of the active load and the frequency response

54



Energies 2024, 17, 5733

factor LDQ of the reactive load. Therefore, KPMi3 in Equation (25) is expressed as the product
of these two parameters.

Define the static load weight:

Ri = SiKPMi3 (26)

Then, the parameters in the equivalent static load model can also be aggregated
according to Equation (12), where ε is the parameter of the equivalent static load model,
which can be the frequency response factor LDP of the active load and the frequency
response factor LDQ of the reactive load and εi is the corresponding parameters of the static
load model of the i-th node.

3.2. Dynamic Load Model

The induction motor model is mainly considered in the dynamic load model, and its
expressions are shown in Equations (27)–(29):

{
dE′d

dt = − 1
T′
[
E′d + (X− X′)Iq

]
+ ω0sE′q

dE′q
dt = − 1

T′
[
E′q − (X− X′)Id

]
−ω0sE′d

(27)





Id = 1
R2

s+X′2

[
Rs(Ud − E′d) + X′(Uq − E′q)

]

Iq = 1
R2

s+X′2

[
Rs(Uq − E′q) + X′(Ud − E′d)

] (28)

where s is the rotor slip; T′ is the transient open circuit time constant; X is open-circuit
impedance for the rotor and X′ is short-circuit reactance for rotor stalling. Id and Iq
represent the d- and q-axis currents of the stator, respectively. Rs represent the stator
resistance.

The rotor equation is as follows:

{
TJ

ds
dt = Tm − Te

Tm = (Aω2
r + Bωr + C)T0

(29)

where TJ is the inertia time constant of the rotor, ωr is the angular velocity of the rotor,
Tm is the mechanical torque of the motor and A, B and C are the torque coefficients of the
mechanical load.

The induction motor model in BPA software (version number: FSDEdit 2.8) mainly
adopts the ML model [24]. Among the main parameters, the inertia time constant TJ, the
proportion of motor power to bus power Pper, the load rate KL, the stator reactance Xs,
the rotor reactance Xr and the torque equation constant A have a great influence on the
frequency, which should be considered emphatically.

Assuming that there are M induction motors in the system, the following is the process
of obtaining the parameters of the equivalent machine.

The capacity of the equivalent machine can be obtained by summing the capacity
(MVA) of each induction motor:

SM =
M

∑
i=1

Si (30)

The parameters of the equivalent induction motor are also obtained by using the
parameter aggregation method based on the adjustment performance weighting method.

Define the dynamic load ratio coefficient KPMi4:

KPMi4 = TJ · Pper · KL · Xs · Xr · A (31)

When studying the frequency characteristics of induction motors, the main influencing
factors are the inertia time constant TJ, the ratio of motor power to bus power Pper, the load
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rate KL, the stator reactance Xs, the rotor reactance Xr and the torque equation constant A.
Therefore, KPMi4 in Equation (31) is expressed as the product of these six parameters.

Define the dynamic load weight Ri:

Ri = SiKPMi4 (32)

Then, the parameters in the equivalent induction motor model are also aggregated
according to Equation (12), where ε is the parameter of the equivalent induction motor,
which can be respectively the inertia time constant TJ, the ratio of motor power to bus
power Pper, the load rate KL, the stator reactance Xs, the rotor reactance Xr and the torque
equation constant A. εi is the corresponding parameters of the i-th induction motor.

4. Case Analysis and Application of East China Power Grid

Using the equivalent method in this paper, Anhui, Shanghai and Fujian power grids
are equivalent to a single generator (equivalent if there is a turbine and a steam turbine)
and a single load (equivalent if there is a static load and a dynamic load). The Jiangsu and
Zhejiang power grids remain unchanged to see whether the system frequency is consistent
before and after the equivalence.

Among them, there are 31 generators in the Anhui power grid, all of which are turbine
generators, 120 static load nodes and 102 induction motors. There are 20 generators in
the Shanghai power grid, all of which are turbine generators, 64 static load nodes and
66 induction motors. Fujian power grid has 29 turbo-generators and 11 hydro-generators,
120 static load nodes and 125 induction motors. By using the governor-primitive motor and
load equivalent method based on the weighted adjustment performance proposed in this
paper, the generator and load models in the three power grids are equivalent. Each power
grid is finally equivalent to a single generator (the Fujian power grid is a steam turbine
and a turbine), a static load node and an induction motor. The following table shows some
governors and load parameters of the Anhui power grid, Shanghai power grid and Fujian
power grid. The following Tables 2–10 show some governor and load parameters of Anhui
power grid, Shanghai power grid and Fujian power grid.

Table 2. Governor parameters of Anhui power grid (part).

Unit Name/Governor
Parameters PEI /MW KMAXI PGENI /MW PSRI /MW TO K TRH FHP

Wan Anqing_4 336.2 1.06 228.9 127.472 1.15 16.7 10 0.3

Wan Huaier_2 336.2 1.06 212.8 143.572 1.15 16.7 10 0.3

Wan Jiuhua_1 336.2 1.06 183.4 172.972 1.3 20 12 0.4

Wan Qiandian_2 151.2 1.06 87.25 73.022 1.3 20 12 0.4

Wan Tianmen_1 698.4 1.06 426.9 313.404 1.5 23 14 0.5

Wan Luohe_1 358.6 1.06 198.4 181.716 1.5 23 14 0.5

Wan Yongfeng_2 635.2 1.06 316.9 356.412 1.7 25 16 0.6

Wan Mayi_1 635.2 1.06 442.4 230.912 1.7 25 16 0.6

Wan Linhuan_3 336.2 1.06 164 192.372 1.9 28 18 0.7

Wan Hualiu_3 685.2 1.06 467.5 258.812 1.9 28 18 0.7

. . . . . . . . . . . . . . . . . . . . . . . . . . .

Equivalent generator 15,442.8 1.06 8755.21 7211.36 1.55 23.06 14.43 0.52
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Table 3. Anhui power grid induction motor parameters (part).

Busbar Name Capacity/MW TJ PPER KL XS XR A

Wan Kongdian21 −7.51652 3 1 0.8 0.067 0.17 1

Wan Huaibei22 1.456613 3 1 0.8 0.067 0.17 1

Wan Caishi22 64.64777 5 0.9 0.7 0.087 0.2 0.9

Wan Changlong22 105.7431 5 0.9 0.7 0.087 0.2 0.9

Wan Huizhou2E 87.15075 7 0.8 0.6 0.107 0.23 0.8

Wan Huigong22 96.08173 7 0.8 0.6 0.107 0.23 0.8

Wan Xishan22 84.51662 9 0.7 0.5 0.127 0.26 0.7

Wan Xiantong22 75.42928 9 0.7 0.5 0.127 0.26 0.7

. . . . . . . . . . . . . . . . . . . . . . . .

Equivalent load 8489.95 6.87 0.81 0.61 0.106 0.23 0.81

Table 4. Static load parameters of security grid (part).

Busbar Name Capacity/MW LDP LDQ

Wan Chenqiao22 40.5122 1.8 −2

Wan Linjiang22 100.8627 1.8 −2

Wan Shanmen21 26.27139 1.9 −2.1

Wan Puqing21 48.43346 1.9 −2.1

Wan Wenchang23 49.11798 2 −2.2

Wan Madian22 −0.48465 2 −2.2

Wan Qiaotou2A 63.72802 2.1 −2.5

Wan Qiaotou2_ 67.3105 2.1 −2.5

. . . . . . . . . . . .

Equivalent load 5365.01 1.88 −2.08

Table 5. Governor parameters of Shanghai power grid (part).

Unit Name/Governor
Parameters PEI /MW KMAXI PGENI /MW PSRI /MW TO K TRH FHP

Hu Jinshan_5 71.4 1.06 47.95 27.734 1.15 25 10 0.3

Hu Shidong_1 369.5 1.06 164 227.67 1.15 25 10 0.3

Hu Waigao_3 311.4 1.06 136.9 193.184 1.3 20 12 0.4

Hu Wure_1 336.2 1.06 230.1 126.272 1.5 16.7 14 0.5

Hu Waisan_1 1059 1.06 616.7 505.84 1.7 28 16 0.6

Hu Shangdian_2 1059 1.06 558.4 564.14 1.7 28 16 0.6

. . . . . . . . . . . . . . . . . . . . . . . . . . .

Equivalent generator 8370.3 1.06 4741.91 4130.68 1.51 24.68 14.06 0.50
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Table 6. Induction motor parameters of Shanghai power grid (part).

Busbar Name Capacity/MW TJ PPER KL XS XR A

Hu Hailu23 86.72697 3 1 0.8 0.067 0.17 1

Hu Haiyang22 57.55015 3 1 0.8 0.067 0.17 1

Hu Jingyi23 155.8081 5 0.9 0.7 0.087 0.2 0.9

Hu Jingfeng22 58.73741 5 0.9 0.7 0.087 0.2 0.9

Hu Shikou24 75.46927 7 0.8 0.6 0.107 0.23 0.8

Hu Shiran22 0.432161 9 0.7 0.5 0.127 0.26 0.7

. . . . . . . . . . . . . . . . . . . . . . . .

Equivalent load 7303.38 6.75 0.81 0.61 0.104 0.23 0.81

Table 7. Static load parameters of Shanghai power grid (part).

Busbar Name Capacity/MW LDP LDQ

Hu Zhangqiao23 155.7823 1.8 −2

Hu Dongting23 65.48597 1.9 −2.1

Hu Shenzhuan23 63.27155 2 −2.2

Hu Senlin23 71.13826 2 −2.2

Hu Hangji23 29.34815 2.1 −2.5

Hu Baobei2A 22.31632 2.1 −2.5

. . . . . . . . . . . .

Equivalent load 5912.57 1.95 −2.22

Table 8. Governor parameters of Fujian power grid (part).

Unit Name/Governor
Parameters PEI /MW KMAXI PGENI /MW PSRI /MW K FHP TRH TO

Qingchuan Hong 1217.1 1.06 1079 211.126 25 0.3 10 1.15

Qingchuan Zhu 1217.1 1.06 1066 224.126 25 0.3 10 1.15

Houshi5 672.4 1.06 338.6 374.144 20 0.4 14 1.5

Houshi6 672.4 1.06 374.4 338.344 20 0.4 14 1.5

Jiangyin2 635.2 1.06 497.2 176.112 16.7 0.5 12 1.3

Gaoyu2 336.2 1.06 237.9 118.472 23 0.7 16 1.7

Gaoyu4 336.2 1.06 217 139.372 23 0.7 16 1.7

Zhangping6 336.2 1.06 219.7 136.672 28 0.6 18 1.9

Lianhua1 180.4 1.06 90.53 100.694 28 0.6 18 1.9

. . . . . . . . . . . . . . . . . . . . . . . . . . .

Equivalent generator 16,654.4 1.06 11,463.83 6189.834 21.7 0.5 13.6 1.47
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Table 9. Induction motor parameters of Fujian power grid (part).

Busbar Name Capacity/MW TJ PPER KL XS XR A

Min Qingchuan23 1.353096 3 1 0.8 0.067 0.17 1

Min Qingchuanhe 4.723641 3 1 0.8 0.067 0.17 1

Min Fuxing23 4.958399 3 1 0.8 0.067 0.17 1

Min Panlong22 146.6867 5 0.9 0.7 0.087 0.2 0.9

Min Shanfeng22 206.7169 5 0.9 0.7 0.087 0.2 0.9

Min Shangjing22 42.68303 5 0.9 0.7 0.087 0.2 0.9

Min Fuhuo24 3.775402 7 0.8 0.6 0.107 0.23 0.8

Min Gaolong23 8.835766 7 0.8 0.6 0.107 0.23 0.8

Min Gutian1A −31.0459 7 0.8 0.6 0.107 0.23 0.8

Min Xiangshan23 73.66411 9 0.7 0.5 0.127 0.26 0.7

Min Xindian22 8.197 9 0.7 0.5 0.127 0.26 0.7

Min Xindu22 101.8102 9 0.7 0.5 0.127 0.26 0.7

. . . . . . . . . . . . . . . . . . . . . . . .

Equivalent load 15,934.64 6.95 0.80 0.60 0.106 0.23 0.80

Table 10. Static load parameters of Fujian power grid (part).

Busbar Name Capacity/MW LDP LDQ

Min Qingchuan23 1.353096 1.8 −2

Min Qingchuanhe 4.723641 1.8 −2

Min Fuxing 23 4.958399 1.8 −2

Min Huangli23 14.73251221 1.9 −2.1

Min Dongtai#2 −1.789323056 1.9 −2.1

Min Dongtai #1 189.0300536 1.9 −2.1

Min Fengban22 139.8962934 2 −2.2

Min Fuhuo24 3.7754017 2 −2.2

Min Gaolong23 8.835766464 2 −2.2

Min Shudou24 74.59382699 2.1 −2.3

Min Taqian22 158.8000653 2.1 −2.3

Min Tianbian23 44.59348724 2.1 −2.3

Min Tongcheng22 69.96865655 2.1 −2.3

. . . . . . . . . . . .

Equivalent load 15,934.64112 1.965098481 −2.165098481

After the equivalence is completed according to the above method, the unipolar
blocking fault of ‘Jin-Su DC’, the bipolar blocking fault of ‘Jin-Su DC’, the bipolar blocking
fault of ‘Jin-Su DC’ and the bipolar blocking fault of ‘Long-Zheng DC’ and the load
shedding fault are simulated. The frequency change of East China Power Grid with and
without equivalence is monitored to verify the effectiveness of the equivalence method.
The following is the graph of the frequency change of the power grid with and without the
equivalence when four different faults occur in the system.

It can be seen from Figures 7–9 that under the three DC blocking conditions, the
frequency changes of East China Power Grid with and without equivalence are consistent,
which proves that the equivalence method has a good equivalence effect. And as shown
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in Figure 10, under the simulated load of −7200 MW, which is a high-frequency fault, the
frequency difference of the whole network of the East China Power grid with and without
equivalent is no more than 0.03 Hz, which shows that the overall equivalent effect of this
equivalent method is good. It can be seen that the equivalent method of the governor-
prime mover and load based on regulation performance weighting proposed in this paper
has good effectiveness under small power shortage, high power shortage, low-frequency
fault or high-frequency fault and can adapt to the frequency dynamic analysis of large
power grid.
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5. Conclusions 
This paper studies the equivalent model suitable for large power grid frequency dy-

namic analysis. From the two aspects of generator and load, a method of equivalent ag-
gregation of governor-primitive motor model and load model parameters based on regu-
lation performance weighting is proposed. This method overcomes the uncertainty of ar-
tificial experience value, having fast aggregation speed and high engineering accuracy. 
Finally, the simulation verification is carried out in the example of the East China Power 
Grid. The results show that the equivalent method can meet the accuracy and safety re-
quirements of the project in the dynamic analysis of large power grid frequency. 

However, due to the complexity and particularity of the governor and load model, 
when the parameters of the governor-primitive motor are equivalently aggregated in this 
paper, there are fewer types of governors in the selected examples. Although the equiva-
lent results are ideal, the case of more types of governors is not considered. In the follow-
up study, a power grid with more types of governors can be selected as an example anal-
ysis to comprehensively verify the effect of the equivalent method. 
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5. Conclusions

This paper studies the equivalent model suitable for large power grid frequency
dynamic analysis. From the two aspects of generator and load, a method of equivalent
aggregation of governor-primitive motor model and load model parameters based on
regulation performance weighting is proposed. This method overcomes the uncertainty of
artificial experience value, having fast aggregation speed and high engineering accuracy.
Finally, the simulation verification is carried out in the example of the East China Power
Grid. The results show that the equivalent method can meet the accuracy and safety
requirements of the project in the dynamic analysis of large power grid frequency.

However, due to the complexity and particularity of the governor and load model,
when the parameters of the governor-primitive motor are equivalently aggregated in this
paper, there are fewer types of governors in the selected examples. Although the equivalent
results are ideal, the case of more types of governors is not considered. In the follow-up
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Abstract: The optimal dispatching of renewable energy power stations is particularly crucial in
scenarios where the stations face energy rationing due to the large proportion of renewable energy
integrated into the power system. In order to achieve safe, economical, and fair scheduling of
renewable energy power stations, this paper proposes a two-stage scheduling framework. Specifically,
in the initial stage, the maximum consumption space of renewable energy for the system can be
optimized by optimizing the formulated safe-economic dispatch model. In the second stage, the fair
allocation mechanism of renewable energy power stations is proposed based on the game-fairness
empowerment approach. In order to obtain a comprehensive evaluation of renewable energy power
stations, an evaluation index system is constructed considering equipment performance, output
characteristics, reliability, flexibility, and economy. Subsequently, the cooperative game weighting
method is proposed to rank the performance of renewable energy power stations as the basis for fair
dispatching. Simulation results show that the proposed scheduling strategy can effectively ensure
the priority of renewable energy power stations based on their comprehensive ranking, and improve
the safety, economy, and fairness of power station participation in scheduling.

Keywords: renewable energy; fair dispatching; safe-economic dispatching; cooperative game; evaluation
index

1. Introduction

With the gradual depletion of traditional energy resources and the escalating severity
of environmental issues, the exploration and utilization of renewable energy have become a
global priority [1,2]. Wind and solar energy, as important components of renewable energy,
have witnessed rapid development in recent years [3,4]. According to the annual report
“Renewable Capacity Statistics 2024” by the International Renewable Energy Agency, the
cumulative installed capacity of global renewable energy has reached 3.87 TW. Notably,
in China, by the end of July 2024, the installed capacity of photovoltaic (PV) and wind
turbine (WT) power generation amounted to 1.206 billion kW. Based on the development
plan for renewable energy, China anticipates that the proportion of renewable energy in
power generation will surpass 50% by 2060, thereby becoming the primary pillar of the
country’s energy power supply.

However, the intermittency and uncertainty of renewable energy sources pose new
challenges to the safe and stable operation of the power grid [5,6]. Effectively integrat-
ing and making full use of renewable energy has become an urgent problem to solve. It
is particularly important to establish a scientific and efficient scheduling scheme. Cur-
rently, research on the dispatching of renewable energy power generation mainly focuses
on exploring more flexible and effective dispatching methods, including economic dis-
patching [7–10], optimal dispatching considering the uncertainty of renewable energy
output [11,12], and dispatching strategies aimed at maximizing the utilization of renewable
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energy [13,14]. For example, a study in [15] introduces and exemplifies a probabilistic
methodology aimed at addressing the unit commitment challenge. This approach revolves
around resolving the economic dispatch problem, incorporating the probabilistic character-
ization of variables such as thermal generator output power distributions, unmet energy
demands, electricity surpluses, generation expenses, and spinning reserve capacities. The
authors of [16] propose a new reliable power flow optimization tool to enhance the utiliza-
tion level of WT, and a simulation based on the IEEE 39-bus system is conducted to verify
that the proposed method maximizes the utilization level of WT without affecting system
safety. The work presented in [17] advances a coordinated day-ahead and intraday optimal
dispatch framework tailored specifically for PV and WT power generation, acknowledging
the inherent uncertainty in energy sources and loads. Furthermore, the authors of [18]
contribute a novel dispatch strategy labeled as modified predictive dispatch, which inno-
vatively integrates proactive battery charging/discharging strategies and demand-side
management tactics, premised on anticipated short-term electricity surplus profiles. The
implementation of this strategy has been demonstrated to significantly enhance the self-
utilization index of excess renewable energy, lifting it from under 25% to approximately
90%, thereby highlighting its potential to optimize energy utilization and reduce waste.

Although there have been a large number of studies on renewable energy dispatching,
there is still a lack of systematic research on the fair scheduling of renewable energy power
stations. It is very important to dispatch the output of each renewable energy station
in a fair and reasonable manner as renewable energy stations emerge. When a large
proportion of renewable energy is integrated into the energy system, the stations may
face energy rationing in order to guarantee the stable operation of the system due to the
fluctuation of renewable energy. Especially in China, there is a widespread phenomenon of
energy rationing in renewable energy stations, and how these stations can participate in
dispatching fairly has become a key issue. At present, fair dispatching mainly concentrates
on ensuring that all power stations have relatively equal opportunities to meet their annual
contract energy targets based on their installed capacities. For example, in [19], to address
the fairness of consumption across various field groups and sections in PV and WT, a
multi-level active power control strategy has been developed that takes into account
the weighted consumption capacity of different sections to ensure equitable distribution
and utilization of generated power. In [20], the authors develop an optimal dispatch
model for a WT-PV thermal integrated system, focusing on economic efficiency and equity.
This model is designed to tackle the challenges associated with large-scale PV and WT,
ensuring the economic viability of system operations while achieving fair scheduling among
renewable energy power stations. The authors of [21] formulate an optimal dispatch model
incorporating WT, utilizing the Gini coefficient from economics as a fairness constraint,
with power output serving as the metric. Nevertheless, this approach primarily addresses
the fairness of generation stations for conventional units within a regional system and does
not sufficiently explore dispatch fairness for renewable energy power stations.

However, although some scheduling models and fairness evaluation criteria have
been proposed in the above studies, existing research still has certain limitations. Especially
when facing multiple influencing factors, how to achieve priority dispatching of renewable
energy power stations while ensuring fair competition among stations remains a complex
and unsolved problem. Due to differences in resource conditions and power station
facilities, there are significant variations in the actual power generation capacity for different
renewable energy stations. Relying solely on the completion status of annual contract
energy to measure the effectiveness of fair dispatching is clearly not comprehensive enough.
Furthermore, it is critical for energy power systems to guarantee safe operation as well as
economic and fair dispatching. Therefore, in this context, this paper mainly focuses on the
optimal dispatch strategy for renewable energy power stations from the perspectives of
security, economy, and fairness to better promote the development of renewable energy
and ensure the stability of the power system. The research results not only contribute to
improving the utilization rate of renewable energy but also provide strong support for
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achieving the country’s long-term energy transition goals. Table 1 shows the comparison
result of the proposed approach of this paper with recent works.

Table 1. Comparative result of the proposed approach with recent works.

Reference Economy Safety Fairness Main Concerns

[7] Yes Yes No Economic dispatching considering
retrofitting thermal power plants

[11] Yes No No Dispatching strategy considering the
uncertainty of renewable energy

[13] Yes No No Dispatching strategy aimed at maximizing
the utilization of renewable energy

[15] Yes No No Economic dispatching considering the unit
commitment challenge

[18] Yes Yes No Predictive dispatch considering
charging/discharging of battery bank

[21] Yes No Yes Fairness dispatch considering generation
stations for conventional units

This paper Yes Yes Yes
Dispatching strategy considering the

safety, economy, and fairness of renewable
energy stations

In summary, the contributions of this paper are as follows:

(1) A two-stage scheduling framework is proposed for an energy power system with a
high proportion of renewable energy, wherein the initial dispatching plan is optimized
from the safe economic level and then the output of renewable energy power stations
is fairly allocated based on game-fairness empowerment.

(2) An evaluation indicator system is established for the operation state of renewable
energy power stations from the five dimensions of equipment performance, output
characteristics, reliability, flexibility, and economy, which serves the fair dispatching
needs of renewable energy stations.

(3) A bi-level evaluation approach is proposed for the ranking of renewable energy power
stations in fair dispatching, in which a cooperative game method is formulated to
combine the subjective weights determined by the anti-entropy weight (AEW) and
objective weights determined by the attribute hierarchy model (AHM).

The rest of this paper is organized as follows. The scheduling framework is introduced
in Section 2. The safe-economic dispatch strategy for energy power systems is formulated
in Section 3. In Section 4, a fair dispatching strategy is proposed among renewable energy
stations. A case study is presented in Section 5. Finally, conclusions are drawn in Section 6.

2. Two-Stage Scheduling Framework for Renewable Energy Power Stations

In the proposed scenario, we mainly focus on the dispatch problem of energy power
systems when renewable energy stations face energy rationing. Accordingly, a two-stage
dispatch strategy framework for the output of renewable energy power stations is de-
signed to address how large-scale renewable energy power stations can participate in safe,
economic, and fair system scheduling, as illustrated in Figure 1.

The initial stage of dispatching is conducted from the level of safety and economy.
Based on the predicted output of PV-WT and load demand, economic scheduling is op-
timized with the goal of minimizing the overall system operating cost. Meanwhile, con-
straints such as system power flow and voltage are considered to achieve safe scheduling.
By solving the optimization model, the optimal output of each power station can be
obtained under the requirements of safety and economy. Accordingly, the maximum con-
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sumption space of renewable energy for the system can be calculated by accumulating the
optimal output of all PV-WT stations.
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Figure 1. Two-stage scheduling framework for renewable energy power stations.

The second stage of dispatching is conducted from the level of fairness. With the
high proportion of renewable energy integrated into the power system leading to energy
rationing on PV-WT, the maximum consumption space of renewable energy will be less than
the total predicted value of all stations. Therefore, the allocation of PV-WT’s energy output
is conducted. In order to realize fair allocation, an evaluation index system for renewable
energy power stations is constructed from five dimensions: equipment performance, output
characteristics, reliability, flexibility, and economy. The subjective and objective weights
are determined using the AEW and AHM methods, respectively. Furthermore, the game-
fairness empowerment approach is proposed to empower the comprehensive weighs
by treating subjective and objective weights as the main players in the game. Here, a
cooperative game is chosen to derive the weights for ranking each renewable energy power
station. Through the two-stage optimal scheduling, the dispatching of renewable energy
power stations can be ensured under the safe, economical, and fair mode.

3. Safe-Economic Dispatch Strategy for Energy Power Stations

For energy power systems with a high proportion of renewable energy sources, the
goal of energy dispatching is to achieve optimal economic operation while ensuring system
safety. At the economic aspect, in order to promote the utilization of PV and WT, the
economic cost is mainly considered from the generation cost of thermal power units and
the cost of abandoning PV and WT [7]. Accordingly, the dispatching objective function can
be expressed as

min Ctotal =
T

∑
t=1

(CTH,t + CPV,t + CWT,t) (1)

where T is the scheduling time period, and CTH,t, CPV,t, and CWT,t are the generation cost of
thermal power units, the cost of abandoning PV, and the cost of abandoning WT during
time period t, respectively. The cost models are defined as [22]

CTH,t =
NTH

∑
kTH=1

(
akTH

(
PkTH

TH,t

)2
+ bkTH PkTH

TH,t + ckTH

)
(2)
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CPV,t =
NPV

∑
kPV=1

λPV

(
αPVPkPV

PVP,t − PkPV
PV,t

)
(3)

CWT,t =
NWT

∑
kWT=1

λWT

(
αWTPkWT

WTP,t − PkWT
WT,t

)
(4)

where NTH refers to the number of thermal power units participating in the dispatch of the
regional power grid; NPV and NWT refer to the number of WTs and PVs participating in the
dispatch of the regional power grid; akTH , bkTH , and ckTH are the generation cost coefficients
for the given thermal power unit kTH; PkPV

PVP,t and PkWT
WTP,t are the predicted output values for

PV kPV and WT kTH at time t; PkPV
PV,t and PkWT

WT,t are the dispatching plan for PV kPV and WT
kTH at time t; λPV and λWT are the unit cost of abandoning PV and WT; αPV and αWT are
the prediction error coefficients for the energy output of PV and WT; and αPVPkPV

PVP,t and

αWTPkWT
WTP,t represent the actual energy output ability for PV and WT at time t. Here, the

prediction error coefficients are mainly used to correct the prediction of PV-WT’s energy
output. Since the energy output of PV-WT is hard to predict precisely, the actual output
ability for PV-WT needs to be regulated with the prediction error coefficient in order to
more accurately calculate the abandoned amount of PT-WT.

At the safe level, in order to ensure the safe operation of the system, the optimization
problem in (1) has to satisfy various constraints, such as power flow constraints, voltage
security constraints, and safety operation constraints of generations [23,24]. Concretely,

(1) Equation constraint of power flow
The equation constraint of power flow is mainly used to describe the specific relation-

ship between the voltage, active power, and reactive power of each node, in order to ensure
the safe and stable operation of the system.





PTH,i,t + PPV,i,t + PWT,i,t − PLD,i,t =

Ui,t
n
∑

j=1
Uj,t

(
Gij cos δij,t + Bij sin δij,t

)

QTH,i,t + QPV,i,t + QWT,i,t −QLD,i,t =

Ui,t
n
∑

j=1
Uj,t

(
Gij sin δij,t − Bij cos δij,t

)
(5)

where PTH,i,t, PPV,i,t, PWT,i,t and PLD,i,t are the active power of thermal power units, PV, WT,
and load at the i-th node time t, QTH,i,t, QPV,i,t, QWT,i,t, and QLD,i,t are the reactive power,
Gij, Bij, and δij are the conductance, reactance, and phase angle between nodes i and j.

(2) Safety constraint of node voltage
The safety constraint of node voltage refers to the requirement that the voltage of each

node in the power system should be maintained within a certain allowable range that is
mainly determined based on the stable operation requirements of the power system.

Ui,min ≤ Ui ≤ Ui,max i = 1, 2, · · ·NND (6)

where Ui,min and Ui,max are the lower and upper limits of the voltage at node i, Ui is the
voltage amplitude of node i, and NND is the number of system nodes. Generally, the
lower/upper permissible voltages are set to 0.9 pu and 1.1 pu, respectively [25].

(3) Output constraint of renewable energy power station
In the dispatching of the power system, the dispatching plan for PV and WT should

not be higher than the predicted value. That is,
{

PkPV
PV,t ≤ PkPV

PVP,t
PkWT

WT,t ≤ PkWT
WTP,t

(7)

(4) Output constraint of thermal power units
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Considering the capacity limitation of the generator units, the output of thermal power
units must be within a certain range. That is,

PkTH
TH,min ≤ PkTH

TH,t ≤ PkTH
TH,max (8)

where PkTH
TH,min and PkTH

TH,max are the lower and upper limits of the output of thermal power
unit kTH, respectively.

(5) Climbing speed constraint of thermal power units
The climbing speed constraint mainly refers to the maximum output power that the

generation unit can increase or decrease per unit of time, which is usually influenced by
factors such as the physical design of the unit, fuel supply, etc.

{
PkTH

TH,t − PkTH
TH,t−1 ≤ UPkTH

TH

PkTH
TH,t−1 − PkTH

TH,t ≤ DOkTH
TH

(9)

where UPkTH
TH and DOkTH

TH are the maximum upward and downward climbing power of
thermal power unit kTH, respectively.

4. Fair Dispatch Strategy Based on Cooperative Game Empowerment
4.1. Indicator System of Renewable Energy Power Stations

The evaluation objective of traditional fair scheduling only focuses on the completion
rate of annual power generation plans, neglecting the execution process. Given the dif-
ferences in equipment, output characteristics, and other factors among renewable energy
stations, adhering to the principle of unified allocation may unfairly affect the rights of
certain stations. Therefore, a comprehensive indicator system is proposed for the fair
scheduling of renewable energy power stations, as shown in Figure 2 [20,26,27]. This
indicator system can identify and quantify the differentiated impacts of PV and WT to
ensure fair allocation of energy output.
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(1) Equipment performance indicator
The equipment performance indicator refers to the evaluation of renewable energy

station status, mainly including installed capacity, unit performance, conversion efficiency,
and related losses. They are quantified through device state coefficients, which indicate
the significant impact of device performance changes on renewable energy generation
capacity. In addition, they play a crucial role in determining the fairness of power grid
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scheduling. The comprehensive calculation model for equipment performance indicators
is summarized as follows:





IC =
IPkPV/WT

NPV/WT

∑
kPV/WT=1

IPkPV/WT

IL =
TkPV/WT

NPV/WT

∑
kPV/WT=1

TkPV/WT

IE = IC ILη1η2η3(1− η4)

(10)

where IC, IL, and IE are the installed capacity coefficient, service life coefficient, and
equipment performance; IPkPV/WT

and TkPV/WT
are the installed capacity and service life of

the renewable energy power station kPV/WT (here, kPV/WT represents kPV and kWT, NPV/WT
represents NPV and NWT); η1, η2, and η3 are the PV/WT efficiency, inverter efficiency, and
maximum power tracking efficiency; and η4 is the percentage of power reduction caused
by fault losses.

(2) Output characteristic indicator
The output characteristic indicator refers to the description of the output characteris-

tics of renewable energy stations, mainly including average output, credible probability,
fluctuation degree, and temporal correlation. The higher the average output, the higher the
effective power level. The credible probability can serve as a robust indicator of enhanced
reliability. Similarly, the fluctuations in output directly correlate with an increase in stability.
The intensity of temporal correlation directly influences the precision of predictive out-
comes, with stronger correlations yielding higher accuracy in forecasting results. They are
quantified through output characteristic indicators, which indicate the significant impact
of renewable energy output characteristics on power generation capacity. Accordingly, the
output characteristic indicator can be described as follows:

IO = γ1γ2(1− γ3)γ4 (11)

where IO is the output characteristic coefficient, and γ1, γ2, γ3, and γ4 are the average
output coefficient, credible probability, fluctuation coefficient of variation, and time series
correlation coefficient, respectively.

(3) Reliability indicator
The reliability indicator refers to the evaluation of the reliability level of system

operation, mainly including the number of failures, failure repair time, and availability. A
reduction in the frequency of failures is directly proportional to a decrease in repair duration,
which subsequently leads to an increase in system availability. In essence, minimizing
failure occurrences not only expedites recovery processes but also fortifies the dependability
of the system, thereby enhancing its overall performance and trustworthiness. Expressed
in terms of the reliability coefficient, its calculation model is as follows:

IR = (1− NFATFA)ρ (12)

where IR is the reliability coefficient, NFA is the number of malfunctions, TFA is the fault
repair time, and ρ is the equipment availability.

(4) Flexibility indicator
The flexibility indicator refers to the evaluation of the space for renewable energy

consumption, mainly including network architecture, management level, and abandoned
wind and solar power. The enhanced transmission capacity of the power grid is positively
correlated with an increased proportion of flexible power sources, which in turn elevates
the efficiency of dispatch and management. This synergistic enhancement contributes to a
reduction in the rate of abandoned wind and solar power, thereby significantly improving
the overall consumption scenario of renewable energy sources. Represented by a flexibility
coefficient, its calculation model is as follows:

IF = θgθm(1− θa) (13)
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where θg is the transmission coefficient for the power grid, θm is the management level
coefficient, and θa is the abandoned scenery rate.

(5) Economic indicator
The economic indicator refers to the consideration of investment costs for renewable

energy power stations, mainly including initial investment, annual operation and mainte-
nance costs, government subsidy expenses, and equipment residual value. The economic
indicator is a negative indicator, which means that the higher the cost of renewable energy
stations, the lower the corresponding evaluation value. The calculation model is as follows:

IE = EI + (EO − EG)TkPV/WT
− ER (14)

where EI, EO, EG, and ER represent initial investment, annual operation and maintenance
costs, government subsidy expense, and equipment residual value.

4.2. Evaluation Method Based on Cooperative Game

Based on the above indicators, the weights of the indicators need to be calculated. In
this paper, the objective weights of the indicators are determined using the anti-entropy
weight (AEW) method [28,29] and the subjective weights are determined with the attribute
hierarchy model (AHM) method [30]. The role of AEW is to optimize the weight distribu-
tion of each indicator, minimize entropy or uncertainty, and ensure that the weights reflect
the relative importance of each indicator in the overall evaluation. Meanwhile, the AHM
effectively incorporates expert evaluations into the decision-making process, ensuring
that their subjective evaluations are consistently incorporated into the weighted system
while maintaining objectivity through entropy minimization. Finally, the game-fairness
empowerment approach is used to construct an optimization solution model to obtain the
comprehensive weights.

(1) Objective weighting method based on AEW
Entropy is a concept used in thermodynamic systems to measure the degree of disorder

in the system, which is later introduced into information theory. Assuming that there are
M possible states in the system, and the probability of each possible state occurring is pm
(m = 1,2,. . .M), entropy can be defined as follows:

h = −
M

∑
m=1

pm ln(pm) (15)

where 0 ≤ pm ≤ 1.
Under the AEW method, assuming that for the multi-attribute decision-making prob-

lem, the number of evaluation objects is M and the number of indicators is O, the indicator
values can be expressed as xo,m, and the corresponding decision matrix can be written as

X = [xo,m]O×M (16)

Therefore, the inverse entropy values of each indicator can be expressed as

ho = −
M

∑
m=1

ro,m ln(1− ro,m) (17)

where ro,m = xo,m/∑m xo,m represents the dimensionless value of the indicator value. By
normalizing the inverse entropy value of the indicator, the AEW weight of the indicator
can be obtained:

w1o = ho/
O

∑
o=1

ho (18)

(2) Subjective weighting method based on the AHM
The AHM simplifies the weight calculation process without the need for consistency

checks, making it easier and more practical to obtain subjective weights of indicators. The
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subjective weight calculation of indicators using the AHM is divided into the following
three steps:

(a) Construct a comparative judgment matrix
Using a 1–9 scale method to represent the relative importance of indicators, a compar-

ative judgment matrix A =
[
ao,o′

]
O×O is obtained by the expert scoring method.

(b) Calculate the attribute judgment matrix
Convert the comparison judgment matrix A =

[
ao,o′

]
O×O into an attribute judgment

matrix B =
[
bo,o′

]
O×O using the following equation

bo,o′ =





R
2R+1 ao,o′ = R, o ̸= o′

1
2R+1 ao,o′ =

1
R , o ̸= o′

0.5 ao,o′ = 1, o ̸= o′

0 ao,o′ = 1, o = o′

(19)

where R is a positive integer greater than or equal to 2.
(c) Determine subjective weights
The subjective weights of indicators are calculated as

w2o =
2

O(O− 1)

O

∑
o′=1

bo,o′ (20)

(3) Comprehensive weights based on the game-fairness empowerment approach
In order to realize the equilibrium between the subjective weights and the objective

weights, the assignment of evaluation index weights will be made more scientific and
reasonable. Combine the indicator weight vectors W1 and W2 obtained by AEW and the
AHM in any linear way

W = α1WT
1 + α2WT

2 (21)

where W is the combined weight vector, α1 and α2 are the combination coefficients.
Based on cooperative game theory [31–33], the game-fairness empowerment approach

is used to determine the comprehensive weights by treating subjective and objective
weights as the main players in the game. The combination coefficients α1 and α2 are
optimized with the objective of minimizing the deviation between the combination weights
W and W1 and W2. The objective function is

min

∥∥∥∥∥
2

∑
s=1

αsWT
s −Ws

∥∥∥∥∥
2

(22)

If the equilibrium solution of the optimal problem is
(
α∗1 , α∗2

)
, then the combination

weights based on a cooperative game can be expressed as:

W =
α∗1

α∗1 + α∗2
WT

1 +
α∗2

α∗1 + α∗2
WT

2 (23)

Since cooperative game theory emphasizes collective rationality and focuses on the
fair distribution of benefits in decision-making schemes, the equilibrium solution of the
formulated cooperative game model can achieve a balance between subjective and objective
weights, thereby minimizing potential biases in weights. Therefore, the comprehensive
weights determined by the game-fairness empowerment approach can aggregate the
advantages of AEW and the AHM.

4.3. Fair Allocation of Renewable Energy Power Stations

In the economic dispatch model, the maximum consumption space of the renewable
energy power stations is obtained, and then the dispatch plan is allocated to obtain the
final energy output of the stations. Considering various indicators such as equipment
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performance and output characteristics, comprehensive weights based on game-fairness
empowerment can ensure that power stations with superior performance receive more
energy output, while power stations with poor performance receive fewer scheduling plans.
Therefore, allocating the scheduling plan of renewable energy power stations based on
comprehensive ranking priority can ensure fairness. The fair allocation process among
renewable energy power stations is as follows.

(1) Based on the renewable energy consumption space obtained from safe-economic
dispatch, the power station dispatch plan is preliminarily allocated according to the weights
calculated by each power station.

GkPV/WT
PV/WT,t =

WkPV/WT
PkPV/WT

PVP,t
NPV/WT

∑
kPV/WT=1

WkPV/WT
PkPV/WT

PVP,t

NPV/WT

∑
kPV/WT=1

PkPV/WT
PV/WT,t (24)

where GkPV/WT
PV/WT,t is the initial fair distribution plan calculated based on weights for the

power station, and WkPV/WT
is the weight of PV kPV or WT kWT.

(2) Comparing the preliminary allocation plan of the power station with the predicted
output value at time t, the power stations participating in scheduling at time t can be
further divided into two categories:

(a) The first category is GkPV/WT
PV/WT,t ≥ PkPV/WT

PVP,t , and the scheduling plan ultimately exe-

cuted by the power station is GkPV/WT
PV/WT,t = PkPV/WT

PVP,t . Moreover, the remaining consumption
plan of the power grid at time t is equal to

SkPV/WT
PV/WT,t = GkPV/WT

PV/WT,t − PkPV/WT
PVP,t (25)

(b) The second category is GkPV/WT
PV/WT,t < PkPV/WT

PVP,t , and the power station needs to take

GkPV/WT
PV/WT,t as the intermediate scheduling plan. The remaining power generation space of

the power station at time t can be described as

RkPV/WT
PV/WT,t = PkPV/WT

PVP,t − GkPV/WT
PV/WT,t (26)

(3) According to the number of power stations in the second category, the remaining
consumption plan is reallocated to obtain the adjustment quota

FkPV/WT
PV/WT,t =

WkPV/WT
RkPV/WT

PVP,t
NPV/WT−2

∑
kPV/WT=1

WkPV/WT
RkPV/WT

PVP,t

NPV/WT−1

∑
kPV/WT=1

SkPV/WT
PV/WT,t (27)

where NPV/WT−1 and NPV/WT−2 are the number of first and second-category power stations
after initial allocation. The final fair scheduling plan for the second type of power station
can be contained as follows:

GFkPV/WT
PV/WT,t = GkPV/WT

PV/WT,t + FkPV/WT
PVP,t (28)

Based on the above allocation principle among renewable energy power stations, the
final scheduling scheme can guarantee the dispatch strategy of stations in a fair manner.

5. Case Study
5.1. Simulation Parameters

Based on the IEEE 39-bus system, the high proportion of renewable energy power
systems is taken as an example to verify the effectiveness of the proposed approach. The
system contains seven renewable energy power stations and seven thermal power units, as
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shown in Figure 3. Tables 2–4 illustrate the parameters of renewable energy stations and
thermal power units. PV1~PV4 are four PV stations and WT1~WT3 are three WT stations,
with PV1, PV3, and WT2 having been in operation for 5 years and the other stations having
been in operation for 3 years. The parameters of thermal power units G1~G7 are presented
in Table 4, containing the consumption characteristic coefficients, output upper and lower
limits, and ramp rate parameters. It should be noted that the energy power system based on
the IEEE 39-bus is taken as an example to show the effectiveness of the proposed approach.
However, the proposed approach is not only limited to the systems with the IEEE 39-bus.
It can still be applied to different regional grids or systems with higher variability in
renewable energy types. If the system has other renewable energy types, the index system
needs to be adjusted according to the new energy types, and other dispatching processes
are the same.
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Table 2. Parameters of PV stations.

Indicator Parameters PV1 PV2 PV3 PV4

Equipment
performance

indicator

Installed capacity 830 MW 830 MW 950 MW 590 MW
Installed capacity coefficient 0.1656 0.1656 0.1895 0.1177

Service life 0.1290 0.1935 0.1613 0.1290
PV/WT efficiency 15% 17.50% 17% 15%
Inverter efficiency 96.50% 97% 96.80% 96%

Maximum power tracking efficiency 98.00% 99.00% 99.00% 98.00%
Loss of power due to malfunction 3% 1.20% 1.90% 2.60%

Output
characteristic

indicator

Average output coefficient 20.00% 28.00% 25.00% 21.00%
Credible probability 7% 9% 8.50% 7.50%

Fluctuation coefficient of variation 80.00% 90.00% 85.00% 85.00%
Time series correlation coefficient 50% 65.00% 60.00% 55.00%

Reliability
indicator

Failure frequency 19.1 13.2 15.4 18.8
Fault repair time 0.025 0.026 0.027 0.024

Equipment availability 55.00% 55.00% 60.00% 50.00%

Flexibility
indicator

Transmission coefficient 20.00% 25.00% 25.00% 20.00%
Management level coefficient 50.00% 50.00% 50.00% 30.00%

Abandoned scenery rate 5% 7% 6% 7%
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Table 2. Cont.

Indicator Parameters PV1 PV2 PV3 PV4

Economic
indicator

Initial investment 500 480 550 330
Annual operation and maintenance cost 7 8 8 6

Government subsidy expense 15 15 16 14
Equipment residual value 50 55 70 35

Table 3. Parameters of WT stations.

Indicator Parameters WT1 WT2 WT3

Equipment
performance

indicator

Installed capacity 650 MW 312 MW 850 MW
Installed capacity coefficient 0.1297 0.0623 0.1696

Service life 0.1290 0.1290 0.1290
PV/WT efficiency 45% 43.50% 44%
Inverter efficiency 91% 91.30% 90%

Maximum power tracking efficiency 97.00% 96.00% 97.00%
Loss of power due to malfunction 2.50% 2.30% 2.60%

Output
characteristic

indicator

Average output coefficient 30.00% 32.00% 31.00%
Credible probability 15% 13.70% 14.20%

Fluctuation coefficient of variation 70.00% 65.00% 65.00%
Time series correlation coefficient 80.00% 80.00% 80.00%

Reliability
indicator

Failure frequency 15.6 17.8 15.9
Fault repair time 0.028 0.027 0.027

Equipment availability 60.00% 65.00% 60.00%

Flexibility
indicator

Transmission coefficient 20.00% 22.00% 20.00%
Management level coefficient 50.00% 30.00% 50.00%

Abandoned scenery rate 12% 10% 10%

Economic
indicator

Initial investment 530 260 700
Annual operation and maintenance cost 20 18 22

Government subsidy expense 12 10 15
Equipment residual value 55 25 70

Table 4. Parameters of thermal power units.

Unit akTH /($/(MWh)2 bkTH /($/MWh) ckTH /($/h) PkTH
TH,max/MW PkTH

TH,min/MW DOkTH
TH /(MW/h) UPkTH

TH /(MW/h)

G1 0.056 35.095 905.105 347 140 200 200
G2 0.075 39.816 919.695 812 325 400 400
G3 0.069 36.832 724.645 635 255 350 350
G4 0.079 41.824 702.425 812 325 350 350
G5 0.058 35.675 1142.929 700 280 300 300
G6 0.087 37.111 757.327 675 270 300 300
G7 0.054 38.541 854.501 1037 415 500 500

5.2. Comprehensive Score of Renewable Energy Power Stations

Based on the parameters in Table 1, the indicator scores for each station can be calcu-
lated according to indicator models, which are presented in Table 5. According to expert
ratings, the judgment matrix A for each indicator is shown in Table 6. Based on the AHM,
the attribute judgment matrix B can be obtained, which is shown in Table 7.

Table 5. Normalization results of indicators for each station.

Indicator PV1 PV2 PV3 PV4 WT1 WT2 WT3

Performance indicator 0.089 0.162 0.149 0.063 0.197 0.091 0.249
Output characteristic indicator 0.034 0.039 0.046 0.031 0.259 0.295 0.296

Reliability indicator 0.125 0.158 0.153 0.120 0.147 0.147 0.149
Flexibility indicator 0.153 0.187 0.189 0.090 0.141 0.096 0.145
Economic indicator 0.149 0.153 0.150 0.158 0.128 0.142 0.119
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Table 6. Judgment matrix A.

Indicator Performance
Indicator

Output
Characteristic

Indicator

Reliability
Indicator

Flexibility
Indicator

Economic
Indicator

Performance
indicator 1 4 2 6 3

Output characteristic
indicator 1/4 1 1/6 3 1/5

Reliability indicator 1/2 6 1 5 2
Flexibility indicator 1/6 1/3 1/5 1 1/4
Economic indicator 1/3 5 1/2 4 1

Table 7. Attribute judgment matrix B.

Indicator Performance
Indicator

Output
Characteristic

Indicator

Reliability
Indicator

Flexibility
Indicator

Economic
Indicator

Performance 0.00 0.44 0.40 0.46 0.43
Output characteristic 0.11 0.00 0.08 0.43 0.09

Reliability 0.20 0.46 0.00 0.45 0.40
Flexibility 0.08 0.14 0.09 0.00 0.11
Economy 0.14 0.45 0.20 0.44 0.00

The anti-entropy weight method is used to calculate the objective weights of each indi-
cator corresponding to the comprehensive evaluation index system, and the AHM is used
to calculate the subjective weights of each indicator corresponding to the comprehensive
evaluation index system. The specific weight values are shown in Table 8. Based on the
comprehensive weights, the corresponding scores of all renewable energy power stations
can be calculated, which are presented in Table 9.

Table 8. Comprehensive weights of each indicator.

Indicator Subjective Weight Objective Weight Comprehensive Weight

Performance indicator 0.31 0.200 0.254
Output characteristic

indicator 0.13 0.189 0.157

Reliability indicator 0.27 0.204 0.237
Flexibility indicator 0.08 0.203 0.139
Economic indicator 0.22 0.204 0.212

Table 9. Comprehensive score of each renewable energy power station.

Indicator WT3 WT1 WT2 PV2 PV3 PV1 PV4

Performance indicator 0.063 0.050 0.023 0.041 0.038 0.023 0.016
Output characteristic indicator 0.047 0.041 0.046 0.006 0.007 0.005 0.005

Reliability indicator 0.035 0.035 0.035 0.037 0.036 0.030 0.028
Flexibility indicator 0.020 0.020 0.013 0.026 0.026 0.021 0.012
Economic indicator 0.025 0.027 0.030 0.033 0.032 0.032 0.034

Comprehensive ranking 0.191 0.173 0.148 0.143 0.139 0.111 0.096

5.3. Dispatching Plan of Renewable Energy Power Stations

In the proposed dispatching scheme, renewable energy power stations first need to
broadcast the predictive value of energy output to the dispatch center of the power system.
Then, the dispatch center makes the dispatching plan based on the predictive value of
energy output from the perspective of safety, economy, and fairness. The predictive value
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of energy output for PV and WT stations are assumed in Figures 4 and 5 [34]. The load
demand of the system is shown in Figure 6. Accordingly, the dispatching plan of renewable
energy power stations can be obtained based on the scores of each station in Table 8. Note
that the dispatching period of a whole day is divided into 96 time slots, and each time slot
is 15 min.
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Figure 6. Load demand of energy power system. Figure 6. Load demand of energy power system.

