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1. Introduction

This Editorial introduces this Special Issue of Axioms, which collates 10 articles show-
casing the latest research related to problems in the two major scientific fields named in
its title: “Numerical Analysis and Optimization”. The presented scholarly papers address
various topics, primarily relating to generating appropriate numerical methods designed to
solve the problems posed by the authors, which concern, for example, inclusion problems,
gradient neural network models, differential evolution methods, conjugate gradient meth-
ods including the projection technique, multi-product and multi-criteria supply—demand
network equilibrium models, and ZNN dynamical systems. This Special Issue’s principal
aim is to disseminate the proposed algorithms and their applications in finding optimal
solutions to the presented problems to researchers from related fields, thereby directly
contributing to the further advancement of these two significant mathematical areas.

2. An Overview of the Published Papers

Regarding adequate conditions, in contribution 1, the strong convergence of a parame-
terized variable metric three-operator algorithm is established. In order to accelerate the
operation of the algorithm, which is used for solving the monotone inclusion problem,
the authors propose a multi-step inertial process. Through numerical investigations, the
efficiency of the method is illustrated.

In contribution 2, the author introduces several definitions of generalized affine func-
tions, including affinelikeness, preaffinelikeness, subaffinelikeness, and presubaffinelike-
ness. Through chosen examples, the author confirms that all the proposed definitions
differ from each other. In this contribution, necessary and sufficient conditions for weakly
solutions of vector optimization problems in real linear topological spaces are established,
and practical generalizations of a number of previously published results are obtained.
Additionally, the author details various optimality conditions and proves a strong dual-
ity theorem.

Using the gradient of the Frobenius norm of the traditional error function as a basis of
a gradient neural network (GNN), the authors of contribution 3 propose the GGNN model
for solving the general matrix equation AXB = D. From a theoretical perspective, the
authors establish that for an arbitrary initial state matrix, V(0), the neural state matrix V (¢)
of the defined GGNN(A,B,D) model asymptotically converges to the solution of the matrix
equation and coincides with the general solution of the linear matrix equation. Practically,
several applications of the given method are demonstrated, and their global convergence is
proved; further, its implementation in calculating various classes of generalized inverses is

Axioms 2025, 14, 305 https://doi.org/10.3390 /axioms14040305
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presented. Extensive numerical examples confirm the effectiveness of the GGNN model
compared to the GNN algorithm.

In contribution 4, the authors use a hyper-heuristic approach to design parameter
adaptation methods for the scaling factor parameter in differential evolution (DE), which
constitutes a black-box numerical optimization method. To define the adaptation of the
scaling factor F, the authors use two Taylor expansions to obtain the mean of the random
distribution for sampling F and its standard deviation. This process is compared with
the L-NTADE algorithm, and the superiority of the designed model is confirmed using
two sets of benchmark problems. Furthermore, the results of the numerical experiments
demonstrate that the efficiency of the novel method increases at higher dimensions.

The primary achievement of contribution 5 is its combination of the subspace mini-
mization conjugate gradient method with the projection technique for solving nonlinear
monotone equations with convex constraints. The presented model is well defined and
globally convergent under the posed assumptions. Numerical test results and obtained
performance metrics confirm the effectiveness of the generated conjugate gradient scheme.

Using a logarithmic approach, in combination with several new approximate functions,
in contribution 6, the author presents a penalty method for solving nonlinear optimization
problems. Instead of utilizing line search techniques, the author focuses on a specific
algorithm for calculating the displacement step according to the direction. The vector
direction of the proposed model is determined on the basis of Newton’s method, and
numerical simulations illustrate various characteristics of the algorithm.

In contribution 7, the authors introduce a multi-product, multi-criteria supply-demand
network equilibrium model with capacity constraints and uncertain demands, which are
assumed to be in a closed interval. As the optimal performance of the network is obtained,
in this contribution, the reader may find a significant theoretical framework for solving this
type of optimization problem.

Solving a nonlinear optimization problem regarding the packing of different spheres,
without mutual overlapping, into a container of a minimal height, bounded by a parabolic
surface, is detailed in contribution 8. To solve this problem, the authors use a feasible direction
approach combined with the hot-start technique, and containment constraints are described
using ®-function features. Included numerical experiments, provided for various relevant
parameters, confirm the effectiveness of the proposed nonlinear programming model.

In contribution 9, the authors solve the equivalence and partial k-equivalence problems
between WFAs. They provide an answer to whether two WFAs generate word functions
that are the same or coincide for all input words whose lengths are less then a positive
integer value, k. By utilizing two scientific approaches, ZNN neuro-dynamical systems
and the existence of approximate heterotypic bisimulations between WFAs over R, the
authors present the ZNNL-hbfb and ZNNL-hfbb models. These two dynamical systems are
implemented for solving matrix—vector equations involved in the considered heterotypic
bisimulations, and extensive numerical simulations including various initial states are
presented. The developed models are compared with the Matlab linear programming
solver linprog and the pseudoinverse solution generated by the standard function pinv;
the superiority of the presented ZNN models is confirmed.

Using the XOR and XNOR operations, the authors in contribution 10 explain the
existence of solutions for a generalized Cayley variational inclusion problem. Through a
fixed-point approach, they present effective methods for solving the posed problems. Nu-
merical experiments demonstrate the features’ fast convergence and efficient performance
in obtaining optimal solutions.
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Article
Convergence of Parameterized Variable Metric Three-Operator
Splitting with Deviations for Solving Monotone Inclusions

Yanni Guo * and Yinan Yan
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* Correspondence: ynguo@amss.ac.cn

Abstract: In this paper, we propose a parameterized variable metric three-operator algorithm for
finding a zero of the sum of three monotone operators in a real Hilbert space. Under some appropriate
conditions, we prove the strong convergence of the proposed algorithm. Furthermore, we propose a
parameterized variable metric three-operator algorithm with a multi-step inertial term and prove
its strong convergence. Finally, we illustrate the effectiveness of the proposed algorithm with
numerical examples.

Keywords: variable metric; monotone inclusion; three-operator algorithm; multi-step inertial algorithm

MSC: 47H07; 49]J45; 65]22; 90C25

1. Introduction

Let H be a real Hilbert space with inner product (-, -) and the induced norm || - ||. We
consider the following monotone inclusion problem of the sum of three operators: find
x € H such that

0 € Ax+ Bx +Cx, @)

where A, B : H — 2H are maximally monotone operators and C : H — H is a -cocoercive
operator, B > 0. There have been numerous algorithms for solving the problem (1) when
B = 0 because of the wide applications of this problem in compressed sensing, image
recovery, sparse optimization, machine learning, etc.; see [1-7], to name a few. Although
in theory these algorithms can be used to solve the problem (1) by bundling A 4+ B + C as
T+ Cwith T = A+ B, (Id + T)~! is hard to compute in practice. For the past few years,
problem (1) has received a lot of attention, and several algorithms have been constructed
for solving it.
In 2017, Davis and Yin [8] proposed the following three-operator algorithm:

zk = Jya(xi),
Yk = JyB(2zx — x¢ — 1Cxzy), 2)
X1 = X+ Ae(Yk — 2k)-

Here [, = (Id +vA)™}, J,5 = (Id +vB)~L, v € (0,2B), A« € (0,%557). Expression (2)

2p
also has the form
X1 = (1= A)xg + A Txg, ®
where the averaged operator T is defined by
T =Jyp(2Jya —Id=7CoJya) +1d = Jya. 4)

Then [8] proved that the sequence {x;} generated by (2) converges weakly to a fixed point
x* of T under some suitable conditions by utilizing the averageness of T. In turn, [, 4 (x*)
solves problem (1).

Axioms 2023, 12, 508. https:/ /doi.org/10.3390/axioms12060508 4 https://www.mdpi.com/journal /axioms
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Soon after, Cui, Tang and Yang [9] put forward the inertial version of the algorithm
)
wi = X + O (xk — Xi-1),
Vi = JoB (22 — w — vCzy),
X1 = Wi + Me(yx — k),

to improve the convergence speed of the algorithm (2). For the problem (1) in which
C = 0, B is monotone and L-Lipschitz continuous, Malitsky and Tam [10] proposed the
forward-reflected-backward algorithm to solve problem (1), which consists of iterating

Xkp1 = Jya(Xk — 29Bxg + vBxg_1 — vCxy). (6)

Under some appropriate conditions, they proved the convergence of (6). Furthermore,
Zong et al. [11] introduced the inertial semi-forward-reflected-backward splitting algorithm
to address (1):

X1 = Jya (X — YiBxg + V-1 (Bxg — Bxg—q) — a(xp — x5—1) — 1Cxy), (7)

and proved the weak convergence of the algorithm. Zhang and Chen [12] proposed the
parameterized three-operator splitting algorithm:

Zk = ]’yA(xk)/
Yk = J4B([2 = 7(2 — )]z — xx — vCz), (8)
X1 = X + Ae(Yi — 2x),

which generalizes the parameterized Douglas-Rachford algorithm [13]. They proved that
the sequence generated by the regularization of (8) converges to the least-norm solution of
problem (1). Other algorithms for solving (1) have also been investigated in recent years;
see [14-16].

In order to speed up the convergence of iterative algorithms, scholars often use
acceleration techniques. The inertial extrapolation technique and variable metric technique
are two popular acceleration methods. The inertial extrapolation technique, or heavy ball
method [17], has been widely studied in past decades; please see [18-23] and the references
therein. The variable metric technique is a method to improve the convergence speed of the
corresponding algorithm by changing the step size in each iteration. This method has been
widely used in various optimization problems in the past decades. To solve the monotone
inclusion problem of the sum of two operators, Rockafeller [24] first combined the variable
metric strategy with the forward-backward algorithm in 1997. For solving the monotone
inclusion of the sum of two operators, Combettes [25] proposed the following variable
metric forward-backward splitting algorithm

{ Yk = X — YUk (Brxg + by), ©)
Xkr1 = Xk + Me(Jyuea (Vi) + ax — xi),

where {a;} and {by } are absolutely summable sequences in H, {U} is a linear bounded
self-adjoint positive operator sequence defined on H, and proved its strong convergence.
Bonettini [26] proposed an inexact inertial variable metric proximity gradient algorithm.
In [27], the author studied the variable metric forward-backward splitting algorithm for
convex minimization problems without the Lipschitz continuity assumption of the gradient
and proved the weak convergence of the iteration. Further, in [28], Audrey and Yves
proposed a variable metric forward-backward-based algorithm for solving problems of the
sum of two nonconvex functions. In [29], the authors addressed the weak convergence of a
nonlinearly preconditioned forward-backward splitting method for the sum of a maximally
hypermonotone operator A and a hypercocoercive operator B. For other applications of
variable metric techniques, see [30-32] and the references therein.
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Inspired by the above work, we propose a parameterized variable metric three-
operator algorithm and a multi-step inertial parameterized variable metric three-operator
algorithm. Furthermore, instead of requiring the averageness or nonexpansiveness of the
operator, we directly analyze the convergence of the proposed iterative algorithm.

The rest of this paper is organized as follows. In Section 2, we recall some basic
definitions and important lemmas. In Section 3, we propose the parameterized variable
metric three-operator algorithm and prove its strong convergence. Then we introduce a
multi-step inertial parameterized variable metric three-operator algorithm and prove a
strong convergence result of it. In Section 4, we show the performance of the proposed
iterative algorithm under different parameters and illustrate the feasibility of the algorithm
with numerical examples.

2. Preliminaries

In this section, we list the necessary symbols, notations, definitions and lemmas and
certify some results used in this paper. Let B(H) be the space of bounded linear operators
from H to H. Set S(H) = {L € B(H)|L = L*}, where L* denotes the adjoint of L, and
Py (H) = {L € S(H)|(Lx,x) > a(x,x)}, « > 0. Given M € P,(H), define the M-inner
product (-, -)p; on H by (x,y)y = (Mx, y) for all x,y € H. So the corresponding M-norm
on H is defined as ||x||p1 = v/ (Mx, x) for all x € H. The strong convergence of a sequence
{2z} is denoted by — and the symbol — means weak convergence. Id means the identity
operator. £} (N) denotes the set of sequences {1, } in [0, +00) such that Y 77, < +oo.

neN

Let T : H — H be an operator. We denote the fixed point set of T by Fix(T), that is,
Fix(T) = {x € H|Tx = x}. Let A : H — 2H be a set-valued operator. We denote its
graph and domain by graA = {(x,u) € H x H|u € Ax} and domA = {x € H|Ax # &},
respectively. In this paper, let S be the solution set of problem (1) and we always assume
that S # @.

Definition 1. Let T : H — H be an operator. T is said to be
(1) ([33]) T-cocoercive, T > 0 if

(Tx — Ty, x —y) > 7||Tx — Ty||>, Vx,y € H;

(ii) ([34]) demireqular at x € H if V{x,} C H with x, — x and Tx, — Tx asn — oo, it
follows that x, — x as n — oo.

Definition 2 ([33]). Let A : H — 2H be an operator. A is said to be
(i) monotone if

(x—y,u—0v) >0, Y(xu)egraA,V(yv) € graA.
(ii) strictly monotone if
x#y=(x—yu—v)>0, VY(xu)cgraA, V(y,v) € graA.
(iii) B-strongly monotone if
(x—yu—0) > Blx—yl% V(xu) € grad, ¥(y,0) € graA.
(iv) maximally monotone if ¥(x,u) € H x H
(x,u) e graA < (x—y,u—v) >0, VY(yv) € graA.

(v) uniformly monotone with modulus ¢ : R — [0, +o0] if ¢ is increasing and vanishes
only at 0 and

(x—y,u—0) = ¢(lx—yl), V(xu) € grad, ¥(y,0) € graA.
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Definition 3 ([33]). Let D be a nonempty subset of H. Let {x,} be a sequence in H. {x,} is
called Fejér monotone with respect to D if

[xps1 — 2] < lxa — 2|, V£e€D, Vn>0.

Lemma 1 ([33]). Let A : H — 2 be a maximally monotone operator and let M : H — H be a
linear bounded self-adjoint and strongly monotone operator. Then

(i) MY A is maximally monotone operator.

(ii) VA > 0, [y p14 = (Id + AM 1 A)~Vis firmly nonexpansive with respect to M-norm,
that is,

Daaa1a% = g 1% %X = 9)0m 2 Nam1a% = aim1ayllye Voo y € He

(iii) Jyp1p = (M4 A)"IM.

Lemma 2 ([35]). Letx € H,y € H, z € H, we have
2(x—y,x—z) =[x =yl + o — 2| = [ly — ||

Lemma 3 ([33]). Let Q) be a nonempty subset of H. Let {x, } be a sequence in H. If the following
conditions hold:
(i) Vx € Q, lim l|xn — x|| exists;
n—oo
(ii) every weak sequential cluster point of {x, } is in Q).
Then the sequence {x, } converges weakly to a point in Q).

Lemma 4 ([36]). Let {a,} be a sequence in [0, +0), {1,} € (1. (N), {6,} € ¢} (N) such that
api1 < (1+14n)an +6n, Vn € N.
Then {a, } converges.

3. Iterative Algorithms and Convergence Analyses

In this section, we propose the parameterized variable metric three-operator algorithm
and multi-step inertial parameterized variable metric three-operator algorithm to solve
the approximate solution of the problem (1). The weak and strong convergence results are
obtained. Both algorithms require the following assumptions:

Assumption 1. A, B : H — 2H are maximally monotone operators, C : H — H is a B-cocoercive
operator, B > 0.

Assumption 2. D € B(H) and the solution set of zer(A + B+ C + (2Id — D)) is nonempty.

The following Proposition is mainly used to prove the convergence of the proposed
algorithm.

Proposition 1. Let A,B : H — 2 be maximally monotone operators, C : H — H be a
B-cocoercive operator and p > 0. Let D € B(H), M € P,(H) and v > 0. Denote by

Jyh = (M+9A)",
Ky = {z € H|J})z = [}5(2M]Yyz — z — CJNyz — v(21d — D)]}}2)}.

Then zer(A + B+ C + (21d — D)) = J%,(Ky) and Ky = Fix(T), where T = 1d — J}, +
J3s(2MJY, —1d — 7 CJN, —v(21d — D)]%,). Moreover,

Fix(T) = {Mx + ya|x € zer(A+B+C+ (2Id — D)), a € AxN(—Bx — Cx — (2Id — D)x)}. (10)
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Proof of Proposition 1. Let x € zer(A + B+ C + (2Id — D)). We have

0€(A+B+C+(21d— D))x
< 0ey(A+B+C+ (2Id—D))x
& 3z € H with z — Mx € yAx such that Mx — z € yBx + vCx + y(2Id — D)x

=x= ]%z and 2Mx — z — yCx — y(2Id — D)x € Mx + yBx

S x= ]%z and x = ],%(ZMx —z—Cx —y(21d — D)x)

S zeKyandx € ]%(KM).

In turn, if x € | %(K M), there exists z € Ky such that x = | %z. Each of the above steps
can be worked backward. It follows that zer(A + B+ C + (2Id — D)) = ]%(KM).

That Kys = Fix(T) is a trivial result.
Next, we show that (10) holds.

z € Ky
& dxczerf(A+B+C+ (2[d-D)), x = ]%z, x = ]%(ZMx —z—9Cx —y(2ld — D)x)
& z— Mx € yAx, Mx —z € yBx + yCx + y(2Id — D)x
< Jdae AxN(—Bx—Cx— (2Id — D)x),z = Mx + ya
& z € Fix(T).

The proof is completed. [

Proposition 2. Let A, B : H — 2" be maximally monotone operators, C : H — H be an operator.
Letaw > 0,7 >0, My, My € Py(H). Given z, 2 € H, denote by

x = Ngz, Ml(ZMlx—z—'ny—'y(ZId—D)x),

B
11
Xg(zz\/m—z—yc)@—y(zm— D)%). an

y=1]
X = 71‘%2’ ]}:]7
Then we have

0<(z=%,(x—y)— (—9) —al(x—y) — (£ -9
—l—’y(y -7, (ZId— D)J? — (Zld— D)x) — 'y(y —7,Cx — CJ?)
+(y =9, (My— My)(g — %)) + (Mz — M1)%, (x —y) — (£ —7))- (12)

Further, if A or B is uniformly monotone with modulus ¢, then the above inequality holds with 0 on
the left replaced by v¢([|x — 2[|) or v ([ly — 7)-

Proof of Proposition 2. According to (11), we have

z — Mjx € yAx, 2Mjx —z —yCx —y(2Id — D)x — My € yBy,
2 — Mok € yA%, 2Mpt —2—yCx — y(2ld — D)% — My € vBy.

By the monotonicity of A, B we obtain
0<{(x—2%z— Mix— (2— MR)),
0<(y—92Mx —z—9Cx —(2ld — D)x — My
— (2Mp% — 2 — yC% — y(2Id — D)% — M7))

= *<y7yAfZ*Mlx* (2*M292)> 77<y—yA,Cx—C£>
+(y — 9, May — Mp% + v(2ld — D)% — (M1y — Mix + y(2Id — D)x)).
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Adding the above two inequalities, we obtain

0<(z—Mix—(£—Myx),(x—y)—(2—7)) — 7y —9,Cx — C%)
+ (y — 9, Moy — Mpx + y(2Id — D)% — (Myy — Myx + y(2Id — D)x))
=(z—-2(x—-y)—(2-9) — (Mix — M, (x —y) — (£ —9)) —v(y — 9, Cx — C%)
+ (y — 9, Mol — Ma% — (M1y — Mqx)) +y{y — §,(2Id — D) (% — x)).

Notice that
— (Mix = Mo, (x —y) — (£ — 1))
= —(Myx — Mi%, (x —y) — (£ — 7)) — (M12 — Mp%, (x —y) — (£ — 7))
=—(x—%x-y)—(E@-7)m — (M1 =M%, (x —y) — (£ — 7))
and that

(y — 9, M2y — Max — (Myy — Mix))
= (y — 9, M1§ — M1 % — (Myy — Myx)) + (y — §, Mo — Myj — (Ma% — M %))

By M; € Py(H), we have,

0<(z=2(x—y) = (E=0)— |(x—y) = (E =D}y
+7(y—9,(2ld = D)% — (2Id — D)x) — 7(y — 9, Cx — C%)
+ =9, (Mo — M) (9 — %)) + ((Ma — My)%, (x —y) — (£ = 9))
<(z—z(x—y) - @-0) —al(x—y) - (-9
+7(y—9,(2ld = D)£ — (2Id — D)x) — 7(y — 9, Cx — C%)
+ (=9, (Mp — Mp)(7 — 2)) + (M2 — M1)%, (x —y) — (£ — 9))-

Further, if A or B is uniformly monotone, we just need to replace 0 with y¢(||x — £||) or
v¢(ly — 9l) from (12). O

3.1. Parameterized Variable Metric Three-Operator Algorithm

In this subsection, we study the following parameterized variable metric three-
operator algorithm and its convergence.
Pick any zg € H,

Xn = ]Nfa{lznr
Yn = ]7Bn (2Myxy —zn — yCxy — y(2Id — D)xy), (13)
Zn41 = 2Zn + Un(Yn — xn), 1 >0,

where ) = (M +7A) ™", My, € Po(H), ¥n € N,a > 0.9 > 0.

Theorem 1. Let {z,} be generated by Algorithm (13). Suppose that the following conditions hold:

(C1)||D|| € [0,2), 7 € (o,%)

_ 2
(C2) Z fn = +00,0 < py < limsuppy, =% < 2a — 7(% + !g‘iﬂg“));

n—oo
(C3) M€ Pu(H), & L|IM~ My < +eo
Then we have =
1. {zu} is bounded;
2. Yn—xp — 0,2, = 2" € Ky, xy = x*, vy — x%, Cxy, — Cx*, where x* = ]%z* S
zer(A + B+ C+ (2Id — D)), Ky is defined as Proposition 1;
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3. Suppose that one of the following holds:

(a) A is uniformly monotone on every nonempty bounded subset of domA;
(b) B is uniformly monotone on every nonempty bounded subset of domB;
(c)  Vxezer(A+ B+ C+ (2Id — D)), C is demireqular at x,

then xp, Yn — x*.
Proof of Theorem 1. 1. Set w,, =y, — x. By (13), we have

(Xn,z2n — Mpxy) € grayA,

(Yn, 2Mpxy — 24y — vCxp — y(2Id — D)x,, — Muyn) € grayB. (14)

Let x € zer(A+ B+ C+ (2Id — D)). Then there exist p € Ky and p, € Ky,
respectively, such that x = | ,jyqu(p) and x = é\:{{‘( pn) in view of Proposition 1, where

Ky, = {pn € H|%pn = I35 @MaJYips — pu — vCI) 3 pn — v(21d = D)J 2 pu)}. By
taking z = py, £ = z4, My = My = M, and noting that £ = x,, § = y,, x = y in
Proposition 2, we obtain

0 < (pn — zun, Wn) — “Hwn”z —9(x —yn, Cx — Cxy)
+ v(x —yn, (2Id — D)x,, — (2Id — D)x). (15)

Multiplying the first two terms on the right of (15) by 2, we obtain

2pn({pn — zn, wn) — “”wn”z)
= 2(Pn — Zn, Zn41 — Zn) — 2"‘F4n||wn||2

= llzn = pull® = 201 = pall® + i (i — 200) [0 || (16)
Since C is a B-cocoercive operator, it follows from Young's inequality that

— y(x — yn, Cx — Cxy)

—y{x — x,Cx — Cxy) + y{wy, Cx — Cxy)

< —B)|Cx — Cxy|* + (wp, Cx — Cx)
< —By]|Cx — Cxal|? + By[|Cx — Cxa 2 + ﬁnwnnz
7 2

Furthermore, the last term of (15) can be expressed by utilizing Young’s inequality again as

v{(x =y, (2Id — D)x, — (2Id — D)x)
= —v(yn — xn, (2Id — D)x, — (2Id — D)x) — y(xn — x, (2Id — D)x,, — (2Id — D)x)
< ¥{(wn, (21d — D)x — (21d — D)xu) — 27| — x|[* + || D] 0 — x||?

€ 1

< (S llwal* + - [121d = DIPflx = xa|*) + (V[ D] = 27) [l — x|
1 Ye

=7[IDIl -2+ - [121d — DI} s — x|1* + - [|wal|?
2e 2

ve
< - llwall?, (18)
where the positive constant € satisfies

21d — D2 _ _ 4ap— 7 — 2

P TV T PHn 19
20D == 26y (19)

which implies that ||D|| — 2 + 5 ||2Id — D||> < 0.

10
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Now, substituting (16)-(18) into (15), we derive

0 < [|zu = pull® = lIzus1 — pull® + pin (pn — 20+ 2ﬁ)llwn\lz +epn|wall?.

Thereby,

lzn 1 = pull® + pn 2 = 2L — pn = v€) |l < 120 — pu® (20)

2p
It yields
1Znt1 = pall < llzn = pull

since 2a — /3 — un —ve > 0 by (19). Hence, we obtain from x = ]%(p) = ,ﬁﬁ?(pn) and
Proposition 1 that p, — p = (M, — M)x and

zns1 = pll < [zng1 — pall + lpn — pll
<z = pll +2llpn — pl|
< llzu = pll +2[[My, — M]|||x]|.

Note that 2 |M — M,|| < +o0because Z 1||M Myl < Z 1 ~[|[M — My|| < +oc0. Thus

we have 11m |lzn — p|| exists by Lemma 4 As a result, {zn} is bounded

In addltlon we have by applying Lemma 1

M
2w — x||? = ||17A"zn — 1Y pall?
M
< fnva w—Dapalis,

-1 -1 2
= &H],yMnflAMn Zn — ],YMnflAMn PnHM,,

1 _ _
&HMn Y2y — My 1Pn‘|%\4n

1,
M 20 = pul?

IN

IN

1
< (2 = pll +lIp = pull)®
< 0.

So {x,} is a bounded sequence. Similarly, {y, } is bounded.
2. In Proposition 2, we take z = z,, 11, £ = z,, M1 = My 41, My = M,;, then x = x,, 11,
Y =1VYut1, X = x4 and § = y,. Thus,

0 < (Znt1— 2Zn, Wy — Wyp1) — &f|wy 41 — wn||2 = Y(Yn+1 = Yn, Cxny1 — Cxp)
+ Y {Ynt+1 — Yn, (21d — D) (xn — Xp41))
+ (Yn+1 = Yn, (M — Myi1) (Yn — X)) + ((Mn — My41)Xn, Wn — Wy11)
< (Zny1 = Zn, Wn — Wyy1) — &l w1 — wnHz = Y(Yn+1 — Yn, Cxpy1 — Cxp)
+ ([ M1 = Mul[[llyn — Yneallllwnll + l2n [l [|wn1 — wnl]]
+Y{Yn+1 = ¥n, (21d — D) (xn — Xp41))- (21)

11
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Similar to (17) and (18), we obtain the following estimations of the third and the last
terms of the right side in (21), respectively,

— Y(Wn+1 — Yn, Cxpp1 — Coxy)
= =Y (Wnt1 — Wn, Cxyp1 — Cx) — ¥ (Xp41 — X, Cxyp1 — Cixp)

smwmﬂ4mW+ﬁmﬁvmw—mwmﬂ4mw

= ggllon —wl? (22)

and

Y(Yn+1 = Yn, (21d — D) (xn — Xp41))

= —y(Wn+1 — wy, (21d — D) (xp41 — Xn)) — ¥(Xn41 — Xn, (2Id = D) (Xn41 — xn))

< V(G lwnsr — wall2 + 51121 = DI ass — xa])

— 29|xn41 = a2+ VID| 2011 = 5

= (5 121d — DI + D] = 2) 551 — a2 + L 01 — 0l

< Lllwnsr - wull, 23)
where € is given by (19).

Multiplying (21) by 2 and substituting (22) and (23) into (21), we conclude that
0< 2<Zn+1 — Zn, Wy — Wyp1) — 20wy g1 — wy ||

2,3 HwnJrl - wnH2 'YeHwnJrl - wnHz

+ 2| M1 = Mulllllyn = ynsa lllwnll + l|xn ][ lwn41 — wnl]]

= 2]411 <wn/ Wy — wn+1> + (Zl + ve — 20() ||wn+1 — wn||2

p
+2[Mut1 = Mall[llyn = ynsallllwnll + x| |wn 41 — wnll]

= inlwall? = pallena | + (5 + 7€ = 20+ g feonss =
+2[[Mrs1 = Mall 1y = ya llall + 10 10 11 = ]

From y, > 0, we have

1
ol < ol = - (2 = 55 = 7€ = o) 201 = P
2
o WM = Ml = sl ol + el = ]
2
<l - M1 = Malllyn =yl + il foon 1 = ]

since 2a — % — € — py > 0by (19). Let
2
On = EHMnH = Ml {[lyn = yneallllwonll + lxn ([l 1 — wnl]].
We have Z Oy < 400 by virtue of the fact that Z HMnH — My|| < +coand {x,}, {yn},

{wy,} are bounded sequences. Therefore, {||wn H} converges from Lemma 4.
Next, we show that w, = y, — x, converges to 0 as n goes to infinity.

12
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Rearranging terms in (20), we have

pn (20 — ? — Hn — 'Ye)HwnHZ

< lzn — PnH —[|zn41 — PnHz

< . 2 _ 2 _ 249 _ _

< lzn = pull” = zns1 = PusalI” = lpn — Pl zn+1 = Pusallllpn — puta l

< lzn — PnH2 —llzn41 — Pn+l||2 - H(Mn — My41) tz
+2[[|zn1 = pll + 1P = Pura III(Mn — My1) x|

= llzn = pull® = lzns1 = purall® - II(Mn = Myy1)x?
+2[[|zn1 = pll + 1 (M = My ) x|l (My — Myi1) x|
< llzn = pull* = llzns1 = pust > + QN (M = Myi1)x]|, (24)
where Q = sup{2[[|z;11 = pll + [(M = My 1)x[] = [[(My = Myp1)x[|} < oo due to the

n
boundedness of {z, } and (C2), (C3).
Summing on both sides of (24) from 0 to k, we obtain as k goes to infinity

Y pn(20 — % — pn = v€)[wall* < llz0 = pol* + QY [(My = My 1)x]|
n=0 n=0

< 0. (25)

By Z tn = +oo and (19), it has Z tn (20 — 5% — py — ye) = +oo. Thus, 1ig_1}i£f||w71|| =0
in view of (25). Hence, hm Hwn|| =0, thatis y, —x, — 0asn — oo.

For simplicity, denote by v, = yC(x,). From 1., {z,,}, {x,}, and {v,} are bounded
sequences. Assume that (z*, x*,0*) is a weak limit point of the sequence {(zy, X, vn)}.
Then there exists its subsequence {(zy,, Xn,, Vs, ) } such that (z,,, Xy, , vn, ) — (2%, x%,0%).

Define F : H® — 21 by

(yA)~1 0 0 -Id
F= ( (yC)~ ! )+( 0 0 Id).
B+ v(21d — D) Id Id 0

Then F is a maximally monotone operator (see [33] (Example 20.35, Corollary 25.5(i))).
From (14), we obtain

X = Ynye Zny, — M Xy
X, — Yny eF Uy .
Mnk(xnk - ynk) + '7(21(1 - D)(ynk - xnk) Yy

Noting that z,;,, — My, x,, — z* — Mx*, v, — 0%, yy, — x* by wy, — 0, and that graF is
sequentially closed in H**k x H%"8, we deduce

0 (yA)~1 0 0 -Id z* — Mx*
0 | € (yC)~1 +| 0 0 -Id v* :
0 B + (21d — D) Id Id 0 x*

In other words,

x* = 7Az v* = yCx*, x* = ]%(ZMx* —z* —yCx* — y(2Id — D)x*).

Thus z* € Kp. This gives z, — z* € Kj; according to Lemma 3. Furthermore,
X = ]%z* € zer(A+ B+ C + (2Id — D)) by Proposition 1. Since z* is the unique weak

13
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M

limit point of {z, }, x* = J¥,z* and v* = 9 Cx™ are the unique weak limit points of {x; },

vy
{vn}, respectively. So, x, — x*, v, — v*. By w, — 0, we have y, — x*.
Taking z = z*, £ = z,, M; = M and M, = M, in Proposition 2 and applying (17)

and (18), we have

* € *
0 < (2" — 2y, wn) — aljwy|* + %Ilwnllz — By||Cx* — Cxy?
+ y(wp, Cx™ — Cxp) + (X" — yn, (M — M)wy) + ((Mp — M)xy, Wy).
Then,

* € *
BYICx" — Cxul® < (2" = 20, 0) + (- — )l + (w0, Cx* — Cxa)

+ (X" =y, (My — M)wy) + ((My — M)xy, wy)
— 0, asn— oo.

That is, Cx;, — Cx* asn — co.

3. As seen in 2., there exists x* € zer(A + B+ C + (2Id — D)) such that x, — x* as
n — oo.

(a) Set O = {x*} U{x,}. Obviously, O is a bounded subset of domA. Since A is
uniformly monotone on O, which means that there exists an increasing function ¢4 : Ry —
[0, +-00] satisfying that ¢4 (x) = 0 if and only if x = 0, which allows us to write the result of
Proposition 2 as if we setz = z*, 2 = z,, M1 = M, My = M,

Yoa(llx* — xul]) < (2" — zu, wy) — a||wn||* — y{(x* — yn, Cx* — Cxy)
+9(x* = yn, (2Id — D) (x — x¥))
+ (X" = yu, (My — M)wy) + (My — M)xy, wy).

Hence, we have by using (18) and the results of 2.

0 < ypalllx® —xal)
€
< (2" = zn, wn) — &f|wal* = Y(x* = yn, Cx* — Cxn) + %Ilwnllz

+ <x* — Yn, (Mﬂ - M)wn> + <(Mn - M)xn/ wn>
— 0, asn— oo,

where € is a positive constant satisfying (19). nlgrolo ||xy — x*|| = 0 follows from nh_r}rgo llpa(l|x*—
Xu||)|| = 0 and the definition of ¢ 4. Moreover, {y, } converges strongly to x* holds due to
lim ||y, — xu|| = 0.
n—oo

(b) The proof is the same as (a).

(c) From 2., we have x, — x* € zer(A+ B+ C+ (2Id — D)) and Cx,, — Cx*. The
demiregularity of C at x* guarantees x, — x* asn — c0. [

Remark 1. (i) The operator T defined in Proposition 1 is similar in form to the operators that
appeared in [8] (Proposition 2.1) and [12] (Lemma 3.4), but it is no longer an averaged operator. We
prove the weak and strong convergence results of the proposed algorithm in this more general case.

(ii) Algorithm (13) can be seen as a generalization of (8). In fact, if we choose M, = 1d and
D =a, a € (0,2), Algorithm (13) becomes (8).

3.2. Multi-Step Inertial Parameterized Variable Metric Three-Operator Algorithm

In this subsection, we present the multi-step inertial parameterized variable met-
ric three-operator algorithm, which combines Algorithm (13) and the multi-step inertial
technique. Meanwhile, we show the convergence of the proposed algorithm.

14
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Lets € Nyand U = {0,---,s —1}. Let {6i,}icu € (—1,1)°. Choose zg € H,
z_ ;1 =2zp,1€ U and set
On=2Zn+ ¥ 0in(Zu—i— Zn—i-1),
iel
Xn = ]Nfa{'vnr (26)
Yn =I5 (2Myxy — vy — ¥Cxy — v (2Id — D)xy,),
Znt1 = On + Hn(Yn — Xn), 1 >0,

where ]y/; = (My +vA)"1, M,, € P,(H).

Theorem 2. Let {z,} be defined by Algorithm (26), Ky be defined as Proposition 1. Set || D|| €

~|D , . e
[0,2), v € (0, 2_”1%%) and provided the following conditions hold:

7

00 21d—D|?
(C3) VEOW = +400,0 <P S pn < 200 — %(14— %)

(C4) M, € Py(H) such that 'Y, |M — M,|| < 4oo;
n=0
(C5) 6; = supyen|bin|, ¥ 6; <1, lim 6;, # 0and
icu n—reo

+o00
Z max |9i,n| Z Hznfi - Znfile < o0 (27)
n=1 €U icu
Then the following assertions hold:
1. Forevery q € Ky, 1131 llzn — ql| exists;

n—oo

2. {zu}, {vn} converge weakly to the same point of Kpy, {xy}, {yn} converge weakly to the
same point of zer(A + B + C + (2Id — D));
3. Suppose that one of the following holds:

(a) A is uniformly monotone on every nonempty bounded subset of domA;
(b) B is uniformly monotone on every nonempty bounded subset of domB;
(c)  Vxezer(A+ B+ C+ (2Id — D)), C is demiregular at x,

then {xn}, {yn} converge strongly to the same point of zer(A + B + C + (2Id — D)).

Proof of Theorem 2. 1. Given g € Ky, arbitrarily, there exists X € zer(A + B+ C + (2Id —
D)) such that ¥ = ]%(q), and for this ¥, there exists q, € Ky, such that ¥ = ]%‘ (qn)
according to Proposition 1. We choose z = g, £ = v, M = My = M, in Proposition 2.
Thenwehavex =y =%, £ = x, § = y,, and

0 < (Gn — On, Yn — xn) — &|lyn — xu||* = ¥(X — yn, CX — Cx)
+7(% — yp, (2Id — D)x, — (2Id — D)%). (28)

Applying Lemma 2, we have

200 ({qn — On, Yn — Xn) — allyn — anz)
= 2(qn — On, Zny1 — Vn) — 20pnl|yn — an2

= |lon — anZ — [lzn41 — ’1n||2 + pn (pn — 200 ||yn — anZ- (29)
As same as (17) and (18), we obtain
— 9 (% — yn, CT — Cxy) < —By||CF — Cxn||® + ¥ (yn — xn, CT — Cxp)
< gl — il (30)

A

15



Axioms 2023, 12, 508

7(% — yp, (21d — D)x,, — (21d — D)%) < %Hyn — %, (31)

J|21d—D | <e< 4ap—y—2Bpn
where 20-1D) = e < 267 .

Combining (28)-(31), we have

OSHw—ﬂdz—Wm4—%W+VAw—Qw+%yPWWw—XM?

from which it follows that

oo
2p

Izns1 = Gnl[* + pn (20 = tn = 7€) lyn — xn* < [low — qul|*.

Since 2o — % — pn — v€ > 0, it has
Izns1 = Gull* < llon — gull*,
which implies

znt1 = gull < llon — gull
<lzn = gull + 1| Y2 0in(zn—i — Zn—i1) |

ield
< lzn = qll + lg = gull + max |6;] Y [|20—i — zn—i-1ll
1€ iel
<llzn —qll + [|[M — M| [|%] + max 1000l Y Nl zn—i — zn—iz1l|.

ield
By (C4), (C5) and Lemma 4, we have nlgrolo llzn — q|| exists and {z,} is bounded. Hence,

{vn}, {xn} and {yCx,} are bounded.
2. Since ligr1 0;, # 0 and (27) holds, for all i € U, it has
n—oo

Jim [0 |[|20—i — Zu—i-1] = O.
Particularly,
Jim 21— 2| = 0. 2

Further, we have

zns1 = nll < lzn1 — zall + Y Bl llzn—i — zn—iall = 0, as n — co. (33)
iel
By (32) and (33), we have
0 < llzn —vnll = || Y On(zni — 2ui-1) |
icl
< Z |6i,n|||zn—i - Zn—i—l”z
iel

which indicates that ||z, — v,|| — 0.

Since lim ||yy — xu|| = lim -

n—o0 n—oo Hn

Set u, = vCxy. Let (Z,%, %) be a weak limit point of the sequence {(zy, x», u,)}. Then

there exists a subsequence {(zy,, Xy, U, ) } such that (zy,, xy,, us, ) — (z,%,u). Without

loss of generality, we assume that 3{v,,, } C {v,} such that v,, — Z. In addition, we have
My, — Mas k — oo by (C4).

llzy+1 — vn|| = 0. Then, y, — x,, — 0.
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Define a maximally monotone operator F : H> — oH’ by
(yA)~1 0 0 -Id
F = (vC)~! +1 0 0 —Id |.
¥B+y(2Id — D) Id Id 0

(Xn, vn - Man) 6 gl‘a’)/A,
(Yn, 2Mpxy — vy — yCxy — y(2Id — yD)xp — Mpyn) € grayB.

By (26), we have
(34)

Therefore, from (34), we obtain

Xnp — Yny Ony — Mnkxnk
Xnk - ynk E P unk .
Mnk(xnk _ynk) ‘I"Y(Zld_ D)(y”k _x”k) Yny

Since graF is sequentially closed in HY*F x Fstrong,

0 (yA)! 0 0 -Id Z — Mx
()i ) G 20
0 B+ v(2Id — D) Id Id o0

it yields that

IR

% =Mz 1 =9C%, ¥ = JM(2M% — % — yCx — y(2d — D)%).

Hence, zZ € Kj;. Using Lemma 3, v, — z € K);. Meanwhile, z, — z € Ky; by ||z, — v —
0. Furthermore, X = ]%E € zer(A + B+ C + (2Id — D)) by Proposition 1. From that
Zn —Z,X = ]%Z and # = yCx, we conclude that x, — X, u, — u. Using y, — x, — 0, we
obtain y, — X.

By (30) and (31) and Proposition 2 withz =z, 2

vy, M1 = M, M, = M, we have

_ _ € _
BylICx — an”Z <A{Z—0u,Yn — Xn) + (77 —a)llyn — xn”Z + Y (yYn — xu, CX — Cixp)

+ (X = yn, (My — M) (Yn — xn)) + ((My — M) X, Yn — Xn)-

Hence, Cx,, — Cx.

3. Taking z = z, £ = v,, My = M, My = M,, and using similar arguments in the proof
of 3. in Theorem 1, we obtain x, — X and y, — X, where ¥ € zer(A+ B+ C + (2Id —
D)). O

Remark 2. If6;, € [0,1), (27) reduces to
+o0
Y max6;, Y |lzu_i —zp—i1| < +oo. (35)
n=1 €U ich
(35) can be implemented by the following simple online updating rule
0in = min{0;, b, },
where 0; € [0,1), {b;,} and {maxb;, ¥ ||z,—i — z4—i_1]||} are summable sequences for each
ield
i € U. For example, one can choose

b;

bin =
T Y |z — 2z ||
iel

b; >0, 6> 0.
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4. Numerical Results
We consider the following LASSO problem with a nonnegative constraint:

1
min { = ||Ax — b||% + ||x||; + tc(x)}, 36
XGRN{ZH 1= 4 [1xlls + ee(x) } (36)

where A € RI*N p e RIX1 C = {x € RN\xi >0,i=12,---,N}. Let ic(x) be the
indicator function of the closed convex set C, that is,

o(x) = 0, x€eC,
¢ N +00, otherwise.

Set f1(x) = [|x||1, f2(x) = te(x) and f5(x) = 1||Ax — b||*>. Obviously, Vf3(x) = AT(Ax —
b), V f3(x) is || AT A||-Lipschitz continuous and the i-th component of | % o, X is

(]%aflx)i = (M35 M 'x);

5w LI

1 m; m;’ m; m;’

= - J— Xi 4 n Xi Jn
= (prox,,mpaM "x); = e e < ;7
0, otherwise,

where M = diag(mq,my, - - - ,my). Similarly, we have
fﬁfafz (x) = ]%Mqafz(M_lx) = prox%Mfz(M_lx) = Pc(M™x).
Problem (36) is equivalent to the problem of finding x € RN such that
0€adfi(x)+ofa(x)+ Vfz(x).

Select any initial value zp, z_1,z_» € RN, U={1,2},ieU, 61, = 02, = min{0.1, Z—;%}

Set] = N =20,E € RO®, M, = M =2E,a = }, L = | ATA|, { = IOl o)
and take ||z,4+1 — zn|| < eps as the stopping criteria. In the following, we denote
Algorithm (13) as PVMTO and Algorithm (26) as MIPVMTO.

In Algorithms (13) and (26) take D = kE, k € [0.009,1.999], and take v = 1¢,
pn = 0.499, eps = 10~°. In Figures 1 and 2, we show the effect of the parameter D on the
CPU time and iteration numbers of the PVMTO and the MIPVMTO. As can be seen from
the figure, compared with PVMTO, MIPVMTO has a great improvement in the number
of iterations and CPU. Furthermore, we list the CPU time of PVMTO and MIPVMTO at
different stopping criteria and different D in Table 1.

In Algorithms (13) and (26) take D = 0.009E, ¢ € [250?, 15999 11, = 0.999 —e, v = ¢
and eps = 107°. The effect of choosing different y on the number of iterations of the two
algorithms is shown in Figure 3. It can be concluded that, when y = %@, the number of
iterations of our two proposed algorithms is the least, and the number of iterations of
MIPVMTO is less than that of the PVMTO.

In Algorithms (13) and (26) take D = 0.009E, M, = M = 2E and v = %@, Uy = 0.499.
In Figure 4, we compare the number of iterations of PVMTO and MIPVMTO under different
stopping criteria, and it can be seen that the parameterized variable metric three-operator
algorithm with inertia term has more advantages.
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PVMTO

1+ MIPVMTO

CPU

Figure 1. The effect of D = kE on CPU (s).
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Figure 2. The effect of D = kE on iteration numbers.
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Figure 3. Different y with ||z, 11 — z|| < 107°.
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Table 1. Numerical results of the PVMTO (Algorithm (13)) and the MIPVMTO (Algorithm (26)).

PVMTO MIPVMTO
eps D Iter IEA| CPU (s) D Iter EAI CPU (s)
0.00999E 531 0.892097 0.075116 0.00999E 473 0.896813 0.101615
0.50659E 564 0.909472 0.079004 0.50659E 526 0.917201 0.078163
1.00499E 624 0.932223 0.083093 1.00499E 592 0.942767 0.080023
1.50599E 725 0.965979 0.098467 1.50599E 615 0.969368 0.088909
1.91199E 745 0.987424 0.103177 1.91199E 668 0.994628 0.093426
1073 1.93599E 746 0.988654 0.102805 1.93599E 676 0.996532 0.095638
1.95699E 747 0.989739 0.106307 1.95699E 685 0.998393 0.092109
1.97899E 749 0.990939 0.097910 1.97899E 696 1.000491 0.094137
1.98999E 750 0.991522 0.098771 1.98999E 702 1.001613 0.093303
1.99999E 750 0.991941 0.098490 1.99999E 707 1.002606 0.094370
2.00000E 750 0.991941 0.113851 2.00000E 750 0.991941 0.113851
0.00999E 1114 0.869743 0.159736 0.00999E 958 0.870160 0.131419
0.50659E 1223 0.880358 0.165580 0.50659E 1063 0.880900 0.142245
1.00499E 1487 0.893068 0.193978 1.00499E 1314 0.893768 0.175073
1.50599E 1878 0.909894 0.245709 1.50599E 1675 0.910860 0.224609
1.91199E 2523 0.928138 0.328125 1.91199E 2249 0.929321 0.302159
104 1.93599E 2538 0.929595 0.342751 1.93599E 2297 0.931024 0.324058
1.95699E 2586 0.931119 0.350296 1.95699E 2302 0.932462 0.309686
1.97899E 2635 0.932768 0.347120 1.97899E 2357 0.934105 0.315834
1.98999E 2623 0.933456 0.341721 1.98999E 2388 0.934962 0.318405
1.99999E 2652 0.934230 0.349495 1.99999E 2417 0.935759 0.321433
2.00000E 2652 0.934231 0.314799 2.00000E 2652 0.934231 0.314799
0.00999E 2017 0.893855 0.518356 0.00999E 1692 0.893916 0.237726
0.50659E 2370 0.915375 0.312055 0.50659E 1990 0.915430 0.267332
1.00499E 2998 0.939446 0.389901 1.00499E 2520 0.939509 0.340453
1.50599E 4365 0.968586 0.563529 1.50599E 3667 0.968661 0.485276
1.91199E 6464 0.999046 0.832374 1.91199E 5530 0.999158 0.735078
1075 1.93599E 6717 1.001373 0.864062 1.93599E 5748 1.001488 0.765171
1.95699E 6957 1.003502 1.488362 1.95699E 5956 1.003622 2.570363
1.97899E 7229 1.005861 3.010892 1.97899E 6190 1.005987 2.856389
1.98999E 7374 1.007065 3.209643 1.98999E 6315 1.007196 2.881690
1.99999E 7511 1.008205 3.351171 1.99999E 6433 1.008341 2.996621
2.00000E 7511 1.008206 3.024831 2.00000E 7511 1.008206 3.024831
107
PVMTO
MIPYMTO
102 1
=
IE 10 3 4
N
10 1
10°®

0

500

1000 1500
Iteration numbers

2000

2500

Figure 4. Numerical results with different stopping criterion.
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5. Conclusions

In this paper, we propose a parameterized variable metric three-operator algorithm to
solve the monotone inclusion problem involving the sum of three operators and prove the
strong convergence of the algorithm under some appropriate conditions. The multi-step
inertial parameterized variable metric three-operator algorithm is also proposed and its
strong convergence is analyzed in order to speed up the parameterized variable metric
three-operator algorithm. To a certain extent, the proposed algorithm can be seen as
a generalization of the parameterized three-operator algorithm [12]. The constructed
numerical examples show the efficiency of the proposed algorithms and the effects of the
choices of the parameter operator D on running time. In future development, we can
consider proving that the regularization of parameterized variable metric three-operator
algorithm converges to the least norm solution of the sum of three maximally monotone
operators as shown in [12] and show the real applications of the algorithms in practice.
Another direction of consideration is to study the self-adaption version of the currently
proposed algorithms.
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Abstract: In this paper, we introduce a series of definitions of generalized affine functions for vector-
valued functions by use of “linear set”. We prove that our generalized affine functions have some
similar properties to generalized convex functions. We present examples to show that our generalized
affinenesses are different from one another, and also provide an example to show that our definition
of presubaffinelikeness is non-trivial; presubaffinelikeness is the weakest generalized affineness
introduced in this article. We work with optimization problems that are defined and taking values
in linear topological spaces. We devote to the study of constraint qualifications, and derive some
optimality conditions as well as a strong duality theorem. Our optimization problems have inequality
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convex functions and equality constraints are generalized affine functions.
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1. Introduction and Preliminary

The theory of vector optimization is at the crossroads of many subjects. The terms
“minimum,” “maximum,” and “optimum” are in line with a mathematical tradition, while
words such as “efficient” or “non-dominated” find larger use in business-related topics.
Historically, linear programs were the focus in the optimization community, and initially,
it was thought that the major divide was between linear and nonlinear optimization
problems; later, people discovered that some nonlinear problems were much harder than
others, and the “right” divide was between convex and nonconvex problems. The author
has determined that affineness and generalized affinenesses are also very useful for the
subject “optimization”.

