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Preface

The articles featured in this Special Issue, entitled “Land Degradation in Environmentally Sensitive

Areas (ESA): Assessment and Conservation”, cover a broad range of contexts and were conducted

in Europe and Asia at different scales. The variation in study areas reflects the multifaceted and

cross-scalar nature of land degradation. Notably, many of the studies stem from collaborations between

universities and research institutions across various countries and continents, demonstrating the

motivation of the international scientific community to address the issue of land degradation. Within

this Special Issue, articles can be classified into the following five categories—Category A: “Agricultural

practices and soil pollution”; Category B: “Ecosystem services and land use management”; Category

C: “Wind erosion and desertification”; Category D: “Salinization and climate hazards”; and Category

E: “Policy impacts on rural livelihoods”. Articles 1, 2 and 3 belong to Category A. In the first article

(Ding et al.), an econometric analysis using survey data was carried out to investigate the impact of

farm size on the waste recycling behavior regarding pesticide packaging among farmers in China.

In the second article (Andreeva et al.), the ecological impact of copper-containing fungicides on the

accumulation and distribution of copper, manganese, chromium, and cobalt in the upper soil horizons

of vineyards was investigated. In the third article (Si et al.), soil was sampled across six land use types,

and a principal component analysis was used to derive the soil quality index, with recommendations of

soil parameters that are essential for land degradation assessment. Articles 4 and 5 belong to Category

B: In the fourth article (Richiedei et al.), a biophysical and monetary assessment of six ecosystem

services was carried out using a set of indicators. Subsequently, a soil quality assessment methodology

based on ecosystem value at sub-regional levels in Italy was developed. In article five (Chen et al.),

the IVST and PLUS models were used to assess habitat degradation and its driving mechanisms in

Urumqi, China for the period of 2000–2022. Future projections were then carried out up to 2035.

Articles 6 and 7 belong to Category C: In the sixth article (Xiong et al.), an improvement of the RWEQ

model, incorporating uncertainty analysis, scenario simulations, and environmental factor evaluations,

enabled the dynamic modeling of both the supply and demand of windbreak and sand fixation

ecosystem services in the Wuding River Basin, China. In the seventh article (Zhang et al.), wind erosion

in the Tarim River Basin, China’s largest inland river basin, was studied. A soil wind erosion model

tailored to the terrain was developed to assess erosion-induced degradation in nine subbasins. Article 8

belongs to Category D: In this article (Lin et al.), a global-scale study on the salinity stress thresholds of

maize fields was carried out. Using the EPIC model and eliminating environmental stress factors, daily

salinity stress thresholds during corn growth stages were simulated. The results show that high-risk

areas, where the disruption index exceeded 0.8, were mainly concentrated in arid and semi-arid regions

such as Central Asia, northwestern China, southern South America, and the southern coast of Africa,

while humid regions exhibited relatively lower risk. As the recurrence interval increased (e.g., over 10,

20, 50, and 100 years), both the geographic extent and severity of salinization hazards intensified, with

countries such as Oman, Egypt, and Mongolia consistently showing the highest average salinization

intensity (above 0.7). Article 9 belongs to Category E: In this article (Wang et al.), household surveys,

regression analysis, and the sustainable livelihood frameworks were used to meticulously assess the

impact of grain for green projects on farmer well-being in Zhangbei, China.

Mario Al Sayah, Rita Der Sarkissian, and Rachid Nedjaı̈

Guest Editors
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Article

Impact of Farm Size on Farmers’ Recycling of Pesticide
Packaging Waste: Evidence from Rural China

Jingyi Ding, Kun Song, Kuan Zhang and Xin Deng *

College of Economics, Sichuan Agricultural University, Chengdu 611130, China;
dingjingyi@stu.sicau.edu.cn (J.D.); songkun@stu.sicau.edu.cn (K.S.); 14869@sicau.edu.cn (K.Z.)
* Correspondence: dengxin@sicau.edu.cn

Abstract: Scale management has become an essential form of modern agricultural produc-
tion. However, it is still unclear how farm size influences farmers’ pesticide packaging
waste recycling behavior (FPPWRB). Based on the data from the China Rural Revitalization
Survey 2020, this study quantitatively explores the impact of farm size on FPPWRB. This
study found that (1) the ratio for FPPWRB is low, with only about 41.7% of the sample
farmers expressing participation in recycling. (2) The empirical results show that for every
1% increase in farm size, the probability of FPPWRB increases by 3.59%. (3) Farmers in
urban suburbs or younger farmers are more inclined to FPPWRB. (4) Farm size can im-
prove FPPWRB by enhancing farmers’ environmental cognition levels. The research in this
study provides insights into the improper disposal of pesticide packaging waste and offers
references for formulating policies related to the resource utilization of pesticide packaging
waste. Thus, the findings of this study can help provide a reference for the introduction of
policies to manage pesticide packaging waste, which, in turn, can help promote sustainable
agricultural development.

Keywords: farm size; pesticide packaging waste; farmer recycling behavior; rural China

1. Introduction

Pesticides play an important role in achieving the global goal of “zero hunger”. How-
ever, they also pose environmental threats that must not be ignored. About 3.5 million tons
of pesticides are applied globally each year [1]. Asia has the highest pesticide usage glob-
ally, accounting for 38%, while Europe has the lowest usage, accounting for only 13% [2].
Between 1990 and 2021, pesticide usage in Oceania saw the fastest growth, increasing
by 206%, while the growth rates in the Americas, Africa, Asia, and Europe were 191%,
175%, 67%, and 1%, respectively [3]. Oceania applies a relatively low level of pesticides
per hectare of farmland, which totals 1.66 kg/hectare. Still, when standardized by the
agricultural production value (0.83 kg/USD1000), the pesticide application per capita is
higher (1.30 kg/person) [4]. In contrast, the Americas have reached higher levels in all three
indicators, with 3.01 kg/hectare, 1.49 kg/USD1000, and 1.23 kg/person, respectively [5].
The massive generation of pesticide packaging waste (PPW) accompanies the abuse of
pesticides. Approximately 10 billion pieces of this waste are generated annually worldwide.
However, there is limited research on the subsequent disposal of PPW and its potential
threat to sustainable development [6].

The improper disposal of PPW hinders the comprehensive green transformation
of agriculture and rural areas. Improper handling and disposal of this waste may bring
hazards. Firstly, the presence of residual pesticides means improper disposal can exacerbate

Land 2025, 14, 465 https://doi.org/10.3390/land14030465
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the harmful effects of pesticide overuse [4,7]. Li et al. [8] found that the misuse of pesticides
can lead to pesticide resistance in pests, creating a vicious cycle that threatens biodiversity;
Zhao et al. [9] pointed out that 20 types of pesticides have been detected in the serum,
urine, and cerebrospinal fluid of urban populations in China. Second, the haphazard
discarding of plastic pesticide packaging greatly harms soil and water. Studies show that
white plastic pollution and microplastic contamination are significant driving factors of soil
compaction and water body damage [10,11]. Third, the burning of PPW pollutes the air.
Open burning releases large amounts of carcinogens, such as dioxins, polycyclic aromatic
hydrocarbons, and particulate matter, into the atmosphere, causing severe environmental
pollution that threatens human health [5]. Therefore, promoting the recycling of PPW is
the key to achieving sustainable development in agriculture and rural areas.

Differences in farm size are considered a key factor in understanding the differences in
farm management performance [12]. According to economies of scale, expanding the scale
of operations within a specific period makes better use of production facilities and resources,
thereby reducing average costs and increasing operating profits. In farm management,
studies have found that large-scale farms have higher production efficiency compared to
small-scale farms [13]. At the same time, studies have shown that large-scale farms have
lower transaction costs compared to small-scale farms [14]. Existing studies have verified
that farm size positively affects agricultural production. However, how it does so, i.e., the
quantitative relationship between farm size and how farmers recycle PPW, is still unclear.

According to statistics from the Ministry of Agriculture and Rural Affairs of China,
approximately 3.5 billion pieces of PPW are generated annually in China. Therefore, this
study aims to identify the causal relationship between farm size and farmers’ recycling
of PPW. Based on existing research, the marginal contribution of this study is as follows:
(1) As the world’s largest developing country, sustainable agriculture is the foundation of
China’s sustainable development [15]. This study is an empirical analysis based on rural
big data in China, using the 2020 China Rural Revitalization Comprehensive Survey (CRRS
2020) data as the research sample. It aims to provide empirical evidence for sustainable
farm management in other developing countries. (2) In discussing the relationship between
farm size and farmers’ pro-environmental behaviors, existing studies have downplayed or
neglected endogeneity, thus failing to pinpoint the causal relationship between farm size
and farmers’ pro-environmental behaviors. This study introduces the average farm size of
other farmers in the same village as an instrumental variable to address the endogeneity
issue. It then examines the causal relationship between farm size and FPPWRB. (3) This
study further examines the mechanism through which farm size influences FPPWRB,
providing a theoretical foundation and empirical support for the design of targeted policies.

The scientific management of PPW plays a crucial role in ensuring food security in
China. China needs to feed over 1.4 billion people annually, and ensuring food security
requires the rational use of pesticides [15]. According to statistics, China uses over 1 million
tons of pesticides annually, resulting in the generation of approximately 3.5 billion PPW
items [16]. Previous research has primarily focused on how to scientifically and rationally
use pesticides. For example, Qiao et al. [17], Liu and Huang [18], and Gong et al. [19]
discussed the pesticide usage behavior of Chinese farmers and its influencing factors.
However, there is limited research focusing on the FPPWRB. Therefore, the marginal
contribution of this paper lies in the following points: (1) As the world’s largest developing
country, sustainable agriculture is the foundation of China’s sustainable development [15].
Therefore, the scientific management of PPW in China is crucial for both China’s and
global sustainable development. Based on the large-scale survey data of Chinese farmers,
discussing their FPPWRB helps to clarify the micro-mechanisms underlying recycling
behavior. (2) Scaled operations are key to ensuring agricultural sustainability. This paper
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aims to examine the quantitative impact and mechanism between scaled operations and
FPPWRB using econometric models, providing valuable insights into the development
of policies on managing PPW. (3) In discussing the relationship between farm size and
farmers’ pro-environmental behaviors, existing studies have downplayed or neglected
endogeneity, thus failing to pinpoint the causal relationship between farm size and farmers’
pro-environmental behaviors. This study introduces the average farm size of other farmers
in the same village as an instrumental variable to address the endogeneity issue.

The structure of the remaining sections of this paper is as follows: (1) Section 2 dis-
cusses the theoretical relationship between farm size and FPPWRB. (2) Section 3 discusses
the data and research methods used in this study. (3) Section 4 examines the causal relation-
ship between farm size and FPPWRB. (4) Section 5 summarizes the findings of this study
and provides policy recommendations.

2. Theoretical Analysis and Research Hypotheses

2.1. The Impact of Farm Size on FPPWRB

The core concept of the economies of scale theory is that as the scale of production
increases, the per-unit production cost decreases. Large-scale production can spread fixed
costs and improve production efficiency. Subsequently, Sharma et al. [20] pointed out
that the larger the production scale alongside the amount of prepaid capital, the more
efficiently the entire production system operates. He et al. [21] and Wang et al. [22] found
that land scale has a positive impact on straw return. Based on data from South Africa [23],
Europe [24], and Uruguay [25], studies in the field of manufacturing indicate that the size
of a firm is conducive to technological innovation.

Firm size promotes the adoption of technology [14,15]. A large firm can reduce the
risks of market development and financing and is a manifestation of increased risk tolerance
for technological innovation and the adoption of new technologies. The same is true in the
agricultural sector, where small farms face more risks when adopting new technologies.
For example, Li et al. [4] studied the relationship between agricultural technological change
and farm size, finding that large-scale farms are more likely to adopt new technologies
because they are more able to bear the risks and costs associated with technology adoption.
Similarly, Deng et al. [26], Zheng et al. [27], and Yu et al. [28] found that large-scale farms
are more proactive in adopting labor-saving mechanized technologies.

Hypothesis 1. Farm size positively influences farmers’ recycling of pesticide packaging waste.

2.2. Farm Size, Hazard Awareness, and FPPWRB

Hazard awareness, which refers to people’s awareness of the possible negative impact
of a certain behavior or substance, significantly influences the recycling of PPW. Studies
indicate that the greater the awareness of potential harm, the more likely individuals are
to take preventive actions [20]. In the field of environmental protection, hazard aware-
ness is widely regarded as one of the key factors promoting environmentally responsible
behavior [29]. Deng et al. [30] believe that the public’s awareness of environmental pollu-
tion hazards directly influences their willingness to engage in environmental protection
behaviors. Similarly, Sikor et al. [5] found that there is a significant correlation between
farmers’ awareness of pesticide pollution hazards and their waste disposal behavior. In
addition, Song and Ye [31] found that when farmers have a deeper understanding of
the harmful effects of pesticide waste, they are more likely to adopt recycling and reuse
measures. Therefore, hazard awareness is important in promoting the recycling and reuse
of PPW. Farmers who recognize the harm generated by pesticide waste are more likely to
adopt recycling measures to reduce environmental pollution.

3
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Farm size has a positive impact on the awareness of the harmful effects of PPW. A large
farm size often comes with more resources and better educational conditions, allowing farm
owners to access more knowledge and information about the hazards of pesticides. The
theory of economies of scale suggests that large-scale operations can improve the efficiency
of information acquisition and technology learning [32]. Wang et al. [33] pointed out that
large-scale farm owners are more likely to participate in agricultural training and environ-
mental education programs, thereby increasing their awareness of the hazards of pesticides.
Yan et al. [34] found that large-scale farms have significant advantages in information
dissemination and technology application, making large-scale farmers more likely to un-
derstand and recognize the potential hazards of pesticides. Additionally, Zhang et al. [35]
emphasized that large-scale farm owners, due to their operational scale, are more moti-
vated and capable of acquiring knowledge related to environmental protection. Therefore,
large-scale farm owners, with their resources and educational advantages, are better able
to recognize the hazards of PPW, making them more sensitive and proactive in hazard
awareness compared to small-scale farm owners.

Hypothesis 2. Farm size positively influences the awareness of pesticide packaging hazards, further
promoting the recycling and reuse of pesticide packaging waste.

3. Data, Variables, and Model

3.1. Data

This study employs data from the China Rural Revitalization Survey, which was
conducted by the Rural Development Institute, Chinese Academy of Social Sciences. Ac-
cording to the introduction on its official website, the survey has the following charac-
teristics: (1) The survey covers a wide range of topics, including rural population and
labor force, rural industrial structure, rural governance, and comprehensive rural reforms.
(2) The survey covers a large geographic area. It includes 50 county-level units from both
economically developed and underdeveloped provinces in China, with data collected
from 300 village surveys and over 3800 farmer surveys. (3) The sample is representative.
The sampling procedure is as follows: (a) sample provinces are randomly selected based
on their economic development level, regional location, and agricultural development,
covering eastern, central, western, and northeastern regions; (b) sample counties are ran-
domly selected within each province based on per capita GDP at the county level using
an equal interval random sampling method; (c) sample townships (or towns) and villages
are randomly selected based on economic development levels; and (d) sample households
from the household register are randomly selected provided by the village committees.

After excluding questionnaires with significant missing data and responses that devi-
ated from reality, this study used a total of 2663 valid farmer surveys.

3.2. Variables
3.2.1. Dependent Variable

The dependent variable in this study is “FPPWRB”: farmers’ pesticide packaging waste
recycling behavior. In the CRRS (China Rural Revitalization Survey), farmers were asked
about their methods for handling pesticide packaging waste. In this study, households that
answered “recycle to a designated point” or “recycle to the agricultural supply market”
are defined as households with FPPWRB (coded as 1); conversely, households that did not
report recycling are defined as households without FPPWRB (coded as 0).

4
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3.2.2. Key Variable

The key variable in this study is farm size. Most studies use the actual total cultivated
area to represent the scale of land management [36]. Therefore, this study uses the land
area managed by the farm as the measure of farm size.

3.2.3. Mediator Variables

The main mediator variable in this study is the awareness of the hazards of PPW.
Zhang et al. [36] found that larger farms are more likely to adopt environmental protection
measures due to their stronger resource integration capabilities and greater environmental
awareness, providing theoretical support for using the awareness of the hazards of PPW as
a mediator variable.

3.2.4. Control Variables

This study introduces control variables in the empirical model to mitigate the impact
of omitted variables on the estimation results. Drawing on the studies of Huang and
Elahi [37], Wang et al. [38], and Chen et al. [39], the research includes the characteristics of
the household’s head (e.g., gender, age, marital status), household characteristics (e.g., level
of organization, per capita income, number of household laborers), and community charac-
teristics (e.g., village topography and distance from the village committee to the township
government) as control variables. The variable definitions and descriptive statistics for this
study are shown in Table 1.

Table 1. Descriptive statistical analysis.

Variables Definition Mean S.D.

FPPWRB Whether pesticide packaging waste is recycled: 1 = Yes; 0 = No 0.417 0.493

farm size Farm area under farm management (mu) 25.586 80.887

gender Gender: 1 = Male; 0 = Female 0.944 0.229

age Farmer’s age (years) 54.548 10.750

marriage Marital status: 1 = Married; 0 = Unmarried 0.930 0.256

education Whether the farmer received education at the high school level or above: 1 = Yes; 0 = No 0.145 0.352

party Whether the farmer is a member of the Communist Party of China: 1 = Yes; 0 = No 0.221 0.415

nonfarm work Whether the farmer engages in nonfarm work: 1 = Yes; 0 = No 0.093 0.291

leader Whether the farmer is a village official: 1 = Yes; 0 = No 0.020 0.138

farm cooperation Whether the farmer joined an agricultural cooperative: 1 = Yes; 0 = No 0.235 0.424

income Per capita income of the household 9.361 1.103

labor Total number of laborers in the household 2.919 1.284

machine Whether mechanized services are used for pesticide application: 1 = Yes; 0 = No 0.201 0.401

outsource Whether the household outsources pesticide spraying services: 1 = Yes; 0 = No 0.069 0.254

Terrain 1 Whether the village is located in a plain: 1 = Yes; 0 = No 0.465 0.499

Terrain 2 Whether the village is located in a hilly area: 1 = Yes; 0 = No 0.212 0.409

recovery point Whether the village has a pesticide packaging waste recycling point: 1 = Yes; 0 = No 0.395 0.489

distance Distance from the village committee to the county government 23.314 16.241

5
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3.3. Methods
3.3.1. Baseline Model

To examine the impact of farm size on FPPWRB, a probit regression model was
constructed as follows:

pesticide_packagingi = α0 + β1Lnland_areai + β2Controlsi + γi + εi (1)

In Equation (1), i represents the household; pesticide_packaging denotes the binary
dummy variable for the household’s FPPWRB; land_area represents the land area operated
by the household; Controls refers to a set of control variables; γi indicates provincial fixed
effects; and εi is the random disturbance term.

3.3.2. Mediation Effect Model

By using the awareness of pesticide packaging hazards as a mediating variable, a
mediation effect model was constructed to explore the transmission mechanism of the land
management scale’s influence on FPPWRB. The specific equations are given as follows:

cognitioni = α0 + β1lnland_areai + β2Controlsi + γi + εi (2)

pesticide_packagingi = α0 + β1cognitioni+β2lnland_areai + β3Controlsi + γi + εi (3)

In Equations (2) and (3), cognition represents the awareness of the hazards of pesticide
packaging waste. Since cognition is a type of ordinal data, Equation (2) is specified as an
ordered probit model.

3.3.3. Multicollinearity Test Method

To eliminate the influence of multicollinearity on empirical results, this study em-
ployed a variance inflation factor (VIF) test to assess whether the model suffers from
multicollinearity. Following Chen [40], we constructed Equation (4) to calculate the vari-
ance inflation factor (VIF).

VIF =
1

1 − R2 (4)

4. Results

4.1. Results of Multicollinearity Test

Table 2 presents the test results. The VIF values of all variables, as well as the model’s
mean VIF, are less than two, indicating that the empirical estimates are not significantly
affected by multicollinearity [41]. Additionally, the correlation coefficients between the
core explanatory variables and control variables are all below 0.3, which preliminarily rules
out multicollinearity among the independent variables and facilitates more accurate results
in the subsequent regression analysis. However, it is worth noting that correlation analysis
only measures the pairwise relationships between variables without accounting for the
influence of other factors. Therefore, more accurate estimation results should be further
addressed and adjusted in the subsequent multivariate regression analysis.
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Table 2. Multicollinearity—VIF test.

Variable VIF 1/VIF

Terrain 1 1.83 0.543755
machine 1.65 0.603058
Terrain 2 1.54 0.647147
outsource 1.46 0.684195

Ln (farm size) 1.41 0.702131
distance 1.22 0.793182

age 1.18 0.844405
labor 1.14 0.873237

nonfarm work 1.14 0.876215
recovery point 1.12 0.885026

party 1.12 0.889887
marriage 1.09 0.895756
education 1.09 0.917843

Ln(income) 1.08 0.918074
leader 1.05 0.923301
gender 1.04 0.950771

farm cooperation 1.04 0.960651
mean VIF 1.25

4.2. Estimated Results for the Impact of Farm Size on FPPWRB

We used a stepwise approach to add variables to mitigate the impact of omitted
variables on the empirical results and examined the relationship between farm size and
FPPWRB. Table 3 reports the estimation results.

Model (1) incorporates farm size Ln (farm size) as the only core explanatory variable
for FPPWRB. Model (2) adds a series of farm-owner characteristics—sex, age, marriage,
education, party affiliation, nonfarm work, and leader—as control variables on top
of Model (1). Model (3) incorporates a set of farm characteristics—farm cooperation,
Ln(income), labor, machine, and outsourcing—as control variables. Model (4) continues by
introducing Terrain 1, Terrain 2, the recovery point, and distance, estimating a nonlinear
probit model. Since the coefficients of Model (4) cannot directly explain the quantitative
relationship between two variables, marginal effects were estimated; the results are pre-
sented in the fifth column of Table 3. In terms of model selection, the χ2 results support the
validity of using a probit model, making the probit estimation appropriate.

From the regression results in columns (4) and (5), the estimated coefficient of Ln
(farm size) is 0.1029, and this is positively significant at the 1% level. This indicates that
the core explanatory variable (farm size) has a statistically significant positive effect on
the dependent variable (FPPWRB) at the 1% level. As shown in column (5), the marginal
effect of the land management scale on FPPWRB is 0.0359, and this effect is significant
at the 1% level. In other words, the higher the farm size, the more likely FPPWRB is
to increase by 3.59%. According to the regression results, farm size is significantly and
positively associated with FPPWRB in all models. The empirical results of this study are
consistent with the theoretical analysis presented earlier and the findings of Yan et al. [34],
Zhang et al. [35], and Zhang et al. [42], implying that as farm size increases, farmers are
more likely to recycle and reuse pesticide packaging waste. This finding aligns with
the studies of Han et al. [43], Ren et al. [15], and Zheng and Luo [44], as a larger farm
size implies that farmers have more resources and capacity to manage waste. Therefore,
hypothesis 1 (i.e., farm size positively influences household willingness to participate in
waste sorting) is confirmed.
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Table 3. Regression results–probit model.

(1) (2) (3) (4) (5)

Ln (farm size) 0.1227 *** 0.1037 *** 0.0928 *** 0.1029 *** 0.0359 ***
(5.21) (4.24) (3.64) (3.93) (3.96)

gender 0.0735 0.0789 0.0807 0.0282
(0.65) (0.69) (0.70) (0.70)

age −0.0054 ** −0.0048 * −0.0057 ** −0.0020 **
(−2.12) (−1.82) (−2.15) (−2.16)

marriage 0.0486 0.0276 0.0201 0.0070
(0.48) (0.27) (0.19) (0.19)

education −0.0443 −0.0464 −0.0710 −0.0247
(−0.59) (−0.61) (−0.93) (−0.93)

party 0.0117 0.0131 0.0034 0.0012
(0.18) (0.20) (0.05) (0.05)

nonfarm work −0.2593 *** −0.2631 *** −0.2620 *** −0.0913 ***
(−2.71) (−2.74) (−2.71) (−2.72)

leader −0.1523 −0.1554 −0.0627 −0.0219
(−0.79) (−0.81) (−0.32) (−0.32)

farm cooperation −0.0193 0.0007 0.0002
(−0.31) (0.01) (0.01)

Ln (income) 0.0131 0.0059 0.0021
(0.54) (0.24) (0.24)

labor 0.0198 0.0193 0.0067
(0.91) (0.88) (0.88)

machine 0.0931 0.0620 0.0216
(1.04) (0.69) (0.69)

outsource 0.0215 0.0397 0.0139
(0.18) (0.33) (0.33)

Terrain 1 0.2601 *** 0.0907 ***
(3.40) (3.42)

Terrain 2 0.3418 *** 0.1192 ***
(4.22) (4.26)

recovery point 0.2545 *** 0.0888 ***
(4.25) (4.29)

distance −0.0036 ** −0.0013 **
(−1.98) (−1.98)

_cons −0.5929 *** −0.3455 −0.5650 * −0.8621 **
(−4.89) (−1.51) (−1.70) (−2.51)

prov effect Yes Yes Yes Yes Yes
N 2663 2663 2663 2663 2663

Log likelihood −1666.8552 −1661.1485 −1659.7635 −1628.6105 −1628.6105
χ2 284.62 *** 296.04 *** 298.81 *** 361.11 *** 361.11 ***

Note: *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively. The T-values are in parentheses.
The fifth column reports the estimated marginal effects.

Another interesting finding from this study is that geographical location can influence
FPPWRB. In Model (4), the coefficients for Terrain 1 and Terrain 2 are significantly positive
(at the 1% statistical level), indicating that farmers in plain and hilly areas are more inclined
to recycle pesticide packaging waste than those in mountainous regions. This finding
suggests that establishing a universal resource recycling system requires increased attention
to mountainous regions (geographically disadvantaged areas).

4.3. Endogeneity Test for Farm Size and FPPWRB

Endogeneity analysis verifies whether the relationship between the explanatory vari-
able (farm size) and the dependent variable (FPPWRB) is accurately captured. If endo-
geneity is present, modeling results may lead to false causal relationships and misleading
policy recommendations. Farm size serves as the explanatory variable, while FPPWRB is
the dependent variable. FPPWRB may be influenced by other unobserved factors, which
could simultaneously affect farm size. Such unobservable factors can include economic
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factors, policy factors, etc. Therefore, there may be an endogeneity issue between farm
size and FPPWRB. If there are issues such as omitted variables or unobservable factors,
endogeneity analysis can help identify them and explore how to incorporate them into the
model. This can help eliminate model errors and more accurately measure the relationship.

Therefore, to determine whether variables or causal relationships are included or not
in the model and to enhance the credibility of the research results, instrumental variables
were used to conduct an endogeneity test on the model. Table 4 shows the endogeneity
regression results. The instrumental variable for farm size is “the proportion of other
large-scale households (i.e., households with land size greater than the sample mean) in the
village (excluding the household itself)” [34,45]. In selecting the instrumental variable, the
first criterion is validity, meaning that the instrumental variable should be correlated with
the explanatory variable and capable of influencing its value. In this case, “the proportion
of other large-scale households in the village (excluding the household itself)” reflects the
farm size situation within a village, making it a potentially valid instrumental variable.
Second, the instrumental variable is available. In some cases, obtaining raw data on farm
size may not be easy. By using “the proportion of other large-scale households in the
village (excluding the household itself)” as an instrumental variable, existing data sources
or survey results can be leveraged, making it easier to obtain data and conduct the study.
Additionally, using “the proportion of other large-scale households in the village (excluding
the household itself)” as an instrumental variable provides a clearer explanation of the
determinants of farm size. For example, if this instrumental variable is found to have a
significant relationship with the explanatory variable, it can allow for further exploration
of how other large-scale households influence farm size. The regression results in Table 4
show that the first-stage estimation of the instrumental variable test yields an F-value of
90.37 (p-value = 0.000), which is significant at the 1% level. This indicates that there is no
weak instrument problem. In the second stage, the Wald test rejects the null hypothesis
that the model has no endogenous variables at the 1% significance level, indicating that
endogeneity is indeed a concern. From the estimation results using the instrumental
variable method, the direction of the coefficient for farm size and FPPWRB is consistent
with the baseline regression results. This suggests that even after addressing endogeneity
with the instrumental variable method, farm size still has a significant positive effect on
FPPWRB, further confirming H1.

Table 4. Endogeneity regression results.

Phase 1 Phase 2

size_ratio 1.7759 ***
(12.90)

Ln (farm size) 0.1936 *
(1.81)

_cons 0.8313 *** −1.0164 ***
(3.18) (−2.63)

control variables Yes Yes
prov effect Yes Yes

F-value of Phase 1 90.37 ***
Wald chi2 322.14 ***

Wald endogeneity value 0.3809
N 2663 2663

R-squared 0.471 0.125
Note: *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively. The T-values are in parentheses.
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4.4. Robustness Check for the Impact of Farm Size on FPPWRB

To strengthen the reliability of the research conclusions and results, we conducted
robustness checks by changing the measurement method of the core explanatory variable
and employing alternative estimation models.

Given that parameter estimation using the probit model may be subject to variability
due to different distributional assumptions, this study used the logit model to test for
robustness. Logit and probit models are commonly used binary choice models for dealing
with binary response variable problems. However, compared to the probit model, the logit
model imposes less restrictive distributional assumptions on the explanatory variables,
making it more effective in handling heteroskedasticity and outliers. In addition, the
coefficients of the logit model can be interpreted as odds ratios, enhancing the intuitive
interpretability of the model’s results. Therefore, the robustness check using the logit model
aims to confirm the reliability of the research findings and ensure that the results are not
solely influenced by the choice of a specific model or data-handling approach. As shown
in Table 5, after the probit model is replaced by the logit model, the coefficients of the
core explanatory variable are still significantly positive, which verifies the fact that the
robustness test of the replacement model is reasonable.

Additionally, to ensure the robustness of the core explanatory variable, we incorpo-
rated the “irrigable area” and “maximum plot size” as alternative measures. By replacing
the original core explanatory variable (farm size) with these two new indicators, Models (2)
and (3) were constructed. As shown in Table 5, regardless of whether the core explanatory
variable was replaced by the “irrigable area” or “maximum plot size,” the coefficients
remained significantly positive. This further confirms the positive impact of farm size on
FPPWRB, validating the effectiveness of the robustness check through variable substitu-
tion. Therefore, the robustness test conducted by replacing the estimation model and the
measurement method of the core explanatory variable not only strengthened the credibility
of the research conclusions but also ensured the robustness of the research results, showing
that the conclusions remain consistent and reliable under different model frameworks and
measurement indicators. The results of the robustness check are shown in Table 5.

Table 5. Robustness check.

(1) (2) (3)

Logit Irrigable Area Maximum Plot Size

Ln (farm size) 0.1685 ***
(3.89)

Ln (farm size2) 0.0671 ***
(3.06)

Ln (farm size3) 0.0889 **
(2.31)

_cons −1.4562 ** −0.7731 ** −0.9415 ***
(−2.55) (−2.24) (−2.66)

control variables Yes Yes Yes
prov effect Yes Yes Yes

N 2663 2565 2545
pseudo R2 0.0999 0.0965 0.0974

Note: *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively. The T-values are in parentheses.

4.5. Heterogeneity Analysis for the Impact of Farm Size on FPPWRB

To further investigate the heterogeneity of the effect of farm size on FPPWRB, we
conducted two key heterogeneity analyses.

First, to examine whether the effect of farm size on FPPWRB varies by location,
households were categorized into urban and non-urban suburbs, and regressions were
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conducted separately for each group. From the heterogeneous regression results in Table 6,
it can be observed that the effect of farm size on FPPWRB differs between urban and non-
urban suburbs. Specifically, for farmers in urban suburbs, each unit increase in farm size
results in a 0.2890 effect on FPPWRB, which is significantly greater than the 0.0723 effect
observed in non-urban suburbs. The potential reasons for this discrepancy may include
the following: (1) Urban suburbs are closer to markets, making it easier to access relevant
technologies and beneficial information [46,47]. Therefore, farmers in urban suburbs are
more likely to access technology and information related to waste management than those
in non-urban suburbs, which may lead to greater motivation to participate in PPW recycling.
(2) Urban suburbs are more likely to receive government support for the construction of
recycling facilities. Therefore, from a regional perspective, the impact of farm size on
FPPWRB may vary.

Table 6. Heterogeneity regression results.

(1) (2)

Urban Suburbs Non-Urban Suburbs

Ln (farm size) 0.2890 *** 0.0723 **
(3.95) (2.53)

_cons −1.1736 −1.0166 ***
(−1.20) (−2.67)

control variables Yes Yes
prov effect Yes Yes

N 519 2144
pseudo R2 0.1324 0.1096

Note: *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively. The T-values are in parentheses.

Second, farmers were divided into older and younger generations based on a 40-year-
age threshold, and separate regressions were conducted. The regression results in Table 7
show that the effect of farm size on FPPWRB is 0.1714 for younger farmers, compared to
0.0894 for older farmers. This indicates that each unit increase in farm size has a greater
impact on FPPWRB among younger farmers than older farmers. This may be because
younger farmers are more open to adopting new agricultural technologies and management
practices. Additionally, they might place a greater emphasis on environmental protection,
making them more inclined to recycle and reuse pesticide packaging waste.

Table 7. Heterogeneity regression results—generational differences.

(1) (2)

Over 40 Years Old Under 40 Years Old

Ln (farm size) 0.0894 *** 0.1714 **
(3.20) (2.08)

_cons −0.6507 * −0.4711
(−1.67) (−0.39)

control variables Yes Yes
prov effect Yes Yes

N 2411 252
pseudo R2 0.0980 0.1847

Note: *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively. The T-values are in parentheses.

4.6. Mediation Effect for the Impact of Farm Size on FPPWRB

To examine the impact of the hazard awareness of pesticide packaging on the relation-
ship between farm size and FPPWRB, we further conducted a mediation effect analysis to
explore the underlying mechanism.
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As shown in Table 8, mediation effect analysis was conducted using three models
to examine the relationships between farm size (Ln (farm size)), farmers’ environmental
awareness (cognition), and the impact of farm size on FPPWRB (pesticide_packaging).
This analysis aimed to determine whether farmers’ environmental awareness mediates the
relationship between farm size and FPPWRB.

Model (1) examines the direct impact of farm size on FPPWRB. In this model, the
coefficient of Ln (farm size) is 0.1029, which is statistically significant (p < 0.01). This
indicates that a large farm size is associated with a higher probability of FPPWRB. The
results for Model (1) indicate a positive relationship between farm size and FPPWRB,
confirming the initial research hypothesis.

Model (2) analyzes the effect of farm size on farmers’ environmental awareness. In
this model, the coefficient of Ln (farm size) is 0.1698, which is also statistically significant.
This indicates that a larger farm size is associated with stronger environmental awareness
among farmers. This finding suggests that farm size not only directly affects FPPWRB but
may also indirectly influence it by enhancing farmers’ environmental awareness.

Finally, Model (3) incorporates both farm size and farmers’ environmental awareness
to assess their combined effect on FPPWRB. After including farmers’ environmental aware-
ness as a mediating variable, the effect of farm size on FPPWRB decreased from 0.1029 to
0.0847 but remained statistically significant. Meanwhile, the coefficient for farmers’ envi-
ronmental awareness is 0.2425, which is also highly significant. This suggests that farmers’
environmental awareness indeed plays a mediating role in the relationship between farm
size and FPPWRB, thus confirming H2.

In summary, the analysis results of this series of models provide empirical evidence for
our hypothesis—namely, the fact that farm size indirectly promotes FPPWRB by enhancing
farmers’ environmental awareness. At the same time, farm size also has a direct positive
effect. These findings are consistent with existing studies, which have found that larger
farms are more likely to adopt environmentally friendly practices, partly due to their
stronger resource integration capabilities and greater awareness of the environment. This
analysis not only provides a new perspective on the impact of farm size on FPPWRB but
also highlights the crucial importance of enhancing farmers’ environmental awareness
when promoting pro-environment actions.

Table 8. Regression results of mediation effect.

(1) (2) (3)

Pesticide_Packaging Cognition Pesticide_Packaging

Ln (farm size) 0.1029 *** 0.1698 *** 0.0847 ***
(3.93) (7.68) (3.17)

cognition 0.2425 ***
(7.44)

_cons −0.8621 ** −1.1927 ***
(−2.51) (−3.41)

control variables Yes Yes Yes
prov effect Yes Yes Yes

N 2663 2663 2663
pseudo R2 0.0998 0.0346 0.1152

Note: *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively. The T-values are in parentheses.

5. Conclusions

5.1. Findings

Based on the micro-survey data from CRRS 2020, this study covers a sample of
2775 rural households. Using the probit model, we thoroughly examined the impact of
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farm size on FPPWRB and its underlying mechanisms. The main findings are given
as follows:

(1) Farmers engage in limited recycling of PPW. Descriptive statistics show that only
41.7% of the sample farmers participated in pesticide packaging waste recycling. This
indicates that PPW management has not been given adequate attention by farmers,
presenting new challenges to the fragile agricultural production environment.

(2) There is a significant positive correlation between farm size and FPPWRB. The em-
pirical results show that for every 1% increase in farm size, the probability of farmers
participating in pesticide packaging waste recycling increases by 3.59%. Namely,
larger farms are more likely to engage in recycling. This may be because these farms
have more resources and incentives to implement environmental protection measures,
thereby reducing the environmental impact of agricultural production.

(3) Farmers in urban suburbs or younger farmers are more inclined to FPPWRB. In the
heterogeneity analysis, the coefficient of the farm size variable was 0.2980 for the
urban suburbs group and 0.1714 for the younger group (under 40 years old), both of
which are higher than those for the non-urban suburbs group and the middle-aged
group (over 40 years old). Namely, farm size has a more positive impact on FPPWRB
among younger farmers and those in urban suburbs, suggesting that these groups are
more likely to adopt recycling measures because of their specific advantages.

(4) Farm size can improve FPPWRB by enhancing farmers’ environmental cognition
levels. The mediation effect estimation results show that farm size significantly and
positively affects environmental awareness at the 1% level. Meanwhile, environmental
awareness significantly and positively influences FPPWRB at the 1% level. Namely,
farm size influences farmers’ perception of the hazards associated with pesticide
packaging waste, which, in turn, affects FPPWRB. Therefore, enhancing farmers’
knowledge and awareness is a key approach to promoting FPPWRB.

5.2. Implications

First, the government and relevant authorities should strengthen public awareness
campaigns and provide technical guidance to enhance farmers’ awareness of PPW recycling,
especially among small-scale farmers. Collaboration with local villagers can be established
by offering gift incentives to encourage active participation in PPW recycling. At the same
time, recycling bins can be set up at the village level, and staff should be organized to
visit the village regularly for collection and processing. Encouraging land transfer and
large-scale farming through policy guidance and economic incentives can help integrate
resources and improve recycling and utilization efficiency.

Second, differentiated support measures should be developed based on the character-
istics of different farmers. For farmers with strong technical skills and higher education
levels, market information and technical support should be provided. For farmers in
regions with poor natural conditions, financial and technical assistance should be offered.
For example, in hilly areas—where the terrain is complex and transportation inconvenient—
innovative PPW recycling strategies can be developed. Incentive-based methods, such as
the “pesticide bottle exchange for gifts” program, can be used to encourage recycling.

Third, media campaigns and policy interpretation can strengthen farmers’ awareness
of environmental protection and economic benefits, continuously enhancing their overall
understanding of PPW recycling and utilization. At the same time, this can improve the
incentive mechanism to promote the importance of recycling and utilization from both
environmental and economic perspectives.
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5.3. Limitations

This study also has some limitations, and future research can further improve upon
these aspects. (1) There may be a dynamic relationship between farm size and FPPWRB.
Therefore, future research could construct panel data to explore the dynamic relationship
between these two variables. (2) The environmental impact of FPPWRB has not been
sufficiently explored. Therefore, future research could develop new datasets to assess
the environmental impact of FPPWRB. (3) Based on the Chinese case, it was found that
as farm size increased, farmers were more willing to engage in environmentally friendly
actions. Therefore, future research could examine whether the conclusions of this study are
applicable to other countries.
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Abstract: Vineyards are distinctive agroecosystems heavily influenced by local natural
factors and traditional management practices, with significant implications for the qual-
ity and quantity of grape production. This study investigated the ecological impact of
copper-containing fungicides on the accumulation and distribution of copper, manganese,
chromium, and cobalt in the upper soil horizons of vineyards of varying ages in the Fruška
Gora region, Serbia. The results indicated a marked difference in total copper content
across vineyards, with the oldest vineyard exhibiting levels 6.9 times above the regulatory
limit. Factor analysis delineated a strong correlation between copper accumulation and
vineyard age while also highlighting the influence of landscape morphology on the spatial
distribution of heavy metals. The findings suggest that copper accumulation is primarily
related to agricultural practices, particularly the duration of fungicide application, while
the distribution of other heavy metals is more closely associated with topographic features.
The novelty of our research lies in the fact that we have shown that the assessment of
copper accumulation in soil in vineyard ecosystems should take into account not only
viticultural practices but also the history of land use and the landscape characteristics of
the area.

Keywords: vineyard; soil; copper; heavy metals; accumulation; slope; migration; lateral
differentiation coefficient; basal respiration

1. Introduction

Vineyards represent an authentic type of plantation-garden agroecosystem. Their
peculiarity lies in the strong dependence of the quantity and quality of the obtained
products on the combination of natural factors unique to each location and traditional
management methods, as well as the large number of environmental risks associated with
the cultivation of grapes in a particular area [1].

Due to the susceptibility of grape crops to infection by various pathogenic fungi,
traditionally a wide range of chemicals have been used to protect grapevines [2]. In
particular, copper-containing fungicides are of worldwide importance for the protection of
grapes and fruit crops against such diseases as oidium or true powdery mildew (Uncinula
necator Burill.), downy mildew (Plasmopara viticola (Berkeley & Curtis), and gray rot of
grapes (Botrytis cinerea), which cause the greatest damage to the wine industry. The
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history of copper-based products being used in vineyards goes back about 150 years,
when the protective properties of this element were discovered. Relatively high toxicity to
plant pathogens, low cost, low toxicity to warm-blooded animals and humans, chemical
stability, and ability to remain on the plant surface for a long time determined the wide
commercialization of copper-containing fungicides in both traditional plant protection
systems and integrated ones [3]. These protectants have also found wide application in
organic farming, where they are almost the only authorized and effective chemical means
of controlling grapevine diseases [4].

In the middle of the 20th century, when the use of copper-containing fungicides in
orchards and vineyards in the world reached its maximum, evidence of their intensive
accumulation in soils began to appear, especially in historical wine regions [5–7]. From
the reports published in recent years on copper concentrations in the upper horizons
of vineyard soils on the European, Australian, and South American continents, it can be
concluded that the metal content ranges from 100 to 1500 mg/kg with multiple exceedances
of the established regulatory values, and in some cases reaches a record 4500 mg/kg [8–11].

Copper compounds are stable in ecosystem components and can move along the
soil profile and contaminate surface and ground waters [8], affect soil biota [12], and
disturb the processes of organic matter mineralization in aquatic and soil environments
due to fungicidal and bactericidal action. Copper pollution, together with the imperfection
of the applied agrotechnologies, the development of erosion processes, and the spatial
heterogeneity of slope soils on which vineyards are mainly located has led to them often
being severely chemically, physically, and biologically degraded [13–16].

The level of copper accumulation, availability, and migration intensity in vineyard
soils depends on many factors: climatic (primarily temperature, precipitation, and inten-
sity) [17–19], soil (pH, organic matter, iron oxides, manganese, aluminum, clay minerals,
etc.) [20–22], type of land use, and related agrotechnological practices, including dosage
and frequency of applied plant protection products [23–25]. In addition, there is a certain
relationship between the copper content in soil and vineyard age.

Against the background of a large volume of scientific data from studies on ampelo-
cenoses up to 25 years old, studies on old vines are rather rare. Evidence of phytotoxicity
in the presence of excess copper in the soil of old vineyards has been demonstrated [26],
along with the efficiency of copper retention by the root system of old vines from the entry
of the element into the aboveground part of the plant [27], the coprecipitation of copper
with a number of other ions and their subsequent crystallization in the rhizosphere [28],
and the possibility of the formation of several types of copper-containing minerals in the
copper-enriched soil [29,30].

Vineyards are often located on slopes of different steepness, length, and shape, with
pronounced or smoothed microrelief. These conditions determine spatial heterogeneity
of soils of ampelocenoses by the content of macro- and microelements and pollutants.
Landscape features are closely intertwined with the impact of other factors, primarily local
climatic and agrogenic conditions. The applied agrotechnological methods of growing
grapes, which in each area and in each farm have their own specifics, can strengthen or
weaken the manifestation of landscape characteristics.

There are very few studies in the scientific literature that have carried out a compar-
ative analysis of the behavior of heavy metals in the soil of ampelocenoses, taking into
account their origin and identifying the factors that have the greatest influence on their
accumulation and migration pathways. Particularly interesting results can be obtained
in those wine-growing areas where there are many combinations of simultaneous and
diverse landscape and agronomic factors. This contrast of natural conditions and grape

18



Land 2025, 14, 96

growing methods is characteristic of the Fruška Gora region of the Autonomous Province
of Vojvodina in the Republic of Serbia. In a restricted area of this historical wine-growing
region, there are both industrialized wineries with intensive grape-growing technologies
and small private vineyards, some of which have been cultivated for a long time using
archaic technologies. However, common to them both is the use of chemical means of vine
protection, including copper-containing ones, against pathogenic fungi.

The aim of the present study was the ecological assessment of the aftereffect of copper-
containing fungicides on the accumulation and spatial and intra-profile distribution of
copper, as well as manganese, chromium, and cobalt, in the upper (0–30 cm) soil horizons
of different-aged vineyards cultivated by industrial, organic, and archaic technologies in
the slope landscape of the Fruška Gora region of the Autonomous Province of Vojvodina,
Republic of Serbia. The choice of manganese, chromium, and cobalt for the study was
based on the fact that the agrogenic input of these elements into the soils of ampelocenoses,
unlike copper, is relatively small, which makes it possible to demonstrate the contrasting
behavior of these elements in vineyard agroecosystems.

2. Materials and Methods

2.1. Study Area

The research was conducted in the vineyards of three private wineries located on the
right bank of the Danube River in the Autonomous Province of Vojvodina, Republic of
Serbia (Figure 1). The farms are located in the eastern part of the Fruška Gora mountain
range in Lipovac, Cherat, and Chushilovo in a historical wine region 1–4 km from the town
of Sremski Karlovci. According to some sources, the first vineyards on the slopes of Fruška
Gora date back to the reign of Roman emperors [31].

Figure 1. Location of the study region in the territory of the Republic of Serbia and the Autonomous
Province of Vojvodina, with the sampling sites and reference point with a control soil.

The climate of the study area is temperate continental, humid, and mild. The average
annual air temperature in the Fruška Gora area is 11.8 ◦C and the average annual precipita-
tion is 764 mm, with 431 mm (56.4% of the average annual precipitation) falling during
the growing season. Lack of moisture in the soil is observed in August and September and
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excess moisture - from December to April, with an average probability of occurrence of
pluvial erosion [32].

The soil of the studied vineyards belongs to Eutric Cambisols according to the FAO
(1988) and Haplic Cambisols Calcaric according to the WRB (2006). This soil was formed in
the conditions of the slope landscape of the Middle Danube Foothills under broad-leaved
forests. The profile thickness of the Eutric Cambisol at the studied sites is 115 cm. The
traditional name of these soils in Serbia is gajnjača. They are brown, yellowish-brown or
rusty reddish-brown, is the color being determined by the presence of hydrated iron oxide
and clay minerals in the profile. These medium loamy soils are characterized by a favorable
water and air regime and are traditionally used for orchards and vineyards.

The vineyards are located on slopes of different steepness and length with eastern
exposure. Information on the peculiarities of the location of ampelocenoses in the landscape,
age, and variety of the cultivated plantations is presented in Table 1.

Table 1. Characterization of the studied vineyards and the slopes on which they are located.

Locality
Land-Use

System
Trellis
System

Cultivation
Period, Years

Vine Variety Exposition Steepness, ◦ Extent, m

Lipovac Intensive Vertical shoot
position 15 Merlot Eastern 5–13 150

Cherat Archaic Bush vine More 200 Slankamenka
(autochthonous) Eastern 10 80

Chushilovo Organic Vertical shoot
position More 100 Merlot Eastern 4–8 27

The wineries under consideration practiced different grape-growing systems.
The farm in Lipovac uses an intensive industrial technology of cultivation of 15-year-

old merlot grapes with a trellis-row system of bush management, cultivated row spacing,
and application of a chemical plant protection system (Figure 2). The peculiarity of this
vineyard is that it is located on a slope of complex shape with two terraces: the first was at
the bottom of the concave upper part of the slope with a steepness of 13◦ (Lp2), and the
second was at the bottom of the straight slope with a steepness of 5◦ (Lp3).

Figure 2. Vineyard in Lipovac: (a) general view; (b) location of sampling zones: upper Lp 1, middle
Lp 2 and lower Lp 3 parts of the slope; (c) longitudinal profile of the slope of eastern exposure.
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We classified the vineyard in Cherat as archaic, in accordance with the outdated system
of cultivation of grapes in the form of bush vine–freestanding bushes of grape with sturdy
70–100 cm-high stems without supports evenly located on the whole slope (Figure 3). The
advantage of this technology is that the bushes are evenly illuminated from all sides, which
increases the assimilation activity of the leaves. On the other hand, the location of the
bushes excludes the use of mechanized tillage and vineyard maintenance.

Figure 3. Vineyard in Cherat: (a) General view. (b) Location of sampling zones: upper Crt 1, middle
Crt 2, and lower Crt 3 parts of the slope. (c) Scheme of longitudinal profile of the slope with eastern
exposure.

This vineyard is of great scientific interest not only in terms of the cultivation system
but also its duration: grapes have been grown on this site for more than 200 years. The age
of the vines currently cultivated is 55 years.

The vineyard in Chushilovo is an abandoned vineyard on a slope of 4–8◦ and more
than 100 years old on the eastern slope. It had not been maintained, tilled, fertilized, or
treated with pesticides for the last 40 years (Figure 4).

Figure 4. Vineyard in Chushilovo: (a) General view. (b) Location of sampling zones: upper Csh 1,
middle Csh 2. and lower Csh 3 parts of the slope. (c) Scheme of longitudinal profile of the slope with
eastern exposure.
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We conditionally categorized this vineyard as an organic vineyard. There is herbaceous
vegetation between the rows of vines.

2.2. Soil Sampling and Processing

Soil samples were collected using a soil auger at depths of 0–5, 5–15, and 15–30 cm
in and between the rows of grapes within the contiguous elements of the upper, middle,
and lower parts of the slopes of the three wineries in accordance with Russian Standard
GOST R 58595-2019. Under the bush boll system, sampling was carried out directly inside
the perimeter of the vine crown and within the free space between bushes. The “envelope”
method was used to obtain a generalized picture of the soil property distribution at each
site. This method involves taking five samples from a 5 m by 5 m plot (at the corners of the
plot and in the middle of the plot). A 0.5 kg sample was taken from each point. The five
subsamples were then combined and mixed, and one composite sample weighing 1.0 kg
was retained from the total mass. All operations were carried out separately for samples
from depths of 0–5, 5–15, and 15–30 cm. Mixed samples were collected from three sites
within each vineyard as per the abovementioned procedure, placed in clean polyethylene
bags, labeled, and transported to the laboratory.

Simultaneously with soil sampling from vineyards, control samples of background
soil in the study area were collected (Figure 5). The reference site was approximately 0.5 ha
in size and consisted of natural herbaceous vegetation dominated by cereals.

 

Figure 5. General view of the reference site where the reference soil samples were taken.

Reference soil samples were collected at depths of 0–20, 20–40, 40–60, 60–80, 80–100,
100–120, and 120–140 cm using a hand drill, similar to the above procedure.

The soil samples were air-dried at room temperature, plant roots, stones, and other
inclusions removed, then disaggregated by hand in a mortar and sieved through a 1 mm
sieve.

2.3. Soil Analysis

Soil reaction (pH) was determined by the potentiometric method in distilled water
with a glass electrode using a SevenCompact pH meter S220 (Greifensee, Switzerland,
Mettler Toledo) as per Russian Standard GOST 26423-85. The organic matter content was
measured by the photometric method using a strong oxidizing agent (K2Cr2O7) in the
presence of H2SO4 (Walkley and Black method [33]) with a Leki UV2107 (Helsinki, Finland,
MEDIORA OY) spectrophotometer at a wavelength of 600 nm.

22



Land 2025, 14, 96

For determining the total heavy metal content (Cu, Mn, Cr, Co), approximately 0.5 g
of oven-dried (at 105 ◦C) soil was precisely weighed into a PFA vessel, and 7 mL aqua regia
(HNO3/HCl = 1:3) was added. Before sample digestion, soil samples were ground in an
agate ball mill to pass through a 250 μm sieve. All sample containers (tubes, vessels, volu-
metric flasks, etc.) were acid-washed, and clean acids were applied for sample digestion
and multi-element standard dilution. Soil samples were digested in a Milestone ETHOS UP
microwave oven following the recommendations of the company. Element concentrations
in digested samples were determined by atomic absorption spectrometry (Agilent FS 240
AA, Santa Clara, CA, USA). Quality control was periodically carried out with reference
materials GSO 11369-2019.

2.4. Lateral Differentiation Coefficient

To study the migration flows and pathways of the selected heavy metals along the
slopes, we used the doctrine of elementary geochemical landscapes presented by Polynov
(1956) [34] and further developed by Perelman (1975) [35] and Glazovskaya (1988) [36],
whereby the nature of the links between elemental geochemical landscapes involved
in geochemical conjugation is reflected in the redistribution of chemical elements and
determines their accumulation or removal. Accordingly, lateral migration refers to the
processes of movement of substances across the earth’s surface from an autonomous
elemental landscape to a subordinate one.

The quantitative assessment of the spatial (subhorizontal) heterogeneity of the heavy
metal distribution along the slopes in our study was carried out on the basis of comparing
the lateral differentiation coefficients (L) between the geochemically conjugated elements
of the middle and lower parts of the slopes in relation to the upper part. This coefficient
characterizes lateral migration of chemical substances in soils connected by unified moisture
flows, which moves along the relief from top to bottom under the action of gravity [37].
The studies compared lateral differentiation coefficients between the metal concentration in
the soil of the middle (T2) and lower (T3) parts of the slope relative to the upper (T1) part of
the slope. The coefficient of lateral differentiation L of heavy metals in the soil of conjugate
elements of trans-eluvial geochemical landscape was determined by the following formula:

L =
Lx(T2 or T3)

Lx(T1)
,

where Lx(T2 or T3) is the concentration of heavy metals in geochemically subordinate
elements of the slope (middle part of T2 or lower part of T3) and Lx(T1) is the concentration
of heavy metals in the upper part of the slope (T1).

When analyzing lateral migration of heavy metals along the slope, the following
ranges of lateral differentiation coefficients were used: more than 1.7—high accumulation
of element; 1.1–1.6—accumulation of medium strength; 0.6–0.9—insignificant removal of
elements; less than 0.5—intensive removal of elements [37].

2.5. Basal Respiration

Basal respiration (BR) typically refers to soil respiration that is devoid of roots and
driven solely by microbial activity. This index is extensively used to ascertain the physi-
ological status of microorganisms [38,39]. Generally, an increase in the basal respiration
rate suggests favorable soil microbiome conditions. However, evidence indicates that soil
contamination can cause a pronounced increase in the soil respiration rate compared to
optimal values [40].
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Determination of basal respiration (BR) was conducted in accordance with CEN EN
ISO 16072:2011: “Soil quality—Laboratory methods for determination of microbial soil
respiration” [41]. Following the incubation of soil moistened with distilled water in vials
for 24 h at 22 ± 0.5 ◦C, 10 mL of air was extracted using a syringe and analyzed for carbon
dioxide content using a Chromatec-Crystall 5000 gas chromatograph (Yoshkar-Ola, Russia,
Chromatec). BR rate is expressed in μg C-CO2 g−1 soil per hour, with fivefold repeatability.

2.6. Data Analysis

The data were processed using the R software environment for statistical computing
and graphics. The FactoMiner package was used for factor analysis of the mixed data
(FAMD) [42] and the FactoExtra package for visualization [43,44]. All variables except
Cu, Mn, Cr, Co, and Corg were normally distributed according to the Shapiro–Wilk test
(p < 0.05). Hence, a nonparametric test for group comparison was used (Kruskal–Wallis).

Mapping and spatial data were visualized with QGIS 3.34.5. Google satellite images
were used for topography. To evaluate relief properties and prepare digital elevation
models, SRTM data and a Garmin eTrex 10 GPS receiver were used.

