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Abstract: In this study, we utilized a feature optimization method combining texture and topograph-
ical factors with the random forest (RF) approach to identify changes in the extent of the debris
cover around the Tianshan Tomur Peak between 1989 and 2022. Based on Sentinel-1 image data, we
extracted glacier flow velocities using an offset tracking method and conducted a long-term analysis
of flow velocities in combination with existing datasets. The debris identification results for 2022
showed that the debris-covered area in the study region was 409.2 km2, constituting 22.8% of the total
glacier area. Over 34 years, the area of debris cover expanded by 69.4 km2, reflecting a growth rate of
20.0%. Analysis revealed that glaciers in the Tomur Peak area have been decelerating at an overall
rate of −4.0% per decade, with the complexity of the glacier bed environment and the instability of
the glacier’s internal structure contributing to significant seasonal and interannual variability in the
movement speeds of individual glaciers.

Keywords: debris-covered glaciers; supraglacial debris identification; feature optimization; glacier
velocity; offset-tracking

1. Introduction

According to the Sixth Assessment Report by the Intergovernmental Panel on Climate
Change (IPCC), there is an increasing global rate of mass loss from mountain glaciers,
with human-induced climate warming identified as the primary cause of glacier mass
depletion [1]. Local glacial climate (temperature, precipitation, snowfall, etc.) along with
non-climatic factors (topography, size, glacial ice temperature, etc.) result in significant
spatial variability in glacier changes [1–3]. Located primarily in the ablation zones of
glaciers, debris cover is another significant non-climatic factor influencing glacier dynamics.
Thin layers of debris reduce the surface albedo of glaciers, increasing radiation absorption
and thereby accelerating the melting of the underlying ice; conversely, thick debris layers
act as an insulating barrier, inhibiting the melting of the ice below [4–7].

With the intensification of changes to glaciers, many debris-covered glaciers are
experiencing varying degrees of expansion in their debris-covered areas [8–13], gradually
highlighting the role of debris in glacier melting and movement processes. The spectral
reflectance characteristics of debris, similar to those of surrounding rocks and moraine
material, present a “different object with same spectrum” phenomenon, leading to the
ineffectiveness of conventional glacier information extraction methods in identifying debris
cover. Addressing this challenge involves considering various factors (topography, texture,
surface temperature, etc.) and integrating multi-source data, becoming the primary means
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of enhancing the accuracy of debris cover identification [14–17]. Remote sensing spectral
information of mountain glaciers exhibits high variability temporally and spatially, and
debris cover characteristics like the distribution slope and surface temperature range vary
as well. Machine learning methods significantly enhance work efficiency by learning
target patterns and features from large datasets and automatically selecting appropriate
thresholds for image classification. Neural networks, random forests, and support vector
machines are machine learning methods widely applied in debris cover identification
studies [11,16–19].

Glacier flow velocity serves as a key indicator reflecting glacier mass redistribution.
Primarily controlled by glacier thickness, a reduction in thickness due to mass loss leads
to decreased glacier velocity [20,21]. The presence of debris cover slows glacier retreat
and thinning, substantially preserving terminus activity. Debris moves with the underly-
ing ice, with its displacement speed essentially equivalent to the glacier’s surface speed.
Debris movement on the ice surface and local thickness changes are mainly governed by
the glacier’s horizontal velocity field [22–24]. The accumulation of moraine material and
the development of supraglacial ponds and terminal moraine lakes make debris-covered
glaciers more prone to disasters like glacial debris-flows and moraine-dammed lake out-
bursts [25–28]. Glacier movement is closely related to glacial disasters, and its monitoring
provides crucial evidence for studying and predicting such disasters [29–31].

Glacier flow velocity extraction methods are classified into optical and radar remote
sensing techniques. In optical remote sensing, cloud cover severely impacts image quality.
For instance, in mid-latitude regions such as the Tianshan Mountains, frequent cloud
cover above glaciers often results in significant data gaps [32]. The Synthetic Aperture
Radar (SAR) imaging system demonstrates advantages in all-weather operation and cloud
penetration [33]. Glacier velocity estimation methods using SAR data are divided into
differential interferometric synthetic aperture radar (DInSAR) and offset-tracking [34].
Although DInSAR provides considerable accuracy in estimating velocities, decorrelation
phenomena impede its further development and application. Conversely, offset-tracking
does not face decorrelation issues and is minimally impacted by terrain undulations with
short spatial baselines, suiting the mountainous terrain of debris-covered glaciers. Satellite-
borne SAR systems operate in varying bands, with L, C, and X bands suitable for estimating
debris-covered glacier flow velocities using offset-tracking [32,35–37].

The Central Tianshan Tomur Peak Region hosts China’s largest concentration of
debris-covered glaciers [38]. It is relatively complicated to correctly identify debris-covered
glaciers based on remote sensing data, due to the “different object with same spectrum”
issue. This limitation may be addressed by employing a feature optimization method that
combines texture and topographical factors with the random forest approach. To achieve
this, we used Landsat satellite data to identify changes in the extent of debris cover on
glaciers around the Tomur Peak from 1989 to 2022. The study estimated the surface flow
velocities of Tomur-type glaciers within the study area for 2020–2022, focusing on identified
debris-covered areas, using the offset-tracking method. This analysis was augmented by
combining glacier flow velocity data from 1989–2020 from the ITS_LIVE dataset and the
Sentinel-1 glacier motion velocity dataset [39], to conduct a long-term analysis of surface
flow velocities of debris-covered glaciers within the study area.

2. Study Area

Located at the trijunction of Kazakhstan, Kyrgyzstan, and China (41◦10′N–42◦40′N,
79◦20′E–80◦55′E), the Tomur-Khan Tengri Mountain Range is depicted in Figure 1. Around
60% of this region’s land exceeds 4000 m in elevation, and its highest point, Tomur Peak,
ascends to 7443.8 m. The glaciers in the Tomur Peak region are primarily dendritic large
valley glaciers, characterized by their long, narrow tongues, extensive supraglacial debris
cover, and well-developed thermokarst features. These glaciers can be referred to as
“Tomur-type” glaciers. This study focused on Tomur-type glaciers in the Tomur Peak
region, specifically those with an area greater than 40 km2.
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Figure 1. The geographical location and glacier distribution in the study area. Glaciers exceeding
40 km2 are emphasized with FDC (fractional debris cover from linear spectral unmixing) color scales.

The Tomur Peak Region features a temperate continental climate, influenced by pre-
vailing westerlies, with abundant precipitation mainly concentrated in the glacier melt
season, accounting for 70% of the annual total [40,41]. The extensive elevation range of the
glaciers and abundant material supply in the study area contribute to relatively high glacier
velocities. Glacial processes, including erosion, transport, and deposition, are pronounced,
fostering conditions for extensive development of debris cover. The melt season of glaciers
in the Tomur Peak Region is from May to September. Debris cover serves as an “insulating
barrier”, mitigating glacial mass loss and curtailing glacier retreat and thickness reduction,
thereby preserving glacier terminus activity to some extent.

3. Data and Methods

The experimental workflow of this study is shown in Figure 2. We utilized a fea-
ture optimization random forest method, combining texture and topographical factors, to
identify the extent of debris cover around Tomur Peak in Central Tianshan. The method
involved extracting and optimizing spectral, topographical, and texture features. Given
the significant impact of cloud cover on optical image quality, we conducted flow velocity
estimation from 2021 to 2022 using the SAR-based offset-tracking method. Debris distri-
bution enhances glacier surface features, offering favorable conditions for remote sensing
estimation of glacier velocities [42]. Glacier velocity estimations within debris-covered
areas tend to be more stable and accurate [43]. To ensure the reliability of our conclusions,
the analysis of glacier velocity was limited to the debris-covered areas identified in 2007.
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Figure 2. Workflow schematic for the semi-automatic delineation of the extent of debris cover and
methodology for mapping glacier flow velocities. NC: network common data format; LST: land
surface temperature.

3.1. Data Sources
3.1.1. Satellite Data

Landsat image data were obtained from the USGS Earth Explorer website (http:
//earthexplorer.usgs.gov/, accessed on 1 July 2024), as detailed in Table 1. Cloud-covered
images were excluded, and selections were made from the latter part of the glacier melt
season to reduce the impact of seasonal snow cover. For 2022, two images were combined to
address cloud cover. Atmospheric correction was applied to all Landsat images, converting
the original brightness values (digital numbers, DNs) to surface reflectance, to mitigate
sensor differences and variations in observational conditions.

Table 1. List of Landsat scenes used to map supra-glacial debris.

Path-Row Date LANDSAT_SCENE_ID Sensor Cloud Cover
(%)

147-031 22 August 1989 LT51470311989234ISP00 TM 3
147-031 10 September 1996 LT51470311996254ISP00 TM 3
147-031 24 August 2007 LT51470312007236IKR00 TM 10
147-031 1 September 2016 LC81470312016245LGN01 OLI 6.79
147-031 13 July 2022 LE71470312022194NPA00ETM+ 33
147-031 24 July 2022 LC91470312022205LGN01 OLI 26.48

We acquired Sentinel-1A data from the National Aeronautics and Space Administra-
tion (NASA)’s Alaska Satellite Facility. For glacier flow velocity estimation, this study
utilized 49 single look complex (SLC) images, collected by Sentinel-1A from 2019 to 2022.
The images’ orbit and frame numbers were 158 and 132, respectively, with temporal base-
lines of 24 or 36 days. Table 2 provides a list of the Sentinel-1A images.
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Table 2. Sentienl-1A SAR offset-tracking data pairs used in this study.

No. Date-1_Date-2 No. Date-1_Date-2

1 31 December 2020_5 February 2021 13 26 December 2021_31 January 2022
2 5 February 2021_1 March 2021 14 31 January 2022_24 February 2022
3 1 March 2021_25 March 2021 15 24 February 2022_1 April 2022
4 25 March 2021_30 April 2021 16 1 April 2022_7 May 2022
5 30 April 2021_5 June 2021 17 7 May 2022_31 May 2022
6 5 June 2021_29 June 2021 18 31 May 2022_24 June 2022
7 29 June 2021_4 August 2021 19 24 June 2022_30 July 2022
8 4 August 2021_28 August 2021 20 30 July 2022_4 September 2022
9 28 August 2021_3 October 2021 21 4 September 2022_28 September 2022

10 3 October 2021_27 October 2021 22 28 September 2022_3 November 2022
11 27 October 2021_2 December 2021 23 3 November 2022_9 December 2022
12 2 December 2021_26 December 2021 24 9 December 2022_2 January 2023

3.1.2. Reference Data

This study utilized the Shuttle Radar Topography Mission (SRTM) version 3 DEM,
with a 30 m resolution, to provide the necessary topographical information. Land surface
temperature (LST) data were derived from the Landsat Level-2 Surface Temperature Science
Product. Both datasets were downloaded from the USGS Earth Explorer. Temperature and
precipitation data were sourced from the European Centre for Medium-Range Weather
Forecasts (ECMWF)’s ERA5 dataset.

The Randolph Glacier Inventory version 6.0 (RGI 6.0), obtained from Global Land
Ice Measurements from Space (GLIMS) (http://www.glims.org/RGI/, accessed on 1 July
2024), served as a reference boundary for manual editing of the extent of debris cover.
Google EarthTM provided crucial high-resolution imagery and topographical information
as a reference for manual editing. Furthermore, Google EarthTM enhanced the identification
of landform types for training sample selection, improving the sample quality and accuracy.
Herreid et al. [44] conducted image threshold segmentation within RGI 6.0 glacier bound-
aries, considering the remaining area after excluding snow and bare ice as debris cover,
yielding the global debris cover extent product, referred to as the H2020 dataset in this text.
The H2020 dataset was used to verify the accuracy of the debris cover identification.

The Inter-mission Time Series of Land Ice Velocity and Elevation (ITS_LIVE) dataset,
from NASA’s MEaSUREs project is accessible at https://nsidc.org/apps/itslive/ (accessed
on 1 July 2024). The glacier surface velocities derived from Sentinel-1 data (hereafter
referred to as the S1 dataset) were obtained from the glacier portal of the University of
Erlangen-Nuremberg (http://retreat.geographie.uni-erlangen.de/search, accessed on 22
April 2024). This study analyzed long-term changes in flow velocities of debris-covered
glaciers by selecting ITS_LIVE data for 1989–2018 and S1 dataset data for 2019–2020.

Solar radiation data were obtained from the National Centers for Environmental
Prediction and the National Center for Atmospheric Research (NCEP/NCAR) reanalysis
datasets, with acquisition times matching those of the Landsat imagery. The MCD43A3
product is part of the MODIS global albedo product series, providing surface albedo values.
In this study, it was used to calculate net radiation.

3.2. Debris Cover Extent Identification
3.2.1. Feature Extraction

Thirty feature variables were chosen for further refinement, as indicated in Table 3.
Spectral analysis utilized six Landsat imagery bands: blue, green, red, near infrared
(NIR), shortwave infrared 1 (SWIR1), and shortwave infrared 2 (SWIR2). Using these
bands, remote sensing indices such as the normalized difference vegetation index (NDVI),
normalized difference water index (NDWI), normalized difference snow index (NDSI), and
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RATIO (red to shortwave infrared band ratio) were constructed. The calculation formulas
for these remote sensing indices are as follows:

NDVI =
ρNIR − ρred
ρNIR + ρred

(1)

NDWI =
ρgreen − ρNIR

ρgreen + ρNIR
(2)

NDSI =
ρgreen − ρSWIR1

ρgreen + ρSWIR1
(3)

RATIO =
ρred

ρSWIR1
(4)

where ρNIR, ρred, ρgreen, and ρSWIR1 correspond to the reflectance values of the NIR, red,
green, and SWIR1 bands, respectively.

Table 3. List of feature variables before optimization.

Category No. Feature Variable Name Category No. Feature Variable Name

Spectral information

1 Blue band
Textual information

16 Entropy
2 Green band 17 Second Moment
3 Red band 18 Correlation

4 NIR

Topographic parameters

19 Elevation
5 SWIR1 20 Slope
6 SWIR2 21 Aspect

Spectral index

7 NDVI 22 Shaded relief
8 NDWI 23 profile convexity
9 NDSI 24 Plan Convexity

10 RATIO 25 Longitudinal Convexity

Textual information

11 Mean 26 Cross-sectional Convexity
12 Variance 27 Minimum Curvature
13 Homogeneity 28 Maximum Curvature

14 Contrast
Others

29 LST
15 Dissimilarity 30 FDC

Debris, resulting from glacier movement, feature unique textures and spatial dis-
tributions. Identifying debris cover with slope constraints and multispectral imagery
yielded favorable outcomes [45]; adding texture information as a classification basis further
improved the accuracy [14]. Following principal component analysis, texture informa-
tion was derived via gray-level co-occurrence matrix (GLCM) operations with a 3 × 3
sliding window [46]. This texture information comprised mean, variance, homogeneity,
contrast, dissimilarity, entropy, second moment, and correlation, with formulas detailed
in the literature [47]. SRTM DEM provided topographical information, processed into ten
features (Table 3) with ENVI 5.6 [18]. The single-period DEM did not match the image
dates; however, as topographic features mainly distinguish debris from mountainous rock,
this discrepancy minimally affected the classification outcomes. Changes at the glacier
terminus received special attention during post-classification.

The lower temperature of debris cover compared to the surrounding terrain, due to un-
derlying ice, facilitated debris-covered glacier boundary identification via thermal infrared
remote sensing [48,49]. This study’s LST data came from the Landsat Level-2 Land Surface
Temperature Science Product. Within remote sensing imagery, spectral signals of debris
and bare ice frequently blend within a single pixel. To distinguish them, a linear spectral
unmixing approach with debris and bare ice as endmembers generated the FDC (fractional
debris cover) index as a classification feature. Debris moves along with the glacier mo-
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tion, and some studies explored using glacier flow velocity for debris identification [15,50].
However, in the study area experiments, incorporating coarse-resolution flow velocity
products (ITS_LIVE) as classification features did not enhance the debris identification
accuracy, resulting in jagged misclassifications.

3.2.2. Feature Optimization and RF Classification

The H2020 dataset utilized the Landsat image LT51470312007236IKR00 for informa-
tion gathering around Tomur Peak. This study’s sample point selection and random forest
model training were based on this image. After roughly determining the proportion of
various land cover types within the image frames using the H2020 dataset, we selected
sample points using the stratified random sampling method. Land cover type uncertainties
were verified using Google EarthTM. Ultimately, 1726 sample points covering four debris
categories—bare ice/snow, rock/bare land, and vegetation—were selected. In classifying
multi-feature data with the random forest method, each feature’s importance is assessed.
Within a classification and regression tree (CART), the Gini impurity is used to evalu-
ate a feature’s classification efficacy, assigning normalized importance scores to features
throughout the random forest [51].

Inherently, decision trees can select features and thresholds stepwise, but multiple
local optima do not ensure a globally optimal outcome. Inspired by wrapper-based feature
selection methods, this study sifted through 30 feature variables. Upon obtaining feature
variable importance scores, they were ranked accordingly, and the random forest model
was trained by incrementally adding features based on this ranking. The F1-score and
Kappa coefficient evaluated the debris cover identification accuracy, with the F1-score as
a weighted average of precision and recall [52]. The debris cover identification accuracy
varied with feature count, peaking at 23 features, as depicted in Figure 3. Adhering to the
highest-accuracy criterion for debris cover identification, the top 23 feature vectors were
chosen as the optimal feature combination to train the random forest model. This model
then classified the imagery data with the same feature combination across different periods,
identifying the extent of debris cover.
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Figure 3. Normalized importance ranking for 30 feature variables, with No. corresponding to Table 3.
This curve illustrates how the accuracy metrics varied as the number of feature variables increased.

Interference from moraines, seasonal snow, and shadows necessitated manual visual
interpretation and correction of the automatically identified debris cover extents using re-
mote sensing, for uses like mapping and monitoring changes in debris cover area [11,53–55].
Prior to manual editing, the classification results underwent median filtering to diminish
“salt-and-pepper noise”, with the kernel size set to 5 × 5. For manual editing of the extent
of debris cover, ArcGIS 10.8 and Google EarthTM were employed, with visual interpretation
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markers including debris color texture, supraglacial ponds, glacial terminus hydrology, and
topography. Debris cover identification, when combined with topographic data, effectively
differentiated debris from mountainous rock, with manual editing mainly focusing on the
glacier tongue terminus.

3.3. Glacier Flow Velocity Extraction

Located in a mid-latitude high mountain area, Tomur Peak Region’s severe cloud
cover limited the optical image availability for the study, prompting a focus on radar remote
sensing methods for extracting glacier flow velocities. While the DInSAR method provides
considerable precision in velocity estimates, it requires high image coherence, due to its
differential interferometric technique. Mountain glaciers’ relatively rapid flow can lead to
decorrelation between images, resulting in the loss of deformation information. Conversely,
offset-tracking does not encounter decorrelation issues and is minimally impacted by
terrain undulations, better suiting the mountainous terrain of the study area.

Prior to cross-correlation matching, Sentinel-1A SLC images underwent processing to
eliminate thermal noise, implementing multilooking and ground range projection, thereby
generating backscatter intensity images. These images were subsequently registered using
orbit information. For offset estimation, this study employed a frequency domain-based
image cross-correlation algorithm. GCPs were uniformly placed in the master image, sur-
rounded by 60 × 60 pixel search windows. Search windows slide across the slave image’s
search area, performing cross-correlation calculations at specified step sizes. Equation (5)
illustrates the frequency domain cross-correlation algorithm:

CC(i, j) = IFFT
(

Fo(u, v)G∗o (u, v)
|Fo(u, v)G∗o (u, v)|

)
(5)

In this equation, (i,j) represents the search window’s center, F0 (u,v) and G0 (u,v) are the
fast-Fourier-transformed master and slave images, “*” indicates complex conjugation, and
IFFT is the inverse Fourier transform. The correlation matrix CC measures image similarity,
with its peak coordinates matching the GCP’s position in the slave image. The offset was
calculated using homologous point coordinates in both master and slave images. A higher
CC peak value signifies a more reliable matching result [56]. Flow velocities at GCPs
exceeding 5 m/d were deemed outliers [57,58] and replaced with local weighted averages.
Orbital shift errors in the total offset, arising from satellite orbit differences or attitude
changes across passages, were computed and removed using a second-degree polynomial
fit for global deformation. Ultimately, converting azimuthal and range displacement into
north and east directions, based on radar incidence angle and satellite orientation, and
performing vector composition yielded the glacier’s planar flow velocity.