Moreover, in order to more accurately calculate the abandoned amount of PT and WT,
the parameter settings about the prediction error coefficients for PV and WT need to be closer
to the actual situation. Through the statistical analysis of the collected data from PV and WT
stations, the average prediction errors are taken as the prediction error coefficients. That is,
αPV = 1.2 for PV and αWT = 1.15 for WT. The unit cost of abandoning PV is 703 yuan/MWh
and the unit cost of abandoning WT is 1044 yuan/MWh. Note that the priority coordination
scheduling method studied in this paper is applicable to the development of scheduling plans
for renewable energy power stations to ensure fairness in participating in grid scheduling
when there is a power restriction policy in the regional power grid.
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By configuring generation parameters, load demand, and prediction of renewable
energy power stations, an optimal scheduling plan for the renewable energy power station
can be obtained. The safe-economical-fair scheduling results for PV stations are presented
in Figure 7, while the results for WT stations are presented in Figure 8. Figures 7 and 8
describe the day-ahead power prediction curve and dispatching scheme formulated with
the proposed fair dispatching approach. It can be seen that the optimal dispatching
result is highly consistent with the prediction curve, which can basically achieve the
maximum consumption of renewable energy power stations. The energy scheduling
results of PV stations, WT stations, and thermal power units are presented in Figure 9.
Moreover, Figure 10 shows the voltage amplitude of the renewable energy power stations
during the scheduling periods. It depicts that the voltage of each station implementing
the proposed scheduling scheme is all within the limit, which complies with the safety
operation standards of the power grid.
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Figure 7. Optimal dispatch scheme of PV stations. Figure 7. Optimal dispatch scheme of PV stations.
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Figure 8. Optimal dispatch scheme of WT stations. 
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Figure 9. Energy scheduling results of the system. 
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In order to show the performance of the proposed approach (PA), it is compared
with the traditional scheduling method (TSM), in which only the economic and safety
aspects of scheduling are considered. The comparison results are shown in Table 10.
Overall, the proposed scheduling approach has achieved utilization rates of over 94% for
all renewable energy stations. However, the utilization rate of PV3 stations under the
traditional scheduling method is only 86.29%. The average utilization rate of renewable
energy in the regional power grid has been increased from 95.89% to 96.26% through PA.
Here, the effectiveness of the PA is verified by analyzing the Pearson correlation coefficient
(PCC) [35]. The Pearson correlation coefficients between the scores and utilization rates
of the four PV stations and three WT stations are 0.9636 and 0.9285, indicating a strong
positive correlation between scores and utilization rates. It indicates that based on the
comprehensive evaluation method, PA has achieved a good rating in renewable energy
dispatch, thus realizing fair dispatch.

Table 10. Comprehensive results of scheduling scheme.

Station PV1 PV2 PV3 PV4 WT1 WT2 WT3

Total prediction power/MW 11,119 11,023 12,265 9860 35,190 13,721 36,632

Total scheduling power with TSM/MW 10,541 10,526 10,584 9714 34,881 13,441 36,275

Total scheduling power with PA/MW 10,608 10,628 11,859 9271 34,554 12,984 36,059

Utilization rate with TSM 94.80% 95.49% 86.29% 98.52% 99.12% 97.96% 99.03%

Utilization rate with PA 95.40% 96.42% 96.69% 94.03% 98.19% 94.63% 98.44%

PCC with TSM 0.3017 0.0748

PCC with PA 0.9636 0.9285
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In summary, when the rating of renewable energy power stations is high, the stations
can obtain larger scheduling plans to further improve their consumption capacity. However,
renewable energy power stations with lower ratings need to continuously develop and
improve their overall ranking by enhancing the performance in the evaluation to obtain
more scheduling plans. Therefore, introducing renewable energy station ratings can achieve
differentiation in scheduling schemes and ensure fairness in allocation.

6. Conclusions

In this paper, a two-stage scheduling framework is proposed for renewable energy
power stations, aiming to address the safe, economical, and fair dispatching problem
posed by the increasing integration of renewable energy into power systems. The safe and
economic dispatching target is satisfied by formulating the economic optimization problem
with the safe operation constraints. The fair allocation of renewable energy power stations
is realized by evaluating the performance of stations. In order to obtain the comprehensive
weights of indicators, game-fairness empowerment based on cooperative game theory is
proposed to reach the balance between the subjective weight determined by AEW and the
objective weight determined by the AHM. The simulation results show that the proposed
approach can maintain the utilization rate of all renewable energy stations at over 94%
and increase the utilization of renewable energy from 95.89% to 96.26%. In addition, the
Pearson correlation coefficients of both PV and WT are greater than 0.9, indicating a strong
positive correlation between the scores obtained by the evaluation method and the final
utilization level of renewable energy power stations. This demonstrates that the proposed
two-stage scheduling mechanisms have a good performance in achieving economic, safe,
and fair dispatching.
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Abstract: This study presents a mathematical model of a parabolic trough solar collector
with photovoltaic cells integrated into its solar receiver. A case study is presented, utilizing
meteorological data obtained from the localities of Cuernavaca and Mexicali in Mexico.
The results demonstrate moderately variable electrical and thermal energy production for
Cuernavaca (387.93 kWh to 239.38 kWh and 1036.11 kWh to 641.26 kWh, respectively). In
contrast, the production of electrical and thermal energy in Mexicali exhibited considerably
greater fluctuations (515.16 kWh to 177.69 kWh and 1424.39 kWh to 448.88 kWh, respec-
tively). Furthermore, a parametric study is presented, which analyzes the impact of solar
receiver geometry and mass flow on the model’s behavior. The results demonstrate that the
pipe length exerts the most significant influence on the electrical and thermal power output
(1.21 kW to 2.22 kW and 3.7 kW to 6.9 kW, respectively). Additionally, the diameter has an
impact on the thermal power output (5.23 kW to 7.1 kW) and the electrical and thermal
efficiency (0.18 to 0.15 and 0.54 to 0.74, respectively). Modifying the mass flow facilitates
the enhancement of electrical power and efficiency (1.54 kW to 1.72 kW and 0.16 to 0.18,
respectively) while concurrently preventing a significant reduction in thermal power and
efficiency (5.4 kW to 5.3 kW and 0.56 to 0.55, respectively). A script with the developed
model is provided.

Keywords: concentrated photovoltaic/thermal; thermal modeling; solar energy

1. Introduction
Solar energy is obtained through the use of two distinct systems. The first type of

system is a concentrated solar power (CSP) plant, which concentrates solar irradiance

Energies 2025, 18, 356 https://doi.org/10.3390/en18020356
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to obtain heat through the use of a heat transfer fluid (HTF). The second system is the
photovoltaic (PV) cell, which can generate electrical energy through the photoelectric effect.
CSP plants are primarily employed in industrial processes that require a considerable
amount of heat, such as Rankine cycles, pasteurization, desalination, and others [1,2].

Photovoltaic (PV) systems provide the flexibility to meet a range of electricity supply
needs. Such uses extend from microelectronics applications to supplying electricity to
residential condominiums or similar buildings [3,4].

Researchers have concentrated their efforts on the development of new solutions that
are complementary, versatile, and useful in a variety of scenarios. To this end, the feasibility
of concentrating solar photovoltaic/thermal (CPV/T) systems has been studied in details.
These technologies concentrate solar irradiance in a specific area, where the PV cells and a
pipe through which the heat transfer fluid (HTF) circulates are placed [5,6].

The Parabolic Trough Collector (PTC) represents one of the most extensively developed
CSP technologies. Consequently, it is of interest to analyze the performance of this collector
when coupled to a solar photovoltaic thermal receiver (SRC-PVT). Table 1 provides a
summary of the studies that have addressed this approach [7].

Table 1. Summary of studies focused on the performance of PTC collectors coupled to SRC-PVTs.

Year Autor Journal Main Focus of the Study

2023 Renno [8] Energies Case study and Experimental testing
2023 Santana [9] Energies Parametric study
2022 Acosta-Pazmiño [10] Renewable Energy Case study
2022 Gorouh [11] Renewable Energy Parametric study
2021 Cabral [12] Solar Energy Experimental testing
2021 Herez [13] Renewable Energy Focus Case study and modeling
2021 Renno [14] Energies Experimental testing and optimization
2020 Acosta-Pazmiño [15] Energies Case study
2020 Felsberger [16] Energies Experimental testing
2020 Gakkhar [17] Applied Thermal Engineering Experimental testing and modeling
2020 Otanicar [18] Applied Energy Experimental testing
2020 Riahi [19] Energy Conversion and Management Experimental testing and modeling
2019 Karathanassis [20] Renewable Energy Optimization and modeling
2019 Maatallah [21] Solar Energy Performance analysis and modeling
2019 Valizadeh [22] Renewable Energy Parametric study and modeling
2018 Ben Youssef [23] Solar Energy Optimization and modeling
2017 Mohsenzadeh [24] Renewable Energy Experimental testing
2017 Yazdanifard [25] Energy Conversion and Management Parametric study
2016 Brekke [26] Journal of Solar Energy Engineering Parametric study and modeling
2015 Al-Nimr [27] Solar Energy Parametric study and modeling
2013 Calise [28] Energy Parametric study and modeling

Santana [9] evaluates collector performance through a case study of multiple coastal
locations in Mexico and Singapore, covering a twelve-month period. The author also devel-
ops a parametric study to determine optimal collector sizing, focusing on the appropriate
PTC surface area and inlet temperature.

Herez [13] conducted a case study of three towns: Baalbek, Angers, and Abu Dhabi.
The temperature values given by the mathematical model, the efficiencies, and the energy
production for all three cases were compared. The study identified solar radiation and
fluid inlet temperature as the main factors affecting system performance. The highest
electrical and thermal efficiencies were achieved in Lebanon during January (27.9%) and
June (50.8%), respectively.
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Acosta-Pazmiño [15] presents a case study under the meteorological conditions of
Monterrey, Mexico. The results demonstrated that the CPV/T system could provide 72%
of the required heating during the summer months and 24% during the winter.

Gorouh [11] carried out a parametric study that yielded results indicating that the
sensitivity of thermal power to the HTF inlet temperature exceeds that of electrical power.
Additionally, an increase in the mass flow rate of the HTF leads to an enhancement in the
electrical and thermal power output of the collector, while a decrease in the HTF outlet
temperature is observed. The increase in the difference between the HTF temperature and
the ambient temperature has a significant impact on the thermal efficiency.

Ben Youssef [23] presented a parametric study that yielded the following conclusions.
As wind speed decreases, the electrical efficiency of the PV system is reduced. A drastic
decrease in the concentration ratio has a significant impact on heat exchange efficiency,
which in turn affects the electrical and thermal efficiencies.

Yazdanifard [25] conducted a parametric investigation, the findings of which indicated
that an increase in pipe length was associated with an increase in both HTF outlet temperature
and PV temperature. An increase in pipe diameter was associated with a decrease in both
electrical and thermal efficiencies. The results of this research underscored the importance of
optimizing structural and geometrical parameters to achieve the desired performance.

Calise [28] developed a parametric study that provides the following findings. Increases
in pipe length and diameter lead to a decrease in electrical and thermal efficiencies. Increasing
the width of the prism faces increases the concentration ratio of the PTC collector, which is
favorable for electrical efficiency. The model performs adequately even at temperatures over
100 ◦C. However, its efficiencies are very susceptible to changes in solar irradiance.

This study concerns the performance analysis of a PTC collector in conjunction with
an SRC-PVT. A mathematical model of the collector is presented, based on a series of
one-dimensional energy balance equations. The results of the study are summarized in the
Conclusions Section. Considering the points made in previous studies and the results of
the developed model, the contributions of this study are as follows:

1. Ben Youssef [23] has demonstrated that the wind speed at which photovoltaic (PV)
systems operate has a significant impact on their efficiency. The model developed in
this study addresses this issue by incorporating monthly variations in wind speed as
one of the model’s boundary conditions;

2. Calise [28] emphasizes the necessity of calibrating the convection coefficients incorpo-
rated within his zero-dimensional model), thereby facilitating the precise estimation
of the yield. The model developed in this study (one-dimensional) addresses this
issue by incorporating a recalculation function for the convection coefficients with
each variation of the parameters, such as wind speed;

3. It is evident that meteorological conditions exert a considerable influence on the
efficacy of solar collectors [9,13,15]. This paper presents a case study of the locations of
Cuernavaca and Mexicali, which enables the performance of the model to be evaluated
under the conditions of a relatively stable temperate climate and an extreme desert
climate, respectively. This paper also provides criteria for the correct determination of
climate data extracted from a TMY;

4. Parametric studies are essential for determining the behavior of the collector, and
the information obtained from these studies can be used to size and optimize the
collector [11,23,25]. This study presents a parameter study focused on the geometry
of the SRC-PVT and the mass flow. The results obtained from this study are useful for
the sizing of an experimental prototype.
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2. Mathematical Model
A review of previous studies focusing on the analysis of PTC systems coupled to an

SRC-PVT was conducted [7], and a specific mathematical model was selected from the
studies consulted. The following presents a general description of the SRC-PVT and its
mathematical modeling.

2.1. Structural Description of the SRC-PVT

Figure 1 illustrates the structural components of the SRC-PVT, which is distinguished
by a triangular prism form. The two faces oriented towards the PTC comprise the PVs. The
aforementioned faces receive the DNI concentrated by the PTC, as well as being in contact
with the environment. The third face is situated in opposition to the PTC and incorporates
a metallic absorber. This face is exposed to the GHI from the sky and is also in contact with
the environment. Behind the prism faces is a metallic substrate that facilitates heat transfer
from the PVs and absorber to a pipe located in the center of the prism. The pipe contains
an HTF, which extracts the heat present in the SRC-PVT.
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Figure 1. The SRC-PVT and its thermal resistance scheme.

The various modes of heat transfer (conduction, convection, and radiation) that occur
between the different elements of the SRC-PVT, which is situated between the environment
and the HTF, are represented as thermal resistances. The incident solar irradiance (GHI
and DNI) is considered as incoming power. Based on the modes of heat transfer and the
incidence of solar irradiance, the energy balance equations of the SRC-PVT are defined.

2.2. Description of the Mathematical Model

The thermal resistance model presented in Figure 1 and the series of energy balance
equations that model the thermal behavior of the SRC-PVT were proposed by Herez [13].
It should be noted that this is a one-dimensional and stationary modeling approach. These
energy balance equations are described below.

Equation (1) determines the surface temperature of the PTC, denoted by TPTC:

.
qsol,PTC +

.
qrad,PV =

.
qconv, f ront,PTC +

.
qconv,back,PTC +

.
qrad,PTC (1)

Equation (2) determines the temperature at the HTF outlet, denoted by Tout,HTF:

.
qsol,PV − PPV −

.
qconv,PV −

.
qrad,PV +

.
qsol,abs −

.
qconv,abs −

.
qrad,abs =

.
qHTF (2)

Equation (3) determines the temperature in the absorber, denoted by Tabs:

.
qsol,abs −

.
qconv,abs −

.
qrad,abs =

.
qcond,abs−sub (3)
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Equation (4) determines the temperature in the substrate, denoted by Tsub:

.
mHTFCp,HTF(Tout,HTF − Tin,HTF) =∈

.
mHTF + Cp,HTF(Tsub − Tin,HTF) (4)

Equation (5) determines the temperature at the PV, denoted by TPV :

.
qcond,PV−sub +

.
qcond,abs−sub =

.
qHTF (5)

In the case of the energy balance in Equations (1)–(3) and (5), the terms that comprise
these equations represent the various modes of heat transfer and incident irradiance in the
elements that constitute the SRC-PVT. The energy balance in Equation (4) corresponds to a
fixed control volume (steady state analysis) for a heat exchanger, where the substrate and
the pipe are the heat sources while the HTF is the heat receiver.

The terms that comprise the energy balance equations can be solved through the
application of formulas, theorems, and correlations. This information is presented in greater
detail in the studies of Herez [13] and thermodynamics textbooks such as Incropera [29,30]
and Çengel [31].

The electrical and thermal power produced are estimated using Equation (6) and
Equation (7), respectively. The electrical power is obtained from parameters affecting the
PV, such as PTC geometry and DNI. The thermal power is derived from the energy balance
in Equation (4), which allows the power absorbed by the HTF to be determined.

Equation (6) determines the electrical power of the PV system, denoted by PPV :

PPV = GDNI ∗ APV ∗ CRPTC ∗ ηopt ∗ IAMelec ∗ ηPV (6)

Equation (7) determines the thermal power of the HTF, denoted by
.
qHTF:

.
qHTF =∈ ∗ .

mHTF ∗ Cp,HTF ∗ (Tsub − Tin,HTF) (7)

The electrical and thermal efficiencies are calculated using Equations (8) and (9),
respectively. The efficiency is defined as the ratio between the power produced and the
power input to the developed model. In this case, the power input is a system based on
solar irradiation collection, which is obtained from the DNI and the collector area.

Equation (8) determines the electrical efficiency of the PV system, denoted by ηelec:

ηelec =
PPV

GDNI ∗ Aap
(8)

Equation (9) determines the thermal efficiency of the PV system, denoted by ηth:

ηth =

.
qHTF

GDNI∗Aap
(9)

2.3. Strategy for the Solution of the Mathematical Model

The energy balance equations enable the estimation of temperatures in the different
elements of the SRC-PVT (PV, absorber, and substrate). Additionally, they facilitate the
calculation of the temperature of the HTF at the outlet of the SRC-PVT and the temperature
at the surface of the concentrator. This is achieved through the following procedure:

1. An initial temperature value is assigned to TPV ;
2. With the initial temperature of TPV and Equation (1), the temperature of TPTC

is estimated;
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3. With the temperatures of TPV and TPTC, a system of three equations and three un-
knowns is formed. The equation system consists of Equations (2)–(4), while the
unknowns are the temperatures Tout,HTF, Tabs, and Tsub;

4. Finally, with the temperatures Tout,HTF, Tabs, and Tsub and Equation (5), the appropri-
ate value of TPV is estimated.

The energy balance equations were solved with EES software [32]. It should be
noted that the structure used within the script follows the four-step procedure previously
proposed. The equations are organized into three subprograms following steps 2 to 4 of
the aforementioned procedure. Outside the subprograms, the parameters, formulas, and
correlations necessary to solve the equations are defined. The estimation of the unknown
temperatures is calculated by the equation solver through an iterative process, which is
applied automatically. The script with the developed model is provided in [33,34].

3. Fundamentals of PTCs and CPCs
The model validation process was designed following a strategy comparable to that uti-

lized by Herez [13] and Calise [28]. This strategy consists of utilizing the boundary conditions
and design parameters of a reference study as the input values for the mathematical model
developed. The temperature values generated by the developed model are then compared
with the temperature values presented in the reference study. If the divergence between both
temperature values is less than 10%, the developed model is considered validated.

3.1. Boundary Conditions, Design, and General Model Parameters

The parameters that integrate the energy balance equations, the formulas, and the cor-
relations necessary for their solution are organized into the following categories: boundary
conditions, design parameters, and general parameters of the model.

The boundary conditions and design parameters utilized as a reference for the valida-
tion of the model developed in this study are those proposed by Herez [13] and Calise [28].
Table 2 presents the boundary conditions, while Table 3 presents the design parameters. It
should be noted that the boundary conditions correspond to the meteorological conditions
of the location where the model is analyzed.

Table 2. Boundary conditions.

Parameter Value Unit

GHI 1000 W/m2

DNI 800 W/m2

Sky temperature 25 ◦C
Ambient temperature 25 ◦C
HTF inlet temperature 70 ◦C

Air velocity 5 m/s

Table 3. Design parameters.

Parameter Value Unit

PTC aperture area 12 m2

Absorber area 0.6 m2

PV area 1.2 m2

PTC concentration ratio 10 -
Receiver width (PV) 0.06 m
HTF pipe diameter 0.03 m
HTF-specific heat 4183 J/(kg × ◦K)

HTF mass flow rate 0.15 Kg/s
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Table 3. Cont.

Parameter Value Unit

Thermal conductivity of the PV 50 W/m2

Absorber thermal conductivity 205 W/m2

Substrate thermal conductivity 250 W/m2

Absorbance of the absorber 0.9 -
Absorbance of PTC 0.03 -
Absorbance of PV 0.97 -

Absorber emissivity 0.2 -
Concentrator emissivity 0.3 -

PV emissivity 0.2 -
Electrical coefficient IAM 0.28 -
Thermal coefficient IAM 0.14 -

The general parameters correspond to values that are not provided by Herez [13] but
are necessary for solving the energy balance equations. These values are mainly related
to the geometry of the PTC and SRC-PVT. Additionally, there are parameters such as
the HTF (water) velocity, which has been cleared from the mass flow, and the PV and
PTC efficiencies, which were determined by consulting technical data sheets and similar
studies [25,35,36]. Table 4 presents the general parameters.

Table 4. General parameters.

Parameter Value Unit

Length of PTC and SRC-PVT 10 M
Width of PTC 1.2 M

Thickness of absorber and PV 0.003 M
Thickness of substrate 0.025 M

HTF pipe cross-sectional area 7 × 10−4 m2

HTF Velocity 2.17 m/s
Heat exchanger contact area 0.9425 m2

PV efficiency 0.2998 -
PTC optical efficiency 0.83 -

3.2. Validation Strategy

The temperature values of the PV, absorber, substrate, and HTF outlet presented by
Calise [28] were compared with the temperature values estimated by the model developed
in this study. The results of this comparison are presented in Table 5, which also shows the
percentage divergence between the two sets of values.

Table 5. Comparison of the values estimated by the developed model.

Element Herez
Reference (◦C)

Model
Development (◦C)

Divergence
(%)

PV 79.30 80.16 1.08
Absorber 82.30 79.56 3.33
Substrate 82.70 79.51 3.86

HTF outlet 80.50 78.44 2.56

The discrepancy between the reference values and those obtained by the developed
model is less than 5%, indicating that the estimated temperatures are deemed satisfactory.
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4. Case Study
One notable aspect of the study proposed by Herez [13] is its analysis of the perfor-

mance of their model in various locations. However, when analyzing the methodology
used in their study, it becomes evident that the following procedure was applied to calculate
the energy production across each month:

• The mathematical model is fed with punctual values of solar irradiance (GHI and
DNI). The data corresponds to the irradiance values characteristic of midday, which
represents the moment of greatest solar irradiance throughout the day;

• The mathematical model generates punctual values for the electrical and thermal
power produced from the solar irradiance values entered, along with the remaining
meteorological conditions determined;

• To calculate the energy generated per month, the punctual values of power are multi-
plied by the number of daylight hours and the number of days in the specific month.

A direct analysis of a TMY file reveals a decline in solar irradiance between the first
and last hours of the day. The methodology of multiplying the punctual power of midday
by the number of daylight hours assumes that the maximum amount of solar irradiance is
available throughout the day. This introduces a bias in the analysis, as it assumes conditions
that are too favorable and unrealistic. To evade such biases, this model was provided with
solar irradiance values (GHI and DNI) that were averaged over daylight hours and days
within a given month. As demonstrated in Figure 2, the irradiance values employed by
Herez are based on highly favorable assumptions to represent the irradiance per month at
the Angers location, as opposed to the average values proposed in this study.
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Figure 2. Comparison of the solar irradiation ranges presented by Herez and the averaged ones.

4.1. Meteorological Data for the Locations Studied

This study analyzes the behavior of the model developed for the specific meteorologi-
cal conditions of the localities of Cuernavaca and Mexicali in Mexico. Cuernavaca has a
temperate climate for the majority of the year, while Mexicali experiences extreme climatic
conditions between summer and winter.

Meteorological conditions for Cuernavaca and Mexicali were obtained from the PVGIS
database [37]. Using this information, meteorological data for each month of the year were
determined. It should be noted that these data correspond to the boundary conditions of
the model. The meteorological data for Cuernavaca are presented in Table 6, while those
for Mexicali are presented in Table 7.
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Table 6. Meteorological data for the locality of Cuernavaca.

Month GHI
(W/m2)

DNI
(W/m2)

Amb./HTF
Temp. (◦C)

Sky Temp.
(◦C)

Air Vel.
(m/s)

January 486.90 297.50 16.39 8.39 1.71
February 508.20 326.60 18.54 10.54 1.56

March 551.50 394.50 19.49 11.49 1.78
April 547.10 334.80 21.80 13.80 1.52
May 547.50 359.70 20.48 12.48 1.22
June 568.10 361.10 21.36 13.36 1.16
July 531.90 406.10 19.92 11.92 1.17

August 483.40 274.60 19.89 11.89 1.05
September 463.90 294.10 18.95 10.95 0.98

October 481.60 303.10 19.58 11.58 1.18
November 501.60 370.30 16.63 8.63 1.61
December 478.10 322.60 16.20 8.20 1.54

Table 7. Meteorological data for the locality of Mexicali.

Month GHI
(W/m2)

DNI
(W/m2)

Amb./HTF
Temp. (◦C)

Sky Temp.
(◦C)

Air Vel.
(m/s)

January 372.80 318.80 11.43 3.43 2.23
February 430.80 353.40 19.43 11.43 1.55

March 539.70 441.00 17.30 9.30 1.99
April 582.30 491.30 19.98 11.98 2.09
May 580.40 478.80 29.13 21.13 1.97
June 622.40 521.60 30.23 22.23 1.96
July 585.10 513.00 33.21 25.21 1.83

August 540.90 447.50 32.21 24.21 1.73
September 548.30 453.80 29.47 21.47 1.79

October 474.40 413.30 22.22 14.22 2.11
November 419.30 340.50 16.76 8.76 2.06
December 316.00 238.90 14.81 6.81 1.58

To determine the monthly values of the meteorological data, the following considera-
tions were taken into account:

• The TMY file provides an hourly value for each of the meteorological data. The file
comprises a total of 8738 h;

• As previously indicated, the solar radiation values are averaged directly from the TMY,
with consideration given to the daylight hours covered by each of the months;

• The ambient temperature and HTF temperature correspond to the dry bulb temper-
ature of the TMY file. These temperatures are averaged over the hours spanning
each month;

• The temperature of the sky was determined to be 8 ◦C less than the ambient tempera-
ture, as indicated by Forristall [38].

4.2. Model Performance

• Figure 3 illustrates the monthly temperatures of the PV, absorber, and HTF at the
outlet and inlet. In the case of Cuernavaca, the highest temperatures were recorded in
April and the lowest in December. The temperature range throughout the year was
16 ◦C to 26 ◦C. The mean temperature gain of the HTF was 3.42 ◦C. In Mexicali, the
highest temperatures were in July and the lowest in January. The temperature range
throughout the year was 10 ◦C to 40 ◦C. The mean temperature gain of the HTF was
4.19 ◦C.
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Figure 3. Temperatures per month for the locations of (a) Cuernavaca and (b) Mexicali.

• Figure 4 illustrates the monthly production of electric and thermal power. In the
case of Cuernavaca, the highest power produced was recorded in July, with a total of
0.96 kW of electric power and 2.57 kW of thermal power. The lowest power produced
was recorded in August, with a value of 0.65 kW of electric power and 1.76 kW of
thermal power. The total power produced was 9.61 kW of electric power and 25.77 kW
of thermal power. The average power produced was 0.80 kW of electric power and
2.14 kW of thermal power. In the case of Mexicali, the highest power produced was
observed in June, with a value of 1.21 kW of electric power and 3.34 kW of thermal
power. The lowest power produced was observed in December, with a value of
0.57 kW for electric and 1.44 kW for thermal. The total power produced was 11.79 kW
for electric and 31.62 kW for thermal. The average power produced was 0.98 kW for
electric and 2.63 kW for thermal.
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• Figure 5 illustrates the electrical and thermal efficiency values on a monthly basis. In
the case of Cuernavaca, the highest electrical efficiency was observed in January and
December, with a value of 0.199, while the lowest electrical efficiency was recorded in
April and June, with a value of 0.197. The highest thermal efficiency was observed
in April, with a value of 0.537, while the lowest thermal efficiency was recorded in
November, with a value of 0.525. The average electrical efficiency was 0.198, while
the average thermal efficiency was 0.531. In the case of Mexicali, the highest electrical
efficiency was observed in January, reaching 0.200, while the lowest electrical efficiency
was recorded in July, at 0.192. The highest thermal efficiency was observed in June, at
0.534, while the lowest thermal efficiency was observed in December, at 0.505. The
average electrical efficiency was 0.196, while the average thermal efficiency was 0.523.
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• Figure 6 illustrates the values of electrical and thermal energy produced per month.
The results were obtained by multiplying the point values of power, estimated by the
model, by the number of daylight hours for each month and the number of days in
each month [39,40]. In the case of Cuernavaca, the highest amount of energy produced
was obtained in July, with a total of 387.93 kWh of electric energy and 1036.11 kWh
of thermal energy generated. The lowest amount of energy produced was recorded
in February, with a total of 239.38 kWh of electric energy and 641.26 kWh of thermal
energy generated. The total energy produced was 3474.64 kWh of electricity and
9321.28 kWh of thermal energy. The average energy produced was 291.99 kWh of
electric energy and 784.27 kWh of thermal energy. In the case of Mexicali, the highest
amount of energy was produced in July, with a total of 515.16 kWh of electric energy
and 1424.39 kWh of thermal energy. The lowest amount of energy produced was
in December, at 177.69 kWh of electric energy and 448.88 kWh of thermal energy.
The total energy produced was 4367.32 kWh of electric energy and 11,747.89 kWh of
thermal energy. The average energy produced was 363.94 kWh of electric energy and
978.99 kWh of thermal energy.
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5. Parametric Study
The objective of the parametric study is to analyze the impact of geometric characteris-

tics on the behavior of the model. The intention is to present information that will facilitate
the choice of dimensions for an experimental prototype. In accordance with the studies
presented by Calise [28] and Yazdanifard [25], it was considered appropriate to vary the
values of the following parameters: the length of the pipe inside the SRC-PVT, the width of
the faces of the SRC-PVT, the diameter of the pipe inside the SRC-PVT, and the mass flow
of the HTF. The last parameter does not correspond to a geometrical characteristic of the
SRC-PVT. Nevertheless, in practice, it is a widely used parameter as it allows for regulation
from the system.

In order to develop the parametric study, the values indicated in Table 1 (boundary
conditions), Table 2 (design parameters), and Table 3 (general parameters) were considered.
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In establishing the ranges of variation of the geometric parameters analyzed and the mass
flow, the typical dimensions of commercial receivers (solar panels and conventional solar
collector pipes) were taken into account. This information is further detailed in the study
by Tagle-Salazar [2].

5.1. Parameter Variations and Model Behavior

The objective of the parametric study is to analyze the impact of geometric charac-
teristics on the behavior of the model. In light of the findings presented in the works
of Calise [28] and Yazdanifard [25], it was deemed appropriate to vary the values of the
following parameters: the pipe length inside the SRC-PVT, the width of the SRC-PVT faces,
the pipe diameter inside the SRC-PVT, and the HTF mass flow. This last parameter does
not correspond to a geometrical characteristic of the SRC-PVT. Nevertheless, in practice, it
is a widely used parameter as it allows for the regulation of thermal energy extraction from
the system. The variation ranges of the parameters were established by taking into account
the dimensions of the model in its validation and the dimensions of commercial receivers
(solar panels and conventional solar collector pipes), as presented by Tagle-Salazar.

• Figure 7 illustrates the temperature of the PV, absorber, and HTF outlet, as well
as the electrical and thermal power and efficiency when varying the parameter of
SRC-PVT pipe length. The value of this parameter in the validation is 10 m, which
is comparable to the length of commercial receivers typically used in conventional
collectors (approximately 8 m). To investigate the impact of varying pipe lengths, a
range of +/−3 m was considered, resulting in a range of 7 m to 13 m.
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• Figure 8 illustrates the temperature of the PV, absorber, and HTF outlet, as well as the
electrical and thermal power and efficiency when varying the SRC-PVT face width
parameter. The value of this parameter in the validation is 6 cm. The solar panels
have a width of 3 cm, while the diameter of a conventional SRC glass tube is 12 cm.
Therefore, the operating range assigned to this parameter is from 3 cm to 12 cm.
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• Figure 9 shows the temperature of the PV, absorber, and HTF outlet, as well as the
electrical and thermal power and efficiency when the pipe diameter parameter of
the SRC-PVT is varied. The value of this parameter in the validation is 3 cm. The
diameters of heat pipe collectors range between 8 mm and 14 mm while the diameter
of a PTC inner tube can reach up to 9 cm. For this study, a range of 1.5 cm to 9 cm was
deemed appropriate.

Energies 2025, 18, x FOR PEER REVIEW  13  of  19 
 

 

     

(a)  (b)  (c) 

Figure 8. Results when varying the width of the face: (a) Temperature, (b) Power, and (c) Effi-

ciency. 

 Figure 9 shows the temperature of the PV, absorber, and HTF outlet, as well as the 

electrical and thermal power and efficiency when the pipe diameter parameter of the 

SRC-PVT is varied. The value of this parameter in the validation is 3 cm. The diame-

ters of heat pipe collectors range between 8 mm and 14 mm while the diameter of a 

PTC inner tube can reach up to 9 cm. For this study, a range of 1.5 cm to 9 cm was 

deemed appropriate. 

     

(a)  (b)  (c) 

Figure 9. Results when varying the diameter of the pipe: (a) Temperature, (b) Power, and (c) Effi-

ciency. 

 Figure 10 illustrates the temperature of the PV, absorber, and HTF outlet, as well as 

the electrical and  thermal power and efficiency when varying  the HTF mass flow 

parameter. The value of this parameter in the validation is 0.15 kg/s. A brief consul-

tation [41–43] revealed that the mass flow ranges for CPVT and PVT systems typi-

cally fall within the range of 0.02 kg/s to 0.18 kg/s. This range was adopted for the 

parametric study. 

     
(a)  (b)  (c) 

Figure 10. Results when varying the mass flow of HTF: (a) Temperature, (b) Power, and (c) Effi-

ciency. 

Figure 9. Results when varying the diameter of the pipe: (a) Temperature, (b) Power, and (c) Efficiency.

• Figure 10 illustrates the temperature of the PV, absorber, and HTF outlet, as well as
the electrical and thermal power and efficiency when varying the HTF mass flow
parameter. The value of this parameter in the validation is 0.15 kg/s. A brief con-
sultation [41–43] revealed that the mass flow ranges for CPVT and PVT systems
typically fall within the range of 0.02 kg/s to 0.18 kg/s. This range was adopted for
the parametric study.
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5.2. Analysis of the Behavior of the Model

• Figure 11 illustrates the comparative analysis of the initial and final values of power
(electrical and thermal) when the analyzed parameters are increased. The percentage
variation between the respective power values is also presented.

• It is evident that the parameter exhibiting the most significant influence on the elec-
trical power is the length of the pipe, with a percentage variation of 83.92%. An
increase in the length of the pipe and the mass flow of HTF has a favorable impact on
thermal power, with values rising from 1.21 kW to 2.22 kW and 1.54 kW to 1.72 kW,
respectively. Conversely, an increase in the width of the face and the diameter of the
pipe has a detrimental effect on thermal power, with values declining from 1.86 kW to
1.72 kW and 1.74 kW to 1.52 kW, respectively.

• With respect to thermal power, the parameters that exhibit the greatest impact are the
length of the pipe and the diameter of the pipe. These values represent percentage
variations of 86.34% and 35.69%, respectively. An increase in the length of the pipe, the
width of the face, and the diameter of the pipe results in an enhancement of thermal
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power, with values rising from 3.7 kW to 6.9 kW, 4.85 kW to 5.3 kW, and 5.23 kW to
7.1 kW, respectively. Conversely, an increase in the mass flow of HTF has the opposite
effect, reducing thermal power from 5.4 kW to 5.3 kW.

• Figure 12 illustrates the comparative analysis of the initial and final values of efficiency
(electrical and thermal) when the analyzed parameters are increased. The percentage
variation between the respective efficiency values is also presented.
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Figure 12. Initial and final efficiency of the parameters evaluated, as well as their percentage variation:
(a) Electrical efficiency and (b) Thermal efficiency.

• It has been observed that the width of the faces, the diameter of the pipe, and the
mass flow of HTF are parameters that have an impact on the electrical efficiency,
with percentage variations of 7.75%, 12.57%, and 12.01%, respectively. An increase
in the mass flow of HTF results in an improvement in electrical efficiency, with a
corresponding rise from 0.16 to 0.18. Conversely, increases in the length of the pipe,
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the width of the face, and the diameter of the pipe have a detrimental impact on
electrical efficiency, with a corresponding decline from 0.18 to 0.17, 0.19 to 0.17, and
0.18 to 0.15, respectively.

• In consideration of thermal efficiency, the parameter with the most significant impact
is the diameter of the pipe, exhibiting a percentage variation of 35.69%. The length of
the pipe is notable for its minimal impact, exhibiting a nearly imperceptible percentage
variation of 0.32%. The enhancement in the width of the face and the diameter of the
pipe contributes to an improvement in thermal efficiency, with values increasing from
0.50 to 0.55 and 0.54 to 0.74, respectively. Conversely, an increase in the mass flow of
HTF has a detrimental effect on thermal efficiency, with an observed decrease from
0.56 to 0.55. However, this reduction is not particularly pronounced.

6. Conclusions
The performance of PTC solar collectors coupled to the SRC-PVT is particularly suscep-

tible to variations in incident radiation and temperature. Such variations can be analyzed
from the boundary conditions using the parameters of DNI, GHI, ambient temperature,
and the HTF inlet temperature. In addition, a study of these variations can be conducted
by taking into account the geometrical characteristics of the SRC-PVT and the mass flow, as
these parameters are found to determine the use of incident radiation and heat transfer to
the HTF, respectively.

The case study allowed the performance of the collector to be analyzed over the specified
boundary conditions, which correspond to the particular meteorological conditions experienced
in the locations of Cuernavaca and Mexicali. This study yielded the following results:

1. For Cuernavaca, the model demonstrated reduced variations per month in electrical and
thermal power production (387.93 kWh to 239.38 kWh and 1036.11 kWh to 641.26 kWh);

2. For Mexicali, the model presented higher variations per month for thermal and
electrical power production (515.16 kWh to 177.69 kWh and 1424.39 to 448.88 kWh);

3. It has been established that thermal energy production is higher than electrical energy
production. However, it is more susceptible to variations caused by DNI, ambient
temperatures, and the daylight hours of the month;

4. The average electrical efficiencies for both locations were found to be 0.196 and 0.198,
respectively. This finding suggests that the PV stage, despite its comparatively lower
production capacity, is less prone to fluctuations in environmental conditions.

The parametric study facilitated the identification of the design parameters exerting
the most significant influence on collector performance. These parameters correspond to
the geometric characteristics of the SRC-PVT and the mass flow, and their analysis yielded
the following results:

• The pipe length exerts the most significant influence on the electrical and thermal
power output (1.21 kW to 2.22 kW and 3.7 kW to 6.9 kW, respectively);

• The mass flow facilitates the enhancement of electrical power and efficiency (1.54 kW
to 1.72 kW and 0.16 to 0.18, respectively), while concurrently preventing a significant
reduction in thermal power and efficiency (5.4 kW to 5.3 kW and 0.56 to 0.55);

• It is evident that the accurate calibration of the HTF mass flow has the potential to
enhance electrical power and efficiency without substantial compromise to thermal
power and efficiency.

• The results of the case study provide a foundation for analyzing the viability and
performance of the collector under study in locations in Mexico with conditions
analogous to those presented. The parametric study provides a foundation for the
sizing and construction of an experimental prototype of the studied collector. In
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accordance with the aforementioned points, the script of the mathematical model
developed is provided, so that interested researchers can carry out their own studies.
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Nomenclature and Subscripts

Acronyms
CPV/T Concentrated PhotoVoltaic/Thermal
CSP Concentrated Solar Thermal Power
DNI Direct Normal Irradiance
EES Engineering Equation Solver
GHI Global Horizontal Irradiance
MATLAB MATrix LABoratory
HTF Heat Fluid Transfer
PTC Parabolic Trough Collector
PV PhotoVoltaic cell
PVGIS PhotoVoltaic Geographical Information System
SRC-PVT Solar Receiver Collector—PhotoVoltaic Thermal
TRNSYS Transient System Simulation Tool
Symbols
Aap Aperture area, m2

APV Photovoltaic area, m2

Cp,HTF Specific heat of HTF, J/kg × K
CRPTC Concentration ratio of PTC
GDNI Direct Normal Irradiance, W/m2

IAMelec Electrical coefficient of incident angle modifier
PPV Photovoltaic power, W
.
qcond,abs−sub Conductive heat transfer from absorber to substrate, W
.
qcond,PV−sub Conductive heat transfer from photovoltaic cell to absorber, W
.
qconv,abs Convective heat transfer from absorber, W
.
qconv,back,PTC Convective heat transfer from the back face of PTC, W
.
qconv, f ront,PTC Convective heat transfer from the front face of PTC, W
.
qconv,PV Convective heat transfer from photovoltaic cell
.
qHTF Heat fluid transfer power, W
.
qrad,abs Radiative heat transfer from absorber, W
.
qrad,PTC Radiative heat transfer from PTC, W
.
qrad,PV Radiative heat transfer from photovoltaic cell, W
.
qsol,abs Solar irradiance absorbed by absorber, W
.
qsol,PTC Solar irradiance absorbed by PTC, W
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.
qsol,PV Solar irradiance absorbed by photovoltaic cell, W
Tabs Temperature of absorber, ◦C
TPTC Temperature of concentrator, ◦C
Tin,HTF Temperature of heat fluid transfer inlet, ◦C
Tout,HTF Temperature of heat fluid transfer outlet, ◦C
TPV Temperature of photovoltaic cell, ◦C
Tsub Temperature of substrate, ◦C
ηelec Electrical efficiency
ηopt Optical efficiency
ηPV Photovoltaic efficiency
ηth Thermal efficiency
∈ Heat transfer effectiveness
.

mHTF Mass flow, Kg/s
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Abstract: In recent decades, the use of photovoltaic (PV) modules as a source of elec-
tricity has grown significantly, driven largely by government incentives and regulatory
advancements. However, merely installing these systems does not ensure optimal energy
production, as maximizing solar energy capture requires additional measures. This study
examines the impact of dirt accumulation on PV modules, focusing on a system installed
at the School of Engineering of the Federal University of Minas Gerais (UFMG) in Belo
Horizonte, Brazil. The research involved visual and thermographic analyses, as well as
an evaluation of the I–V and P–V curve behavior for specific system arrays, which were
cleaned during the 2024 dry season. Electrical parameters were compared between the
dirty and cleaned states of the system, and the soiling ratio (SR) was calculated, ranging
from 0.91 in the most affected case to 0.93 in the least affected.

Keywords: dirt accumulation; photovoltaic (PV) modules; qualitative analysis; quantitative
analysis; I–V curve; P–V curve

1. Introduction
Photovoltaic (PV) solar energy is an increasingly prominent method of energy genera-

tion worldwide. According to the International Energy Agency (IEA), global renewable
energy capacity increased by approximately 507 GW in 2023—nearly 50% higher than
the previous year [1]. In Brazil, this growth is evident through the rising number of PV
modules installed across various regions.

A significant portion of this growth in Brazilian territory can be attributed to poli-
cies and incentives established through regulations overseen by the National Electric
Energy Agency (ANEEL). The agency began this process with Normative Resolution (RN)
No. 482 [2], which has since undergone several updates, culminating in the current version,
RN No. 1098, issued on 23 July 2024 [3].

When deciding to install a PV system, consumers should consider factors beyond
regulations and initial operational conditions. Environmental factors, which contribute
to the natural electrical wear of the equipment [4], are critical variables that affect the
performance and longevity of any electrical component.

The module is a key component of a PV project, responsible for capturing solar radia-
tion and converting it into electrical energy. Primarily made of semiconductor materials,
the module features a multilayer structure [5], organized as follows:

Energies 2025, 18, 1214 https://doi.org/10.3390/en18051214
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• Front cover: made of resistant and transparent glass, it has the function of protecting
against the external action of the environment;

• Encapsulation: made of Ethylene-Vinyl Acetate (EVA), consisting of a double layer
of insulation on the front and back, which coats and insulates the semiconductor
material [5];

• PV cells: responsible for converting solar radiation into electricity through the pho-
toelectric effect. Made of a semiconductor material, silicon, with monocrystalline,
polycrystalline, or even a thin film structure, its terminals are interconnected by
metallic conductors of copper, aluminum, or silver [6];

• Rear cover: lower layer of the modules with low thermal resistance for support
purposes, made of polymer or acrylic;

• Junction box: electrical connection point for PV cells for the purpose of connection or
association with other electrical points in the system.

The estimated useful life of a PV module is typically around 25 years. By the end
of this period, its efficiency is expected to decrease by approximately 15%, depending on
the manufacturer and the specific technology used [7,8]. However, this level of energy
conversion efficiency is achieved only under conditions favorable to energy production.
The efficiency testing of PV modules adheres to the standards set by IEC 61730-2 [9], which
include evaluating electroluminescence (EL) to simulate conditions such as humidity and
infrared (IR) exposure. These tests account for various temperature scenarios and assess
factors like hot spots and light-induced degradation (LID).

The installation environment plays a crucial role in energy generation, and accurately
assessing its impact on the PV module is essential for ensuring reliability, component
integrity, safety during installation and use, as well as maximizing return on investment.
Key environmental factors that contribute to losses and negatively affect productivity
include variations in solar radiation, high operating temperatures of the modules, humidity,
and the dust accumulation on the PV modules [4,10].

To illustrate the research data, the Tesla Experimental Photovoltaic Plant was used
to demonstrate the effects of dirt, as the plant is strategically positioned for study due to
its proximity to mining operations in neighboring cities and the urban nature of its own
location. According to 2022 data from the Brazilian Institute of Geography and Statistics
(IBGE) [11], Belo Horizonte is the sixth most populous municipality in the country.

It is estimated that there are regions where dirt, either directly or indirectly, causes
losses of approximately 4–5% in just the year 2023 [12]. Therefore, given the initial context
in which a photovoltaic module is tested and exposed to the environment throughout
its useful life—often undergoing minimal maintenance—this study aims to investigate
the impact of dirt and its effects on a system over the years. For this purpose, the Tesla
Experimental Photovoltaic Plant, operational since 2016, was used as the object of study.

The main contributions of this paper are:

• To use the TESLA Experimental Photovoltaic Plant as a case study to elucidate the
effects that the environment, particularly dirt, can have on a photovoltaic system
exposed over the years without proper maintenance.

• To present a qualitative analysis of the photovoltaic modules studied to identify
and validate the impact of dirt, thereby strengthening the reference literature for
subsequent studies.

• To demonstrate, through quantitative analysis, the large-scale benefits of cleaning, as
well as to determine the appropriate intervals for periodic maintenance, aiming to
ensure the optimal performance of the system.

This paper is organized into the following sections: Section 2 provides a theoretical
overview of loss factors, with a particular focus on dust accumulation, which is the main
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subject of this research and is further explored in the following section. Section 3 discusses
the system under study and the methodology used for analysis. Section 4 presents the
results obtained, followed by a discussion of these findings in Section 5. Finally, Section 6
offers the conclusion, summarizing the key takeaways from the study.

2. Analysis of Environmental Factors in PV Panels
In this paper, dirt is defined as the accumulation of particulate matter on PV modules,

also referred to as dust accumulation. This buildup directly impacts electrical performance
by continuously interfering with the absorption, scattering, and/or reflection of solar
radiation. As a result, it reduces the amount of solar energy effectively absorbed by the PV
module [13,14].

Research on this topic began in 1942 in the United States, when Hottel and Woertz
linked the dust accumulation on solar collectors to a decrease in electrical performance.
After three months of study, they estimated a performance drop of 4.7% due to soiling [15].

The production of electrical energy from PV modules is primarily influenced by
temperature and solar irradiation. Ideal operating conditions are defined by standards
and manufacturers, typically set at a PV cell temperature of 25 ◦C, an air mass of 1.5 AM,
and a solar irradiation of 1000 W/m2 [16]. However, due to environmental variability,
maintaining these conditions consistently throughout the entire operational period is
not possible.

Dirt accumulation on the modules is a variable that progressively reduces the efficiency
of the system’s electrical energy generation. This accumulation can also cause irreversible
damage, such as accelerating the formation of hot spots, which may lead to the burning of
internal module components [17,18]. An illustration of this effect is presented in Figure 1,
where the lighter areas highlight regions with higher temperatures compared to the cooler,
darker areas in blue. These variations occur within a module exposed to identical irradiance
conditions [19]. Furthermore, the figure qualitatively demonstrates the distribution of
dirt on the module. Prolonged exposure to rain and wind results in non-uniform dust
accumulation, particularly concentrated at the right and lower edges.

Figure 1. Example of a PV panel with hot spots.

The years of operation of a PV system, coupled with lack of regular maintenance
such as periodic cleaning, can lead to the appearance of several visible defects. These
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include darkening of the EVA resin (browning), discoloration along the edges, and the
formation of darkened lines (snail trails). Additionally, there are less visible issues, such as
electrical mismatch, which is associated with high temperatures and accumulated dirt on
the modules [20]. These defects and nonconformities are illustrated in Figure 2, captured
during a visit to the Tesla PV Experimental Plant, which will be detailed in the next section.

Figure 2. Non-conformities present in PV cells.

The influence of individual cells on the performance of a PV module is significant, as
the cell that absorbs the least amount of radiation determines the overall generation current
of the module. When a system contains multiple damaged cells across various modules,
the power output of the entire system can be severely impacted, leading to a substantial
reduction in the overall efficiency of the project.

Dirt-related losses can vary significantly depending on the location of the study and
the period of the analysis. As such, estimated loss values can differ widely. Desert environ-
ments or areas with high levels of air pollution generally experience more substantial losses
and greater cleaning requirements. The literature reports losses ranging from 0.3% [21]
to 1% [22] per day, with annual losses reaching up to 14% [14]. For a six-month period, a
reduction of up to 80% is considered [21]. Therefore, it is critical to thoroughly assess the
environment to ensure optimal performance of a PV system.

Understanding the particulate matter that typically accumulates on PV modules
is crucial to determine the optimal cleaning frequency for the system. A related study
conducted semi-quantitative tests to identify the primary chemical components present on a
Tesla PV experimental plant. The analysis revealed that the most prominent elements in the
collected samples included magnetite, hematite, clinochlore, alabandite, and quartz [23,24].

The compounds present are characteristic of the local urban environment and origi-
nated primarily from activities such as mining in the vicinity, civil construction, and natural
soil erosion [23]. Magnetite and hematite, in particular, are materials known for their high
emissivity, which means that they have a significant ability to emit energy through thermal
radiation [25,26]. This characteristic suggests that these compounds contribute to heat
retention in PV modules, potentially impacting their performance.

Urban environments and areas near mining zones have been previously studied
and deserve attention for demonstrating a significant influence on the concentration of
particulate matter suspended in the air, as well as requiring more frequent cleaning [18].
In these regions, suspended materials with approximate sizes of PM10 and PM2.5 have
been described.