3. Results

3.1. Agrochemical Properties and Basal Respiration of Soils Under Vineyards

Table 2 lists the basic agrochemical properties that allowed us to interpret the results
of studies on the content and migration of the selected heavy metals in the soil of ampelo-
cenoses. The pH value of water extract in the soil of all studied farms ranged from 8.5 to
8.9, which corresponds to an alkaline reaction of the medium. In the soil of the vineyard in
Lipovac, the reaction of the medium did not change by horizons in the upper or middle
part of the profile, while in the lower part it tended to increase in the horizon of 15–30 cm
compared to the overlying ones. In the soil of the Cherat vineyard, pH changes based on
depth, slope distribution, and position in and between rows were not significant. In the
soil of the Chushilovo vineyard, the lowest pH values were found in the 0–5 cm horizon
(8.0–8.2). pH values increased with depth up to 9.2, which was the maximum for all studied
vineyards.

In contrast to pH, the organic matter content (Corg) in the studied vineyards fluctuated
widely and varied in different parts of the slope. The lowest Corg in the soil of the vineyard
in Lipovac was found in the upper part of the slope and ranged from 1.02% to 1.36%,
depending on the horizon. In the soil of the middle and lower parts of the slope, the
organic matter content in all horizons was significantly and reliably higher than in the
upper part of the slope and ranged from 2.70% to 3.33%. At the same time, the change in
Corg by soil horizon was unreliable both in and between rows.

In the Cherat vineyard, there was no mechanical tillage, so the differences between
horizons in terms of organic matter content were more noticeable. For all parts of the slope,
the highest accumulation of Corg was in the 0–5 cm horizon and consistently decreased
by 1.5-fold to 2.4-fold to the 15–30 cm horizon. In general, the level of organic matter
accumulation in the soil of the Cherat vineyard was significantly higher than in the soil
of the Lipovac vineyard and was in the ranges of 2.34–7.96% and 3.17–7.17% for the soil
under the bushes and between the bushes, respectively. In the 0–5 cm horizon under the
bushes, Corg increased from 5.72% to 7.96%, whereas in the zone between the bushes, it
varied from 6.86% to 7.17%, with no statistical significance.

The organic matter content in the soil of the vineyard in Chushilovo was also higher
than in the soil of the vineyard in Lipovac, but less than in Cherat. There was a clear
pattern in the distribution of organic matter in the upper part of the soil profile of the
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vineyard rows: the maximum accumulation of Corg was found in the 0–5 cm horizon
(3.51–4.37%), followed by the 15–30 cm horizon (2.88–4.43%), with the least in the 5–15 cm
horizon (2.35–2.88%). The same pattern was observed between the rows, but the differences
between horizons in Corg accumulation were less noticeable.

Table 2. pH value, content of organic carbon (Corg), and basal respiration (BR) in soils of Fruška
Gora vineyards with different land-use systems (means ± standard deviation).

Vineyard (Land-Use
System)

Slope
Part

Depth,
cm

pH (H2O) Corg BR

pH Unit % μg C-CO2 g−1 Soil hour−1

Within
Rows

Between
Rows

Within
Rows

Between
Rows

Within Rows
Between

Rows

Lipovac (Intensive)
(n = 45)

Lp 1

0–5 8.6 ± 0.1 8.6 ± 0.1 1.02 ± 0.15 0.88 ± 0.18 0.281 ± 0.018 0.270 ± 0.016

5–15 8.6 ± 0.1 8.6 ± 0.1 1.36 ± 0.27 1.10 ± 0.22 0.236 ± 0.031 0.221 ± 0.024

15–30 8.6 ± 0.1 8.6 ± 0.1 1.15 ± 0.23 1.07 ± 0.21 0.203 ± 0.019 0.118 ± 0.012

Lp 2

0–5 8.6 ± 0.1 8.6 ± 0.1 3.04 ± 0.46 3.00 ± 0.45 0.512 ± 0.054 0.393 ± 0.068

5–15 8.6 ± 0.1 8.6 ± 0.1 3.20 ± 0.48 2.95 ± 0.59 0.428 ± 0.027 0.353 ± 0.059

15–30 8.7 ± 0.1 8.7 ± 0.1 2.70 ± 0.54 2.53 ± 0.51 0.403 ± 0.020 0.324 ± 0.035

Lp 3

0–5 8.7 ± 0.1 8.6 ± 0.1 3.19 ± 0.48 3.12 ± 0.47 0.597 ± 0.034 0.513 ± 0.044

5–15 8.7 ± 0.1 8.7 ± 0.1 3.33 ± 0.50 3.04 ± 0.46 0.571 ± 0.018 0.462 ± 0.038

15–30 8.9 ± 0.2 8.7 ± 0.1 3.14 ± 0.47 3.08 ± 0.46 0.416 ± 0.025 0.343 ± 0.017

Cherat (Archaic)
(n = 45)

Crt 1

0–5 8.5 ± 0.1 8.5 ± 0.1 5.72 ± 0.52 6.86 ± 0.71 3.344 ± 0.152 4.511 ± 0.289

5–15 8.8 ± 0.2 8.6 ± 0.1 4.41 ± 0.66 4.54 ± 0.68 2.491 ± 0.161 2.800 ± 0.116

15–30 8.7 ± 0.1 8.6 ± 0.1 2.35 ± 0.47 3.17 ± 0.48 1.024 ± 0.057 1.078 ± 0.048

Crt 2

0–5 8.6 ± 0.1 8.5 ± 0.1 5.51 ± 0.54 6.14 ± 0.59 3.570 ± 0.210 4.604 ± 0.154

5–15 8.8 ± 0.2 8.5 ± 0.1 3.57 ± 0.53 4.28 ± 0.64 1.923 ± 0.063 2.221 ± 0.138

15–30 8.8 ± 0.2 8.7 ± 0.2 2.34 ± 0.47 3.53 ± 0.53 0.924 ± 0.047 1.026 ± 0.082

Crt 3

0–5 8.5 ± 0.1 8.5 ± 0.1 7.96 ± 0.80 7.17 ± 0.69 7.520 ± 0.451 4.853 ± 0.337

5–15 8.7 ± 0.2 8.5 ± 0.1 5.67 ± 0.69 5.50 ± 0.53 2.677 ± 0.144 3.089 ± 0.238

15–30 8.7 ± 0.1 8.6 ± 0.1 3.81 ± 0.57 4.65 ± 0.70 1.516 ± 0.228 1.639 ± 0.121

Chushilovo (Organic)
(n = 45)

Csh 1

0–5 8.0 ± 0.1 8.1 ± 0.1 4.07 ± 0.61 3.62 ± 0.54 5.405 ± 0.233 3.486 ± 0.195

5–15 9.2 ± 0.2 9.2 ± 0.2 2.56 ± 0.23 2.31 ± 0.33 2.328 ± 0.160 1.940 ± 0.117

15–30 8.2 ± 0.1 8.2 ± 0.1 3.77 ± 0.54 3.39 ± 0.53 1.775 ± 0.153 1.380 ± 0.085

Csh 2

0–5 8.0 ± 0.1 8.1 ± 0.1 4.37 ± 0.66 3.95 ± 0.59 5.218 ± 0.658 2.991 ± 0.139

5–15 9.2 ± 0.1 9.2 ± 0.2 2.88 ± 0.43 2.61 ± 0.39 2.546 ± 0.156 2.073 ± 0.236

15–30 8.2 ± 0.1 9.2 ± 0.1 3.86 ± 0.58 3.68 ± 0.58 2.803 ± 0.084 1.591 ± 0.177

Csh 3

0–5 8.1 ± 0.1 8.2 ± 0.1 3.51 ± 0.47 3.38 ± 0.51 6.067 ± 0.395 3.932 ± 0.319

5–15 8.4 ± 0.1 9.2 ± 0.2 2.35 ± 0.32 2.26 ± 0.24 1.511 ± 0.284 1.259 ± 0.247

15–30 9.2 ± 0.2 9.2 ± 0.2 4.43 ± 0.67 3.39 ± 0.49 1.448 ± 0.266 1.457 ± 0.113

Reference (n = 21) –

0–20 9.1 ± 0.2 2.06 ± 0.33 1.462 ± 0.214

20–40 8.8 ± 0.1 2.19 ± 0.41 1.305 ± 0.107

40–60 8.8 ± 0.1 1.74 ± 0.25 1.031 ± 0.053

60–80 9.1 ± 0.2 1.52 ± 0.17 0.847 ± 0.115

80–100 9.0 ± 0.2 0.43 ± 0.07 0.219 ± 0.038

100–120 8.8 ± 0.1 0.14 ± 0.03 0.153 ± 0.012

120–140 8.8 ± 0.2 0.07 ± 0.01 0.088 ± 0.004

Changes in the basal respiration rate replicated the observed trends in the accumu-
lation of organic matter: this indicator consistently decreased from the upper horizon
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(0–5 cm) to the underlying horizon and significantly increased from the upper part of the
slope to the lower part. Also, the basal respiration rate was higher in the soil of grape
rows in the Lipovac vineyard than between the rows. The significantly higher values of
this indicator for the vineyard in Cherat compared to the vineyard in Lipovac should be
emphasized. In Lipovac, the BR varied between 0.118 and 0.597 μg CO2-C g−1 soil-h−1,
and in Cherat, the BR values were in the range of 1.024–7.520 μg CO2-C g−1 soil-h−1, with
predominant activity of soil microbiota in the uppermost soil horizon. Interestingly, in the
vineyard in Cherat, the basal respiration rate in all considered soil horizons was higher
between bushes than within the crown perimeter, except for the 0–5 cm horizon in the
lower part of the slope, where the BR under bushes was 1.5 times higher than that between
bushes, which corresponded to the nature of organic matter distribution. In terms of BR
values, the soil under the 100-year-old abandoned vineyard in Chushilovo occupied an
intermediate position between the 15-year-old vineyard in Lipovac and the 55-year-old
vineyard in Cherat. The basal respiration rate, as in the soil of the other studied ampelo-
cenoses, was highest in the 0–5 cm horizon and ranged from 5.218 to 6.067 μg CO2-C g−1

soil-h−1 and from 2.991 to 3.932 μg CO2-C g−1 soil-h−1 in and between rows, respectively.
In the 5–15 cm horizon, BR fell sharply compared to the 0–5 cm horizon by a factor of 1.4 to
4, depending on the slope part.

The control soil sampled at the reference site was characterized by an alkaline reaction
similar to the soil under vineyards. However, organic matter content in the control soil
was lower than in the soil of the vineyards in Cherat and Chushilovo and in the soil of the
middle and lower part of the slope in Lipovac, but higher than in the soils of the upper
part of the vineyard slope in Lipovac, within the 0–30 cm soil layer. According to the basal
respiration index, the control soil occupied an intermediate position between the soil of the
vineyards in Cherat and Chushilovo and the vineyard in Lipovac.

3.2. Total Heavy Metal Content in Vineyard Soil

Total copper content in reference soil varied in the 0–20, 20–40, 40–60, and 60–80 cm
horizons in a rather narrow range of 49.2–57.8 mg/kg, with a mean value of 52.1 mg/kg.
In the 80–100 cm horizon of the reference soil, the element content consistently decreased
to 120–140 cm, where it reached values of 20.0 and 17.0 mg/kg, respectively, with a mean
value of 18.5 mg/kg (Figure 6).

Total copper content in the soil in and between vineyard rows in Lipovac was in the
ranges of 20.3–57.9 and 20.5–43.2 mg/kg, respectively, varying both by soil horizon and part
of slope (Table 3). The maximum values of copper content were found in grapevine rows
in the 15–30 cm horizon of the upper and middle parts of the slope (54.2 and 57.9 mg/kg,
respectively) and in the 0–5 cm horizon of the middle part of the slope (41.9 mg/kg). In the
lower, more gentle part of the slope with a steepness of 5–6◦, there was a noticeably lower
copper accumulation in the surface soil horizons at the level of 20.3–22.7 mg/kg compared
to the overlying parts of the slope. These values were close to the copper accumulation in
the 0–5 and 5–15 cm horizons in the upper part of the slope profile and corresponded to
the copper content in the parent rock for this soil type.

The calculated lateral differentiation coefficients confirmed that the main accumulation
of copper of medium strength (L = 1.62 and 1.32 within and between rows, respectively)
along the vineyard slope in Lipovac occurred in the middle part of the slope in the 0–5 cm
horizon (Table 4).
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Figure 6. Copper distribution along the profile (0–140 cm) of the control soil from the reference site.

Table 3. Total content of heavy metals (mg/kg) in row and interrow soil of a 15-year-old vineyard in
different parts of the slope in Lipovac (MAC—maximum allowed concentration, RC—remediation
concentration for studied heavy metals in Serbia [45]).

Slope Part Depth, cm

Cu Mn Cr Co

Within
Rows

Between
Rows

Within
Rows

Between
Rows

Within
Rows

Between
Rows

Within
Rows

Between
Rows

Lp 1

0–5 25.8 23.7 921 886 45.8 40.5 14.1 16.1

5–15 24.8 23.4 866 743 36.7 38.2 15.7 16.8

15–30 54.2 42.6 598 667 28.9 31.5 10.5 11.3

Lp 2

0–5 41.9 31.4 750 682 36.6 24.2 13.9 12.0

5–15 20.3 22.9 509 616 14.6 15.9 16.2 18.7

15–30 57.9 43.2 748 829 38.6 41.5 15.7 16.0

Lp 3

0–5 21.0 20.5 514 482 25.4 20.8 11.3 10.7

5–15 20.3 21.6 687 648 18.6 13.0 13.9 14.1

15–30 22.7 21.2 284 301 24.5 28.4 8.1 7.9

MAC/RC 36/190 not specified 100/380 9/240

Total manganese content in different parts of the horizontal profile of the slope differed
significantly (Table 3). It was concentrated in the 0–5 and 5–15 cm horizons of the upper
part of the slope (886–921 and 743–866 mg/kg, respectively) and 0–5 and 15–30 cm horizons
of the middle part of the slope (750 mg/kg and 748–829 mg/kg, respectively, in the grape
row only) with lateral differentiation coefficients of 1.24–1.25 in the 15–30 cm horizon of
the middle part of the slope (Table 4). As in the case of copper, the soil of the lower part of
the slope accumulated 1.3–2.8 times less manganese compared to the upper and middle
parts, especially in the 15–30 cm horizon (284–301 mg/kg).
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Table 4. Lateral differentiation coefficients (L) of the transit landscape at the 15-year vineyard in
Lipovac.

Slope Part Depth, cm

Cu Mn Cr Co

Within
Rows

Between
Rows

Within
Rows

Between
Rows

Within
Rows

Between
Rows

Within
Rows

Between
Rows

Lp 2

0–5 1.62 1.32 0.81 0.77 0.80 0.60 0.99 0.75

5–15 0.82 0.98 0.59 0.83 0.40 0.42 1.03 1.11

15–30 1.07 1.01 1.25 1.24 1.34 1.32 1.50 1.42

Lp 3

0–5 0.81 0.86 0.56 0.54 0.55 0.51 0.80 0.66

5–15 0.82 0.92 0.79 0.87 0.51 0.34 0.89 0.84

15–30 0.42 0.50 0.47 0.45 0.85 0.90 0.77 0.70

The highest amount of chromium was found in the 0–5 cm horizon of the upper part
of the slope (40.5–45.8 mg/kg) and the 15–30 cm horizon of the middle part of the slope
(38.6–41.5 mg/kg). In other horizons, including the lower part of the slope, the average
content of the element was 24.8 mg/kg. A similar trend was observed for cobalt content,
except that this element was also accumulated in the 5–15 cm horizon in the upper and
middle parts of the slope. The gross cobalt content in these horizons ranged from 15.7
to 18.7 mg/kg, whereas in the lower part of the slope, it ranged from 7.9 to 14.1 mg/kg.
For chromium and cobalt, as well as for manganese, lateral differentiation coefficients
(1.32–1.34 and 1.42–1.50, respectively), indicating the accumulation of these elements of
medium strength, were established in the 15–30 cm horizon of the middle part of the slope.

The total copper content in the soil of the upper (15–30 cm) and middle (0–5 and
15–30 cm) slope parts exceeded the maximum allowable concentration (MAC) of this
element in Serbia [45] by 1.2–1.6 times. The soil of the Lipovac vineyard was also found to
exceed the cobalt limit in almost all horizons and parts of the slope. The total chromium
content was well below the MAC value.

Total copper content in the soil of the 55-year-old vineyard in Cherat varied widely:
from 41.0 to 247.5 mg/kg (Table 5).

Table 5. Total content of heavy metals (mg/kg) in soil under and between grape bushes in different
parts of the slope at the 55-year-old vineyard in Cherat (MAC—maximum allowed concentration,
RC—remediation concentration for studied heavy metals in Serbia [45]).

Slope Part Depth, cm

Cu Mn Cr Co

Under
Bushes

Between
Bushes

Under
Bushes

Between
Bushes

Under
Bushes

Between
Bushes

Under
Bushes

Between
Bushes

Crt 1

0–5 109.0 84.5 682 571 33.2 31.7 5.2 4.6

5–15 95.1 73.7 656 636 34.4 33.1 7.5 11.2

15–30 61.9 41.0 605 624 33.8 36.6 11.7 13.6

Crt 2

0–5 132.7 127.6 650 624 29.0 28.4 8.5 9.4

5–15 72.3 73.9 748 606 42.0 29.7 12.8 10.6

15–30 59.4 52.8 732 755 35.3 33.2 14.3 12.1

Crt 3

0–5 128.3 136.6 647 662 27.3 31.0 10.7 7.9

5–15 146.1 189.4 661 741 26.3 28.4 11.8 16.6

15–30 247.5 228.5 768 861 37.2 35.6 18.1 20.3

MAC/RC 36/190 not specified 100/380 9/240
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Maximum values of total copper content were found within the crown perimeter
of grape bushes in the 0–5 cm soil horizon in the upper (109.0 mg/kg) and middle
(132.7 mg/kg) parts of the slope, as well as in all horizons of the lower part of the slope
(128.3–247.5 mg/kg). As a consequence, very high lateral differentiation coefficients were
observed in the soil of the lower part of the slope both under (1.18–4.00) and between grape
bushes (1.62–5.57), which indicates intensive migration of copper from the upper to the
lower part of the slope, with pronounced accumulation in the 15–30 cm horizon (Table 6).

Table 6. Lateral differentiation coefficients (L) of the transit landscape at 55-year-old vineyard in
Cherat.

Slope Part Depth, cm

Cu Mn Cr Co

Under
Bushes

Between
Bushes

Under
Bushes

Between
Bushes

Under
Bushes

Between
Bushes

Under
Bushes

Between
Bushes

Crt 2

0–5 1.22 1.51 0.95 1.09 0.87 0.90 1.63 2.04

5–15 0.76 1.00 1.14 0.95 1.22 0.90 1.71 0.95

15–30 0.96 1.29 1.21 1.21 1.04 0.91 1.22 0.89

Crt 3

0–5 1.18 1.62 0.95 1.16 0.82 0.98 2.06 1.72

5–15 1.54 2.57 1.01 1.17 0.76 0.86 1.57 1.48

15–30 4.00 5.57 1.27 1.38 1.10 0.97 1.55 1.49

The values of total copper content in the soil of the lower part of the slope at the
55-year-old Cherat vineyard exceeded the MAC value by 3.6–3.8, 4.1–5.3, and 6.3–6.9 times
in the 0–5, 5–15, and 15–30 cm horizons, respectively. In addition, at the lower part of the
slope in the 15–30 cm horizon, the copper content exceeded not only the MAC but also the
remediation concentration (190 mg/kg).

Total manganese content in the soil of the vineyard in Cherat was in the range of
571–861 mg/kg, chromium 26.3–42.0 mg/kg, and cobalt 4.6–20.3 mg/kg (Table 5). As
shown by lateral differentiation coefficients (Table 6), manganese accumulation was found
in the middle and lower parts of the slope (L = 1.21–1.38) in the 15–30 cm horizon, whereas
cobalt was actively accumulated in all studied horizons of the lower part of the slope
(L = 1.48–2.06) and the surface horizon of the middle part of the slope (L = 1.63–2.04).

Total copper content in the soil of the abandoned vineyard in Chushilovo varied
significantly depending on the horizon and slope element (Table 7). In the soil of the upper
part of the slope, copper content in the soil in and between rows of the vineyard decreased
2.5 times from the surface horizon to the 15–30 cm horizon, whereas in the middle part of
the slope, the highest accumulation of the element in the soil of the rows was observed in
the 5–15 and 15–30 cm horizons and amounted to 115.4 and 114.1 mg/kg, respectively. In
the lower part of the slope, similar to the trend noted above for the 15-year-old vineyard
in Lipovac, the lowest accumulation of copper was found in all studied horizons, which
ranged from 32.9 to 53.7 mg/kg. Thus, the distribution of copper in the upper soil horizons
of the vineyard in Chushilovo along the slope was uneven. The total quantity of the
element increased from the upper part of the slope to the middle part and then significantly
decreased.
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Table 7. Total content of heavy metals (mg/kg) in the soil in and between rows of a 100-year-
old abandoned vineyard in different parts of the slope in Chushilovo (MAC—maximum allowed
concentration, RC—remediation concentration for studied heavy metals in Serbia [45]).

Slope Part Depth, cm

Cu Mn Cr Co

Within
Rows

Between
Rows

Within
Rows

Between
Rows

Within
Rows

Between
Rows

Within
Rows

Between
Rows

Csh 1

0–5 90.2 85.5 578 740 59.3 56.8 9.8 12.2

5–15 78.7 67.8 662 738 38.9 48.4 10.6 13.2

15–30 35.5 34.5 728 543 18.4 41.2 14.2 15.3

Csh 2

0–5 96.4 86.6 559 654 38.9 31.6 5.3 9.7

5–15 115.4 107.8 716 666 48.1 50.1 12.6 12.2

15–30 114.1 27.9 692 784 43.5 68.7 15.8 16.8

Csh 3

0–5 53.7 42.5 531 564 33.2 33.5 8.1 13.2

5–15 45.6 37.9 609 688 31.8 29.7 10.3 14.7

15–30 41.1 32.9 694 792 24.0 21.1 11.4 17.6

MAC/RC 36/190 not specified 100/380 9/240

According to Table 8, the highest lateral differentiation coefficients with very high
copper accumulation (L = 3.21) and medium strength accumulation (L = 1.47–1.59) were
characterized by horizons 15–30 cm and 5–15 cm, respectively, in the middle part of the
slope.

Table 8. Lateral differentiation coefficients (L) of the transit landscape at the 100-year-old abandoned
vineyard in locality Chushilovo.

Slope Part Depth, cm

Cu Mn Cr Co

In Rows
Between

Rows
In Rows

Between
Rows

In Rows
Between

Rows
In Rows

Between
Rows

Csh 2

0–5 1.07 1.01 0.97 0.88 0.66 0.56 0.54 0.80

5–15 1.47 1.59 1.08 0.90 1.24 1.04 1.19 0.92

15–30 3.21 0.81 0.95 1.44 2.36 1.67 1.11 1.10

Csh 3

0–5 0.60 0.50 0.92 0.76 0.56 0.59 0.83 1.08

5–15 0.58 0.56 0.92 0.93 0.82 0.61 0.97 1.11

15–30 1.16 0.95 0.95 1.46 1.30 0.51 0.80 1.15

Despite the absence of treatments with chemical plant protection agents for grapes
during the last 40 years, the copper content in the soil within rows at the middle part of the
vineyard slope in Chushilovo exceeded the MAC level by 2.7 and 3.2 times, respectively,
in the 0–5, 5–15, and 15–30 cm horizons. The results obtained indicate the presence of
aftereffects of copper-containing pesticide application decades after the vineyard’s useful
life.

Total manganese content in the soil varied in the range of 531–728 mg/kg without
any patterns confirmed statistically. Medium-strength accumulation of the element was
observed only in the 15–30 cm horizons in the middle and lower part of the slope (L = 1.44
and 1.46, respectively).

Total chromium content in the soil of the vineyard under consideration varied in
a wide range from 18.4 to 68.7 mg/kg, along both the depth and horizontal profiles of
the slope (Table 7). In the 0–5 cm horizon, there was a significant decrease in chromium
accumulation from the upper part of the slope to the middle and lower parts of the slope
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by 52–79% and by 70–80% in and between vineyard rows, respectively. At the same time,
the opposite trend was established for the 5–15 and 15–30 cm horizons, in which chromium
accumulation from the upper to the middle part of the profile, on the contrary, increased by
1.2–2.4 times, both in and between rows. A high level of chromium accumulation, as in the
case of copper, was observed in the 15–30 cm horizon in and between rows (L = 2.36 and
1.67, respectively) in the middle part of the slope (Table 8).

Total cobalt content in the soil of the abandoned vineyard ranged from 5.3 to
17.6 mg/kg, which approximately corresponded to the level of accumulation of this element
in the soil of vineyards in Lipovac and Cherat (Table 7). In all parts of the slope, cobalt
content significantly increased 1.4–3 times from the surface horizon to a depth of 15–30 cm,
and in rows was lower in rows than between. Based on the calculated lateral differentiation
coefficients, no significant accumulation of cobalt was found in the considered horizons
and along the slope profile (Table 8).

In terms of copper content, the profile of the control soil sampled from the reference
site can be divided into two contrasting zones (Table 9). From the surface to a depth of
80 cm, the total content ranged from 48.1 to 58.1 mg/kg, which was 1.3 to 1.6 times higher
than the MAC value. In soil layers from 80 to 140 cm, copper content ranged from 18.7 to
27.2 mg/kg and did not exceed the MAC value. As for the other heavy metals studied,
their vertical distribution in the soil was relatively uniform, with a tendency for the total
content to increase slightly from the upper to the lower part of the soil profile. The cobalt
content was slightly above the MAC value in all horizons.

Table 9. Total content of heavy metals (mg/kg) in the control soil from reference site
(MAC—maximum allowed concentration, RC—remediation concentration for studied heavy metals
in Serbia [45]).

Depth, cm Cu Mn Cr Co

0–20 48.1 580 41.9 10.8

20–40 49.5 535 39.9 10.0

40–60 48.3 594 42.0 10.9

60–80 58.1 600 47.8 11.0

80–100 27.2 595 44.7 10.9

100–120 20.7 596 47.3 11.0

120–140 18.7 616 50.4 12.1

MAC/RC 36/190 not specified 100/380 9/240

3.3. Factor Analysis of Heavy Metal Distribution in Vineyard Soils

Since the dataset contained qualitative and quantitative variables, factor analysis of
the mixed data (FAMD) was conducted to gain a general understanding of the relationships
between the variables. FAMD is a principal component method dedicated to analyzing
a dataset containing both quantitative and qualitative variables. It acts as principal com-
ponent analysis for quantitative variables and as multiple correspondence analysis for
qualitative variables.

The three principal components explained 53.14% of the total variance, i.e., more
than all other principal components combined. The first two components are the most
interesting for analysis and make the greatest contribution to the explanation of the total
variance (Figure 7A,B). The main contribution to the first component comes from two
strongly related variables: soil organic content (Corg) and vineyard age (Age), as well as
slope shape (SlopeForm) and total copper content (Cu). The second component is mainly
represented by variables describing relief: ”SlopeForm”, ”Steepness”, and “SlopePart”. To
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a lesser extent, heavy metals (Mn, Cr, Cu) contribute to it. The third component is primarily
determined by basal microbial respiration, slope length, sampling depth, and pH.

 

Figure 7. Factor analysis of mixed data (FAMD) of vineyard soil and landscape parameters. Variables’
contribution to principal components shown for PC1 (A), PC2 (B), and PC3 (C). Factor map for
quantitative variables (D). Agglomerative hierarchical clustering of results from factor analysis.
Observations are represented by points in the plot, while ellipses represent 0.95 confidence intervals
(E). Qualitative variable groupings for slope form (F).

The most important qualitative variable is slope shape. Comparison of the group of
observations based on this qualitative factor with the groups of observations identified
by agglomerative hierarchical clustering (Figure 7E,F) showed that the cluster analysis
identified the same number of groups, with the majority of observations overlapping
between them. Among the quantitative variables, two main groups were highlighted: total
copper content, vineyard age, basal respiration, and Corg, and slope steepness, total copper
content, and manganese content, oriented by the first and second principal components,
respectively (Figure 7D).

Thus, it can be assumed that the distribution of copper and other heavy metals in the
soils of the studied vineyards depends on different factors. Copper was more strongly
related to parameters determined by agrogenic activity (duration of vineyard cultivation
and organic matter content), while other heavy metals were more strongly related to relief
parameters: slope steepness for chromium and manganese and slope extent for cobalt.

The introduction of heavy metal lateral differentiation coefficients into the FAMD
would have led to multicollinearity, so in the next step, Spearman rank correlation coeffi-
cients were calculated for the qualitative variables, presented in Figure 8 as a correlation
matrix. Variables in the matrix are grouped in hierarchical clustering order, based on which
our previous assumption about the difference of copper migration from other studied heavy
metals due to their location in different clusters was partially confirmed. The strongest
correlation was observed between the total copper content and the age of the vineyard or
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duration of its cultivation, while a weaker correlation was noted between the total copper
content and the land-use system (Figure 8).

Figure 8. Spearman’s rank correlation matrix for land-use system, slope parameters, agrochemical
properties, basal respiration, total heavy metal content, and lateral differentiation coefficients in
vineyard soil.

The Kruskal–Wallis method was chosen for pairwise comparison of median copper
values in the vineyards because of the small number of samples in each group and the lack
of normal distribution in the data (Figure 9). The comparisons showed that the median
values of copper content in soil differed significantly among the vineyards (p < 0.01) All
vineyards were characterized by an absence of significant difference (p > 0.05) between the
copper content of soils in and between rows. The level of copper in the soil of the vineyards
in Cherat and Chushilovo exceeded the maximum permissible values established in the
Republic of Serbia.

The organic carbon content of soils of all surveyed vineyards at depths of 0–30 cm was
compared by a similar method (Figure 10). Comparison of medians showed that the values
of soil organic carbon content differed significantly for all vineyards and at all depths
except for 15–30 cm. For this depth, a significant difference was observed only between the
samples from Lipovac and Chushilovo. The maximum organic carbon content in soils was
observed in the vineyard in Cherat and the minimum in Lipovac.

33



Land 2025, 14, 96

Figure 9. Total copper content (mg kg−1) in vineyard soil in Lipovac, Cherat, and Chushilovo in
according to Kruskal–Wallis criteria (p < 0.01). The horizontal dashed red line means the maximum
allowed concentration of copper in soil established in the Republic of Serbia (36 mg kg−1).

Figure 10. Organic matter content (Corg, %) in the surface layers (0–5, 5–15, 15–30 and overall
0–30 cm) of the vineyard soil in according to Kruskal–Wallis criteria (p < 0.001).
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A general trend of downslope accumulation of copper in the soils of the studied vine-
yards was found (Figure 11). However, the distribution of copper and other heavy metals
in the surface soil layer in each studied plot depended on the morphological characteristics
of the slope (steepness, shape, length) and the agrotechnical methods applied.

Figure 11. Slope distribution of total heavy metal content in the upper soil horizons (0–30 cm) of the
vineyards according to the Kruskal–Wallis criterion: cobalt (p = 0.045), copper (p = 0.017), chromium
(p = 0.034), and manganese (p = 0.029).

Pairwise comparison of median heavy metal content for individual slope elements
for all farms using the Kruskal–Wallis method showed significant differences between
individual elevation elements only for chromium (Figure 11). The chromium content in the
upper part of the slope was higher than in the lower slope for all three farms.

A general trend of downslope accumulation of copper in the soils of the studied vine-
yards was found, but the difference in median values by slope was statistically significant
only for the Cherat slope. A similar distribution characteristic only for Cherat was observed
for cobalt as well. However, the distribution of copper and other heavy metals in the
surface soil layer in each studied plot depended on the morphological characteristics of the
slope (steepness, shape, length) and the agrotechnical methods applied.
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4. Discussion

Statistical analysis supports our hypothesis that the overall level of copper accumula-
tion is primarily determined by the history of land use in the study plots, including the
features of the agrotechnology applied. When grapes are grown continuously on a certain
plot for decades with the use of copper-containing fungicides, there is an accumulation
of copper in the upper horizons of the soil profile, which is confirmed by the results of
other authors. Brunetto et al. (2016) provided data that copper and zinc accumulated in
the upper 2.5 cm soil layer of orchards in Canada, predominantly with a long (18 years)
cultivation history, with consequent high fungicide loads of copper- and zinc-containing
compounds [7]. A similar conclusion was made when comparing copper accumulation
in the soil of 15- and 4-year-old vineyards in the state of Santa Catarina (Brazil), and in
older vineyards, a greater proportion of copper was found in the most plant-available
(soluble) fraction, associated with iron and manganese oxides and organic matter, with a
simultaneous decrease in the proportion of the element in the residual fraction unavailable
to plants at depths of 0–5, 5–10, and 10–20 cm. In New Zealand, young vineyards had lower
levels of copper in soil than aged vineyards, prompting the authors to recognize the need
for ongoing ecotoxicological monitoring in farms established more than 40 years ago, as
well as those in which vineyards were established on the site of former orchards [46]. The
results of soil monitoring of vine plantations more and less than 20 years old in Slovenia
revealed copper content of 72 and 17.5 mg/kg, respectively, in the upper 20 cm layer, while
in the background soil, the content was 0.8 mg/kg. A similar trend was observed in 20–40
and 40–60 cm soil horizons, but with lower absolute values for copper accumulation [47].

The agrogenic origin of the copper in the soil of the vineyards studied is also supported
by the data on the distribution of copper in the profile of a reference soil sampled from
a natural meadow ecosystem near the Cherat vineyard (Figure 6). A similar pattern of
copper accumulation in soil samples taken as background soil was found by Ninkov et al.
(2012) for a 50-year-old abandoned vineyard, where the total copper content in 0–60 cm
horizons was 48.6–57.8 mg/kg [48]. It seems probable that this plot was previously used
for grape cultivation, due to the fact that the slopes of Fruška Gora represent a historical
center of viticulture and winemaking in southern Pannonia.

This total copper content was taken as the geochemical background for the territory
where the studied vineyards were located. This value is close to the background value of
19.8 mg/kg for soils near the town of Sremski Karlovci, which was established by Ninkov
et al. (2012) when conducting similar studies [48]. We suggest that the copper enrichment
of the soil profile to a depth of 80 cm relative to the parent rock may be related to periodic
deep ploughing during vineyard replanting, which facilitates the distribution of copper
from the surface soil layers to the underlying ones.

Of all the vineyards studied, the highest total copper content was found in the soil of
the archaic vineyard in Cherat, where it reached a value of 247.5 mg/kg, which is 6.9 and
13.4 times higher than the maximum allowed content and the geochemical background
of copper, respectively (Figure 9). According to the owner of the vineyard in Cherat,
grapes have been cultivated there for about 200 years, and although the current vineyard is
55 years old, it was replanted immediately after the previous vineyard was removed.

Copper content in the soil of Chushilovo vineyard was also 2.7–3.2 and 1.5–6 times
higher than the MAC and background value, respectively (Figure 9). According to the
cadastral statement available to the owner, the land-use history of this plot dates back
to 1886, i.e., around the same time when Pierre-Marie-Alexis Millardet discovered the
protective properties of Bordeaux liquid against mildew. Interestingly, the owner of the
vineyard in Chushilovo has not applied any agrotechnical measures for the last 40 years.
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However, the complete absence of copper-containing pesticide treatments during this
period has not eliminated the problem of copper accumulation in the surface soil horizons
at levels above the maximum allowed content. Similar results were found for abandoned
vineyards in the Czech Republic [49] and in Galicia, Spain [50].

Overall, our results in the abandoned vineyard highlight the problem of land-use
change in former vineyards, especially those that are being converted to other crops [51].
For example, since 2000, many old vineyards in France have ceased to exist for economic
reasons, and most of these lands have been planted with wheat. At the same time, increased
concentrations of copper in the soil as a result of long-term use of fungicides causes phyto-
toxicity and reduced yields of this crop [52]. Soil and ecotoxicological studies conducted on
a large area of old Australian vine plantations vacated over the last 20 years have demon-
strated the potential hazard of high copper concentrations to a range of cereals, vegetable
crops, and perennial grasses [53]. Our studies on fallow soils of the northern Black Sea
coast, previously used in viticulture with the use of a chemical plant protection system for
about 40–60 years, revealed low indices of microbial biomass and respiratory activity of
soil. In addition, ecophysiological indices exceeding the optimal values indirectly indicated
unfavorable conditions for the functioning of the soil microbial community in long-term
fallow conditions, even against the background of general accumulation of organic matter
in the soil [54]. The possibility of such negative effects should certainly be taken into
account when returning fallow soils under former vine plantations to agricultural turnover.
At the same time, soils contaminated with copper can be relatively safely used for sowing
of technical or energy crops, such as hemp [55].

The lowest concentrations of copper were found in the soil of the (youngest) 15-year-
old industrial vineyard in Lipovac (Figure 9). Nevertheless, the accumulation level of the
element was 2–3 times higher than the background level and 1.5–1.6 times higher in the
15–30 cm horizon of the rows than the maximum allowed content.

The correlation matrix confirmed the relationship between total copper content, or-
ganic matter content, slope part, and slope shape, indicating the involvement of organic
matter together with copper in erosion-induced slope migration processes (Figure 10). A
similar conclusion was reached in the work of Ha Pham et al. (2022) [56]. This can be
explained by the fact that most of the copper is retained by soil organic matter due to its
strong sorption and complexation properties [22,57–59].

The accumulation of organic matter in the soils of the studied vineyards showed a
similar trend to that described above for the total copper content. The maximum Corg
value was observed in the lower part of the vineyard slope in Cherat, the minimum in the
soil of the vineyard in Lipovac (Figure 10). As can be seen in the figure, the differences in
Corg content between the different vineyards were most pronounced at the 0–5 cm horizon,
with the differences smoothing out with depth.

Surface runoff in vineyards with slopes of 5–10 degrees or more often leads to increased
topsoil removal. The amount of erosion-induced soil losses depends on many factors: the
frequency and seasonal distribution of rainfall, the morphological characteristics of the
slope, the duration of vine cultivation, the granulometric composition and organic matter
content, the position of the rows in relation to the slope, the presence of interrow cover
crops and the intensity of their mechanical cultivation. Even the expression of some of the
above factors can lead to the development of erosion processes, which are more common
in vineyards than in other agroecosystems [28,60–62].

The migration of organic matter in the soil of the vineyard in Cherat was not as
intensive as in Lipovac. This is probably explained by the absence of grape rows, due to
the archaic bush vine trellis system used, and the uniform distribution of bushes along the
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slope, the preservation of natural meadow vegetation in the space between the bushes, and
the complete absence of tillage. Approximately the same can be said for the abandoned
vineyard in Chushilovo. The processes of mineralization of organic matter in the untreated
soil of the vineyards in Cherat and Chushilovo were not as fast as in the cultivated soil
of the vineyard in Lipovac. As a result, conditions were created for the accumulation of
organic matter, the level of which was 1.2–5.6 and 1.1–4.1 times higher in the soil of the
archaic and organic vineyards, respectively, than in the soil of the intensive type of vineyard
(Figure 10).

Copper, and in some cases the other heavy metals studied, were also involved in the
migration processes observed on the slopes of the vineyards (Figure 11). Soil particles
from the surface layer, in which copper accumulates mainly because of the application of
copper-containing fungicides, move from upper towards lower parts of the slope under
the gravity effect. It has been shown that the total copper content in the soil at the foot of
the slope significantly exceeds the content of its mobile forms, which indirectly indicates
that the element does not move down the slope with easily mobile substances, but together
with soil particles in the form of compounds with high chemical stability [14,63].

The longitudinal slope profile in Lipovac had three distinct mesorelief zones (Figure 2).
The first zone corresponded to the upper part of the slope and represented a concave
part with high steepness (13◦). The middle part was essentially the leveled bottom of the
steep part of the slope, followed by the lower gentle part of the slope with a steepness of
about 4–5◦. Due to enhanced migration processes in the upper, steepest part of the slope,
a redistribution of copper from the upper horizons (0–5 and 5–15 cm) of the upper part
of the slope to the surface horizon and the 15–30 cm horizon of the middle part of the
slope was observed, as evidenced by the lateral differentiation coefficients above 1. Radial
migration of copper to underlying soil horizons is also possible, but interpretation of these
migration pathways of copper and other heavy metals has been made difficult by soil
mixing as a result of tillage and its movement within and between rows. This contributed
to the dispersion of copper in both the radial and lateral landscape structure. It is obvious
that the lower part of the vineyard slope in Lipovac was not covered by the migration
processes occurring in the upper and middle parts of the slope due to its low steepness
and physical isolation (a technological main road passed between the middle and lower
zones). As a result, the average level of copper accumulation in all investigated horizons
of the lower part of the slope (21.2 mg/kg) was close to the background concentration of
the element. Taking into account the essentially geogenic origin of the copper in the lower
part of the slope, as well as the fact that limited doses of copper-containing fungicides were
used in this vineyard (one preventive treatment before bud burst per year with average
rainfall during the growing season), it can be assumed that the 2–2.5 times higher copper
concentrations in the middle part of the slope compared to the surface horizons of the
upper part and all horizons of the lower part are explained exclusively by the processes of
agrogenic copper redistribution with runoff along the mesorelief elements.

The observed tendency for copper accumulation to decrease in the lower part of the
vineyard slope in Lipovac was also true for manganese, chromium, and cobalt (Figure 11).
The accumulation of cobalt increased similarly to copper from the upper to the middle part
of the slope, while the opposite pattern was observed for manganese and chromium. A
contradictory character in the distribution of these elements along the slope was also found
by Ha Pham et al. (2022) for two vineyards of different ages in Hungary [56]. The different
character of the spatial heterogeneity in the accumulation of heavy metals in vineyard soils
can be related, in addition to the terrain morphology, to the granulometric composition of
the soil and the distribution of individual fractions along the slope, the specificity of the
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bonding of the elements with manganese and iron oxides, organic matter, crystal structure
of clay minerals, etc.

In contrast to the slope of the vineyard in Lipovac, the copper accumulation in soil
of the vineyard in Cherat increased from the upper and middle parts of the slope to the
lower part, with lateral differentiation coefficients ranging from 1.18 to 5.57. The absence
of annual tillage not only revealed a pronounced lateral migration of copper along the
slope zones but also the possibility of its radial movement deep into the soil profile, which
was particularly noticeable in the lower part of the slope, where the copper content in the
15–30 cm horizon was 1.2–1.9 times higher than in the 0–5 cm horizon. On the other hand,
in the upper and middle parts of the slope, the copper content in the surface horizon was
higher than in the underlying horizon, indicating the predominance of lateral over radial
migration of copper. Permanent vegetation of the slope could not stop or even slow the
copper migration in the soil of the Cherat vineyard (Figure 11). The uniform distribution
of bushes along the slope contributed to the coverage of the entire slope area by copper-
containing pesticide treatments, which resulted in the involvement of soil areas between
bushes in copper transport and the balancing of copper accumulation in the middle and
lower parts of the slope, both within the perimeter of the grape crowns and between bushes.
It appears that the long history of land use, combined with the high steepness and leveling
of the slope, were the determining factors in the copper transport along the slope. In
addition, the effect of the increased frequency of extreme rainfall events recorded in recent
years in the Autonomous Province of Vojvodina on the intensity of slope runoff cannot be
ignored [64].

In contrast to copper, no reliable dependencies were found in the distribution of
manganese, chromium, and cobalt along the slope in the soil of the Cherat vineyard, except
for a statistically significant sequential increase in the content of chromium and cobalt from
the 0–5 cm horizon to the 15–30 cm horizon. The same trend was observed for manganese
in the middle and lower parts of the slope. Thus, for these elements, radial migration
prevailed over lateral, probably due to their active removal by the herbaceous vegetation.

As noted above, the abandoned vineyard in Chushilovo has not been treated with
pesticides for the last 40 years, so the level of accumulation of copper and other metals in
the upper soil horizons in different parts of the slope of this vineyard can be used to assess
the behavior of agrogenic copper accumulated here many years ago. The slope under the
vineyard in Chushilovo is short and has a pronounced mesorelief, based on which it can
be divided into three zones: a relatively uniform upper part with a steepness of about
8◦, a small depression in the middle part, and a gently leveled slope in the lower part
(Figure 4). Similar to the slope distribution of copper in the industrial vineyard in Lipovac,
the highest accumulation of the element was found in the rows of grape in the middle
part of the slope within the depression, with lateral differentiation coefficients of 1.07–3.21.
The lower part of the slope was characterized by the lowest copper concentration, which
ranged from 32.9–53.7 mg/kg, and where the removal of this element prevailed based
on lateral differentiation coefficients (0.50–1.16). In all the marked zones of the slope, the
copper content of the soil in the rows of the abandoned vineyard was higher than that
between the rows.

Among the other metals analyzed, a statistically significant difference was found for
chromium by slope part (Figure 11). In the lower part of the slope, as in the case of copper,
1.2–1.8 times less metal was accumulated than in the overlying parts, which was also typical
for the vineyard in Lipovac. In addition, a significant increase in cobalt content from the
0–5 cm horizon to the 15–30 cm horizon was found in all parts of the slope, both in rows
and between rows, which was a general trend for all vineyards studied.
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The total manganese content did not depend on slope characteristics, land-use system,
or agrochemical indicators. Only a close relationship with cobalt and chromium in the soil
was found. A similar relationship for these elements was found in a study by Ha Pham
et al (2022) [56]. The authors suggested that this may indicate the association of Co and Cr
with the reactive surface sites of Mn oxides, which was not observed for copper in either
their or our studies.

5. Conclusions

Vineyard agroecosystems are of great scientific and practical interest because of the
known problem of high copper accumulation in the upper soil horizons associated with
the long-term use of copper-containing fungicides.

It is generally considered that copper of agrogenic origin in vineyard soils is not
mobile and is concentrated in surface soil horizons, and therefore poses no threat to the
environment or product quality.

However, our study on the example of vineyards of different ages on the slopes of
the Fruška Gora mountain range in the Autonomous Province of Vojvodina, Republic of
Serbia, has shown that under certain conditions, the migration of copper in vineyard soils
is possible and its total content can vary significantly depending on the land-use systems
in place, the meso- and microrelief parameters, and the duration of grape cultivation in the
area.

The analysis of the data obtained using the principal component method allowed us
to establish that copper was more strongly related to parameters determined by agrogenic
activity (duration of vine cultivation and agrotechnologies used).

The soil of the 15-year-old vineyard had the lowest total copper content of all the
vineyards studied, ranging from 20.3 to 57.9 mg/kg. In the soil of the vineyard more than
200 years old, the level of copper accumulation reached 247.5 mg/kg, which is 6.9 times
higher than the maximum allowed concentration of this element established in the Republic
of Serbia and 1.3 times higher than the remediation concentration.

The influence of the agrogenic factor was closely related to the content of organic
matter in the soil, with had a strong correlation which copper. We assume that the migration
of copper along the slope, which was increased by the location of the vineyards on the
slope and the mechanical cultivation between rows in the absence of vegetation in the
intensive vineyard, is related to its involvement in the migration of organic matter due to
erosion processes occurring on the slopes.

Statistically significant copper accumulation in the vineyards was found in the lower
or middle part of the slopes, depending on the terrain morphology. In general, slope shape
was the most important qualitative variable, contributing to significant spatial variation in
total copper content.

In contrast to copper, the accumulation and spatial variation of manganese, chromium,
and cobalt were mainly determined by relief parameters—slope steepness for chromium
and manganese and slope extent for cobalt—indicating their predominantly geogenic
origin. In contrast to copper, radial migration into the soil profile predominated over lateral
migration for these metals.

Our results highlight the problem of copper in vineyard soils in a more complex
way, linking the level of its accumulation not only to the number of copper-containing
fungicides used but also to the landscape characteristics of the vineyard location and to
specific agrotechnological methods, which can vary greatly among wineries of different
size and using different management models.
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Voivodina region (Serbia). J. Geogr. Inst. Cvijic. 2018, 68, 1–15. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

43



land

Article

Soil Quality Assessment and Influencing Factors of Different
Land Use Types in Red Bed Desertification Regions: A Case
Study of Nanxiong, China

Fengxia Si 1, Binghui Chen 1,2,*, Bojun Wang 1, Wenjun Li 1, Chunlin Zhu 1, Jiafang Fu 3, Bo Yu 4 and Guoliang Xu 5

1 School of Earth Sciences and Engineering, Sun Yat-Sen University, Zhuhai 519082, China;
sifx@mail2.sysu.edu.cn (F.S.); wangbj29@mail2.sysu.edu.cn (B.W.); liwj276@mail2.sysu.edu.cn (W.L.);
zhuchlin5@mail2.sysu.edu.cn (C.Z.)

2 Guangdong Provincial Key Laboratory of Geological Processes & Mineral Resources Survey,
Zhuhai 519082, China

3 Natural Resources Bureau of Nanxiong City, Nanxiong 512400, China; fujiafang@163.com
4 Guangdong Institute of Environmental Geological Exploration, Guangzhou 510080, China;

bobby.yu@163.com
5 School of Geography and Remote Sensing, Guangzhou University, Guangzhou 510006, China;

xugl@gzhu.edu.cn
* Correspondence: eescbh@mail.sysu.edu.cn

Abstract: Soil environmental issues in the red bed region are increasingly conspicuous, underscor-
ing the critical importance of assessing soil quality for the region’s sustainable development and
ecosystem security. This study examines six distinct land use types of soils—agricultural land (AL),
woodland (WL), shrubland (SL), grassland (GL), bare rock land (BRL), and red bed erosion land
(REL)—in the Nanxiong Basin of northern Guangdong Province. This area typifies red bed desertifica-
tion in South China. Principal component analysis (PCA) was employed to establish a minimum data
set (MDS) for calculating the soil quality index (SQI), evaluating soil quality, analyzing influencing
factors, and providing suggestions for ecological restoration in desertification areas. The study find-
ings indicate that a minimal data set comprising soil organic matter (SOM), pH, available phosphorus
(AP), exchangeable calcium (Ca2+), and available copper (A-Cu) is most suitable for evaluating soil
quality in the red bed desertification areas of the humid region in South China. Additionally, we
emphasize that exchangeable salt ions and available trace elements should be pivotal considerations
in assessing soil quality within desertification areas. Regarding comprehensive soil quality indicators
across various land use types, the red bed erosion soils exhibited the lowest quality, followed by those
in bare rock areas and forest land. Within the minimal data set, Ca2+ and pH contributed the most to
overall soil quality, underscoring the significance of parent rock mineral composition in the red bed
desertification areas. Moreover, the combined effects of SOM, A-Cu, and AP on soil quality indicate
that anthropogenic land management and use, including fertilization methods and vegetation types,
are crucial factors influencing soil quality. Our research holds significant implications for the scientific
assessment, application, and enhancement of soil quality in desertification areas.

Keywords: soil quality assessment; land use type; minimum data set; red bed desertification areas

1. Introduction

Over the last few decades, salinization and land desertification have grown into serious
environmental issues that have an impact on the ability of China’s national economy to
develop sustainably. Consequently, the state has made substantial efforts to combat karst
rocky desertification, soil erosion on the Loess Plateau, and salinization in the North China
Plain [1]. Unfortunately, not enough attention has been paid to land deterioration in the
humid red beds of South China thus far. A variety of red continental sedimentary rocks,
such as argillaceous, sandstone, siltstone, and conglomerate, make up the red beds. They
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cover an area of about 8.26 × 105 km2, accounting for 8.61% of the total land area, with
60% distributed in southern China [2].

The soil structure in the red bed area is poor, with rapid weathering and erosion
processes. Although the soil formation rate is fast, organic matter accumulation is slow [3].
The parent material is loose, lacking clay and cementation between soil particles. The hot
and rainy climate characteristics of southern China exacerbate this situation, causing the
soil to be easily washed away by surface runoff. This further reduces vegetation coverage,
diminishes the soil’s water conservation function, and leads to severe soil erosion. This
phenomenon and process is known as “red beds desertification” [4,5]. The deterioration of
soil quality in the red bed desertification area will lead to a decline in the stability of the
regional ecosystem and even the loss of agricultural use value. This significantly impedes
the ability of the local ecology and socioeconomic sector to develop sustainably. Thus, a
scientific assessment of the soil quality in the red bed desertification area is required.

Soil quality is broadly defined as “the capacity of soils to sustain biological productivity,
preserve environmental quality, and promote plant and animal health within ecosystems
and land-use boundaries” [6]. Since the concept of soil quality was introduced, numerous
studies on soil quality assessment and its monitoring tools, including soil quality cards [7],
test box methods [8], index methods [9], and multivariate indicator kriging methods, have
been rapidly conducted in various countries [10]. Among these, the soil quality index
method has become a more commonly used approach in recent years. Researchers have
often utilized the soil quality index method to assess the quality of soils within a single
land-use type, such as agricultural systems [11], forest systems [12], grassland systems [13],
and wetland systems [14].

The soil quality assessment system includes physical, biological, and chemical indica-
tors. Chemical indicators often have significant advantages because they are quantifiable
and closely related to plant nutrition, which can indirectly reflect soil physical conditions
and microbial quality [15]. Abraham et al. argue that pH determines the nutrient availabil-
ity and physical conditions of the soil, thereby controlling the diversity of microorganisms
in the soil [16]. Additionally, cation exchange capacity (CEC) is a sensitive indicator for
determining soil nutrient retention capacity, fertility, and long-term productivity [17]. Ni-
trogen, phosphorus, and potassium are considered essential soil nutrients because they
limit soil productivity by affecting various soil properties, plant growth, and soil micro-
bial activity [18–21]. Soil organic matter has a multifaceted positive impact on the health
and quality of (agricultural) ecosystems, and is therefore recognized as a highly desirable
and complex soil variable [22,23]. It is evident from many previous studies that chemical
indicators play a vital role in the comprehensive assessment of soil quality.

The extensive selection of measurement metrics often results in significant time and
financial costs for sampling and measurement [24]. Therefore, it is essential to reduce
the indicators to the smallest possible data set for assessing soil quality [10]. Initially, the
selection of the minimum data set (MDS) was typically based on expert judgment [6].
However, more recently, methods such as principal component analysis (PCA), redun-
dancy analysis (RDA) [25], and multiple regression have become more common for data
dimensionality reduction.

Although the challenges posed by land desertification in the humid areas of South
China have not received equal attention at the national policy level, in recent years, many
scholars have begun to recognize the importance of assessing the quality of red bed soils
and have conducted extensive research on this topic. These studies have, to varying
degrees, addressed gaps in previous land management strategies in red bed desert areas.
For example, they have analyzed the soil quality of red soil tillage layers in southern
China using clustering and principal component analysis (PCA) [26]. Additionally, they
have calculated the soil quality index and soil degradation index for different land use
modes in the red bed region of southern China through PCA, investigating the influencing
factors [27]. Yan et al. also explored the spatial differentiation of soil moisture and organic
matter in the red bed region and identified their influencing factors [1,28,29].
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Studies on soil quality in the red beds have primarily focused on single land use
types or individual fixed soil attributes, with few addressing the differences in soil quality
across various land use types in the red bed region or identifying the main factors affecting
soil quality in red bed desertification areas. Therefore, this paper selected six different
land use types in a typical red bed desertification area in the Nanxiong Basin, a humid
zone in South China, and assessed soil quality by establishing a minimum data set. The
objectives of this study were to (i) establish an objective MDS for assessing soil quality
in the humid red bed desertification area, (ii) calculate the soil quality index (SQI) and
assess soil quality across different land use types in the study area, and (iii) determine
the individual contributions of the selected MDS components to soil quality in the study
area and analyze their influencing factors. We hope that this study will provide ecological
restoration suggestions and improvement directions for the red bed desertification areas in
humid regions.

2. Materials and Methods

2.1. Overview of the Study Area

The study area is located in Nanxiong City (113◦55′−114◦44′ E, 24◦56′−25◦25′ N) in
northeastern Guangdong Province, China (Figure 1). Greater heights in the northwest and
lower elevations in the southeast define the area’s general terrain. The central part of the
area comprises red-layered hills formed from red terrestrial debris accumulated during
the Cretaceous and Paleocene periods, creating the long and narrow Nanxiong Basin. The
study area has a subtropical monsoon climate, with the northeast monsoon prevailing
in winter, and the southwest and southeast monsoons in summer. Winters are short,
summers are long, and the average annual temperature is approximately 20.6 ◦C. Annual
rainfall ranges from 900 to 2100 mm, with the period from May to October receiving over
60% of the yearly total. The elevation of the basin varies from 79 to 568 m above sea level.
Due to its inland location, low latitude, and distance from the sea, the area is less affected
by typhoons. The natural soil in the study area is a calcareous purple soil developed in
purplish-red sand shale or argillaceous rock, which is rich in iron ions [30]. This purple
soil accumulates organic matter slowly, has poor water retention and drought tolerance,
and exhibits high soil temperatures, all of which impose certain limitations on vegetation
growth and recovery [4].