4. Result
4.1. Spatial Distribution of Debris Cover

The identification results of the extent of debris cover in 2022 were analyzed, showing
that the area of debris cover within the study region (409.2 km2) accounted for 22.8% of
the total glacier area. The area–elevation distribution of the debris cover, as illustrated
in Figure 4, shows that the debris was distributed across an elevation range of 2500 m to
4700 m. A total of 75% of the debris area was concentrated between 3300 m and 3900 m,
while glaciers from 2500 m to 3100 m elevation were entirely debris-covered.

Spatial distribution patterns of debris cover across different regions are detailed in
Figure 5. The elevation’s normal distribution for debris cover predominantly fell within
the interquartile range of 3250 m to 3950 m, with its slope distribution similarly within 3◦

to 10◦. Given debris primarily forms on glaciers’ gentler downstream slopes, its elevation
and slope distributions are notably focused, starkly contrasting with clean ice surfaces.
This rationale underscores the importance of elevation and slope as key features in the
debris classification process, as depicted in Figure 3. In diverse regions, slight variances
in the debris distribution’s elevation and slope predominantly stem from the glaciers’
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inherent topographic features. Glaciers of greater length and scale show a narrower range
in their debris slope distribution. On Tomur Peak’s northwest, larger glaciers such as North
Inylchek, South Inylchek, and Kaindy exhibited a concentrated slope distribution of 1.9◦

to 5.4◦ (Figure 5b), markedly gentler and more focused than those in other regions. The
aspect of the debris distribution mirrored the glaciers’ orientation.
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Figure 5. Histogram showing the normal distribution of the elevation and slope for the debris-
covered area, with dashed lines marking the upper and lower quartiles. (a) Southwest region (KB,
TM, QT in Figure 1); (b) northwest region (KI, NI, SI in Figure 1); (c) northeast region (TG, WK in
Figure 1); (d) southeast region (QK, KQ in Figure 1).

4.2. Changes in the Extent of Debris Cover

Table 4 and Figure 6 show the changes in the extent of debris cover on glaciers within
the Tomur Peak Region from 1989 to 2022. Over 34 years, Tomur-type glaciers saw a
69.4 km2 expansion in debris cover, marking a 20.0% increase. The significant expansion
of debris-covered areas on glaciers may have influenced the overall melting state in the
Tomur Peak Region. From 1989 to 1996, an unusual reduction in debris cover area was
observed across glaciers, with a rate of −1.09%·a−1. Imagery observations indicated the
extension of bare ice areas downward with glacier motion. In other time frames, all glaciers’
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debris cover expanded, with the highest annual growth rate of 1.96% between 2016 and
2022, and a subsequent rate of 1.02% from 1996 to 2007.
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Figure 6. Changes in the extent of debris-cover on glaciers (larger than 40 km2) in Tomur Peak Region
from 1989 to 2022.

Upward evolution, delineated by the spread of debris cover at the interface between
debris-covered and clean ice areas, represented the predominant form of debris expansion
in the study area. Debris expansion at glacier termini, triggered by glacier advance and
surging, was more common for smaller glaciers. Larger glaciers typically possess more
stable internal structures. During the study period, only the North Inylchek Glacier
exhibited surge phenomena [59], resulting in the expansion of its terminal debris. Tomur
Glacier, Koxqar Glacier, and Qiongtailan Glacier, located on the southwestern side of the
Tomur-Khan Tengri range, showed relatively little expansion in supraglacial debris cover.
Conversely, glaciers at Tomur Peak’s northern base saw a significantly higher debris area
growth rate than those on the southern slope. These differences in the change in debris
cover area between the northern and southern slopes can be attributed to (1) the northern
slope’s glaciers having numerous narrow tributaries and pronounced fracture faces, aiding
in the debris’ upward evolution; (2) the relatively isolated and smaller accumulation areas
on the northern slope, which might have experience intensified mass loss due to climate
warming, leading to the rapid exposure and subsequent formation of debris from moraine
material at the glacier tongue; and (3) variances in sunlight exposure and climate change
impacts between the slopes potentially influencing debris expansion rates.
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Table 4. Changes in the extent of debris cover on glaciers in the study region from 1989 to 2022. The
abbreviations of glacier names are detailed in Figure 1. ∆DebrisCov, debris coverage change; Abs.
rate, absolute rate; Ann. rate, mean annual rate; Cum. area, cumulative area.

Glacier
or

Region

∆DebrisCov
(1989–1996)

∆DebrisCov
(1996–2007)

∆DebrisCov
(2007–2016)

∆DebrisCov
(2016–2022)

∆DebrisCov
(1989–2022)

Abs.
Rate

Ann.
Rate

Abs.
Rate

Ann.
Rate

Abs.
Rate

Ann.
Rate

Abs.
Rate

Ann.
Rate

Cum.
Area

Cum.
Rate

km2·a−1 %·a−1 km2·a−1 %·a−1 km2·a−1 %·a−1 km2·a−1 %·a−1 km2 %

KB −0.10 −0.43 0.05 0.24 0.01 0.05 0.05 0.24 0.24 1.06
TM −0.46 −0.72 0.30 0.48 −0.09 −0.13 1.11 1.75 5.22 8.04
QT −0.29 −0.72 0.19 0.49 0.02 0.04 0.45 1.11 2.51 6.14
KI −0.09 −0.52 0.01 0.07 0.17 1.02 0.62 3.45 4.91 28.99
NI −0.41 −1.69 0.51 2.40 0.57 2.17 0.58 1.83 10.89 44.70
SI −0.87 −1.12 0.71 1.00 0.56 0.73 1.79 2.15 16.69 21.60

TG −0.39 −1.00 0.24 0.67 0.53 1.39 0.67 1.55 8.78 22.74
WK −0.37 −1.50 0.35 1.56 0.44 1.73 0.42 1.42 7.40 29.84
QK −0.37 −2.73 0.26 2.32 0.03 0.23 0.30 2.17 1.79 13.05
KQ −0.47 −2.72 0.31 2.23 −0.06 −0.33 0.57 3.52 2.39 13.77
SY 0.00 0.20 0.11 9.80 0.02 0.75 0.31 13.95 3.02 276.79
MS 0.04 0.92 0.23 4.40 0.07 0.99 0.42 5.36 5.59 115.71

Total −3.78 −1.09 3.27 1.02 2.26 0.65 7.31 1.96 69.41 20.00

4.3. Glacier Flow Velocity Extraction Results
4.3.1. Error Analysis

Deformation in non-glacial areas (such as bare land) is theoretically static, serving as
reliable control points for validating velocity extraction accuracy [60]. Numerous control
points, well-distanced from the glaciers, were selected in the flow velocity extraction
images, with their displacement values illustrated in Figure 7. Displacement values in static
areas, both east–west and north–south, exhibited a roughly normal distribution, indicative
of the random error distribution within the velocity extraction outcomes. The east–west
directional mean error stood at 1.79 m with a standard deviation of 2.69 m, whereas the
north–south errors slightly exceeded the east–west, with a mean error of 2.39 m and a
standard deviation of 4.40 m.
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Errors in extracting glacier velocities chiefly arise from image registration inaccuracies,
errors induced by terrain, and geocoding discrepancies [61]. The primary errors occur
during the image cross-correlation phase; image resolution and algorithmic limitations
restrict the accuracy of velocity results. Additionally, complex surface changes on glaciers,
such as precipitation, snowfall, and melting, may lead to inaccurate image matching. This
study opted for shorter temporal baselines and focused on stable debris-covered areas to
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reduce the introduction of errors from external factors, with interpolation addressing “void
values” or abrupt velocity changes due to misregistration. Given the expansive riverbeds of
Tomur-type glaciers and the gentle debris-covered terrain, the terrain’s impact on the flow
velocity extraction was minimal. The SRTM v3’s average absolute error in glacier regions is
approximately ±8 m [62], ensuring its reliability for geocoding flow velocity extractions.

4.3.2. Seasonal Velocity Variation

Flow velocity variations along the central flow lines of glaciers are spatially and
temporally stable, offering a representative overview of overall glacier flow changes. The
SAR offset-tracking method was employed to extract monthly flow velocities of Tomur-type
glaciers for the years 2021 and 2022. Figure 8 illustrates the variation in mean flow velocity
along the glaciers’ central flow lines.
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2021 to December 2022. The orange region covers the melt season of glaciers, and interval symbols
indicate the 95% confidence interval of the mean flow velocity. The abbreviations of glacier names
are shown in Figure 1.

Glacier flow velocity fluctuates throughout the year, with stronger fluctuations during
the melt season compared to the non-melt season. Moreover, mean velocities are generally
higher in the melt season than in the non-melt season, with peak velocities frequently occur-
ring during this period, particularly in July. Increased glacial meltwater and precipitation
enhance drainage at the glacier’s base during the melt season, promoting basal motion
and thereby accelerating glacier flow [42,63,64]. Furthermore, rising ice temperatures can
intensify the plastic deformation of glaciers, and short-term material replenishment may
heighten gravitational stress, albeit these elements have a secondary influence on glacier
flow velocity.
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4.4. Spatiotemporal Velocity Variations

We integrated the ITS_LIVE dataset, the S1 dataset, and the glacier velocity extraction
results from this study to construct a time series from 1989 to 2022. The three datasets were
generated using consistent principles, namely image feature tracking. The analyzed values
were averaged to prevent any single value from having an excessive error. Consequently,
the time series constructed from these values reliably reflected the trends in glacier velocity.

4.4.1. Northwest Region

A time series analysis showcasing flow velocities for three glaciers in the northwest
region of the Tomur-Khan Tengri Mountain Range is presented in Figure 9, with the changes
in mean velocity along the central flow lines over 34 years depicted in Figure 9e.
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Figure 9. (a) Spatial distribution of average glacier flow velocities in the northwest region from 1989
to 2022; (b–d) spatial distributions of the flow velocity change trend of the Kaindy Glacier, Northern
Inylchek Glacier, and Southern Inylchek Glacier. Slope, slope of linear regression; (e) changes in
average flow velocities along the central flow line over the past 34 years.

As demonstrated in Figure 9a, the flow velocities exhibited a downward trend from
the glaciers’ upper reaches to their lower extents, with velocities along the central flow
lines surpassing those at the glacier edges. Owing to its large size, the average peak
velocity of the South Inylchek Glacier reached 149.7 m/a. Nearly three-quarters of the main
glacier stream (from 3400 m a.s.l to 4200 m a.s.l) exhibited exceptionally high movement
speeds. In the last 50 years, Central Tianshan’s glaciers have experienced notable mass
reductions and ongoing thinning [65,66], culminating in a widespread slowdown of glacier
movement speeds. Kaindy Glacier was an exception, showing a notable uptick in flow
velocity between 3450 m and 3680 m. Li et al. [66]’s research indicated that while the
glacier’s forefront underwent substantial thinning between 2000 and 2012, the segment
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from 3500 m to 3700 m slightly thickened. A marked discrepancy in glacier thickness
alterations on either side of the 3500 m contour line induced an elevation in local slope,
concurrently amplifying the gravitational driving stress and thereby accelerating the glacier
flow velocities.

4.4.2. Southwest Region

Time-series analyses of glacier flow velocities in the southwest sector of the Tomur-
Khan Tengri Mountain Range are illustrated in Figure 10.
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Figure 10. (a) Same as Figure 9a, but for the southwest region; (b–d) spatial distributions of the flow
velocity change trend of the Koxqar Baqi Glacier, Tomur Glacier, and Qiongtailan Glacier. Slope,
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The large size of the tributaries of the Tomur Glacier significantly impacted the gradient
distribution of the glacier velocity (Figure 10a). In the ablation zones of the Tomur and
Koxqar Glaciers, certain areas were covered by thick debris layers exceeding 2 m in depth,
which significantly slowed down the thinning of these glaciers. Despite a reduction in flow
velocities downstream (Figure 10b,c), these glaciers’ overall velocity trend was upward
(Figure 10e). The West Qiongtailan Glacier saw an unusual increase in flow velocity
between 1999 and 2009 (Figure 10e), with the mean velocity at the flow line reaching
69.7 m/a in 2006, nearly 2.8 times that of the pre-1999 period. This was accompanied
by a notable thickening in the glacier’s accumulation area (3430 m to 3700 m) [66]. The
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acceleration in the West Qiongtailan Glacier’s western branch from 1999 to 2009 might
have been primarily due to thermodynamic changes at the glacier base. An increase in ice
temperature likely facilitated the deformation of basal sediments and elevated the pore
water pressure, thereby intensifying basal sliding or potentially causing detachment [67].

4.4.3. East Region

Time-series analyses of glacier flow velocities in the eastern sector of the Tomur-Khan
Tengri Mountain Range, as depicted in Figure 11.
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Among the four glaciers, the Qiongkuziwayi Glacier maintained the highest overall
flow velocity. Influenced by the confluence of four western tributaries, average velocities at
elevations above 3200 m exceeded 30 m/a (Figure 11a). In comparison with the Tugebieliqi
and Wukuer glaciers, despite the Tugebieliqi Glacier extending only 3.7 km more, its ice
volume amounted to 2.2 times that of Wukuer’s, guaranteeing higher flow velocities due
to the ample material supply. Over a 34-year period, the overall velocities of Wukuer
and Qiongkuziwayi Glaciers exhibited a decreasing trend (Figure 11b,d,f), while those of
Tugebieliqi and Keqiketieliekesu Glaciers demonstrated an increasing trend (Figure 11c,e,f).
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Synthesizing data from Figures 9–11, it is evident that increases in glacier flow velocity
generally occurred at tributaries and their confluence points, including the southern tribu-
taries of the Tomur Glacier and the segment between 3580 m and 3830 m of the Tugebieliqi
Glacier. Areas of velocity increase are typically situated near the glacier accumulation
zones, where elevations are high, melt rates are low, and material supply is abundant,
resulting in increased gravitational stress between these areas and the continually thinning
main glacier tongues, leading to an increase in flow velocities.

5. Discussion
5.1. Accuracy Assessment of Debris Cover Identification

Employing the optimal feature combination, the random forest classifier attained an
overall classification accuracy of 92.23%, a debris cover identification accuracy of 83.33%,
and a Kappa coefficient of 0.87 (Figure 3), falling within an acceptable range, with a Kappa
coefficient greater than 0.8 deemed an acceptable accuracy range [68,69]. To examine the
differences in performance of various machine learning methods in debris cover identifi-
cation and the impact of study area size on this accuracy, the glaciers in the Tomur Peak
Region and the Koxqar Glacier were classified with various machine learning methods,
with their accuracies subsequently validated, as illustrated in Table 5.

Table 5. Accuracy assessment of various machine learning methods for debris-cover identification in
the Tumur Peak Region and Koxqar Baqi Glacier.

Feature Composite Classifier
Tomur Peak Region Koxqar Baqi Gl

F1-Score Kappa F1-Score Kappa

Spectral information

Random Forest 56.0% 0.53 67.8% 0.65
Maximum Likelihood 42.3% 0.32 45.8% 0.35

Support Vector Machine 27.9% 0.22 29.5% 0.25
Artificial Neural Network 53.3% 0.49 61.4% 0.48

All features
Random Forest 82.4% 0.76 85.4% 0.84

Support Vector Machine 73.2% 0.65 76.0% 0.69

Selected features Random Forest 83.3% 0.87 88.6% 0.86

The accuracy of classification methods relying solely on spectral information for debris
cover identification was insufficient, failing to meet the accuracy requirements for remote
sensing classification. The random forest method, when considering all feature vectors,
demonstrated high accuracy in debris cover identification, a metric that could be further en-
hanced through feature optimization. Overall, the feature optimized random forest method
demonstrated significant advantages in debris cover identification. Remote sensing spectral
information of mountain glaciers exhibits high spatial variability, with the characteristics of
debris cover, including the distribution slope and surface temperature range, also showing
considerable variation. The more limited the research scope, the more concentrated the
distribution interval of debris cover features, leading to an enhanced debris identification
effect. Irrespective of the classification method employed, the accuracy of debris cover
identification within the Koxqar Glacier range surpassed that of the experiments conducted
across the entire Tomur Peak Region, underscoring the influence of study area size on the
accuracy of debris cover identification.

Although visual interpretation markers in debris-covered areas of Tomur-type glaciers
are abundant and explicit, the manual editing process may still introduce subjectivity. Given
the complex surface conditions in high mountain areas, the accuracy of digital elevation
models (DEM) and surface temperature products may be compromised [64,70], introducing
errors for which there are currently no effective solutions. Another source of uncertainty
is that temporal mismatches in topographical data may result in the misclassification of
features at glacier termini, necessitating adjustments during the manual editing process.
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5.2. Determinants of Debris Cover Upward Evolution

Temperature and precipitation respectively govern the melting and accumulation
processes of glaciers, thereby influencing their development and morphological evolution.
This study obtained surface temperature and cumulative precipitation data for the melt
season in the Tomur Peak region from 1989 to 2022, sourced from the ERA5 dataset, and
conducted trend analyses, as depicted in Figure 12. The results of the linear regression
analyses revealed a gradual upward trend in both surface temperature and cumulative
precipitation within the study area over the preceding 34 years (Figure 12a,b).
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Glacier length and area may expand due to glacier advancement or surging, con-
sequently leading to the expansion of the extent of debris cover. Glacier advancement
and surging are driven by complex factors, among which changes in temperature and
precipitation play a significant role in affecting a glaciers’ internal stability and material
accumulation upstream, often triggering surging. Upon examining the spatial distribution
of surging glaciers in the Tianshan region, it was noted that these glaciers are predomi-
nantly situated in the central and western parts of the Tianshan mountains, regions where
the temperature incrementally increases and precipitation gradually rises annually, with a
notable concentration of surging glaciers in the Tomur Peak area [59]. The advancing and
surging glaciers around Tomur Peak are predominantly small in size and not universally
debris-covered; thus, the debris cover expansion attributed to glacier advancement and
surging represents only a minor portion. The predominant mechanism behind debris cover
expansion is its upward progression, specifically, the expansion of debris at the interface
between debris-laden and clean glacier ice. In the context of global warming, similar trends
in debris upward have been documented in debris-covered glaciers in diverse locations,
such as the Zmutt Glacier in the Alps [71] and glaciers in the Greater Caucasus region [12].
In regions maintaining a stable glacier mass balance, the area covered by debris has not
exhibited a significant increase [72].

Debris cover formation predominantly occurs through two processes: the exposure
of englacial debris by glacier movement and melting, and the accumulation of weathered
rock and fallen debris on the glacier surface, forming supraglacial debris. A minor increase
in precipitation impacts glaciers significantly less than the effects of temperature elevation.
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Glaciers in the Tomur area are undergoing continuous mass loss. As englacial debris
is exposed through melting, the area covered by debris continues its upward evolution.
Considering the Mushketova Glacier as an example, which has exhibited significant debris
cover expansion, despite a modest retreat at the glacier terminus, the debris cover area on
this glacier has still expanded by nearly 1.2 times over 34 years (Table 4, Figure 13).
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The Mann–Kendall test results for precipitation and temperature changes in the study
area indicated a downward temperature trend and an upward precipitation trend between
1989 and 2006 (Figure 12c,d), contributing to a slower glacier mass loss. Certain studies
verified a reduction in the glacier mass loss rate in the Tomur area during this period [73].
In addition to climatic factors, elements like debris cover effects, low ice temperatures,
and high altitudes contribute to the glaciers in the Tomur area being more stable than
those in other central Tianshan Mountain regions [40]. This may related to the minor
decrease in the debris cover area in the study area from 1989 to 1996. Considering the
source of debris material, glacier movement erodes the underlying and surrounding rocks,
while accumulated moraine material is redistributed with glacier movement, continually
supplying materials for debris cover formation. A warming climate and thinning glaciers
may lead to permafrost melting and high-altitude mountain slope instability [74], triggering
increased rockfalls, ice–rock avalanches, and snow–rock avalanches, which transport
significant debris to glaciers [75,76], thereby facilitating the upward evolution of debris
cover.