The composition of these particles is a separate study due to their interaction with the
module surface. Deposition depends on factors such as installation geometry, sedimen-
tation velocity, particle size, relative humidity, and precipitation. The effects of smaller
particles are more harmful due to their strong adhesion to surfaces, making them harder to
remove using natural agents, and their ability to cover the affected surface more uniformly.
Conversely, larger particles tend to absorb and reflect more sunlight [18,27,28].
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A study carried out on a PV plant located in a soccer stadium in Belo Horizonte,
Brazil—just 1 km from the site of this research—examined not only the chemical com-
pounds present in the modules but also the influence of rainfall on mitigating the impact of
dirt. The study found that significant rainfall (≥5 mm) played a significant role in reducing
dust accumulation. During dry periods, the maximum power output was reduced by 13.7%,
while after rainfall, this reduction was only 6.5% [24]. The inclination of the PV modules is
another key factor that influences dust accumulation. Particulate materials tend to gather
in specific areas of the modules, with the distribution largely determined by environmental
factors such as wind, rain, and dew [21].

The influence of anthropogenic factors was exemplified through a study conducted in
an urban area, where, during road repair work near the analyzed system, generation losses
increased to 2.59% per day compared to 0.32% prior to the repairs [17].

A commonly used technique to identify issues caused by dust accumulation is the use
of thermal or infrared imaging. Ref. [29] analyzed a PV plant located in Betim, a city close to
the case study of this paper, using thermal imaging. It was found that 12.7% of the modules
exhibited overheating points. The losses attributed to dirt were estimated to be 22.25%.

In Brazil, two standards are recommended for thermographic evaluations: NBR
15424 [30], which defines key terminology, and NBR 16292 [31], which outlines the proce-
dures for safely conducting measurements using thermal images. The use of this evaluation
method can indicate not only hot spots but also the distribution of dust accumulation on
the PV modules, which may be uniform or non-uniform.

In addition to qualitative assessments, which include visual inspections and the use of
thermal cameras, a quantitative analysis of the impact of dirt is essential to estimate system
losses. It directly affects the module’s I–V (current vs. voltage) and P–V (power vs. voltage)
curves, which are essential indicators of the system’s electrical performance.

These curves use PV module parameters such as maximum output power (Pmax),
maximum output current (Imax), maximum output voltage (Vmax), open-circuit voltage
(Voc), and short-circuit current (Isc). Figure 3 utilizes the experimental data used in this
paper to illustrate, through simulation, the impact of dirt on the referenced curves of a
module. The clean module’s ideal operating condition is represented by the brown and
green curves, where the maximum power point is achieved. In contrast, the curves in
orange and blue represent the module’s performance when the modules are dirty. Here,
it is evident that the maximum operating point is not reached, and the curves exhibit
deformations due to the reduced ability of the module to capture irradiance effectively [4].

Figure 3. Comparison of I–V and P–V curves for clean and dirty PV module.
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Performance Evaluation Coefficients of a PV System

The performance ratio (PR) is a key metric that represents the relationship between the
energy generated under ideal conditions and the actual energy produced, providing insight
into a system’s efficiency. To measure the impact of dirt on a PV system, equations derived
from international standards, such as IEC 61724, are employed [32]. In these calculations,
the reference yield (Yr) and final yield (Yf ) are essential parameters. This metric is crucial
for estimating the actual energy generated, correlating it with the dust accumulation on
PV modules, and determining whether system maintenance and cleaning are necessary to
optimize performance [33].

PR =
Yr

Yf
(1)

Measuring the short-circuit current of a PV system is crucial to evaluate the impact of
energy efficiency losses in the system. This parameter, along with the maximum measured
power, is one of the most effective methods for determining the soiling rate (SR). It is
particularly advantageous because it does not require the direct removal of PV panels and
does not physically interfere with the installation [14].

SR is a relationship obtained at the panel output and is based on the irradiance
effectively received by the dirty panel (Gdirt) and the clean one (Gclean) [34], varying
between 0 and 1, considering SR = 1 the clean system [32].

SR =
Gdirt
Gclean

(2)

According to IEC 60891 [35], which defines the procedures to be followed to measure
temperature and irradiance in the I–V curves in PV devices, the irradiance value Gx for
dirty and clean panels is expressed as follows:

Gx = [Isc,M(1− α(TM − Tre f ))]

[ Gre f

Isc,cal

]
, (3)

where Isc,M and Isc,cal are the measured and calculated irradiance, respectively. The tem-
perature coefficient of Isc is α. TM and Tre f correspond to the measured and reference
temperature (25 ◦C). Gre f is the ideal irradiance of 1000 W/m2.

Through the relationship between the irradiance effectively received by the panel and
the SR for the dirty and clean panel, it is possible to obtain the soiling rate for short-circuit
current SRIsc and for maximum power SRPmax [34].

Although many studies report the influence of dirt on photovoltaic modules, there
remains a gap regarding the impact of this factor over the years. This issue requires
attention, as dirt that strongly adheres over time is not easily removed by rain or wind.

A study conducted by the European Solar Test Installation (ESTI) investigated the
effects of dirt on 28 silicon modules exposed for approximately 30 years. According to the
authors, the results were non-uniform; however, the I–V curves were significantly affected
before cleaning and were almost fully restored after successive cleanings.

3. Tesla Photovoltaic Plant and Analysis Methods
The TESLA Power Engineering PV Experimental Plant, shown in Figure 4, was estab-

lished as a key component of a research and development (R&D) project, a collaboration
between the Federal University of Minas Gerais (UFMG) and the Bahia Electricity Company
(COELBA). UFMG is located at Belo Horizonte, Brazil. This PV plant has been designed by
the Tesla Power Engineering Laboratory, a research laboratory of the school of engineering
of UFMG [36]. The plant began its operation in June 2016 and has an installed capacity
of 37 kWp.
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The plant was installed on the roof of the UFMG’s School of Engineering, approximate
location 19◦52′10.81′′ S 43◦57′42.01′′ W. The orientation of the building in relation to the
geographic north, as well as that of the panels, is−7◦, with a fixed inclination of the modules
of 25◦ [37]. The city of Belo Horizonte, Brazil, has a highland tropical climate, characterized
by distinct dry periods (autumn–winter) and rainy periods (spring–summer) [38]. In the
southern hemisphere, summer occurs between December and March, while winter is
concentrated between June and September.

Figure 4. TESLA power engineering PV experimental plant.

The plant consists of 154 polycrystalline silicon panels, a technology distinguished,
among other factors, by the inclusion of a bypass diode in the junction box for protection.
The PV modules used in the plant are Yingli Solar model 245P-32b, with a power rating of
245 W. Table 1 presents the electrical specifications based on the manufacturer’s data [39].

Table 1. Yingli 245P-29b module parameters.

Peak power [Wp] 245
Max. power current [A] 7.6
Max. power voltage [V] 32
Short-circuit current [A] 8.22
Open circuit voltage [V] 40.8

Efficiency [%] 15.23

Since the plant was designed to meet academic scenarios, three different inverter
models were chosen to investigate different performances. The panels are divided as
shown in Figure 5 [40]. In this work, the impacts on the S1, F1, F2, and P2 arrangements
are analyzed, whose connection diagrams are highlighted in green in Figure 5.

The first array corresponds to SMA inverter model STP12000TL-20 [41]. The second
one is connected to Fronius inverter model IG Plus 150V-3 [42], while the third array uses
PHB inverter model PHB20KNDT [43]. The respective electrical parameters, as provided
by the manufacturers, are displayed in Table 2. The arrays are divided as follows:

• Array 1 (SMA inverter in purple): 45 panels, 3 parallel arrangements of 15 panels in series.
• Array 2 (Fronius inverter in orange): 50 panels, 5 parallel arrangements of 10 panels

in series.
• Array 3 (PHP inverter in black): 57 panels, 3 parallel arrangements of 19 panels in series.
• Non-listed panels: two isolated modules, not connected to any of the inverters, in-

tended for specific studies.

The TESLA PV Plant is equipped with a meteorological station and a small reference
cell. These instruments measure irradiance and ambient temperature to which the system
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is exposed. The data collected from these measurements were used to support this research.
To estimate the performance of the TESLA PV Experimental Plant in its current state of
operation, qualitative and quantitative evaluations were used.

Figure 5. Panel distribution scheme by inverters.

Table 2. Inverters parameters.

Parameter SMA FRONIUS PHB

Peak power [kW] 12 10 20
MPPT voltage range [V] 150–800 230–250 200–950
Max. input voltage [V] 1000 600 1000
Max. input current [A] 22 46.2 22
Number of DC inputs 2 6 4
AC output voltage [V] 400 400 380
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3.1. Qualitative Analysis

The qualitative analysis of a PV plant relies on visual inspection to evaluate the impact
of dirt on energy losses. This methodology uses thermal cameras to detect the presence of
hot spots within the installation and to assess the distribution of dirt on the modules.

For this study, an infrared camera, model I60 from the manufacturer Flir [44], was
used. Measurements were taken in accordance with the previously presented standards,
both before and after cleaning. Table 3 presents the compiled camera data.

Table 3. I60 infrared camera parameters.

Infrared detector 25 micron pitch
Thermal sensitivity 0.1 ◦C to 25 ◦C

Measuring range −20 ◦C to 350 ◦C
Thermal resolution 32,400 pixels

Spectral range 7.5 to 13 µm
Visual image resolution 2.3 Megapixels

Picture modes Thermal, visual, fusion

3.2. Quantitative Analysis

The quantitative analysis aims to numerically quantify the approximate losses of the
plant. The data were recorded using an I–V and P–V curve tracer, model PVA 600 PV
Analyser, manufactured by Solmetric [45]. The parameters of the tracer are presented
in Table 4.

Table 4. PVA 600 PV Analyser tracer parameters.

Current measurement range 0 to 20 Adc
Voltage measurement range 0 to 600 Vdc

Minimum short circuit current 1 Adc
Minimum open circuit voltage 20 Vdc
Measurement points per stroke 100

PV modules Up to 420 modules
Operating temperature 0 ◦C a 50 ◦C

To use the equipment, a computer with the tracer software installed is required to
enable wireless communication with the irradiance and temperature sensors. The PVA 600
PV Analyzer must be connected directly to the module, or in this case, to the array being
analyzed, using MC4 connectors. The use of the device is exemplified in Figure 6. It is
possible to observe the direct connection of the equipment being made in Figure 6b, the
communication of the sensors in Figure 6c, the temperature sensor fixed to the bottom of
the module in Figure 6d and the irradiance sensor in Figure 6e in the module next to the
arrangement being tested.

Data acquisition began in May 2024, after the local rainy season, to account for the
reduced influence of humidity on the modules and the increased concentration of particu-
late matter. The plant had not undergone maintenance for at least 6 years. According to
data from the Brazilian National Institute of Meteorology (INMET) [46], the last significant
rainfall in the region occurred on April 18, with 36 mm of rain. As a result, testing started
on May 9 with visual inspections, and the first cleaning took place on May 13.

The data were collected both when the panels were dirty and after cleaning, always
between 11 a.m. and 1 p.m. This time frame was chosen because it experiences less
variation in temperature and irradiance, with levels concentrated between 900 and 1000
W/m2.
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For data collection, the methodology involved site visits for visual inspection of
the modules, infrared camera recording, and data measurement using a curve tracer.
Measurements were conducted both before and after each cleaning session following this
approach: prior to cleaning, hot spots were identified through qualitative assessment and
quantitative data collection. After cleaning, new qualitative and quantitative measurements
were performed to facilitate a comparative analysis of the results.

Figure 6. PVA 600 PV Analyser plotter in operation.

Among the various cleaning methods available in the literature, wet cleaning was
selected, utilizing cloths and/or materials with soft bristles combined with water to remove
and rinse the panels [29]. Three rounds of cleaning were carried out to achieve better
results, considering the long period of exposure and the lack of maintenance of the system.
The cleanings took place at intervals of 6 to 8 days.

4. Results
Figure 7 illustrates the various stages of dust accumulation on the panel belonging to

the F1 arrangement. In the first stage, shown in Figure 7a, the dirt exhibits strong adhesion
and was recorded in March 2024 during an initial visit to the TESLA PV Experimental
Plant following a period of heavy rainfall. By May 13 (Figure 7b), the dirt had a dust-like
appearance. Figure 7c,d depict the stages of dust accumulation between cleanings, where
gradual deposition and formation of dirt are visible, including traces of water caused by
dew formation.
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Figure 7. Different stages of dirt on the PV Module.

Another critical aspect relates to the integrity of the modules. While some issues
were observed during the initial visits, the defects became more evident after maintenance,
revealing how dirt exacerbates these imperfections.

Among the observed nonconformities, including hot spots, browning, snail trails, and
discoloration, it was found that 26.7% of the modules in the arrangement connected to
the SMA inverter exhibited some form of imperfection. The Fronius inverter arrangement
showed a higher percentage, with 45% of its modules affected. Similarly, the arrangement
connected to the PHB inverter had 42% of its modules exhibiting these defects. The
analysis of the arrangements individually will be presented below so that the results can
be better visualized.

4.1. Arrangement S1

Using an infrared camera for qualitative analysis, the distribution of dirt on the PV
modules in the S1 array, connected to the SMA inverter, was assessed. Figure 8 provides a
comparison, showing the modules before cleaning, on the left, and after three rounds of
cleaning, on the right.

According to data from the plant’s meteorological station, the environmental condi-
tions on May 9 and 28 at around 12:00 p.m. were relatively consistent, with temperatures
averaging 27 ◦C. However, the qualitative assessment depicted in the Figure 8 highlights
the effectiveness of dirt removal from the modules. Despite this, some hot spots persisted,
such as the one observed on the right side of the lower module. This indicates that while
cleaning improves overall module performance, underlying defects remain unaffected.

Figure 8. Comparison of thermal images of array S1.

Regarding the quantitative analysis, supported by the numerical data obtained
through the curve tracer, the resulting curves are illustrated in Figure 9. This figure
demonstrates the comparison of the S1 array’s performance before maintenance, shown on
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the left, and after three rounds of cleaning, shown on the right. The I–V curves, depicted in
red, and the P–V curves in blue were generated using the tracer’s software, highlighting
the impact of cleaning on the array’s electrical performance.

Figure 9. I–V and P–V curves for arrangement S1. Blue line: array P–V curve. Red line: array I–V
curve. Yellow dot: array maximum power point. Purple dots: ideal I–V points.

The software estimates an ideal performance by considering previously input system
parameters, including module specifications, quantity, inverter details, and location charac-
teristics. This estimate is depicted with purple points representing ideal current tracking
and a green zone indicating the optimal power operation range, highlighted by a yellow
point. After proper cleaning, an improvement and adjustment of the curve can be observed,
remaining closer to 8.22 for a longer duration—a value specified by the manufacturer as
the standard operating short-circuit current. The numerical values obtained by the tracer
indicate that the maximum power of the arrangement increased from 2389 W to 2708 W
and the short-circuit current varied from 8.25 A to 8.36 A.

When analyzing the Soiling Ratio (SR), the key metric for determining the dust ac-
cumulation on the modules, the calculated value for the dirty state was SRIsc = 0.93, and
after the complete cleaning of the arrangement, the SR became 1.02, being within the values
estimated according to the literature.

However, SRPmax , despite showing an increase, going from 0.77 to 0.85, a relative gain
of 11.28%, still remained below the estimated value, indicating that some modules may
have suffered permanent damage to their physical structure.

4.2. F1 and F2 Arrangement

Similar to the previous arrangement, the qualitative inspection yielded promising
results for arrangements F1 and F2, as illustrated in Figure 10. A comparison was conducted
between the modules that underwent the dirt removal process and those in arrangement F3,
which remained consistently dirty. The results revealed a notable temperature difference of
up to 7.5 ◦C at the panel’s base, along with a visible change in the coloration of its structure.
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Figure 10. Comparison of arrangements F1 and F2: (a) thermal picture; (b) arrangements F1 (clean)
and F2 (dirty).

The curve analysis also shows a positive improvement, with measurements taken at
irradiances of 1029 W/m2 and 944 W/m2, respectively. Figure 11 displays the comparison
between the clean and dirty systems. Initially, the current (shown in red) exhibited slight
ripples, which improved after cleaning, along with an increase in both current and voltage
at the maximum power point. Additionally, the module’s operating temperature, measured
using the sensor, decreased from 55.6 ◦C to 43.3 ◦C.

According to data from the local station on the measurement days, the ambient tem-
perature was 26.2 ◦C and 23.8 ◦C, respectively. During the study period, which coincided
with the autumn–winter season, the region experienced relatively stable climatic condi-
tions, with no significant fluctuations in temperature, irradiance, humidity, or wind. As
a result, the primary factor influencing the results was the maintenance performed on
the system. After normalizing the irradiance values, it was concluded that there was a
reduction of approximately 15% between the initial and final operating temperatures of the
reference module.

Figure 11. I–V and P–V curves for the F1 and F2 arrangements. Blue line: array P–V curve. Red line:
array I–V curve. Yellow dot: array maximum power point. Purple dots: ideal I–V points.

The resulting analysis indicates that the maximum power increased from 1667 W to
1730 W, while the short-circuit current varied from 7.11 A to 8.07 A. The value of SRIsc was
positive, increasing from 0.92 to 1.02. As in the previous case, the analysis on the power
soiling rate remained below expectations, with the initial SRPmax being 0.39 and the final
SRPmax being 0.46.
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4.3. Arrangement P1

During the visual inspection of the P1 arrangement, it was observed that the modules
located at the ends had a greater accumulation of dirt compared to the others. This was
likely due to the effects of wind over the years. As a result, the decision was made to
perform the thermal analysis at this specific location. As shown in Figure 12, the results
demonstrated an improvement similar to the other cases, with a significant reduction in
dust accumulation.

In Figure 13a, deformities in the curves are evident, consistent with the previously
identified non-uniform dirt distribution pattern. In Figure 13b, after the complete removal
of dirt, there is a noticeable reduction in the deformation of the I–V curve, with values of
Isc remaining constant, close to 15 A, for a longer duration until reaching the maximum
power point. This improvement is significantly beneficial for the inverter, as it indicates
less difficulty in aligning the current and voltage, thereby ensuring more efficient power
operation at the maximum power point.

Figure 12. Comparison of thermal images of array P1.

Figure 13. I–V and P–V curves for the P1 arrangement. Blue line: array P–V curve. Red line: array
I–V curve. Yellow dot: array maximum power point. Purple dots: ideal I–V points.

Unlike the other systems analyzed, the P1 arrangement has a higher Isc, which is a
result of compliance with an internal project at the TESLA laboratory. Nevertheless, the
analysis of the soiling rate can be conducted in the same manner as with the other systems,
and the results obtained were equally consistent.

Based on the qualitative evaluation, SRIsc improved from 0.91 to 1.02. However, as
observed in the other arrangements, SRPmax did not reach the expected value of 1, remaining
at a maximum of 0.72 for the clean system.
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5. Discussion
Based on the qualitative analysis, the visual inspection revealed that all arrangements

exhibited losses related to degradation over time, which were exacerbated by the prolonged
period of exposure without maintenance. The removal of dirt resulted in a reduction in
the operating temperature of the modules and a notable improvement in performance
parameters. This improvement aligns with findings in the literature, where chemical
compounds such as magnetite and hematite are known to cause high heat retention, further
aggravating the degradation process.

In the quantitative analysis, which primarily focused on the SR factor that assesses
the dirt present on the modules, all the configurations examined achieved a dirt rate of 1,
considered the ideal value. The recovery of this factor, coupled with the export in the I–V
curve, demonstrates the effectiveness of cleaning in regenerating SRIsc , even for systems
exposed to environmental conditions over the years.

However, when analyzing the SRPmax , none of the studied arrangements achieved
values corresponding to 1, with results remaining at 0.85, 0.46, 0.46, and 0.72 for the S1,
F1, F2, and P1 arrangements, respectively. This indicates that environmental factors are
causing direct losses in the maximum power output of the module. The power reduction
can be explained by the action of the bypass diode, which is present in silicon modules.
This protective mechanism operates when shading and localized heating occur; however,
as shown in the analysis, some areas experience permanent heating, leading to a decrease
in the module’s efficiency. It is also important to note that all arrangements exhibited
non-conformities.

A comparison can also be made between the values obtained for SRPmax and the P–V
curve of the arrangements. Arrangements F1 and F2 exhibit a lower soiling rate, which
results in a lower peak in the P–V curve compared to the other arrangements.

Given the importance of properly cleaning PV modules to prevent premature damage
and ensure optimal system performance, and based on the performance rate, it is recom-
mended that the modules undergo annual maintenance in August, considering the location
of the TESLA PV Experimental Plant.

The data analyzed indicate that in August, there is extended exposure to the local
dry period, which requires attention, as it promotes the accumulation of particulate matter
on the modules. Under these conditions, the recommended performance ratio (PR) is
approximately 72.8%. The dry period typically ends with sporadic rains in November,
which, if greater than 5 mm, should help maintain the effects of cleaning. The rainy season,
concentrated from January to March, will likely lead to a gradual decrease in PR until the
next scheduled maintenance in August.

The data clearly demonstrate the need for periodic maintenance to avoid long-term
damage to the system, with the maintenance frequency being dependent on the environ-
ment the PV modules are exposed to. This necessity is further supported by the restoration
of the short-circuit current, the improvement in the I–V curve for all studied arrangements,
as well as the reduction in operating temperature and the improvement in parameters such
as the irradiance effectively captured by the module and the performance rate.

Over the long term, regular annual maintenance should help restore the TESLA PV
Experimental Plant to optimal operating conditions, compensating for losses in maximum
power output.

6. Conclusions
In light of the increasing demand for PV solar energy for both small and large-scale

generation, this study emphasizes the importance of regular maintenance to ensure opti-
mal system performance and mitigate long-term losses, in addition to demonstrating the
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effectiveness of cleaning in restoring the parameters of systems exposed to prolonged envi-
ronmental conditions, as evidenced by the reestablishment of the I–V curves, the analysis
highlights the critical role of maintenance in maintaining optimal system performance.

The gradual accumulation of particulate matter on the modules directly impacts sys-
tem performance over time. As dirt accumulates, it reduces the system’s ability to capture
irradiance, which is crucial for efficiently converting solar energy into electrical power.

Only installing a PV system does not ensure maximum efficiency throughout its
lifespan. Natural wear and tear on electrical components can be significantly exacerbated
by inadequate maintenance. This is evident through the evaluation of the soiling rate,
which serves as a crucial indicator of system performance degradation.

The results indicate that the soiling rate SRIsc for the analyzed arrangements ranged
from 0.91 to 0.93 when measured with the modules in a dirty state. After successive
cleanings, the SR consistently returned to its ideal value, as measurements were taken
immediately following the cleaning process. Moreover, thermal imaging proved effective
in visualizing dust accumulation on the modules. The quantitative analysis further demon-
strated a reduction in operating temperature post-cleaning, a critical factor that directly
impacts the energy generation efficiency of the system.

The soiling rate analyzed in terms of power (SRPmax ) for the three cases remained
below the estimated value, indicating that prolonged exposure to environmental factors,
without proper periodic maintenance, may have caused irreversible damage to the electrical
components of the cells.

The analysis methods employed were based on established regulations and literature,
aligning with expectations, particularly concerning the performance of SRIsc . For other
aspects, the same theoretical framework was used to justify the system’s performance in
relation to SRPmax .
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Abstract: Capacity expansion models for electricity grids typically use deterministic opti-
mization, addressing uncertainty through ex-post analysis by varying input parameters.
This paper presents a stochastic capacity expansion model that integrates uncertainty
directly into optimization, enabling the selection of a single strategy robust across a de-
fined range of uncertainties. Two cost-based risk objectives are explored: “risk-neutral”
minimizes expected total system cost, and “risk-averse” minimizes the most expensive
5% of the cost distribution. The model is applied to the U.S. Midwest grid, accounting for
uncertainties in electricity demand, natural gas prices, and wind generation patterns. While
uncertain gas prices lead to wind additions, wind variability leads to reduced adoption
when explicitly accounted for. The risk-averse objective produces a more diverse generation
portfolio, including six GW more solar, three GW more biomass, along with lower current
fleet retirements. Stochastic objectives reduce mean system costs by 4.5% (risk-neutral) and
4.3% (risk-averse) compared to the deterministic case. Carbon emissions decrease by 1.5%
under the risk-neutral objective, but increase by 3.0% under the risk-averse objective due
to portfolio differences.

Keywords: uncertainty; risk; demand variability; renewable adoption; carbon emissions;
capacity expansion

1. Introduction
Electricity generation contributes significantly to climate change, accounting for 25%

of global carbon emissions [1]. Electricity is also economically significant, e.g., generating
USD 380 billion in revenue in 2016 in the U.S. and affecting the profitability of many
industrial sectors [2]. Efforts are underway around the globe to decarbonize electricity
systems. Federal, state, and provincial governments grant tax credits to select technologies,
set targets for renewable energy adoption (renewable portfolio standards (RPS) [3]), and
implement carbon taxes [4]. A variety of energy system models are used to inform future
energy trends and decarbonization policies with differing scope and spatial scales. In
the U.S., policy-linked modeling efforts are generally centered on government agencies,
national laboratories, and electric utility companies, which often utilize these models for
their integrated resource plans (IRPs). The National Energy Modeling System (NEMS),
coordinated by the Energy Information Administration (EIA), is a complex multi-module
model that simulates the entire U.S. energy system, including electricity infrastructure, used
as the basis for the EIA Annual Energy Outlook [5]. Other examples include the Regional
Energy Deployment System Model (ReEDS) by the National Renewable Energy Laboratory
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(NREL) [6], Regional Economy, Greenhouse Gas, and Energy (REGEN) by the Electric
Power Research Institute [7], and there are also commercial tools such as ProMod [8],
EGEAS [9], Polaris [10], Plexos [11], and AURORA [12].

The capacity expansion of the power system in the models above is optimized such
that the generators and infrastructure are chosen to minimize the total system cost to meet
future demand. In most of the models listed above, the inputs to the capacity expansion
model are deterministic: the output is a single set of generators and infrastructure that
minimizes discounted system costs when faced with a set of deterministic inputs. Therefore,
the models assume that decisions are made under perfect information, i.e., parameter values
are fixed, and there is one generation plan that minimizes system costs.

Energy system futures are difficult to predict, and a real or hypothetical social planner
should be concerned about lowering risk. Many parameters driving electricity system
profitability are highly uncertain, including future fuel prices, technology prices, and
policies. Uncertainty is typically treated by re-running the model with a set of alternative
scenarios for future parameter values, followed by the comparison of model outcomes with
different input assumptions [13]. There are two limitations to this approach. First is that
the probabilities of alternative parameter values have not been well characterized, and
thus the likelihood of different outcomes is unclear. Second, utility decision-makers are
well aware that drivers are uncertain, and presumably account for this to some degree in
choices for capacity expansion. It is thus well recognized that electricity system models
ought to account for uncertainty and how uncertainty affects build decisions. This is
increasingly important when resource planners are looking to rapidly transform the grid
towards carbon neutrality.

Decision-making under uncertainty can be mathematically formulated using stochastic
optimization on capacity expansion models [14,15]. In general, the idea is to characterize
modeling inputs as distributions, then consider optimization objectives that account for the
resulting distributions in outcomes. The goal is to find an expansion plan that optimizes
an expected (but not specific) outcome. One approach to achieve this is stochastic linear
optimization, which represents uncertainty as discrete scenarios with probabilities at
various stages within the planning horizon, though still fundamentally constrained as
a linear problem. For example, the Tools for Energy Model Optimization and Analysis
(TEMOA) model [16] uses stochastic linear programming [17–20] for optimization with
uncertainty. In this method, uncertain future outcomes are encoded as specific scenarios
in an event tree with an assigned likelihood of occurrence. Other methods include robust
optimization, probabilistic (chance-constrained) programming, fuzzy programming, and
stochastic dynamic programming [21,22].

Metaheuristic search algorithms are often used in solving stochastic systems, espe-
cially when the derivative information is complex to formulate [23]. Some of the popular
metaheuristic search optimization methods are particle swarm, genetic algorithm, simu-
lated annealing, neural networks, and pattern search methods. To recount some examples
of the application of metaheuristic search algorithms in energy systems modeling, [24]
uses particle swarm optimization for identifying the placement of PV and wind turbines
in a distributed grid network. Ref. [25] combines engineering principles and economics
to maximize electric utility revenues in the European context, using metaheuristic search
techniques; [26] uses a nonlinear programming approach for generating capacity expansion
planning, with an objective to minimize the total cost consisting of investment cost plus
generation cost for a multi-year planning horizon.

Stochastic optimization is growing in popularity, with research efforts focused on both
improvement in the computational methods and applications to new research questions
or topic areas. Prior work has applied different versions of stochastic optimization of
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electricity systems to understand how uncertainty interacts with optimal design choices. In
ref. [27], Alvarez uses a two-stage mixed-integer linear programming approach with an
IEEE 31-bus system to optimally dispatch generators, including storage. The author finds
that the stochastic strategy saves 4% on overall costs and is better at retaining operational
contingencies. In ref. [28], stochastic dual dynamic programming and Markov chains
are used to study the optimal operation of microgrids containing renewables, thermal
generation, and storage that can trade with the macrogrid. The authors find that cost
reductions can be up to 70% when compared with a deterministic model of future prices,
demand, and renewable generation. An integrated energy hub that includes electricity,
heat, demand response, and electric vehicles is modeled in [29], and a slime mold algorithm
is used to search for optimal operational strategies against uncertainty in both generation
and demand. This work also uses a conditional value-at-risk (CVaR) approach to model
risk aversion. A new computational method is developed in [30], which combines a
distributionally robust optimization approach with a Stackelberg game for an energy hub
that includes thermal and renewable generation, heating and cooling loads (including heat
storage), and electric vehicle charging. Their computational approach improves on both
computation time and convergence to optimal values, relative to traditional methods.

Stochastic optimization is inherently computationally intensive. As mentioned earlier,
various mathematical and metaheuristic methods are available to solve complex stochastic
problems in power systems, which are often multi-period and nonlinear. Our approach
leverages nonlinear methods to achieve faster solve times, making it more practical for
modelers to incorporate stochasticity into their analyses, considering uncertainties across
multiple input parameters.

We demonstrate the method with a case study of capacity expansion of power genera-
tors for the Midcontinent Independent System Operator (MISO) region. The MISO grid
portfolio snapshot considered in this study features a balanced mix of fossil fuel energy
resources and wind energy, making it an ideal case to analyze the impacts of uncertainty
in natural gas prices and the variability of renewables. The analysis also incorporates
uncertainty in electricity demand. While the case study focuses on the MISO region, the
methodology is flexible and can be adapted to other regions or countries with similar
energy mixes, or facing comparable challenges in managing uncertainties in their long-term
input assumptions.

The uncertainty in natural gas prices is treated with a mean reversion model, with
historical data informing the mean and fluctuations. The uncertainty in wind generation is
treated by applying historical hourly wind patterns in MISO to the model. Other driving
variables, such as technology costs, learning rates, and discount rates, are deterministic.
Technological progress is treated with an endogenous component via adoption in MISO,
and this experience curve model leads to a nonlinear optimization problem. The result
is a set of generator builds and retirements that minimizes the stochastic objective. The
expansion of transmission and distribution infrastructure is not treated in the model, which
effectively assumes that it is built to match the resulting generation capacity.

The method contribution of this work lies in developing a general and flexible ap-
proach to integrating uncertainty into capacity expansion decisions without the constraints
or specialized expertise associated with linear programming techniques. While computa-
tionally intensive, this approach enables the incorporation of stochasticity into capacity
expansion models and the evaluation of risk-based objective functions. Importantly, the
method is agnostic to the complexity of the underlying operation model, whether linear or
nonlinear. The proposed method can be applied as long as the electricity system model
can accept inputs such as fuel prices, capacity build/retirement decisions, and similar data
while producing operating costs as outputs. Additionally, the framework accommodates

120



Energies 2025, 18, 1283

any set or form of uncertain inputs and objective functions, providing a versatile tool for
decision-making. Alternative approaches, such as stochastic dual dynamic programming
or Bender’s decomposition [31,32], might offer greater computational efficiency but often
require substantial restructuring of existing models. By contrast, this approach is particu-
larly valuable to resource planners and practitioners for integrating uncertainty into their
existing models without significant modifications. Furthermore, the robust technology
choices identified through this method can be further analyzed within traditional determin-
istic models, yielding an overall robust plan with technology decisions tailored to varying
levels of risk appetite.

For contributions in application, we investigate how accounting for three important un-
certainties (demand, natural gas prices, and wind variability) influence capacity/retirement
choices in a major real-world balancing region (MISO). There has been work addressing
demand and gas price uncertainties using a stochastic linear approach [15] but, as will be
seen, wind variability is a critical factor affecting renewable adoption. There is prior work
investigating effects of wind variability on generator investment decisions, e.g., [33], but it
is important to consider the effects of uncertainty in a main alternative to wind (natural
gas). By including uncertainties that influence wind (variability), gas (price fluctuations),
and both (demand), we can parse the combined effect on generator mix outcomes. One
important caveat is that we only consider the building and retirement of generators in this
case study, assuming that transmission is built to accommodate. In principle, the need
for transmission affects build decisions, which is partially accounted for in some existing
models [34,35]. However, the approach that we demonstrate can be expanded to consider
transmission expansion, along with the generation decisions.

2. Materials and Methods
The model has several levels that interact with each other, as shown in Figure 1, which

are explained below in the order of their operation.
Dispatch model (A in Figure 1): At the core of the framework is the dispatch model,

which determines whether a set of generation technologies can meet demand and estimates
the variable costs of doing so. This model operates on an hourly resolution, simulating the
operation of the electricity system to meet demand.

Long-term assessment model (B in Figure 1): Building on the dispatch model, the
long-term assessment model evaluates the discounted expected electricity system costs of
an investment plan over a 30-year planning horizon. It incorporates fixed costs, capital
costs of new power plants, and variable costs over time from the dispatch model. To
address computational limitations and maintain practical resolution, the dispatch model
runs for one representative year out of every five during the 30-year horizon.

Sampling model (C in Figure 1): The sampling model integrates the dispatch model
and the long-term assessment model to handle uncertainty. It runs the combined models
through a random sample of uncertain inputs, including fuel prices, electricity demand,
and wind availability. This process produces an output distribution of the discounted total
cost of electricity service for a given generation expansion plan, akin to a Monte Carlo
analysis. The framework also incorporates endogenous changes to key variables: capital
costs, based on technology-specific learning rates, and technology builds between periods.
The endogenous treatment of variables can be extended to other input variables.

Optimization–objective evaluation model (D in Figure 1): The output distributions
from the sampling model are aggregated into a single value using the risk preferences of
the decision-maker or investor. This aggregation allows for decision-making based on a
clearly defined objective. The optimization objective can also be adapted to other criteria
depending on the specific goals of the analysis.
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Figure 1. Framework for determining the optimized investment plan under uncertainty of inputs from
2020 to 2050 across the Midcontinent Independent System Operation (MISO) region. The sampling
model (C) runs the long-term assessment model (B) over a random sample of input variables to
calculate the distribution of the expected total cost of electricity for different stochastic inputs using
fixed costs and the dispatch model (A) for variable costs. The optimization–objective evaluation
model (D) produces a single cost value from the distribution of system costs for the optimization,
based on the user-defined objective. This study uses conditional value-at-risk (CVaR) to assign a
risk-adjusted value from the distribution of outputs from the cost model. The decision model (E) first
uses genetic algorithm, then pattern search once the genetic algorithm finds an optimal neighborhood,
to identify investment plans that minimize CVaR, given the uncertainty-driven distribution from C
and the objective defined in A. An existing dispatch model can be used as is with this framework by
calling on the relevant subfunctions in the long-term assessment model (B).

Decision model (E in Figure 1): Finally, the aggregated evaluation is passed to the
decision model, which determines the optimal generation expansion plan based on the
selected objective and risk preferences.

The decision model begins with a genetic algorithm search to identify the best set of
generation technologies to build from 2020 to 2050, aligning with the decision-maker’s risk
preferences. The results from the genetic algorithm are then refined using a pattern search
optimization to achieve an optimal solution. Additional numerical optimization techniques
were also tested, as detailed in the Supplementary Information. Table S3 compares methods
such as particle swarm, genetic algorithm, hybrid1 (genetic algorithm + pattern search,
used in our main results), and hybrid2 (genetic algorithm + pattern search + simulated
annealing), assessing costs and run times.

The hybrid approach proved effective, combining the global exploration capabilities
of genetic algorithms with the local refinement of pattern search. While genetic algorithms
excel at navigating complex fitness landscapes, they do not always guarantee convergence.
To address this, the pattern search solver uses the genetic algorithm’s results as a starting
point, enabling faster and more precise local optimization. This combination balances
efficiency and accuracy, though other techniques may be suitable depending on the problem
and computational resources [36–42].

Heuristic methods like genetic algorithms efficiently manage computational time
while accounting for uncertainties. During the evolution process, fitter solutions repeatedly
emerge across iterations after being tested with random input samples, reducing compu-
tational demands. This approach avoids the linearization of uncertainty variables in the
model. However, the parameters of the numerical techniques and the sample size of input
distributions must be carefully tuned and tested to ensure consistent convergence. In this
article, an “investment plan” refers to the quantities of each generation technology to build
in each five-year period from 2020 to 2050, which defines the optimization space.
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The dispatch model (A in Figure 1) can be replaced with any other black box model
that can estimate the variable cost.

2.1. Inputs

Inputs to the model can be broadly categorized into stochastic and deterministic
inputs. The stochastic inputs to the model are the distribution of expected natural gas
prices, distribution of expected electricity demand as a function of season and hour-of-day,
and random variations in wind profiles based on historical data. The model is capable of
incorporating other uncertainties such as expected future subsidies, weather patterns, the
distribution of capital costs, or RPS constraints, but we do not consider them in the current
work. The deterministic inputs are expected capital costs, discount rate, and technology
learning rates (but not future technology costs, which depend on adoption within each
model run), as summarized in Table 1.

Table 1. Summary of the inputs and data sources used in the stochastic model (EIA = U.S. Energy
Information Administration, NREL = National Renewable Energy Laboratory).

Deterministic Inputs Source Note

Capital cost of new
power plants EIA [43] Shown in Table 2

Discount rate EIA [43], NREL [44] 5%

Fixed and operating cost of new
power plants EIA [43] Shown in Table 2

Fixed and operating cost of
existing plants eGrid [45] Supplementary

Information, Section S2

Heat rate of new technologies EIA [43] Shown in Table 2

Heat rate of existing plants eGrid [45] Supplementary
Information, Section S1

Learning rates (single factor) IEA [46], EIA [47],
Rubin et al. [48] Shown in Table 2

Existing power plant fleet eGrid [45] Supplementary
Information, Section S1

Fuel prices EIA [49] Shown in Figure 2

Carbon emissions of
existing plants eGrid [45] Supplementary

Information, Section S1

Solar variability (hourly
capacity factors) NREL [50,51] Supplementary

Information, Section S3

Stochastic inputs Source Note

Natural gas prices Simulated Illustrated in Figure 3

Demand Simulated Illustrated in
Figures 4 and 5

Wind profiles Historical variations
NREL [50,51] Illustrated in Figure 6

2.1.1. Deterministic Inputs

This section covers the deterministic inputs used in the model, as summarized in
Table 1. The model uses the existing portfolio of generation in the studied area, including
the age, efficiencies, emissions, and generation capacities of each plant from the eGrid
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database [45] to define the starting point for future portfolios. Sample data from the eGrid
database are shown in the Supplementary Information, Section S1.

New Power Plant Characteristics

New generation technologies and their corresponding capital cost, fixed cost, and
efficiencies are considered based on the EIA’s estimates used for modeling the NEMS
electricity market module [52], shown in Table 2. Overnight capital costs are considered,
excluding the financing/interest during the construction and development of the power
plants. The discount rate in the model is 5% [44,53].

Table 2. Cost and efficiency characteristics of new generation technologies considered in the study,
based on estimates from the U.S. Energy Information Administration [13]. All the costs are expressed
in 2016 USD. Capital costs are overnight costs that exclude interest during the construction and
development. The capital costs are for the year 2016 and the future capital costs are estimated ac-
counting for technological progress through learning rates. (CCS = carbon capture and sequestration,
CC = combined cycle, CT = combustion turbine).

Technology
Capital
Cost (2016
USD/kW)

Fixed Cost
(2016
USD/kW)

Operating
Cost (2016
USD/MWh)

Heat Rate
(Btu/kWh) Fuel

Learning
Rate
(%)

Coal with CCS 4983 69 7.02 1070 Coal 8.3

Natural gas CC 962 10.80 3.47 6450 Gas 14

Natural gas CT 875 17.30 3.47 9900 Gas 15

Biomass 3757 110 5.46 13,500 Biomass 11

Wind 1622 47 0 0 Wind 12

Solar 1812 22 0 0 Solar 23

Nuclear 5822 99.17 2.27 232,930 Uranium 2

Capital Costs with Technological Progress

Rapid growth, competition, and technology improvements lead to cost reductions
over time in a process described generally as “technological progress.” Learning rates
describe these cost reductions. The learning rates (LR) assumed in this study are based
on the average learning rates observed from the literature review by Rubin et al. in their
study [48], as given in Table 2.

The learning coefficient ‘α’ determines the capital cost of the technologies in any given
year (CCt) based on the cost during the previous year (CCt−1), the global capacity of the
technology during the previous year (Pt−1), and the current cumulative capacity after
the new additions globally (Pt) (Equation (3)). The coefficient ‘a’ is determined from the
learning rate of the technologies, which specifies the cost reduction rate as the technology’s
capacity doubles (LR) [54] (Equations (1) and (2)). The total installed capacity of the
technology is determined based on the global level projections from the EIA data [47]
and the local capacity additions in MISO, meaning that learning is endogenous within
the model. The percentage change in capital cost over time for each tech is shown in
Supplementary Information, Figure S3.

LR = 1− 2α (1)

α =
ln(1− LR)

ln(2)
(2)

CCt = CCt−1

(
Pt

Pt−1

)α

(3)
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where

Subscript t—given year t
LR—learning rate
α—learning rate coefficient
P—cumulative global capacity
CC—capital cost

Fuel Prices

Fuel prices of coal, uranium for nuclear power, and oil are treated as deterministic
and are taken from the EIA database [49], shown in Figure 2, with units expressed in
USD/MMBtu.
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Solar Output

We estimate the hourly generation profiles of solar energy across various locations in
MISO using the Eastern Solar Integration Data [51]. This dataset consists of meteorological
data, 5 min resolution of solar power production, and capacity factors. We consider thirty
potential locations in the midwest region and the corresponding hourly wind output per
MW. The average of solar energy output (MWh/hour) per unit MW across these locations
is used to generate the hourly variations in solar capacities considered in the study. Unlike
wind, solar generation is not treated as a stochastic input in the model for two reasons: it
is a less important input because the model does not choose much solar in any scenario
(MISO has far more wind than solar), and focusing on three stochastic inputs allows us
to more clearly explain the effects of each variable. Refer to Supplementary Information,
Section S3 for more details.
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2.1.2. Stochastic Inputs

In order to model the effects of uncertainty, the model requires some form of distribu-
tion of possible future values for each input whose uncertainty is considered. In this case
study, we have chosen plausible methods for generating distributions of natural gas fuel
prices, electricity demand, and wind variability that we use as inputs to the model along-
side the deterministic inputs described above. To aid with interpretation and explanation,
we only model uncertainty for natural gas price, electricity demand, and wind. It should
also be noted that each of these three stochastic inputs takes a different form, designed to
capture the realistic uncertainty/variability in that specific input. This poses no difficulty
in our modeling approach: wind uncertainly comes from a set of prior year wind patterns,
natural gas uncertainty follows a mean reversion time series with correlation between
periods, and demand patterns are created by combining historical daily demand patterns
with presumed growth rates over time.

Distribution of Natural Gas Prices

Volatility in natural gas prices demonstrate mean reversion and seasonality [55]. Mean
reversion is the tendency of natural gas prices to revert to a long-term equilibrium value
after fluctuations due to extreme weather, supply, or demand surges. Seasonality is the
cyclic variation over the seasons because of the cyclic changes in demand [55]. In the
current model, we consider only the annual variations using the Ornstein–Uhlenbeck mean
reversion process [56]. Historical variations in the Henry Hub natural gas spot prices since
1986 are used to estimate future uncertainties [57].

The Ornstein–Uhlenbeck process is a variation of the Markov process, i.e., the fu-
ture value is independent of the past but depends upon the present value [9]. Further
information on the Ornstein–Uhlenbeck process and our application is provided in the
Supplementary Information, Section S5. The simulated time series of natural gas prices is
shown in Figure 3.
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Figure 3. Natural gas Henry Hub spot prices from 1990 to 2018 and sample simulated price scenarios
with uncertainty cone from 2018 to 2050. The x-axis represents the year, and the y-axis represents
the natural gas price in USD per metric million British thermal units. Ornstein–Uhlenbeck mean-
reversion process is used to create stochastic natural gas prices as an input to the long-term assessment
model. Each colored dotted line indicates one possible sample price trajectory until 2050. Three out
of a thousand samples are illustrated in the figure.
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Stochastic Electricity Demand

We construct stochastic electricity demand over a year by multiplying normalized
hourly demand values from historical data with a random annual average demand from a
pre-defined distribution for the years 2020–2050 at five-year intervals. A simple Brownian
motion is used to build a distribution of annual average demand. Further information on
the modeling of stochastic demand is provided in the Supplementary Information, Section
S6. The distribution of annual growth in demand is provided in Figure 4, and a sample of
intra-annual random hourly demand patterns for two example days during the summer is
provided in Figure 5. The model considers all 8760 h in the year, and demand profiles for
two sample years are shown in Supplementary Information, Section S6, Figure S4.
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Figure 4. Uncertainty cone of average annual load growth from 2015 to 2050. The x-axis represents
the year, and the y-axis represents the annual average hourly demand in gigawatt hours. Each colored
dotted line indicates one possible average growth trajectory until 2050. Three out of a thousand
samples are illustrated in the figure.
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Figure 5. Four random samples of hourly load patterns for two summer days in the year 2035. The
x-axis represents the hour, and the y-axis represents the hourly demand in gigawatt hours. The
samples are created from multiplying a random point of annual demand growth distribution from the
year 2035 with a random normalized hourly load pattern over a year from the historical data. Similar
profiles are created at 5-year steps from 2020 to 2050 for 8760 h for every Monte Carlo simulation.
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Wind Variability

We estimate the hourly generation profiles of wind energy across thirty locations
in MISO using the Wind Integration National Database (WIND) toolkit [50] for the past
10 years. We average the wind output (MWh/hour) per unit MW across thirty potential
locations for each year from the past ten years to generate different samples of hourly
variations in wind as shown in Figure 6.
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Figure 6. Four random samples of hourly wind output for two example days during the summer.
The x-axis represents the sampled hours, and the y-axis represents the normalized wind output per
unit megawatt of capacity. Each color represents one sample year of data describing the historical
wind generation observed in the Midcontinent Independent System Operator (MISO) region.

2.2. Sampling Model

The sampling model (C in Figure 1) calculates a distribution of discounted expected
total system costs for meeting load over the next 30-year horizon, given a specific invest-
ment plan over 30 years from 2020 to 2050. In this model, we consider a random sample of
fifty different load profiles, and natural gas prices for each iteration of the genetic algorithm
search and pattern search. For a scenario with wind uncertainty, we also consider a random
sample of historical wind profiles along with the other stochastic variables.

2.2.1. Dispatch Model for Variable Costs

The lowest level of the cost model is a dispatch routine that uses simple rules to
determine the variable cost of electricity generation over a year [58]. Due to the need to run
many scenarios, both for the sampling model and the genetic algorithm search, there are
limitations on computational time. Therefore, the dispatch model is limited to choosing the
generation in each hour based on the marginal cost of operation for 8760 h in a year. We
run the model for all the hours in a year to accurately capture the effects of variability of
wind and solar energy.

The economic dispatch model is run with an objective of producing electricity at a
minimum operating cost using linear optimization. The generators run with ramping
constraints, shown in Equations (6) and (7). The total variable cost (VC) of the electricity
generation is the marginal cost (MC) incurred by the power plants to produce electricity
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e summed over every hour in a year, as shown in Equation (9). We do not include more
sophisticated electricity system elements, such as transmission constraints, startup time,
and spinning reserves. However, the modular nature of the model permits upgrading to a
sophisticated dispatch model without changes to the modeling framework.

The dispatch model uses the EPA’s eGrid database for the current fleet of power plants
for electricity generation [45], and the new generation fleet is added based on the inputs
from the decision model and the plant characteristics from EIA data (Table 1) [43]. The
marginal cost (assumed as bid price) of operation for each power plant is calculated based
on the heat rate [45], and the subsequent fuel costs as given in Equation (4).

MCi,h,p

(
USD
MWh

)
= HRp ∗

Pricei,t,f

1000
+ O&Mp (4)

Objective function:

minimize Ci,h,t = ∑
p

MCi,h,p,t ∗ ei,h,p,t (5)

Subject to:

ei,h,p,t ≥ ei,(h−1),p,t −
RDp

100
∗ Pp, (6)

ei,h,p,t ≤ ei,(h−1),p,t +
RUp

100
∗ Pp, (7)

etp > 0, t ≤ 8760 (8)

VCi,t = ∑
h,t

Ci,h,t (9)

where

Subscript h—hour
Subscript t—given year
Subscript i—ith Monte Carlo run
Subscript p—power plant
P—nominal capacity of power plant (MW)
e—energy output in hour h (MWh)
MC—marginal cost of operation of a power plant (USD/MWh),
HR—heat rate (Btu/kWh)
Price—average spot price of fuel (USD/MMBtu)
O&M—operations and maintenance cost of the power plant (USD/MWh)
RDp—ramp down rate of power plant p (% of MW/h)
RUp—ramp up rate of power plant p (% of MW/h)
VC—total variable cost

This study does not model imports of electricity from regions outside of MISO and
penalizes the model with a cost of USD 10,000/MWh for any unserved energy.

2.2.2. Long-Term Assessment Model

The long-term assessment model calculates the discounted expected total system costs
(Equation (11)) for meeting load over a 30-year horizon. The first step is to calculate the
total system cost for each year (TC), which is a summation of capital cost of new power
plants after taking into account technological progress (CC), fixed cost, and variable cost
from the dispatch model (VC) (Equation (10)).

Total system cost (USD) = capital cost + fixed cost + variable cost
TCi,t = CCt + FCt + VCi,t

(10)
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where

Subscript t—given year
Subscript i- ith Monte Carlo run
CC—capital cost (USD)
FC—fixed cost (USD)
VC—total variable cost (USD)

The model operates in 5-year intervals. The start year is 2015, and the costs of in-
termediate years are interpolated based on the costs estimated at 5-year intervals from
2020–2050.

Cashflow

We assume a discount rate (r) of 5% and calculate the total discounted cost of the
electricity service (C) using the 2016 USD value, as shown in Equation (11) from the total
cost of electricity service (TC) estimated for each year from 2020–2050.