Figure 1. Distribution of the study area and sampling sites.
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2.2. Soil Sample Collection

Six land types have been identified in the Nanxiong Basin, Guangdong Province, a
typical red bed desertification area: agricultural land (AL), woodland (WL), shrubland
(SL), grassland (GL), bare rock land (BRL), and red bed erosion land (REL), based on
the actual land use at the time of sampling. A total of 87 sample plots, each measuring
20 m × 20 m, were selected. Within each plot, three sampling points were established using
a random distribution method. A 5 cm diameter soil auger was used to retrieve soil columns
(0–10 cm depth) at each sampling location. Due to the high diversity of crops in agricultural
land (including vegetables, Nicotiana tabacum, and Chinese herbal medicine) and different
tree species in woodland (such as Pinus massoniana, Acacia confusa, Leucaena leucocephala,
and mixed forest), additional samples were collected to capture this variability. Specifically,
18 additional soil samples were collected from 6 agricultural land plots, and 12 additional
samples were collected from 4 woodland plots. In total, 291 soil samples were gathered.
The soil samples, weighing roughly 1.0 kg apiece, were packed into polyethylene bags
and sent to the laboratory. Samples were cleaned in the lab to get rid of debris like plant
litter and roots, and after that, they were dried and put through a 2 mm mesh screen to
measure the physical and chemical characteristics of the soil. The six land types and their
characteristics are shown in Table 1.

During the sampling stage, vegetation surveys were conducted concurrently in each
sample plot. The typical vegetation types were recorded, and the degree of desertification
in the basin was classified into four grades based on the grading method proposed by Shen
et al., as detailed in Table 2 below [31].

Table 1. Field photographs and characteristics of the six land use types.

Land Use Type Field Photographs Characteristics

Agricultural land
(AL)

 

Plots where Citrus sinensis, Nicotiana tabacum, and
Chinese medicinal herbs are cultivated after manual

fertilization and irrigation.

Woodland (WL)

 

Primarily includes Pinus massoniana, Acacia confusa,
and Leucaena leucocephala.

Shrubland
(SL)

 

Plots with low shrubs such as Vitex negundo,
Maclura cochinchinensis, and Melia azedarach.
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Table 1. Cont.

Land Use Type Field Photographs Characteristics

Grassland
(GL)

 

The vegetation is diverse, with some areas being
abandoned agricultural land where grasses such as
Agave sisalana, Setaria viridis, and Caryopteris incana

naturally grow.

Bare rock land (BRL)

 

This area is in the initial stage of natural succession, with
only small patches of vegetation cover, predominantly

consisting of xerophytic shrubs and grasses.

Red bed erosion land (REL)

 

It is an area of severe red bed desertification, characterized
by extensive bare ground, sparse vegetation, and, in

extreme desertification zones, no plant growth at all. To
carry out ecological restoration and prevent soil erosion in

the red bed desertification area, experimental soil
improvement has been conducted in some red bed erosion
areas with extensive bare ground. The primary measure

implemented has been the application of organic fertilizer.

Table 2. Regional classification of red bed desertification in the study area.

Evaluate Factors

Vegetation Coverage
The Exposed Area

Occupies the Total Area
Comprehensive Performance Characteristics

Light desertification 50%~70% ≤10%

Erosion gullies are either developed or absent,
with the topsoil layer missing. The vegetation is
limited, consisting mostly of drought-tolerant

shrubs and trees.

Moderate desertification 30%~50% 10%~25%
Erosion gullies are well developed, but the

slopes are generally gentle, with only a small
number of shrubs and grasses growing.

Severe desertification 10%~30% 25%~50%
Erosion gullies are widely distributed, and

surface vegetation is scarce, consisting mainly
of xerophytic shrubs and grasses.

Extreme desertification ≤10% ≥50%

The area is characterized by dense erosion
gullies, extensive bare land surfaces, sparse

vegetation mainly consisting of xerophytes, and
an absence of grass in the most extreme areas.

Eleven physical and chemical characteristics of soil were identified: alkaline hy-
drolyzable nitrogen (AN), available phosphorus (AP), available potassium (AK), exchange-
able calcium (Ca2+), exchangeable magnesium (Mg2+), available copper (A-Cu), available
zinc (A-Zn), available iron (A-Fe), pH, soil organic matter (SOM), and soil moisture con-
tent (W%).
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2.3. Soil Sample Experimental Methods

The determination of soil physicochemical properties was undertaken using the meth-
ods mentioned by Lu (1999) as a reference [32]. Briefly, soil organic matter (SOM) was
determined using the external heating method with potassium dichromate-concentrated
sulfuric acid [33]. Soil pH was measured using the glass electrode method with a water-to-
soil ratio of 2.5:1 [34]. Soil moisture content (W%) was determined by drying the sample in
an oven at 105 ◦C [35]. The content of alkaline hydrolyzable nitrogen (AN) was assessed
using the alkaline hydrolysis diffusion method. Available phosphorus (AP) was mea-
sured through the hydrochloric acid-ammonium fluoride extraction method followed by
molybdenum-antimony colorimetry [36]. Available potassium (AK), exchangeable calcium
(Ca2+), and exchangeable magnesium (Mg2+) contents were determined using ammonium
acetate extraction and measured by Flame Atomic Absorption Spectrophotometrics [37].
Available copper (A-Cu), available zinc (A-Zn), and available iron (A-Fe) were measured us-
ing Diethylenetriamine Penta-acetic Acid (DTPA) extraction and Flame Atomic Absorption
Spectrophotometrics to evaluate the available trace elements in the soil [38].

2.4. Soil Quality Evaluation Methods

Three phases are usually involved in the soil quality index method: (1) using data
reduction to identify relevant soil indicators; (2) scoring the indicators that are chosen; and
(3) creating a soil quality index [12,39].

Initially, principal component analysis (PCA) is employed to extract the principal
components (PCs) with eigenvalues >1 in order to decrease the dimensionality of the
chosen indicators. Groupings of indicators are created when loading factors on a primary
component are above 0.5. If an indicator has loadings less than 0.5 on at least two principal
components, it will be assigned to the group with the highest loading value. Alternatively,
if an indicator has loadings ≥0.5 on multiple principal components, it will be grouped
with the component that has a lower correlation with other indicators [40]. Since PCA
only considers the loading of an indicator on a single principal component, the Norm
value is calculated to prevent the loss of information of the indicator on other principal
components with eigenvalues ≥1. The length of the indicator’s vector constant mode in the
multidimensional space made up of the principal components is represented by the Norm
value. Greater combined loading of the indicator on all principal components is shown
by a larger Norm value, which denotes a stronger capacity to comprehend the combined
data [41].

Nik =

√√√√ k

∑
i=1

(
u2

ik·λk
)

(1)

where Nik is the composite loading of each variable in i on the first kth principal compo-
nents with eigenvalues ≥1; uik is the loading of each indicator in i on the kth principal
component; and λk is the eigenvalue of the kth principal component.

The indicators in each group whose Norm values fell within 10% of the maximum
Norm value in the group were chosen to be included in the minimum data set (MDS) after
the Norm values of each indicator within the group were calculated individually. When
deciding which indicators to keep in a group, the Pearson correlation coefficient is used. If
the correlation coefficient between the indicators is less than 0.5, all of the indicators are
kept; if it equals or exceeds 0.5, the indicator with the larger Norm value is selected to be
included in the MDS.

The second step involves establishing an affiliation function between the indicators
and soil productivity, taking into account the positive and negative effects of the evaluation
indicators on soil quality. An S-type affiliation function indicates a positive correlation
between the evaluation indicators and soil function within a certain range. An inverse
S-type affiliation function indicates a negative correlation. A parabolic function suggests
an optimal range of suitability (Table 3). SOM, AN, AP, AK, Ca2+, Mg2+, A-Cu, A-Zn, and
A-Fe were positively correlated with the quality of the tillage layer, defined as an S-type
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affiliation function. W% and pH had an optimal range of appropriateness with the quality
of the tillage layer, defined as a parabolic affiliation function.

Table 3. Evaluation indicator type and membership function.

Function Type Membership Function Evaluation Index
Membership Function Parameter

a m n b

Type of parabolic
linear

u(χ) =

⎧⎪⎪⎨
⎪⎪⎩

1, m ≥ x ≥ n
x−a
m−a , a < x < m
x−n
b−n , b > x > n
0, x ≤ a; x ≥ b

pH 4.52 7 8 9.36

W% 0 8.5% 15.5% 55.74%

Type of S U(x) =

⎧⎨
⎩

1, χ ≥ b
x−a
b−a , a < x < b

0, χ ≤ a

SOM 5.99 38.50
AN 10.08 346.08
AP 0.03 129.54
AK 24.04 735.51

Ca2+ 50.52 8051.00
Mg2+ 8.12 274.50
A-Cu 0.02 3.94
A-Zn 0.05 4.78
A-Fe 0.37 389.39

Type of reverse S u(x) =

⎧⎨
⎩

1, x ≤ a
x−b
a−b , a < x < b

0, x ≥ b
/

Note: The membership function is denoted by u(x), where x represents the actual value of the indicators; the
lower and upper bounds of the indicators’ critical values, respectively, are represented by a and b, which stand for
the minimum and maximum values measured in the field; the optimal value for the indicator is represented by n,
and its lower bound by m [42].

The common factor variance obtained in the process of principal component analysis
can reflect the degree of contribution of the corresponding indicator to the overall variance.
The larger its value, the greater the contribution to the overall variance. The weight of
each indicator is equal to the proportion of its common factor variance to the sum of the
common factor variances of all indicators [43].

Ultimately, the index of soil quality was computed. A higher number denotes greater
soil quality. The soil quality index (SQI) incorporates the indices used to evaluate soil
quality. The formula is as follows:

SQI =
n

∑
i=1

wi·Ni (2)

where wi is the weight of the ith evaluation indicator; Ni is the degree of affiliation of the
ith evaluation indicator; and n is the number of evaluation indicators.

Using the equidistant division approach, the soil quality of the red beds in the research
region was divided into three groups: Class I (0.66 ≤ MDS-SQI < 1), most suitable for
vegetation growth; Class II (0.33 ≤ MDS-SQI < 0.66), suitable for crops, albeit with some
limitations; Class III (MDS-SQI < 0.33), characterized by serious limitations on vegeta-
tion growth.

2.5. Data Analysis

Data statistics and analysis were performed using Microsoft Excel 2016. IBM Statis-
tics SPSS 26 was used for Pearson correlation and principal component analyses. Lin-
ear regression analysis and graph plotting were conducted using Origin, while ArcMap
10.8 was employed for mapping the study area and the location of sampling points. Eleva-
tion data come from Computer Network Information Center (2024) [44]; China map data
come from China (2024) [45].
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3. Results

3.1. Characteristics of Red Bed Soil in Different Land Use Types

The statistics for 11 soil properties across 6 different land use types in the study
area are presented in Table 4. The average soil organic matter content did not vary sig-
nificantly among different land use types, with agricultural land exhibiting the lowest
average and red bed erosion land showing relatively higher levels. Soil pH ranged from
4.52 to 9.36 in the typical red bed area, with woodland having the lowest average pH
(6.86, weakly acidic) and red bed erosion land having the highest (8.60, weakly alkaline).
Soil water content varied notably among land use types, with agricultural land having
the highest mean value (17.26%) and red bed erosion land showing the lowest (2.71%).
Alkali hydrolyzable nitrogen (AN), available phosphorus (AP), and available potassium
(AK) had their highest mean values in agricultural soils (90.92 mg/kg, 31.14 mg/kg, and
196.58 mg/kg, respectively), while red bed erosion land soil had the lowest mean values
for AN and AP (16.86 mg/kg and 0.84 mg/kg, respectively). Exchangeable calcium was
highest in shrubland (6774.34 mg/kg) and lowest in woodland (3838.73 mg/kg), whereas
exchangeable magnesium was highest in agricultural land (93.53 mg/kg) and lowest in
bare rock land (40.38 mg/kg).

Table 4. Descriptive statistics of soil characteristics of different land use types in the study area.

Land
Use

Type

SOM
(g/kg)

pH
W

(%)
AN

(mg/kg)
AP

(mg/kg)
AK

(mg/kg) Ca2+ (mg/kg)
Mg2

(mg/kg)
A-Cu

(mg/kg)
A-Zn

(mg/kg)
A-Fe

(mg/kg)

AL 13.58 ±
6.20 7.57 ± 1.03 17.26 ± 11.25 90.92 ± 66.19 31.14 ±

27.32 196.58 ± 138.66 4760.17 ±
2064.34

93.53 ±
48.31 1.13± 0.88 1.22 ± 0.94 41.47 ± 71.63

WL 15.68 ±
6.23 6.86 ± 1.49 9.53 ± 4.13 65.53 ± 25.47 1.66 ± 1.48 100.14 ± 50.95 3838.73 ±

3169.05
66.51 ±

38.69 0.31 ± 0.21 0.82 ± 0.36 18.07 ± 32.40

SL 16.40 ±
3.72 8.31 ± 0.47 8.49 ± 3.22 33.28 ± 12.70 1.42 ± 0.80 105.28 ± 38.57 6774.34 ± 496.02 76.64 ±

33.15 0.19 ± 0.09 0.45 ± 0.25 1.88 ± 1.16

GL 14.82 ±
4.18 8.17 ± 0.54 8.59 ± 3.97 51.35 ± 11.45 15.50 ±

20.18 147.21 ± 76.21 6002.18 ±
1490.33

78.05 ±
31.13 0.67 ± 0.37 1.03 ± 0.33 7.38 ± 7.24

BRL 15.08 ±
7.68 7.37 ± 1.10 7.44 ± 3.16 42.05 ± 16.29 1.04 ± 0.35 58.33 ± 16.22 4750.24 ±

2525.74
40.38 ±

13.77 0.20 ± 0.13 0.43 ± 0.22 5.20 ± 4.78

REL 16.90 ±
2.64 8.60 ± 0.46 2.71 ± 1.95 16.86 ± 11.72 0.84 ± 0.51 104.48 ± 28.06 6589.87 ± 382.31 91.79 ±

61.73 0.07 ± 0.04 0.11 ± 0.06 0.79 ± 0.25

Note: Mean ± SD; AL: agricultural land, WL: woodland, SL: shrubland, GL: grassland, BRL: bare rock land, REL:
red bed erosion land.

The mean values of trace elements available copper (A-Cu), available zinc (A-Zn),
and available iron (A-Fe) were highest in agricultural land (1.13 mg/kg, 1.22 mg/kg, and
41.47 mg/kg, respectively) and lowest in red bed erosion land (0.07 mg/kg, 0.11 mg/kg,
and 0.79 mg/kg, respectively).

3.2. Correlation Analysis of Soil Quality Indices

The correlation analysis among soil indicators is depicted in Figure 2. There were
highly significant correlations (p < 0.01) observed among most of the soil evaluation indices.
Specifically, pH exhibited highly significant correlations with Ca2+, Mg2+, W (%), AN, A-Zn,
and A-Fe. Additionally, W (%) displayed highly significant positive correlations with AN,
AP, AK, A-Cu, A-Zn, and A-Fe, suggesting a close relationship between the fundamental
physicochemical properties of soil and nutrient content. Significant positive correlations
were also found between AN, AP, AK, Ca2+, Mg2+, and trace elements in soil nutrient
indices. Furthermore, highly significant positive correlations were observed between AN,
AP, and AK, as well as between SOM, Ca2+, and Mg2+, indicating mutual influence among
soil nutrient indices and trace elements. Notably, highly significant positive correlations
were observed between the soil trace elements A-Cu, A-Zn, and A-Fe, suggesting close
interaction among these trace elements.
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Figure 2. Pearson correlation coefficient matrix of indicators for soil quality evaluation in red bed
soil.

3.3. Establishment of MDS Based on Principal Component Analysis

The soil indicators from various land use types underwent principal component analysis,
and the findings are presented in Table 5. The eigenvalues of the three components of the soil
quality evaluation indices exceeded 1, with PC1 explaining 36.887% of the variance, PC2 ex-
plaining 22.896%, and PC3 explaining 11.532%. Together, these three components contributed
cumulatively to 71.315% of the variance, meeting the criteria for information extraction.

In PC1, soil water content, alkaline dissolved nitrogen, available phosphorus, avail-
able potassium, available copper, available zinc, and available iron exhibited loading
factors ≥0.50, with available copper demonstrating the highest Norm value (1.819), and
available phosphorus being within 10 percent of its Norm value. PC2 encompassed pH,
exchangeable calcium, and exchangeable magnesium, with exchangeable calcium display-
ing the highest Norm value (1.515), and its Norm value being within 10% of pH. Although
the loading factor of organic matter in both PC2 and PC3 was ≥0.50, it exhibited a signifi-
cant positive correlation with pH, exchangeable calcium, and exchangeable magnesium.
Therefore, in adherence to the principle of “if the loading of an index on different principal
components is ≥0.50, then it will be classified into a group with lower correlation with
other indexes”, organic matter was separately categorized into PC3.

Therefore, the final selection for inclusion in the MDS comprised available phosphorus
and available copper in PC1, pH and exchangeable calcium in PC2, and organic matter
exclusively in PC3, totaling five indicators. The weights of these indicators in the MDS
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were calculated as follows: organic matter, 0.125; pH, 0.207; available phosphorus, 0.221;
exchangeable calcium, 0.224; and available copper, 0.223, in that order (Table 6).

Table 5. Load matrix and Norm value of each indicator for soils in red bed desertification area.

Evaluation Index Grouping
PCA (Principal Component)

PC1 PC2 PC3 Norm

W (%) 1 0.660 −0.073 0.424 1.417
AN (mg/kg) 1 0.598 −0.119 0.346 1.280
AP (mg/kg) 1 0.854 0.194 −0.206 1.763
AK (mg/kg) 1 0.572 0.496 −0.438 1.480

A-Cu (mg/kg) 1 0.897 0.072 0.156 1.819
A-Zn (mg/kg) 1 0.769 0.032 −0.310 1.589
A-Fe (mg/kg) 1 0.691 −0.251 0.393 1.514

pH 2 −0.257 0.835 0.124 1.430
Ca2+ (mg/kg) 2 −0.314 0.855 0.208 1.515
Mg2+ (mg/kg) 2 0.411 0.602 −0.307 1.311

SOM (g/kg) 3 −0.017 0.597 0.553 1.134

Eigenvalue 4.058 2.519 1.269 /
Percentage of explained variance/% 36.887 22.896 11.532 /

Cumulative explanation percentage/% 36.887 59.783 71.315 /

Table 6. Load matrix and Norm value of each indicator for soils in red bed desertification area.

Indicators
TDS MDS

Communality Weight Communality Weight

SOM (g/kg) 0.662 0.084 0.493 0.125
pH 0.779 0.099 0.819 0.207

W (%) 0.621 0.079
AN (mg/kg) 0.491 0.063
AP (mg/kg) 0.809 0.103 0.873 0.221
AK (mg/kg) 0.765 0.098

Ca2+ (mg/kg) 0.873 0.111 0.886 0.224
Mg2+ (mg/kg) 0.626 0.080
A-Cu (mg/kg) 0.833 0.106 0.883 0.223
A-Zn (mg/kg) 0.689 0.088 0.493 0.125
A-Fe (mg/kg) 0.695 0.089

3.4. Soil Quality Index Based on TDS and MDS

The soil quality index (SQI) was computed using the affiliation function in Table 1
based on the total data set (TDS) and the minimum data set (MDS), by the relationship
between soil characteristics and soil functions (Figure 3). The results show that soil quality
varies significantly under different land use patterns. Additionally, the trends of soil
quality changes in TDS-SQI and MDS-SQI across different land use patterns are consistent.
The TDS-SQI ranged from 0.1057 to 0.6322, with a mean value of 0.3083 ± 0.0903 and a
coefficient of variation of 29.3%, indicating a moderate variation. Meanwhile, the MDS-
SQI, based on the minimum data set, varied from 0.0253 to 0.6998, with a mean value of
0.3696 ± 0.1349 and a coefficient of variation of 36.49%, also indicating a moderate variation.
Under different land use modes, the mean values of SQI were as follows: agricultural land
(0.380) > grassland (0.342) > shrubland (0.310) > woodland (0.274) > bare rock land (0.263)
> red bed erosion land (0.242).
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Figure 3. SQI of different land use types in red bed areas based on TDS and MDS (the whiskers at
both ends represent the maximum and minimum values of a set of data, the solid dot in the middle
of the line segment represents the average, and the upper and lower boundaries of the box represent
the upper and lower quartiles of a set of data, respectively).

In the study area, 1.72%, 71.13%, and 27.15% of the sampling sites were classified into
soil quality index Classes I, II, and III, respectively (Figure 4). Among the soils classified
as Class III with severe limitations on vegetation growth, forest soils accounted for the
highest percentage, followed by red bed erosion land. Concerning different land use types,
15%, 18.75%, and 12.5% of the sampling sites in agricultural, shrub, and grassland plots,
respectively, exhibited Class III soil quality. Meanwhile, 28.75% and 38.95% of the sampling
sites in bare rock land and red bed erosion land were classified as Class III, and 44.87% of
the sampling sites in woodland had low-quality soil. These findings suggest that most soil
quality in the study area is moderate, with soil quality being deficient in red bed erosion
land, bare rock land, and woodland, often hindering vegetation growth. Agricultural soil
quality is relatively higher in comparison.

 

Figure 4. Soil quality status of different land use types in red bed areas based on MDS ((a) represents
the proportion of all sample sites in grade I, II, and III soil quality; (b) represents the proportion of
grade I, II, and III soil quality in each of the six different land use types).

Figure 5 shows the proportionate contributions of each indicator to the various land
use types of soil. The total contribution of pH and Ca2+ to soil quality under different
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land use patterns was the highest, 39.58% and 41.05%, respectively. In addition, the total
contribution of SOM was 10.02%, which fluctuated above and below 10% in different land
use types. The percentage contribution of A-Cu under different land use patterns was
agricultural land (14.32%) > grassland (8.80%) > woodland (5.82%) > bare rock land (3.03%)
> shrubland (2.54%) > red bed erosion land (0.83%). There were significant differences
in the contribution of AP under different land use patterns, with 12.01% and 6.23% in
agricultural land and grassland, respectively, and less than 1% in the rest of the land use
patterns, which were, in descending order, woodland (0.96%) > shrubland (0.61%) > bare
rock land (0.51%) > red bed erosion land (0.40%).

Figure 5. Percentage of the contribution of MDS index to soil SQI of different land use types.

3.5. Validate the Applicability of MDS

The computed total data set soil quality index (TDS-SQI) and minimal data set soil
quality index (MDS-SQI) were examined using linear regression and a scatter plot in order
to verify the applicability of MDS. As depicted in the fitting effect (Figure 6), a significant
positive correlation was observed between the TDS-SQI and the MDS-SQI, with an R2

of 0.797, indicating a relatively strong fitting effect. These results indicate that MDS can
effectively replace TDS in calculating the soil quality index to assess the soil quality in the
study area.

Figure 6. Relationship between MDS-SQI and TDS-SQI in the red bed desertification region.
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4. Discussion

4.1. The MDS for Soil Quality Assessment in Humid Red Bed Basins

Numerous researchers have examined the effects of indicators including bulk density,
soil structure, percentages of clay and sand, and conductivity on soil quality in order to
evaluate the effects of soil physical and chemical features on nutrient cycling and uptake.
However, only a few of these indicators are usually chosen for the minimal data set (MDS)
for soil quality evaluation because of the relationships between these parameters [46,47].
In this study, the soil quality of different land use types in the red bed desertification area
of the humid region was assessed using PCA and MDS methods. The results showed that
a minimum data set consisting of SOM, pH, AP, Ca2+, and A-Cu was the most suitable for
evaluating soil quality in the region. SOM, pH, and AP were highly consistent with the
MDS identified in many other soil quality assessment studies [48,49].

Soil pH is one of the most important factors in determining the quality of soil
since it directly affects the chemical reactions and nutrient availability of the soil [50].
Huang et al. (2010) [11] concluded that pH is highly sensitive to land use changes, and
it has been widely used as an essential indicator for assessing soil quality, particularly
in forest ecosystems [48,51]. From the specific contribution of pH to the SQI of different
land types in the study area (Figure 5), it was observed that the contribution of pH varied
significantly in different land use types of soils, with the highest contribution of 43.53%
in arborvitae woodlands. pH is one of the important indicators in the minimal data set
created based on principal component analysis.

Moharana et al. (2019) [52] considered Ca2+ and Mg2+ as the main cations present
in semi-arid soils. Pessoa et al. (2022)’s [53] study concluded that soil exchangeable
and soluble ions were at low levels in native vegetation areas, while they were high in
cultivated areas and areas of desertification. This suggests that anthropogenic factors may
be the main influence on land salinity degradation. The conclusions of this paper are in
agreement with these findings. From the characteristics of different land use types, the red
bed erosion land with the most severe desertification has very low soil water content, but
the highest exchangeable calcium and magnesium contents among all land use types. The
exchangeable salty ion content in agricultural land that has been artificially fertilized is the
second highest, while the exchangeable salty ion content of arboreal forest land soil, which
is less affected by anthropogenic influences, is relatively the lowest.

In addition, the contents of Ca, Mg, Na, and K reflect the dissolution of easily weath-
ered primary minerals [54]. The weak weathering resistance and strong erosion by flowing
water of the red bed soft rock in the study area may be the reason for the higher con-
tent of exchangeable salty ions in the red bed eroded land compared to other land types.
This indicates the significant role of mineral composition in regional soil fertility and
productivity [55,56]. Therefore, it is essential to consider relevant indicators such as cation
exchange capacity and exchangeable salinity ions when establishing a minimum data set
for soil quality assessment in areas of desertification.

Available trace elements present in soil can be absorbed and utilized by plants, playing
an irreplaceable role similar to macronutrients in plant growth and development [57].
However, many previous studies on soil quality have not considered the impact of these
available micronutrients [58,59]. Liu et al. (1982) [60] emphasized that micronutrient
content is crucial in soil quality assessment, especially when deficiencies limit crop growth.
Tian et al. (2020) [61] also highlighted this point in their research. Therefore, in this study,
available micronutrients were included in the soil quality assessment. Available copper,
in particular, was incorporated into the minimum data set as a representative of these
micronutrients, addressing the gap left by previous soil quality assessment studies.

Soil organic matter (SOM) and available phosphorus (AP) have been the most fre-
quently included indicators in the minimum data set (MDS) for assessing soil quality in
numerous prior studies. SOM is a primary source of plant mineral nutrients and influences
the functional activity of soil biota by affecting the rate of soil nutrient cycling. Available
phosphorus (AP) is the best indicator of phosphorus availability in soils and is frequently
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used in soil diagnosis and fertility assessment. The contribution of AP to the soil quality
index (SQI) of soils under different land use types varies widely. As previously mentioned,
it is relatively higher in land classes with higher SQI, such as cropland and grassland, and
contributes less than 1% to other land classes. This variation may further indicate that
anthropogenic factors, such as fertilizer application, significantly influence soil quality.

Overall, Ca2+ had the greatest contribution to the SQI (41.05%), followed by pH
(39.58%), SOM (10.02%), A-Cu (5.89%), and AP (3.45%). Our results confirm previous
studies indicating that the MDS for the scientific assessment of soil quality should include
indicators that (i) characterize nutrient retention (organic matter, exchangeable calcium);
(ii) characterize available nutrients (available phosphorus, available copper); and
(iii) correlate with alkali saturation (pH) [62].

4.2. Soil Quality Characteristics and Influencing Factors of Different Land Use Types in the Red
Bed Region

Soil water vapor movement and physicochemical qualities, including pH and soil
nutrients, are greatly impacted by varying land use patterns. These factors ultimately
determine the quality of the soil [63,64]. These effects can be attributed to a variety of
factors, including vegetation type, vegetation cover, and human activities [65]. Both the
total data set (TDS) and the minimum data set (MDS) for the soil quality index (SQI) of
the various land use types in this study showed the same trend, suggesting that MDS
can effectively replace TDS for evaluating soil quality under various land use practices in
typical red bed desertification areas.

The soil of the red bed erosion area is weakly alkaline, with the lowest average values
of W%, AN, AP, A-Cu, A-Zn, and A-Fe among all land types. This aligns with its character-
istics of extreme water shortage, low soil nutrient content, and severe desertification [66,67].
However, its SOM is unexpectedly high, likely due to government-led ecological restoration
efforts such as regular irrigation and the application of organic fertilizers. Despite the
increase in SOM, the red bed soil remains arid, and the levels of other nutrients have not
significantly increased. This suggests that while human activities have improved some
soil properties, it is challenging to achieve qualitative changes in a short period [68]. The
poor water retention capacity of the red bed soil makes it difficult to quickly improve soil
quality. The overall quality of the soil is influenced by the synergistic effects of its physical,
chemical, and biological properties. Therefore, preventing and controlling desertification in
the red beds is a long-term process that requires consideration from multiple perspectives.

The soil properties of the bare rock land are comparable to, albeit slightly better than,
those of the red bed erosion land. This is attributed to the presence of a shallow, thin soil
layer on the surface of the bare rock land, along with sporadic vegetation growth, which
exerts a modest soil-fixing influence. However, if desertification persists unchecked, the
gradual decline in vegetation cover may lead the bare rock land to degrade into red bed
erosion land within a few years, resulting in further soil quality deterioration.

In contrast to the red bed erosion land, agricultural soils exhibit the highest levels of
water content, alkaline dissolved nitrogen, available phosphorus, quick-acting potassium,
exchangeable magnesium, available copper, available zinc, and available iron among the
six land types. To ensure optimal crop yields, agricultural land soils undergo regular irriga-
tion and application of fertilizers conducive to crop growth, underscoring the significant
impact of anthropogenic land management practices on agricultural land quality. However,
the average organic matter content of agricultural land was slightly lower compared to
other sampling sites. This discrepancy can be attributed to the crop planting and growth
processes, which promote the decomposition, transformation, leaching, and migration of
organic matter, leading to its loss from the topsoil layer [69]. Additionally, frequent plowing
processes may lead to the degradation of the soil structure, exacerbate the depletion of
nutrients, and reduce the quality of the agricultural soil, which in turn affects crop yields.

In addition to agricultural soils, the soil quality of grassland and shrubland is better
than that of other land use types. This is because some of the grasslands we sampled were
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formed from the abandonment of agricultural land for many years and retain rich nutrient
elements even though they have not been artificially fertilized or irrigated. Additionally,
compared to other land use types, the vegetation growing in grassland and shrubland
usually has high adaptability and a fast growth rate. As a result, the soil in these areas
tends to have a well-developed root system and a thicker layer of apoptotic material. This
leads to a higher biomass input of organic matter, making the soil less susceptible to rapid
erosion in a short period of time, thus preventing the formation of red bed deserts [70,71].

In addition, an interesting phenomenon observed in this study is that, contrary to
many previous studies where forest land typically exhibits superior soil quality compared
to other land use types due to factors such as less anthropogenic disturbance and abundant
apomictic material, the soil quality of forest land in this study was among the lowest, only
better than that of bare rock land and red bed erosion land. The percentage of soils with
an SQI of III was also the highest for arboreal woodland. This could be attributed to the
fact that arboreal woodlands in the region are predominantly planted with horsetail pine
and artificial vegetation such as Taiwan acacia and new silver acacia, which are generally
characterized by drought and barrenness tolerance. Augusto et al. (2002) [72] demonstrated
that the decomposition of pine apomictic material produces high concentrations of Al3+

and H+ in the soil solution, which not only lowers the soil pH but also inhibits the uptake
of Ca2+ and Mg2+ [73], reduces root growth, alters photosynthetic activity, and leads to
nutrient imbalances in woodland species [51,74]. Additionally, the well-developed local
agriculture and significant anthropogenic disturbances, such as fuel wood collection and
turpentine extraction, contribute to the poor soil quality in forested areas of the region [27].

Regarding the contribution of indicators to soil quality within the minimum data
set (Figure 5), Ca2+ and pH jointly accounted for 80.63% of soil quality, highlighting the
pivotal role of parent rock mineral composition in determining soil quality within the
red bed desertification area. Additionally, pH exerts further control over soil quality
by influencing soil chemical reactions and nutrient effectiveness. Furthermore, anthro-
pogenic land management and utilization practices, exemplified by fertilizer application
patterns and vegetation types represented by AP, A-Cu, and SOM, also significantly impact
soil quality.

As illustrated in Figure 6, apart from grassland, there is a consistent decrease in soil
water content across each land category, namely agricultural land, woodland, shrubland,
bare rock land, and red bed erosion land. This decline corresponds to a gradual decrease in
soil fertility and a subsequent decline in the soil quality index, suggesting a progressive
reversal of vegetation succession within the red bed desertification area under study.
Consequently, if timely preventive and control measures are not taken, soil erosion and
land desertification in the area may be further aggravated.

4.3. Soil Quality Improvement Recommendations for Red Bed Desertification Areas

China has made remarkable efforts and achieved considerable success in combating
desertification in arid regions [75]. However, the mechanisms and distribution patterns
of desertification in arid areas differ from those in the hot and humid southern red bed
areas [1]. Therefore, in the future, local red bed desertification control should focus on
improving the soil quality of forested land in the basin. Simultaneously, regulating the
soil quality of arable land through rational farming practices and appropriate fertilizer
application is essential to prevent the degradation process, which could lead to a decline or
even loss of arable land productivity due to over-construction and excessive management
aimed at increasing crop yields [76]. For bare rock and red bed eroded land with a high
degree of desertification, efforts should be made to increase vegetation cover. This should
be done in conjunction with national policies on land transformation and utilization to
prevent the further aggravation of red bed desertification, which in turn affects the security
of the regional ecological environment.

Although this study has made some progress in assessing soil quality in red bed
desertification areas, there are still some limitations. For example, in the analysis process,
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we primarily focus on chemical indicators and neglect important physical and biological
indicators, which limits a comprehensive understanding of the multidimensional charac-
teristics of soil quality in red bed desertification areas. Therefore, future research should
consider a wider range of ecosystem indicators in the red bed region, including soil physical
indicators (such as porosity and particle distribution), biological indicators (such as soil
microbial diversity and activity), climate, topographic factors, and anthropogenic influ-
ences. By integrating these diverse indicators, we can conduct a more comprehensive
soil quality analysis and deeply explore the dynamic mechanisms of the ecosystem in
the red bed desertification area. Ultimately, we hope that through our current and future
work, more scholars will focus on the ecological and environmental issues in the red bed
desertification area, promoting the development of a more scientific and reliable soil quality
assessment system. This, in turn, will provide strong support for soil management and
land use decision-making in the red bed desertification area.

5. Conclusions

To evaluate the comprehensive quality of soils under six land use modes in the humid
red bed desertification region of South China, this study selected 11 soil physicochemical
indicators, verified the correlation between these indicators, and established the minimum
data set (MDS) to calculate the soil quality index (SQI). The results showed that most of
the soils in the study area were of medium quality. The soil quality of red bed erosion
land and bare rock land, which had a high degree of desertification, was generally low,
followed by arboreal forest land, while the quality of agricultural soil was relatively the
highest. The significant difference in the contribution of the indicators in the MDS to soil
quality indicates that the mineral composition of the host rock is the most important factor
affecting soil quality in the red bed desertification area. Additionally, fertilizer application
patterns, vegetation types, and other anthropogenic land management practices are also
important factors affecting soil quality. The characteristics of the soil quality and the factors
that influence various land use patterns in the humid red bed desertification region are
revealed in this study, which is very important for the scientific assessment, application,
and enhancement of soil quality in desertification regions.
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Abstract: Preserving soil is crucial for addressing the key challenges of the new millen-
nium, like climate change and biodiversity loss. Spatial planning plays a pivotal role
in stopping soil consumption and degradation, thereby safeguarding soils that provide
valuable ecosystem services. With the advent of the System of Environmental-Economic
Accounting by the UN, countries are developing a shared protocol for the biophysical and
monetary quantification of ecosystem services. However, downscaling efforts are necessary
and must be conditioned by the national context, policies, economic dynamics, and data
availability. Therefore, this research proposes a soil quality assessment methodology based
on its ecosystem value at the sub-regional level in northern Italy, building upon national
guidelines. This study includes modeling and mapping outputs involving six ecosystem
services through eight biophysical indicators and the monetary quantification of these
services. Both assessments have been conducted over two time periods to highlight the
impacts of land cover transformation.

Keywords: land planning; land cover changes; ecosystem quality; ecosystem accounting

1. Introduction

The Introduction provides an overview of the general background necessary to com-
prehend this study’s findings. It outlines the following points:

• The concept of ecosystem services (Section 1.1);
• The loss of natural capital (Section 1.2);
• Ecosystems and the monetization of ecosystem services for natural resources conser-

vation and management (Section 1.3);
• The payment of ecosystem services (Section 1.4);
• Downscaling global principles to local contexts (Section 1.5);
• Mapping ecosystem services: a literature review (Section 1.6).

1.1. Ecosystem Services: A Rapidly Growing Concept

The definition of “Ecosystem Services” is 160 years old and is first attributed to
Marsh. In his “Report on the Artificial Propagation of Fish”, Marsh criticized members
of a community for their “mistaken prejudices” against “birds, quadrupeds, and reptiles”
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because of the supposed damage these animals inflict upon crops. Instead, Marsh argued
that they “much more than compensate the little injury they inflict upon the crops” by
consuming “vast numbers of noxious insects” [1,2]. However, the topic of ecosystem
services (ESs) has remained dormant for a long time.

Global interest in ecosystem health and the services ecosystems provide to humans has
grown in both the public and private sectors, influencing research and policy [3] only after
the publication of the Millennium Ecosystem Assessment (MEA) by the United Nations in
2005. Since then, the most commonly accepted definition of ecosystem services refers to the
MEA and regards the benefits that people derive from ecosystems, namely “the support of
sustainable human well-being that ecosystems provide” [4,5]. The MEA was followed by
another initiative, The Economics of Ecosystems and Biodiversity (TEEB), which expanded
awareness of ecosystem services, particularly highlighting the importance of biodiversity
in decision-making at all levels [6,7].

Recognition of the priority function of ESs necessarily stems from an awareness of the
importance of protecting and restoring ecosystems themselves as assets that can provide
these services.

This priority is currently clearly embodied in many international and European strate-
gies and policies. The European Biodiversity Strategy for 2030, based on the Aichi Biodi-
versity Targets, recognizes the valuation of biological diversity, as well as its protection and
restoration, as a priority. The European Green Deal clearly outlines the European efforts to
enhance and restore ecosystems since they are a prior carbon stockholder.

The Common Agricultural Policy plays a crucial role in promoting sustainable agricul-
tural practices in Europe. Similarly, the UN Paris Agreement contributes to climate change
mitigation since oceans and forests are the main basins for carbon stock.

The UN Agenda 2030 is pivotal for sustainable development, with formal reference in
this context to Goals 14 (Life of Water) and 15 (Life on Earth), Goal 2 (Zero Hunger), Goal 6
(Clean Water and Sanitation), Goal 7 (Affordable and Clean Energy), Goal 11 (Sustainable
Cities and Communities), Goal 12 (Responsible Consumption and Production), and Goal 13
(Climate Action) in terms of sustainable ecosystem management. Additionally, it holistically
encompasses social and economic implications, which include Goal 1 (No Poverty), Goal 3
(Good Health and Well-Being), Goal 9 (Industry, Innovation, and Infrastructures), Goal 10
(Reduced Inequalities), and Goal 16 (Peace, Justice, and Strong Institutions).

More recently and incisively, the newly approved Nature Restoration Regulation seeks
to enhance biodiversity and ecosystem resilience across the EU, aiming to restore at least
20% of land and sea areas by 2030 and all degraded ecosystems by 2050, including binding
targets and an implementation framework for national restoration plans.

These documents are just a few examples showing the widespread acknowledgment
of the importance of ESs in maintaining livelihoods and the dependency of natural land
and agricultural systems on the soil. It is common, both here and in the literature, to refer
to many ecosystem services as soil ecosystem services [8].

Various frameworks have been developed to support ecosystem conservation and en-
hancement. Authors emphasize that a shared understanding of how ecosystems underpin
economic activity and human well-being is essential for effectively designing, implement-
ing, and monitoring ecosystem restoration policies, as well as for informed planning,
policymaking, and financial decisions [9]. Over the past decade, there has been growing
interest in creating an inventory and spatially mapping the current state of ecosystems, as
well as their potential to provide ESs. Recently, the System of Environmental-Economic
Accounting—Ecosystem Accounting (SEEA EA) was finalized by the United Nations
(UN) in 2021 as a framework designed to evaluate and monetize ecosystems and their

64



Land 2025, 14, 216

services [10]. Developed through collaborative, international efforts, it builds on earlier
versions from 2012, along with practical recommendations issued in 2017, which have
guided ecosystem service measurement and valuation efforts [10].

1.2. Natural Capital: How to Face the Loss

Alongside ESs, natural capital is defined as the world’s stock of natural assets, which
supplies a wide range of goods and services, including natural income over time, which
directly or indirectly creates value for people [11,12].

Costanza et al. [7] highlight the relationship between natural capital, human beings,
and ecosystem services, noting that the latter can reach humans only after the interaction
between natural capital and social capital.

Ecosystem services are mechanisms through which natural capital benefits humans,
connecting these benefits to the socio-economic system. Biodiversity, particularly at the
community level, plays a crucial role in supporting the productivity and stability of ecosys-
tems, ensuring the quality and quantity of natural capital [13–15]. Maintaining the stock
and diversity of natural capital is essential for sustaining the flow of ecosystem services,
which are vital for current and future human prosperity [6]. The debate over substitut-
ing natural capital for human capital distinguishes weak and strong sustainability. Weak
sustainability assumes that the two are interchangeable, focusing on maintaining total
capital stock. In contrast, strong sustainability emphasizes natural capital’s limited substi-
tutability, advocating for its preservation to avoid net loss [16,17]. Biodiversity offsetting
markets, with a “no net loss” strategy, aim to balance environmental damage by restoring
habitats. However, this approach risks viewing diverse natural capital as interchangeable,
potentially overlooking unique, irreplaceable ecological functions and neglecting critical,
non-substitutable aspects of ecosystems [16].

Conversely, due to the delicate and complex equilibrium at the basis of natural cap-
ital preservation and its relationships with human systems through ecosystem services,
assessing natural capital and its benefits should be highly site-specific. The development of
markets or compensation systems must begin with an awareness of the area’s challenges
and potentials [18], rather than relying on a complete computation of interchangeable
components. In this context, the spatial assessment and mapping of ecosystems and their
services—including their monetary value—are essential. This mapping should involve
homogeneous and interconnected territorial, environmental, and ecosystem realities, fa-
cilitating an integrated, informed, and context-specific management of natural resources.
This same spirit and scope have driven the present research (yet from the choice of the case
study at the wide-area scale) and should guide the use and interpretation of its results.

1.3. Ecosystems and ES Monetization for Enhancing Natural Resources Conservation
and Management

The economic dimensions of ecosystems were first explored in the early 1990s [19], as
concepts such as “natural capital” and “ecosystem services”, and along with their valua-
tion, gained prominence in response to global biodiversity loss and its associated social
and economic impacts [5,11,20,21]. This period also marked a growing need to establish
economic mechanisms that would promote conservation efforts, such as implementing
Payment for Ecosystem Services (PESs) schemes [22,23]. In 1997, global ecosystem services
were valued at USD 33 trillion per year, significantly exceeding THE global GDP [5]. By
2014, Costanza et al. adjusted this figure based on dollar revaluation to USD 145 trillion in
2007 but revised it to USD 124 trillion after accounting for land-use changes, indicating a
net loss of USD 20.2 trillion since 1997. Beyond land use, pressures such as pollution and
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urban sprawl also degrade ecosystems, with urban expansion negatively impacting water
quality, carbon sequestration, and ecosystem health [21–25]. Soil ecosystems are especially
affected, with 60–70% of European soils degraded due to unsustainable practices, costing
over USD 6 trillion annually in lost ecosystem services [26,27]

Ecosystem conservation is crucial for both environmental and economic sustainability.
In 2018, Credit Suisse reported USD 52 billion in global conservation spending, far short
of the USD 300–400 billion needed annually to safeguard natural capital like clean air,
water, and biodiversity [28,29]. Despite high costs, the benefits of conservation outweigh
the expenses, with a reported 100:1 benefit–cost ratio for global wildlife conservation [30].
Restoration, while valuable, often results in suboptimal outcomes compared to original
ecosystems. The sustainable management and protection of natural capital remain the most
cost-effective solutions to ensure long-term human well-being [7,31–33].

1.4. PES and Other Market Mechanisms

Many authors have discussed the reasons and utility for valuing ES, which can be
summarized as follows: improving an understanding and awareness of ecosystem services’
role in our society; completing national and global accounts, such as national income and
well-being accounts, or full-cost accounts; creating innovative institutional and market
instruments allowing for sustainable ecosystem management, e.g., through the Payment
of Ecosystem Services (PESs) or common asset trusts; and informing policy and decision-
making, as well as territorial and urban planning in land-use transformations [7,34,35].

Scholars highlight a gap between scientific research on ecosystem services (ESs) and its
practical impact on policy and urban planning. This gap may result from the traditional focus
of ES research, which must integrate both natural and social sciences in a site-specific man-
ner [36,37]. Salzman argues that passing environmental laws or policies alone is insufficient to
improve ES provision; policies must be transformed into actionable laws and applied through
individual decisions [38]. The key point is the need to integrate ESs into decision-making
and ecosystem management, such as introducing market-based instruments like PESs [39–41].
These instruments aim to obtain economic resources from ES beneficiaries to compensate
those responsible for managing the services (sellers or providers), ensuring the maintenance of
the site and the environmental quality of the ecosystem [42,43]. The basic concept of the PESs
scheme is as follows: if some ESs are defended by land owners as providers of market-based
benefits and goods and, thus, have direct private revenue, other services have a good public
characteristic but are not traded in the market [44–46]. Therefore, an effort is needed to find
instruments to compensate land owners and managers for the production and conservation
of these services [47–50]. PESs mechanisms are structured to offer monetary incentives to
communities or individuals in order to adopt interventions and behaviors that improve the
provision of Ess. These mechanisms are characterized by voluntary transactions between
service users and providers [18].

Another option proposed by some authors is conservation easements (CEs), defined
as legal contracts that result in restrictions on the use of private lands to preserve nature
in exchange for potential tax benefits [51,52]. The primary goal is to prevent the future
conversion of natural areas and low-intensity agricultural lands into more intense land
uses, such as industrial or urban zones. Additionally, CEs aim to maintain and improve the
provision of ESs, thereby benefiting the local and regional communities [53,54]. A notable
example of a program reflecting elements of conservation easements is the Australian
Biodiversity Conservation Strategy. Over the past few decades, it has aimed to double the
value of complementary markets for ecosystem services by 2015. It sought to achieve this
goal by increasing incentives for private sector participation through financial rewards for
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actions that protect or enhance biodiversity [55]. Similarly, in another part of the world,
Canadian provinces allow a 100% property tax reduction for maintaining and protecting
lands with features deemed essential for provincial natural heritage conservation [56].

Such solutions inevitably introduce complexities in balancing economic efficiency,
social acceptance, and environmental benefits [57]. Significant challenges remain, par-
ticularly regarding landowners’ willingness to participate, the management and moni-
toring of private conservation efforts, and the financial burdens faced by both govern-
ments and participants [58,59]. These financial and fiscal instruments, widely discussed
in the literature and implemented in various countries, should be tailored to each na-
tion’s specific context, taking into account its internal markets and fiscal structures. For
instance, in Italy, property tax exemptions for agricultural landowners already benefit di-
rect farmers (https://www.finanze.gov.it/it/fiscalita/fiscalita-regionale-e-locale/Imposta-
municipale-propria-IMU/disciplina-del-tributo/esenzioni/, last consultation: 31 October
2024). Thus, new incentives for adopting sustainable or conservation-oriented farming
practices should be implemented through alternative fiscal or regulatory tools, such as
economic incentives, rather than relying solely on property tax relief. This approach aligns
with Italy’s CAP Strategic Plan for 2023–2027, which has introduced 34 voluntary schemes
designed to compensate farmers for the additional costs and income losses incurred by
adopting more environmentally and climate-friendly practices. These practices include
reducing fertilizer and pesticide use, implementing biodiversity-preserving techniques,
and adopting soil conservation practices [60].

National targets for ecological conservation or restoration should ideally be translated
into actionable goals at lower levels of government or the local scale through negotiations
with ecosystem service (ES) “sellers”, such as landowners, to enhance effectiveness, as
suggested by Ding et al. [61]. For instance, in British Columbia, tax incentive programs
for land conservation are being explored at the local government level, where authorities
have been empowered to implement tax-based conservation initiatives [56]. To achieve
this goal and to appropriately tailor the initiative based on the territorial criticalities and
potentialities, it is evident that local authorities need to be provided with local assessment
and mapping outputs regarding the condition of ecosystem services across the territory.
This can help identify and value strategic or vulnerable areas, as well as the effect of
potential policies, transformative scenarios, or management regimes [62,63].

1.5. Downscaling Global Principles to Local Context

In response to the call for the rapid implementation of SEEA EA, the European Commis-
sion incorporated ecosystem accounts into its extension of Regulation 691/2011 on European
Environmental Accounts. This extension, expected to include data on national ecosystem
conditions and some biophysical ecosystem services, was approved by the European Council
and Parliament in 2023 [17]. After the approval, the European statistical community proactively
worked to address methodological gaps. In 2021, Eurostat formed a Task Force to support
the coordination of legal, methodological, and practical aspects critical to the rollout of SEEA
EA. Italy, for instance, is adapting SEEA EA in national projects through the National Institute
of Statistics (ISTAT) and the National Institute for Environmental Protection and Research
(ISPRA), focusing on quantifying and valuing ecosystem services for economic analysis [17].
This initiative reflects the broader international drive needed to integrate SEEA EA into policy
frameworks and recognize the importance of monetary accounting of nature. Although SEEA
EA was fully published in 2021, its preliminary version and decade-long development have
fostered significant progress in ecosystem service valuation and early monetization efforts [10].
These efforts, often highlighted in the scientific and technical literature, provide valuable prac-
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tices and insights that are essential to adapting global principles in local contexts during the
ongoing transition phase. Downscaling efforts of SEEA EA are necessarily conditioned by
the national context and policies that regulate land use and conservation strategies. These
policies are influenced by specific urban geographies and regional economic dynamics that
strongly impact nature degradation and must be assessed with tools that quantify the loss of
ecosystem services in the national context. An interesting example is the set of guidelines for the
biophysical and monetary assessment of ecosystem services [64], which were employed by the
Italian National System for Environmental Protection (SNPA) in 2018. These guidelines serve as
the primary methodological reference for this research, which focuses on a case study within
the Italian context.

Considering trends in land-use dynamics, particularly soil sealing, reversing the cur-
rent practice of consuming agricultural or natural land—rather than addressing degraded
areas—also requires a monetary valuation of soil ecosystem services.

Although the cost of such transformations is substantial, it remains unclear without
a coherent monetary valuation of ecosystem services (ESs), which must be grounded in
biophysical quantification.

Monetizing natural resources is a strategy to address nature’s “economic invisibility”,
which is a key factor that can lead to more sustainable use and the conservation of nature
through efficient resource allocation. Many ecosystem goods and services are not reflected
in market prices due to their free accessibility, leading to a lack of recognition of both
their benefits and the costs of their degradation [17]. A robust valuation framework at
the national and regional levels is essential to integrate environmental considerations into
economic decisions, promoting sustainable use and the conservation of ecosystems [17].

Furthermore, the effective management of environmental resources in planning and
decision-making requires understanding spatial dynamics to address modern challenges
across various sectors, from urban planning to natural resource protection. As Morya and
Punia [65] emphasize, “the physical assessment of ecosystem services is not sufficient to
mitigate the increasing pressure of urbanization on resources”.

Urban dynamics are complex and site-specific, just as the pressures on land are driven
by both economic and social factors that characterize the territory. The research focuses on
the emblematic case of Italy, where land consumption and ES protection remain largely
unresolved, partly due to the lack of a national regulatory framework on these issues.

1.6. Mapping ES Exercises: A Literature Review for the Italian Context

To better understand the current state of the art in research and the ongoing debate among
scholars, the topic of ES biophysical and monetary mapping has been examined through a
literature review focused specifically on Italy. This review targeted local contexts within Italy,
utilizing the Scopus and Web of Science databases. The results were systematically aggregated
and are presented in the following section. The research began by focusing on exercises related
to the biophysical mapping of ecosystem services in local case studies from Italy. In this context
and referring to the European Union’s Nomenclature of Territorial Units for Statistics (NUTS)
framework, which categorizes regions from the national (NUTS0) to local levels (Regulation (EC)
No. 1059/2003), the Provincial and Municipal levels (NUTS3 and LAU, respectively) correspond
to the sub-regional, local scale within Italy’s spatial planning framework.

During the literature review, scientific papers addressing soil ESs were examined,
initially focusing on those that performed spatial mapping of either biophysical or monetary
aspects. Subsequently, studies assessing the simultaneous mapping of both biophysical and
monetary aspects were considered. Finally, papers evaluating multiple ESs concurrently,
including scenario development, were selected as relevant to the research objectives.
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Marine and water ES mapping exercises were excluded as the present research focuses
on quantifying soil ESs. Similarly, papers at excessively broad or narrow scales (e.g., national
assessments or neighboring ones) were excluded, as they did not fit with the identified spatial
categories (NUTS3 and LAU). An overview of the results is presented in Table 1, which clearly
shows that only five papers were found with the same features of the current research: La Notte,
2012; Häyhä et al., 2015; Manes et al., 2016; Marino et al., 2021; Sebastiani et al., 2021 [66–70].

Table 1. The literature review results. Source: own elaboration by authors.

Search 1. Biophysical assessment and mapping exercises of ecosystem services in the Italian context
Search string: (biophysical AND ecosystem AND services) AND (mapping OR quantification OR evaluation OR valuation OR assessment OR accounting) AND
TITLE-ABS-KEY (mapping OR spatial) AND TITLE-ABS-KEY (Italy OR Italian).

Reference Assessment features Exclusion motivation

La Notte, 2012 [66] 1 scenario
1 ES

Schirpke et al., 2012 [71] No ES mapping

Petrosillo et al., 2013 [72] No ES mapping

Ferrari and Geneletti, 2014 [73] Biophysical OR monetary assessment

Rova et al., 2015 [74] Biophysical OR monetary assessment

Häyhä et al., 2015 [67] 1 scenario
>1 ES

Arcidiacono et al., 2016 [75] Only biophysical assessment

Franzese et al., 2017 [76] Water ecosystems

Picone et al., 2017 [77] Water ecosystems

Mancini et al., 2018 [78] National scale

Salata et al., 2019 [79] No ES mapping

Sacchelli and Bernetti, 2019 [80] No ES mapping

Salizzoni et al., 2020 [81] No ES mapping

Capriolo et al., 2020 [82] National scale

Buonocore et al., 2020 [83] Water ecosystems

Buonocore et al., 2020 [84] Water ecosystems

Pacetti et al., 2020 [85] Water ecosystems

Masiero et al., 2022 [86] Too-small scale (neighbourhood scale)

Marino et al., 2021 [69] 1 scenario
>1 ES

Di Pirro et al., 2021 [87] No ES mapping

Zulian et al., 2022 [88] National scale

Boschetto et al., 2023 [89] National scale

Marino et al., 2023 [90] Too-wide scale (national scale)

Catucci et al., 2023 [91] Water ecosystems

Pignatti et al., 2024 [92] No ES mapping

Search 2. Monetary assessment and mapping exercises of ecosystem services in the Italian context
Search string: (monetary AND ecosystem AND services) AND (mapping OR quantification OR evaluation OR valuation OR assessment OR accounting) AND
TITLE-ABS-KEY (mapping OR spatial) AND TITLE-ABS-KEY (Italy OR Italian)

Reference Assessment features Exclusion motivation

La Notte, 2012 [66] 1 scenario
1 ES

Häyhä et al., 2015 [67] 1 scenario
>1 ES

Pelerosso et al., 2016 [93] No ES mapping

Manes et al., 2016 [68] 1 scenario
1 ES

Schirpke et al., 2017 [94] No ES mapping

Franzese et al., 2017 [76] Water ecosystems

Picone et al., 2017 [77] Water ecosystems

Appolloni et al., 2018 [95] Water ecosystems

Buonocore et al., 2020 [83] Water ecosystems
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Table 1. Cont.