Suppose X, Y are real linear topological spaces [1].

A subset B C X is called a linear set if B is a nonempty vector subspace of X.

A subset B C X is called an affine set if the line passing through any two points of B is
entirely contained in B (i.e., ax; + (1 — a)x, € B whenever x1,x, € Band a € R);

A subset B C X is called a convex set if any segment with endpoints in B is contained
in B (i.e., ax; + (1 — a)xp € B whenever x1,x; € Band « € [0,1]).

Each linear set is affine, and each affine set is convex. Moreover, any translation of an
affine (convex, respectively) set is affine (convex, resp.). It is known that a set B is linear if
and only if B is affine and contains the zero point Ox of X; a set B is affine if and only if B is
a translation of a linear set.

A subset Y, of Y is said to be a cone if \y € Y, forally € Y, and A > 0. We denote
by Oy the zero element in the topological vector space Y and simply by 0 if there is no
confusion. A convex cone is one for which Ay + Ayyp € Yy for all yg,y2 € Y4 and
A1,A2 > 0. A pointed cone is one for which Y, N (=Y, ) = {0}. Let Y be a real topological
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vector space with pointed convex cone Y.. We denote the partial order induced by Y as
follows:

y1 > yiffy; —yo € Yo, or, y1 < yoiffy; —y» € =Y

y1 == yoiffy; —yo € intY,, ory; << yriffy; —yp € —intYy

where intY, denotes the topological interior of a set Y.
A function f: X — Y is said to be linear if

flaxy + Bxz) = af(x1) + Bf(x2)

whenever x1,x; € X and &, 8 € R; f is said to be affine if

flaxy + (1 - a)xp) = af(x1) + (1 — a) f(x2)

whenever x1,x, € D,a € R; and f is said to be convex if

af(x1) + (1 —a)f(x2) < flax; + (1 - a)xz)

whenever x1,x; € D,a € [0,1].

In the next section, we generalize the definition of affine function, prove that our
generalized affine functions have some similar properties with generalized convex func-
tions, and present some examples which show that our generalized affinenesses are not
equivalent to one another.

In Section 3, we recall some existing definitions of generalized convexities, which are
very comparable with the definitions of generalized affinenesses introduced in this article.

Section 4 works with optimization problems that are defined and taking values in
linear topological spaces, devotes to the study of constraint qualifications, and derives
some optimality conditions as well as a strong duality theorem.

2. Generalized Affinenesses
A function f: D C X — Y is said to be affine on D if Vx1,x, € D, Va € R, there holds

af(x1) +(1-a)f(x2) = faxs + (1 - a)xz)
We introduce here the following definitions of generalized affine functions.

Definition 1. A function f: D C X — Y is said to be affinelike on D if Vx1,x, € D,Va € R,
dx3 € D such that

af(x1) + (1 —a)f(x2) = f(x3)

Definition 2. A function f: D C X — Y is said to be preaffinelike on D if Vx1,x, € D,Va € R,
dxz € D, 3t € R\{0} such that

af(x1) + (1 —a)f(x2) = tf(x3)

In the following Definitions 3 and 4, we assume that B C Y is any given linear set.

Definition 3. A function f: D C X — Y is said to be B-subaffinelike on D if Vx1,x2 € D ,Va €
R, 3u € B, dx3 € D such that

utaf(an)+(1—a)f(x2) = flx3)
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Definition 4. A function f: D C X—=Y is said to be B-presubaffinelike on D if Vxq,
xp € D, Ya € R, 3u € B, 3x3 € D,3t € R\{0} such that

uaf(a)+(1—a)f(x) = tf(xs)

For any linear set B, since 0 € B, we may take u = 0. So, affinelikeness implies
subaffinelikeness, and preaffinelikeness implies presubaffinelikeness.

It is obvious that affineness implies preaffineness, and the following Example 1 shows
that the converse is not true.

Example 1. An example of an affinelike function which is not an affine function.

It is known that a function is an affine function if and only it is in the form of
f(x) = ax + b; therefore
f(x)=x%x€R

is not an affine function.
However, f is affinelike. Vx1,x, € R, Va € R, taking

x3 = [af (x1) + (1 —a)f(x2)]"°

then

af(x1) + (1= a)f(x2) = f(x3)

Similarly, affinelikeness implies preaffinelikeness (t = 1), and presubaffinelikeness
implies subaffinelikeness. The following Example 2 shows that a preaffinelike function is
not necessary to be an affinelike function.

Example 2. An example of a preaffinelike function which is not an affinelike function.

Consider the function f(x) = x2,x € R.
Take x; =0,x, = 1,0 =2, thenaf(x1) + (1 —a)f(x2) = —1; but

Va3 €R, f(x3) =23 >0

therefore
af(x1) + (1 —a)f(x2) # f(x3),Vx3 € R

So f is not affinelike.
But f is an preaffinelike function. For Vxq,x, € R,Va € R, taking 7 = 1if af(xq) +
(I1—a)f(xp) >0, 7=—1ifaf(x;)+ (1 —a)f(xz2) <O, then

af (x1) + (1 —a)f(x2) = Tf(x3)
where x3 =|af(x1) + (1 — ) f(x2)['2.
Example 3. An example of a subaffinelike function which is not an affinelike function.

Consider the function f(x) = x> +8,x € D = [0,1], and the linear set B = R.
Vxi,xp € D=[0,1],Va € R, takingxz =1€ D, u=8—[af(x1) + (1 —a)f(x2)] € B,
then

utaf(x)+(1—a)f(x2) = f(x3)
therefore f(x) = x3 + 8, x € [0, 1] is B-subaffinelike on D = [0, 1].
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f(x) = x®+8,x € [0,1] is not affinelike on D = [0,1]. Actually, for x = —8 € R,
xy=1€D,x=0€ D =10,1],onehas af(x1) + (1 —a)f(x2) =0, but

fx3) =23 +8#0,Vx € [0,1]
hence

af(x1) + (1 —a)f(x2) # f(x3), Vx3 € D = [0,1]

Example 4. An example of a presubaffinelike function which is not a preaffinelike function.

Actually, the function in Example 3 is subaffinelike, therefore it is presubaffinelike
on D.
However, forae. =9 € R,x; =0€ D,x, =1 € D, one has

af (1) + (1 - a)f(x2) = 0

but
fx3) =23 -8 #0,Vx € [0,1]

Hence
af(x1) + (1) f(x2) # Tf(x3), Vas € D = [0,1], VT # 0

This shows that the function f is not preaffinelike on D.
Example 5. An example of a presubaffinelike function which is not a subaffinelike function.

Consider the function f(x,y) = (x?,¥?),x,y € R.
Take the 2-dimensional linear set B = {(x,y) : y = —x,x € R}.
Take & = 3, (x1,y1) = (0,0), (x2,¥2) = (1,1), then

af(x1,y1) + (1 —a)f(x2,y2) = (=2,-2)

Either x — 2 or —x — 2 must be negative; but x% > 0, y% >0, Vu = (x,—x) € B;

therefore

u+af(x,y1) + (1—a)f(xo,y2) = (x —2,—x = 2) # f(x3,y3) = (x3,3)

And so, f(x,y) = (x%,y?) is not B-subaffinelike.
However, f(x,y) = (x2,y?) is B-presubaffinelike.

Vxq,xp € [0,1], Vo € R
af (x1,51) + (1 — ) f(x2,y2) = (ax] + (1 — @)x3, ay7 + (1 — a)y3)

Case 1. If both of ax? + (1 — a)x3, ay? + (1 — a)y3 are positive, we take u = (0,0),
=1, x3 =|ax] + (1 —a)x3|1/2 y3 =|ayF + (1 - zx)y%|1/2, then

uAaf(xn)+(1—a)f(x) = tf(x3)

Case 2. If both of ax? + (1 — a)x3, ay? + (1 — a)y3 are negative, we take u = (0,0),
T=—1, x3 =|ax? + (1 —a)x3|1/2, y3 =|ay? + (1 - zx)y%’l/z, then

uaf(xr)+(1—a)f(x) = tf(x3)
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Case 3. If one of ax? + (1 — a)x3, ay? + (1 — a)y3 is negative, and the other is non-
negative, we take

x=[(ay? + (1 —a)y3) — (ax? + (1 —a)x3)]/2, and u = (x, —x) € B
Then
x+ax?+ (1—a)xj
= —x+ay; +(1-a)y3
= lax + (1= a)x3 +ay + (1 - a)y3] /2

And so x + ax? + (1 — a)x3, —x + ay? + (1 — a)y3 are both non-negative or both
negative; taking T = 1 or T = —1, respectively, one has

utaf(xr)+(1—a)f(x) = tf(x3)

where
2 2 2 2|12
x3 =|x +axy + (1 —zx)lel/z,% :‘—x+vcy1 +(1—a)y;

Therefore, f(x,y) = (x?,y?) is B-presubaffinelike.
Example 6. An example of a subaffinelike function which is not a preaffinelike function.

Consider the function f(x,y) = (x%,?),x,y € R.
Take the 2-dimensional linear set B = {(x,y) : y = x,x € R}.
Take x; =0,x, =1, = 2, then

flxr,y1) + (1 —a)f(x2,12)

= (oax% +(1- zx)x%, txy% +(1- zx)y%)
— (-2,3)

# Tf (x3,y3) = (133, TY3).

1

In the above inequality, we note that either Tx% >0, Ty% > 0or Tx% <0, Ty% <0,
VT # 0.

Therefore, f(x,y) = (x?,y?) is not preaffinelike.

However, f(x,y) = (xz,yz),x,y € R is B-subaffinelike.

In fact, Vx1,xp € R,Va € R, we may choose u = (x,x) € B with x large enough
such that

u+af(xr,y1) + (1 —a)f(x2,y2) = (x+axf + (1 — a)x3, x +ayi + (1 —a)y3) = 0

Then,
utaf(xy,yr) + (1 —a)f(x2,y2) = f(x3,¥3)

where

x3 = (x+ txx% +(1- a)x%)l/zand vz = (x+ txy% +(1- a)y%))l/z

Example 7. An example of a preaffinelike function which is not a subaffinelike function.
Consider the function f(x,y) = (x%, —x?),x,y € R.
Take the 2-dimensional linear set B = {(x,y) : y = x,x € R}.
Take x; = 0,x, =1, = 2, then
af (x1,y1) + (1= a)f (x2,52) = (o + (1= a)ad, —(axf + (1 - )x3)) = (~1,1)
So, Vu = (x,x) € B,

utaf(x,yr) +(1—a)f(xo,y2) == (x +1,x—1)
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However, for f(x3,y3) = (x3, —x3),Vx3 € R,
(x3,—x3) # (x —1,x+1),Vx,x3 € R 1)

Actually, if x = 0, it is obvious that (x%, fxg) # (—1,1); if x # 0, the right side of (1)
implies that x5 + (—x3) = 0, and the left side of (1) is (x — 1) + (x + 1) = 2x # 0. This
proves that the inequality (1) must be true. Consequently,

u +0¢f(x1/]/1) + (1 - a)f(leyZ) # f(x3/]/3)/v“ S Rlvxllle x3/y1/y2/]/3 €R

So f(x,y) = (x?,—x?),x,y € Ris not B-subaffinelike.
On the other hand, Vx1, x2 € R,Va € R, we may take T = 1 if ax% + (1 — zx)x% >0or
T=—-1if ocx% +(1- oc)x% < 0, then

af (x1,y1) + (1 —a)f(x2,2)
= (txx% +(1—a)x3, —(DCX% +(1—a)x3))

= 7(x3, —x3)
= 7f(x3,v3)
where x3 =|ax? + (1 — uc)x%|l/2.

Therefore, f(x,y) = (x?, —x2),x,y € R is preaffinelike.
So far, we have showed the following relationships (where subaffinelikeness and
presubaffinelikeness are related to “a given linear set B”):

true true
affineness & affinelikeness = preaffinelikeness
not true not true

nottrue 1 true nottrue ,/ nottrue nottruet| true

true
subaffinelikeness presubaffinelikeness
not true

The following Proposition 1 is very similar to the corresponding results for generalized
convexities (see Proposition 2).

Proposition 1. Suppose f: D C X — Y is a function, B C Y a given linear set, and t is any real
scalar.

(a)  f is affinelike on D if and only if f (D) is an affine set;

(b)  fis preaffinelike on D if and only if Ucpy oytf (D) is an affine set;

(c)  fis B-subaffinelike on D if and only if f (D) + B is an affine set;

(d)  f is B-presubaffinelike on D if and only if Ucg oyt f (D)+ B is an affine set.

Proof. (a) If f is affinelike on D, Vf(x1), f(x2) € f(D), Ya € R, 3x3 € D such that

af(x1) + (1 —a)f(x2) = f(x3)€ f(D)

Therefore, f (D) is an affine set.
On the other hand, assume that f (D) is an affine set. Vx1,x, € D,Va € R, we have

af(x1) + (1 —a)f(x2)€ f(D)

Therefore, dx3 € D such that

af(x1) + (1 —a)f(x2) = f(x3)
And hence f is affinelike on D.
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(b) Assume f is a preaffinelike function.
Yy1,y2 € UteR\{O}tf(D)/ Vo € R, dx1,xp € D, dt1,tp € R\{O} for dx; € D,
3t € R\{0} such that

ayr + (1 —a)y2
= atyf(x1) + (1 — )2 f(x2)
= (at + (1 - 0)h) [l f (1) + 2 f(x2))

Since f is preaffinelike, 3x3 € D, 3t € R\{0} such that

(1 —Dé)tz
aty + (1 — )ty

atq

wr @-ap

f(x2) =tf(x3)
Therefore

ayr + (1 —a)yz

=atyf(x1) + (1 —a)taf(x2)

(atr + (1= @)t2) [ty f (1) + gy f(32)]
= (at; + (1 —a)t2)tf(x3)

= Tf(x3) € User\ joytf (D)

where T = (at; + (1 — a)t)t. Consequently, Ujc gy 01 £f (D) is an affine set.
On the other hand, suppose that U, R\{0}? f(D) is an affine set. Then, Vx1,x; € D,
Va € R, since f(X1),f(JC2) € UtER\{O}tf(D)/

af (x1) + (1 —a)f(x2) € Uper oy tf (D)
Therefore, 9x3 € D, 31 # 0 such that

af(x1) + (1 —a)f(x2) = 7f(x3)

Then, f is an affinelike function.

(c) Assume that f is B-subaffinelike.

YY1, Y2 S f(D) + B, dxy,x € D, dbq,by € B, such that
y1 = f(x1) + by and yo» = f(x2) + bp. The subaffinelikeness of f implies that Va € R,
dx3 € D, and Jv € B such that

vtaf(x) + (1 —a)f(x2) = f(x3)

ie.,
af(x1) + (1 —a)f(x2) = f(x3) — 0
Therefore
ayr + (1 —a)y,
= a(f(x1) +b1) + (1 —a)(f(x2) + b2)
= f(X3) —v+ab + (1 — w)bz
:f(X3)+M Ef(D)+B
where ut = —v+aby + (1 —a)b, € B
Then, f (D) + B is an affine set.
On the other hand, assume that f (D) + B is an affine set.
Vx1,xp € D,Va € R, 3dby, by, b3 € B, dx3 € D, such that

a(f(x1) +b1) + (1 —a)(f(x2) +b2) =f(x3) + b3

ie.,

utaf(x)+(1-a)f(x) = f(x3)
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where ab; + (1 — a)bp — by € B. And hence f is B-subaffinelike.

(d) Suppose f is a B-presubaffinelike function.

Yy1,y2 € UteR\{O}tf(D) + B, similar to the proof of (b),Va € R, dx1,x2,x3 € D,
dbq, by, b3, u € B, 3ty, 1y, 13 € R\{O}, for which Y1 = tlf(xl) + bl,yz = tzf(Xz) + by, and

ayr + (1 —a)y

=at1f(x1) + (1 —a)taf (x2) + aby + (1 — )by

= (D&tl + (1 - lX)tz)[tg,f(Xg) + b3 — M] + aby + (1 - Dé)b2

= (aty + (1 —a)tp)ta3f (x3) + aby + (1 — a)by + (aty + (1 — a)tp) (b3 — u)
€tf(D) + B C Uier\(0ytf(D) + B

where t = (at; + (1 — a)t2)t3. This proves that Uy gy 0y tf (D)+ B is an affine set.

On the other hand, assume that U;cg\ 10y £f(D)+ B is an affine set.

Vx1,x2 € D,Vby,by € B, Va € R, since f(xl) + b],f(XQ) + b, € UteR\{O}tf(D) + B,
Jdx3 € D,3bs € B, 3t € R\{0} such that

a(f(x1) +b1) + (1 —a)(f(x2) +b2) = tf(x3) + b3

Therefore,

aby + (1 —a)by — by +af(x1) + (1 —a)f(x2) = tf(x3)

ie.,
u+af(x)+(1—a)f(x2) =tf(xs)

where u = aby + (1 — a)bp — by € B. And so f is B-presubaffinelike. [

The presubaffineness is the weakest one in the series of the generalized affinenesses
introduced here. The following example shows that our definition of presubaffinelikeness
is not trivial.

Example 8. An example of non-presubaffinelike function.

Consider the function f(x,y,z) = (x%,y%,22),x,y,z € R.
Take the linear set B = {(x, —x,0) : x € R}.
Take « =5, (x1,11,21) = (0,0,1), (x2,¥2,22) = (1,1,0), then

af(x1,y1,21) + (1= a) f(x2,y2,22) = (=4, —4,5)

Either x — 4 or —x — 4 must be negative, but x% >0, y% > 0hold for Vu = (x, —x, 0) € B;
therefore, for any scalar T # 0

wtaf(xy,y,z1) + (1—a)f(x2,y2,22) = (x — 4, —x — 4,5) # Tf(x3,y3,23) = T(x3,¥3,23)
(Actually, YT < 0, one has ng < 0 < 5 and VTt > 0, either 7(x —4) < 0 or
T(—x —4) < 0, then, either T(x —4) < 0 < T2} or T(—x —4) < 0 < TY3).
And so, f(x,y) = (xz,yz) is not B-presubaffinelike.

3. Generalized Convexities

In this section, we recall some existing definitions of generalized convexities, which are
very comparable with the definitions of generalized affinenesses introduced in this article.
Let Y be a topological vector space, D C X be a nonempty set, and Y. be a convex
cone in Y and intY, # @.
It is known that a function f: D — Y is said to be Y,-convex on D if, for all x,xp € D,
€ [0, 1], there holds

af(x1) + (1 —a)f(x2) < flax; + (1 —a)x2)
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The following Definition 5 was introduced in Fan [2].

Definition 5. A function f: D — Y is said to be Y .-convexlike on D if ¥,V € [0,1], 3x3 € D
such that

af(x1) + (1 —a)f(x2) < f(x3)

We may define Y, -preconvexlike functions as follows.

Definition 6. A function f: D — Y is said to be Y.-preconvexlike on D if Vx1,x; € D,
Va€10,1],3x3 € D, 3t > 0 such that

af(x1) + (1 —a)f(x2) < Tf(x3).

Definition 7 was introduced by Jeyakumar [3].

Definition 7. A function f: D — Y is said to be Y (-subconvexlike on D if Yu € intY,, Vxq,x; €
D, Va € [0,1], 3x3 € D such that

uaf(xn)+(1—a)f(x2) < flx3)

In fact, in Jeyakumar [3], the definition of subconvexlike was introduced as the follow-
ing form Definition 8.

Definition 8. A function f: D — Y is said to be Y.-subconvexlike on D if Ju € intY,, Ve > 0,
Vx1,x, € D, Vo € [0,1], 3x3 € D such that

eu+af(x))+ (1 —a)f(x2) < f(x3)

Li and Wang ([4]) proved that: A function f: D — Y is Y,-subconvexlike on D by
Definition 8 if and only if Vu € intY,, Vx1,x, € D, Va € [0,1], 3x3 € D such that

utaf(xn)+(1—a)f(x2) < flx3)

From the definitions above, one may introduce the following definition of presubcon-
vexlike functions.

Definition 9. A function f: D — Y is said to be Y ,-presubconvexlike on D if Yu € intYy,
YV x1,x € D,Va € [0,1], 3x3 € D, 3t > 0 such that

uaf(xr)+(1—a)f(x) < tf(x3)

And, similar to ([4]), one can prove that a function f: D — Y is Y, -presubconvexlike
on D if and only if Ju € intY,, Ve > 0,V x1,x, € D, VYa € [0,1], 3x3 € D, 3t > 0 such that

eutaf(x)+(1—a)f(x2) < 1f(xs)

Our Definitions 7 and 9 are more comparable with our definitions of generalized affineness.
Similar to the proof of the above Proposition 1, we present the following Proposition 2.
Some examples of generalized convexities were given in [5,6].

Proposition 2. Let f: X — Y be function, and t > 0 be any positive scalar, then
(a) f is Y-convexlike on D if and only if f(D) + Y is convex;
(b) f is Y -subconvexlike on D if and only if f(D) + intY is convex;
(c) f is Y4-preconvexlike on D if and only if Up~ot f(D) + Y is convex;
(d) f is Y -presubconvexlike on D if and only if Us~ot f(D) + intYy is convex.
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4. Constraint Qualifications

Consider the following vector optimization problem:

Y, — minf(x)
Qi(x)<0,i=1,2,---,m;
hi(x) =0,j=1,2,--,n;
xeD

(VP)

wheref: X =Y, gi: X — Z;, hj : X — W;, Y,, Z;, are closed convex cones in Y and Z;,
respectively, and D is a nonempty subset of X.
Throughout this paper, the following assumptions will be used (7;, ¢; are real scalars).

(A1)Vxq,xp € D,Ya € [0,1],3ug € intY4,Ju; € intZ; (i =1,2,---,n),Ix3 € D

I, >0(i=0,12,-- -,m),EIt]- #0(j=1,2,---,n) such that

ug+af(xy) + (1—a)f(x2) < 0f(x3)
ui +agi(x1) + (1 —a)gi(x2) < 7igi(x3)
och]'(xl) +(1- Oé)h]‘(.‘)Q) = tjhj(X3)

(A2)inth;(D) # 2(,j = 1,2, -, n)

(A3)W;(j = 1,2, - -, n)arefinitedimensionalspaces.

Remark 1. We note that the condition (A1) says that fand g;(i = 1,2, - - -, m) are presubconvexlike,
and h;j (j=1,2, ..., n) are preaffinelike.

Let F be the feasible set of (VP), i.e.,
F:= {x eD: gl(x) < Orl = 1/2/' : /m/h](x) = 0/] - 1/2/. : '/n}
The following is the well-known definition of a weakly efficient solution.

Definition 10. A point x € F is said to be a weakly efficient solution of (VP) with a weakly efficient
value j € f(X) if for every x € F there exists noy € f(x) satisfying y >=> y.

We first introduce the following constraint qualification which is similar to the con-
straint qualification in the differentiate form from nonlinear programming.

Definition 11. Let x € F. We say that (VP) satisfies the No Nonzero Abnormal Multiplier
Constraint Qualification (NNAMCQ) at X if there is no nonzero vector (17,¢) € IT" | Z* x H};le*

satisfying the system
min [T 7igi(x) + L 6hi(0)] = 0
Y1 1igi(X) =0

where U (X) is some neighborhood of X.

It is obvious that NNAMCQ holds at ¥ € F with U(X) being the whole space X if and
only if for all (1,¢) € (IT" ,ZF x H?ZIW].*\{O} satisfying min )" ; #7;¢;(X) = 0, there exists
x € D such that

m n
(Zizl Wigi(x) + =1 gjhj(x)) <=0

Hence, NNAMCQ is weaker than ([7], (CQ1)) (in [7], CQ1 was for set-valued op-

timization problems) in the constraint min )" ; #;¢;(¥) = 0, which means that only the
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binding constraints are considered. Under the NNAMCQ, the following KuhnTucker type
necessary optimality condition holds.

Theorem 1. Assume that the generalized convexity assumption (A1) is satisfied and either (A2)
or (A3) holds. If X € F is a weakly efficient solution of (VP) withy € f(X), then exists a vector
(€ ,6) € Y* X IIL, Z7 X I3 W] with § # 0 such that

&) = xelf%ig@ [C(f(x)) + Xy mi(8i(x)) + Eiq 6(hy(x))]
Yt mi(gi(¥)) =0

for a neighborhood U(X) of X.

2

Proof. Since ¥ is a weakly efficient solution of (VP) with i € f(X) there exists a nonzero
vector (§,17,6) € Y* x IT" | ZF x H;’lej* such that (2) holds. Since NNAMCQ holds at %,
¢ must be nonzero. Otherwise if & = 0 then (1, ¢) must be a nonzero solution of

0= min [V 7i(gi(x)) + Ll 6j(hi ()]

Yt ni(gi(x)) =0

But this is impossible, since the NNAMCQ holds at x. [J
Similar to ([7], (CQ2)) which is slightly stronger than ([7], (CQ1)), we define the
following constraint qualification which is stronger than the NNAMCQ.

Definition 12. (SNNAMCQ) Let x € F. We say that (VP) satisfies the No Nonzero Abnormal
Multiplier Constraint Qualification (NNAMCQ) at x provided that

(i) v € L, Z;\{O}satisfyingy " 1 1i(gi(X)) = 0,
Jx € D, s.t. hij(x) = 0,1;(gi(x)) << 0

(ii) Vg e H;;le*\{o}, dx € D,s.t. gj(hj(x)) << 0forallj=1,2,---,n.
We now quote the Slater condition introduced in ([7], (CQ3)).

Definition 13 (Slater Condition CQ). Let X € F. We say that (VP) satisfies the Slater condition
at X if the following conditions hold:

(i) 3xeD,st hi(x) =0,gi(x) <<0;

(ii) 0 € inth;(D) for all j.

Similar to ([7], Proposition 2) (again, in [7], discussions are made for set-valued optimiza-
tion problems), we have the following relationship between the constraint qualifications.

Proposition 3. The following statements are true:

(i) Slater CQ = SNNAMCQ = NNAMCQ with U(X) being the whole space X;

(ii) Assume that (A1) and (A2) (or (A1) and (A3)) hold and the NNAMCQ with U (X) being
the whole space X without the restriction of Y ", ;(g;(X)) = 0 at X. Then, the Slater condition
(CQ) holds.

Proof. The proof of (i) is similar to ([7], Proposition 2). Now we prove (ii). By the
assumption (Al), the following sets C; and C; are convex:

C = {(z,w) eI, Z x H]’.’lej* :3x € D, 7, t; > 0,8t 7 € Tgi(x) +intZ;y, w; € tjhj(x)}
G = Ut>0th(D)
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Suppose to the contrary that the Slater condition does not hold. Then, 0 ¢ C; or 0 & Co.
If the former 0 ¢ C; holds, then by the separation theorem [1], there exists a nonzero vector
(m,¢) € IJL, Z7 x IT_; W} such that

Yo iz ) + 7:1 6j(tjwy) = 0

forall x € D, 7, t; > 0,z = &;(x),2) € intZ;, w; = hj(x). Since intZ; . are convex cones,
consequently we have

Z:il ni(tizi + siz?) + Z]r;l g]‘(t]'w]‘) >0 3)
forall x € D, 7, tj,5; > 0,7 € gl-(x),z? €intZ;,, w;j € hj(x)} and take s; — 0 in (3), we have
Y 1izi) + Y 6j(w)) > 0, x € D,z € gi(x), wy = hy(x)

which contradicts the NNAMCQ. Similarly if the latter 0 ¢ inth;(D) holds then there exists
cE H}Lle*\{O} such that ¢;(;(x)) > 0,Vx € D, which contradicts NNAMCQ. [J

Definition 14 (Calmness Condition). Let x € F. Let Z := Y"1 Z; and W := Z}Ll Wi
We say that (VP) satisfies the calmness condition at X provided that there exist U(X,0z,0), a
neighborhood of (X,0z,0w ), and a map Y(p,q) : Z x W — Y with (02, Ow) = Oy such that
for each

(X, p, ‘1) € U(f, OZ/ OW)\{ (f, OZ/ OW)}

Satisfying
(8i(x) +pi) <0,9;=hj(x)),x €D
thereisno y € f(x)), such that

yey+y(pq) +intYy

Theorem 2. Assume that (A1) is satisfied and either (A2) or (A3) holds. If x € F is a weakly
efficient solution of (VP) withyj = f(X), and the calmness condition holds at X, then there exists
U(x), a neighborhood of X, and a vector (&, 1,6) € Y§ x Z% x W* with { # 0 such that

¢(y) = min [(f(x)) + T 1i(gi(x)) + Ly 6j(hj(x))]

xeDNU(X)

4)
Yt ni(gi(x)) =0

Proof. It is easy to see that under the calmness condition, X being a weakly efficient solution
of (VP) implies that (¥,07,0y) is a weakly efficient solution of the perturbed problem:
VP(p,g)
Y4 —minf(x) + llz)(m)
s.t.(gi(x)+p;i) <0,
VR(pa) Egiz(j(a)c),xpg D,
(x,p,q) € U(X,02,0w)
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By assumption, the above optimization problem satisfies the generalized convexity
assumption (A1). Now we prove that the NNAMCQ holds naturally at (X, 0z, Oy ). Suppose
that (17,¢) € Z% x W* satisfies the system:

i moni(g; i noci(—g:+ h;
XED(X,p,lglélB(f,Oz,Ow)[El_l 1i(gi(x) + pi) + Z]_l Q]( q; + ](x))]

Yt mi(gi(x)) =0

If ¢ # 0, then there exists q; € W; small enough such that } 7} ; ¢j(—¢q;) < 0. Since
X € F,0 € hj(X), and there exists z} € g;(x) N (—Z; ), which implies that 77(z}) < 0, hence

©)

L miE) + 1 6i(—a) <0
which contradicts (5). Hence, ¢ = 0 and (5) becomes
1 m . . .
cen i p 0 o, 0 it 1181 (X) £ Pi)
Yty 1i(gi(x)) =0
If 17 # 0, then there exists p small enough such that )1 ; 77;(p;) < 0. Let z¥ = g;(x), then

iy mi(z) <0
and hence
m x m x m
Zizl 771'(21' + Pi) :2,':1 771'(21' )+Zi:l Wi(pi) <0

which is impossible. Consequently, 7 = 0 as well. Hence, there exists (¢,7,¢) € Y* x Z% x
Wi with ¢ # 0 such that

wen, (x,p,é?éﬂ 0, OW)[C (f(x) +9(p,q)) + Ty 1i(&i(x) + pi) + Ejq 6j(—q; + hj(x))]

Yt 1i(8i(x)) =0
It is obvious that (6) implies (4) and hence the proof of the theorem is complete. [

(6)

Definition 15. Let Z;(i = 1,2, - - ~,m),W]~(j =1,2,---,n) be normed spaces. We say that (VP)
satisfies the error bound constraint qualification at a feasible point X if there exist positive constants
A, 0, and ¢ such that

d(x,2(0z,0w)) < Al[(p,9)[|,V(p,q) € eBx, x € X(p,q) N Us(x)

where Bx is the unit ball of X, and
2(p,q) = {x € D:(gi(x) + pi) N (~=Zi1)) # 2,4; € hj(x)}

Remark 2. Note that the error bound constraint qualification is satisfied at a feasible point X if
and only if the function .(p, q) is pseudo upper-Lipschitz continuous around (07,0, X) in the
terminology of ([81) (which is referred to as being calm at X in [9]). Hence, £.(p, q) being either
pseudo-Lipschitz continuous around (07,0, X). in the terminology of [10] or upper-Lipschitz
continuous at x in the terminology of [11] implies that the error bound constraint qualification
holds at X. Recall that a function F(x) : R" — R™ is called a polyhedral multifunction if its graph
is a union of finitely many polyhedral convex sets. This class of function is closed under (finite)
addition, scalar multiplication, and (finite) composition. By ([12], Proposition 1), a polyhedral
multifunction is upper-Lipschitz. Hence, the following result provides a sufficient condition for the
error bound constraint qualification.
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Proposition 4. Let X = R" and W = R™. Suppose that D is polyhedral and h is a polyhedral
multifunction. Then, the error bound constraint qualification always holds at any feasible point
XeF:={xeD:0=nh(x)}.

Proof. Since D is polyhedral and / is a polyhedral multifunction, its inverse map
S5(q9) = {x € R":q € h(x)} is a polyhedral multifunction. That is, the graph of S is a
union of polyhedral convex sets. Since

ephE(p,q) -={(g,x) e R" x D :q € h(x)} = gphSN (R™ x D)

which is also a union of polyhedral convex sets, ¥ is also a polyhedral multifunction and
hence upper-Lipschitz at any point of ¥ € R" by ([12], Proposition 1). Therefore, the error
bound constraint qualification holds at x. [J

Definition 16. Let X be a normed space, f(x) : X — Y be a function, and X € X. fis said to be
Lipschitz near X if there exist U(X), a neighborhood of X, and a constant L¢ > 0 such that for all
X1,X2 € U(f),

f(x1) € F(x2) + Ly |21 = 22 By
where By is the unit ball of Y.

Definition 17. Let X be a normed space, f(x): X — Y be a function and X € X. fis said to be
strongly Lipschitz on S C X if there exist a constant Ly > 0 such that for all x1,x, € Sy1 = f(x1),
yo = f(xp)ande € By NYy,

Y1 < y2+Lfo1 —XZHe

The following result generalizes the exact penalization [13].

Proposition 5. Let X be a normed space, f(x) : X — Y be a function which is strongly Lipschitz
of rank Lron aset S C X. Let C C X and suppose that X is a weakly efficient solution of

Yy —minesf(x)

withy = f(X). Then, for all K > Ly, X is a weakly efficient solution of the exact penalized
optimization problem
Yy — minxesf(x) + ch(X)BY NY4

where dc(x) := min{|x —c|,c € C}.

Proof. Let us prove the assertion by supposing the contrary. Then, there is a point S C X,
y = f(x),and e € By N Y, satisfying y + Kdc(x)e < 7. Lete > 0 and ¢ € C be a point such
that ||x — ¢||< dc(x) + €. Then, for any c* € f(c),

¢ <y+Klx—c|le <y+K(dc(x)+e€)e <7+ Kee
Since £ > 0 is arbitrary, it contradicts the fact that X is a weakly efficient solution of
Y, — mingesf(x)
O

Proposition 6. Suppose X x Z x W is a normed space and f is strongly Lipschitz on D. If X is a
weakly efficient solution of (VP) and the error bound constraint qualification is satisfied at X, then
(V'P) satisfies the calmness condition at X.
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Proof. By the exact penalization principle in Proposition 5 X is a weakly efficient solution
of the penalized problem

Y+ — minxeDf(x) + Kdz(o/o) (x) By N Y+

The results then follow from the definitions of the calmness and the error bound
constraint qualification. [J

Theorem 3. Assume that the generalized convexity assumption (A1) is satisfied with f replaced
by f + Kdc(x)By NYy and either (A2) or (A3) holds. Suppose X x Z x W is a normed space
and f is strongly Lipschitz on D. If X is a weakly efficient solution of (VP) and the error bound
constraint qualification is satisfied at X, then there exist U (X), a neighborhood of X, and a vector
(€,m,6) € Y5 x Z% x W* with & # 0 such that (4) holds.

Using Proposition 4, Theorem 3 has the following easy corollary.

Corollary 1. Suppose Y is a normed space, X = R", W = R™ and D is polyhedral, and f is strongly
Lipschitz on D. Assume that the generalized convexity assumption (A1) is satisfied with f replaced
by f + Kdc(x)By NYy and either (A2) or (A3) holds. If X is a weakly efficient solution of (VP)
without the inequality constraint g(x) > 0, and h is a polyhedral multifunction, then there exist
U (%), a neighborhood of X a vector (§,¢) € Y x W* with & # 0 such that

¢(y) = min [g(f(x)) +gj(hj(x))]

xeDNU(X)

Our last result Theorem 4 is a strong duality theorem, which generalizes a result in
Fang, Li, and Ng [14].

For two topological vector spaces Z and Y, let B(Z; Y) be the set of continuous linear
transformations from Z to Y and

BY(Z,Y):={S€B(Z,Y):S(Z+) C Yy}
The Lagrangian map for (VP) is the function

Lt X x T BY(Z;, Y) x I BH (W, Y) — Y

defined by
(x S T + Zz l + j=1 ]
Given (S, T) € H;’;lB*(Z,', Y) x H;’:1B+(Wj, Y), consider the vector minimization
problem induced by (VP):
(VPST) Y, —minL(x,S,T)

txeD

and denote by @ (S, T) the set of weakly efficient value of the problem (VPST). The Lagrange
dual problem associated with the primal problem (VP) is

Yy — max®(S, T)

(VD) s.t.(S,T) e I

(VD) i— BT(Z,Y) + H;1:13+ (W;,Y)
The following strong duality result holds which extends the strong duality theorem
in ([7], Theorem 7) (which was for set-valued optimization problems), to allow weaker

convexity assumptions. We omit the proof since it is similar to [7].
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Theorem 4. Assume that (A1) is satisfied, either (A2) or (A3) is satisfied, and a constraint
qualification such as NNAMCQ is satisfied. If X is a weakly efficient solution of (VP), then there
exists o

(S, T) e II"yB*(Z;,Y) x H}Z:lB*(Wj, Y)

such that
(S, T)Nf(x) #2

5. Conclusions

We introduce the following definitions of generalized affine functions: affinelikeness,
preaffinelikeness, subaffinelikeness, and presubaffinelikeness. Examples 1 to 7 show that
definitions of affine, affinelike, preaffinelike, subaffinelike, and presubaffinelike functions
are all different. Example 8 is an example of non-presubaffinelike function; presubaffineness
is the weakest one in the series. Proposition 1 demonstrates that our generalized affine
functions have some similar properties with generalized convex functions.

And then, we work with vector optimization problems in real linear topological spaces,
and obtain necessary conditions, sufficient conditions, or necessary and sufficient condi-
tions for weakly efficient solutions, which generalize the corresponding classical results
in [13,15] and some recent results in [7,9,16-18]. We note that the constraint qualifications
in [13,17,18] are in the differentiation form. Compared with the results in [19] and ([20],
p- 297) in discussions of convex constraints, we only required weakened convexities for
constraint qualifications in this article. We note that [17] works with semi-definite pro-
gramming. In [17], two groups of functions g;(x) > 0, i€l and hj(x) = 0, j€] can be just
considered as two topological spaces (I and | do not have to be finite sets). We also note
that f is supposed to be “proper convex” in [18]; and in [18], functions are required to be
“quasiconvex”.

Generalized affine functions and generalized convex functions can be used for other
discussions of optimization problems, e.g., dualities, scalarizations, as well as saddle
points, etc.
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Abstract: Applications of gradient method for nonlinear optimization in development of Gradient
Neural Network (GNN) and Zhang Neural Network (ZNN) are investigated. Particularly, the
solution of the matrix equation AXB = D which changes over time is studied using the novel GNN
model, termed as GGNN(A, B, D). The GGNN model is developed applying GNN dynamics on the
gradient of the error matrix used in the development of the GNN model. The convergence analysis
shows that the neural state matrix of the GGNN(A, B, D) design converges asymptotically to the
solution of the matrix equation AXB = D, for any initial state matrix. It is also shown that the
convergence result is the least square solution which is defined depending on the selected initial
matrix. A hybridization of GGNN with analogous modification GZNN of the ZNN dynamics is
considered. The Simulink implementation of presented GGNN models is carried out on the set of
real matrices.

Keywords: gradient neural network; generalized inverses; Moore-Penrose inverse; linear matrix
equations

MSC: 68T05; 15A09; 65F20

1. Introduction and Background

Recurrent neural networks (RNNs) are an important class of algorithms for computing
matrix (generalized) inverses. These algorithms are used to find the solutions of matrix
equations or to minimize certain nonlinear matrix functions. RNNs are divided into
two subgroups: Gradient Neural Networks (GNNs) and Zhang Neural Networks (ZNNs).
The GNN design is explicit and mostly applicable to time-invariant problems, which means
that the coefficients of the equations that are addressed are constant matrices. ZNN models
can be implicit and are able to solve time-varying problems, where the coefficients of the
equations depend on the variable t € R, t > 0, representing time [1-3].

The Moore-Penrose inverse of A € RP*" is the unique matrix AT = X € R"*? which
is the solution to the well-known Penrose equations [4,5]:

A=AXA, X=XAX, AX=(AX)T, XA= (XA,

Axioms 2024, 13, 49. https:/ /doi.org/10.3390/axioms13010049 40 https://www.mdpi.com/journal /axioms
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where ()T denotes the transpose matrix. The rank of a matrix A, i.e., the maximum number
of linearly independent columns in A, is denoted by rank(A).

Applications of linear algebra tools and generalized inverses can be found in important
areas such as the modeling of electrical circuits [6], the estimation of DNA sequences [7] and
the balancing of chemical equations [8,9], as well as in other important research domains
related to robotics [10] and statistics [11]. A number of iterative methods for solving matrix
equations based on gradient values have been proposed [12-15].

In the following sections, we will focus on GNN and ZNN dynamical systems based
on the gradient of the objective function and their implementation. The main goal of this
research is the analysis of convergence and the study of analytic solutions.

Models with GNN neural designs for computing the inverse or the Moore-Penrose
inverse and linear matrix equations were proposed in [16-19]. Further, various dynami-
cal systems aimed at approximating the pseudo-inverse of rank-deficient matrices were
developed in [16]. Wei, in [20], proposed three RNN models for the approximation of the
weighted Moore-Penrose inverse. Online matrix inversion in a complex matrix case was
considered in [21]. A novel GNN design based on nonlinear activation functions (AFs)
was proposed and analyzed in [22,23] for solving the constant Lyapunov matrix equation
online. A fast convergent GNN aimed at solving a system of linear equations was proposed
and numerically analyzed in [24]. Xiao, in [25], investigated the finite-time convergence
of an appropriately accelerated ZNN for the online solution of the time-varying complex
matrix equation A(t)X(t) = B(t). A comparison with the corresponding GNN design
was considered. Two improved nonlinear GNN dynamical systems for approximating
the Moore-Penrose inverse of full-row or full-column rank matrices were proposed and
considered in [26]. GNN-type models for solving matrix equations and computing re-
lated generalized inverses were developed in [1,3,13,16,18,20,27-29]. The acceleration of
GNN dynamics to a finite-time convergence has been investigated recently. A finite-time
convergent GNN for approximating online solutions of the general linear matrix equa-
tion AX(t)B + CX(t)D = B was proposed in [30]. This goal was achieved using two
activation functions (AFs) in the construction of the GNN. The influence of AFs on the
convergence performance of a GNN design for solving the matrix equation AXB + X = C
was investigated in [31]. A fixed-time convergent GNN for solving the Sylvester equation
was investigated in [32]. Moreover, noise-tolerant GNN models equipped with a suitable
activation function (AF) able to solve convex optimization problems were developed in [33].

Our goal is to solve the equation AXB = D and apply its particular cases in computing
generalized inverses in real time by improving the GNN model developed in [34]. The
developed dynamical system is denoted by GNN(A, B, D). Or motivation is to improve
the GNN model denoted by GNN(A, B, D) and develop a novel gradient-based GGNN
model, termed GGNN(A, B, D), utilizing a novel type of dynamical system. The proposed
GGNN model is based on the standard GNN dynamics along the gradient of the stan-
dard error matrix. The convergence analysis reveals the global asymptotic convergence
of GGNN(A, B, D) without restrictions, while the output belongs to the set of general
solutions to the matrix equation AXB = D.

In addition, we propose gradient-based modifications of the hybrid models devel-
oped in [35] as proper combinations of GNN and ZNN models for solving the matrix
equations BX = D and XC = D with constant coefficients. Analogous hybridizations for
approximating the matrix inverse were developed in [36], while two modifications of the
ZNN design for computing the Moore-Penrose inverse were proposed in [37]. Hybrid
continuous-gradient-Zhang neural dynamics for solving linear time-variant equations
were investigated in [38,39]. The developed hybrid GNN-ZNN models in this paper are
aimed at solving the matrix equations AX = B and XC = D, denoted by HGZNN(A4, I, B)
and HGZNN(I, C, D), respectively.

The implementation was performed in MATLAB Simulink, and numerical experiments
were performed with simulations of the GNN, GGNN and HGZNN models.
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The GNN used to solve the general linear matrix equation AXB = D is defined over
the error matrix E(t) = D — AV(t)B, where t € [0, +0) is time, and V(t) is an unknown
state-variable matrix that approximates the unknown matrix X in AXB = D. The goal

function is e(t) = ||D — AV(t)B||%/2, where || - |F = /Za%j denotes the Frobenius norm
ij
of a matrix. The gradient of £(t) is equal to

de(t)  _10||[D—AV(HB|} ¢ T
A ve- ] iy — —AT(D - AV(1)B)BT.

The GNN evolutionary design is defined by the dynamic system

_dvi) 30 oy O

V() dt oV’

where 7y > 0 is a real parameter used to speed up the convergence, and V() denotes the
time derivative of V(t). Thus, the linear GNN aimed at solving AXB = D is given by the
following dynamics:

V(t) = yAT(D — AV(t)B)BT. )

The dynamical flow (2) is denoted as GNN(A, B, D). The nonlinear GNN(A, B, D) for
solving AXB = D is defined by

V(t) = yATF(D — AV (t)B)B'. 3)

The function array F(C) = F([c;j]) is based on the appropriate odd and monotonically
increasing activation function, which is applicable to the elements of a real matrix C =
(cl-j) e R™" je, F(C) = [f(cl-]-)],i =1,....mj=1,...,n,

Proposition 1 restates restrictions on the solvability of AXB = D and its general
solution.

Proposition 1 ([4,5]). If A € R™*",B € RP*1 and D € R™*1, then the fulfillment of the
condition
AA'DB'B =D @)

is necessary and sufficient for the solvability of the linear matrix equation AXB = D. In this case,
the set of all solutions is given by

X = {A*DB*+Y—A*AYBB*|YeR"XP}. )

The following results from [34] describe the conditions of convergence and the limit of
the unknown matrix V(t) from (3) as t — +oo.

Proposition 2 ([34]). Suppose the matrices A € R™*",B € RP*T and D € R"™*1 satisfy (4).
Then, the unknown matrix V (t) from (3) converges as t — o0 with the equilibrium state

V(t) -V =A"DB" + V(0) — ATAV(0)BB' (6)
for any initial state-variable matrix V(0) € R"*P.

The research in [40] investigated various ZNN models based on optimization methods.
The goal of the current research is to develop a GNN model based on the gradient Eg (t) of
|E(t)||? instead of the original goal function E(t).

The obtained results are summarized as follows:

*  Anovel error function Eg(t) is proposed for the development of the GNN dynamical
evolution.
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e The GNN design based on the error function E;(t) is developed and analyzed theo-
retically and numerically.

e A hybridization of GNN and ZNN dynamical systems based on the error matrix E¢ is
proposed and investigated.

The overall organization of this paper is as follows. The motivation and derivation
of the GGNN and GZNN models are presented in Section 2. Section 3 is dedicated to the
convergence analysis of GGNN dynamics. A numerical comparison of GNN and GGNN
dynamics is given in Section 4. Neural dynamics based on the hybridization of GGNN
and GZNN models for solving matrix equations are considered in Section 6. Numerical
examples of hybrid models are analyzed in Section 6. Finally, the last section presents some
concluding remarks and a vision of further research.

2. Motivation and Derivation of GGNN and GZNN Models

The standard GNN design (2) solves the GLME AXB = D under constraint (4). Our
goal is to resolve this restriction and propose dynamic evolutions based on error functions
that tend to zero without restrictions.

Our goal is to define the GNN design for solving the GLME AXB = D based on the
error function

Ec(t) := Ve(t) = AT(D — AV (t)B)BT = ATE(t)B™. @)

According to known results from nonlinear unconstrained optimization [41], the equilib-
rium points of (7) satisfy
Eg(t) := Ve(t) =0.