Ci =
2030

∑
t=2015

TCi,t

(1 + r)(t−Y)
(11)

where

Subscript i—ith Monte Carlo run
C—discounted present value of the cost
TC—total cost
r—discount rate, 5%
t—given year
Y—reference year, 2016

2.2.3. Sampling Method

To include the effects of future uncertainties, we run the long-term assessment model
iteratively with random combinations of natural gas prices, load, and wind and the output
is a distribution of discounted total system costs. We consider a sample size of fifty, which
takes about 16 h to solve on a system with Intel I9 10900K chip, with 10 cores and 20 threads.
The run times vary depending upon the processor. Through a trial-and-error method
using different sample sizes, a sample size of fifty, along with the tuning of other genetic
algorithm parameters, gave optimal solutions. Also, evolutionary algorithms such as
genetic algorithm run iteratively, and the fitter individuals/least cost solutions appear
repeatedly many times across the iterations to determine the optimized results (i.e., the
best solutions).

2.3. Deterministic Approach for Comparison

We compare the stochastic and deterministic approaches by running the model with
deterministic inputs rather than the distribution for demand, natural gas price, and wind
stochasticity. For this, the mean of the stochastic input distributions is used as a determinis-
tic input to provide a fair comparison. The purely deterministic approach does not include
any uncertain variables, and the output of the cost model is a single discounted total system
cost of electricity service for an investment plan over 30 years from 2020 to 2050. The
genetic algorithm and pattern search is applied in the same way as in the base case model,
but is now searching for an investment plan that minimizes the single deterministic system
cost figure rather than a distribution of costs.
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2.4. Optimization–Objective Evaluation Model

The optimization–objective evaluation model in this study uses the conditional value-
at-risk (CVaR) method to aggregate the distributions of net present costs from the cost
model to a single value based on risk preference. For a risk-neutral scenario, the decision
model minimizes the mean of the distribution, which is equivalent to a CVaR at 0%. For a
risk-averse scenario, CVaR is set at 95%, meaning that the decision model is attempting to
minimize the mean of the most expensive 5% of scenarios, which is a plausible goal for a
risk-averse decision-maker (Equation (12)).

DCCVaR (USD) =
∑n
(i= CVaR

100 ∗n)
Ci

(
1− CVaR

100

)
∗ n

after arranging Ci in ascending order (12)

where

Subscript i—ith Monte Carlo run
Subscript n—total Monte Carlo runs
C—discounted present value of the cost
DC—total discounted electricity cost based on CVaR

The choice of CVaR value directly affects the optimization outcomes. Lower CVaR val-
ues prioritize solutions with lower average costs across all scenarios, favoring investments
that perform well under typical conditions. In contrast, higher CVaR values focus on mini-
mizing potential losses in worst-case scenarios, leading to more conservative investment
plans against extreme uncertainties. By adjusting the CVaR value, the decision-maker can
explore a spectrum of trade-offs between cost efficiency and risk mitigation, tailoring the
optimization to specific risk preferences and system requirements [59]. While CVaR is used
in the current study, the optimization objective can be any other metric as a function of
distribution of system costs or other outputs.

2.5. Decision Model Genetic Algorithm Search Plus Pattern Search

The decision model first uses genetic algorithm optimization to minimize the risk-
adjusted output (average cost or CVaR at 95%) from the optimization–objective evaluation
model. The genetic algorithm is good at rapidly identifying a set of reasonably fit solutions
using a heuristic optimization algorithm derived from natural selection processes. The
genetic algorithm iteratively modifies a population of individual solutions—in our case,
investment plans. The default population size is 200 in the global optimization toolbox in
the MATLAB R2017b version used in the model. The decision variables are the capacities
(in MW) of each generation technology to be built from 2020 to 2050 at 5-year intervals,
i.e., quantities of seven technologies to be built over seven periods (49 decision variables).
Other parameters of the genetic algorithm, such as function tolerance (average relative
change in the best least cost solution) and crossover fraction (to specify the fraction of the
next generation produced by crossover), are tuned through cross-validation techniques.
We use a heuristic initialization method, which seeds the initial random investment plan
with a solution from the deterministic analysis and the rest with the random plans, as
generated by the algorithm. After the genetic algorithm search, we use pattern search
to ensure that a detailed search is completed around the most promising solutions. This
algorithm iteratively finds a sequence of neighboring points around a least cost solution,
until the objective function either decreases or remains the same from each point in the
iteration to the next.

There are no environmental or renewable energy policies (e.g., renewable portfolio
standard, emissions pricing) included as constraints, though these are perfectly compatible
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with the model structure. Supplementary Information, Section S5 provides a more detailed
description of the objective function, and all the constraints used in the optimization. For
more information on the genetic algorithm and its tuning, refer to the Supplementary
Information, Sections S6–S8 (for the specific implementation in this research) and the
MATLAB website (for general information about the method and application) [60].

2.6. Retirement

In reality, the retirement of power plants is case-specific and depends on several factors
such as wholesale electricity prices, inefficiency, costs of operation, and environmental
regulations [61]. In 2017, most of the retirement decisions in MISO were due to uneconomic
power plants [62].

In the current study, the economics of power plants is based on the cost of operation
every five years. The model endogenously retires the power plants by allowing the
optimization algorithm to choose positive or negative capacity additions. Positive additions
denote a new generation capacity of that technology, and negative additions denote the
retirement of the power plants for a specific fuel type. For negative capacities, power plants
with the highest annual cost of operation per unit nameplate capacity for a given fuel type
are assumed to be the least economical to operate, and are retired until the retired capacities
equal the negative capacities from the genetic algorithm. The total cost of electricity service
is then calculated for the resultant investment plan.

2.7. Reporting the Investment Plan, Unserved Energy, and Distributions of Cost and Emissions

Distributions of discounted total system costs, unserved energy, and emissions of
the resultant investment plans for different risk preferences are presented in Section 3
below. Probability distributions of system costs are plotted with two primary comparisons:
deterministic versus uncertain stochastic scenarios, and risk-neutral versus risk-averse
scenarios. The distributions are calculated by running the resultant investment plans for
different risk preferences through the long-term assessment model and the Monte Carlo
model. A fixed sample distribution of natural gas prices, demand, and wind energy is
assumed for all the investment plans and run through 1000 Monte Carlo simulations, which
provides a distribution of output discounted total system costs and emissions. This fixed
sample ensures a fair comparison between scenarios.

3. Results
This work presents an alternative method for capacity expansion modeling in MISO

under uncertainty of input load, natural gas prices, and wind. First, we present the
results of the stochastic approach for the reference case. Second, a comparison is made
between the outcomes of deterministic and stochastic approaches. Next, we compare the
unserved energy of all the three cases. In the end, a summary of all three objective functions
is presented.

3.1. Stochastic Scenario

The base case stochastic scenario is the risk-neutral scenario that minimizes the mean
of the distribution of discounted, long-term electricity system cost. For this risk-neutral
scenario, the capacity mix by 2050 is 43% wind (113 GW), 30% natural gas (79 GW), 19%
coal (49 GW), 5% solar (13 GW), and 3% all other fuels (9 GW) (Figure 7, top).
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Figure 7. 2020–2050 generator capacity mix (gigawatts) (top figure) and generation (terawatt hours)
(bottom figure) in the stochastic risk-neutral scenario (objective = minimize mean of cost distribution),
using the mean natural gas prices and demand values from the input distributions. Colors of the
bars indicate the generator type. (Gas CT = gas combustion turbine, Gas CC = gas combined cycle).

The energy mix that results from the capacity mix described above depends upon
specific natural gas prices, demand, and wind generation profiles. While the capacity
mix was chosen using stochastic inputs, calculating the energy mix requires specific fixed
inputs. We use mean natural gas prices, demand, and wind variability values from the
input distributions to find that wind dominates the energy generation mix in 2050 at 51%
of total electricity, followed by coal (30%), natural gas (11%), and all other fuels at 8%
(Figure 7, bottom).

3.2. Comparing Deterministic and Stochastic Scenarios

Relative to the deterministic optimization, the risk-neutral scenario adds 18 GW of
additional natural gas combined cycle capacity, 8 GW of additional gas turbines, but 8 GW
less wind capacity by 2050. We noticed that if wind is modeled as deterministic (with a
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fixed and known annual pattern) while demand and natural gas price are kept as stochastic,
the risk-neutral optimizer chooses more wind generation than in the deterministic case.
When wind generation, natural gas prices, and demand are all varied, the uncertainty
regarding wind generation outweighs the importance of natural gas price uncertainty.
Overall, wind capacity and generation are greater than natural gas-based capacity and
generation in both deterministic and stochastic scenarios.

These results should be interpreted with caution, considering that they depend on
factors such as resource availability in the area, the risk appetite of the modeler, and overall
technology choices. The authors emphasize that these findings are intended to illustrate
the results and sensitivity to various risk appetites, highlighting the importance of incorpo-
rating stochastic elements into models for grid planning purposes. Grid planners should
consider these variations and uncertainties as part of their comprehensive modeling efforts.

Probability distributions of discounted total system costs of the investment plans
illustrate the likelihood of different long-term system costs when subjected to input distri-
butions of natural gas, demand, and wind variations. Figure 8 compares the probability
distributions of these costs. The results show that the mean system cost of the deterministic
scenario is higher than the risk-neutral scenario by USD 23 billion (5%). The mean system
cost of the distribution for the risk-neutral scenario is USD 486 billion, and there is a lower
likelihood of expensive system costs than for the deterministic scenario (Figure 8). The
CVaR at 95% (the average of the 5% most expensive outcomes) for the risk-neutral scenario
is USD 514 billion, versus USD 599 billion for the deterministic scenario. Overall, the
risk-neutral scenario optimizes better for the expected distribution of load, natural gas
prices, and wind variations than the deterministic approach, which does not consider this
variability when it chooses an optimal system. This is not particularly surprising, consider-
ing that only the risk-neutral optimizer is designed to account for these uncertainties. But
the magnitude of the differences is notable: a 5% difference in average long-term system
cost and a 15% difference in the worst-case scenarios.
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ity. Colors represent the scenarios. The risk-neutral scenario is optimized for conditional value-at-

Figure 8. Probability distribution of discounted total system cost of electricity for risk-neutral and
deterministic scenarios, generated when the resultant investment plans are run through a sample of
1000 random natural gas prices, demand, and historical wind variations. The x-axis represents the
total discounted system cost of electricity in billions of USD, and the y-axis represents the probability.
Colors represent the scenarios. The risk-neutral scenario is optimized for conditional value-at-risk
(CVaR) at 0% (mean of the input distribution) and the deterministic scenario is optimized for average
input values (not distributions).
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3.3. Comparing Risk-Neutral and Risk-Averse Scenarios

In this section, results are compared for different risk preferences. The “risk-averse”
scenario attempts to minimize the CVaR at 95% (the mean of the most expensive 5% of
outcomes), and the “risk-neutral” scenario attempts to minimize the CVaR at 0% (mean of
the entire system cost distribution). Probability distributions of discounted total system
costs for the different risk preferences show that the mean cost of the risk-averse scenario is
slightly higher than the risk-neutral scenario by USD 1 billion. The risk-averse scenario’s
CVaR value at 95% is USD 511 billion, lower than the risk-neutral scenario’s CVaR value at
95% of USD 514 billion (Figure 9).
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Figure 9. Probability distribution of the discounted total cost of the electricity system for risk-neutral
and risk-averse scenarios. The x-axis represents the total discounted system cost in billions of USD,
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at-risk (CVaR) at 0%, which is the mean of the distribution. The risk averse scenario is optimized for
CVaR at 95%.

Relative to the risk-neutral optimizer, the risk-averse scenario proposes higher capacity
additions of solar capacity by 6 GW, biomass by 3 GW, and lower additions of wind by
12 GW, fewer gas turbines by 8 GW, and a lower retirement of coal, by 2050. Minimizing
the probability of high system costs generally shifts the preferred system towards diversifi-
cation: greater use of lightly used resources and slightly lower deployment of wind and
natural gas generation, which tend to dominate in any scenario.

3.4. Unserved Energy

In this section, results of unserved energy are compared between all the scenarios.
The boxplots in Figure 10 shows a median unserved energy of less than 0.5 TWh for all
scenarios, which is less than 0.5% of the average annual demand. For all the modeled
time periods, the mean unserved energy of the deterministic scenario is higher than the
stochastic scenarios. We also observed similar trends for unserved energy costs.
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System Operator).

3.5. Summary of Results

Between the three optimization goals described in this work, the deterministic scenario
has the lowest capacity additions, a higher mean system cost, and highest high-risk values
because it neither optimizes for the expected distribution of load, gas prices, and wind
variability, nor considers high-risk scenarios. Since the penalty of unserved energy at USD
10,000/MWh is much higher than energy costs under uncertain natural gas prices, the risk-
neutral scenario adds more dispatchable natural gas (of both types) than the deterministic
scenario to address the uncertainty in demand and wind variability. Therefore, the amount
of unserved energy is much lower for the stochastic scenarios than the deterministic
scenario. The risk-averse scenario adds the highest solar capacity of all the scenarios. It
also adds the most natural gas combined cycle capacity of all the scenarios. The cumulative
capacity additions in all three scenarios are plotted in Figure 11.

Figure 12 shows the cumulative distribution function of emissions for all three sce-
narios by the year 2050, given uncertainty in the three examined stochastic variables. The
results show that the average emissions are close for all three scenarios, but lowest for the
risk-neutral scenario at an average of 260 kg/MWh, second for the deterministic scenario
at an average of 264 kg/MWh, and highest for the risk-averse scenario at 272 kg/MWh
(Figure 12). However, the distributions in each value are more interesting: each of the
three vary by more than a factor of two, driven mainly by uncertainty about total electric-
ity demand in the future. The risk-neutral and risk-averse scenarios have more variable
emissions levels than the deterministic one because they both build greater amounts of gas
generation. This means that they have a greater ability to trade-off between coal and gas
generation depending on the prevailing natural gas price, which is uncertain and variable.
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A summary of the results comparing the deterministic, risk-neutral, and risk-averse
scenarios is shown in Table 3.
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Table 3. Comparison of summary results for three model cases. Results are obtained with heuristic
optimization, meaning that there is small variability in results depending on run. Therefore, all
results show the mean of ten runs. (CVaR = conditional value-at-risk).

Model
Case

Discounted
Total System
Cost (2016
Billion USD)

CVaR@95%
(2016 Billion
USD)

Average 2050
Emissions
Factor
(kg/MWh)

Total Capacity
of Wind and
Solar by 2050
(GW)

Deterministic 509 599 264 134

Risk-neutral 486 514 260 126

Risk-averse 487 511 272 120

4. Discussion
This work develops a flexible approach for integrating stochastic factors and alterna-

tive objective functions into capacity expansion modeling, which allows use of “black box”
operation/production cost models that are time-intensive or unavailable for modification.
The flexibility does come at a computational cost: the requirement that the operation model
underneath the capacity expansion model must be run iteratively, depending upon the size
of the input distributions.

For the case study of MISO, results show that accounting for uncertainty in decision-
making reduced the adoption of wind power in both risk-neutral and risk-averse cases.
In contrast, running the model without wind variability led to increased wind power
adoption, suggesting that the impact of wind variability in reducing adoption outweighs
the influence of natural gas price variability, which favors wind. Despite lower wind
capacity, the risk-neutral case results in lower carbon emissions than the deterministic
scenario, driven by the operation of new, efficient natural gas plants replacing older units.
However, if emission constraints were strictly enforced, the model would likely favor
dispatchable, low-emitting resources to account for wind variability. This highlights a key
area for future research, exploring how emission limits interact with the need for firm,
low-carbon generation in the presence of renewable variability.

There are unresolved questions on the applicability of the approach in more complex
situations. Stochastic models are more computationally intensive than deterministic ones.
In our application, the optimization, run on a personal computer, was manageable with
three stochastic inputs for capacity expansion of generators in MISO. The case study model
did not include expansion of transmission and distribution, storage, or demand-response,
all of which increase computational complexity. It is not clear yet what combination of
optimization technique and increased computing power will enable which additions to be
computationally feasible. As with other meta-heuristic optimization, run-times depend
on the specific approach applied and there is risk of being caught in a local minimum (see
Supplemental Information S12 for related results on this topic). Due to the flexibility they
introduce, storage and/or demand response could change the current result that stochastic
decision-making reduces wind adoption.

This said, the additional functionality to analyze cost risk represents, we argue, an im-
portant feature of real-life capacity expansion decisions. The usual deterministic approach
assumes that the grid is built with perfect foresight of fuel prices, technology prices, and
demand. Decision-makers who plan grids do have some knowledge of future uncertainties
that can inform the way that these uncertainties are modeled. For example, natural gas
prices and demand are certain to be more volatile than the marginal costs of operating wind
and solar power plants, though the generation patterns of the latter result in uncertainty of
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their own. Grid buildout decisions ought to account for this knowledge of the future by
considering cost risk in addition to minimizing average expected cost.

5. Conclusions
This work demonstrates the importance of incorporating stochastic factors and al-

ternative objective functions into capacity expansion modeling, especially in the context
of uncertain future energy scenarios. By applying this approach to the MISO region, the
study highlights significant trade-offs between deterministic, risk-neutral, and risk-averse
optimization strategies. The deterministic scenario, while simpler and computationally
less intensive, fails to account for uncertainties in natural gas prices, wind variability, and
electricity demand, resulting in higher system costs and unserved energy.

The stochastic scenarios, particularly the risk-neutral case, achieve lower system costs
and emissions on average by incorporating uncertainty into decision-making. This comes
at the expense of reduced wind power adoption due to wind variability but is offset by the
deployment of efficient natural gas plants. The risk-averse scenario prioritizes reducing
extreme cost outcomes, leading to higher capacity additions of natural gas and solar, but
results in slightly higher average emissions compared to the other scenarios.

The results show that deterministic approaches oversimplify real-world decision-
making by neglecting uncertainties that significantly impact cost, emissions, and resource
mix. Stochastic modeling adds complexity but enables a more realistic assessment of cost
risk, better aligning with the uncertainties faced by decision-makers. However, the compu-
tational intensity of stochastic models and the omission of key factors such as transmission,
storage, and demand response suggest that further research is needed to enhance the
practicality and applicability of this approach to broader, more complex systems.

In conclusion, this study emphasizes that future capacity expansion decisions should
account for both average costs and cost risks, leveraging stochastic approaches to address
the inherent uncertainties in fuel prices, renewable variability, and demand. This flexibility
not only improves the robustness of energy planning, but also highlights opportunities for
further exploration, particularly in integrating emission constraints and low-carbon, firm
generation resources in the presence of renewable variability.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/en18051283/s1, References [43,45,50,51,57,60,62–66] are cited in
Supplementary Materials.

Author Contributions: Conceptualization, N.S.G., E.H. and E.W.; Methodology, N.S.G., E.H. and
E.W.; Software, N.S.G.; Formal analysis, N.S.G.; Data curation, N.S.G.; Writing—original draft, N.S.G.;
Writing—review & editing, N.S.G., E.H. and E.W.; Supervision, E.H. and E.W.; Funding acquisition,
E.H. and E.W. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Civil Infrastructure Systems program of the National
Science Foundation (grant# CMMI 1436469) and Rochester Institute of Technology.

Data Availability Statement: All the data are downloaded from the publicly available resources and
cited in the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Edenhofer, O.; IPCC (Eds.) Climate Change 2014: Mitigation of Climate Change. In Working Group III Contribution to the Fifth

Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2014.
2. U.S. Energy Information Administration. Electric Power Monthly. November 2016. EIA. Available online: http://www.eia.gov/

electricity/monthly/pdf/epm.pdf (accessed on 11 February 2017).

139



Energies 2025, 18, 1283

3. National Conference of State Legislation. State Renewable Portfolio Standards and Goals. Available online: https://www.ncsl.
org/energy/state-renewable-portfolio-standards-and-goals (accessed on 28 April 2019).

4. Carbon Pricing Dashboard|Up-to-Date Overview of Carbon Pricing Initiatives. Available online: https://
carbonpricingdashboard.worldbank.org/ (accessed on 24 May 2019).

5. EIA. Annual Energy Outlook 2023—U.S. Energy Information Administration (EIA). Available online: https://www.eia.gov/
outlooks/aeo/index.php (accessed on 13 February 2024).

6. Brown, M. Regional Energy Deployment System (ReEDS) Model Documentation: Version 2019; National Renewable Energy Laboratory:
Golden, CO, USA, 2020.

7. US-REGEN Model Documentation. Available online: https://www.epri.com/research/products/000000003002016601 (accessed
on 14 March 2021).

8. PROMOD|Hitachi Energy. Available online: https://www.hitachienergy.com/us/en/products-and-solutions/energy-portfolio-
management/enterprise/promod (accessed on 18 February 2025).

9. EPRI. EGEAS. Available online: https://www.epri.com/#/pages/product/3002001929/?lang=en-US (accessed on 25 April
2020).

10. Polaris—Power Systems Optimization. Available online: http://psopt.com/ (accessed on 25 April 2020).
11. PLEXOS Market Simulation Software, Energy Exemplar. Available online: https://energyexemplar.com/solutions/plexos/

(accessed on 25 April 2020).
12. AURORA Electric Modeling Forecasting and Analysis Software, Energy Exemplar. Available online: https://energyexemplar.

com/products/aurora-electric-modeling-forecasting-software/ (accessed on 25 April 2020).
13. Yue, X.; Pye, S.; DeCarolis, J.; Li, F.G.; Rogan, F.; Gallachóir, B.Ó. A review of approaches to uncertainty assessment in energy

system optimization models. Energy Strat. Rev. 2018, 21, 204–217. [CrossRef]
14. DeCarolis, J.; Daly, H.; Dodds, P.; Keppo, I.; Li, F.; McDowall, W.; Pye, S.; Strachan, N.; Trutnevyte, E.; Usher, W.; et al. Formalizing

best practice for energy system optimization modelling. Appl. Energy 2017, 194, 184–198. [CrossRef]
15. Jin, S.; Ryan, S.M.; Watson, J.-P.; Woodruff, D.L. Modeling and solving a large-scale generation expansion planning problem

under uncertainty. Energy Syst. 2011, 2, 209–242. [CrossRef]
16. Hunter, K.; Sreepathi, S.; DeCarolis, J.F. Modeling for insight using Tools for Energy Model Optimization and Analysis (Temoa).

Energy Econ. 2013, 40, 339–349. [CrossRef]
17. Schröder, A. An electricity market model with generation capacity expansion under uncertainty. Energy Syst. 2014, 5, 253–267.

[CrossRef]
18. Ehrenmann, A.; Smeers, Y. Generation Capacity Expansion in a Risky Environment: A Stochastic Equilibrium Analysis. Oper. Res.

2011, 59, 1332–1346. [CrossRef]
19. Patankar, N.; de Queiroz, A.R.; DeCarolis, J.F.; Bazilian, M.D.; Chattopadhyay, D. Building conflict uncertainty into electricity

planning: A South Sudan case study. Energy Sustain. Dev. 2019, 49, 53–64. [CrossRef]
20. Bertocchi, M. (Ed.) Stochastic optimization methods in finance and energy: New financial products and energy market strategies.

In International Series in Operations Research & Management Science; Springer: New York, NY, USA, 2011; Volume 163.
21. Steeger, G.; Lohmann, T.; Rebennack, S. Strategic bidding for a price-maker hydroelectric producer: Stochastic dual dynamic

programming and Lagrangian relaxation. IISE Trans. 2018, 50, 929–942. [CrossRef]
22. Hu, Q.; Huang, G.; Cai, Y.; Xu, Y. Energy and Environmental Systems Planning with Recourse: Inexact Stochastic Programming

Model Containing Fuzzy Boundary Intervals in Objectives and Constraints. J. Energy Eng. 2013, 139, 169–189. [CrossRef]
23. Wildman, R.; Gaynor, A. 11—Topology optimization for robotics applications. In Robotic Systems and Autonomous Platforms;

Walsh, S.M., Strano, M.S., Eds.; Woodhead Publishing in Materials; Woodhead Publishing: Cambridge, UK, 2019; pp. 251–292.
[CrossRef]

24. Kayal, P.; Chanda, C. Optimal mix of solar and wind distributed generations considering performance improvement of electrical
distribution network. Renew. Energy 2015, 75, 173–186. [CrossRef]

25. Leuthold, F.U.; Weigt, H.; von Hirschhausen, C. A Large-scale spatial optimization model of the European electricity market.
Netw. Spat. Econ. 2012, 12, 75–107. [CrossRef]

26. Yakin, M.Z.; McFarland, J.W. Electric generating capacity planning: A nonlinear programming approach. Electr. Power Syst. Res.
1987, 12, 1–9. [CrossRef]

27. Alvarez, G.E. Stochastic optimization considering the uncertainties in the electricity demand, natural gas infrastructures,
photovoltaic units, and wind generation. Comput. Chem. Eng. 2022, 160, 107712. [CrossRef]

28. Aaslid, P.; Korpas, M.; Belsnes, M.M.; Fosso, O.B. Stochastic Optimization of Microgrid Operation with Renewable Generation
and Energy Storages. IEEE Trans. Sustain. Energy 2022, 13, 1481–1491. [CrossRef]

29. Yang, C.; Wu, Z.; Li, X.; Fars, A. Risk-constrained stochastic scheduling for energy hub: Integrating renewables, demand response,
and electric vehicles. Energy 2023, 288, 129680. [CrossRef]

140



Energies 2025, 18, 1283

30. Zhong, J.; Li, Y.; Wu, Y.; Cao, Y.; Li, Z.; Peng, Y.; Qiao, X.; Xu, Y.; Yu, Q.; Yang, X.; et al. Optimal Operation of Energy Hub: An
Integrated Model Combined Distributionally Robust Optimization Method with Stackelberg Game. IEEE Trans. Sustain. Energy
2023, 14, 1835–1848. [CrossRef]

31. Rebennack, S. Combining sampling-based and scenario-based nested Benders decomposition methods: Application to stochastic
dual dynamic programming. Math. Program. 2016, 156, 343–389. [CrossRef]

32. Lohmann, T.; Rebennack, S. Tailored Benders Decomposition for a Long-Term Power Expansion Model with Short-Term Demand
Response. Manag. Sci. 2017, 63, 2027–2048. [CrossRef]

33. Park, H.; Baldick, R. Optimal capacity planning of generation system integrating uncertain solar and wind energy with seasonal
variability. Electr. Power Syst. Res. 2020, 180, 106072. [CrossRef]

34. Hemmati, R.; Hooshmand, R.-A.; Khodabakhshian, A. Coordinated generation and transmission expansion planning in deregu-
lated electricity market considering wind farms. Renew. Energy 2016, 85, 620–630. [CrossRef]

35. Gonzalez-Romero, I.; Wogrin, S.; Gómez, T. Review on generation and transmission expansion co-planning models under a
market environment. IET Gener. Transm. Distrib. 2020, 14, 931–944. [CrossRef]

36. Cantoni, M.; Marseguerra, M.; Zio, E. Genetic algorithms and Monte Carlo simulation for optimal plant design. Reliab. Eng. Syst.
Saf. 2000, 68, 29–38. [CrossRef]

37. Marseguerra, M.; Zio, E.; Podofillini, L. A multiobjective genetic algorithm approach to the optimization of the technical
specifications of a nuclear safety system. Reliab. Eng. Syst. Saf. 2004, 84, 87–99. [CrossRef]

38. Zhou, Z.; Zhang, J.; Liu, P.; Li, Z.; Georgiadis, M.C.; Pistikopoulos, E.N. A two-stage stochastic programming model for the
optimal design of distributed energy systems. Appl. Energy 2013, 103, 135–144. [CrossRef]

39. Marseguerra, M.; Zio, E. Optimizing maintenance and repair policies via a combination of genetic algorithms and Monte Carlo
simulation. Reliab. Eng. Syst. Saf. 2000, 68, 69–83. [CrossRef]

40. Jellouli, O.; Chatelet, E. Monte Carlo Simulation and Genetic Algorithm for Optimising Supply Chain Management in a Stochastic
Environment. In Proceedings of the 2001 IEEE International Conference on Systems, Man and Cybernetics, Tucson, AZ, USA,
7–10 October 2001; Volume 3, pp. 1835–1839. [CrossRef]

41. Park, J.-B.; Kim, J.-H.; Lee, K. Generation expansion planning in a competitive environment using a genetic algorithm. In
Proceedings of the IEEE Power Engineering Society Summer Meeting, Chicago, IL, USA, 21–25 July 2002; Volume 3, pp. 1169–
1172. [CrossRef]

42. Banzhaf, W. Genetic Programming for Pedestrians. In Proceedings of the 5th International Conference on Genetic Algorithms,
San Francisco, CA, USA, 1 June 1993; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 1993; p. 628. Available online:
http://dl.acm.org/citation.cfm?id=645513.657432 (accessed on 27 April 2019).

43. U.S. Energy Information Administration (EIA). Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants.
2013. U.S. Department of Energy. Available online: http://www.eia.gov/outlooks/capitalcost/pdf/updated_capcost.pdf
(accessed on 1 August 2017).

44. NREL. Cost-Benefit Analysis of Flexibility Retrofits for Coal and Gas-Fueled Power Plants. Available online: http://www.nrel.
gov/docs/fy14osti/60862.pdf (accessed on 23 June 2020).

45. US Environmental Protection Agency. eGRID2018. Available online: https://www.epa.gov/energy/egrid (accessed on 1
December 2019).

46. IEA. WEO Model. Available online: https://iea.blob.core.windows.net/assets/77ecf96c-5f4b-4d0d-9d93-d81b938217cb/World_
Energy_Outlook_2018.pdf (accessed on 25 May 2019).

47. EIA. World Energy Projection System Plus: Overview; EIA: Washington, DC, USA, 2017; p. 35.
48. Rubin, E.S.; Azevedo, I.M.; Jaramillo, P.; Yeh, S. A review of learning rates for electricity supply technologies. Energy Policy 2015,

86, 198–218. [CrossRef]
49. EIA. Annual Energy Outlook. 2017. Available online: https://www.eia.gov/pressroom/presentations/sieminski_01052017.pdf

(accessed on 13 May 2018).
50. Draxl, C.; Clifton, A.; Hodge, B.-M.; McCaa, J. The Wind Integration National Dataset (WIND) Toolkit. Appl. Energy 2015, 151,

355–366. [CrossRef]
51. National Renewable Energy Laboratory (NREL). Solar Power Data for Integration Studies. 2006. Available online: http:

//www.nrel.gov/grid/solar-power-data.html (accessed on 10 November 2016).
52. EIA. Assumptions to the Annual Energy Outlook 2017; EIA: Washington, DC, USA, 2017; p. 29.
53. Availability of the National Energy Modeling System (NEMS) Archive. Available online: https://www.eia.gov/outlooks/aeo/

info_nems_archive.php (accessed on 23 March 2019).
54. Williams, E.; Hittinger, E.; Carvalho, R.; Williams, R. Wind power costs expected to decrease due to technological progress. Energy

Policy 2017, 106, 427–435. [CrossRef]
55. Ranjbari, L.; Bahar, A.; Aziz, Z.A. Stochastic Models of Natural Gas Prices. J. Karya Asli Lorekan Ahli Mat. 2013, 6, 50–65.

141



Energies 2025, 18, 1283

56. Keles, D.; Genoese, M.; Möst, D.; Fichtner, W. Comparison of extended mean-reversion and time series models for electricity spot
price simulation considering negative prices. Energy Econ. 2012, 34, 1012–1032. [CrossRef]

57. Henry Hub Natural Gas Spot Price (Dollars per Million Btu). Available online: https://www.eia.gov/dnav/ng/hist/rngwhhdm.
htm (accessed on 29 April 2019).

58. Blair, N.; Zhou, E.; Getman, D.; Arent, D.J. Electricity Capacity Expansion Modeling, Analysis, and Visualization: A Summary of Selected
High-Renewable Modeling Experiences; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2015; p. 39.

59. Rockafellar, R.T.; Uryasev, S. Optimization of conditional value-at-risk. J. Risk 2000, 2, 21–41. [CrossRef]
60. Mathworks. Genetic Algorithm. Available online: https://www.mathworks.com/discovery/genetic-algorithm.html (accessed

on 28 April 2019).
61. Mills, A.D.; Wiser, R.H.; Seel, J. Power Plant Retirements: Trends and Possible Drivers; Lawrence Berkeley National Laboratory:

Berkeley, CA, USA, 2017; p. 1411667. [CrossRef]
62. MISO. 2017 MISO State of the Market Report.pdf. Available online: https://www.potomaceconomics.com/wp-content/uploads/

2018/07/2017-MISO-SOM_Report_6-26_Final.pdf (accessed on 8 July 2019).
63. US Energy Information Administration. Cost and Performance Characteristics of New Generating Technologies, Annual Energy

Outlook 2017. 2017. Available online: https://www.eia.gov/outlooks/aeo/assumptions/pdf/table_8.2.pdf (accessed on 12
February 2018).

64. Midcontinent Independent System Operator (MISO). Daily Regional Forecast and Actual Load. Available online: https://www.
misoenergy.org/markets-and-operations/#t=10&p=0&s=&sd= (accessed on 9 June 2018).

65. Adler, D. Genetic algorithms and simulated annealing: A marriage proposal. In Proceedings of the IEEE International Conference
on Neural Networks, San Francisco, CA, USA, 28 March–1 April 1993; Volume 2, pp. 1104–1109.

66. Genetic Algorithm Options-MATLAB & Simulink. Available online: https://www.mathworks.com/help/gads/genetic-
algorithm-options.html#f6593 (accessed on 28 August 2017).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

142



Article

Reduced-Order Modeling and Stability Analysis of
Grid-Following and Grid-Forming Hybrid Renewable
Energy Plants
Yue Ma *, Ning Chen and Luming Ge

China Electric Power Research Institute, Nanjing 210003, China; chen_ning@epri.sgcc.com.cn (N.C.);
geluming@epri.sgcc.com.cn (L.G.)
* Correspondence: mayue_421@outlook.com

Abstract: The control methods of energy systems can be categorized into grid-following
and grid-forming types. The grid-following control method relies on grid synchronization
and is prone to stability issues in weak grid conditions. By contrast, the grid-forming
control method exhibits synchronous machine characteristics, providing voltage support
to the system, but potentially introducing stability risks under strong grid conditions.
Constructing a grid-following and grid-forming hybrid renewable energy plant can effec-
tively enhance the system’s support capability and ensure reliable operation. However, the
interactions among multiple inverters are complex, and traditional modeling methods are
inadequate to meet the modeling requirements for such systems. To effectively address this
problem, this paper presents a reduced-order modeling method that simplifies the complex
system into a simple system consisting of an equivalent grid-following, an equivalent
grid-forming, and grid impedance through frequency decoupling and the aggregation of
similar inverters. Furthermore, this study employs both the Nyquist stability criterion and
the harmonic characteristic analysis method to elucidate how the capacity ratio between
grid-following and grid-forming affects system stability.

Keywords: grid-following; grid-forming; renewable energy plants; reduced-order
modeling method; stability analysis

1. Introduction
In response to the increasing strain on conventional energy supplies and the worsening

environmental crisis, the transition to low-carbon power systems is accelerating, with
renewable energy playing an ever-growing role in the grid [1]. While the integration of
wind, solar, and other renewable sources helps mitigate environmental issues, it also poses
new challenges to the safe and stable operation of power systems [2].

Renewable energy control methods are primarily classified into grid-following (GFL)
and grid-forming (GFM) types. The GFL method synchronizes with the grid using the phase
locked loop (PLL) [3] and depends on system voltage sources to maintain synchronization at
the point of interconnection. However, it only passively adapts to grid conditions, offering
limited support in weak grid environments, ultimately reducing system stability [4,5]. By
contrast, the grid-forming (GFM) method exhibits damping and inertia characteristics
similar to synchronous machines, allowing it to actively provide voltage support to the
grid and maintain a higher stability margin under weak grid conditions [6,7]. However,
it is prone to stability issues in strong grid environments [8]. Grid-following and grid-
forming systems are suited to different grid conditions. By combining both types within
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a single system, the application range of inverters can be expanded, ensuring stability
even when impedance fluctuates significantly due to changes in operating modes or load
conditions. The hybrid application of grid-following and grid-forming can be realized
through switching, integration, or hybrid control methods. The mode-switching approach
automatically switches the control mode based on the detected grid impedance, though this
transition may introduce unknown stability risks [9]. The control-loop integration method
merges the control mechanisms of both types of inverters within the controller, which
integrates their characteristics; however, this increases the difficulty of system characteristic
analysis [10]. The hybrid control method, which parallels grid-following and grid-forming
systems, not only improves the reliability of inverter operation but enhances flexibility
in renewable energy plants [11]. The inclusion of grid-forming can resolve the issue of
insufficient stability margin in grid-following renewable energy plants under weak grid
conditions. In [12], the impedance characteristics of grid-following and grid-forming
systems are compared using impedance modeling by Xu et al. Under weak grid conditions,
the negative damping frequency range of the grid-forming system is narrower, and its
amplitude characteristic is lower, compared to the grid-following system. When the two
systems are hybridized, the negative damping frequency range is reduced, effectively
enhancing system stability. This issue has been qualitatively explained from the perspective
of a short-circuit ratio, suggesting that the grid-forming system, when modeled as a voltage
source, enhances system strength and leads to an equivalent increase in the short-circuit
ratio, as discussed in [13,14].

The aforementioned studies analyze the stability of grid-following and grid-forming
two-machine systems through modeling. However, in renewable energy plants, multiple
inverters of different types coexist. Traditional modeling methods can lead to overly
complex models, making it challenging to fully capture the characteristics and interactions
of each inverter. Meanwhile, neglecting certain parameters may introduce errors, reducing
modeling accuracy and compromising the reliability of system analysis. In [15], Sun et al.
developed a sixth-order transient model for photovoltaic-storage systems, and its stability
was analyzed using the region of attraction. Nonetheless, the model’s high complexity and
computational burden make it difficult to apply to renewable energy plant modeling. Some
studies reduce the system order at the control level, such as Akwasi et al., who adopted new
control methods for model simplification. In [16], the reduced-order Luenberger observer
(ROLO) is applied to a grid-forming inverter control. The ROLO simplifies the model while
preserving key dynamics and reduces computational complexity. However, as a method
that removes the PI controller, it requires further experiments and validation. Meanwhile,
in [17], Du et al. proposed a model reduction method for inverter-dominated microgrids
by simplifying the external area model, which reduces computational complexity while
preserving key dynamic responses under disturbances. However, the model includes
only grid-forming inverters, without considering interactions between different types. In
addition, although the dynamic performance was verified, no effective stability assessment
method for multi-machine systems was provided. In [18], Rosso et al. derived the transfer
function of a multi-machine system, and the stability of a grid-following and grid-forming
hybrid system was evaluated using the µ analysis method. This approach, based on
multivariable control theory, facilitates the assessment of robust stability under various
conditions. The lack of a clear physical interpretation, however, limits the ability to conduct
further mechanism analysis of the system. In [19], a hybrid system support index was
introduced by Wang et al. to address the qualitative stability analysis of renewable energy
plants, characterizing the stability of hybrid systems. The inclusion of a grid-forming
inverter adds a polynomial with positive coefficients to both the hybrid short-circuit ratio
and the support index. Nevertheless, the calculation of these indicators depends on
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accurate system parameters, their general applicability and adaptability still need further
verification. In [20], an impedance-based composite grid modeling method was proposed
to construct the admittance matrix of a renewable energy plant with multiple inverters.
The system’s stability was determined using eigenvalue analysis. This approach, though,
ignores the interactions between inverters, which compromises the accuracy of the model.
Additionally, solving the eigenvalues of high-order matrices is a challenging task, adding
complexity to the method. In [21], a model reduction method for grid-forming inverters
based on frequency-domain perturbation operators is presented. It simplifies stability
analysis and effectively identifies factors affecting single-machine impedance. However,
the method is not extended to renewable energy plants. Overall, the existing modeling
methods are relatively complex and fail to account for the interactions between inverters,
making it difficult to accurately reflect the impedance characteristics of grid-following and
grid-forming hybrid renewable energy plants.

In a nutshell, this paper addresses the issues of high complexity and low versatility
in existing modeling methods for renewable energy plants by constructing reduced-order
models for grid-following and grid-forming hybrid renewable energy plants. It also
explores the capacity ratio problem of two types of inverters in these plants from the
perspectives of the harmonic suppression using the Nyquist stability criterion and harmonic
analysis methods. Additionally, the conclusions drawn from the analysis are validated
through simulation. Finally, the research findings of this paper are summarized.

2. Topology and Control Block Diagram of Grid-Following and
Grid-Forming Hybrid Renewable Energy Plants

This section presents the hybrid system topology and control block diagrams for
both grid-following and grid-forming inverters. The grid-following inverter uses a phase-
locked loop to measure the point of common coupling, employing closed-loop control
to synchronize with the grid’s voltage and frequency. The grid-forming inverter, on the
other hand, actively controls system frequency and voltage. In weak grid environments, it
mimics synchronous machine behavior, providing inertia and damping support to maintain
system stability.

2.1. Topology of Renewable Energy Plant

The capacity of renewable energy plants typically ranges from 100 MW to 1000 MW,
significantly larger than single-machine systems, and the greater number of inverters
further increases modeling complexity. As technology advances, grid-following and grid-
forming hybrid renewable energy plants have emerged, enabling stable operation under
varying short-circuit ratios. However, the complex interactions among inverters pose
additional challenges for modeling and stability analysis. Figure 1 illustrates the topology
of a grid-following and grid-forming hybrid renewable energy plant, comprising converter
groups, transformers, transmission lines, and an AC power grid.

In renewable energy plants, inverters convert direct current power into alternating
current power, which is more suitable for transmission. Grid-following and grid-forming
hybrid renewable energy plants incorporate both grid-following inverters and grid-forming
inverters. Grid-following inverters perform well and maintain good stability in strong
power grids, while grid-forming inverters provide better stability under weak power grid
conditions. By combining the advantages of both types of inverters, such hybrid renewable
energy plants can achieve stable operation even when the short-circuit ratio of the power
grid changes. The following study focuses on the modeling and stability analysis of this
type of inverter.
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Figure 1. Topology diagram of the grid-following and grid-forming hybrid renewable energy plant.

2.2. Control Structure of Grid-Following/Grid-Forming Inverter

The control block diagrams for grid-following and grid-forming systems are shown in
Figures 2 and 3. The grid-following inverter utilizes a phase-locked loop (PLL) to achieve
synchronization by detecting the grid phase. In Figure 2, L1, L2, and C1 represent the filter
inductors and capacitors, Lg is the grid inductance, uabc is the port voltage, iabc is the port
current, idref and iqref are the reference values for the d-axis and q-axis currents, udref and
uqref are the reference values for the d-axis and q-axis voltages.

Figure 2. Control diagram of the grid-following inverter.

Figure 3. Control block diagram of the grid-forming inverter.

146



Energies 2025, 18, 1752

The grid-forming inverter uses virtual synchronous generator control (VSG), as shown
in Figure 3. In this diagram, L1, L2, and C1 represent the filter inductors and capacitors;
umabc is the bridge arm voltage; uabc is the grid connection point voltage; iabc is the grid
connection point current; Pset and Qset are the rated active and reactive powers; P and Q
represent the active and reactive power generated by GFM; J represents inertia; Dp and Dq

are the active and reactive damping coefficients; u and u0 are the rated voltage RMS value
and the output voltage RMS value; K is the reactive inertia coefficient; θ and Em are the
output power angle and output voltage RMS value of the VSG; Lv and Rv are the virtual
inductance and virtual resistance, which together form the virtual admittance. The control
loop consists of active power, reactive power, virtual admittance, and current loops.

3. Reduced-Order Modeling Method for Grid-Following and
Grid-Forming Hybrid Renewable Energy Plants

The grid-following and grid-forming hybrid renewable energy plant represents a
promising solution that aligns with the current trends in energy development. However,
conventional modeling methods are often complicated, lack general applicability, and
are difficult to adapt to the stability analysis requirements of such hybrid systems. To
overcome these limitations, this paper proposes a model order reduction method tailored
for grid-following and grid-forming hybrid renewable energy plants. The equivalent
admittance matrices of the grid-following and grid-forming inverters are derived, and the
accuracy of the proposed model is verified through comparison between calculated and
measured results.

3.1. Modeling of Grid-Following/Grid-Forming Inverters

The impedance method is based on harmonic linearization theory [22]. By injecting
a harmonic signal into the terminal voltage and measuring the corresponding harmonic
current at the grid connection point, the system’s impedance model can be derived. In
the grid-following and grid-forming hybrid renewable energy plant, transformers and
transmission lines result in phase angle discrepancies between the terminal voltages of
different types of inverters. Therefore, when calculating the impedance models for grid-
following and grid-forming inverters, it is essential to account for the phase of their
respective terminal voltages. Frequency coupling effects exist in both grid-following and
grid-forming inverters. When a positive-sequence voltage with frequency f p is injected at
the grid connection point, it generates a positive-sequence current component at f p and a
negative-sequence current component at f p-2f 1 [23]. Taking the grid-forming inverter as
an example, when a positive-sequence disturbance signal is injected into phase-a of the
terminal voltage, the time-domain expressions for the voltage and current are as follows:

ua(t) = U1 cos(2π f1t +φu) + Up cos(2π fpt +φup) + Un cos(2π fnt +φun)

ia(t) = I1 cos(2π f1t +φi) + Ip cos(2π fpt +φip) + In cos(2π fnt +φin)
(1)

The above expressions are transformed into the frequency domain, and the expressions
are as follows:

ua =

{
U1, f = ± f1

Up, f = ± fp

ia =





I1, f = ± f1

Ip, f = ± fp

In, f = ±( fp − 2 f1)

(2)

In Equation (2), U1 = (U1/2)e±jφu , Up = (Up/2)e±jφup , I1 = (I1/2)e±jφi ,
Ip = (Ip/2)e±jφip and In = (In/2)e±jφin ; U1, Up represent the fundamental voltage and the
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amplitude of the positive-sequence disturbance voltage; I1, Ip, In represent the amplitudes
of the fundamental current, positive-sequence disturbance current, and negative-sequence
disturbance current; φu represents the initial phase angle of the fundamental voltage; φup

represents the initial phase angle of the disturbance voltage; φi represents the initial phase
angle of fundamental current; φip and φin represent the initial phase angles of the positive-
sequence disturbance current and the negative-sequence disturbance current. Based on
the control block diagrams of grid-following and grid-forming inverters, the admittance
models incorporating the terminal voltage phase angle can be derived as follows:

[
Up_GFL(s)
Un_GFL(s)

]
=

[
Y11_GFL(s) Y21_GFL(s)
Y12_GFL(s) Y22_GFL(s)

][
Ip_GFL(s)
In_GFL(s)

]
(3)

[
Up_GFM(s)
Un_GFM(s)

]
=

[
Y11_GFM(s) Y21_GFM(s)
Y12_GFM(s) Y22_GFM(s)

][
Ip_GFM(s)
In_GFM(s)

]
(4)

In Equation (3), Y11_GFL(s), Y21_GFL(s), Y22_GFL(s), and Y12_GFL(s) represent the
impedance expressions for the grid-following inverter, as detailed in Appendix A,
Equations (A2)–(A5). Similarly, in Equation (4), Y11_GFM(s), Y21_GFM(s), Y22_GFM(s), and
Y12_GFM(s) correspond to the impedance expressions for the grid-forming inverter, provided
in Appendix A, Equations (A14)–(A17).

3.2. Overview of Reduced-Order Modeling Methods

The grid-following and grid-forming hybrid renewable energy plant is a highly com-
plex system. If the entire plant is modeled directly, the model complexity becomes extremely
high, as shown in [24], and you would need to spend a significant amount of time handling
this complex matrix, which could even lead to a dimensional explosion. In the topology
shown in Figure 1, directly modeling a grid-following and grid-forming hybrid renewable
energy plant with i grid-forming inverters and j grid-following inverters results in an
impedance model of order (2i + 2j) × (2i + 2j), as given in Equation (5). As i and j increase,
the difficulty of analyzing the impedance model rises significantly. Therefore, reducing the
model order is essential to simplify the analysis of impedance characteristics.




Up_GFM1(s)
Un_GFM1(s)
. . .
Up_GFLj(s)
Un_GFLj(s)



=




Y11_GFM1(s) Y21_GFM1(s)
Y12_GFM1(s) Y22_GFM1(s)

. . .
Y11_GFLj(s) Y11_GFLj(s)
Y11_GFLj(s) Y11_GFLj(s)







Ip_GFM1(s)
In_GFM1(s)
. . .
Ip_GFLj(s)
In_GFLj(s)




(5)

During the plant modeling process, if the impedance of inverters and transformers is
known, their series and parallel connections can be determined based on their electrical
interconnections, ultimately establishing the impedance model of the grid-following and
grid-forming hybrid renewable energy plant. As shown in Equation (5), the admittance
matrix of inverters contains coupling terms. When inverters are connected in series with
transformers and transmission lines, coupling effects alter the impedance of both the
inverters and the lines. These changes also occur between inverters and the grid. Neglect-
ing such effects will introduce errors in the impedance matrix, affecting the accuracy of
stability analysis.

Based on the above analysis, implementing an appropriate model order reduction
in the modeling process of grid-following and grid-forming hybrid renewable energy
plants can significantly simplify the impedance model. At the same time, considering the
coupling effects between inverters and other components helps maintain the accuracy of
the modeling results.
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The flowchart of the reduced-order modeling method is shown in Figure 4. First, based
on the impedance models of grid-following/grid-forming inverters, transformers, and
transmission lines, the admittance model of inverters with collector lines is derived, while
also taking into account the coupling effects between the inverters and the transmission
lines. Next, inverters of the same type are categorized and aggregated to obtain the
equivalent admittance matrices for grid-following and grid-forming inverters. Finally, the
system is connected to the grid, and the equivalent admittance matrices for grid-following
and grid-forming inverters are derived, while considering frequency coupling effects both
among inverters and between inverters and the grid. This model reduction approach
maintains accuracy, while simplifying the renewable energy plant into a simple circuit,
where the equivalent grid-following and grid-forming inverters operate in parallel with
the power grid. The following sections provide a detailed analysis of this model reduction
approach based on specific system models.

Figure 4. Schematic diagram of model order reduction: (a) topology evolution diagram of renewable
energy plants; (b) flowchart of the model order reduction method.

3.3. Detailed Description of Reduced-Order Modeling Methods

Referring to the flowchart in Figure 4, the first step is to calculate the admittance matrix
of inverters with the collection line. As shown in Figure 5, when the inverter is in series
with the line, the coupled current flows through the collection line, creating a current loop.
The collection line impedance affects the inverter’s admittance, so it is essential to account
for these coupling effects during the derivation to ensure the accuracy of the results.

Figure 5. Frequency coupling between the inverter and the collection line.