Capriolo et al., 2020 [82] Too-wide scale (national scale)

Sebastiani et al., 2021 [70] 1 scenario
>1 ES

Lai et al., 2021 [96] Only biophysical assessment

Marino et al., 2021 [69] 1 scenario
>1 ES

Boschetto et al., 2023 [89] Too-wide scale (national scale)

Search 3. Biophysical and monetary assessment and mapping exercises of ecosystem services in the Italian context
Search string: (monetary AND ecosystem AND services) AND (mapping OR quantification OR evaluation OR valuation OR assessment OR accounting) AND
TITLE-ABS-KEY (mapping OR spatial) AND TITLR-ABS-KEY (biophysical) AND TITLE-ABS-KEY (Italy OR Italian) or (biophysical AND ecosystem AND services)
AND (mapping OR quantification OR evaluation OR valuation OR assessment OR accounting) AND TITLE-ABS-KEY (mapping OR spatial) AND TITLR-ABS-KEY
(monetary) AND TITLE-ABS-KEY (Italy OR Italian)

Reference Assessment features Exclusion motivation

La Notte, 2012 [66] 1 scenario
1 ES

Häyhä et al., 2015 [67] 1 scenario
>1 ES

Franzese et al., 2017 [76] Water ecosystems

Picone et al., 2017 [77] Water ecosystems

Buonocore et al., 2020 [83] Water ecosystems

Capriolo et al., 2020 [82] Too-wide scale (national scale)

Marino et al., 2021 [69] 1 scenario
>1 ES

Boschetto et al., 2023 [89] Too-wide scale (national scale)

Interestingly, none of these papers involved a multi-scenario and multi-service map-
ping exercise focused on a sub-regional territory. The term “sub-regional”, as mentioned,
refers to a geographical area smaller than a region (NUTS2). It strikes a balance between
being large enough to address environmental and ecological issues comprehensively yet fo-
cused enough to avoid a perspective fragmented by local administrative borders. This scale
is crucial for supporting integrated and comprehensive planning and offering a wide-area
vision while enabling effective planning tools. These tools can involve strategic synergies
between municipalities sharing common criticalities or territorial potentialities to enhance
and preserve ecosystems. Additionally, a multi-scenario approach is vital to understanding
the ecosystemic effects of territorial evolution, particularly the changes in land use. Finally,
soil’s role in providing diverse ecosystem services highlights the trade-offs in land-use
decisions, making a multi-service and holistic perspective essential. Therefore, the aim of
this paper is to fill the gap in the literature by proposing a multi-scenario, multi-service
mapping approach that integrates both biophysical and economic dimensions, with the
goal of enhancing sustainable soil management policies at the sub-regional level.

Section 2 provides an overview of the methodology employed for the assessment and
mapping of a selection of ecosystem services in the case study of the Province of Brescia.
The details of the case study, along with the mapping outputs (Figures) and Tables, are
presented in Section 3. In Section 4, a critical evaluation of the results is presented. This is
accompanied by their contextualization, drawing on dynamic information regarding the
variations in ecosystem services over the specified time frame. Finally, Section 5 outlines
the limitations and strengths of the analysis, as well as potential directions for further
developments and applications of the research.
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2. Materials and Methods

2.1. Ecosystem Services

The ecosystem services chosen for analysis in the Province of Brescia are listed in
Table 2, with reference to the MEA classes and denominations [4].

Table 2. ES denomination and classification. Source: own denomination and MEA’s categories (2005).

ES Common Denomination MEA ES Class and Denomination

Carbon storage and sequestration (CSS) Regulating. Climate regulation

Habitat quality (HQ) Supporting. Provisioning habitats

Crop pollination (CP) Regulating. Pollination

Wood provision (WP) Provisioning. Food and fibre

Particulate removal (PR) Regulating. Air quality maintenance

Hydrological regime regulation (HRR) Regulating. Water regulation

These services can be included in the already cited category of soil ES (hereinafter
simply referred to as ES), which should be assessed on the basis of soil properties like
carbon content, nutrient cycling, and moisture retention. However, as is common in the
literature, this analysis uses Land Use and Land Cover (LULC) as a proxy [8].

It is necessary to specify, in advance, that certain ecosystem services are more relevant to
specific contexts: some are better suited to urban environments, such as microclimate regulation,
while others are more applicable to rural or non-urban settings, like timber production. In
particular, urban development relies heavily on surrounding rural areas for essential resources
such as food, water, and raw materials [97]. However, given their higher population and
activity density, the demand for ecosystem services is stronger in urban contexts for regulation
services, whose supply is spatially constrained to the location where the demand exists (consider,
for example, the service of hydrogeological regulation). Effective policies should focus on
maintaining these linkages and protecting rural ecosystems to ensure equitable development
for both areas [97]. As an initial analytical experiment, this research primarily focuses on the
non-urban context. Notably, due to this focus, some ecosystem services have been excluded
from this analysis. Microclimate regulation, which relates to the mitigation of the “urban heat
island” effect caused by the accumulation of heat on artificial surfaces, was not examined as
it primarily pertains to urban contexts, whereas this thesis focuses on rural areas. Similarly,
water purification processes, particularly relevant near urban settlements where water quality
is critical, were excluded as follows: this service, which involves the filtration of water as
it infiltrates the soil, is more appropriately studied at broader geographical scales, such as
watershed areas, rather than within the administrative boundaries of a province.

In any case, the justification for selecting these ecosystem services for the present
analysis is closely tied to the territorial characteristics of the case study, as will be made
explicit in Section 3: there, specific ecosystem services are presented in relation to their
relevance within the context of the Province of Brescia.

For all ecosystem services, the analysis was conducted both in biophysical and mone-
tary terms and in two distinct temporal scenarios—except for the pollination service, which
was evaluated solely in monetary terms under a single scenario for reasons that will be
discussed below. Biophysical quantification provides a tangible measure of ecosystem ser-
vices in physical units, while economic quantification converts these benefits into monetary
values, providing an estimate of the economic contribution of these services to society. As
outlined in the SEEA EA guidelines [10], monetary estimates of ecosystem services are
typically derived by assigning prices to individual ecosystem services and multiplying these
prices by the physical quantities recorded in the ecosystem services flow account. In this
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analysis, however, habitat quality and pollination services follow a different methodology.
The decision to use a dual scenario enhances the static and spatial analysis of ESs and
trade-offs at specific moments, as well as their changes and evolution in response to land
transformations. As will be clarified further below, due to modeling, parameter, and data
restrictions, it was not possible to analyze ESs under identical temporal scenarios. Some
scenarios refer to 2006–2012 (CSS, WP), while others refer to 2012–2018 (HQ, CP, PR, HRR).

2.2. Biophysical Assessment of Ecosystem Services

The methodology applied for the biophysical assessment of the chosen ES is hybrid,
focusing on manageable models and tools that are not overly sector-specific. The applica-
tion of such models and tools requires a multidisciplinary approach involving experts from
various fields. The analysis was partially conducted in alignment with the Italian SNPA
guidelines for the ecosystem services assessment, titled “Mapping and Impact Assessment
of Land Consumption on Ecosystem Services: Methodological Proposals for the Land Con-
sumption Report” [64]. This was performed using Q-GIS 3.34.5 software and the InVEST
model. For the biophysical assessment of the remaining three services, the methodology
from the LIFE+ “Making Good Natura” EU project was used [98] (Figure 1).

2.2.1. The InVEST Model

InVEST is a suite of free, open-source software models developed by Stanford Uni-
versity as part of the Natural Capital Project (https://naturalcapitalproject.stanford.edu/
software/InVEST, last consultation: 26 October 2024), specifically designed for territorial
and town planning evaluation and the comparison of the impacts of land-use alterna-
tives. It is also used by various regional authorities in Italy, such as the Lombardy Re-
gion [99,100]. It is particularly useful for assessing soil ecosystem services from a spatial plan-
ning perspective. It analyzes ESs through various sub-models, providing biophysical results
(e.g., carbon sequestration in tons) and monetary values (e.g., net present value of carbon). In
this research, InVEST was used for biophysical aspects, while monetary quantification was
evaluated separately. The model requires specific calibration and high-quality data to function
effectively [100], and the availability of detailed, open-source data is a major challenge at the
planning level. Due to lower-resolution data, InVEST is better suited for regional planning, with
sub-regional applications (such as the ones conducted here) needing additional calibration effort.

In this case, the input data and parameters required depend on the ecosystem service
being analyzed and, therefore, on the InVEST sub-model used. Typically, a Land Use
and Land Cover (LULC) map and calibration parameter tables are necessary. For the ESs
analyzed in this paper, LULC maps were selected from the Corine Land Cover (CLC)
database as referred to for the years 2006, 2012, and 2018, and from which only land cover
(LC) information was used for the services analyzed. Parameters were set according to
exercises in the literature, as close as possible to the spatial and morphological context of
the case study. The ecosystem services selected for analysis in the Province of Brescia using
InVEST software include (Figure 1) the following:

• Carbon sequestration and storage (CSS);
• Habitat quality (HQ);
• Crop pollination (CP).

2.2.2. LIFE+ “Making Good Natura” EU Project—LIFE11 ENV/IT/000168
(“Project MGN”)

For the biophysical quantification of ecosystem services that were not analyzed using
InVEST, the ES-specific methodology from the “Making Public Goods Provision the Core
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Business of Natura 2000” (LIFE+ MGN) project was utilized [98]. Launched in 2013 and
supported by the European Commission under the LIFE+ program, the LIFE+ MGN
primarily aims to enhance the governance of agro-forestry sites within this network by
identifying key ecosystem services (ESs), conducting the biophysical quantification and
economic valuation of various ES, developing and implementing PES frameworks, and
evaluating site management effectiveness [101].

The project proposes a simplified (parametric) methodology for analyzing spe-
cific ecosystem services—in this research, used only for biophysical assessment—across
21 Natura 2000 sites. Although the findings pertain solely to the analyzed sites, the method-
ology (detailed in [98]) can be replicated in other contexts.

The ecosystem services examined using the LIFE+ MGN methodology include
(Figure 1) the following:

• Wood provision (WP);
• Particulate removal (PR);
• Hydrological regime regulation (HRR).

2.3. Monetary Assessment of Ecosystem Services

The cited SNPA guidelines [64] also include an approach for the monetary assessment of
ESs. The methodology proposed differs from service to service and relies on different parameters
in the literature, sometimes with a very high range of values. The monetary assessment of
ecosystem services in this analysis is aligned with it, as reported synthetically in Figure 1.

Figure 1. Sources and methodology followed for the biophysical and monetary assessment of six
ecosystem services. The assessment path chosen is highlighted in green, while discarded approaches
are shown in red. Source: elaborations by the authors following [64,98,102].

As explained in the following sections, this research, chosen chose to refine the method,
narrowing the range on the basis of statistical evaluations and re-evaluating the coeffi-
cients by applying the monetary revaluation coefficient for the year 2024 using ISTAT
(https://rivaluta.istat.it/, last consultation: 28 October 2024). Additionally, where deemed
necessary, the proposed parameter references were also updated.

Please note that all results reported in the tables, both in Section 3 and in Appendix A,
have been rounded to the nearest whole unit.
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3. Results

3.1. Study Area

The case study of this biophysical and monetary assessment exercise is the Province of
Brescia (NUTS3), located in Lombardy, Northern Italy (Figure 2). The Province of Brescia
provides an ideal case study as it encompasses diverse territorial systems, from plains to lakes
and mountains. The northern part features three main valleys—Valle Camonica, Valle Trompia,
and Valle Sabbia—which have a distinct morphology compared to the southern plains. The
province is also characterized by three main lakes—Lake Garda, Lake Iseo, and Lake Idro—
further adding to its geographical complexity. Addressing this complexity requires an integrated
planning and management approach, particularly when defining the relationships and priorities
between different systems. These features support a wide range of ESs, making this territory
an ideal case study for a comprehensive and integrated ES assessment. Agriculture is a key
economic activity in the area, with notable products such as olives from Lake Garda and wines
from renowned regions such as Franciacorta and Lugana. The area holds a variety of tourism-
related services, ranging from lakes, mountains, and valleys to agricultural productivity, all while
retaining cultural and historical significance in Brescia’s landscape. Finally, northern forests play
a vital role in carbon sequestration and timber production while serving as essential biodiversity
hotspots. The areas near major rivers and wetlands hold significant ecological importance but
are increasingly vulnerable to hydrogeological and natural risks, like those in mountainous
zones. Environmental and socioeconomic pressures in Brescia mirror challenges in other regions
of Italy. For example, the Province of Brescia is marked by intense industrial activity and heavy
traffic, experiencing high levels of PM10, ozone, and GHG emissions, exacerbated by the Po
Valley’s stagnant air conditions and the Alpine range acting as a barrier [103,104]. Urbanization
has significantly increased land consumption, particularly in the plains, emphasizing the urgent
need for strategic analysis to safeguard critical ecosystems and natural resources. These aspects
also specifically justify the selection of the ecosystem services analyzed in this study. Given
these characteristics, using Brescia as a case study is both significant and comprehensive, as
it provides valuable insights for developing planning frameworks applicable to other regions
facing similar territorial complexities and diverse environmental, economic, and social dynamics.
It can be stated that the varied features of Brescia Province reflect the heterogeneity of the Italian
landscape, making it a microcosm for broader national challenges and enhancing the application
of the method to other contexts.

 

Figure 2. Administrative framework and spatial collocation of the case study (Brescia Province,
NUT3). Source: own elaboration by authors already in [105].
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3.2. ES Assessment
3.2.1. Carbon Storage and Sequestration

The forestry sector holds one of the highest potentials for cost-effective CO2 reduc-
tion compared to other mitigation activities by absorbing carbon dioxide from the atmo-
sphere and storing it in woody biomass (both aboveground and belowground), litter, and
soil [106,107]. The factors influencing the amount of carbon stored and the future uptake
potential across different compartments vary, with climate and soil consumption being
predominant, particularly in areas with forest cover or high natural integrity [108,109]

In the case of the Province of Brescia, approximately one-third of the area is covered
by forests, mainly concentrated in the northern valleys of Valle Camonica, Valle Trompia,
and Valle Sabbia, making this ecosystem service especially relevant for the region.

Biophysical Assessment

Carbon storage and sequestration biophysical analysis were performed using the InVEST
software, as proposed in [64], specifically the “Carbon storage and sequestration” sub-model.
InVEST estimates the carbon content of various land-use categories based on storage parameters
(tC/ha) for the four primary carbon pools recognized by the Intergovernmental Panel on
Climate Change [110]: aboveground biomass, belowground biomass, soil, and dead organic
matter. For the carbon storage assessment, the software requires input to an LC map for each
scenario analyzed and carbon storage parameters for each LC category. Carbon sequestration is
then calculated from the differences in LC among reference years, namely from differences in
carbon storage. Carbon stored in permanent crops and tree plantations was not considered.

For this analysis, the Corine Land Cover (CLC) 2012 dataset was used, rasterized at
a 10-meter resolution using QGIS software; the 2018 mapping was avoided due to the
absence of a V-level classification for forestry land uses, which was considered necessary
in this case for a precise ES assessment. Carbon storage parameters (tC/ha) for forest
types have been obtained from the National Inventory of Forests and Forest Carbon Pools
(INFC), for which the correspondence between CLC categories was established based on
Marchetti et al.’s work [111] (see Table A1 in Appendix A). More precisely, the values for
aboveground biomass were derived from the INFC 2015 database, while belowground
biomass was not calculated due to a lack of data in the INFC databases. Soil carbon values
were calculated by subtracting the litter carbon content in the INFC 2005 database (declared
as a quite static parameter and, thus, not uploaded in the 2015 version) from the total soil
carbon in the INFC 2015 (litter carbon + soil carbon). Similarly, dead organic matter values
were calculated by summing litter and fine necro-mass (not uploaded in the 2015 version)
with coarse deadwood in the INFC 2015 database. See Table A2 in Appendix A for the
detailed parameters used for each carbon pool and forest type.

The same analysis was performed for 2006, using the CLC 2006 dataset and the same
parameters as before, with the aim of isolating the effects of land-use change on carbon
storage and sequestration services, which is the purpose of this analysis.

Carbon storage and sequestration biophysical mapping outputs are reported in
Figure 3 for both the years considered, together with the variation in time, which in
this case represents the carbon sequestration service.

Monetary Assessment

The monetary valuation of carbon sequestration and storage can be performed through
two main approaches, as demonstrated in SNPA guidelines [64]: the social cost and the
market value of emission permits.
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The social cost approach estimates the global damage avoided by carbon sequestration.
In this paper, it was assumed that the unit monetary value of EUR 101.85/tC proposed
in the Interagency Working Group on Social Cost of Greenhouse Gases, United States
Government [112], would be accurate, adjusted for inflation to EUR 145.74/ton of carbon
for 2024 (through Rivaluta ISTAT, https://rivaluta.istat.it/, last consultation: 28 October
2024).

Figure 3. Maps of the biophysical assessment of carbon storage in 2012 and 2006 and carbon
sequestration in 2006–2012. Source: own elaboration by authors.

For the market value approach, the price of carbon emission permits in the Italian
voluntary market was used, with a current unit monetary value of EUR 28.00/tC [113].

The total economic value for carbon storage and sequestration (EUR) is calculated by
multiplying the total stored or sequestered carbon obtained by the biophysical assessment
by these unit monetary values.

In Figure 4, a map of the unit monetary values (EUR/ha) of carbon storage in 2012 with
the social cost method is proposed, together with the results for the monetary assessment
using the LC typology with both methods. See Table A3 in Appendix A for more detailed
information about the parameters and results.

CLC—Code 

Monetary value (EUR) 
Social cost Market price 

2006 2012 2006 2012 
3111

0 0 0 0 
31311 
3112

28,178,392 28,690,726 5,413,716 5,512,147 
31312
3116

2,599,637 4,138,623 499,450 795,124 
31316
3117

2,429,369 2,219,941 466,738 426,502 
31317
3113

1,350,367,087 1,316,529,931 259,436,520 252,935,626 
31313
3122

121,954,868 110,717,221 23,430,330 21,271,320 
31322
3115

222,101,202 246,927,355 42,670,740 47,440,414 
31315
3124

155,095,925 151,788,574 29,797,488 29,162,070 
31324
3114

700,830,111 653,458,796 134,645,554 125,544,437 
31314
3123

1,496,008,421 1,514,695,932 287,417,564 291,007,864 
31323
3121

0 0 0 0 
31321

Total 4,079,565,011 4,029,167,098 783,778,100 774,095,504 

Figure 4. Mapping and results of the monetary assessment of carbon storage and sequestration in
2006 and 2012. The monetary assessment of carbon sequestration can be derived by subtracting the
values between the two years. The map on the left shows the unitary monetary values related to LC
in 2012, obtained using the social cost method. Source: own elaborations.
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3.2.2. Habitat Quality

Above other pressure forms, soil sealing, especially through road construction, poses
significant threats not only by reducing habitat areas but also by creating barriers to species
migration and movement [114].

In the case of Brescia Province, a region with a rich variety of ecosystems, including
agricultural lands, forests, and wetlands, all of which are vital for local biodiversity, the
increasing pressure from urbanization and infrastructure construction has threatened to
fragment habitats and diminish their ecological quality, jeopardizing the integrity of the
Ecological Network [115].

Biophysical Assessment

The assessment of the habitat quality ecosystem service was conducted using the
“Habitat quality” sub-model within the InVEST software suite, as suggested in [64]. The
model operates under the premise that regions with higher habitat quality can support a
greater diversity of native species; conversely, reductions in both habitat extent and quality
lead to diminished species persistence [116]. InVEST calculates habitat quality by assessing
the capacity of land cover types to sustain life and by evaluating the impact of different
threats (such as urbanization or road networks), and habitat sensitivity to those threats.
The model incorporates different spatial data layers to map these threats and quantify
their influence on habitat integrity. The primary input required is a raster map, with
the Corine Land Cover (CLC) 2018 dataset used in this analysis, rasterized at a 10-meter
resolution using QGIS software. Two additional tables—the “sensitivity table” and the
“threat table”—are essential for running the model. The sensitivity table assigns habitat
values on a scale from 0 (non-habitable) to 1 (optimal habitat) while also indicating each
habitat type’s vulnerability to different threats. These parameters were sourced from the
work of Sallustio et al. [117], which provides a comprehensive analysis of habitat values
across Italy. The habitat types were previously associated with the LC map starting from the
description of each field, seeking a logical link between the various categories (see Table A4
in Appendix A; for the sensitivity table, see Table A5). Simultaneously, the threat table (see
Table A6 in Appendix A) details the characteristics of each threat, including its spatial extent
(the radius of influence in kilometers), its weight or impact on habitat quality, and its decay
pattern (whether effects decrease exponentially or linearly with distance). In particular,
the radius of influence and the impact weights have on the habitat were obtained for each
threat and habitat type identified by Sallustio et al. [117], while the decay pattern was
assumed to be linear for safety. Each threat is required as raster input data; in this analysis,
intensive agriculture, extensive agriculture, the soil consumed, and roads were considered,
as outlined by Sallustio et al. [117]. Specifically, intensive and extensive agriculture, as
well as the soil consumed, were obtained from the Brescia Province Geoportal, while road
and railway network data were extracted from OpenStreetMap (OSM) and classified as
proposed by Sallustio et al. [117] in order to maintain consistent reference parameters. A key
parameter in the model is the semi-saturation constant (k), which modulates how habitat
quality decreases as degradation intensifies. A low k value (0.05, the default in InVEST)
means that even small increases in degradation will significantly reduce habitat quality.
The same analysis was performed for 2012, using the CLC 2012 dataset and the same
parameters as before, with the aim of isolating the effects of land-use change on habitat
quality service.

The output consists of two raster maps, shown in Figures 5 and 6 for the two years
considered, along with the period variation: one representing habitat quality and the
other showing the level of degradation. These outputs provide relative values from 0 to 1,
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allowing for comparative analysis between the different locations but not yielding direct
biophysical measurements. Further processing would be required to translate these results
into more specific ecological metrics.

Figure 5. Maps of the biophysical assessment of habitat quality in 2012 and 2018. Source: own
elaboration by authors.

Figure 6. Maps of habitat degradation in 2012 and 2018. Source: own elaboration by authors.

Monetary Assessment

To assess the monetary value of habitat quality, the methodology proposed in the
SNPA guidelines [64] follows the approach developed by Costanza et al. [5,7], which
estimates economic value based on various parameters related to different habitat types
for certain ecosystems. In the SNPA proposal, a range of coefficients was derived for the
missing ecosystems, using the surfaces across the Italian territory as weights [64]. In the
present analysis, the complete list of coefficients thus obtained (in EUR/ha) was adjusted
for inflation using the ISTAT revaluation coefficient for 2018–2024. To calculate the total
monetary value of the service, the unit monetary value (in EUR/hectare) is multiplied by
the area of the specific land cover type, expressed in hectares.
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In Figure 7, a map of the unit monetary values (EUR/ha) of habitat quality in 2018
is provided, together with the results for the monetary assessment by LC typology. See
Table A7 in Appendix A for more detailed information about the parameters and results.

 

 

 

CLC 
Code 

Habitat category 
Monetary value (EUR) 

2012 2018 
111 Buildings and other arti cial 

areas or impervious soils 
113,133 113,133 

112 Buildings and other arti cial 
areas or impervious soils 

2,968,272 3,015,384 

121 Buildings and other arti cial 
areas or impervious soils 

937,006 982,302 

122 Buildings and other arti cial 
areas or impervious soils 

10,469 34,506 

124 Open urban areas 295,812 297,735 
131 Open urban areas 543,231 588,099 
133 Open urban areas 31,729 29,165 
141 Grasslands 91,676 61,117 
142 Grasslands 490,069 837,532 
211 Intensive agricultural lands 44,673,671 4,440,085
221 Extensive agricultural lands 340,716 430,834 
222 Extensive agricultural lands 0 15,431 
223 Extensive agricultural lands 321,582 315,410 
231 Grasslands 5,120,263 5,033,115 
241 Extensive agricultural lands 33,331 33,331 
242 Intensive agricultural lands 3,101,014 2,979,417 
243 Intensive agricultural lands 6,904,447 6,938,703 

 

CLC 
Code 

Habitat category 
Monetary value (EUR) 

2012 2018 
311 Broadleaf forests 61,230,302 69,942,130 
312 Conifer forests 32,470,262 36,730,145 
313 (Broadleaf forests + 

Conifer forests)/2 
30,441,975 16,636,931 

321 Grasslands 30,616,322 31,271,634 
322 Shrublands 3,588,206 4,816,965 
323 Shrublands 42,305 84,609 
324 Inland unvegetated or 

sparsely vegetated areas 
11,032,512 10,555,932 

332 Inland unvegetated or 
sparsely vegetated areas 

9,576,004 8,682,252 

333 Inland unvegetated or 
sparsely vegetated areas 

7,499,941 8,012,428 

334 Inland unvegetated or 
sparsely vegetated areas 

0 34,601 

335 Inland unvegetated or 
sparsely vegetated areas 

1,282,850 1,261,959 

411 Wetlands 2,995,148 2,704,920 
511 Water bodies 66,994 66,994 
512 Water bodies 23,543,563 23,573,120 

Total 
 

280,362,804 280,480,684 

Figure 7. Mapping and results of the monetary assessment of habitat quality in 2012 and 2018.
The map on the left shows unit monetary values related to LC in 2018. Source: own elaborations
by authors.
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3.2.3. Crop Pollination

A European assessment indicates that approximately 9.2% of bee species are at risk
of extinction due to land consumption, agricultural intensification, the widespread use
of pesticides, herbicides, and fertilizers, as well as habitat fragmentation, which affects
the pollination network [117,118]. The enhancement and protection of this service, which
is so essential for environmental balance and human activities, has become even more
important today.

This ecosystem service is particularly crucial for the Province of Brescia, where agri-
cultural areas cover about half of its total surface, mainly in the southern region, which
corresponds to the Po Valley. However, this area faces significant land consumption, which
threatens the integrity of its pollination ecosystem service.

Biophysical Assessment

To assess the biophysical value of the crop pollination ecosystem service, an analysis
was conducted using the InVEST software, specifically the “Crop pollination” sub-model,
as described in [64]. The software requires raster input data, for which the CLC 2018
dataset was used, and was rasterized in QGIS with a grid size of 10 m. The model also
required two CSV tables as the input: a “biophysical table” and a “pollinator table”. The
biophysical table includes a nesting availability index and a flower abundance index for
each LC class. The required parameters were obtained from the “JRC ESTIMAP: Ecosystem
services mapping at European scale” report [119], which provides general parameters
for Europe. It is considered a suitable reference for this case study. The pollinator table
maps the characteristics of the analyzed pollinator species, in this case only including the
“solitary bee”, as in [119]. Parameters include the following: a nesting suitability index
(set to one for a generic substrate); a foraging activity index calculated from temperature
and solar radiation; the medium distance traveled by the analyzed species (set to 200 m,
as in [119]); and a relative abundance value (set to one since only one pollinator type
was analyzed). Parameters were obtained with the methodology reported in [119], using
values of T (temperature) = 12.59 ◦C and R (radiation) = 177.9 W/m2 obtained from the
ARPA database of the Lombardy Region using the average annual daily mean values from
1 January 2023 to 1 January 2024 (https://www.arpalombardia.it/temi-ambientali/meteo-
e-clima/form-richiesta-dati/, last consultation: 8 January 2024).

The same analysis was performed for 2012, using the CLC 2012 dataset and the same
parameters as before, with the aim of isolating the effects of land-use change on the crop
pollination service.

The software generated two output maps, reported in Figures 8 and 9 for the two
years considered, along with the period variation. One map represents the abundance of
the generic bee, while the other indicates its potential supply based on relative abundance,
habitat suitability, and the floral resources available, taking into account the bee’s travel
capacity. The values in these maps range from 0 to 1, enabling comparative analysis between
pixels, but they do not provide a direct biophysical analysis without further processing.

Monetary Assessment

For the monetary assessment of pollination services, as outlined in the SNPA guide-
lines [64], this methodology adopted the approach proposed by Leonhardt et al. [102],
specifically the calculation of the overall economic value of pollination (EVIP) based on
the global valuation of the pollination service in relation to the agricultural production
value. The EVIP was determined using the methodology described in [102], deriving the
crop-dependency ratio on pollinators from Klein et al. [120].
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For the valuation of the parameter Qict, ISTAT data for Brescia Province were
used (https://esploradati.istat.it/databrowser/#/it/dw/categries/IT1,Z1000AGR,1.0/
AGR_CRP/DCSP_COLTIVAZIONI/IT1,101_1015_DF_DCSP_COLTIVAZIONI_1,1.0, last
consultation: 28 October 2024). Concerning Pict, data were obtained from the ISMEA
(Istituto di Servizi per il Mercato Agricolo Alimentare) and the AREA Rica (Analisi dei
Risultati Economici Aziendali) portals.

Figure 8. Maps of pollinator abundance in 2012 and 2018. Source: own elaboration by authors.

Figure 9. Maps of the biophysical assessment of crop pollination in 2012 and 2018. Source: own
elaboration by authors.

In this case, it was not possible to generate a map for the monetary valuation of the
service, as there is no agricultural land-use map available for Brescia Province. The CLC
dataset only provides broad land-use categories without specifying individual crop types,
which can vary frequently across the region. Consequently, the monetary valuation could
not be geo-referenced. However, Table 3 presents the results of the monetary assessment
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performed by cultivation type. For more detailed information about the parameters and
results, see Table A8 in Appendix A.

Table 3. Monetary value of crop pollination for crops dependent on the service based on the 2023
production in Brescia Province. Source: own elaboration by authors from ISMEA, AREA Rica, and
ISTAT databases.

Crop Type
Total

Production
(t/Year)

Unit Monetary
Value for Crop

Production
(EUR/t)

Dependency
Ratio

Monetary Value
for Crop

Pollination
(EUR/Year)

Apple 1811 729 0.65 858,142

Chestnut 1075.9 1920 0.25 516,480

Cocumber 205 291 0.65 38,776

Green Bean 2474.5 1097 0.05 135,754

Lemon 8 760 0.05 304

Melon 1845 597 0.95 1,046,392

Peach 788 512 0.65 262,246

Pear 185 1423 0.65 171,116

Pepper 234 493 0.05 5768

Strawberry 371 3023 0.25 280,383

Plum 72 308 0.65 14,414

Tomato 44,886 676 0.05 1,517,147

Watermelon 1280 164 0.95 199,424

Zucchini 8087.8 503 0.95 3,864,755

Total 8,911,046

3.2.4. Wood Provision

To evaluate this ecosystem service, the annual biomass of timber produced in a specific
region must be estimated [98]. Land-use changes in forested areas can entirely eliminate this
service, while other influencing factors include climate conditions, management practices,
and the prevalence of diseases like the Bosforo bacterium, which has affected Northern
Italy. The assessment of wood provision is particularly significant for Brescia Province,
where forests cover approximately one-third of the territory, primarily in the northern
region. This area encompasses three major valleys: Valle Camonica, Valle Trompia, and
Valle Sabbia.

Biophysical Assessment

The “LIFE+ MGN” parametric methodology was applied to biophysically assess wood
provision ecosystem services [98]. The annual biomass increment values were obtained
from the INFC 2015 database, which provides specific growth rates for various forest types
based on CLC classifications. As with carbon storage and sequestration service, the CLC
2012 dataset was used and rasterized at a 10-meter resolution using QGIS software. A
correspondence between CLC classes and INFC classifications was established based on
Marchetti et al.’s work [111]. Similar to the previous analysis, only tall tree forest areas
were considered. The annual biomass increment values for each forest type were sourced
from the INFC 2015 database. This approach estimates the wood provision service by
calculating the annual production of forest biomass that can be sustainably harvested
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without distinguishing between different timber product types. The assessment focused on
the volume of biomass produced annually within the limits of natural regeneration [98].

The same analysis was performed for 2006, using the CLC 2006 dataset and iden-
tical parameters, with the goal of isolating the effects of land-use change on the wood
provision service.

Figure 10 reports the biophysical mapping results of wood provision in 2006 and 2012,
along with the variation in the ES during the period.

Figure 10. Maps of the biophysical assessment of wood provision in 2006 and 2012. Source: own
elaborations by authors.

See Table A9 in Appendix A for further details about the parameters used.

Monetary Assessment

For the monetary assessment of wood provision, the SNPA guidelines [64] recommend
using market prices for the assessed biomass volumes.

In the absence of specific data for the Province of Brescia, data from the ISPAT portal
for the Trentino Alto Adige region were utilized. This portal provides valuable insights into
regional timber utilization percentages and average prices based on the latest update from
2021. According to these findings, timber products are primarily used for construction
(76.5%), while the remaining 23.5% is allocated for firewood. The respective average prices
are EUR 63/m3 for construction timber and EUR 50/m3 for firewood. These prices are
weighted averages derived from the production of softwood and hardwood in Trentino Alto
Adige. By calculating a weighted average of these results, the overall price was estimated at
EUR 60/m3, which was adjusted for inflation to approximately EUR 70/m3. The monetary
value of wood production was determined by multiplying the wood increment coefficient
(at the basis of the biophysical assessment) by the area of the respective land cover type,
yielding wood provision values in tons or cubic meters. These results were then multiplied
by the unit monetary value (EUR/t or EUR/m3) to obtain the total economic value in
euros. Figure 11 presents a map of the unit monetary values (EUR/ha/year) of the wood
provision in 2012, alongside the results of the monetary assessment by LC typology. See
Table A9 in Appendix A for more detailed information about the parameters and results.
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CLC—Code Monetary value (EUR/year) 
2006 2012 

3124 1,466,710 1,435,700 
31323 7,905,310 7,285,670 
3123 17,942,820 18,887,960 
3122 280,700 549,500 
31322 2,134,720 1,642,970 
3121 0 0 
31321 0 0 
3125 0 0 
31325 0 0 
3115 2,995,510 3,124,520 
31315 782,320 1,076,320 
3112 864,920 881,230 
31312 0 0 
3114 11,152,610 10,132,290 
31314 1,160,670 1,348,060 
3113 14,769,930 13,706,560 
31313 3,188,010 3,801,910 
3116 51,660 81,760 
31316 0 0 
3117 52,850 48,720 
31317 0 0 
3111 0 0 
31311 0 0 
Total 64,748,740 64,003,170 

Figure 11. Mapping and results of the monetary assessment of wood provision in 2006 and 2012. The
map on the left shows unitary monetary values related to LC in 2012. Source: own elaborations.

3.2.5. Particulate Removal

Particulate and ozone removal by forests is a vital ecosystem service, particularly in
the spatial context of this analysis, as exposure to air pollutants is the leading environmen-
tal risk factor in Europe [121]. Italy, in particular, has the highest estimated number of
premature deaths attributed to air pollution [122].

This air quality service plays a crucial role in maintaining urban air quality and is
equally significant for broader regions like Brescia Province. Forest ecosystems in this
province are extensive, covering about one-third of its surface, predominantly in the
northern areas, including Valle Camonica, Valle Trompia, and Valle Sabbia. These forests
are particularly valuable in mitigating pollution levels, which can be notably high in
the region.

Biophysical Assessment

The capacity of forest ecosystems to remove pollutants was assessed using the “LIFE+
MGN” parametric methodology, which estimates PM10 removal based on average capture
coefficients specific to different vegetation types [98]. The CLC 2018 dataset was utilized for
the LC map, rasterized at a 10-meter resolution using QGIS software. PM10 sequestration
values were assigned to various forest types following the parameters provided by Schirpke
et al. [98]. Specifically, broadleaf forests were assigned a value of 160 kg/ha/year, while
the coniferous forest was assigned a value of 490 kg/ha/year. Mixed forests were assigned
a value of 325 kg/ha/year, calculated as the average of the previous two.

The same analysis was conducted for 2012 using the CLC 2012 dataset and the same
parameters to isolate the effects of land-use change on the capacity of forests to remove
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PM10. Figure 12 presents the biophysical mapping results for particulate removal in 2012
and 2018, with variation in the ES during this period.

Figure 12. Maps of the biophysical assessment of particulate removal in 2012 and 2018. Source: own
elaborations by authors.

For more detailed information about the parameters used, refer to Table A10 in
Appendix A.

Monetary Assessment

The monetary assessment of particulate removal was conducted based on the societal
costs of PM10 pollution, which include health and environmental impacts, as outlined in
the SNPA guidelines [64]. The range of unit monetary values (EUR/ha) from the European
Environment Agency (EEA) was used, as referenced in the SNPA report, adjusted to 2024
values to account for inflation [121]. Due to the broad range of available values, a filtering
approach was employed to narrow the range. In the absence of site-specific criteria for
further refinement, a statistical method was adopted: values below the 25th percentile
and above the 75th percentile were excluded. This resulted in a refined range of unit
monetary values set between EUR 500/ha (for broadleaf forests) and EUR 700/ha (for
coniferous forests), with mixed forests assigned a mid-range value of EUR 600/ha. The total
monetary value of particulate removal in 2018 was calculated by multiplying these unit
monetary values by the respective forest areas in Brescia Province. The results, categorized
by land cover typology, are presented in Figure 13, alongside a map illustrating the spatial
distribution of unit monetary values across the province (EUR/ha/year). For further details
about the parameters and results, refer to Table A10 in Appendix A.

3.2.6. Hydrological Regime Regulation

In the Province of Brescia, hydrological regulation plays a vital role due to the region’s
diverse geomorphology, which encompasses mountainous, hilly, and lowland areas. These
landscapes are particularly vulnerable to hydrogeological risks, including floods and land-
slides, especially during extreme weather events. The region’s balance between agricultural
land, natural areas, and increasing urbanization underscores the critical need to monitor
and preserve water infiltration processes. Effective spatial planning in this region must
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prioritize strategies that enhance water infiltration and minimize soil sealing, both of which
are essential for sustainable water management and mitigating hydrological hazards [98].

CLC Monetary value 
(EUR/year) 

Code Description 2006 2012 
311 Broadleaf forests: 38,097,500 43,520,072 
312 Coniferous forests 28,284,200 14,491,946 
313 Mixed forests 22,729,200 27,424,051 

Total  89,110,900 85,436,059 

Figure 13. Mapping and results of the monetary assessment of particulate removal in 2012 and 2018.
The map on the left shows unitary monetary values (absorption coefficients) related to LC in 2018.
Source: own elaborations by authors.

Biophysical Assessment

The soil’s capacity to regulate the hydrological regime was assessed using the
“LIFE+ MGN” parametric methodology, which simplifies the evaluation by assigning
coefficients (ranging from 0 to 5) for water retention based on land cover typologies [98].
The CLC 2018 dataset was utilized for the LC map and rasterized at a 10-meter resolution
using QGIS software. Retention coefficients for the LC typologies were sourced from
Nedkkov e Burkhard [123] and aligned with the CLC classification (refer to Table A11
in Appendix A). Nedkkov e Burkhard also provided literature-based insights into the
water retention capacity of different land cover types, expressed as a percentage of average
annual precipitation (%). In particular, by comparison with the work of Tate [124], the
dimensionless LC coefficients were first converted into annual absorption percentages and
subsequently converted into the annual absorbed volume by hectare (m3/ha/year).

A similar analysis was conducted for 2012, using the CLC 2012 dataset and identical
parameters to isolate the effects of land-use change on the hydrological regime regulation
service. Figure 14 presents the biophysical mapping results for the hydrological regime
regulation in 2012 and 2018, along with the observed variations in the ES during this period.
Additional details on the parameters used can be found in Table A11 in Appendix A.

Monetary Assessment

For the monetary assessment of this service, the SNPA guidelines [64] were followed,
assigning a unit monetary value of EUR 750 /m3/100 years for flood prevention infrastruc-
ture. This value was updated for 2024 using the ISTAT monetary revaluation coefficient,
resulting in EUR 10.27/m3/year. The water volume absorbed by various land types, as
determined in the biophysical assessment, was multiplied by the surface area of the cor-
responding land cover type, expressed in hectares (ha). This calculation yielded the total
water absorption volume, expressed in cubic meters (m3), which is critical for estimating
the overall monetary value of the ecosystem service. The results of this assessment are
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presented in Figure 15 for 2012 and 2018. Additionally, Figure 15 includes a map of the unit
monetary values (EUR/ha/year) for 2018. Further details on the parameters and results
can be found in Table A11 in Appendix A.

Figure 14. Maps of the biophysical assessment of hydrological regime regulation in 2012 and 2018.
Source: own elaboration by authors.

 

CLC 
Code 

Absorption  
coe cient  

Monetary value 

2012 2018 

111 0% 0 0 0 

112 0% 0 0 0 
121 0% 0 0 0 
122 0% 0 0 0 
124 0% 0 0 0 
131 0% 0 0 0 
133 0% 0 0 0 
141 0% 0 0 0 
142 0% 0 0 0 
221 17% 3 8,730,322 11,039,428 
222 17% 3 0 395,395 
223 17% 3 8,240,032 8,081,874 
224 17% 3 63,263 63,263 
231 15% 2 63,145,711 62,112,138 
241 15% 2 754,229 754,229 
242 15% 2 140,356,393 134,839,349 
243 15% 2 312,502,133 314,024,558 
322 15% 2 52,167,492 69,975,672 
323 15% 2 614,557 614,557 
324 17% 3 267,302,836 255,725,670 
332 0% 0 0 0 
333 0% 0 0 0 
334 0% 0 0 0 

CLC 
Code 

Absorption  
coe cient  

Monetary value 

2012 2018 

335 0% 0 0 0 

411 0% 0 0 0 
511 0% 0 0 0 
512 0% 0 0 0 
2111 5% 1 668,560,055 664,465,406 
2112 5% 1 425,178 425,178 
3111 20% 4 5,196,209 4,691,541 
3112 20% 4 28,280,088 76,017,924 
3113 20% 4 896,009,642 925,224,300 
3114 20% 4 357,697,322 410,500,527 
3115 20% 4 131,288,394 203,624,112 
3116 20% 4 3,700,897 4,299,022 
3117 20% 4 1,999,980 2,467,265 
3121 30% 5 0 1,033,573 
3122 30% 5 30,839,578 4,6147,629 
3123 30% 5 940,048,429 915,745,501 
3124 30% 5 157,801,426 313,870,918 
3131 30% 5 511,171,586 306,663,843 
3132 30% 5 546,983,486 271,634,106 
3211 15% 2 277,863,477 294,959,330 
3212 15% 2 99,907,382 90,954,406 
3231 15% 2 0 614,557 

Total 5,511,650,093 5,390,965,269 

Figure 15. Mapping and results of the monetary assessment of the hydrological regime regulation in
2012 and 2018. The map on the left shows the unitary monetary values related to LC in 2018. Source:
own elaborations by authors.
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3.3. Overview and Evaluation of Results

The analyses revealed a total monetary loss solely attributed to land-use changes in the
Province of Brescia, amounting to over EUR 51 million for the period 2006–2018 (with CSS
assessed using the social cost method) and nearly EUR 125 million for the period 2012–2018.
This variation is primarily due to differences in the ecosystem services analyzed rather than
changes in land use across the periods examined. Figure 16 schematically illustrates the
percentage change in the biophysical contribution of ecosystem services during the consid-
ered periods for the entire Province of Brescia. It shows that the most significant negative
variation (representing a loss of ecosystem services) occurred for particulate removal, which
decreased by −12.14% between 2012 and 2018. The only service that recorded a positive
percentage variation was habitat quality, which will be discussed in more detail later. This
service showed a slight increase of +0.04% in the period 2012–2018. This value, however, was
derived from Figure 7 rather than the biophysical assessment in order to assign a value for
each LC type. As shown in Figure 16, this positive change does not correlate to a proportional
monetary loss (or gain). The service that exhibited the largest variation in monetary contri-
bution (negative, indicating a loss) was hydrological regime regulation. Despite a −2.19%
decrease in its biophysical contribution during 2012–2018, this service accounted for a total
monetary loss of approximately EUR 121 million for the Province of Brescia. This loss is equiv-
alent to roughly 0.2% of the province’s GDP in 2018, with GDP calculated based on the per
capita GDP for the Lombardy Region in 2018 (Territorial Economic Accounts 2019–2021 Lom-
bardy (https://www.polis.lombardia.it/wps/wcm/connect/70f033b4-6ffb-468f-87ee-bd367
6e8b233/WP-02+-+Conti+economici+territoriali+Lombardia_+2017-2019_Ancona_edgen202
1.pdf?MOD=AJPERES&CACHEID=ROOTWORKSPACE-70f033b4-6ffb-468f-87ee-bd3676e8
b233-nG.lDP6, last consultation: 2 November 2024).

Note: CSS: carbon storage and sequestration; 
WP: wood provision; HRR: hydrological re-
gime regulation; PR: particulate removal; 
HQ: habitat quality. Please note that the re-
ported losses refer to di erent time periods, 
as detailed in Figure 16. 

ES 
Biophysical 
loss in the 
period (%) 

Monetary 
loss in the 

period (EUR) 

CSS 1.23% 50,398,100 

WP 1.15% 745,500 

HRR 2.19% 120,684,800 

PR 12.14% 3,675,600 

HQ 0.04% 113,600 

Figure 16. Total biophysical and monetary loss in Brescia Province for the analyzed periods and
ecosystem services. Source: own elaboration by authors.

4. Discussion

4.1. Critical Analysis of the Results

The analysis examined both the biophysical and monetary quantification of six ecosys-
tem services: carbon storage and sequestration (CSS), habitat quality (HQ), crop pollination
(CP), wood provision (WP), particulate removal (PR), and hydrological regime regulation
(HRR). Each service was evaluated using different methods, reflecting variations in the
available data and the specific requirements of each assessment.
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The assessments relied on LC maps as proxies for soil data, particularly for soil-related
ecosystem services, in line with established methodologies [8]. This approach assumes that
the LC classification accurately represents variations in soil-related ecosystem services.

The time periods used for each assessment were determined by data availability and
methodological requirements. For CSS and WP, the years 2006 and 2012 were selected. For
HQ, CP, PR, and HRR, the years 2012 and 2018 were chosen. The different timeframes
were necessary because some datasets, especially the Corine Land Cover (CLC) database,
did not provide a detailed land cover (LC) map for 2018, which is crucial for assessing
certain services.

Biophysical assessments for CSS, HQ, and CP employed modeling approaches using
the InVEST model [64], while other services (WP, PR, and HRR) were assessed using a
simpler parametric approach based on LC classes, following guidelines from the existing
literature [98]. The use of InVEST enabled more detailed assessments, particularly for
services such as HQ and CP.

The biophysical assessment resulted in additional maps for specific services. For
example, the InVEST model provided a habitat degradation map for HQ and a map of
pollinator abundance for CP. These maps added significant value to the biophysical analysis,
enabling a more detailed understanding of ecosystem service dynamics.

The monetary valuation followed the guidelines provided by the SNPA [64], which
involved associating parametric values with LC classes. These values were adjusted for
inflation or updated when necessary. Five monetary maps were produced, corresponding to
the most recent years for each service: 2012 for CSS and WP and 2018 for HQ, PR, and HRR.

A significant limitation in the monetary assessment arose for CP. Due to the absence of
a crop land-use map for the Province of Brescia, the results for CP could not be mapped in
monetary terms. Additionally, agricultural production data for the analysis were only avail-
able for the 2023–24 period from ISTAT, which made estimates for earlier years impossible.

Given these strengths and weaknesses, the critical interpretation of the results focuses
on several key aspects. First, it examines the use of the InVEST model, particularly in
the construction of habitat quality. This model generates output based on the type of
input information (data) provided, which is often influenced by both the local value
system and the planning objectives (Section 4.1.1). Additionally, the importance of a
cross-critical interpretation of the outputs generated by the sub-models is emphasized to
accurately assess the phenomena and the impact of land transformation actions on habitats
(Section 4.1.2). Finally, the text highlights the necessity of verifying the LC data structure at
different historical thresholds to avoid misinterpretations of ongoing phenomena, including
the need to validate the outputs through detailed checks on known cases (Section 4.1.3).

4.1.1. InVEST Model: Habitat Quality

A critical analysis of the InVEST model’s operation for the evaluated ecosystem
services reveals that, despite its more complex modeling approach compared to simple
parametric associations, the sub-models for carbon storage and sequestration (CSS) and
crop pollination (CP) (perhaps as they are not fully utilized in this analysis) calculate the re-
quired services using only geo-referenced LC data. These sub-models associate site-specific
and ad hoc-calculated parameters with this information. The only service that incorporates
an additional layer of geo-referenced information beyond LC is habitat quality (HQ), which
yields results that are more substantial, informative, and nuanced in interpretation. This
enhancement can be closely linked to spatial planning objectives. For example, agriculture
can be considered both a threat and a habitat by planners. Ultimately, the threat inputs
required by the model are still based on LC data. Variables reflecting climatic variations
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across the territory, or those related to point or diffuse pollution, disturbances, or other
local threats, were neither included in the model nor supported. Nevertheless, it is crucial
to interpret the results for the HQ service in the context of the input data concerning
threats to habitat quality in the area. As detailed by Sallustio et al. [117] and elaborated in
Section 3, the threats considered in this analysis for the habitat quality assessment include
the following: road and rail infrastructures, classified by functional type; intensive and
extensive agriculture; and the soil consumed. Figure 17 illustrates these threats. In the
Province of Brescia, a traditionally agricultural region, the most significant contribution
to habitat threats, in distributive terms, arose from cultivated fields. However, the impact
parameters may vary depending on the specific land use (habitat) considered.

Figure 17. Threats considered in Brescia Province as inputs for the habit quality model. Source: own
elaborations by authors.

This variation in impact explains the observed differences in HQ across the province.
For instance, the habitat value in Po Valley (southern zone) is significantly lower compared
to the hill and mountain regions further north. In contrast, the habitat degradation values
follow an opposite pattern (see Figures 5 and 6 in Section 3).

4.1.2. Cross-Critical Interpretation of the Model Outputs

Furthermore, a cross-critical interpretation of the ES maps is essential. For example,
our analysis revealed a linear feature in the southwestern part of the province. A com-
parison of the HQ maps from 2012 and 2018 (in Figure 18) showed an increase in habitat
quality in this area. This feature corresponds to the BreBeMi highway (A35), which was
already completed by 2018 but did not exist in 2012, as confirmed by the LC maps.

This observed increase was likely due to the fact that, by 2018, the road was classified
as “non-habitat” (Hj = 0) by the model. As a result, the degradation map value for that
cell became zero, and no additional impacts were calculated. When a cell is classified
as “non-habitat” by the model, it is not influenced by any threats within that cell since
it is considered unsuitable for habitats. However, the suitability of adjacent habitat cells
in 2018 may still contribute positively to the HQ value. In contrast, in 2012, the cell was
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still classified as a habitat and was, thus, impacted by mapped threats, resulting in a
degradation value above zero and a lower habitat quality value.

These aspects highlight how the HQ model is more complex than other InVEST models.
This increased complexity leads to a greater sensitivity to the quality of input data, requiring a
critical a posteriori interpretation of the results. As demonstrated in the example above, such
complexity can result in values that might initially seem illogical. In light of these considerations,
a detailed analysis of the results suggests that the apparent improvement in habitat quality
across the province from 2012 to 2018 is likely a consequence of this complexity.

Figure 18. Details of habitat quality and habitat degradation maps in 2012 and 2018 in the area of
highway construction (BreBeMi). Source: own elaborations by authors.

4.1.3. Land Cover Updates or Changes

For the remaining ecosystem services analyzed, the results can be more easily inter-
preted by examining the variation in LC across the area. For example, the percentage
change in areas associated with LC classes from the CLC database is shown for the three
years analyzed across the entire Province of Brescia (Figure 19). The most critical classes
for evaluation are those related to forest land use, such as carbon storage and sequestration
(CSS), wood provision (WP), and particulate removal (PR) services, which were derived
exclusively from the assessment due to the variation in these classes. In our case, the
most significant differences observed related to mixed forests (code 313) compared to
broad-leaved forests (311) and coniferous forests (312). The total area designated for these
three covers appeared to be unchanged across the three years considered. Notably, the
absence of the mixed forest class in 2006 coincides with an increase in both broad-leaved
and coniferous forests. It remains unclear whether this discrepancy arose from errors in
the CLC 2006 input layer (despite class 313 being included in the legend) or if it reflects
an actual increase in this forest type in subsequent years. Regardless, this variation likely
played a substantial role in altering the provision of ecosystem services in the study area.

As emphasized throughout, the goal of this analysis should extend beyond simply
raising awareness among policymakers about the importance of ESs. Future assessments
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should prioritize the preservation of these services. Moreover, these evaluations must
provide policymakers with the necessary tools to assess land-use decisions. More impor-
tantly, they should highlight the crucial role and potential of ecosystems in the study area,
examining the impacts of transformations on the provision of essential ecosystem services
not only for environmental health but also for human well-being, society, and the economy.

Figure 19. Variation in LC in Brescia Province during the years considered, with the most relevant
variations highlighted by a red bracket. Source: own elaborations by authors.

In addition to the cumulative analysis, it is vital to interpret the spatial distribution
of the results across the territory, from which contextualized conclusions can be drawn.
These interpretations can guide planning, conservation, and land restoration strategies,
supported by the economic and fiscal incentive tools discussed in the Introduction, which
are well-documented in the literature.

5. Conclusions

The analysis presented in this paper introduces novel features, both in terms of the
spatial context and the local scale (NUTS3) at which it was conducted. Despite limitations
stemming from the scarcity and weaknesses of several input datasets—which constrained
the analysis of ecosystem services to three different time scales and hindered the creation
of a comprehensive depiction of their variations—the results offer valuable insights for
local policymakers. Additionally, these findings open avenues for exploring potential tools
to support territorial resource management and planning. The monetary valuation of
ecosystem services, which complements the biophysical assessment, proved particularly
beneficial in this context. It has the potential to engage stakeholders not only as direct
beneficiaries of ESs managed in the form of private goods (e.g., food or timber supply
for landowners) but also as indirect beneficiaries of the preservation of other ESs within
the territory [57,125]. Moreover, governance models such as network governance provide
promising frameworks for supporting PES programs. These models emphasize the “hor-
izontal” structure of decision-making, fostering collective and inclusive processes that
are sensitive to power dynamics among stakeholders. Such approaches are particularly
valuable in the complex and uncertain contexts related to ecosystem services [18,126].
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This inclusive governance model aligns with the evolving direction of ES trade-off
analysis, emphasizing the importance of stakeholder engagement and the real flows of
ecosystem services. In contrast, simplified overlay analyses often fail to capture the intricate
dynamics of ecosystem processes [18]. According to several authors, trade-offs among ESs
most frequently occur between agricultural supply services and other services, such as those
related to the regulation of hydrological regimes [65], or among forest ecosystem services
(FESs). These FESs include carbon sequestration, the provision of timber and other raw
materials, PM10 sequestration, and hydrological regulation [57]. Achieving a balance in the
management of FESs is particularly complex and delicate, leading to the coining of the term
Balanced Forest Ecosystem Services Management (BFESM) to describe this challenge [57].

Future analyses must delve deeper into these trade-offs and differentiate between
the theoretical and actual flows of ecosystem services. The latter involves the intersection
between the provision of ecosystem services (as assessed in the current study) and the pres-
ence of beneficiaries who demand and utilize these services [127]. This type of assessment
is conceptually crucial. As noted by Costanza et al. [7], ecosystems cannot deliver benefits
to people without the interplay of human capital (people), social capital (communities),
and built capital (infrastructure and buildings). Additionally, it is well-documented in
the literature that limiting assessments to theoretical flows of ecosystem services without
accounting for actual flows can result in overestimations [128]. However, it is acknowl-
edged that recent studies attempting to bridge this gap—by overlaying service delivery
with service utilization—often lack theoretical, terminological, and methodological consis-
tency [127,128]. These evaluations are inherently complex. While the delivery of ESs was
effectively tested in the current case study, incorporating utilization metrics could provide
more critical insights for future spatial planning research.

Burkhard’s matrix model, published in 2014 [129,130], has garnered significant recog-
nition for assessing the supply and demand of ecosystem services across various European
and Asian regions [123,131,132]. However, applying matrices calibrated for overly generic
spatial contexts—such as Burkhard’s matrices for the European continent—introduces
uncertainties in the results [133]. Furthermore, as previously mentioned, simple over-
lay methods fail to accurately map and value ecosystem services due to their inability
to capture the complex spatial and temporal dynamics of service flows, which can vary
significantly depending on scale and environmental factors [127,134–138].

Future research could focus on integrating assessments of the supply and demand for
ecosystem services to provide a clearer understanding of the land-use dynamics, needs,
and trade-offs that emerge between different ecosystem services.

Thus, the qualitative insights derived from Burkhard’s framework can guide future
analytical developments, emphasizing regions with a high ecosystem services demand or
those experiencing transitions toward increased demand due to ongoing land cover changes.
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Appendix A.