We continue the investigation from [40]. More precisely, we develop the GNN model
based on the error function E () instead of the error function E(t). In this way, new neural
dynamics are aimed at forcing the gradient Eg to zero instead of the standard goal function
E(t). It is reasonable to call such an RNN model a gradient-based GNN (abbreviated
GGNN).

Proposition 3 gives the conditions for the solvability of the matrix equations E(t) = 0
and Eg(f) = 0 and the general solutions to these systems.

Proposition 3 ([40]). Consider the arbitrary matrices A € R™*", B € RF<M gnd D € RM*!,
The following statements are true:

(@) The equation E(t) = 0 is solvable if and only if (4) is satisfied, and the general solution to
E(t) = 0 is given by (5).
(b) The equation E(t) = 0 is always solvable, and its general solution coincides with (5).

Proof. (a) This part of the proof follows from known results on the solvability and general
solution of the matrix equation AXB = D of generalized inverses [4] (p. 52, Theorem 1)

and its application to the matrix equation E(t) = 0 <= AV(t)B = D.
(b) According to [4] (p. 52, Theorem 1), the matrix equation

Ec(t) =0 <= ATAVBBT = ATDB!
is consistent if and only if
t +
ATA (ATA) ATDBT (BBT) BBT = ATDBT

is satisfied. Indeed, applying the properties (ATA)TAT = Af, BT(BBT)" = B and
ATAAT = AT B*BBT = BT of the Moore-Penrose inverse [5] results in

ATA (ATA)+ATDBT(BBT)+BBT — ATAA'DB'BBT = ATDBT.
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In addition, based on [4] (p. 52, Theorem 1), the general solution V(t) to Eg(t) = 01is

V= (ATA) " ATDET (BBT>+ LY - (ATA>+ATAYBBT (BBT)+

= A'DB" + Y — ATAYBB',

®)

which coincides with (5). [

In this way, the matrix equation E(t) = 0 is solvable under condition (4), while the
equation Eg(f) = 0 is always consistent. In addition, the general solutions to equations
E(t) = 0and Eg(t) = 0 are identical [40].

The next step is to define the GGNN dynamics using the error matrix Eg(t). Let us
define the objective function e = ||Eg||%/2, whose gradient is equal to

aSGé“i(t)) _ aHAT(D _gqua)B)BTHl% _ —ATA<AT(D —AV(t)B)BT)BBT.

The dynamical system for the GGNN formula is obtained by applying the GNN evolution
along the gradient of e (V (t)) based on Eg (), as follows:

aéc
v )
= yATA (AT(D - AV(t)B)BT) BBT.

V(t) =

The nonlinear GGNN dynamics are defined as
V(t) = yATAF(AT(D — AV (t)B)BT)BBT, (10)

inwhich 7 (C) = F([c;j]) denotes the elementwise application of an odd and monotonically
increasing function f(-), as mentioned in the previous section for the GNN model (3).
Model (10) is termed GGNN(A, B, D). Three activation functions f(-) are used in numerical

experiments:
1. Linear function
fiin(x) = x; (11)
2. Power-sigmoid activation function
( ) = xf i x| >1 12)
Trs®pQ) = et e ey o (
where ¢ > 2, and p > 3 is an odd integer;
3. Smooth power-sigmoid function
1 1+e @ 14
= _xP .
fops(x,0,0) = 520 + = T (13)

where ¢ > 2, and p > 3 is an odd integer.

Figure 1 represents the Simulink implementation of GGNN(A, B, D) dynamics (10).
On the other hand, the GZNN model, defined using the ZNN dynamics on the
Zhangian matrix Eg(t), is defined in [40] by the general evolutionary design

_ dEG(t)

Eg(t) af

= —7F(Ec(t))- (14)
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Figure 1. Simulink implementation of GGNN(A, B, D) evolution (10).

3. Convergence Analysis of GGNN Dynamics

In this section, we will analyze the convergence properties of the GGNN model given
by dynamics (10).

Theorem 1. Consider matrices A € R™*",B € RP*7and D € R"™*4. If an odd and monoton-
ically increasing array activation function F(-) based on an elementwise function f(-) is used,
then the activation state matrix V(t) € R"*P of the GGNN(A, B, D) model (10) asymptotically
converges to the solution of the matrix equation AXB = D, i.e., ATAV(¢t)BBT — ATDBT as
t — oo, for an arbitrary initial state matrix V (0).

Proof. From statement (b) of Proposition 3, the solvability of ATAVBBT = ATDBT is
ensured. The substitution V(t) = V(t) + ATDB' transforms the dynamics (10) into

dv(t) dv(t) 1 T T\ ppT
e T A]—"(A (D — AV(t)B)B )BB
— yATAF(AT(D — AV(H)B ~ AA*DB'B) BT) BB"
“ (15)
= 7ATA]-'<AT(D — AV(t)B— D)BT) BBT

= —q/ATA]-“<ATAV(t)BBT)BBT.

The Lyapunov function candidate that measures the convergence performance is
defined by
- 1, 5 1. /- _
L(V(), ) = 5170} = S T(V(0) 0 (1)), (16)
The conclusion is L(V/(t),t) > 0. According to (16), assuming (15) and using d Tr(X'X) =

2Tr(XTdX), in conjunction with the basic properties of the matrix trace function, one can
express the time derivative of L(V(t),t) as follows:
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dt 2 dt
1 _ . rdV (1)
=32 Tf( () dt>

:Tr[V() ( 7ATA]-'(ATAV( )BBT)BBT)} -
= —'yTr{ TATA]-“(ATAV( )BBT)BBT]

— Tt [BBTV (1) ATAF (ATAV(1)BBT )|

— o Tr {(ATAV(t)BBT>T]-'(ATAV(t)BBT)} .

Since the scalar-valued function f(-) is odd and monotonically increasing, it follows
that, for W(t) = ATAV(¢)BBT,

dL(V(#),
VL o m[wFowy)]
CBE <0 if W(t)=ATAV(H)BBT £0  (18)
- _7;; wlff(w”){ —0 if W(t):= ATAV(t)BBT =0,
which implies
dL(V(t),t) [ <0 if W(t) #0 "
at —0 if W(H)=o0. (19)
Observing the identity

W(t) = ATAV(+)BBT
- ATA( (t) — A*DB*) BBT
= ATAV(t)BBT — ATDB!
= AT(AV(t)B — D)BT,

and using the Lyapunov stability theory, W(t) := AT(AV(t)B — D)BT globally converges
to the zero matrix from an arbitrary initial value V(0). O

Theorem 2. The activation state-variable matrix V (t) of the model GGNN(A, B, D), defined by
(10), is convergent as t — +o0, and its equilibrium state is

V(t) — V(t) = A'DB" + v(0) — ATAV(0)BB* (20)
for every initial state matrix V(0) € R™*P.
Proof. From (10), the matrix V;(t) = (ATA)TATAV (t)BBT(BBT)" satisfies

dVi(t)
dt

= (ATA)T ATAd‘:i( )BBT(BBT)
= y(ATA)TATA [ATA (AT(D - AV(t)B)BT) BBT} BBT(BBT)*.
According to the basic properties of the Moore-Penrose inverse [5], it follows that

(BBT)'BBY(BBT)" = (BBT)T = BBT,  (ATA)TATA(ATA)T = (ATA)T = ATA
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which further implies

d‘gt(t) —7ATA (AT(D - AV(t)B)BT) BBT
_ dv()
Codt
Consequently, V,(t) = V() — V4 (t) satisfies d\gt(t) = d‘ggt) — d‘gt(t) = 0, which implies

Va(t) = V2(0)
=V(0) - V1(0)
=V(0) — (ATA)*ATAV(0)BBT (BBT)*
=V(0)— ATAV(0)BB', t > 0.

(21)

Furthermore, from Theorem 1, ATAV (¢+)BBT — ATDBT, and V;(t) converges to

Vi(t) = (ATA)TATAV (1)BBT(BBT)t — (ATA)*ATDBT(BBT)'
= A'DB?

as t — +oo. Therefore, V(t) = Vi (t) + V,(t) converges to the equilibrium state
V(t) = A'DBT + V5 (t) = A'DB" + v(0) — ATAV(0)BB'.
The proof is finished. [

4. Numerical Experiments on GNN and GGNN Dynamics

The numerical examples in this section are based on the Simulink implementation of
the GGNN formula in Figure 1.

The parameter 1, initial state V(0) and parameters p and ¢ of the nonlinear activation
functions (12) and (13) are entered directly into the model, while matrices A, B and D are
defined from the workspace. It is assumed that p = ¢ = 3 in all examples. The odel5s
differential equation solver is used in the configuration parameters. In all examples, V*
denotes the theoretical solution.

The blocks powersig, smoothpowersig and transpmult include the codes described in [34,42].

Example 1. Let us consider the idempotent matrix A from [43,44],

S O O
OO ==
SO N

of rank(A) = 2, and the theoretical Moore—Penrose inverse

2 -1 00
11-1 1 0 0

* _ oAt ©
V_A_31 0 00
0 1 00

The matrix equation corresponding to the Moore~Penrose inverse is AYAX = AT [16], which
implies the error function E(t) = AT(I — AX). The corresponding GNN model is defined by
GNN(ATA, I, AT), where 1, denotes the identity and zero 4 x 4 matrix. Constraint (4) reduces to
the condition AATAT = AT, which is not satisfied. The input parameters of GNN(ATA, Iy, A7) are
v =108, V(0) = Oy, where O, denotes the zero 4 x 4 matrix. The corresponding GGNN((ATA)?,
I, ATAAT) design is based on the error matrix Eg(t) = ATAAT(I — AV). The Simulink imple-
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mentation of GGNN(A, B, D) from Figure 1 and the Simulink implementation of GNN(A, B, D)
from [34] export, in this case, the graphical results presented in Figures 2 and 3, which display the
behaviors of the norms ||[Eg(t)||r = ||ATAAT(I — AV (t))||p and ||V (t) — V*||F, respectively.
It is observable that the norms generated by the application of the GGNN formula vanish faster
to zero than the corresponding norms in the GNN model. The graphs in the presented figures
strengthen the fast convergence of the GGNN dynamical system and its important role, which can

include the application of this specific model (10) to problems that require the computation of the
Moore—Penrose inverse.
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Figure 2. (a) Linear activation. (b) Power-sigmoid activation. (c¢) Smooth power—sigmoid activation.
|Ec(t)||r in GGNN((ATA)?, 1, ATAAT) compared to GNN(ATA, I;, AT) in Example 1.

IV (t)-V IIF
o o
>

o
S

e
N

o

—GNN
—GGNN

V-V

F

—GNN
—GGNN

V-Vl

—GNN
—GGNN

)

Time (sec)

@)

Time (sec)

(b)

Time (sec)

()
Figure 3. (a) Linear activation. (b) Power-sigmoid activation. (c¢) Smooth power—sigmoid activation.
|V(t) — V*||r in GGNN((ATA)?, I, ATAAT) compared to GNN(ATA, Iy, AT) in Example 1.

Example 2. Let us consider the matrices

-8 8 4 10 0 —84 2524 304
1 4 -7 01 0 —2252 —623 2897
A=|1 -4 3 |, B= 00 11’ D= | 48 88 -—701].
0 12 -10 00 0 —1894 2278 2652
6 12 -12 —2778 1524 3750
The exact minimum-norm least-squares solution is
_T409 9564 8953
65 65 65
_ atppt — 968 1770 1402
VP=A'DB' = | -3 45 = 0
6508 __ 4187 8826
65 65 65

The ranks of the input matrices are equal to r = rank(A) = 2, rank(D) = 2 and rank(B) = 3.
Constraint (4) is satisfied in this case. The linear GGNN(A, B, D) formula (10) is applied to solve
the matrix equation AXB = D. The gain parameter of the model is v = 10°, V(0) = 0, and the
stopping time is t = 0.00001, which gives

—113.9846 —147.1385 137.7385 O
X =|—-744615 136.1538 107.8462 0| ~ ATDB.
100.0462  —64.4154 —135.7846 0
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The elementwise trajectories of the state variables v;; of the state matrix V (t) are shown in
Figure 4a—c with solid red lines for linear, power-sigmoid and smooth power-sigmoid activation
functions, respectively. The fast convergence of elementwise trajectories to the corresponding black
dashed trajectories of the theoretical solution V* is notable. In addition, faster convergence caused
by the nonlinear AFs fps and fsps is noticeable in Figure 4b,c. The trajectories in the figures indicate
the usual convergence behavior, so the system is globally asymptotically stable. The norms of the
error matrix Eg of both models GNN and GGNN under linear and nonlinear AFs are shown in
Figure 5a—c. The power-sigmoid and smooth power-sigmoid activation functions show superiority
in their convergence speed compared with linear activation. On each graph in Figure 5a—c, the
Frobenius norm ||Eg(t)||g of the error matrix Eg(t) in the GGNN formula vanishes faster to zero
than that in the GNN model. Moreover, in each graph in Figure 6a—c, the Frobenius norm ||E(t)||p
in the GGNN formula vanishes faster to zero than that in the GNN model, which strengthens the
fact that the proposed dynamical system (10) initiates accelerated convergence compared to (3).
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Figure 4. (a) Linear activation. (b) Power-sigmoid activation. (¢) Smooth power—sigmoid activation.

Elementwise convergence trajectories v;; € V(t) of the GGNN(A, B, D) network in Example 2.
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All graphs shown in Figures 5 and 6 confirm the applicability of the proposed GGNN
design compared to the traditional GNN design, even if constraint (4) holds.
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Example 3. Let us explore the behavior of GNN and GGNN dynamics for computing the Moore—
Penrose inverse of the matrix

9 3 -3
-1 1 0
A=14 7 2.
2 4 —4
13 5 8
The Moore—Penrose inverse of A is equal to
T 9908 18037  _ 6874 2663 29941
127779 766674 127779 383337 766674
At — | 569 14426 16741 25130 6392
127779 383337 127779 383337 383337
_ 3517 1979 1073 _ 7373 15049
L 42593 255558 42593 127779 255558

[ 0.0775 —0.0235 —0.0538 —0.0069  0.0390
—0.0445 0.0376  0.1310  0.0655 —0.0167|.
| —0.0826  0.0077  0.0252 —0.0577 0.0589

Q

The rank of the input matrix is equal to r = rank(A) = 3. Consequently, the matrix A is
left invertible and satisfies A* A = 1. The error matrix E(t) = I — VA initiates the GNN(I, A, I)
dynamics for computing AY. The gradient-based error matrix

Ec(t) = (I - V(t)A)AT.

initiates the GGNN(I, AAT, AT) design.

The gain parameter of the model is -y = 100, and the initial state is V (0) = 0 with a stop time
t = 0.00001.

The Frobenius norms of the error matrix E(t) generated by the linear GNN and GGNN models
for different values of y (v = 10?,y = 103,y = 10°) are shown in Figure 7a—c. The graphs
in these figures confirm an increase in the convergence speed, which is caused by the increase in
the gain parameter <y. Because of that, the considered time intervals are [0,1072], [0,1073] and
[0,107°], respectively. In all three scenarios, a faster convergence of the GGNN model is observable
compared to the GNN design. The values of the norm ||Eg || generated by both the GNN and
GGNN models with linear and two nonlinear activation functions are shown in Figure 8a—c. Like
the conclusion in the previous example, the perception is that the GGNN converges faster compared
to the GNN model.

In addition, the graphs in Figure 8b,c, corresponding to the power-sigmoid and smooth power-
sigmoid AFs, respectively, show a certain level of instability in convergence, as well as an increase
in the value of ||Eg ()| .
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Figure 7. (a) v = 10,t € [0,1072]. (b) v = 103, t € [0,1073]. (c) v = 10°, t € [0,10°]. ||E(t)]| for
different v in GGNN(I, AAT, AT) compared to GNN(I, A, I) in Example 3.
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Example 4. Consider the matrices

15 352 —45 238
A=|-5 14 8 132
235 —65 44 350

—4
42 3
—65(, D=1
-73 2
4

4 16
1 -9
7 2|, A, =DA,
2 4
1 -5

which dissatisfy rank(A;) = rank(D) = 3. Now, we apply the GNN and GGNN formulae to
solve the matrix equation A1 X = D. The standard error function is defined as E(t) = D — A1V (t).
So, we consider GNN(A1, I3, D). The error matrix for the corresponding GGNN model is Eg(t) =
AT(D — A1V (t)), which initiates the GGNN(A] Ay, I, ATD) flow. The gain parameter of the
model is v = 10°, and the final time is t = 0.00001. The zero initial state V(0) = 0 generates the
best approximate solution X = ATD = (DA)'D of the matrix equation AyX = D, given by

X =AlD=

Q

_ 133851170015 _ 1648342203725 608888775010
180355524917879 180355524917879  180355524917879
_ 508349079720  _ 691967699675 48398092277
180355524917879 180355524917879 180355524917879
__ 68130232042 242513061343 82710890618
180355524917879 180355524917879  180355524917879
_ 31936168532 727110260384 134047117682
180355524917879  180355524917879 180355524917879
_ 172434574901 1350198643304 225136761416
L~ 180355524917879 180355524917879  180355524917879
[ —0.000742 —0.00914  0.00338
—0.00282  —0.00384 —0.000268
—0.000378 —0.00134  0.000459
—0.000177  0.00403  0.000743
| —0.000956 —0.00749  0.00125

The Frobenius norms of the error matrix E(t) = D — A1V (t)B in the GNN and GGNN
models for both linear and nonlinear activation functions are shown in Figure 9a—c, and the error
matrix Eg(t) = AT(D — A1V (t)) in both models for linear and nonlinear activation functions are
shown in Figure 10a—c. It is observable that the GGNN converges faster than GNN.
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Figure 9. (a) Linear activation. (b) Power-sigmoid activation. (c¢) Smooth power—sigmoid activation.
|E(#)||F in GGNN(AT A4, I, ATD) compared to GNN(A;, I3, D) in Example 4.
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Figure 10. (a) Linear activation. (b) Power-sigmoid activation. (c¢) Smooth power-sigmoid activation.
|EG (#)||F in GGNN(AT A4, I, AT D) compared to GNN(A¢, I3, D) in Example 4.

Example 5. Tables 1 and 2 show the results obtained during experiments we conducted with
nonsquared matrices, where m X n is the dimension of the matrix. Table 1 lists the input data that
were used to perform experiments with the Simulink model and generated the results in Table 2. The
best cases in Table 2 are marked in bold text.

Table 1. Input data.

Matrix A Matrix B Matrix D Input and Residual Norm

m n  rank(A)p q  rank(B)m g  rank(D)y t; ||AATDB'B—DI||¢
10 8 8 9 7 7 10 7 7 104 05 1.051

10 8 6 9 7 7 10 7 7 104 05 1.318

10 8 6 9 7 5 10 7 7 10¢ 05 1.81

10 8 6 9 7 5 10 7 5 10* 5 2.048

10 8 1 9 7 2 10 7 1 10* 5 2.372

20 10 10 8 5 5 20 5 5 10° 5 1.984

20 10 5 8 5 5 20 5 5 1005 2.455

20 10 5 8 5 2 20 5 5 10° 1 3.769

20 10 2 8 5 2 20 5 2 10° 1 2.71

20 15 15 5 2 2 20 2 2 108 1 1.1

20 15 10 5 2 2 20 2 2 108 1 1.158

20 15 10 5 2 1 20 2 2 108 1 2211

20 15 5 5 2 1 20 2 2 108 1 1.726

Table 2. Experimental results based on data presented in Table 1.

[|E(#)||F(GNN) ||E(t)||F(GGNN) ||Eg(t)||r(GNN) ||Eg(#)||r(GGNN) CPU(GNN) CPU(GGNN)

1.051 1.094 2.52 x 1077 0.02524 5.017148 13.470995
1.318 1.393 3.122 x 1077 0.03661 22.753954 10.734163
1.811 1.899 0.0008711 0.03947 15.754537 15.547785
2.048 2.082 1.96 x 1010 0.00964 9.435709 17.137916
2.372 2.3722 1.7422 x 10715 2.003 x10~15 21.645386 13.255210
1.984 1.984 2.288 x10~ 14 9.978 x10~15 21.645386 13.255210
2.455 2.455 1.657 x10~11 1.693 x10~ 14 50.846893 19.059385
3.769 3.769 6.991 x10~ 11 4.071 x10~ 14 42.184748 13.722390
2.71 2.71 1.429 x10~14 1.176 x10~ 14 148.484258  13.527065

1.1 1.1 1.766 x10~13 5.949 x10~15 218.169376  17.5666568
1.158 1.158 2.747 x10~10 2.981 x10~13 45.505618 12.441782
2.211 2.211 7.942 %1012 8.963 x10~ 14 194.605133  14.117241
1.726 1.726 8.042 x10~15 3.207 x10~15 22.340501 11.650829

The numerical results arranged in Table 2 are divided into two parts by a horizontal
line. The upper part corresponds to the test matrices of dimensions < 10, while the lower
part corresponds to the dimensions m,n > 10. Considering the first two columns, it is
observable from the upper part that the GGNN generates smaller values ||E(t)||r compared
to the GGNN. The values of ||E(t)||r in the lower part generated by the GNN and GGNN
are equal. Considering the third and fourth columns, it is observable from the upper part
that the GGNN generates smaller values ||Eg(t)||r compared to the GGNN. On the other
hand, the values of ||Eg(t)||r in the lower part, generated by the GGNN, are smaller than
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the corresponding values generated by the GNN. The last two columns show that the
GGNN requires less CPU time compared to the GNN. The general conclusion is that the
GGNN model is more efficient in rank-deficient test matrices of larger order m,n > 10.

5. Mixed GGNN-GZNN Model for Solving Matrix Equations
The gradient-based error matrix for solving the matrix equation AX = B is defined by

Ec, () = AT(AV(t) — B).

The GZNN design (14) corresponding to the error matrix E 4 1 p, designated GZNN(A, I, B),
is of the form:

Ec, () = —7]—'(AT(AV(t) - B)). (22)

Now, the scalar-valued norm-based error function corresponding to E¢, , , (t) is given
by

1 AT(AV(t) = B)||r
€(t) = (V (1)) = 5 [E, (1) = ALV = BllE,
The following dynamic state equation can be derived using the GGNN(A4, I, B) design
formula based on (10):

V(t) = —fyATA]-'<AT(AV(t) - B)). (23)

Further, using a combination of Eg () = ATAV (t) and the GNN dynamics (23), it
follows that

Ec, (1) = ATAV(1) = = ATAATAF (AT(AV(H) - B) ). (24)

The next step is to define the new hybrid model based on the summation of the
right-hand sides in (22) and (24), as follows:

EGys(t) = —v((ATA)2 + I)f(AT<AV(t) ~B)). (25)

The model (25) is derived from the combination of the model GGNN(A, I, B) and
the model GZNN(A, I, B). Hence, it is equally justified to use the term Hybrid GGNN
(abbreviated HGGNN) and Hybrid GZNN (abbreviated HGZNN) model. But model (25)
is implicit, so it is not a type of GGNN dynamics. On the other hand, it is designed for
time-invariant matrices, which is not in accordance with the common nature of GZNN
models, because usually, the GZNN is used in the time-varying case. A formal comparison
of (25) and GZNN(A, I, B) reveals that both these methods possess identical left-hand
sides, and the right-hand side of (25) can be derived by multiplying the right-hand side of
GZNN(A, I, B) by the term (ATA)* + 1.

Formally, (25) is closer to GZNN dynamics, so we will denote the model (25) by
HGZNN(A, I, B), considering that this model is not the exact GZNN neural dynamics and
is applicable to time-invariant case. This is the case of the constant coefficient matrices A, I
and B. Figure 11 represents the Simulink implementation of HGZNN(A, I, B) dynamics
(25).
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Figure 11. Simulink implementation of (25).

Now, we will take into account the process of solving the matrix equation XC = D.
The error matrix for this equation is defined by

Ec,.p(t) = (V(£)C — D)C".

The GZNN design (14) corresponding to the error matrix Ej ¢ p, denoted by GZNN (I,C,D),
is of the form:
Ec,ep(t) = VCCT = —yF((v(H)C - D)CT). (26)

On the other hand, the GGNN design formula (10) produces the following dynamic
state equation:

V(t) = —'y]-'((V(t)C - D)CT) cc’, v(0) = V. (27)

The GGNN model (27) is denoted by GGNN(I, C, D). It implies
Ec,p(t) = V(HCCT = —fy]-'((V(t)C - D)CT) ccTecT. (28)

A new hybrid model based on the summation of the right-hand sides in (26) and (28)
can be proposed as follows:

Eg,ep(t) = —*y]—"((V(t)C - D)CT) (1 + (CCT)Z). (29)

The Model (29) will be denoted by HGZNN(I, C, D). This is the case with the constant
coefficient matrices I, C and D.

For the purposes of the proof of the following results, we will use ECR(M) to denote
the exponential convergence rate of the model M. With Anin (K) and Amax(K), we denote
the smallest and largest eigenvalues of the matrix K, respectively. Continuing the previous
work, we use three types of activation functions F: linear, power-sigmoid and smooth
power-sigmoid.

The following theorem determines the equilibrium state of HGZNN(A, I, B) and
defines its global exponential convergence.
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Theorem 3. Let A € R¥", B € R¥*™ be given and satisfy AATB = B, and let V(t) € R"™ ™ be
the state matrix of (25), where F is defined by fiin, fps or fsps-

(@) Then, V(t) achieves global convergence and satisfies AV (t) — B when t — oo, starting
from any initial state X(0) € R"*™. The state matrix V(t) € R"*™ of HGZNN(A, I, B) is
stable in the sense of Lyapunov.

(b) The exponential convergence rate of the HGZNN(A, I, B) model (25) in the linear case is
equal to

ECR(HGZNN(A, I, B)) = v (1 + (r;‘;ﬁn(A)), (30)
where Tmin(A) = Amin(ATA) is the minimum singular value of A.
(c) The activation state variable matrix V (t) of the model HGZNN(A, I, B) is convergent when
t — oo with the equilibrium state matrix
V(t) = Vy) = A'B+ (I— ATA)V(0). (31)
Proof. (a) The assumption AATB = B provides the solvability of the matrix equation

AX =B.
The appropriate Lyapunov function is defined as

£16) = 3l1Ec, 0 (O = 37 (Ecyn(®) Eersa®)).

Hence, from (25) and d Te(VTV) = 2Tr(VTdV), it holds that
20 = 555 T ( (Bcia) "Eouia®))
=10 (Ecuya(®) Eara(t))
=10 (Ecuyn®) (=7((474) +1) 7 (Ecun) ))
=~ ((ATA) 1) 7 (Eey0(0) (Ecysa(®) )

According to similar results from [45], one can verify the following inequality:

200 < —e( ( (474)+1) B0 (Bos ) )

We also consider the following inequality from [46], which is valid for a real symmetric
matrix K and a real symmetric positive-semidefinite matrix L of the same size:

Amin (K)Tr(L) < Tr(KL) < Amax (K)Tr(L). (32)

T
Now, the following can be chosen: K = (ATA)2 +1ITand L = Eg, () (EGA/[,B(t)) .
Consider Amin((ATA)Z) = A2, (ATA) =t

min min

value of A, and opin(A) = /Amin(ATA) is the minimum singular value of A. Then,
1404

min

(A), where Apin(A) is the minimum eigen-

(A) > 1is the minimum nonzero eigenvalue of (ATA)2 + I, which implies

£00) < =1(1+ 0hin(A)) 1 (E,0(0) (e () ) )
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From (33), it can be concluded

E.(t){ <0 ifEg,,,(t) #0

—0 ifEg,,,(t) =0. (54)

According to (34), the Lyapunov stability theory confirms that E4 ; g(t) = AV (f) —B =0
is a globally asymptotically stable equilibrium point of the HGZNN(A4, I, B) model (25).
So, E4 1 p(t) converges to the zero matrix, i.e., AV(t) — B, from any initial state X(0).

(b) From (a), it follows that

£ < =1(1+ hin(A)) T ( (B ) By (0)

(14 cihin(A) ) [1EG 1 (DI

—
_% (1 + Ufnm(A)) L(t).

This implies

£ < £(0)e "(Homn( D)t —y
IEG, 5 (D13 < ||Eg,,,(0)]2e " (Hmn(4) —

_ 4
1EG 05 (Ol1E < 1|EG,, (0)||F e/ 2(10min(1),

which confirms the convergence rate (30) of HGZNN(A, I, B).

(c) This part of the proof can be verified with the particular case B := I,D := B of
Theorem 2.
O

Theorem 4. Let C € R™*!, D € R"*! be given and satisfy DCTC = D, and let V(t) € R"™ ™ be
the state matrix of (29), where F is defined by fiin, fps or fsps-

(@) Then, V(t) achieves global convergence V (t)C — D when t — oo, starting from any initial
state V(0) € R™ ™. The state matrix V(t) € R"™™ of HGZNN(I, C, D) is stable in the
sense of Lyapunov.

(b) The exponential convergence rate of the HGZNN(I, C, D) model (29) in the linear case is
equal to

ECR(HGZNN(I,C, D)) = 7(1 + a,‘;m(C)). (35)

(c) The activation state variable matrix V (t) of the model HGZNN(I, C, D) is convergent when
t — oo with the equilibrium state matrix

V(t) = Vi) = DCT 4+ V(0)(I — CC). (36)
Proof. (a) The assumption DCTC = D ensures the solvability of the matrix equation

XC=D.
Let us define the Lyapunov function by

£0) = 316,003 = 515 (Eeren () Eoyeo(®) )

Hence, from (29) and d Tr(XTX) = 2Tr(X"dX), it holds that

56



Axioms 2024, 13, 49

L(t) = ;iTr<(EGI’C’D(t))TEGLC,D(t))

—Tr < (Ecico (f))TEGI,c,D (t)>
1 (e ) (o( (e 1) (Bereo )
R (CORNECRDICDY!

Following the principles from [45], one can verify the following inequality:

L(t) < —Tr ( < (ccT) L 1) EG,cn(t) (Ecyep <t))T) :

Consider the inequality (32) with the particular settings K = (CCT)2 +I,L=Eg.p (1)
T
(EGLC,D (t)) .Let Amin ( (CCT)Z) be the minimum eigenvalue of (CCT)Z. Then, 1+0%. (C)) >

1is the minimal nonzero eigenvalue of (C CT)2 + I, which implies

. 4 T
£(t) < =7(1+ 04 (©))Tr( Egyen(t) (Ecyen(®) - (37)
From (37), it can be concluded

[i(t){ <0 ifEg,.,(t) #0

—0 ifEg,, () =0. (8)

According to (38), the Lyapunov stability theory confirms that Eg, . ,(t) = V(t)C —D =0
is a globally asymptotically stable equilibrium point of the HGZNN(A, I, B) model (29).
So, Eg, ., (t) converges to the zero matrix, i.e, V(t)C — D, from any initial state V(0).

(b) From (a), it follows

£ < =7 (1+0hin(C) ) Tr ( (Ecico (t))TEGI,C,D (t)>
(1+ 04 ©)) 11Egyc, ()1}

(1 +a§m(c>)£(t).

N[ =

This implies

£ < £(0)e 2 (H0min(©))t —y
— 4
1EG,co (D113 < 1|EG, e p (0)2e 27 (140mn(©) o=
_ 4
I|EG,cp()[F < [|EG, ¢, (0)]|Fe 7(1+‘7mm(c))’

which confirms the convergence rate (35) of HGZNN(I, C, D).

(c) This part of the proof can be verified with the particular case A := I,B := C of
Theorem 2.
O
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Corollary 1. (a) Let the matrices A € R¥*", B € R pe given and satisfy AA*B = B, and
let V(t) € R"™ ™ be the state matrix of (25), with an arbitrary nonlinear activation F. Then,
ECR(GZNN(A, I, B)) = « and ECR(GGNN(A, I, B)) = 70min(A).

(b) Let the matrices C € R™*!, D € R"™! be given and satisfy DC'C = D, and let V (t) € R™™ be
the state matrix of (29) with an arbitrary nonlinear activation F. Then, ECR(GZNN(I,C,D)) = v
and ECR(GGNN(I,C, D)) = Y0min(C).

From Theorem 3 and Corollary 1(a), it follows that

ECR(HGZNN(A, I, B))

4
= . > 1.
ECR(GZNN(A, L, B)) — \ + omin(4) 21 39)
ECR(HGZNN(A,I,B)) 1+0t. (A)
= > 1. (40)
ECR(GGNN(A, I, B)) o2 (A)
ECR(GZNN(A,I,B)) 1 <1, Omin(A)>1 @)
ECR(GGNN(A,I,B)) 02, (A) | >1, omn(A) <1

Similarly, according to Theorem 4 and Corollary 1(b), it can be concluded that

ECR(HGZNN(I,C,D)) 4
ECR(GZNN(I,C,D)) L T %min(C) 2 1. “)
ECR(HGZNN(L,C,D)) _ 1+t (C) - 3)
ECR(GGNN(I,C, D)) o2 (C)
ECR(GZNN(I,C,D)) 1 <1, omin(C) >1 )
ECR(GGNN(I,C,D))  ¢2, (C) |>1, omn(C) <1

Remark 1. (a) According to (40), it follows that ECR(HGZNN(A, I, B)) > ECR(GZNN(A, I, B)).
According to (39), it is obtained

= ECR(GZNN(A,1,B)), 0min(A) =

ECR(HGZNN(A, I, B
( ( )){> ECR(GZNN(A,I,B)), 0Omin(A) >

0
0.
According to (41), it follows

< ECR(GGNN(A, I, B)), 0Omin(A) > 1

ECR(GZNN)(A,1,B :
( ) ){z ECR(GGNN(A,I,B)), omin(A) <1

As a result, the following conclusions follow:

- HGZNN(A, I, B) is always faster than GGNN(A, I, B);
- HGZNN(A, I, B) is faster than GZNN(A, I, B) in the case where omin(A) > 0;
- GZNN(A, I, B) is faster than GGNN(A, I, B)) in the case where 0min(A) < 1.
(b) According to (43), it follows that ECR(HGZNN(I,C, D)) > ECR(GZNN(I,C,D)).
According to (42), it follows that

— ECR(GZNN(I,C,D)), 0min(C) =

0
> ECR(GZNN(I,C,D)), 0min(C) > 0.

V

ECR(HGZNN(I, C,D)){

According to (41) and (44), it can be verified

< ECR(GGNN(I,C,D)), 0min(C) > 1

ECR(GZNN)(I,C,D
( ) >{> ECR(GGNN(I,C,D)), omin(C) <1
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As a result, the following conclusions follow:
- HGZNN(I,C, D) is always faster than GGNN(I, C, D);
- HGZNN(I,C, D) is faster than GZNN(I, C, D) in the case where opin (C) > 0;
- GZNN(I,C, D) is faster than GGNN(I, C, D)) in the case where omin (C) < 1.

Remark 2. The particular HGZNN(ATA, I, AT) and GGNN(AT A, I, AT) designs define the cor-
responding modifications of the improved GNN design proposed in [26] if AT A is invertible. In the
dual case, HGZNN(I,CCT,C") and GGNN(I,CC", C") define the corresponding modifications
of the improved GNN design proposed in [26] if CCT is invertible.

Regularized HGZNN Model for Solving Matrix Equations

The convergence of HGZNN(A, I, B) (resp. HGZNN(I, C, D)), as well as GGNN(A4, I, B)
(resp. GGNN(I, C, D)), can be improved in the case where opin(A) > 0 (resp. omin (C) > 0).
There exist two possible situations when the acceleration terms AT A and CCT improve the
convergence. The first case assumes the invertibility of A (resp. C), and the second case
assumes the left invertibility of A (resp. right invertibility of C). Still, in some situations, the
matrices A and C could be rank-deficient. Hence, in the case where A and C are square and
singular, it is useful to use the invertible matrices A := A+ Aland C; :=C+ AL A >0
instead of A and C and to consider the models HGZNN(A;1, I, B) and HGZNN(I, Cy, D).
The following presents the convergence results considering the nonsingularity of A; and
Cy.

Corollary 2. Let A € R"*", B € R"*™ be given and V (t) € R"*™ be the state matrix of (25),
where F is defined by fiiy, fps or fsps. Let A > 0 be a selected real number. Then, the following
statements are valid:

(@) The state matrix V (t) € R}*™ of the model HGZNN (A1, 1, B) converges globally to
Vi) = A'B,

when t — oo, starting from any initial state X(0) € R"*™, and the solution is stable in the
sense of Lyapunov.
(b)  The exponential convergence rate of HGZNN(A1, I, B) in the case where F = I is equal to

ECR(HGZNN(A1, 1, B)) = (14 opin(A +AD) ).
(c) Let VV(O) be the limiting value of V (t) when t — +o0. Then,

lim Vi g = lim (A + AI)"'B. 45
lim V() Algb( + Al) (45)

Proof. Since A + Al is invertible, it follows that V = (A + AI) " 'B.
From (31) and the invertibility of A + AI, we conclude the validity of (a). In this case,
it follows that
Vi) = (A+AD B+ (I—(A+ A1 (A+AI)V(0)
= (A+AD)TIB+ (I -1)V(0)
= (A+AI)7!B.

The part (b) is proved analogously to the proof of Theorem 3. The last part (c) follows from
(a). O

59



Axioms 2024, 13, 49

Corollary 3. Let C € R™ ™, D € R" "™ be given and V (t) € R"*™ be the state matrix of (29),
where F = 1, F = Fps or F = Fsps. Let A > 0 be a selected real number. Then, the following
statements are valid:

(@) The state matrix V(t) € R*™ of HGZNN(I, C1, D) converges globally to
Vo) = D(C+ A,

when t — oo, starting from any initial state X(0) € R"*™, and the solution is stable in the
sense of Lyapunov.
(b) The exponential convergence rate of HGZNN(I, Cq, D) in the case where F = I is equal to

ECR(HGZNN(I,C;, D)) = 7(1 + a;;m(l)).
(c)  Let V(g be the limiting value of V () when t — +oco. Then,

lim Vi gy = lim D(C + AI) "L 46
iy v = i PCH+AD o

Proof. It can be proved analogously to Corollary 2. []
Remark 3. (a) According to (40), it can be concluded that
ECR(HGZNN(A1,I,B)) > ECR(GZNN(A4,1,B)).
Based on (39) it can be concluded
ECR(HGZNN(A4,1I,B))>ECR(GZNN(A4, I, B)).
According to (41), one concludes
ECR(GZNN(A4,1,B))<ECR(GGNN(A4,1,B)).
(b) According to (43), it can be concluded
ECR(HGZNN(I,Cy,D)) > ECR(GZNN(I, Cq,D)).
According to (42), it follows
ECR(HGZNN(I,Cy,D)) > ECR(GZNN(I, Cy,D)).
Based on (41) and (44), it can be concluded
ECR(GZNN(I,Cy,D))<ECR(GGNN(I, Cy,D)).

6. Numerical Examples on Hybrid Models

In this section, numerical examples are presented based on the Simulink implementa-
tion of the HGZNN formula. The previously mentioned three types of activation functions
f(+)in (11), (12) and (13) will be used in the following examples. The parameters v, the
initial state V(0) and the parameters p and ¢ of the nonlinear activation functions (12)
and (13) are entered directly into the model, while the matrices A, B, C and D are defined
from the workspace. We assume that p = ¢ = 3 in all examples. The ordinary differential
equation solver in the configuration parameters is odel5s.

We present numerical examples in which we compare Frobenius norms ||Eg||r and
||A='B — V(t)||r, which are generated by HGZNN, GZNN and GGNN.
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Example 6. Consider the matrix

A=

049 0.276
0.446 0.68
0.646 0.655

0.71 0.163
0.755 0.119

0.498
0.96
0.34

0.585

0.224

0.751
0.255
0.506
0.699
0.891

0.959
0.547
0.139].
0.149
0.258

In this example, we compare the HGZNN(A, 1, T) model with GZNN(A, I,1) and GGNN(A, 1, 1),

considering all three types of activation functions. The gain parameter of the model is v = 10°, the
initial state V(0) = 0, and the final time is t = 0.00001.

The Frobenius norm of the error matrix Eg in the HGZNN, GZNN and GGNN models for both
linear and nonlinear activation functions are shown in Figure 12a—c, and the error matrices A~'B —
V(t) of both models for linear and nonlinear activation functions are shown in Figure 13a—c. On
each graph, the Frobenius norm of the error from the HGZNN formula vanishes faster to zero than
those from the GZNN and GGNN models.
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Figure 12. (a) Linear activation. (b) Power-sigmoid activation. (c¢) Smooth power-sigmoid activation.
|Ea,18|lF of HGZNN(A, I, I) compared to GGNN(A, I, I) and GZNN(A, I, I) in Example 6.
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Figure 13. (a) Linear activation. (b) Power-sigmoid activation. (¢) Smooth power-sigmoid activation.
|A=1B — V(t)||r of HGZNN(A, I,I) compared to GGNN(A, I,I) and GZNN(A, I, I) in Example 6.

Example 7. Consider the matrices

[0.0818
0.0818
0.0722
0.0150
0.0660

10.0519

[0.1649
0.1965
0.1460
0.0688
0.1168

10.0216

0.0973
0.0649
0.0800
0.0454
0.0432
0.0825

0.1813
0.1759
0.1636
0.0521
0.1189
0.0045

0.0083
0.0133
0.0173
0.0391
0.0831
0.0803

0.0851
0.0625
0.0323
0.0358
0.0846
0.0188

0.0060
0.0399
0.0527
0.0417
0.0657
0.0628

0.1197
0.0942
0.1392
0.1400
0.1277
0.0067
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0.0292
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0.0984
0.0167
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0.0138
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0.0372
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0.0339 |’
0.0952
0.0920

0.1437
0.1937
0.1063
0.0650
0.0211
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0.1558
0.0847
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0.0307
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In this example, we compare the HGZNN(A, I, B) model with GZNN(A, I, B) and GGNN(A, 1, B),
considering all three types of activation functions. The gain parameter of the model is -y = 1000, the
initial state V(0) = 0, and the final time is t = 0.01.

The elementwise trajectories of the state variable are shown with red lines in Figure 14a—c, for
linear, power-sigmoid and smooth power-sigmoid activation functions, respectively. The solid red
lines corresponding to HGZNN(A, 1, B) converge to the black dashed lines of the theoretical solution
X. It is observable that the trajectories indicate the usual convergence behavior, so the system is
globally asymptotically stable. The error matrices Eg of the HGZNN, GZNN and GGNN models
for both linear and nonlinear activation functions are shown in Figure 15a—c, and the residual
matrices A~'B — X(t) of both models for linear and nonlinear activation functions are shown in
Figure 16a—c. In each graph, for both error cases, the Frobenius norm of the error of the HGZNN
formula is similar to the Frobenius norm of the error of the GZNN model, and they both converges
faster to zero than the GGNN model.
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Figure 14. (a) Linear activation. (b) Power-sigmoid activation. (¢) Smooth power—sigmoid activation.
Elementwise convergence trajectories of the HGZNN(A, I, B) network in Example 7.
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Figure 15. (a) Linear activation. (b) Power-sigmoid activation. (c¢) Smooth power-sigmoid activation.

|Ea,18|lF of HGZNN(A, I, B) compared to GGNN(A, I, B) and GZNN(A, I, B) in Example 7.
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Figure 16. (a) Linear activation. (b) Power-sigmoid activation. (c¢) Smooth power—sigmoid activation.
Frobenius norm of error matrix A~'B — X(t) of HGZNN(A, I, B) compared to GGNN(A, I, B) and
GZNN(A, I, B) in Example 7.

Remark 4. In this remark, we analyze the answer to the question, “how are the system parameters
selected to obtain better performance?” The answer is complex and consists of several parts.

1. The gain parameter vy is the parameter with the most influence on the behavior of the observed
dynamic systems. The general rule is “the parameter vy should be selected as large as possible”.
The numerical confirmation of this fact is investigated in Figure 7.
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2. Theinfluence of v and AFs is indisputable. The larger the value of vy, the faster the convergence.
And, clearly, AFs increase convergence compared to the linear models. In the presented
numerical examples, we investigate the influence of three AFs: linear, power-sigmoid and
smooth power-sigmoid.

3. The right question is as follows: what makes the GGNN better than the GNN under fair
conditions that assume an identical environment during testing? Numerical experiments
show better performance of the GGNN design compared to the GNN with respect to all three
tested criteria: ||E(t)||r, |[Eg(t)||r and ||V (t) — V*||r. Moreover, Table 2 in Example 5 is
aimed at convergence analysis. The general conclusion from the numerical data arranged in
Table 2 is that the GGNN model is more efficient compared to the GNN in rank-deficient test
matrices of larger order m,n > 10.

4. The convergence rate of the linear hybrid model HGZNN (A, I, B)) depends on v and the
singular value 0in (A), while the convergence rate of the hybrid model HGZNN(I,C, D)
depends on y and 0ppin (C).

5. The convergence of the linear regularized hybrid model HGZNN(A + AL, 1, B)) depends
on vy, Omin (A) and the reqularization parameter A > 0, while the convergence of the linear
regularized hybrid model HGZNN(I, C 4+ AI, D)) depends on vy, Omin(C) and A.

In conclusion, it is reasonable to analyze the system parameter selections to obtain better
performance. But the best performance is not defined.

7. Conclusions

We show that the error functions which make the basis of GNN and ZNN dynamical
evolutions can be defined using the gradient of the Frobenius norm of the traditional error
function E(t). The result of such a strategy is the usage of the error function E;(t) for
the basis of GNN dynamics, which results in the proposed GGNN model. The results
related to the GNN model (called GNN(A, B, D)) for solving the general matrix equation
AXB = D are extended in the GGNN model (called GGNN(A, B, D)) in both theoretical
and computational directions. In a theoretical sense, the convergence of the defined GGNN
model is considered. It is shown that the neural state matrix V() of the GGNN(A, B, D)
model asymptotically converges to the solution of the matrix equation AXB = D for an
arbitrary initial state matrix V(0) and coincides with the general solution of the linear ma-
trix equation. A number of applications of GNN(A, B, D) are considered. All applications
are globally convergent. Several particular appearances of the general matrix equation are
observed and applied for computing various classes of generalized inverses. Illustrative
numerical examples and simulation results were obtained using Matlab Simulink imple-
mentation and are presented to demonstrate the validity of the derived theoretical results.
The influence of various nonlinear activations on the GNN models is considered in both the
theoretical and computational directions. From the presented examples, it can be concluded
that the GGNN model is faster and has a smaller error compared to the GNN model.

Further research can be oriented to the definition of finite-time convergent GGNN or
GZNN models, as well as the definition of a noise-tolerant GGNN or GZNN design.
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Abstract: Differential evolution (DE) is one of the most promising black-box numerical optimization
methods. However, DE algorithms suffer from the problem of control parameter settings. Various
adaptation methods have been proposed, with success history-based adaptation being the most
popular. However, hand-crafted designs are known to suffer from human perception bias. In this
study, our aim is to design automatically a parameter adaptation method for DE with the use of
the hyper-heuristic approach. In particular, we consider the adaptation of scaling factor F, which
is the most sensitive parameter of DE algorithms. In order to propose a flexible approach, a Taylor
series expansion is used to represent the dependence between the success rate of the algorithm
during its run and the scaling factor value. Moreover, two Taylor series are used for the mean
of the random distribution for sampling F and its standard deviation. Unlike most studies, the
Student’s t distribution is applied, and the number of degrees of freedom is also tuned. As a tuning
method, another DE algorithm is used. The experiments performed on a recently proposed L-NTADE
algorithm and two benchmark sets, CEC 2017 and CEC 2022, show that there is a relatively simple
adaptation technique with the scaling factor changing between 0.4 and 0.6, which enables us to
achieve high performance in most scenarios. It is shown that the automatically designed heuristic
can be efficiently approximated by two simple equations, without a loss of efficiency.

Keywords: numerical optimization; differential evolution; parameter adaptation; hyper-heuristic

MSC: 90C26; 90C59; 68T20

1. Introduction

Single-objective numerical optimization methods for black-box problems represent a
direction that is thoroughly studied in the evolutionary computation (EC) area. The reason
for this is that evolutionary algorithms do not require any specific information about
the target function except the possibility to calculate it, i.e., they are zero-order methods.
First attempts to solve such problems with evolutionary algorithms were made with the
classical Genetic Algorithm (GA), which searched the binary space [1]; however, later,
more efficient approaches were proposed, including simulated binary crossover [2], as well
as other nature-inspired methods, such as Particle Swarm Optimization [3]. However,
in recent years, most of the researchers’ attention is toward the differential evolution (DE)
algorithm [4].

The reasons for DE’s popularity are diverse and include simplicity in both understand-
ing and realization and high performance across many domains and applications [5-7].
The high performance of DE is due to its implicit adaptation to the function landscape,
which originates from the main idea—difference-based mutation. However, the perfor-
mance of DE comes with a drawback: the few parameters of the algorithm, namely, the
population size N, scaling factor F and crossover rate Cr, should be carefully tuned,
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and most of the research on DE is focused on determining the best possible ways of tuning
these parameters during the algorithm’s work [8].