In Figure 5, Y11_1(s), Y12_1(s), Y22_1(s), and Y21_1(s) represent the admittance matrix
of the inverter in an ideal grid system, while ZLs(s) is the sum of the line impedance and
transformer impedance. According to Ohm’s law, Y = U/I, the admittance matrix of the
inverter operating in stand-alone mode is given by the following:
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Y11_1(s) =−
ip1_1(s)
up(s)

Y21_1(s) =− in2_1(s)
up(s)

Y22_1(s) =− in1_1(s)
un(s)

Y12_1(s) =−
ip2_1(s)
un(s)

(6)

After the collector lines are integrated, the coupling paths within the system are
modified. The admittance matrix of the inverter with collection line is as follows:

Y11_coupling(s) =−
ip_1(s)
up(s)

Y21_coupling(s) =− in_1(s)
up(s)

Y22_coupling(s) =− in_1(s)
un(s)

Y12_coupling(s) =−
ip_1(s)
un(s)

(7)

Based on the relationships shown in Figure 5 and Ohm’s law, I = U× Y, the relationship
between current and voltage can be expressed as follows:

ip1_1(s) = −up(s)Y11_1(s)
ip2_1(s) = −un(s)Y12_1(s− 2jω)

in1_1(s) = −up(s)Y21_1(s)
in2_1(s) = −un(s)Y22_1(s− 2jω)

up(s) = ZLs(s)[ip1_1(s) + ip2_1(s)]
un(s) = ZLs(s− 2jω)[ip1_1(s) + ip2_1(s)]

(8)

Based on Equation (8), the inverter admittance matrix considering frequency coupling
can be obtained through the following calculation:

Y11_coupling(s) = Y11(s)− Y12_1(s−2jω)Y21_1(s)
YLs(s−2jω)+Y22_1(s−2jω)

Y21_coupling(s) = Y21(s)− Y22_1(s−2jω)Y21_1(s)
YLs(s−2jω)+Y22_1(s−2jω)

Y22_coupling(s) = Y22(s)− Y21_1(s+2jω)Y12_1(s)
YLs(s+2jω)+Y11_1(s+2jω)

Y12_coupling(s) = Y12(s)− Y11_1(s+2jω)Y12_1(s)
YLs(s+2jω)+Y11_1(s+2jω)

(9)

In Equation (9), Y11_coupling(s), Y21_coupling(s), Y22_coupling(s), and Y12_coupling(s) denote
the inverter admittance matrix considering frequency coupling. The admittance matrix of
the collection line incorporating these coupling effects can be expressed as follows:

Y11_Lscoupling(s) = YLs(s)

Y21_Lscoupling(s) =
Y21_coupling(s)
Y11_coupling(s)

YLs(s)

Y22_Lscoupling(s) = YLs(s)

Y12_Lscoupling(s) =
Y12_coupling(s)
Y22_coupling(s)

YLs(s)

(10)

In Equation (10), Y11_Lscoupling(s), Y21_Lscoupling(s), Y22_Lscoupling(s), and Y12_Lscoupling(s)
denote the collection line admittance matrix considering frequency coupling. Since
the inverter and collection line impedance are in series, the admittance is given by
Yequ(s) = YLscoupling(s) × Ycoupling(s)/[YLscoupling(s) + Ycoupling(s)]. The admittance ma-
trix for the series combination of the collection line and inverter can be derived from
Equations (9) and (10), as follows:
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Y11equ(s) =
[ZLs(s−2jω)Y11_1(s)Y22_1(s−2jω)+Y11_1(s)−ZLs(s)(s−2jω)Y12_1(s−2jω)Y21_1(s)]

[1+Y22_1(s−2jω)ZLs(s−2jω)+ZLs(s)Y11_1(s)+ZLs(s−2jω)ZLs(s)Y11_1(s)Y22_1(s−2jω)−Y12_1(s−2jω)Y21_1(s)ZLs(s−2jω)ZLs(s)]

Y21equ(s) =
Y21_1(s)

[1+Y22_1(s−2jω)ZLs(s−2jω)+ZLs(s)Y11_1(s)+Zequ(s−2jω)ZLs(s)Y11_1(s)Y22_1(s−2jω)−Y12_1(s−2jω)Y21_1(s)ZLs(s−2jω)ZLs(s)]

Y12equ(s) =
Y12_1(s)

[1+Y11_1(s+2jω)ZLs(s+2jω)+ZLs(s)Y22_1(s)+Y22_1(s)ZLs(s+2jω)ZLs(s)Y11_1(s+2jω)−Y21_1(s+2jω)ZLs(s+2jω)Y12_1(s)ZLs(s)]

Y22equ(s) =
[ZLs(s+2jω)Y22_1(s)Y11_1(s+2jω)+Y22_1(s)−ZLs(s+2jω)Y21_1(s+2jω)Y12_1(s)]

[1+Y11_1(s+2jω)ZLs(s+2jω)+ZLs(s)Y22_1(s)+Y22_1(s)ZLs(s+2jω)ZLs(s)Y11_1(s+2jω)−Y21_1(s+2jω)ZLs(s+2jω)Y12_1(s)ZLs(s)]

(11)

In the Equation (11), Y11equ(s), Y12equ(s), Y21equ(s), and Y22equ(s) represent the admit-
tance matrix of the inverter with the collection line.

According to the flowchart in Figure 4, after deriving the inverter admittance matrix
with the collection line, the system can be simplified to multiple parallel inverters connected
in series with the grid. In the plant, inverters are categorized into grid-following and grid-
forming based on their control methods. Aggregating inverters with the same control
method helps reduce the order of the admittance matrix. However, coupling effects exist
both among inverters and between inverters and the power grid. Therefore, these coupling
effects should be considered when deriving the equivalent grid-following and grid-forming
admittances. Figure 6 illustrates the coupling relationships between positive and negative
sequence voltages, as well as their corresponding currents in the renewable energy plant.

Figure 6. Frequency coupling relationship in the renewable energy plant.

In Figure 6, Zg(s) represents the power grid impedance matrix, while Y11equk(s),
Y21equk(s), Y22equk(s), and Y12equk(s) denote the admittance matrices of inverters with the
collection lines. The voltage and current of each inverter in the coupling loop are related
as follows:

ip1_equGFM1(s) = −up(s)Y11_equGFM1(s)
ip2_equGFM1(s) = −un(s)Y12_equGFM1(s− 2jω)

in1_equGFM1(s) = −up(s)Y21_equGFM1(s)
in2_equGFM1(s) = −un(s)Y22_equGFM1(s− 2jω)

ip1_equGFLj(s) = −up(s)Y11_equGFLj(s)
ip2_equGFLj(s) = −un(s)Y12_equGFLj(s− 2jω)

in1_equGFLj(s) = −up(s)Y21_equGFLj(s)
in2_equGFLj(s) = −un(s)Y22_equGFLj(s− 2jω)

(12)
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By aggregating inverters of the same type, their admittances are summed, yielding
the following:

i

∑
k=1

ip1_equGFMk(s) = −up(s)
i

∑
k=1

Y11_equGFMk(s)

i

∑
k=1

ip2_equGFMk(s) = −un(s)
i

∑
k=1

Y12_equGFMk(s− 2jω)

i

∑
k=1

in1_equGFMk(s) = −up(s)
i

∑
k=1

Y21_equGFMk(s)

i

∑
k=1

in2_equGFMk(s) = −un(s)
i

∑
k=1

Y22_equGFMk(s− 2jω)

j

∑
k=1

ip1_equGFLk(s) = −up(s)
j

∑
k=1

Y11_equGFLk(s)

j

∑
k=1

ip2_equGFLk(s) = −un(s)
j

∑
k=1

Y12_equGFLk(s− 2jω)

j

∑
k=1

in1_equGFLk(s) = −up(s)
j

∑
k=1

Y21_equGFLk(s)

j

∑
k=1

in2_equGFLk(s) = −un(s)
j

∑
k=1

Y22_equGFLk(s− 2jω)

up(s) = Zg(s)[
i

∑
k=1

ip1_equGFMk(s) +
i

∑
k=1

ip2_equGFMk(s) +
j

∑
k=1

ip1_equGFLk(s) +
j

∑
k=1

ip2_equGFLk(s)]

un(s) = Zg(s− 2jω)[
i

∑
k=1

in1_equGFMk(s) +
i

∑
k=1

in2_equGFMk(s) +
j

∑
k=1

in1_equGFLk(s) +
j

∑
k=1

in2_equGFLk(s)] (13)

According to Figure 6, the calculation formulas for the equivalent grid-following and
grid-forming models can be expressed as follows:

Yep_GFM(s) =− ip_GFM(s)
up(s)

= −

i
∑

k=1
ip1_equGFMk(s) +

i
∑

k=1
ip2_equGFMk(s)

up(s)

Yen_GFM(s) =− in_GFM(s)
un(s)

= −

i
∑

k=1
in1_equGFMk(s) +

i
∑

k=1
in2_equGFMk(s)

un(s)

Yep_GFL(s) =−
ip_GFL(s)

up(s)
= −

i
∑

k=1
ip1_equGFLk(s) +

i
∑

k=1
ip2_equGFLk(s)

up(s)

Yen_GFL(s) =−
in_GFL(s)

un(s)
= −

i
∑

k=1
in1_equGFLk(s) +

i
∑

k=1
in2_equGFLk(s)

un(s)

(14)

Based on Equations (13) and (14), the admittance matrix expressions for the equivalent
grid-following and grid-forming inverters can be derived as follows:
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Yep_GFL(s) =
j

∑
k=1

Y11_equGFLk −
j

∑
k=1

Y12_equGFLk(s− 2jω) ·

j
∑

k=1
Y21_equGFLk(s) +

i
∑

k=1
Y21_equGFMk(s)

j
∑

k=1
Y22_equGFLk(s− 2jω) +

i
∑

k=1
Y22_equGFMk(s− 2jω) + Yg(s− 2jω)

Yen_GFL(s) =
j

∑
k=1

Y22_equGFLk −
j

∑
k=1

Y21_equGFLk(s + 2jω) ·

j
∑

k=1
Y12_equGFLk(s) +

i
∑

k=1
Y12_equGFMk(s)

j
∑

k=1
Y11_equGFLk(s + 2jω) +

i
∑

k=1
Y11_equGFMk(s + 2jω) + Yg(s + 2jω)

Yep_GFM(s) =
i

∑
k=1

Y11_equGFMk −
i

∑
k=1

Y12_equGFMk(s− 2jω) ·

j
∑

k=1
Y21_equGFLk(s) +

i
∑

k=1
Y21_equGFMk(s)

j
∑

k=1
Y22_equGFLk(s− 2jω) +

i
∑

k=1
Y22_equGFMk(s− 2jω) + Yg(s− 2jω)

Yen_GFM(s) =
i

∑
k=1

Y22_equGFMk −
i

∑
k=1

Y21_equGFMk(s + 2jω) ·

j
∑

k=1
Y12_equGFLk(s) +

i
∑

k=1
Y12_equGFMk(s)

j
∑

k=1
Y11_equGFLk(s + 2jω) +

i
∑

k=1
Y11_equGFMk(s + 2jω) + Yg(s + 2jω)

(15)

In Equation (15), Yep_GFL(s), Yen_GFL(s), Yep_GFM(s), and Yen_GFM(s) represent the ad-
mittance matrices for the equivalent grid-following and grid-forming systems. After a
reduction in order, the grid-following and grid-forming hybrid renewable energy plant
can be simplified to a simple system containing only the equivalent grid-following and
grid-forming systems. The topology is shown in Figure 7.

Figure 7. Reduced-order circuit diagram of the grid-following and grid-forming hybrid renewable
energy plant.

3.4. Model Validation
3.4.1. Inverters Parameter Design

The admittance matrix is measured using the harmonic injection method. A hybrid
renewable energy plant consisting of two grid-following inverters and two grid-forming in-
verters was built in Matlab/Simulink2023a, where harmonic signals of different frequencies
are injected at the point of common coupling (PCC), and the resulting harmonic currents
are measured. The admittance at each frequency is calculated accordingly. The admittance
at each frequency is calculated using the following equation: Y[f ] = u[f ]/i[f ], where u[f ]
and i[f ] are the measured harmonic current and the voltage at the PCC. By comparing the
measured admittance values with the calculated results, the accuracy of the model order
reduction method is verified.

Next, the parameter design of the grid-following and grid-forming converters is
introduced. The grid-following converter design refers to [25], while the main circuit
parameters of the grid-forming converter, including the LCL filter, remain the same. For
the grid-forming inverter, the most critical aspect lies in the parameter regulation of the
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active power loop, which can be simplified into a typical second-order system. According
to the control block diagram of the active power loop and the power angle equation, the
closed-loop transfer function of the active power loop can be obtained as follows:

Gp(s) =
1

Js2 + Ds + UgE0/X0
(16)

In the Equation (16), Ug represents the grid voltage, E0 is the initial voltage of the
GFM inverter, and X0 is the impedance between the initial voltage and the grid voltage.
By combining the typical control parameters of a second-order system, the inertia J and
damping coefficient D of the grid-forming inverter can be derived.

The parameters for the grid-following and grid-forming inverters are provided in
Tables 1 and 2.

Table 1. Grid-forming inverter parameters.

Parameter Value Parameter Value

Pn/MW 1 Udc/V 1000
Ug/V 220 L1/mH 0.04125

L2/mH 0.04125 C1/µF 982.44
Ls/mH 0.004125 Lx/mH 0.2475

Dp 202.5079 J/(kg.m2) 10.6583
Dq 10 K 0.1

Lv/mH 0.0016 Rv/Ω 0.05

Table 2. Grid-following inverter parameters.

Parameter Value Parameter Value

Pn/MW 1 Udc/V 1000
Ug/V 220 L1/mH 0.04125

L2/mH 0.04125 C1/µF 982.44
Ls/mH 0.004125 Lx/mH 0.2475

Hi 0.00044 KpPLL 253
Hu 0.0034 KiPLL 16,016

3.4.2. Admittance Curve Comparison

During the modeling process, some studies simplify the calculation by neglecting the
coupling effects between the positive and negative sequences [26]. However, as discussed
earlier, this approach does not accurately represent the real coupling paths within the
system. Ignoring these effects and using the single inverter impedance as the actual
impedance of the inverter in the renewable energy plant leads to discrepancies between the
calculated and measured values, ultimately impacting the model’s accuracy and reliability.
A comparison of the calculated values of the equivalent grid-following and grid-forming
admittances, with and without considering coupling effects, demonstrates the importance
of frequency decoupling. As shown in Figure 8, the calculated values align perfectly with
the simulation results when coupling effects are considered. By contrast, ignoring coupling
effects leads to significant discrepancies between the calculated and simulated values. This
demonstrates the importance of incorporating coupling effects in impedance modeling.

The simulation validation of the proposed reduced-order modeling method confirms
that a grid-following and grid-forming hybrid renewable energy plant can be effectively
simplified into a system comprising a grid-following inverter, a grid-forming inverter,
and a grid. By following the reduction steps outlined in Figure 4, this simplified model
accurately captures the impedance characteristics of the inverters. This reduced-order
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method categorizes and aggregates different inverters, reducing the admittance matrix
of order (2i + 2j) × (2i + 2j) in Equation (4) to a 4th-order equivalent grid-following/grid-
forming admittance matrix. Additionally, the order of this equivalent admittance matrix
remains constant regardless of the number of inverters. The modeling process incorporates
coupling effects to ensure accuracy. By utilizing this reduced-order system, the stability
characteristics of the hybrid inverter system can be analyzed, significantly simplifying the
stability analysis. The following section will apply this reduced-order modeling approach
to assess the stability of grid-following and grid-forming hybrid renewable energy plants.

Figure 8. Comparison plot of calculated and simulated admittance matrix values: (a) admit-
tance matrix ignoring frequency coupling effects; (b) admittance matrix considering frequency
coupling effects.
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4. Stability Analysis of Grid-Following and Grid-Forming Hybrid New
Energy Power Plants

Grid-following and grid-forming hybrid renewable energy plants exhibit distinct
impedance characteristics compared to single-inverter systems, resulting in increased com-
plexity in their stability analysis and necessitating further in-depth investigation. The model
order reduction method presented earlier establishes a solid theoretical foundation for the
stability studies of such systems. In this section, representative case studies are conducted
by integrating the reduced-order model with various stability analysis approaches to sys-
tematically examine the underlying mechanisms through which grid-forming inverters
enhance the stability of renewable energy plants.

4.1. Stability Analysis Methods
4.1.1. Harmonic Characteristic Analysis Method

As power electronic devices, inverters are susceptible to harmonic distortion. The
harmonic characteristic analysis method, based on the impedance approach, enables the
examination of an inverter’s amplification or attenuation effects on harmonics, facilitating
an analysis of the system’s harmonic behavior across different frequencies.

The harmonic equivalent circuit for a grid-following inverter operating in isolation
is shown in Figure 9a, while the harmonic equivalent circuit for a multi-inverter system
is illustrated in Figure 9b. An oscillation source, Up(s), exists on the grid side. When the
inverter is disconnected, the harmonics at the grid connection point match those of the grid.
However, when the inverter is connected, the harmonics at the connection point change. A
lower harmonic content at the connection point is more favorable for the stable operation
of the inverter.

Figure 9. (a) Harmonic equivalent circuit diagram of the grid-following system. (b) Harmonic
equivalent circuit diagram of the grid-following and grid-forming hybrid renewable energy plant.

To investigate the suppression or amplification of harmonics when grid-side oscilla-
tions are transmitted to the point of connection, the transfer function from the grid-side
harmonic voltage to the connection point can be calculated. As shown in Figure 9a, the
transfer function expression for a system consisting only of a grid-following inverter is
as follows:

G
uGFLp
up (s) =

Zep_GFL(s)
Zg(s) + Zep_GFL(s)

(17)

GuGFLn
un (s) =

Zen_GFL(s)
Zg(s) + Zen_GFL(s)

(18)

Based on Figure 9b, the transfer function for the harmonic voltage from the grid to the
point of connection in a grid-following and grid-forming hybrid system can be calculated
as follows:

G
uGFLp
up (s) =

Zep_GFM(s)||Zep_GFL(s)
Zg(s) + Zep_GFM(s)||Zep_GFL(s)

(19)
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GuGFLn
un (s) =

Zen_GFM(s)||Zen_GFL(s)
Zg(s) + Zen_GFM(s)||Zen_GFL(s)

(20)

The harmonic characteristic curve of the system is plotted based on Equations (17)–(20).
The amplitude–frequency curve illustrates how grid-side disturbances are transmitted to
the point of connection across different frequency ranges. An amplitude greater than
1 indicates that the disturbances are amplified at the point of connection, posing a risk of
instability, while an amplitude less than 1 indicates that the disturbances are attenuated.
If attenuation occurs over a wider frequency range, the control strategy demonstrates
stronger disturbance rejection capability, ensuring reliable operation even when grid-side
disturbances are present.

4.1.2. Nyquist Stability Criterion of Grid-Following and Grid-Forming Hybrid New Energy
Power Plants

Due to the voltage source characteristics of the grid-forming inverter, the three-port
network comprising the grid-following inverter, the grid-forming inverter, and the grid
can be simplified into a two-port network. In this configuration, the grid-forming inverter
operates in parallel with the grid, while the grid-following inverter is connected in series.
Figure 10 illustrates the equivalent circuit of the grid-following and grid-forming hybrid
renewable energy plant.

Figure 10. Equivalent circuit diagram of the grid-following and grid-forming hybrid new energy
power plant.

The equivalent grid impedance, denoted as Zsys(s) = ZGFM(s)||Zg(s), represents the
parallel combination of the grid-forming inverter and the power grid. The equivalent
voltage after this parallel connection is represented as U0(s).

Based on the above analysis, the impedance ratio of the grid-following and grid-
forming hybrid renewable energy plant is given by the following:

IRmixp(s) =
Zsysp(s)

Zep_GFL(s)
=

Zep_GFM(s)||Zg(s)
Zep_GFL(s)

(21)

IRmixn(s) =
Zsysn(s)

Zen_GFL(s)
=

Zen_GFM(s)||Zg(s)
Zen_GFL(s)

(22)

In Equations (21) and (22), Zep_GFL(s) and Zep_GFM(s) represent the positive sequence
impedances of the equivalent grid-following and grid-forming inverters, while Zen_GFL(s)
and Zen_GFM(s) represent their negative sequence impedances, and Zg(s) is the grid
impedance. The stability of the system can be assessed by analyzing whether the Nyquist
plot of the open loop transfer functions, as shown in Equations (21) and (22), encircles the
point (−1, j0).

4.2. Capacity Ratio Analysis of the Grid-Forming and Grid-Following Hybrid New Energy
Power Plants

Grid-following inverters can effectively control harmonic content within a small range
under strong grid conditions, resulting in a higher stability margin for the system. However,
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in weak grid conditions, the stability margin of the inverters decreases, and the risk of
harmonic generation increases. To address this, increasing the capacity of the grid-forming
inverter in a dual-inverter system can improve the system’s stability [27]. In renewable
energy plants, the number of inverters is typically large, and interactions between inverters
are likely to occur. This conclusion may require further investigation.

The following section employs the reduced-order modeling method for grid-following
and grid-forming inverters to investigate how grid-forming inverters enhance the stability
of small grid-following inverters in weak grids. Four scenarios are analyzed, each with
a short-circuit ratio of 1.5. To provide a comprehensive assessment of the impact of
grid-forming inverters on grid-following systems, Scenario 4 includes two grid-forming
inverters with different parameter sets, both of which ensure stable operation in a weak
grid with a short-circuit ratio of 1.5. Table 3 outlines the inverter configurations for each
scenario, while detailed inverter parameters are provided in Appendix A.

Table 3. Parameters of four scenarios with different inverters.

Inverter 1 Inverter 2 Inverter 3 Inverter 4 Total Inverter Capacity

Scenario 1 GFL/1 MW GFL/1 MW GFL/0.5 MW GFL/1 MW 3.5 MW
Scenario 2 GFM/1 MW GFL/1 MW GFL/0.5 MW GFL/1 MW 3.5 MW
Scenario 3 GFM/1 MW GFM/1 MW GFL/0.5 MW GFL/1 MW 3.5 MW
Scenario 4 GFM/1 MW GFM/1 MW GFM/0.5 MW GFL/1 MW 3.5 MW

To gain a deeper understanding of harmonic suppression in the four scenarios, har-
monic characteristic curves were plotted for each case. As shown in Figure 11, when
the amplitude of the harmonic characteristic curve exceeds 1, it indicates that distur-
bances from the power source side are amplified as they propagate to the grid connection
point. Conversely, an amplitude below 1 signifies that disturbances are attenuated dur-
ing transmission. In scenarios where only the grid-following inverters are present, the
harmonic characteristic curve exceeds 1 within the 1–176.3 Hz range, indicating that the
grid-following inverters amplify harmonics in this frequency band. The harmonic charac-
teristic curves from Scenario 1 to Scenario 3 reveal that, as the grid-forming inverters are
introduced, disturbances in the low and medium frequency range are suppressed to vary-
ing degrees. Moreover, the suppression effect becomes more pronounced as the number of
grid-forming inverters increases. Nevertheless, the harmonic characteristic curve of Sce-
nario 4 shows that, when the grid-forming inverters with different parameters are present
in the system, harmonics around 50 Hz and 100 Hz increase significantly, highlighting
emerging stability issues among the grid-forming inverters. Both grid-following and grid-
forming control loops incorporate feedback mechanisms. Improved harmonic suppression
at the point of interconnection results in lower harmonic content in the feedback signals,
which in turn enhances system stability. In conclusion, from the perspective of harmonic
characteristics, the integration of grid-forming inverters improves the harmonic behavior
in the low-to-mid frequency range at the point of common coupling. In a grid-following
and grid-forming hybrid renewable energy plant, increasing the number of grid-forming
inverters under the same operating conditions significantly reduces harmonic content in
these frequency ranges. However, when grid-forming inverters with different operating
conditions are added, interactions between the inverters can lead to stability issues around
the power frequency.

To comprehensively analyze the impact of inverter configuration on a grid-following
and grid-forming hybrid renewable energy plant, impedance curves for the equivalent
grid-following and grid-forming systems were plotted for four different scenarios with the
same parameters. As shown in Figure 12a, with the increase in grid-forming inverters, the
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magnitude of the equivalent grid-following impedance gradually increases. In Figure 12b,
the impedance of the equivalent grid decreases. The phase margin at the intersection of
the equivalent grid-following and grid-forming impedances reflects the stability of the
system: PM = 180◦ − |∠(φsys − φGFL)|. As seen in Figure 13, from Scenario 1 to Scenario
3, with an increase in the grid-forming inverters, the intersection of the magnitude of the
equivalent grid-following impedance and the equivalent grid impedance shifts to the right.
The phase angle of the equivalent grid increases, while the phase angle of the equivalent
grid-following impedance decreases, causing the phase difference to decrease and the
phase margin to gradually increase. As seen in Scenario 4, with the addition of a grid-
forming inverter with different parameters from the previous ones, the intersection of the
equivalent grid-following and grid-forming impedances shifts to the left near 50 Hz. At this
point, the equivalent grid-following impedance lies within the negative damping region,
leading to system instability. In conclusion, from the perspective of impedance curves, the
addition of grid-forming inverters increases the magnitude of the equivalent grid-following
impedance and reduces the magnitude of the equivalent grid impedance. This causes the
intersection of the two impedance curves to shift to the right, thereby increasing the phase
margin and enhancing system stability. The stability improvement is more significant when
grid-forming inverters with the same operating conditions are added. However, when
grid-forming inverters with different operating conditions are introduced, the impedance
intersection shifts earlier, leading to a risk of system instability.

Figure 11. Harmonic characteristics of different scenarios.

To analyze the stability of the four scenarios, the solid and dashed lines in Figure 14
represent the positive sequence and negative sequence Nyquist curves. In scenarios one and
four, the Nyquist curves pass through (−1, j0), indicating system stability. By contrast, the
Nyquist curves in scenarios two and three do not pass through (−1, j0), indicating system
instability. This result aligns with the previous stability analysis, which suggests that adding
grid-forming inverters with the same operating conditions to a grid-following system
improves system stability, while introducing different inverters poses a risk of instability.
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Figure 12. Impedance curves of different scenarios: (a) equivalent grid-following impedance curves
in the four scenarios; (b) equivalent grid impedance curves in the four scenarios.

To conclude, the addition of grid-forming inverters improves the harmonic content at
the grid connection point, reduces the control complexity of both the grid-following and
grid-forming inverters, and enhances the system’s disturbance rejection capability. From
the perspective of system impedance, the inclusion of the grid-forming inverters increases
the impedance of the equivalent grid-following inverter and decreases the impedance of the
equivalent power grid, shifting the impedance intersection to the right, while increasing the
stability margin. However, when multiple grid-forming inverters with different operating
conditions are present in the system, their interactions may introduce new stability issues.
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Figure 13. Phase margin under the different scenarios.

Figure 14. Nyquist curves in different scenarios.
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5. Simulation Verification
To validate the conclusions in Section 4, simulation models for the four scenarios

were constructed under the condition of SCR = 1.5. The inverter current waveforms are
shown in Figure 15a. As depicted, the current waveforms in Scenario 1 and Scenario 4
exhibit significant oscillations, whereas those in Scenarios 2 and 3 remain stable. This
corresponds with the stability analysis presented in Section 4.2. Figure 15b analyzes the
harmonic content of the current. In Scenario 1, the dominant harmonics are 13.8 Hz and
86.2 Hz, while in Scenario 4, the dominant harmonics are 49 Hz and 51 Hz, which aligns
with the harmonic characteristic analysis from Section 4.2.

Figure 15. Simulation results of four scenarios: (a) current curves of the four scenarios; (b) harmonic
analysis of the four scenarios.

Overall, the consistency between simulation experiments and theoretical analysis
demonstrates that the impedance matrix calculated via the reduced-order modeling method
effectively reflects the impedance characteristics of the grid-following and grid-forming
hybrid renewable energy plants, thereby enabling accurate stability assessments. Simu-
lation results across various scenarios further indicate that incorporating grid-forming
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inverters into renewable energy plants with multiple grid-following inverters can suppress
harmonics in the low and medium frequency ranges at the connection point, and reduce
the harmonic content in the feedback control loops of both inverter types. Adjusting the
impedance magnitudes of the equivalent grid-following inverter and the equivalent grid
indirectly enhances the system’s phase margin, thereby improving its overall stability.
However, if a grid-following and grid-forming hybrid renewable energy plant includes
multiple grid-forming inverters under different operating conditions, interactions among
these units may introduce new stability challenges.

6. Conclusions
This paper presents a reduced-order modeling approach for grid-following and grid-

forming hybrid renewable energy plants. By employing harmonic characteristic analysis
and the Nyquist stability criterion, this study examines how grid-forming inverters enhance
the stability of grid-following inverters in weak grid conditions. Additionally, this study
explores the capacity ratio between grid-following and grid-forming inverters in the plant.
The main contributions and conclusions are summarized as follows:

(1) For grid-following and grid-forming hybrid renewable energy plants, the pro-
posed reduced-order modeling method employs the aggregation of inverters with similar
control strategies and the decoupling of positive and negative frequency among differ-
ent components. This approach simplifies the complex renewable energy plant into a
straightforward system comprising an equivalent grid-following system, an equivalent
grid-forming system, and the power grid, thereby combining simplicity and generality
with accuracy.

(2) The incorporation of grid-forming inverters markedly reduces the harmonic content
in the low-to-medium frequency range at the grid connection point. In addition, by
increasing the magnitude of the equivalent grid-following impedance while decreasing
that of the equivalent grid impedance, the phase margin of the renewable energy plant
is indirectly enhanced, thereby improving the stability of grid-following inverters under
weak grid conditions. However, when multiple grid-forming inverters are present, caution
must be exercised, since interactions among them may give rise to new stability challenges.

In addition, one small limitation of this paper is that none of the content has been
experimentally validated in the laboratory. We will address this limitation in future work.
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Abbreviations

GFM Grid-forming
GFL Grid-following
PLL Phase-locked Loop
VSG Virtual Synchronous Generator
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L1 Filter Inductor
L2 Filter Inductor
C1 Filter Capacitor
Lg Grid Inductor
uabc Point of Common Coupling Voltage
iabc Point of Common Coupling Current
idref d-axis Reference Current
iqref q-axis Reference Current
udref d-axis Reference Voltage
uqref q-axis Reference Voltage
Hu Voltage Conversion Coefficient
Hi Current Conversion Coefficient
Kpwm Pulse Width Modulation Coefficient
umabc Bridge Arm Voltage
PWM Pulse Width Modulation
θ Phase of the Point of Common Coupling
PI Proportional-Integral Controller
J Inertia of the Active Power Loop
Dp Droop Coefficient in the Active Power Loop
Pset Active Power Setpoint
P Active Power
Qset Reactive Power Setpoint
Q Reactive Power
Dq Droop Coefficient in the Reactive Power Loop
Rv Virtual Resistor
Lv Virtual Inductor
Ls Transformer Impedance
Lx Transmission Line Impedance
Pn Rated Power
ω0 Power Frequency
THD Total Harmonic Distortion

Appendix A

A = {{(U1 + jω0L1I1) + [I1 + (U1 + jω0L1I1)jω0C1]jω0L2}/KPWM + kcHi[(U1 + jω0L1I1)jω0C1]}
Umd[0] = ( 1

2 e−jφv)A + ( 1
2 e+jφv)A∗

Umq[0] = −[(j 1
2 e−jφv)A + (−j 1

2 e+jφv)A∗]
HPLL(s) = (KpPLL + KiPLL

s ) 1
s

Gp(s) =
−jHPLL(s)

(1+HuU1e−jφv HPLL(s))

Gn(s) =
+jHPLL(s)

(1+HuU1e−jφv HPLL(s))

Gi(s) = kpPLL + kiPLL
s

(A1)

Y11_GFL(s) = −

[j 1
2 HuGp(s)]Umd[0]Kpwm − [ 1

2 HuGp(s)]Umq[0]Kpwm

+( 1
2 e+jφu)[Gi(s− jω0)−jk0]Kpwm[jI1HiHuGp(s− jω0)e−2jφu ]− skcHiC1Kpwm − s2L2C1 − 1

( 1
2 e+jφu)[Gi(s− jω0)−jk0]Kpwm(2Hie−jφu)

+sL1 + sL2 + s3L2C1L1 + s2kcHiC1L1Kpwm

(A2)

Y21_GFL(s) = −

(−j 1
2 HuGpe−2jφu)KpwmUmd[0]− ( 1

2 HuGpe−2jφu)KpwmUmq[0]
+( 1

2 e−jφu)(Gi(s− jω0) + jK0)Kpwm(−jI1HiHuGp(s− jω0)e−2jφi )

−( 1
2 e−jφu)(Gi(s− jω0) + jK0)Kpwm(−2Hie+jφu) + (s− 2jω0)L1

+(s− 2jω0)L2 + (s− 2jω0)
3L2L1C1 + (s− 2jω0)

2kcL1HiC1Kpwm

(A3)
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Y22_GFL(s) = −

(−j 1
2 HuGn)U∗md[0]Kpwm − ( 1

2 HuGn)U∗mq[0]Kpwm

+( 1
2 e−jφu)[Gi(s + jω0) + jk0]Kpwm[−jI1HiHuGp(s + jω0)e+2jφu ]− skcHiC1Kpwm − s2L2C1 − 1

( 1
2 e−jφu)[Gi(s + jω0) + jk0]Kpwm(2Hie−jφu)

+sL1 + sL2 + s3L2C1L1 + s2kcHiC1L1Kpwm

(A4)

Y12_GFL(s) = −

(+j 1
2 HuGne+2jφu)KpwmU∗md[0]− ( 1

2 HuGne+2jφu)KpwmU∗mq[0]
+( 1

2 e+jφu)[Gi(s + jω0)− jK0]Kpwm[jI1HiHuGp(s + jω0)e+2jφi ]

−( 1
2 e+jφu)[Gi(s + jω0)− jK0]Kpwm(−2Hie−jφu) + (s + jω0)L1

+(s + jω0)L2 + (s + 2jω0)
3L2L1C1 + (s + 2jω0)

2kcL1HiC1Kpwm

(A5)

C = [(KPWMHuE0e±jφvir − HuU1)/(Rv + jω0Lv)] (A6)

B = {{(U1 + jω0L1 I1) + [I1 + (U1 + jω0L1 I1)jω0C1]jω0L2}/KPWM + kcHi(U1 + jω0L1 I1)jω0C1} (A7)

D = {−( 1
2 j)Hω HuHiM(s− jω0)/(s− jω0)KPWMTsB+

(j 1
2 )Gi(s1)Hω HuHiM(s− jω0)/(s− jω0)KPWMTsC−

(j 1
2 e+jφvir )Gi(s− jω0)E0KPWMHu/(Rv + Lvs)Hω HuHiM(s− jω0)/(s− jω0)KPWMTs−

(j 1
2 )Gi(s− jω0)Hi I1Hω HuHiM(s− jω0)/(s− jω0)KPWMTs}

(A8)

E = {(j 1
2 ){Hω HuHiM(s− jω0)/(s− jω0)TsKPWMB∗−

(j 1
2 )Gi(s− jω0)Hω HuHiM(s− jω0)/(s− jω0)TsKPWMC∗+

(j 1
2 e−jφvir )Gi(s− jω0)E0KPWMHu/(Rv + Lvs2)Hω HuHiM(s− jω0)/(s− jω0)TsKPWM+

(j 1
2 )Gi(s− jω0)Hi I1Hω HuHiM(s− jω0)/(s− jω0)TsKPWM}

(A9)

F = {(U1 + jω0L1 I1) + [I1 + (U1 + jω0L1 I1)jω0C1]jω0L2}/KPWM + kcHi(U1 + jω0L1 I1)jω0C1 (A10)

H = [(KPWMHuE0e±jφvir − HuU1)/(Rv + Lvjω0)] (A11)

K = {( 1
2 j)KPWMTsHω HuHiM(s + jω0)/(s + jω0)F∗−

(j 1
2 )Gi(s3)KPWMTs Hω HuHiM(s + jω0)/(s + jω0)H∗+

(j 1
2 e−jφvir )Gi(s + jω0)E0KPWMHu/(Rv + Lvs)KPWMTsHω HuHiM(s + jω0)/(s + jω0)+

(j 1
2 )Gi(s + jω0)HiKPWMTsHω HuHiM(s + jω0)/(s + jω0)I1}

(A12)

M = {(−j 1
2 )Hω HuHiM(s + jω0)/(s + jω0)TsKPWMF−

(−j 1
2 )Gi(s3)Hω HuHiM(s + jω0)/(s + jω0)TsKPWMH+

(−j 1
2 e+jφvir )Gi(s + jω0)E0KPWMHu/[Rv + Lv(s + 2jω0)]Hω HuHiM(s + jω0)/(s + jω0)TsKPWM+

(−j 1
2 )Gi(s + jω0)HiTsKPWMHω HuHiM(s + jω0)/(s + jω0)I1}

(A13)

Y11_GFM =

−

{−{De−2jφiI1 + ( 1
2 e+jφvir )Gi(s− jω0)/[K(s− jω0)]KPWMHu/(Rv + Lvs)[−e∓jφu Hu(Dq−jHie−2jφi e+jφu I1)]KPWMTs−

Gi(s− jω0)Hu/(Rv + Lvs)KPWMTs − skcHiC1KPWMTs − s2L2C1 − 1}+
{Ee−2jφi I1 + ( 1

2 e−jφvir )Gi(s− jω0)/[K(s− jω0)]KPWMHu/
[Rv + Lv(s− 2jω0)]TsKPWM[−e−jφu Hu(Dq−jHie−2jφi e+jφu I1)]}/
{EU1 + ( 1

2 e−jφvir )Gi(s− jω0)/[K(s− jω0)]KPWMHu/[Rv + Lv(s− 2jω0)]TsKPWM(jHuHiU1)−
Gi(s− jω0)HiTsKPWM − kcL1Hi(s− 2jω0)

2C1TsKPWM − (s− 2jω0)L1 − (s− 2jω0)L2 − (s− 2jω0)
3L2L1C1}

{DU1 + ( 1
2 e+jφvir )Gi(s− jω0)/[K(s− jω0)]KPWMHu/(Rv + Lvs)KPWMTs(jHuHiU1)}}

{−{EU1e−2jφu + ( 1
2 e−jφvir )Gi(s− jω0)/[K(s− jω0)]KPWMHu/[Rv + Lv(s− 2jω0)]TsKPWM(−jHuHie−2jφu U1)}/

{EU1 + ( 1
2 e−jφvir )Gi(s− jω0)/[K(s− jω0)]KPWMHu/[Rv + Lv(s− 2jω0)]TsKPWM(jHuHiU1)−

Gi(s− jω0)HiTsKPWM − kcL1Hi(s− 2jω0)
2C1TsKPWM − (s− 2jω0)L1 − (s− 2jω0)L2 − (s− 2jω0)

3L2L1C1}
{DU1 + ( 1

2 e+jφvir )Gi(s− jω0)/[K(s− jω0)]KPWMHu/(Rv + Lvs)KPWMTs(jHuHiU1)}+
{DU1e−2jφu + ( 1

2 e+jφvir )Gi(s− jω0)/[K(s− jω0)]KPWMHu/(Rv + Lvs)KPWMTs(−jHuHie−2jφu U1)−
Gi(s− jω0)HiKPWMTs − s2kcL1HiC1KPWMTs − sL1 − sL2 − s3L2C1L1}}

(A14)
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Y21_GFM =

−

−{De−2jφi I1 + ( 1
2 e+jφvir )Gi(s− jω0)/[K(s− jω0)]KPWMHu/(Rv + Lvs)KPWMTs[−e−jφv Hu(Dq−jHie−2jφi e+jφu I1)]−

Gi(s− jω0)Hu/(Rv + Lvs)KPWMTs − skcHiC1KPWMTs − s2L2C1 − 1}+
{Ee−2jφi I1 + ( 1

2 e−jφvir )Gi(s− jω0)/[K(s− jω0)]KPWMHu/
[Rv + Lv(s− 2jω0)]TsKPWM[−e−jφu Hu(Dq−jHie−2jφi e+jφu I1)]}/
{Ee−2jφvU1 + ( 1

2 e−jφvir )Gi(s− jω0)/[K(s− jω0)]KPWMHu/[Rv + Lv(s− 2jω0)]TsKPWM(−jHuHie−2jφuU1)}
{De−2jφv U1 + ( 1

2 e+jφvir )Gi(s− jω0)/[K(s− jω0)]KPWMHu/(Rv + Lvs)KPWMTs(−jHuHie−2jφu U1)−
Gi(s− jω0)HiKPWMTs − s2kcL1HiC1KPWMTs − sL1 − sL2 − s3L2C1L1}
{DU1 + ( 1

2 e+jφvir )Gi(s− jω0)/[K(s− jω0)]KPWMHu/(Rv + Lvs)KPWMTs(jHuHiU1)}−
{EU1 + ( 1

2 e−jφvir )Gi(s− jω0)/[K(s− jω0)]KPWMHu/[Rv + Lv(s− 2jω0)]TsKPWM(jHuHiU1)−
G(s− jω0)HiTsKPWM − (s− 2jω0)

2kcL1HiLvC1TsKPWM − (s− 2jω0)L1 − (s− 2jω0)L2 − (s− 2jω0)
3L2L1C1}/

{Ee−2jφvU1 + ( 1
2 e−jφvir )Gi(s− jω0)/[K(s− jω0)]KPWMHu/[Rv + Lv(s− 2jω0)]TsKPWM(−jHuHie−2jφu U1)}

{De−2jφv U1 + ( 1
2 e+jφvir )Gi(s− jω0)/[K(s− jω0)]KPWMHu/(Rv + Lvs)KPWMTs(−jHuHie−2jφu U1)−

Gi(s− jω0)HiKPWMTs − s2kcL1HiC1KPWMTs − sL1 − sL2 − s3L2C1L1}

(A15)

Y22_GFM =

−

−{Ke+2jφiI1
∗ + ( 1

2 e−jφvir )Gi(s + jω0)/[K(s + jω0)]KPWMHu/(Rv + Lvs)KPWMTs[−e+jφu Hu(Dq+jHie+2jφi e−jφu I1
∗)]

−Gi(s + jω0)Hu/(Rv + Lvs)KPWMTs − kcHiC1sKPWMTs − L2C1s2 − 1}
+{Me+2jφi I1

∗ + ( 1
2 e+jφvir )Gi(s + jω0)/[K(s + jω0)]KPWMHu

/[Rv + Lv(s + 2jω0)]TsKPWM[−e+jφu Hu(Dq+jHie+2jφi e−jφu I1
∗)]}/

{MU1
∗ + ( 1

2 e+jφvir )Gi(s + jω0)/[K(s + jω0)]KPWMHu/[Rv + Lv(s + 2jω0)]TsKPWM(−jHuHiU1
∗)

−G(s + jω0)HiTsKPWM − (s + 2jω0)
2kcL1HiC1TsKPWM − (s + 2jω0)L1 − (s + 2jω0)L2 − (s + 2jω0)

3L2L1C1}
{KU1

∗ + ( 1
2 e−jφvir )Gi(s + jω0)/[K(s + jω0)]KPWMHu/(Rv + Lvs)KPWMTs(−jHuHiU1

∗)}
−{MU1

∗e±2jφu + ( 1
2 e+jφvir )Gi(s + jω0)/[K(s + jω0)]KPWMHu/[Rv + Lv(s + 2jω0)]TsKPWM(jHuHie+2jφu U1

∗)}/
{MU1

∗ + ( 1
2 e+jφvir )Gi(s + jω0)/[K(s + jω0)]KPWMHu/[Rv + Lv(s + 2jω0)]TsKPWM(−jHuHiU1

∗)
−Gi(s + jω0)HiTsKPWM − (s + 2jω0)

2kcL1HiC1TsKPWM − (s + 2jω0)L1 − (s + 2jω0)L2 − (s + 2jω0)
3L2L1C1}

{KU1
∗ + ( 1

2 e−jφvir )Gi(s + jω0)/[K(s + jω0)]KPWMHu/(Rv + Lvs)KPWMTs(−jHuHiU1
∗)}

+{Ke±2jφv U1
∗ + ( 1

2 e−jφvir )Gi(s + jω0)/[K(s + jω0)]KPWMHu/(Rv + Lvs)KPWMTs(jHuHie+2jφu U1
∗)

−Gi(s + jω0)HiKPWMTs − s2kcL1HiC1KPWMTs − sL1 − sL2 − s3L2C1L1}

(A16)

Y12_GFM =

−

−{Ke+2jφiI1
∗ + ( 1

2 e−jφvir )Gi(s + jω0)/[K(s + jω0)]KPWMHu/(Rv + Lvs)KPWMTs[−e+jφu Hu(Dq+jHie+2jφi e−jφu I1
∗)]

−Gi(s3)Hu/(Rv + Lvs)KPWMTs − kcHiC1sKPWMTs − L2C1s2 − 1}
+{Me+2jφi I1

∗ + ( 1
2 e+jφvir )Gi(s + jω0)/[K(s + jω0)]KPWMHu

/[Rv + Lv(s + 2jω0)]TsKPWM[−e+jφu Hu(Dq+jHie+2jφi e−jφu I1
∗)]}/

{Me+2jφuU1
∗ + ( 1

2 e+jφvir )Gi(s + jω0)/[K(s + jω0)]KPWMHu/[Rv + Lv(s + 2jω0)]TsKPWM(jHuHie+2jφu U1
∗)}

{Ke+2jφu U1
∗ + ( 1

2 e−jφvir )Gi(s + jω0)/[K(s + jω0)]KPWMHu/(Rv + Lvs)KPWMTs(jHuHie+2jφu U1
∗)

−Gi(s + jω0)HiKPWMTs − s2kcL1HiC1KPWMTs − sL1 − sL2 − s3L2C1L1}
{KU1

∗ + ( 1
2 e−jφvir )Gi(s + jω0)/[K(s + jω0)]KPWMHu/(Rv + Lvs)KPWMTs(−jHuHiU1

∗)}
−{MU1

∗ + ( 1
2 e+jφvir )Gi(s + jω0)/[K(s + jω0)]KPWMHu/[Rv + Lv(s + 2jω0)]TsKPWM(−jHuHiU1

∗)
−G(s3)HiTsKPWM − (s + 2jω0)

2kcL1HiC1TsKPWM − (s + 2jω0)L1 − (s + 2jω0)L2 − (s + 2jω0)
3L2L1C1}/

{Me+2jφuU1
∗ + ( 1

2 e+jφvir )Gi(s + jω0)/[K(s + jω0)]KPWMHu/[Rv + Lv(s + 2jω0)]TsKPWM(jHuHie+2jφu U1
∗)}

{Ke+2jφu U1
∗ + ( 1

2 e−jφvir )Gi(s + jω0)/[K(s + jω0)]KPWMHu/(Rv + Lvs)KPWMTs(jHuHie+2jφu U1
∗)

−Gi(s + jω0)HiKPWMTs − s2kcL1HiC1KPWMTs − sL1 − sL2 − s3L2C1L1}

(A17)

The grid-forming inverter parameters for the four scenarios are consistent with those
in Table 1, and the grid-forming parameters are shown in Table A1.

Table A1. Grid-following inverter parameters.

Parameter Value Parameter Value

Pn/MW 1 Udc/V 1000
Ug/V 220 L1/mH 0.04125

L2/mH 0.04125 C1/µF 982.44
Ls/mH 0.004125 Lx/mH 0.02475

Hi 0.00044 KpPLL 253
Hu 0.0034 KiPLL 104,104
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In Scenario 4, inverters 1, 3, and 4 are as shown in the table above, and the parameters
of inverter 2 are as follows.

Table A2. Parameters of inverter 3 in Scenario 4.

Parameter Value Parameter Value

Pn/MW 1 Udc/V 1000
Ug/V 220 L1/mH 0.04125

L2/mH 0.04125 C1/µF 982.44
Ls/mH 0.004125 Lx/mH 0.02475

Dp 0.578594 J/(kg.m2) 1.06583
Dq 10 K 0.1

Lv/mH 0.0008 Rv/Ω 0.0254
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Abstract: The industrial sector accounts for approximately 65% of global energy consump-
tion, with projections indicating a steady annual increase of 1.2% in energy demand. In the
context of growing concerns about climate change and the need for sustainable energy so-
lutions, solar thermal energy has emerged as a promising technology for reducing reliance
on fossil fuels. With its ability to provide high-efficiency heat for industrial processes at
temperatures ranging from 150 ◦C to over 500 ◦C, solar thermal power generation offers
significant potential for decarbonizing energy-intensive industries. This review provides a
comprehensive analysis of various solar thermal technologies, including parabolic troughs,
solar towers, and linear Fresnel reflectors, comparing their effectiveness across different
industrial applications such as process heating, desalination, and combined heat and power
(CHP) systems. For instance, parabolic trough systems have demonstrated optimal perfor-
mance in high-temperature applications, achieving efficiency levels up to 80% for steam
generation, while solar towers are particularly suitable for large-scale, high-temperature
operations, reaching temperatures above 1000 ◦C. The paper also evaluates the economic
feasibility of these technologies, showing that solar thermal systems can achieve a lev-
elized cost of energy (LCOE) of USD 60–100 per MWh, making them competitive with
conventional energy sources in many regions. However, challenges such as high initial
investment, intermittency of solar resource, and integration into existing industrial infras-
tructure remain significant barriers. This review not only discusses the technical principles
and economic aspects of solar thermal power generation but also outlines specific recom-
mendations for enhancing the scalability and industrial applicability of these technologies
in the near future.

Keywords: concentrated solar thermal (CST); solar thermal energy; industrial heat; thermal
energy storage; renewable energy

1. Introduction
As the world pursues a low-carbon future, solar energy technologies are central

to global clean energy strategies [1]. Concentrated solar thermal (CST) is a key solar
technology that uses mirror-based optical systems to focus sunlight onto a small-area
receiver, converting it into high-temperature heat. This high-grade thermal energy can
then drive steam turbines for power generation or supply heat for industrial processes and
heating/cooling applications [2]. Unlike photovoltaics, CST inherently supports thermal
energy storage by storing hot fluids or materials, enabling a stable energy supply even
when the sun is not shining. This ability to dispatch solar energy on demand makes CST
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especially suitable for large-scale, high-temperature applications that require reliability,
such as around-the-clock power generation or continuous industrial heating [3].

Recent years have seen remarkable advancements in CST technology, driven by in-
novations in materials, optics, and thermal storage. Solar receiver materials have greatly
improved; researchers have developed nano-engineered selective absorber coatings (in-
cluding multilayer “tandem” structures) that significantly increase solar absorption while
withstanding higher temperatures [4]. These advanced coatings reduce radiative heat
losses and maintain efficiency at operating temperatures well above 600 ◦C. In addition,
high-temperature alloys are being explored for receiver components; for example, high-
entropy alloys (HEAs) offer excellent creep strength and corrosion resistance at elevated
temperatures. A recent study demonstrated that a Fe-Mn-Ni-Al-Cr HEA can serve as a
durable receiver tube material, with its oxide layer acting as a high-efficiency solar absorber
coating. Such materials enable higher operating temperatures (≥700 ◦C), which in turn
boost the thermal-to-electric conversion efficiency of CST systems [5].