Appendix A.1. Carbon Storage and Sequestration

Table A1. Correspondence between CLC LC codes (2006/2012) and INFC forest inventory codes.
Source: adaptation from [111].

INFC CLC

Code Description Code Description

1 Larch and Swiss pine forests 3124 Forests predominantly of larch and/or Swiss pine

2 Spruce forests
31323 Mixed coniferous and broadleaf forests predominantly of fir

3123 Forests predominantly of fir

3 Silver fir forests
31323 Mixed coniferous and broadleaf forests predominantly of fir

3123 Forests predominantly of fir

4 Scots pine and mountain pine forests
3122 Forests predominantly of oro-Mediterranean and mountain pines

31322 Mixed coniferous and broadleaf forests predominantly of oro-Mediterranean and
mountain pines

5
Black pine, Corsican pine, and

Bosnian pine forests

3122 Forests predominantly of oro-Mediterranean and mountain pines

31322 Mixed coniferous and broadleaf forests predominantly of oro-Mediterranean and
mountain pines

6 Mediterranean pine forests

3121 Forests predominantly of Mediterranean pines and cypresses

31321 Mixed coniferous and broadleaf forests predominantly of Mediterranean pines
and cypresses

7 Other coniferous forests, pure or
mixed

3125 Forests and former plantations predominantly of exotic conifers

31325 Mixed coniferous and broadleaf forests predominantly of exotic conifers

8 Beech forests
3115 Forests predominantly of beech

31315 Mixed coniferous and broadleaf forests predominantly of beech

9 Sessile oak, Downy oak, and English
oak forests

3112 Forests predominantly of deciduous oaks

31312 Mixed coniferous and broadleaf forests predominantly of deciduous oaks

10 Turkey oak, Hungarian oak,
Macedonian oak, Valonia oak forests

3112 Forests predominantly of deciduous oaks

31312 Mixed coniferous and broadleaf forests predominantly of deciduous oaks

11 Chestnut forest
3114 Forests predominantly of chestnut

31314 Mixed coniferous and broadleaf forests predominantly of chestnut

12 Hop-hornbeam and hornbeam forests
3113 Mixed forests predominantly of other native broadleaf specie

31313 Mixed coniferous and broadleaf forests predominantly of other native broadleaf species

13 Hygrophilous forests
3116 Forests predominantly of hygrophilous species

31316 Mixed coniferous and broadleaf forests predominantly of hygrophilous species

14 Other deciduous forests
3117 Forests and former plantations predominantly of exotic broadleaf species

31317 Mixed coniferous and broadleaf forests predominantly of exotic species

15 Holm oak forests
3111 Forests predominantly of oaks and other evergreen broadleaf species

31311 Mixed coniferous and broadleaf forests predominantly of oaks and other evergreen
broadleaf species

16 Cork oak forests
3111 Forests predominantly of oaks and other evergreen broadleaf species

31311 Mixed coniferous and broadleaf forests predominantly of oaks and other evergreen
broadleaf species

17 Other evergreen broadleaf forests /

18 Artificial poplar plantations /

19 Other broadleaf plantations /

20 Conifer plantations /

21 Subalpine shrublands /

22 Temperate shrublands /

23 Mediterranean scrub and shrublands /
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Table A2. C content (t/ha) in each of the four carbon pools considered for each CLC LC class in 2006
and 2012. Source: own elaborations from INFC 2005 and 2015 databases.

CLC—Code CLC Description
Aboveground

Biomass (tC/ha)

Belowground
Biomass
(tC/ha)

Soil Organic
Matter (tC/ha)

Dead Organic
Matter
(tC/ha)

3111 Forests predominantly of oaks and other
evergreen broadleaf species 0.0 0.0 0.0 0.0

3112 Forests predominantly of deciduous oaks 55.7 0.0 65.7 8.8

3113 Mixed forests predominantly of other
native broadleaf specie 38.5 0.0 105.9 3.2

3114 Forests predominantly of chestnut 84.4 0.0 106.3 16.2

3115 Forests predominantly of beech 86.1 0.0 85.2 8.2

3116 Forests predominantly of
hygrophilous species 43.3 0.0 86.8 12.6

3117 Forests and former plantations
predominantly of exotic broadleaf species 54.7 0.0 82.1 6.9

3121 Forests predominantly of Mediterranean
pines and cypresses 0.0 0.0 0.0 0.0

3122 Forests predominantly of
oro-Mediterranean and mountain pines 59.5 0.0 102.0 11.0

3123 Forests predominantly of fir 102.6 0.0 95.9 24.5

3124 Forests predominantly of larch and/or
Swiss pine 71.2 0.0 101.4 11.9

3125 Forests and former plantations
predominantly of exotic conifers 67.5 0.0 74.4 9.0

31311
Mixed coniferous and broadleaf forests

predominantly of oaks and other
evergreen broadleaf species

0.0 0.0 0.0 0.0

31312 Mixed coniferous and broadleaf forests
predominantly of deciduous oaks 55.7 0.0 65.7 8.8

31313
Mixed coniferous and broadleaf forests

predominantly of other native
broadleaf species

38.5 0.0 105.9 3.2

31314 Mixed coniferous and broadleaf forests
predominantly of sweet chestnut 84.4 0.0 106.3 16.2

31315 Mixed coniferous and broadleaf forests
predominantly of beech 86.1 0.0 85.2 8.2

31316 Mixed coniferous and broadleaf forests
predominantly of hygrophilous species 43.3 0.0 86.8 12.6

31317 Mixed coniferous and broadleaf forests
predominantly of exotic species 54.7 0.0 82.1 6.9

31321
Mixed coniferous and broadleaf forests
predominantly of Mediterranean pines

and cypresses
0.0 0.0 0.0 0.0

31322
Mixed coniferous and broadleaf forests

predominantly of oro-Mediterranean and
mountain pines

59.5 0.0 102.0 11.0

31323 Mixed coniferous and broadleaf forests
predominantly of fir 102.6 0.0 95.9 24.5

31325 Mixed coniferous and broadleaf forests
predominantly of exotic conifers 67.5 0.0 74.4 9.0
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Table A3. Biophysical surfaces and monetary values for CSS for each CLC LC class in 2006 and 2012.
Source: own elaborations by authors from INFC 2005 and 2015 databases.

CLC—Code Total C Stored (t/ha)

Surface (ha)
Monetary Value

Social Cost (EUR) Market Price (EUR)

2006 2012 2006 2012 2006 2012

3111
0 308 315

0
0 0 0

31311

3112
130.2 1485 1512 28,178,392 28,690,726 5,413,716 5,512,147

31312

3116
142.7 125 199 2,599,637 4,138,623 499,450 795,124

31316

3117
143.7 116 106 2,429,369 2,219,941 466,738 426,502

31317

3113
147.6 62,775 61,202 1,350,367,087 1,316,529,931 259,436,520 252,935,626

31313

3122
172.5 4851 4404 121,954,868 110,717,221 23,430,330 21,271,320

31322

3115
179.5 8490 9439 222,101,202 246,927,355 42,670,740 47,440,414

31315

3124
184.5 5768 5645 155,095,925 151,788,574 29,797,488 29,162,070

31324

3114
206.9 23,242 21,671 700,830,111 653,458,796 134,645,554 125,544,437

31314

3123
223 46,031 46,606 1,496,008,421 1,514,695,932 287,417,564 291,007,864

31323

3121
0 0 0 0 0 0 0

31321

Total 4,079,565,011 4,029,167,098 783,778,100 774,095,504

Appendix A.2. Habitat Quality

Table A4. Correspondence between CLC LC codes (2018) and habitat categories introduced in [117].
Source: own elaboration by authors.

CLC—Code CLC Description Habitat Category Assigned

111 Continuous urban fabric Buildings and other artificial areas or impervious soils

112 Discontinuous urban fabric Buildings and other artificial areas or impervious soils

121 Industrial or commercial units and public facilities Buildings and other artificial areas or impervious soils

122 Road and rail networks and associated land Buildings and other artificial areas or impervious soils

123 Port areas Buildings and other artificial areas or impervious soils

124 Airports Open urban areas

131 Mineral extraction sites Open urban areas

132 Dump sites Open urban areas

133 Construction sites Open urban areas

141 Green urban areas Grasslands

142 Sport and leisure facilities Grasslands

211 Non-irrigated arable land Intensive agricultural lands

212 Permanently irrigated arable land Intensive agricultural lands

213 Rice fields Extensive agricultural lands

96



Land 2025, 14, 216

Table A4. Cont.

CLC—Code CLC Description Habitat Category Assigned

221 Vineyards Extensive agricultural lands

222 Fruit tree and berry plantations Extensive agricultural lands

223 Olive groves Extensive agricultural lands

231 Pastures, meadows and other permanent grasslands under
agricultural use Grasslands

241 Annual crops associated with permanent crops Extensive agricultural lands

242 Complex cultivation patterns Intensive agricultural lands

243 Land principally occupied by agriculture, with significant
areas of natural vegetation Intensive agricultural lands

244 Agro-forestry areas Extensive agricultural lands

311 Broad-leaved forest Broadleaves forests

312 Coniferous forest Conifer forests

313 Mixed forest (Broadleaves forests + Conifer forests)/2

321 Natural grassland Grasslands

322 Moors and heathland Shrublands

323 Sclerophyllous vegetation Shrublands

324 Transitional woodland/shrub Inland unvegetated or sparsely vegetated areas

331 Beaches, dunes, and sand plains Beaches, dune and, sands

332 Bare rock Inland unvegetated or sparsely vegetated areas

333 Sparsely vegetated areas Inland unvegetated or sparsely vegetated areas

334 Burnt areas Inland unvegetated or sparsely vegetated areas

335 Glaciers and perpetual snow Inland unvegetated or sparsely vegetated areas

411 Inland marshes Wetlands

412 Peatbogs Wetlands

421 Coastal salt marshes Wetlands

422 Salines Water bodies

511 Water courses Water bodies

512 Water bodies Water bodies

521 Coastal lagoons Water bodies

522 Estuaries Water bodies

Table A5. Sensitivity table for each CLC LC class in 2018 with reference to the threats considered.
Source: [117].

CLC—Code
Habitat

Suitability

Sensitivity to Threats

Intensive
Agriculture

Extensive
Agriculture

Soil
Consumed

Railways Road 1 Road 2 Road 3 Road 4

111 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

112 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

121 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

122 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

123 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

124 0.27 0.31 0.21 0.56 0.46 0.56 0.52 0.46 0.19

131 0.27 0.31 0.21 0.56 0.46 0.56 0.52 0.46 0.19

132 0.27 0.31 0.21 0.56 0.46 0.56 0.52 0.46 0.19

133 0.27 0.31 0.21 0.56 0.46 0.56 0.52 0.46 0.19

141 0.86 0.75 0.52 0.72 0.60 0.80 0.71 0.63 0.42
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Table A5. Cont.

CLC—Code
Habitat

Suitability

Sensitivity to Threats

Intensive
Agriculture

Extensive
Agriculture

Soil
Consumed

Railways Road 1 Road 2 Road 3 Road 4

142 0.86 0.75 0.52 0.72 0.60 0.80 0.71 0.63 0.42

211 0.26 0.00 0.12 0.51 0.44 0.61 0.54 0.47 0.24

212 0.26 0.00 0.12 0.51 0.44 0.61 0.54 0.47 0.24

213 0.52 0.54 0.00 0.62 0.51 0.71 0.61 0.55 0.26

221 0.52 0.54 0.00 0.62 0.51 0.71 0.61 0.55 0.26

222 0.52 0.54 0.00 0.62 0.51 0.71 0.61 0.55 0.26

223 0.52 0.54 0.00 0.62 0.51 0.71 0.61 0.55 0.26

231 0.86 0.75 0.52 0.72 0.60 0.80 0.71 0.63 0.42

241 0.52 0.54 0.00 0.62 0.51 0.71 0.61 0.55 0.26

242 0.26 0.00 0.12 0.51 0.44 0.61 0.54 0.47 0.24

243 0.26 0.00 0.12 0.51 0.44 0.61 0.54 0.47 0.24

244 0.52 0.54 0.00 0.62 0.51 0.71 0.61 0.55 0.26

311 0.93 0.67 0.47 0.77 0.65 0.85 0.77 0.66 0.40

312 0.82 0.63 0.44 0.76 0.61 0.84 0.76 0.68 0.39

313 0.87 0.65 0.46 0.77 0.63 0.85 0.77 0.67 0.40

321 0.86 0.75 0.52 0.72 0.60 0.80 0.71 0.63 0.42

322 0.81 0.72 0.51 0.69 0.60 0.78 0.71 0.63 0.39

323 0.81 0.72 0.51 0.69 0.60 0.78 0.71 0.63 0.39

324 0.55 0.51 0.35 0.61 0.46 0.61 0.57 0.52 0.30

331 0.74 0.68 0.51 0.86 0.67 0.81 0.46 0.69 0.50

332 0.55 0.51 0.35 0.61 0.46 0.61 0.57 0.52 0.30

333 0.55 0.51 0.35 0.61 0.46 0.61 0.57 0.52 0.30

334 0.55 0.51 0.35 0.61 0.46 0.61 0.57 0.52 0.30

335 0.55 0.51 0.35 0.61 0.46 0.61 0.57 0.52 0.30

411 0.96 0.80 0.59 0.79 0.64 0.84 0.74 0.69 0.44

412 0.96 0.80 0.59 0.79 0.64 0.84 0.74 0.69 0.44

421 0.96 0.80 0.59 0.79 0.64 0.84 0.74 0.69 0.44

422 0.83 0.76 0.53 0.72 0.51 0.72 0.64 0.60 0.36

511 0.83 0.76 0.53 0.72 0.51 0.72 0.64 0.60 0.36

512 0.83 0.76 0.53 0.72 0.51 0.72 0.64 0.60 0.36

521 0.83 0.76 0.53 0.72 0.51 0.72 0.64 0.60 0.36

522 0.83 0.76 0.53 0.72 0.51 0.72 0.64 0.60 0.36

Table A6. Threat table for each threat considered. Source: [117].

Threat OSM Classification Maximum Distance Weight

Intensive agriculture / 1.60 0.69

Extensive agriculture / 0.60 0.42

Soil consumed / 1.70 0.79

Railways railways 1.60 0.62

Road 1 highways, major roads, primary roads 1.50 0.86

Road 2 secondary roads, tertiary roads 1.00 0.69

Road 3 residential roads, service roads 0.90 0.61

Road 4 dirt roads, bridleways 0.30 0.28
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Table A7. Surfaces and monetary values of HQ for each CLC LC class in 2012 and 2018. Source: own
elaborations by authors.

CLC—Code Habitat Category
Surface (ha) Unit Monetary

Value (EUR/ha)

Monetary Value (EUR)

2012 2018 2012 2018

111 Buildings and other artificial areas or impervious soils 1059 1059 106.83 113,133 113,133

112 Buildings and other artificial areas or impervious soils 27,785 28,226 106.83 2,968,272 3,015,384

121 Buildings and other artificial areas or impervious soils 8771 9195 106.83 937,006 982,302

122 Buildings and other artificial areas or impervious soils 98 323 106.83 10,469 34,506

124 Open urban areas 923 929 320.49 295,812 297,735

131 Open urban areas 1695 1835 320.49 543,231 588,099

133 Open urban areas 99 91 320.49 31,729 29,165

141 Grasslands 81 54 1131.8 91,676 61,117

142 Grasslands 433 740 1131.8 490,069 837,532

211 Intensive agricultural lands 144,753 143,869 308.62 44,673,671 44,400,851

221 Extensive agricultural lands 552 698 617.24 340,716 430,834

222 Extensive agricultural lands 25 617.24 0 15,431

223 Extensive agricultural lands 521 511 617.24 321,582 315,410

231 Grasslands 4524 4447 1131.8 5,120,263 5,033,115

241 Extensive agricultural lands 54 54 617.24 33,331 33,331

242 Intensive agricultural lands 10,048 9654 308.62 3,101,014 2,979,417

243 Intensive agricultural lands 22,372 22,483 308.62 6,904,447 6,938,703

311 Broadleaves forests 76,195 87,036 803.6 61,230,302 69,942,130

312 Conifer forests 40,406 45,707 803.6 32,470,262 36,730,145

313 (Broadleaves forests + Conifer forests)/2 37,882 20,703 803.6 30,441,975 16,636,931

321 Grasslands 27,051 27,630 1131.8 30,616,322 31,271,634

322 Shrublands 3732 5010 961.47 3,588,206 4,816,965

323 Shrublands 44 88 961.47 42,305 84,609

324 Inland unvegetated or sparsely vegetated areas 16,899 16,169 652.85 11,032,512 10,555,932

332 Inland unvegetated or sparsely vegetated areas 14,668 13,299 652.85 9,576,004 8,682,252

333 Inland unvegetated or sparsely vegetated areas 11,488 12,273 652.85 7,499,941 8,012,428

334 Inland unvegetated or sparsely vegetated areas 53 652.85 0 34,601

335 Inland unvegetated or sparsely vegetated areas 1965 1933 652.85 1,282,850 1,261,959

411 Wetlands 258 233 11,609.1 2,995,148 2,704,920

511 Water bodies 68 68 985.21 66,994 66,994

512 Water bodies 23,897 23,927 985.21 23,543,563 23,573,120

Total 280,362,804 280,480,684

Appendix A.3. Crop Pollination

Table A8. Monetary value of crop pollination for crops dependent on the service based on 2023 production
in Brescia Province. Source: own elaborations by authors from ISMEA, AREA Rica, and ISTAT databases.

Crop

Production (t) Crop Production Crop Pollination

Outdoor Greenhouse Total
Unit Monetary Value

(EUR/t)
Monetary Value

(EUR)
Dependency

Ration
Monetary Value

(EUR)

Apple 1811 0 1811 729 1,320,219 0.65 858,142

Chestnut 1075.9 0 1076 1920 2,065,920 0.25 516,480

Cucumber 25 180 205 291 59,655 0.65 38,776

Green Bean 2364.5 110 2475 1097 2,715,075 0.05 135,754
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Table A8. Cont.

Crop

Production (t) Crop Production Crop Pollination

Outdoor Greenhouse Total
Unit Monetary Value

(EUR/t)
Monetary Value

(EUR)
Dependency

Ration
Monetary Value

(EUR)

Lemon 8 0 8 760 6080 0.05 304

Melon 595 1250 1845 597 1,101,465 0.95 1,046,392

Peach 788 0 788 512 403,456 0.65 262,246

Pear 185 0 185 1423 263,255 0.65 171,116

Pepper 120 114 234 493 115,362 0.05 5768

Strawberry 71 300 371 3023 1,121,533 0.25 280,383

Plum 72 0 72 308 22,176 0.65 14,414

Tomato 44,436 450 44,886 676 30,342,936 0.05 1,517,147

Watermelon 880 400 1280 164 209,920 0.95 199,424

Zucchini 7637.8 450 8089 503 4,068,767 0.95 3,864,755

Total 8,911,046

Appendix A.4. Wood Provision

Table A9. Biophysical, surfaces and monetary value of wood provision for each CLC LC in 2006 and
2012. Source: own elaborations from INFC 2005 and 2015 databases.

INFC

CLC—
Code

Annual Tree
Biomass Increment

per Surface
Surface (ha)

Annual Tree Biomass
Increment
(m3/Year)

Monetary Value
(EUR/Year)

Code Description
(t/ha/
Year)

(m3/ha/Year) 2006 2012 2006 2012 2006 2012

1 Larch and Swiss pine forests 3124 2.4 3.6 5771 5649 20,953 20,510 1,466,710 1,435,700

2 and 3 Spruce forests and Silver fir forests
31323

5.3 8.0
14,085 12,981 112,933 104,081 7,905,310 7,285,670

3123 31,969 33,653 256,326 269,828 17,942,820 18,887,960

4 and 5

Scots pine and Mountain pine
forests and Black pine, Corsican
pine, and Bosnian pine forests

3122
4.7 7.1

564 1104 4010 7850 280,700 549,500

31322 4289 3301 30,496 23,471 2,134,720 1,642,970

6 Mediterranean pine forests
3121

0 0.0
0 0 0 0 0 0

31321 0 0 0 0 0 0

7
Other coniferous forests, pure

or mixed

3125
2.7 4.1

0 0 0 0 0 0

31325 0 0 0 0 0 0

8 Beech forests
3115

4.2 6.4
6735 7025 42,793 44,636 2,995,510 3,124,520

31315 1759 2420 11,176 15,376 782,320 1,076,320

9 and 10

Sessile oak, Downy oak, and
English oak forests

and Turkey oak, Hungarian oak,
Macedonian oak, Valonia

oak forests

3112 5.5 8.3
1485 1513 12,356 12,589 864,920 881,230

31312 0 0 0 0 0 0

11 Chestnut forest
3114

5 7.6
21,063 19,136 159,323 144,747 11,152,610 10,132,290

31314 2192 2546 16,581 19,258 1,160,670 1,348,060

12
Hop-hornbeam and

hornbeam forests

3113
2.7 4.1

51,657 47,938 210,999 195,808 14,769,930 13,706,560

31313 11,150 13,297 45,543 54,313 3,188,010 3,801,910

13 Hygrophilous forests
3116

3.9 5.9
125 198 738 1168 51,660 81,760

31316 0 0 0 0 0 0

14 Other deciduous forests
3117

4.3 6.5
116 107 755 696 52,850 48,720

31317 0 0 0 0 0 0

15 and
16

Holm oak forests and Cork
oak forests

3111
0 0.0

272 278 0 0 0 0

31311 37 37 0 0 0 0

Total 64,748,740 64,003,170
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Appendix A.5. Particulate Removal

Table A10. Biophysical surfaces and monetary value of particulate removal for each CLC LC class in
2012 and 2018. Source: own elaborations by authors.

CLC Absorption
Coefficient

(kg/(ha Year))

Unit Monetary
Value

(EUR/ha/Year)

Surface
(ha)

Monetary Value
(EUR/Year)

Code Description 2006 2012 2006 2012

311 Broadleaf forests 160 500 76,195 87,040 38,097,500 43,520,000

312 Coniferous forests 490 700 40,406 20,703 28,284,200 14,492,100

313 Mixed forests 325 600 37,882 45,707 22,729,200 27,424,200

Total 89,110,900 85,436,300

Appendix A.6. Hydrological Regime Regulation Table

Table A11. Biophysical surfaces and monetary value of hydrological regime regulation for each CLC
LC class in 2012 and 2018. Source: own elaborations by authors from ARPA Lombardia data.

CLC—Code Absorption Coefficient
Average Annual

Absorption
(m/Year)

Water Volume
Absorbed

(m3/ha/Year)

Surface (ha) Monetary Value (EUR/Year)

2012 2018 2012 2018

111 0% 0 0.000 0 1059 1059 0 0

112 0% 0 0.000 0 27,786 28,226 0 0

121 0% 0 0.000 0 8771 9195 0 0

122 0% 0 0.000 0 98 323 0 0

124 0% 0 0.000 0 923 929 0 0

131 0% 0 0.000 0 1692 1835 0 0

133 0% 0 0.000 0 99 91 0 0

141 0% 0 0.000 0 81 54 0 0

142 0% 0 0.000 0 433 740 0 0

221 17% 3 0.154 1540 552 698 8,730,322 11,039,428

222 17% 3 0.154 1540 0 25 0 395,395

223 17% 3 0.154 1540 521 511 8,240,032 8,081,874

224 17% 3 0.154 1540 4 4 63,263 63,263

231 15% 2 0.136 1360 4521 4447 63,145,711 62,112,138

241 15% 2 0.136 1360 54 54 754,229 754,229

242 15% 2 0.136 1360 10,049 9654 140,356,393 134,839,349

243 15% 2 0.136 1360 22,374 22,483 312,502,133 314,024,558

322 15% 2 0.136 1360 3735 5010 52,167,492 69,975,672

323 15% 2 0.136 1360 44 44 614,557 614,557

324 17% 3 0.154 1540 16,901 16,169 267,302,836 255,725,670

332 0% 0 0.000 0 14,668 13,299 0 0

333 0% 0 0.000 0 11,487 12,273 0 0

334 0% 0 0.000 0 0 53 0 0

335 0% 0 0.000 0 1965 1933 0 0

411 0% 0 0.000 0 258 233 0 0

511 0% 0 0.000 0 68 68 0 0

512 0% 0 0.000 0 23,900 23,927 0 0

2111 5% 1 0.045 450 144,663 143,777 668,560,055 664,465,406

2112 5% 1 0.045 450 92 92 425,178 425,178

3111 20% 4 0.182 1820 278 251 5,196,209 4,691,541

3112 20% 4 0.182 1820 1513 4067 28,280,088 76,017,924
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Table A11. Cont.

CLC—Code Absorption Coefficient
Average Annual

Absorption
(m/Year)

Water Volume
Absorbed

(m3/ha/Year)

Surface (ha) Monetary Value (EUR/Year)

2012 2018 2012 2018

3113 20% 4 0.182 1820 47,937 49,500 896,009,642 925,224,300

3114 20% 4 0.182 1820 19,137 21,962 357,697,322 410,500,527

3115 20% 4 0.182 1820 7024 10,894 131,288,394 203,624,112

3116 20% 4 0.182 1820 198 230 370,0897 4,299,022

3117 20% 4 0.182 1820 107 132 1,999,980 2,467,265

3121 30% 5 0.272 2720 0 37 0 1,033,573

3122 30% 5 0.272 2720 1104 1652 30,839,578 46,147,629

3123 30% 5 0.272 2720 33,652 32,782 940,048,429 915,745,501

3124 30% 5 0.272 2720 5649 11,236 157,801,426 313,870,918

3131 30% 5 0.272 2720 18,300 10,978 511,171,586 306,663,843

3132 30% 5 0.272 2720 19,581 9724 546,983,486 271,634,106

3211 15% 2 0.136 1360 19,894 21,118 277,863,477 294,959,330

3212 15% 2 0.136 1360 7153 6512 99,907,382 90,954,406

3231 15% 2 0.136 1360 0 44 0 614,557

Total 5,511,650,093 5,390,965,269
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Abstract: The integrity of habitat quality is a pivotal cornerstone for the sustainable ad-
vancement of local ecological systems. Rapid urbanization has led to habitat degradation
and loss of biodiversity, posing severe threats to regional sustainability, particularly in
extremely vulnerable arid zones. However, systematic research on the assessment indica-
tors, limiting factors, and driving mechanisms of habitat quality in arid regions is notably
lacking. This study takes Urumqi, an oasis city in China’s arid region, as a case study and
employs the InVEST and PLUS models to conduct a dynamic evaluation of habitat quality
in Urumqi from 2000 to 2022 against the backdrop of land use changes. It also simulates
habitat quality under different scenarios for the year 2035, exploring the temporal and spa-
tial dynamics of habitat quality and its driving mechanisms. The results indicate a decline
in habitat quality. The habitat quality in the southern mountainous areas is significantly
superior to that surrounding the northern Gurbantunggut Desert, and it exhibits greater
stability. The simulation and prediction results suggest that from 2020 to 2035, habitat
degradation will be mitigated under Ecological Protection scenarios, while the decline in
habitat quality will be most pronounced under Business-As-Usual scenarios. The spatial
distribution of habitat quality changes in Urumqi exhibits significant autocorrelation and
clustering, with these patterns intensifying over time. The observed decline in habitat
quality in Urumqi is primarily driven by anthropogenic activities, urban expansion, and
climate change. These factors have collectively contributed to significant alterations in the
landscape, leading to the degradation of ecological conditions. To mitigate further habitat
quality loss and support sustainable development, it is essential to implement rigorous
ecological protection policies, adopt effective ecological risk management strategies, and
promote the expansion of ecological land use. These actions are crucial for stabilizing and
improving regional habitat quality in the long term.

Keywords: Urumqi; habitat quality; PLUS-InVEST; land use/land cover changes; scenario
simulation

1. Introduction

Land use change is a key factor influencing regional habitat quality [1]. Habitat qual-
ity refers to the capacity of the natural environment to provide the essential conditions
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necessary for species’ survival [2]. Land use change can reflect the status of regional
biodiversity and ecosystem health to a certain extent, serving as a crucial guarantee and
fundamental prerequisite for the survival and reproduction of organisms [3]. Therefore,
the level of habitat quality is directly related to the maintenance of biodiversity and the
function of ecosystem services. With the intensification of human activities, especially the
rapid advancement of urbanization, the dramatic expansion of impermeable surfaces has
had a significant impact on the quality of regional habitats, which in turn poses a great
challenge to biodiversity conservation [4], and coupled with global climate change, the
quality of habitats and biodiversity poses a serious threat to ecosystems [5]. In particu-
lar, urban expansion over the past two decades has encroached upon extensive areas of
arable and natural land with high ecological value, resulting in the loss of over 80% of
biologically important habitats [6]. This problem is exacerbated in extreme arid regions,
where limited water resources and land desertification intensify habitat degradation un-
der human-induced disturbances, making habitats more vulnerable [7]. Without timely
intervention, habitat quality will be subjected to substantial threats in the future [8].

To enhance regional habitat quality, numerous scholars have conducted extensive
research. Amphibian biologists were among the first to focus on this topic, primarily as-
sessing specific wildlife species or communities through field surveys [9,10]. Swiss scholar
Glenz et al. proposed an application of a predictive wolf habitat model to address the
issue of large-scale migration and the establishment of small populations in Canis lupus
populations [9]. With the intensification of urbanization’s impact on habitat quality since
the Anthropocene, current research primarily focuses on two aspects: First is quantifying
habitat quality to identify priority conservation areas [11,12]. Ikaunece et al. conducted a
forest key habitat inventory and established a forest network of endangered tree species
in order to establish priority protected areas for Nordic endangered tree species [11]. To
effectively protect the biodiversity of coastal areas, Zhu et al. utilized geomorphologi-
cal models, species habitat models, and other methodologies to determine the priority
sequence for conservation in response to sea-level rise and land use changes within the
Matanzas River Basin [12]. On the other hand, current research explores the impacts of
land use changes on habitat quality from both micro and macro perspectives during the
urbanization process. At the microlevel, biodiversity is regarded as the best indicator of
habitat quality. Researchers have primarily analyzed the effects of land use changes on
biodiversity, focusing on plant and animal communities [13,14]. Urban growth’s conversion
of ecological land to construction land significantly fragments habitats, disrupts ecological
flows, and diminishes biodiversity [14]. At the macrolevel, most studies combine InVEST
(Integrated Valuation of Ecosystem Services and Trade-offs)and predictive models to assess
the impacts of historical and future land use changes on habitat quality [15,16]. Habitat
quality is closely related to changes in land use types, with some researchers evaluating
the relationship between land use and habitat quality through changes in habitat quality
caused by land use transitions [17,18]. Chinese researchers, utilizing Geographically and
Temporally Weighted Regression (GTWR) and Multiscale Geographically Weighted Re-
gression (MGWR) models, have identified urban expansion as a primary driver of shifts
in habitat quality [19]. Habitat quality is closely related to changes in land use types, and
some researchers have evaluated the relationship between land use and habitat quality
through changes in habitat quality caused by land use conversion. Wu et al. [20] and
Zhang et al. [21] developed frameworks to assess future land use impacts on habitat quality.
However, it is important to note that the contribution of land use conversion to changes in
habitat quality has rarely been measured across different historical and future scenarios.
This is particularly true in varying developmental contexts, where the changes in habitat
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quality and their driving mechanisms remain poorly understood. Consequently, there is
a limited understanding of the long-term dynamic changes in regional habitat quality, as
well as inadequate support for regional ecological quality enhancement and sustainable
economic development.

Despite current research addressing habitat quality changes across various tem-
poral and spatial scales—such as provincial, metropolitan, protected areas, and river
basins—there is relatively little focus on arid regions, and there is a lack of systematic
assessment indicators. Arid regions are among the most vulnerable natural landscapes
in the world, covering approximately 40% of the Earth’s total area. These regions are
characterized by scarce precipitation, high evaporation rates, low runoff, and poor soil
quality. Their ecological environments are exceptionally fragile and highly sensitive to both
climate change and human activities [22]. Since the 21st century, with the advancement of
the national Western Development Strategy and the implementation of the Belt and Road
Initiative, Urumqi has experienced rapid economic development, population growth, and
intensified the development and utilization of water and soil resources. As a result, the
city’s ecological environment issues have become increasingly prominent [23]. The dynam-
ics and future trends of habitat quality in the region are critical for the country’s ecological
security and biodiversity conservation. In response, this study focused on Urumqi, an oasis
city in Northwest China’s arid region. First, the land use transfer matrix from 2000 to 2022
was used to identify the direction and extent of land use changes, as well as analyze their
temporal and spatial characteristics. Next, the InVEST-PLUS model simulated land use
changes under four scenarios for 2035, measuring historical and future habitat quality to
analyze its temporal and spatial evolution: Business-As-Usual (BAU), cropland protec-
tion (CP), ecological protection (EP), and economic development (ED). Finally, this study
quantitatively assessed the impact of land use changes on habitat quality. The findings
provide a theoretical basis for stakeholders to optimize land use structures and improve
habitat quality.

2. Materials and Methods

2.1. Study Area

Urumqi, located in the arid northwest region of China, holds a pivotal position within
the core area of the Silk Road Economic Belt. The municipality governs seven districts and
one county, covering an area of approximately 1.42 × 104 km2, with 545.1 km2 developed.
The permanent population is 4.085 million. The climate is classified as a mid-temperate
continental arid climate, with an average annual temperature of 25.7 ◦C and annual pre-
cipitation of 286.3 mm. Urumqi is surrounded by mountains on three sides, with the
Gurbantunggut Desert to the north (Figure 1), which is a typical composite system of
“Mountains-Rivers-Forests-Fields-Lakes-Grass-Sand, and Ice” [24]. As a result, it is rich
in flora and fauna. Urumqi is home to approximately 1100 species of wild plants and
more than 300 species of vertebrates. As the capital city of Xinjiang, Urumqi, driven by the
Urumqi metropolitan area, has cultivated a favorable environment for economic growth.
However, nature faces numerous challenges. Research on the spatiotemporal evolution
and driving mechanisms of habitat quality in oasis cities under the impact of urbaniza-
tion can provide valuable theoretical guidance for regional sustainable development and
ecological balance.

2.2. Data Description

The types of data used in this study mainly included spatial data and statistical data.
The spatial data were mainly land use data and land use simulations of factors affecting
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land use. The data on land use and land cover were sourced from the Geospatial Data
Cloud. Land use data were obtained through the interpretation of remote sensing imagery.
To ensure optimal data accuracy, a series of preprocessing tasks were conducted. Each
image must have had less than 10% cloud cover, and the imaging period was selected from
July to September. Missing images were replaced with those from adjacent years, with a
spatial resolution of 30 m. The main preprocessing steps included geometric correction, ra-
diometric calibration, atmospheric correction, image mosaicking, and cropping. The ENVI
software was primarily used for radiometric calibration, with the purpose of eliminating
errors inherent in the sensor during imaging and converting image brightness grayscale
values into radiance values and other physical quantities. Atmospheric correction used
the model tool “Atmospheric Correction Module”-“FLAASH Atmospheric Correction”.
Subsequently, image mosaicking was performed using the “Mosaicking”-“Seamless Mo-
saic” tool. Finally, cropping was performed using the “Regions of Interest”-“Subset Data
from ROIs” tool with the administrative boundary vector data of the study area, thereby
obtaining the regional image data for Urumqi in the years 2000, 2010, 2020, and 2022. All
image data were unified using the World Geodetic System 1984 geodetic coordinate system.
The PLUS (Patch-level Land Use Simulation Model, PLUS) model’s influencing factor data
included a total of 13 categories, such as temperature and precipitation. Details of the data
are provided in Table 1. Before using the PLUS model for simulation and prediction, it is
necessary to rasterize the driving factors used in this study. First, in ArcGIS 10.8 software,
the projection tool was used to ensure that the projection coordinates of the road network,
railway network, residential points, and river system vector data were consistent with the
land use data of the study area Next, the Euclidean distance tool was used to rasterize the
four accessibility factors. Finally, all raster data were unified in terms of spatial extent and
resolution using the resampling and cropping raster tools, with the projection coordinates
set to Albers Conic Equal Area and the spatial resolution standardized to 30 m.

Figure 1. Sketch map of study area. (a) illustrates the geographical position of Urumqi, Xinjiang,
within China; (b) presents the spatial distribution of different land use categories in Urumqi in 2022.
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The methodology of this article consists of four steps, as illustrated in Figure 2. The
first step involves preprocessing land use data and land use impact factor data. The second
step defines four scenarios based on regional planning policies, including ecological red
lines, the Urumqi 14th Five-Year Plan, and permanent basic farmland: BAU, CP, EP, and ED.
The Markov chain model is used to predict land use demand for 2035, and the PLUS model
simulates future land use changes under these four scenarios. The third step involves
using the InVEST model to evaluate and compare the spatiotemporal distribution of habitat
quality for the years 2000, 2010, 2022, and 2035. The fourth step is to analyze the research
results and propose optimization recommendations.

Table 1. Data sources of the land use/land cover changes and its impact factors.

Sub-Data Year(s) Resolution Database Sources Access Date

Land use/Land cover 2000\2010\2020\2022 30 m https://www.gscloud.cn/ 20 December 2023
DEM/Slope/Elevation 2020 30 m https://www.gscloud.cn/ 20 December 2023

NDVI/Soil 2020 1000 m https://www.resdc.cn/ 25 April 2024
Precipitation/Temperature 2020 30 m http://data.cma.cn/ 22 April 2024

GDP/Population 2020 1000 m https://www.resdc.cn/ 22 April 2024
Railway/Highway/Road/

Settlement/Water 2020 1:1,000,000 https://www.webmap.cn/ 20 December 2023

 

Figure 2. Technology road map for land use modeling and habitat quality evaluation.

2.3. Habitat Quality Evaluation Indicator System

The InVEST model is a comprehensive valuation model of ecosystem services and
trade-offs that provides users with a variety of options for evaluating ecosystem functioning.
It consists of three main modules, each containing lots of valuation items: terrestrial, marine,
and freshwater ecosystem valuation. The main purpose of this study was to evaluate the
habitat quality in Urumqi using the habitat quality module of the InVEST model. The
habitat quality module assumes that the higher the quality of the habitat, the greater the
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biodiversity in the area, and vice versa [25]. This model correlates the land use type with
the threat factors of the ecosystem and derives the degree of the habitat degradation of the
ecosystem based on the sensitivity of the ecosystem to the threat sources, the distance of
influence of the threat sources, the degree of interaction between the threat sources, etc.
(taking the range of values from 0 to 1), and the value is directly proportional to the level of
habitat quality, as specified in the following formulas:

Qxj = Hj

[
1 −

(
DZ

xj

DZ
xj + kZ

)]
(1)

where Qxj: habitat quality of individual raster x at habitat or land use type j; Hj: habitat
suitability at habitat or land use type j; Dxj: weighted mean of threat levels of raster cell x
at habitat or land use type j; k: half-saturation parameter, taken as 1/2 of the maximum
value of Dxj; and Z: normalization constant, taken as 2.5.

Dxj =
R

∑
r=1

Yr

∑
y=1

(
wr ÷

R

∑
r=1

wr

)
× ry × irxy × βx × Sjr (2)

irxy = 1 −
(

dxy
drmax

)
(3)

where Dxj: weighted average of the total threat level to which raster x is exposed, a certain
threat factor specifically; R: all grids on the raster layer of threat factor r; Yr: phase element
set on the raster layer of threat factor r; Wr: normalized threat weight, ranging from 0 to 1;
ry: used to determine whether a raster y is the source of the threat factor r; irxy: distance
function between the habitat class and threat factor; βx: under the relevant environmental
protection state; βx: the accessibility level of the threat source to grid x under the relevant
environmental protection status; and Sjr: the sensitivity to threat factor r when the habitat
or land use type is j.

Based on the land use data, the model estimates habitat quality by considering the
distance and intensity of threat factors, as well as the sensitivity of different habitat types
to these factors. In this study, we refer to the InVEST model manual, consider the actual
conditions in the study area, and draw on relevant research to define the threat source
factors (Table 2) and sensitivity factors (Table 3).

Table 2. Threat factor parameter.

Threat Factors Weight Influence Distance (km) Spatial Decay Type

Cropland 0.7 8 linear
Built-up land 1 10 exponential

Bareland 0.2 3 exponential

Table 3. Sensitivity of different land use types to habitat threats.

Land Use Type Habitat Suitability
Threats

Cropland Built-Up Land Bareland

Cropland 0.5 0 0.5 0.4
Forest land 1 0.8 0.9 0.5
Grassland 0.7 0.5 0.6 0.5

Water body 0.9 0.7 0.8 0.2
Built-up land 0 0 0 0

Bareland 0.1 0.1 0.2 0
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In the geographic information map model, cropland, forest land, grassland, water
body, built-up land, and bareland are assigned values from 1 to 6. In ArcGIS 10.8, the
land use conversion map cells were algebraically overlaid to integrate spatial information
from the map-coded values [15]. Based on the geographic information map model, the
map algebra overlay operation was performed on the Urumqi 2022 and future land use
atlas grid cells, and the habitat quality changes were analyzed based on the results of the
operation. The formula is

W = 10B + Q (4)

where W is the map cell grid map of land use class changes; B is the 2022 land use map cell
grid value; and Q is the attribute value of the future land use mapping unitary grid.

The relationship between land use change and habitat quality was determined through
the Habitat Quality Dynamic index. The formula is as follows [15]:

HQDIij =
ΔHij

ΔLij
(5)

where HQDIij is the dynamic index of habitat quality; positive values indicate positive
impacts of land use change on habitats; negative values indicate negative impacts; and the
larger the absolute value, the larger the impacts. ΔHij indicates the change in habitat quality
caused by land use type conversion, and ΔLij indicates the area of land transformation in
the region during the same period.

We used the contribution index (CI) to characterize the extent to which land use type
conversion contributes to changes in habitat quality, calculated as follows [15]:

CI = Qij × HQDIij (6)

where CI is the contribution index, and Qij is the proportion of the area converted from
land use type i to land use type j to the total converted area. Positive and negative values of
the CI represent positive and negative contributions, respectively. The higher the absolute
value of the CI, the greater the impact of land use conversion on habitat quality.

2.4. PLUS Model

The Patch-generating Land Use Simulation (PLUS) model is an advanced version of
the Future Land Use Simulation (FLUS) model. It integrates the Land Expansion Analysis
Strategy (LEAS) and Cellular Automata model based on multi-type random patch seeds
(CARS). This model not only enables a better exploration of the triggers behind various
types of land use changes but also improves the simulation of changes among multiple
types of land use patches [4]. We used the PLUS model to simulate future land use, which
integrates a Markov chain. The advantage of this model is its ability to better explain the
mechanisms driving various land use changes and more accurately simulate future land use
changes under different policy scenarios [26]. Based on the land use data of Urumqi in 2015
and 2020, the development probability of the six land use types was determined, and then
based on the actual situation, 13 factors were selected from natural, socio-economic, and
accessibility aspects, including elevation, slope, slope direction, temperature, precipitation,
soil type, Normalized Vegetation Index (NDVI), population density, and Gross Domestic
Product (GDP), as well as distance to highway, distance to railway, distance to river,
and distance to settlements; however, future development plans for the region were not
considered when setting land use simulation scenarios. In the LEAS, the probability of
development for each land use type was determined using a random forest algorithm
(Figure 3). The current land use map of Urumqi in 2020 was simulated based on the
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2015 land use data, combined with the development probability of each type of land use
incorporating the development probability for each land use type, the projected future
demand for each land use, the transfer cost matrix, and the weights of domain factors. The
simulated land use data for 2020 were then compared with the actual 2020 data through
spatial overlay analysis. The Kappa statistic and Figure of Merit (FoM) were calculated, and
the parameters were iteratively adjusted to improve the simulation accuracy. Among them,
the Kappa coefficient is an indicator for measuring classification accuracy. Usually, Kappa
ranges from 0 to 1 and can be divided into five groups to indicate different degrees of
consistency: 0.0 to 0.20 indicates very low consistency (mild), 0.21 to 0.40 indicates general
consistency, 0.41 to 0.60 indicates moderate consistency (moderate), 0.61 to 0.80 indicates
basic consistency, and 0.81 to 1 indicates almost complete consistency [26]. The FoM
coefficient is concentrated on the grid where land use change occurs and is usually used to
measure the goodness of fit of changes in land use composition. The FoM value is usually
between 1% and 59%, and larger FoM values often match higher model accuracy [26].
Finally, based on the 2020 land use data, the model parameters were repeatedly debugged
in the PLUS model to simulate the land use data of Urumqi in 2035 under the B-A-U, CP,
EP, and ED scenarios.

Figure 3. Development probability of various types of land.

2.5. Multi-Scenario Simulation

The Business-As-Usual (B-A-U) scenario refers to a situation where historical land
use changes continue without any changes or interventions. In this scenario, land use
transition probabilities, transition cost matrices, and constraints on conversion areas remain
unchanged. Croplands in farming areas are crucial for food production, agricultural supply,
and rural development. Therefore, this study introduces the CP scenario, which focuses
on ensuring food security and preserving permanent basic agricultural land. In the CP
scenario, the likelihood of cropland converting to urban areas is reduced by 60%, following
the Business-As-Usual (BAU) probabilities, while the transition probabilities for other land
uses remain unchanged [27]. The EP scenario focuses on the conservation of land types
important for ecological restoration, such as forests, grasslands, and water body, with the
aim of ensuring ecological security and maintaining ecosystem service functions [28]. The
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ED scenario requires the rational development of urban boundaries within the constraints
of cropland protection and ecological protection lines, with the aim of creating a compact
and intensive urban spatial pattern [29]. The proportions of land use transition probabilities
are detailed in Table 4.

Table 4. Transition probability matrix of each land use type in the EP and ED scenarios.

Scenarios Land Use Type Cropland Forest Grassland Built-Up Land

Business-As-Usual not adjusted

Cropland Protection Cropland −60%

Ecological Protection

Cropland +30% +60% −50%
Forest land −80% −80% −90%
Grassland +20% −80%

Built-up land +20% +20% +50%

Economic Development

Cropland +60%
Forest land +40%
Grassland +40%

Water body +20%
Bareland +10%

Notes: Based on BAU scenario: “+” and “−” indicates “increasing” and “decrease”.

In this study, based on the land use data of Urumqi in 2015 and 2020, the development
probability (Figure 3) of each land use type was generated using the LEAS module in
the PLUS model. This was then further simulated to generate the 2020 land use map by
combining the 2015 land use data with the development probabilities in the CARS module.
After comparing the actual 2020 land use with the simulated 2020 land use, the following
results were obtained: Kappa = 0.8917, FoM = 11.74% (Figure 4).

Figure 4. Comparing real and simulated land use in 2020. The simulated spatial distribution of
land use exhibits discrepancies primarily in the central urban area (A) and two ecological transition
zones (B,C). Consequently, (A) depicts an enlarged view of the central urban area, (B) provides an en-
larged view of the southwestern region, and (C) presents an enlarged view of the southeastern region.

Consequently, the outcomes of the PLUS Model are closely aligned with the actual
land use patterns, exhibiting a high degree of precision, and thus are suitable for forecasting
land use in Urumqi by the year 2035.
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3. Results

3.1. Characteristics of Historical and Future Land Use Spatiotemporal Changes

Based on the land use transfer matrix of Urumqi from 2000 to 2020 (Figure 5), the
land types in Urumqi are ranked by area proportion from largest to smallest as follows:
grassland > bareland > cropland > forest land > built-up land > water body. Notably, the
area of arable land first increased and then decreased, exhibiting land use dynamic indices
of 0.42% and −24.74%, respectively. The main reason is that large-scale reclamation after
2000 led to an increase in arable land area, and after 2010, the policy of converting farmland
back to forest and grassland caused most of the arable land to be transformed into forest
and grassland; the area of grassland showed a decreasing trend over 22 years, possibly
due to overgrazing; the area of water body first decreased and then increased, with land
use dynamics of -1.16% and 14.28%. The area of construction land showed a rapid growth
trend, with new construction primarily emerging from arable land and grassland. Overall,
the study area is characterized by a high coverage of grassland and desert but exhibits poor
habitat quality. This trend is compounded by the rapid expansion of construction land,
leading to the loss of ecological areas such as forest land, grassland, and arable land.

Figure 5. Conversion of land use types, 2000–2022.

The model results of land use area changes in Urumqi for the year 2035 under different
scenarios are as follows (Figure 6). Under the BAU scenario, land use types that saw
an increase in area include built-up land, bare land, and forest land, with built-up land
experiencing the most significant growth at 27.55%. In contrast, cropland, water bodies,
and grassland areas decreased, with cropland showing the largest reduction at 25.30%.
Under the CP scenario, compared to the 2020 land use areas, cropland decreased by
159.63 km2, grassland by 563.48 km2, and water body by 31.4 km2. Forest land, built-up
land, and bareland areas increased by 37.61 km2, 112.48 km2, and 604.41 km2, respectively.
The CP scenario’s land use evolution pattern is consistent with the BAU scenario. The
decline in cropland is attributed to the lack of control over the conversion of permanent
cropland areas. Under the EP scenario, forest land, grassland, and water body increased,
while cropland decreased by 27.04%, and built-up land and bareland decreased by 1.49%
and 3.36%, respectively. Under the ED scenario, built-up land, bareland, and forest land
increased, with built-up land exhibiting the highest growth rate of 39.15%. This increase
is closely linked to factors such as population density and GDP. In contrast, cropland,
water bodies, and grassland decreased, with cropland experiencing the most substantial
reduction of 20.10%.

A comparative analysis of land use data for Urumqi in 2022 and 2035, based on a
geographic information system model (Figure 7), shows that unchanged land (coded as 11,
22, 33, 44, 55, 66) accounted for 91.02%, 90.35%, 94.39%, and 90.64% across the four time
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periods. From 2022 to 2035, the BAU scenario’s total land use change area is 1367.38 km2,
with the largest changes occurring from grassland to bareland (36) and from bareland to
grassland (63). In the CP scenario, the total land use change area is 1326.38 km2, with
the greatest change from grassland to bareland, followed by the conversion of cropland
to built-up land. The ED scenario shows a total land use change area of 1273.48 km2,
with the most significant change from grassland to unused land (667.05 km2), followed by
cropland to built-up land (148.87 km2). In the EP scenario, the total land use change area is
795.04 km2, with the largest change from bareland to grassland (253.17 km2), followed by
the conversion of cropland to grassland (181.62 km2). This reduction in the conversion of
water body, forest land, and grassland to arable and built-up land under the EP scenario
controls excessive growth in construction and cropland, resulting in significant ecological
improvements. In summary, the simulation of Urumqi’s land use situation in 2035 indicates
that future changes in land use will primarily focus on the oasis transition zones and
ecological intersection areas.

 

Figure 6. Spatial distribution of land use in different scenarios for 2035.

Figure 7. Transformation of land use in 2022–2035.
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3.2. Spatiotemporal Changes in Habitat Quality in the Past and Future

From 2000 to 2022, the habitat quality scores in Urumqi showed a declining trend,
with scores of 0.4180, 0.3937, and 0.3838, reflecting change rates of −5.8% and −2.5%
(Table 5). During this period, the implementation of the Western Development Strategy and
rapid urbanization significantly contributed to the continuous decline in habitat quality.
After 2010, the continuous advancement of the “Grain-to-Green” policy slowed the rate
of decrease in arable land and grassland areas, thus mitigating the downward trend in
habitat quality. During the study period, areas with excellent habitat quality consistently
constituted 1% of the total area. The proportion of good habitat quality areas decreased
from 37% in 2000 to 32% in 2010, remaining stable thereafter. The proportion of areas with
moderate habitat quality initially increased and then decreased, rising from 26% in 2000 to
28% in 2010, before returning to 26% in 2022. The proportion of areas with poor habitat
quality gradually increased from 36% in 2000 to 41% in 2022. Overall, habitat quality in
Urumqi displayed a trend of deterioration (Figure 8).

Table 5. Average habitat quality (HQ) for 2000–2022 and different scenarios (BAU, CP, EP, and ED).

HQ 2000 2010 2022 BAU CP EP ED

Mean 0.4180 0.3937 0.3838 0.0898 0.0893 0.0906 0.0892

 
Figure 8. Quantitative changes in habitat quality level.

The spatial distribution of habitat quality in Urumqi exhibits significant regional
heterogeneity. The distribution pattern is characterized by a high-density zone along the
northern side of the Tianshan Mountains, a low-density zone in the Gurbantunggut Desert,
and transitional distribution features in other areas (Figure 9). High-quality habitats are
concentrated on the northern slopes of the Tianshan Mountains and in the northwestern
part of Tianchi, primarily due to the dominance of forest land use types in these areas, which
have high forest coverage and thus ensure a higher level of habitat quality. Other regions
exhibit sporadic distributions of high-quality habitat. Relatively good habitat quality areas
are primarily found within the Tianshan Mountains, where grassland vegetation dominates,
and urban development and population density remain relatively low. These areas maintain
better ecological conditions, contributing to higher habitat quality compared to urbanized
zones. The effective implementation of ecological protection policies has further stabilized
grassland landscapes, promoting the improvement of habitat quality. Moderate habitat
quality regions are primarily found within the central oasis area. Poor habitat quality
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regions are predominantly distributed in the northern desert zone and adjacent areas to
Turpan, where land use types are primarily bareland and low-vegetation grasslands, with
limited potential for ecological improvement. Overall, the spatial distribution pattern
of habitat quality in Urumqi is predominantly influenced by land cover types, showing
significant spatial variability. Areas with natural vegetation, such as grasslands and forests,
tend to have higher habitat quality, while urbanized areas and regions with high human
activity, like built-up lands and agricultural zones, typically exhibit lower habitat quality.
This spatial variability underscores the impact of land use and land cover on the ecological
balance and habitat quality within the region.

Figure 9. Spatial distribution of habitat quality from 2000 to 2022.

Based on the changes in habitat quality over four categories, the habitat changes from
2000 to 2022 are categorized into five types (Figure 10a). The majority, 86.01%, are stable
zones with minimal anthropogenic disruption. Significant degradation and significant
improvement areas account for 2.62% and 0.81%, respectively, while minor degradation
and minor improvement areas account for 8.52% and 2.03% (Figure 10b). These changes are
largely concentrated in regions of heightened human activity, reflecting the dual influence
of human actions on habitat quality. The hot-spot analysis of habitat quality was employed
to study the spatial variation in habitat quality. With little spatial fluctuation in habitat
quality from 2000 to 2022, the year 2022 serves as an illustrative case (Figure 10c).

Figure 10. Spatial variation in habitat quality from 2000 to 2022. (a) Spatial pattern of habitat quality
grade shift. (b) Spatial changes in habitat quality. (c) Spatiotemporal characterization of HQ cold
spots and hot spots.

The results indicate that hot-spot areas are primarily found in the Tianshan Ecological
Protection Zone and the Salt Lakes, with a focus on forest–grassland mosaic zones. These
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areas have higher habitat quality due to their natural vegetation and relatively low human
disturbance. In contrast, cold-spot areas are concentrated in the oasis aggregation devel-
opment zones, the periphery of the Gurbantunggut Desert, and the outskirts of the Salt
Lakes. These cold spots are dominated by agricultural lands, with grasslands occupying
secondary positions. The largest proportion of cold spots is located at the edges of oases,
characterized by bareland, which indicates a significant loss of ecological quality in these
regions due to urban expansion and agricultural development.

Different scenarios (BAU, CP, EP, and ED) for 2035 show a different spatial distribution
of habitat quality (Figure 11). Among them, the EP scenario demonstrates the highest
habitat quality, attributed to significant increases in grasslands, forest lands, and water
bodies. Spatially, all scenarios show that the Tianshan Ecological Protection Zone has high
habitat quality, while other areas have lower quality.

Figure 11. Habitat quality in different scenarios for 2035. (A) represents the magnified view of the
southwestern area, while (B) depicts the magnified view of the southeastern area.

In comparing habitat quality ratings across scenarios, the BAU scenario has good and
excellent habitat quality areas totaling 458.15 km2, or 3.23% of the total area. In contrast,
the EP scenario shows an increase in good and excellent habitat quality areas by 20.72 km2,
representing 3.38% of the total area. The ED scenario integrates elements of both the CP and
BAU scenarios, aiming to balance ecological and economic development. Overall, the aver-
age habitat quality in Urumqi is significantly declining (Table 5). Reasons include various
factors such as land use transformation, urbanization and economic development, water
resource scarcity and pollution, climate change, overgrazing and irrational development,
and insufficient ecological sensitivity and protection [5,23,24,30]. These factors, including

122



Land 2025, 14, 84

urbanization, agricultural expansion, and land degradation, are intertwined and contribute
to the continuous deterioration of Urumqi’s ecological environment quality. The rapid
urban sprawl, especially in the oasis transition zones, leads to the loss of critical habitats,
including grasslands and forest areas. This, combined with the pressures of intensive
farming and the expansion of infrastructure, has significantly impacted the overall ecologi-
cal health of the region. Moreover, the development of areas near deserts and salt lakes
exacerbates soil degradation and reduces the capacity of ecosystems to support biodiversity.
The ongoing decline in habitat quality underscores the need for effective land use planning
and sustainable development practices to protect the region’s natural resources and biodi-
versity. Although the ED scenario may better reflect the actual conditions of the city, the EP
scenario offers the best habitat quality in Urumqi. To improve this situation, it is necessary
to adopt comprehensive ecological governance measures, optimize the sustainable use of
land resources, and strengthen ecological and environmental protection.