This study focuses on finding a method for the automatic tuning of the most sensi-
tive parameter, scaling factor F. Today, the most popular adaptation technique is success
history-based adaptation (SHA), proposed 10 years ago in the SHADE algorithm [9]. How-
ever, despite the gradual improvements [10], there are possibilities to design even better
adaptation methods. This paper is a follow-up work to a recent study [11], where success
rate-based adaptation was proposed, and the surrogate-assisted search for Taylor series
coefficients for F, Cr and N was performed using the Efficient Global Optimization (EGO)
algorithm [12]. Here, a similar hyper-heuristic approach is considered; however, instead of
EGO, another differential evolution is applied on the upper level, and additional parameters
are introduced to increase the flexibility of the approach. In particular, the scale parameter
of Student’s t random distribution for sampling F values is also tuned, as well as the num-
ber of degrees of freedom. The experiments, performed with the L-NTADE algorithm [13]
on two sets of test problems taken from the Congress on Evolutionary Computation (CEC)
competition on numerical optimization 2017 [14] and CEC 2022 [15], demonstrated that the
new approach enables us to find simpler and more efficient adaptation techniques.

The main contributions of this study can be outlined as follows:

1.  Setting the lower and upper border for the Taylor series when tuning the curve
parameters for success rate-based scaling factor sampling improves flexibility and
allows for finding a simpler dependence;

2. The number of degrees of freedom, found by the proposed approach, places the
Student’s distribution between the usually applied normal and Cauchy distributions;

3. The DE algorithm applied instead of the EGO algorithm on the upper level is capable
of finding efficient solutions, despite the problem complexity and dimension;

4. The Friedman ranking procedure, used instead of the total standard score for heuristics
comparison during a search, is a good alternative with comparable performance
and does not require any baseline results;

5. The designed heuristic for scaling factor adaptation is simple and can be efficiently
applied to many other DE variants.

The rest of this paper is organized as follows. The next section describes the back-
ground studies; in the third section, the related works are discussed; in the fourth section,
the proposed approach is described; the fifth section contains the experiments and results;
and the sixth section contains the discussion, followed by the conclusion.

2. Background
2.1. Differential Evolution

The numerical optimization problem in a single-objective case consists of the search
space X C RP, real-valued function f: X — R and a set of bound constraints:

mxinf(x), (1)

subject to x; < x; < x4, j = 1,..., D, where xy, is the vector of the lower boundaries,
x,p is the vector of the upper boundaries and D is the problem dimension. As bound
constraints are easily satisfied, such problems are often called unconstrained. In this study,
the black-box scenario is considered, which means that there is no information about the
structure or properties of the function f(x), so that it can be multimodal, non-convex,
ill-conditioned, etc. The gradient is also not available.

Differential evolution starts by initializing a set of N D-dimensional vectors
xi = (Xj1,Xi2,...,Xip),i =1,..., N randomly using uniform distribution within [xlb,]-, xub,]»],
j=1,...,D.

After initialization, the main loop of the algorithm starts with the first operation called
the difference-based mutation. There are many known mutation strategies, such as rand/1,
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rand/2, best/1 and current-to-rand/1, but the most popular is the current-to-pbest/1
strategy:
i = Xij + F X (Xppest,j — Xij + %1, — X12,5), ()

where F is the scaling factor parameter, v; is the newly generated mutant vector, r1 and
r2 are the uniformly randomly chosen indexes of the vectors in the range [1, N] and pbest
is chosen from the best p% of the individuals,7 = 1,...,N,j = 1,...,D. Same as most
evolutionary algorithms, DE relies on two variation operations: mutation and crossover.
The crossover mixes the genetic information of the target vector x; and the newly generated
mutant vector v;; as a result, the trial vector u; is generated. The most popular scheme is
the binomial crossover, which works as follows:
I 3 if rand(0,1) < Cror j = jrand 3)
v x;j, otherwise .

where Cr is the crossover rate parameter, and jrand is a random index in [1, D] required
to make sure that at least one solution is taken from the mutant vector. The trial vector is
checked to be within the search boundaries; one of the popular methods to perform this is
called the midpoint target:

Xpp,itXi i .
7]2 “ooif Vi < X1p,j
_ Xyp,itXij .
Ujj = L /2 Ao if Vjj > Xup,j- 4)
Ui j, otherwise

After this step, the trial vector is evaluated using target function f(x) and compared
to the target vector x; in the selection step:

o { if f(u7) < f(xi)
! X, iff(ui) > f(xi)

At the end of the generation, some of the individuals may be replaced, and due to the
selection step, the average fitness either increases or stays the same.

: ©)

2.2. Parameter Adaptation in Differential Evolution

As mentioned in the Introduction, most of the works on DE are directed toward
parameter adaptation and control methods [8]. The reason for this is that DE is highly
sensitive to the F and Cr settings, and one of the earliest studies that considered this
problem was [16], where the authors proposed the jDE algorithm with the parameter
values adapted as follows:

F _Jrandom(F, F,), if random(0,1) < 7, ©)
(a Fiy, otherwise,

CR: _Jrandom(0,1), if random(0,1) < 1, @
b CR;4, otherwise,

where F; and F, are the lower and upper boundaries for F, and 7; and 1> control the
frequency of the F and Cr changes, usually set to 0.1. If the trial vector is better, then the
new parameter values are saved. The modifications of jDE have proven themselves to be
highly competitive, for example, jDE100 [17] and j2020 [18] demonstrated high efficiency
on bound-constrained test problems.

Despite the efficiency of jDE, nowadays, success history-based adaptation is one of
the widely used methods [9], based on the originally proposed JADE algorithm [19]. Here,
the working principle of SHA will be described.
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Success history-based adaptation tunes both the scaling factor F and crossover rate Cr.
At the initialization step, a set of H memory cells Mr , and Mc, j, is created, each containing
a constant value, such as 0.5. The values in the memory cells are used to sample the F and
Cr values to be used in the mutation and crossover as follows:

F = randc(Mpy,0.1) ®)
Cr = randn(Mc,,0.1)

where randc(m, s) is a Cauchy-distributed random value with location parameter m and
scale parameter s; randn(m, s) is a normally distributed random value with mean m and
standard deviation s. In the SHADE algorithm, if the sampled F < 0, then it is generated
again, and if F > 1, it is set to 1. The Cr value is simply truncated to a [0, 1] interval.
The index k of the memory cell to be used is generated randomly in [1, H]. Note that the
Cauchy distribution has “heavier tails”, i.e., it generates larger and smaller values more
often compared to normal distribution—this gives more diverse F values.

During every selection step, if the newly generated trial vector u; is better than x;,
then the F and Cr values are stored in Sy and Sc,, as well as the improvement value
Af = [f(x;) — f(u;)| stored in Sp¢. At the end of the generation, the new values updating
the memory cells are calculated using the weighted Lehmer mean:

|SE| 2 IScr 2
L 1w]S Z] 1 wJSCr]

meany,F = 1571 ymeany,cr = IS¢ ’
Z 1w/SF] Zj:l ijCr,j

©)

where w; = . Two values are calculated, i.e., one using Sr and another using Sc;.

IS|
Li= SAf k
The memory cell with index &, iterated from 1 to H every generation, is updated as follows:
{Mp/k = O.S(Mplk + meanwL,p) ’ (10)

Meyx = 0.5(Mcyx + meany,cy)

The SHA confirm and modify. Following highlights are same issue. method uses
biased parameter adaptation, i.e., in the Lehmer mean in the nominator, the successful
values are squared; thus, the mean is shifted toward larger values. In this study, the Lehmer
mean was modified by introducing an additional parameter pm:

ISF\ pm IScr pm
Z S Z]' SCr gl

Ej
mean, cr = |5Cr o
Z SCr]

meﬂnwL,P W’
Lj=1 WS,

(11)

Increasing the pm parameter leads to more skewed means toward larger values.
The standard setting in L-SHADE is pm = 2, and it is shown that increasing this value and
generating a larger F may lead to much better results in high-dimensional problems.

For the population size N, the third main parameter of DE, the following technique
was proposed in the L-SHADE algorithm [20]:

Nuin — N,
NgH:round( min max

—————NFE N, 12
e EENEE )+ N, (12)

where NFE is the current number of target function evaluations, NFE,,y is the total avail-
able computational resource, Ny;x and Ny, are the initial and final number of individuals
and g is the generation number. This method called linear population size reduction (LPSR)
has the main idea of spreading across the search space at the beginning and concentrating at
the end of the search. LPSR allows for achieving significant improvements in performance,
if the computational resource limit is known. In such a scenario, it makes sense to use a
broader search at the beginning and more concentrated effort at the end. That is, if the
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computational resource is running out, it is better to converge to at least some good solution
quickly with a small population rather than continuing a broad and slow search, hoping
to get to the global optimum. Although the usage of LPSR may seem to contradict the
global optimization setup, in a recent competition on global numerical optimization with
unlimited resources [21], it was shown that algorithms with LPSR have some of the best
performance characteristics.

In [22], it was shown that adding tournament or rank-based selection strategies to
sample the indexes of individuals for further mutation may be beneficial. The exponential
rank-based selection was implemented by selecting an individual depending on its fitness
in a sorted array, with the ranks assigned as follows:

—kpei
rank; = e N, (13)

where kp is the parameter controlling the pressure, and i is the individual number. Larger
ranks are assigned to better individuals, and a discrete distribution is used for selection.

The L-SHADE algorithm has become very popular among DE methods, and most of
the prize-winning algorithms since 2014 are its variants and modifications, including jSO
with specific adaptation rules [23], L-SHADE-RSP with selective pressure [24], DB-LSHADE
with distance-based adaptation [25] and a recently proposed L-NTADE [13], which also
relies on SHA and LPSR. There are other techniques, for example, the jDE algorithm [16]
and its modifications, such as j100 [17] and j2020 [18], that have shown competitive results,
but they are not as popular as SHADE. Nevertheless, in [11,26], it was shown that more
efficient adaptation techniques can be proposed.

Other modifications of modern DE include the Gaussian-Cauchy mutation [27], mod-
ifications for binary search space [28], population regeneration in the case of premature
convergence [29] and using an ensemble of mutation and crossover operators [30].

2.3. L-NTADE Algorithm

As a baseline approach, here the recently proposed L-NTADE algorithm [13] is con-
sidered. The main idea of L-NTADE is to diverge from the relatively general scheme of
modern DE, where a single population is present, with an optional external archive of
inferior solutions. Unlike these methods, L-NTADE uses two populations, one containing
the best N individuals in x?OP found throughout the search and another containing the
latest improved solutions in x/*“, i = 1,2,...N. The mutation strategy used in L-NTADE is
a modification of the current-to-pbest called r-new-to-ptop/n/t, with individuals taken
from the top and newest populations as follows:

to to
v = x’ff’]” + F x (przst,]. — xf]ew) +Fx (xff”]” — xr3f;.), (14)

where 71 and r3 are random indexes, sampled with uniform distribution, and r2 is sampled

with rank-based selective pressure, with ranks assigned as rank; = e%, wherein kp is
a parameter. More detailed research on the effects of selective pressure in DE is given
in [22]. The pbest index is chosen from the p% best solutions from the top population. Note
that unlike current-to-pbest, the basic solution is not the same as in the first difference,
i.e., index r1 is different from i—in this sense, r-new-to-ptop/n/t is more similar to the
rand /1 mutation.

The crossover step in L-NTADE is unchanged, i.e., the classical binomial crossover is
applied, whereas the selection step is changed significantly:

Xne, if fui) > f(1")

where 7nc is iterated from 1 to N. The newly generated trial vector is compared not to
the target vector x; but to the basic vector x,1, which was chosen randomly. Moreover,
a different individual with index nc is replaced as a result. This gives the effect of a
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continuous update of the newest individuals” population. At the same time, to preserve the
best solutions, the top population is updated in the following order. All the successful trial
vectors u; are stored into a temporary population x'"7, and at the end of the generation,
a joined set of xt"P and x'°P is formed, sorted by fitness, and the best N individuals are
chosen to stay in x7. The population size control in L-NTADE is realized using the LPSR
method, with both the newest and top population reducing the size in the same way:.

2.4. Hyper-Heuristic Approach

The development of meta-heuristic approaches nowadays is mainly performed by
researchers manually, i.e., new ideas are proposed, implemented and tested. However,
the idea of automating this process has been discussed in the literature for several years.
In particular, the so-called hyper-heuristic approach (HH) is considered [31], when some
method, such as, for example, genetic programming (GP), is used to design new operators
or even entire algorithms. There exist generative hyper-heuristics and selection hyper-
heuristics, with the last used to configure a meta-heuristic algorithm. The generative hyper-
heuristics are sometimes referred to as the automated design of algorithms (ADAs) or
genetic improvement (GI) [32]. With modern computational capabilities, the HH approach
opens possibilities of discovering new algorithmic ideas in an automated manner, thus
significantly moving the whole field further. More details on the application of HH are
given in the next section.

3. Related Work

Differential evolution is a highly competitive numerical optimizer, which has proven
its efficiency across a variety of applications. Moreover, in the last 10 years, competitions on
numerical optimization have been won by DE or its hybrids with other methods, such as CMA-
ES (for example, the LSHADE-SPACMA performed well on the CEC 2017 benchmark) [33].
However, despite all these achievements, there is still room for further improvement. Suc-
cess history adaptation, proposed in SHADE, is a method, which has proven its efficiency,
delivering significant improvements.

One of the ways to propose new ideas for parameter adaptation is to use automated
search methods. An attempt to create a new parameter adaptation technique with the
hyper-heuristic approach was made in [26], where genetic programming for symbolic
regression was used to create equations for adapting F and Cr in DE. In particular, it was
shown that it is possible to develop relatively simple and yet efficient methods, which are
significantly different from success history-based adaptation.

The experiments with the L-NTADE algorithm, aimed at designing new adaptation
techniques for an algorithm, whose general scheme is different from L-SHADE, were
performed in [34]. In particular, it was found that the success rate, i.e., the number of
improvements in the current generation divided by the population size (SR = %), is
an important source of information for parameter adaptation. This value was included
in the study where GP was used [26]; the connection was less obvious there. It is worth
mentioning that the success rate SR is rarely used in evolutionary computation for parame-
ter adaptation.

In an attempt to further explore the possible influence of SR and derive the important
dependencies, in [11], the surrogate-assisted approach was proposed. In particular, a 10th-
order Taylor series expansion was used to allow for a flexible tuning of the curve, which
uses SR to determine the mean value for sampling F. It was shown that it is possible to
find such curves and that the efficiency of DE can be greatly improved. However, this
method had several disadvantages. First of all, as a higher-level optimizer, which searches
for Taylor series coefficients, the surrogate-assisted method Efficient Global Optimization
(EGO) was applied [12]. Although this is a well-performing method, which allowed for
finding interesting solutions, it is not very suitable for this particular problem. The main
reason is that the evaluation of a set of Taylor series parameters, determining the parameter
adaptation technique, is a noisy function, i.e., it requires running an algorithm, which uses
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random values. The total standard score, used as the target function in [11], is not very
suitable for Kriging approximation. Considering these drawbacks, a new approach was
developed, which will be described in the next section.

4. Proposed Approach
4.1. Scaling Factor Sampling

The two main ideas of this study are to change the optimization tool, used on the
upper level, and to replace the solution evaluation method. The hyper-heuristic approach
may use any optimization tool, for example, genetic programming, to search for parameter
adaptation techniques directly or EGO to tune the Taylor series parameters. In particular,
in this study, the success rate parameter is used as a source of information for tuning the
scaling factor parameter F. The success rate is calculated every generation as follows:

SR=—2 (16)

where NS is the number of successful replacements in the selection operation. The main
idea of [11] was to use a Taylor series to approximate the dependence between SR and
location parameter MF (mean F) for F sampling. The Taylor polynomials are used as func-
tion approximations using derivatives; however, as here the true dependence is unknown,
the coefficients can be derived via computational experiments. The Taylor expansion is
used due to the flexibility of the polynomials. The method consists of calculating the
raw value MF, and then normalizing it to a [0, 1] interval and scaling it. The first step is

performed as follows:
11

MF, = cpy1+ Y 0mi(SR = o)’ (17)
=2
wherec,,;,i =0,1,...,11 are the coefficients to be found, and MF, is a raw, non-normalized
value. To perform the normalization, i.e., scale to the [0,1] range, the minimum and
maximum values are used:

(MFr - MFr,min)

MF; = ,
° (MFr,mux - MFr,min)

(18)

where MF, i, and MF,; ;4 are found by searching (via lattice search with step 0.001) in
SR € [0,1], and MF; is a scaled value. After this, an additional step is proposed in this
study. To allow for a more flexible adaptation, the lower and upper boundaries for the
fitted curve should also be tuned and not just set to [0,1]. To perform this, the final MF
value is calculated as follows:

MF = MFS(Cm,u - lel) + Cm,l/ (19)

where c,,; and ¢, are the lower and upper boundaries for MF. That is, if, say, ¢,,; = 0.1
and ¢y, = 0.7, then the MF curve, which depends on the success rate SR, will be in the
range [0.1,0.7]. This results in a pair of additional parameters added to those that should
be optimized. The MF value is then used in Student’s t distribution instead of a Cauchy or
normal one:

F = randt(MF, SF, cpor), (20)

where randt(m, s, v) is a Student’s ¢-distributed random value with a location parameter 1,
scale parameter s and number of degrees of freedom v; cp,r is another tuned parameter;
and SF is a scale parameter (cF). The reason to use Student’s distribution is that it is a
more general distribution, which is capable of becoming a Cauchy distribution when v =1
and a normal distribution when v — oo (v > 30 is enough in practice). When v is small,
the t distribution is heavy-tailed, i.e., more similar to Cauchy. Modern C++ libraries allow
for setting v to an arbitrary positive floating-point value, thus allowing us to tune the
distribution arbitrarily. Also, note that sampling F is performed with the following rules:
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while F < 0, it is sampled again, and if F > 1, it is set to 1. Figure 1 shows the comparison
of the normal, Cauchy and Student’s distribution.

—— Cauchy PDF
—— Student's PDF
—— Normal PDF

0.4

-6 —4 -2 0 2 4 6

o
=)

Figure 1. Comparison of normal, Student’s (v = 3) and Cauchy distributions.

To allow for even greater flexibility for the approach, the scale parameter SF is also
tuned in the same way as MF. That is, another set of coefficients is used to determine the
dependence of SF on the success rate SR. For clarity, we provide below the equations to
calculate SF.

11 .
SF =cs1+ Z Cs,i(SR - Cs,O)l (21)
i=2
(SFr - SFr min)
SE. = . , 22
° (SFr,max - SFr,min) ( )
SF = SFs(Cs,u - Cs,l) +Cs1s (23)

Equations (16)—(18) are the same as (12)—(14), but for a different parameter, and the
resulting MF and SF values are used in (15). The search for SF, ,,;, and SR; ;;qx for nor-
malization is performed in the same manner, i.e., with a lattice search with a step value of
0.001. It is important to tune the scale parameter, i.e., the width of the distribution, as it
significantly influences the distribution of the sampled F values.

Thus, setting 12 parameters for a Taylor series curve plus two more for lower and
upper boundaries gives a total of 14 ¢, values for MF. Another 14 are used to set SF
and one more to tune the number of degrees of freedom cp,r. This gives a total of
29 numeric values, which should be set in order to determine the adaptation method
in a 29-dimensional search space. The search for the optimal set of 29 parameters is de-
scribed in Section 4.2, where each set of values corresponds to a specific adaptation heuristic,
which is evaluated. The search itself is performed by another DE algorithm, L-SRDE.

4.2. Evaluating Designed Heuristics

The evaluation of the designed heuristic is an important step for determining its effi-
ciency, and the evaluation method significantly influences the search for better heuristics.
In [11], the idea was to apply statistical tests to evaluate the efficiency of an algorithm with
a designed heuristic with a single numeric value. In particular, the baseline results were
obtained, i.e., the L-NTADE algorithm was tested with success history parameter adapta-
tion, and then the new results were compared to it. The comparison involved applying the
Mann-Whitney statistical test to every function so that the best found target function values
were compared. There are 51 independent runs in the CEC 2017 competition benchmark,
so comparing two samples of 51 values allowed for using normal approximation (with
tie-breaking) for the Mann-Whitney U statistics. That is, for every test function out of 30,
the standard Z score was calculated. The total score Z was determined as follows:
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30
Zr=Y 7, (24)
j=1

where j is the function number. Such a metric gave an averaged evaluation of the adaptation
technique, i.e., if two algorithms perform the same on the function, Z; will be close to 0,
but if the heuristic performed better, then Z; > 0, and Z; > 2.58 corresponds to a statistical
significance level of p = 0.01.

Although such an approach has shown that it is capable of finding efficient solu-
tions, evaluating an adaptation technique across a variety of test functions with a single
value creates a bottleneck, i.e., limits the amount of information that the upper-level op-
timizer receives from testing a newly designed heuristic. In order to overcome this, here,
instead of Mann-Whitney tests and the EGO algorithm for optimization, the usage of
Friedman ranking and another differential evolution algorithm for tuning coefficients c is
proposed. The Friedman ranking is used in the Friedman statistical test to compare not a
pair (like in the Mann—-Whitney test) but a set of conditions, under which the experiments
were performed.

One of the advantages of the classical DE algorithm is that it does not require exact
fitness values to work. That is, the selection step only needs to determine if the newly
generated individual is better than the target individual with index i. In other words,
if there is a method to compare a pair (or rank a population) of solutions, then DE is able to
work with this information. Hence, the idea is to use simplified DE to tune the coefficients
of the heuristic ¢;;, ¢s and cp,r. The main steps can be described as follows.

1.  Initialize the population x*"

2. Pass the parameters c to the L-NTADE algorithm and run it for every set of coefficients.

3. Collect a set of results, i.e., a tensor with dimensions (N, 30,51).

4. Rank the solutions using Friedman ranking; for this, perform independent ranking
for every function and sum the ranks.

5. Begin the main loop of DE and use ranks as fitness values; store N new solutions in
the trial population x".

6.  Evaluate new individuals in x'" by running the L-NTADE algorithms with the corre-
sponding tuning parameters.

7. Join together the results of the current population x
ranking again to the tensor of size (2 x N,30,51).

8. If the rank of the trial individual with index i is better than the rank of the target
individual, then perform the replacement.

of 29-dimensional vectors randomly, with N individuals.

cu’ and x'" and apply Friedman

In this manner, the DE algorithm is applied without evaluating the fitness as a single
value but rather ranking the best performing heuristics higher. A similar approach using
Friedman ranking was used to evaluate the solutions of GP in [26]. That is, there is no
single fitness value on the upper optimization level, while the lower level uses the target
function value from the benchmark set as fitness. The flow chart of the proposed method is
shown in Figure 2.

The particular DE used on the upper level here was similar to the L-SHADE algorithm
but with several important features for parameter tuning. First, the adaptation of Cr was
not performed, and Cr was sampled with normal distribution with parameters m = 0.9
and o = 0.1. The scaling factor was set as F = mndc(SRO'ZS, 0.1), i.e., it depended on the
success rate as a 4th-order root. The mutation parameter pbest = 0.3, and the r1 index in
the current-to-pbest mutation strategy was sampled using exponential rank-based selective
pressure with ranks assigned as rank; = eX . The archive set and the linear population size
reduction were also used. This algorithm will be further referred to as L-SRDE (success
rate-based DE with LPSR). The exact parameters of all the methods and results are given in
the next section.
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Figure 2. Flow chart of the proposed approach.

5. Experimental Setup and Results
5.1. Benchmark Functions and Parameters

The experiments in this study are divided into two phases. In the training phase,
the coefficients c are searched by L-SRDE, and in the test phase, the performance of the
found dependencies between the success rate SR and distribution parameters MF, SF and
v is evaluated on different benchmarks.

The two benchmarks used here are the Congress on Evolutionary Computation 2017
single-objective bound-constrained numerical optimization benchmark [14] and the CEC
2022 benchmark [15]. The former has 30 test functions, and according to the competition
rules, there should be 51 independent runs made for every function. The dimensions
are D = 10, 30, 50 and 100, and the available computational resource is limited by the
NFE;;;» = 10,000D evaluations. In the CEC 2022 benchmark, there are 12 test functions
and 30 independent runs, the dimensions are D = 10 and D = 20 and the computational
resource is bigger and set to 2 x 10° and 1 x 10°, respectively.

The CEC 2017 and CEC 2022 benchmarks have different evaluation metrics. In partic-
ular, in CEC 2017, the measure of algorithm efficiency is simply the best found function
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value, whereas in CEC 2022 the number of evaluations is also considered. If an algorithm
was able to find the solution (with tolerance level 1 x 10~8), then the number of evaluations
it took on this run is recorded. The algorithms are then compared via the convergence
speed and best found value at the same time [35].

In the training phase, the CEC 2017 benchmark is used as it has more diverse functions
and a smaller resource, i.e., faster evaluation. The 30-dimensional problems are used, as in
the 10D case most of the test functions appear to be too simple for the available resource,
and the difference between the parameter adaptation methods is small. The ranking of
the solutions during the training phase was performed with the criteria from CEC 2022,
i.e., both the convergence speed and best function value were considered.

The parameters for L-SRDE were described above, except for the initial population
size, which was set to Nj;5x = 25. The number of function evaluations given to L-SRDE
was set to 1000, i.e., there were 1000 heuristics evaluated. The L-NTADE algorithm had
the following settings: the initial size of both populations Ny, = 20D; mutation strategy
parameter pb = 0.3; memory size for SHA H = 5; initial memory values Mr, = 0.3,
Mc,, = 1.0and r = 1,2,..., H; adaptation bias for the scaling factor in the weighted
Lehmer mean pm = 4; and selective pressure for the 72 index kp = 3. These settings
were determined in [13] and later used in [11]. When sampling F was replaced by the
heuristic, the Cr tuning was still performed by SHA. The search range for c values was set
as follows: ¢, ; € [—10,10], ¢,y € [0,1], i € [0,1],¢5; € [-10,10], ¢5; € [0,1], cs 0 € [0,1],
cpor € [0.1,10] and i = 1,2,...,12. Note that c,,; and ¢, are only named lower and
upper for convenience, and in fact, it is possible that c,, ; > c;,;,,—this will result in flipping
the curve.

The L-SRDE algorithm with Friedman ranking was implemented in Python 3.9, and L-
NTADE was written in C++. L-NTADE ran on an OpenMPI-powered cluster of eight AMD
Ryzen 3700 PRO processors using Ubuntu Linux 20.04. The python code automatically ran
the L-NTADE algorithm and collected the results. The post-processing was also performed
in Python 3.9.

5.2. Numerical Results

The training phase resulted in 1000 different heuristics evaluated, and each of them
was saved independently. The eight best found heuristics and the corresponding curves
are shown in Figure 3, and Table 1 contains the lower and upper ¢ values and number of
degrees of freedom v, as well as the NFE number at which the heuristic was found.

1.0

= MF best
= SF best

0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

SR

Figure 3. Curves for parameter adaptation designed by EGO for Taylor series, best found function
values used in ranking.
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Table 1. Parameters of eight best heuristics.

Rank NFE CDoF Cin,1 Cmu Cs,1 Cs,u
1 637 3.635 0.400 0.662 0.013 0.187
2 625 3.369 0.402 0.619 0.008 0.182
3 640 3.453 0.398 0.636 0.018 0.119
4 613 3.353 0.416 0.652 0.030 0.270
5 652 3.543 0.385 0.625 0.013 0.097
6 432 2.981 0.414 0.650 0.043 0.252
7 463 3.472 0.413 0.662 0.013 0.243
8 582 3.197 0.431 0.615 0.031 0.189

As can be seen from Figure 3, the best curves found by L-SRDE are relatively simple,
i.e,, they all start from around 0.4, and when SR = 0.2, then it reaches 0.6. This is similar to
some of the known recommendations about setting F, for example, in [36], quote, “A DE
control parameter study by Gamperle et al. (2002) explored DE’s performance on two of
the same test functions that Zaharie used and concluded that F < 0.4 was not useful. In Ali
and Toérn (2000), C-Si clusters were optimized with F never falling below F = 0.4”, end
quote [37-39]. Thus, the heuristically found parameters are in line with the observations of
DE behavior.

As for the spread parameter SF, its values are smaller than the mostly used SF = 0.1.
Moreover, there is a dependence between SF and the success rate SR: if the success rate
is small, then SF is close to the 0.01-0.05 range, and it increases with an SR up to 0.2.
The number of degrees of freedom v in Student’s t-distribution is equal to 3, which places it
in between the Cauchy distribution (v = 1) and normal distribution (v > 30). The difference
between the best eight heuristics is rather small.

As each set of parameters was described by a vector of the results of the tested heuristic
on a set of benchmark functions, it is not possible to plot a convergence curve, like for
a classical single-objective optimization problem. However, it is possible to rank all the
tested heuristics, and Figure 4 shows the ranks of 1000 evaluated heuristics, compared
together with the Friedman ranking in the order in which they were evaluated.

1000

800 -

600 -

Rank

400 A

200 A

0 200 400 600 800 1000
Heuristic evaluation

Figure 4. Ranks of the evaluated heuristics

From Figure 4, it can be seen that after 600 evaluations, some of the best heuristics
were found, and the rest of the time the algorithm was trying to improve these solutions.

Introducing many hyperparameters into the algorithm may be inefficient, as tuning
them is challenging. Such a large number was needed only to allow for significant flexibility
of the search, as at the beginning of the experiment we had no knowledge on what the
found curves should look like. As Figure 5 shows, the dependence appeared to be relatively
simple (represented by two simple equations, which were hand-tuned), so there is no need
to use 29 parameters after the learning process.
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Figure 5. Approximation of best found curves, applied in L-NTADE-AHE.

The MF values in Figure 5 are approximated by a hyperbolic tangent function, and the
SF values are approximated with a quadratic function. A version of L-NTADE with these
equations was additionally tested on both benchmarks (denoted as L-NTADE-AHF, L-
NTADE with approximated heuristic F sampling, and the number of degrees of freedom
was set to 3, in accordance with Table 1).

The best heuristic was tested on the whole CEC 2017 benchmark and compared to
several alternative approaches. The results are shown in Table 2. For comparison, the
Mann-Whitney statistical test was used, and each cell in the table contains the number of
wins/ties/losses out of 30 test functions, as well as total standard score Z.

Table 2. Mann-Whitney tests of L-NTADE with designed heuristic against alternative approaches,
CEC 2017 benchmark, number of wins/ties/losses and total standard score.

Algorithm 10D 30D 50D 100D
L-NTADE-HHEF vs. 11/15/4 17/8/5 15/7/8 17/4/9
LSHADE-SPACMA [33] (31.38) (93.37) (60.70) (64.55)
L-NTADE-HHEF vs. 9/14/7 20/9/1 23/7/0 26/0/4
jSO [23] (14.94) (147.01) (192.86) (184.63)
L-NTADE-HHF vs. 4/16/10 16/11/3 23/6/1 24/3/3
EBOwithCMAR [40] (—39.75) (102.60) (162.33) (174.57)
L-NTADE-HHF vs. 8/18/4 20/9/1 23/7/0 25/2/3
L-SHADE-RSP [24] (11.62) (138.18) (183.07) (172.99)
L-NTADE-HHF vs. 12/7/11 23/4/3 30/0/0 29/0/1
NL-SHADE-RSP [41] (11.54) (176.22) (259.17) (246.89)
L-NTADE-HHF vs. 7/19/4 23/7/0 28/2/0 27/2/1
NL-SHADE-LBC [42] (12.74) (183.84) (239.78) (225.46)
L-NTADE-HHF vs. 11/12/7 17/12/1 23/7/0 26/2/2
L-NTADE [13] (27.52) (105.74) (157.15) (182.49)
L-NTADE-HHF vs. 4/26/0 13/16/1 22/8/0 28/1/1
L-NTADEyr [11] (20.20) (64.65) (135.34) (191.34)
L-NTADE-HHEF vs. 0/30/0 1/29/0 3/27/0 1/29/0

L-NTADE-AHF (2.29) (9.79) (3.03) (3.11)

As Table 2 demonstrates, the proposed heuristic, applied to L-NTADE, is capable of
outperforming the alternative approaches in almost all cases. The L-NTADE-HHF (hyper-
heuristic-based F sampling) is better than standard L-NTADE, and the gap in performance
increases as the dimension grows. Compared to L-SHADE-RSP, the second best approach
from the CEC 2018 competition, L-NTADE-HHF performs similar or better in the 10D case
and almost always better in the 100D case. In 10D, the only algorithm that outperformed L-
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NTADE-HHF is the EBOwithCMAR approach, but it fails in high-dimensional cases. Also,
the comparison to the L-NTADE;r algorithm from [11] shows that the newly designed
heuristics are more efficient. Table 3 contains the Friedman ranking of the same algorithms.

Table 3. Friedman ranking of L-NTADE with designed heuristic against alternative approaches, CEC

2017 benchmark.
Algorithm 10D 30D 50D 100D Total
LSHADE-SPACMA [33] 171.12 167.56 137.75 121.96 598.39
jSO [23] 166.36 177.38 183.68 190.26 717.69
EBOwithCMAR [40] 141.15 164.69 172.70 180.51 659.04
L-SHADE-RSP [24] 163.95 171.30 171.71 172.28 679.25
NL-SHADE-RSP [41] 177.54 246.55 285.47 284.82 994.38
NL-SHADE-LBC [42] 165.00 228.15 250.02 247.88 891.05
L-NTADE [13] 17591 151.82 147.98 152.27 627.99
L-NTADEr [11] 168.70 126.46 126.62 135.35 557.13
L-NTADE-HHF 160.41 106.62 86.60 81.94 435.57
L-NTADE-AHF 159.86 109.47 87.48 82.71 439.52

The comparison in Table 3 shows a similar picture: in the lower-dimensional case,
the L-NTADE-HHEF is comparable to other algorithms, but for 50D and 100D, the new
algorithm is always better. As for the comparison between L-NTADE-HHF and L-NTADE-
AHF with the approximation of the heuristic, the results of these methods are very similar.

Table 4 contains the comparison with the alternative approaches on the CEC 2022
benchmark using the Mann-Whitney tests, and Table 5 contains the Friedman ranking.

For the CEC 2022 benchmark, the top 3 best methods were chosen for comparison,
as well as some other algorithms.

Table 4. Mann-Whitney tests of L-NTADE-HHF against the competition top 3, and other approaches,
CEC 2022, number of wins/ties/losses and total standard score.

Algorithm 10D 20D
L-NTADE-HHF vs. APGSK-IMODE [43] 8/2/2 (40.45) 7/1/4(26.02)
L-NTADE-HHF vs. MLS-LSHADE [44] 8/1/3 (30.45) 5/1/6 (—0.06)
L-NTADE-HHF vs. MadDE [45] 8/2/2(39.81) 7/1/4 (22.51)
L-NTADE-HHF vs. EA4eigN100 [46] 6/2/4 (4.32) 6/1/5 (4.93)
L-NTADE-HHEF vs. NL-SHADE-RSP-MID [47] 5/4/3 (9.61) 5/2/5 (10.61)
L-NTADE-HHF vs. L-SHADE-RSP [24] 7/3/2 (29.80) 5/3/4 (9.54)
L-NTADE-HHF vs. NL-SHADE-RSP [41] 7/2/3 (25.57) 5/3/4 (9.80)
L-NTADE-HHF vs. NL-SHADE-LBC [42] 8/3/1(36.95) 4/5/3 (13.44)
L-NTADE-HHF vs. L-NTADE [13] 6/5/1 (28.68) 3/5/4 (2.61)
L-NTADE-HHF vs. L-NTADE r [11] 3/7/2(3.79) 4/5/3 (6.67)
L-NTADE-HHF vs. L-NTADE-AHF 1/11/0(7.74) 2/6/4 (—7.54)

Table 4 shows that L-NTADE-HHEF is better than most state-of-the-art algorithms
and is comparable to EA4eigN100, L-NTADEr and L-NTADE (in the 20D case). However,
the comparison with the Friedman ranking has shown that EA4eigN100, the winner of the
CEC 2022 competition, performs better in both the 10D case and 20D case, but L-NTADE-
HHEF is still second, considering the total ranking. These results show that the designed
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heuristic is applicable not only to CEC 2017, where the training was performed, but also
CEC 2022, where different functions and different computational resources are used. Same
as before, the results of L-NTADE-HHF and L-NTADE-AHF are very close, which means
that the approximation is working well, and can be used in other algorithms.

Table 5. Friedman ranking of L-NTADE with designed heuristic against alternative approaches, CEC

2022 benchmark.
Algorithm 10D 20D Total
APGSK-IMODE [43] 99.73 104.65 204.38
MLS-LSHADE [44] 83.25 63.17 146.42
MadDE [45] 104.92 102.62 207.53
EA4eigN100 [46] 52.73 65.55 118.28
NL-SHADE-RSP-MID [47] 73.28 84.95 158.23
L-SHADE-RSP [24] 83.58 73.85 157.43
NL-SHADE-RSP [41] 104.52 98.07 202.58
NL-SHADE-LBC [42] 72.00 71.40 143.40
L-NTADE [13] 81.12 71.20 152.32
L-NTADEr [11] 62.03 68.05 130.08
L-NTADE-HHF 58.40 69.92 128.32
L-NTADE-AHF 60.43 62.58 123.02

The presented results demonstrate that the hyper-heuristic approach allowed for
finding an efficient parameter adaptation technique, which was able to perform well
not only on the set of functions, where the training was performed, i.e., 30-dimensional
problems from CEC 2017, but also for different dimensions and a different benchmark, CEC
2022. The overall performance of L-NTADE-HHEF is higher than most of the algorithms,
and the designed heuristic can be efficiently approximated with relatively simple equations.
In the next section, the obtained results and their meaning is discussed in more detail.

6. Discussion

The heuristic for parameter adaptation based on the success rate, found by the L-SRDE
algorithm, is relatively simple and straightforward. If the success rate is low, then F should
be close to 0.4, and if the success rate is at least 20%, then F should be sampled with
a mean of around 0.6. Also, for low success rates, the sampling should be performed
with smaller variance, while an increased success rate requires larger variance. For a
better understanding of the reasons of the high performance of such a simple method
compared to success history adaptation with memory cells and weighted mean, it is worth
considering the distributions that are used. For this purpose, in Figure 6, the histograms
of six distributions are built, three for the case of a low SR (MF = 0.4 and SF = 0.02) and
three for a high SR (MF = 0.65 and SF = 0.1). The sample size was 1 x 10° points, and the
same procedure as for generating F was used, i.e., while F < 0, it is sampled again, and if
F >1,itissetto 1.

In Figure 6, in the case of small variance, all three distributions, i.e., normal, Student’s
and Cauchy, are very compact, i.e., they generate F values close to 0.4. However, it can be
seen that the Cauchy distribution has heavier tails, which results in a peak at F = 1.0—there
is a certain percent of F values, which are larger than 1 and clipped back. Although Cauchy
gives more diverse F values, it is not clear if a peak at F = 1.0 is a useful thing. In the
case when the SR is relatively high, the hyper-heuristic approach proposes increasing the
variance. For example, with MF = 0.65 and SF = 0.1, the normal distribution is much
wider, but it still does not reach 0.1 very often. The learned Student’s distribution with
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v = 3 encounters clipping at F = 1.0 but not as often as it happens with Cauchy distribution.
At the same time, Student’s distribution is able to also generate small F values quite often.

Normal (m =0.4,0=0.02) Normal (m=0.65,0=0.1)
14,000
12,0004 10,000
10,0004 8000
8000
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6000
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4000
2000 2000
0 v v v v 0
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Figure 6. Histograms of sampling F values with various distributions.

Considering the above, it can be concluded that the hyper-heuristic approach was able
to find such distribution parameters that the clipping does not happen very often, but the
distribution is still wide enough. The fact that the variance changes with the success rate is
new and has not been considered in most studies, where it was usually fixed to 0.1 as a
small value. The hyper-heuristics have shown that smaller variances can be beneficial,
especially if the algorithm is stuck. That is, if the success rate is high, a more wide search
with arbitrary F values is allowed, but if the algorithm hits a local optimum, then smaller F
values are better. The idea of depending on the success rate was discussed in [11]; the usage
of a mutation strategy similar to current-to-pbest makes the algorithm go faster toward
one of the p% best individuals (exploitation and faster convergence) when the SR is high
and switch to exploration, when the second difference between individuals with indexes r1
and 72 is more important, if the success rate is low.

The proposed approach is a universal tool for tuning algorithms, designing new
adaptation techniques and searching for dependencies between parameters based on
extensive experiments. The only drawback is the computational effort required to use
such a method. The usage of the Taylor series was dictated by the flexibility, but any other
approximation method can be used. Further studies on DE and hyper-heuristics may
include the following:

1. Proposing more flexible methods to control the random distribution of F values and
tuning them;

2. Reducing the found heuristic to a set of simple rules and equations without many
parameters of Taylor series;

3. Applying the new heuristic to other DE-based algorithms and replacing the success
history adaptation;

4. Determining the dependence of the Cr parameter on some of the values present in
the DE algorithm.
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7. Conclusions

In this study, the hyper-heuristic approach was used to generate new parameter
adaptation methods for the scaling factor parameter in differential evolution. The training
phase resulted in a relatively simple adaptation method, which relies on the success rate
value. The comparison of the L-NTADE algorithm with the new heuristic has shown that it
is able to outperform alternative approaches on two sets of benchmark problems, and the
efficiency of the modification increases in higher dimensions. The hyper-heuristic approach
described in this study can be applied to other evolutionary computation methods to search
for parameter adaptation procedures. One of the drawbacks of this study is that here only
symmetrical distributions were considered for sampling the scaling factor values, but it
is possible that skewed distributions may give better results. The skewed distributions
have not been used in differential evolution, to the best of our knowledge, and it can be a
direction of further studies.

Author Contributions: Conceptualization, V.S. and E.S.; methodology, V.S., LK. and E.S.; software,
V.S,; validation, V.S., L.K. and E.S.; formal analysis, L.K.; investigation, V.S.; resources, E.S. and V.S.;
data curation, E.S.; writing—original draft preparation, V.S.; writing—review and editing, V.S. and
L.K,; visualization, V.S.; supervision, E.S. and L.K,; project administration, E.S.; funding acquisition,
L.K. and V.S. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Ministry of Science and Higher Education of the Russian
Federation (Grant No. 075-15-2022-1121).

Data Availability Statement: Data are contained within the article..

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript:

GA Genetic Algorithms

GP Genetic Programming

EC Evolutionary Computation

DE Differential Evolution

EGO Efficient Global Optimization

CEC Congress on Evolutionary Computation
SHADE Success History Adaptive Differential Evolution
LPSR Linear Population Size Reduction

LBC Linear Bias Change

RSP Rank-based Selective Pressure

HHF Hyper-Heuristic Generation of Scaling Factor F

L-NTADE Linear Population Size Reduction-Newest and Top Adaptive Differential Evolution
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mild conditions, we establish the global convergence and R-linear convergence rate of the proposed
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1. Introduction

We consider the following nonlinear equations with convex constraints:
F(x)=0, x€Q, @

where () C R" is a non-empty closed convex set and F : R" — R" is a continuous mapping
that satisfies the monotonicity condition

(F(x) - F(y),x —y) 20, @

for all x,y € R". It is easy to verify that the solution set of problem (1) is convex under
condition (2).

Nonlinear equations have numerous practical applications, e.g., machinery manu-
facturing problems [1], neural networks [2], economic equilibrium problems [3], image
recovery problems [4], and so on. In the context of many practical applications, problem (1)
has attracted a substantial number of scholars to put forward more effective iterative
methods to find solutions, such as Newton’s method, quasi-Newton methods, trust re-
gion methods, Levenberg-Marquardt methods, or their variants ([5-9]). Although these
methods are very popular and have fast convergence at an adequately good initial point,
they are not suitable for solving large-scale nonlinear equations due to the calculation and
storage of the Jacobian matrix or its approximation.
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Due to its simple form and low memory requirement, conjugate gradient (CG) meth-
ods are used to solve problem (1) by combining them with projection technology pro-
posed by Solodov and Svaiter [10] (see [11,12]). Xiao and Zhu [13] extended the famous
CG_DESCENT method [14] for solving nonlinear monotone equations with convex con-
straints due to its effectiveness. Liu and Li [15] presented an efficient projection method
for solving convex constrained monotone nonlinear equations, which can be viewed as
another extension of the CG_DESCENT method [14] and was used to solve the sparse
signal reconstruction in compressive sensing. Based on the Dai-Yuan (DY) method [16],
Liu and Feng [17] presented an efficient derivative-free iterative method and established its
Q-linear convergence rate of the proposed method under the local error bound condition.
By minimizing the distance between relative matrix and the self-scaling memoryless BEGS
method in the Frobenius norm, Gao et al. [18] proposed an adaptive projection method
for solving nonlinear equations and applied it to recover a sparse signal from incomplete
and contaminated sampling measurements. Based on [19], Li and Zheng [20] proposed
two effective derivative-free methods for solving large-scale nonsmooth monotone nonlin-
ear equations. Waziri et al. [21] proposed two DY-type iterative methods for solving (1).
By using the projection method [10], Abdulkarim et al. [22] introduced two classes of
three-term methods for solving (1) and established the global convergence under a weaker
monotonicity condition.

The subspace minimization conjugate gradient (SMCG) methods proposed by Yuan
and Stoer [23] are generalizations of the traditional CG methods and are a class of iterative
methods for unconstrained optimization. The SMCG methods have illustrated excellent
numerical performance and have also received much attention recently. However, the
SMCG methods are only used to solve unconstrained optimization at present. Therefore,
it is very interesting to study the SMCG methods for solving nonlinear equations with
convex constraints. In this paper, we propose an efficient SMCG method for solving
nonlinear monotone equations with convex constraints by combining it with the projection
technology, where the search direction is in a sufficient descent. Under suitable conditions,
the global convergence and the convergence rate of the proposed method are established.
The numerical experiment is conducted, which indicates that the proposed method is
superior to some efficient conjugate gradient methods.

The remainder of this paper is organized as follows. In Section 2, an efficient SMCG
method for solving nonlinear monotone equations with convex constraints is presented.
We prove the global convergence and the convergence rate of the proposed method in
Section 3. In Section 4, the conducted numerical experiment is discussed to verify the
effectiveness of the proposed method. The conclusion is presented in Section 5.

2. The SMCG Method for Solving Nonlinear Monotone Equations with
Convex Constraints

In this section, we first review the SMCG methods for unconstrained optimization, and
then propose an efficient SMCG method for solving (1) by combining it with the projection
technique and exploit some of its important properties.

2.1. The SMCG Method for Unconstrained Optimization

We review the SMCG methods here.

The SMCG methods were proposed by Yuan and Stoer [23] to solve the unconstrained
optimization problem

min f(x),

where f : R" — R is continuously differentiable. The SMCG methods are of the form
Xgar1 = Xx + axdy, where ay is the stepsize and dj is the search direction, which are generated
by minimizing the quadratic approximate models of the objective function f at the current
iterative point x in the subspace () = Span{dj_1, gx}, namely
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min 71y, (0?) :ngtf—i—ldNTBde, (3)
dGQk 2
where By, is an approximation to the Hessian matrix and is required to satisfy the quasi-
Newton equation Bgég_q = Jx_1, $k—1 = Xks1 — Xk = apdy, g = V f(x5)-

In the following, we consider the case that dr_q and gx are not collinear. Since the
vector dy in O = Span{dj_1, gx} can be expressed as

de=pigr+vicSk—1, 4
where py, v € R, by substituting (4) into (3), we obtain

T T .
min @, vy) = ( ||§lf|\2 ) ( Mk >+1< Hk ) ( %;Bkgk %}{Bkskrl )( Hk )
(1 vp) ER2 8k Sk—1 Vg 2\ % Si_1Brkgk  Si_1BkSk—1 Vg
When By is positive definite, by imposing V®(uy, vx) = (0,0), we obtain the optimal
solution of subproblem (5) (for more details, please see [23]):

i \_ 1 [ 8lik-18tSk-1 — 8L Tk—1lIgkl?
|7 T 2 Tx / (6)
V A\ S Tk—1118k!* — ok 8 3k—1

where Ay = o8] 9k1 — (ngyAk—1)2/ Ok = & Bkks Tk—1 = Sk+1 — Sk-

An important property about the SMCG methods was given by Dai and Kou [24]
in 2016. They established the two-dimensional finite termination property of the SMCG
methods and presented some Barzilai-Borwein conjugate gradient (BBCG) methods with
different py values, and the most efficient one is

pBBCG3 _ 3118kl 1?19k 1* @
280 10k

Motivated by the SMCG methods [23] and p,lf BCG3 1ju and Liu [25] extended the BBCG3
method to general unconstrained optimization and presented an efficient subspace mini-
mization conjugate gradient method (SMCG_BB). Since then, a lot of SMCG methods [26-28]
have been proposed for unconstrained optimization. The SMCG methods are very efficient
and have received much attention.