Parallel progress in optical design and control has enhanced the solar collection
efficiency. Modern CST plants employ improved concentrator configurations (e.g., refined
heliostat field layouts and reflector designs) alongside smart control systems. Notably,
artificial intelligence (AI) and advanced wireless communications are being integrated into
heliostat control, dramatically improving solar tracking accuracy and reducing operation
costs. AI-driven calibration and predictive tracking can increase the overall reflectance
efficiency and reliability of heliostat fields [6]. These optical innovations ensure more
sunlight is delivered to the receiver throughout the day, even under wind or alignment
disturbances, thereby raising heat collection efficiency and system stability.

Advances in thermal energy storage (TES) are equally vital, since storage extends
CST operation beyond sunny hours. State-of-the-art CST plants use sensible heat storage
in molten salts (typically a nitrate salt mixture) to store several hours’ worth of thermal
energy at high efficiency [7]. Research continues to improve molten salt formulations for
higher thermal stability and lower melting points. Beyond sensible heat, new latent heat
storage systems using phase change materials (PCMs) are being developed to exploit the
high latent heat during solid–liquid transitions, allowing compact storage of large energy
quantities. Meanwhile, thermochemical storage is an emerging frontier; high-temperature
reactions (reversible chemical cycles) can store solar heat in chemical bonds and release it
on demand, offering very high energy densities. Each of these TES approaches—sensible,
latent, and thermochemical—has seen significant R&D progress, and hybrid systems are
being designed to achieve both short-term and long-duration storage for CST. Efficient TES
integration has led to today’s CST plants providing up to 10–15 h of dispatchable power
after sunset. This progress in storage, coupled with incremental improvements in turbines
and heat transfer fluids (e.g., adoption of supercritical CO2 cycles), has steadily increased
the overall efficiency and capacity factor of CST plants [8].

Crucially, CST is no longer limited to power stations in deserts; its application footprint
has broadened. Industries are increasingly adopting concentrated solar thermal systems to
provide process heat for manufacturing, mining, food processing, chemical production, and
other sectors [9]. High-temperature solar heat can drive processes like steam generation,
drying, and calcination, directly substituting for fossil-fuel boilers in some cases. This use
of CST for industrial process heat (also known as “solar heat for industrial processes”) not
only helps decarbonize heavy industry but is opening new commercial markets for CST
technologies [10]. The expansion into industrial heat and other thermal applications is
expected to increase production volume and bring economies of scale, further reducing the
costs of CST components. Additionally, CST systems have been demonstrated in building
heating and cooling contexts, for example, in solar-driven air conditioning or district
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heating, underscoring their versatility beyond electricity generation [11]. The growing
interest and deployments in these non-traditional sectors have accelerated CST’s path
toward wider commercialization and integration in the global energy mix.

This paper provides a comprehensive review of the current state of CST technology
and its thermal applications, highlighting recent progress and persisting challenges. We
begin by outlining the basic principles of CST and the main types of concentrator systems
(parabolic trough, central tower, linear Fresnel, and parabolic dish). We then examine the
latest developments in key technical areas—solar receivers and materials, heat transfer and
energy storage techniques—and discuss how these innovations are enhancing performance
and expanding CST capabilities. The current applications of CST in power generation,
industrial processes, and other sectors are surveyed to evaluate its commercial status.
Finally, we discuss future research directions and emerging opportunities, considering
what advances are needed to fully unlock CST’s potential. Through this review, we aim
to clarify CST’s role in a sustainable energy future and provide insights for researchers,
industry practitioners, and policymakers. Ultimately, continued innovation and deploy-
ment of CST technology will help foster the wider use of solar thermal energy in the global
energy transition.

2. Composition of Solar Thermal Power Generation Systems
CST technology focuses sunlight through reflectors, collectors convert light energy

into high-temperature heat energy, thermal storage systems store heat to ensure a stable
supply, and ultimately heat energy is converted into electricity through a power generation
system. The four work in tandem to achieve efficient and sustainable energy output.

2.1. Reflector

In a solar thermal power generation system, reflectors play a crucial role in capturing
and concentrating solar radiation onto the receiver, thereby improving the system’s energy
collection efficiency. Their primary function is to focus sunlight, generating high-density
thermal energy on the receiver’s surface. The efficiency and performance of the entire solar
thermal system are directly influenced by factors such as the reflector material and the
arrangement of the mirror field.

Reflectors can be categorized into four main types based on their material composition:
silver-coated glass mirrors, silver-coated polymer mirrors, aluminum mirrors, and stainless
steel mirrors. Figure 1 provides a visual representation of the classification of so-lar mirrors
according to their fundamental materials.
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Glass mirrors are among the most commonly used reflectors in solar thermal power
systems. When sunlight strikes the mirror, it reflects both heat and light to a designated
location. The glass surface can function as both the substrate and the protective cover layer.
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There are two types of glass mirrors based on the placement of the reflective coating.
A first-surface mirror is created by applying a highly reflective coating directly onto the
glass to enhance its optical performance. In contrast, a second-surface mirror has the
reflective material applied to the backside of the glass, which is then protected by a
paint coating [13]. An experimental study on silver-plating processes was conducted to
enhance the mechanical properties and environmental durability of glass mirrors. The
study found that a tantalum oxide coating provided excellent protection for silver reflectors.
In 1979, the glass division of the Ford Motor Company developed thin glass for heliostats
in concentrated solar power plants, where the silver-plated backside achieved a solar
reflectivity of 89.3% [14].

Silver-coated polymer reflectors are lightweight and offer greater design flexibility.
However, they have a shorter lifespan due to poor adhesion with silver when exposed to
water [15]. An aluminum-coated first surface polymer mirror was fabricated by depositing
an aluminum layer on a polycarbonate substrate. The focus of the research has been on
creating lightweight and durable reflectors. The study also demonstrated that these plastic
mirrors are resistant to extreme outdoor conditions, with a long-term reflectivity of up
to 88%.

Aluminum oxide is a commonly used reflective material in concentrated solar power
plants. Aluminum is the most abundant metal, relatively inexpensive, and widely used
as a non-ferrous metal. The solar reflectivity of aluminum reflectors typically ranges from
85% to 91% [16]. A composite mirror for parabolic solar concentrators was developed
using a magnetron sputtering technique. Efforts were made to enhance the reflectivity and
longevity of the mirror by applying a bilayer reflective coating of aluminum (Al) and silicon
dioxide (SiO2). The study also demonstrated high mirror-like solar reflectivity and excellent
protection against harsh environmental conditions by providing multiple protective layers.

Stainless steel is tough and does not require substantial thickness; however, its
main limitation is its low solar reflectivity. Although aluminum has a higher reflectiv-
ity than stainless steel, aluminum mirrors require a minimum thickness of 4 mm to be
self-supporting [17]. A reflector material was designed and fabricated that combined the
beneficial properties of steel and aluminum. The reflective layer was created by directly
evaporating aluminum onto the backside of a polyethylene terephthalate (PET) protective
layer. A 9 µm aluminum foil substrate was then provided to support the reflectivity. To
prevent aluminum damage, an additional PET layer was applied, and a stainless steel plate
was pressed onto the back to enhance the strength of the reflector. A schematic diagram of
the aluminum-steel reflector manufacturing process is shown in Figure 2.
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Figure 2. Manufacture of aluminum-steel reflectors. A 20 nm layer of aluminium is evaporated on
a 25 µm PET foil (1), the PET foil with evaporated aluminium, a 9 µm rolled aluminium foil, and a
20 µm PET foil are laminated together (2), a 4 µm layer of glue is applied on a 0.5 mm thick sheet of
stainless steel (3), the PET/Al/Al/PET sandwich and the steel sheet is hot pressed together to form
the reflector laminate (4) [17].
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Reflectors are key components in solar thermal power stations, responsible for re-
flecting sunlight and concentrating it onto the receiver. The design of the reflector must
adapt to the position of the sun, ensuring that the solar rays are reflected as vertically as
possible onto the receiver. Additionally, to enhance reflection efficiency, the surface of the
reflector should be appropriately treated for reflectivity. This can be achieved through the
choice of materials for the reflector, such as glass mirrors, ceramic mirrors, metal mirrors,
self-cleaning high-reflectivity solar film materials, and sputtering targets.

2.2. Collector

A solar collector is a special type of heat exchanger that converts solar radiation into
the internal energy of a transport medium. Solar collectors are the primary components
of any solar energy system. They absorb incoming solar radiation, convert it into heat,
and transfer this heat to a fluid (usually air, water, or oil) that flows through the collector.
The collected solar energy is then directly transferred to hot water or space conditioning
systems or stored in a thermal storage tank, from which it can be extracted for use during the
night and/or on cloudy days. This chapter will introduce flat-plate collectors, compound
parabolic concentrators, and vacuum tube collectors, starting with their types.

A typical flat-plate solar collector is illustrated in Figure 3. When solar radiation
passes through the transparent cover and reaches the high-absorption blackened surface
of the absorber, most of the energy is absorbed by the plate and then transferred to the
heat transfer medium within the fluid pipes. This medium carries the absorbed heat away
for storage or direct use. To minimize conductive heat losses, the bottom surface of the
absorber plate and the sides of the housing are well insulated. The fluid pipes, responsible
for transporting the heat transfer medium, can either be welded to the absorber plate or
integrated directly into it. At both ends of the fluid pipes, a large-diameter manifold is
in-stalled to ensure efficient fluid circulation [18].
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The transparent cover plate serves to reduce convective losses from the absorber
plate by restricting the stagnant air layer between the absorber plate and the glass. It also
minimizes radiation losses from the collector, as the glass is transparent to the short-wave
solar radiation received by the sun, while being almost opaque to the long-wave thermal
radiation emitted by the absorber plate.

Flat-plate collectors are made with various designs and different materials. They have
been used to heat fluids such as water, water with antifreeze additives, or air. Their primary
goal is to collect as much solar energy as possible at the lowest total cost.

Glass has been widely used as a glazing material for solar collectors because it can
transmit up to 90% of incident short-wave solar radiation, while being almost opaque
to the long-wave radiation emitted by the absorber plate. Standard window glass and
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greenhouse glass have normal transmission rates of about 0.87 and 0.85, respectively. For
direct radiation, the transmission rate varies significantly with the angle of incidence.
Reflective coatings and surface texturing can also significantly improve the transmission
rate. Dirt and dust have minimal impact on the collector glass, and occasional rainfall is
usually sufficient to keep the transmission rate within 2–4% of the maximum.

Compound parabolic concentrators (CPCs) are non-imaging concentrators. They
are capable of reflecting all incident radiation onto an absorber over a wide range [20].
Winston [21] noted their potential as solar collectors. The use of two parabolically orien-
tated slots reduces the need to move the concentrator to accommodate changes in solar
orientation, as shown in Figure 4. Composite parabolic concentrators can accept incoming
radiation over a relatively wide range of angles. Through multiple internal reflections, any
radiation entering the aperture within the collector’s acceptance angle reaches the surface of
the absorber located at the bottom of the collector [22]. The absorber is available in a variety
of configurations. It can be cylindrical or flat, as shown in Figure 4. In the CPC shown
in Figure 4, the lower part of the reflector (AB and AC) is circular while the upper part
(BD and CE) is parabolic. Since the upper part of the CPC has little effect on the radiation
reaching the absorber, it is often truncated, resulting in a shorter CPC, which is also cheaper.
The CPC is usually covered with glass to avoid dust and other substances from entering
the collector, which reduces the reflectivity of the collector walls. These collectors are more
useful as linear or trough concentrators. The acceptance angle is defined as the angle at
which the light source can move and still converge on the absorber. The orientation of a
CPC collector is related to its acceptance angle (θc; in Figure 4) [19]. The way the collector
moves depends on its acceptance angle, which determines whether it can be stationary
or needs to track the sun. The long axis of a CPC collector can be orientated either in a
north–south direction or an east–west direction, with the aperture tilted at an angle equal
to the local latitude, pointing towards the equator [19]. When the long axis is orientated in
a north–south direction, the collector must face the sun continuously by rotating its axis,
as the collector receives a larger angle along the long axis and therefore does not require
seasonal tilt adjustment. If kept stationary, the collector will only receive radiation during
the periods when the sun is within the receiving angle. When the collector’s long axis is
orientated east–west, a slight adjustment of the seasonal tilt angle will allow the sun to
be captured efficiently through the larger acceptance angle. In this case, the minimum
acceptance angle should be equal to the maximum angle of incidence in the north–south
vertical plane when the collector needs to output.
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Traditional simple flat-plate solar collectors were developed for use in sunny and warm
climates. However, their benefits are greatly diminished under conditions of cold, cloudy,
and windy days. Additionally, weathering effects such as condensation and moisture
can lead to the premature degradation of internal materials, resulting in performance
deterioration and system failure. Vacuum tube solar collectors (tubes) operate differently
from other collectors on the market. These collectors consist of heat pipes sealed in vacuum
tubes, as shown in Figure 5.
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The vacuum tube collector primarily consists of heat pipes housed within vacuum-
sealed tubes. There are numerous variations of vacuum tube absorbers available on the
market [23]. Recently, a manufacturer has introduced a fully glass evacuated tube collector
(ETC), which could represent a significant advancement in reducing costs and extending
the system’s lifespan. Another variation of this collector is the Dewar tube, which uses
two concentric glass tubes, with the space between them evacuated to create a vacuum
jacket. A key advantage of this design is that it is entirely constructed from glass, allowing
heat to be extracted from the tube without the need to penetrate the glass shell, thereby
eliminating the potential for leakage losses. This design is also more cost effective compared
to single-shell systems [24].

In addition to the flat-plate, evacuated tube, and compound parabolic collectors
discussed earlier, concentrated solar collectors form the core of modern concentrated solar
thermal (CST) and concentrated solar power (CSP) technologies. These collectors use optical
devices to focus direct normal irradiance (DNI) onto a small receiver area, thereby achieving
very high operating temperatures (typically between 250 ◦C and 1000 ◦C). Depending on
the optical geometry and tracking configuration, concentrated collectors are categorized
into four main types (Figure 6): Parabolic trough collectors (Figure 6a) use linearly curved
mirrors that focus sunlight onto an absorber tube located at the focal line. A heat transfer
fluid (HTF), typically synthetic oil or molten salt, circulates through this tube to absorb
the concentrated thermal energy. PTC systems usually operate at temperatures between
300 ◦C and 400 ◦C, although advanced molten salt designs can reach 550 ◦C [25]. Central
receiver (tower) systems (Figure 6b) employ a field of heliostats (flat, sun-tracking mirrors)
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that reflect sunlight to a central receiver atop a tower. The concentrated energy heats a
working fluid—such as molten salt or air—circulated through the receiver. CRS systems
are known for achieving very high operating temperatures up to 1000 ◦C, suitable for
advanced thermodynamic cycles like supercritical CO2 [26]. Regarding parabolic dishes
(Figure 6c), these collectors are composed of a parabolic dish that focuses sunlight onto
a receiver at its focal point, often integrated with a Stirling engine or Brayton cycle for
direct power generation. Parabolic dishes offer the highest optical efficiency among all CSP
technologies and are ideal for modular and distributed applications [27]. And regarding
linear Fresnel reflectors (Figure 6d), LFR systems consist of long rows of flat or slightly
curved mirrors that focus sunlight onto a fixed receiver positioned above the mirror field.
Although the concentration ratio and thermal efficiency are generally lower than PTCs,
the simpler design and reduced structural requirements make LFR systems more cost
effective [28]. They are often used where land constraints and cost optimization are critical.
These systems are key enablers for high-efficiency solar thermal power generation and
high-temperature industrial heat supply.
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2.3. Heat Storage System

To address the need for on-demand power generation under variable solar conditions,
energy storage is essential. It enhances the reliability of renewable energy and helps manage
peak demand for solar power generation [30]. Thermal energy storage (TES) is one of the
key advantages of concentrated solar power (CSP); compared to battery storage, TES is
more cost effective and better suited for integration into the electrical grid [31]. Studies have
shown that CSP systems with energy storage can offer over twice the value of photovoltaic
power generation in certain contexts [32].

TES technologies include sensible heat storage, which raises the temperature of a
medium to store heat but has lower density, latent heat storage (PCM), which stores heat
through phase changes and offers higher density, and thermochemical storage, which
stores heat via reversible chemical reactions and has the highest potential for heat density,
although it is still in early development (Figure 7).
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With technological advancements, CSP plants are expected to transition from sensible
heat storage to latent heat storage, and eventually to thermochemical storage, in order to
achieve higher efficiency and greater energy storage capacity.

2.3.1. Sensible Heat Storage

Sensible heat exchangers can generally be divided into two types: solid and liquid.
There are also systems that combine both solid and liquid, such as fluid flowing through a
packed bed made of solid particles. The working principle of both solid and liquid sensible
heat exchangers is the same; heat is stored by raising the temperature of the material.

Molten salts are an ideal choice for high-temperature energy storage due to their high
energy density and low cost. The operational temperature of molten salts is limited by
their freezing point and corrosion issues, with freezing being the primary concern as it can
damage pipes and pumps. Therefore, auxiliary heaters are typically required. Common
molten salts include nitrates, nitrites, and carbonates, with mixed salts improving perfor-
mance, particularly by lowering the melting point. For example, NaNO3-NaNO2-KNO3

(Hitec) and Ca(NO3)2-NaNO3-KNO3 (HitecXL) are common commercial salt mixtures [34].
Ongoing research is focused on developing better molten salts, such as the quaternary salt
mixture (K, NaNO2, Cl, and NO3) designed by Peng et al., and low-melting-point salts
(80 ◦C) presented by Zhao and Wu [35].

When using solid materials, packed bed structures are typically employed, with heat
storage and discharge occurring via a heat transfer fluid (HTF). If the HTF is gas (e.g.,
air), it is used solely for heat transfer; if it is a fluid, its heat capacity is comparable to that
of the solid material and can act as an auxiliary storage medium. Inexpensive options
include sand, gravel, or concrete. Sand and gravel are generally used as packing materials,
with some proposals for using a fluidized bed structure [36]. Concrete can be formed into
bricks to create a packed bed or can be used with heat transfer tubes running through large
concrete blocks [37]. To enhance the thermal performance of concrete and to be compatible
with finned HTF heat exchangers, concrete and castable ceramics with volumetric heat
capacities greater than 0.7 kWhth/m3/K have been developed [38]. For high-temperature
applications, silica bricks, alumina bricks, and magnesia bricks are recommended, often
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paired with molten salts as HTFs [39]. Graphite has also been proposed as a sensible
heat storage material due to its excellent stability at high temperatures and high specific
heat capacity.

2.3.2. Latent Heat Storage

In latent heat storage systems, thermal energy is stored by inducing phase changes
in the storage material. The most common phase change is from solid to liquid, while
sol-id-to-solid transitions are occasionally used. Liquid-to-gas phase changes are rarely
employed due to the significant expansion and the need for strict pressure containment.

Metals and metal alloys are often proposed as Phase Change Materials (PCMs) due
to their high thermal conductivity and latent heat. While metals exhibit excellent prop-
erties, their high cost can be a drawback. Alloying metals with cheaper materials, such as
aluminum–silicon alloys, can reduce costs while maintaining good thermal performance [40].

To enable the widespread use of PCM-based thermal storage, cost-effective and high-
performance materials must be developed. Additionally, low-cost containers, heat exchang-
ers, and encapsulating materials compatible with PCM are needed to support efficient
charging and discharging processes. High-performance PCMs, suitable materials, and
efficient system design are crucial for the practical application of latent heat storage.

2.3.3. Thermochemical Heat Storage

Thermochemical TES stores thermal energy via reversible chemical reactions, where
heat input drives internal reactions, storing energy in chemical bonds [41]. The reverse
exothermic reactions are used for heat recovery and power generation. Common energy
storage processes include the following:

Metal hydroxide dehydration: energy is stored by dehydration, but the low thermal
conductivity of the materials limits the reaction rate [15].

Metal hydride dehydrogenation: Energy is stored by removing hydrogen, although
issues with poor heat transfer and slow reaction kinetics exist. However, doping elements
such as iron or nickel can increase the reaction rate [42].

Metal carbonate decarbonation: Energy is stored by removing carbon dioxide, typically
requiring high temperatures (>450 ◦C), making it suitable for future high-temperature
power plants [43].

Metal oxide redox: Energy is stored by reducing metal oxides. Although this process
is less studied, it holds significant potential for high energy density.

Thermochemical storage materials offer high energy density and, in theory, virtually
unlimited storage duration. However, challenges related to reaction reversibility, rates,
conversion efficiency, and economic feasibility must be addressed. Overcoming these
obstacles will improve CSP system performance and advance their integration into global
renewable energy networks.

2.4. Power Generation Systems

Power generation systems convert thermal energy into electricity, with traditional
plants using steam generators to produce high-temperature steam that drives turbines. A
key area of research is the development of technologies that directly convert thermal energy
into electricity, eliminating the need for intermediate mechanical conversion. Efficient, low-
cost direct conversion technologies could improve the scalability of solar thermal systems.

2.4.1. Thermal Engine Systems

A thermal engine is the system in a CSP plant that converts collected heat into electrical
energy. The traditional approach involves converting thermal energy into mechanical
energy via a thermodynamic cycle, which is then used to drive a generator for electricity
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production. The main characteristics, advantages, and challenges of various traditional
power generation systems are summarized in Table 1.

Table 1. Key features, advantages, and challenges of various traditional power generation systems.

Technology Type Description Advantages Challenges

Parabolic Trough
Solar Power

Mirrors focus sunlight onto pipes,
heating a fluid to produce steam
that drives a turbine for power

generation.

Mature technology,
suitable for large-scale

power generation.

Requires large land area,
highly weather

dependent.

Solar Power Tower

Mirrors focus sunlight onto pipes,
heating a fluid to produce steam
that drives a turbine for power

generation.

High efficiency, capable of
generating power around

the clock.

High initial construction
cost, large land
requirements.

Parabolic Dish Solar
Power

Flat mirrors concentrate sunlight
onto a collector to generate steam

that drives a turbine for power
generation.

Low cost, suitable for
medium- to small-scale

projects.

Lower efficiency,
performance not as good

as trough and tower
systems.

Carbide
Concentrated

System

Parabolic dish mirrors concentrate
sunlight to drive a Stirling engine

for power generation.

High efficiency, suitable for
distributed generation.

High maintenance, large
initial investment.

Solar Multi-Receiver
Collection System

Multiple heliostats focus sunlight
onto a high tower receiver, and heat
transfer drives a turbine for power

generation.

High efficiency, suitable for
large-scale generation, and

peak load management.

High cost, complex
technology, requires

precise tracking.

2.4.2. Direct Thermoelectric Conversion

The most active research areas in direct solar thermoelectric conversion are Solar
Thermoelectric Generators (STEGs) and Solar Thermophotovoltaic (STPV). A brief overview
of these two fields is provided below.

STEGs convert thermal energy into electrical energy through thermoelectric generators.
Due to the Seebeck effect, thermoelectric materials generate a voltage gradient under the
influence of a temperature gradient, which in turn produces a current and generates
electricity [44]. Thermoelectric generators are typically used for waste heat recovery, but
when coupled with solar energy absorbers, they can generate power from solar energy. A
typical configuration of a STEG is illustrated in Figure 8.
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Solar Thermophotovoltaic (STPV) systems absorb solar radiation to generate heat,
which is then converted into thermal radiation. This radiation is directed to a single-junction
thermophotovoltaic (TPV) cell, where it is converted into electricity. STPV’s advantage
lies in using frequency-dependent thermoelectric converters to achieve an ideal spectral
irradiation, resulting in higher conversion efficiency than direct solar irradiation. The
challenge is ensuring an effective intermediate absorption/re-emission process, so that the
spectral enhancement outweighs its negative impacts. A typical STPV system configuration
is shown in Figure 9.
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The main challenge faced by STPV systems is the high-temperature requirement, as
they rely on converting thermal radiation into electrical energy. Even with the semicon-
ductors that have the lowest bandgap (around 0.5 eV), a blackbody spectrum temperature
of over 1000 ◦C is needed to achieve efficient conversion. Although 1000 ◦C is below the
melting point of many materials, constructing a highly efficient and reliable STPV system
remains a significant engineering challenge [33].

3. Types of Solar Thermal Power Generation
3.1. Trough Solar Power System

Among the various concentrated solar power (CSP) technologies, parabolic trough
solar power systems stand out as the most widely utilized solution. While CSP systems
encompass different types of concentrating collectors, the parabolic trough configuration
has garnered significant attention due to its proven effectiveness in large-scale power
generation. In this section, we focus on the parabolic trough solar power system, which
represents a key approach to harnessing solar energy in an efficient and scalable manner.

Parabolic trough solar power systems are currently the most widely utilized concen-
trated solar power (CSP) technology. The full name of this system is the parabolic trough
solar thermal power system, which typically consists of a concentrating collector, a heat
storage unit, a heat engine power generation device, and auxiliary energy systems (such
as boilers). It primarily comprises several parabolic trough-type concentrating collectors
arranged in series and parallel. These collectors harness solar energy to heat the working
fluid within the heat pipe, generating high-temperature steam that drives a turbine, which
in turn powers a generator to produce electricity [45]. The medium used (typically heat
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transfer oil or a nitrate mixture) is enclosed within a vacuum glass cover in the heating
tube. The concentration ratio generally ranges from 10 to 100. When oil is employed as the
heat transfer fluid, the maximum heat collection temperature can reach 400 ◦C. Conversely,
when a nitrate mixture is used, the maximum heat collection temperature can reach 700 ◦C.
The latter maintains superior thermal efficiency at high temperatures, resulting in a higher
power generation efficiency [46–48].

Parabolic trough concentrating collectors (Figure 10) are linear focusing collectors. A
large number of trough-type concentrators are typically connected in series and parallel
to form a concentrating collector array. One-dimensional tracking of solar radiation is
employed. The advantages of the trough system include its relatively simple structure,
low maintenance costs, potential for mass production, and compact size, which enables
easy installation and maintenance when arranged on the ground. However, due to the low
geometric concentration ratio of the parabolic concentrator and the relatively low collector
temperature, the thermal-to-power efficiency of the power subsystem in the parabolic
trough solar thermal power generation system remains relatively low. Consequently, it is
challenging for a pure parabolic trough solar thermal power generation system to further
enhance thermal efficiency and reduce power generation costs.
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To enhance the efficiency of the system and reduce costs, new materials and tech-
nologies are continuously being explored and implemented. In parabolic trough concen-
trated solar power (CSP), the selection of collector materials is crucial. In recent years,
studies [50,51] have highlighted the development of highly efficient nano-functionalized
absorber materials that can effectively utilize most of the radiation in sunlight. Despite
the nanoscale manipulation of the material, its photothermal conversion efficiency can be
significantly enhanced, thereby improving the overall system performance. Due to the
variability of light during the day and night, as well as under sunny and cloudy conditions,
existing parabolic trough CSP systems are increasingly being integrated with thermal
energy storage technology. By employing molten salt energy storage and other technolo-
gies [52], excess thermal energy collected during periods of optimal sunlight can be stored
for use during the night or on cloudy days, ensuring a continuous supply of electricity.

3.2. Tower Solar Power System

Applying solar power generation technology in the form of a tower provides a novel
method for generating electricity. Not only can it efficiently store thermal energy, but it can
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also operate at high temperatures. A solar power generation system primarily consists of a
power generation unit, a main control system, a heat storage tank, a receiver, and a heliostat
array. A specific number of heliostats (spherical mirror groups that automatically track the
sun) are positioned on the ground, with a solar collector tower constructed at an optimal
location within the heliostat array. The heliostats reflect solar energy into the collector at
the top of the tower, heating the working fluid to produce high-temperature steam that
drives a turbine for electricity generation [47]. The SDIC Gansu Akesai Huidong “Solar
Thermal + Photovoltaic” Project has a total installed capacity of 750 MW, with 110 MW
allocated to solar thermal power generation and 640 MW to photovoltaic power genera-
tion [29]. As illustrated in Figure 11, the solar thermal section includes 11,960 pentagonal
heliostats and a collection tower approximately 200 m high. Each heliostat is capable of
rotating to track the sun and reflect solar radiation onto the absorber at the top of the heat
collection tower.
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Due to the large number of heliostats in a tower power generation system, its concen-
tration ratio can reach 1500. Compared to a parabolic trough solar power generation system,
the concentration ratio of a tower solar power generation system is significantly higher.
The unique design allows the cavity temperature of its collector to exceed 1000 ◦C [53,54].
Due to its advantages in high concentration and high thermal conversion efficiency, a tower
solar power system can achieve high power generation capacity. This makes it highly
suitable for large-scale, high-capacity commercial applications. However, a tower solar
thermal power system requires a significant one-time investment, has a complex device
structure and control system, and incurs high maintenance costs [55].

Similarly, several emerging technologies are anticipated to be applied to tower power
generation systems. Göttsche et al. proposed a novel design utilizing a mini-mirror ar-
ray (10 × 10 cm), with each mirror mounted on a ball joint driven by a stepper motor
(Figure 12) [56]. The purpose of this design is to mitigate the adverse effects that strong
winds may have on the mirrors while reducing costs. However, the final optical perfor-
mance was not satisfactory.
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The hydraulic tracking system [58] utilizes a hydraulic structure to track the movement
of the sun, ensuring that the device is always positioned to receive the maximum amount
of sunlight. Additionally, the incorporation of a dual-axis tracking system and a high-
precision solar tracking algorithm will enhance both the efficiency and reliability of the CSP
system. Due to the higher temperatures in tower power generation systems, the application
of materials with high thermal conductivity and thermal stability has become essential.
High-entropy (HE) materials [59] have garnered widespread attention in recent years.
These materials possess excellent light-to-heat conversion capabilities and broadband light
absorption characteristics, enabling selective absorption of the solar spectrum, reducing
infrared light absorption, and minimizing heat loss.

3.3. Dish Stirling Solar Power Generation System

The dish Stirling solar power generation system is a solar energy system that uses
parabolic mirrors to concentrate sunlight for power generation. It primarily consists of
a parabolic dish, a receiver, a Stirling engine, and a generator. When sunlight hits the
parabolic mirror, the light is focused onto the receiver, heating the working fluid inside the
receiver to a high temperature. This, in turn, drives the Stirling engine to generate electricity.
This system can operate independently, serving as a small power source for off-grid remote
areas, or multiple units can be connected in parallel to form a small-scale solar thermal
power plant. The dish Stirling system is known for its high efficiency, modularity, and
ability to operate independently.

This technology converts solar thermal energy into rotational motion via the Stirling
cycle, with AC generators transforming mechanical energy into electricity [60]. After
accounting for power losses, the system can convert nearly 30% of the direct normal solar
radiation into electricity, achieving an efficiency of about 30% [61].

As early as 1988, Roelf [62] optimized the solar application of the STM4-120 Stirling
engine. The engine’s power output at 25 rpm was 1800 kW, with an efficiency of 40%
from heat input to shaft output. The use of a simple variable slotted piston stroke control
eliminated sealing and power control issues that previously plagued Stirling engines.

Singh et al. [63] designed, simulated, and optimized a solar Stirling engine. The study
found that the maximum thermal efficiency of the dish Stirling system at an absorber
temperature of 850 K was 32%. The energy and exergy efficiency of the dish Stirling
system were 17% and 19%, respectively, with the majority of the losses occurring at the
receiver. Mari et al. [64] addressed gaps in the mathematical modeling of the parameters
of the parabolic solar dish Stirling engine system, providing numerical equations and
simulations related to solar dish applications. Pheng et al. [65] reviewed the parabolic dish
Stirling system based on CSP technology, considering aspects such as performance, overall
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efficiency, dish position, and levelized cost of electricity. They also analyzed the technical
and high capital cost barriers to the practical application of parabolic dish systems.

Zayed et al. [66] developed a theoretical model based on optical geometry and thermo-
dynamic analysis for the solar dish Stirling system, considering the optical configurations
and energy balance of different system components. An optimization algorithm was imple-
mented using multi-objective particle swarm optimization to simultaneously maximize
output power and total efficiency, achieving a maximum power output of 23.46 kW and
an optimal overall efficiency of 30.15%. Subsequent research [67] conducted comprehen-
sive assessments of the following: design standards, geometric parameters’ optimization,
thermal performance analysis, thermodynamic optimization, and techno-economic aspects.

Typically, a solar thermal receiver is added to a parabolic solar dish to capture the
maximum concentrated solar radiation from the dish. Senthil et al. [68] experimentally
analyzed the improvement of the thermal inertia balance and heat storage capacity of a
solar thermal receiver using phase change materials (PCMs). The average energy and
exergy efficiency of the receiver reached 66.7% and 13.8%, respectively.

3.4. Fresnel Solar Thermal Power Generation System

The Fresnel solar thermal power generation system employs arrays of flat mirrors to
reflect sunlight onto a collector tube. It has a modest concentration ratio but is cost effective
and suitable for large-scale applications. The advantages of the Fresnel system include its
simple structure, high land utilization, ease of cleaning, and low cost.

In 1957, Baum et al. [69] first proposed modularizing parabolic trough mirrors into
flat mirror arrays. A tracking system with flat glass mirrors can reflect and concentrate
sunlight onto a fixed secondary concentrator. Francia et al. [70] implemented this concept
practically in a linear Fresnel concentrator system, achieving pioneering work with a
prototype featuring a dual-axis tracking system, laying the foundation for large-scale
applications of linear Fresnel reflectors (LFRs). Since then, researchers have extensively
studied the Fresnel solar thermal power generation system.

Feuermann et al. [71] introduced the concept of secondary concentrators by adding
secondary mirrors to the receiver to enhance concentration efficiency and reduce thermal
losses. The advent of compound parabolic secondary concentrators has significantly ad-
vanced the linear Fresnel solar thermal collection technology. Grena et al. [72] used molten
nitrate salt as the heat transfer fluid in a solar Fresnel linear concentrator. They introduced
a system designed to handle molten nitrate salts more effectively, with vacuum tube col-
lectors that can tolerate temperatures up to 550 ◦C. Through optical and thermodynamic
simulations, they found that, with an adequately precise tracking system, the efficiency loss
of the molten salt Fresnel system was about 10% to 20% compared to the trough system.
Taramona et al. [73] overcame the main limitations of previously proposed hyperbolic
secondary concentrators by proposing a new type of secondary concentrator made up of
several fixed flat mirrors at the same height. This setup established a new solar field model
and achieved a concentration ratio of up to 31% and optical efficiency up to 60%. Grena [74]
discussed the impact of optical geometry on linear Fresnel concentrators, the parameters
required to determine the geometry, and the main optical concepts. He also summarized a
ray-tracking program to simulate the mirror field and a fast calibration analysis method for
optimization and real-time calculation.

An important subsystem in LFR systems is the collector system. Currently, research
on the heat collection performance of linear Fresnel collectors is relatively limited, focusing
mainly on two areas: new heat transfer fluids and collector tube designs. Zhai [75] con-
ducted experimental and simulation studies on a Fresnel lens solar collector with vacuum
tubes and found that for water heating, when the inlet water temperature was 80–90 ◦C, the
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heat efficiency of the collector reached 9.80%, which was 90% higher than the commonly
used evacuated tube collectors. However, optical losses were the primary source of energy
loss, accounting for nearly 40% of solar radiation. Khan et al. [76] studied the effect of new
corrugated collector tubes with nanofluids on the energy efficiency of a novel dual-fluid
heat collection system and presented an optimization model for the corrugated collector
tube through simulation. Alamdari et al. [77] reviewed research on linear Fresnel solar
power generation systems over the past decade, emphasizing that various types of thermal
losses are key parameters affecting efficiency.

Each of the four CSP technologies mentioned above has its own set of advantages
and disadvantages, which can be evaluated based on the factors in Table 2. The table
presents the key technical characteristics of each technology, including their capacity
range, associated costs, efficiency percentages, and electricity costs (calculated using the
Levelized Cost of Electricity model). These factors play a crucial role in determining the
economic viability and performance of each CSP system, and they vary depending on the
system design, installation location, and solar radiation levels. For instance, systems with
higher efficiency tend to have lower electricity costs, but they might come with higher
initial installation costs. The comparison of these attributes allows for a comprehensive
assessment of the strengths and limitations of each CSP technology.

Table 2. The technical characteristics for CSP [78–86].

Capacity
(MW)

Installation
Cost

Power
Generation

Efficiency (%)

Cost of
Electricity

(USD/kWh)

Thermal Loss
Coefficient

Optical Efficiency
Attenuation Rate

Trough solar power
system 10–200 Low 13–18 0.17

High (significant
radiation and

conduction losses)

Relatively high
(affected by radiation

and weather
variations)

Tower solar power
system 10–200 High 16–17 0.14 Low (highly efficient

light concentration)
Low (precise optical

design)

Dish Stirling Solar
Power Generation
System

0.01–0.4 High 20–30 0.15

High (large collector
area and Stirling
engine thermal

losses)

High (significantly
affected by external

environmental
changes)

Fresnel Solar
Thermal Power
Generation System

10–200 Low 8–11 0.14

Moderate (relatively
high optical
component
efficiency)

Relatively low
(influenced by dust

accumulation on
mirrors)

4. Application of Solar Thermal Systems in Industrial Process Heating
4.1. Energy Demand and Challenges in Industrial Process Heating

Industrial process heating accounts for a significant portion of global energy con-
sumption, with a major share of energy allocated to thermal applications across various
industries. These demands range from low to high temperatures, with the majority con-
centrated in the low- to medium-temperature range, particularly in sectors such as food
processing, textiles, chemicals, and paper manufacturing. However, the predominant
re-liance on fossil fuels, especially natural gas and oil, raises concerns about environmental
pollution, greenhouse gas emissions, and resource depletion. As the world shifts toward
more sustainable energy sources, renewable options, such as solar thermal energy, offer
substantial potential to meet industrial heating needs, particularly in regions with abun-
dant solar resources. However, the widespread adoption of solar thermal systems faces
challenges, including high initial costs and the intermittent nature of solar energy, which
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necessitates the integration of energy storage solutions and hybrid systems for greater
economic feasibility and stability.

4.1.1. Energy Demand for Industrial Process Heating

Industrial process heating constitutes a major share of global energy consumption,
representing over 35% of total energy demand, with nearly 54% of industrial energy allo-
cated to thermal applications [19]. This demand spans a wide range of applications, from
low-temperature (<100 ◦C) to medium-temperature (100–400 ◦C) and high-temperature
(>400 ◦C) needs. However, the majority of the industrial heating demand is concentrated in
the low- to medium-temperature range, particularly in industries such as food processing,
textiles, chemicals, and paper manufacturing. In these sectors, thermal energy is typi-
cally used for processes such as pasteurization, drying, cooking, bleaching, and dyeing.
For example, the temperature range for cleaning, pasteurization, and drying in the food
processing industry generally falls between 60 ◦C and 250 ◦C, while the thermal energy
requirements for cooking and drying in the paper industry typically range from 90 ◦C
to 200 ◦C. In the chemical and pharmaceutical industries, distillation, evaporation, and
reaction processes often require higher temperatures, typically in the range of 100 ◦C to
400 ◦C [87].

At present, industrial process heating is predominantly dependent on fossil fuels,
particularly natural gas and oil. While these energy sources can meet the high-temperature
requirements of industrial processes, their usage is associated with environmental pollution,
greenhouse gas emissions, and resource depletion [88]. In many developing countries, coal
remains the primary energy source for industrial process heating due to technological and
economic limitations, while more industrialized regions tend to rely on natural gas [89].
With the increasing global focus on energy efficiency, fluctuating fossil fuel prices, and the
tightening of environmental regulations, governments and businesses are progressively
shifting towards renewable energy sources as alternatives to conventional energy. This
transition is not only aimed at alleviating environmental pressures but also at addressing
the potential crisis arising from the gradual depletion of fossil fuels.

4.1.2. Potential for Application in the Industrial Sector

Solar thermal energy is the process of converting solar radiation into heat energy. As
shown in Figure 13, solar thermal systems utilize solar collectors to capture solar radiation.
The potential of solar thermal energy systems in industrial process heating is primarily
reflected in their ability to fulfill low- and medium-temperature demands while providing
substantial economic and environmental advantages. These systems employ various types
of solar collectors, including flat plate collectors, evacuated tube collectors, and parabolic
trough collectors, to provide thermal energy for multiple industrial applications such as
food processing, textiles, chemicals, and pharmaceuticals [90]. The application of solar
thermal technology is not confined to specific industries but also demonstrates notable
benefits in particular regions. For example, in regions with abundant solar resources, such
as India, the Middle East, and Africa, the strong solar radiation provides crucial support
for the economic viability and efficiency of solar thermal systems. Industrial enterprises in
these regions can substantially reduce their dependence on traditional fossil fuels, while
simultaneously lowering energy costs and carbon emissions [87]. Despite the extensive
potential of solar thermal systems in the industrial sector, their large-scale implementation
faces considerable obstacles. High initial investment cost represent a significant barrier
to widespread adoption, while the intermittent nature of solar radiation impacts system
stability. As a result, the incorporation of energy storage technologies, such as phase change
materials (PCMs) and molten salt storage, is of critical importance to maintaining a stable
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energy supply. Moreover, to enhance adaptability and economic feasibility, hybrid heating
technologies that integrate solar thermal technology with conventional fossil fuel systems
have emerged as a crucial area of research.
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4.2. Application Scenarios of Solar Thermal Systems in Industrial Processes

Solar thermal systems have a wide range of applications in industrial processes,
from low-temperature hot water to high-temperature steam, meeting the diverse needs of
industries such as food processing, textiles, chemicals, and metalworking (Figure 14). These
systems provide clean and sustainable energy solutions, significantly reducing dependence
on fossil fuels and lowering carbon emissions. The application scenarios of solar thermal
systems can be broadly classified into low-temperature, medium-temperature, and high-
temperature categories, depending on the specific thermal requirements of industrial
processes.

Energies 2025, 18, 2120 20 of 33 
 

 

 

Figure 14. Application scenarios of solar thermal systems in different industries. 

4.2.1. Low-Temperature Application Scenarios 

Solar thermal systems exhibit broad applicability in low-temperature industrial pro-
cesses, particularly in industries requiring low-temperature hot water or thermal energy. 
Low-temperature solar thermal systems, typically used for applications below 100 °C, 
mainly convert solar radiation into heat through solar collectors, providing sustainable 
energy alternatives for industrial production. Key application scenarios include food and 
beverage processing, textile industries, and chemical processes. 

In the food industry, solar thermal systems can be utilized for cleaning, pasteuriza-
tion, and disinfection, all of which require low-temperature heat. Pasteurization, a widely 
used technique, necessitates a constant supply of hot water at temperatures between 60 
and 70 °C, a requirement efficiently met by solar thermal systems. This approach not only 
reduces reliance on fossil fuels but also significantly cuts energy costs and carbon emis-
sions [91]. Additionally, the beverage industry often uses solar energy to provide the re-
quired low-temperature hot water for cleaning in bottling production lines. 

In the textile industry, low-temperature solar thermal systems play an essential role. 
Dyeing, rinsing, and washing processes in textile manufacturing demand substantial 
quantities of warm water, typically within the 50–80 °C range. Solar thermal systems sup-
ply the necessary heat for these processes, reducing dependence on coal and natural gas 
while enhancing energy independence for enterprises [92]. 

Low-temperature applications in the chemical industry demonstrate considerable 
potential, finding extensive utilization in processes such as low-temperature evaporation, 
dissolution, and precision cleaning. This system reliably supplies the necessary thermal 
energy while mitigating cost pressures associated with fluctuations in fossil fuel prices. In 
industrial production processes with a continuous yet relatively low heat demand, the 
integration of solar thermal systems with thermal energy storage technologies signifi-
cantly improves the system’s flexibility and operational stability. 

Consequently, in low-temperature industrial applications, solar thermal systems 
serve as a low-carbon, cost-effective, and sustainable energy solution, positioning them as 
an essential enabler in advancing industrial energy efficiency and emission reduction ob-
jectives. 

  

Figure 14. Application scenarios of solar thermal systems in different industries.

187



Energies 2025, 18, 2120

4.2.1. Low-Temperature Application Scenarios

Solar thermal systems exhibit broad applicability in low-temperature industrial pro-
cesses, particularly in industries requiring low-temperature hot water or thermal energy.
Low-temperature solar thermal systems, typically used for applications below 100 ◦C,
mainly convert solar radiation into heat through solar collectors, providing sustainable
energy alternatives for industrial production. Key application scenarios include food and
beverage processing, textile industries, and chemical processes.

In the food industry, solar thermal systems can be utilized for cleaning, pasteurization,
and disinfection, all of which require low-temperature heat. Pasteurization, a widely
used technique, necessitates a constant supply of hot water at temperatures between
60 and 70 ◦C, a requirement efficiently met by solar thermal systems. This approach not
only reduces reliance on fossil fuels but also significantly cuts energy costs and carbon
emissions [91]. Additionally, the beverage industry often uses solar energy to provide the
required low-temperature hot water for cleaning in bottling production lines.

In the textile industry, low-temperature solar thermal systems play an essential role.
Dyeing, rinsing, and washing processes in textile manufacturing demand substantial
quantities of warm water, typically within the 50–80 ◦C range. Solar thermal systems
supply the necessary heat for these processes, reducing dependence on coal and natural
gas while enhancing energy independence for enterprises [92].

Low-temperature applications in the chemical industry demonstrate considerable
potential, finding extensive utilization in processes such as low-temperature evaporation,
dissolution, and precision cleaning. This system reliably supplies the necessary thermal
energy while mitigating cost pressures associated with fluctuations in fossil fuel prices.
In industrial production processes with a continuous yet relatively low heat demand, the
integration of solar thermal systems with thermal energy storage technologies significantly
improves the system’s flexibility and operational stability.

Consequently, in low-temperature industrial applications, solar thermal systems serve
as a low-carbon, cost-effective, and sustainable energy solution, positioning them as an es-
sential enabler in advancing industrial energy efficiency and emission reduction objectives.

4.2.2. Medium-Temperature Application Scenarios

Solar thermal systems are also widely applied in medium-temperature industrial
processes (100–250 ◦C), representing an important pathway for achieving industrial energy
savings and sustainable development. This temperature range is commonly required
in industries such as paper and pulp, dairy processing, chemicals, and pharmaceuticals.
In these fields, solar thermal systems use solar collectors and moderately concentrated
parabolic trough systems to provide hot water or steam to meet medium-temperature
energy demands.

In the paper industry, pulp drying and thermal treatment are the main energy-
consuming stages. Solar thermal systems can provide a stable heat source, reducing
reliance on traditional fossil fuels. In dairy processing, such as milk powder production,
a significant amount of medium-temperature steam is required for evaporation and dry-
ing. Empirical studies conducted in dairy processing facilities indicate that solar thermal
systems can fulfill up to 76–94% of the thermal load demand [93], leading to a substan-
tial reduction in both energy expenditures and carbon emissions. In the chemical and
pharmaceutical industries, solar thermal energy is used for solvent evaporation, chemical
reactions, and distillation, all of which require stable temperatures. By integrating solar
thermal systems with thermal energy storage devices (such as phase change materials or
thermal storage tanks), a continuous and stable heat supply can be ensured, overcoming
the intermittent nature of solar energy [87].
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Additionally, the application of solar thermal systems in medium-temperature sce-
narios in beverage industries, such as breweries, has been highly successful, where they
are used to heat water and steam for cleaning, pasteurization, and production processes.
Through the implementation of advanced solar thermal technologies, industrial facilities
not only achieve significant reductions in operating costs but also substantially cut their car-
bon emissions, thus playing a crucial role in advancing carbon neutrality objectives [91]. To
clearly illustrate the correlation between solar thermal applications and specific industrial
process temperature ranges, Table 3 summarizes the typical industrial sectors and their
representative thermal processes categorized by low-, medium-, and high-temperature
requirements.

Table 3. Solar systems at different temperatures’ generation.

Temperature
Divisione Industrial Type Application

Low (<100 ◦C)

Food industry Wash, pasteurize, and disinfect
Textile industry Dyeing, rinsing, and washing

Chemical industry Low-temperature evaporation,
dissolution, and cleaning

Medium (100–250 ◦C)

Paper industry Pulp drying, heat treatment
Beverage industry Wash and pasteurize

Chemical and
pharmaceutical industries

Solvent evaporation, chemical
reaction, and distillation

High (<250 ◦C)
Metalworking industry Metal melting, heat treatment

Chemical industry Pyrolysis, gasification, and
synthesis at high temperature

Table 3 shows typical industrial sectors and thermal process examples at different
temperature levels for solar thermal systems.

Solar thermal systems demonstrate immense potential in medium-temperature indus-
trial applications by significantly reducing fossil fuel usage and enhancing energy efficiency.
When integrated with thermal energy storage technologies, they further improve reliabil-
ity and adaptability. The effective deployment of these technologies offers practical and
scalable solutions to enhancing industrial energy efficiency and promoting environmental
sustainability.

4.2.3. High-Temperature Application Scenarios

Solar thermal systems in industrial processes are primarily applied in fields that re-
quire high-temperature heat sources, such as metal processing, ceramic manufacturing,
glass production, and high-temperature chemical reactions. High-temperature solar ther-
mal systems primarily rely on concentrated solar power (CSP) technologies, including
parabolic trough collectors, solar power towers, and Fresnel lens collectors, to achieve
temperatures of approximately 250 ◦C or higher. These technologies focus solar radiation
onto specific areas using mirrors, achieving the required high temperatures. In the metal
processing industry, solar thermal systems can provide sustainable high-temperature heat
sources for metal smelting and heat treatment, replacing traditional coal or gas energy
sources [94]. In ceramic and glass manufacturing, where high-temperature kilns frequently
operate at temperatures exceeding 1000 ◦C, solar power tower systems can provide the
necessary thermal energy, thereby lowering production costs and mitigating environmental
pollution [92].

The chemical industry presents considerable potential for high-temperature applica-
tions. In high-temperature cracking, gasification, and synthesis processes, solar thermal
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systems can provide high-temperature steam and heat support. These processes are inher-
ently energy-intensive, and integrating solar thermal systems can substantially decrease
fossil fuel consumption while enhancing overall energy efficiency. High-temperature solar
systems can be coupled with thermal energy storage technologies to ensure a continuous
supply of high-temperature heat, even during periods of insufficient sunlight. Molten
salt storage technology, for example, stores solar thermal energy during the day and re-
leases it at night, providing a stable heat source for chemical reactions or high-temperature
manufacturing.

In summary, solar thermal systems hold great promise for high-temperature industrial
applications. These systems serve as clean and efficient heat sources, reduce industrial
dependence on conventional energy, and play a pivotal role in enhancing energy efficiency
and reducing emissions.