5.3. Control Factors of Glacier Flow Velocity

Gravity triggers internal deformation and basal sliding within glaciers, with the inten-
sity of gravitational driving stress being dictated by the glacier’s thickness and slope. There-
fore, glacier flow velocity predominantly relies on the glacier’s thickness and slope [3,20].
Additionally, a glacier’s size, shape, length, and topographical attributes (including ele-
vation, altitude, and aspect) also exert an influence on its flow velocity, though to a lesser
extent. Typically, the glacier’s upper and middle sections are thicker than its lower parts,
with a steeper slope, resulting in a general trend of decreasing glacier flow velocities from
upper to lower reaches. This pattern of velocity distribution has been documented in
numerous glaciers throughout the high-mountain regions of Asia [43,77–79].

In the context of global climate warming, glaciers generally exhibit a thinning trend,
resulting in decreased velocities for most glaciers in the high-mountain areas of Asia.
Notably, glaciers in the Nyainqentanglha region have experienced the most significant
deceleration, with a decrease of (37.2 ± 1.1)% per decade [20,80]. Conversely, glaciers
located in the western part of the Kunlun Mountains and the Karakoram region, where
the glacier mass is nearly balanced or slightly increasing, have seen a slight acceleration
in flow velocities [81,82]. The annual mean velocity for all glaciers in the study area
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was analyzed statistically, revealing a gradual deceleration of overall glacier velocities in
the Tomur region at a rate of −4.0% per decade. However, when examining individual
glaciers, significant variability in flow velocities emerged, marked by considerable seasonal
differences. Specifically, certain glaciers registered an increase in flow speeds over the
34-year period, a phenomenon not solely explainable by changes in glacier thickness.
Basal sliding constitutes the greatest uncertainty in determining glacier flow velocities.
Numerous studies agreed that variations in temperature and precipitation in the study area
control the discharge at the glacier bed. Changes in subglacial water pressure influence
the intensity of basal sliding, thereby causing fluctuations in glacier flow velocity [83,84].
During the mid-study period, the Kaindy and Qiongtailan Glaciers displayed marked
increases in flow velocity, notwithstanding stable glacier terminus lengths, indicative of
rapid material transfer and accumulation—a phenomenon characteristic of swift glacier
advance [66]. More specifically, ongoing accumulation in the upper zones and alterations
in thermal conditions at the glacier’s base may facilitate enhanced basal sliding or even
detachment, resulting in glacier material moving from the accumulation zones to the
ablation areas, thus culminating in periods of rapid movement [67].

5.4. Relationship between Glacier Movement and Debris Distribution

The interaction and feedback mechanisms among climate, supraglacial debris, hydro-
logical conditions, and glacier dynamics collectively control the ablation and morphological
evolution of debris-covered glaciers, as illustrated in Figure 14. Identifying the extent of
debris cover is a fundamental task in the study of debris-covered glaciers. Glacier dynamic
processes are the primary driving forces behind the formation, transfer, and accumulation
of supraglacial debris. The glacier’s horizontal velocity field governs the transportation of
debris on the ice surface and the variations in local debris thickness.

Remote Sens. 2024, 16, x FOR PEER REVIEW 20 of 26 
 

 

significant variability in flow velocities emerged, marked by considerable seasonal differ-
ences. Specifically, certain glaciers registered an increase in flow speeds over the 34-year 
period, a phenomenon not solely explainable by changes in glacier thickness. Basal sliding 
constitutes the greatest uncertainty in determining glacier flow velocities. Numerous 
studies agreed that variations in temperature and precipitation in the study area control 
the discharge at the glacier bed. Changes in subglacial water pressure influence the inten-
sity of basal sliding, thereby causing fluctuations in glacier flow velocity [83,84]. During 
the mid-study period, the Kaindy and Qiongtailan Glaciers displayed marked increases 
in flow velocity, notwithstanding stable glacier terminus lengths, indicative of rapid ma-
terial transfer and accumulation—a phenomenon characteristic of swift glacier advance 
[66]. More specifically, ongoing accumulation in the upper zones and alterations in ther-
mal conditions at the glacier’s base may facilitate enhanced basal sliding or even detach-
ment, resulting in glacier material moving from the accumulation zones to the ablation 
areas, thus culminating in periods of rapid movement [67]. 

5.4. Relationship between Glacier Movement and Debris Distribution 
The interaction and feedback mechanisms among climate, supraglacial debris, hy-

drological conditions, and glacier dynamics collectively control the ablation and morpho-
logical evolution of debris-covered glaciers, as illustrated in Figure 14. Identifying the ex-
tent of debris cover is a fundamental task in the study of debris-covered glaciers. Glacier 
dynamic processes are the primary driving forces behind the formation, transfer, and ac-
cumulation of supraglacial debris. The glacier’s horizontal velocity field governs the trans-
portation of debris on the ice surface and the variations in local debris thickness. 

 
Figure 14. Diagram of climate–debris–glacier system interactions and feedback mechanisms. 

The method of estimating the distribution of debris thickness on glaciers in the To-
mur Peak region was based on remote sensing-derived land surface temperature com-
bined with the energy balance equation, using the debris thermal resistance as a proxy 
indicator for debris thickness. The results are shown in Figure 15. Similar methods have 
been applied to study typical debris-covered glaciers in the Himalayas [85,86], Gongga 
Mountain [87], the Caucasus Mountains, and the China-Pakistan Economic Corridor [88]. 
These studies demonstrated a common characteristic: the debris thickness at the glacier 
terminus was greater than that in the upper middle part of the ablation zone, with the 
thickness increasing closer to the terminus. This characteristic is in agreement with obser-
vations and simulations of the glacier debris thickness distribution in many regions of 
Asian high mountains and can be regarded as a widespread phenomenon [89–91]. 

Figure 14. Diagram of climate–debris–glacier system interactions and feedback mechanisms.

The method of estimating the distribution of debris thickness on glaciers in the Tomur
Peak region was based on remote sensing-derived land surface temperature combined with
the energy balance equation, using the debris thermal resistance as a proxy indicator for
debris thickness. The results are shown in Figure 15. Similar methods have been applied
to study typical debris-covered glaciers in the Himalayas [85,86], Gongga Mountain [87],
the Caucasus Mountains, and the China-Pakistan Economic Corridor [88]. These studies
demonstrated a common characteristic: the debris thickness at the glacier terminus was
greater than that in the upper middle part of the ablation zone, with the thickness increasing
closer to the terminus. This characteristic is in agreement with observations and simulations
of the glacier debris thickness distribution in many regions of Asian high mountains and
can be regarded as a widespread phenomenon [89–91].
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Figure 15. Spatial distribution of thermal resistances of debris layers in the study area. The abbrevia-
tions of glacier names are detailed in Figure 1.

As seen in the cross-sectional profile of the glaciers, the debris thickness on both sides
of the glacier generally exceeded that observed along the central flow line. A special case
occurs when one side of the glacier receives a substantial input from tributaries, resulting
in greater debris thickness on that side compared to the central flow line and the opposite
side, as observed on the south side of the North Inylchek Glacier tongue (Figure 15h) and
the north side of the Kaindy Glacier tongue (Figure 15j).

During the formation of supraglacial debris, glacier movement acts like a “conveyor
belt”: debris are continuously transported to the glacier terminus, and existing debris
typically remain on the glacier surface. As the glacier velocity gradually decreases to zero,
the position of the debris stabilizes, and the continuous accumulation of debris leads to an
increase in debris thickness. This process results in debris being primarily distributed in
the middle to lower parts of the glacier, with the thickness increasing closer to the glacier
terminus.

Due to the lack of extensive measured parameters (e.g., debris porosity, debris den-
sity, and glacier ablation rates), we adopted the analytical model proposed by Anderson
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et al. [22] instead of a numerical model to analyze the formation of the debris thickness
distribution pattern. This approach simplifies the complex physical processes inherent in
glaciers, only considering the instantaneous state of the glacier system. In the ablation zone
of a glacier, the debris thickness can be expressed as

d(x) =
1

Us

∫ x

xe

Cb
(1− φ)ρ

dx (6)

C represents the concentration of moraine within the ice, b represents the glacier
ablation rate under the debris cover, ϕ represents the porosity of the debris, ρ represents
the density of the debris, Us represents the glacier surface velocity, d represents the debris
thickness, x represents the distance from the glacier’s origin, and xe denotes the position
where debris first appears. Assuming C, ϕ, and ρ are constants throughout the glacier,
the debris thickness d is controlled by the glacier surface ablation rate b and the glacier
surface velocity Us. Using the Koxqar Glacier as a case study to analyze the trend of
debris thickness variation, the relationship between debris thickness and glacier elevation
is shown in Figure 16.
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Figure 16. The relationship between debris thickness and elevation along the central flowline of
the Koxkar Glacier, with debris thickness estimates derived from Rounce et al. [89] is accessible at
https://nsidc.org/data/hma_dte/versions/1 (accessed on 1 July 2024).

In the elevation range of 3500 m to 3880 m, the debris thickness variation is mainly
controlled by the ablation rate. Assuming a constant glacier surface velocity Us, as the
debris thickness increases, the glacier ablation rate b will continuously decrease, leading to
a reduction in the debris emergence rate and a slower increase in debris thickness. This
explains the trend observed in the 3500 m to 3880 m elevation range. As the debris thickness
continues to increase, the glacier ablation rate b approaches zero, and the debris emergence
rate also approaches zero. At this point, the glacier ablation rate b and the concentration of
debris C no longer influence the debris thickness growth rate. Below 3500 m, the glacier
flow velocity becomes the primary factor controlling the variation in debris thickness, with
the debris thickness increasing rapidly as the inverse of the glacier surface velocity (1/Us)
increases.

In the study area, the debris thickness on both sides of many glaciers is greater than
that along the central flow line. A one-dimensional debris thickness analysis model can be
simply applied to a two-dimensional plane, where the glacier velocity on both sides is lower
than that along the central flow line. Ideally, the debris thickness would symmetrically
increase from the central flow line toward both sides of the glacier. The replenishment of
loose rock material from both sides of the glacier may also be a significant reason for the
thicker lateral supraglacial debris.
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6. Conclusions

A feature optimization random forest method, which integrated texture and topo-
graphical factors, was utilized to identify changes in the extent of debris cover on glaciers
around the central Tianshan Tomur Peak from 1989 to 2022. For 2022, the study region’s de-
bris cover area was recorded at 409.2 km2, constituting 22.8% of the total glacier area, with
a predominant distribution on the gentler slopes of the glaciers’ downstream areas. Over
the span of 34 years, the debris cover area witnessed an expansion of 69.4 km2, marking an
increase of 20.0%. Influenced by various factors including the number of tributaries, glacier
scale, sunlight exposure, and climate change, the rate of debris cover expansion at glaciers’
northern base on Tomur Peak significantly surpassed that on the southern slopes.

Over a 34-year period, the analysis of the changes in glacier velocity indicated that the
South Inylchek Glacier exhibited the highest glacier velocity in the study area, with a peak
average velocity of 149.7 m/a. Nearly three-quarters of the main glacier stream (from 3400
m a.s.l to 4200 m a.s.l) maintained exceptionally high movement speeds. As the glacier
thickness decreased, the overall glacier movement in the study area gradually decelerated,
at a rate of 4.0% per decade. When examining individual glaciers, there was significant
variability in their velocity change trends, characterized by notable fluctuations in speed.
We hypothesized that possible causes might include changes in basal water pressure,
thermodynamic conditions, and internal glacier structure, which alter the intensity of basal
sliding.
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Abstract: The increasing global warming trend has resulted in the mass loss of most glaciers. The
Urumqi Vally, located in the dry and cold zone of China, and its widely dispersed glaciers are
significant to the regional ecological environment, oasis economic development, and industrial and
agricultural production. This is representative of glaciers in Middle Asia and represents one of the
world’s longest observed time series of glaciers, beginning in 1959. The Urumqi Headwater Glacier
No. 1 (UHG-1) has a dominant presence in the World Glacier Monitoring Service (WGMS). This
paper supplies a comprehensive analysis of past studies and future modeling of glacier changes in
the Urumqi Valley. It has received insufficient attention in the past, and the mass balance of UHG-1
was used to verify that the geodetic results and the OGGM model simulation results are convincing.
The main conclusions are: The area of 48.68 ± 4.59 km2 delineated by 150 glaciers in 1958 decreased
to 21.61 ± 0.27 km2 delineated by 108 glaciers in 2022, with a reduction of 0.47 ± 0.04 km2· a−1

(0.96% a−1 in 1958–2022). The glacier mass balance by geodesy is −0.69 ± 0.11 m w.e.a−1 in 2000–
2022, which is just deviating from the measured result (−0.66 m w.e.a−1), but the geodetic result
in this paper can be enough to reflect the glacier changes (−0.65 ± 0.11 m w.e.a−1) of the URB in
2000–2022. The future loss rate of area and volume will undergo a rapid and then decelerating
process, with the fastest and slowest inflection points occurring around 2035 and 2070, respectively.
High temperatures and large precipitation in summer accelerate glacier loss, and the corresponding
lag period of glacier change to climate is about 2–3 years.

Keywords: Urumqi Valley; glacier change; climate change; OGGM model

1. Introduction

As the largest reservoirs of freshwater resources, glaciers are critical to the hydrological
cycle and ecosystems because of their sensitive and synergistic relationship with the global
climate [1,2]. Glaciers store solid water during cold temperatures and melt during the
ablation period to supply water to rivers and downstream populations, especially in
cold and dry regions. [3,4]. However, the global sea level has been rising at a rate of
0.2–0.4 mm per year during the 20th century due to the accelerated shrinkage of the
cryosphere; this is as a result of man-made climate change [5,6]. A proposal to designate
2025 as the International Year of Glacier Protection, initiated by the Republic of Tajikistan,
has been implemented, and a further plan to establish an international fund for glacier
protection emphasizes the importance and urgency of glacier change [7].

There are two aspects to the study of systematic refinement of glacier change in a
particular region: past systematic analyses and future change trends. The past period of
glacier shrinkage is manifested in many aspects, such as reduction in number, area, and
volume, while the mass balance is one of the most direct quantitative reflections of glacier
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accumulation and mass loss [8–10]. The traditional glaciological method of acquiring
mass balance results using flower pole and snow pit observations is the most accurate
method [11,12]. Moreover, a series of techniques, such as aerial photogrammetry, gravity
satellite, SAR interferometry, and laser measurement, have been well used to study glacier
elevation, area, and volume changes [13,14]. With the development of geodesy and the
increase in DEM resolution, the results have become more accurate [15,16]. Currently,
the most widely popular research method is a combination of geodetic and traditional
glaciological methods, which ensures the credibility of research on glacial change, and is
made more accessible by remote sensing technology [14,17]. Previous research has focused
on trends in glacier change over an historical period, which is of much less reference
value in the context of global warming trends [18,19]. There is a developed global scale,
modular, open source numerical model called OGGM Model, which can simulate the
dynamics of glaciers for both past and future change [16]. Glacial borders and DEM
data are the underlying input data, and meteorological data provided by Coupled Model
Intercomparison Project 6 (CMIP6) are used to drive the OGGM model [20]. Future glacier
trends under different climate scenarios have been approximated by selecting glacier area
changes, and the conclusions have been shown to be reliable and convincing [21,22].

The Urumqi Valley in Tianshan is an important region in the northwest dry region of
China. There are many glaciers in Middle Asia and one glacier, UGH-1, has been observed
for the past 60 years [23]. Most of the previous research has focused on the single glacier,
UHG-1 [24–26]. The study shows that mass balance of UHG-1 is −0.46 ± 0.14 m w.e.a−1,
with much more area reduction and a faster rate of loss than in Tianshan [27,28]. The aver-
age glacier flow rate is 0.07 m a−1, which may be related to glacier retreat and thinning [23].
The modeling of the mass balance in the basin is mostly focused on UHG-1 [29,30] and
extends at most to a few surrounding glaciers [31]. Glaciers within such an important and
typical basin have yet to be studied as a whole, let alone as part of future glacial changes in
the basin.

This paper attempts to fill glacier information gaps in the Urumqi Valley and initial
predictions of glacier ablation dynamics under different scenarios. Multi-source imagery,
including topographic maps, high-resolution images, and multi-source DEM collections,
were used to study a variety of indicators that can evaluate glacier changes, especially
the mass balance by DEM variations. Moreover, the DEMs generated spatial resolution
by stereo image pairs (Ziyuan No. 3) is up to 2.5 m, which significantly improves the
accuracy of the study. In addition to discussing climate and past glacier change in detail,
this paper uses the OGGM model to predict glacier change within the basin to provide a
basic reference for domestic water and Industrial and agricultural development in Urumqi,
a city of 3,505,800 people.

2. Study Region

The Urumqi Valley is located on the north side of Tengger Peak in middle Tianshan,
China. It consists of the Urumqi River on the west and the East Mountain River system
on the east. The region (43◦00′N~44◦07′N, 86◦45′ E~87◦56′E) covers 4684 km2 area with a
length of 214.30 km and the glacial region studied can be seen in Figure 1. According to the
China Second Glacier Inventory, there are 129 glaciers with an area of 29.26 km2 [32]. UHG-1,
located in this basin, is the most well-recorded glacier in China, and has been studied for
the longest time; the earliest recorded information began in 1958. The climate of the region
can be summarized as low temperature, low humidity, high evaporation, and monsoonal
character [33]. Land usage consists mainly of alpine meadows and wastelands at altitude
distribution from 3391 m to 4459 m a.s.l. According to meteorological data gathered
at Daxigou station between 1959 and 2018, the average temperature is −4.9 ◦C, with
7–8 months below 0 ◦C. The temperature distribution ranges from 5 ◦C in July to−1.5 ◦C in
January. The precipitation reaches 466 mm, and summer contributes the most precipitation.
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3. Data and Method
3.1. Data and Pre-Processing

The earliest glacial boundary extraction was based on six topographic maps involving
this basin that were scanned, aligned, spliced, and corrected based on ENVI 5.3 to ensure
that the corrected mean-variance was less than one cell before delineation. All topographic
maps have a scale of 1:50,000. Landsat imagery has been widely used to study glacial
change [34]; given the difficulty of obtaining early high-resolution imagery, we chose
Landsat TM imagery from 1989. The Landsat images were downloaded from the website
abbreviated as USGS and have been pre-processed, including radiometric and control
point correction. (https://glovis.usgs.gov/). This paper studies glacier changes based
on higher-resolution multi-source remote sensing images, such as the Spot 5 in 2005 and
Ziyuan No. 3 stereo pairs in 2022. These images had <10% clouds, occurred within the
ablation period, and were used to generate glacial contours. The data used for past glacier
changes in the Urumqi Valley are presented in Table 1. Data are available free of charge.

Table 1. Attributes and applications of the data used in the past glacier change.

Data Image ID/Attribution Date Resolution Application

Topographical maps —— August 1964 1:50,000 Boundary Extraction
Landsat4 TM LT41430301989230XXX01 18 August 1989 30 m Boundary Extraction
Spot 5 5217-262/805/09/0704:57:242A 7 September 2005 10 m/5 m Boundary Extraction

ZY3 02 TMS

_L1A0001048489 14 September 2022 2.5 m
Boundary Extraction and Generating
DEMs from Stereo Images

_L1A0001048441 14 September 2022 2.5 m
_L1A0001130875 22 July 2022 2.5 m
_L1A0001130874 22 July 2022 2.5 m

landsat9 OLI_TIRS LC91430302022257LGN01 14 September 2022 30 m/15 m Calibration Control Points
SRTM DEM —— February 2000 30 m Glacial Elevation Changes
ALOS PALSAR DEM ALPSRP253320850 26 October 2010 12.5 m Glacial Elevation Changes
ASTER GDEM V3 —— 5 August 2019 30 m Basin Extraction and Comparison Aids
ZY3-DEM —— July–September 2022 2.5 m Glacial Elevation Changes
The Second Glacier Inventory of China 2006–2011 30 m/15 m Reference to Basic Glacier Properties

SRTM DEM is readily available as open-source data and, being within 1 month of 2000,
has a unique advantage for studying glacier elevation change with the 30 m resolution
(https://earthexplorer.usgs.gov/). The ALOS satellite from Japan is dedicated to earth
observation. The PALSAR satellite has the advantage of round-the-clock, all-weather land
observation, and was selected for the elevation difference analysis (https://search.asf.
alaska.edu/). To measure glacier mass balance changes, this paper takes elevation changes
since the 21st century at 10-year intervals. The China Daxigou Meteorological Station, at
the source of the Urumqi River, provides meteorological data that can reveal synergistic
changes in glaciers and climate. Data are available free of charge.
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3.2. Method
3.2.1. Delineation of Glaciers and Uncertainty Assessment

Delineation of accurate glacial boundaries is important when glaciers are used to
represent glacial changes in a region. Automated edge delineation is determined by many
factors such as snow cover, clouds, shadows, and the resolution of images [35]. In this study,
glacial margins in different periods were delineated to meet the recognized standards [36].
In addition to combining the experience of the experts in the field, Google Earth pro 2023
software also contributed [37]. Clustered glaciers are separated by ridgelines and referred
to glacier cataloging to retain subsequent accuracy.