2.2. The SMCG Method for Solving (1) and Its Some Important Properties

We will extend the SMCG methods for unconstrained optimization for solving (1) by
combining it with the projection technique and exploit some important properties of the
search direction in the subsection. The motivation behind we extend the SMCG methods
for unconstrained optimization to solve (1) is that the SMCG methods have the following
characteristics: (i) The search directions of the SMCG methods are parallel to those of
the traditional CG methods when the exact line search is performed, and thus reduce to
the traditional CG methods when the exact line search is performed. It implies that the
SMCG methods can inherit the finite termination property of the traditional CG methods
for convex quadratic minimization. (ii) The search directions of the SMCG methods are
generated by solving (3) over the whole two-dimensional subspace ) = Span{d;_1, g},
while those of the traditional CG methods are cfk = —gr+ ,Bdek,l, where By is called the
conjugate parameter. Obviously, the search directions of the traditional CG methods are
derived in the special subset of (); to make them possess the conjugate property. As a
result, the SMCG methods have more choices and thus have more potential in theoretical
properties and numerical performance. In theory, the SMCG methods without the exact line
search can possess the finite termination property when solving two-dimensional strictly
convex quadratic minimization problems [24], while this is impossible for the traditional
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CG methods when the line search is not exact. In numerical performance, the numerical
results in [25-28] indicated that the SMCG methods are very efficient.

For simplicity, we abbreviate F(x) as Fy in the following. We are particularly interested
in the SMCG methods proposed by Yuan and store [23], where the search directions are
given by

dp = gk + vidk-1, (8)

where y;- and v} are determined by (6). For the choice of pj in (6), we take the form (7) due
to its effectiveness [24]. Therefore, based on (8) and (7), the search direction of the SMCG
method for solving problem (1) can be arranged as

- 1
dp =+ [(FkT]/kflkaSkfl — St Yk-1 HFk||2> F + (FkTykq | Fel|* - PkaTSkfl)Skfl} , 09
k

_ = = _ _ _ T
where yx 1 = Jr1 +rsk-1, Jr-1 = F(xx) — Feo1, k-1 = Xk — Xk—1, D = OkSj_1Yk—1 —

T 2 3B Pyl
(Flyk-1)" ok = Ty
In order to analyze some properties of the search direction, the search direction will be
reset as —F; when SZ_ﬂ/k—l < &1/lyx_1]]?, where ¢; > 0. Therefore, the search direction is

truncated as

~fode i sE oy > Sl
A = { —F, otherwise, (10)
where dj is given by (9).
The projection technique, which will be used in the proposed method, is described
as follows.

By setting z=xy+uaydy as a trial point, we define a hyperplane
Hy= {x € R"|(F(zx), x—z)= 0},

which strictly separates x; from the zero points of F(x) in (1). The projection operator is a
mapping from R" to the non-empty closed subset () :

Pa[x] = argmin{||x —y[|[y € Q},
which enjoys the non-expansive property
[[Palx] —yll < [lx —yll, vy € Q.

Solodov and Svaiter [10] showed that the next iterative point xj 1 is the projection of xj
onto Hy, namely
(F(zi), Xk — 2k)
Xk+1=Xk ||F(Zk)||2 F(Zk)'

By combining (10) with the projection technique, we present an SMCG method for
solving (1), which is described in detail as follows.

The following lemma indicates that the search direction dj satisfies the sufficient
descent property.
Lemma 1. The search direction {d} generated by Algorithm 1 always satisfies the sufficient
descent condition

d{Fe < ~C||Fl?, (1)

forall k > 0.

Proof. According to (10), we know that (11) holds with C = 1 if s,fflyk,l < &||yr_1]]> We
next consider the opposite situation. It follows that
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1
df Fe = &[(FkT]/klekTskfl - Sl{—ﬂk—lHFkHz) F + (FkT.‘/kleFkHZ - PkaTSkfl)Skfl]TFk
i

2
||F ||4 T T FkTsk—l FkTSk—l
= — _1—2F yi_
T e RN .
4
a |l < AN A NE]
Ay - Mo Pk

where the inequality comes from the fact that treating 7, as a one variable function of
Flsiy A

TETR and minimizing it can yield r; > o Consequently, by the choice of p; and (10), it
holds that
Ell* _ 2s{ ik 26
dTFkS_Hk S_ Fzé—in.
k o 3||]/k—1||2|| ll 5 |1Eell

In sum, (11) holds with C = min{l, % } The proof is completed. [J

Algorithm 1 Subspace Minimization Conjugate Gradient Method for Solving (1)

Step 0. Initialization. Select xo € R", e > 0,0 <0 <1, € (0,1),p € (0,1), x € (0,2).
Set k = 0.

Step 1. If || Fi|| < ¢, stop. Otherwise, compute search direction d by (10).

Step 2. Let z; = xi + aydy, where a; = max{Zp'li =0,1,2,3,- - -} is determined by

—(F o + ady), di) > oo [F(xe + arei) ]| ldi] %, (13)
Step 3. If z; € Q and ||F(zx)|| < ¢, X541 = 2k, then stop. Otherwise, we determine x4
by
X1 = Paxg — xAKF(z¢)],
where

_ () —zi)
IF (ze) |

Step 4. Set k = k + 1 and go to Step 1.

Lemma 2. Let the sequences {dy} and {x;} be generated by Algorithm 1, then there always exists
a stepsize wy satisfying the line search (13).

Proof. We prove it by contradiction. Suppose that inequality (13) does not hold for any
positive integer i at the k-th iteration, we can determine that

—<F(xk + ﬁpidk>/dk> < oBp’ || F(xx + Bp'dy) H [y || (14)

By taking i — oo, it follows from the continuity of F and p € (0,1) that
—F(xp)"d <0, (15)
which contradicts (11). The proof is completed. [J

3. Convergence Analysis

In this section, we will establish the global convergence and the convergence rate of
Algorithm 1.
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3.1. Global Convergence
We first perform the following assumptions.

Assumption 1. There is a solution x* € QO such that F(x*) = 0.
Assumption 2. The mapping F is continuous and monotone.

By utilizing (2), we can obtain

SE_yko1 = st (ko1 +rse1) = si_q (F(xy) — F(xp_1)) +rsi_iskq > 7llsq > > 0.

The next lemma indicates that sequence {||x;y — x*||} generated by Algorithm 1 is Fejer
monotone with respect to ().

Lemma 3. Suppose that Assumptions 1 and 2 hold, and {x;} and {z} are generated by Algo-
rithm 1. Then, it holds that

e — 2F |2 < g — 2|2 = x(2 = 1) 0?| | =z |*, vt € Q" (17)

Moreover, the sequence {x} is bounded and
l|x% — z| [* < +oo. (18)
k=0
Proof. From (2), the following holds:
(F(z), x — x*) = (F(zk), X — 2), V" € QOF,
which, together with (13), implies that
(F(zi), 2 — zi) > oo[|F(zi)||[|de]|* > 0.
As a result, we have
X1 — x*||> = Palxk — kARF(z¢) — x*] < [ — 1eAF (zi) — x*| 2
= [k = x*[[> = 26A0 (F(zi), X — x*) + |[KACF (20) [
< o = 7|2 = 20 Ak (F (i), 2 — zi) + | [KAF (z0) |

(F(zy), xx — zi)°

[[F(zi) 112
< [l = (12 = 1(2 = )| — zel

= [l = | ? = x(2 ~ x)

O

It follows that the sequence ||x; — x*|| is non-increasing and thus, the sequence {xy }
is bounded. We also have

[ee]
K(Z—K)Uz 2 ||xk—zkH4 < ||x0—x*H2 < +o0.
k=0

By the definition of {z; }, we can determine that
lim [|x) — zg || = lim a|[di[| = 0. (19)
k—o0 k—o0

The following lemma is proved only based on the continuity assumption on F.
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|ldi]|

Lemma 4. Suppose that {dy} is generated by Algorithm 1. Then, for all k > 0 , we have
ClEel] < lldil[ < Ca|Eill, (20)
where 0 < C < C3.
Proof. From (11) and by utilizing the Cauchy-Schwartz inequality, it follows that
[ldkl| = CI[Fll. (21)

In the following, we consider two cases: when (i) s]_,yx_1 > &1||yk_1/|* holds, we have

1 1 1 2
8l T o ol Blvea PRI — Elrey] ~ Tl PTEIE 22
el ooyt — BTy )| |3y IR = (EFye)?| el P11
Therefore, by (10), (16) and (22), as well as the Cauchy-Schwarz inequality, we obtain
3 2||Eel)?
B A’ (B yk1 B sko1 — iyl 1Bl P) B+ (Bl vl el P = HylekaHFT k—1)Sk—1]
1Yk—1
1
< Al ‘Fkyk 1F s 1H||Fk||+H5k 1Yk— 1H||Fk||
3 F
T L N e i 1 [V88Y)
28 1Yk
< e Bkl it B + oIy Plise-a P 1Bl
[ [yk—1l[?[|Fl] 25, 1Yk
6llsk—1ll 3 2
= + lIsk—1 11" | Il il 23
(ny“n T v *
6|se_1]” 3 2
= + l[sk—1l1 | 1 Fll
l[sk—1lllyx—1ll Si_1Yk—1
6|se_1 > 3 2
< ( T + = lIsk—111" | Il Exl
Sk¥Yk—1 Sk qYk—1
9|sk—1
< Moty
Sk 1Yk-1
< =||F|].
< r|| Al
(ii) s{ jyk1 < Ellyk_al? or k = 0, ||di]| = ||F]|. In sum, (20) holds for all k > 0 with

C3 = max{ 2,1} and C in (11). The proof is completed. [

In the following theorem, we establish the global convergence of Algorithm 1.

Theorem 1. Suppose that Assumption 2 holds, and the sequences {xy} and {z;} are generated by
Algorithm 1. Then, the following holds:

lim inf ||F|| = 0. (24)
k—o0

Proof. We prove it by contradiction. Suppose that (24) does not hold, i.e., there exists a
constant r > 0 such that ||Fy|| > 7, Yk > 0. Together with (21), it implies that

||di|| > Cr, ¥k > 0. (25)
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By utilizing (19) and (25), we can determine that hm ap = 0. By ap = Bp'k and the line

search (13), for a large enough k, we can determme that

—(F(v+ Pp1dp), di) < oPpt | P+ Bo1dy) | 1> 26)

It follows from (20) and ||Fy|| > r that the sequence {d;} is bounded. Together with the
boundedness of {xi}, we know that there exist convergent subsequences for both {x;} and
{dy}. Without the loss of generality, we assume that the two sequences {x; } and {d;} are
convergent. Hence, taking limits on (26) yields

—(F(x),d) <0, (27)

where * and d are the corresponding limit points. By taking limits on both sides of (11),
we obtain

~(F(x),d) = CIF()|" (28)
It follows from (27) and (28) that ||F(%)|| = 0, which contradicts ||Fy|| > r. Therefore, we
obtain (24). The proof is completed. [

3.2. R-Linear Convergence Rate

We begin to analyze the Q-linear convergence and R-linear convergence of Algorithm 1.
We say that a method enjoys Q-linear convergence to mean that its iterative sequence {x;}

satisfies lim sup w < ¢, where ¢ € (0,1); we say that a method enjoys R-linear
n—sco "
convergence to mean that for its iterative sequence {x; }, there exists two positive constants

m € (0,00),q € (0,1) such that ||x, — x*|| < mg* holds (See [29]).
Assumption 3. For any x* € Q) there exist constant w € (0,1) and 6 > 0 such that

wdist(x, %) < ||F(x)||*, Vx € N(x*,6), (29)

where dist(x, (Y*) denotes the distance from x to the solution set (0%, and N (x*,6) = {x € Q||x — x*||
<4}

Theorem 2. Suppose that Assumptions 2 and 3 hold, and let the sequence {xy} be generated by
Algorithm 1. Then, the sequence dist{xy, Q* } is Q-linearly convergent to 0 and the sequence {x;}
is R-linearly convergent to x € (*.

Proof. By setting 1 := argmin{||x;, — ul||u € OO* }, we know that 1 is the nearest solution
from xy, i.e.,
|| xx — ug|| = dist (xg, QF).

From (17), (21) and (29), for u; € (O*, we have

dist(x11,07) = i1 — e
< dist(x, 0°)* — 02|agd||*
< dist(x, ") — 2 CH| Fe||*
< dist(x, ) — Pw?at CHdist (xp, OF)*
(1 - Ozwza%C‘l)dist(xk, 0*)?,
which, together with ¢ € (0,1), w € (0,1), ax € [0,1], and C € [0,1] implies that the

sequence dist(xy, (V) is Q-linearly convergent to 0. If dist(xg, Q") has this property, then
the sequence {x;} is R-linearly convergent to ¥ € (*. The proof is completed. [J
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4. Numerical Experiments

In this section, the numerical experiment is conducted to compare the performance
of Algorithm 1 with that of the HTTCGP method [30], the PDY method [17], the MPRPA
method [18], and the PCG method [15], which are very effective types of projection algo-
rithm for solving (1). All codes of the test methods were implemented in MATLAB R2019a
and were run on an HP personal desktop computer with Intel(R) Core(TM) i5-10500 CPU
3.10 GHz, 8.00 GB RAM, and Windows 10 operation system.

In Algorithm 1, we choose the following the parameter values:

p=053,0=00001,=055¢& =107, =055« =19, r = 0.1,

The parameters of the other four test algorithms use the default values from [15,17,18,30],
respectively. In the numerical experiment, all test methods are terminated if the itera-
tion exceeds 10,000, or if the function value of the current iterations satisfies the condition
|F(x)] < 1075,

Denote

F(x) = (Fi(x), Ba(x), - Fa(x))".

The test problems are given as follows.

Problem 1. This problem is a logarithmic function with Q = {x € R"|x; > —1} [17], i.e.,
Fi(x)=1In(x;+1)—3,i=1,2,3,--- ,n.

Problem 2. This problem is a discrete boundary value problem with () = R', [17], i.e.,

Fy(x) = 2x1 +0.5h2(x1 + h)® — x,
Fi(x) = 2x; +0.5k%(x; + ih)3 —Xj_ 1+ X1,
Fu(x) = 2x, + 0.512(x,, 4+ nh)® — x,,_1,

Problem 3. This problem is a trigexp funtion with ) = Rt [17], i.e.,
Fi(x) = 3x} 4+ 2x, — 5+ sin(x; — x) sin(x; + x2),
Fi(x) = —x;_1ei17%) 4 x; (4 4 3x7) + 2x; 1 +sin(x;_1 — x;) sin(x;_1 +x;) — 8,
Fi(x) = —xy_qe(¥n-17%n) 4 4x, — 3,
wherei =2,3,--- ,n—1.
Problem 4. This problem is a tridiagonal exponential problem with (3 = R’} [17], i.e.,
F(x)=¢%—1,
wherei=1,2,--- ,n.
Problem 5. This problem is problem 4.6 in [17] with Q) = R} , i.e.,
Fi(x) = x; — 2sin |x; — 1],
wherei =1,2,--- ,n.
Problem 6. This problem is problem 4.7 in [17], i.e.,
Fi(x) =25x1 +x,—1,
F;

(x) =xj_1+25x;+x;41—1,
Fi(x) =x,-1+25x, — 1,
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where O = {x e R"|x > -3},i=2,3,--- ,n—1.
Problem 7. This problem is problem 4.8 in [17], i.e.,

Fi(x) = 2x; —sin(x;),
where 3 = {x e R"|x > -2},i=1,2,--- ,n.

Problem 8. This problem is problem 3 in [31], i.e.,

F(x)=x — e (%),
F

Xj_qtxi+x;
COS( =174 1+1>
(x) =x;—e B

cos(x”’ﬁx")
Fu(x)=x,—¢ e

where QO =R",i=2,--- ,n—1

Problem 9. This problem is problem 4.3 in [32], i.e.,

Fi(x) = %exi -1,
where QO =R",i=1,2,--- ,n.
Problem 10. This problem is problem 4.8 in [32], i.e.,
Fi(x) = (¢%)? 4+ 3sinx;cos x; — 1,
where QO =R",i=1,2,--- ,n.
Problem 11. This problem is problem 4.5 in [32], i.e.,

X1+xp
COs ( I

F(x)=x1—e¢ ,
N1 tXitXigg )
F(x) =x;— eCOS( ’ ,
cos(ix”’}f}m)
Fi(x)=x,—e ,

where QO =R",i=2,--- ,n—1.
Problem 12. This problem is problem 5 in [31], i.e.,

Fl(x) =¥ —1,
Fi(x) = e%i+xi1 -1,

where QO =R",i=2,--- ,n—1.

Problem 13. This problem is problem 6 in [31], i.e.,
Fl(x) = 2X1 — X2 +e'1 —1,
Fi(x) = —xj1 +2x; — ;41 + €5 — 1,
Fn<x) = —Xy_1+2x;, +e" —1,

where QO =R",i=2,--- ,n—1.
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Problem 14. This problem is problem 4.3 in [20], i.e.,

Fi(x)=x (2xl + 2x2) 1,
Fi(x) = x;(2x? | 4 2x? +2xl+1) 1,
Fn(x) xn (222, +2xn) 1,

where QO =R" ,i=2,--- ,n—1.
Problem 15. This problem is a complementarity problem in [20],i.e.,
Fi(x) = (x; —1)* —1.01,

where QO =R" ,i=1,2,--- ,n

The above 15 problems with different dimensions (1 = 1000,5000, 10,000, and 50,000)

are used to test the five test methods, as well as different initial points xog = a; * ones(n, 1),
where a1 = 0.1,0.2,0.5,0.12,0.15,2.0, and m = ones(n,1). Some of the numerical results

are listed in Table 1, where “Al” represents Algorithm 1, “Pi” (i = 1,2, - - -

,15) stands for

the i-th test problem listed above, and “Ni” and “NF” denote the number of iterations and
the number of function calculations, respectively. Other numerical results are available at

https:/ /www.cnblogs.com/888-0516-2333/p /18026523 (accessed on 6 January 2024).

Table 1. The numerical results (n = 10,000).

Al PDY HTTCGP MPRPA PCG Al HTTCGP PDY MPRPA PCG
P o Ni/NF Ni/NF Ni/NF Ni/NF Ni/NF o Ni/NF Ni/NF Ni/NF Ni/NF Ni/NF
P1 0.1m 4\9 14\31 3\7 28\57 9\23 12m 8\17 14\31 5\11 34\69 11\27
0.2m 5\11 14\31 3\7 29\59 8\20 1.5m 8\17 20\42 5\11 35\71 9\22
0.5m 6\13 18\39 4\9 31\63 10\25 2.0m 8\17 15\33 6\14 36\73 11\27
P2 0.1m 4\10 7\23 6\19 12\25 10\36 1.2m 5\11 8\25 7\22 13\27 9\32
0.2m 4\10 7\23 6\19 12\25 10\36 1.5m 6\13 8\25 7\22 13\27 9\32
0.5m 3\8 6\20 5\16 9\19 8\29 20m 6\13 8\25 8\25 14\29 10\35
P3 0.1m 19\39 16\42 26\72 42\85 16\39 1.2m 17\35 27\81 49\126 37\75 18\52
0.2m 19\39 19\49 31\83 42\85 16\39 1.5m 19\40 20\58 41\109 33\67 17\46
0.5m 19\39 22\57 28\80 41\83 18\48 2.0m 18\38 32\148 46\121 34\70 19\59
P4 0.1m 22\46 24\97 50\172 77\170 19\77 1.2m 29\60 32\129 53\185 92\205 22\89
0.2m 24\50 26\105 52\179 83\184 20\81 1.5m 30\62 33\133 53\185 92\205 22\89
0.5m 26\54 30\121 59\202 86\191 21\85 2.0m 31\64 34\137 54\189 95\212 23\93
P5 0.1m 1\3 1\4 20\61 27\55 9\24 1.2m 1\4 1\5 23\71 30\61 11\31
0.2m 1\3 1\4 21\64 29\59 9\24 1.5m 1\4 1\5 23\71 29\59 11\31
0.5m 1\3 1\4 22\67 30\61 10\27 2.0m 1\4 1\6 24\76 31\64 10\28
P6 0.1m 5\11 6\20 7\22 12\25 9\32 1.2m 6\13 7\22 7\22 13\27 9\32
0.2m 5\11 6\20 6\19 12\25 8\29 1.5m 5\11 6\20 7\22 13\27 10\35
0.5m 3\8 6\20 5\16 oN\19 8\29 2.0m 6\14 7\22 8\25 14\29 10\34
P7 0.1m 8\18 11\36 16\57 17\35 17\65 1.2m 6\13 10\31 18\70 12\25 11\42
0.2m 8\20 10\33 15\54 16\33 20\78 1.5m 6\13 10\31 20\79 11\23 15\59
0.5m 7\15 11\33 18\68 14\29 18\69 2.0m 3\8 7\23 17\69 8\17 15\61
P8 0.1m 5\11 7\19 20\61 28\57 10\26 1.2m 7\15 13\31 24\73 32\65 10\26
0.2m 5\11 7\19 21\64 29\59 10\26 1.5m 7\15 14\33 24\74 32\65 10\26
0.5m 6\13 6\16 23\70 31\63 10\26 2.0m 8\17 14\33 25\77 32\65 11\29
P9 0.1m 6\13 9\24 26\80 34\69 12\31 1.2m 6\13 9\24 24\73 33\67 11\29
0.2m 6\13 9N\24 26\80 34\69 12\31 1.5m 6\13 9N\24 24\73 32\65 11\29
0.5m 6\13 9\24 25\77 34\69 12\31 2.0m 6\13 9\24 23\70 31\63 10\26
P10 0.1m 51\105 40\192  197\816 13\40 68\311 1.2m 27\57 26\143  147\617 14\43 52\241
0.2m 51\105 31\159  187\774 13\40 71\324 1.5m 31\65 36\180  121\512 14\43 43\201
0.5m 29\61 26\131  181\752 14\43 62\285 2.0m 34\71 35\174  132\557 16\49 43\201
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Table 1. Cont.

Al PDY HTTCGP MPRPA PCG Al HTTCGP PDY MPRPA PCG
P o Ni/NF Ni/NF Ni/NF Ni/NF Ni/NF o Ni/NF Ni/NF Ni/NF Ni/NF Ni/NF
P11 0.1m 1\5 1\7 16\81 23\93 10\51 1.2m 1\4 1\4 18\92 24\97 1\5
0.2m 1\5 1\7 17\86 24\97 10\51 1.5m 1\7 1\3 18\93 1\4 1\3
0.5m 1N\5 1\3 17\86 25\101 1\3 2.0m 1\6 1\8 19\100 1\4 2\11
P12 0.1m 20\41 18\75 95\306 25\51 44\152 1.2m 21\43 15\60 73\233 28\57 43\149
0.2m 20\41 15\59 95\306 24\49 44\152 1.5m 21\43 15\61 65\210 26\53 24\85
0.5m 20\41 17\67 98\315 25\51 44\152 2.0m 18\37 20\76 92\293 23\47 38\131
P13 0.1m 30\62 24\119  182\741  83\246 99\442 1.2m 37\76 27\136  216\880  104\333  127\641
0.2m 34\70 25\124  188\761  88\261 98\440 1.5m 37\77 28\157  226\963  85\284 79\389
0.5m 34\71 26\133  191\786  96\288  101\458 2.0m 3\80 25\127  210\872  120\454 3\48
P14 0.1m 54\111 31\163  101\430 129\416 14\70 1.2m 47\99 28\152 61\269  167\533 18\94
0.2m 40\82 42\260  125\530  184\582 17\85 1.5m 55\120 27\158 91\393  157\505 18\96
0.5m 49\101 31\159  123\522  177\563 17\86 2.0m 52\115 34\177  138\588 147\473  22\119
P15 0.1m 34\72 22\177 39\245 16\80 20\140 1.2m 21\47 20\165 48\306 15\76 16\113
0.2m 31\66 23\185 35\218 16\80 18\126 1.5m 31\67 22\184 48\311 18\91 43\291
0.5m 28\60 23\162 42\262 17\86 18\127 2.0m 24\54 19\155 58\361 16\82 17\121

The performance profiles proposed by Dolan and Moré [33] are used to compare the
numerical performance of the test methods in terms of Ni, NF, and T, respectively. We
explain the performance profile by taking the number of iterations as an example. Denote
the test set and the set of algorithms by P and A, respectively. We assume that we have
n, algorithms and n,, problems. For each problem with p € P and algorithm a € A, t,,
represents the number of iterations required to solve problem p by algorithm a. We use the
performance ratio

Tpa = fpa
P min{t,,|a € A}

to compare the performance on problem p by solver a with the best performance by any
algorithm on this problem. To obtain an overall assessment of the performance of the
algorithm, we define
0a(T) = nlpsize{p € Plrpq < T},

which is the probability for algorithm a € A that a performance ratio ;5 is within a factor
T, € R of the best possible ratio and reflects the numerical performance of algorithm a
relative to the other test algorithms in A. Obviously, algorithms with large probability p,(7)
are to be preferred. Therefore, in the figure plotted with these p,(7) of the test methods,
the higher the curve is, the better the corresponding algorithm a performs.

As shown in Figure 1, we observe that, in terms of the number of iterations, Algo-
rithm 1 is the best, followed by the HTTCGP, MPRPA, and PCG methods, and the PDY
method is the worst. Figure 2 indicates that Algorithm 1 has significant improvement
over the other four test methods in terms of the number of function calculations, since it
successfully solves about 78% of test problems with the least number of function calcu-
lations, while the percentages of the other four methods are all less than 10%. As for the
reason for the significant improvement in terms of NF, it is due to the fact that the search
direction of Algorithm 1 is generated by minimizing the quadratic approximate model
in the two-dimensional subspace (0 = Span{d;_1, gx}, which implies that the search
direction has new parameters corresponding to Fy and thus results in that it requires less
function calculations in Step 2. This is also the advantage of the SMCG methods compared
with other CG methods. We can see from Figure 3 that Algorithm 1 is much faster than the
other four test methods.

The numerical experiment indicates Algorithm 1 is superior to the the other four
test methods.
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Figure 2. Performance profiles of the five algorithms with respect to number of function evalua-
tions (NF).
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Figure 3. Performance profiles of the five algorithms with respect to CPU time (T).

5. Conclusions

In this paper, an efficient SMCG method is presented for solving nonlinear monotone
equations with convex constraints. The sufficient descent property of the search direction is
analyzed, and the global convergence and convergence rate of the proposed algorithm are
established under suitable assumptions. The numerical results confirm the effectiveness of
the proposed method.

The SMCG method has illustrated a good numerical performance for solving nonlinear
monotone equations with convex constraints. There is a wide research gap with regard
to studying the SMCG methods for solving nonlinear monotone equations with convex
constraints, including exploiting suitable quadratic or non-quadratic approximate models
to derive new search directions. This is also our future research focus.
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1. Introduction

The nonlinear optimization is a fundamental subject in the modern optimization
literature. It focuses on the problem of optimizing an objective function in the presence of
inequality and/or equality constraints. Furthermore, the optimization problem is obviously
linear if all the functions are linear, otherwise it is called a nonlinear optimization problem.

This research field is motivated by the fact that it arises in various problems encoun-
tered in practice, such as business administration, economics, agriculture, mathematics,
engineering, and physical sciences.

In our knowledge, Frank and Wolfe are the deans in nonlinear optimization problems.
They established a powerful algorithm in [1] to solve them. Later, they used another
method in [2] based on the application of the Simplex method on the nonlinear problem
after converting it to a linear one.

This pioneer work inspired many authors to propose and develop several methods
and techniques to solve this class of problems. We refer to [3,4] for interior point methods
to find the solution of nonlinear optimization problems with a high dimension.

In order to make this theory applicable in practice, other methods are designed on
the linear optimization history, among robust algorithms with polynomial complexity. In
this perception, Khachian succeeded in 1979 to introduce a new ellipsoid method from
approaches applied originally to nonlinear optimization.

Interior point methods outperform the Simplex ones, and they have recently been
the subject of several monographs including Bonnans and Gilbert [5], Evtushenko and
Zhadan [6], Nesterov and Emirovski [7], and Wright [8] and Ye [9].

Interior point methods can be classified into three different groups as follows: projec-
tive methods and their alternatives as in Powell [10] and Rosen [11,12], central trajectory
methods (see Ouriemchi [13] and Forsgren et al. [14]), and barrier/penalty methods, where
majorant functions were originally proposed by Crouzeix and Merikhi [15] to solve a
semidefinite optimization problem. Inspired by this work, Menniche and Benterki [16]
and Bachir Cherif and Merikhi [17] applied this idea to linear and nonlinear optimizations,
respectively.
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A majorant function for the penalty method in convex quadratic optimization was
proposed by Chaghoub and Benterki [18]. On the other hand, A. Leulmi et al. [19,20] used
new minorant functions for semidefinite optimization, and this idea was extended to linear
programming by A. Leulmi and S. Leulmi in [21].

As far as we know, our new approximate function has not been studied in the nonlinear
optimization literature. These approximate functions are more convenient and efficient
than the line search method for rapidly computing the displacement step.

Therefore, in our work, we aim to optimize a nonlinear problem based on prior
efforts. Thus, we propose a straightforward and effective barrier penalty method using
new minorant functions.

More precisely, we first introduce the position of the problem and its perturbed
problem with the results of convergence in Sections 2 and 3 of our paper. Then, in Section 4,
we establish the solution of the perturbed problem by finding new minorant functions.
Section 5 is devoted to presenting a concise description of the algorithm and to illustrating
the outperformance of our new approach by carrying out a simulation study. Finally, we
summarize our work in the conclusion.

Throughout this paper, the following notations are adopted. Let (.,.) and ||.|| denote
the scalar product and the Euclidean norm, respectively, given by the following:

n
(x,y) =2y = Y xiyi, xyeR"
i=1

n
Il = /{2 x) = 4 )
i=1
2. The Problem

We aim to present an algorithm for solving the following optimization problem:

min f(x)
Ax =D (P)
x>0,

and

where b € R™ and A € R™*" is a full-rank matrix with m < n.
For this purpose, we need the following hypothesis:

Hypothesis 1. f is nonlinear, twice continuously differentiable, and convex on L, where
L ={x € R": Ax = b; x > 0} is the set of realizable solutions of (P).

Hypothesis 2. (P) satisfies the condition of interior point (IPC), i.e., there exists xoy > 0 such that
AX() =b.

Hypothesis 3. The set of optimal solutions of (P) is nonempty and bounded.

Notice that these conditions are standard in this context. We refer to [17,20].
If x* is an optimal solution, there exist two Lagrange multipliers p* € R™ and 4* € R",

such that
Vi) +ATpt =g >0,

Ax* = b, (1)
(9%, x*) = 0.
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3. Formulation of the Perturbed Problem of (P)

Let us first consider the function i defined on R x R" by the following:

¥, x) = { fx)+ éé(’% xi) if x>0, Ax="0

+o00 if not,

where ¢ : R? — (—oc0, +00] is a convex, lower semicontinuous and proper function

given by the following:
nin(y) —nin(a) if «>0andny >0,
E(n,a)=4¢ 0 if a>0and 7y =0,
+o0 otherwise.

Thus, ¢ is a proper, convex, and lower semicontinuous function.
Furthermore, the function g defined by

n

g(n) = inf |,(x) = f(x)+ ) &y, x;) (Pn)

xeR" i—1

is convex. Notice that for 7 = 0, the perturbed problem (P7) coincides with the initial
problem (P); then, f* = g(0).
3.1. Existence and Uniqueness of Optimal Solution

To show that the perturbed problem (P#) has a unique optimal solution, it is sufficient
to demonstrate that the recession cone of 1, is reduced to zero.

Proof. For a fixed 7, the function 1, is proper, convex, and lower semicontinuous. The
asymptotic function of ¢, is defined by the following:

o Py(xo+ad) — Py (x0)
(lpn)‘x’(d) - ocl—lgroo ’ © :

thus, the asymptotic functions of f and y, satisty the relation:

(fleo(x) if d>0, Ad=0,

+o00 if not.

(#) o (d) = {

Moreover, hypothesis H3 is equivalent to
{deR": (f)(x) <0,d >0, Ad =0} = {0}.

Then,
{deR": (), (d) <0} = {0}
and from [17], for each non-negative real number 7, the strictly convex problem (Py)

admits a unique optimal solution noted by x;. The solution of the problem (P) is the limit
of the solutions sequence of the perturbed problem (Py) when 5 tends to 0. [

3.2. Convergence of the Solution

Now, we are in a position to state the convergence result of (Py) to (P), which is
proved in Lemma 1 on [18].
Letn > 0, for all x € £; we define ¢(x,17) = f,(x).

Lemma 1 ([18]). We consider n > 0. If the perturbed problem (Py) admits an optimal solution x;,

such that lin})x,7 = x*, then the problem (P) admits an optimal solution x*.
n—
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We use the classical prototype of penalty methods. We begin our process with
(x0,1m0) € L x (0,00), where

L={xeR":x>0, Ax =1} )

and the iteration scheme is divided into the following steps:
1. Select 7341 € (0, 77k)
2. Establish an approximate solution x;1 for (Pyy). It is obvious that ¢ (1, X¢11) <

(7, xx)-

Remark 1. If the values of the objective functions of the problem (P) and the perturbed problem
(Py) are equal and finite, then (P) will have an optimal solution if and only if (Py) has an
optimal solution.

The iterative process stops when we obtain an acceptable approximation of g(0).

4. Computational Resolution of the Perturbed Problem

Our approach to the numerical solution of the perturbed problem (Py), consists of two
stages. In the first one, we calculate the descent direction using the Newton approach, and
in the second one, we propose an efficient new-minorant-functions approach to compute
the displacement step easily and quickly relative to the line search method.

4.1. The Descent Direction

As (Pn) is strictly convex, the necessary and sufficient optimality conditions state that
Xy is an optimal solution of (P ) if and only if it satisfies the nonlinear system:

Vip, (xy) = 0.

Using the Newton approach, a penalty method is provided to solve the above system,
where the vector xy 1 in each is given by x 1 = xj + adk.

The solution of the following quadratic convex optimization problem is necessary to
obtain the Newton descent direction 4 :

min (Vipy(x),d) + %<v2¢v(x)d,d> tAd = 0} = mdin[H(q,x) :Ad = 0],

where x € £ and

Pox) = Flry) +mping—y ) In(x)

i=1
V() = Vi) -nxTe
V3, (x) = V2f(x)+nX2e

H(y,x) = <V1/J,](x),d>—|—%<V21/J,7(x)d,d>,

with the diagonal matrix X = diag(x;);_i7-
The Lagrangian is given by the following;:

L(x,;s) = (Vf(x) = X'y, d) + %<(v2 f0)+X2)d,d) + (Ad,s),

where s € R™ is the Lagrange multiplier. It is sufficient for solving the linear system
equations with nn +m :

Vi(x) —nXte+ ((V2f(x) + X 2n)d,d) + Als =0
Ad =0,
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then,
(V2f(x) —yX2)d+ ATs =yX"le—Vf(x) @)
Ad = 0.
It is simple to prove that system (3) is non-singular. We obtain
dl(V2f(x) =X 2)d+dTATs =dTyX~le—dTvf(x)
T Ad =0,
AsdTATs = (Ad)"s = 0 and Ad = 0, we obtain
2
(VPf(x)d,d)+ (Vf(x),d) =7 [<X‘1d,e> - Hx—ldH ] )
The system can also be written as follows:
(XV2f(x)X) (X7) +n 1 (X7'd) + XATs =nXX"le— XVf(x) )
AX(X1d) =0, '

Thus, the Newton descent direction is obtained.
Throughout this paper, we take x instead of x;,.

4.2. Computation of the Displacement Step

This section deals with the numerical solution of the displacement step. We give a
brief highlight of the line search methods used in nonlinear optimization problems. Then,
we collect some important results of approximate function approaches applied to both
semidefinite and linear programming problems. Finally, we propose our new approximate
function method for the nonlinear optimization problem (P).

4.2.1. Line Search Methods

The line search methods consists of determining a displacement step ay, which ensures
the sufficient decrease in the objective at each iteration xy 1 = xj + axdy, where ay > 0,
along the descent direction dj; in other words, it involves solving the following one-
dimensional problem:

p(a) = {gg%(xk + ady).

The disadvantage of this method is that the solution a is not necessarily optimal,
which make the feasibility of x 1 not guaranteed.

The line search techniques of Wolfe, Goldstein-Armijo, and Fibonacci are the most
widely used ones. However, generally, their computational volume is costly. This is what
made us search for another alternative.

4.2.2. Approximate Functions Techniques

These methods are based on sophisticated techniques introduced by J.P. Crouzeix et al. [15]
and A. Leulmi et al. [20] to obtain the solution of a semidefinite optimization problem.

The aim of these techniques is to give a minimized approximation of one real-variable
function ¢(«) defined by

pla) = ;[¢n<x+«d>—¢n<x>1

1

= —[f(x+ad)—f(x)]—) In(l1+at;), t= X~ 14.

-

=
0

1

The function ¢ is convex, and we obtain the following:
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o) = ;(vfx—i-zxd _y

=1+ vctl

" o 1 &
¢ (a) = 17<vf(x—|—1xd >+l;1 1—|—1xt)

We find that ¢’(0) 4+ ¢”(0) = 0, deduced from (4), which is expected since d is the
direction of Newton’s descent direction.

We aim to avoid the disadvantages of line search methods and accelerate the conver-
gence of the algorithm. For this reason, we have to identify an & that yields a significant
decrease in the function ¢(«). This is the same as solving a polynomial equation of degree
n + 1, where f is a linear function.

Now, we include a few helpful inequalities below, which are used throughout the paper.

H. Wolkowicz et al. [22] see also Crouzeix and Seeger [23] presented the following
inequalities:

_ . _ 0z
z—o,vn—1 < mingz;, <zZ—
z i 1 /771_1

— Ux —

zZ -+ < maxz; <z-+o,vVn—1,

Ji—1 o TPEsETE

where z and ¢, represent the mean and the standard deviation, respectively, of a
statistical real numbers series {z1, 2, ..., z, }. The later quantities are defined as follows:

n

1¢ _ 1 _
z; and (TZZZEZZ%—ZZZEZ(ZZ'—Z)Z.
i=1 i

=1

N

Il
S =
AMS

Il
-

1

Theorem 1 ([15]). Let z; > 0, fori =1,2,...,n. We have the following:

i <ln<z+azﬁ>+(n—l)ln<z— %) (6)

where z; = 1+ at;, z = 1+ at, and 0, = aoy.
We will proceed to present the paper’s principal result.

4.2.3. New Approximate Functions Approach
Let

o0) = 1 [F(x+ od) = £()] - élna Tat),

be defined on & = mln{ ” } such that I_ = {i: t; < 0}.

icl
To find the displacement step, it is necessary to solve ¢’(x) = 0. Considering
the difficulty of solving a non-algebraic equation, approximate functions are recom-
mended alternatives.
Two novel approximation functions of ¢ are introduced in the following lemma.

Lemma 2. Foralla € [0, af [ with o] = min (&, &1 ), we have

p(a) = g1(w),

and for all « € [0, a3 [ with a5 = min(«, &), we obtain

P2(a) < p(a),
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where

() = ;(f(x +ad) — F(x)) = In(1+6a) — (n— 1) In(1 + Ba),

and

fala) = ,17(f(x +ad) — f(x)) — TIn(1+ pra),

with

<>z =
I
H-\ H-\

@)

Furthermore, we have

Proof. We start by proving that

Theorem 1 gives

™=

in(z) < (2 ovir=1) + (s~ Din (2 - —£),

1

then,

iln(l +at;)) <In(14+ad)+ (n —1)In(1 +ap),
i=1

and

—iln(l +at;)) > —In(1+ad) — (n—1)In(1 + ap).
i=1

Hence,

(f(x +ad) — f(x)) — zln(1+at) 5 (f(x+ad) = f(x)) — In(1+ ad)
(n—l)ln(l+ocﬁ)

= |~

Therefore,

p@) > §i(a) = L(f(r+ad) = f(x) ~In(l+a5) = (1= 1) In(1 +p),

_(n_l)lfocﬁ'

Pl = (Tfltad) —d) -

Let us consider the following;:

We have

n B ;Bl
U=k 1+M T ap)”

Because of the fact that |t;| < ||t|| and nt < ||¢]|, it is easy to see that Va > 0, ¢’ (a) > 0.
Therefore,

L ad) = £(0) = ) In(1+at) > (F(x-+ ad) = £(2)) = TIn(1 + ),

I
—_
|-
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Hence, the domain of (¢;);_ , is included in the domain of ¢, which is (0, &), where
& =max[a:14+ad >0, 1+af >0
Let us remark that
0= 3i(0) = 9(0), —¢'(0) = ~(0) = ¢//(0) = §'(0) >0, i = 1,2

Thus, ¢ is well approximated by ¢; in a neighborhood of 0. Since @; is strictly convex,
it attains its minimum at one unique point &, which is the unique root of the equation
@}(a) = 0. This point belongs to the domain of ¢; (i = 1,2). Therefore, ¢ is bounded from
below by ¢ :

P1(&) < g(a) <0
And it is also bounded from below by ¢ :
P2(a) < @(&) < 0.
Then, & gives an apparent decrease in the function ¢.

4.3. Minimize an Auxiliary Function

We now consider the minimization of the function
¢1(0) = nya —In(1+da) — (n — 1) In(1 + pa),
and we also have the following approximate function:
¢2(0) = nya — tin(1 + pra),

where 7 is defined in (7). Then, we have the following;:

Pi(a) = ny— -~
2
) = —" sm-n—F

and

p2(a) = T
We remark that fori =1,2:
9i(0) = 0, ¢{(0) = n(y —1), ¢} (0) = |t
We present the conditions ¢/(0) < 0 and ¢/ (0) > 0. The function ¢ is strictly convex.

It attains its minimum at one unique point a such that ¢}(a) = 0, which is one of the roots
of the equations

V0B’ + (6 +yB—B) + v —E=0, ®)

and
nyB(1+ Ba) = |1E]* = 0. ©)
For Equation (8), the roots are explicitly calculated, and we distinguish the follow-

ing cases:

e Ifé=0,weobtain & = %
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e IfB =0, weobtaina; = %57.
° If'y:0,wehave541:g—g.
e If y0B # 0, a is the only root of the second-degree equation that belongs to the

domain of definition of ¢. We obtain A = % + é + 5% - % + (2”,1_4) {51—7 - %}

1111
““_2<7 B o7 A)’

Both roots are
and

Then, the root of Equation (9) is explicitly calculated, and we have

O T
2 \B=p g )

Consequently, we compute the two values &;, i = 1,2, explicitly. Then, we take
ay,&y € [0,& — ¢, where ¢ > 0 is a fixed precision and ¢'(a;) >0, i = 1,2.

Remark 2. The computation of &;, i = 1,2 is performed through a dichotomous procedure in the
cases where &; ¢ (0,& — ¢€), and ¢'(a;) > 0, as follows:

Puta=0,b=wa—c¢

While |b — a| > e do

If ¢/ (“4%) < O then, b = 232,

elsea = %b,so &; =b.

This computation guarantees a better approximation of the minimum of ¢’ (a) while remaining
in the domain of ¢.

4.4. The Objective Function f Is
4.4.1. Linear

For all x, there exists ¢ € R" such that f(x) = (c, x).
The minimum of @; is reached at the unique root & of the equation ¢’(a) = 0. Then,

9i(r) < ¢(a) < §i(0) = ¢(0) = 0.

Take v = n~!(c,d) in the auxiliary function ¢. The two functions ¢ and (§;);_1 ,
coincide.

a yields a significant decrease in the function ¢, along the descent direction d. It is
interesting to note that the condition ¢7(0) + ¢ (0) = 0 (i = 1,2) implies the following:

—§}(0) = n(f—7) = |t = n(¥ —o?) = §/'(0) > 0.

4.4.2. Convex

Vf(x + ad) is no longer constant, and the equation ¢ («) = 0 is not reduced to one
equation of a second degree fori =1,2.
We consider another function ¢ less than ¢. Givena € (0,«), we have, forall w € (0, 7],

the following:
flxtad) — fx) _ fxtad) - f(x) (10)
1 - T ’

=)

then,

p(a) > ¢1(a) = flx HZdZ —f) a—In(l+ad) — (n—1)In(1+ «ap)
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and R
p(a) = ¢o(a) = fes a;ja)\ 9, TIn(1+ B1a), T €10,1].

_ f(x+ad)—f(x) . . . _
We choose ¢y = S—ga - in the auxiliary function ¢ , and we compute the root & of
the equation ¢/(x) = 0 withi =1,2.

Therefore, we have two cases:

1. Where 2 < @ : We have the following;:
p(a) > ¢ij(a) > ¢;(x), fori=1,2

and, thus, along the direction d, we obtain a significant decrease in the function ;.
The approximation accuracy of ¢ by ¢; being better for small values of & (fori = 1,2),
it is recommended to use a new value of @, situated between & and the former &, for
the next iteration. Moreover, the cost of the supplementary computation is small since
it is the cost of one evaluation of f and the resolution of a second-order equation.

2. Where a > @ : The computation of @ is performed through a dichotomous procedure
(see Remark 3).

5. Description of the Algorithm and Numerical Simulations
5.1. Description of the Algorithm

This section is devoted to introducing our algorithm for obtaining an optimal solution
% of (P).

Begin

Initialization

e > 0is a given precision. 77 > 0 and ¢ € [0, 1] are given.

X is a strictly realizable solution from L,dy e R™.

Tteration

Start with 7 > 7.

Calculate d and t = X~ 1d.

If ||t]| > ¢, calculate t,v,d, B, and B;.

Determine & following (8), (10), or (9) depending on the linear or nonlinear case.
Take the new iterate x = x 4+ &d = X(e + &t) and go back to step 2.

If ||t]| < e, a well approximation of g(#) has been obtained.

AN

(@ Ify > and y = oy, return to step 2.
(b) If y <7, STOP: a well approximate solution of (P) has been obtained.

End algorithm.

The aim of this method is to reduce the number of iterations and the time consumption.
In the next section, we provide some examples.

5.2. Numerical Simulations

To assess the superior performance and accuracy of our algorithm, based on our
minorant functions, numerical tests are conducted to make comparisons between our new
approach and the classical line search method.

For this purpose, in this section, we present comparative numerical tests on different
examples taken from the literature [5,24].

We report the results obtained by implementing the algorithm in MATLAB on an Intel
Core i7-7700HQ (2.80 GHz) machine with 16.00 Go RAM.
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5.2.1. Examples with a Fixed Size
Nonlinear Convex Objective

Example 1. Let us take the following problem:

min 2x7 +2x3 — 2x1x — 4x1 — 6X2
X1+x2+x3=2
X1+5x+x4=5

x1,X2,%3, %4 > 0.
The optimal value is —7.1613, and the optimal solution is x* = ( 1.1290 0.7742 0.0968 0 )t.

Example 2. Let us take the following problem:

min x? + x%

X1 —Xp+x34+x4 =3

2x1 4+ xp — x3 + x4 = 2.0086
X1 + x3 + 2x4 = 4.9957

X1,X2,X3,X4 > 0.

The optimal value is 0.0390, and the optimal solution is x* = (1 0.3391 0 0.6652 1.9957 )t.
Example 3. Let us consider the following problem:

min x3 + x3 + x1x2
2x1 —x2+x3 =8
x1+2x2+x4:6

X1,X2,%3,X4 2 0.
The optimal value is 1.6157, and the optimal solution is x* = ( 1.1734 0 5.6532 4.8265 )t.

This table presents the results of the previous examples:

Example stl st2 LS
iter Time (s) iter Time (s) iter Time (s)
1 12 0.0006 19 0.0015 6 0.0091
2 5 0.0004 9 0.0009 44 0.099
3 3 0.0001 5 0.0006 65 0.89

5.2.2. Example with a Variable Size
The Objective Function f Is

1-Linear: Let us consider the linear programming problem:
(= min[ch cx >0, Ax =b],

where A is an m X 2m matrix given by the following;:

Al ] 1 ifi=j orj=i+m
ij] =
J 0 if not,
cli] = —1,cli+m]=0andbfi]j=2,Vi=1,...m,
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where ¢, b € R?™,

The results are presented in the table below.

Size stl st2 LS
iter  Time (s) iter  Time (s) iter  Time (s)
5x 10 1 0.0021 2 0.0039 9 0.0512
20 x 40 1 0.0031 3 0.0045 13 0.0821
50 x 100 2 0.0049 3 0.0032 17 0.3219
100 x 200 2 0.0053 4 0.0088 19 0.5383
200 x 400 2 0.0088 4 0.0098 22 0.9220
250 x 500 3 0.0096 5 0.0125 26 9.2647
2-Nonlinear:
Example 4 (Quadratic case [13]). Let the quadratic problem be as follows:
¢ =min[f(x):x >0, Ax > 1],
with f(x) = 3(x,Qx), Q is the matrix defined for n = 2m by the following:
2j—1 ifi>j
Qli,jl = 2i—1 ifi<j
i(i+1)—1 ifi=j,i,j=1,.,n
. 1 ifi=jorj=i+m,i=1,.,mandj=1,.,n
Al =y,
if not
cli] = —1,cli+m|=0andbli]=2,Vi=1,.,m.
This example is tested for many values of n.
The obtained results are given by the following table:
ex(m, n) stl st2 LS
iter  Time (s) iter  Time (s) iter Time (s)
300 x 600 5 0.9968 4 0.9699 26 19.5241
400 x 800 7 18.1448 5 9.6012 35 86.1259
600 x 1200 12 36.3259 5 19.0099 23 98.2354
1000 x 2000 21 56.9912 17 41.1012 33 109.2553
1500 x 3000 28 140.1325 23 95.6903 40 1599.1596

Example 5 (The problem of Erikson [25]). Let the following be the quadratic problem:

n .
(= minlf(x) = inln(;cl') PX; A+ Xjoy = b,x > 0],
i=1 !

where n = 2m,a; > 0and b € R™ are fixed.