3.3. The Influence of Land Use Alterations on Habitat Quality Dynamics

The desert–oasis transition zone is the area where environmental quality changes
are most pronounced. The interconversion between farmland, grassland, desert, and
construction land is the main factor affecting ecological environment quality. Land use
changes have both positive and negative impacts on habitat quality. Land use changes
contribute both positively and negatively to habitat quality changes. Under the BAU
scenario from 2022 to 2035, the positive contribution index to habitat quality change is
0.43, while the negative contribution index is −41.46, yielding a total contribution index of
−41.03 (Table 6).

Table 6. Contribution index for the impact of land use conversions on HQ-CA from 2022 to 2035.

Habitat Quality
Change Type

Land Use
Transfer

BAU CP EP ED

CA (km2) CI CA (km2) CI CA (km2) CI CA (km2) CI

Reduction 12 0.22 −0.01 0.22 −0.04 0.22 −0.01 0.22 −0.01
13 98.94 −3.16 34.04 −1.12 33.71 −1.16 33.71 −1.16
14 2.27 −0.08 0.48 −0.02 0.49 −0.02 0.49 −0.02
15 109.07 −3.3 173.46 −5.48 148.87 −4.87 148.87 −4.87
16 6.49 −0.2 2.41 −0.07 1.50 −0.05 1.50 −0.05
21 0.21 −0.01 0.22 −0.01 0.23 −0.01 0.23 −0.01
23 27.35 −1.43 27.42 −1.47 27.39 −1.53 27.39 −1.53
26 0.17 −0.01 0.16 −0.01 0.16 −0.01 0.16 −0.01
31 39.28 −1.09 42.35 −1.22 43.24 −1.30 43.24 −1.30
32 63.58 −2.62 63.67 −2.70 63.48 −2.81 63.48 −2.81
34 2.68 −0.02 2.60 −0.03 2.59 −0.03 2.59 −0.03
35 36.12 −0.89 33.13 −0.85 38.52 −1.02 38.52 −1.02
36 712.82 −25.70 635.72 −23.49 667.05 −25.78 667.05 −25.78
41 1.73 −0.04 0.67 −0.02 0.65 −0.02 0.65 −0.02
43 5.62 −0.23 5.54 −0.23 5.54 −0.24 5.54 −0.24
45 20.32 −0.48 0.95 −0.02 1.01 −0.02 1.01 −0.02
46 29.11 −1.63 46.20 −2.66 46.71 −2.80 46.71 −2.80
53 27.14 −0.02 26.23 −0.02 18.92 −0.01 18.92 −0.01
61 1.23 −0.01 2.07 −0.01 5.25 −0.02 5.25 −0.02
63 140.40 −0.49 134.26 −0.47 138.26 −0.51 138.26 −0.51
65 8.70 −0.06 6.50 0.05 13.37 −0.10 13.37 −0.10

Improvement 56 73.14 0.02 46.71 −2.80
64 10.45 0.43 9.16 0.38 9.22 0.40 9.22 0.40

Total 1333.88 −41.03 1238.27 −39.54 766.46 -28.08 1257.16 −42.92

Notes: HQ-CA means Habitat Quality Change Area; numbers 1 to 6 in the table represent cropland, forest land,
grassland, water body, built-up land, and bareland, respectively.
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This indicates that land use changes will severely degrade habitat quality during this
period. The main cause of habitat quality degradation is the transfer of grassland and
cropland to other land types, with a cumulative change area of 1071.91 km2, contributing
89.4% of the total impact. In the CP scenario, the positive contribution index to habitat
quality change is 0.4, and the negative contribution index is −39.94, resulting in a total
contribution index of −39.54. This suggests that land use changes will lead to habitat
quality degradation, with the main cause being the transfer of grassland to other land
types, with a cumulative change area of 777.46 km2, contributing 70.81% of the total impact.
Under the EP scenario, the positive contribution index to habitat quality change is 1.26,
while the negative contribution index is −29.34, resulting in a total contribution index of
−28.08. This indicates that habitat quality will still decline, though less severely compared
to other scenarios. The reduction in the transfer area of grassland to other land types is
significant, with a cumulative change area of only 206.17 km2. In the ED scenario from 2022
to 2035, the positive contribution index is 0.4, the negative contribution index is −42.31,
and the total contribution index is −41.92. This indicates that land use changes will lead to
habitat quality degradation, with the main cause being the transfer of grassland to bareland
and cropland to built-up land, with a cumulative change area of 815.92 km2, contributing
72.44% to the total impact.

4. Discussion

4.1. Spatial and Temporal Variations in Habitat Quality and Driving Mechanisms in the Arid Zone

This study provides a comprehensive analysis of land use spatiotemporal changes
in Urumqi from 2000 to 2022 and used the PLUS model to simulate land use under four
scenarios for the year 2035. The Urumqi oasis ecosystem encompasses a diverse range
of environments, including mountains, water bodies, forests, fields, lakes, grasslands,
and deserts. Throughout the study period, both natural factors and human activities
have jointly influenced changes in land use, thereby impacting habitat quality. With the
acceleration of urbanization, the area of built-up land has consistently increased, while
grassland areas have steadily declined. Spatially, urban expansion has exhibited a trend of
moving from south to north and from west to east [31]. The deterioration in habitat quality
is closely related to the reduction in grassland area and the increase in built-up land. The
deterioration in habitat quality is closely related to the reduction in grassland area and the
increase in built-up land.

From the perspective of natural factors, elevation, precipitation, and the NDVI impose
significant constraints on ecological land use over long-term scales, thereby influencing
overall habitat quality. Elevation affects factors such as slope and annual precipitation,
which in turn impact land use types and habitat quality. Generally, habitat quality is higher
in mid- to low-elevation areas and lower in high-elevation areas. Previous studies have
indicated that high elevation and steep slopes provide favorable conditions for the growth
of natural vegetation such as forests and grasslands, resulting in higher vegetation cover
and habitat quality, which aligns closely with the findings of this study [21]. Temperature
and precipitation affect species’ habitat suitability, with significant impacts on species
composition, ecological functions, processes, and surface vegetation growth. Adequate
rainfall promotes habitat suitability [32]; however, excessive rainfall can trigger landslides,
mudslides, and other disasters, exacerbating soil erosion and negatively impacting habitat
quality. This study finds that ecological land use in the region is more susceptible to
precipitation factors. Since 1980, the northwestern arid region has experienced a continuous
trend of warming and increased moisture [33], though precipitation remains unevenly
distributed spatially. For desert plants in arid areas, water is a critical limiting factor for
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survival. Compared to studies in the eastern regions, precipitation is crucial for habitat
quality in Urumqi. The NDVI serves as a key indicator of vegetation growth, with elevation
and precipitation affecting vegetation growth and types in arid regions [30]. Soil type is
a determinant of terrestrial ecosystem habitat quality, with soil pH and organic matter
showing negative and positive correlations with habitat quality, respectively. A reduction
in soil organic matter may lead to decreased soil fertility and quality, thereby impairing
habitat quality [5]. In arid regions, where most soils are aeolian, soil fertility is low and soil
types are homogeneous, which limits their impact on desert plants.

From a socio-economic perspective, the rapid urbanization in Urumqi over the past
two decades has led to the expansion of urban built-up areas and transportation net-
works, which have encroached upon large areas of grassland, thereby disrupting grassland
ecosystems [34]. Additionally, the implementation of the Western Development policy
has resulted in population growth in the region. Noteworthy are the negative impacts of
population migration on receiving areas, such as increased cropland, urban expansion,
rising household waste, and greater human disturbance of natural environments. Although
various ecological protection policies have been implemented, restoration efforts remain
challenging. In summary, the spatial variation in habitat quality in Urumqi is directly influ-
enced by factors such as elevation, precipitation, NDVI, construction land, and population
density, while other factors exert indirect effects. From 2015 to 2020, the contribution of var-
ious factors to land use changes highlights that all considered driving factors impact land
category conversion, though to varying degrees across different land category conversions
(Figure 12). Future research should explore the driving forces behind land cover changes
and habitat quality variations in Urumqi in greater depth [17]. This will help elucidate the
mechanisms of habitat quality evolution and provide a solid foundation for improving
habitat quality and promoting sustainable regional development.

 
Figure 12. Contribution of driving factors by land use type.

Urumqi plays an important role in the northern sand control zone of China’s “two
screens and three belts” ecological security pattern, and the habitat in this region has a
positive impact on China’s ecological civilization construction [35]. We analyze the changes
in various land use types in Urumqi, with the main purpose of better understanding the
spatial and temporal distribution patterns of the land use status and habitat quality of
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different land use types in the region, and providing a theoretical basis for the urban
development and ecological protection of Urumqi. The expansion of construction land in
Urumqi is based on the premise of reducing the area of grassland and arable land. This is
obviously not in line with the concept of sustainable development. Urumqi should firmly
grasp the two development opportunities of the “Western Development Strategy” and
“the Belt and Road Initiative”, make full use of the preferential policies of the country
and the autonomous region, adhere to the concept of ecological civilization construction,
correctly guide all efforts, and achieve a win–win situation in regional economy and
ecological protection.

4.2. Multi-Scenario Projections of Habitat Quality in Arid Zones and Policy Recommendations

The PLUS model effectively simulates the spatial changes in land use structure [4].
In this study, the LEAS module of the PLUS model was employed to identify 13 selected
driving factors. The default setting for the number of decision trees in the random forest
was set to 20, with a sampling rate of 1% and 13 features for training the random forest,
thereby generating probability distribution maps for different land use types. Parameters
such as the transition cost matrix and neighborhood weights were set in the CARS module
of the model. Following relevant studies, domain range parameters were set to 3, and the
attenuation coefficient of the decay threshold, probability of random patch seeds, and other
adjustments were made, with maximum proportions of random seeds for 2020 simulations
set to 0.8, 0.1, and 0.0001, respectively, and parallel thread numbers set to 12 as initial
assumptions [25].

Additionally, the InVEST model was used to assess habitat quality, with spatial com-
parisons between assessed habitat quality and landscape patterns revealing consistency,
further validating the feasibility of the model. Through ecological process modeling, we
observed that under the ED scenario, the area of built-up land experienced the most sig-
nificant increase, by 40.64%. In the EP scenario, the area of forest and grassland increased
substantially by 334.35 km2, aligning with the land use conversion probabilities set for
this scenario. The simulation results for the four scenarios met the expected outcomes,
further confirming the reasonableness of the PLUS model’s parameter settings. Addition-
ally, significant spatial variation in habitat quality was found. The Tianshan Ecological
Protection Zone exhibited higher habitat quality, characterized by forest and grassland
dominance, low population density, and minimal human disturbance. Furthermore, the
influence of ecological protection policies enhanced the stability of forest and grassland
ecosystems, allowing these areas to maintain high habitat quality. Low habitat quality was
predominantly observed in the northern Gurbantunggut Desert Conservation and Restora-
tion Area, where land use types are primarily bareland, with low vegetation cover and
exposed surfaces, making it highly sensitive to environmental changes and limiting habitat
quality. The spatial distribution of historical and future habitat quality was consistent with
ecosystem patterns, validating the model’s evaluation. Finally, under the B-A-U scenario
for 2022–2035, the greatest changes were observed in grassland to bareland (36) and bare-
land to grassland (63), with the most severe habitat quality degradation. This is attributed
to the historical overgrazing and other human activities that have damaged grasslands,
putting pressure and risks on the ecosystem, leading to habitat quality degradation in some
areas [36]. At the same time, certain unused lands with favorable soil conditions have
allowed resilient desert plants to thrive and reproduce, or have even accelerated the spread
of these plants through human intervention [37]. In the EP scenario for 2022–2035, the most
significant change was observed in cropland to grassland (13), primarily due to policies
promoting cropland conversion to grassland.
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Habitat quality is a crucial indicator of regional ecology [2]. Therefore, forecasting
habitat quality under various future scenarios is crucial for providing scientific evidence to
support government policies aimed at ecological environmental protection and preventing
regional habitat quality degradation. By integrating the InVEST and PLUS models, future
habitat quality was predicted under the B-A-U, CP, EP, and ED scenarios. Under the
B-A-U scenario, the average habitat quality is expected to decline by 0.3039 compared to
2022, with a contribution index of −41.03 for land use change on habitat quality, which is
consistent with previous research findings [15]. Without adjustments to land use structures,
allowing them to evolve freely with natural trends, Urumqi’s ecological habitat quality
will continue to deteriorate. Compared to in the B-A-U scenario, it is projected that by
2035, the area of habitat with good and excellent quality in the EP scenario will expand by
20.72 km2, yet the overall average habitat quality will still deteriorate. It is a fact that, in
this scenario, only the conversion area from cropland to forest and grassland has increased,
while the conversion amount from forest and grassland to other types has decreased,
with the transition probability between other types remaining unchanged. Moreover,
certain areas under the EP scenario maintained higher habitat quality, which is consistent
with increased forest and grassland areas, indicating the effective mitigation of habitat
quality degradation.

To promote the sustainable development of ecological economy in Urumqi, it is
crucial to integrate land use regulation policies and actions. Therefore, this study proposes
three measures to enhance habitat quality in arid regions: (1) Control the amount of land
converted between different land types. In formulating land use policies, it is important
to consider the trend and extent of transfers between different land use types, as well as
the impact of land use conversions on habitat quality, with the aim of striking a balance
between ED and EP. (2) Strictly control urban expansion. During urbanization, it is essential
to tightly regulate the construction land within the urban development boundary to prevent
outward expansion and encroachment on cropland. In particular, attention should be given
to protecting existing forest, grassland, and water resources from unreasonable human
activities, preventing arable land abandonment, and construction land encroaching on
arable land to ensure stable arable land areas [38]. (3) Plan urban green space construction
comprehensively. Urban green spaces are potential green areas. By establishing ecological
corridors to connect various green patches across the region, we can provide refuges for
oasis flora and fauna, migratory birds, and more. Especially through vertical greening
and green roofs, creating green spaces as much as possible will significantly contribute to
biodiversity conservation, ecosystem stability, and regional ecological security.

4.3. Restriction and Uncertainty

Due to data limitations, the spatial resolution for most driving factors used in the
PLUS model simulations of future land use is 30 m, which precludes the acquisition of
higher-resolution data. Consequently, some data were resampled during the simulation
process, which introduced potential uncertainties. The InVEST model, with its advantages
over traditional methods, is widely used for visualization and dynamic studies [34]. During
the habitat quality assessment using the InVEST model, parameters for the habitat quality
evaluation model were set based on the model manual and literature. The resulting spatial
distribution of habitat quality was consistent with ecosystem patterns, indicating good
simulation results. However, there remain uncertainties in model performance evaluation
and parameter settings, and further exploration of model performance evaluation methods
and appropriate parameters is needed. Additionally, despite considering four different
simulation scenarios for land use in 2035, there is still some uncertainty in the simulation
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results. First, although 13 driving factors were selected for the PLUS model simulations,
actual land use driving factors are more complex. On the other hand, future development
plans for the region were not considered when setting land use simulation scenarios.
Future research should place greater emphasis on the complexity of land use driving
factors, conduct more detailed investigations, and develop land use simulation scenarios
that align with regional development plans to support medium- and long-term growth.

5. Conclusions

This study examines landscape dynamics in Urumqi under various scenarios and their
potential impacts on habitat quality. Using the PLUS model, we analyzed multiple driving
factors, including natural, social, and proximity influences, to simulate land use evolution.
From 2022 to 2035, Markov chain analysis was employed to derive land use transition
probabilities and simulate land use changes under different future scenarios. The InVEST
model was subsequently used to quantify habitat quality across diverse landscape patterns.
The results indicate that the ongoing loss of natural landscapes, such as forests, grasslands,
and water bodies, is the primary driver of habitat quality decline in Urumqi. The effects of
built-up land changes on habitat quality exhibit both quantitative and spatial variations
across different scenarios. Under the BAU scenario from 2022 to 2035, habitat quality is
expected to significantly decrease due to extensive grassland degradation. Areas around
the Gurbantunggut Desert should focus on ecological protection to mitigate this trend.
In contrast, the EP scenario shows a marked improvement in habitat quality, with only
95.45 km2 of grassland transitioning to bareland. Overall, while land use changes under all
scenarios from 2022 to 2035 will result in varying degrees of habitat quality degradation,
the EP scenario effectively minimizes the extent of this decline.
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Abstract: Wind erosion can cause land degradation and other harmful effects. Examining
the ecosystem windbreak and sand fixation service (WSFS) from the perspectives of supply
and demand plays a crucial role in the continuous regulation of regional wind erosion.
Through the enhancement of the revised wind erosion equation (RWEQ) model, integrated
with uncertainty analysis, scenario simulation, and environmental factors calculation,
the dynamic simulation of the supply of ecosystem windbreak and sand fixation service
(WSFSS) and the demand of ecosystem windbreak and sand fixation service (WSFSD) in
the Wuding River Basin in China was achieved, and specifically, a simulation framework
for WSFSD and WSFSS was constructed. The results show that: (1) the uncertainty analysis
can calculate the upper and lower limits of the range of parameter x (downwind distance)
in the RWEQ model, and changes in the parameter x can make the simulation results of
WSFSS and WSFSD more reasonable; (2) In the past 20 years, the WSFSS has shown a spatial
distribution pattern of high in the northwest and low in the southeast. In terms of time,
the annual WSFSS has shown a fluctuating growth trend with a growth rate of 8.06 t/a.
The monthly WSFSS has shown a rising-fluctuating-declining trend; (3) The rationality
of WSFSD was indirectly verified through the setting of scenario simulation. In terms
of time, across the 252 months under study (January 2000–December 2020), 85% of the
months witnessed WSFSD within the range of 1.0–1.4 kg/m2 in the Wuding River Basin.
At the same time, the WSFSD also presented seasonal variation patterns. The WSFSD was
relatively high in spring (March–May) and relatively low in summer (July–September)
each year.

Keywords: ecosystem windbreak and sand fixation service; the supply and demand of
ecosystem windbreak and sand fixation service; RWEQ model; Wuding River Basin

1. Introduction

The ecosystem windbreak and sand fixation service (WSFS) [1] is a kind of ecosystem
service that mitigates the hazards of wind erosion by means of surface vegetation. The
supply of ecosystem windbreak and sand fixation service (WSFSS) [2] refers to the rate of
reduction in soil wind erosion resulting from the existence of vegetation. The demand of
ecosystem windbreak and sand fixation service (WSFSD) [3] refers to the maximum soil
wind erosion rate that humans allow to occur in a certain region within a given period. At
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present, under the influence of climate change and human activities, there is an increasing
risk of global soil erosion [4]. Wind erosion can lead to soil loss, land degradation, and land
desertification, among other harmful effects [5]. The sand and dust after wind erosion can
also cause severe air pollution, sandstorms, and other disasters [6]. In arid, semi-arid, and
semi-humid regions around the world, WFSF can significantly reduce the hazards of wind
erosion [7,8]. Therefore, how to enhance the WFSF has become the focus of many scholars.
Examining the WSFS from the perspectives of WSFSS and WSFSD plays a crucial role in
maintaining ecosystem functional stability [9], quantifying management for wind erosion
control [10], and establishing ecological compensation policies [11]. It also effectively
maintains the sustainable development of WSFS within the region.

The simulation methods for WSFSS and WSFSD often involve the soil wind erosion
rate obtained from wind erosion simulations. The revised wind erosion equation model
(RWEQ) is easy to expand and has accurate simulation results [12], and thus it is widely
used to assess the soil wind erosion rate. Many scholars also adjust the input parameters
of the model according to actual conditions. For example, Gong et al. [13] conducted
soil particle size conversion when calculating soil factor with the model. Guo et al. [14]
modified the wind factor in the model using limited wind speed data. Zhang et al. [15]
added soil compaction data to calculate the soil erodibility factor in the model. However,
there have been fewer studies on modifying model parameters from the perspectives of
WSFSS and WSFSD. The parameter x (downwind distance) is a key parameter in the RWEQ
model for calculating soil wind erosion. Changing its range of values can avoid resulting
redundancies [16]. Meanwhile, uncertainty analysis is a fast and effective parametric
analysis method that can reveal the impact of parameter changes on simulation results [17].
Based on the definitions of WSFSS and WSFSD and in combination with uncertainty
analysis to modify the parameter x in RWEQ model, fundamental data support can be
provided for the simulation of WSFSS and WSFSD.

In terms of the simulation methods of WSFSS and WSFSD, the simulation method of
WSFSD has not yet been standardized. For example, Xu et al. [18] considered that WSFSD
represents the wind erosion that affects human life, and used the actual wind erosion rate
in the region as the WSFSD. Zhao et al. [19] used a fixed value (allowable soil loss rate) to
measure WSFSD. Mi et al. [20] generated weighting operators for different slope land use
types and calculated WSFSD by fitting the actual wind erosion rate with it. Environmental
factors [21] are used to quantify the current environment’s ability to resist wind erosion,
which requires consideration of factors such as wind speed, topography, vegetation, soil
moisture, and relevant data. Based on previous research, incorporating environmental
factors into the simulation of WSFSD can help to explore the sensitivity of the environment
to wind erosion changes, endowing the results with practical significance and temporal
variation characteristics. Meanwhile, scenario simulation is a method of observing the
characteristics of result changes by setting up scenarios with controlled variables [22].
Establishing reasonable scenarios and observing whether the WSFSD still complies with
its definition under different scenarios can offer indirect validation for the rationality of
the WSFSD.

The Wuding River Basin is a coarse-sand area located at the junction of the northern
part of the Loess Plateau and the southern part of the Mu Us Sandy Land in China. It is also
an environmentally sensitive area (ESA) for the implementation of the afforestation and
grassland restoration project on the Loess Plateau [23]. Constant exposure to wind erosion
has made this area susceptible to phenomena such as land degradation and drought. In
this study, by integrating and developing methods such as uncertainty analysis, the RWEQ
model, the calculation of environmental factors, and scenario simulation, a simulation
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framework for WSFSS and WSFSD is constructed to simulate the spatiotemporal variations
in WSFSS and WSFSD in the Wuding River Basin from 2000 to 2020. The research find-
ings have theoretical supplementary value and methodological reference significance for
regulating wind erosion and maintaining WSFS in the Wuding River Basin.

2. Materials and Methods

2.1. Overview of the Study Area

The Wuding River is a first-order tributary of the Yellow River and originates from
the north slope of the Baiyushan Mountains in Dingbian County, Shaanxi Province, with
a total length of 491 km. The geographical scope of the Wuding River Basin (as shown
in Figure 1) is between 37◦03′ and 39◦04′ N latitude and 108◦03′ and 110◦57′ E longitude,
with an area of approximately 2.8 × 10−4 km2. The terrain of the Wuding River Basin
is south-high-north-low, with an elevation range of 581–1824 m. The terrain is hilly and
undulating, with numerous ravines and sparse vegetation. The dominant vegetation types
are shrubs and grasslands. Due to the frequent occurrence of strong winds in spring, with
most wind speeds far exceeding the wind speed for erosion (the maximum wind speed
can reach 17.5 m/s), large-scale wind erosion and land degradation is prone to occur in
the Wuding River Basin. Consequently, it is highly indispensable to enhance the WSFS in
this area.

 

Figure 1. The geographical scope of the Wuding River Basin.

2.2. Data Sources and Processing

The main data included meteorological, soil, vegetation, and topographic data. Me-
teorological data were derived from the final operational global analysis (FNL) data and
were simulated by the weather research and forecasting (WRF) model [24], including
hourly wind speed, precipitation, temperature, and solar radiation data. The soil data were
sourced from the harmonized world soil database version 2.0 (HWSD2.0), which contains
soil data at a depth of seven layers [25]. Since wind erosion primarily affects the surface,
the first layer was chosen as the data for calculation. The vegetation data came from the
China regional 250 m vegetation coverage dataset, which was then modified to remove

133



Land 2025, 14, 20

lakes, rivers, and other areas, thus improving the accuracy of wind erosion simulation
results. Other data sources are shown in Table 1, and the detailed information regarding
the usage of the datasets is elucidated in Appendix A. Before inputting into the model, all
data were resampled to 1 km resolution and projected into the lambert conformal conic
projection with a central meridian of 105◦E and standard parallels of 25◦ N and 47◦ N.

Table 1. Data sources.

Data Name
Time

Resolution
Spatial

Resolution
Data Download

Platform
Website

Vector boundary data N/A N/A
China Resources and

Environmental Science
Data Platform

https://www.resdc.cn/
(accessed on 1 December

2024)

China regional fractional
vegetation cover dataset monthly 250 m

Tibetan Plateau
Scientific Data Center

https://data.tpdc.ac.cn/
(accessed on 5 December

2024)Long-term series of daily
snow depth dataset daily 0.25◦

Temperature data hourly 0.05◦ National Center for
Atmospheric Research

https://rda.ucar.edu/
(accessed on 3 December

2024)
Wind speed data hourly 0.05◦
Precipitation data hourly 0.05◦

Harmonized world soil
database N/A 1 km

United Nations Food
and Agriculture

Organization

https://gaez.fao.org/
pages/hwsd (accessed on

11 December 2024)

SRTMDEM N/A 90 m Geospatial Data Cloud
https://www.gscloud.cn/
(accessed on 12 December

2024)

2.3. Wind Erosion Rate Simulation Model

The RWEQ (revised wind erosion equation) is an empirical model for wind erosion
simulation [26]. This model can simulate the soil erosion amount in accordance with the
wind in a field (from the surface to a height of 2 m). Based on the input time period, the
simulated soil wind erosion amount can be converted to soil wind erosion rate. According
to the definition of model, the influence factors of wind erosion are divided into weather
factor (WF), snow depth factor (SD), soil moisture factor (SW), soil erodibility factor (EF),
soil crust factor (SCF), surface roughness factor (K′), and combined vegetation factor
(COG), and the detailed information regarding the calculation of factors is elucidated in
Appendix A. The environmental factors in this study include both actual environmental
factors (Factor5) and potential environmental factors (Factor4).

Based on actual environmental factors, the actual maximum sediment transport ca-
pacity, actual critical field length, and actual wind erosion rate can be calculated. The
calculation formula [26] is as follows:

Factor5 = WF × SCF × SCF × EF × K′ × COG (1)

Qmax = 109.8 × Factor5 (2)

S = 150.71 × (Factor5 + 0.001)−0.3711 (3)

SL =
2x
S2 × Qmax × e−(x/S)2

(4)
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In the formula, Factor5 represents the actual environmental factors; Qmax represents
the actual maximum sediment transport capacity (kg/m); S represents the actual critical
field length (m), which is the distance required to achieve a maximum sediment trans-
port capacity of 63.2%; SL represents the actual soil wind erosion rate (kg/m2); and the
parameter x represents the downwind distance (m).

2.4. The Calculation of WSFSS and WSFSD
2.4.1. The Calculation of WSFSS

The calculation of WSFSS is expressed as the difference between the potential wind
erosion rate and the actual wind erosion rate. The formula [2] for calculation is as follows:

Factor4 = WF × SCF × SCF × EF × K′ (5)

Qmax_r = 109.8 × Factor4 (6)

S_r = 150.71 × (Factor4 + 0.001)−0.3711 (7)

SL_r =
2x

S_r2 × Qmax_r × e−(x/S_r)2
(8)

WSFSS = SL_r − SL (9)

In the formula, Factor4 represents the potential environmental factors (kg/m); Qmax_r
represents the potential maximum sediment transport capacity (kg/m); S_r represents
the potential critical field length (m); SL_r represents the potential wind erosion rate
(kg/m2); and WSFSS represents the supply of ecosystem windbreak and sand fixation
service (kg/m2).

2.4.2. The Calculation of WSFSD

In this study, the WSFSD was defined as the soil wind erosion rate that could be
allowed to occur, in other words, the soil wind erosion rate that humans define as a
limit that should not be exceeded. Furthermore, on the basis of the studies of previous
researchers [18,20], in this study, we attempt to improve the calculation method of WSFSD
by incorporating environmental factors into the RWEQ model.

Its calculation is expressed as follows: constructing the functional relationship between
actual wind erosion rate and actual environmental factors using the RWEQ model, and find-
ing the point where actual environmental factors have the greatest influence on the actual
wind erosion rate (the most sensitive environmental areas within the region to wind erosion
changes), which is also the point of demand. The method has the following advantages:

• It takes into account the wind erosion rate that actually affects human beings;
• The results may have temporal variation characteristics;
• It also takes into account all the factors that affect wind erosion; and
• the RWEQ model used for calculation can also have a good connection with

the WSFSS.

The calculation formula is as follows:

SL =
2x(

150.71 × (Factor5 + 0.001)−0.3711
)2 × 109.8 × Factor5 × e−(x/150.71×(Factor5+0.001)−0.3711)

2

(10)

f (Factor5) =
2x(

150.71 × (Factor5 + 0.001)−0.3711
)2 × 109.8 × Factor5 × e−(x/150.71×(Factor5+0.001)−0.3711)

2

(11)
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f (Factor5)′′ =
2x(

150.71 × (Factor5 + 0.001)−0.3711
)2 × 109.8 × Factor5 × e−(x/150.71×(Factor5+0.001)−0.3711)

2

(12)

We set Formula (12) as equal to zero and solved for the demand point (Factor5_d,
WSFSD). WSFSD represents the demand of ecosystem windbreak and sand fixation service
(kg/m2). The second derivative equals zero, and can be solved using analytical methods
or Newton iteration methods, etc. Since a large number of sample pixels are used in this
study (for example, the Factor5 range varies within a time period from 0 to 15 kg/m, with
a total of 27,843 sampled pixels and an average interval of 5.387 × 10−4 kg/m), a method
using the maximum value of the first derivative was used to solve it, which can reduce the
computational load. The reference formula is:

dy_dxi =
dy
dx

=
SLi − SLi−1

Factor5i − Factor5i−1
(i ∈ 2, ..., n − 1, n) (13)

dy_dxs = max(dy_dxi) (14)

WSFSD = f (Factor5s) (15)

In this formula, i represents the index of the Factor5 raster pixels after sorting; SLi

represents the actual wind erosion rate obtained from Factor5i. When i = s, dy_dxi reaches
the maximum value.

2.5. Uncertainty Analysis

The parameter x is a key constant parameter for calculating the wind erosion rate in
the RWEQ model, as shown in Formulas (4) and (8). The physical meaning of the parameter
in the model is the downwind distance. The parameter x directly affects the wind erosion
rate simulation results. Therefore, the value of the parameter x should be determined before
calculating the WSFSS and WSFSD. However, there is no clear method for calculating the
numerical range of parameter x. Based on the understanding of the RWEQ model, the
definition of WSFSS and WSFSD, and the principles of wind and sand physics [27], this
study attempts to develop the following algorithm to determine the upper and lower limits
of the parameter x.

The lower limit calculation formula is:

SL_rx =
2x

S_r2 × Qmax_r × e−(x/S)2
(16)

lst(Qmax_r), lst(S_r), lst(SL_r) = geo_lst(Qmax_r, S_r, SL_rx) (17)

lst(Qmax_sort), lst(S_sort), lst(SL_sort) = sort(lst(Qmax_r), lst(S_r), lst(SL_r), para = 1) (18)

min(μx − max_arg(lst(SL_sort)) ≥ 0 (19)

In the formula SL_rx represents the potential wind erosion rate raster data calculated
at a downwind distance of x; Formula (17) indicates that pixel lists are generated based
on the geographic location corresponding to Qmax_r, S_r, and SL_rx raster pixels; For-
mula (18) indicates that lst(Qmax_r) will be sorted in ascending order, and lst(S_r) and
lst(SL_rx) will be reordered according to the corresponding values of lst(Qmax_r) from
before; Formula (19) indicates that the position of the maximum pixel in the SL_sort list is
subtracted from μx. If the minimum condition is met, we obtain the optimal SL_rx, where
x is the desired lower limit; μx represents the number of raster pixels, used to control the
threshold values of Qmax_r and S_r outliers.
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The upper limit calculation formula is:

SLx = f1(Factor5) =
2x(

150.71 × (Factor5 + 0.001)−0.3711
)2 × 109.8 × Factor5 × e−(x/150.71×(Factor5+0.001)−0.3711)

2

(20)

SLx+1 = f2(Factor5) =
2(x + 1)(

150.71 × (Factor5 + 0.001)−0.3711
)2 × 109.8 × Factor5 × e−(x+1/150.71×(Factor5+0.001)−0.3711)

2

(21)

∀Factor5 ε (0, max(Factor5)), ∃ f1(Factor5)′′ = 0 (22)

∀Factor5 ε (0, max(Factor5)),� f2(Factor5)′′ = 0 (23)

In this formula, SLx represents the actual wind erosion rate calculated at a downwind
distance of x, and x is the desired upper limit when function 1 and function 2 satisfy
Formulas (22) and (23).

2.6. Scenarios Setting

To investigate the impact of WSFSS changes on WSFSD and indirectly verify the
rationality of the WSFSD, the scenarios of magnified FVC (Fractional Vegetation Cover)
within the entire zone and partial zone were established. Here are the specific steps:

We chose two soil wind erosion rates from different years but within the same month,
and made sure they had a significant difference in WSFSS (e.g., April 2000 and April 2020).
After that, two scenarios were set up:

1. Magnified FVC within the entire zone:

We took the selected data of April 2000 as an example, scaled the FVC (Fractional
Vegetation Cover) proportionally across the entire zone (zone below/above WSFSD), and
re-simulated the WSFSS, WSFSD, and the area of the zone above the WSFSD.

2. Magnified FVC within a partial zone:

We took the selected data of April 2000 as an example, scaled the FVC proportionally
in a partial zone (zone above WSFSD), and re-simulated the WSFSS, WSFSD, and the area
of the zone above the WSFSD.

Because vegetation is one of the important factors that affect wind erosion rate
changes [28], we chose to enlarge the FVC as the driving force to increase WSFSS. The
results of the scenario simulation can reveal the impact of WSFSS changes on WSFSD.

Following the change in FVC, the areas of the zones above WSFSD in both scenarios
were compared with the areas of the zones above WSFSD in April 2020. Once the area
was observed to be smaller than the area of the zone above WSFSD in April 2020, the
magnification ratio of the FVC was recorded. If the proportion of records is similar in both
scenarios, it indicates that the zone above the WSFSD can play a more critical role in wind
and sand control than the entire zone, which is consistent with the definition of WSFSD
itself and indirectly proves the rationality of the WSFSD. If the ratio of the recorded values
is too different, it indicates that the WSFSD is not reasonable.

2.7. The Simulate Framework for WSFSS and WSFSD

The simulation framework for WSFSS and WSFSD consists of two parts (as shown in
Figure 2). The first part aims to calculate the WSFSS and WSFSD, and then actual wind
erosion rate and WSFSD are selected as input for the second part. The second part aims to
indirectly verify the reasonableness of the WSFSD through scenario simulation setting, and
supports the results of part one.
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Figure 2. The simulation framework for WSFSS and WSFSD.

3. Results

3.1. Uncertainty Analysis on the Parameter x

We took the calculation of the potential soil wind erosion rate in the Wuding River
Basin in January 2000 as an example to demonstrate the calculation process and results of
the upper and lower limits of parameter x. Before calculating the lower limit of parameter
x, the output results of the RWEQ model were sorted by geographical location and Qmax_r
(potential maximum sediment transport capacity) according to Formulas (17) and (18). The
result is presented in Figure 3a. During the process of the increase in the value of Qmax_r,
the value of S_r (the potential critical field length) corresponding to its geographical
location was constantly decreasing, which was in accordance with the definition of the
model. Nevertheless, the SL_r (the potential wind erosion rate) corresponding to the
geographical location increased initially and then decreased. This indicates that a greater
Qmax_r does not necessarily imply a greater SL_r, which is not in line with the definition
of the model [29,30].

Without altering the parameters in Qmax_r and S_r, only parameter x is modified. As
depicted in Figure 3b, Qmax_r and S_r remain unchanged. This indicates that changing
x does not result in data redundancy, only SL_r changes. With the decrease in x, the
maximum pixel point of the SL_r curve continuously increases. When x is less than or
equal to 98, the maximum pixel point of the SL_r curve does not change (equal to the
number of raster pixel). At this juncture, SL_r increases along with the augmentation of
Qmax_r, which is in accordance with the expected change; 98 was recorded as the lower
limit of the parameter x during the simulation period of January 2000.
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Figure 3. (a) The output of the RWEQ model before calculating the lower limit of parameter x;
(b) The calculation of the lower limit of parameter x using uncertainty analysis; (c) The output of
potential and actual wind erosion rate before calculating the lower limit of parameter x; (d) The
output of potential and actual wind erosion rate after calculating the lower limit of parameter x;
(e) The calculation of the upper limit of parameter x using uncertainty analysis; (f) The calculation of
the upper limit of parameter x using uncertainty analysis (the first derivative of SL).

Meanwhile, wind erosion rate can directly affect changes in the WSFSS. As shown
in Figure 3c, with the actual wind erosion rate increasing, there is a situation where the
potential wind erosion rate is smaller than the actual wind erosion rate, which obviously
does not meet the requirements of WSFSS. We set x as a number that is less than or equal
to 98. As depicted in Figure 3d, this can satisfy the requirements of the WSFSS, thereby
making the simulated WSFSS more rational. However, as x continuous decreases, WSFSD
will also be affected, as shown in Figure 3d, where SL (actual wind erosion rate) keeps
increasing as Factor5 (actual environment factors) grows. Taking the first-order derivatives
of these curves, as illustrated in Figure 3e, the variation in the parameter x is capable of
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influencing whether there is a demand point in the first-order derivative curve of SL. When
x is less than 60, the first derivative curve does not have a maximum value, and the point
of demand does not exist. To avoid this situation, 60 was recorded as the upper limit of the
parameter x during the simulation period of January 2000.

In summary, using the uncertainty analysis to determine the upper and lower limits
of parameter x can not only make the output of the RWEQ model more rational, but also
make the simulation results of the WSFSS and WSFSD models more reasonable.

3.2. The Variation of the WSFSS

After determining the parameter x, the WSFSS in the Wuding River Basin from 2000
to 2020 was simulated. As shown in Figure 4a, from the perspective of annual scale spatial
variation, the high WSFSS in the Wuding River Basin has been concentrated mainly in
the northern and western regions over the past 20 years, with a maximum value of up
to 71.8 kg/m2. The WSFSS in the southern and eastern regions has been persistently low
for many years, so the overall spatial distribution pattern of WSFSS in the study area is
characterized as high in the northwest and low in the southeast. As shown in Figure 4b,
from the annual scale temporal variation, there is a fluctuating trend with large amplitude
in the annual WSFSS, but the overall trend continues to rise, with a growth rate of 8.06 t/a.
The highest value was reached in 2018 at 719.5 t, and the lowest value was reached in
2003 at 550.2 t. As shown in Figure 4c, the trend changes of WSFSS are related to the
month. January to April is the ascending stage, May to October is the fluctuating stage,
and November to December is the descending stage. Additionally, the standard deviation
(sd) of WSFSS for each month also varies greatly, with the highest variance in April and the
lowest in October. Overall, despite the occurrence of fluctuations, it is demonstrated that
the WSFS has been effectively sustained in this area.

Figure 4. (a) Spatial distribution of annual WSFSS; (b) Temporal variation in the annual WSFSS;
(c) Temporal variation in the monthly WSFSS.
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3.3. The Variation of the WSFSD

We simulated the WSFSD based on the SL (actual wind erosion rate) function, with
Factor5 (actual environmental factors) as the independent variable. As shown in Figure 5a,
with an increase in Factor5, the SL keeps increasing, and the first derivative of the SL
function initially increases and then decreases. The WSFSD in January 2000 was calculated
to be 1.29 kg/m2. Similarly, as shown in Figure 5b, the WSFSD was calculated to be
2.86 kg/m2 in May 2000. As shown in Figure 5c, during the period from 2000 to 2020,
85% of the monthly WSFSD was within the range of 1.0–1.4 kg/m2. The overall range
of WSFSD in the study area fluctuated little. The maximum WSFSD beyond the range
reached 3.46 kg/m2, and the minimum WSFSD reached 0.09 kg/m2. From the perspective
of year, the WSFSD in different years showed a gradual decrease over time. For example,
the WSFSD was 3.46 kg/m2 in April 2000, but it had decreased to just 1.1 kg/m2 by April
2020. From the perspective of month, WSFSD across different years changed significantly
with month. Low WSFSD was more likely to occur in July to September (Autumn), while
high WSFSD was more likely to occur in March to May (Spring).

Figure 5. (a) WSFSD in January 2000 (b) WSFSD in May 2000 (c) Monthly WSFSD from 2000 to 2020.

3.4. Indirect Verification of WSFSD

According to the results shown in Section 3.1, the month with the greatest variation
in WSFSS across different years was April, so the actual wind erosion rates in April 2000
and April 2020 were chosen as the input data for scenario simulation. From the change in
WSFSD (as shown in Figure 6a), as the FVC in both partial and entire zones was enlarged,
both WSFSS values were increasing, and the gap between them was also widening, with
the largest gap reaching 8.57 t. Additionally, the WSFSD in both simulation scenarios
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showed a downward trend, and the magnitude of the change was consistent. However,
the decrease in WSFSD was not significant, with the maximum value of difference being
only 0.08 kg/m2. From the perspective of the area of the zone above WSFSD (as shown
in Figure 6b), the area in both simulation scenarios showed a downward trend, with the
maximum reduction areas being 8073 and 8067 km2, and exhibiting a high degree of
consistency in the change amplitude. Therefore, under certain conditions, the growth of
WSFSS in entire and partial zones will not affect WSFSD, but both can significantly reduce
the area of the zone above WSFSD.

Figure 6. (a) The variations in WSFSS and WSFSD after magnifying the FVC proportion within the
entire or partial zone; (b) The variations in WSFSS and the area of the zone above WSFSD after
magnifying the FVC proportion within the entire or partial zone; (c) The spatial distribution of the
zone above WSFSD in April 2000; (d) The spatial distribution of the zone above WSFSD in April
2020; (e) The spatial distribution of the zone above WSFSD at the time of record (entire zone); (f) The
spatial distribution of the zone above WSFSD at the time of record (partial zone); (g) Comparison of
the area of zone above WSFSD at the time of record in different scenarios.

The simulated data were divided into zones above or below the WSFSD. As shown
in Figure 6c,d,g, the spatial distribution of the zone above the WSFSD in April 2000 and
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April 2020 was quite different, with the areas being 8599 km2 and 2868 km2, respectively.
We magnified the FVC proportion according to the scenario settings until the recording
time. From the perspective of the change in FVC, in the entire zone and the partial zone,
the required amplification ratio to meet the area of the zone above the WSFSD was 1.51
and 1.53 (as shown in Figure 6b). The areas of the zone above the WSFSD decreased by
5825 km2 and 5820 km2, respectively (as shown in Figure 6e,f,g). Therefore, in the zone
above the WSFSD, it is necessary to prioritize increasing WSFSS. This is consistent with the
definition of WSFSD, thereby demonstrating the rationality of the WSFSD.

4. Discussion

4.1. The Variation of Parameter x

The results show that the upper and lower limits of the parameter x calculated in all
time periods were all within the range of 40–110, which is consistent with the research
results of Zhang [31] and Cao [32] et al. This indicates that the uncertainty analysis method
developed in this study possesses a certain degree of reliability when dealing with long-
term data, thereby ameliorating the situation where the x-values are set as fixed values.
Regarding the factors influencing the variation in parameter x, the crucial factors are
Factor5 (the actual environmental factors) or Factor4 (the potential environmental factors),
followed by Qmax (the maximum sediment transport capacity), Qmax_r (the potential
maximum sediment transport capacity), S (the critical field distance), and S_r (the potential
critical field distance). This aligns with the idea of external factors affecting the x parameter,
as proposed by Pelt et al. [33]. Additionally, we found the simulation time period is also
a factor that affects the change in parameter x; for example, the value of parameter x in
April was smaller than that in August. This is because wind erosion is more prone to
occur in April than in August, increasing the soil wind erosion rate within the region and
relatively reducing the downwind distance. This is consistent with a study by Borrelli
et al. [34], which showed that the soil wind erosion rate is greater closer to the downwind
edge. Therefore, when simulating WSFSS and WSFSD, it is advisable to consider adjusting
the value of the x parameter to cope with the variations in environmental factors, thereby
making the results more rational.

4.2. The Range of WSFSD

From the simulation results of WSFSD, most WSFSD are within a small range. This
aligns with the idea proposed by Zhao et al. [19] and Xie et al. [35] of using a fixed value
(allowable soil loss rate) to measure WSFSD. Because Xie et al. [35] determined the WSFSD
through years of field experiments and observations, the WSFSD in this study has practical
significance. In terms of the number of pixels with values above or below the WSFSD,
although the WSFSD in the month within the range is not significantly different, it can still
effectively distinguish pixels with a value above the WSFSD from those with a value below
the WSFSD. As shown in Figure 7a,b, although the WSFSD is only 0.12 kg/m2 different,
there were more pixels with values above the WSFSD in February 2000, while there were
fewer pixels with values above the WSFSD in September 2000. In months outside the
range, there may be either too small or too large WSFSD values, but it can also effectively
complete the task of partitioning. As shown in Figure 7c,d, the WSFSD in January 2003
and April 2000 were 0.38 kg/m2 and 3.46 kg/m2, respectively, but the number of pixels
above the WSFSD still fits the characteristics of the month within the range. Throughout
the partitioning situation of WSFSD in all time periods (as depicted in Figure 7e), the
variation curve of the area of zone above the WSFSD has the characteristic of changing
along with the months and presents a fluctuating upward trend. This indicates that the
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area of zone above the WSFSD is shrinking over time, which is in line with the situation
where the environment of the study area has improved. Therefore, combining the results in
Section 3.4 shows that the WSFSD is capable of indicating the regions within the study area
where an increase in WSFSS is necessary and the wind erosion rate that needs to be reduced
(shown as the red dashed line in the Figure 7), which also aligns with the requirements for
WSFSD put forward by Xia et al. [36].

Figure 7. (a) Zoning by WSFSD in February 2000; (b) Zoning by WSFSD in September 2000; (c) Zoning
by WSFSD in January 2003; (d) Zoning by WSFSD in April 2000; (e) partitioning situation of WSFSD
from 2000 to 2020.

4.3. Influencing Factors of WSFSS and WSFSD

The spatial distribution characteristics of the WSFSS over multiple years are distinct
and can be classified into high-value and low-value areas. The reason for the high-value
area may be that the high value of the actual wind erosion rate is also distributed here,
which is consistent with the geographical location of the wind sand area studied by Nong
et al. [37] in the Wuding River Basin. In terms of annual variation, the fluctuating growth
of WSFSS is consistent with the findings of Wang et al. [38]. The possible cause for this
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situation might be that within the study area, projects such as the Three-North Shelter Forest
have been continuously implemented in the past two decades, leading to a continuous
decrease in the wind erosion rate [39]. Furthermore, changes in WSFSS are also influenced
by a variety of factors. For example, the WSFSS in July and August, when vegetation is
lush, is actually slightly lower than that in March and April, when vegetation is sparse. It is
likely that the relatively high wind speeds and the drier soil in spring lead to an excessive
wind erosion rate, which enlarges the wind erosion rate that vegetation can reduce, thereby
passively increasing the WSFSS. This is consistent with the study on the driving force of
wind erosion rate by Wei et al. [40].

In the scenario simulation, as the scale of vegetation coverage was increased propor-
tionally, the WSFSD did not drop significantly. This is because the key parameters in the
WSFSD calculation process are the parameter x and Factor5 (the actual environmental
factors), the parameter x is limited by the change in Factor4 (the potential environmental
factors), and according to the scenario simulation, the change in FVC only leads to a change
in Factor5. In actual circumstances, the FVC will influence the variations in other factors in
the model, thereby affecting the changes in WSFSD. For example, vegetation restoration
may result in a temporary decrease in soil moisture, but in the long run, it can increase soil
moisture [41]. This is not taken into account in the scenario simulation, so the interactions
between factors may also have an impact on changes in wind erosion rate and WSFSD.
Interaction factors should be taken into account in future studies, such as improving factor
calculations in the RWEQ model, which is consistent with the study on wind erosion
simulation model construction by Zou et al. [42].

4.4. Limitations

The uncertainty analysis developed in this study is currently unable to solve the initial
value problem. Instead, an initial value must be set based on experience and the iteration
process continued until the best result is achieved. The simulation framework constructed
in this study was only tested in the Wuding River Basin and not tested in other regions.
There may be errors due to differences in the environment. The calculation method of
WSFSD used in this study only judges the rationality of the method through comparisons
of simulation results, reference to previous research results, etc. There may be random
errors. In the future, we will increase the accuracy of the results by conducting field surveys
and social experiments.

5. Conclusions

To simulate the dynamic changes in the WSFSS and WSFSD in Wuding River Basin, this
study constructed a simulation method framework for WSFSS and WSFSD by combining
uncertainty analysis, the RWEQ model, and calculation of environmental factors and
scenario simulation, etc. The results show:

(1) In the simulation framework, uncertainty analysis can calculate the variation range
of parameter x in the RWEQ model. Changing parameter x can make the simulation
results of WSFSS and WSFSD more reasonable. The introduction of environmental
factors for calculating the WSFSD makes it more practically significant. The results of
the scenario simulation can demonstrate the rationality of the WSFSD. It is demon-
strated that this simulation framework has certain application value for the research
of WSFS.

(2) In the past 20 years, the WSFSS in the Wuding River Basin has shown a spatial
distribution pattern of high in the northwest and low in the southeast. In terms of
time, the annual WSFSS has shown a fluctuating growth trend, with a growth rate of
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8.06 t/a. The monthly WSFSS has shown a “rising-fluctuating-declining” trend. This
indicates that the WSFS has been effectively maintained in the area.

(3) Although 85% of the months witnessed WSFSD within the range of 1.0–1.4 kg/m2

in the Wuding River Basin, the WSFSD also presented seasonal variation patterns.
The WSFSD was relatively high in spring (March–May) and relatively low in summer
(July–September) each year. The results of the scenario simulation also show WSFSD
is capable of indicating the regions within the study area where an increase in WSFSS
is necessary, i.e., where the wind erosion rate needs to be reduced.

The simulation framework and the WSFSS and WSFSD in this study can offer method-
ological references and data support for studies on soil wind erosion, the maintenance
of WSFS, and the establishment of ecological compensation policies in environmentally
sensitive areas (such as the Wuding River Basin).
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Appendix A

Appendix A mainly contains an introduction to the method of calculating the factor
parameters in the RWEQ model and details on how to use the datasets.

The factor parameters in the RWEQ model mainly include WF, SCF, EF, K′, and COG.
WF refers to weather factor. The calculation formula of WF is as follows:

WF =
∑N

i=1 WS2×(WS2 − WSt)
2 × Nd × ρ

N × g
× SW × SD (A1)

ρ = 348.0

(
1.013 − 0.1183EL + 0.0048EL2

T

)
(A2)

SW =
ETp − (R + I) Rd

Nd

ETp
(A3)

ETp = 0.0162 ×
(

SR
58.5

)
× (DT + 17.8) (A4)

SD = 1 − P(sd > 25.4mm) (A5)

In the formula, WS2 represents the wind speed at a height of 2 m (m/s); WSt is the
critical wind speed for the movement of soil particles by wind (assumed to be 5 m/s); Nd

represents the number of days of the experiment (d); ρ is the density of air (kg/m3); N is
the number of wind speed observations; g is the acceleration of gravity (m/s2); SW is the
soil moisture factor (dimensionless); ETp is the potential evapotranspiration (mm); R is
the precipitation (mm); I is the irrigation (mm); Rd is the number of rainy days (d); SR is
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the total solar radiation (cal/cm2); and DT is the average temperature (◦C). SD is the snow
depth factor, where P() is the probability that the snow depth exceeds 25.4 mm during the
calculation period. R, SR, DT, WS, and sd are derived from the final operational global
analysis (FNL) data and simulated by the weather research and forecasting (WRF) model.

EF refers to soil erodibility factor, and SCF refers to soil crusting factor. The calculation
formulas of EF and SCF are as follows [43]:

EF =
29.09 + 0.31Sa + 0.17Si + 0.33Sa/Cl − 2.59OM − 0.95CaCO3

100
(A6)

SCF =
1

1 + 0.0066(Cl)2 + 0.021(OM)2 (A7)

In the formula, Sa represents the percentage of sand particles in the soil (dimension-
less); Si represents the percentage of fine sand in the soil (dimensionless); Sa/Cl represents
the ratio of sand and clay content in the soil (dimensionless); Cl represents the percentage
of clay content (dimensionless); OM represents the percentage of organic matter content
(dimensionless); and CaCO3 represents the percentage of calcium carbonate content (di-
mensionless). Sa, Cl, Si, OM, and CaCO3 values were sourced from the harmonized world
soil database version 2.0 (HWSD2.0).

K′ refer to surface roughness factor. The calculation formula of K′ is as follows:

K′ = e1.86Kr−2.41Kr0.934−0.127Crr (A8)

Kr = 0.2 ×
(

H2/L
)

(A9)

RR = 0.025 + 2.464 × FVC3.56 (A10)

Crr = 17.46 × RR0.738 (A11)

In the formula, Kr represents the terrain roughness (dimensionless); Crr represents the
chain random roughness (dimensionless); RR represents the random roughness (dimen-
sionless); and FVC represents the fractional vegetation cover. FVC was derived from the
China regional 250 m vegetation coverage dataset.

COG refers to combined vegetation factor. The calculation formula of COG is
as follows:

COG = SLRf × SLRc × SLRs (A12)

SLRf = e−0.0483sc (A13)

SLRs = e−0.0344(SA0.6413) (A14)

SLRc = e−5.614 ×
(

FVC0.7366
)

(A15)

In the formula, SLRf represents the factor of fallen plants (dimensionless); SLRc rep-
resents the factor of growing plant canopy (dimensionless); SLRs represents the factor of
standing plants (dimensionless); sc represents fractional fallen vegetation cover (dimen-
sionless); and SA is calculated by multiplying the number of standing stems per 1 m2 area
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by the average stem diameter (cm) and average stem height (cm) (dimensionless). Zhang
et al. [15] found that in Inner Mongolia grassland (adjacent to the Wuding River Basin), sc
and FVC have a corresponding relationship, which is expressed as:

sc = 0.703FVCmax − 0.052 (A16)

FVCmax represents the maximum synthesized FVC.
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Abstract: The Tarim River Basin, China’s largest inland river basin, is renowned for its ecological
fragility characterized by concurrent greening and desertification processes. Soil wind erosion
emerges as a critical factor impacting the natural ecosystem of this region. This study employs a
soil wind erosion model tailored to cultivated land, grassland, and desert terrains to analyze the
multitemporal characteristics of and spatial variations in soil wind erosion across nine subbasins
within the Tarim River Basin, utilizing observed data from 2010, 2015, and 2018. Additionally, this
study investigates the influence of various factors, particularly wind speed, on the soil wind erosion
dynamics. Following established standards of soil erosion classification, the intensity levels of soil
erosion are assessed for each calculation grid within the study area alongside an analysis of the
environmental factors influencing soil erosion. Findings indicate that approximately 38.79% of the
total study area experiences soil wind erosion, with the Qarqan River Basin exhibiting the highest
erosion modulus and the Aksu River Basin registering the lowest. Light and moderate erosion
predominates in the Tarim River Basin, with an overall decreasing trend observed over the study
period. Notably, the Qiemo River Basin, Dina River Basin, and Kaidu Kongque River Basin display
relatively higher proportions of eroded area compared to their total subbasin area. Furthermore, this
study underscores the substantial influence of the annual average wind speed on soil erosion within
the study area, advocating for prioritizing soil and water conservation programs, particularly in the
downstream regions of the Tarim River Basin, to mitigate future environmental degradation.