The error in delineating the glacier can be regarded as caused only by the resolution of
the remotely sensed images after the glacial boundaries have been captured by the visual
interpretation method, which is the most accurate method available. The uncertainty of
delineation EA can be evaluated as follows:

EA =
N× λ2

2
(1)

where N is the number of pixels and λ is the resolution of different remote sensing images.
The Urumqi glaciers uncertainties in 1964, 1989, 2005, and 2022 were±4.59 km2,±3.98 km2,
±0.96 km2, and ±0.27 km2, respectively, accounting for 9.43%, 9.81%, 3.38%, and 1.20% of
total glacierized areas, respectively.

The uncertainty of changed area (EB) is expressed as follows [38]:

EB =

√
E1

2 + E2
2 (2)

where E1 and E2 are uncertainties in glacier area at the beginning and ending years, respectively.

3.2.2. Ziyuan No.3 DEMs

Ziyuan No.3 was launched in January 2012 as a forerunner of China’s civilian high-
resolution stereo mapping satellites, with three panchromatic cameras and a multispectral
camera, which can acquire stereo image pairs of the same area from three different observa-
tion angles. The resolutions are 5.8 m multispectral, 2.1 m panchromatic, and 3.5 m front
and rear view. Based on this feature, which can provide rich 3D geometric information,
it can be used to generate DEMs, and Resource 3-02 has a higher front- and rear-view
resolution of 2.5 m, which can meet the requirements of higher precision stereo mapping.
Considering the seasonal snow and cloud cover, we chose four pairs of images from July
and September 2022 to extract the DEM. The process of extracting the DEM using stereo
image pairs was carried out in the DEM extraction model of the ENVI 5.3 software. After
comparing the extraction results, we found that the use of frontal-view and rear-view image
pairs to extract the DEM provided better results. The extraction process was carried out
by selecting 20 ground control points and 100 correlation points in relatively stable non-
glaciated areas, using Landsat 9 OLI images of the same period as reference positioning.
All DEMs are georeferenced in the WGS84 coordinate system and stitched together with a
spatial resolution of 2.5 m.

3.2.3. DEMs Co-Registration and Error Analyses

In the geodetic method, the elevation difference between DEMs is the value that char-
acterizes the variation of glacier surface elevation; this is fundamental for our assessment
of glacier mass balance in the Urumqi Valley. The ALOS DEM in the intermediate periods
was selected as the reference DEM to assess the SRTM DEM and ZiyuanNo.3 DEM. The
1964 glacier margin was chosen to differentiate non-glacier topography, as the glacier
area shrank the most in 2022. The rationale for the alignment is that the topography of
the non-glaciated regions remains essentially unchanged, which can be used to test and
iteratively adjust for errors in the multi-source DEMs. The relationship between vertical
deviation and slope and aspect will tend to sine or cosine if the DEMs in non-glaciated
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areas are not perfectly aligned with each other [39]. The offset difference equation proposed
by Nuth is as follows:

dh
tan(α)

= a× cos(b−ϕ) + c (3)

In order to display the results more intuitively and conveniently, we linearize Equation (3)
and then solve Equation (4) to obtain the value of the offset in each direction, thus fulfilling
the DEM alignment.

dh
tan(α)

= xsin(ϕ) + ycos(ϕ) +
z

tan(α)
(4)

x = a× sin(b) (5)

y = a× cos(b) (6)

z = c × tan(α) (7)

In Equations (3)–(7), dh represents the height difference between DEMs of different
periods due to offset displacement: a is the magnitude of vertical movement, b is the
direction of the movement vector, α is the slope of terrain, ϕ is the vertical direction of the
terrain, and c represents the mean deviation between the different DEMs divided by the
mean slope tangent, which can be calculated by dh/tan(α). After linearisation, x represents
the offset in EW direction, y represents the offset in the NS direction, and z is the offset in
the vertical direction. After aligning the multiphase DEM with the topographic information
of the non-glacier area, if elevation residual error satisfies the normal distribution, then
the elevation standard deviation residual in the non-glaciated stable area approves of the
estimate of the accuracy of the surface elevation change in the glacier area [40].

3.2.4. Geodetic Mass Balance and Uncertainty Assessment

Density should be taken into account when volume changes are converted to glacier
mass balance [15,41]. This paper applied 850 ± 60 kg·m−3 to provide a parameter for taking
the snow and pure ice into account to assess the mass changes by water equivalent (w.e.) [42]:

M =
ρ

S

n

∑
i=1

∆hi × Si (8)

where ρ is ice density transition; S is consequential glacier area; n is pixel numbers; ∆hi is
the single pixel height variation; and Si is single pixel area. The uncertainty was calculated
as follows:

E =

√
(

∆hi

t
× ∆ρ

ρw
)2 + (

σ

t
× ρ1

ρw
)2 (9)

where ∆h is the mean height variation of glacier areas; t is studied period; ∆ρ is the error of
ice density, which value is taken as 60 kg·m−3; ρw is water density, which value is taken
as 1000 kg·m−3; σ is the errors of height variation; and ρ1 is ice density transition, which
value is taken as 850 kg·m−3.

3.2.5. Glacial Mass Balance and Uncertainty

In 1959, we began to measure the glacier mass balance during ablation (May~August) by
using flower sticks to confirm the height variation and snow pits to assess the density [43,44].
As illustrated in Figure 2, the stake network spans the whole UHG-1 in order to provide the
result of mass balance. For UHG-1, we manually interpolated the measured data between
adjacent contours by manually drawing lines of equal mass balance [45].
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Bn =
∑n

i=1 Bi·Si

S
(10)

where Si is the pixel area, Bi is the obtained mass balance of the corresponding pixel glacier,
and S is the total area of UHG-1.
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3.2.6. OGGM Model

Open Global Glacier Model gives full consideration to glacial geometry and consists
of an explicit ice dynamics module and a calving parametrization. The modular OGGM
supports being redefined, remixed, and repeated, with reliance on publicly available data
for calibration and validation. In the model, glacial boundaries and DEM data are used
as model base input data. It is driven by climate scenarios to forecast future area, volume
changes, etc. The model is globally consistent in predicting ice thickness and glacier
mass loss. To maintain the purity of the results, the observed glacier mass balance is the
best choice for checking the accuracy of OGGM. Note that model accuracy is verified by
predicting glacier mass balance using an extended temperature index model [21]

M(h) = Pcf·P(h)solid − µ·max{(T(h)− Tmelt, 0)}+ ε (11)

where characters with (h) qualify the elevation, M is monthly glacier mas balance, Pcf is
precipitation correction factor, Psolid is monthly solid precipitation, and µ is updated cali-
bration and correction factor, which represents the glacier sensitivity parameter and where
a particular glacier can be set to agree with observations [20]. T is monthly temperature,
Tmelt represents monthly mean air temperature, and ε is deviation correction.

3.2.7. Meteorological Data

In this study, three SSPs scenarios were selected to drive the OGGM model. In
order to reduce the error of the results, for each SSPs pathway, the results of 13 climate
models were selected, which were BBC, CAMS, CESM2-WACCM, CESM, EC-Earth3,
EC-Earth3-Veg, FGOALS, GFDL, INM-CM4-8, INM-CM5-0, MPI-ESM1-2-HR, MPI-ESM2-
0, and NorESM2-MM. The final results of glacial area and volume in the URB are obtained
by averaging the standard errors of the 13 climate models; ensembles are taken as the errors
of the area and volume simulations results [31]. Given the assumptions that climate change
arises only over large areas and the associations of climate variables remain consistent in
the base period, interpolating or inserting data where none exists with thin-plate spline
eliminates errors.
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4. Result
4.1. Delienation and Uncertainty of Glaciers

In 2022, 108 glaciers were mapped in the entire URB, a decrease of nearly one third
compared to 150 in 1964. The number of glaciers throughout the basin has been trending
downward over time. Moreover, the whole basin can be divided into four sub-basins,
coded as 5Y730A, 5Y730B, 5Y730C, and 5Y730D. We discerned and statistically calculated
the contours of the glacier in detail and combined the number of pixels occupied by the
glacier and the image resolution to obtain the uncertainty in the delineated and vanished
glacier area. Specific information is presented in Tables 2 and 3. Because the region belongs
to multiple field observations, the error of manual visual interpretation is ignored in this
paper. Higher resolution images are the basis and direction for the development of glacier
remote sensing for the future. The areas of glaciers delineated in different years of this
paper and the errors are shown below:

Table 2. Glacier delineation and uncertainty in each sub-basin of the Urumqi River.

District 1964 Area 1989 Area 2005 Area 2022 Area Area Change Rate
(1964–2022)

5Y730A 6.16 ± 0.58 km2 4.52 ± 0.44 km2 3.19 ± 0.11 km2 1.99 ± 0.04 km2 32.31%·a−1

5Y730B 21.62 ± 2.04 km2 18.41 ± 1.81 km2 12.81 ± 0.43 km2 9.73 ± 0.12 km2 45.00%·a−1

5Y730C 9.17 ± 0.86 km2 8.32 ± 0.82 km2 5.13 ± 0.17 km2 4.10 ± 0.04 km2 44.71%·a−1

5Y730D 11.73 ± 1.11 km2 9.32 ± 0.91 km2 7.31 ± 0.25 km2 5.79 ± 0.07 km2 49.36%·a−1

Total 48.68 ± 4.59 km2 40.57 ± 3.98 km2 28.44 ± 0.96 km2 21.61 ± 0.27 km2 44.39%·a−1

Table 3. Metrics of glacier change and uncertainty in different periods.

Period Overall Losses km2 Overall Error of Variation Annual Area Change Area Change Rate

1964–1989 8.11 km2 1.10 km2 0.32 ± 0.04 km2·a−1 0.67%·a−1

1989–2005 12.14 km2 1.26 km2 0.76 ± 0.08 km2·a−1 1.87%·a−1

2005–2022 6.82 km2 0.24 km2 0.40 ± 0.01 km2·a−1 1.41%·a−1

1964–2020 27.07 km2 2.57 km2 0.47 ± 0.04 km2·a−1 0.96%·a−1

4.2. Area Changes and Analysis in Glaciers

The glacier area in the basin decayed rapidly, from 48.68 ± 4.59 km2 in 1964 to
21.61 ± 0.26 km2, a shrinkage rate of 0.47 ± 0.04 km2·a−1 and an overall relative rate of
change in glacier area of 55.6% (0.96%·a−1). Because the glacier scale in this region is
inherently not very large, it is believed that the glacier will be completely ablated. In this
paper, the rate of glacier area change is divided into three periods, and the ablation rate is
−0.31 km2·a−1 (0.64%·a−1), −0.81 km2·a−1 (1.99%·a−1), and −0.40 km2·a−1 (1.41%·a−1)
in the periods of 1964–1990, 1990–2005, and 2005–2022, respectively. The years from
1990–2005 had the fastest rate of glacial ablation, and the ablation rate for the latest period
has remained above the average rate for the last 58 years. Moreover, four sub-basins, coded
as 5Y730A, 5Y730B, 5Y730C, and 5Y730D, involved 67.75%, 54.96%, 55.32%, and 50.65%
of the ablation area from 1964 to 2022, respectively. The detailed ablation shape is shown
in Figure 3.

The Urumqi Valley is on northern Tianshan, so most glacier numbers (106) and glacier
area (20.79 ± 0.24 km2) belong to the N, NE, and NW facings. The glacier area oriented
towards N had the most ablation, accounting for 58% of the total. The NE and NW oriented
glacier areas are about equally ablated, accounting for about 54%. The two glaciers in
other orientations had an the area of only 0.81 ± 0.02 km2, and were much smaller in 2022.
(Figure 4). The mean elevation for the glaciers inventoried ranged from 3667 to 4272 m,
with the mean being 3948 m in 2000; they ranged from 3671 m to 4270 m with the mean
3926 m in 2022. About 80% of the glacier area was distributed within 3800–4000 m. Over
50% of the glacier area was between 3900–4000 m. The area of glaciers is roughly normally
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distributed at different elevation scales. The most serious ablation of glacier area is in
the altitude zone below than 3700 m, accounting for 76.55%, followed by 4000–4100 m,
accounting for 68.47%, while the smallest rate of ablation is in the most aggregated altitude
zone of 3900–4000 m, accounting for 52.5%, which reflects the intense ablation of glacier
area in the region.
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4.3. Geodetic Uncertainty Analysis

After correcting the offset bias among SRTM, ALOS, and ZiyuanNo.3 DEM data
with a trigonometric correction (Figures 5 and 6), the elevation difference residuals in
the non-glaciated areas can be used to evaluate the errors among the DEMs and to cal-
culate the accuracy of the estimation results for the glacier volume change and the mass
balance. Because the spatial resolution of the DEM data used is not uniform, the spatial
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autocorrelation distances were chosen to be 600 m, 250 m, and 50 m for the SRTM, ALOS,
and ZiyuanNo.3 resolutions of 30 m, 12.5 m, and 2.5 m, respectively (Bolch T. et al., 2011).
After error correction, Mean Elevation Difference (MED) tends to be close to 0; the relative
error between the DEM data is significantly less than 1 m (Table 4).
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Table 4. Original and adjusted errors between muti-DEMs.

Period Item
Original (m) Adjusted (m)

N SE (m) σ (m)
MED STDV MED STDV

2000–2010 SRTM_ALOS 17.84 29.47 0.14 32.85 3872 0.53 0.53

2010–2022 ALOS_ZiyuanNo.3 2.00 12.59 −0.13 9.74 10,363 0.10 0.16
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4.4. Geodetic Glacier Mass Loss

Theoretically, the difference embodied in each raster of the DEMs can respond to a
single point of glacier mass balance. Given the corrected results, the glacier elevation in
the URB declined significantly in various periods, with an accelerated trend of glacier
retreat. The following figure is a visualization of the difference between the DEMs of the
two periods processed by the Arcmap 10.3.

After discounting obviously erroneous extremes from the results of the subtraction
of the DEM, most of the variables are tightly clustered around the average value, with
only a few at the extremes (Figure 7). The glacier elevation in the URB declined by
44.64 ± 0.69 m during 2000–2022, of which the glacier elevation declined by 23.07 ± 0.53 m
on average during 2000–2010, with an annual mean decrease of 2.31 ± 0.05 m·a−1, and by
21.57 ± 0.16 m during 2010–2022, with an annual mean decrease of 1.80 ± 0.01 m·a−1.
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According to the results of the glacier height variations converted to glacier loss, the
volume of glaciers in the Urumqi Valley has decreased by 0.24 km3 over the past 22 years,
with an annual mean decrease of 0.01 km3·a−1. The annual glacier mass balance of Urumqi
Valley was −0.65 ± 0.11 m w.e.a−1 during 2000–2022. Of this, the mean glacier mass
balance was−0.67± 0.12 m w.e.a−1 before 2010 and was−0.63± 0.11 m w.e.a−1 after 2010.
As a special mention, we also calculated the individual glacier mass balance separately for
the key monitoring glacier (the UHG-1). The average annual glacier mass balance of the
UHG-1 was −0.69 ± 0.12 m w.e.a−1 during 2000–2022. The average glacier mass balance
was −0.71 ± 0.12 m w.e.a−1 in 2000–2010 and was −0.67 ± 0.12 m w.e.a−1 in 2010–2022.

4.5. Predicted Future Glacier Mass Loss in Urumqi River Basin

The simulation and analysis of glacier area and reserves in the Urumqi River basin
under different climate scenarios of CMIP6, including SSP1-2.6, SSP2-4.5, and SSP5-8.5,
found that the trends of glacier area and reserves changes under different emission scenarios
coincide with each other. In 2020–2080, the glacier area and reserves in the Urumqi
River Basin of the Tianshan Mountains still show an overall trend of retreat and decrease
(Figure 8). Reserves as a whole still show a trend of retreat and decrease, and both basically
disappear completely by the end of this century. Under the three climate scenarios, the
initial and final values of SSP1-2.6, SSP2-4.5, and SSP5-8.5 are approximately the same, but
the intermediate trends are very different. For glacier area, the SSP1-2.6 scenario has the
slowest rate of glacier retreat, with an average annual decrease in change of 0.351 km2·a−1
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and an average annual decrease in glacier volume/volume of 5.21 × 106 m3·a−1. Next is
the SSP2-4.5 scenario, with an average annual decrease in change of 0.352 km2·a−1 and an
average annual decrease in glacier volume/volume of 5. 23 × 106 m3·a−1, and the SSP5-8.5
scenario, with a decrease in glacier area/volume of 0.352 km2 a−1 and an average annual
decrease in glacier volume/volume of 5.23 × 106 m3·a−1. SSP5-8.5 scenario had the largest
glacier area and reserve melt. The glacier area change decreases by 0.353 km2·a−1 and the
glacier reserve/volume decreases by 5.29 × 106 m3 a−1.
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Figure 8. The area and volume change of glaciers in the Urumqi River Basin from 2020 to 2100. Where
(a,b) shows the area and volume trends of the 13 climate models under different climate models,
respectively; (c,d) presents the mean values of the simulation results of the 13 climate models after
processing under the scenarios of SSP1-2.6, SSP2-4.5, and SSP5-8.5. The 13 model patterns described
in the legend and whose simulation standard errors are displayed as shaded areas in (c,d). I, II, III
represent the different stages of the trend change.

Taking the mid-century (2050) as the cut-off point, the rate of glacier area decrease
in the first half of this century (2020–2050) is higher than that in the second half of this
century (2050–2080) under the emission scenarios of SSP1-2.6, SSP2-4.5, and SSP5-8.5
(0.482 km2· a−1, 0.485 km2·a−1, and 0.505 km2a−1, respectively); the rate of decrease in
glacier area decrease is 0.353 km2·a−1 and the rate of decrease in glacier storage/volume
decrease is 5.29 × 106 m3·a−1. The rate of decrease of glacier reserves in the first half of
this century (2020–2050) is higher than that in the second half of this century (2050–2080)
by 0.226 km3·a−1, 0.224 km3·a−1, 0.232 km3·a−1, and the percentage of decrease is higher
than that in the second half of this century (2050–2080) by 31%, 30%, and 31%, respectively.
Comparing the glacier area and glacier reserve/volume, the percentage reduction of glacier
area is about 10% higher than the percentage reduction of glacier reserve in the first part
of this century (2020–2050), and the percentage reduction of glacier area is about 40%
higher than the percentage reduction of glacier reserve in the second part of this century
(2050–2080), indicating that the glaciers in the Urumqi River Basin are mainly characterized

36



Remote Sens. 2024, 16, 1489

by glacier area retreat, followed by thickness reduction. This pattern is even greater in the
middle- and late-century. The reason for this is that the glaciers in the Urumqi River Basin
are inherently thinner than the glacier properties in other regions.