This example is tested for different values of n, a;, and b;.

The following table resumes the obtained results in the case (a; = 2,Vi = 1,...

bi:4,Vi:1,...,m):
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ex(m, n) stl st2 LS
iter Time (s) iter Time (s) iter Time (s)
10 x 20 1 0.0001 2 0.0012 4 0.0236
40 x 100 2 0.0021 3 0.0033 5 0.7996
100 x 200 2 0.0043 3 0.0201 5 1.5289
500 x 1000 2 3.0901 4 5.9619 12 22.1254

In the above tables, we take ¢ = 1.0 x 10~%.

We also denote the following:

- (iter) is the number of iterations.

- (time) is the computational time in seconds (s).

- (sti);—1 » represents the strategy of approximate functions introduced in this paper.

- (LS) represents the classical line search method.

Commentary: The numerical tests carried out show, without doubt, that our approach
leads to a very significant reduction in the cost of calculation and an improvement in the
result. When comparing the approximate functions to the line search approach, the number
of iterations and computing time are significantly reduced.

6. Conclusions

The contribution of this paper is particular focused on the study of nonlinear optimiza-
tion problems by using the logarithmic penalty method based on some new approximate
functions. We first formulate the problems (P) and (Py) with the results of the convergence.
Then, we find their solutions by using new approximate functions.

Finally, to lend further support to our theoretical results, a simulation study is con-
ducted to illustrate the good accuracy of the studied approach. More precisely, our new
approximate functions approach outperforms the line search one as it significantly reduces
the cost and computing time.
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Abstract: This paper considers a multi-product, multi-criteria supply-demand network equilibrium
model with capacity constraints and uncertain demands. Strict network equilibrium principles are
proposed both in the case of a single criterion and multi-criteria, respectively. Based on a single crite-
rion, it proves that strict network equilibrium flows are equivalent to vector variational inequalities,
and the existence of strict network equilibrium flows is derived by virtue of the Fan-Browder fixed
point theorem. Based on multi-criteria, the scalarization of strict network equilibrium flows is given
by using Gerstewitz’s function without any convexity assumptions. Meanwhile, the necessary and
sufficient conditions of strict network equilibrium flows are derived in terms of vector variational
inequalities. Finally, an example is given to illustrate the application of the derived theoretical results.
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1. Introduction

The study of the supply-demand network equilibrium models has been the subject
of great interest due to their theoretical challenges and practical application. The funda-
mental principle is Wardrop’s equilibrium principle [1], which states that users in transport
networks choose one of the paths among all the paths joining the same origin—destination
(OD) pair at minimum cost. After Wardrop, many scholars have proposed various network
equilibrium models based on a single criterion. Dong et al. [2] considered a supply chain
network equilibrium model with random demands. Meng et al. [3] proposed a note on
supply chain network equilibrium models. Nagurney [4] presented a supply chain net-
work equilibrium model and investigated the relationship between transportation and
supply chain network equilibria. Nagurney et al. [5] developed an equilibrium model of a
competitive supply chain network. Additionally, motivated by practical concerns, network
equilibrium models based on multiple criteria cost functions have been studied; for exam-
ple, Chen and Yen [6] were the first to propose a traffic network equilibrium model based
on multiple criteria cost functions without capacity constraints, and present an equivalent
relation between vector network equilibrium models and vector variational inequalities.
Cheng and Wu [7] presented a multi-product supply-demand network equilibrium model
with multiple criteria.

For a supply—-demand network, it is well known that when the flows pass through
two different paths which contain common arcs at the same time, the capacity constraints
of the two paths may interact. So, the capacity constraints are important factors that affect
the equilibrium states and the selection of the set of feasible network flows. Based on this
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cause, a substantial number of works have been devoted to studying the vector equilibrium
principle [5,8-14] with capacity constraints of paths. In addition, considering that the data
are uncertain in practice and are not known exactly, along with the change of network users’
demand preferences and the fluctuation of purchasing power, the demands of network flow
should not be fixed, and the network equilibrium with uncertain demands have attracted
much attention. Very recently, Cao et al. [15] focused on the traffic network equilibrium
problem with uncertain demands, in which the uncertain set consisted of finite discrete
scenarios. Subsequently, Wei et al. [16] assumed that the demands belonged to a closed
interval and proposed (weak) vector equilibrium principles involving a single product.
Proper efficiency is widely applied to solve vector optimization and vector equilibrium
problems. It can help one to eliminate some abnormal efficient decisions and provide
proper efficient decisions. Several classical proper efficiency measures, such as Benson
efficiency [17], super efficiency [18], and Henig efficiency [19], have been applied to solve
network equilibrium models. Cheng and Fu [20] introduced a kind of proper efficiency—
strict efficiency, and it has been used to solve vector optimization models (for example, see
Yu et al. [21]). On the other hand, variational inequality theory is an effective tool to solve
equilibrium problems (for example, see Chen and Yen [6]).

In this paper, inspired by the work in [7,10,16,17], we consider strict vector equilib-
rium principles of a multi-product, multi-criteria supply-demand network with capacity
constraints and uncertain demands, where the demands are assumed to belong to a closed
interval and are irrelevant to the costs for all OD pairs. The main contribution is to derive
the existence results of strict vector equilibrium flows of a multi-product supply—demand
network with capacity constraints and uncertain demands by virtue of the Fan-Browder
fixed point theorem and obtain the relations between the strict vector equilibrium flows and
vector variational inequalities, with both a single criterion and multi-criteria cost functions,
which, to the best of our knowledge have not been studied before.

The rest of this article is arranged as follows: in Section 2, some mathematical prelimi-
naries are described. In Section 3, we propose a strict network equilibrium principle for a
multi-product supply-demand network problem involving real-valued cost functions with
capacity constraints and uncertain demands. The equivalence relation between the strict
network equilibrium flow and the strictly efficient solution of variational inequalities is
established. The existence of the strict network equilibrium flows is also derived by means
of the Fan-Browder fixed point theorem. Section 4 proposes a strict network equilibrium
principle for a multi-product supply—demand network problem with capacity constraints
and uncertain demands involving vector-valued cost functions, and the similar equivalence
relation of strict network equilibrium flows in terms of vector variational inequalities
is deduced by using Gerstewitz’s scalarization function. Section 5 gives an illustrative
example. Section 6 provides a brief summary of the paper.

2. Definition and Preliminaries

In this section, some notations are set and we recall the notions of efficient points of
a nonempty set, and the variational inequality and strictly efficient points of a nonempty
set. Throughout the paper, we suppose that the vectors are always row vectors unless
otherwise stated. Let R" be the n-dimensional Euclidean space and R’} be its non-negative
orthant. Let R"*" be the n x n matrix space and

R = {k = (ky, -+ kq) € R™" kg = (kb k) K > 0,j=1,--- ,n}

be its non-negative orthant, where (k}, e K )/ denotes the transpose of the matrix (k}, e K.

Giveny,z € R™" let (y, z/> = yz, represent the multiplication of matrix y and z. A pointed
closed convex cone I' C R" induces the orderings in R": for any x1,x, € R”,

x1 < xp iff xp —x1 €T,
X1 < Xp iff xp — x7 € intT,
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where intI” denotes the nonempty interior of I'. For convenience of writing, let R” = X. Let
Ex be a nonempty convex subset of the cone I' and cl(Ex) be its closure. cone(Ex) = {ox :
o € R, x € Ex} is the conic hull of the set Zx. If 0 ¢ cl(Ex), T = cone(Zy), then the set
Ey is said to be a base of the cone T'.

Let N be a nonempty subset of X; H : N — R" is a mapping. The notion of efficient
points of the set N is as follows.

Definition 1 (see [21]). A vector ¥ € N is said to be an efficient point of the set N if
(N=x)n (=T\{0}) = 2.
Let EP(N) denote the set of the efficient points of the set N.
The variational inequality is to find a vector X € N, such that
(H(x),x —%) >0, Vx € N.
The concept of strictly efficient points of the set N is as follows.

Definition 2 (see [21]). Suppose that Ex is a base of I. The vector X € N is called a strictly
efficient point of the set N with Zx if there is a neighborhood @ of 0, such that

cone(N—x+T)N(Ox —Ex) = Q.
Let SEP(N) denote the set of strictly efficient points of the set N.

3. Existence of Strict Vector Equilibrium Flows with Single Criterion

For a supply—demand networkG =[N, C,V, P, D] let N/, C, P, and D denote the set of
nodes, the set of arcs, the set of OD pairs, and the uncertain demand vectors, respectively.
Let us suppose that there are m different kinds of products passing through the network
and that a typical product is denoted by o. For each arc ¢ € C and product o, o2 represents
arc flow of product o between two different nodes. V = (62) ¢ denotes the capacity vector,
where ¢? > 0 implies the capacity of arc ¢ for the product 0. The arc flow ¢ needs to satisfy
the following capacity constraint:

0<¢f <@

Let us assume that there are s OD pairs in the set P. The available paths connecting

OD pair p € P form the set wp, and let }_,cp|wp| = 1, where 1 is a positive integer. For

each acyclic path 2 € wy, we denote by ¢; > 0 the path flow of the product o on path a.
The relation between arc flows and path flows is as follows:

0 = Z Z caq,

pe'P acwp

where

1, if c belongs to patha,
Oca = .
0, otherwise.

Let us suppose that pj; and A are the lower and upper capacity constraints on path a
with product o, respectively, i.e.,

Mo < 0o < A
The matrix 0 = (03)mxn is called a network flow. Thus, each column vector o, =

(k- , 0" of the matrix ¢ is the flow on path a, while the row vector ¢° = (03, - -, 03)
is the network flow with product o.

We denote demand vectors of the network flow by D = (dy(e},) : p € P,o=1,--- ,m),
where the component dj(¢},) denotes the uncertain demand for OD pair p and product o.
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Let us suppose that d},(¢},) belongs to a closed interval A}, i.e., d}(e}) € Aj = [d}, — &, dj +
€], where d}, represents an appropriate fixed demand and &), > 0 denotes a deviation. It is
reasonable to assume that the values of d}, and ¢j, that depend on p and o are different for
each OD pair and product in practical supply-demand network problems. We would like
to point out that the uncertain demand d},(¢,) that is irrelevant to the costs is significantly
different from the one introduced in [12,22].

We say that the network flow g satisfies the uncertain demands constraint if and only if

Y oy =dy(ey), YpEP o=1,m

lZEUJp

A network flow ¢ satisfying both the capacity constraints and the uncertain demands
constraints is called a feasible flow. The set of all feasible flows is denoted by

Q= {ezyﬁ <05 <AL0< Y Y be0) <02, Ve€Cand

pE'P acwp

Z 05 = d;(SZ),Vp eP,No=1,--- ,m}.
acwp
Let Q # @. Clearly, Q is closed, convex, and compact.

For each product o, let h%(p) : R™*" — R be the cost function on arc ¢; the cost
function on path a € w) is computed by

ha(e) = )_he(o).

cea

The cost on the network is given as a form of matrix h(0) = (h(0))mxn, where the ath
column /1, (0) = (hi(0),---,h"(0)) represents the cost on path a; the oth row h°(g) =
(h{(0),- - ,hi(0)) represents the cost on the network with product o. In this paper, unless
otherwise stated, we always assume that for any p € P and 4,b € wy,

hy(0) —ha(o) #0, if b #a,

which has been also used in the literature [7].

Definition 3. Supposing a flow ¢ € Q,

(i)  foranarcc € Cand producto = 1,--- ,m, if 02 = 00, then c is called a saturated arc of
product o and flow o, or a nonsaturated arc of product o and flow o.

(i) forapatha € U,ep wp and product o =1, - -, m, if the path a contains a saturated arc c of
product o and flow o, then a is called a saturated path of product o and flow o, otherwise, a
nonsaturated path of product o and flow o.

In the following content, we propose the concept of strict network equilibrium flow for
a kind of multi-product supply-demand network involving real-valued cost functions with
capacity constraints and uncertain demands, which has not been studied in the existing
literature. In what follows, we always assume that Z is a base of R, % is a base of Rﬁ’r’xm,
@ is a neighborhood of 0 in R”, and ® is a neighborhood of 0 in R,

Definition 4. (Strict network equilibrium principle). A feasible network flow ¢ € Q is a strict
network equilibrium flow, if, for each p € P,a,b € wp,0 =1, -, m, there is a neighborhood ® of
0in R™ satisfying © — & C —intR'}, one has as an implication

cone(hw,(0) + R —ha(0)) N (cone(® — E)\{0}) =@ } N
hy(e) = ha(e) # 0

0) = up, b # a,or oy = Ay, or path a is a saturated path with product o and flow @.
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Now, let us review the concept of the strict efficiency of vector variational inequalities,
which will be employed to derive the main conclusions.

Definition 5. A flow ¢ € Q is said to be a strictly efficient solution of the vector variational
inequality if and only if there exist & and © satisfying ©® — & C —intR"} <",

cone((h(g), (x — @) ) +R*™) N (cone(® — E)\{0}) = @, Vx € Q.

It is noteworthy that the vector ¢ € Q is a strictly efficient solution of the following
variational inequality:

cone((l(a), (x — @) ) +R1"™) N (cone(® — E)\{0}) =@, Vx € Q,

if the vector ¢ € Q is a solution of the following variational inequality: find ¢ € Q,
satisfying
(h(e), (x —@)) & —RE*™\{0}, Vx € Q,

Next, we shall consider the relations between a strictly efficient solution of the vector
variational inequality and the strict network equilibrium flow.

Theorem 1. If the vector ¢ € Q is a strict network equilibrium flow, then ¢ is a strictly efficient
solution of the following variational inequality: find o € Q, satisfying

cone((h(q), (x = @)') +RI™) N (cone(® — E)\{0}) = @, Vx € Q.

Proof. If the vector ¢ € Q is a strict network equilibrium flow, for each p € P, a,b € w),
0=1,---,m,ithas the following implication:

cone (e, (@) + R — ha(e)) N (cone(® — ”)\{0}) } N
hy (@) — ha(e) # 0

0) = up, b # a, or gy = A, or path a is a saturated path of product 0 and flow ¢.
We first show that

(h(0), (x —)') & —R™*™, Vx € Q. (1)

For any x € Q, it holds

/!

(h(e), (x —0))
(), hu(0)), (X1 — @1+ xn — 0n))

= i[ (ha(0), (xa — ) )]-

Because (h7(0), (xz — 0z) ) is an m x m matrix, the component is 1 (0)(x! — ol),
o = 1,2,---,m; so, (h(o), (x — Q),) is also an m x m matrix, the component is
vt Lacw, M (@) (X7 — D)) o1 =1,2,--+ ,m. Let

[

Ap(0) ={b € wp : hy(0) € SEP{hy(0) : b € wp}} C wy.
Hence, for each b € A\, (0) C wy,

cone(fiw, () + R —hy(e)) N (cone(® — E)\{0}) =
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It follows from Definition 4 that for any b € wp, 0 = 1,--- ,mand b # b, 0) = Hj,
07 = A7, or path bis a saturated path of product 0 and flow ¢. Because SEP{/;,(¢) : b € wp} C
EP{h;(0) : b € wy}, we obtain

hy(e) € EP{hy(0) : b € wy},

that is,
hy(0) — hy(e) € —R\{0},Vb € wp,p € Pand b # b.

Due to hb(Q) — hE(Q) 75 0, one has
hy(o) — hy(o) & =R, Vb € wy,p € Pand b # b.

So thereisanp =1,2,--- ,m such that

Hence, one has

Because @ € w,\{b}, we have o = p!, o! /\'7 foreachn =1,2,--- ,m,

And, because @ € w,\{b}, it holds that hg(g) > hg(g). Due to x € Q, there must exist

7=1,2,---,msatistfying XZ - P’Z: > (0. Hence, we obtain

p=1|acwy\{b}
>Y | S xl-| X wul+A]
p=1 | 7<wp acwy\{b}
S _ _ _
=Y H(o) XZ—( ). QZ+QZ)]
p=1 _aea;p acwy\{b}
=Y el Aad- 1 QZ]
p=1 lac€wyp acwy

LZE(AJP
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Therefore, there existp = 1,2,--- ,mand 7 = 1,2, - - - ,m, satisfying

Thus, inequation (1) holds.
Next, let

cone((h(g), (x —0)') +R™*™) N (cone(® — £)\{0}) # @, Vx € Q.

Therefore, there must be an k # 0 satisfying

k € cone({(q), (x — 0)') +RY*™) N (cone(® — £)\{0}), ¥x € Q.

We set k = 6k, where k € (h(0), (x — 0)) + R}, § > 0because of k # 0. Hence, 6k €
cone(® — =)\ {0}. Thus there are & > 0 and 7 € @ satlsfymg 5k = &7. Therefore, there
are ¥ € Qand 0 € R""" satisfying k = % = (h(0), (X — 0)') + 6, which is equivalent to

(o), (- 0)) = 5 —6 € R,

which contradicts (1). Hence, it holds that

cone((h(0), (x — 0)') +R"™) N (cone(® — E)\{0}) = @, Vx € Q.
O
Theorem 2. The vector ¢ € Q is a strict network equilibrium flow if ¢ is a solution of the following
vector variational inequality: find o € Q satisfying
(hie), (x = @)) & ~RI*™\{0}, Vx € Q. @
Proof. Assume that ¢ € Q satisfies inequality (2). For each p € P and a,b € w), b # a,
o=1,---,m,if

cone(hw, (0) + R — ha(e)) N (cone(® — E)\{0}) =

hy(0) — ha(e) # 0, and a is a nonsaturated path of product 0 and flow o, we will deduce
0) = pporgy = Aj. LetJ; = {c € C : arc c belongs to path a}. We assume that the
conclusion is false, i.e., 05 # pp OF s # Aq. Taking VO = min { ire%r:(@g —02),00 — up, AG —

0} >0and V= (V... V..., V") let x be

0a, ifa#bora,
i=14 o0p—V, ifa=b,
0+V, ifa=a.

Because 0 € Q,ie,VpeP,0=12,---,m, Zdewp 05 = d‘;,(e‘;,), one has

Y. X = ), Xitxit+xa
acwy acwp\{ba}
= Y G+-Vit+V
acwp\{ba}
= ) or=dy(e
acw,
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=1
= Y (ha(0), (02— 0a) ) + (@), (05 — V — 0p) ) + (ha(0), (00 + V — 04)')

We know that (i(0), (x — 0)') is an m x m matrix; the component is (1 (o) — hg(Q))QZ'

on =12 ,mIf(V,(h(0) — hb(g))/> # 0, then foreachp,7 =1,2,--- ,m,
(Hh(0) — My ()Y >0,
with strict inequality holding for some p,# = 1,2,--- ,m. By V7 > 0, one has

Ha(e) — My (0) >0,
that is,
ha(@) — hw(e) € REA{0},
which is equivalent to
1y (Q) — ha(e) € —RY\{0}.
Noticing that
—REN{0} C (cone(® —E)\{0}),

and

hy(0) — ha(@) € cone(hw,(0) + R — ha(0)), (©)
we get
hy(0) — ha(0) € cone(® — E)\{0}. )
By Equations (3) and (4) and hy(0) — a(0) # 0, we obtain

hy(@) — ha(@) € cone(ha, () +RE —ha(e)) N (cone(® — E)\{0}),
a contradiction. Thus, the conclusion ¢, = yj or 9 = A; holds. O

We now propose the existence of strict network equilibrium flow by virtue of an
equivalent form of Fan-Browder’s fixed point theorem ([23,24]), which is formulated in the
following lemma.

Lemma 1 (see [10]). Let U denote a Hausdorff topological vector space; K is a nonempty compact
convex subset of U. Assume that the set-valued map ¢ : K — 25 U {@} has the following
conditions:
(i) forany ¢ € K, g(c) is a convex set;
(ii) forany¢ € K, ¢ ¢ g(¢);
(iii) forany1 € K, g (1) = {c € K:1€ g(g)} is an open set in K.

Then, there exists ¢ € K satisfying g(¢) = @.

Theorem 3. Consider a multi-product supply—demand network equilibrium problem with capacity
constraints and uncertain demands G = [N,C,V, P, D). Let § € intR"*"™ be given. If, for any
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x € Q, the function (g, (h(0), (x — 0)')) is continuous on Q. Then, the network G exists as a
strict vector equilibrium flow.

Proof. Consider the following variational inequality: find ¢ € Q satisfying

(0, (h(0), (x —0))) € RW™, Wy € Q. ()

Firstly, we will show that the variational inequality (5) admits a solution. We de-

fine a set-valued map Q : Q — 22U {®@} as Q(0) = {x € Q : (o, (h(0), (x — o)) e

int(—R”*™) }. Then, one has the following results:

i) Qo) is convex;

(i) foreacho € Q, 0 ¢ O(o0);

(iii) if x € Q(0), one has (g, (h(0), (x —0)')) € int(—R’"*™), which implies that there ex-
istsa & € R"™*" such that (g, (l(0), (x —0)')) + ¢ € int(~R™ ™). Since (g, (h(0), (x —
Q)/ )) is continuous on Q by hypothesis, one can reach that there exists an open neigh-
borhood ©(¢) of ¢ such that

!

(@ (h(0), (x —8))) < (g, (h(e), (x = @))) + & € int(~R}*™), ¥4 € ©(g)

which implies that

©(0) C Q7' (1) = {e € Q: (g (h(a), (x — @) )) € int(~RP>™),

ie., Q7 1(x) is open.

By Lemma 1, we obtain that the variational inequality (5) has a solution § € Q. Next,
we prove that § is a strict network equilibrium flow. According to Theorem 2, we needs to
prove that § is a solution to the following vector variational inequality:

(h(0), (x —a)') & —R"*™\{0}, Vx € Q.

Let us suppose to the contrary that ¢ is not a solution; then, there is ¥ € Q, such that
(h(3), (% — 0)') € —R™™\{0}. For ¢ € intR"™*™, we obtain

(@, (h(a), (X — 2)')) € —R”*™\{0},
a contradiction. [

4. Strict Vector Equilibrium Flows with Multi-Criteria via Scalarization

It seems unreasonable for network users to choose a path based on a single criterion.
In fact, the network users need to consider time, tariffs, fuel, and other relevant cost factors
simultaneously. That is, the cost function is a multi-criteria one. In the following sections,
the equilibrium model of the multi-product supply-demand network G = [N, C,V, P, D]
based on multi-criteria cost functions is investigated. Let us suppose that the cost on arc
¢ € C with product o is: H(¢) : R"™*" — R¢, where e > 1 is a positive integer. The cost on
the path a € wy, p € P with product o0 is computed by

Hi () = ) He(o).

cea

Hence, H](0) : R"™*" — R and we set it in the form
Hj(0) = ug(0)do, Va € wp,p € Pando=1,---,m, (6)

where uj(0) : R™*" — R, 9 € intR¢,..
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The cost on the network concerning product o is denoted by H(¢) = (Hj(0),--- , H;(0)),
the cost on path a is denoted by H,(0) = (H}(0),- -+, HS(0), -, H"(0)), and the cost of the
network is denoted by H(0) = (Ha(0) : a € wy, p € P).

In the following, Y = IR¢ is a e-dimensional Euclidean space with the ordering cone
R¢,, where e > 1 is a positive integer. & always denotes a base of R’} ¢, and © denotes a
neighborhood of 0 in R"*¢. Firstly, we introduce the concept of strict network equilibrium
flow for a multi-product, multi-criteria supply-demand network with capacity constraints
and uncertain demands.

Definition 6. The feasible network flow ¢ € Q is called a strict network equilibrium flow for a
multi-product, multi-criteria supply—demand network with capacity constraints and uncertain
demands, if, forany p € P,a,b € wp, 0 =1,--- ,m, there is a neighborhood © of 0 in R™*¢, such
that ® — & C —intR’!*¢, one has the implication

cone(Hy, () + R — Ha(0)) N (cone(® — E)\{0}) = @ } N
Hy(0) — Ha(o) #0

0) = up, b # a,or gy = A, or path a is a saturated path of product o and flow o.

As we all know, a viable approach to solve vector problems is to convert them into
scalar problems. In this paper, we use the following nonlinear scalarization function
(i.e., Gerstewitz’s function) to scalarize the vector-valued strict network equilibrium flows
without any assumptions about convexity.

Definition 7 (see [25]). For a given v € intR%_, let ¢, : R® — R be defined by
Po(x) =min{d € R: x € fv — R },Vx € R

Lemma 2 and Lemma 3 provide some properties of the above function that we will
use in the proof of Theorem 4.

Lemma 2 (see [26]). Let v € intRS . For each o € R and x € R®, one has

i)

(
(i) ¢o(x) <0 e x€ov—intRY;

(ii) ¢o(x) <o xcov—RY;

(iii) Po(x) =2 0 & x ¢ ov —intR;

(iv) Po(x) >0 & x ¢ ov—R;

(v) Po(x) =0 & x € ov — IR, where ORY,_ is the topological boundary of RS, .

(%
[
Lemma 3 (see [7]). Given v € intR°, x € R®, and o € R, one has

Po(—x) = —ho(x), Po(—0x) = —py(0x),

and

Yo(—=00) = —¢o(00) = —0.
We denote
o0 Hy(0) = ¢o(Hz(0)) = min{é € R: Hy(e) € v —R% },
foranyo€ Qac wy,peP,o=1,---,m;
oo Ha(0) = (oo H(0) 0 =1,---,m) €R™;

and
¥o(0) = Yoo H() = (Yoo Ha(0) : a € wp, p € P) € R™*".
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Definition 8. The feasible network flow ¢ € Q is called in ,-strict vector equilibrium for a
multi-product supply—demand network involving vector-valued cost functions, if, for any p € P,
a,b € wy, 0 =1,---,m, there exist v € intR%, and a neighborhood ® of 0 in R™ satisfying
O — E C —intR", one has the implication

cone(ipy © He, (0) + RE — 1y 0 Ha(0)) N (cone(® — £)\{0}) = @ }
o 0 Hp(0) — o 0 Ha(0) # 0

0) = up, b # a,or g = Ay, or path a is a saturated path of product o and flow g.

Now, we will scalarize strict vector equilibrium problems for a multi-product supply—
demand network involving vector-valued cost functions.

Theorem 4. Let us suppose that H{ (o) is defined as in (6) for each a € wp, p € P, and
o =1,---,m. The feasible network flow o0 € Q is a strict network equilibrium flow for a multi-
product, multi-criteria supply—demand network with capacity constraints and uncertain demands if
and only if ¢ is in g, -strict vector equilibrium.

Proof. Necessity: suppose that ¢ € Q is a strict network equilibrium flow for a multi-
product, multi-criteria supply—demand network with capacity constraints and uncertain
demands. For any p € P, a,b € wp and 0 = 1,---,m, it is necessary to verify the
following implication:

cone (g, © Hw, (0) + R — 9y, 0 Ha(0)) N (cone(® — E)\{0}) = @ } N
s, © Hy(@) — g, 0 Ha(@) #0

0] = up, b # a, or gy = A, or path a is a saturated path of product 0 and flow ¢.
Firstly, it holds that

{ cone(yg, o Hy, (@) + R — g, 0 Hy(0)) N (cone(® — E)\{0}) =D
s, © Hy(0) — g, 0 Ha(@) #0

implies
{ cone(He, (0) + R*¢ — Hy(0)) N (cone(® — E)\{0}) =@
Hy(0) — Ha(e) # 0.

Indeed, from ¢4, o Hy,(0) — 9, © Ha(0) # 0, we have
Hy(0) — Ha() #0, Va,b € wp, b #a.

From (6), one has H,(0) = tw,(0) o 8o, where uy,(0) = {up(0) :b € wp}, up(a) =
(up(0),- -, u(0),- -+, ul"(0)). By Lemma 3, it holds that

¥, 0 Huw,(@) = {0 Hp(0) : b € wp}
= {(¥g, © Hy (@), ¥g, 0 Hy (@), -+ , gy 0 Hy' (0)) : b € wp}
= {(uy(0),- -, uj'(0)) : b € wy}
:”wp(Q)'

Therefore, cone (g, o Hw,(0) + R — g, 0 Ha(0)) N (cone(® — E)\{0}) = @ turns into
cone(tw, (0) +RY —u,(0)) N (cone(® — E)\{0}) = @.

Thatis, us(¢) € SEP{u;(0) : b € wp}. Due to SEP{uy(0) : b € wp} C EP{uy(0) : b € wp},
so ug(0) € EP{uy(0) : b € wy}, that is,

up(Q) — uale) & —RYN{0}, Vb € wp. @)
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Let us suppose that
cone(Hy, (@) + R — Ha(0)) N (cone(® — E)\{0}) # @,

there is a k # 0 satisfying k € cone(H, (0) + R’!*“ — Ha(0)) N (cone(® — Z)\{0}). We set
k = 5k, where k € H,,, () + R"*“ — H,(g), § > 0. Because 5k € cone(® — &)\{0}, there
exist & > 0 and 7 € © — & satisfying 5k = 67. So k = & € Hy,(0) + R — Ha(0) N (O —
2), k # 0. Hence, there are b € wp, 0 e R satisfying
k= Hy(o) + 0 — Ha(o),
equivalently, o
Hy(Q) — Hal) =k~ € —R™
ie.,
H2(0) — HY(0) € —R%, 0=1,-++ ,m.

It follows from Lemma 2 that

e, (HZ (0) — Hy (0)) < 0.

By (6) and Lemma 3, one has

u(0) —u3(0) <0, 0=1,-,m,

ie.,
ug(0) — ua(e) € —RY.
If up(0) — ua(0) = 0, Hy(e) — Ha(g) = 0, so k = 6, which contradicts k € ® — & and
6 € R, Hence,
u(e) — uale) € —RI\{0},

which leads to a contradiction with (7). Therefore, one has the implication:

{ cone(tpg, o pr(g) + R — g, 0 Hy(0)) N (cone(® — E)\{0}) =@
e, © Hy(0) — 9, © Ha(@) #0

{ Cone(pr (0) + R — Ha(0)) N (cone(® — E)\{0}) =@
Hy(0) — Ha(o) # 0.

Since ¢ € Qs a strict network equilibrium flow, forany p € P,a,b € wp,0=1,---,m,

one has
cone(He, (0) + R} — Hy(0)) N (cone(® — E)\{0}) =@ }

Hy(0) — Ha(0) #0

0) = up, b # a,or g = Ay, or path a is a saturated path of product 0 and flow ¢. Hence, we
obtain that

cone(ipg, © He, (0) + R — ipg; 0 Ha(@)) N (cone(®@ — E)\{0}) =D } N
s, © Hy(0) — g, 0 Ha(e) #0

0) = uj, b # a,or gj = A, or path a is a saturated path of product 0 and flow g, for any
peEP,abcwyando=1,---,m.

Sufficiency: assume that ¢ € Q is in 1y -strict vector equilibrium for a multi-product
supply—demand network involving vector-valued cost functions. We first verify the implication

{ cone(He, (0) + R*¢ — Hy(0)) N (cone(® — E)\{0}) =@
Hy () — Ha(o) # 0
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{ cone (g, o Hw,,(Q) + R — g, 0 Hy(0)) N (cone(© — E)\{0}) =@
¥9, © Hy () — g, © Ha(o) # 0.
If

cone(ig, © Ha, (0) + R — g, © Hy(0)) N (cone(® — E)\{0}) # ©.

The following is similar to the proof of necessity. There is a ¥ € (¢, o Hw, (0) + R% —
g, © Ha(0)) N (© — E) satisfying 7 # 0. Therefore, there are b € w), and 0 € R satisfying

7 =g, o Hy(@) + 6 — g, o Ha(0).
ie.,
Yo, © Hy(@) — ¢s, 0 Hao) =7 — 0 € —R.
Together (6) with Lemma 3, one has

up(0) —ua(o) € —RY.
Hence, it holds that
Hj(e) — Ha(o) € —RI*C.

If Hy(0) — Ha(0) = 0,7 = 6, which leads to a contradiction with 7 € ® — E and
fc R". Therefore,

H(e) — Ha(g) € —RE*\{0}. ®)

Because cone(H, (0) + R’ ¢ — Ha(0)) N (cone(® — E)\{0}) = @, then Ha(0) € SEP{Hy(0) :
b € wy}. Therefore, Hy(¢) € EP{H,(0) : b € wp},ie,

Hy(e) — Ha(e) & —RY*\{0}, Vb € wy,
which leads to a contradiction with (8). Hence, it holds that
cone(ipg; © Hw, (0) + R — ¢y, 0 Ha(0)) N (cone(® — E)\{0}) = @.

Additionally, due to Hy,(0) — Ha(0) # 0, one has ¢y, o Hy(0) — g, © Ha(0) # 0. Tt
follows from Definition 8 that ¢} = pj, b # a, or g5 = Ay, or path a is a saturated path of
product o and flow ¢, forany p € P,a,b € wpand o =1,--- ,m. Therefore, ¢ € Q is a strict
network equilibrium flow for a multi-product, multi-criteria supply-demand network with
capacity constraints and uncertain demands. This completes the proof. [

It should be noted that the relations among strict network equilibrium flows involving
real-valued cost functions, ¥y -strict vector equilibrium flows, and vector variational in-
equalities have been investigated in Theorems 1, 2, and 4. Then, strict network equilibrium
flows for a multi-product supply—demand network involving vector-valued cost functions
can be replaced by the following corresponding vector variational inequality: find ¢ € Q
satisfying

(W0, (), (x = @)) & ~RE™M{0}, ¥y € Q. ©)

Additionally, it was shown in [7] (see Theorem 3.2 and Theorem 3.3) that the variational
inequality (9) is equivalent to the following variational inequality: find ¢ € Q satisfying

(H(o), (x — o)) & —(B$)™"™\{0},Vx € Q.

These approaches allow us to obtain strict network equilibrium flows for a multi-
product supply-demand network involving vector-valued cost functions.
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5. An Illustrative Example

In this section, an example is provided to demonstrate the application of the obtained
theoretical results. The example has the network topology depicted in Figure 1. Table 1
summarizes the constituent paths of each OD pair.

53
2’2

Figure 1. Network topology of the example.

Table 1. OD pairs and paths.

P oD, “r

1 N = Ny a (c1,¢5)
an (Cz)

2 N3 — N4 az (C3/ 55)
a4 (ca)

The network consists of four nodes: N = {Nj, N3, N3, Ny} and five arcs: C =
{c1,c2,¢3,¢4,05}. We assume that V = {af,, éCz’@Cg’@C4’@C5} {5,4,3,6,4}, P = {{./\/1,/\/4},
{N3,M}} m=1e=2and D = {d}(el),di(e})}, where dl = 5,d} =5, ¢ = 3,

ey = 3, then di(e]) € [3, %], di(e}) € [%,%] Let (ui, py 3 ny) = (2,3,5,1) and
(AL AL AL AL) = (5 4,3,6). The costs on each arc are chosen as follows:

H; (01) = (el,01),  H.(03) = (403,505), HL(03) = (203,303),
H.,(01) = (50,601), Hl.(01) = (01,201), He.(0}) = (03,203).

By a direct calculation, we derive the costs on four different paths:

1) = Hz (01) + Hy.(01) = (201,301), Hj(03) = Hy,(03) = (403,503),
H3(03) = Hz,(03) + Hy.(03) = (303,503), Hi(es) = Hy,(0}) = (501, 604)-

Setting 0 = (01, 03, 03,04) = (3,2,1,4). Obviously, 0 € Q is a feasible network flow.
Thus,

Hi(o1) = (6,9), Hi(02) = (8,10), Hs(03) = (3,5), Hj(es) = (20,24).

Now, we verify that the feasible flow ¢ is a strict vector equilibrium flow. For OD
pairs {N1, Na}, {N3, Ny}, we choose © = (0,1) and E = (1,1); it holds that

{ cone(H, (03) +R3 — H{(ef)) N (cone(® — E)\{0}) =
Hy(e) — Hi(e) #0
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nd
) { cone(H (g}) + B2 — H1 (1)) N (cone(® — £)\{0}) =
Hy(0) — Ha(o) # 0

Since the arc flow g}s is

0o = 3 ) k@ = 01 + 03 =4 =0y,

i€Z kew;

it follows from Definition 3 that arc cs is a saturated arc of flow g, paths 3 and 5 are saturated
paths of flow ¢. Hence, by Definition 6, we obtain that ¢ is a strict vector equilibrium flow.

Next, we show that ¢ = (Q%, Q%, Q%, Qi) = (3,2,1,4) is a solution of the following
variational inequality:

(H(0), (x —0)) & —RZ\{0},Vx € Q. (10)

We take xy = (7(%, X%, X%, X}L) = (3,3,1,4); it is obvious that x € Q. Direct computation
shows that

(H(0), (x — @)
<(H ) Hz(Qz) H3(Q3)f

2@1 492 3@3 50
301 505 503 60

Hy(01)), (X1 — o1, X2 — @5, X3 — @5, X4 — €3) )
> (3—0f, 3—03 1—03, 4—@i)>

3(1—03) +505(4 - 0) )
1

1
4
1
4

)+3
)+

1(3 Ql)+4ez( -0
13—0})+50i(3—0¢

10 ) ¢ ~R3\{0}.

Therefore, the strict vector equilibrium flow ¢ = (3,2,1,4) is a solution of variational
inequality (10).

% 0
2) +503

6. Conclusions

This paper considered the strict network equilibrium flows for a multi-product supply—
demand network with capacity constraints and uncertain demands, where the uncertain
demands were assumed to be in a closed interval. The main contribution is theoretical
in nature, in that we derived the existence results of strict network equilibrium flows by
virtue of the Fan-Browder fixed point theorem based on a single criterion cost function and
showed that such a strict network equilibrium flow for a multi-product supply-demand
network with capacity constraints and uncertain demands is equivalent to a vector varia-
tional inequality when considering both real value and vector value cost function, and we
developed a scalarization method for strict vector equilibrium flows based on vector-valued
cost functions by using Gerstewitz’s function. The results obtained in this paper provide
a viable approach to solving the multi-product, multi-criteria supply—demand network
equilibrium model with capacity constraints and uncertain demands.

In this paper, we presented an analytical framework based on the concept of network
equilibrium to attain optimal performance for a multi-product supply—demand network
with capacity constraints and uncertain demands. In future research, designing concrete
simulation experiments and developing substantial areas of applications of the theory
presented in our paper should be considered as a potential research project.
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Abstract: Sphere packing consists of placing several spheres in a container without mutual over-
lapping. While packing into regular-shape containers is well explored, less attention is focused on
containers with nonlinear boundaries, such as ellipsoids or paraboloids. Packing n-dimensional
spheres into a minimum-height container bounded by a parabolic surface is formulated. The mini-
mum allowable distances between spheres as well as between spheres and the container boundary are
considered. A normalized ®-function is used for analytical description of the containment constraints.
A nonlinear programming model for the packing problem is provided. A solution algorithm based
on the feasible directions approach and a decomposition technique is proposed. The computational
results for problem instances with various space dimensions, different numbers of spheres and their
radii, the minimal allowable distances and the parameters of the parabolic container are presented to
demonstrate the efficiency of the proposed approach.

Keywords: packing; multidimensional spheres; paraboloid; ®-function; nonlinear optimization
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1. Introduction

Sphere packing is a well-studied area of research that involves arranging identical
or non-identical spherical items within a given volume (container), subject to certain
constraints. This problem has a wide range of applications, making it a versatile and
important topic in both theoretical and practical contexts [1]. According to the typology of
packing and cutting problems introduced in [2], packing problems are considered in two
main formulations: open dimension problems (ODP) and knapsack problems. The ODP is
aimed at optimizing the dimension(s) of a container, while packing the maximum number
of identical objects or maximizing the total volume of packed objects is a knapsack problem.
Typically, continuous nonlinear programming (NLP) models are used to formulate an ODP,
while for the knapsack problem, mixed integer NLP models are implemented.

Our interest in irregular containers is motivated by the following considerations.
Packing problems for regular-shaped containers (rectangles, circles) are well studied
for 2D objects, such as circles [3], ovals [4,5] and ellipses [6-8]. Rich theoretical and
empirical results are presented in these papers, where various NLP models and ex-
act/heuristic/metaheuristic solution techniques are accompanied by extensive computa-
tional experiments to demonstrate the efficiency of the proposed approaches. Different NLP
models and solution algorithms for packing 3D objects into regular 3D containers (cuboids,
spheres, and cylinders) can be found, e.g., in [9,10] for spherical and in [11] for ellipsoidal
shapes, together with corresponding empirical results obtained for different numbers of
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objects and various container shapes. In all these works, geometric tools for modeling
non-overlapping and containment conditions in Euclidean and non-Euclidean [4,5,9] met-
rics are provided. Algorithms based on combinations of smart heuristics and nonlinear
optimization techniques are designed. The proposed solution approaches allow us to
find the optimal solutions for small and medium-sized instances, while reasonably good
feasible solutions are obtained for larger instances. However, as was highlighted in re-
view papers [12-15], challenging packing problems in irregular containers are much less
investigated. Several publications consider ellipsoidal containers [16,17], while there are
only a few works focusing on packing for multiply connected domains and cardioids [18]
and paraboloids [19]. Sphere packing into irregular containers arises in, e.g., material
science [20,21] and nanotechnology [22]. A simple application of sphere packing into a
parabolic container can be found in the food industry [23], where a parabolic dish container
must be designed to store candies. To the best of our knowledge, in the n-dimensional
case, the problem of packing spheres into an optimized parabolic container has not been
considered before.

A brief review of the papers related to packing in irregular containers is provided
below. An approach to constructing analytical non-intersection and containment conditions
for non-oriented convex two-dimensional objects, defined by second-order curves, is
proposed in [16]. This approach was applied to a problem of packing circles into an ellipse
and minimizing the ellipse size. Packing algorithms applied to different-shaped two-
dimensional domains are studied in [18], including rectangles, ellipses, crosses, multiply
connected domains and even cardioid shapes. The authors introduce a novel approach
centered around the concept of “image” disks, enabling the study of packing within fixed
containers. Paper [19] focuses on Apollonian circle packing. The method has been used
in various models, including geological sheer bands. Mathematical equations utilizing
hyperbolas and ellipses are applied. This approach is applicable to a generic, closed, convex
contour given the parametrization of its boundary. In the aerospace industry, packing into
parabolic or other non-traditional containers is a significant challenge due to the specific
shapes and delicate nature of many components [19]. The container is divided by horizontal
racks into sub-containers. The proposed mathematical model considers the minimal and
maximal allowable distances between objects subject to the behavior constraints of the
mechanical system (equilibrium, moments of inertia and stability constraints). The paper
describes a solution approach based on the multistart strategy, Shor’s r-algorithm and
accelerated search for the terminal nodes of the solution tree.

The objective of this paper is to develop a modeling and solutions approach to an ODP
that consists of packing n-dimensional spheres into a minimum-height parabolic container.
For analytical description of the placement constraints, the ®-function technique [24] is
used. This approach allows us to present mathematical models of optimized packing
problems in the form of continuous NLP problems. To describe the containment of spheres
in the parabolic container, a new ®-function for the nD case is introduced. Using a section
of the nD paraboloid and spheres by hyperplanes, it is iteratively reduced to consideration
of the ®-function in the 2D case. The ®-function involves an additional variable parameter
that is dynamically adjusted by solving a one-dimensional optimization problem. An
approach based on the feasible directions method (FDM) [25] is developed considering the
special properties of the ®-function.

The contributions of the paper are as follows:

e A new problem of packing spheres into a minimum-height parabolic container in
n-dimensional space;

e A new ®-function for analytical description of the containment of a sphere into a
parabolic container in #-dimensional space;

e An approach based on the feasible directions scheme considering the specific charac-
teristics of the ®-function.

e  New benchmarks for various sphere radii and the parameters of the parabolic con-
tainer in n-dimensional space forn =2, 3, 4, 5.

132



Axioms 2024, 13, 396

The remainder of this paper is organized as follows. Section 2 describes the problem
statement. Section 3 introduces geometrical tools for constructing a mathematical model of
the packing problem. A mathematical model is formulated in Section 4. Section 5 presents
a modification of the FDM. Section 6 provides the computational results for problem
instances in several dimensions, with different numbers of spheres and their radii and
various values of the minimal allowable distances and the parameters of the parabolic
container. Section 7 concludes.

2. Problem Statement

Let a convex domain bounded by a parabolic surface and a hyperplane be de-
fined in n-dimensional Euclidean space R" as follows: P,(h) = P, N H, where

n—1
P = {X = (x1,x2,...,%) G]R”:iglxlz—prnSO}andHn = {XER":x, —h <0},ie,

n—1
Pu(h) = {X€R": Y x? —2px, <0, x, —h < 0}. (1)
i=1

Further, we refer the domain P, (h) to a container of variable height i1 > 0, with the
predefined parameter p > 0.

And let a collection of nD spheres S;,j € | = {1,2,...,m} with variable centers
yi = Wi Y-, Yjin) € R"j € ], be given and denoted by

Siyj) = {XeR": [[X—yj| —r;<0},je]. 2

In addition, the minimal allowable distances between each pair of spheres S(y;) and
Si(yj), as well as between a sphere S;(y;) and the boundary of the container Py (), are
given, respectively, as §tj and (5]-.

Packing problem. Pack spheres S;(y;), j € ], into the minimum-height container P, (h),
considering the minimal allowable distances é;;, t <j € J,and ¢;,j € J.

To describe the placement constraints of the packing problem analytically, the ®-
function technique is used. For the reader’s convenience, the main definitions of the
phi-function are provided in Appendix A. More details can be found in, e.g., Chapter 15

of [26].
The distance constraint for two spheres can be defined using the adjusted ®-function
in the form
2 2
Q4(yey;) = llye —yill” — (re+1j+ )"
Therefore,

@4;(yr,yj) > 0 = dist(Se(yt), Sj(y;)) = 64,

dist(Si(y1), Sj(y;)) = aest(;})ﬁb%s‘(yj)||a—b\|, a = (ay,ay,...,a,),b = (by,by,..., by).
4 ]

In Section 3, we introduce a continuous and everywhere defined function that allows
us to describe the containment of each sphere into a parabolic container.

3. The ®-Function for Containment Constraints

To describe analytically the containment constraint, S;(y;) C Py (h) < intS;(y;) N P;(h) = @,
let us define a phi-function for an nD sphere S;(y;) (2) and the object P; (h) = R"\intP,(h)
(the compliment of the container P, (h) interior to the whole space R").

Note that P;;(h) = P; UH;;, where H, = {X € R":x, —h >0} and

n—1
Py = {XeR": Y x7—2px, >0}. ®)
i=1
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A ®-function for a sphere S;(y;) and the object P; (1) can be stated in the following form:
Q7 (yj, Yju ) = min{ @;(y;) —6;,0;(yju 1)}, (4)

where @;(y;) is a @-function for a sphere S;(y;) and the object P;, and ©;(y;,, h) = h—
Yju — 1j is a D-function for a sphere S;(y;) and a half-space H;;.

Let us define a ®-function for a sphere S;(y;) and the object P;. We state that S;(y;) C
P, if Py NintS;(y;) = 2.

Firstly, construct an (n — 1)D hyperplane K; passing through axis Ox; of P, and the
centery; = (Yj1,Yj2---,Yjn) of the nD sphere S;(y;). Then, the section K; N Py yields the
parabolic domain

n—1
Pig = {XeR"1': —z1 - Y x?+2px, = 0},
i=3

where z; = =+,/x7 + x3, while the section Ky N S;(y;) yields the (n — 1)D-sphere S;(,_1

of radius r; and the center y;,_1) = (zj1,¥j3,---, Yjn),2n = sign(yjn), /yjz1 + yjzz.
By analogy, an (1 — 2)D-hyperplane K, passing through axis Ox;, of P,,_1 and the center
Yi(n—1) of Sj(4_1) is constructed. Then, the section K, N P,_1 yields the parabolic domain

n—1
Py = {XeR"2: -2~ lez—f—z;axn = 0},
i=4

wherezy; = £,/ Z?: 1 X7, while the section K, N S i(n—1) yields the (n — 2)D-sphere S;(,, 7)

of radius r; and the center y;,_p) = (2j2,Yja,---, Yju), z2 = sign(zj1), e_, yjz.i.

The iterative procedure continues until the 2D parabolic domain
P, = {X eER?: —z%n_l) +2px, = 0} with z, 1 = sign(zj(,_p))\/L/_" 7 and the
2D sphere Sj of radius r; and the center (Zj(n—l)/ Yjn) are obtained.

Note that sign(zj(,_5)) = sign(zj(,—3)) = ... = sign(zj1) = sign(y;1). This means
that the construction of the ®-function for the object P;; (3) and the nD sphere S;(y;) (2) is
reduced to deriving the ®-function for the object P; and the 2D sphere Sj.