Keywords: Tarim River Basin; soil wind erosion; spatiotemporal variation; driving factors;
monitoring

1. Introduction

Soil wind erosion is a natural process of soil transportation and deposition by the
wind. This is a common phenomenon, mainly occurring in dry sandy soil or any loose, dry,
and fine-grained soil. Wind erosion causes a wide range of ecological and environmental
problems, such as land desertification [1], crop yield reduction [2], sandstorms [3], and the
deterioration of human settlements [4] by removing and depositing soil from one place
to another. Given its detrimental impacts and extensive repercussions, soil wind erosion
represents a critical scientific issue within arid and semi-arid regions. Beginning in the
1920s, researchers from the United States and the former Soviet Union embarked on com-
prehensive studies aimed at unraveling the processes, mechanisms, and principal factors
influencing soil wind erosion, particularly focusing on the Great Plains of the Midwest
United States and the expansive steppes of central Asia. This body of research has laid
a foundational understanding, guiding subsequent investigations into the complexities
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of soil wind erosion and its significant environmental implications. In 1965, the United
States Department of Agriculture (USDA) established the wind erosion equation (WEQ)
for the first time to estimate the amount of soil wind erosion of cultivated land in the Great
Plains [5]. The wind erosion prediction system (WEPS), developed from the wind erosion
equation (WEQ), is a process-based high-resolution model designed to simulate weather,
field conditions, and erosion dynamics [6]. The Bocharov soil wind erosion model [7],
established by former Soviet Union soil scientists in 1984, takes human activity factors into
account and provides an innovative idea for erosion prediction. Corresponding works in
China began in the 1970s, which were accompanied by continuous and in-depth research on
desertification [8]. Representative research focused on the impact of soil mechanical compo-
sition [9], water content [10,11], ploughing [12], livestock trampling [13], and other factors
on soil wind erosion and the characteristics of erosion related to specific surfaces [14–16].
Based on these basic studies, Chinese scientists have developed mechanistic [17–19] and
empirical models for different underlying surfaces (farmland, grassland, shrubbery, and
sandy land) [20–22].

With the development of remote sensing technology, it is possible to monitor soil
wind erosion in a large scale [23,24]. On this basis, a quantitative method has been carried
out [25]. Such a method can be summarized into three categories. The first one is based on
field surveys and a soil wind erosion model [26]. The second one uses remote sensing to
retrieve soil wind erosion characteristics across a wide geographic range [27–29]. The third
one estimates the spatial and temporal distribution of soil wind erosion by combining field
surveys, remote sensing, erosion simulation, and land use reclassification [30–32].

Currently, the soil wind erosion models established by scientists have become instru-
mental in simulating, monitoring, and mitigating soil erosion in arid areas [33]. However, it
is worth noting that these models have constraints that limit their application. For example,
WEPS requires detailed input data about soil properties, crop systems, climate, and man-
agement practices. In areas where these data are not readily available or are of poor quality,
the predictions made by WEPS may be less accurate [33]. In addition, WEPS is designed
for field-scale predictions and might not be as effective for larger or smaller scales. It is also
more suited for short to medium-term predictions and may not be as reliable for long-term
forecasting [34]. A comparative study of the WEPP and SWAT models found that using soil
wind erosion climate factors to represent soil moisture factors is not theoretically applicable
to arid, semi-arid, and semi humid regions [35]. Hence, investigating soil wind erosion
models tailored for typical arid and semi-arid regions holds significant importance for the
sustainable development of these areas.

The Tarim River stands as the largest inland river within China. The arid climate
prevailing across the Tarim River Basin renders it one of the nation’s most susceptible
regions [36]. Various natural adversities, notably spring droughts, soil desiccation, wind
erosion, and sandstorms, significantly impede the socio-economic advancement of this
locale. Among these challenges, the deterioration of soil and air quality, exacerbated by
wind-driven erosion, poses severe threats to both socio-economic prosperity and natural
ecosystems, rendering them particularly vulnerable. Hence, attaining a comprehensive,
systematic, and precise comprehension of soil wind erosion within the Tarim River Basin is
imperative for elucidating the dynamics of water and soil loss in this region. Furthermore,
such an understanding forms a critical foundation for devising overarching strategies for
ecological restoration within the Tarim River Basin.

Against this backdrop, the present study endeavors to achieve the following objectives:
(1) systematically investigate the spatiotemporal dynamics of soil wind erosion within
the Tarim River Basin based on observed data from 2010, 2015, and 2018; (2) analyze the
evolving multitemporal variations in soil wind erosion within the mainstem region of
the Tarim River and its nine subbasins; and (3) delve into the driving forces and under-
lying mechanisms governing soil wind erosion in the Tarim River Basin. In summary,
our aim is to delineate priority areas necessitating the implementation of soil and water
conservation initiatives within the Tarim River Basin. This research endeavor not only
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enriches our understanding of soil wind erosion characteristics in quintessential inland
river basins situated within the arid domains of central Asia but also furnishes crucial
insights indispensable for formulating macro-policies aimed at mitigating soil and water
losses.

2. Materials and Methods

2.1. Study Area

The Tarim River Basin is located in the south of southern Xinjiang (northwest part
of China), with the Tianshan Mountains in the north, the Pamir Mountains Plateau in the
west, the Kunlun Mountains and Arguin Mountains in the south, the Kuruktag Mountains
in the east, and the Taklamakan Desert in the middle of Tarim River Basin. The study area
includes nine subbasins (Aksu River Basin, Kashgar River Basin, Yarkand River Basin,
Hotan River Basin, Kaidu Kongque River Basin, Dina River Basin, Weigan Kuqa River
Basin, Keriya River Basin, and Qiemo River Basin) with an area of about 550,000 km2

(Figure 1).

Figure 1. Study area.

The Tarim River Basin features a unique climate, positioning it among the most arid
regions globally. Annually, it receives scant precipitation, frequently less than 50 mm,
primarily because it lies in the rain shadow of adjacent mountain ranges, including the
Tianshan Mountains to the north and the Kunlun Mountains to the south. The region
experiences extreme temperatures due to its continental climate [36]. Summers can be very
hot, with temperatures often exceeding 40 ◦C, while winters can be extremely cold, with
temperatures dropping well below freezing. Humidity levels in the Tarim River Basin are
generally low throughout the year, contributing to the overall arid conditions. The basin
is known for its strong winds and frequent dust storms, particularly in the spring [37].
These can be attributed to the dry, barren landscape and the temperature gradients between
the hot desert and the cooler mountains. While generally dry, the basin does receive
some precipitation, which is highly variable and largely dependent on the season and
specific location within the basin. The mountainous regions, in particular, receive more
precipitation, often as snow, significantly contributing to the river’s flow [38].
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The vegetation of the Tarim River Basin consists of mountain vegetation and plain
vegetation. In the mainstream region of the Tarim River, the tree species are mainly Populus
euphratica, the shrub species include Tamarix chinensis Lour and Halostachys caspica (M. Bieb.)
C. A. Mey., and there are also Haloxylon ammodendron (C. A. Mey.) Bunge, Halimodendron
halodendron (Pall.) Voss, etc. The herbs mainly include Phragmites australis, Apocynum
venetum L., Glycyrrhiza uralensis Fisch, Karelinia caspia (Pall.) Less., Alhagi sparsifolia, etc.

2.2. Data Sources

Some of the data that are important in calculating soil wind erosion are shown in
Table 1. Specifically, the fractional vegetation cover (FVC; the resolution is 30 m) was
obtained by using the conversion model from the normalized difference vegetation index
(NDVI, extracted via the Google Earth Engine platform) to the FVC. The land cover (at 0.5
m resolution) was based on a national basic survey program, which was based on the Land
Use Status Classification Standard (GB/T 21010-2007) [39].

Table 1. Data sources.

Type The Data Sources

Wind force factor Based on the observation data in the monitoring area from 1991 to 2018
Topsoil moisture

factor
Based on AMSR-E Level2A brightness temperature data inversion in

2010, 2015, and 2018

Roughness factor Field survey data in 2018 and 2019 as well as existing data and the
literature in the previous period (from 2006 to 2016)

Vegetation coverage Remote-sensing-derived monthly mean FVC data from 2008–2010,
2013–2015, and 2016–2018

Land cover National basic survey program
Topography The Shuttle Radar Topography Mission

We also integrated a suite of environmental datasets to investigate the interplay be-
tween vegetation health, soil properties, human impact, and climatic variables on soil wind
erosion. The NDVI data, serving as a proxy for vegetation health and productivity, were
sourced from NASA’s EarthData Search (https://www.earthdata.nasa.gov/, accessed on
8 May 2023), which provides access to MODIS and Landsat satellite imagery. The soil water
content and sand content were obtained from ISRIC’s SoilGrids (https://soilgrids.org/,
accessed on 12 June 2023), offering high-resolution global soil information. The human
footprint index, reflecting the cumulative impact of human activities on terrestrial systems,
was derived from datasets available through the Socioeconomic Data and Applications
Center (SEDAC, https://sedac.ciesin.columbia.edu/, accessed on 16 July 2023). Climate
variables, including the mean annual temperature and mean annual precipitation, were
sourced from WorldClim (https://worldclim.org/, accessed on 16 July 2023), which offers
global climate data suitable for ecological and environmental modeling. The integration
of these datasets allowed for a comprehensive analysis of the environmental factors influ-
encing soil wind erosion, highlighting the significance of multidimensional environmental
data in understanding and managing ecosystems.

2.3. Soil Wind Erosion Model

In this study, we used models for different land use types (cultivated land, grass
land, and sand model) adopted in the first national water conservancy survey adopted
by the Chinese State Council. On this basis, according to the standards of Soil Erosion
Classification (SL 190-2007) [40], the area, spatial distribution, and soil wind erosion area of
different erosion intensities were determined.

The cultivated land model is:

Q f a = 0.018·(1 − W)·∑
j=1

Tj·exp
{

a1 +
b1

Z0
+ c1·

[(
A·Uj

)0.5
]}

(1)
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where Q f a is the soil wind erosion modulus of cultivated land t/(hm2·a), W is the topsoil
moisture factor, Tj is the cumulative time of each wind speed grade during the occurrence
of soil wind erosion in a year, min, Z0 is the surface roughness, A is the wind speed revision
factor related to tillage practices, Uj is the wind factor, and a1, b1, and c1 are constants
related to soil type, and their values are shown in the Technical Regulations for Dynamic
Monitoring of Regional Soil and Water Loss trial.

The grass (shrub) model is:

Q f g = 0.018·(1 − W)·∑
j=1

Tj·exp
[

a2 + b2V2 + c2/
[(

A·Uj
)0.5

]]
(2)

where Q f g is the soil wind erosion modulus of grassland, V is the vegetation coverage,
and a2, b2, and c2 are constants related to soil type. The other parameters have the same
meaning as Equation (1).

The desert model is delineated by:

Q f s = 0.018·(1 − W)·∑
j=1

Tj·exp
[
a3 + b3V + c3ln

(
A·Uj

)
/
(

A·Uj
)]

(3)

where Q f s is the soil wind erosion modulus of sandy land, and a3, b3, and c3 are constants
related to soil type. The other parameters have the same meanings as Equations (1) and (2).

In refining the calculation of the erosion modulus for the Tarim River Basin, the
categorization of soil types linked to erosion was enhanced. For example, on the basis of
the existing land use classification, four typical land types, including saline–alkali land,
sand barrier, industrial facilities, and impervious surfaces, were extracted. These categories
were incorporated to refine the calculation of the soil wind erosion in typical areas of
the Tarim River Basin. Furthermore, for gravel-covered surfaces, the modeled result was
adjusted according to the proportion of gravel. The soil wind erosion of undeveloped
saline–alkali land was not included in the calculation. However, for those that have been
developed, their erosion was calculated in accordance with desert conditions. For surfaces
covered by sand barriers, the field observation was used to adjust the corresponding results.

2.4. Classification of Soil Wind Erosion Intensity

After obtaining the biweekly soil wind erosion modulus of cultivated land, grassland,
and desert, we firstly added up these biweekly data during the monitoring period in
order to gain the total erosion modulus. Then, according to the standards of Soil Erosion
Classification (SL 190-2007) [40], the soil erosion intensity level of each calculating grid and
the entire study area was determined.

2.5. Statistical Analysis

We employed correlation analysis to examine the strength and direction of the asso-
ciation between soil wind erosion and environmental variables. The Pearson correlation
coefficient (r) was calculated to quantify the linear relationship between the variables. A
correlation coefficient close to 1 indicates a strong positive relationship, while a coefficient
close to -1 indicates a strong negative relationship. A coefficient around 0 suggests no linear
correlation. Regression analysis was conducted to model the relationship between the
dependent variable, soil wind erosion, and six independent variables, namely, the NDVI,
soil water content, sand content, human footprint index, mean annual temperature, and
mean annual precipitation. We utilized a linear regression model to predict the soil wind
erosion based on the independent variables. The model’s coefficients were estimated using
the ordinary least-squares method, providing insights into the impact of each indepen-
dent variable on the dependent variable. The goodness-of-fit of the model was evaluated
through the R-squared method.
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3. Results

3.1. Spatial Variation in Soil Wind Erosion

In general, the soil wind erosion exhibited an increasing trend from the west (upper
reach of the Tarim River Basin) to the east (middle and lower reach of the Tarim River
Basin) part of the study area. In the west part, the erosion modulus was relatively lower; in
comparison, the erosion modulus was relatively higher. The status of the soil wind erosion
of each subbasin of the Tarim River Basin was different (Figure 2). The area of the soil
wind erosion of the subbasins was sorted as follows: Kaidu Kongque River Basin > Qarqan
River Basin > Hotan River Basin > Mainstream of Tarim River > Yarkand River Basin >
Keriya River Basin > Kashgar River Basin > Aksu River Basin > Dina River Basin > Weigan
Kuqa River Basin. The areas with severe soil wind erosion were mainly distributed in
Kaidu Kongque River Basin, Qarqan River Basin, Hotan River Basin, and the mainstream
of the Tarim River. The Kaidu Kongque River Basin, Qarqan River Basin, Hotan River
Basin, and the mainstream of Tarim River are also the four regions with the largest desert
area in the study area. At the same time, the Qarqan River Basin, Hotan River Basin,
and the mainstream of Tarim River are the regions with the smallest grassland (or shrub)
vegetation coverage in the study area. The proportion of erosion area (to the total area of
basin) was higher in the Kaidu Kongque River Basin, Dina River Basin, and Qarqan River
Basin compared with the other river basins (Figure 2).

Figure 2. Erosion area and its proportion to total area in each subbasin of Tarim River Basin ((a),
Erosion area, (b), the proportion of erosion area to total area). MSTR, ARB, KRB, YRB, HRB, KKRB,
DRB, WKRB, KRRB, and QRB indicate mainstream of Tarim River Basin, Aksu River Basin, Kashgar
River Basin, Yarkand River Basin, Hotan River Basin, Kaidu Kongque River Basin, Dina River Basin,
Weigan Kuqa River Basin, Keriya River Basin, and Qiemo River Basin, respectively.
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In 2018, the average soil wind erosion modulus in the Tarim River Basin was
1539.33 t·km−2·a−1, with a soil wind erosion area of 214,441.39 km2. This accounted
for approximately 38.79% of the Tarim River Basin’s total area. Mild erosion accounted for
67.84% of the total erosion area, followed by moderate erosion (accounting for 13.16%), and
strong and above erosion was less than 10.00%. There were significant differences in the soil
wind erosion modulus among the subbasins of the Tarim River Basin, with an average soil
wind erosion modulus ranging from 274.83 to 4537.20 t·km−2·a−1 (Figure 3). The average
value of the soil wind erosion modulus, from large to small, was in the following order:
Qarqan River Basin, Kaidu Kongque River Basin, mainstream of Tarim River, Dina River
Basin, Kashgar River Basin, Kriya River Basin, Hotan River Basin, Weigan Kuche River
Basin, Yarkand River Basin, and Aksu River Basin (Figure 4).

Figure 3. Soil wind erosion intensity statistics for various subbasins in the Tarim River Basin in 2018.
MSTR, ARB, KRB, YRB, HRB, KKRB, DRB, WKRB, KRRB, and QRB indicate mainstream of Tarim
River Basin, Aksu River Basin, Kashgar River Basin, Yarkand River Basin, Hotan River Basin, Kaidu
Kongque River Basin, Dina River Basin, Weigan Kuqa River Basin, Keriya River Basin and Qiemo
River Basin, respectively.

Significant variations were observed in the intensity of soil wind erosion across the
different subbasins. In 2018, the proportion of the light erosion area to the total erosion
area in the mainstream region of the Tarim River and the Qarqan River basin was 34.64%
and 38.53%, respectively, while in the other basins, it ranged from 70.70% to 91.78%, with
an average of 81.31% (Figure 4). The proportions of the medium erosion area in the
mainstream region of the Tarim River, Keriya River, Weigan Kuche River, Qarqan River,
and Hotan River basins to the total erosion area (from 10.88% to 36.45%) were relatively
higher compare with the other river basins (with an average of 6.15%). The proportions
of the strong erosion area in the Qarqan River and Dina River basins to the total erosion
area ranged from 12.34% to 20.28%, with an average of 3.49% in the other basins. The
proportions of the extremely strong and severe erosion areas in the Qarqan River Basin, the
mainstream region of the Tarim River, and the Kaidu Kongque River Basin were relatively
higher than the other regions (Figure 4).
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Figure 4. Soil wind erosion intensity in Tarim River Basin in 2010, 2015, and 2018.

3.2. Multitemporal Variation of Soil Wind Erosion

The average soil wind erosion area (average value of 2010, 2015 and 2018) of the
study area was 217,355.14 km2, which accounted for about 38.79% of the area in the

157



Land 2024, 13, 330

monitoring area of the Tarim River Basin. Compared to 2010, the total area of soil wind
erosion decreased by 9581.78 km2 in 2018, which accounted for 4.28% of the total erosion
area in 2010 (Table 2). Among these different kinds of erosion intensities (light, medium,
strong, extremely strong, and severe), the light-intensity erosion decreased from 2010
to 2015 and then increased slightly to 2018, exhibiting a decreasing trend in the study
area from 2010 to 2018. The medium-intensity erosion was exactly the opposite of the
light-intensity erosion, and it obtained an increasing–decreasing trend during the study
period. The strong-intensity erosion continuously increased from 2010 to 2018 (Table 2),
whereas the extremely strong-intensity erosion continuously decreased. The severe erosion
demonstrated a trend in line with that of the light-intensity erosion (Table 2).

Table 2. Area and percentage of different intensities of soil wind erosion in Tarim River Basin.

Erosion Intensity
Erosion Area (km2)

Percentage of Total Erosion
Area (%)

2010 2015 2018 2010 2015 2018

Light (and micro) 154,015.92 144,778.67 144,962.37 68.75 67.78 67.60
Medium 28,137.31 28,494.36 28,477.82 12.56 13.34 13.28
Strong 15,457.60 15,998.71 16,983.76 6.90 7.49 7.92

Extremely strong 16,532.91 15,656.94 15,161.01 7.38 7.33 7.07
Severe 9879.42 8672.20 8856.43 4.41 4.06 4.13

Total erosion area 224,023.16 213,600.87 214,441.38 100 100 100

We calculated the average area of wind erosion for the nine subbasins and the main-
stream region of the Tarim River. We found that the Kaidu Kongque River Basin obtained
the highest average area of wind erosion (46,752.03 km2) among the nine subbasins and the
mainstream region of Tarim River, although the area decreased from 50,372.96 km2 in 2010
to 45,562.77 km2 in 2015 and to 44,320.37 km2 in 2018 (Figure 2). The Qarqan River Basin
also had a relatively higher area of erosion, with an average area of 35,110.10 km2 during the
study period. In comparison, the erosion area of the Weigan Kuqa River Basin and the Dina
River Basin were relatively lower among the nine subbasins and the mainstream region of
Tarim River, with an average area of 9857.71 km2 and 10,654.27 km2, respectively, from 2010
to 2018 (Figure 2). Among these nine subbasins and the mainstream region of the Tarim
River, the erosion area of the Yarkand River Basin, Hotan River Basin, Kaidu Kongque River
Basin, Keriya River Basin, and Qarqan River Basin showed a decreasing trend from 2010 to
2018. In comparison, the mainstream region of the Tarim River, the Aksu River Basin, the
Kashgar River Basin, and the Dina River Basin displayed a decreasing–increasing trend
during the study period. In addition, the Weigan Kuqa River Basin showed an increasing
trend from 2010 to 2018. The average proportion of the erosion area to the total area in these
nine subbasins and the mainstream region of Tarim River was also worth investigating. We
found that the Qarqan River Basin obtained the highest average proportion, with a value of
83.54%, which indicates that the soil wind erosion was widespread in the basin (Figure 2).
Additionally, the Kaidu Kongque River Basin and Dina River Basin possessed a relatively
higher proportion of erosion area to the total basin’s area, with values of 63.46% and 58.71%,
respectively. In comparison, the proportion was relatively lower in the mainstream region
of the Tarim River, the Aksu River Basin, the Kashgar River Basin, the Yarkand River Basin,
the Hotan River Basin, the Weigan Kuqa River Basin, and the Keriya River Basin, especially
the Aksu River Basin, where the average proportion during the study period was only
18.80%, indicating a relatively scarce level of soil wind erosion in the basin (Figure 2).

3.3. The Impact of Environmental Variables on Wind Erosion

In our detailed investigation into the various factors affecting soil wind erosion, we
meticulously evaluated the roles of the NDVI, soil water content, sand content, human foot-
print index, mean annual temperature, and mean annual precipitation. Through rigorous
statistical methodologies, our research unveiled nuanced insights into their interactions
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with soil wind erosion. Notably, the analysis identified the NDVI and human footprint
index as significant negative influencers on soil wind erosion, with correlation coefficients
(r2) of 0.12 and 0.18, respectively, and with statistical significance (p < 0.05, Figure 5). The
mean annual precipitation was negatively correlated with soil wind erosion, presenting
a correlation coefficient (r2) of 0.31 with statistical significance (p < 0.05). This suggests
that increased precipitation levels are associated with reduced soil wind erosion, possibly
due to enhanced vegetation growth and soil cohesion from moisture, which in turn protect
the soil surface from wind detachment and transportation. Interestingly, this study did
not find significant correlations between soil wind erosion and the other factors examined,
namely, the soil water content, sand content, and mean annual temperature.

 

Figure 5. Impacts of environmental and anthropogenic factors on soil wind erosion (Each dot
represents an observation point, with the x-axis displaying the factor being analyzed and the y-axis
showing the corresponding wind erosion modulus).

4. Discussions

4.1. The Reliability of Our Method

In this study, we employed models that were previously utilized in the inaugural
national water conservancy survey, endorsed by the Chinese State Council, to simulate
the spatiotemporal variations in the soil wind erosion within our designated study area.
The models were specified to different land use types (cultivated land, grass land, and
sand model). Our findings indicate that the soil wind erosion intensity was generally
higher in the eastern part of the study area, situated in the middle and lower reaches of
the Tarim River Basin. It was reported that the WEPS-model-simulated wind erosion is
relatively higher in Wuqia County, at the Tieganlike station, in Ruoqiang County, in Wensu
County, in Tacheng County, in Kelamayi City, in Mulei county, in Akedala County, at the
Shisanjianfang station, at the Hongliuhe station, and at the Kumishi station among the
64 stations in Xinjiang Province [41]. It should be noted that Wuqia County, the Tieganlike
station, and Wensu County were within our study area and are located in the middle reach
of the Tarim River Rasin, and Ruoqiang County is located in the lower reach of the basin,
indicating the reasonability of our method. In addition, another study on soil erosion
observation and simulation in the Taklimakan Desert revealed that the soil wind erosion
intensity is 10 ug·m−2·s−1 at the upper reach of the Keriya River Basin, which is equivalent
to 315.36 t·km−2·a−1 [42]. In the present study, we also found that the soil wind erosion
at the upper reach of the Keriya River Basin belongs to the light-intensity type, which
corresponds to from 200 to 2500 t·km−2·a−1 in terms of the erosion modulus according to
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the national standards of Soil Erosion Classification (SL 190-2007) [40]. The similarity of the
corresponding research further proved the reliability of our method.

4.2. The Drivers of Soil Wind Erosion in the Tarim River Basin

Compared with 2010, the area of soil wind erosion in the Tarim River Basin in 2015
decreased by 10,422.29 km2; among the different erosion types, the areas of light, extremely
strong, and severe erosion decreased by 9237.25 km2, 875.97 km2, and 1207.22 km2, respec-
tively. However, medium and strong erosion increased by 357.05 km2 and 541.11 km2,
respectively. At the same time, the increase in the area of erosion does not mean that
strong erosion was transformed into light or medium erosion but that the original moderate
and strong erosion was transformed into the erosion type with a lower intensity, and the
original extremely strong and severe erosion was transformed into moderate and strong
erosion, which has been reported elsewhere [43] and is the result of the joint action of
human activities and natural factors [44].

The impact of human activities is mainly reflected in the following two aspects:
Firstly, some projects implemented in the research area (such as sand barriers, soil stubble,
farmland film covering, and the construction of photovoltaic facilities) have increased
the surface roughness, increased the critical starting wind speed for soil wind erosion,
changed the structure of the near-surface airflow, avoided direct wind action on surface
soil particles, and reduced the force of airflow on surface soil particles, which in turn has
led to a decrease in the modulus of surface soil wind erosion [45]. Secondly, changes in the
surface vegetation cover have led to changes in the soil wind erosion. Compared to 2010,
in 2015, there was a total increase of 766.79 km2 in arable land, forest land, and grassland,
and the sand and gravel surface decreased by 2588.03 km2; therefore, the changes in the
area of these land use/cover types have led to corresponding changes in the erosion area
involved in the calculation.

As presented previously, the vegetation delineated by the NDVI is an important vari-
able that influences soil wind erosion. Plants and their roots stabilize the soil, making it
harder for the wind to pick up and transport soil particles. When vegetation is sparse or
absent, such as in deserts or areas affected by deforestation, soil becomes more vulnerable
to wind erosion. In our study area, the vegetation coverage underwent profound changes;
in 2015, the vegetation coverage increased by 47.52% compared to 2010, thus effectively
reducing the soil wind erosion on exposed surfaces, as mentioned in a previous study [46].
In areas with higher precipitation, we also observed a negative correlation between pre-
cipitation and wind erosion. The observation that areas with higher precipitation levels
exhibit more robust vegetation cover led to the identification of a negative correlation
between precipitation and wind erosion. This relationship can be understood through
several key mechanisms that underscore the protective role of vegetation against soil degra-
dation processes. Firstly, vegetation anchors soil through complex root systems, which
consolidate soil particles and enhance soil stability. This root-induced cohesion significantly
diminishes the susceptibility of soil to wind erosion by preventing the dislodgment of soil
particles. Secondly, the physical presence of vegetation above ground acts as a barrier to
wind, effectively reducing the wind velocity at the soil surface. This reduction in wind
speed directly influences the wind’s capacity to mobilize and transport soil particles, thus
mitigating wind erosion. In addition, increased precipitation contributes to higher soil
moisture levels, which, in turn, make soil particles heavier and more resistant to aeolian
transport. But, interestingly, we did not find any significant relationship between the soil
water content and erosion modulus, which demonstrates that the complex interplay be-
tween the soil water content and erosion processes is influenced by multiple soil properties,
environmental conditions, and external factors. A comprehensive analysis considering
these multifaceted interactions is essential to elucidate the nuanced effects of soil moisture
on erosion dynamics.

Beyond factors like the NDVI, human activity, and precipitation, wind emerges as
a pivotal natural force in soil wind erosion, which is especially pronounced in arid and
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semi-arid regions. The phenomenon occurs as strong winds lift and transport loose soil
particles, significantly eroding topsoil and degrading land. Among the influences, the wind
speed is paramount; stronger winds have the energy to mobilize larger soil particles over
greater distances, exacerbating erosion [47]. We investigated the linear relationship between
the annual average wind speed and erosion intensity at 46 points selected randomly within
the study area and found that there exists a significant linear relationship between them
(Figure 6). In addition, this process underscores the necessity of integrating wind speed
with other variables in erosion studies to accurately assess and mitigate the impact [48].

Figure 6. The linear relationship between annual average wind speed and erosion intensity (Each
dot represents an observation point).

5. Conclusions

In summary, our study delved into the spatiotemporal dynamics of soil wind erosion
within the Tarim River Basin, employing a specialized soil wind erosion model. Several
key conclusions emerge from our analysis: Firstly, the soil wind erosion area encompassed
approximately 40% of the basin’s total area, primarily characterized by mild erosion.
Although the proportion of the soil wind erosion area in the Tarim River Basin fell below
the average for the Xinjiang Uygur Autonomous Region, it surpassed the average for
northern China. Secondly, our findings reveal that, as of 2018, soil wind erosion hotspots
are concentrated in the Kaidu Kongque River Basin, Qarqan River Basin, Hotan River Basin,
and the mainstream region of the Tarim River. Thirdly, a positive trend was observed,
as the total area affected by soil wind erosion has decreased since 2010, indicating a
gradual improvement in the natural environment of the Tarim River Basin. Lastly, our
study underscores the imperative for prioritizing soil and water conservation efforts,
particularly in the downstream regions of the Tarim River Basin, to safeguard against
further environmental degradation. These findings collectively provide valuable insights
for informing targeted conservation strategies aimed at preserving the ecological integrity
of this vital basin.
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Abstract: Salinization is a serious land degradation phenomenon. This study identified the salinity
stress threshold as a causal factor for salinization, focusing on global maize fields as the study area.
By excluding environmental stressors and setting salinization scenarios, the EPIC model was used to
simulate the daily salinity stress threshold during the corn growth process. The global intensity and
risk of salinization-induced disaster for maize were evaluated. Based on the principle of information
diffusion, the intensity of salinization-induced disaster was calculated for different return periods.
The main conclusions were as follows: (1) By excluding environmental stress factors and setting
salinization scenarios, algorithms for the salinization index during the growing season and the
intensity of salinization-induced disaster were proposed. (2) The salinity hazard factor is highly risky
and concentrated in arid and semi-arid regions, while it is relatively low in humid regions. (3) As the
recurrence period increases, the risk of salinization-induced hazard becomes higher, the affected area
expands, and the risk level increases. (4) The salinization intensity results of this study are consistent
with the research results of HWSD (R2 = 0.9546) and GLASOD (R2 = 0.9162).

Keywords: information diffusion; risk of hazard factor; salt stress; EPIC model

1. Introduction

With the advent of the “Anthropocene”, land systems increasingly face complex
challenges [1,2], salinization being a prime example requiring human attention. Soil
salinization, a severe land degradation phenomenon, arises from the buildup of soluble
salts in both the soil cultivation and surface layers [3]. Salinization undermines land
productivity, diminishing agricultural output in irrigation areas and impeding agricultural
development and food production [4]. Over a hundred countries and regions around the
globe deal with varying levels of saline soils. According to data from the United Nations
Educational, Scientific and Cultural Organization (UNESCO, Paris, France) and the Food
and Agriculture Organization (FAO, Rome, Italy) of the United Nations, the total area of
saline soils is around 954.38 million hectares. Salinization poses a significant agricultural
risk (risk = hazard factors × exposure × vulnerability) [5]. In some timeframes and regions,
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exposure remains relatively steady, with the hazard severity typically determining the risk
magnitude. Consequently, several scholars concentrate on the salinization hazards [6–8].

Despite decades of research, comprehensive, large-scale land salinization assessments
remain an enduring challenge [9]. Numerous studies concur that obtaining accurate mea-
sures of salinization at large scales is a complex task [10–13]. When assessing hazards
contributing to salinization, scholars typically select salinization-specific indicators for
a comprehensive evaluation, such as cation exchange rate (ECe), average annual evapo-
transpiration volume, groundwater characteristics, and dry humidity [14]. Initially, the
soil’s conductivity is usually identified by the ECe of the saturated paste extraction [15–18].
Most studies employ ECe as an index to gauge soil salinization, considering soils with
ECe exceeding 4 dsm−1 as saline. Secondly, elevated evapotranspiration intensifies water-
salt movements, increasing the salt concentration in soil water and on the surface [19,20].
Consequently, the average annual evapotranspiration volume serves as a significant index
for assessing salinization risk. Thirdly, groundwater impacts on salinization manifest in
two ways: i the depth of the water table, where shallow, semi-closed aquifers can trigger
salinization by impeding surface soil drainage [21]; and ii groundwater mineralization,
linked to irrigation, as the quality of groundwater used for irrigation influences soil texture.
Long-term unsuitable irrigation increases salinization risk [22]. Data acquisition limitations
and model parameter validity concerns lead some investigators to select alternate indicators
for assessing salinization risk. Some base their evaluation on the depth of the saline soil
and the groundwater table [23], others incorporate soil and climate attributes, irrigation
water properties, conductivity, cation exchange rate, and dry humidity [14].

Additionally, many scholars have used models to assess the hazards of salinization
factors. Currently, the models primarily used to evaluate salinization risk include UN-
SATCHEM [24], SALTMED [25], BUDGET [26], Pla [27], and Riverside [18], among others.
The first three are complex models, requiring large amounts of data, suitable for assessing
small-scale areas, such as farmland and small watersheds, while Pla [19] and Riverside [18]
are simpler models, suitable for larger-scale areas, such as farms and large river basins.
It is noteworthy that many new methods have emerged in recent years. For instance,
Hassani and others utilized machine learning algorithms to make long-term predictions
on global salinization issues based on EC′e′′ [28]; FAO constructed The Global Map of
Salt-Affected Soils (GSASmap) platform based on indices like EC′e, ESP, PH [29]; Kaya and
others adopted remote sensing methods to assess soil salinization conditions in the western
part of Turkey based on EC′e′′ [30].

Contemporary research frequently employs external factors such as soil characteristics,
climate variability, and groundwater dynamics as metrics to assess the hazards of soil
salinization to agricultural productivity. Nonetheless, these indicators may inadvertently
sidestep the direct effects of salinization on the crops themselves, potentially obscuring
the isolated impact of saline conditions on plant growth. Addressing this gap, our study
proposes the utilization of normalized salt stress values, correlated to the crop growth cycle,
as a more precise measure of salinization impact, thereby elucidating the independent
extent of salt-induced stress on crop vitality. The EPIC crop growth model, known for its
robustness, is employed to establish salinization scenarios, which delineates the day-to-day
susceptibility of crops to saline disturbances. The selection of crop species is pivotal for the
applicability of such growth models. Maize, with its global significance as a staple crop [31],
wide cultivation range [32], and intermediate salinity tolerance [33], represents an ideal
candidate for this analysis.This research focuses on global cornfields, uses the EPIC0509
model to simulate the salinity stress value [34–37] during corn growth with days as steps,
attempts to evaluate the risk of salinization hazard intensity about corn on a global scale,
and calculates the salinization hazard intensity under different recurrence periods based
on the principle of information diffusion [38].
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2. Materials and Methods

2.1. Basic Concepts and Research Framework
2.1.1. The EPIC Crop Growth Model

The erosion-productivity impact calculator (EPIC) model was developed in 1981 by
Williams et al. to study the relationship between soil erosion and soil productivity [39–41].
Initially, the value of the EPIC model in simulating crop growth was not noticed. It was
not until 1989 that the EPIC model began to be used as a crop growth model [42]. In 1996,
Williams et al. incorporated environmental factors such as water quality, carbon cycle, and
climate change into the EPIC model, subsequently renaming it the “Environmental Policy
Impact Climate” model [43]. Due to the EPIC model’s ability to simulate crop productivity
over hundreds or even thousands of years in various climate scenarios, environmental con-
ditions, and management systems, assessing the impact of multiple agricultural disasters
on crop yield and land productivity, it has become one of the most popular crop growth
models [44–46]. Some studies even suggest that, in terms of model calibration and crop
yield evaluation, the EPIC model performs better than the CSM-CERES-Maize [47].

2.1.2. Mechanism of Salt Stress in Maize

Salinity stress affects almost all crucial metabolic processes of corn growth [48]. Based
on previous research, the damaging mechanisms of salinity stress on corn mainly include
the following aspects: (1) Salinity stress leads to difficulties in corn water absorption. Due to
the high salt content in saline soils, the soil solution water potential significantly decreases,
causing difficulties in water absorption of corn roots, or they cannot absorb water at all. In
severe cases, it even leads to the outward discharge of water, causing osmotic dehydration
of the tissue and harming corn [49,50]. (2) Salinity stress has detrimental effects on the
corn biomembrane. Studies indicate that the membrane plays a crucial role in generating
primary and secondary stress responses. Salt stress influences various aspects of membrane
function, including ion selective permeability, transport of inorganic and organic matter,
membrane secretion function, membrane lipid composition, and ultrastructure [51–53].
(3) Salinity stress causes physiological disorders in corn. Salinity stress affects the physio-
logical activities of corn, for instance, salt stress causes a decline in the net photosynthesis
rate of corn [54–56], and salinity stress disrupts normal respiratory metabolism and protein
synthesis of corn [57–59].

2.1.3. Hazard Intensity Assessment and Information Diffusion Method

The core of the disaster factor hazard assessment is to establish a relationship between
the disaster intensity and frequency. The hazard assessment of disaster-inducing factors can
be divided into the average expected disaster intensity and the probability that the intensity
of the disaster factor exceeds a certain value (the frequency of the disaster factor) [60]. Cal-
culating the frequency of disaster factors requires a large amount of sample data. However,
when the sample information is incomplete, the information diffusion method can be used
to calculate the frequency of disaster factors, and a fuzzy set is obtained after diffusing the
original incomplete information. This is a method of treating samples collectively using
fuzzy mathematical methods to compensate for information deficiencies [61]. Specifically,
using the diffusion function to convert sample data into sample sets, the simplest model is
the normal diffusion model [38]. This paper calculates the intensity of disaster factors with
different probabilities of occurrence (recurrence periods of 10, 20, 50, 100 years) by diffusing
the salinization hazard factors of the 30-year samples through information diffusion.

2.1.4. Research Framework

This study is conducted in four steps. The first step is to establish the database. The
second step is to determine the hazard-inducing factor-salt stress and eliminate other
environmental stress factors. The third step is to simulate the growth process of corn using
the EPIC model and, based on the daily salt stress value, calculate the index of salinization
hazard intensity. The results are then compared with existing salinization results (HWSD
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and GLASOD). The fourth step, based on the principle of information diffusion, is to
calculate the hazard intensity of corn salinization under the recurrent periods of 10 years,
20 years, 50 years, and 100 years (Figure 1).

 
Figure 1. The research framework.

2.2. Data

Based on the research approach, this paper uses the EPIC0509 model to calculate the
hazard intensity of salinization. In the research, a data list required was constructed, as
shown in Table 1.

Table 1. Datasets for world corn salinization.

Data Name Data Content Spatial Resolution Temporal Resolution Data Sources

DEM Global elevation 0.0833◦ × 0.0833◦ 1997 USGS [62]

Slope Global slope 0.0833◦ × 0.0833◦ 1997 GAEZ [63]

Soil Properties

Global soil distribution
raster image and soil

physical and chemical
properties such as PH,

soil depth,
conductivity, etc.

0.0833◦ × 0.0833◦ 1995 ISRIC
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Table 1. Cont.

Data Name Data Content Spatial Resolution Temporal Resolution Data Sources

Meteorological

Global precipitation,
temperature, solar

radiation, and other
information

0.5◦ × 0.5◦ 1971–2099
Cross-sector impact
model comparison
projectRCP2.6 [64]

Planting Area Global cultivation crop
region 5 min × 5 min 1992

Sustainability and the
Global Environment,

University of
Wisconsin-

Madison [65]

Corn Parameter Data Corn EPIC Model
Reference (US) Site -

Texas A&M University
College of Agriculture

and Life Sciences

Growth Period Corn planting time and
growth period length 0.5◦ × 0.5◦ 2000–2015

Nelson Institute for
Environmental Studies

at the University of
Wisconsin-Madison

[66]

Irrigation
Global annual

irrigation water of
agriculture(mm)

0.5◦ × 0.5◦ 1995
Institute of Industrial
Science, University of

Tokyo [67]

Fertilizer Global annual fertilizer
application for maize 0.5◦ × 0.5◦ 2012 Earth stat [68]

Corn production

Production data for
global country units Vector unit 1995–2004 FAO

China provincial unit
production data Vector unit 1995–2004

Department of
Plantation

Management, Ministry
of Agriculture, China

US state unit
production data Vector unit 1995–2004

United States
Department Of

Agriculture

Australian state unit
production data Vector unit 1995–2004 Australian Bureau of

Statistics

India state unit
production data Vector unit 1995–2004

Department of
Agriculture and

Cooperation

Evaluation unit
World administrative

divisions, rivers,
lakes, etc.

Vector unit 1995–2004

ESRI, China Surveying
and Mapping
Geographic

Information Bureau,
CRU TS2.1, DIVA-GIS

Aridity Index Global Map of Aridity 10 arc minutes 1961–1990 FAO [69]

Other salinization
research results

Excess salts 0.5◦ × 0.5◦ 1971–1981 Harmonized World Soil
Database [70]

Cs Vector unit 1991 GLASOD [71]

2.3. Method
2.3.1. Features and Simulation Process of EPIC0509

The version of the EPIC model used in this study is EPIC0509, which is a classic version
officially developed by EPIC and released in 2006 [34]. This version has the following
features: It operates on a daily timestep, capable of simulating crop growth conditions
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for 1–4000 years; the model provides basic soil, weather, tillage, and crop parameters;
the soil can be divided into 10 layers; there is an optional weather generator; and the
site-specific model has been improved to a field-scale model. It is widely used in crop
growth simulation [28,72–74]. The main simulation process of the EPIC0509 model can be
divided into 4 steps (Figure 2): (1) based on temperature (temperature and heat required
by crops) to simulate the phenological development of crops, with heat unit index as the
characterization index, this process affects the calculation of leaf area and root weight;
(2) the growth of potential biomass of crops was simulated based on light energy (solar
radiation, sunshine hours and light energy conversion rate), with leaf area index as the
core index; (3) simulated the environmental stress (water, salt, temperature and nutrients)
during the growth of crops. Among them, the maximum stress value was involved in the
simulation calculation of leaf area and aboveground biomass; and (4) simulated crop yield
based on aboveground biomass and harvest index, in which aboveground biomass was
comprehensively affected by root weight, potential biomass, and environmental stress, and
harvest index was affected by environmental stress and potential harvest index.

Figure 2. EPIC crop growth model simulation process.

2.3.2. Identifying Hazard Factors for Corn Salinization

In the previous experimental studies on the effects of salinization on crops, the evalua-
tion was generally based on soil salinity combined with certain environmental conditions
to construct hazard indicators, which cannot accurately reflect the independent impact of
salinity on crops. The EPIC model simulates various environmental stress values in the
crop growth process on a daily basis, which reflect the independent severity of different
stresses on crop growth. The salinity stress value is calculated based on the crop’s irrigation
conditions and original soil conditions, and it quantifies the yield loss caused by the final
soil salinity concentration.

Soil salinity is closely related to irrigation, and its calculation formula is as follows [42]:

WSLTi+1 = WSLTi + 0.01 × AIRi × CSLTi (1)

WSLT: Soil salinity content; AIR: maximum irrigation amount per time; CSLT: salt
concentration in irrigation water.

Soil moisture content has a significant impact on soil salinity stress, and its calculation
formula is as follows [42]:

STi+1 = STi + AIRi (2)

ST: Soil moisture content; AIR: maximum irrigation amount per time.
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The daily salt stress value is the hazard factor of this study, and its calculation formula
is as follows [42]:

SWRZi+1 = SWRZi + STi × (RZ − Zi−1)/(Zi−1 − Zi) (3)

TSRZi+1 = TSRZi + WSLTi × (RZ − Zi−1)/(Zi−1 − Zi) (4)

SS = a × (0.15625 × TSRZ/SWRZ − b) (5)

SS: The daily salinity stress value. In addition, SWRZ and TSRZ are the intermediate
variable, the initial value is 0.

The calculation formula for salinity stress during the maize growth period is as
follows [75]:

SSTotal = ∑total
i=1 SSi (6)

SSTotal represents the total salinity stress value during the maize growth period, and
SSi represents the salinity stress value for the i-th day.

2.3.3. Intensity of Hazard Caused by Corn Salinization

Constructing an index for the intensity of salinization hazard based on daily salinity
stress values [75].

SI =
SSi

total
max

(
SSi

total
) (7)

Among them, SSi
total : total salt stress in the scenario i, max

(
SSi

total
)
: the largest total

salt stress value of scenarios in the current year.
The maximum value of salinity stress in a given year is obtained through the simula-

tion of salinization scenarios. In the EPIC model simulation, there are three main aspects
that can cause yield reduction in crops, and corresponding measures are taken to mitigate
them. First, field management measures, including diseases, pests, and management errors,
are automatically excluded in the simulation. Second, soil erosion conditions, such as
water erosion and wind erosion, are eliminated by disabling the water erosion and wind
erosion modules in the model, thus not considering their influence during the simulation.
Third, environmental stress factors, including temperature stress, nutrient stress (nitrogen,
phosphorus, potassium), water stress, and ventilation stress, are addressed by setting
appropriate parameters in the model to exclude these environmental stress factors (Table 2).

Table 2. Elimination of environmental stress elements.

Elimination of Coercion Type Elimination Method

Temperature stress Management measures automatic fertilization
Nutrient stress Management measures automatic fertilization

Water stress Set up automatic irrigation to meet crop water requirements

Ventilation stress Pre-experiment setting the maximum water supply so that
no ventilation stress is generated

According to the calculation formula of the salinity stress value, it can be inferred that
salinity is involved in the hazard process of salinization through the initial soil salinity and
irrigation water salinity, while the final soil salinity content affects crop yield. Therefore, in
the model simulation process of the scenarios with the highest total salt stress, we set the
initial soil salt concentration, namely conductivity, as 0, and established the highest salt
concentration of irrigation water to obtain the extreme yield loss scenario.
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2.3.4. Calculation of Crop Yield

The salt tolerance of crops to salinization is closely related to their species and vari-
ety [76]. The classification criteria for determining the salt tolerance of crops are based on
soil salinity, evapotranspiration loss, and water daily stress index. The calculation formulas
for crop yield under salt stress caused by different dominant factors vary [77]. In cases
where the dominant factor of salt stress is soil salinity, the crop yield formula is as follows:

Y = 100 − b(ECe − a) (8)

Y is relative yield, ECe is the electrical conductivity of soil solution (dS/m), a is the
threshold electrical conductivity tolerance of the crop (dS/m), and b is the slope, which
represents the reduction rate of yield per unit electrical conductivity.

2.3.5. Salinization Hazard Intensity Recurrence Algorithm

Information diffusion is a method based on fuzzy set theory for comprehensive
evaluation of regional environmental risks [78]. Its specific application in this study is
as follows:

The indices of salinization hazard intensity are statistically analyzed, with these hazard
intensity indices denoted as x1, x2, · · ·, xm, then

X = {x1, x2, · · · , xm} (9)

X is the observation sample set, xi is the index of the hazard intensity caused by
salinization of a cornfield in the ith year (i = 1, 2, . . . , m; m = 24);

Let the domain of the hazard intensity index be U:

U = {u1, u2, · · · , un} (10)

Each individual data sample, denoted as xi, can diffuse the information it carries to all
points in the domain of hazard intensity index U using Formula (10):

fi
(
uj
)
=

1
h
√

2π
exp

[
−

(
xi − uj

)2

2h2

]
(11)

The variable h is referred to as the diffusion coefficient, and its value can be determined
based on the maximum and minimum values of the hazard intensity index in the sample
set, as well as the number of samples m. The calculation formula for h is as follows:

h = 2.6851(b − a)/(m − 1) (12)

where a = min
1≤i≤m

{xi}, b = max
1≤i≤m

{xi}.

Based on this value, an estimation of the hazard intensity beyond the probability can
be obtained [2].

3. Results

3.1. Mean Expected Hazard Intensity of Global Corn Salinisation

In this study, meteorological station data from 1971 to 2004 were selected. The actual
conductivity content in the soil was used as a substitute for irrigation water salinity to
calculate the salinization index (SI) for each year and grid in the 0.5 × 0.5 grid unit. The
expected results of salinization hazard intensity were obtained and presented in Figure 3.
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Figure 3. Mean expected hazard intensity of global corn salinization.

According to Figure 3, the red areas in the graph (with hazard index > 0.8) indicate
the highest salinization hazard intensity for maize. These areas are primarily distributed
in Central Asia, northwestern China, southern South America, and the western coast
of southern Africa. Asia is identified as the region facing the most severe salinization
threat. Oman, the southern part of the high mountains and basins in northwestern China,
the plains and hills in central-western Kazakhstan, and the mountainous regions in the
northeastern plains all have an average salinization hazard index above 0.5. Additionally,
the Nile River Delta and the western side of the South African plateau, as well as the
central-northern plateau in Algeria, are also high-risk areas for salinization.

The salinization hazard intensity is related to aridity levels [79]. Based on the aridity
classification data from the FAO Global Map of Aridity, the salinization hazard intensity is
correlated with the aridity level. Subsequently, the salinization data are categorized based
on the aridity level to study the distribution of salinization grid points in each category
(Figure 4).

Figure 4. Boxplots of salinization index for different aridity types.

According to Figure 4, the salinization hazard intensity index is highest in hyper-arid
regions, with a median value of 0.77 and an interquartile range of approximately 0.4,
indicating a relatively high and concentrated salinization intensity in that area. Arid and
semi-arid regions also exhibit high salinization hazard intensity, with median values of
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0.51 and 0.44, respectively, and interquartile ranges of 0.5 and 0.6, suggesting relatively
high salinization intensity but with more dispersed values in these regions. Dry sub-humid
regions, as transitional zones between arid and humid areas, show a median salinization
hazard intensity index of 0.37, lower than the previous three types, indicating a decrease
in salinization intensity. Humid regions have the lowest salinization hazard intensity
index, with a median value of 0.29 and an interquartile range of approximately 0.3. The
values are concentrated between 0.2 and 0.5, indicating a relatively low and concentrated
salinization intensity in that area. Additionally, the boxplot reveals some outliers with
higher salinization hazard intensity index in the humid region. This suggests that the
salinity index is generally low in Humid, but there are some areas of high salinity along the
coast of the sea and inland lakes. In summary, arid and semi-arid regions exhibit higher
salinization levels, while humid regions experience relatively lower salinization intensity.

3.2. Global Risk Assessment of Salinization Hazard Factors with Different Return Periods

When sample information is incomplete in the assessment of hazard factor risk, the in-
formation diffusion method can be used to calculate the exceedance probability of a certain
hazard intensity. In this study, based on the information diffusion model, the salinization
hazard factors of a 30-year sample were calculated for different occurrence probabilities
(return periods of 10, 20, 50, and 100 years). Figure 5 illustrates the results of salinization
hazard intensity calculation. This study also conducted a statistical analysis of the top
ten countries in terms of average salinization intensity under different return periods, as
shown in Table 3. Additionally, we calculated and ranked the average salinization intensity
under different return periods for the top ten largest countries in the world by land area
(Table 4).

(a) 

(b) 

Figure 5. Cont.
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(c) 

(d) 

Figure 5. Global salinization hazard intensity under different return periods: (a) 10-year return
period; (b) 20-year return period; (c) 50-year return period; (d) 100-year return period.

Table 3. Top ten countries and their average salinization intensity values under different return
periods.

Rank
10-Year-Return-Period 20-Year-Return-Period 50-Year-Return-Period 100-Year-Return-Period

Country Mean Country Mean Country Mean Country Mean

1 Oman 0.99 Oman 0.99 Oman 1.00 Oman 1.00
2 Egypt 0.90 Egypt 0.91 Egypt 0.92 Egypt 0.92
3 Mongolia 0.73 Mongolia 0.78 Mongolia 0.82 Mongolia 0.84
4 Kuwait 0.65 Kuwait 0.66 Kuwait 0.66 Kyrgyzstan 0.67
5 Turkmenistan 0.62 Turkmenistan 0.64 Turkmenistan 0.65 Kuwait 0.66
6 Yemen 0.58 Kyrgyzstan 0.61 Kyrgyzstan 0.65 Turkmenistan 0.66
7 Uzbekistan 0.57 Yemen 0.60 Yemen 0.61 Yemen 0.62
8 Kyrgyzstan 0.56 Uzbekistan 0.58 Uzbekistan 0.59 Uzbekistan 0.60
9 Algeria 0.56 Algeria 0.57 Algeria 0.58 Saudi Arabia 0.59
10 Iraq 0.54 Saudi Arabia 0.56 Saudi Arabia 0.58 Algeria 0.58
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Table 4. Ranking of the 10 largest countries in terms of average intensity of salinization for different
return periods and their average salinization intensity values.

Country
10-Year-Return-Period 20-Year-Return-Period 50-Year-Return-Period 100-Year-Return-Period

Rank Mean Rank Mean Rank Mean Rank Mean

Russia 28 0.19 29 0.20 29 0.20 29 0.21
Canada 68 0.00 68 0.00 69 0.01 69 0.01
China 21 0.30 21 0.31 21 0.32 21 0.33

United States 69 0.00 69 0.00 70 0.00 70 0.00
Brazil 76 0.00 76 0.00 76 0.00 76 0.00

Australia 35 0.09 36 0.09 36 0.10 36 0.10
India 63 0.01 64 0.01 63 0.01 63 0.01

Argentina 27 0.20 27 0.20 28 0.21 28 0.21
Kazakhstan 14 0.45 14 0.46 14 0.47 14 0.48

Algeria 9 0.56 9 0.57 9 0.58 10 0.58

The influence range of high salinization-induced disaster intensity expands with an
increase in the return period, as evidenced by Figure 5, Tables 3 and 4. Conversely, the
influence range of low salinization-induced disaster intensity decreases. The ranking of
total salinization intensity remains relatively stable across different recurrence periods.
Specifically, during return periods of 10, 20, 50, and 100 years, Oman, Egypt, and Mon-
golia consistently ranked in the top three countries worldwide, with an average disaster
intensity of over 0.7 (Table 3). However, the rankings of the last seven countries within
the top ten for average salinization intensity have shown slight fluctuations. For instance,
Kuwait ranked fourth during the 10-year and 20-year return periods, but dropped to fifth
during the 100-year return period. Similarly, Kyrgyzstan ranked eighth during the 10-year
return period but improved to fourth during the 100-year return period. In terms of the
recurrence periods of 10, 20, 50, and 100 years, the rank of mean salinity intensity among
the ten countries with the largest areas remained stable (Table 4). Among the countries
mentioned, Algeria, Kazakhstan, China, and Russia exhibit relatively high average salin-
ization intensity, ranking 9th, 14th, 21st, and 28th, respectively, worldwide. Remarkably,
despite being the smallest among them, Algeria achieves the highest ranking. Algeria
consistently experiences an average intensity of salinization greater than 0.5 during the
four recurrence periods, placing it around 9th globally. This phenomenon is closely linked
to the predominantly dry climate in Algeria’s savanna and tropical desert climate zones. In
contrast, Brazil, ranking fifth in terms of area, faces comparatively low salinization, with a
ranking of 76. This occurrence can be attributed to the majority of Brazil’s geographical
location in a humid area.

4. Discussion

4.1. Comparison of Salinization Results
4.1.1. Model Validation

We conducted parameter sensitivity analysis, parameter adjustment, and validation
on the model using corn yield to ensure the simulation accuracy of the EPIC0509 model.
The specific process can be found in the Yin’s paper [80–82].

4.1.2. Compared to the Excess Salts Data

In order to evaluate the stability of the research results, we conducted a non-parametric
correlation test, specifically the Spearman’s rank correlation test, between the results of this
study and the excess salts data from the Harmonized World Soil Database v 1.2 (HWSD), at
the national and comparable geographical unit scales [60]. The results showed a significant
correlation between the two at the 0.01 level. Additionally, the comparison results between
the national and comparable geographical units were depicted as scatter plots and data
distribution graphs for the salinization levels (as shown in Figure 6).
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Figure 6. Comparison with Excess Salts at national unit and comparable geographic unit scales.
((a): scatter plot of salinity classes at the national unit scale; (b): Data distribution of salinity levels at
the national unit scale; (c): Scatter plot of salinity levels at the comparable geographical unit scale;
(d): Data distribution of salinity levels at the comparable geographical unit scale).

The scatter plot (a) and the data distribution graph (b) at the national unit scale show a
strong consistency between the salinization intensity map of this study and the excess salts
data from HWSD, with a high R2 value of 0.95. However, due to the disparate areas between
countries, the distribution of salinization total levels is highly concentrated, with a majority
falling below 1000. From the scatter plot of salinization total levels at the comparable
geographical unit scale, it can be observed that there is good consistency between the
salinization intensity map of this study and the excess salts data from HWSD, with an R2

value of 0.86. According to the data distribution graph of salinization total levels at the
comparable geographical unit scale, the salinization levels of this study are slightly higher
overall compared to those of HWSD’s “Excess salts”.