5. Discussion
5.1. Geodetic Glacier Mass Balance Validation

The mass balance obtained from the UHG-1 based on traditional glaciological measure-
ments is shown in Figure 9. It is obvious that the period of maximum positive accumulation
of mass balance is between 1960 and 1980. Since 2000, the positive values of glacier mass
balance have almost disappeared and the negative accumulation trend of glacier mass
balance has intensified, with the highest negative accumulation value in 2010.The annual
average values of glacier mass balance of UG-1 for the periods of 2000–2010, 2010–2022,
and 2000–2022 are 664 mm w.e.a−1, 666 mm w.e.a−1, and 662 mm w.e.a−1, respectively.
Overall, the annual mean mass balance for the period 2000–2022 is stable and shows little
fluctuation; it is still suitable as a reference for the same period of time for obtaining the
mass balance based on remote sensing. Compared with the annual average mass balance
of a single glacier obtained by geodetic methods during the same period of this study, the
values are −0.67 m w.e.a−1, −0.71 m w.e.a−1, and −0.69 m w.e.a−1, respectively, and it can
be concluded that the mass balances of geodetic and glaciological measurements are in
agreement with each other. Taking the glaciological mass balance values as benchmarks,
the relative differences between 2000–2010, 2010–2022, and 2000–2022 are only 1.5%, 7.5%,
and 4.5%, respectively. Moreover, a linear fit to the mass balance trends obtained by tra-
ditional glaciological methods after 2000 showed a stronger negative accumulation trend.
The interval of fitted values is from −0.83 m w.e.a−1 to −0.67 m w.e.a−1 and the results
obtained in this study fall perfectly in that interval.
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5.2. OGGM Model Validation and Forecasting

To prove the accuracy of the future changes in glacier area and volume, we used the
OGGM model to acquire the glacier mass balance from 2000 to 2020, which is displayed in
Figure 10. The OGGM model and the observed values show a near-identical trend, with a
correlation coefficient of 0.87, which has a strong significance. In addition, the difference
between the linear fit lines of OGGM simulated and the observed values have a tendency
to widen; the error range of 52–124 mm w.e.a−1. is acceptable. After confirming that the
results of glacier area and volume were credible, we calculated the glacier mass balance
based on the formula and combined it with the snow-ice density transformation to get the
future glacier mass balance value of the URB. The results show that the glacier mass balance
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is the most negative in the SSP5.8-5 pattern, followed by SSP2.4-5, and is the least negative
in SSP1.2-6. The variability in glacier mass balance among the three models is present and
in good agreement with future changes in area and volume, with an accelerated rate of
change in 2035 and little fluctuation after 2075.
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−0.38 [46,47] 

Figure 10. Validation and prediction of glacier mass balance for the OGGM model. (1) Comparison
of OGGM-based and observed glacier mass balance for 2000–2020. (2) Future glacier mass balance
values based on glacier area and volume from the OGGM model.

5.3. Glacier Loss Comparison in Typical Regions

For the entire Tianshan mountain range, the glacier mass deficit within the URB is
relatively dramatic, with much higher values of negative mass balance than many typical
basins, as well as the mass balance of the monitored glaciers. The factors influencing the
ablation and mass balance of glaciers are sophisticated (Table 5). First, the degree and
speed of glacier ablation are different when the size and type of glacier are different. The
larger the size and the more concentrated the distribution of the glacier, the less intense
the ablation. Large debris-covered glaciers are less prone to ablation, and such glaciers are
most strongly developed in the Tomur region of the Tianshan Mountains. The Urumqi
Valley belongs to the typical glacier in a small area and scattered distribution, where fast
ablation is inevitable. Second, the combination of aspect and slope affects the development
of glaciers mainly by changing the amount of solar radiation received. The mass balance
is exacerbated by a negative balance in the N/N-direction, which is usually favored by
small slopes for the accumulation of glaciers. The vast majority of glaciers in the Urumqi
Valley are orientated N and have little topographic relief, and there are no high mountain
systems around them that can block solar radiation. Third, the altitude zone in which the
glacier is located is also a key factor affecting the ablation of glaciers, as glaciers are not
widely developed at lower altitudes, and the ablation rate is generally faster in the region
below 4500 m. The glacier studied in this paper belongs to this situation. Fourth, there is
a change of water and heat because of the significant impact of westerly winds from the
Atlantic Ocean. In this paper, the effects of temperature and precipitation are discussed in
Section 5.4 as a separate section.
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Table 5. Comparison of glacier mass balance of monitored glaciers and typical basins in western
China.

Region Typical Glacier Period Basin Mass
Balance/m w.e.a−1 Period Single Mass

Balance/m w.e.a−1 Source

Urumqi Valley UHG
2000–2022
2000–2010
2010–2022

−0.65 ± 0.11
−0.67 ± 0.12
−0.63 ± 0.11

2000–2022
2000–2010
2010–2022

−0.69 ± 0.12
−0.71 ± 0.12
−0.67 ± 0.12

This study

Mt.Tomor
Qingbingtan No.72 1964–2008

2008–2014
−0.20
−0.38 [46,47]

Keqikaer 1999–2003
2004–2006

−0.22
−0.44 [48]

Kuitun River Basin Haxilegen No.51 2004–2006
2010–2011

−0.38
−0.68 [49]

Yili River Basin Ts.Tuyuksuyskiy 2003–2018 −0.42 ± 0.16 2003–2018 −0.50 [50]
Kaidu River Basin —— 2001–2016 −0.48 —— —— [51]
Manas River Basin —— 2000–2016 −0.58 —— —— [52]
Northern Tin Shan —— 2000–2020 −0.39 ± 0.04 —— —— [53]

5.4. Contribution of Meteorological Conditions to Glacier Ablation

Climate is the basic factor in assessing glacier change. It is shown that temperature
is the leading causes of the glacier change [54,55]. The amount of glacial melt needs to
increase by 40~50% of precipitation to compensate for every 1 ◦C increase in the mean
summer temperature [56]. Figure 11 illustrates the temperatures and precipitation obtained
from the Daxigou meteorological station for the years 1958–2022, showing that the Urumqi
Valley has experienced warming and wetting potential during the last half-century. The
average temperature from 1959 to 2022 is −4.75 ◦C in this region. The average temperature
in 1959–2000 and 2000–2022 is 5.02 ◦C and 4.23 ◦C, which is an increase of 0.20 ◦C/10a and
0.07 ◦C/10a, respectively. The average annual precipitation from 1960 to 2021 is 473.80 mm
in this region. The average precipitation in 1959–2000 and 2000–2022 is 444.64 mm and
528.13 mm, which has a increasing rate of 19.38 mm/10a and 29.95 mm/10a, respectively.
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In order to further explore the dominant factors and approximate time lag of tempera-
ture and precipitation on past glacier changes in the URB, we calculated the correlation
coefficients between glacier mass balance delayed by 1–6 years and climate factors, re-
spectively (Figure 12). The highest correlation between summer temperatures and the
magnitude of glacier loss can be seen, which means that the higher the summer tempera-
tures, the more glacier loss. In addition, because the annual precipitation accumulation
in the region is mainly contributed by summer precipitation, the correlation coefficients
obtained for annual and summer precipitation with glacier mass balance do not differ
much. In terms of the delay period, there is the highest correlation coefficient between
glacier mass balance with a three-year lag and summer temperature. The highest corre-
lation coefficient between glacier mass balance and annual precipitation was found in
the two-year lag, and the correlation coefficient between glacier mass balance and winter
precipitation was negative at that time, which proved that winter precipitation not only
did not cause the glacier loss, but contributed to the accumulation of the glacier, but only
with a minor contribution. Therefore, the response of glaciers to climate in the URB has a
lag of 2–3 years.
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6. Conclusions

This study aimed to quantify the glacier changes in the Urumqi Valley in the Tianshan
Mountains, and the area changes of glaciers were assessed by multi-source remote sensing
imagery and analyzed in conjunction with topographic factors. In addition, the mass
balance of the glaciers in the basin was estimated using geodetic methods and validated
with the aid of traditional glaciological methods, and the following main conclusions
were obtained:

(1) In 2022, 108 glaciers were mapped in the entire Urumqi Valley, a decrease of
nearly one-third compared to 150 in 1964. The glacier area in the basin decayed rapidly
from 48.68 ± 4.59 km2 in 1964 to 21.61 ± 0.26 km2 in 2022, with a shrinkage rate of
0.47± 0.04 km2·a−1 and an overall relative rate of change in glacier area of 55.6% (0.96%·a−1).
Glacier area shrinkage has increased since 1990 and is higher than the average annual
change rate (0.96%·a−1) over the past 58 years. The majority of the glaciers are orientated
towards N (N\NE\NW) and are situated in the elevation zone between 3800–4000 m. The
glacier area oriented N had the most ablation, accounting for 58% of the total area, and
the largest percentage of glacier area (over 50%) was between 3900–4000 m. Different
combinations of topographic factors are associated with differential glacier area changes

(2) The glacier elevation in the Urumqi Valley declined by 44.64 ± 0.69 m dur-
ing 2000–2022, with an average annual decline of 2.31 ± 0.05 m·a−1 in 2000–2010 and
1.80 ± 0.01 m·a−1 in 2010–2022. The volume of glaciers in the Urumqi Valley has decreased
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by 0.24 km3 over the past 22 years. The average annual glacier mass balance of URB is
−0.65 ± 0.11 m w.e.a−1 during 2000–2022. Of this, the average glacier mass balance was
−0.67 ± 0.12 m w.e.a−1 before 2010 and was −0.63 ± 0.11 m w.e.a−1 after 2010. The aver-
age geodetic mass balance of the monitored UHG-1 (−0.69 ± 0.11 m w.e.a−1) somewhat
deviates from the observed result (−0.65 m w.e.a−1), but the geodetic method result in this
paper can be used to reflect the changes of glaciers in the region;

(3) Based on the OGGM model simulations, SSP5.8-5 model has the fastest glacier area
and volume losses and the rate of glacier area and volume loss in 2020–2100 undergoes
a fast and then slow process. The fastest rate of glacier area loss occurs between 2030
and 2035; the rate of glacier area loss slows between 2042 and 2050; and the lowest rate
of glacier area loss occurs between 2070 and 2080, when glacier area will no longer be
decreasing. The highest and lowest inflection points for glacier volume loss are in 2035 and
2070, respectively. The glacier mass balance based on the OGGM model can correspond
well with the observed values, so it confirms that the results of this paper’s prediction of
glacier changes in the Urumqi Valley are credible. Moreover, Different SSP scenarios show
different changes in glacier mass balance, with the fastest negative mass balance in the
SSP5.8-5 model, followed by SSP2.4-5, and the slowest negative mass balance in SSP1.2-6.

(4) Although the glacier area change and mass balance are spatially heterogeneous,
glacier melting in the basin has shown an accelerated shrinkage trend in recent years
compared to other regions. Higher temperatures are the dominant factor contributing to
accelerated glacier loss, and increased (summer) precipitation can also make glacier mass
balance values more negative. Winter precipitation will contribute almost no amount to
glacier accumulation. There is a lag of roughly 2–3 years in the response of glaciers to
climate in the Urumqi Valley.
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Abstract: Debris-free and debris-covered glaciers are both extensively present in the southeastern Tibetan
Plateau. High-precision and rigorous comparative observational studies on different types of glaciers
help us to accurately understand the overall state of water resource variability and the underlying
mechanisms. In this study, we used multi-temporal simultaneous UAV surveys to systematically explore
the surface elevation change, surface velocity, and surface mass balance of two representative glaciers.
Our findings indicate that the thinning rate in the debris-free Parlung No. 4 glacier UAV survey area
was consistently higher than that in the debris-covered 24K glacier in 2020–2021 (−1.16 ± 0.03 cm/d vs.
−0.36 ± 0.02 cm/d) and 2021–2022 (−0.69 ± 0.03 cm/d vs. −0.26 ± 0.03 cm/d). Moreover, the surface
velocity of the Parlung No. 4 glacier was also consistently higher than that of the 24K glacier across the
survey period, suggesting a more dynamic glacial state. The surface mass balance of the Parlung No. 4
glacier (2020–2021: −1.82 ± 0.09 cm/d; 2021–2022: −1.30 ± 0.09 cm/d) likewise outpaced that of the
24K glacier (2020–2021: −0.81± 0.07 cm/d; 2021–2022: −0.70 ± 0.07 cm/d) throughout the observation
period, which indicates that the debris cover slowed the glacier’s melting. Additionally, we extracted
the melt contribution of the ice cliff area in the 24K glacier and found that the melt ratio of this ‘hotspot’
area ranged from 10.4% to 11.6% from 2020 to 2022. This comparative analysis of two representative
glaciers provides evidence to support the critical role of debris cover in controlling surface elevation
changes, glacier dynamics, and surface mass balance.

Keywords: UAV; debris-free glacier; debris-covered glacier; southeastern Tibetan Plateau

1. Introduction

Since the start of the 21st century, maritime glaciers within the southeastern (SE)
Tibetan Plateau have exhibited higher rates of mass loss compared to other regions across
High-Mountain Asia [1–5]. The predominant glacier types in this region include both
debris-free and debris-covered glaciers. Notably, the estimated proportion of the debris-
covered area in the SE Tibetan Plateau is close to 20% of the total glacierized area, which
exceeds the global average value (~4.4–7.3%) [6,7]. Therefore, a better understanding
of the characteristics of different glaciers and the changes they experience is essential
to comprehensively evaluate the situation regarding water resource availability in this
region [8,9].

Several studies were conducted in alpine regions, with observational and modeling
approaches being adopted for the study of glaciers (with or without debris cover). Some
found that the presence of debris influences the responses of glaciers to global warming.
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When the debris thickness exceeds a few centimeters, it plays a protective role in mitigating
glacier ablation [10–15]. Therefore, the ablation rates of most debris-covered glaciers (mean
global debris thickness > 10 cm) [16] are supposed to be weaker than those of debris-
free glaciers. Nevertheless, numerous remote sensing studies utilizing satellite imagery
revealed comparable rates of thinning for both debris-free and debris-covered glaciers
(i.e., “debris coverage anomaly”) [1,17–20]. Similarly, this anomaly was verified in the SE
Tibetan Plateau, where the debris-covered glaciers are widely developed [21,22]. However,
almost all of the above conclusions are based on satellite remote sensing data, which may
be lacking in resolution. Moreover, some researchers highlighted the significant impact of
‘hotspot areas’ (such as ice cliffs and supraglacial ponds) on the mass loss of debris-covered
glaciers. Due to the relatively small size of these “hotspots” areas, high-resolution data are
required for accurate assessments of the contribution of ablation [23–31].

Since Unpiloted Aerial Vehicles (UAVs) overcome the disadvantages of the poor spatial
representativeness of in situ observations and insufficient precision from satellite remote sens-
ing data, the use of UAVs has gradually become one of the main techniques for monitoring
glacier changes [24,32–37]. High-resolution digital elevation models (DEMs) and orthomosaics
can be readily acquired from UAV imagery through the application of structure-from-motion
(UAV-SfM) combined with multi-view stereo photogrammetry [38,39]. In the SE Tibetan
Plateau, some researchers also carried out monitoring experiments on debris-covered glaciers
and debris-free glaciers with high-resolution photogrammetric measurements [40–46]. How-
ever, there are no synchronized monitoring results based on UAV surveys for debris-covered
glacier and debris-free glacier changes in the SE Tibetan Plateau. Comparative studies that
accurately estimate the surface mass balance changes in two types of glaciers (debris-covered
vs. debris-free) by using synchronized and high-precision UAV data are also relatively rare in
the glaciology community.

In this study, we simultaneously compared the glacier changes between the debris-free
Parlung No. 4 glacier (abbreviated as Parlung No. 4) and the debris-covered 24K glacier
(abbreviated as 24K) in the SE Tibetan Plateau from 20 August 2020 to 22 June 2022. The
objective of this study was to accurately estimate and compare the variability in mass loss
and dynamic states of two typical glaciers to deepen our understanding of the response of
maritime glaciers in the SE Tibetan Plateau to global warming.

2. Study Area

Parlung No. 4 and 24K are located in the SE Tibetan Plateau (Figure 1a); the distance
between the two glaciers is only ~120–130 km. They are primarily influenced by the
moisture from the Bay of Bengal Vortex (during spring) and the Indian Summer Monsoon
(during summer) [47–49]. The monthly distribution of precipitation displays a double-peak
pattern, with two distinct peaks occurring in the spring and summer [48]. Specifically,
Parlung No. 4 (29◦13.57′N, 96◦55.19′E) is located at the source of the Parlung Zangbo River
on the southeastern side of Mount Gangrigabu (Figure 1c). This glacier has a length of
~8 km and an area of ~11 km2, typical for a debris-free glacier in the SE Tibetan Plateau.
The Parlung No. 4 catchment area is ~25 km2 (Figure 1c), and the glacier area accounts for
44% of the total area (Figure 1c). Moreover, 24K (29◦45.59′N, 95◦43.11′E) is also located
on the northern slope of Mount Gangrigabu (Figure 1b). It is ~24 km away from Bomi
City [15] and has a length of ~3 km (area: ~3 km2). The debris-covered area accounts for
41% of the 24K area, and the spatial distribution of its thickness shows a decreasing trend
(Figure A1) [46], which is typical of a debris-covered glacier in the SE Tibetan Plateau.
The 24K catchment area is 14 km2 (Figure 1b), and the glacier area is 21% of the total area
(Figure 1e). Despite being in close proximity to each other, there is a striking difference
in the climatic characteristics of the two glaciers. During the 2016 ablation period, the
average temperature of 24K was 5.4 ◦C higher than that of Parlung No. 4, and the total
precipitation of 24K was approximately nine times higher than that of Parlung No. 4
(1696.8 vs. 189.6 mm) [15].
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Figure 1. (a) Location of the study area. (b,c) Maps showing the topography and UAV survey
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glacierized and non-glacierized areas of the Parlung No. 4 and 24K catchments.

3. Data and Methods
3.1. UAV Flights and Data Processing

High-resolution images of the survey areas were obtained by using unpiloted aerial
vehicles (UAVs) during six field studies conducted from 20 August 2020 to 22 June 2022. The
specific dates and details of these studies are provided in Table 1. To capture the annual glacier
surface elevation change and surface displacement, we utilized the eBee Plus UAV equipped
with the GNSS Post-Processed Kinematic (PPK) functionality in all of the surveys.

Table 1. UAV flight information of two glaciers.

Flight
Time

Flight
Type UAV Name Glacier Name Image Number Resolution

(cm) Area (km2)

25 August 2020
PPK eBee Plus

Parlung No. 4 425 9.8 4.0
20 August 2020 24K 160 12.6 3.7

29 July 2021
PPK eBee Plus

Parlung No. 4 442 9.4 4.6
23 July 2021 24K 426 9.2 4.4
18 June 2022

PPK eBee Plus
Parlung No. 4 529 9.1 3.9

22 June 2022 24K 249 11.8 5.4
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This UAV is a fixed-wing aircraft equipped with a 20MP camera called the Sense-
Fly S.O.D.A. For flight planning purposes, the eMotion3® flight management software
(version 3.5.0) was employed. During the survey period, the longitudinal and lateral
image overlaps for the eBee Plus were set at 65% and 80%, respectively. By maintaining a
consistent survey height above the glacier surface, the flight lines of both UAVs ensured
a uniform ground resolution for each survey. To enhance the accuracy of the UAV-based
structure-from-motion (SfM) reconstruction, a stationary base station was used. The GNSS
data collected from the base station were then appended to the Exchangeable Image File
Format metadata of each geotagged image [41]. This data integration process was a part of
the PPK correction workflow, which was followed in an attempt to improve the precision of
the UAV-SfM reconstruction. The geotagged images obtained from the UAV surveys were
further utilized in the creation of orthomosaics and digital elevation models (DEMs) using
the SfM-based photogrammetric software Pix4Dmapper (version 4.3.31). The accuracy of
all UAV-SfM outputs was indirectly assessed by comparing the horizontal and vertical
errors in the UAV-SfM outputs (2020 vs. 2021; 2021 vs. 2022). The horizontal errors were es-
timated by measuring the displacement of benchmarks (>30 boulders on stable non-glacier
areas), while the vertical errors were calculated by counting the surface elevation change
value of stable terrain, as outlined in Figure 1b,c.

3.2. Surface Elevation Change and Surface Velocity

After employing the PPK technologies, the acquired DEMs’ offsets were found to be
minor [41], negating the need for the co-registration of DEMs when calculating glacier
surface elevation change. For each period, we derived surface elevation change results
via DEM differential analysis in ArcGIS 10.4. The horizontal displacement of each glacier
was obtained by using 20 cm resolution DEM hillshades using ImGRAFT (a normalized
cross-correlation algorithm) [50] within a search window of 10 × 10 pixels (2 × 2 m).

3.3. Surface Mass Balance of Glacier Ablation Area

The thinning/surface elevation change (dh, in m) of the calculated area is equivalent
to the ablation/surface mass balance (

.
b, in m) plus the emergence velocity (ω, in m):

dh =
.
b + ω (1)

ω =
Q
S

(2)

Q = µ·H·D·L (3)

where S (in m2) is the calculation zone area, and Q (in m3) is the ice flow through a given
profile of the glacier. µ is the coefficient for the conversion of surface velocities to depth-
averaged velocities. Following Miles et al. [25] and Zhao et al. [46], this coefficient was
estimated to be 0.9; H (in m) is the thickness of the ice for the corresponding profile, D
(in m) is the component of the normal surface displacement to the cross-section, and L
(in m) is the breadth of the profile.