Let an equation of the tangent 03D2; to the boundary of P, be given

f(zn1,%n,t)) = —zp1/2ptj + p(xn + t]2) =0
forany t; € R!. Note that different tangents 03D2;(t;) can be generated for different values
of t;.
]
Let a point (z,—1,x1) = (tj\/2p, tjz) be a tangency point of 03D2;(t;) and the bound-
ary of P;. Then, the normal equation of 03D2;(#;) takes the form

Zn-1+/2pt; — poxn + t]2)

\/2pt: + p?

Thus, the normalized ®-function for the 2D sphere Sj» and the half-plane specified by
the inequality fj(zn_l, Xn, tj) < 0 can be defined as follows:

f]'(znflrxi’l/ t]) = =0 (5)

Do (zj(n-1) Yju tj) = fi(Zjtn-1) Yjn tj) — 1. (6)

Substituting fj(z,—1, xs, t;) (5) into (6), the function w;(t;) = (—zj—1)\/2pt; —

p(Yjn + 1512))/\/2;%]27+p2 can be defined.
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Then, we search for 7 at which the function w; (t]*) reaches the minimum correspond-
ing to the distance between the center of S, and the boundary of P,. Consequently, bearing

inmind z,_1 = /X' 11 12, the normalized ®-function for S; (yj) and Py (3) takes
the form

d(y;)) = min <1> n—1)Yin, ti)- 7
](]/]) e Bl o(z Zjn-1)-Yj ]) ()

To find the optimal value of ¢; € [Bj1, Bj2], a bisection technique [25] is applied.
Let us consider two cases for the locations of the center of S, with respect to P,: case 1
corresponds to (zj(,_1), Yju) € P2; case 2 corresponds to (z ](n 1):Yju) & P2.

Assume (z] (n—1)r yjn) € P, and y]-n > 0. Here, (z Zj(n—1)s y]-n) is the center point
of the sphere Sj. Let us consider two tangents 03D2;(t;1) and 03D2;(t;;) to frP, at

points A( 2py]n, y]n) and B(z i(n— 1) i(n—1)/ (2p)) for corresponding t;; = /y\]-n and
th = Ej(n_l)/\/ p (Figure 1). Therefore, [Bj1, Bj2] = [Ej(n_l)/,/Zp,,/?jn].

0 v / |

Figure 1. Illustration of interaction of S, and the boundary of P, in 2D.

In Figure 1, the segment AB of the parabola that corresponds to t; € [B1, Bj2] is shown.

The tangent 03D2;(t7) at the point C( Zp?jn,?jn,t;) corresponds to t; = taer[%mlisn}
JSPjLPf2

qD]O(A](n 1)/ El;]n’ )
Let (zj(,—1), y]n) € P, (case 1); then,

[Z\F Vjul if Zj(u_1) = 0 (case1.1)

(n—1)

[—m,zﬁ}lfz(n 1) <0 (casel2) - ®)

[Bj1, B2 =

Let (zj(,—1), Yjn) ¢ Pa(case 2); then,

[T \/»]1fz n-1) = 0, yjn > 0(case2.1)
Bi1 Bj2l = [— [z vl fzio) |] if y;u < 0(case2.2) ) )
ﬂ v
[- \/5 il if Zj(n—1) <0, yju > 0(case2.3)

Figure 2 illustrates two cases: a sphere is arranged inside the parabolic domain
®;(y;) > O(Figure 2a), and a sphere is arranged outside the parabolic domain P,
®;(y;) < 0 (Figure 2b).
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~ 7
= “n-1

Zna

(b)

Figure 2. Arrangements of S, with respect to P, for different t; € [B;1, 2]: () (zj(u—1), Yju) € P2;
() (zj(n-1),Yjn) & P2.

In particular, to calculate t € [B;1, Bj2], case 1.1 (8) is used for the parabolic segment
A1, Ay, while case 1.2 (8) is used for the parabolic segment By, By (Figure 2a); case 2.1 (9) is
used for the parabolic segment A1, Ay, case 2.2 (9) is used for the parabolic segment Cy, Cy,
and case 2.3 in (9) is used for the parabolic segment By, B, (Figure 2b).

4. Mathematical Model
A mathematical model of the packing problem can be formulated as follows:

inh 10
i 10

subject to

@4y yi) = llye —_yj||2 —(r+ri+0y)° >0t < j€]
qD]*(]/],y]n,h) = mln{ q)](y]) — (5]', ®](y]n,”l)} > 0, ] S ]

where Y = (y1,v2,...,ym) € R™.

Note that the inequality CID;‘ (Yj,Yjn,h) > 01in (11) is equivalent to the system of
inequalities ®;(y;) — d; > 0 and @;(y;,, ) > 0 and ensures the arrangement of the nD
sphere S;(y;) fully inside the parabolic container Py (k).

The number of inequalities specifying the feasible region (11) is equal to x = 0.5m
(m — 1) + 2m. The dimensions of a solution matrix for W are (mn + 1) x x.

(11)
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Thus, the number of inequalities /variables in the inequality system (11) is increased
drastically by enlarging m. The solution matrix is strongly sparse. The problem is NP-
hard [27].

Since we cannot define f; explicitly, then we need to solve the optimization problems
of the form (7) for each sphere S;(y;) on each iteration of the solution process of the problem
(10), (11). We do not use the solvers BARON [28] or IPOPT [29] for the original problem
because of the dynamic nature of the ®-function. Instead, a modification of the feasible
directions method is developed.

The following solution strategy scheme for the problem (10), (11) is proposed:

1. Take a sufficiently large height h° of the container that guarantees a placement of
spheres S;(y;), j € ], fully inside P(h°);

2. Generate the sphere centers y?,]’ € J,randomly so that S; (y?) C P(h0),j € @4y}, y?)
>0, t<je];

3. Apply the modification of the FDM to solve the problem (10), (11) for a set of feasible

starting points.
4.  Select the best solution.

5. Solution Algorithm

In contrast to the problem considered in [30], in this study, the spheres are of different
radii, and the ®-function describing the containment of a sphere into the container involves
an additional parameter, which is dynamically changed during the optimization process.

The FDM for the problem (10), (11) is implemented using the iterative formula

Yl — Yk AkZE k= 0,1,2,..., 12)

where YO € W (for k = 0) is a starting feasible point, Z¥ is a search direction vector, and
A¥ > 0 is a parameter that controls the step size.

Let ¢(Y) = h denote the objective function. A vector ZF in (12) should provide
Yk € W. To search for a vector Z¥, the following linear programming problem is solved:

(ZF,o*) = argmaxas.t.03D2 = (Z,a) € G, (13)

Gk = {(Z,oc) ERYL VO (yfyf) - Z2a, t <je ], VOI(yf) - Z2> o,

Kok k - (14)
V®j(yjn,h V- Z>wa,—Veh*)-Z>ua, |z;] <1,iecE = {1,2,...,x}},

where Z = (z1,22,...,2y) €ERX, 0 € RY, D, (y;‘) is constructed according to (7).

Note that in (11), each @;(y+, y;) is an inverse convex function, and each ®;(y;,, 1) is
a linear function. The vector of feasible directions may be orthogonal to the gradients of
these constraints, so the inequalities V®;; (y’t‘, y;? )-Z > wand V®]~(y;§n,hk) -Z > ain (14)
are replaced with VCIDt]-(y’t‘,y;-‘ )-Z >0and V@)j(y;.‘n, W) . Z > 0, respectively.

To reduce the dimension of the problem (10), (11) and consequently of the problem
(13), (14), a decomposition strategy [31] based on the degree of feasibility is employed.

When considering all the placed spheres, the majority of them are positioned at a
significant distance from each other. The inequalities in the system (11) are satisfied with a
considerable margin, and they can be disregarded when forming the optimization vector.
At each step, only a subset of inequalities from the system (11) is considered, specifically
those with a low degree of feasibility. During the optimization process, a parameter
ek > 0 determining the degree of feasibility is adjusted dynamically, regulating the system
constraints at each step. If an inequality is not considered in the optimization process at a
certain step but is violated during the step’s execution, the admissibility is controlled using
the parameter AK in iterative Formula (12).

Let us denote the inverse convex and linear inequalities in the system (11) as gs(Y')

>
0, s € A C E and the rest of the inequalities as gs(Y) >0, s e T C E(AUT = EAN
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I = o) andlet BX = {s€A:0<g(Y) <e}and B = {seT:0<q(vF) <ef,
Here, ¢f > 0 is a threshold value. Then, the problem (13), (14) takes the form

(ZF,a¥) = argmaxas.t. (Z,a) € Gy, (15)

Gy = {(Z,w) eRML: Vg (YR) - Z>0,i€EX, Vg;(Y%)-Z > a, i € B,

16
Vo) Z >, |z <1, ieE}. (16

Taking into account the problem (15), (16), the following step-by-step algorithm is
employed to solve problem (10), (11).
Step 1. Take a sufficiently large height h° of the container that guarantees a placement of
spheres S;(y;), j € J, fully inside P, (h°).
Step 2. Generate the sphere centers y?,j € J, randomly so that §; (y?) C DPy(HY),
j €L y) 20, t<je].
Step 3. Setk : = 0,%:= ¢>0.
Step 4. Define the functions ®; (y;‘) 7).
Step 5. Form the sets EX, BX.
Step 6. Set A¥: = 1.
Step 7. Calculate (ZF, a¥) (Problem (15), (16)).
Step 8. If aF < 0 (there is no a feasible direction decreasing the objective ¢(Y) = h), then
set ek : = /2 and go to Step 5; otherwise (a* > 0), go to Step 9.
Step 9. Set YA+1: = vk + AkZk (12).
Step 10. If YS1 ¢ W, then set A* : = AK/2 and go to Step 9; otherwise, go to Step 11.
Step 11. If || Y**1 — Y*|| < 7, then stop algorithm; otherwise, set ¢! : = &k, k: = k41
and go to Step 4.

A schematic illustration of the proposed approach is shown in Figure 3. Three con-
secutive iterations of the FDM in 2D are illustrated in Figure 3a—c. An arrangement of

2D spheres corresponding to the stop criterion, || Y¥*1 — Y¥|| < T, at Step 11 is shown in
Figure 3d.

VAR

(a)

()

(c)

Figure 3. Illustration to the main stages of the solution procedure for three spheres: (a) an arrangement

of spheres corresponding to the k-th iteration; (b) an arrangement of spheres corresponding to the
(k + 1)-th iteration; (c) an arrangement of spheres corresponding to the (k + 2)-th iteration; (d) an
arrangement of spheres corresponding to the stop criterion.
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A flowchart corresponding to the solution strategy is presented in Figure 4.

Calculate #°
Set h"=H, y:=1

<
A4

Set k=0
Generate a feasible starting point
¥¥ = (¥, 1) of problem (10),(11)

l:

Define &; (rf) , using (7)

Define the direction vector z* :
solve problem (15), (16) Set k:=k+1

AN
4

h 4

Calculate the step size
parameter A"

Set y=y+1

h 4

Set Y*l.=yk  2kzF

False
True
False
True

Set 4" = W1, ¥y .= yFl

N

&
'\
\

7r=N

Figure 4. The flowchart of the main algorithm.

False

139



Axioms 2024, 13, 396

6. Computational Results

The proposed approach was numerically tested for eleven instances of the problem
(9), (10) with different (a) dimensions, n = 2, 3, 4, 5; (b) numbers of spheres, m = 50, 100,
200; b) radii, rij = 1,...m; (c) minimal allowable distances, o0, t <je]je];
(d) parameters p of the parabolic container, p = 1,2,5,10. For all the examples, we set
e® = ¢ = 1,7 = 107°. For each problem instance, 10 starting points were generated. The
computations were performed using an Intel® Core™ i3-6100T, 3.20 GHz, 8.00 GB of RAM.

Example 1. n = 2,m = 100,r, = 1177,j = 1,...,24,r, = 1117,
i =25..48r = 097,j = 49,...,72,r; = 0927,j = 73,...,96,r; = 0.86,
j=97,...,100;p =1, 5tj = (5]- = 0. The best solution found by our algorithm for 5 min
is hx = 37.518079.

Example 2. n = 2, m = 200, ri = 1177, j o= 1,...,24, ri = 1117,
= 25...,48,r; = 097,j = 49,...,72,r; = 0927,j = 73,...,96,1r; = 0.86,
j=97,...,120,r; = 0.812,j = 121,...,144,r; = 0.762,j = 145,...,168,r; = 0.726,
j=169,...,192,r; = 0.664,j = 193,...,200;p = 1,6;; = 6; = 0. The best solution
found by our algorithm for 20 min is h+* = 49.511450.

Example 3. n = 2, m = 100, the radii are as in Example 1; p = 5, (Stj = 5]- =0,
K0 = 30. The best solution found by our algorithm for 5 min is h* = 21.695951.

Example 4. n = 2,m = 50, {rj,j = 1,...,50} ={1.177,1.177,1.177,1.177,1.117,
1.117,1.117, 1.117, 1.117, 0.970, 0.970, 0.970, 0.970, 0.970, 0.927, 0.927, 0.927, 0.927, 0.927,
0.860, 0.860, 0.860, 0.860, 0.860, 0.812, 0.812, 0.812, 0.812, 0.812, 0.762, 0.762, 0.762, 0.762,
0.762, 0.726, 0.726, 0.726, 0.726, 0.726, 0.664, 0.664, 0.664, 0.664, 0.664, 0.627, 0.627, 0.627,
0.627,0.627}, p = 5,4 € [0.1,0.5], J; € [0.1,1]. The best solution found by our algorithm
for2 minis h* = 11.577099.

The corresponding placements of the spheres in Examples 1-4 are shown in Figure 5a—d.

~.

Figure 5. Cont.
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Figure 5. Optimized arrangement of 2D spheres: (a) Example 1; (b) Example 2; (c) Example 3;
(d) Example 4.

Example 5. n = 3,m = 50, {rj,j = 1,...,50} = {0.527,0.564, 0.566, 0.592, 0.612,
0.680, 0.747, 0.760, 0.807, 0.845, 0.850, 0.853, 0.855, 0.868, 0.887, 0.891, 0.934, 0.947, 0.955,
0.961, 1.044, 1.085, 1.180, 1.189, 1.210, 1.229, 1.237, 1.274, 1.275, 1.281, 1.292, 1.309, 1.325,
1.374, 1.399, 1.404, 1.430, 1.484, 1.491, 1.493, 1.525, 1.551, 1.551, 1.636, 1.670, 1.739, 1.819,
2.050,2.171}, p = 2,4;; = 6; = 0. The best solution found by our algorithm for 3 min is
hx = 11.927860.

Example 6. n = 3,m = 200, {rj,j = 1,...,200} ={2.171,2.171,2.171,2.171, 2.050,
2.050, 2.050, 2.050, 1.819, 1.819, 1.819, 1.819, 1.739, 1.739, 1.739, 1.739, 1.670, 1.670, 1.670,
1.670, 1.636, 1.636, 1.636, 1.636, 1.551, 1.551, 1.551, 1.551, 1.551, 1.551, 1.551, 1.551, 1.525,
1.525, 1.525, 1.525, 1.493, 1.493, 1.493, 1.493, 1.491, 1.491, 1.491, 1.491, 1.484, 1.484, 1.484,
1.484,1.484, 1.484, 1.484, 1.484, 1.430, 1.430, 1.430, 1.430, 1.404, 1.404, 1.404, 1.404, 1.399,
1.399, 1.399, 1.399, 1.374, 1.374, 1.374, 1.374, 1.325, 1.325, 1.325, 1.325, 1.309, 1.309, 1.309,
1.309, 1.292, 1.292, 1.292, 1.292, 1.281, 1.281, 1.281, 1.281, 1.275, 1.275, 1.275, 1.275, 1.274,
1.274,1.274,1.274, 1.237, 1.237, 1.237, 1.237, 1.229, 1.229, 1.229, 1.229, 1.210, 1.210, 1.210,
1.210, 1.189, 1.189, 1.189, 1.189, 1.180, 1.180, 1.180, 1.180, 1.085, 1.085, 1.085, 1.085, 1.044,
1.044, 1.044, 1.044, 0.961, 0.961, 0.961, 0.961, 0.955, 0.955, 0.955, 0.955, 0.947, 0.947, 0.947,
0.947, 0.934, 0.934, 0.934, 0.934, 0.891, 0.891, 0.891, 0.891, 0.887, 0.887, 0.887, 0.887, 0.868,
0.868, 0.868, 0.868, 0.855, 0.855, 0.855, 0.855, 0.853, 0.853, 0.853, 0.853, 0.850, 0.850, 0.850,
0.850, 0.845, 0.845, 0.845, 0.845, 0.807, 0.807, 0.807, 0.807, 0.760, 0.760, 0.760, 0.760, 0.747,
0.747, 0.747, 0.747, 0.680, 0.680, 0.680, 0.680, 0.612, 0.612, 0.612, 0.612, 0.592, 0.592, 0.592,
0.592, 0.566, 0.566, 0.566, 0.566, 0.564, 0.564, 0.564, 0.564, 0.527, 0.527, 0.527, 0.527}, p = 2,
0tj = 6; = 0. The best solution found by our algorithm for 35 min is h* = 22.612047.

Example 7. n = 3,m = 100, {r;,j = 1,...,100} = {2.171,2.171, 2.050, 2.050, 1.819,
1.819, 1.739, 1.739, 1.670, 1.670, 1.636, 1.636, 1.551, 1.551, 1.551, 1.551, 1.525, 1.525, 1.493,
1.493,1.491, 1.491, 1.484, 1.484, 1.484, 1.484, 1.430, 1.430, 1.404, 1.404, 1.399, 1.399, 1.374,
1.374, 1.325, 1.325, 1.309, 1.309, 1.292, 1.292, 1.281, 1.281, 1.275, 1.275, 1.274, 1.274, 1.237,
1.237,1.229, 1.229, 1.210, 1.210, 1.189, 1.189, 1.180, 1.180, 1.085, 1.085, 1.044, 1.044, 0.961,
0.961, 0.955, 0.955, 0.947, 0.947, 0.934, 0.934, 0.891, 0.891, 0.887, 0.887, 0.868, 0.868, 0.855,
0.855, 0.853, 0.853, 0.850, 0.850, 0.845, 0.845, 0.807, 0.807, 0.760, 0.760, 0.747, 0.747, 0.680,
0.680, 0.612, 0.612, 0.592, 0.592, 0.566, 0.566, 0.564, 0.564, 0.527,0.527}, p = 10,6;; = 4; = 0,
hY = 40. The best solution found by our algorithm for 10 minis h*x = 7.577422.

Example 8. n = 3, m = 100, the radii are as in Example 7; p = 10, (5tj € 10.1,0.5],
d; € [0.1,1]. The best solution found by our algorithm for 10 min is i+ = 9.727001.

The corresponding placements of the 3D spheres in Examples 5-8 are shown in
Figure 6a—d.
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(©) (d)

Figure 6. Optimized arrangement of 3D spheres: (a) Example 5; (b) Example 6; (c) Example 7; (d)
Example 8.

Example 9. n = 4, m = 100, the radii are as in Example 7; p = 2, o = 0; = 0.
The best solution found by our algorithm for 15 min is h* = 22.612047.

Example 10. n = 4, m = 200, the radii are as in Example 6; p = 2, 5tj = (5j = 0.
The best solution found by our algorithm for 45 min is h* = 14.628068.

Example 11. n = 4, m = 200, the radii are as in Example 6; p = 2, 6j = 6; = 0.
The best solution found by our algorithm for 55 min is hx = 11.791466.

7. Conclusions

Employing mathematical models offers a structured and systematic approach to
problem-solving, facilitating precise analysis and prediction of outcomes [32]. In this
paper, a mathematical model for packing different spheres into a minimal-height parabolic
container is proposed. Non-overlapping and containment conditions are formulated using
the phi-function approach. The minimal allowed distance between the spheres and the
boundary of the container is considered. The problem belongs to a class of irregular packing
problems due to the nonstandard container shape.

To solve the corresponding nonlinear optimization problem, a feasible directions
approach combined with the hot start technique is proposed. A decomposition scheme
is applied to reduce the number of constraints in the subproblem used to find the search
direction. Numerical experiments are provided to demonstrate the efficiency of the pro-
posed solution scheme. A detailed description of the problem instances and corresponding
solutions are reported to form a benchmark for future research.
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Our future research is focused on the following issues. The number of non-overlapping
constraints grows quadratically with an increase in the number of spheres, resulting in a
large-scale optimization problem. These constraints have a specific structure which can be
used either for direct solution of the original problem or to construct tight bounds for the
optimal objective [33,34]. The proposed approach is based on modeling the interactions
between the spheres and the boundary of the parabolic container. It also can be applied
to a broader class of containers, e.g., circular hyperboloids (single- and double-sheeted),
spheroids or ellipsoids. Packing problems on surfaces [35] can also be considered, as well
as various applications of spherical systems [36] and logistics [37]. Some results in these
directions are forthcoming.
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Appendix A

For the reader’s convenience, the main definitions and properties of the ®-functions
are provided. More details can be found, e.g., in [23,25], Chapter 15.

Let A be a geometric object. The position of the object A is defined by a motion
vectoruy = (v4,04), where v4 is a translation vector and 64 is a vector of the rotation
parameters. The object A, rotated by 64 and translated by v,4, is denoted by A(u4).

For two objects A(u4) and B(ug), a ®-function allows us to distinguish the following
three cases: (a) A(u,) and B(up) do not overlap, i.e., A(u14) and B(up) do not have any
common points; (b) A(u4) and B(up) are in contact, i.e., A(u4) and B(up) have only
common frontier points; (c) A(u4) and B(up) are overlapping so that A(u4) and B(up)
have common interior points.

Following the definition [26], a continuous and everywhere defined function, denoted
by ®48(u4,up), is called a d-function of the objects A(u,) and B(up) if the following
conditions are fulfilled:

OB (u,,up) > 0, for A(uy) NB(ug) = @
4B (1,,up) = 0, forintA(us) NintB(ug) = @and frA(ua) N frB(ug) # &;
OB (14, up) < 0, for intA(uy) NintB(up) # @.

Here, frA denotes the boundary of the object A, while intA stands for its interior.
Thus,
4B (1u,,up) >0 < intA(uy) NintB(ug) = @

143



Axioms 2024, 13, 396

To describe a containment constraint A(u ) C B(ug), a phi-function for the objects A
and B* = R"\intB is used.

In the case, @48 (14, up) > 0 < intA(us) NintB* (up) = & < A(ua) C B(up).

To model the distance constraints for two objects, the normalized ®-function is applied.

A P-function of the objects A(u4) and B(up) is called a normalized phi-function
®AB (114, up) if the values of the function coincide with the Euclidean distance between the
objects A(u4) and B(ug) when intA(u4) NintB(ug) = .

Therefore,

DB (1uy,up) > p < dist{A(ua), B(ug)} > p.
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Abstract: Quantitative bisimulations between weighted finite automata are defined as solutions of
certain systems of matrix-vector inequalities and equations. In the context of fuzzy automata and
max-plus automata, testing the existence of bisimulations and their computing are performed through
a sequence of matrices that is built member by member, whereby the next member of the sequence is
obtained by solving a particular system of linear matrix-vector inequalities and equations in which
the previously computed member appears. By modifying the systems that define bisimulations,
systems of matrix-vector inequalities and equations with k unknowns are obtained. Solutions of such
systems, in the case of existence, witness to the existence of a certain type of partial equivalence,
where it is not required that the word functions computed by two WFAs match on all input words,
but only on all input words whose lengths do not exceed k. Solutions of these new systems represent
finite sequences of matrices which, in the context of fuzzy automata and max-plus automata, are
also computed sequentially, member by member. Here we deal with those systems in the context
of WFAs over the field of real numbers and propose a different approach, where all members of
the sequence are computed simultaneously. More precisely, we apply a simultaneous approach in
solving the corresponding systems of matrix-vector equations with two unknowns. Zeroing neural
network (ZNN) neuro-dynamical systems for approximating solutions of heterotypic bisimulations
are proposed. Numerical simulations are performed for various random initial states and comparison
with the Matlab, linear programming solver linprog, and the pseudoinverse solution generated by
the standard function pinv is given.

Keywords: weighted finite automata; zhang neural network; bisimulation; pseudoinverse
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1. Introduction, Motivation and Methodology

One of the main issues in the theory of weighted automata is the equivalence prob-
lem, which determines whether two weighted automata are equivalent, that is, whether
they compute the same word function. In the case of the most general class of weighted
automata over a semiring, as well as in the case of most of its subclasses, that problem
is undecidable or computationally hard (cf. [1,2]). Only in rare cases it is solvable in
polynomial time. This fact has created the need to find methods of determining equiv-
alence that may not work in all cases, but in cases where they are applicable, they can
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be efficiently realized. The most powerful tools used for these purposes are bisimulations.
This notion was introduced by Milner [3] and Park [4], in the context of classical non-
deterministic automata, as binary relations that can recognize and relate the states of two
automata with similar roles, and thus testify the equivalence between them. Around the
same time, bisimulations also appeared in mathematics, in modal logic and set theory
(cf. [5-11]). It is worth noting that propositional modal logic is the fragment of first-order
logic invariant under bisimulation (cf. [5,7]). Bisimulations are employed today in many
areas of computer science, such as functional or object-oriented languages, types, data
types, domains, databases, compilers optimizations, program analysis, and verification
tools. For more information about bisimulations and their applications we refer to [7-16].

With the transition from traditional Boolean-valued systems to quantitative ones,
which are more suitable for modeling numerous properties of real-world systems, there
was a need for bisimulations to be quantitative as well. Quantitative bisimulations would
be modeled by matrices whose entries would measure the similarity of the roles played
by the states of considered systems. Such bisimulations were first introduced and studied
in [17,18], in the framework of fuzzy finite automata. The approach to bisimulations
initiated in this research consists in defining bisimulations as solutions of certain systems
of mixed matrix-vector inequalities and equations. That way, the proposed approach
reduces the issues of the existence of bisimulations and their computing to the problems
of solving the aforementioned matrix-vector inequalities and equations. Subsequently,
fundamentally equal approach was used in the contexts of weighted finite automata (WFAs)
over additively idempotent semirings [19], max-plus automata [20], and WFAs over the
field of real numbers R [21], as well as in the most general context of WFAs over a semiring
[22]. A similar approach to bisimulations was used in [23-27] (see also [28,29]), while
various extensions of quantitative bisimulations were introduced in [30-35].

Procedures for testing existence and computing bisimulations developed for fuzzy
finite automata in [18], max-plus automata in [20], and WFAs over additively idempotent
semirings in [19], consist of building non-increasing sequences of matrices whose infima, if
they satisfy certain conditions, represent the greatest bisimulations. The sequences are built
member by member, where each member is derived from the previous one, as a solution
of a certain system of matrix inequalities in which the previously computed member
also appears. On the other hand, the methodology used in computing bisimulations for
WEFAs over R is different from the methodology used in computing bisimulations for fuzzy
automata, max-plus automata or WFAs over an additively idempotent semiring.

In practical applications of WFAs, it is often not important whether the word functions
of two automata have the same values on all input words, but it is enough to test equality
on all input words whose length does not exceed a given natural number k. Such kind
of partial equivalence, known as k-equivalence, is often more expedient than the classical
equivalence. As shown in [20] (see also [35]), systems of matrix-vector inequalities and
equations defining bisimulations can be transformed into simpler systems of matrix-vector
inequalities and equations with k unknown matrices whose solutions witness to the exis-
tence of k-equivalence between two WFAs. In the mentioned papers, an approach similar
to the one used in the calculation of bisimulations was used, where a finite sequence of
matrices which represents a solution of a new system with k unknowns, is derived by
constructing the next member in the sequence from the previous one. However, such
a sequential approach has certain drawbacks. Namely, the next member of a sequence
depends on the previous one, which does not have to be unique. Inappropriate choices
among candidates for previous members can lead to unwanted situation in which the
sequence cannot be continued, while for a different choice the sequence can be continued.
This means that although our system has a solution, it may happen that this approach fails
to give a solution. For this reason, we propose a different, simultaneous approach, where
all members of the sequence of the solution are built simultaneously. Particularly, further
on in this paper we deal with solving systems with two unknowns, while systems with
more unknowns will be the subject of study in our further research.
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Systems of matrix-vector equations required in heterotypic bisimulations in this paper
are considered over R, and their solutions are obtained as numerical approximations of
solutions to systems of linear matrix-vector equations. A special difficulty is the fact that
the required matrix-vector equations are not consistent in the general case. In this way,
solving those systems is considered as numerical linear algebra problem.

The proposed algorithm for solving the problem is based on the zeroing neural
network (ZNN) dynamic models. It should be noted that ZNN dynamic models were
originally created for tracking the time-varying matrix inverse [36]. Later iterations of these
models were dynamic models for figuring out the time-varying Moore-Penrose [37]. These
days, they are also used to solve generalized inversion problems, such as time-varying
outer inverse [38], time-varying Drazin inverse [39], and time-varying ML-weighted pseu-
doinverse [40]. Additionally, real-world ZNN dynamic model applications include image
restoration [41], mobile manipulator control [42,43], chaotic systems synchronization [44],
and solving time-variant quadratic programming [45]. A comprehensive survey regarding
the application of the ZNN model is available at [46].

Designing a ZNN model is the algorithm consisting of two generic stages. In the initial
step, it is necessary to declare a proper matrix or vector ZEF, denoted by E(t). The ZEF E(t)
is properly defined if its zero point E(t) = 0 coincides with the theoretical solution (TSOL)
of the problem. Zhang and Guo in the monograph [47] presented an extensive overview of
diverse Zhang functions on different domains. Secondly, the dynamic system based on the
time-derivative of E(t)

E(t) = —AE(t) (1)

needs to be applied. The convergence speed of the dynamics (1) is controlled by the
quantity A € R*. It is known that (1) converges faster proportionally with increasing
values of A [47]. The principal outcome of the continuous learning principle in (1) is to
force the convergence E(t) — 0 as t — oo at an exponential rate A [47,48]. A feasible ZEF is
therefore considered as a tracking indicator during the development of ZNN learning in
(1). The essence in defining the ZNN dynamical evolution is an efficient control over the
underlying system through appropriate ZEF E(t) and the error dynamics (1).

The models developed in [21] for bisimulations between WFAs over R are established
using a ZNN dynamics in resolving systems of vector-matrix inequalities. Our goal in
current research is to solve the system consisting of two vector equations and a variable
number of linear matrix equations required in heterotypic bisimulations between WFAs. A
mixed system of vector-matrix equations is obtained as a particular k-equivalence problem
between two WFAs, resulting in a system with two unknown matrices Uy and U,. Such
system is inconsistent in the vast majority of cases. Starting from the useful property of the
ZNN model in generating approximate solutions to matrix-vector inequalities, confirmed
in [21], it was a logical decision to define and implement ZNN neuro-dynamical systems
for approximating matrix-vector systems arising from the 2-equivalence between WFAs.
Since the considered linear matrix-vector system is not inconsistent in general, the ZNN
dynamical system is defined utilizing the induced normal system and its best approximate
solution generated in terms of the Moore-Penrose inverse. Numerical simulations are
performed to verify effectiveness of the proposed ZNN models and comparison with the
Matlab linear programming solver linprog and the pseudoinverse solution generated by
the standard function pinv.

In this work, given that underlying linear vector-matrix systems are not solvable in
the general case, our proposed action is to use the normal system that generates the best
approximate solution, based on the utilization of the Moore-Penrose inverse. Finally, ZNN
dynamics is applied as the tool for finding the best approximate solution.

Main results derived in this paper are emphasized as follows.

- A specific approach, based on the k-equivalence of two WFAs and simultaneous
approach with two unknown matrices, is applied for solving matrix-vector equations
required in heterotypic bisimulations between WFAs.
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- ZNN neuro-dynamical systems for approximating the k-equivalence problem based
on heterotypic bisimulations are proposed.

- Numerical simulation is presented for various random initial states and comparison
with the Matlab linear programming solver 1inprog and the pseudoinverse solution
generated by the standard function pinv is given.

Overall structure of our presentation is as follows. After the introduction section,
the problem statement, motivation as well as justification of proposed methodology are
presented in Section 2. ZNN design for solving matrix-vector systems corresponding
to heterotypic bisimulations based on the k-equivalence of two WFAs and simultaneous
approach with two unknown matrices is presented in Section 3. Numerical experiments on
the k-equivalence problem arising from heterotypic bisimulations with two unknowns are
presented in Section 4. The closing section extracts some terminate comments and describes
possibilities for further research on this topic.

2. Preliminaries and Problem Formulation

In the sequel, N will denote the set of natural numbers (without zero), and Ny =
NU{0}. For any pair i, j € Ny satisfying i < j, it will be denoted [i..j] = {t € Ng |i <t < j}.
Moreover, X will be a non-empty and finite set with » € N elements, known as alphabet,
while X" = {x;---x; | t € N, x1,...,x € X} will denote all finite sequences of entries
from X, which are termed as words over X, and X* = X U {e}, such that ¢ ¢ X* is a
symbol standing for the empty word.

A weighted finite automaton (WFA) over R and an input alphabet X is defined as a tuple
A= (m,c?, {M2}cx, ), in which
- m is a natural number, called the dimension of 4,
~- o € RV is the initial weights vector,

— {MZ},ex C R™ s the family of transition matrices, each of which corresponds to
one input letter x € X, and
—- 14 € R™is the terminal weights vector.

The numbers from the set {1,...,m} can be interpreted as states of the automaton 4,
and for any state i, the i-th entries of the vectors ¢ and 74 can be understood as measures
of certainty that the automaton will start working from that state or finish working in that
state, respectively, while for the states i and j, the (i, j)-th entry of the matrix MZ can be
understood as a measure of certainty that the automaton will move from the state i to state
j under the influence of the input signal represented by the letter x. Inputs of the vector
are called initial weights, the entries of T4 are called terminal weights, while the entries of the
matrix M4 are called transition weights.

The behavior of the WFA 4 is defined as the word function [A] : X* — R which to any
word u = x7...%s € X1, x1,...,xs € X assigns the weight [4] (1) which is computed as

[A](u) = (TAM;?] --~M§?STA = o MAT4, (2)
where M/} = M;?l e M;f‘s, and
[4](e) = A2 ®3)

It is said that the automaton A4 computes the function [A4].

Consider two WFAs 4 = (m, 04, {M2},cx, ) and B = (n,08, {MB} . x,7T8) over
R and an alphabet X = {x1,...,x,}. Here, we are interested in systems of matrix and
vector equations that define the so-called heterotypic bisimulations between 4 and B, as
proposed in [22]. These are the following two systems:

(hfbb-1) ¢ =P UT
(hfbb2) UTMA=MBUT (xeX={x,...,x}) )
(hfbb-3) U't4 =P
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and

(hbfb-1) 4 =U+?
(hbfb2) MAU=UME (xcXx={xy,...,x}) (5)
(hbfb-3) o2 U =B

where U is an unknown matrix of dimension m x n. Matrices which are solutions of (4)
are called forward-backward heterotypic bisimulations (fbb for short) between 4 and ‘B, and
those which are solutions of (5) are backward-forward heterotypic bisimulations (bfb for short)
between A4 and B [22].

Recall that the automata A4 and ‘B are equivalent if [A](u) = [B](u), for every
word u € X*. However, in real-word applications it is not always necessary that this
equality holds for all words u € X*; it is often enough that it holds for all words of length
\u| < k, for a given natural number k. If this relaxed condition holds, then we say that the
automata A4 and B are k-equivalent, and the equivalence problem can be transformed into the
k-equivalence problem, which decides whether the automata A4 and ‘B are k-equivalent.

The problem of k-equivalence will be the subject of a separate study, and here we
will only present without proofs the way in which the existence of k-equivalence be-
tween automata can be witnessed, similar to the way bisimulations testify to the existence
of equivalence.

Consider WFAs 4 = (m, 04, {M%}cx,7) and B = (n,08,{MB},cx,7%) and a
sequence of matrices {U;};c(o.4 C R™*" that satisfies the following conditions obtained
from the system (4):

(fbb-1%) ¢4 = BUL,
(fbb-2%) Ul M2 = MBUT,  forallx € Xandic [1...k], (6)
(fbb-3%)  UuTt4 = B, for eachi € [0...k].

1

If such a sequence exists, then the automata A4 and ‘B are k-equivalent. Therefore, our
task is to determine existence of matrices Uy, U, . . ., Uy satisfying (6). Note that (6) can be
understood as a system of equations with k + 1 unknown matrices Uy, Uj, . . ., Uy, so our
task is to find a solution to that system.

Sequences of matrices (possibly infinite), defined in a similar way as in (6), were stud-
ied in [35], in the circumstances of fuzzy finite automata, and in [20], in the circumstances
of max-plus automata. Sequences defined in [35] were called depth-bounded bisimulations.
The sequential approach used in [20], applied to solving the system (6), consists of building a
sequence Uy, U, . .., Uy member by member, starting from the zero member Uy, which is
computed by solving the equation (fbb-1¥), while the i-th member is computed after the
(i — 1)st member, by solving the system of equations Ul ;M2 = MBUT and UT 74 = 75,
with one unknown U;.

Since U;_1 is not unique in the general case, the disadvantage of the sequential ap-
proach is that finding a solution for the unknown U; depends on the choice of the particular
solution for the unknown U;_. Therefore, it may happen that for some choice of a solution
for U;_1 there is no solution for the unknown U;, in which case formation of the sequence
interrupts and we cannot find solutions for all the unknowns, although such solutions
may exist.

Consequently, the question arises whether it is possible to apply the simultaneous
approach, where solutions for all unknowns are sought at the same time. Here, we will
consider the application of the simultaneous approach for the instance of the system (6)
with two unknowns. For the sake of simplicity, we will denote those unknowns by U;
and Uy, instead of Uy and Uj, as was done in (6). In other words, we will deal with the
following system of matrix-vector equations:
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cBufl = o4,
u; ot = 7%, 7
uf Mg = MmE uj, foreachie [1...7],

where Uy and U, are unknown matrices of dimension m x n. In the dual case, we deal with
the following system of matrix-vector equations based on (5):

oAU, = o8,

U, 8 = 14, (8)
Uy My = Mg U, foreachie[l1...7],

where Uy and U, stand for m X n unknown matrices.

The ZNN evolution is a validated matrix equations solver, confirmed in survey papers
[48-50] and in a number of research papers [51-54]. Based on the initial step in the
construction of ZNN dynamics, it is necessary to define a proper error function for each
matrix and vector equation that is included in the system which is being resolved. The
development strategy of ZNN dynamics arising from multiple Zhang error functions (ZEFs)
has been utilized in several research articles, of which the most important are [38,55,56].
The ZNN models studied so far with common error functions enabled the convergence of
each error function to approximation of its zero. The main idea is to generate an appropriate
composite error block matrix which involves individual error functions.

The problem considered in current research is more complex, since systems of matrix
and vector equations required in (7) and (8) are not solvable in the general case. The ZNN
design is known as a confirmed tool for forcing the underlying error function to zero with
global exponential convergence. So, it is expectable that the error functions corresponding
to (7) and (8) can be forced to zero, which will lead to approximate solutions of these
matrix-vector system.

Global convergence of ZNN design for arbitrary initial state can be used as a confir-
mation of its efficiency in solving (7) and (8). Details are described in subsequent section.

3. ZNN for Solving the Proposed Systems

This section develops, investigates, and tests two novel ZNN models aimed to
solving the matrix-vector systems (4) and (5). Let 4 = (m, O'A,{Mf[}xiegg,TA) and
B = (n, 0B {ME} e, TB> be WFAs over R and the alphabet X = {x1,...,x,}, defined by
Mg e R™m oA e R*™M 4 € R"*! and ME € R, 0B € RV, 18 e R™, i € [L.7].

The p x 1 vectors with all inputs equal 1 (resp. 0) will be termed as 1, (resp. 0y),
whereas the p x r matrix with all entries equal to 1 (resp. 0) will be termed as 1, and
0;,r. Following the conventional notation, the g x q identity matrix will be marked by I,

whereas vec(), ®, ()" and |||l will mean the vectorization, the Kronecker product product,
pseudoinversion, and the Frobenius norm, in that order.

3.1. The ZNNL-hfbob Model

Following the priority (hfbb-3) and (hfbb-1) and then (hfbb-2), let us consider the
system (7) as a model for solving (4). In line with the adopted order in solving (4), the next
equations must be satisfied:

(TBLllT(t —oh = OrTn,
ulf(t)td -8 =o0,, 9
Ut (H) Mg — MEUT(t) = 0y,
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where U (t), Up(t) € R™*" denote unknown matrices. Exploiting vectorization and the
Kronecker product, (9) is reformulated in the equivalent form

(In @ oB)vec(UT (t)) — (¢)T = 0y,
(M T ® L)vec(Ud (1)) — T8 = 0,, (10)
(M)T @ I)vec(UT (£)) — (In @ ME )vec(U] (t)) = Opn.

To calculate solutions Uy (), Uy (f) in a more efficient manner, (10) must be made
simpler. Lemma 1 is restated from [57].

Lemma 1. For W € R"™*" let vec(W) € R™" denote the matrix W vectorization. What is stated
below is true:
vec(WT) = Pvec(W), (11)

where P € R™>M" is an appropriate permutation matrix depended from the number of columns n
and rows m of matrix W.

The procedure for generating the permutation matrix P used in (11) is demonstrated
in Algorithm 1 from [21]. Using P in generating vec(U™ ()), (10) can be rewritten as

(In @ 0B)Pvec(U (1)) — (¢M)T = 0y,
(T ® I,)Pvec(Uy(t)) — 8 = 0,, (12)
((M;é)T ® I)Pvec(Uy(£)) — (In ® Mf’_)Pvec(Uz(t)) = Oy,

while its corresponding matrix form is

vec(U () Cs

1 _ B _

Ly vecits)] ~ | 7 | =0 =

Ormn

in which z = rmn + m + n and

_(Im ®(TB)P 0511,mn
Ly = 011 mn (T I,)P| € RZx2mn
L W W,
(M) @ In)P (—Im © MY))P (14)
ANT _ B
Wy = ((sz) ® In)P c Rrmnxmn W, = ( I ®MX2)P c Rrmnxmn.

L(MZ)T @ L,)P (=In ® ME)P

Based on considered transformations, the ZNN learning exploits the following ZEF,
which is based on (13), for satisfying simultaneously all the equations in (9):

veetn()] [
Efp(t) = Ly {vec(uz(t))} - OT , (15)
rmn
where U (t) and Uy (t) are unknown matrices. The time-derivative of (15) is the following:
: - vec(U;(t))
Epy(t) = Lo [Vec(Uz(t)) : (16)
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Then, combining Equations (15) and (16) with the ZNN design (1), the following can
be obtained:

Lysy m%m — _AEp(t). (17)
As a result, setting
— VeC(Ul (t)) 2mn . o VEC(Ul (t)) 2mn
x(t)= {Vec(llz(t))} €RT, - x(h)= {Vec(l'lz(t))} ERT, (18)
the following dynamics are developed
Lspp X = —AEgpp(t). (19)

The normal equation corresponding to (19) is given in the form

(Lfbb)TLfbh X = _/\(Lfbb)TEfbb(t)/

which leads to the Moore-Penrose best approximate solution

X = L}bb(—AEfbb(t)). (20)

Appropriately defined Matlab’s ode solver is utilized to solve the ZNN design based
on (20), and marked as ZNNL-hfbb. The ZNNL-hfbb’s convergence and stability is consid-
ered in Theorem 1.

Theorem 1. Let 4 = (m,cTA, {Mé}xiex, TA) and B = (n, oB, {Mi}xiex/ TB> be WFAs over
R, such that M;é e Rmxm gA ¢ Rlxm A ¢ pmx1 g4 Mfl. e Rmxn gB c RIxn B ¢ pux1
i € [1..r]. The dynamical system (17) inline with the ZNN (1) generate the TSOL

xs(t) = [vec(Uy ()T vec(Uys ()],

which is stable in view of the theory of Lyapunov.
Proof. Let
aBlllT’S(t) —ct =0,
Uy st — 8 =0y, (21)
Using vectorization, the Kronecker product, and the permutation matrix P for gen-
erating VeC(u;[, s(t)(t)) and VeC(U; s(t)(t)), the aforementioned system is reformulated
as follows:
(In @ 0B)Pvec(Uy s(t)) — ()T = 0y,
(T @ I,)Pvec(Uy 5(t)) — T8 = 0y, (22)
(M)T® In)Pvec(Uy,s(t) — (In ® ME)Pvec(Us s(t)) = O,

or in equivalent form

L |:V€C(ul,8(t)):|_ (a;;)T —0 (23)
T vec(Uas()] |y | T

where Ly, is declared in (14).
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Further, the substitution

xo(t) == —x(t) + xs(t) = [_Vec(ul(t)) +VeC(U1,$(t))}

—vec(Uy (1)) + vee(Uys (1)

gives

B _[vec(Uy,s(t)) — vec(Uy,p(t))
x(t) = xs(t) —xo(t) = [Vec(ll;;(t)) — VeC(u;,g(t))}

which leads to the first derivative of x(t)

) = 5516~ xo(t) = [[<Lhs(0) ~vellho ()]

As a consequence, the substitution x(t) = xs(t) — xo (t) in (13) for leads to

()T
-zt [
or equivalently ) T__
Es(t)=Lgp(xs(t) =xo(t))— [(:TB)
The subsequent dynamics arise from (1): o
e A

with equivalent form
Es(t)=Lgp(xs(t)—Xo(t))=—AEs(t).
The Lyapunov function chosen to confirm the convergence is defined by
_ 1 2 _ 1 T
2(6) = SlEs(WI} = 3r(Es()(Es(e)").

The following could be concluded in this case:

Ny
Z<t>=2tr((ES(2) al) —tr((Es (1) TEs () ) =—er ((Es(0)"Es(1)).
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Based on (29), it can be concluded

Z(t){ <0, Eg(t)#£0,

—0, Eg(1)=0,
@Z(t){<0' Ly (xs(t) =x0(t)) =b s #0,
=0, Lpp(xs(t) —xo(t)) —b =0,
—o 1 [vectths) veettnon] [
T | vee(Ups (1) —vee(tho ()] | '
10 P
0L ec(Uy,s(t)—vec(Uyo(t))| (UTB) —0 (30)
I vee(Uy s (1) —vee(Uyo ()] | o |
vec(Uy,o(t))
N VEC(Uz,o(f))} "
<Z(t)
o [veettnom)]
T |vec(lpo(t)
@Z(t){w, xo () #0,
=0, X@(f):().
Furthermore, because Eg(0) = 0 and x(t) are the equilibrium points of (27), the

following holds:
Vxo(t) #0, Z(t) <0. (31)

It becomes visible that the equilibrium state

xo(t) = —x(t) + xs(t) = [Vec(ul(t)) +VeC(U1,s(f))} _0

—vec(Uy (1)) + vee(Uys (1))

is stable in the sense of Lyapunov. After all is considered, as t — oo, the following holds

 [vec(Uy (1)) _|vec(Uy,s(t))
= [vedui(t))] sl = [Vec<u§,5<t>>}

which was our original intention. [J

Theorem 2. Let 4 = (m o4, {MA}x,ex, A) and B = (n o8, {MB brex, T B) be WFAs
deﬁned by Mg, € R, g4 € RV™, o4 € R™ and ME € R™", o8 € RV, 78 € R™],

€ [1.r]. Startmg from an arbitrary initialization x(0), the ZNNL- -hfbb design (20) converges
exponentzally to x*(t), which coincides with the TSOL of (4).

Proof. The system (9) defines the solution x(t) = [vec(U;(t))T,vec(U,(t))T]T, which affili-
ates to the backward-forward bisimulation between A4 and B. Next, the system (9) is rewrit-
ten into (10) and then into (13) for generating Vec(UE s(t)(t)) and VQC(U{ s(t)(t)). Thirdly,
the ZEF (15) is established to solve the system (13) and the ZNN evolution is exploited to
generate the solution x(t) of (4). Later, (17) is generated by the ZNN design (1) aimed to
zeroing (15). In accordance with Theorem 1, the Esy(t) — 0 as t — co. In consequence,
the solution of the dynamical system (20) tends to x*(t) = [vec(Uj (t))T, vec(U; (t))T]T as
t — oo. Moreover, it is evident that (20) is another form of (17). O
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3.2. The ZNNL-hbfb Model

According to the system (8) arising from (5), the subsequent matrix-vector equations
must be fulfilled:
™ — Uy ()18 = 0y,

oAU (t) — B = 0f, (32)
MAU(t) — Uy (H)ME = 0,1,

where U (t), Uy (t) € R™" imply unknown matrices. Applying vectorization and the
Kronecker product, the system (32) is rewritten into

—((B)T @ Ln)vec(Uq () + T4 = 0y,
(I, ® c4)vec(Uy (1)) — (¢B)T = 0,, (33)
(I @ Mg )vec(Up(t)) — (ME)T @ Ly)vec(Uy () = Oy

Then, the corresponding matrix form of (33) is the following:

A
vec(Uh ()| _ | Byr| _
L veagizey ~ |(077| = o
Ormn
where )
—(TB)T®Im 011, mn
thb: 071,mn In®0'A Eszzmnr
L W W
—(ME) T, L, ® Mg, (35)
_ B\T A
Wy — (sz) QI cRIMnXmn Wy— I”®MX2 cRImXmn
(M) @ L I ®Mz,
Following that, the ZNN develops on the following ZEF based on (34), for simultane-
ous solving of the equations in (32):
W] [
Ehfb(t) = Lbfb {Vec(llz(t))} [(‘7 ) ] ’ (36)
02111
in which U (t) and Uy (t) are unknowns. The derivative of (36) is equal to
: vec(Uy (t
Eua(t) = Lugs ety @)

Combining (36) and (37) with the ZNN (1), the following can be obtained:

Lbfb [zZEEgiggﬂ = —)\Ebfb(t). (38)

As a result, setting

o [vee(Uh (1)) - _ [vec(Us(t)) -
"(t)—[vec(u;(t))] R, X(t)_[vec(ll;(t))] R, (39)
the next model is obtained
Lyspx = —AEps(t), (40)
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whose best approximate solution is

X = LZfb(_/\Ebfb(t))- (41)

A suitable Matlab’s ode solver can be used in the implementation of the ZNN design
(41), termed as the ZNNL-hbfb. The ZNNL-hbfb convergence and stability are investigated
in the Theorem 3.