4.1.3. Compared to the Salinization Data from GLASOD

The Cs index in the World map of the status of human-induced soil degradation,
created by GLASOD, is used to measure the degree of salinization. To compare the results
of this study with the salinization data from GLASOD, we conducted a non-parametric
correlation test, specifically the Spearman’s rank correlation test, at the national and com-
parable geographical unit scales [60]. The results showed a significant correlation between
the two at the 0.01 level. Additionally, the comparison results between the national and
comparable geographical units were depicted as scatter plots and data distribution graphs
for salinization levels (Figure 7).
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Figure 7. Comparison with GLASOD at national unit and comparable geographic unit scales.
((a): scatter plot of salinity classes at the national unit scale; (b): Data distribution of salinity levels at
the national unit scale; (c): Scatter plot of salinity levels at the comparable geographical unit scale;
(d): Data distribution of salinity levels at the comparable geographical unit scale).

Although there are not many studies that have the same research scope as this study
and GLASOD at the national and comparable geographical unit scales, they still have a
strong comparability. As shown in Figure 7, this study and GLASOD had high consistency
in their research results at the national unit scale, with an R2 of up to 0.92. The consistency
at the comparable geographical unit scale was slightly lower, with an R2 of 0.89. Overall,
both at the national unit scale and the comparable geographical unit scale, the salinization
intensity in this study is slightly higher than the salinization grade in GLASOD.

4.2. Research Value and Policy Recommendations

Salinization significantly affects crop yields, particularly for irrigated crops. Exam-
ining the risk of salinization as a hazard can provide vital information for mitigating
agricultural losses caused by salinization and promoting sustainable agricultural develop-
ment. This study utilized salt stress as an indicator to assess hazardous factors, surpassing
the limitations associated with using external environmental conditions to establish hazard
indicators. The EPIC0509 model was employed to simulate the growth of corn, obtaining
results on the global distribution and quantification of corn salinization intensity. This
research has made valuable contributions to quantifying regional land degradation and
addressing the gap in global salinity risk assessment mapping.

The risk assessment of corn salinization hazard factors under different return periods
was conducted based on the principle of information diffusion. This paper introduces
a novel approach to studying hazard factors of large-scale salinization, which sets the
groundwork for salinization risk assessment. Using salt stress as an indicator for assessing
the risk of salinization hazard factors may offer a potential direction for future research. It
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serves as a warning against irrational land cultivation practices and the use of transitional
groundwater irrigation in ecological transition zones.

Based on the findings of this study, we propose the following recommendations:

(1) Adapt to climate change by adjusting agricultural production structure and selecting
crop varieties with strong resilience to climate impacts.

(2) Optimize land use and resource allocation by planning agricultural layout based
on differences in land productivity potential, improving resource efficiency, and
enhancing land protection and improvement measures to prevent salinization.

(3) Promote carbon-neutral agriculture by reducing greenhouse gas emissions from
farming, promoting low-carbon agricultural technologies such as organic farming
and precision fertilization, and increasing farmland carbon sequestration through
afforestation and wetland conservation.

(4) Strengthen salinization prevention and control efforts by enhancing monitoring and
assessment, developing scientific prevention and control measures such as ratio-
nal irrigation, drainage infrastructure construction, and soil improvement, and pro-
viding training and technical guidance to farmers to enhance their ability to cope
with salinization.

4.3. The Outlook and Shortcomings

While this study introduces a new approach to assessing the risk of salinization factors,
it overlooks the evaluation of salinization risk in conjunction with corn yield loss rates. The
salinization scenario in this study only considers salt stress while disregarding the impact
of temperature, precipitation stress, and other forms of land degradation. Additionally, the
optimal scenario is applied to all other stress factors without considering their relationship
with salinization. In future studies, the following steps will be taken: (1) Integrate disaster
risk and production loss rates to construct a global corn salinization vulnerability curve
and evaluate the risk of corn salinization worldwide. (2) Further examine the relationship
between salinization, temperature stress, and precipitation stress. (3) Investigate the
connection between salinization and other forms of land degradation, such as soil erosion
and desertification, to achieve a comprehensive evaluation of land degradation. These
efforts aim to provide a more comprehensive assessment of salinization and its impact on
land degradation.

5. Conclusions

In this study, the salinization hazard factor was determined by the salt stress value.
The global cornfield served as the research area, and salinization scenarios were established
by eliminating environmental stress factors. Using the EPIC model, the day-step-length salt
stress value during the corn growth process was simulated. The risk of corn salinization
intensity was evaluated on a global scale, and the intensity of salinization under different
return periods was calculated based on the principle of information diffusion. The main
conclusions are as follows: (1) Environmental stress factors were eliminated, salinization
scenarios were established, and algorithms for the growth season salinization index and
disaster intensity index were proposed. (2) High-risk areas (with disruption index > 0.8)
for corn salinization were primarily located in Central Asia, northwestern China, southern
South America, and the southern coast of Africa. Hazard factors in arid and semi-arid
regions posed a high risk, while wet areas had relatively lower risk. (3) The risk of
salinization hazard increased with longer return periods (i.e., 10, 20, 50, and 100 years). The
impact scope expanded, and the level of danger increased. Oman, Egypt, and Mongolia
had an average salinization intensity greater than 0.7, ranking as the top three countries for
all return periods. (4) The salinization intensity map produced in this study exhibited high
consistency with the Excess salts of HWSD and Cs of GLASOD. The R2 values between
the two results at the country and regional units exceeded 0.9, while the R2 values at the
comparable geographic unit exceeded 0.8. However, the salinization grades in this study
were slightly higher overall than those of excess salts of HWSD and Cs of GLASOD.
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Abstract: There are close dynamic relationships among the livelihood, well-being, and ecological
environment of farmer households. It is of great significance to scientifically clarify the impact of
the Grain for Green policy on the livelihoods and well-being of farmer households in mountainous
areas. Based on data from a survey of 392 farmer households in Zhangbei County, the system of
indicators for livelihood assets and well-being of farmer households were constructed using the
sustainable livelihood framework (SLF). The livelihood assets and well-being levels of different
types of farmer households were measured, and a multiple linear regression model was used to
analyze the impact of the Grain for Green policy implementation on the well-being levels of farmer
households. The results showed that (1) the Grain for Green project caused changes in the livelihood
of farmer households. The average livelihood diversity of farmer households was 3.008, and the
returned farmland households (3.022) were higher than the nonreturned farmland households (2.975)
in Zhangbei County. The level of natural assets among the total average livelihood assets of farmer
households was the highest at 0.374, while the level of physical assets was the lowest at 0.018. The
level of livelihood assets of returned farmland households (0.948) was lower than that of nonreturned
farmland households (1.117). (2) The Grain for Green policy had an improving effect on the level
of well-being of farmer households, but the effect was not significant. The level of well-being of all
farmer households in Zhangbei County was 0.517, with the level of wealth contributing the most
to the well-being of farmer households at 40.20% and the quality of the ecological environment
contributing the least at 11.99%. The level of well-being of returned farmland households (0.518) was
slightly higher than that of nonreturned farmland households (0.514). (3) The influencing degree
of each factor on the level of well-being varied significantly. There are three main paths through
which the Grain for Green policy affects the well-being of farmer households: by reallocating human
assets, optimizing natural assets, and enhancing financial assets. The factor of household size had
the highest degree, at 0.366, while educational attainment of household members, household labor
capacity, annual household expenditure, livelihood diversity, number of large production tools, and
total value of livestock were also important drivers of household well-being, and area of arable land
was negatively associated with household well-being. There were also differences in the factors
influencing the level of well-being of different types of farmer households.

Keywords: Grain for Green project; livelihood assets; livelihood diversity; well-being of farmer
households; mountainous areas of northern Hebei Province

1. Introduction

There are close dynamic relationships among the livelihood, well-being, and ecological
environment of farmer households [1]. To relieve regional ecological pressure, improve
the ecological environment, and enhance the well-being of farmer households, the Chinese
government implemented the Grain for Green policy in 1999, and successively carried
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out ecological projects such as the construction of the Three Northern Protective Forests
System (phases IV and V), the construction of the Beijing–Tianjin Wind and Sand Source
Control, the construction of the Yangtze River Protective Forest System (phases II and
III), and the treatment of rock desertification in Southwest China [2]. The Grain for Green
project is a management mode of ecological restoration by stopping cultivation of sloping
land and planting trees and grass to restore vegetation. Participants in the Grain for Green
policy need to systematically stop cultivating sloping land that is prone to soil erosion.
Participating farmer households need to plant trees and grasses on these lands to restore
vegetation according to local conditions, and they can be subsidized by the government.
In the past 20 years, China had implemented reforestation and grass restoration of up to
3.43 × 105 km2 and contributed more than 4% to the global greening area in the same
period, which had significantly improved the ecological environment and ecosystem
services quality. The changes in ecosystems affect the survival, livelihood development and
the well-being of farmer households, either directly or indirectly. Ecosystems protection,
livelihood development, and the improvement of well-being of farmer households are the
core components of achieving the United Nations (UN) 2030 Sustainable Development
Goals [3]. In the vast fragile mountainous areas of China, the contradictions between
ecological environmental protection, livelihood development of farmer households, and
well-being of farmer households are prominent. How to protect the ecological environment
to improve the livelihood and well-being of farmer households in ecologically fragile areas
is an urgent issue. Therefore, it is important to scientifically clarify the impacts of Grain for
Green policy on the livelihoods and well-being of farmer households in mountainous areas.

Studies outside of China paid less attention to ecological projects, especially in terms
of their relationships with livelihoods and well-being of farmer households. However,
methods for measuring and assessing ecosystem services, livelihoods, and well-being of
farmer households are all relatively well established. Ecosystem services can be used to
measure the effectiveness of ecological policies, and the value and physical quantity of
ecosystem services can be estimated through value-equivalent scales and the Integrated
Valuation of Ecosystem Services and Tradeoffs (InVEST) model [4,5]. The livelihoods of
farmer households are measured by drawing on the sustainable livelihood framework, and
the human development index; life satisfaction, and well-being index frameworks are used
to assess well-being of farmer households [6–8]. Existing research had also been performed
on the relationships between ecosystem services and well-being of farmer households,
which had been measured with the coupled coordination model, elasticity coefficient, and
bivariate spatial autocorrelation, with different results. Ciftcioglu et al. [9] believed that
the impact of ecosystem services on the satisfaction of material needs was significant, and
ecosystem services appeared to be a significant positive influence on the well-being of
farmer households. Jones et al. [10] pointed out that ecosystem services had a negative
influence on human health and physical well-being. Although there are few foreign related
studies, they provide support for this study in terms of theory and methodology.

Many scholars have studied the relationships among ecological conservation, livelihoods
of farmer households, and well-being of farmer households in China, focusing on the re-
lationship between livelihoods of farmer households and ecosystem services [11–13], the
relationship between ecosystem services and well-being of farmer households [3,14–17], and
the relationship between livelihoods and well-being of farmer households [18]. Recently,
ecological protection and high-quality development have become the focus of efforts in
China. With the implementation of ecological civilization and rural revitalization strategies,
research on the relationship among ecosystem services, livelihoods of farmer households,
and well-being of farmer households has become a hot academic issue. Based on the ecosys-
tem services availability assessment, Liu et al. [19] believe that ecosystem services have a
significant positive impact on the well-being of farmer households. Based on the theory of
ecosystem services value, scholars have identified spatial and temporal variations in per
capita ecological well-being and economic efficiency in Chinese cities at the prefecture level
and above and have elucidated patterns of different types of ecological well-being [20].
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A study of the Yellow River headwaters showed that ecological compensation had an
important impact on the well-being of farmer households, which could compensate for the
loss of well-being to stimulate conservation and improve the well-being of farmer house-
holds [21]. Therefore, reasons, implications, and pathways of ecological compensation
mechanisms were proposed from the perspective of resource opportunity–cost [22]. More-
over, coupling relationships between ecosystem service functions and well-being of farmer
households were found in the areas with relatively poor economic development [23,24].
Concurrently, research on the impact of the Grain for Green policy on the well-being of
farmer households is emerging. You et al. [25] examined the impact of the Grain for Green
policy on the well-being of farmer households and the direction of optimizing ecological
compensation. Liu et al. [26] explored the impact of the Grain for Green policy in the Loess
Plateau region on changes in ecosystem services and well-being of farmer households.
Through a comparative analysis of farm household panel data, Yao et al. [27] found that
there were differences in the impact of the Grain for Green policy on the well-being of
farmer households in the Yellow River Basin and Yangtze River Basin of China. Overall,
the existing studies focused on the contribution of ecosystem services to human well-being,
and the dependence of human well-being on ecosystem services, as well as the coupling
relationship between ecosystem service and human well-being. However, the impact of
Grain for Green project on the well-being of farmer households is still lacking.

The mountainous areas of northern Hebei Province are a typical ecologically fragile
area and agro-pastoral ecotone in China, with a single type of livelihood and a low level of
well-being for farmer households. Many ecological projects exist in this region, such as the
Three Northern Protective Forests System, the Taihang Mountains Greening project, and the
Beijing–Tianjin Wind and Sand Source Control. Grain for Green is an important means of
implementing these ecological projects. The Grain for Green project has a significant impact
on land holdings of farmer households and regional vegetation, which in turn affects
their livelihoods and well-being. The objectives of this study include the following main
aspects: (1) to measure the livelihood assets and well-being levels of farmer households
in the mountainous areas of northern Hebei; (2) to explore the influencing factors on the
well-being of farm households; and (3) to reveal the impact paths of the Grain for Green
project on the well-being of farmer households.

2. Materials and Methods

2.1. Study Area

Zhangbei County is located in the northwestern part of Zhangjiakou City, at the
transition zone between the Inner Mongolia Plateau and the North China Plain. The
geographical location is 40◦57′–41◦34′ N and 114◦10′–115◦27′ E. It covers 4185 km2, in-
cluding 18 towns (7 towns and 11 townships). The elevation ranges between 1300 m and
2128 m, and the terrain is complex and diverse, including plateaus, hills, mountains, and
basins (Figure 1). Agriculture and animal husbandry are intertwined within the county,
and the ecological environment is sensitive and fragile. Due to the continental monsoon
climate of the middle latitude temperate zone, the average annual temperature of the area
is only 3.2 ◦C and the average annual precipitation is only 392.7 mm, which is suitable
for staggered seasonal vegetable cultivation. By the end of 2021, the total population of
Zhangbei County was 0.356 million. Zhangbei County is a component of an important
green ecological barrier in northern China, responsible for building a strong ecological
barrier in the Beijing–Tianjin–Hebei region. The Grain for Green project was piloted since
2000 and fully launched in 2002. The county completed the Grain for Green project for
625.07 km2, of which 320.87 km2 were returned to forest and 304.20 km2 were afforested on
barren hills. The policy involves 18 townships and more than 60,000 farmer households in
the county. In the past 20 years, the vegetation coverage rate in Zhangbei County increased
significantly, and the ecological environment continually improved, which affected the
livelihoods and well-being of farmer households. Given the large-scale and significant
Grain for Green policy achievements in Zhangbei County, a survey was conducted on
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the impacts of the policy on the livelihoods and well-being of farmer households in some
townships of Zhangbei County.

Figure 1. Location of the study area.

2.2. Data Sources

Based on participatory rural appraisal (PRA), the data used in this study were obtained
through a questionnaire and semi-structured interviews with farmer households. Based on
the physical geography, accessibility, and implementation of the Grain for Green policy in
Zhangbei County, 392 farmer households in 26 villages in 8 townships were selected for
research interviews (Figure 1). The survey used random sampling in the policy coverage
area to ensure the randomness of the selected farmer households. Based on the farmers’
own evaluation, analysis, implementation, supervision, and assessment of the Grain for
Green policy status, an in-depth understanding of the policy and the living and production
environment of the farmers in Zhangbei County was conducted. A total of 398 ques-
tionnaires were distributed in this survey, and 6 invalid questionnaires were eliminated
resulting in a total of 392 valid questionnaires involving 1173 people. The questionnaire
efficiency was 98.5%. The average survey time was between 25 and 30 min per farmer
household. A random sampling method was used to select the survey sample, and the
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392 sample households selected were to some extent able to reflect the basic characteristics
of the farmer households in the study area. The survey results from these number of
questionnaires also have a strong explanatory power.

Since the implementation of the Grain for Green policy, Zhangbei County succes-
sively returned farmland to forest and grass on sloping farmland above 25◦, on sloping
farmland with important water sources between 15◦ and 25◦, and on sandy farmland.
Farmer households without the above-mentioned types of arable land were not able to
participate in the Grain for Green policy. There are also some farmer households whose
households are dominated by women, who had no other source of livelihood and chose
not to participate in the policy. Therefore, in this study, the surveyed households are
divided into returned farmland households and nonreturned farmland households based
on whether they participated in the policy. Among the surveyed farmer households, there
are 273 returned farmland households, accounting for 69.6% of the total valid sample
households and 119 nonreturned farmland households, accounting for 30.4% of the total
valid sample households.

The survey covered the basic information of farmer households, the basic information
of land, the status of livelihood assets, and the farmer households’ response to the Grain
for Green policy. The basic information of farmer households included number of family
members, age, education level, nature of employment, working hours, and salary income.
The basic land information included land type, crop planting situation, the status of
farmer households’ land returned to forest and grass, and land input status. The status of
livelihood assets included human assets, natural assets, physical assets, social assets, and
financial assets. The farmer households’ response to the Grain for Green policy included
knowledge and judgment of the policy, willingness to participate in the policy, behavioral
choice concerning the policy, and expectations of the policy.

2.3. Methods
2.3.1. Theoretical Analysis Framework

The implementation of the Grain for Green project inevitably leads to changes in
the livelihoods and land-use behavior of farmer households, thus affecting their well-
being. This study established a theoretical analysis framework along the lines of “Grain for
Green → livelihood characteristics of farmer households → well-being of farmer house-
holds → analysis of factors influencing well-being of farmer households → policy rec-
ommendations” (Figure 2). Since livelihood assets do not fully reflect the livelihood
characteristics of farm households, this study introduced livelihood diversity. This study
quantitatively assessed the livelihood diversity of farmer households through survey re-
sults; based on SLF, a system of indicators for livelihood assets of farmer households
was constructed from five aspects: human assets, natural assets, physical assets, social
assets, and financial assets, to quantitatively assess the status of livelihood assets of farmer
households after the implementation of the Grain for Green policy. Based on the conceptual
framework of human well-being, a system of indicators for the well-being of farmer house-
holds was constructed to quantitatively assess the level of farmer households’ well-being
after fallowing from four aspects: labor force conditions, wealth level, ecological environ-
ment quality, and social conditions. A multiple linear regression stepwise analysis model
was established to quantitatively assess the factors influencing the well-being of farmer
households, and to explore how the Grain for Green project affects well-being of farmer
households by acting on livelihood diversity and livelihood assets. Based on the relevant
conclusions, relevant policy recommendations are put forward to provide a scientific basis
for the government to formulate relevant policies.
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Figure 2. Analysis framework.

2.3.2. Measurement of Livelihood Diversity

According to the survey results, livelihood diversity is increased by one unit whenever
a farmer household engages in a certain livelihood activity, until the total number of types
of livelihood activities engaged in by the household is reached. The calculation formula is
as follows:

N = ∑ βi (1)

where N is farmer household livelihood diversity and βi is farmer household livelihood type.

2.3.3. Measurement of Livelihood Assets and Well-Being

1. Indicator Selection

Referring to the sustainable livelihood framework of the United Kingdom Depart-
ment for International Development [28,29], the evaluation system for livelihood assets
of farmer households in Zhangbei County was constructed from five dimensions, includ-
ing human, natural, physical, social, and financial assets (Table 1), with corresponding
adjustments to the actual situation in the study area. The implementation of the Grain for
Green policy may lead to changes in the local ecological environment, so the livelihood
assets of farmer households need to include the ecological environment of the area they
live in. The indicator of the area fallowed to farming was used to measure this livelihood
asset. The farmers of China tend to go out to work during the agricultural leisure season,
so the indicator of the number of channels for outworking was included in social assets.
Zhangbei County is located in an agro-pastoral ecotone, and livestock farming is an
important means of livelihood for farmer households in this area and an important
way to reserve wealth, so the total value of livestock was included in financial assets.
The well-being of farmer households involves production, living, health, and safety
conditions of rural farmer households, concentrating on the improvement of living
standards, production conditions, infrastructure, and social security. This method was
based on the conceptual framework of human well-being and its multidimensional and
hierarchical structure, following the principles of scientificity, validity, and hierarchy.
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The system of indicators for well-being of farmer households was constructed from
the four dimensions of household characteristics, wealth level, ecological environment
quality, and social conditions (Table 2).

Table 1. Indicators of livelihood assets of farmer households.

Asset Type Indicator Symbol Indicator Meaning and Value Nature Weight

Human assets
(HA)

Household size H1 Total household size Positive 0.010

Educational attainment of
household members H2

No formal education (little literacy) = 0;
elementary school = 1; junior high school = 2;
high school, junior college = 3; college, senior
college = 4; university undergraduate and
above = 5

Positive 0.042

Household labor capacity H3

Assigned according to age, where 6 and
below = 0; 7–18 = 1; 18–25 = 2; 26–45 = 5;
46–60 = 4; 60 and above (including
military/students aged 19–60) = 3

Positive 0.016

Natural assets
(NA)

Area of arable land N1 Household arable land area Positive 0.045
Area of watered land N2 Area of household watered land Positive 0.328

Area fallowed to farming N3 Area of land fallowed to farming by household Negative 0.001

Physical assets
(PA)

Residential index P1

Residential index = αM + βC + γN, where M, C,
and N denote the number of houses, house
structure, and residential age, respectively; α, β,
and γ are the weights of the three, respectively,
using the entropy value method to calculate
α = 0.3949, β = 0.4023, and γ = 0.2028. House
structure: civil structure = 1, brick structure = 2,
brick and mixed structure = 4, others: such as
brick = 3, relief = 0. If the house consists of
different structures, the weighted summation is
calculated in proportion to the number of rooms

Positive 0.005

Number of large
production tools P2 Number of asset types owned by

farmer households Positive 0.013

Social assets
(SA)

Number of public
officials among relatives S1 Number of public officials among relatives Positive 0.290

Number of channels
for outworking S2 Number of types of channels for outworking Positive 0.024

Number of social contacts S3

Assigned according to the number of cell phone
contacts, no cell phone = 0, 0–20 people = 1,
21–50 people = 2, 51–100 people = 3, 101 and
above = 4

Positive 0.023

Financial assets
(FA)

Total value of livestock F1

Total value of livestock = number of
livestock × unit price of livestock (differentiate
between young and adult livestock, unit price
obtained from research data)

Positive 0.138

Annual household
income F2

The sum of farm income, wage income, financial
income (direct grain subsidy, old-age insurance,
low-income insurance, social security), subsidies
for retired farming and other income (medicine
collection, etc.) in one year

Positive 0.063

Annual household
expenditure F3

Sum of children’s school fees, food consumption,
gift expenditure, health expenditure,
consumption of durable goods, and
consumption of daily necessities, etc., in
one year

Negative 0.001
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Table 2. Indicators of well-being levels of farmer households.

Well-Being
Dimension

Indicator Symbol Indicator Assignment Nature Weight

Labor force
condition

(FL)

Household size F1 Number of farmer household members Positive 0.052

Household labor
capacity F2

Assignment according to age, where 6 years
and below = 0; 7–18 years = 1; 18–25 years = 2;
26–45 years = 5; 46–60 years = 4; 60 years and
above (including military/students aged
between 19 and 60) = 3

Positive 0.059

Educational
attainment of

labor force
F3

No formal education (little literacy) = 0;
elementary school = 1; junior high school = 2;
high school, junior college = 3; college or
senior college = 4; university undergraduate
and above = 5

Positive 0.092

Number of people
engaged in

non-cultivation
agriculture

F4
Assigned according to the nature of employment,
where farming = 0; farming + other
employment = 1; other employment = 2

Positive 0.112

Wealth level
(WL)

Annual household
income T1

Sum of agricultural income, wage income,
financial income (direct food subsidy, old-age
insurance, low-income insurance, social
security), fallowing subsidy, and other income
(medicine picking, etc.) in one year

Positive 0.152

Annual household
expenditure T2

Sum of school fees of children, food
consumption, gift expenditure, health
expenditure, consumption of durable goods,
consumption of daily necessities, etc., in
one year

Negative 0.102

Arable land
per capita T3 Arable land/total population Positive 0.109

Housing area
per capita T4 Average housing area per capita Positive 0.028

Ecological
environment
quality (EQ)

Water safety Z1
Assigned according to farmers’ perception of
changes in water pollution after fallowing,
strong = 0; constant = 1; diminished = 2

Positive 0.039

Air safety Z2
Assigned according to farmers’ perception of
whether air quality has improved after
fallowing, worse = 0; no change = 1; better = 2

Positive 0.020

Soil and water
conservation Z3

Values Assigned according to whether farmers’
soil erosion has improved after fallowing,
severe = 0; no change = 1; improved = 2

Positive 0.021

Soil safety Z4
Assigned according to whether the farmer is
serious about soil contamination after
fallowing, serious = 0; not serious = 1

Positive 0.011

Social conditions
(SC)

Traffic accessibility S1 Distance of farmer households to the
nearest road Negative 0.141

Resource
accessibility S2 Distance of farmer households to the nearest

hospital or school Negative 0.054

Policy satisfaction S3

Assignment of values according to whether
farmers are willing to participate in the Grain
for Green policy, indifferent = 0; very
unwilling = 1; not very willing = 2; average = 3;
very willing = 4

Positive 0.011
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2. Indicator Weight Determination

The nature of the indicators is divided according to their attributes of the selected
indicators and the assigned values. Positive indicators are those that represent upward or
forward progress, and the higher the value of these indicators the better the evaluation,
while the opposite is true for negative indicators. To facilitate the calculation and make
the indicators’ trend the same, the negative indicators are converted to positive. Since the
indicators have different dimensions, the study adopts the standardization of the mean
value to process the indicators independent of the dimension. The entropy value method
was used to determine the index weights [30]. The calculation formula is as follows:

Yij =
yij

∑m
i=1 yij

(2)

ej = − 1
ln m

m

∑
i=1

Yijln Yij (3)

dj = 1 − ej (4)

wj =
dj

∑n
j=1 dj

(5)

where yij is the value of the jth indicator of the ith statistical unit after dimensionless
processing, ej is the entropy value of the jth indicator, m is the number of samples, dj denotes
the coefficient of variability of the jth indicator, and wj is the weight of the jth indicator.

3. Measurement of Indicators

The livelihood assets and well-being level of farmer households was calculated using
the linear weighted summation. The calculation formula is as follows:

F = ∑ WjYij (6)

where F is the total value of livelihood assets or the well-being level of farmer households,
Wj is the weight of the livelihood asset index of the jth item or the well-being index of the
jth item, and Yij is the standardized value of the jth item in the ith statistical unit.

2.3.4. Multiple Linear Regression

The well-being of farmer households is often the result of multiple factors, rather than
a single factor [31]. The well-being level of farmer households is influenced by numerous
factors, such as livelihood diversity and livelihood assets of farmer households. This
study attempted to find the optimal combination of each indicator of livelihood of farmer
households to explain the level of well-being of farmer households. Therefore, we chose
multiple linear regression to solve this problem. In this study, we constructed a multiple
linear regression model with 14 indicators of livelihood assets of farmer households and
livelihood diversity as independent variables and the level of well-being of farmer house-
holds as dependent variable, as a way to quantitatively identify specific factors affecting
the well-being level of farmer households. The regression model is as follows:

Y = B0 + B1X1 + B2X2 + · · ·+ BiXi + ε (7)

where Y represents the welfare level of farmer households, Xi (i = 1, 2, 3, . . . ) represents
the relevant indicators, B0 represents the regression constant, Bi represents the regression
coefficient, and ε represents a random error term.
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3. Results

3.1. Analysis of the Livelihood Characteristics of Farmer Households

Based on the interpretation of the sustainable livelihood framework, the livelihood
status of farmer households depends on the comprehensive role of various livelihood assets,
and their livelihood goals are also achieved on this basis [32,33]. However, livelihood
assets cannot indicate the choice of farmer households of livelihood activities, so the
characteristics of livelihoods of farmer households include two aspects: livelihood assets
and livelihood diversity.

3.1.1. Livelihood Diversity Characteristics of Farmer Households

Farmer households are rational economic agents that can choose different livelihood
activities according to their available livelihood assets. Farmer households can maintain
their status by diversifying their livelihood activities through different asset allocations to
cope with risks and shocks [34]. After conducting a survey of 392 farmer households, three
distinct types of farming livelihoods were identified: food crops, cash crops, and vegetable
crops. In addition, nonfarming livelihoods were also present, including animal husbandry,
forestry, part-time work, self-employment, permanent work, and freelance work.

The statistics show that the average livelihood diversity of the returned farmland
households is higher than that of the nonreturned farmland households (Figure 3), which
is because returned farmland households have shifted to other livelihood activities after
retiring from farming. However, the difference in average livelihood diversity between
the two types of farmer households is not significant, probably because most nonreturned
households are engaged in more than one type of cultivation.

Figure 3. Average livelihood diversity of different types of farmer households.

3.1.2. Livelihood Asset Characteristics of Farmer Households

Zhangbei County is located in the Bashang plateau area, and the landscape can be
divided into the dam-head mountainous area, the hilly area, and the undulating plateau
area [35]. The special topography and climatic conditions have led to ecological fragility and
frequent natural disasters in the area. As a result, in general, Zhangbei farmer households
have low levels of livelihood assets and live in poverty.

The order of average livelihood asset levels of farmer households in Zhangbei County
is natural assets > social assets > financial assets > human assets > physical assets. A
comparison of returned farmland and nonreturned farmland households reveals that
the average total asset levels of returned farmland households are lower than those of
nonreturned farmland households. Among them, only the financial assets of the returned
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farmland households are higher than those of the nonreturned farmland households, while
the rest of the assets are lower than those of the nonreturned farmland households. The
level of natural assets in Zhangbei County is 0.374 (Figure 4), contributing the most to
the total assets, at 37.43% (Figure 5). In terms of the contribution of each indicator to
natural assets, the area of watered land contributes the most, at 87.69% (Table 3). In
comparing returned farmland and nonreturned farmland households, the level of natural
assets of nonreturned farmland households is greater than that of returned farmland
households. The human assets per capita of all farmer households in Zhangbei County
are 0.068, contributing 6.77% to the total assets (Table 3). The education attainment of
household members contributes the most to the level of human assets, at 61.69%, while
the size of the household contributes the least, at 14.76%. The level of human assets of
nonreturned farmland households is greater than that of returned farmland households.
The level of physical assets in Zhangbei County is 0.018, contributing 1.83% to the total
assets and accounting for the lowest proportion. The number of large production tools
and the residential index contribute 72.96% and 27.04%, respectively. The physical assets
of returned farmland households are slightly lower than those of nonreturned farmland
households, with the contribution of each indicator following the trend of total farmer
households. The level of social assets is 0.337, which is the second highest contribution to
total assets, at 33.75%. The number of public officials among relatives contributes the most
to the social assets, at 86.09%. The social assets of returned farmland households (0.328)
are lower than those of nonreturned farmland households (0.359). The average level of the
financial assets of farmer households in Zhangbei County is 0.202, contributing 20.21% to
the total assets. The value of livestock makes the largest contribution to the financial assets,
exceeding 2/3 of the total financial assets.

Figure 4. Livelihood assets of farmer households.

Figure 5. Contribution of livelihood assets.
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Table 3. Level and contribution of average livelihood assets of farmer households.

Livelihood Assets

Returned Farmland
Households

Nonreturned Farmland
Households

All Farmer Households

Asset Level
Contribution

Rate %
Asset level

Contribution
Rate %

Asset Level
Contribution

Rate %

Human assets

Household size 0.010 14.97 0.010 14.30 0.010 14.76
Educational attainment of
household members 0.041 61.43 0.044 62.26 0.042 61.69

Household labor capacity 0.016 23.60 0.017 23.43 0.016 23.55

Natural assets
Area of arable land 0.044 13.38 0.046 9.61 0.045 11.92
Area of watered land 0.285 86.21 0.428 90.06 0.328 87.69
Area fallowed to farming 0.001 0.41 0.002 0.34 0.001 0.38

Physical assets
Residential index 0.005 26.54 0.005 28.11 0.005 27.04
Number of large
production tools 0.013 73.46 0.014 71.90 0.013 72.96

Social assets

Number of public officials
among relatives 0.280 85.30 0.315 87.74 0.290 86.09

Number of channels for
outworking 0.025 7.48 0.022 5.99 0.024 7.00

Number of social contacts 0.024 7.22 0.023 6.27 0.023 6.91

Financial
assets

Total value of livestock 0.143 69.31 0.127 65.69 0.138 68.26
Annual household income 0.062 30.30 0.066 33.90 0.063 31.34
Annual household
expenditure 0.001 0.39 0.001 0.41 0.001 0.39

3.2. Analysis of the Level of Well-Being of Farmer Households

The level of well-being of all farmer households in Zhangbei County is 0.517; that of
returned farmland households is 0.518 and that of nonreturned farmland households is
0.514. The contribution of each indicator to the well-being of farmer households shows
that the wealth level contributes the most, at 40.20%, while the ecological environment
quality contributes the least, at 11.99% (Figure 6). A comparison of returned farmland
households with nonreturned farmland households reveals that the labor force condition of
nonreturned farmland households is greater than those of returned farmland households,
because older people in general are less able to work and are more inclined to return
farmland.

Figure 6. Contribution rates to well-being of farmer households.
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As can be understood from Table 4, the number of people engaged in non-cultivation
agriculture plays a vital role in labor force conditions, contributing the most, while the
household size contributes the least. Comparing returned farmland households with
nonreturned farmland households, the labor force conditions in nonreturned farmland
households contribute more to the level of well-being than in returned farmland households.
In terms of the contribution of each indicator to the wealth level, the arable land per
capita contributes the most, with a contribution of 48.65%, followed by annual household
expenditure. The wealth level of nonreturned farmland households is greater than that of
returned farmland households. Comparing the contribution of each factor to the ecological
environment quality, in descending order these are water safety > air safety > soil and water
conservation > soil safety. The overall contribution of the ecological environment quality
in returned farmland households is slightly higher than that in nonreturned farmland
households. Social conditions make the second highest contribution to the level of well-
being of farmer households. Traffic accessibility makes the largest contribution to social
conditions at 70.73%, significantly higher than the other two indicators. The level of social
conditions is higher for returned farmland households than for nonreturned farmland
households.

Table 4. Levels and contributions of each indicator of well-being per farmer household.

Indicator

Returned Farmland
Households

Nonreturned Farmland
Households

All Farmer Households

Well-Being
Level

Contribution
Rate %

Well-Being
Level

Contribution
Rate %

Well-Being
Level

Contribution
Rate %

Labor force
condition

Household size 0.014 17.51 0.016 18.36 0.015 17.78
Household labor capacity 0.017 20.78 0.018 21.49 0.017 21.00
Educational attainment of
labor force 0.023 27.61 0.024 28.11 0.023 27.76

Number of people engaged
in non-cultivation
agriculture

0.028 34.10 0.027 32.04 0.028 33.46

Wealth level

Annual household income 0.008 3.62 0.007 3.55 0.008 3.60
Annual
household expenditure 0.091 43.48 0.089 43.36 0.090 43.44

Arable land per capita 0.102 48.78 0.100 48.36 0.101 48.65
Housing area per capita 0.009 4.12 0.010 4.73 0.009 4.30

Ecological
environment

quality

Water safety 0.022 34.66 0.020 33.68 0.021 34.37
Air safety 0.018 28.28 0.017 27.87 0.018 28.16
Soil and water conservation 0.013 20.01 0.013 20.73 0.013 20.22
Soil safety 0.011 17.04 0.011 17.72 0.011 17.24

Social
conditions

Traffic accessibility 0.117 70.39 0.114 71.53 0.116 70.73
Resource accessibility 0.039 23.71 0.036 22.40 0.038 23.33
Policy satisfaction 0.010 5.89 0.010 6.07 0.010 5.95

3.3. Impact of Livelihoods Assets on the Well-Being of Farmer Households

The well-being level of farmer households is influenced by a variety of factors, of
which the livelihood assets of farmer households are often the basis. Figure 7 shows that
there is a significant positive relationship between livelihood assets of farmer households
and the level of well-being. The negative value of livelihood assets of farmer households
in the figure is caused by logarithmic data of livelihood assets of farmer households. The
purpose of using logarithms is to make the normal relationship between the distribution
of livelihood assets data of farmer households more apparent, as well as to reduce the
absolute value of the data, and does not affect the scientific validity of the final conclusions.
The linear regression analysis of livelihood assets and well-being levels passed the signifi-
cance test at the 1% level, which further suggests that higher livelihood assets of farmer
households are associated with higher levels of well-being of farmer households.
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Figure 7. Scatter plot of correlation between livelihood assets and well-being levels of farmer
households. Note: The purpose of using the logarithm of the dependent variable is to narrow its
range of values and highlight the correlation between the variables.

Because there is a significant correlation between the level of farmer household well-
being and livelihood assets, this study used the value of farmer household well-being in
Zhangbei County as the dependent variable; the indicators of livelihood diversity and
livelihood assets are the independent variables. Using SPSS 26, a multiple linear regression
model was applied to analyze the impact of the livelihoods of farmer households on the
well-being of farmer households under the effect of the Grain for Green policy, and to
identify the factors influencing the well-being of farmer households (Table 5).

Table 5. Factors influencing well-being of farmer households.

Impact Factor

All Farmer
Households

Returned Farmland
Households

Nonreturned Farmland
Households

Standard
Coefficient

Sig.
Standard

Coefficient
Sig.

Standard
Coefficient

Sig.

Household size 0.366 *** 0.000 0.345 *** 0.000 0.392 *** 0.000
Educational attainment of household members 0.323 *** 0.000 0.305 *** 0.000 0.415 *** 0.000

Household labor capacity 0.166 *** 0.010 0.203 ** 0.015 0.156 0.128
Area of arable land −0.208 *** 0.000 −0.19 *** 0.000 −0.199 *** 0.000

Area of watered land 0.034 0.343 0.042 0.380 −0.012 0.813
Area fallowed to farming −0.048 0.097 −0.035 0.317 — —

Residential index 0.015 0.603 0.053 0.145 −0.044 0.379
Number of large production tools 0.086 *** 0.005 0.035 0.376 0.116 ** 0.021

Number of public officials among relatives 0.026 0.395 0.017 0.659 −0.008 0.867
Number of channels for outworking 0.009 0.767 0.014 0.688 −0.030 0.540

Number of social contacts −0.005 0.862 −0.056 0.146 0.067 0.180
Total value of livestock 0.064 ** 0.034 0.076 ** 0.034 0.081 0.106

Annual household income 0.055 0.091 0.081 ** 0.034 0.056 0.344
Annual household expenditure 0.157 *** 0.000 0.222 *** 0.000 0.071 0.179

Livelihood diversity 0.107 *** 0.003 0.091 ** 0.047 0.149 *** 0.009
Constant — 0.000 — 0.000 — 0.000

Note: *** and ** indicate significance at the 1% and 5% levels, respectively.
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3.3.1. Analysis of Factors Influencing the Well-Being of all Farmer Households

The results show an adjusted R2 = 0.679, indicating that the model has a high degree
of model fit. Eight variables had significant effects on the level of well-being of farmer
households in terms of livelihood diversity and livelihood assets of farmer households.
Household size, education attainment of household members, area of arable land, annual
household expenditure, number of large production tools, livelihood diversity, household
labor capacity, and total value of livestock are the key factors influencing the well-being of
farmer households in Zhangbei County because they all passed the significance test at the
1% or 5% level.

4. Livelihood diversity affects the well-being of farmer households

Table 5 shows that the coefficient of 0.107 for the effect of livelihood diversity on the
well-being of farmer households passed the significance test at the 1% level, indicating
that the higher the diversity of livelihoods of farmer households, the higher the level of
well-being of farmer households. The Grain for Green policy has led farmer households
to shift from farming to other livelihood activities, enriching their livelihood diversity,
expanding their choice of livelihood strategies, and enhancing their defense and coping
capacities against external risks, thus increasing their well-being.

5. Human assets drive the well-being of farmer households

Household size, education level of household members, and household labor capacity
are important components of human assets, and their coefficients of influence on the well-
being of farmer households are 0.366, 0.323, and 0.166, respectively, with their influences
on the well-being of farmer households ranking first, second, and fourth, respectively.
All three indicators passed the significance test at the 1% level, indicating that the higher
the level of human assets, the higher the well-being level of farmer households. The
Grain for Green policy has changed arable land holdings and increased other livelihood
activities, such as forestry livelihoods. The Grain for Green policy released some human
assets of farmer households from farming to other livelihoods, optimizing the allocation
of human assets. Human assets are the basis for the participation of farmer household
members in livelihood activities. Larger household sizes can contribute to an increased
cumulative production time, leading to higher productivity. Higher levels of education
mean that farmer households are better able to withstand external shocks. The external
shocks faced by farmer households located in the agro-pastoral ecotone include natural
disasters, declining crop and livestock prices, and epidemic diseases affecting livestock
farming. Higher levels of education can help farmer households mitigate these shocks in
two ways. Farmer households with a higher education level can use their knowledge to take
effective measures against natural disasters that hit agriculture and against epidemics that
harm livestock farming. In addition, higher education levels mean that farmer households
can pursue more types of occupations, and they can choose to pursue other occupations
to mitigate the negative effects of declining farm incomes on themselves. Higher levels
of labor capacity mean that farmer households are more efficient in creating wealth. This
suggests that human assets are a powerful driver of well-being of farmer households.

6. Natural assets affect the well-being of farmer households

The coefficient of the effect of arable land area on the well-being of farmer households
is −0.208, which passed the significance test at the 1% level, indicating that arable land
area is negatively correlated with the level of well-being of farmer households. The higher
the arable land area of farmer households, the lower the level of well-being of farmer
households. Zhangbei County has poor natural conditions and insufficient heat conditions.
Moreover, a large amount of arable land is sloping and there are many stones on the surface
of arable land. Farmer households engaged in grain production under such conditions
have huge inputs and little returns, and even incur losses. Therefore, these reduce the
level of well-being of farmer households. The arable land retired by farmer households
is usually poor-quality farmland dominated by sloping fields. Therefore, the Grain for
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Green policy improves the well-being of farmer households by reducing the quantity of
poor-quality farmland.

7. Physical assets affect the well-being of farmer households

The coefficient of influence for the number of large production tools on the well-being
of farmer households is 0.086, which passed the significance test at the 1% level, indicating
that the higher the number of large production tools, the higher the level of well-being of
farmer households. Most arable land retired by households is of inferior quality, such as
sloping land, where the cultivation conditions are not conducive to the operation of large
production tools. After the implementation of the Grain for Green policy, the quality of
farmland held by farmer households increased, but the amount of holding decreased. The
reduction in farmland holding led some farmer households to transfer their farmland to
other farmers. A large amount of arable land was operated by local contractors. Retirement
of poor-quality farmland and concentration of quality farmland make the use of large
production tools much more efficient, which in turn increases the efficiency of the farmer
households’ use of farmland and provides the household with opportunities for other
nonfarm part-time work, increasing household income. The physical assets of farmer
households thus contribute to their level of well-being in terms of production efficiency
and livelihood types.

8. Financial assets affect the well-being of farmer households

The coefficient of the effect of annual household expenditure on the well-being of
farmer households is 0.157, which passed the significance test at the 1% level; the coefficient
of the effect of the total value of livestock on the well-being of farmer households is 0.064,
which passed the significance test at the 5% level, indicating that the higher the financial
assets, the higher the well-being level of farmer households. The local farmer households
pay for gifts to friends and relatives to maintain relationships. The large proportion of
elderly people led to a large expenditure on health of farmer households. Gift expenditure
and health expenditure affect the well-being of farmer households. Zhangbei County is
located at an agro-pastoral ecotone, and rural livestock is more convenient and much more
beneficial than farming for the same cost of investment. Before the implementation of
the Grain for Green policy, farmer households put most of their time into agricultural
cultivation and did not have much time to engage in livestock farming. The shift in labor
to livestock farming after farmland has been retired has increased the level of well-being of
farmer households by satisfying their dietary needs as well as reserving wealth.

3.3.2. Analysis of Factors Influencing the Well-Being of Different Types of Farmer Households

The analysis of the impact of livelihoods of farmer households on the well-being of
different types of farmer households reveals that the factors influencing the well-being
differed between returned farmland households and nonreturned farmland households
(Table 5). The results show adjusted R2 values of 0.670 and 0.726, respectively. The goodness
of fit of the two models reached 67.0% and 72.6%, respectively, indicating the good fit
of the models. Household size, education attainment of household members, livelihood
diversity, and area of arable land are common influencing factors for both returned farmland
and nonreturned farmland households. Additionally, the level of well-being of returned
farmland households is also influenced by annual household expenditure, household
labor capacity, annual household income, and total value of livestock; that of nonreturned
farmland households is also influenced by the number of large production tools.

Table 5 demonstrates that educational attainment of household members and house-
hold size remain the two most significant influencing factors for both returned farmland
and nonreturned farmland households, and both passed the significance test at the 1%
level. This indicates that human assets remain fundamental to the well-being of farmer
households. Similarly, the area of arable land remains a significant influence on the well-
being of both types of farmer households and is negatively correlated with the well-being
of farmer households. The coefficient of impact of livelihood diversity on the well-being of
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returned farmland and nonreturned farmland households is 0.091 and 0.149, respectively,
indicating that livelihood diversity has an impact on the well-being of different types
of farmer households, but more so on nonreturned farmland households. Nonreturned
farmland households have a lower livelihood diversity, and a richer livelihood diversity
has a more significant effect on their well-being.

Annual household expenditure, household labor capacity, annual household income,
and total value of livestock are significant influencing factors on the level of well-being
of returned farmland households, with impact coefficients of 0.222, 0.203, 0.081, and
0.076, respectively. Annual household expenditure and household labor capacity are
influencing factors for returned farmland households because these households have a
higher proportion of elderly and young children, a higher dependency ratio, and higher
expenditure on health care, which have greater impacts on their level of well-being. Annual
household income is an influencing factor for returned farmland households because the
average total assets of such households are lower than those of nonreturned farmland
households, and to make up for the lack of total livelihood assets, household income needs
to be increased. The total value of livestock becomes an impact factor for returned farmland
households because they need to engage in other livelihood activities to earn an income
after they have participated in the Grain for Green policy. As a typical agro-pastoral ecotone,
Zhangbei County has a predominance of grassland, making it easier to raise livestock, and
livestock farming has become the first choice for expanding household income.

The number of large production tools has a significant influence on the level of well-
being of nonreturned farmland households, with an influence coefficient of 0.116, which
passed the significance test at the 5% level. However, the number of large production
tools is not an influential factor in the well-being of returned farmland households. This is
because large production tools can be used by multiple farmer households and the demand
for large production tools decreased after Grain for Green policy implementation.

4. Discussion

4.1. Geographical Differences and Similarities of Livelihoods of Farmer Households

The level of livelihood assets of farmer households in the mountainous areas of
northern Hebei is low, because of the geographic limitations of such areas. However,
the structural weight of livelihood assets in this study differs from other related studies.
The high level of natural assets and lower level of human assets of farmer households
in this study differs from the high level of human assets of farmer households in alpine
ecologically fragile areas [36]. This may be related to geographical differences. The alpine
ecological environment results in less available arable land, extremely low crop yields,
and low livestock carrying capacity, which in turn leads to relatively low natural assets of
farmer households and highlights the structural weight of human assets. This conjecture
can be confirmed by the finding that rural reservoir migrants have the highest share of
human assets and the second highest share of financial assets in their livelihood assets [37].
The loss of arable land by rural reservoir migrants due to reservoir construction led to an
extremely low level of natural assets and increased the proportion of human assets; the
large government compensation for migrant relocation raised the proportion of financial
assets. Thus, livelihood assets of farmer households are related to the geographical envi-
ronment and policy conditions of their regions, with significant geographical differences.
Farmer households in alpine ecologically fragile areas addressed the problem of insufficient
livelihood assets by tapping the potential of human assets and transforming the use of
natural assets [36]. The present study’s area is located in an agro-pastoral ecotone, which
is also a kind of ecologically fragile area. Therefore, the government can learn from the
above-mentioned practices and guide farmer households to explore the potential of their
superior assets and change the way they use their inferior assets to improve their level of
livelihood assets.

The comparison of the total livelihood assets of returned farmland and nonreturned
farmland households revealed that the implementation of the Grain for Green policy
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in the mountainous region of northern Hebei did not improve the livelihood assets of
farmer households. This is completely opposite to the impact on the livelihood assets
of farmer households in the Qinba Mountain area of Gansu after the Grain for Green
policy implementation [38]. The Qinba region experienced the vigorous development
of an ecological and economic forest and improved infrastructure, which improved the
livelihood assets of farmer households. In addition, the climatic conditions in the Qinba
Mountains are more advantageous for forestry development than those in northern Hebei.
The improvements in livelihood assets of farmer households in the Qinba region after
the Grain for Green policy implementation are the result of a combination of human and
natural factors. This result provides guidance for improving livelihood assets of farmer
households after the implementation Grain for Green policy in our study area. The Grain
for Green policy requires additional policies supporting and guaranteeing improvements
in the livelihood assets of farmer households. Due to the inexperience of local farmer
households in forestry development, the government needs to introduce relevant guiding
policies for industrial development to support local forestry development and protect the
livelihood assets of farmer households.

The livelihood diversity of returned farmland households was higher than that of
nonreturned farmland households, but the difference was not significant. This finding is
consistent with those of other related studies [38,39]. This suggests that the Grain for Green
policy has a positive impact on the livelihood strategies of farmer households in different
regions, but there is still much room for this positive impact to improve. Reforestation and
grass restoration affect human assets by acting on natural assets, causing a portion of labor
to be released from agricultural production. Theoretically, this labor force should have gone
in other directions, and the livelihood diversity of farmer households should subsequently
have increased, but the facts were not exactly as expected. The quality of the labor force
is limited by education level, skills, the insufficient number of channels to work outside,
and insufficient social contacts. Therefore, the government should increase cooperation
with enterprises, build information exchange and promotion platforms, broaden access of
farmers to outside information, encourage laborers to work seasonally, and guide farmers
to nonfarm employment to solve the employment problem.

4.2. Grain for Green Policy Impacts on the Well-Being of Farmer Households

Human well-being is a comprehensive, multidimensional, and strongly subjective
concept and is closely related to human living conditions and perceptions [40]. The
mountainous areas of northern Hebei have harsh natural conditions and low levels of
economic development. Farmer households living under such economic conditions have
different perceptions of the benefits arising from the implementation of the Grain for
Green policy. Related studies show that the subjective well-being of farmer households
in poor mountainous areas is most influenced by the wealth factor, and that well-being
enhancement depends on economic development [41,42]. The high contribution of the
wealth level to the well-being of farmer households in the study area indicates that such
households perceive the economic benefits of the Grain for Green policy most strongly.
The analysis of the factors affecting the well-being of farmer households in this study
also supports this assertion, and the economic benefits of the Grain for Green policy act
on the well-being of farmer households in three main ways. First, the Grain for Green
policy improves the well-being of farmer households through the reallocation of human
assets. The retirement of farmland releases some of the labor force to engage in other
more rewarding and less laborious livelihood activities. Second, the Grain for Green policy
improves the well-being of farmer households through the optimization of natural assets.
Farmer households choose to retire low-quality, sloping land, increasing their income and
reducing their labor burden; the remaining higher-quality, irrigated land is conducive to
more efficient use of large production tools, further increasing yields, household income,
and the well-being of the farmer households. Third, the Grain for Green policy improves
the well-being of farmer households by enhancing their financial assets. Farmer households
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who have retired farmland take advantage of livestock farming in the local agricultural–
pastoral staggered zone, which can increase income and reserve wealth.

The primary objective of the Grain for Green policy is to enhance regional ecological
quality. The policy has changed land-use types from cropland to woodland and grassland,
driving changes in the ecosystem’s service provisioning capacity [43]. The ecological
benefits of the policy are reflected in the enhancement of ecosystem regulation and support
services in the region [44], which are consistent with the results of our survey. A related
study shows that ecosystem supply services have a greater impact on human well-being at
lower levels of human economic development, but there is a lag in supply services [45].
This suggests that rural inhabitants in agro-pastoral ecotones have weaker perceptions of
the regulating and supporting services, and stronger perceptions of supply services of the
ecosystem. This is an important reason for the low contribution of ecosystem quality to
the well-being of farmer households in the study area. Ecological improvement resulting
from the Grain for Green policy is not the main path to improved well-being of farmer
households. Therefore, the government should conduct various forms of publicity about
the Grain for Green policy, to enhance recognition of farmers of the policy and their
ecological perceptions.

The comparison with similar studies revealed that the Grain for Green policy did not
significantly enhance the level of well-being of farm households [26,46], which corroborates
the findings of our study. Liu et al. [46] believed that the ecological quality was improved
faster than the socio-economic improvement in the relatively short period of time after
the implementation of the Grain for Green policy. Therefore, the reason for this result
may be that the Grain for Green policy has a certain lagging effect on promoting local
economic development. You et al. [25] even pointed out that the implementation of the
Grain for Green policy reduced the level of well-being of farm households, which is not
consistent with the results of our study. This is due to the lack of government compensation
to the farmers. The farmer households involved in our study all received policy subsidies
from the government, including grain subsidies and monetary subsidies. Therefore, the
government should do a good job in compensating the returned farmland households.

The mechanisms and pathways by which the implementation of ecological projects
affects the well-being of farmer households vary across regions. The Grain for Green
policy changes the ecosystem’s service functions, which in turn can affect the well-being of
farmer households. Therefore, the impact of ecological projects on the well-being of farmer
households has been described in terms of changes in ecosystem service functions [26].
Due to weak perceptions of farmer households of the regulating and supporting functions
of ecosystem services, the above research approach cannot well explain the mechanism of
ecological projects effects on the well-being of farmer households from the perspectives
of economic behavior and government security. Therefore, it is necessary to introduce
livelihood characteristics into the study of such effects [47].

4.3. Limitations

This study used multiple linear regression to study the factors influencing the well-
being of farmer households. This statistical model has been widely used in many fields
and can effectively analyze combinations of factors, but it cannot analyze the interactions
between the influencing factors. There is a certain spatial coupling relationship between
farmer household livelihood characteristics and well-being levels, which cannot be mea-
sured using multiple linear regression.

Due to the unavailability of data related to farmer households before the Grain for
Green policy implementation in Zhangbei County, this study can only illustrate the current
situation of well-being of farmer households and cannot compare livelihoods and well-
being levels of farmer households before and after policy implementation. Therefore, a
comparison of livelihoods and well-being differences between returned farmland and
nonreturned farmland households illustrates part of the impact of the policy on well-being
of farmer households.
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In the process of measuring livelihood assets of farmer households, some indicators are
not included because they are difficult to quantify. For example, some ecological livelihood
assets of farmer households cannot be effectively quantified and are not fully included in
natural assets, which may affect the results of livelihood assets of farmer households.

5. Conclusions

This study systematically analyzed the impact of the Grain for Green policy on the
well-being of farmer households in Zhangbei County, Hebei Province, China. The following
three findings were obtained:

(1) The Grain for Green project caused changes in the livelihood of farmer households.
The average livelihood diversity of farmer households was 3.008, and the returned farmland
households (3.022) were higher than the nonreturned farmland households (2.975) in
Zhangbei County. The average level of livelihood assets of farmer households in Zhangbei
County was natural assets > social assets > financial assets > human assets > physical
assets. The comparison between returned farmland households and nonreturned farmland
households showed that the livelihood diversity of returned farmland households was
higher than that of nonreturned farmland households, but the total livelihood assets were
lower than those of nonreturned farmland households.

(2) The Grain for Green policy had an improving effect on the level of well-being of
farmer households, but the effect was not significant. The well-being level of all farmer
households in Zhangbei County was 0.517, with an overall low level of well-being. The well-
being level of returned farmland households was slightly higher than that of nonreturned
farmland households. The wealth level accounted for the largest share of the well-being
structure of farmer households, and the contribution of ecological quality was the smallest.

(3) The degree of influence of the factors affecting the level of well-being of farmer
households in Zhangbei County varied significantly. There were three main paths through
which the Grain for Green policy affected the well-being of farmer households: by reallocat-
ing human assets, optimizing natural assets, and enhancing financial assets. The factor of
household size had the highest degree, at 0.366, while educational attainment of household
members, household labor capacity, annual household expenditure, livelihood diversity,
number of large production tools, and total value of livestock were also important drivers
of household well-being, and area of arable land was negatively associated with household
well-being. There were also differences in the factors influencing the level of well-being of
different types of farmer households.
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