To evaluate the uncertainty of the surface mass balance (σ .
b
) for the calculation area,

the following equation was used:

σ .
b
=
√

σdh
2 + σω

2 (4)

The uncertainties of dh (and for D) were estimated by calculating the mean difference
in surface elevation and the mean displacement from the non-glacial experimental areas.
By averaging the values over all periods, they were determined to be 0.09 m (σdh) and
0.09 m (σD), respectively.
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The uncertainty of the emergency velocity (σω) was given by the following:

σω

ω
=

√(
σQ

Q

)2
+
(σS

S

)2
(5)

where the uncertainty of the area of the zone (S) was calculated to be ±20 m from the
outlines using the ‘buffer method’ [25,51]; the uncertainty of the ice flow through a glacier
profile (σQ) was calculated as follows:

σq

q
=

√
(σD

D

)2
+

(
σµ

µ

)2
+
(σH

H

)2
(6)

where the uncertainty of the ratio µ (column-averaged velocity/surface velocity) is esti-
mated to be 0.1 [25,52]. The uncertainty in H was ~37 m (26%) for Parlung No. 4 [53] and
was assumed to be equal to 12 m for the corrected uncertainty in ice thickness for 24K [46].

3.4. Hotspot Area Ablation Contribution

To quantify the proportion of the contribution of ablation in the “hotspots” areas, we
used the merged ice cliff outline method [25,46] and the mean hotspot area enhancement
factors (1.96) [46]. Only 24K exhibited developed ice cliffs, and there were few developed
supraglacial ponds. Regarding the merged ice cliffs outline, the specific operation is to
georegister the 2020 and 2022 orthomosaics of the glacier areas by using the reference
orthomosaics (July 2021). Further details are described in Zhao et al. (2023) [46]. After
completing the registration, ice cliff outlines for August 2020, July 2021, and June 2022 were
manually sketched based on orthomosaics. Then, we combined the 2020 ice cliff outline
with the 2021 ice cliff outline and the 2021 ice cliff outline with the 2022 ice cliff outline. The
hotspot area ablation contributions between 2020 and 2022 were estimated based on the
previous enhancement factor.

4. Results
4.1. Surface Elevation Changes of Two Glaciers

Utilizing the high-resolution DEMs derived from the UAV data, we quantified the
magnitude and spatial distribution of glacier surface elevation changes on Parlung No. 4.
As depicted in Figure 2a,b, this analysis covered two distinct periods: from August 2020
to July 2021 (338 days) and from June 2022 to July 2021 (323 days). During 2020–2021,
the mean surface elevation change within the UAV survey area of Parlung No. 4 was
−3.93 ± 0.10 m (−1.16 ± 0.03 cm/d). In 2021–2022, the mean surface elevation change
in the UAV survey area of Parlung No. 4 was −2.23 ± 0.10 m (−0.69 ± 0.03 cm/d), and
the thinning rate in 2021–2022 was lower than that in 2020–2021. Based on the surface
elevation change regarding the vertical test area, we obtained the vertical errors of the
surface elevation change results for 2020–2021 (0.10 m) and 2021–2022 (0.10 m). These
minimal error margins underscore the reliability and precision of the surface elevation
change results obtained for the glacier areas.

During the period between August 2020 and July 2021 (337 days), UAV-based observa-
tions revealed that the surface elevation change for 24K was −1.20 ± 0.07 m, equating to a
daily rate of −0.36 ± 0.02 cm/d, as illustrated in Figure 3a. In the period from July 2021 to
June 2022 (334 days), 24K exhibited a mean surface elevation reduction of −0.86 ± 0.10 m,
with a mean daily rate of −0.26 ± 0.03 cm/d (Figure 3b). Consistent with the situation
of Parlung No. 4, the thinning rate in 2021–2022 was also lower than that in 2020–2021.
Compared with Parlung No. 4, the thinning rate of the 24K ablation area was consistently
lower than that of the Parlung No. 4 area, which was approximately 3.3 times as large as
that of 24K in 2020–2021 and ~2.6 times as large as that of 24K in 2021–2022. Furthermore,
the vertical accuracy of the DEMs for 24K remained high, as evidenced by an error value of
0.07 m in 2020–2021 and 0.10 m in 2021–2022.
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Figure 4 illustrates the gradient relationship between the surface elevation change
rate and altitude for each glacier at 6 m elevation bands (24K) and 10 m elevation bands
(Parlung No. 4). It was found that the surface elevation change rate of Parlung No. 4 is
constantly higher than that of 24K throughout all observation periods, and the magnitude
of the thinning rate of 24K is only slightly above 0, apart from in the terminal ice cliffs area.
Additionally, for both glaciers, a decline in thinning magnitude with increasing altitude
was noted.
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Figure 4. Average surface elevation change rates within 6 m elevation bands for Parlung No. 4 and
10 m elevation bands for 24K (represented by dots) and their corresponding standard deviations
(shown as horizontal error bars) for the periods of August 2020 to July 2021 (a,c) and July 2021 to
June 2022 (b,d). The red-shaded sections in the figure represent the terminal ice cliffs of 24K.

4.2. Surface Velocities of the Two Glaciers

The surface velocity within Parlung No. 4’s UAV survey area reached 4.02± 0.04 cm/d,
with a mean displacement of 13.59 ± 0.13 m, from August 2020 to July 2021. A subsequent
assessment showed a marginally reduced surface velocity of 3.91 ± 0.02 cm/d (mean
displacement: 12.63 ± 0.08 m) between July 2021 and June 2022, suggesting little variation
across the two periods. In addition, the surface velocity of Parlung No. 4 showed a spatial
pattern of increasing with altitude in both periods (Figure 5a,b). In this study, the horizontal
error (XY), calculated by using the benchmarks in the non-glacial area of the Parlung No. 4
catchment, was 0.07 m in 2020–2021 and 0.05 m in 2021–2022, which proves that the post-
processed data from the UAV surveys have high horizontal accuracy. The mean value of
the movement velocity of Parlung No. 4 in the vertical test area was found to be 0.13 m
in 2021–2020 and 0.08 m in 2021–2022, which evidences that the surface velocity results
are reliable.
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Figure 5. Surface velocity of Parlung No. 4 for August 2020–July 2021 (a) and surface elevation change
for July 2021–June 2022 (b). The black dashed line represents the central flowline.

The average surface velocity between August 2020 and July 2021 for 24K was
2.45 ± 0.02 cm/day (mean displacement: 8.26 ± 0.07 m). The daily surface velocity from
July 2021 to June 2022 was 2.22± 0.02 cm/d (mean displacement: 7.41± 0.06 m), and the daily
velocity in 2021–2022 was slightly lower than the velocity in 2020–2021. In addition, Figure 6a,b
also demonstrates that the spatial pattern of 24K is characterized by a surface velocity that
increases with the altitude. In this study, the horizontal error (XY) of the post-processed data
sourced from the benchmarks in the non-glacial area was 0.04 m for 2020–2021 and 0.05 m for
2021–2022, which reflected a relatively preferable horizontal accuracy. The mean surface velocity
for 2020–2021 in the vertical test area was 0.07 m; the value for 2021–2022 was 0.06 m.

We extracted and compared the surface velocities of two glaciers’ central flowlines
in 2020–2021 and 2021–2022, respectively (Figure 7), and found that the surface velocity
patterns of both glaciers are consistent, with both showing higher surface velocities at
higher altitudes. In addition, the Parlung No. 4 surface velocity is significantly greater than
that of 24K (~two times). The inter-annual difference in the velocity of Parlung No. 4 is not
significant, whereas the velocity of 24K in 2021–2022 is smaller than the surface velocity in
2020–2021.

4.3. Surface Mass Balance Patterns of the Two Glaciers

Based on the thinning results and our computation of the overall ice flux in the UAV
survey area for the two glaciers, we calculated the average surface mass balance for the two
glaciers (Equations (1)–(3)). We defined two flux gate sections in the upper part of the UAV
survey area for the two glaciers (Figure 1b,c). Ice flow replenishment was then calculated for
the ablation areas (below the flux gate section/surface mass balance calculation area) for the
debris-free glacier (Parlung No. 4) and debris-covered glacier (24K) (Figure 8). In 2020–2021, the
average rates of ice flow replenishment were 0.66 ± 0.08 cm/d in the Parlung No. 4 ablation
area and 0.45± 0.06 cm/d in the 24K ablation area. The average ice flow replenishment was
0.61 ± 0.09 cm/d for the Parlung No. 4 ablation area and 0.44 ± 0.06 cm/d for the 24K ablation
area between 2021 and 2022. Taking into consideration the ice fluxes, we further calculated
the overall ablation amount for these two representative glaciers (Figure 8). In 2020–2021, the
average surface mass balance change rate was −1.82 ± 0.09 cm/d for the Parlung No. 4 area
and −0.81 ± 0.07 cm/d for the 24K area. The average surface mass balance change rate was
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−1.30 ± 0.09 cm/d in the Parlung No. 4 ablation area and −0.70 ± 0.07 cm/d in the 24K
ablation area in 2021–2022. Overall, the amplitude of the ice flow replenishment for the two
glaciers is roughly similar. However, there is a significant difference between both glaciers in
the magnitude of ablation, with the ablation rate of the Parlung No. 4 area being approximately
1.9–2.2 times that of the 24K area.
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5. Discussion
5.1. Contrasting Melt Pattern of the Two Glaciers

Figures 8 and 9 show that the melt rate of Parlung No. 4 is consistently higher
than that of 24K, and the melt rate of both glaciers was higher in 2020–2021 than in
2021–2022. To gather meteorological data, we installed automatic weather stations in both
glaciers [15]. Utilizing the data collected from these stations, we calculated the mean daily
air temperature and positive cumulative temperature for both glaciers. Upon comparing
the average air temperatures and positive cumulative temperatures of the two glaciers, it
became apparent that significantly lower values were consistently recorded for Parlung
No. 4 than for 24K (the Parlung No. 4 terminus is ~800 m higher than that of 24K).
More specifically, from 2020 to 2021, the mean air temperature and positive cumulative
temperature of Parlung No. 4 were −1.02 ◦C and 802.01 ◦C·d, while those of 24K were
1.82 ◦C and 1195.93 ◦C·d, respectively. In 2021–2022, the mean air temperature and positive
cumulative temperature of Parlung No. 4 were −2.59 ◦C and 630.85 ◦C·d, while those of
24K were 1.30 ◦C and 1061.33 ◦C·d, respectively. Therefore, the melt rate of 24K should be
higher than that of Parlung No. 4, but this is in opposition to the actual findings recorded
for the two glaciers. This high-precision comparative observation confirms the role of
debris cover in inhibiting ablation [10–15]. It is essential to fully consider the factor of
debris cover for future large-scale reconstruction and prediction studies of glacier change
and catchment runoff in the SE Tibetan Plateau.
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Additionally, the mean air temperature and positive cumulative temperature of both
glaciers were higher during the 2020–2021 period in comparison to the 2021–2022 period.
For this reason, the melt rates recorded for both glaciers in 2020–2021 are higher than
the melt rates recorded in 2021–2022. However, we found that the melt rate of Parlung
No. 4 in 2020–2021 is 1.40 times higher than that of the same glacier in 2021–2022, while
the melt rate of 24K in 2020–2021 is 1.16 times higher than that of the same glacier in
2021–2022 (i.e., the response of Parlung No. 4 to climate change is more sensitive than that
of 24K). Our findings are in agreement with some studies that suggest that debris-covered
glaciers are insensitive to climate change (e.g., Anderson and Anderson, 2016; Vincent
et al., 2016) [14,20]. Based on the results of this comparative study, we suggest that the
‘debris-cover anomaly’ phenomenon [19,20] does not imply that debris is ineffective in
buffering ablation; rather, it may be related to areas referred to as ‘hotspots’, where debris-
covered glaciers commonly develop [27,28,54,55]. The ablation ‘hotspot’ area within the
24K UAV survey area accounted for approximately 5.9% of the UAV survey area during
the period from 2020 to 2021 (Figure 10a), and its melt ratio within the UAV survey area
was found to reach 11.6% (Figure 10a). In the subsequent period, from 2021 to 2022, the
‘hotspot’ area ratio within the 24K UAV survey area was 5.3%, with a corresponding melt
ratio of up to 10.4% (Figure 10b). These findings indicate that the ’hotspot’ area contributes
greatly to the overall melt of 24K, accounting for at least 10% of the total ablation. This
partial compensation helps mitigate the restraining effect of debris cover on the overall
ablation process. The proportion of ‘hotspot’ areas in the 24K UAV survey area is relatively
small, while it is slightly higher in the neighboring glacier (23K Glacier: 6.8–7.2%) [46].
However, the ablation contribution of the 23K glacier (a debris-covered glacier adjacent to
24K) ‘hotspot’ area reached 31.5%, which is due to the debris thickness of the 23K glacier
being higher than that of 24K (mean thicknesses: 47.1 cm vs. 24.2 cm), resulting in a low
melt rate in the 23K debris cover area [46]. Compared with the debris-covered glaciers
in other regions, the melt ratio of the 24K ‘hotspot’ area is still small; for example, the
Changri Nup glacier in the middle Himalayas has a hotspot area melt contribution of
23–24% [24]. The ‘hotspot’ area ablation contributions of the Lirung and Langtang Glaciers
in Nepal were also calculated, and they are 36.43% and 19.84%, respectively, more than
that of 24K [56]. The thinner debris thickness of 24K and its smaller ‘hotspot’ area are the
driving factors causing the low percentage of ablation contribution in the 24K ‘hotspot’
area.

5.2. Glacier Changes of the Two Glaciers over Two Decades

We extracted the glacier surface elevation changes for Parlung No. 4 and 24K for the
periods of 2000–2004, 2005–2009, 2010–2014, and 2015–2019 from the work of Hugonnet
et al. (2021) [5]. As the observation periods of 2020–2021 and 2021–2022 do not align with
complete calendar years, we normalized the observed thinning/surface velocity ampli-
tudes to annual rates by utilizing the conversion ratio (number of days in the observation
period/365). For Parlung No. 4 and 24K, the ablation area exhibited an increasing trend in
thinning rate from 2000 to 2019, ranging from −1.48 m/a to −3.08 m/a and −0.59 m/a
to −1.21 m/a, respectively, as illustrated in Figures 11 and 12. Both glaciers demonstrate
similar response characteristics (i.e., increasing thinning rate) in response to climate change.
These trends provide insight into the glaciers’ responses to climate change [57]. However,
the thinning rate of Parlung No. 4 is always higher than that of 24K (Figures 11 and 12),
and the growth in the thinning of Parlung No. 4 is also greater. These findings demonstrate
the key role of debris cover in characterizing glaciers’ responses to climate change.
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We compared the surface velocities of the two glaciers during all periods
(1999–2003, 2013–2015, 2020–2021, and 2021–2022) using the dataset provided by Dehecq
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et al. (2015) [58] and UAV data (Figures 11 and 12). Regarding the surface velocity of both
glaciers, there has been a decreasing trend since the early 2000s, indicating a weakening
dynamic state. Specifically, the annual surface velocity of Parlung No. 4 was 22.06 m/a
in 1999–2003, which significantly reduced to 8.32 m/a in 2013–2015. Similarly, the annual
surface velocity of 24K decreased from 16.75 m/a in 1999–2003 to 7.71 m/a in 2013–2015.
The most plausible reason for the weakening trend of the dynamic state derives from the
decreasing ice thickness, leading to a reduction in glacier basement shear stress [52,59,60].
As two typical glaciers in the SE Tibetan Plateau, their dynamic changes also imply that
the glaciers in the whole region are in a weakening state. Weakened glacier dynamics con-
tribute to a reduction in ice flow replenishment, accompanied by a constant or increasing
ablation intensity, which accelerates the thinning rate of the glaciers, thus damaging the
glaciers’ health and sustainability [61].

It is worth noting that the surface velocity of Parlung No. 4 was slightly higher than that
of 24K during all periods (Figures 13 and 14). The surface velocity of the debris-covered glacier
in this study consistently exhibited weaker dynamics compared to the debris-free glacier. We
compared the average ice thickness in the aerial survey areas of the two glaciers and found
that the two glaciers were close to each other (Parlung No. 4: 128.1 m; 24K: 106.7 m). In
addition, we compared the mean slopes of the aerial surveys and found that the slope of 24K
is nearly twice as steep as that of Parlung No. 4 (Parlung No. 4: 6◦; 24K: 11◦). Overall, based
on the above analyses, we conclude that the dynamic state of 24K should not be weaker than
that of Parlung No. 4. However, the high-precision results suggest that the dynamic state of
24K is weaker. So, this result can be attributed to the presence of debris cover, which inhibits
melting and suppresses basal sliding in glaciers [62]. In addition, the glacial lake of Parlung
No. 4 only emerged in recent years, which may have had an influence on the dynamic state
of the glacier [63,64]. Studies found that some debris-covered glaciers are in a much weaker
dynamic state [46,55,65]; these findings may contribute to the observed ‘debris-cover anomaly’
phenomenon [16,66]. Compared with the nearly stagnant glacier (ablation area), 24K is still in
a relatively strong dynamic state. Compared with the neighboring 23K glacier, though they
are in the same climatic setting, the higher slope of 24K is responsible for its stronger dynamic
state [46]. The great amount of precipitation and thin debris cover in the 24K area are factors that
facilitate basal lubrication [15,46] and, thus, make the movement of this glacier faster. Previous
studies found that the developed supraglacial ponds are strongly negatively correlated with
driving stresses [60]. In the 24K area, there are almost no developed supraglacial ponds, which
supports the conclusion that this glacier possesses a relatively strong power state.

Remote Sens. 2024, 16, x FOR PEER REVIEW 17 of 21 
 

 

 
Figure 13. (a,b) Annual surface velocities for 1999–2003 (a,e), 2013–2015 (b,f), 2020–2021 (c,g), and 
2021–2022 (d,h) for Parlung No. 4 (a–d) and 24K (e–h). 

 
Figure 14. Surface velocities for the UAV survey area of Parlung No. 4 and 24K since the start of the 
21st century. 

6. Conclusions 
We explored the mass loss and dynamic states of two representative glaciers in the 

SE Tibetan Plateau based on repeated UAV data. Our high-precision results suggest that 
the two types of glaciers have contrasting responses to climate change. Our conclusions 
are summarized as follows: 

Despite the terminus altitude of Parlung No. 4 being much higher than that of 24K 
(an 800 m difference), the thinning rate of Parlung No. 4 was consistently higher than that 
of 24K during all periods (2.7–3.2 times). In 2020–2021, the surface elevation change rates 
of Parlung No. 4 and 24K were −1.16 ± 0.03 cm/d and −0.36 ± 0.02 cm/d, respectively. In 
2021–2022, the surface elevation change rates of Parlung No. 4 and 24K were −0.69 ± 0.03 
cm/d and −0.26 ± 0.03 cm/d, respectively. 

Figure 13. (a,b) Annual surface velocities for 1999–2003 (a,e), 2013–2015 (b,f), 2020–2021 (c,g), and
2021–2022 (d,h) for Parlung No. 4 (a–d) and 24K (e–h).

57



Remote Sens. 2024, 16, 918

Remote Sens. 2024, 16, x FOR PEER REVIEW 17 of 21 
 

 

 
Figure 13. (a,b) Annual surface velocities for 1999–2003 (a,e), 2013–2015 (b,f), 2020–2021 (c,g), and 
2021–2022 (d,h) for Parlung No. 4 (a–d) and 24K (e–h). 

 
Figure 14. Surface velocities for the UAV survey area of Parlung No. 4 and 24K since the start of the 
21st century. 

6. Conclusions 
We explored the mass loss and dynamic states of two representative glaciers in the 

SE Tibetan Plateau based on repeated UAV data. Our high-precision results suggest that 
the two types of glaciers have contrasting responses to climate change. Our conclusions 
are summarized as follows: 

Despite the terminus altitude of Parlung No. 4 being much higher than that of 24K 
(an 800 m difference), the thinning rate of Parlung No. 4 was consistently higher than that 
of 24K during all periods (2.7–3.2 times). In 2020–2021, the surface elevation change rates 
of Parlung No. 4 and 24K were −1.16 ± 0.03 cm/d and −0.36 ± 0.02 cm/d, respectively. In 
2021–2022, the surface elevation change rates of Parlung No. 4 and 24K were −0.69 ± 0.03 
cm/d and −0.26 ± 0.03 cm/d, respectively. 