4.3. Economic Effects of Solar Thermal Systems in Industrial Processes

As the global energy transition accelerates and industrial sustainability becomes a
priority, solar thermal systems, a clean and efficient renewable energy technology, are
increasingly being integrated into the industrial sector. These systems provide a sustainable
source of thermal energy for industrial processes, reducing reliance on fossil fuels and
mitigating greenhouse gas emissions. While the adoption of solar thermal systems in the
industry is still evolving, numerous studies highlight their substantial potential to lower
operational costs, meet carbon reduction targets, and foster long-term economic stability.

4.3.1. Cost Savings and Investment Return Analysis

The economic benefits of solar thermal systems in industry are primarily evident in
long-term fuel cost savings and rapid return on returns. Although the initial capital invest-
ment for solar thermal systems—comprising equipment, installation, and integration—can
be high, these systems significantly reduce reliance on traditional fossil fuels, resulting in
notable fuel cost reductions. For example, a dairy plant in Austria installed 1000 m2 of
solar collectors, which saves 85,000 m3 of natural gas annually and reduces CO2 emissions
by 170 tons. This not only generates considerable environmental benefits but also shortens
the payback period to under three years [91].

Life cycle cost (LCC) analysis further underscores the economic viability of solar
thermal systems. Despite higher initial investments, energy cost savings during operation,
combined with low maintenance costs, render these systems economically advantageous
in the medium to long term [95,96]. Furthermore, the monetization of carbon reduction
benefits, supported by policy incentives, further enhances the economic appeal of these
systems. For example, under the European Union Emissions Trading System (EU ETS),
the value of carbon emission reductions is integrated into company revenues, provid-
ing additional incentives for investors. This dual benefit—direct fuel cost savings and
policy incentives—makes solar thermal systems a powerful tool for reducing industrial
operating costs.

4.3.2. Regional and Industry-Specific Differential Benefits

The economic benefits of solar thermal systems vary significantly across different
geographical regions and industries. The key factors influencing these benefits include
local climate conditions and fossil fuel prices. In regions with abundant solar and high fossil
fuel prices, such as Southern Europe and Australia, the payback period for solar thermal
systems is typically shorter, and the economic benefits are particularly pronounced [96].
In contrast, regions with lower solar radiation or fuel prices, such as some developing
countries, experience more limited economic benefits. These areas often require addi-
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tional policy support and technological optimization to fully unlock the potential of solar
thermal energy [97].

At the industry level, low-temperature processes (40–120 ◦C) generally show higher
compatibility with solar thermal systems. Industries such as food, beverage, and textiles,
where thermal energy demand is concentrated within a low-temperature range, can effec-
tively meet significant thermal needs using flat-plate collectors or vacuum tube collectors.
For instance, a dairy plant in New Zealand implemented a solar thermal system to meet
part of its thermal demand, achieving additional economic benefits through heat storage
and system optimization [98]. The characteristics of these industries allow for a faster
realization of high investment returns.

For industries requiring medium-temperature heat (150–400 ◦C), such as chemical and
plastic processing, economic benefits are more dependent on technological support. These
sectors typically employ highly efficient collectors, such as parabolic troughs or linear
Fresnel reflectors, often coupled with high-temperature storage systems to meet thermal
demands. While the initial investment is higher, the gradual optimization of these tech-
nologies and their increasing deployment are demonstrating their economic feasibility [97].
However, for high-temperature processes exceeding 400 ◦C, such as steelmaking and glass
manufacturing, the economic benefits of solar thermal systems remain relatively low due
to technological and efficiency limitations. Further research and breakthroughs in these
technologies are essential for future development [96].

4.3.3. Long-Term Economic Stability and Intangible Value

In addition to direct cost savings, solar thermal systems contribute to long-term
economic stability and provide intangible asset value to businesses. As a renewable energy
technology, they reduce a company’s reliance on fossil fuels, thereby mitigating the financial
risks associated with energy price volatility. This risk avoidance benefit is especially crucial
for regions dependent on imported fuels [95].

Moreover, the intangible value of carbon reduction is increasingly recognized as a key
component of corporate competitiveness. As the global focus on sustainable development
intensifies, the adoption of solar thermal systems can significantly enhance a company’s
environmental reputation and social responsibility image [91]. These intangible assets not
only help attract more investments but also increase market competitiveness, particularly
in industries that place a high emphasis on green production.

Although the promotion of solar thermal systems in high-temperature industrial sec-
tors still faces technological and economic challenges, the economic benefits in low- and
medium-temperature industrial processes have been widely recognized. Future research di-
rections should include further optimization of system designs, reducing initial investment
costs and driving the global adoption of solar thermal systems through policy support
and business model innovation (Figure 15). Additionally, improvements in energy storage
technologies and the development of new, efficient collectors will further enhance the
economic potential of solar thermal systems in high-temperature applications, providing
new possibilities for achieving sustainable industrial development.

4.4. Technical Advantages and Challenges in Industrial Applications
4.4.1. Technical Advantages

Solar thermal systems represent a clean, renewable energy source that can significantly
reduce carbon emissions in industrial production. This is especially true in energy-intensive
industrial sectors such as metal smelting, chemical production, and food processing, where
solar thermal energy can effectively replace traditional fossil fuels, thereby reducing carbon
dioxide and other greenhouse gas emissions. This contributes to addressing the global
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challenge of climate change [99]. Moreover, with the continuous development of con-
centrated solar thermal technologies, such as tower systems, parabolic trough collectors,
and concentrating collectors, solar energy can be efficiently converted into thermal energy.
These technologies generally exhibit high heat collection efficiency, meeting industrial heat
demands ranging from low to high temperatures. This is particularly beneficial in indus-
tries such as metal processing and ceramic manufacturing, which require high-temperature
heat sources [100]. Solar thermal systems can also be integrated with traditional indus-
trial energy systems to form hybrid energy supply systems. For instance, solar thermal
energy can be combined with natural gas boilers or electricity systems to ensure the sta-
bility and reliability of heat supply. Especially in regions with weaker solar radiation, the
combination of solar energy and traditional energy sources can provide around-the-clock
energy supply [94]. With the advancement of energy storage technologies, solar thermal
systems can integrate advanced thermal storage technologies (e.g., molten salt storage and
phase change material storage), which allow excess thermal energy to be stored during the
day and used during the night or on cloudy days. This resolves the intermittency issue
associated with solar energy. The application of such storage systems makes solar thermal
systems more widely applicable, particularly in industrial processes that require a stable
heat source [101].
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Despite the higher initial investment in solar thermal systems, their operational costs
are much lower than those of fossil fuels, particularly in the context of rising energy prices.
Solar thermal energy thus becomes a competitive alternative energy source. Many studies
show that in some regions, the payback period for solar thermal systems typically ranges
from 3 to 5 years, effectively reducing energy costs and improving economic efficiency [94].

The main technical advantages of solar thermal systems in industrial applications
are their clean, renewable energy characteristics, high energy conversion efficiency, low
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operating costs, good system integration, and ability to integrate with energy storage
technologies. With continuous technological innovation and the gradual maturation of
markets, solar thermal systems are expected to be more widely applied in industrial
fields, providing sustainable solutions for reducing carbon emissions and lowering energy
consumption.

4.4.2. Technical Challenges

Despite the significant advantages of solar thermal systems in industrial applications,
there remain numerous technical challenges to their widespread implementation.

First, the initial investment for solar thermal systems is typically high, especially
in large-scale industrial applications such as chemical processing, food manufacturing,
and metal smelting. While the operational costs of these systems are relatively low, the
initial costs for equipment purchase, installation, and system integration require substantial
capital investment. This can be a major challenge for smaller and medium-sized enterprises
looking to adopt solar thermal systems [101].

Second, the efficiency of solar thermal systems is heavily influenced by climate condi-
tions and geographic location, particularly in regions with insufficient sunlight. In such
areas, the heat supply capability of the system may be compromised. Although thermal stor-
age technologies, such as molten salt storage or phase change material storage, can partially
address this issue, challenges remain with the widespread adoption of efficient storage
technologies and the high cost of storage equipment. Particularly in regions with long
winters or frequent cloudy weather, solar thermal systems may not meet the continuous
industrial heat demand [100].

Furthermore, integrating solar thermal systems into existing industrial energy systems
poses another challenge. The integration design, installation, and maintenance of these
systems require a high level of technical expertise, adding complexity to their deployment.
Determining the optimal configuration and scale of collectors for different industrial
applications and effectively storing and supplying solar heat when needed are significant
technical challenges [99].

Currently, although solar thermal technology has made significant progress in certain
areas, it is still in the process of gradual refinement and broader adoption. This is especially
true for high-temperature industrial applications, where the maturity and reliability of the
technology still need to be improved. For example, solar tower collector technology and
concentrating systems require higher costs and precision, and their reliability and efficiency
in actual industrial applications are still under ongoing optimization [94].

Finally, despite being seen as a clean energy solution in many countries, the promotion
of solar thermal technology faces challenges in some regions due to insufficient policy
support and low market demand. The lack of adequate government incentives, subsidy
policies, and a general lack of corporate awareness about green development often leads to
the slow adoption of solar thermal systems in industrial applications. Without policy guid-
ance, enterprises may be reluctant to bear the high initial costs, even though solar thermal
systems may offer higher economic and environmental benefits in the long term [96].

In conclusion, the application of solar thermal systems in the industry faces challenges
related to technical costs, system integration complexity, weather dependency, technol-
ogy maturity, and insufficient policy support. To further advance the application of solar
thermal technology in industrial settings, technological innovation, policy support, and an
improved market environment are urgently needed to lower costs, enhance system stability
and reliability, and promote the widespread use of renewable energy in the industrial sector.
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5. Emerging Technologies in Concentrating Solar Thermal Systems
5.1. Innovative Solar Collector Materials

Advances in nano-functionalized absorber materials and high-performance optical
systems are expected to enhance the heat collection efficiency of CST systems. Nano-
functionalized materials, such as nanostructured coatings and multi-layered absorbers,
offer superior light absorption and reduced thermal losses. These innovations help to
significantly improve the conversion of sunlight into thermal energy, particularly for
high-temperature applications where traditional materials might not perform as well. For
example, the development of selective absorbers with tailored optical properties allows CST
systems to operate efficiently at temperatures exceeding 500 ◦C. A schematic representation
of the nanocomposite-based single-layer absorber coating developed on SS 304 substrate is
shown in Figure 16, which highlights the fabrication process using SiO2 nanoparticles and
the improvement in solar absorptance through nano-void textured surfaces [102].
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Figure 16. Schematic represents the development of nanocomposite-based single-layer absorber
coating on SS 304 substrate [102].

5.2. Thermal Energy Storage (TES) Innovations

Emerging TES technologies are playing a critical role in enhancing the performance
of CST systems by enabling them to provide continuous power even when sunlight is un-
available. Technologies like phase change materials (PCMs) and thermochemical storage
systems offer higher energy density and cost effectiveness compared to traditional methods
such as sensible heat storage. PCMs, which store thermal energy through phase transitions
(solid to liquid), allow for more compact and efficient thermal storage. Thermo-chemical
storage systems, which store energy via reversible chemical reactions, provide even higher
energy densities and longer storage durations, making them especially useful for large-scale
applications. The integration of TES with CST systems has been well explained through
Figure 17, which illustrates the indirect configuration using super-critical carbon dioxide
(s-CO2) as the heat transfer fluid (HTF). The integrated system in this study, which utilizes
supercritical carbon dioxide (s-CO2) as the heat transfer fluid (HTF) in a parabolic trough
collector (PTC) system, operates as follows. Solar radiation is focused by the parabolic
mirrors onto a receiver tube, where it heats the circulating HTF (Points 1–5). The heated
HTF is transported through the PTC loop, passing through a heat exchanger (Point 8) to
transfer thermal energy to a thermal energy storage (TES) system. The system includes
both hot and cold TES tanks (Points 11–12), where energy is stored during the day and
discharged during non-sunny periods (Point 13–15). The HTF, after being heated, flows
into the hot tank for storage, while the cold tank helps maintain the temperature differential
for energy efficiency. The stored thermal energy is later used to generate electricity in
the power block (Point 17) through a conversion process. This process is facilitated by
a secondary heat exchanger, which is specifically required for the s-CO2 configuration
(Point 9). The system’s design ensures efficient energy storage and usage, with feedback
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mechanisms to regulate energy flow throughout the day and night (Points 16–19). This
system design shows how s-CO2 improves thermal energy storage efficiency and reduces
system costs [52].
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6. Conclusions and Outlook
This review comprehensively explored the technological evolution, thermal perfor-

mance, and industrial applications of concentrated solar thermal (CST) systems, emphasiz-
ing their capabilities beyond power generation. CST systems, through optical concentration
and efficient thermal conversion, can generate medium- to high-temperature heat suitable
for a wide range of industrial sectors such as food processing, chemical manufacturing,
textiles, and metal treatment. With growing global pressure to decarbonize industrial
processes, CST technologies present a critical pathway for reducing fossil fuel reliance and
greenhouse gas emissions in the heat domain.

Through an extensive survey of CST configurations—including parabolic troughs,
central towers, linear Fresnel reflectors, and dish Stirling systems—we highlighted their
respective thermal efficiencies, temperature capacities, land requirements, and application
scopes. Recent research advancements in optical design, receiver materials, and heat
transfer fluids are significantly enhancing the thermal efficiency and operational stability
of CST systems. Especially, the development of high-absorptance, low-emissivity coatings
and high-temperature-tolerant materials such as high-entropy alloys has elevated CST
systems’ ability to perform at temperatures exceeding 700 ◦C, opening new possibilities for
energy-intensive processes.

Thermal energy storage (TES) technologies, such as molten salt storage, phase change
materials, and thermochemical storage, have been shown to extend CST system perfor-
mance during periods without solar radiation, allowing for continuous and dispatchable
thermal energy delivery. This capability is crucial for ensuring the operational flexibility
of CST systems in real industrial scenarios, especially where thermal loads are steady or
require precise temperature control.

While the hybridization of CST with photovoltaic (PV) systems offers clear benefits
for electricity dispatchability, it was not the core focus of this work. Our review inten-
tionally centered on CST’s role in heat production, not electrical power generation. As
such, the discussion on PV-CSP hybrid systems—although important in the context of
power systems—is outside the intended scope of this study, and should not constitute a
key takeaway of the conclusion. Instead, future research and industrial implementation
strategies should focus on enhancing CST’s value as a sustainable heat supply solution,
particularly in hard-to-electrify industrial sectors.
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Looking forward, several challenges remain. These include high initial capital invest-
ment, integration complexity with existing heat infrastructure, and performance degrada-
tion in sub-optimal sunlight conditions. To overcome these, innovation should continue in
areas such as smart solar tracking, AI-based operation control, durable receiver coatings,
and cost-effective thermal storage materials. Meanwhile, policy incentives, industrial
demonstration projects, and cost reduction through scale will play a decisive role in accel-
erating CST deployment in the thermal energy market.

In summary, CST systems are no longer limited to niche or experimental roles. Their
ability to deliver reliable, high-grade heat makes them a promising and scalable solution
for low-carbon industrial transformation. Continued advances in material science, thermal
storage, and system integration will be key to realizing CST’s full potential in achieving
industrial decarbonization, thermal energy security, and sustainable development goals.
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Abstract: The fluctuating uncertainty of load demand as an influencing factor for day-
ahead scheduling of an integrated energy system with photovoltaic (PV) power generation
may cause an imbalance between supply and demand, and to solve this problem, this paper
proposes a day-ahead optimal scheduling model considering uncertain loads and electric
heating appliance (EH)–PV energy storage. The model fuses the multi-interval uncertainty
set with the CNN-MI-BILSTM neural network prediction technique, which significantly
improves the accuracy and reliability of load prediction and overcomes the limitations of
traditional methods in dealing with load volatility. By integrating the EH–photothermal
storage module, the model achieves efficient coupled power generation and thermal storage
operation, aiming to optimize economic targets while enhancing the grid’s peak-shaving
and valley-filling capabilities and utilization of renewable energy. The validity of the
proposed model is verified by algorithm prediction simulation and day-ahead scheduling
experiments under different configurations.

Keywords: load demand; uncertainty handling; photovoltaic power plant; EH

1. Introduction
Concentrated Solar Power (CSP), as an emerging renewable energy technology, utilizes

solar energy resources and converts them into electricity through heat collection and
storage devices, which has the advantages of environmental protection, high efficiency,
and sustainability. However, the output of photovoltaic power generation is affected by
a variety of factors, such as weather and the environment. It is characterized by a certain
degree of uncertainty, so optimizing day-ahead scheduling has become the key to ensuring
the economical and safe operation of new energy sources, such as photovoltaic power, in
the grid [1].

At present, day-ahead scheduling considering new energy has become a research
hotspot. In terms of scheduling objects, the research mainly focuses on the coordinated
scheduling of traditional energy and new energy, or it focuses on new energy schedul-
ing. Reference [2] proposed a two-phase robust optimal scheduling model for a pumped
storage–wind–photovoltaic–thermal co-generation system, which realizes the optimal al-
location of a power generation plan through the optimization of multiple energy sources
and suppresses power fluctuations in the power grid. Reference [3] developed a model
for a wind–photovoltaic–hydroelectric–thermal pumped storage system and established a

Energies 2025, 18, 2160 https://doi.org/10.3390/en18092160
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short-term optimal scheduling model with multiple optimization objectives to improve
the economic stability of the system. Reference [4] explored the integration of Concen-
trated Solar Power (CSP) with other renewable sources to enhance system stability and
economic performance.

In terms of scheduling objectives, studies usually cover economic, technical, and
low-carbon dimensions, among others. Reference [5] integrated security and economic
objectives and proposed a two-stage scheduling framework which realizes the double
balance of economic benefits and security synergy. Reference [6] proposed a low-carbon
dispatch model for the stochastic nature of renewable energy and a low-carbon modu-
lation mechanism, which enhanced the economic efficiency of the power system under
low-carbon-emission conditions. Reference [7] proposed that enhanced sustainability
assessment and system flexibility are essential for achieving the efficient and economic
operation of integrated energy systems and accurate matching of supply and demand.

In terms of uncertainty, scheduling models can be categorized into two main types:
deterministic and uncertain. Reference [8] effectively reflected on the uncertainty of renew-
able energy by constructing a robust uncertainty set. Reference [9] proposed an optimal
scheduling strategy based on a deep reinforcement learning algorithm, which solves the
challenge of high-dimensional decision spaces. Reference [10] proposed to construct a two-
stage robust optimization model of producers and consumers for the multiple uncertainties
of wind power generation and load demand in order to promote the effective use and
management of sustainable energy.

Load fluctuation is a key factor to be considered in the day-ahead scheduling of
photovoltaic-containing power systems. Reference [11] utilized the WWO algorithm to
improve the efficiency of dynamic optimal scheduling in microgrids. Reference [12] pro-
posed a probabilistic power future prediction tool based on time-series clustering, which
is used in short-term load forecasting to make forecasts more accurate and intelligent.
However, existing studies often ignore the uncertainty of load fluctuations, which may
lead to scheduling plan failures. Therefore, the uncertainty of load fluctuation needs to
be fully considered in the scheduling of complex integrated energy systems containing
photovoltaic power generation [13].

Forecasting technology is an effective means to solve the uncertainty of load fluc-
tuation. Reference [14] investigated the proposed adaptive load forecasting model by
customizing AI algorithms and cloud-side collaboration to analyze the accuracy and
resource usage, adapting different hardware environments to meet the specific needs
of microgrids. Reference [15] proposed a short-term load forecasting model based on
EEMD-LN-GRU according to the uncertainty and nonlinear characteristics of electric load.
Reference [16] improved the accuracy of capturing short-term changes in electric load
through the improved Convolutional Neural Network–Bidirectional Long- and Short-Term
Memory (CNN-BILSTM) model. In addition, reference [17] fused mutual information (MI)
and BILSTM to dynamically evaluate the importance of features to fit the load fluctuation
characteristics. Reference [18] proposed a robust optimization-based scheduling framework
to deal with the dual uncertainties of loads and renewable energy sources through interval
uncertainty sets. Given this, this paper synthesizes multiple forecasting algorithms in the
CNN-MI-BILSTM model, adopts multi-interval uncertainty sets to portray load variability,
and improves forecasting accuracy with the help of historical data.

To address the problem that existing studies neglect the impact of load uncertainty
on the scheduling of solar thermal storage systems, reference [19] developed a day-ahead
co-scheduling method for concentrating solar photovoltaic–wind power that takes into
account the uncertainty of source loads, characterizes the uncertainty of intraday source
loads with a trapezoidal fuzzy number equivalence model, and carries out the day-ahead
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optimal dispatch based on the set of day-ahead wind-power output prediction combi-
nation scenarios. Reference [20] took into consideration the uncertainty of source loads
for electricity–heat conversion and constructed a stochastic optimal dispatch model for a
wind–solar complementary fire system with the objective of minimizing the comprehensive
operating cost of the combined system. Such models not only optimize the economic objec-
tive but also incorporate robustness and stochastic approaches. Reference [21] analyzed
the effectiveness of the combined peaking of TPU and CSP power plants with EH and
analyzed the principle of a low-carbon power supply for the proposed strategy during
peak and off-peak periods. Therefore, it has become necessary to integrate uncertainty-
handling methods in the day-ahead scheduling of integrated energy systems containing
EH-CSP modules.

To address the challenges posed by uncertain loads in the context of a new energy grid-
connected environment, this paper proposes a day-ahead optimal scheduling model that
incorporates uncertain loads and EH-CSP (Energy Hub–Concentrated Solar Power) storage.
The objective is to achieve supply–demand balance with optimal economic efficiency. This
study specifically tackles the limitations of traditional scheduling models in dealing with the
volatility of renewable energy sources and the complex coupling between power and heat
systems. By accurately simulating load uncertainties, the model closely aligns with real-
world operating conditions and provides an in-depth analysis of their impact on the day-
ahead scheduling of renewable energy hybrid plants, as well as the operational mechanisms
of the EH-CSP system. This improves both the accuracy of scheduling decisions and the
overall stability of the system. The main contributions of this paper are as follows:

(1) An optimal day-ahead scheduling model is developed, considering uncertain loads
and EH-CSP storage, with the goal of achieving economic efficiency, grid stability, and
operational reliability. Through refined modeling and optimization techniques, the
model enhances the overall economic performance of the system and the robustness
of grid operations.

(2) A multi-interval uncertainty set and a CNN-MI-BILSTM model are introduced to
improve the accuracy of load forecasting. By overcoming the limitations of traditional
models in handling data correlations, the approach significantly enhances prediction
reliability and enables rapid, precise forecasting of fluctuating loads.

(3) A modular modeling approach for EH–photovoltaic power plants is proposed, along
with a coupled operation model of power generation and thermal storage modules.
This captures the dynamic processes of energy conversion and storage, accounts for
environmental impacts on system efficiency, and improves the model’s generality
and accuracy in reflecting the operational characteristics of various field stations in a
renewable energy co-generation system.

The rest of the article is structured as follows: the second part elaborates the research
problem, the third part describes the establishment of the variable-load model for the
improved day-ahead scheduling model in the description of the prediction method that
constantly improves the data relevance as well as the prediction accuracy, the fourth part
proposes a model for the EH–photovoltaic and thermal co-generation system corresponding
to the power generation–storage operation relationship, the fifth part presents the solution
method of the optimization model, the sixth part provides an analysis through examples,
and the seventh part concludes the entire paper with an overview.

2. Problem Formulation
2.1. Day-Ahead Scheduling Model for Integrated Energy Systems

The integrated energy system in this section covers wind, photovoltaic, and solar
thermal power generation, and its day-ahead scheduling model aims to minimize the
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operating cost of the integrated daily plan, which is expressed as follows (Please refer to
Appendix A for detailed module-by-module costs)

min : C = C1 + C2 + C3 + C4 (1)

In the formula, C is the daily average cost; C1 represents the daily operating cost;
C2 represents the start–stop cost of wind, PV, and solar thermal power generation;
C3 represents the equipment maintenance cost; and C4 is the penalty for wind and
light abandonment.

The constraints include generation constraints for each unit, creep rate constraints,
start- and stop-state constraints, line constraints, and power-balance constraints:

0 ≤ Pw(t) ≤ PN
w (2)

Rdown
w ≤ Pw(t)− Pw(t− 1) ≤ Rup

w (3)

0 ≤ Pp(t) ≤ PN
p (4)

Rdown
p ≤ Pp(t)− Pp(t− 1) ≤ Rup

p (5)

0 ≤ Ppb(t) ≤ Pmax
pb µsu

PB,t (6)

Rdown
pb ≤ Ppb(t)− Ppb(t− 1) ≤ Rup

pb (7)

0 ≤ µsu
t + µsd

t ≤ 1 (8)

0 ≤ Pg,t ≤ Pg,max (9)

Pw(t) + Pp(t) + Ppb(t)− Pload ≥ 0 (10)

In the formulas, PN
w is the rated capacity of wind turbines; Rdown

w , Rdown
p , Rdown

pb , Rup
w ,

Rup
p , and Rup

pb are the upper and lower limits of the creep rate of the wind, photovoltaic,
and solar thermal power generation system; Pmax

pb is the maximum output power of the

solar thermal power generation system; µsu
t and µsd

t are the start-up and release efficiencies
of the solar thermal power generation, respectively; Pg,max is the maximum allowable
power of the liaison line; and Pload is the power of the load demand. Remark: The current
model overlooks load uncertainty, renewable energy consumption efficiency, and CSP
storage economics. Ignoring these factors may result in power imbalances due to mis-
matched generation and demand. Integrating EH-CSP joint optimization into day-ahead
scheduling enables coordinated energy utilization, enhances wind and solar absorption,
and improves grid reliability through thermal storage’s peak-shaving capability. Thus, in-
corporating load uncertainty and EH-CSP optimization is essential for secure and economic
system operation.

2.2. Day-Ahead Optimal Scheduling Model Considering Uncertain Loads and EH-CSP

Thermal energy storage (TES) can store the excess heat of the concentrating heat
collection system when the load demand is low and release energy through thermoelectric
conversion when the load demand is high to improve the system’s operation and energy
utilization efficiency. Considering the CSP storage, Formula (1) can be improved as follows:

C′ = C′1 + C′2 + C′3 + C4 (11)

C′1 =
T

∑
t=1

[cwPw(t) + cpPp(t) + cpbPpb(t) + ctesPtes(t)] (12)
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C′2 = C2 +
T

∑
t=1

[SUTESµsu
TES,t + SDTESµsd

TES,t] (13)

C′3 =
T

∑
t=1

[OMWT Pw(t) + OMPV Pp(t) + OMPBPpb(t) + OMTES Htes(t) + OMEH EEH(t)] (14)

Ptes(t) = Htes(t)η2 (15)

where ctes represents the unit operating cost of the TES module; Ptes(t) is the thermal power
for charging/discharging the TES at time t; SUTES is the start-up cost for thermal-to-electric
conversion; SDTES is the start-up cost for charging the TES; µsu

TES,t = 1 and µsd
TES,t = 1,

respectively, indicate the discharge operation and the start-up cost of discharge for the TES
module at time t; OMTES is the maintenance cost coefficient for the TES system; Htes(t)
represents the charge/discharge thermal energy of the TES system at time t; and η2 is the
thermal-to-electric conversion efficiency of the solar thermal storage system.

The load in Formula (10) is a deterministic expression, while, in essence, the load is a
random fluctuation state with substantial uncertainty, and considering the uncertain load is
conducive to optimizing the day-ahead scheduling and reducing the day-ahead operating
cost. Considering the TES module at the same time, Formula (10) is improved:

Pw(t) + Pp(t) + Ppb(t) + Ptes(t)− Pun
load(t) > 0 (16)

where Ptes(t) is the conversion power of the TES module at the corresponding time and
Pun

load(t) is the uncertain load power.
The addition of the energy storage constraint to the constraints, as well as the im-

provement of the supply–demand coordination demand constraints and the EH operation
constraints by taking the load uncertainty into account, is written as follows:

Htes(t) = µch
tes Hch

tes(t) + µdis
tes Hdis

tes (t) + EEH(t) (17)

0 ≤ Hch
tes(t) ≤ Hch,max

tes µch
tes (18)

0 ≤ Hdis
tes (t) ≤ Hdis,max

tes µdis
tes (19)

0 ≤ µch
tes + µdis

tes ≤ 1 (20)

Hcsp = Hch
tes(t) + Hpb

t (21)

EEH(t) = Pw(t) + Pp(t) + Ppb(t)− Pun
load(t) (22)

0 ≤ EEH(t) ≤ Emax
EH (23)

where Htes(t) is the charging/discharging heat of the TES system at time t; Hch
tes(t) and

Hdis
tes (t) are the charging and discharging heats of the TES µch

tes is a binary variable; µch
tes = 1

means the heat storage unit for heat storage; µdis
tes is a binary variable; µdis

tes = 1 represents
the heat storage unit for exothermic power; Ppb(t) is the output power of the solar thermal

power generation at time t; Hch,max
tes and Hdis,max

tes are the thermal units of the maximum
heat storage and exothermic power, respectively; Hcsp is the total heat absorbed by the
concentrating light collector system; and Emax

EH is the maximum value of the electric heating
device at the time of the conversion.

According to the above-improved model, the optimal scheduling model considering
load uncertainty with day-ahead CSP storage is expressed as follows:

min : f (11) (24)

The constraints are as follows:
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f (2)–(10)

f (17)–(23)

Remark 1. The uncertain load power referred to in Formula (16) of the day-ahead optimal dispatch
model concerning the supply–demand balance will be modeled in Section 3.

Remark 2. The outputs of the power generation module, Ppb(t), and the heat storage mod-
ule, Ptes(t), of the photovoltaic power plant are described in Formula (16) in terms of power balance.
In this paper, EH is introduced to improve the capacity of wind and solar energy consumption. The
energy of the heat storage module in the EH-CSP power plant is not only derived from the concen-
trating heat and power collection system but also from the energy converted from the abandoned
wind and light. Therefore, Section 4 will take the concentrating solar collector system as well as the
EH output as the pivot to establish the relationship model of Ppb(t) and Ptes(t).

3. Load-Power Uncertainty Model Based on CNN-MI-BILSTM
Uncertainty in pure electricity loads affects the balance between supply and demand.

If the planned output for each day far exceeds the load demand, there will be an economic
loss. If it is not possible to cope with changes in load, the system becomes unstable.

3.1. Uncertainty-Considering Load-Power Model Based on Baseload Prediction

In this section, a multi-interval uncertainty modeling approach is used to construct
the load-power uncertainty set.

Multi-interval uncertainty modeling describes the predicted load power by
incorporating a probability distribution. Firstly, the predicted power range[

Ppre
load(t)−ω−∂,t, Ppre

load(t) + ω+
∂,t

]
is divided into Nb intervals, and the sum of the correspond-

ing times of the Nb intervals is Πω
∂ , and the corresponding time of each interval, Πb,ω

∂ ,
depends on the deviation ratio, ωb+

∂,t + ωb−
∂,t /ω+

∂,t + ω−∂,t, and the probability distribution,
ρb

∂; the multi-interval probability distribution is plotted as Figure 1.

Figure 1. Multi-interval probability distributions for uncertain loads.

Nb

∑
b=1

(Πb,ω
∂ ·

ωb+
∂,t + ωb−

∂,t

ω+
∂,t + ω−∂,t

) = Πω
∂ (25)

Πb,ω
∂

Πb+1,ω
∂

=
ρb

∂

ρb+1
∂

(26)
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Formulas (25) and (26) enable the division of a single interval,[
Ppre

load(t)−ω−∂,t, Ppre
load(t) + ω+

∂,t

]
, into upper and lower error limits and probability distribu-

tions. Then, the uncertainty load model is expressed as follows:

Pun
load(t) = Ppre

load(t) +
Nb

∑
b=1

(ωb+
∂,t εb+

∂,t−ωb−
∂,t εb−

∂,t ) (27)

0 ≤
Nb

∑
b=1

(εb+
∂,t +εb−

∂,t ) ≤ 1 (28)

Nt

∑
t=1

(εb+
∂,t +εb−

∂,t ) ≤ Πb,ω
∂ (29)

−Λ∂ ≤
∑Nt

t=1 ∑Nb
b=1 (ω

b+
∂,t εb+

∂,t −ωb−
∂,t εb−

∂,t )

∑Nt
t=1 Ppre

load(t)
≤ Λ∂ (30)

where Ppre
load(t) is the load prediction value; ωb+

∂,t and ωb−
∂,t are the upper and lower error

limits corresponding to the period b; the introduced variables εb+
∂,t and εb−

∂,t limit the uncertain

load power within the range
[

Ppre
load(t)−ω−∂,t, Ppre

load(t) + ω+
∂,t

]
; Formula (28) considers that

only one deviation will occur at any period from a spatial point of view; Formula (29)
ensures that the total uncertainty period for each interval, Nt, does not exceed, from a
temporal point of view, Πb,ω

∂ ; and the constraint (30) controls the range of deviation of the
actual output from the predicted value, [−Λ∂, Λ∂].

The load uncertainty model described above is based on load predictions, Ppre
load(t).

Therefore, the load prediction model is given in Sections 3.2–3.4

3.2. CNN-LSTM-Based Baseload Prediction Models

Considering the complexity and non-smoothness of the load data, a CNN-LSTM
network short-term load prediction method is proposed to accomplish the prediction of
the load, Ppre

load(t).
Figure 2 illustrates the prediction flow of the CNN-LSTM network.

Figure 2. Prediction schematic for CNN-LSTM networks.

The modeling of each module of the CNN-LSTM network is explained below.

3.2.1. Input Layer

The input layer realizes the transfer of load data to the CNN layer.

3.2.2. CNN Layer

The CNN layer mainly includes the convolutional layer and the pooling layer, which
uses the convolutional layer to realize the extraction of static features from the input data
through the sliding-window operation of the convolutional kernel and then reduces the
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dimensionality of the extracted features by using the scale invariance of the key features
through the pooling layer, which makes the key features further highlighted and reduces
the complexity of the network through parameter sharing. Usually, the key features are
extracted from the input data by convolutional and pooling layers, and the dimensionality
of the features can be reduced.

The process of the CNN layer is represented as follows:

C1 = ReLU(X⊗W1 + b1) (31)

P1 = max(C1) + b2 (32)

C2 = ReLU(X⊗W2 + b3) (33)

P2 = max(C2) + b4 (34)

XC = Sigmoid(P2 ×W3 + b5) (35)

where the outputs of convolutional layer 1 and convolutional layer 2 and pooling
layer 1 and pooling layer 2 are C1 and C2 and P1 and P2, respectively; W1, W2, and W3

are the weight matrices of the CNN layers, b1, b2, b3, b4, and b5 are the deviation values;
⊗ is the convolution operation; and the activation function Sigmoid is chosen for the fully
connected layer. The output feature vector of the CNN layer is denoted as XC, and the
length of the output of the CNN layer is denoted as XC = [x1 · · · xi−1, xi · · · , xt].

3.2.3. LSTM Layer

The basic unit model of the LSTM network is as follows:

ft = σ(W f xxt + W f hht−1 + b f ) (36)

it = σ(Wixxt + Wihht−1 + bi) (37)

gt = ϕ(Wgxxt + Wghht−1 + bg) (38)

St = gt ⊙ it + St−1 ⊙ ft (39)

ht = ϕ(St)⊙ ot (40)

ot = Sigmoid(Woxxt + Wohht−1 + bo) (41)

where xt is the forgetting gate input; ht−1 is the intermediate output; St−1 is a status
memory unit; ft, it, gt, ht, St, and ot are the states of the forgetting gate, the input gate, the
input node, the intermediate output, and the state unit output gate; W is the matrix weight
of the corresponding gate multiplied by the input, xt, and the intermediate output, ht−1;
b f , bi, bg, and bo are the offset terms of the corresponding doors; ⊙ represents the bitwise
multiplication of vector elements; and ϕ indicates the change in the tanh function.
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3.2.4. Output Layer

Take the output data of the LSTM-layer output gate as the result of the load
prediction data:

Ppre
load(t) = ot (42)

Remark 3. The hybrid model short-term load forecasting method based on the CNN-LSTM
network can effectively extract the potential relationship between continuous data and discontinuous
data in the feature map to form the feature vector and fully mine the internal correlation between
time-series data. However, the output feature vector, XC, of the CNN layer lacks consideration
of data correlation, which will cause prediction deviation, so MI is introduced to improve the
data correlation.

3.3. MI Reconstruction Method of Input-Layer Data Considering Data Relevance

To solve the problem of prediction deviation, this section introduces eigenvalues to
represent the importance value of the input characteristics and constructs an improved
load data input correction model.

The characteristic matrix, X′C, of the new input LSTM network is obtained by intro-
ducing the eigenvalue vector, M, as follows:

X′C = XC ·M (43)

XC =




x1,1 · · · xi,1 · · · xt,1

x1,2 · · · xi,1 · · · xt,2
...

...
...

x1,z · · · xi,z · · · xt,z




(44)

M =




M(x1,1, o1) · · · M(xi,1, oi) · · · M(xt,1, ot)

M(x1,2, o1) · · · M(xi,2, oi) · · · M(xt,2, ot)
...

...
...

M(x1,z, o1) · · · M(xi,z, oi) · · · M(xt,z, ot)




(45)

where XC is the input characteristic matrix corresponding to the CNN output load data
set obtained based on (35) and M is the time-varying importance value fluctuation matrix
obtained by normalizing the output or input characteristic matrix, XC, of the CNN layer
based on MI. It contains important information on input features under different dimen-
sions. The stronger the correlation between the two variables, the greater the M value.
When the two variables are independent of each other, the M value is 0. ot is the output
load data obtained at time t based on the input characteristic matrix, XC.

Remark 4. The critical value extraction of the CNN-layer output data can accurately predict
the data fluctuation, but the training speed of the MI-LSTM method is slow. The load sequence
has the characteristics of correlation and strong randomness. The LSTM neural network can only
extract and encode the sequence information in one direction. It cannot learn the forward and reverse
information rules of the load data. The BI method neural network is proposed to consider the forward
and backward sequences at the same time to solve the problem of data dependence.
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3.4. Bidirectional BILSTM Improvement Considering Prediction Accuracy

Section 3.2. The LSTM model is used to learn the output characteristic data of the
CNN layer. However, the prediction accuracy of this method is not high, and the training
speed is slow. Therefore, this section uses the BILSTM with two-way time information
to bidirectionally mine the internal relationship between long-time data to improve the
training speed and prediction accuracy. The specific structure is shown in Figure 3.

Figure 3. Structure of the prediction model of MI-BILSTM.

X′C is the input data of the new LSTM network, and X′C = [x′1 · · · x′i−1, x′i · · · , x′t]
defines a new network final output power prediction value, Ot, as follows:

ft = σ(W f xx′t + W f hht−1 + b f ) (46)

it = σ(Wixx′t + Wihht−1 + bi) (47)

g̃t = ϕ(Wgxx′t + Wghht−1 + bg) (48)

S̃t = g̃t ⊙ it + St−1 ⊙ ft (49)

ht = ϕ(S̃t)⊙ ot (50)

ot = Sigmoid(Woxx′t + Wohht−1 + bo) (51)

→
ot =

→
LSTM(ot−1, x′t, ct−1) (52)

←
ot =

←
LSTM(ot+1, x′t, ct+1) (53)

In the formulas,
→
ot is the forward LSTM output predictive value calculated by inputting

the input data, X′C, of Formula (43) into the LSTM neural network (46)–(51);
←
ot is the forward

LSTM input predictive value calculated according to the calculation of the X′C reverse input
LSTM neural network (45)–(51); at and bt represent the forward and backward output
weights, respectively; and ct is the offset optimization parameter.

The model realizes LSTM training in the forward and reverse directions of X′C and
effectively improves the comprehensiveness and integrity of feature selection. The forward
LSTM-layer output,

→
ot, is connected to the backward LSTM-layer output,

←
ot, and the final

power prediction output value, ot, is obtained through weighted fusion.
The structure of the prediction model of CNN-MI-BILSTM is shown above.
The algorithm of load prediction in Sections 3.2–3.4 was improved, and the results

were input to Section 3.1, which accurately described the uncertain load according to the
multi-interval uncertainty set.
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4. Consider the Coupling Operation Model of the EH-CSP Combined
CSP System

In Section 2.2, considering the mutual coupling between the power operation of the
power generation, Ppb(t), and the heat storage module, Ptes(t), of the CSP power station
in the EH-CSP combined system, the excess wind and solar capacity can be effectively
transformed into heat energy by integrating EH in the CSP heat exchange platform. Sec-
ondly, different from the traditional heat storage–power generation process, this section
divides the energy storage and power generation output into two independent modules.
The following describes the coupling output of the power generation module, Ppb(t), and
the heat storage module, Ptes(t), of the optical thermal power station assisted by the EH
device from the perspective of the internal operation.

4.1. Photothermal Power Generation and TES Coupling Operation Model

This section mainly describes the operation relationship between the CSP power
generation module and the energy storage module: the core of this section is to treat the
load demand as a connecting bridge and further elaborate the interaction and coupling
mechanism between the CSP power generation and the EH energy storage system.

When the load demand is low, the concentrated heat collection system transfers heat
to the power generation module and converts it into electric energy for load demand. At
the same time, the energy storage module stores heat energy:

Pun
load(t) ≤ Pw(t) + Pp(t) + Ppb(t) (54)

As an electric heat transfer element in a CSP power plant, the EH conversion efficiency
can be close to 100%. The amount of abandoned air and light mainly determines the output
of EH. The output model is expressed as follows:

PEH(t) = Pw(t) + Pp(t)− Pun
load(t) (55)

EEH(t) = ηEH PEH(t) (56)

where EEH(t) is the heat transferred to the heat storage module, PEH(t) is the wind and
solar residual power, and ηEH refers to the electrothermal conversion efficiency when EH
works stably.

The energy stored in the energy storage system is expressed as follows:

Ptes(t) = Pcsp(t)− Ppb(t) + ηdEEH(t) (57)

Ptotal(t) = ηd(Qpb(t)− Pch
tes(t)/ηc − EEH(t)) (58)

where Pcsp(t) is the total absorbed power of the CSP concentrator and collector system.
When the load demand is low, one part of Pcsp(t) flows into the PC system to heat the steam
to drive the turbine for power generation, Ppb(t), and the other part flows into the TES to
store heat energy, Ptes(t). Pch

tes(t) is the charging power of TES; Ptotal(t) represents the total
power of the power generation module and the heat storage module; Qpb(t) is the heat
transferred to the power generation system by concentrating and collecting heat at time t;
ηd is the thermoelectric conversion efficiency; and ηc is the thermal storage efficiency of
the TES (%).

When the load demand is high, the concentrated heat collection system transfers heat
to the power generation module, while the energy storage module releases the stored heat
energy: the heat released by the energy storage module is used by the power generation
module alone.

211



Energies 2025, 18, 2160

Ptotal(t) = ηd(Qpb(t) + Pdis
tes (t)η f + EEH(t)) (59)

Pun
load(t) ≤ Pw(t) + Pp(t) + Ptotal(t) (60)

where Pdis
tes (t) is the power released by the heat storage system. When the load demand

is high, Pcsp(t) flows into the PC system, heating steam to drive the turbine for power
generation, Ppb(t), while releasing the heat energy stored in the TES, Ptes(t). η f is the heat
release efficiency of the TES (%).

4.2. Operation Model of the Solar Thermal Power Generation Module Based on Direct Connection
and High Efficiency

The thermal storage module and the power generation module of the CSP power
generation system are entirely independent; that is, the thermal storage module is specially
responsible for storing heat energy and generating power independently, while the output
of the power generation module entirely depends on the real-time concentrating and
collecting heat system and does not directly use the heat storage, so it is considered that
the output of the power generation module is directly connected to the concentrating and
collecting heat module, reducing the intermediate steps of energy form conversion.

Because the energy of the CSP power generation and energy storage charging comes
from the concentrating heat collection system, the concentrating heat collection system
is modeled first. The CSP power station uses the concentrating heat collection system to
convert the reflected light energy of the mirror field into heat energy. The thermal power is
as follows:

Qcsp(t) = η2SDt (61)

where Qcsp(t) is the thermal power of the concentrating and collecting device, η2 is the
total optical efficiency, S is the mirror field area of the CSP power station, and Dt is the
direct irradiation index of light at time t.

When the load demand is low, part of Qcsp(t) is used for power generation to meet
the load demand, and another part is stored through the heat storage system.

Qcsp(t) = Qpb(t) + Qch
tes(t) (62)

When the load demand is high, Qcsp(t) is fully used for power generation to meet the
load demand, and the heat storage system releases the stored heat:

Qcsp(t) = Qpb(t) + Qdis
tes(t) (63)

where Qpb(t) is the thermal power transmitted from the concentrating and collecting device
to the power generation system, Qch

tes(t) refers to the thermal power transmitted to the heat
storage system by the concentrator and collector, and Qdis

tes(t) is the thermal power released
by the heat storage system.

CSP power generation is defined as the transfer of energy only by the concentrating
and collecting system, and the modeling is as follows:

Ppb(t) = ηdQpb(t) (64)

where PSF(t) is the thermal power directly used by the concentrating and collecting device
for power generation and ηd is the thermoelectric conversion efficiency.
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4.3. Operation Model of CSP Storage Module Considering EH-CSP Combination

The independent TES–power generation and direct generation thermoelectric modules
enable the power output to be flexibly adjusted according to the actual demand and resource
conditions. The heat storage module can store heat energy when the Sun is sufficient for
use at night or on cloudy days, while the direct-generation thermal power module adjusts
the power generation according to the real-time sunlight conditions, and the combination
of the two forms is complementary.

When the load demand is low, from Formula (61), the concentrator and collector will
store the heat through the CSP storage system, and the heat energy stored in the energy
storage module not only comes from this path but also converts the excess wind and
solar output through the electrical heat transfer capacity of the EH, and the heat energy is
released when the system needs to operate to drive the steam turbine to generate electricity.
This is modeled as follows:

Pch
tes(t) = ηc(Qch

tes(t) + EEH(t)) (65)

When the load demand is high, the heat stored in the CSP storage system is released,
which is expressed as follows:

Pdis
tes (t) = (Qdis

tes(t) + ηdEEH(t))/η f (66)

where Pch
tes(t) and Pdis

tes (t) are the TES storage and release power and ηc and η f are the heat
storage and heat release efficiency of the TES (%).

The power output of the TES at time t is expressed as follows:

Ptes(t) = ηd(−Pch
tes(t)/ηc + Pdis

tes (t)η f + EEH(t))vv (67)

where Ptes(t) represents the power output of the TES.

5. Solution
The day-ahead optimal scheduling model of shared energy storage considering un-

certain loads constructed above can be defined as a mixed-integer nonlinear planning
problem. Because it has an NP-hard property, it can be approximated by converting it into
a mixed-integer linear programming problem. In this section, Benders + MOPSO is used to
solve the optimal scheduling problem.

The decision variables of the day-ahead optimal dispatch model considering uncertain
loads and EH solar thermal energy storage include wind power, photovoltaic power, solar
thermal output power, and solar thermal energy storage power.

First, rewrite the model (23) in compact mode:

min
Pint ,Ptes

Cint(Pint)+ Ctes(Ptes)

s.t.APint ≤ b
DPint + EPtes ≤ f

(68)

In Formula (63), the response variable output power of the wind, photovoltaic, and
solar thermal power generation modules is expressed as Pint, and the power change of the
solar thermal unit energy storage module is described as Ptes in Formulas (A1)–(A3) and
(A5). The scheduling response cost, Cint(Pint), is a function of Pint. The cost of CSP storage,
Ctes(Ptes), is a function of Ptes, which is composed of the power change of the CSP storage
module contained in Formulas (11)–(13). Constraint APint ≤ b represents the constraint
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only related to Pint, i.e., Formulas (2)–(9), and constraint DPint + EPtes ≤ f represents Pint

and Ptes. The related coupling constraint is expressed in Formulas (16)–(22).

5.1. MOPSO Operational Flow

The Benders decomposition and multi-objective particle swarm optimization (MOPSO)
algorithm are combined to optimize the combined output of day-ahead scheduling.

Algorithm 1 describes the process of solving the Pareto-optimal solution by MOPSO
using the main decision variable group decomposed by benders as particles. Firstly,
the algorithm initializes the particles. At this time, each group of decision variables
includes the output power values of the wind, photovoltaic, and solar thermal power
generation modules. P[i] is the cost corresponding to each group of decision vari-
ables. In Section 2.1, the proposed traditional cost function, C, is the optimal solution,
Pbest, of the decision variable; in Section 2.2, the cost function considering the load
uncertainty and CSP storage proposed in Section 2.1 is used as the group extremum,
Gbest. The inertia weight, velocity, and position of particles are continuously updated,
and the Pbest and Gbest corresponding to particles in each scene are solved until the
end of the iteration to obtain the global optimal solution in the Pareto solution set.

Algorithm 1: MOPSO algorithm framework

Input: Particle swarm size N (N = 50); dimension, M, of the objective function;
maximum number of iterations, MaxIter (MaxIter = 100); acceleration constants, c1 and
c2 (usually close to 2); inertia weight, W; initialize particle position, X[N][D]; initialize
particle velocity, V[N][D]; initialize personal best position, Pbest[0], and global best
position, Gbest[0].

Termination condition: Maximum number of iterations reached.

For t = 1 to MaxIter, do

Pbest[0] = minC0

Gbest[0] = minC′0
For i = 1 to N, do
V[i] = ω ∗V[i] + c1 ∗ rand() ∗ (minC0 − P[i]) + c2 ∗ rand() ∗ (minC′0 − P[i])
P[i] = P[i] + V[i]
Calculate the current particle fitness, Fi
If Fi (Xi) > Fi (minC0), then
minC = Xi

Add minC to Pareto frontier set, p
minC′ = selectParetoFront(P)
End for
minC′

End

5.2. Benders+MOPSO Algorithm Solving

In view of the complex correlation between Pint and Ptes, it is not easy to directly
solve the model (68). This paper proposes a multi-objective optimization scheme with a
decomposition structure based on Benders decomposition and MOPSO, which decomposes
the integrated model (68) into a response optimization problem (69) and energy storage
optimization problem (70).

min
Pint

Cint(Pint)

s.t.APint ≤ b
(69)
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min
Pint ,Ptes

Ctes(Ptes)

s.t.DPint + EPtes ≤ f
Pint = Pint∗

(70)

In each iteration, Formula (69) optimizes the response quantity and transfers the
boundary variable, Pint∗, to Formula (70).

Benders decomposition divides the complex problem into a main problem and sub-
problems and approximates the optimal solution through an iterative cutting plane;
MOPSO is applied to the main problem for multi-objective optimization and searches
for the Pareto-optimal solution set using group intelligence. The combination of the two
effectively solves the NP-hard problem.

6. Results and Discussion
This section consists of two parts for the calculation example: one part details the

construction of the load uncertainty of the prediction algorithm and the accuracy of the
calculation analysis, and the other part addresses the consideration of the EH-CSP thermal
storage module on the day before the day scheduling economy and the wind power
consumption capacity in the calculation analysis.