Theorem 3. Let 4 = (m,UA,{M;;‘,,}xiex, TA) and B = (n,aB,{Mfi}xiex, TB) be WFAs
over R, determined by Mjg e Rmxm gA ¢ Rlxm A ¢ Rmx1 g4 Mfi e Rxn gB ¢ Rlxn,

8 ¢ R, i € [1.r]. The dynamical system (38) inline with the ZNN (1) generates the TSOL
xs (t), which is stable in the Lyapunov sense.

Proof. The verification is analogous to the proof of Theorem 1. [

Theorem 4. Let 4 = (m,aA,{Mfi}xiex,TA) and B = (n,aB,{Mffi}xiex,'rB) be WEA
over R defined upon Mg} € R™ ", ¢4 € R™, 74 € R™1 and ME € R™", o8 € R,

8 € R, i € [1..r]. Starting from an arbitrary initialization x(0), the ZNNL-hbfb design (41)
converges exponentially to x*(t), which coincides with the TSOL of (5).

Proof. The verification is analogous to the proof of Theorem 2. [

4. Numerical Experiments on the Proposed Models

The behavior of the ZNNL-hfbb (20) and the ZNNL-hbfb (41) are examined in each
of the four numerical examinations. During the computation, the Matlab ode45 solver
was selected inside the time span [0, 10] under both relative and absolute tolerances equal
to 10~1°. In addition, the output produced by the ZNN is compared against the results
of the Matlab functions linsolve and pinv (with the default settings) in solving (13) in
Examples 1 and 2, and solving (34) in Examples 3 and 4. All numerical experiments are
performed using the Matlab R2022a environment.

Example 1. Let m =4, n=2,r =2, X = {x1,x2}, and consider WFAs
4= (4,(TA,{M,’2}xi€3€,TA> and B = (Z,UB, {Mi}xie.%/TB)-

Accordingly, My, € R¥4, o4 e R4, 4 € R and ME € R¥?, 0P e R1Z
T8 € R2X1, Consider

o4 =[-918/29 -228/29 -228/29 222/29], t=[-1 -1 1 1],

3 6 9 12 2 -4 —6 -8
A_ |3 3 3 3 A |2 —2 —2 -2
Mo=13 3 3 3| Me=| 5 5 2

~12 -9 —6 -3 8 6 4 2

and
B __ B __ T B _ 3 3 B -2 =2
R L Y e A e
The gain parameter has been chosen as A = 10 and the initialization conditions (ICs) are
equal to: ICy : x(0) = 146, ICy : x(0) = —14¢. It is important to mention that the initialization
condition refers to the value of x(t) at t = 0.
The results generated by the ZNNL-hfbb are arranged in Figure 1.
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Example 2. Let m = 4, n = 2,r = 3, X = {x1,xp,x3}, and examine WFAs over R defined
b]/ A = (410'Ar {M;?i}xiE%/ TA) and B = <2rUBI {Mfi}xiG.%/TB) Sﬂtisfying M;?, € R4X4’

oA e R4 1A ¢ R¥1 gnd Mfi € R2%2 gB ¢ R1%2 B ¢ RZx1, Let us choose

oh=1Jo 57/2 57/2 12, A=[2 2 2 2", M=

-2 —6 -4
—2 -2 -2
A _
Ma=15 5 o
8 6 4

and

P =1[1 2], 7% =[32 40]

The ZNN gain parameters are chosen as A = 10 and A = 100, while the IC has been chosen as

T

3 3 -
B _ B _
’ Mxl B |:3 3:|, sz - |:

39 6 12

3 3 3 3

3 3 3 3/

12 -9 —6 -3
—5 —15 —10 —20
A_|-5 -5 -5 -5
Ma=|5 5 5 -5
20 15 10 5
2

2] .5 [-5 -5
| e

x(0) = 114. The outputs of ZNNL-hfbb are shown in Figure 1.

10°
—1IC1 6 40
— 102 I — —1i1c1 H —1c1
,,,,,,, linsol [r —1Ic2 —1IC2
10° | B ( 2l [ liolve @0 [ | [ | linsolve
o ---- pinv o -=--- pinv
= = 0= S 20
SO ° 5 L S
= ) - g -
= 10 £2 . 0 01 £ 0
-10 = > a
10 0 a
= # H_ip o 1
1015 ‘ ‘ ot o 0 01 02
2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
Time Time Time
(a (b) ()
105 , 20 ' - 20 '
—A=10 —A=10 of =10
X — 100 10—, —— =100 L “l—A =100/
o\ linsolve |{ = 151 / ---linsolve | | 35 15} 4y |- linsolve ||
10 - - -pinv = B +- - --pinv S 2 - - - -pinv
B = 3 [
= s 0 o 10 0 0.2
L 5 210k 0 01 __0.2 g
g 10 5 5
B B £ 5
2 2
10 ] <
10 g ° - =
Lt ‘w\'r v
10-15 0 5 . . .
0 2 4 6 8 10 0 2 4 6 8 10 0 4 6 8 10
Time Time Time
(d) (e) )

Figure 1. Errors and trajectories generated by ZNNL-hfbb in Examples 1 and 2. (a) Example 1: ZEF
errors. (b) Example 1: Trajectories of Uj (¢). (¢) Example 1: Trajectories of Uy (t). (d) Example 2: ZEF
errors. (e) Example 2: Trajectories of Uy (t). (f) Example 2: Trajectories of Uy (f).

Example 3. Let m =3, n=2,r =2, X = {x1,x2}, and consider WFAs

4= (3,(7A,{Mfi}xiex,TA) and B = (Z,JB,{Mfi}xiex,TB>
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satisfying M;‘i € R33 g4 c R1%3, 74 ¢ R3*1 and Mfi € R2xn gB ¢ RIx2 1B ¢ R2x1 [ef

us choose .
cd=102 2 2], =[-1/2 -1/2 -1/2],
—3 -1 1 -3/2 —1/2 1/2
Mg =|-1 -1 1f, ~1/2 -1/2 1/2
—1 -1 1 -1/2 —1/2 1/2
and

T -1 -3 -1/2 -3/2
=02 8, P¥=[-1/2 -2, M= {_1 _2}, ME = [_1/2 o ]

The design parameter has been selected as A = 10 and two ICs have been used: ICy :
x(0) = 112, IC3 : x(0) = —11».
The outputs of the ZNNL-hbfb are arranged in Figure 2.

Example 4. Let m = 3, n = 2, r = 3 and X = {xq,x2,x3}, and consider WFAs 4 =
(3, UA,{M;’?,-}xiex, TA) and B = (2,03,{Mfi}xi€35,73). Clearly M;“i € R3*3 g4 ¢ R1x3,
4 e R3*1 gnd Mfi € R?2%2 B ¢ R1%2 B ¢ RZx1, Consider

A= 2 2], Th=[-1/2 -1/2 —1/2]",

-3 -1 1 -3/2 -1/2 1/2 —3/4 —1/4 1/4
M =|-1 -1 1|, Mg =|-1/2 -1/2 1/2|, M{=|-1/4 —1/4 1/4
-2 -1 1 -1 -1/2 1/2 ~1/2 -1/4 1/4

as well as

PB=2 4, PF=[-172 -1,

5 [-1 -3 5 [-1/2 —=3/2 5 [-1/4 —3/4
Mxl_[—l —2}’ M’fz_[—l/z -1 } Mx3_[—1/4 —1/2]'

Gain parameters of ZNN are A = 10 and A = 100, while the IC is x(0) = 11.
The outcomes generated by ZNNL-hbfb are arranged in Figure 2.

Results Analysis

This part presents the results from the four numerical examples that examine the
performance of the ZNN models, which are shown in Figures 1 and 2. Particularly,
Figures 1a,d and 2a,d show the ZEF errors in Examples 1-4, respectively, while
Figures 1b,e and 2b,e show the trajectories of Uj(t), and Figures 1c,f and 2¢,f show the
trajectories of Uy (t).

According to results generated in Example 1, the next outcomes are observable for
the ZNNL-hfbb initiated by IC; and IC; and forced by A = 10. Figure la shows the
ZNNL-hfbb model’s ZEF norms. Both ZNNs are initiated by a large error cost at t = 0 and
both ZEFs converge in the time span [10~1%,10~13], with an insignificant error at t = 3.5. In
this way, the ZNNL-hfbb behavior confirms Theorem 2 by the convergence to a result near
to zero for two random ICs. Figure 1b,c displays the trajectories generated by U; (f) and
Uy (t), respectively. Included graphs indicate that U;(¢) and U, (t) do not generate close
trajectories initiated by IC; and IC, , but the convergence speed is similar in both cases.
Therefore, the ZNNL-hfbb appears to give dissimilar solutions for a series of ICs, but the
convergence behavior of its solutions is proven to match the convergence behavior of the
linked ZEFs.
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1B ()|

10-10 L

—1IC1 —1IC1

— 102 f —1C2
,,,,,,, linsolve 1 ~------linsolve |
- - --pinv - - - -pinv

Trajectories of Uy (t)
o
S
Trajectories of Us(t)

Time Time Time

—
o
=
—
N
—

—A=10 —A=10 ||

—— )\ =100 sl
,,,,,,, linsolve
- - - -pinv

——————— linsolve [
777777777777777777777777 - - --pinv

0.5 g\

—A=10

—— =100/

——————— linsolve
- - - -pinv

0.6 L ””””””””””””””””””” J

0.4

Trajectories of Uy (t)
Trajectories of Us(t)

0.2 >

(e) (f)

Figure 2. Errors and trajectories generated by ZNNL-hbfb in Examples 3 and 4. (a) Example 3: ZEF
errors. (b) Example 3: Trajectories of Uy (t). (¢) Example 3: Trajectories of Uy (t). (d) Example 4: ZEF
errors. (e) Example 4: Trajectories of Uy (t). (f) Example 4: Trajectories of Uy (f).

In Example 2, under A = 10 and A = 100, the next observations for the ZNN-hfbb are
concluded. Figure 1d shows the norm of ZNN-hfbb’s ZEFs. Both evaluations in this figure
start with a large error cost at t = 0 and converge in [10’15, 10’13] att = 0.3 for A = 100,
and at t = 3.5 for A = 10, with a negligible error. Accordingly, the ZNN's convergence
features are confirmed by the norm of the ZNN-hfbb’s ZEF, which depends on A. So, the
results generated in ZNN-hfbb confirms Theorem 2 by the convergence to a quantity near
to zero. Figure le and 1f, respectively, show the trajectories of the model’s solutions U (¢)
and U,(t). Obtained results point out that the trajectories of U (t) and U(t) converge
much faster in the environment A = 100 than in A = 10. Besides that, U; (t) compared
to Uy (t) generates close trajectories in environments A = 10 and A = 100, individually.
So, the ZNN-hfbb produces the same U (t) and Uy (t) solutions for different A, and their
convergence behavior coincides with the convergence of the related ZEFs.

In Example 3, the next conclusions for ZNNL-hbfb, beginning with IC; and IC; for
A = 10, are observable. Figure 2a shows the ZNNL-hbfb’s ZEFs. Both evolutions are started
from a large error at t = 0 and both ZEFs converge inside the time span [107'6,10713] with
an insignificant error at t = 3.5. Accordingly, the ZNNL-hbfb model confirms Theorem 4 by
the convergence to a value near to zero for two distinctive ICs. Figure 2b and 2c, respectively,
present the trajectories of Uj (t) and U, (t). Generated results point out that the trajectories
of U;(t) and U(t) are not close in both instances IC; and IC, , but their convergence
behavior is similar. Consequently, the ZNNL-hbfb generates diverse solutions related to
different ICs, and its convergence behavior matches with the convergence behavior of the
associated ZEFs.

Example 4 initiates the subsequent conclusions regarding ZNN-hbfb under the accel-
erations A = 10 and A = 100. Figure 2d exhibits the ZNN-hbfb’s ZEFs. Both instances of
the ZNN-hbfb evaluation in this figure start with a large error cost at t = 0 and converge in
[10716,10" 3] at t = 0.3 for A = 100, and at t = 3.5 for A = 10, with a negligible error. In
other words, the ZNN’s convergence is certified by the ZNN-hbfb’s ZEF, which depends
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on A, and the ZNN-hbfb certifies Theorem 4 with its own convergence to a quantity near to
zero. Figure 2e and 2f display the trajectories of Uj () and U, (t), respectively. Involved
graphs indicate that the trajectories of U; (t) and U, (t) converge faster via A = 100 com-
pared to A = 10. Also, U (t) and U, (t) generated close trajectories via A = 10 and A = 100
individually. So, the ZNN-hbfb generates the same U (t) and U, (t) for different A, and its
convergence coincides with the convergence pattern of the associated ZEFs.

The following outcomes are obtained when the ZNN-hfbb and ZNN-hbfb models are
compared to the Matlab’s functions linsolve and pinv. Particularly, Figures 1a,d and 2a,d
demonstrate that for the ZNN-hfbb and ZNN-hbfb models, the 1insolve and the pinv
yield similar low error prices in all examples when compared. Additionally, Figure 1b,c
demonstrates that the trajectories generated by U (f) and U(t) are different between
the ZNN, the linsolve, and pinv. Figure le,f shows that the ZNN and the linsolve
create distinct trajectories for Uy (t) and Uy (t), while the ZNN and the pinv create identical
trajectories. Figure 2b,c demonstrates that the trajectories generated by U (t) and Uy (t) are
different between the ZNN, compared to linsolve and pinv. Figure 2e,f shows that the
ZNN, the linsolve, and pinv all create distinct trajectories for Uy (t) and Uy (t). Therefore,
in all examples, the ZNN-hfbb and ZNN-hbfb models perform similarly with linsolve
and pinv.

The following conclusions can be drawn from the previously indicated analysis of the
numerical examples:

- The ZNNL-hfbb and ZNNL-hbfb models can efficiently solve the systems (4)
and (5), respectively.

- All models” behaviors are conditioned by values A and their solutions are conditioned
by ICs.

- Comparing considered ZNNs against the 1insolve and pinv, it is discovered that
both the ZNN-hfbb and ZNN-hbfb models exhibit comparable performance to the
linsolve and pinv.

- The approximation of the TSOL x*(t) in the ZNNL-hfbb and ZNNL-hbfb models is
achieved faster via A = 100 than via A = 10.

When everything is considered, the ZNNL-hfbb and ZNNL-hbfb models perform in
an appropriate and efficient manner in finding the solution of (4) and (5), respectively.

In conclusion, as the ZNN design parameter A increases, the TSOL x*(t) is approx-
imated more quickly. Therefore, it is suggested to set the parameter A as high as the
hardware will allow.

5. Concluding Remarks

Current investigation is aimed at investigating and solving the equivalence and partial
k-equivalence problem between WFAs, i.e., determining whether two WFAs generate the
same word function or word functions that coincide on all input words whose lengths do
not exceed positive integer value k. Our approach is based on the unification of two princi-
pal scientific areas, namely the ZNN dynamical systems and the existence of (approximate)
heterotypic bisimulations between WFAs over R. Two types of quantitative heterotypic
bisimulations are proposed as solutions to particular systems of matrix-vector equations
over R. As a result, presented research is aimed to the development and analysis of two
original ZNN models, called as ZNNL-hbfb and ZNNL-hfbb, for finding approximate
solutions of matrix-vector equations involved in considered heterotypic bisimulations. A
convergence analysis is given. Simulation examples are executed under various initial-
ization states. Comparison with the Matlab linear programming solver linprog and the
pseudoinverse solution generated by the standard function pinv is shown and superior
achievements of the ZNN dynamics are recorded. The simulation examples also revealed
another significant finding for the suggested ZNN models: the TSOL is approximated
faster as the ZNN design parameter A increases. The models solved in actual research
utilize the ZNN dynamics established upon a larger number of equations and initiated
ZEFs and continue research from [38,55,56].
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Further research can be developed in the direction of solving minimization problems
aimed to finding a WFA with the minimal number of states equivalent to the given WFA.
Another optimization problem could be based on finding solutions of the corresponding
systems of matrix-vector inequalities and equations of minimal matrix rank. Further
research could be aimed at the topic of solving the k-equivalence problems with more
than two unknown matrices. Additionally, since all kinds of noise significantly affect
the accuracy of the suggested ZNN techniques, it is important to note that the suggested
ZNN models have the drawback of being noise intolerant. Future work might therefore
concentrate on modifying these models for ZNN dynamical systems that handle noise and
improve integration. Finally, the ZNN models developed in this paper give a universal
principle for solving arbitrary systems of matrix-vector equations and for solving arbitrary
problems arising from such systems.
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Abstract: In this article, we introduce and study a generalized Cayley variational inclusion
problem incorporating XOR and XNOR operations. We establish an equivalent fixed-
point formulation and demonstrate the Lipschitz continuity of the generalized Cayley
approximation operator. Furthermore, we analyze the existence and convergence of the
proposed problem using an implicit iterative algorithm. The iterative algorithm and
numerical results presented in this study significantly enhance previously known findings
in this domain. Finally, a numerical result is provided to support our main result and
validate the proposed algorithm using MATLAB programming.
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1. Introduction

In 1994, Hassouni and Moudafi [1] introduced the concept of variational inclusion, a
generalized form of variational inequalities. Since then, variational inclusions have been
extensively studied by researchers to address challenges in diverse fields such as finance,
economics, transportation, network analysis, engineering and technology.

A further generalization of Wiener-Hopf equations, known as resolvent equations,
were introduced by Noor [2]. Various generalized resolvent operators associated with
different monotone operators can be found in the literature. Among these, Cayley approxi-
mation operators play a significant role in variational analysis, as they are closely related to
resolvent operators. These operators have been effectively applied to study wave equations,
heat equations, heat flow and coupled linear sound equations.

Additionally, when dealing with two Boolean operands, the XOR operation determines
whether they can pass one another or obstruct each other. A practical demonstration of
XOR logic can be observed using polarizing filters, such as those found in polarizing
sunglasses. If we hold a polarizing filter up to the lenses of these sunglasses and look
through both filters in series, light will pass through when the filters are aligned. However,
if one filter is rotated by 90 degrees, the combination blocks the light. This process visually
demonstrates XOR logic behavior.

The XOR logical operation is a binary operation that takes two Boolean operands
and returns true only if the operands differ, yielding a false result when both operands
are identical. XOR is commonly employed to test for the simultaneous falsehood of two
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conditions and is extensively used in cryptography, error detection (producing parity bits)
and fault tolerance. Similarly, the XNOR operation compares two input bits and produces
one output bit. If the input bits are identical, the result is one; otherwise, it is zero. Like XOR,
XNOR is both commutative and associative. These operations are utilized in hardware for
generating pseudo-random numbers and are fundamental in digital computing and linear
separability applications. For further details on the XOR operation, refer to the resources
listed [3-9].

In this article, we explore a generalized Cayley inclusion problem involving multi-
valued operators and the XOR operation, owing to the significance and applications
of the previously mentioned concepts. An iterative algorithm is developed based on
the fixed-point equation, and we derive results on existence and convergence. This has
applications in solving heat, wave and heat flow problems. A numerical result is presented
using MATLAB2024b, accompanied by computational tables and convergence graphs
for illustration.

2. Elementary Tools

In this paper, we assume that E is a real-ordered Hilbert space equipped with norm
||.|| and inner product (.,.). Again, C C E is a closed convex cone, C(E) is the family of
nonempty compact subsets of £, and 2% represents the set of all nonempty subsets of C(E).

Definition 1 ([10]). Let r and t be two elements in the real-ordered Hilbert space E. Consider lub
{r,t} and glb {r, t} for the set {r,t} to exist, where lub means least upper bound and glb means
greatest lower bound for the set {r,t}. Then, some binary operations are defined as follows:

(i) rVvt=inf{rt};

(ii)  rAt=sup{rt};

(iii) rét=(r—t)V(r—t);

(i) rOt=(r—t)A(t—r).

Here, \ is the least upper bound or inf for the set {r,t}, A is the greatest lower bound or sup for the
set {r,t}, & is called an XOR operation and © is called an XNOR operation.

Definition 2 ([10]). Let r be any element of the set Cg; then, Cg is said to be a cone which implies
Ar € Cy for every positive scalar A.

Definition 3 ([11,12]). A cone Cj is said to be a normal cone if and only if there exists a constant
Art, > Osuch that 0 < r < timplies ||r|| < Arr, < [|t]].

Definition 4 ([11,12]). Let r and t be two elements in E; then, C 1 1s called a cone, provided r < t
holds if and only if r — t € Cg, where v and t are said to be comparable if either v < tor t < r. The
comparable elements are represented by r « t.

Proposition 1 ([12]). Let @ and © be the XOR operation and XNOR operation, respectively.
Then, the following conditions hold:

(i) rot=0,rot)=0tor),ret)=0,at)=(tar),rot)=—(r&t);

(ii) ifrxOthen —r®0<r <rd0;

(iii)  (Ar) @& (At) = |A|(r b t);

(iv) 0<rdt,ifrot

(v) ifroctthenr®t=0ifandonlyifr = t.

Proposition 2 ([11]). Let Cj be a normal cone in E with normal constant AHE > 0,; then, for each
r,t € E the following postulate are holds:
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@ |0 0][ = [lo[| =0

@ eV e[| = el Ve < (7]l + (1]
@@ii) |[r @& t]| < |[r —t[| < Anllret];
(iv) ifroct, then |[r@t|| < ||r—t]].

Definition 5. A single-valued mapping A : E — E is called Lipchitz-continuous if there exists a
constant A 5 > 0 such that

v

|A(r) = A()[| < Agllr =tV 1t € E.

Definition 6. Let us consider Y : E x E x E — E as a single-valued mapping and D : E — 2E as
the multi-valued mapping. Then,

(i) Y is called Lipschitz continuous in the first argument if there exists a constant Ay, > 0 and
forany py € D(r), o € D(t) such that

Y (1) = Y (2, )| < Ayl — p2], Y 7.t € C(E).

(it) Y is called Lipschitz continuous in the second argument if there exists a constant Ay, > 0
and for any yy € D(r), up € D(t) such that

1Y Cop1,) = Yoz, )| < M, [ = pall, ¥t € C(E).

(iti) Y is called Lipschitz continuous in the third argument if there exists a constant Ay, > 0 and
for any yy € D(r), up € D(t) such that

NG ) =Y (o m2)l < Ayl — p2l], ¥ 7.t € C(E).

Definition 7. Consider a multi-valued mapping  : E — C(E) that is said to be D-Lipschitz
continuous. Then, there exists a constant Ap v > 0 such that

D(g(r), () < Ap,llr —t|[,¥r,t € C(E).

Definition 8. Suppose D : E — 2F is a multi-valued mapping and A : E — F is a single-valued
mapping. The resolvent operator Rg o' E — E is defined as

Rg,p(t) = [A+pD]7Y(t),Vr,t € E.

T is an identity mapping and p > 0 is a constant.

Definition 9. Suppose D : E — 2F is a multi-valued mapping and A : E — E is a single-valued
mapping. The Cayley approximation operator C g ot E — E is defined as

CR (5 =[2R} —A](1),¥rtek.

T is an identity mapping and p > 0 is a constant.

Definition 10. Let A : £ — E be a single-valued mapping and D : E — 2 be a multi-valued
mapping. Then,

(i) A is called strong comparison mapping if A is comparison mapping and A(r) « A(t) if and
onlyifr < t,Vr,t € E.
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(ii) A is called p-order non-extended mapping if there exists a constant p > 0 such that
p(ret) < (A(r)® A(t)),VrteE.
(iii) A is called a comparison mapping if r o< t,r o< A(r) and t o< A(t), such that

A(r) < A(t),¥r,t € E.

(iv) D is called a comparison mapping if any O, € D(r),r o O, and if r « t, as well as for any
8, € D(r) and 9y € D(t), such that

Y x O, Vrte E.

(v)  The comparison mapping D is called an a— non-ordinary difference mapping if 0, € D(r)
and 9 € D(t) such that

(8, &) Day(ret) =0 Vr,teL.

(vi) The comparison mapping D is called p-ordered rectangular mapping. If there exists a constant
p > 0, then there exists 9, € D(r) and 0y € D(t) such that

(8, ©0) —(rat)) >pllret|? Vr,t L.

(vii) D is called a weak comparison mapping if any r,t € E or r « t and there exists 9, €
D(r), 9 € D(t),r & O, and t o O such that

O, <O,V rtecE.

(viii) D is called p— weak-ordered different mapping if there exists a constant p > 0, and there
exists 9, € D(r) and Oy € D(t) such that

(8 — ) < (r—t),¥r,t€E.

(ix) A weak comparison mapping D is called (« 5, 0) — weak ANODD if it is an « ; weak non-
ordinary difference mapping and p-order different weak-comparison mapping with respect to
Aand

(A+pD)E=EVp>0.

Lemma 1. Suppose a multi-valued mapping D : E — 2F is an ordered (a4, 0)-weak ANODD
mapping and A : E — E is called &-order non-extended mapping with respect to A such that

HRgrp(r) @Rg,p(t)H < Rollr@t||,VrteE.

1

Where Rg - W

1 s 1
,0 > C,andocA> o

D . . . .
Thus, the resolvent operator R dp 08 Lipschitz-type-continuous.

Proposition 3. Suppose D : E — 2F is a multi-valued mapping and a single-valued mapping
A : E — Eis A 4-Lipschitz continuous. Then, the generalized Cayley approximation operator
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Cg/p is Ac- Lipschitz continuous, which provides r o« t, A(r) « A(t),Rg,p(r) o Rg/p(t) and
Cg/p(r) o Cg/p(t) such that

HC rneck ( t)HgACHr@tH,Vr,teE.

where A\c = ETTESY

Proof. Using the Lipschitz continuity of A and R? , we evaluate
£

HC r)eck ()H - HZRD ~ A)(r) ® 2R} —A(t)H
< ||A(r) @ At ||+2HR neRry 0
2
< /\A||T@f||+m||r@t||
CAylap—1)+2
< Gt
- Glazo—1) Ir &4
= Acllret|
A x( 1)+
where A¢ %. O

3. Statement of the Cayley Inclusion Problem

Suppose g, A, B : E — E are the single-valued mappings and also D : E — 2F are the
multi-valued mapping; again, let us consider Y : E x E x E — E to be another mapping
and ¢,¢,¢ : E — C(E) to be the multi-valued mappings. Let Cg/p be the generalized
Cayley approximation operators for any p > 0.

Findr € E,it € ¥(r),d € ¢(r) and @ € ¢(r) such that
0€Cq (B(r)+Y(u,3,®) & D(g(r). 1)

If Cgp(lé(r)) = 0,Y(15,9,%) = 0 and D(g(r)) = D(r), then problem (1) reduces to the
problem of finding r € E such that

0 € D(r)

which is the fundamental issue involving the XOR operation and the Cayley approximation
operator, represented by Rockafellar [13].

4. Fixed-Point Formulation and Iterative Algorithm

In this section, we demonstrate that problem (1) is equivalent to a fixed-point equation.

Lemma 2. Let us consider r € E, it € (), € ¢(r) and & € ¢(r) to be the solutions of Cayley
variational inclusion problem (1) involving an XOR operation and an XNOR operation if and only
if the following equation is satisfied:

g(r) =R [A(g) +p{Y(,0,0) 0 C§ (B1r))}]. @
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Proof. Suppose r € E,1i € ¢(r), 9 € ¢(r) and @ € ¢(r) satisfy Equation (2). Then, we have

B(r)) +Y(11,9,) & D(g(r)),

which is the required Cayley variational inclusion problem (1). Now, we establish
the subsequent algorithm utilizing Lemma 2 to solve the Cayley variational inclusion
problem (1). O

5. Main Result

In this section, we establish an existence and convergence result via Algorithm 1 for
the generalized Cayley variational inclusion problem, which incorporates XOR and XNOR
operations (1).

Algorithm 1 For every ro € E,il € ¢(r9),d € ¢(rg) and & € ¢(rg), enumerate the
sequence{ry }, {ii,}, {0, } and {0, } by taking after the iterative algorithm.

g(ras1) = (1= a)g(ra) +aRY {A(g(rn)) + p{Y(ﬁn,ﬁn,an) ® Cg,p(g(rn))}} : ®3)

Let us consider if,, 11 € Y(r41), Ont+1 € ¢(rp+1) and @, 41 € @(r,4+1) such that

it = thpta|] < D(P(ru), P(rn-1)), 4)
[On — Bup1l] < D(P(rn), $(rn-1)), 5)
l[@n — Dpia|| < D(@(rn), @(rn-1)), (6)

where 0 < a < 1and p > 0are constantsand n =0,1,2,3, - - -

Theorem 1. Let E be a real-ordered Hilbert space and Cg be a normal cone in E. Let us consider
¢, A,B : E — E as Lipschitz continuous mappings with constants Ag > 0,A4 > 0, and
Ay > 0, respectively. Also, we consider Y : E x E x E — E to be a Lipschitz continuous
mapping with constants Ay, > 0,Ay, > 0and Ay, > 0, respectively, and D : E — 2F to
be the multi-valued mapping. Let Cg,p be the generalized Cayley approximation operator with
Lipschitz continuous Ac, let the generalized resolvent operator Rg/p be Ry Lipschitz continuous

and let ¢, ¢, ¢ : E — C(E) be the multi-valued mappings with constants Ap, > 0,Ap, >0
and Ap, > 0, respectively. r o t,Rg’p(r) x Rg,p(t),cg,p(A(r)) o CgrP(A(t)),g(rnH) %
(1), Y (i, By, W) o< Y(ity 1,0y 1,W,_1) and A(r) o« A(t) forall r,t € E, where p > Oisa
constant. Suppose that the following conditions are satisfied:
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Amn,
0< %E{(l — &)Ag +aRgA 4Ag + apRoAcAy + apRoAy, Ap, + apRoAy, Ap,

+0‘PR9AY3/\D¢} <1 (7)
_ 1 1.1 _ A glayp-1)+2 _ o
where Ry = 7§(%p_1),p >y > p,/\c = T ,0<a<1,0>0,n1n=0,1,23,

Then, (r, it, 9, W) is the solution of the Cayley variational inclusions problem (1) involving an XOR
operation and an XNOR operation, and the sequences {ry}, {1, }, {0, } and {w0,}, generated by
Algorithm 1, strongly convergence at r, ii, U and W, respectively.

Proof. We have

0<g(rpy1) ®g(rn) = {(1 —a)g(ry) + szg’p [/i(g( n)) +p{ (ity, O, W)

o B, (Br)}] } @ {1 - a)gtrur) +aRY [Alg(ru-))
+P{Y(ﬁn—1/5n—l/wn—1) O] C ( B (7, 1))}} }
)

< (1-)(g(ra) ©8(ru1)) +a{RQ [Ag(r))

+p{ Y01, 00, 0) © C§ (B(ra))}) @ RE,

AL
+p{Y<an,1,5n,1,wn,1> ©CR,(Bra1)}] }. ®)

Using (4), (5), (6), (iii) of Proposition 2, and (8), we obtain,

18 (1) @ g(ra)ll

<

IN

IN

IN

IN

(1 —a)Ar,|lg(r )@g(rn_1)||+aAnEIIR§,p[A(g(rn))
+0o{Y (tin, On, Dn )®CQ (B(rx ))}]@Rﬁp[fi(g(rm))
+po{Y

(iln

(11, 0p—1, Wn— 1)®CD (B(ru—1))}||

(1= a)Arr || (rn) ® g(ra- 1)||+“/\H Ry|[[A(g(rn))

+0{Y (i, On, W )GCD (B(ra))H @ [A(g(ra-1))

+o{Y (-1, 0n—1, Dy 1)®CD (B(ra—1)) |

( — a) A ||g(rn) © g(rn— 1)||+“/\H Rol[A(g(rn))
®A((ru—1))|l + apRoAr1, |[Y (it O, )

SY (g1, 0p—1, Wn—1)|| + “PRMHEHC,%)/,J(B(W))

®CY o(B B(rn-1))]]

(1- )AHE/\gHVn@’nle+“AHER9AA||8(W)

©g(rn-1)|| + apRoAr1, ||Y (itn, On, Wn)

®Y (i1, 0p—1, Dn—1)|| + apReAri Ac|[B(rn) ® B(ry—1)]|

(1= @) A Agl[rn @ 11| + aAmr, RoA yAg |7

©rn—1|| + apRoAr AcAg|[rn © ry—1l|

+apRoAr1, ||Y (in, On, Wn) &Y (ly—1, 0n—1, Wp—1)|]- )
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Now, we have the following from the definition of D-Lipschitz continuity and (i) of
Proposition 1.

||Y( , Un ZT) 69Y(u\’nflr777171/7/\()7171 ||
= ||Y(itn, O, Wn) © Y (thy—1,0n, @n) S Y (i1, Fn, Wn)
@Y( ~1,0n-1, wn) S2) Y(un—lz On—-1, wn) @ Y(”n—lzvn—lr ZDn—l)“

||Y(11”/ ijl’ '(Z)n) 2] Y(anfl/ Zj?’l/w?l)H + ||Y(12n,1, ijn/ ZIJYI) @Y(iinfllzjnfl/ ZT)YI)H

=c
=

+|Y (i1, Fp—1, @n) &Y (tly—1,Ty—1,Wn—1)||

< My llitn @ || 4 Ay, |[0n @ Gpa[| + Ay, | |00 & D]
< A D(ra), P(rn-1)) + A, D(@(rn), ¢(rn-1)) + Ay, D(@(rn), ¢(rn-1))
< A Apy [l @ nall + Ay, Apy l[rn @ raa || + Ay Ap, [ [rn @ rul]- (10)

Combining (9) and (10), we obtain

18(rn1) @ g(ru)ll < (1= &) A Aglrn ® ru—1l| + A, RoA jAg[rn @ rp—1]|
+apRoAri AcAy||rn & ru-1|| + apRoAm Ay, Ap, |[rn

Srp—1|] + apRoAri Ay, Ap, |10 © ra1]|

+apRoAr Ay, Ap, |[rn © 11|

{(1 — a)AmAg + aAr, RoA s Ag + apRoArAcAy

+apRoAr Ay, Ap, + apRoAr Ay, Ap,

+apRoAr Ay, Ap, HIrn © ru—al]- (1)

IN

Using (iv) of Proposition 2 in (11), we have

g(rner) =g(ra)ll < {(1 = @)AmAg + adri, RoA jAg + apReArAcA
—HXPR(;)\HE )tyl )\D'/J + DCPR(;/\HE )\Yz/\D¢,
+apRoAri Ay, A, HIrn — ra-all- (12)

Since g is strongly monotone , we have

l1g(rny1) — g(ra)ll = ‘5g||7’n+1 — 7|
which implies that
1
rnsr = rull < S-118(rus1) — g (). (13)
8
Now, combining (12) and (13), we obtain
1
||Tn+1 — 1’n|| < 5*{(1 — (X)/\HE)Lg + DC/\HERg)LA/\g + DCPR@)LHE)LcAE + “PRG)LHE)LYl ADlP
4
+ “pReAHEAYzApzp + D‘pRGAHEAY:;)VD@}HrH — i’nle
M £ )0 4+ @R s Ag + €pRoACA 5 + €pRoAy. A
—T{( —a)Ag + aRgA yAg + apRoAcAy + apRoAy, Ap,

8
+ ‘XPRG/\YZA’D(;) + apRgAY3AD¢ } ‘ \rn —Tp—1 H

<QO)||rn — ru1ll, (14)
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where

M1,
Qe) = 5gE {(1 — D())\g + aRpA jAg + apRoAcA s + lXpRg/\yl)LDlp

+ DCpRg/\YZ)\D¢ + “PRG/\Y3AD¢}

From condition (7), it is clear that Q(6) < 1, where Q(6) = %{(1 —)Ag + aRgA jAq +
apReAcAp + apRoAy, Ap, +apRoAy,Ap, + apRoAy,Ap, }. Consequently, (14) implies that
{rn} is a Cauchy sequence in E. Thus, there exists € E such that r, — r as n — co.

From (4), (5) and (6), we have

[t = i1 || <D (rn), (rn-1)) < Ap,|lra @1l < Apy[[ra —7l], (15)
v v

[0 = Buall < D(P(rn), ¢(ru-1)) < Ap, |l @ rl] < Ap,[[ra =], (16)

[[@n = Wna|] < D(@(ra), (rn-1)) < Ap,|lra @ rl] < Ap,[lrn —7]]. (17)
9 [

Thus {1, }, {0, } and {w,}, are also Cauchy sequences in E. Therefore, there exists r €
E,ii € ¢(r),d € ¢(r) and @ € ¢(r) such that if, — il , ¥, — 0 and ¥, — Wasn — .
Next, we show that i, — 11 € (), 0, — 0 € ¢(r) and @, — W € ¢(r) asn — oo.

Furthermore,
d@,y(r)) < inf{[la—t],t < ()}
< |l — [ + d(itn, p(r))
<l = ||+ d(@(ra), (1))
< |l —itul|[ 4+ Ap, |[ra © ]|
< |l =il + Ap, [|ra @ r[| — 0,a8 1 — oo

Since ¥(r) is closed, we have ii € i(r). Similarly, we can show that ¥ € ¢(r) and w € ¢(r).
Finally, we apply the continuity of g, A, B, Y, Rg o and C AI? » which implies that

3(r) =RY |A((r) +p{¥ (15, 0 C] (B()}]

By Lemma 2, r € £ is the solution of the Cayley variational inclusion problem (1), where
iiey(r),ve¢(r)andw € ¢(r). O

6. Numerical Result

To illustrate Theorem 1, we present the following numerical example, implemented
using MATLAB 2024b, accompanied by three computation tables and three conver-
gence graphs.

Example 1. Suppose E = R involving inner product (.,.) and norm ||.||,and D : E — 2E isa
multi-valued mapping.

(i) Again, let us consider g, A, B : E — E to be the single-valued mappings, Y : E x E x E — E
to be another single-valued mapping, and ¢, ¢, ¢ : E — C(E) to be another multi-valued

mapping such that

5r

D(r) = {4r}and g(r) = 3
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Then, for any ry,ry € E, we have

st -stall = ||% -2
- 2
= 3 r1 — 13|
< 2[|rp—ral.

Thus, g is Lipschitz continuous with constant Ay = 2 and

lstn) g2l = |53
5

= Y-l

> 2l -l
- 3

Similarly, g is strongly monotone with constant 64 :%.
(i) Suppose Y : E x E x E — E is the single-valued mapping and ¥, ¢, ¢ : E — C(E) is the
multi-valued mappings such that
i o W
2 2 2/

¥(r) = {g}, ¢(r) = {g}, o(r) = {i}, and Y (i1, 9,)

Now, we have

D(yp(r),p(t) = max{ sup d(r,F(t)), sup d(F(r),t)}
res(r) teS(t)

r ot }
1
< Lmaxlr— ] llt —rl1}

6 6

t r

6 6

IN

7

1
< = — t||.
< 5maxHr [l

So,  is D-Lipschitz continuous with constant Ap, = % Similarly, we have to show that

1 _ 1
/\D‘/’ — Z,m’ld)tp(p - 3-

Hence, Y is Lipschitz continuous in three arguments with constant Ay, = Ay, = Ay, = 1.
Thus, we obtain

. v v r r s
Y(ii,9,w) = (E+E+§)
_ v,

1207

(iii) Suppose A, B : E — E is the single-valued mappings; D : E — 2F is a multi-valued mapping

such that
. 7 y r
A(r) = 3 and B(r) = 5
Now, we have
X X — || _"n
1) = Al = ||3 -3
= Zin—rll
= 3ln—-n
< i —nl
< 5l =2l
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Thus, A is Lipschitz continuous with constant A 5 = % Similarly, we have to show that Bis
Lipschitz continuous with constant A = % In addition, A and B are ¢-ordered non-extended
mappings with constant § = 1.

(iv) Suppose D : E — 2F is the multi-valued mappings and for every constant p > 0 such that

D(r) = {4r}.
Now, letting p = 1, it is clear that D is (« 4, p)-weak ANODD mapping with « 5 = 3.

(v)  Now, we calculate the obtained resolvent operators Rg ) such that

RR (r) = (A+pD)7}(r)

»©

Also, we have

D D _
B3 0@ RR ()| = ‘13 13

3
= EHH@QH
< Ynenl.
- 2

1

Thus, Rg,p is Lipschitz continuous with constant Rg = %, where Ry = m,p > i

. . D . . . .
(vi) Using the values of R Ap o e obtain the generalized Cayley approximation operator as

R () = [zRg,p—A] (r)
o 6er 1
T 13 3
_br
= =

Now, we have

51’1 51’2

D D — I c

= *Sllr ®ra|

= 39l ©n
3

< = .

< 2||7’1@72||

D i1 ) . ) _3 _ T g(agp—1)+2
Thus, C Ap 1S Lipschitz continuous with constant Ac = 5 where Ac = EITESY

1

2-

(viii) Considering the constants calculated above, condition (7) of Theorem 1 is satisfied.
(ix) Now putting all values in Equation (3), we obtain

(vii) Now, we consider the interval 0 < % <r<t<land AHE =

glrnsn) = (1=a)g(ra) +aRY [A(g(rn)) +p{ ¥ (it 0, ) © C (B(ra)) } |
78174
v = (I—a)r+ 08a00%7 = (1 —0.87a)r,.

In this numerical result, we consider three cases for the composition of the computation table
and convergence graph we use the tools of MATLAB-R2024b with some different initial values

175



Axioms 2025, 14, 149

of ro and the value

of constant o, where 0 < a0 < 1.

In the first case, Consider o = % and various initial values ro = —2,—1.5,—1,1,1.5,2. We
obtain an excellent graph of the convergence sequence {r,1 } which converges at r = 0 (after
fifty-one iterations), which is the solution of the Cayley variational inclusion problem (1). It is
shown through a computation table (Table 1) and convergence graph (Figure 1).

Table 1. The values of the convergent sequence {r, } with initial values ry = —2,—-1.5,-1,1,1.5,2.
Itzg;i(())ils o = —2 ro = —1.5 ro = —1 o = 1 ro = 1.5 o = 2
n=1 —1.65200 —1.23900 —0.82600 0.82600 1.23900 1.65200
n=2 —1.36460 —1.02340 —0.68220 0.68220 1.02340 1.36460
n=3 —1.12710 —0.84534 —0.56356 0.56356 0.84534 1.12710
n=4 —0.93100 —0.69825 —0.46550 0.46550 0.69825 0.93100
n=>5 —0.76901 —0.57676 —0.38450 0.38450 0.57676 0.76901
n=6 —0.63520 —0.47640 —0.31760 0.31760 0.47640 0.63520
n=15 —0.11369 —0.08526 —0.05684 0.05684 0.08526 0.11369
n =20 —0.04371 —0.03278 —0.02185 0.02185 0.03278 0.04371
n=25 —0.01680 —0.01260 —0.00840 0.00840 0.01260 0.01680
n =235 —0.00248 —0.00186 —0.00124 0.00124 0.00186 0.00248
n=>51 —0.00011 —0.00000 —0.00000 0.00000 0.00000 0.00011
n=>55 —0.00000 —0.00000 —0.00000 0.00000 0.00000 0.00000

Convergence Sequence r

Iteration (n)

n+1
2 (n+1)
1.5 K —o—r1y=-15
Q
O fo = -1
1 o) —o—r, =1
& -
%‘ oIy = 1.5
0.5 Sy oy =2
=32 ) — — —datat
: e ——_ o
-0.5F
A
-1.5
) 1 1 1 1 1 1
0 10 20 30 40 50

60

Figure 1. Graphical representation of a convergence sequence of {r,,;1} with different initial values.

when o = %

In the second case, Suppose & = %, and the same initial values. We get a computation

table (Table 2) and a graph (Figure 2) of the convergence sequence {r,1} which converges

atr = 0 (after eighteen iterations), which is the solution of the Cayley variational inclusion

problem (1).
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Table 2. The values of the convergent sequence {r, } with initial values ry = —2,—1.5,-1,1,1.5,2.
Itzg;i?)f‘ls ro=-—2 ro=-15 rgp=-1 ro=1 ro =15 ro =2
n=1 —1.13000  —0.84750 —0.56500 0.56500 0.84750 1.13000
n=2 —0.63845 —0.47884  —0.31922 0.31922 0.47884 0.63845
n=3 —0.36072 —0.27054  —0.18036 0.18036 0.27054 0.36072
n=4 —0.20381 —0.15286 —0.10190 0.10190 0.15286 0.20381
n=>5 —0.11515 —0.08636 —0.05757 0.05757 0.08636 0.11515
n=6 —0.06506  —0.04879 —0.03253 0.03253 0.04879 0.06506
n=7 —0.03675 —0.02757  —0.01838 0.01838 0.02757 0.03675
n=11 —0.00663 —0.00497  —0.00331 0.00331 0.00497 0.00663
n=14 —0.00119 —0.00089 —0.00059 0.00059 0.00089 0.00119
n=17 —0.00021 —0.00016 —0.00010 0.00010 0.00016 0.00021
n=18 —0.00012  —0.00000 —0.00000 0.00000 0.00000 0.00012
n=19 —0.00000  —0.00000 —0.00000 0.00000 0.00000 0.00000
n =230 —0.00000  —0.00000 —0.00000 0.00000 0.00000 0.00000
, Convergence Sequence Finet)

$r0=2
— — —datal

20 I I I I I |
0 5 10 15 20 25 30

Iteration (n)

Figure 2. Graphical representation of a convergence sequence of {r,, 1} with different initial values.

when a = %

In the third case, Suppose & = %, and the same initial values. We get a another

computation table (Table 3) and a graph (Figure 3) of the convergence sequence {1}
which converges at ¥ = 0 (after eight iterations), which is the solution of the Cayley
variational inclusion problem (1).
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Table 3. The values of the convergent sequence {r, } with initial values ry = —2,—-1.5,-1,1,1.5,2.
No. of
Iterations ro=-—2 ro=-15 rgp=-1 ro=1 ro =15 ro =2
n=1 —0.60800 —0.45600 —0.30400 0.30400 0.45600 0.60800
n=2 —0.18483 —0.13862 —0.09241 0.09241 0.13862 0.18483
n=3 —0.05618 —0.04214  —0.02809 0.02809 0.04214 0.05618
n=4 —0.01708 —0.01281 —0.00854 0.00854 0.01281 0.01708
n=>5 —0.00519 —0.00389 —0.00259 0.00259 0.00389 0.00519
n=6 —0.00157  —0.00118 —0.00078 0.00078 0.00118 0.00157
n=7 —0.00047  —0.00035 —0.00023 0.00023 0.00035 0.00047
n=2_8 —0.00014  —0.00010 —0.00000 0.00000 0.00010 0.00014
n=9 —0.00000  —0.00000 —0.00000 0.00000 0.00000 0.00000
n=10 —0.00000  —0.00000 —0.00000 0.00000 0.00000 0.00000
n=15 —0.00000 —0.00000 —0.00000 0.00000 0.00000 0.00000
n =20 —0.00000 —0.00000 —0.00000 0.00000 0.00000 0.00000
n =230 —0.00000 —0.00000 —0.00000 0.00000 0.00000 0.00000
Convergence Sequence Finet)
2
467 rO = -2
1.5 ——1,=-15
o= -1
1 —Oo—r,=1
—o—r,=15
05 B o ro =2
— — —datai
N 0 7’\ Z
05}
G
-1.5
) 1 1 1 1 1 |
0 5 10 15 20 25 30

Iteration (n)

Figure 3. Graphical representation of a convergence sequence {r,1} with different initial values
when a = %.

7. Conclusions

In the draft, we explored a generalized Cayley variational inclusion problem incor-
porating XOR and XNOR operations in a real-ordered Hilbert space. We analyzed the
existence of solutions for the proposed problem using a fixed-point formulation. The
proposed algorithms efficiently address generalized Cayley inclusions and solve equations
involving XOR and XNOR operations. Furthermore, a numerical result is provided to sup-
port our main result and validate the proposed algorithm using MATLAB programming,
demonstrating the rapid convergence of the mathematical model and its effectiveness in
achieving optimal solutions. From the above Figures 1-3, we notice that the sequence ;.41
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converges to r = 0. In Figure 1, this occurs within fifty-one iterations, when a = % ; in
Figure 2, within eighteen iterations, when a = % ; and in Figure 3, in eight iterations, when
N = %. This pattern indicates that as the value of « increases within the range 0 <« <1,
the convergence rate accelerates.
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