Figure 14. Surface velocities for the UAV survey area of Parlung No. 4 and 24K since the start of the
21st century.

6. Conclusions

We explored the mass loss and dynamic states of two representative glaciers in the SE
Tibetan Plateau based on repeated UAV data. Our high-precision results suggest that the
two types of glaciers have contrasting responses to climate change. Our conclusions are
summarized as follows:

Despite the terminus altitude of Parlung No. 4 being much higher than that of
24K (an 800 m difference), the thinning rate of Parlung No. 4 was consistently higher
than that of 24K during all periods (2.7–3.2 times). In 2020–2021, the surface elevation
change rates of Parlung No. 4 and 24K were −1.16 ± 0.03 cm/d and −0.36 ± 0.02 cm/d,
respectively. In 2021–2022, the surface elevation change rates of Parlung No. 4 and 24K
were −0.69 ± 0.03 cm/d and −0.26 ± 0.03 cm/d, respectively.

The dynamic state of the debris-free Parlung No. 4 glacier is slightly stronger than that of
the debris-covered 24K glacier. In 2020–2021, the mean surface velocities of Parlung No. 4 and
24K were 4.02± 0.04 cm/d and 2.45± 0.02 cm/day, respectively. In 2021–2022, the mean surface
velocities of Parlung No. 4 and 24K were 3.91 ± 0.02 cm/d and 2.22± 0.02 cm/d, respectively.

We calculated the surface mass balance of the two different types of glaciers in the
SE Tibetan Plateau based on high-precision data, which helped confirm the key role of
debris cover. In all periods, the temperature and positive cumulative temperature for
Parlung No. 4 were lower than those for 24K, but the ablation rate of Parlung No. 4 was
approximately 1.9–2.2 times that of 24K. In addition, both glaciers had lower temperatures
and positive cumulative temperatures in 2021–2022 than in 2020–2021. The difference in
ablation between these two periods for 24K was small, whereas the difference in ablation
for Parlung No. 4 in these periods was large (i.e., the response of Parlung No.4 to climate
change is more sensitive than that of 24K). The dominant controlling factor for the above
differences is debris cover.
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Abstract: Change of supraglacial lakes (SGLs) is an important hydrological activity on the Greenland
ice sheet (GrIS), and storage and drainage of SGLs occur throughout the year. However, current
studies tend to split SGL changes into melt/non-melt seasons, ignoring the effect of buried lakes
in the exploration of drainage, and the existing threshold-based approach to SGL extraction in a
synthetic aperture radar (SAR) is influenced by the choice of the study area mask. In this study, a
new method (Otsu–Canny–Otsu (OCO)), which accesses the features of SGLs on optical and SAR
images objectively, is proposed for full-year SGL extraction with Google Earth Engine (GEE). The
SGLs on the Petermann Glacier were monitored well by OCO throughout 2021, including buried
lakes and more detailed rapid drainage events. Some SGLs’ extent varied minimally in a year (area
varying by 10–25%) while some had very rapid drainage (a rapid drainage event from July 26 to
30). The SGL extraction results were influenced by factors such as the mode of polarization, the
surface environment, and the depth of the lake. The OCO method can provide a more comprehensive
analysis for SGL changes throughout the year.

Keywords: supraglacial lakes; full-year monitoring; OCO method; buried lake; Google Earth Engine;
Petermann Glacier

1. Introduction

The Greenland ice sheet (GrIS) is the second largest ice sheet in the world after the
Antarctic ice sheet. In recent years, with the influence of global warming, there has been a
drastic change in glaciers worldwide [1–4], and the mass loss of the GrIS has also become
increasingly prominent in this century [5]. One of the main reasons for GrIS mass loss is
surface melting. Studies have shown that surface runoff accounts for nearly 40% of the
GrIS’s mass loss between 2000 and 2008 [6], and 84% of the increase in mass loss from 2009
to 2012 came from increased surface melting. To study the process of ice surface melting,
scholars have discussed it in terms of different objects, including surface runoff, moulins,
snow melt, and supraglacial lakes (SGLs) [7–11].

SGLs, which are a storage site for liquid water, are one of the central representations of
surface melting [12]. The development of SGLs affects the stability of ice sheets by forming
fractures [13] and inducing basal slip [14]. In recent years, SGLs have been increasing in
area and depth and are gradually expanding inland of the ice sheet [10,11]. The process
of storing and draining of SGLs often occurs during the melt season, and this process can
be slow or rapid (≤4 days) [15]. In the non-melt season, a part of the liquid water only
freezes on the surface and forms a buried lake. Dunmire et al. detected that a buried
lake also stores and drains during the non-melt season, with a potential effect on the ice
sheet mass balance [16]. To comprehensively monitor changes in SGLs, multisource remote
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sensing satellites are used to capture the spatiotemporal variations. Typical data used for
detecting SGLs information include optical data, synthetic aperture radar (SAR) data, snow
radar, global navigation satellite system (GNSS) [17], advanced topographic laser altimeter
system (ATLAS), etc.

Although it is well established that storage and drainage occurs in SGLs throughout
the year, most studies tended to a single analysis of the melt season or the non-melt season
when testing the annual season of SGL development [18–20]. In recent years, several
studies on SGLs have focused on buried lakes and have proposed approaches based on
optical and SAR imagery to extract buried lakes in the non-melt season. Optical images
are used for lake extraction in the melt season and locating the SGLs’ extent in SAR
images. For SGL extraction in SAR, there are mainly two categories: deep learning [16,21]
and threshold segmentation [18,19,22]. Compared to deep learning, the histogram-based
threshold segmentation approach has less subjectivity and workload. However, the current
threshold setting method relies on the extent of the water area in the SAR image, and
a smaller extent of the lake can cause errors in extraction [22]. To explore the complete
development of SGLs, we have designed an optical and SAR-based algorithm for SGL
extraction named the Otsu–Canny–Otsu (OCO) method, which can be effectively combined
with optical and SAR data to analyze changes in SGL growth over a year. The new model
uses the edge information in SAR imagery to extract the segmentation threshold and do
post-classification judgements to assess a lake. The OCO method is applicable to any size
lakes in SAR imagery and also applies to water-free SAR masks.

The OCO method was designed by improving the Canny edge Otsu algorithm, which
was proposed by Kolli et al. in 2022 [23]. The Canny edge Otsu algorithm combines the
Otsu algorithm and the Canny edge detector, and it aims to enhance the features at the
water edges and better extract the water area in SAR images. The Otsu algorithm and
the Canny edge detector are commonly used for image segmentation and edge detection.
The Otsu algorithm selects the threshold naturally by looking for the maximum variance
between classes in the data histogram [24,25], whereas the Canny edge detector detects
edge regions by Gaussian filtering and the gradient magnitude between neighbor pix-
els [26,27]. However, for the Canny edge detection algorithm, using a single threshold for
edge detection over a large area is incomplete, whereas SAR images tend to have local-
ized features [26,27]. In addition, SAR images of SGLs are influenced by the topography
and surface environment, which cause each individual lake to have different boundary
characteristics in SAR. To overcome the regional environmental differences for each SGL
extraction, the OCO method introduces the Otsu–Canny edge detection algorithm [28,29]
to the Canny edge Otsu algorithm. The Otsu–Canny edge detection algorithm uses the
Otsu threshold to complete the segmentation of automatic thresholds, thereby overcom-
ing the subjective dual-threshold settings in Canny edge detection [30]. As the OCO
method was designed based on SGLs’ SAR images, the extraction results must be post-
processed accordingly.

In this study, we used the OCO method and multisource remote sensing data to
monitor the SGLs on the Petermann Glacier (PG) of Greenland in 2021. For satellite images,
Sentinel-1 and Sentinel-2 satellite imagery were used to draw the extent of the lakes; a
snow radar was used to verify the extraction results. All image data processing for this
experiment, including the pre-processing of satellite images and the extraction of SGLs,
were based on the Google Earth Engine (GEE) platform. The new lake extraction model
could extract the SGLs well, but the result would also be affected by satellite imaging.
Based on multisource satellite data and the OCO method, the main objectives of this study
are as follows:

(1) Expand the image source of extracted SGL information by aggregating the datasets of
Sentinel-1 and Sentinel-2;

(2) Create a new model that has less subjectivity and higher accuracy to extract lake
information from optical and SAR images; and
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(3) Analyze the dynamic processes in SGLs with different characteristics (such as buried
lakes) and explore the time-series storage and drainage events.

2. Material
2.1. Study Site

The PG in northern GrIS was chosen as the study area for the experiment (Figure 1).
PG is one of the largest outlet glaciers in the north of Greenland, with active surface
meltwater [31]. Additionally, this study area contains sufficient optical and SAR satellite
images and snow radar passes to favor the validation of the OCO method. Given that one
aim of this experiment was to investigate the full-year storage and drainage process, a total
of 12 SGLs were included in this study as typical cases (Regions A, B, and C). Fully drained
lakes and buried lakes were included in these typical study areas for comparison. As
shown in Figure 1b, the lake situation was similar for Regions A and B, which were visible
in the optical and SAR images. For Region C, however, the lake could only be observed
in the SAR image. Region C was chosen to highlight the importance of SAR imagery in
SGL monitoring.
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2.2. Satellite Data

The Sentinel series are the Earth observation missions developed by the European
Space Agency. In this study, Sentinel-1 and Sentinel-2 were used to extract information of
the SGLs. Sentinel-1 and Sentinel-2 images in 2021 were screened for water identification
in SAR images, melt/non-melt season imaging comparisons of the SGLs, extraction of
monthly changes for the SGLs, and studies of typical drainage phenomena. All Sentinel
images were processed in GEE.

The Sentinel-1 mission performs C-band (at a center frequency of 5.405 GHz) SAR
imaging, which has some penetration of the shallow snow covering the water [19,32].
Considering image coverage and data quality, the ground range detected (GRD) format
with the interferometric wide (IW) swath mode and 10 m pixel spacing from Sentinel-1
SAR images were used in this study. The Sentinel-2 mission comprises a constellation of
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two polar-orbiting satellites (Sentinel-2A and Sentinel-2B). It is a high-resolution multispec-
tral imaging satellite system carrying a multispectral instrument (MSI) for land surface
monitoring. The MSI covers 13 spectral bands and 290 km swath width. For this experi-
ment, we selected Sentinel-2 images with less than 10% cloudiness and applied bands (B2
blue and B4 red) with 10 m spatial resolution for the extraction of SGLs. Sentinel-2 images
offer accurate information on supraglacial lake (SGL) extent in favorable weather. Sentinel-1
images, unaffected by weather and lighting, excel in cloud penetration, suitable for diverse
environmental observations. Additionally, SAR can penetrate the snow cover, revealing
partially buried lakes. Combining Sentinel-1 and Sentinel-2 data not only expands the
dataset but also improves SGL localization and year-round monitoring precision.

Snow radar data were used to verify the accuracy and reliability of the extracted lake
results that are produced by IceBridge Snow Radar L1B Geolocated Radar Echo Strength
Profiles, Version 2 (IRSNO1B) by NASA’s Operation IceBridge (OIB), and radar echograms
were taken from the Center for Remote Sensing of Ice Sheets ultrawide-band snow radar
over the GrIS. The snow radar operates over the frequency range from ~2 to 6.5 GHz, and
it can detect information beneath snow layers to tens of meters in depth [33]. The greater
penetration of the snow radar can be used to check the authenticity of SAR-extracted lakes.

3. Methods
3.1. Lake Extraction from Optical Images

Sentinel-2 images used for this experiment were all from GEE’s “COPERNICUS/S2”
databases, which contains the Level-1C orthorectified top-of-atmosphere (TOA) reflectance
product of the Sentinel-2 satellite, which is widely used for SGL extraction from optical
images. In the experiment, the TOA images of Sentinel-2 were pre-processed for the
subsequent lake extraction, including date screening, cloud volume filtering (<10%), cloud
removal (using the “QA60” band), and clipping. After the pre-treatment, the area with a
normalized difference water index adapted for ice (NDWIice) > 0.25 was extracted as the
initial extraction area of the lake [34,35].

NDWIice =
Blue− Red
Blue + Red

(1)

The blue and red bands in Equation (1) correspond to the reflectance in the blue
and red bands for Sentinel-2, respectively. We eliminated SGLs smaller than 5 pixels
(30 m resolution) and linear features narrower than 2 pixels, which have relatively large
uncertainties, to improve the extraction accuracy for SGLs further [15,36]. Considering the
possible influence of clouds in the images and the irrelevant location migration of the SGLs
on the ice sheet surface, we superimposed all the lake areas extracted by NDWIice > 0.25
for the melt season (from May to September) during the study period and selected the area
with more than five recurrence times as the area with the largest water mask.

3.2. Otsu–Canny–Otsu Method for SGL Extraction

Extraction using the OCO model is divided into the following five steps: Sentinel-1
data acquisition, Sentinel-1 data pre-processing, mask fabrication for SAR extraction area
based on the optical image, lake extraction in SAR based on the OCO method, and postpro-
cessing for the lake area (Figure 2).
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Figure 2. SGL extraction from SAR images with the OCO method based on optical masks. The
important steps are in blue font. The examples shown on the right are the extraction process of
Lakes 4 and 5 on 3 September 2019.

(1) Sentinel-1 data acquisition: Sentinel-1 images were selected from GEE’s “COPERNI-
CUS/S1_GRD” product. The parameter “instrumentMode” is “IW”, which contains
HH and HV polarization. Image quality is “H” with a resolution of 10 × 10 m. The
GRD product in GEE already contains most of the pre-processing steps (thermal noise
removals, data calibration, multilooking, and range-Doppler terrain correction) of
Sentinel-1 [37].

(2) Sentinel-1 data pre-processing: The topographic correction of the study area was
conducted using the Greenland Mapping Project, a Greenland digital elevation model
(DEM) product that comes with the GEE platform (https://developers.google.com/
earth-engine/datasets/catalog/OSU_GIMP_DEM) (accessed on 6 November 2023),
which enables the SAR images to have better feature recognition in areas with large
topographic relief. To minimize the influence of the original noise of SAR images on
feature extraction, the Lee sigma filter was applied to the images [37,38].

(3) Mask fabrication of the SAR extraction area based on optical image: The lake exhibits
low backscatter intensity in the SAR image, appearing nearly black [39]. However,
many non-water regions in SAR also exhibit low backscatter intensity due to topo-
graphic features. To pinpoint the area where the SGL appears in SAR images, we
utilized the combined maximum lake area from two consecutive melt seasons (May
to September each year) in the optical image as the SAR extraction area [18,19].

This experiment adopted the concept of maximum lake area, which is the maximum
area covered by the lake extracted in the optical image during one melt season. The possible
lake extent between two melt seasons can be obtained by superimposing the maximum
lake area for the two proximal years. Before making the masking area for SAR extraction,
applying a buffer for maximum lake area was necessary due to slush surrounding some
lakes having similar backscatter values to the lakes, thereby complicating the differentiation
of slush and water [18]. The size of the radius of the buffer zone is determined by the size
of the individual lakes. The final SAR masking area is obtained by superimposing the
two-buffering maximum lake area of the proximal years. The maximum lake areas for 2020,
2021, and 2022 were used in this experiment.

(4) Lake extraction in SAR based on the OCO method: The SGLs were extracted from
Sentinel-1 with HH and HV polarization. HH polarization was used for lake extraction
of SAR during the melt season, and HV polarization was used to extract the lake
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that was covered by snow during the non-melt season [40]. The experiment first
clipped the pre-processed image of the SAR using the masked area of the SAR in (3)
and calculated the input value of the Canny algorithm using OTSU for a single lake
area, resulting in remarkable edge areas in the SAR image. The edge areas must be
bordered in GEE. Second, fragmented remarkable edges of less than 10 pixels were
removed, and the top 50% of the edge strength was selected as the strong boundary
region. Third, a two-pixel buffer was made outward of the strong boundary region,
which contained the two most varied classes in SAR images of a single lake mask.
Finally, the buffered strong masked regions were used as the basis for the extraction
of Otsu thresholds to obtain classification thresholds for the two classifications in
SAR images. This threshold was used to separate the remarkable regions in the SAR
image [18].

(5) Post-processing for lake area: After acquiring areas that differ considerably from the
surrounding environment, whether the extracted area contains water (low backscat-
tering coefficient) or slush (high backscattering coefficient) must be determined. Three
regions of a single lake were selected for comparison in the experiment. The analyzed
regions were the high backscatter region of the extracted region (classes g), the low
backscatter region of the extracted region (classes l), and the backscattering intensity
of the 30 pixels expanded around the extracted region (classes a). The experiment
used the Jeffries–Matusita distance (JM distances) to discuss the differences between
the three regions and to distinguish between areas of open water and slush, as well as
partially misdivided areas without water (Equations (2) and (3)). The JM distance is
an indicator of difference degree between classes. It ranges from 0 to 2, and the larger
it is, the more considerable the difference between classes [41]. In our experimental
statistics, we considered that a discernible difference existed between the classes when
JM > 1 for the two types of features [42].

Water : JM(g, l) > 1 ∩ JM(a, g)< 1 ∩ JM(a, l) > 1 (2)

Slush : JM(g, l) > 1 ∩ JM(a, g) > 1 ∩ JM(a, l) < 1 (3)

JM( , ) indicates the JM distance between two classes; g, l, and a indicate the three
classes for distinction. They are the high backscatter region of the extracted region, the
low backscatter region of the extracted region, and the backscattering intensity of the
30 pixels expanded around the extracted region, respectively. The primary objective of
this approach is to assess if there is a real feature in the area obtained based on the OCO
method, and if this feature is a lake. After determining the presence of lakes, areas smaller
than 20 pixels were removed to reduce the effect of SAR noise, and the small hole in the
water was clumped. The final processed data were the area of the SGLs extracted based on
SAR images.

4. Results
4.1. Lake Detection

It is challenging to evaluate the performance of the OCO method due to the absence
of ground truth. Here, we compared the OCO extraction results with the manual extraction
results with the HH-polarized SAR image of 12 September 2021 in the study area (Figure 3).
As shown in the four examples in Figure 3, the lake extracted from the SAR image by
the OCO method matched the results of the manual interpretation. The lake acquired by
the OCO method contained more scattered pixels—some of them were noise from the
SAR imagery, and some of them were details of water that were not refined by the visual
interpretation. There were also omissions in the OCO-extracted results, e.g., the obvious
SGL in the middle of Figure 3d was not extracted with the OCO method.
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Figure 3. SGL extraction comparison between the OCO method (blue area) and manual interpretation
(green area). The base image is a Sentinel-1 image of the study area on 12 September 2021 in HH
polarization. (a) displays the optical extraction results of SGLs in the study area, while (b–e) illustrates
four typical cases of SGLs extraction of manual and OCO model in SAR images.

Our study included 85 lake mask areas, and only two lake objects were not decoded
by the OCO method from the 72 lakes that existed in the visual interpretation of this
SAR image. In order to verify the accuracy of the OCO model, a confusion matrix based
on the OCO extraction results and the manual extraction results was computed, and the
calculated pixel range was the maximum lake area. By calculating the true positive (TP),
false negative (FN), false positive (FP), and true negative (TN) rates in the confusion matrix,
the performance of the algorithm could be measured as follows: overall accuracy was 0.885,
precision was 0.929, recall was 0.749, the F1 score was 0.829, and the Kappa coefficient
was 0.745.