6.1. Background

Firstly, the prediction algorithm was evaluated to ensure the feasibility and accuracy
of the simulation experiment. This paper selected a specific region of China to choose any
day with an interval of 15 min and obtained the maximum load characteristics, the daily
load data, and the daily meteorological data.

In this paper, the mean absolute percentage error (MAPE) and root mean square
error (RMSE) evaluation indexes were selected to evaluate the prediction algorithm. The
calculation formula for each evaluation index is as follows:

eMAPE =
1
n∑n

i

∣∣∣∣
yi − yr

yr

∣∣∣∣ ∗ 100% (71)

eRMSE =

√
1
n∑n

i (yi − yr)
2 (72)

where yr denotes the actual value, yi denotes the predicted value, and n is the sample size;
MAPE is used to measure the percentage of the mean absolute error between the predicted
value and the actual value, and RMSE is the mean of the squared prediction error squared
and then squared, which is more sensitive to the effect of large errors.

Secondly, the results of the day-ahead scheduling example were analyzed. In this
paper, 500 MW doubly fed wind farms, 600 MW photovoltaic power plants, and 200 MW
tower-type photovoltaic power plants were used to form a wind–heat co-generation system.
The power and direct sun index of wind power, PV power, and load predicted by the
proposed algorithm are shown in the following figure, and the relevant parameters of the
photovoltaic and thermal power plant are shown in Table 1. The cost coefficient of wind
and photovoltaic power generation was cw = cp = 90 CNY/MW, the cost coefficient of
maintenance was OMWT = OMPV = 30 CNY/MW, the cost of starting and stopping was
SUW = SDW = SUP = SDP = 15 CNY/MW, the cost coefficient of the power generation
of the photovoltaic power plant and the power generation cost coefficient of the storage
module were cpb = ctes = 60 CNY/MW and OMPB = OMTES = 20 CNY/MW, the cost
coefficient of O&M was OMPB = OMTES = 20 CNY/MW, the costs of starting and stop-
ping were SUPB = SDPB = SUTES = SDTES == 10 CNY/MW and OMPB = OMTES =
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20 CNY/MW, the cost coefficient of the O&M was OMEH = 10 CNY/MW of the EH
unit, and the maximum wind power (50 MW) and solar abandonment cost factor was
cwc = cpc = 108 CNY/MW.

Table 1. Main parameters of 100 MWCSP power station.

Parameter Value

Maximum output power of CSP plant/MW 100
Photothermal conversion efficiency/% 40

Thermal–electrical conversion efficiency/percent 40
Solar field area/m2 1.3 × 106

Charging (discharging) efficiency of heat storage device/% 98.5
CSP power plant output upper (lower) limit/MW 100

Maximum (small) heat storage capacity of heat storage device/MWh 1500

The predicted power and direct solar insolation (DNI) indices for wind power and
photovoltaic power generation are shown in the Figure 4, and the relevant parameters for
the photovoltaic power plant are shown in Table 1.

Figure 4. Predicted reference power and DNI index of wind power and PV.

6.2. Model Validation
6.2.1. Validation of the CNN-MI-BILSTM Algorithm in Predicting the Accuracy of
Load Data

In this section, to validate the effectiveness and accuracy of the proposed CNN-MI-
BILSTM algorithm, the mean absolute percentage error (MAPE), as well as the root mean
square error (RMSE), were used as the evaluation metrics, and a certain number of samples
were generated based on the city’s past load data, where 70% of the samples were used
for the training of the unknown coefficients and 30% were used to check the model’s
accuracy and detection rate. The prediction results obtained from the CNN-MI-BILSTM
algorithm were compared with those of the BPNN, CNN-GRU, and conventional CNN-
LSTM algorithms, as well as the CNN-MI-LSTM algorithm.

In order to compare the uncertain pure electric-load forecasting modeling methods,
this experiment first used the control variable method for stepwise model adjustment.
Based on the CNN-LSTM network, the importance value of input features was character-
ized by the MI value between the input features and the load. Completing the processing
of correlated data and adding bidirectional moment information, BILSTM was used to
mine the intrinsic connection between long-time data bidirectionally. It was compared with
the BPNN and CNN-GRU algorithms; firstly, the load data were preprocessed, including
operations such as normalization and processing of missing values and outliers, and then
the data were fed into the deep learning model.
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By applying the sliding-window technique, the original time-series data were sliced.
Here, the window width was set to 24 h, which means that the model considered the data
from the past full day as input to predict the load value at a point in the future each time.
The step size was set to 1, which means that the window slid forward one unit at a time,
so that the continuity of the time series could be fully utilized to capture the temporal
dynamic features in the data while ensuring that the data utilization was maximized with
no omissions.

Figure 5 compares the correlation between the prediction results produced by the
adopted CNN-MI-BILSTM algorithm and four other mainstream prediction algorithms
with the actual situation. It demonstrates the performance of different algorithms in
predicting the daytime power-load variation in Gansu, clearly reflecting that the load
fluctuates significantly within a day, especially peaking during the traditional peak period
of power consumption, while there is a large drop during the trough period. All the
prediction algorithms can fit the trend of the actual load profile well. To accurately quantify
the performance, Table 2 provides the corresponding MAPE and RMSE metrics for each
prediction algorithm.

Figure 5. Load prediction curves for different algorithms.

Table 2. Predictors for different algorithms.

Model
Norm eMAPE eRMSE

BPNN 3.22 140.04
CNN-GRU 2.85 127.83
CNN-LSTM 2.67 118.04

CNN-MI-LSTM 2.48 113.27
CNN-MI-BILSTM 2.40 109.83

By inputting 96 data points into different neural networks during the feature day, the
final prediction results were compared with the actual data on the second day to obtain
eMAPE and eRMSE metrics. These are shown in the following table:

Given that the lower of these two metrics represents a higher prediction accuracy,
the data in Table 2 directly prove that the CNN-MI-BILSTM algorithm outperforms the
compared algorithms in terms of prediction accuracy. First, regarding prediction accuracy,
the CNN-MI-BILSTM algorithm can provide more accurate results in predicting the actual
data in a particular location in Gansu. A smaller MAPE value means that the model has a
low percentage error between the predicted and actual values, reflecting the strong ability
of the predicted values to follow the changes in the actual data closely. Second, regarding
error magnitude control, a lower RMSE value means that the overall magnitude of the
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prediction error is small, reducing the risk of uncertainty due to prediction bias. Finally,
regarding algorithm effectiveness validation, by comparing it with other mainstream
prediction algorithms, the CNN-MI-BILSTM algorithm is confirmed to be more accurate
and reliable in dealing with this kind of time-series prediction task.

6.2.2. Validation of the Impact of the Proposed Scheduling Model in Promoting Wind
Energy Consumption and Improving Economics

In order to study the impact of the EH-CSP combined solar thermal system integrated
into the integrated energy system on the day-ahead optimal scheduling results, this paper
set up three models to analyze the scheduling results by comparing the results of the other
two scheduling models to verify the effectiveness of the proposed scheduling model in
promoting wind energy consumption and reducing the integrated cost of the system. The
three comparison models were as follows:

1. In the traditional day-ahead dispatching model, only the role of wind power was
considered, and the wind–heat co-generation system without CSP was used, in which
five 100 MW wind turbines and six 100 MW PV plants were used.

2. In conventional power generation, three 100 MW PV plants were replaced by two
100 MW PV plants to form a wind–heat co-generation system.

3. Using the Benders + MOPSO solution, in conventional power generation, three
100 MW PV plants were replaced by one 150 MW PV plant, and the EH device was
introduced to form the EH–wind–thermal co-generation system.

Figure 6 shows the comparison of the three scheduling models in terms of day-ahead
output, and Table 3 reveals the differences in the cost-effectiveness for each scenario:
Scenario 1 only considers the role of wind and solar, without considering the impact of
the solar thermal factor and EH on day-ahead scheduling, and the corresponding cost
of wind and solar abandonment is significantly higher than that of Scenarios 2 and 3.
Scenario 2 considers the impact of the solar thermal factor on top of Scenario 1, but does
not take into account the effect of EH, and the corresponding cost of dispatching is lower
than that of Scenario 1, and the cost of wind and solar abandonment is higher than that
in Scenario 3. Scenario 3 takes the impact of combining the EH-CSP with Scenario 2,
effectively reducing wind and solar abandonment while further cutting the dispatching
cost. Scenario 2 takes into account wind and heat, but not EH, based on Scenario 1, and the
corresponding dispatch cost is lower than that of Scenario 1, and the cost of the wind and
light abandonment rate is higher than that of Scenario 3. Scenario 3 takes into account the
effect of the EH-CSP combination based on Scenario 2, which effectively reduces wind and
light abandonment and, at the same time, further cuts down dispatch costs and improves
economic efficiency.

The dispatch results of the above three comparative models for a few days previously
were as follows:

The total costs of day-ahead scheduling for the three comparison models and the rates
of wind and light abandonment were compared.

Table 3. Costs and abandonment rates for each model.

Model Cost (CNY) Energy Abandonment Rate

1 1,552,928 11.6%
2 1,357,023 6.15%
3 1,306,027 2.366%

Aiming to achieve the goal of the lowest average daily cost, the combined scheduling
of wind, photovoltaic (PV), and photothermal power generation was optimized for an
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integrated energy system. While ensuring that each generation unit operated within its
respective constraints, an ideal pre-daily schedule was explored to achieve the best balance
between economic efficiency and resource utilization.

Figure 6. Scheduling results for each model day.

6.3. Analysis of Relevant Factors
6.3.1. Analyzing the Effectiveness of the CNN-MI-BILSTM Algorithm with Different
Sample Sizes

A certain number of samples were generated based on the load data of the city, where
70% of the samples were used to train the unknown coefficients and 30% were used to
test the accuracy and detection rate of the model. The BPNN, CNN-GRU, and regular
CNN-LSTM algorithms, the CNN-MI-LSTM algorithm, and the CNN-MI-BILSTM algo-
rithm can make predictions. However, the accuracies of different prediction algorithms
corresponding to different sample sizes deviate.

Therefore, Figure 7 shows in detail the accuracy of the CNN-MI-BILSTM algorithm
compared with the other four prediction methods under different sample sizes (100, 400,
700, 1000, and 1300). The results clearly show that the CNN-MI-BILSTM algorithm exhibits
the highest level of accuracy regardless of the sample size, and the advantage of its predic-
tion accuracy is especially prominent in challenging scenarios with small sample sizes (e.g.,
100 samples). As the number of samples grows to 400, 700, and even 1000 and
1300, although the prediction performance of all algorithms generally improves, the
CNN-MI-BILSTM algorithm has optimal stability and robustness under different data
sizes. Taken together, the proposed CNN-MI-BILSTM algorithm has optimal prediction
accuracy under various sample sizes.

Figure 7. Prediction accuracy of different prediction algorithms with varying sample sizes.
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6.3.2. Analysis of the Reliability and Economy of the Optimized Configuration of the
Combined EH–Wind–Heat System

To study the impact of different capacity configurations on the reliability and economy
of the system, this paper verified the reliability of the optimized configuration by analyzing
the proportion of the load demand that cannot be met due to insufficient generating
resources to the total demand, i.e., the proportion of the critical load loss, under different
stochastic configurations, and verified the impact of the various configurations on the
economy of the whole system utilizing the cost curves.

Firstly, the reliability of the random configuration was analyzed. Figures 8 and 9 show
the analysis of the critical load loss ratio based on the existence of the EH device, a fixed CSP
capacity, and the step of wind power according to 20 MW and the PV capacity according to
15 MW, respectively. As shown in the Figure 8, the smaller the generating capacity is than
the optimized configuration generating capacity, the larger the corresponding critical load
loss ratio, and the critical load loss ratio is zero when the generating capacity is larger than
the optimized configuration generating capacity; with a reduction in the wind power and
PV unit capacity, the larger the critical load loss ratio; and the generating system with a
higher than optimized capacity configuration can achieve zero load loss.

Figure 8. Corresponding load loss rates and cost change rates for stochastic wind power configurations.

Figure 9. Corresponding load loss rates and cost change rates under stochastic PV configurations.

Secondly, to analyze the economics under the random configuration, the cost curve
of power generation under the random configuration is given. As shown in the Figure 9,
when the power generation capacity is larger than the optimized configuration capacity,
the cost gradually increases with the increase in the configuration capacity, and the rate of
wind and light abandonment increases. When the generation capacity is smaller than the
optimized capacity, the cost gradually decreases as the configuration capacity decreases,
and the rate of wind and light abandonment decreases.
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The above verifies that the optimized configuration of the EH–wind thermal system
can maintain high power supply reliability and economy in the face of the intermittency
and uncertainty of renewable energy generation.

7. Conclusions
The paper innovatively proposes a day-ahead optimal scheduling model considering

uncertain loads and EH-CSP storage. The model first adopts the multi-interval uncer-
tainty set to portray the uncertainty of loads, and the prediction algorithm is continuously
improved to accurately predict the load data using the CNN-MI-BILSTM algorithm. By
combining the feature extraction capability of the convolutional neural network, the feature
selection advantage of MI, and the powerful capture of time series by BILSTM, the method
effectively handles the nonlinear relationships and long- and short-term dependencies
in the data, which significantly improves the accuracy and stability of prediction. The
accuracy of the proposed algorithm is verified by comparing the prediction results of
different prediction algorithms.

In this paper, the CNN-MI-BILSTM algorithm obtains smaller MAPE and RMSE values
of 2.40 and 109.83, respectively, compared to other prediction algorithms. The smaller
the MAPE value, the smaller the percentage of error between the predicted value and the
actual value. The smaller the RMSE value, the smaller the overall magnitude of prediction
error, and thus the smaller the risk of uncertainty. The cost of the model, considering the
inclusion of EH-CSP and adopting the Benders + MOPSO solution, is CNY 1306027, and
the energy abandonment rate is 2.366%, which is significantly lower than that of the model
without considering EH-CSP.

The proposed day-ahead optimal dispatch model integrates the output characteristics
of new energy power plants, aiming to optimize the balance between the day-ahead
dispatch cost and adaptability in the face of uncertain loads, taking into account the
flexibility and complementarity of EH and solar thermal storage technologies. Integrating
them into the model not only smoothes intraday load fluctuations but also effectively stores
and dispatches intermittent wind and solar energy, reducing the scheduling challenges
caused by renewable energy uncertainties. A combination of Benders decomposition
and MOPSO determines the optimal capacity configuration. Scheduling simulations of
the power system in Gansu Province using different unit configurations are conducted,
and it is verified that the proposed day-ahead optimal scheduling model considering
uncertain loads and EH-CSP storage significantly improves the economic efficiency and
environmental sustainability of the scheduling process.
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Appendix A

C1 =
T

∑
t=1

[cwPw(t) + cpPp(t) + cpbPpb(t)] (A1)

C2 =
T

∑
t=1

[SUWµsu
W,t + SDWµsd

W,t + SUPµsu
P,t + SDPµsd

P,t + SUPBµsu
PB,t + SDPBµsd

PB,t] (A2)

C3 =
T

∑
t=1

[OMWT Pw(t) + OMPV Pp(t) + OMPBPpb(t)] (A3)

Ppb(t) = Hpb
t η1 (A4)

C4 =
T

∑
t=1

[
cwcPc

w(t) + cpcPc
p(t)

]
(A5)

In the formulas, cw, cp, and cpb are the unit operating costs of wind, PV, and solar
thermal power generation, respectively; Pw(t), Pp(t), and Ppb(t) are the output power
values for wind, photovoltaic, and solar thermal power generation at time t; SUW , SUP,
and SUPB are the start-up costs of wind, photovoltaic and solar thermal power generation,
respectively; SDW , SDP, and SDPB are the stopping costs for wind, photovoltaic, and solar
thermal power generation, respectively; µsu

W,t (µsu
P,t, µsu

PB,t) = 1 when there is an energy block
at the time of start-up; µsd

W,t (µsd
P,t, µsd

PB,t) = 1 when there is an energy block at the time
of stopping; OMWT , OMPV , and OMPB are the maintenance cost coefficients for wind,
photovoltaic, and solar thermal power generation; Hpb

t is the heat transferred to the power
generation module by the concentrating solar collector system; η1 is the thermoelectric
conversion efficiency, where each MW penalty is taken to be 1.2 times the operating cost
of the wind power unit; cwc and cpc are the penalty cost coefficients for wind and light
abandonment; and Pc

w(t) and Pc
p(t) are the amounts of wind and light abandonment at

time t.
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Abstract: Urban high-density planning and the rise of super-high-rise buildings have
significantly limited the development of distributed photovoltaic (PV) systems, creating an
urgent need for optimized three-dimensional (3D) layout strategies within urban building
spaces. Given that PV power generation is influenced by environmental factors and
building spatial configurations, a 3D panoramic visualization tool is essential to intuitively
display relevant data and support decision-making for government planners and PV
operators. To address this, we developed a visualization platform to assess the integrated
PV power generation potential of buildings at both city and single-building levels. The
platform enables a 3D spatial panoramic display, where building surfaces are color-coded to
clearly represent key performance metrics, such as power generation capacity, installation
costs, and potential electricity savings. This intuitive visualization allows stakeholders
to identify optimal PV installation areas and evaluate economic benefits effectively. This
article details the implementation of the visualization platform across four key aspects: data
generation and input, power generation and economic calculation, building model creation
and data mapping, and visual interface design, aiming to facilitate the efficient planning
and deployment of distributed photovoltaic systems in complex urban environments.

Keywords: urban building-integrated photovoltaic; power generation analysis; Unreal
Engine; 3D visualization; building model

1. Introduction
Limited land availability and the complexity of urban environments present significant

challenges to the development of urban photovoltaic systems. Compared to centralized
photovoltaics, distributed photovoltaic systems offer a more efficient solution by maxi-
mizing the use of available urban spaces, delivering higher carbon emission reduction
potential, and achieving lower per-kilowatt-hour costs [1–3]. With the continuous decline
in photovoltaic module costs and the growing availability of materials suitable for building
facades, facade photovoltaics are becoming increasingly competitive with rooftop installa-
tions [4–6]. As a result, integrating photovoltaic systems into building facades has emerged
as a key direction for advancing urban renewable energy utilization. However, photo-
voltaic power generation is highly sensitive to environmental variables such as climate

Energies 2025, 18, 2409 https://doi.org/10.3390/en18102409
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conditions, building designs, lighting availability, and urban spatial layouts, which vary
considerably across different cities [7–10]. These factors introduce significant uncertainties
regarding power generation performance, economic viability, and the investment return
cycle of photovoltaic systems [11,12]. Traditional visualizations relying solely on charts
or two-dimensional maps are insufficient to comprehensively and intuitively represent
these dynamic and spatial changes [13–15]. To address this challenge, the development of
a city-level three-dimensional visualization platform for integrated-building photovoltaics
has become particularly critical.

Currently, a variety of building photovoltaic visualization tools are available, such
as PVsyst, Easy PV, PVcase, HelioScope, SolarGIS, and SolarMapper. PVsyst provides
city-scale data primarily through charts while integrating individual-building photovoltaic
planning with 3D modeling software [16]. SolarGIS focuses on large-scale photovoltaic
planning using 2D GIS-based visualization techniques [17]. Easy PV, PVcase, SolarMapper,
and HelioScope are designed for smaller regions or single buildings, with PVcase and
HelioScope relying heavily on 2D GIS visualization methods [18–20]. With advancements
in drone technology and remote sensing data, software for urban photovoltaic potential
assessment increasingly incorporates high-resolution imagery and 3D modeling techniques.
For example, SolarMapper [21] leverages remote sensing data combined with LiDAR
technology to deliver city-wide visualization of solar potential, while Easy PV [22] uses
satellite remote sensing and radiation modeling for predicting building-level photovoltaic
generation capacity.

The growing influence of the gaming industry has also contributed to the evolu-
tion of building photovoltaic visualization software. Game engines such as Unity and
Unreal Engine provide advanced visualization capabilities at a significantly reduced
cost [23,24]. These engines enable features such as highly realistic 3D scene construction,
real-time rendering, interactive simulations, terrain modeling, and physical environment
simulations [25,26].

Compared with GIS, BIM, or energy simulation software that offer similar functionali-
ties, the key contributions of this platform are as follows:

An integrated building–energy–economy coupling model: Unlike tools such as UR-
BANopt or OpenStudio, which focus primarily on regional-building energy system sim-
ulation, this platform further incorporates economic evaluation indicators. By setting
thresholds for economic parameters, the platform enables the generation of visualized
investment planning schemes.

User-friendly interface design: Compared with traditional software such as Design-
Builder or EnergyPLAN, this platform offers interactive functionalities for users. Without
the need to manually construct building or energy system models, users can quickly access
and understand the BIPV potential—including economic power generation and installed
capacity—at various spatial scales, such as individual buildings, neighborhoods, and cities.
This makes the platform easier to use, with a relatively smooth learning curve.

This platform innovatively combines the high-precision solar radiation calculation
of Ladybug with the real-time 3D rendering capabilities of Unreal Engine, supporting
dynamic sunlight simulation and interactive perspective adjustment. It realizes “roaming-
style” visualization simulation for city-level building photovoltaics. This technological
breakthrough allows users to intuitively observe the changes in photovoltaic performance
across different time periods and seasons, greatly enhancing the realism of the simulation
and the interactive experience. It achieves integrated decision support for ‘technology-
economics-esthetics’.

The proposed platform enables a city-scale panoramic visualization of photovoltaic
power generation potential at both the building level and city level. It can intuitively
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display key parameters such as power generation, installation costs, electricity savings, and
economic returns using color mapping on building models. The platform provides data-
driven insights, actionable solutions, and visual representations to government agencies
and investors, thereby supporting informed decision-making for urban renewable energy
development. This paper describes the four main components of the proposed visualization
platform: data resources, calculation methods, building model generation and parameter
mapping, and visual interface design. The platform is then validated using Wuhan, China,
as the case study to demonstrate its effectiveness and applicability.

User Demand Survey

The primary user groups of the platform include related commissioners in government
departments, experts in the power industry, and photovoltaic investors. To gather insights,
we selected 15 representative users, comprising 5 individuals from each category, to explore
the platform’s purpose of use, data requirements, display preferences, and interaction
mechanisms. To gain a comprehensive understanding of user needs, we conducted semi-
structured interviews using a semi-open format. The consolidated findings are presented in
Table 1. Across all user categories, the overarching goal is to support regional photovoltaic
investment planning. The data content requirements are generally consistent across groups,
although specific needs vary. Government and power-sector decision-makers prioritize
reports and presentation capabilities, photovoltaic investors emphasize the need for precise
installation planning, and power industry experts value efficient access to detailed data.

Table 1. User demand survey for the platform.

Government
Department

Commissioner

Power
Industry
Expert

Photovoltaic
Investor Total

Purpose of Use
Regional Photovoltaic
Investment Planning 5 5 5 15

Large-Screen Report Presentation 5 3 2 10

Data Content

Estimated Power Generation 5 5 5 15

Estimated Installation Cost 5 5 5 15

Estimated Installed Capacity 5 5 5 15

Estimated Electricity Cost Savings 5 5 5 15

Building Data Information 5 5 5 15

Display
Preferences

Panoramic 3D Visualization 5 4 4 13

High-Precision Models for
Significant Buildings 3 3 5 11

Color-Coded System with Clear
Data Correlations 5 5 5 15

Interface Design for Large Screens 5 3 2 10

Interface Design for Laptops 2 4 3 9

Customized Photovoltaic
Layout Plan 5 4 5 14

226



Energies 2025, 18, 2409

Table 1. Cont.

Government
Department

Commissioner

Power
Industry
Expert

Photovoltaic
Investor Total

Interaction
Methods

Investment Plan Generation 5 4 5 14

Scene Roaming and Query 5 4 4 13

Scene Display Switching 5 5 4 14

Individual Buildings’
Detailed Information 5 5 5 15

Adjustment of Installation Plans
for Key Buildings 2 3 5 10

Dynamic Effects for
Interface Interaction 5 3 3 9

2. Platform Architecture
Based on the findings from platform research and software selection, we established

a clear workflow for platform development. As illustrated in Figure 1, the development
process consists of three main components: basic data calculation, building surface data
mapping, and interface display and interaction. The workflow begins with generating
and acquiring data, which includes obtaining basic parameters, calculating solar radiation
intensity, analyzing photovoltaic power generation potential, and converting these data for
use in Unreal Engine (UE). Next, building models are generated using UE and Cesium for
Unreal, followed by building surface segmentation and data mapping to achieve panoramic
3D visualization. This step also incorporates mapping data onto building surfaces through
color representation. Finally, the platform’s information architecture, user interaction flow,
and interactive interface display are developed to complete the visualization platform.
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2.1. Data Sources

In large-scale urban environments, the construction of 3D building models and so-
lar radiation simulation calculations become significantly more challenging. Therefore,
this study divided the research area based on the fourth-level administrative boundaries
(i.e., neighborhood blocks). Within each block, meteorological data collection and radiation
simulation were conducted separately, which significantly improved the computational
efficiency of the model. To simulate urban building-integrated photovoltaic (BIPV) power
generation, this study utilized high-resolution meteorological data from NREL’s NSRDB
2020 dataset and detailed building data from Amap.

The NSRDB dataset provides hourly meteorological data for China in 2020 with a
spatial resolution of 2 km. In this study, based on the latitude and longitude coordinates of
the centroid of each street, Python 3.9 programming was used to call the API provided by
the official NSRDB website to download hourly meteorological data—including latitude,
longitude, elevation, annual solar radiation, temperature, and humidity—in CSV format.
Then, the CSV files were further converted into EnergyPlus Weather (EPW) files according
to the EPW format specifications. Finally, the “import EPW” component in Grasshopper
was used to import the EPW files.

Building information was extracted from official Shapefiles (.shp) at 1 m spatial reso-
lution, containing attributes such as coordinates, height, area, number of floors, building
names, Shape_Area, and Shape_Length. After preprocessing, these data enabled the
construction of detailed 3D urban models for accurate PV performance analysis.

Overall, this study achieves detailed segmentation at the building level and par-
allel partitioned computation at the urban level, making the visualization of high-
spatiotemporal-resolution BIPV simulation results at the city scale more feasible.

2.2. Software and Plugin Selection

Based on data analysis and visualization requirements, specialized toolchains were
selected for different tasks (Figure 2). For building environment simulations, Rhino’s
Grasshopper and the Ladybug plugin were used to calculate photovoltaic generation
and assess thermal performance, offering precise solar radiation mapping and adjustable
window-to-wall ratios for diverse building types. Unreal Engine (UE) served as the core
platform for high-fidelity 3D interactive visualization, selected for its real-time rendering
capabilities, cross-platform support, and blueprint visual programming features. To address
geospatial data processing challenges, the Cesium Lab toolchain was introduced for efficient
conversion of .shp files into UE-compatible formats, ensuring accurate large-scale city
model integration. Blender was used for detailed modeling of key buildings, while City
Engine facilitated rapid generation of roads, water bodies, and urban base layers. High-
fidelity UI/UX prototypes were developed in Figma to ensure consistent user experience
across the platform.
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2.3. Interface Interaction

The photovoltaic (PV) visualization platform adopts a multi-scale interactive design
to address the decision-making needs of users at different levels.

At the macro scale, government agencies can use the 3D globe navigation interface
to intuitively grasp the global distribution of solar energy potential. By clicking on a
specific city, users can access detailed solar radiation data and theoretical power generation
estimates, supporting early-stage policy planning and renewable energy target setting.

At the city and regional scale, the platform currently covers data for 77 cities across
China. Government authorities and investors can conduct in-depth analyses within highly
detailed 3D urban environments. The platform supports free roaming, customized area
selection, and administrative boundary overlays, allowing users to quickly assess the PV
generation potential of specific districts. For example, to support a city’s 2035 renewable
energy targets, municipal planners can select the relevant administrative area, input param-
eters such as investment budget, expected electricity savings, and target PV generation, and
submit them through the platform. The system then recommends suitable buildings for de-
ployment based on estimated rooftop potential and cost-effectiveness. Users receive visual
feedback with highlighted buildings and can view detailed attributes for each structure
and export the building list to assist in investment prioritization.

At the building scale, individual property owners and designers can perform detailed
PV planning. Users input target power outputs, budget constraints, and solar panel specifi-
cations, and the system generates customized simulation reports, including installation
layouts and projected performance.

To ensure a seamless user experience, the platform incorporates several technological
innovations. CesiumLab’s streaming terrain technology ensures rapid loading of large-scale
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urban models, while Level of Detail (LOD) techniques dynamically adjust model resolution
to maintain smooth performance across different hardware configurations. Cross-platform
data sharing allows users to view reports generated on PCs directly on mobile devices.
These design choices make complex PV data analysis intuitive and accessible, truly enabling
data-driven decision-making across multiple user groups.

3. Methods
3.1. Solar Radiation Intensity Calculation and Photovoltaic Power Generation Potential Analysis

This study constructs 3D models of urban buildings on the Rhino-Grasshopper plat-
form based on building footprint data and planar segmentation methods. By integrating
meteorological data and ray tracing techniques, a BIPV solar radiation and photovoltaic
power generation model is developed, which accounts for mutual shading between build-
ings. The model calculates both the power output and the installed capacity of the BIPV
system. Finally, based on the cost of photovoltaic systems and economic parameters such
as electricity prices, an economic evaluation indicator for the BIPV system is established to
quantify its economic potential. It is worth noting that Xie et al. [27] have already demon-
strated the accuracy of using Ladybug for calculating solar radiation potential. Therefore,
this study does not validate the simulation results against real façade PV power generation
data or other standard simulation models. The detailed modeling process is described as
follows (Figure 3):
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3.1.1. Construction of City-Scale 3D Building Models

Building footprint data in Shapefile format, containing height attributes, is first im-
ported into the Rhino platform. Using the “Weaverbird’s Mesh Thicken” component in
Grasshopper, the footprint data are extruded according to their height to generate 3D
building models represented by mesh surfaces (Figure 4a). Subsequently, the “Mesh Brep”
component is applied to subdivide the building models into finer planar segments by
setting constraints on the maximum and minimum edge lengths (Figure 4b).
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Figure 4. Construction of city-scale 3D building models. (a) 3D Building Extrusion; (b) Planar
Surface Subdivision.

For each building surface, the tilt angle and azimuth angle are the two most critical
parameters. In our model, the tilt angle of vertical façades was set to 90◦, while the tilt
angle of rooftops was set equal to the local latitude. The azimuth angle of each surface was
computed based on its normal vector.

3.1.2. Solar Radiation Model with Shading Consideration

First, a sky matrix was generated based on meteorological data to determine the solar
position for each of the 8760 h in a year. Then, direct solar radiation rays between the
sun and the centroid of each building surface were constructed as vectors, as illustrated
in Figure 5.
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Figure 5. Schematic diagram of direct solar radiation ray tracing.

Without considering shading, the total solar radiation received by each surface at time
t can be calculated as follows:

Total_Radt = Dir_Radt ∗ cosqt + Di f _Radt + Ground_Radt (1)

where Dir_Rad, Di f _Radt, and Ground_Radt represent the direct, diffuse, and ground-
reflected solar radiation at time t, respectively, and cosθt is the correction factor for the angle
between the direct solar incidence direction and the surface normal at time t.
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To account for shading effects between buildings, all surrounding buildings near the
target building are added into the 3D model as shading elements. Ray tracing is used to
determine whether the direct solar radiation ray to each building surface intersects with
any of the shading elements. If an intersection is detected, it indicates that the surface
is shaded and does not receive direct solar radiation at time t. If the ray is blocked, its
contribution to the surface’s received radiation is set to 0; otherwise, it is set to 1. This can
be expressed as follows:

State_Rayt =

{
1, noshade
0, shade

(2)

After accounting for shading, the total solar radiation received by each surface at time
t is modified as follows:

Total_Radt = Dir_Radt ∗ State_Rayt ∗ cosqt + Di f _Radt + Ground_Radt (3)

3.1.3. Photovoltaic Power Generation Potential Analysis

For the photovoltaic power generation potential analysis, the conversion efficiency
of photovoltaic panels is set, and the expected annual photovoltaic power generation on
both building roofs and facades is simulated. This simulation incorporates solar radiation
intensity, panel power, and installation parameters. The installed capacity is estimated
based on the panel area and power, and the corresponding installation cost is calculated by
multiplying the installed capacity by the unit capacity price.

The power output of a single PV module is calculated as follows [28]:

P = I ·V · βinv · βsys (4)

where I and V are the operating current and voltage of the PV module, respectively,
determined by ambient temperature, wind speed, atmospheric pressure, and the actual
solar radiation received by the module [29]. The meteorological data used are sourced from
the NSRDB dataset developed by NREL [30]. Here, βinv represents the inverter efficiency,
and βsys denotes the photovoltaic system efficiency, assumed to be 80.96% [31].

The installed capacity and actual power generation of the building-integrated PV
system are expressed as follows:

CapIn
PV = ∑

(
CapIn

single · βUse
i · Ai/Asingle

)
(5)

PowerPV
t = ∑

(
CapIn

single · βUse
i · Ai/Asingle

)
· PowerPV

i,t (6)

where CapIn
single is the rated capacity of a single PV module, Ai is the area of building

surface i, Asingle is the area of a single PV module (using the SolarWorld Sunmodule Pro-
Series 250 W polycrystalline solar panel [32]), and βUse

i is the utilization factor of building
surface i, assumed to be 80% for all surfaces. PowerPV

i,t represents the photovoltaic power
generation of surface i at time t, which can be calculated by Equation (4).

3.1.4. Economic Assessment

The payback period and the self-sufficiency rate are used to evaluate the economic
performance of the photovoltaic system. First, the system’s annual revenue and initial
investment cost can be calculated as follows:

Costinvest = Costcap · CapIn
PV (7)

Incomeyear = Costpower · PowerPV − CostOM · CapIn
PV (8)
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where Costcap, Costpower, and CostOM represent the unit capital cost of installed capacity,
electricity purchase price, and unit operation and maintenance (O&M) cost, respectively.
The economic parameters of the photovoltaic system are derived from China’s 2050 Photo-
voltaic Development Outlook (2019) [33], while the electricity price data are obtained from
the 2020 report published by the Provincial Development and Reform Commission [34,35].

Accordingly, the payback period and the photovoltaic self-sufficiency rate can be
calculated as follows:

PBP = Costinvest/Incomeyear (9)

Sel f Usage = PowerPV/PowerLoad (10)

Finally, the cost per unit of electricity is estimated based on the approximate investment
cost. All resulting data, including solar radiation, power generation potential, and economic
metrics, are exported in bulk to .shp format files for further use.

3.1.5. Simulation Parameter Settings

A series of assumptions were made in this study. For instance, it was assumed that the
photovoltaic system’s power generation efficiency and the inverter conversion efficiency
remain constant, and that the available photovoltaic installation area coefficient is consistent
across building surfaces of different orientations. The detailed system simulation parameter
settings are shown in Table 2.

Table 2. Simulation parameter settings.

Parameters Value

βinv 90%
βsys 80.96%
βUse

i 80%
Costcap 3.16 RMB/kW
CostOM 0.047 RMB/kW

Costpower for Residential 0.5580 RMB/kW
Costpower for Commercial 0.6907 RMB/kW

3.2. Data Analysis and Data Interoperability

Since the platform was developed using UE, the batch-exported data must be ac-
curately imported and processed within UE. This is achieved by utilizing the SHPOpen
function from the GIS open-source library Shapelib to open .shp files. The SHPGetInfo
and SHPReadObject functions are used to retrieve data entries within these files, while the
DBFGetFieldInfo function iteratively reads field data for each entry, including attributes
such as area, floor count, building name, Shape_Area, ID, object ID, Shape_Length, installed
cost, electricity cost savings, effective installed capacity, and kWh cost.

The retrieved data are categorized into three groups: geographical information for
reproducing urban architectural models, basic data for calculating power generation, and
computed results for display mapping. UE reproduces urban building models based on
geometric data from the .shp file, leveraging latitude and longitude coordinates to generate
models in the correct geographic location.

Basic data for calculating power generation and installed capacity, as detailed in
Table 2, include values such as CenterXYZ for plane centering, VectorXYZ for plane ori-
entation, and power generation calculations using “Rad × Area × efficiency coefficient”
for each plane. Installed capacity is computed by dividing Area by the area of a single
photovoltaic panel and multiplying it by the panel’s capacity.

Data for display mapping include ten calculated values from RoofCap to SouthPower
(shown in Table 3), which are directly mapped in UE. Electricity cost savings and installation
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costs are determined based on whether the building type is residential or commercial, with
calculations performed directly within UE.

Table 3. Analysis of batch-exported .shp data entries.

Classification Data Header Specific Value Representative Meaning

Geographic Data for
Reproducing Urban

Architectural Models

Geometry Information
Stored in .shp file

The longitude and
latitude of each vertex of

the building.

Different 3D modeling software
uses this longitude and latitude

information to generate models of
the same geographical location.

ID 1 Identity Number of Each Building

Elevation (m) 3

Building Height (determine the
height of each building during

white mold model slice generation
in CesiumLab v0.25, Cesium GS,

Inc., Salt Lake City, UT, USA.)

Basic Data for Power
Generation Calculations

FaceNum 8 Number of Building Planes

CenterX/Y/Z

11,355,522.75,
11,355,506.25,
11,355,522.75,
11,355,506.25,

11,355,523.5, 11,355,531.0,
11,355,522.0, 11,355,498.0,

2,215,085.1875,
2,215,092.125,

2,215,085.1875,
2,215,092.125,

2,215,086.75, 2,215,081.75,
2,215,083.625,
2,215,095.625,

2,215,093.75, 2,215,090.5,
0.0, 0.0, 3.0, 3.0, 1.5, 1.5,

1.5, 1.5, 1.5, 1.5

Plane Center Point Coordinates

VectorX/Y/Z

0.0, 0.0, 0.0, 0.0, 0.3807,
0.8321, −0.3887,

−0.8517,0.0, 0.0, 0.0, 0.0,
0.9247, −0.5547, −0.9214,
0.5241, 0.9162, −0.9247,
−1.0, −1.0, 1.0, 1.0, 0.0,

0.0, 0.0, 0.0, 0.0, 0.0

Plane Normal Vector

Rad (kWh/m2)

283.7222, 283.7222,
1598.8638, 1598.8384,

425.9791, 922.2407,
960.1941, 665.7827

Solar Radiation Results for Each
Plane (Considering occlusions)

Area (m2)
61.875, 64.125, 61.875,

64.125, 55.1543, 10.8167,
52.0967, 11.4483

Total Area of Each Plane

Direction
Ground, Ground, Roof,

Roof, North, East, South,
West, North, South

The Orientation of Each Plane
(Identified using VectorXYZ in

Python 3.9)
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Table 3. Cont.

Classification Data Header Specific Value Representative Meaning

Computed Data for
Display Mapping

RoofCap (kW) 16.30588235 Roof Facade Installed Capacity

NorthCap (kW) 13.9178470588235 North Facade Installed Capacity

EastCap (kW) 1.39980823529412 East Facade Installed Capacity

WestCap (kW) 1.48154470588235 West Facade Installed Capacity

SouthCap (kW) 13.8795411764706 South Facade Installed Capacity

RoofPower (kWh) 37384.48032 Roof Power Generation

NorthPower (kWh) 8008.86552001925 North Facade Power Generation

EastPower (kWh) 1852.73434408509 East Facade Power Generation

WestPower (kWh) 1404.61523382367 West Facade Power Generation

SouthPower (kWh) 19,217.9880733783 South Facade Power Generation

BuildType 1 1 for Residential Buildings, 2 for
Public Buildings.

3.3. Building Model Generation and Data Mapping

The building information generated in UE was obtained from .shp files, which were
processed in Rhino to create the computational results for 3D slices. The Cesium for Unreal
plugin was then used to generate the urban buildings. As shown in Table 2, each building
has a unique ID corresponding to a data entry, including electricity generation and installed
capacity for the east, west, south, north, and roof surfaces. Therefore, each building must
be divided into five surfaces in UE to apply the appropriate color materials.

3.3.1. Building Model Slicing and Generation

To create urban building models in UE, the ShapeFile data are converted into basic
3D model grid slices using the CesiumLab toolkit and its geographic data processing
platform. First, the basic white model grid slice is selected, ensuring the index field
attributes are verified and vertex data are not compressed. The Prj file is then loaded, and
the model height is bound to the Floor or Height field attributes. Once the field attributes
are successfully bound, the model slices can be accessed using the Cesium for Unreal
plugin in Unreal Engine. The relevant field data are subsequently obtained through UE’s
Blueprint Visual Scripting material system for further processing and visualization.

3.3.2. Building Model Facade Splitting

Since the basic white model generated by CesiumLab treats each building as a whole,
the model needs to be split into five surfaces. In the material script, the direction of each
surface is determined by calculating the dot product between the surface normal and
the unit vector representing the basic directions (east, west, north, south, and vertical
up). The dot product operation compares the surface normal with the reference direction
vector, setting a threshold of 0.5 to determine the surface orientation (for example, for the
east-facing surface: normal·{1, 0, 0} > 0.5) and using the world coordinate system to ensure
accuracy in the direction judgment.

3.3.3. Material and Color Mapping

This study achieves the dynamic visualization of photovoltaic data through Unreal
Engine’s Cesium plugin. The key steps include adding the Cesium3DTileset component to
import the city model, using CesiumFeaturesMetadata to automatically associate building
attribute data, and developing a dedicated material system to map parameters such as
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electricity generation into color gradients via linear interpolation (Lerp nodes). This method
supports querying of photovoltaic data when clicking on buildings, enabling the efficient
rendering of hundreds of thousands of building instances.

4. Case Study
4.1. Overview

Wuhan, China, was selected as the research location due to its representative climate
and urban layout. The researchers are based in Wuhan, a city located in the central plains
of China. Wuhan’s climate is characterized by cold winters and hot, humid summers,
making it ideal for studying solar energy potential. Meteorological data were sourced from
typical-year datasets available through EPW maps, with the Wuhan weather station located
at (30.60◦ N, 114.05◦ E) at an altitude of 34.4 m. Wuhan, situated in central China’s plains,
experiences cold winters and hot summers, with annual solar radiation ranging between
1163 and 1393 kWh/m2/y. Typical-year meteorological records show temperatures varying
from −8 ◦C to 39 ◦C and daily radiation levels ranging from 0 to 8 kWh/m2 [36,37].

In this study, Wuhan City is divided into research areas according to the fourth-level
administrative boundaries (neighborhood blocks), resulting in a total of 182 building blocks
and over 200,000 buildings, with a commercial-to-residential building ratio of approxi-
mately 5.5:4.5. Since Wuhan lies in the northern hemisphere, solar radiation is generally
higher on south-facing surfaces and lower on north-facing surfaces. The platform displays
critical metrics such as estimated annual power generation, total installed cost, estimated
electricity savings, effective installed capacity, and average electricity cost per kilowatt-hour
for all buildings. Users can also generate optimized power generation plans by setting
electricity cost savings targets, budget constraints, and photovoltaic panel models.

4.2. Results

The platform calculations show that the total installed capacity of rooftop and facade
photovoltaic systems for all buildings in Wuhan is 70.59 GW, with an annual electricity gen-
eration of 46.17 TWh, covering 61.1% of the city’s electricity demand. Among this, rooftop
photovoltaics contribute the most (22.94 TWh), followed by the east facade (10.54 TWh).
The total project investment is 223 billion CNY, with an annual revenue of 42.2 billion CNY.
The investment payback period is 5.3 years, showing good economic feasibility, with a
self-consumption rate of 61.2%, indicating a high-energy-self-sufficiency potential (Table 4).

Table 4. Total values for Wuhan.

Generation of Each Face (TWh/year) Capacity of Each Face (GW)

Roof South East West North Roof South East West North

22.94 4.52 10.54 4.20 3.97 17.98 17.75 17.71 8.61 8.54

Building PV Costs
(Billion RMB)

Building PV Incomes
(Billion RMB/year) PBP (year) Power Demand

(TWh/year) Self-Use Rate (%)

223 42.2 5.3 75.5 61.2

The annual daily photovoltaic generation of a single solar panel in Wuhan shows a
trend of lower generation in summer and higher generation in winter, as shown in Figure 6.
The highest daily generation is 3.85 kWh/m2, occurring on March 2. Despite the strong
solar radiation in Wuhan during the summer, the high working temperature reduces its
efficiency, leading to lower power generation.
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Figure 6. Daily PV power production of single PV panel in Wuhan.

The seasonal electricity generation of a single photovoltaic panel on each wall of
Wuhan is shown in Figure 7. Due to temperature and radiation effects, the rooftop gen-
eration is relatively balanced throughout the seasons (70–80 kWh/m2). The electricity
generation characteristics of the east and west walls are similar in each season, with higher
generation in spring and summer, and the lowest generation in winter. The south wall
exhibits more significant seasonal fluctuations in power generation, with the lowest genera-
tion in summer (only 25 kWh/m2). This is due to the severe deviation of the solar incidence
angle from the optimal tilt angle during summer in low-latitude regions. In winter, the
generation is highest (60 kWh/m2), approximately 2.4 times that of summer generation,
and the difference from the rooftop winter generation is smaller. This is because the winter
temperature is lower, and the solar incidence angle on the south wall in winter is closer to
the optimal tilt angle, leading to higher direct solar radiation reception.
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4.3. Interface Display Content and Effects

When users click on Wuhan in the two-dimensional map of China, the interface
transitions to a three-dimensional visualization of Wuhan’s spatial layout and buildings.
As illustrated in Figure 8, users can freely navigate the virtual environment to explore the
estimated annual power generation for the rooftops and four facades of each building.
The annual power generation is represented using a color gradient ranging from blue
(low values) to red (high values). Hovering the mouse over any building reveals detailed
information, including building name, coordinates, estimated annual power generation,
total installed cost, estimated electricity savings, effective installed capacity, and average
electricity cost. Additionally, the platform identifies and highlights the top 100 buildings
with the highest total power generation, and the relevant detailed information of each
building can be exported (Table 5).
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1 54 478,122 4.87 79.16 4.73 2.95 2.91 2.20 56.92 5.33 4.04 4.03 5.43
2 54 478,122 4.88 79.16 4.48 2.95 2.89 2.20 56.92 5.33 4.04 4.03 5.43
3 18 148,161 4.79 24.52 1.64 0.28 0.29 0.65 17.64 1.87 0.43 0.42 1.87
4 15 106,328 4.82 17.31 0.39 0.33 0.23 0.32 12.66 0.71 0.44 0.44 0.91
5 12 94,659 4.71 15.64 0.56 0.31 0.22 0.19 11.27 0.70 0.42 0.42 0.70
6 12 91,042 4.68 14.99 0.50 0.33 0.33 0.19 10.84 0.59 0.47 0.48 0.59
7 21 76,910 5.67 12.66 1.51 0.27 0.62 0.54 9.16 1.92 0.61 0.88 2.25
8 21 81,569 3.73 12.81 0.54 0.44 0.45 0.81 9.71 0.95 1.06 0.58 3.14
9 3 86,288 4.35 14.28 0.30 0.00 0.00 0.17 10.27 0.33 0.00 0.00 0.33

10 12 80,151 4.70 13.24 0.53 0.20 0.19 0.26 9.54 0.68 0.31 0.29 0.68

Users can also access a selection box to switch between different data visualizations.
For instance, as shown in Figure 9, when the “Estimated Installed Cost” option is selected,
the buildings are color-coded based on their total installation cost, using a gradient from
yellow (lower cost) to red (higher cost). Alternatively, clicking the “Estimated Electricity
Savings” option changes the building colors accordingly, distinguishing between commer-
cial buildings (blue) and residential buildings (pink).
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To optimize power generation within a specific budget, users can access the “Simula-
tion Plan” feature (Figure 10). After entering parameters such as electricity savings target,
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budget, and preferred photovoltaic panel model, the platform calculates the optimal solu-
tion. The recommendations consider building power consumption types, annual power
generation potential, and installation costs. The interface highlights the relevant buildings
and displays specific details of the proposed plan.
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For critical or landmark buildings, the platform supports importing high-precision
three-dimensional models. As shown in Figure 11, users can interactively select and
adjust photovoltaic panel paving areas on the building’s surfaces to achieve more accurate
performance estimates.
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5. Discussion and Conclusions
The platform integrates solar radiation, building models, and economic data through

3D visualization technology, providing electricity generation, installed capacity, and in-
vestment return analysis for urban-level photovoltaic deployment. It supports macro-level
decision-making and investment optimization. Its core advantage lies in efficient urban-
scale evaluation, but due to the research focus, it does not consider factors such as the
type of photovoltaic components (thin-film modules, photovoltaic bricks, photovoltaic
tiles, photovoltaic curtain walls, etc.), degradation of photovoltaic systems, performance of
photovoltaic materials (monocrystalline silicon, polycrystalline silicon, etc.), rooftop layout
details, and the impact of facade photovoltaics on building energy consumption. These
simplifications aim to balance computational efficiency and generality, focusing on rapid
evaluations needed for policy-making rather than detailed analysis of individual buildings.
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The platform’s limitations primarily stem from its positioning for city-level planning,
where it prioritizes overall data over micro-level variables. For instance, ignoring com-
ponent differences and degradation effects reduces model complexity, while omitting the
impacts of rooftop layouts and building energy consumption avoids coupling additional
simulation tools. Future upgrades could gradually incorporate more details through mod-
ular enhancements, but a balance must be struck between computational efficiency and
accuracy to ensure the platform remains practical and operable for energy planning.

The platform pre-calculates the relevant data for each building in all cities that can
be viewed, significantly improving the platform’s computational speed. For example,
Wuhan spent 1 h pre-calculating data in Rhino, which were then transferred to UE to
accelerate display speed in UE. Tests showed that on a computer configured with Intel
i5-13600KF/AMD RX 7900 XT/32 GB DDR5, running a city photovoltaic project took about
2 s to start, and loading an offline map level for a city with a road network took 3–4 s.
Loading a level without a road network using an online map took less than 1 s, with most
scenes running at a frame rate exceeding 90 frames per second. Switching between white
model datasets took no more than 1 s.

Future upgrades to the platform will focus on three areas: first, integrating build-
ing electricity loads, photovoltaic component performance, and degradation models to
optimize generation-demand matching; second, adding energy consumption impact assess-
ments and rooftop layout optimization tools to address current limitations; third, enabling
batch display of photovoltaic arrays and dynamic regional analysis to improve decision-
making accuracy. In the future, the platform will incorporate more diverse analytical
scenarios. For instance, at the single-building level, users will be able to set different PV
panel types or installation coverage ratios to explore how different photovoltaic system
parameters affect investment decisions. At the regional level, the platform will provide
BIPV potential analyses across different building types—including residential, industrial,
and commercial buildings—offering more realistic and policy-relevant insights for decision-
makers. Through these multidimensional upgrades, the platform will balance macro-level
planning with micro-level optimization needs, providing a more comprehensive solution
for urban photovoltaic deployment.
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