To compare the differences in lake extraction between optical and SAR images in the
melt season, we extracted 12 typical SGLs from optical and SAR images of the study area on
26 July 2021, respectively, with the SAR image using HH polarization. Lake 6 results were
supplemented with the 24 July SAR image as the 26 July SAR image could not cover all
12 lake objects. Table 1 shows the SGL extraction results of the optical image using NDWIice,
the SGL extraction results of the SAR image based on the OCO method, and the SGL area of
visual interpretation based on SAR images. For the 12 SGLs on 26 July 2021 (supplemented
on 24 July), six SGLs were extracted from the optical image, appearing in Regions A and
B; 12 SGLs were obtained in SAR-based manual extraction; and 11 SGLs were obtained
in the SAR-based OCO method, for which Lake 3 was not extracted. Comparing the SGL
extraction results of optical and SAR images showed that optical and SAR images could
extract the lakes in Regions A and B, but only the SAR image could extract the lake in
Region C, which was completely covered by snow. The water extraction area of the optical
image was generally larger than that of the SAR image, with a difference basically below
0.3 km2. Region B showed a greater difference between optical and SAR water extraction
areas than Region A did. Except for Lakes 7 and 12 that had a larger difference, the differ-
ence between the lake area acquired from the automatic OCO method and the manually
mapped one was around 20%.
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Table 1. Comparison of SGL area extraction based on Sentinel-1 and Sentinel-2. The three columns in
JM distance represent the pairwise differences between classes a, g, and l (Equations (2) and (3)).

Region Lake ID Sentinel 2 Area
Sentinel 1

Manual Area OCO Method
Area

JM-Distance
g&l a&g a&l

A

1 1.153 1.052 1.235 1.487 0.07 1.352
2 0.969 0.959 0.953 1.511 0.013 1.502
3 0.222 0.222 NA 1.096 0.092 0.676
4 0.813 0.845 0.776 1.86 0.07 1.939

B
5 0.494 0.215 0.250 1.677 0.002 1.712
6 0.901 0.660 0.581 1.822 0.013 1.891

C

7 NA 0.241 0.215 1.855 0.463 1.995
8 NA 0.204 0.108 1.659 0.569 1.959
9 NA 2.446 2.163 1.988 0.122 1.998
10 NA 0.228 0.177 1.88 0.187 1.981
11 NA 0.261 0.244 1.886 0.13 1.974
12 NA 0.137 0.197 1.321 0.228 1.644

Lake 3 was not successfully extracted when determining the existence of a lake in SAR
images based on the JM distance. The JM distance between the backscattering intensity
around the lake and inside the lake for Lake 3 was small, i.e., only 0.676, which did not
satisfy the judgment that JM distance > 1. The other 11 lakes’ JM distances were all in the
range of 1.3 to 1.9, with good separation.

4.2. Full-Year SGLs Changes in 2021

The experiment monitored and extracted monthly SGL data from January to December
in 2021. The results included optical and SAR-extracted data for 12 typical lakes, which
were divided into three regions (Regions A, B, and C) for separate discussions (Figure 4). For
SAR images, the data for May, June, July, August, and September were in HH polarization;
and October, November, December, the following year’s January, February, March, and
April were in HV polarization.
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visually discernible but could not be extracted by the OCO method.
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The SGL changes were similar in Regions A and B. The lakes in these areas developed
and drained during the melt season, with the peak occurring in July and August. The
development of the SGL was well monitored by optical and SAR imagery during the melt
season, with the same trends in the two types of imagery. The SAR and optical extraction
results were slightly different, with the area extracted from SAR being smaller than that
extracted from the optical images.

Large differences were observed between Region C and Regions A and B. The optical
images only detected the area of three SGLs (Lake 10, 11, and 12) in August. However, the
extraction of the SAR images showed that all six lakes in Region C were already present
in January 2021, and only a slight change in area occurred from January to June for those
lakes. For Region C, SAR imagery was slightly effective in detecting images during the
melt season, especially in August when water was difficult to detect completely. The SGLs
were still detectable in SAR imagery in September, October, November, and December after
the melt season. The change in lake area after the melt season from the pre-melt season was
small, with less than 25%. In particular, the area of Lakes 8 and 12 changed by less than
10% before and after the melt season. The experiments also compared the results from May
to September in Region C for HH and HV polarization, and the area difference between
the two polarizations was in the range of 15–20%, with no remarkable improvement in the
extracted lakes.

4.3. Lake Drainage Monitoring

To discuss the time series changes of the lake at a finer scale, Lakes ID-4 and ID-5
were selected for the experiment to explore the changes in storage and discharge from
1 July to 31 August 2021. The experiment combined SAR and optical data. Fewer optical
images were available, with only July 26 available in July and seven date images available
in August. SAR imagery was denser than the optical imagery over the area of the studied
SGLs, with 10 and 11 images for July and August, respectively.

Figure 5 excerpts the Sentinel-1 HH polarization images of Lakes ID-4 and ID-5 at
several typical time points during the storage and drainage period. Lake ID-4 experienced a
dramatic drainage event from 26 to 30 July, accompanied by the production of slush around
the lake. The change in area of Lake ID-5 was more moderate, with drainage occurring
from 30 July to 7 August. Lake ID-5 was scattered in extent at the beginning of the melting,
with the water gradually pooling into a whole lake during the storage process.
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The changes of water area occurring in July and August 2021 for two typical SGLs,
ID-4 and ID-5, are shown in Figure 6. Lake ID-5 began to accumulate water on July 18,
reaching the maximum area of water detected by SAR on 18 and 30 July, and the water
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completely disappeared on 25 August. Between 30 July and 5 August, the lake under-
went a relatively strong drainage event, with the water area dropping from 0.343 km2 to
0.108 km2. The area of Lake ID-5 remained around 0.1 km2 after 5 August until water could
not be extracted in the SAR in 23 August. At the beginning of the melt, on 18 July, Lake
ID-5 was monitored in SAR to a larger area of 0.345 km2. During this period, the SGL was
in the early stages of catchment, and some shallow meltwater was found, all of which was
included in the SAR imagery as water areas.
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Figure 6. Water and slush area variation of the typical lake (Lakes 4 and 5) drainage based on SAR (a)
and optical (b) extraction.

Drainage was more pronounced at Lake ID-4 than at ID-5. The results of the area
change showed that Lake ID-4 was drained from 26 to 30 July, with the area dropping
from 0.776 km2 to 0.300 km2, a 61.3% reduction in area over the four days. Extensive slush
formed from the drainage of the SGL could be clearly detected in the SAR image on 30 July
(Figure 6a). After 30 July, the area of the SGL continued to decline and completely disap-
peared on August 23. During the drainage period, the area of slush also changed. From
30 July to 7 August, the slush area tended to increase, reaching a maximum area of around
0.7 km2. After 7 August, the slush area decreased considerably until it disappeared.

5. Discussion
5.1. Advantages of Multisource Remote Sensing

Optical and SAR imagery could be effectively used to extract information about SGLs.
However, given the characteristics of optical and SAR imaging, flaws and differences were
found in the extraction results between the two types. The area extracted from NDWIice-
based optical images of the lake was simple and straightforward, but the quality of some
images was poor because of the weather and snow cover, resulting in fewer data sources
being available for SGL extraction. SAR satellites have better penetration and are effective
in avoiding cloud effects on images and detecting thin snow-covered lakes. C-band SAR
images are generally not hindered by atmospheric effects and are capable of imaging
through tropical clouds and rain showers. Its penetration capability with snow on the
ground is limited, usually around 1 to 2 m [43], and the specific depth of snow penetration
is related to the physical properties of the snow and the radar’s incidence angle [44].

Optical images can only identify exposed lakes on the ice sheet and cannot detect
the lake covered by ice floes and thin snow. This kind of buried lake is widespread in the
GrIS at all times of the year in melt and non-melt seasons. SAR imagery can detect buried
lakes covered by shallow snow partially, but lakes buried under a thicker ice cover are
difficult to detect from SAR imagery. For monitoring validation of buried lakes, snow radar
data collected by NASA’s OIB were chosen. Snow radar data have greater penetration
and can be used to estimate the cross section of glaciers. Figure 7a shows the echogram
results obtained by a snow radar on 22 March 2017, when lakes had no optical visibility.
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Comparing Sentinel-1 results from 23 March of the same year showed that Sentinel-1 could
detect well the water located under the ice surface. The monitored water was covered with
snow at a thickness of about 3 m (Figure 7b,c). The comparison showed that the SAR-based
approach to lake extraction expanded the data for buried lakes, thus providing additional
data support for a comprehensive analysis of the seasonal variability of SGLs.
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Figure 7. Snow radar data validation of SAR-extracted SGL results. A snow radar passed through the
buried lake extraction location in this study area, and the base image was a Sentinel-1 HH polarization
image on 22 March 2017 (a). The snow radar echogram results of the two flight paths show the
presence of water in these regions (b,c).

This study used Sentinel-1 and Sentinel-2 images to monitor SGL transformations dur-
ing the melt and non-melt seasons. The experimental method combined the characteristics
of SAR imagery with optical imagery, addressing the limitations of optical images in winter
and the greater environmental noise of SAR images in part. Additionally, it is important to
note that due to the limited penetration capability of C-band SAR imagery, there may be
more buried lakes in areas where C-band SAR signals cannot reach [45].

5.2. Factors Affecting Water Extraction in SAR

HH and HV polarization are two common types of polarization used in SAR imagery,
and the choice of polarization can affect the effectiveness of lake extraction [46,47]. HV
polarization often shows a better contrast between water and snow in areas of buried
water. The reason for this situation is that HH polarization is more susceptible to the radar
signal with the top snow layers, resulting in less information acquired in HH polariza-
tion than in HV polarization for buried lakes [32]. For open water, the backscattering
in HH polarization is more stable than in HV backscattering [48]. Hence, HH polariza-
tion can distinguish open-water and high-water content snow in more cases than HV
polarization can.

SAR imagery has the advantage of being available in all weather and being able to
penetrate thin snow; however, it is susceptible to external factors, such as the angle of
incidence, the melting state of the ice surface, wind, etc., when detecting SGLs on the
ice sheet [18,49,50]. These external influences can lead to variations in the backscatter
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intensity of the SAR image, resulting in the inability to extract lakes from a SAR image.
Many anomalies in the extraction of SGLs from SAR imagery occurred in this experiment.
For example, during lake extraction of month-by-month SAR imagery for 2021, the SAR
image in August of Region C was poorly imaged, with the entire zone exhibiting lower
backscatter intensity (Figure 4). During drainage monitoring of Lakes ID-4 and ID-5 in
late July and early August, no information was obtained for Lake ID-5 in the 7 August
SAR image (Figure 5). Furthermore, in lake detection of Section 4.1, Lake ID-3 was not
identified due to the poor separation (JM(a, l) = 0.676) of the lake and surrounding area
backscatter intensities (Table 1). In summary, the most important reason for not being
able to extract water from SAR images is that water has a backscatter intensity similar
to that of the surrounding environment, making it difficult to distinguish water from the
environment in SAR images.

Some differences were also found between the optical results and the SAR results in
lake extraction at nearly the same time. We compared the SGLs in Regions A and B, which
could be extracted from the optical image (imaging time 18:10 UTM) and SAR (imaging
time 11:36 UTM) in the study area on 26 July 2021 (Figure 8), and the results showed that
the difference was mainly in Lake ID-5, with a 2.30-fold difference in extraction between
the two types of images. We calculated the water depth distribution of Lake ID-5 using
the water depth formula for optical imagery [12,51] and found that the main difference in
water extraction area between optical and SAR imagery came from shallow water areas,
mainly below <0.75 m. A similar situation occurred for Lake ID-3, which was not identified
in the SAR image. The SAR lake extraction area of some of the lakes was also found to be
slightly smaller than the optical lake extraction area in Section 4.3 (Figure 4). On the basis
of these results, we inferred that the depth of the open lake would influence the imaging
results of the water area in the SAR [18]. The temporal difference between Sentinel-1 and
Sentinel-2 images in this test could also be the cause of this error.
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Figure 8. Comparison of area differences in lake extraction with depth distribution. Sentinel-1 (HH
polarization) and Sentinel-2 (true color display) images come from 26 July 2021.

SGL extraction in SAR is influenced by external natural factors and the lake’s own
properties, which may lead to some challenges in accurate SAR-based lake area extraction
for time series.

5.3. Drainage Monitoring

Optical image-based SGLs drainage has been widely used in SGL change detection [52].
In Section 4.3, we monitored the drainage process of two lakes, i.e., Lakes ID-4 and ID-5,
from July to August 2021. Lakes ID-4 and ID-5 had two types of drainage processes, fast
and slow, respectively (Figures 5 and 6). Although rapid drainage of SGLs could also
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be detected using the optical images in the experiment (Figure 6b), the limited amount
of available optical images did not allow for a better reproduction of SGL development.
Rapid drainage of SGLs in SAR is often accompanied by a sudden increase in the intensity
of backscatter around the lake (Figure 5). The reason for this phenomenon is that rapid
drainage leaves behind some rough heterogeneous surface consisting of patches of slush
and ice, producing high backscatter values. Over time, these slush and ice blocks smooth
out, and the backscatter values match those of the surrounding environment. Thus, rapid
drainage can also be monitored by high backscatter from lake anomalies, but this is not
always featured in the imagery [18].

During optical and SAR image monitoring of the SGLs in Region C in 2021, the SGLs
were barely visible in the optical images of Region C, with only a small area showing
during the peak melt season (Figure 4). However, the detection of SGLs in SAR imagery
revealed that the lake was always present in Region C and that some of the lakes did not
change considerably in area before and after the melt season (Figure 4). The change of area
of the lake in Region C was less than 25% before and after the melt season and even less
than 10% in Lakes 8 and 12 due to the presence of buried lakes. Some lakes do not drain
nor freeze completely as they enter winter; they are stored as liquid water under the frozen
snow and ice layers, forming a buried lake [53]. Therefore, it is ambiguous to judge SGL
drain by the area change in the optical image. It may underestimate the actual area of water
stored on the ice sheet and overestimate the drainage of SGLs at the end of the melt season.

5.4. Limitations and Prospects

SGL extraction results in SAR images based on the OCO method in the experiment
are always dichotomous; however, the boundary between the backscattering intensities
of water and non-water in a region is challenging to characterize with a single threshold.
At the same time, the availability of SAR imagery is not completely established and is
affected by factors, which can also affect the results of the time-dependent detection of
SGLs. Therefore, we will analyze how to maximize SAR images and reduce the noise
associated with threshold extraction methods in following research. The main purpose of
this experiment was to verify the feasibility of the OCO method and the importance of SAR
imagery in SGL monitoring. In future studies, the study area will be expanded, and SGL
changes across the cryosphere will be discussed by fusing the time series of multisource
remote sensing data.

6. Conclusions

SGL changes are an important monitoring object of ice sheets that reflects the volume
change of ice sheet surface melting. With the development of remote sensing technology,
the monitoring of SGL changes based on remote sensing observation has been gradually
improved. Optical and SAR remote sensing has been widely used in the detection of SGLs.
However, given the vulnerability of optical imagery to the weather, the amount of optical
data that can be practically applied is limited. Meanwhile, information on buried lakes is
not available in winter from optical imagery. Although SAR has good penetration and a
large volume of data, it presents a backscattered intensity signal with a dense “homospectral
foreign object” situation over a large area. Effective extraction of SGL information from
optical and SAR imagery allows improved monitoring of SGL development throughout
the year.

This study proposed a new model named the OCO method. It combines optical
and SAR satellites and the Otsu algorithm and Canny edge detector to investigate the
development of SGLs throughout the year. Optical images can locate SGLs more accurately,
and SAR images have a degree of penetration of clouds and snow. Based on optical and
SAR data, the changes in the SGLs can be better monitored throughout the year. In terms
of extraction methods, NDWIice is used to extract the lake area from the optical images,
and the OCO method is used to extract the SGLs’ area from the SAR images masked by the
maximum lake area of optical images. The OCO method performs feature extraction for
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each individual SGL based on the Otsu–Canny edge detection algorithm and the Canny
edge Otsu algorithm, and it is built to be more objective and targeted.

The experiment validated the accuracy of the OCO method for SGLs extraction,
together with monitoring the full-year variations of typical lakes based on Sentinel-1 and
Sentinel-2 images in 2021. Benchmarked against the manual SGLs extraction result, the
OCO method performed well overall accuracy of 0.885 and F1 score of 0.829. In the OCO
method for SGL extraction, SAR images can be affected by external natural factors, such
as incidence, surface melting, wind, and other factors, resulting in the inability to extract
SGLs properly. The difference between the SAR results of extracting SGLs based on the
OCO method and the visual interpretation was around 20%. During the same period, the
depth of the lake may influence the extraction range of SGLs in different types of imagery.
Experimental results indicated that shallow lakes were challenging to observe in SAR
images (<0.75 m in this experiment). SAR imagery had higher data density in the study
area than optical imagery did and could monitor SGL development during the non-melt
season, which was the result that could not be acquired with optical imagery. For the
12 typical SGLs in the study area in 2021, some of the lakes were stored and drained during
the melt season (Region A and B), but some SGLs did not change considerably before and
after the melt season (Region C). The SGLs in Region C, although no longer detectable on
optical imagery during the non-melt season, were consistently detectable in SAR imagery
with 10–25% changes in area. Validation of the snow radar data revealed the presence of
buried lakes under ice in this area. As SAR imagery had more intensive data in the study
area than optical imagery did, this experiment also detected a rapid drainage event of the
SGLs over a four-day period.

Combining optical and SAR imagery for monitoring changes allows for better discus-
sion of the annual and seasonal variation of SGLs, allowing for analysis of hydrological
events with more intensive time series. The OCO method proposed in this study can
combine the advantages of optical and SAR imagery and consider the buried lakes dur-
ing winter storage of water. This approach avoids the overestimation of the discharge of
the SGLs after the melt season that would result from monitoring the lake using optical
images only.
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Abstract: The availability of remote sensing imagery at high spatiotemporal resolutions presents
the opportunity to monitor the surface motion of rock glaciers, a key constraint for characterizing
the dynamics of their evolution. In this paper, we investigate four North American rock glaciers by
automatically measuring their horizontal surface displacement using photogrammetric data acquired
with crewed and uncrewed aircraft along with orbital spacecraft over monitoring periods of up to
eight years. We estimate vertical surface changes on these rock glaciers with photogrammetrically
generated digital elevation models (DEM) and digitized topographic maps. Uncertainty analysis
shows that the imagery with the highest resolution and most precise positioning have the best
performance when used with the automated change detection algorithm. This investigation produces
gridded velocity fields over the entire surface area of each study site, from which we estimate the age
of rock glacier formation using along-flow velocity integration. Though the age estimates vary, the
ice within the modern extent of these landforms began flowing between 3000 and 7000 years before
present, postdating the last glacial maximum. Surface elevation change maps indicate present-day
thinning at the lower latitude/higher elevation sites in Wyoming, while the higher latitude/lower
elevation sites in Alaska exhibit relatively stable surface elevations.

Keywords: photogrammetry; rock glacier; kinematics; UAS; airborne; satellite; flow; ablation; Alaska;
Wyoming

1. Introduction
1.1. Surface Motion of Rock Glaciers

Mountainous terrains with moderate precipitation and mean annual air temperatures
less than or equal to 0 ºC often develop ice and lithic-rich landforms known as rock
glaciers. The ice units originate under a continuum of surface processes, including the
burial of glacial ice by rockfall and ablation lag [1,2], preservation of overlapping debris
and snow avalanche deposits [3], and the infiltration/refreezing of liquid water in rocky
talus [4,5]. These ice/debris mixtures creep downslope under gravitational driving stresses
to form discernible lobate morphologies, often superimposed by ridges, furrows, and flow
bands [6]. In general, rock glaciers flow with an average surface displacement on the order
of tens of centimeters to meters per year [1,7].

Previous measurements of active rock glacier flow have included both in situ and
remote sensing methods. Before the availability of remote sensing data with temporal
and spatial resolutions sufficient to track surface movement at the scales of rock glacier
creep, surface-based displacement measurements were collected at benchmark positions at
various locations along rock glacier surfaces [1,4,8–13]. Early displacement measurements
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were made by repeatedly calculating the position of surface features in a local coordinate
system referenced to stable bedrock points, marking the end of a “movement line”. High
accuracy and high precision global navigation satellite system (GNSS) positioning has re-
cently allowed for displacement measurements through the monitoring of surface features’
absolute positions over known time intervals. These point measurements are only possible
at surface locations that are safely accessible and stable for repeated measurement, which
limits this form of surface motion data both temporally and spatially.

Recent developments in remote sensing technology have created the opportunity
to observe rock glacier flow with higher spatiotemporal resolution. Photogrammetric
techniques using data collected via uncrewed aerial systems (UAS), piloted overflights,
or optical satellite imagery provide a solution to the spatial limitations of surface-based
point measurements of rock glacier surface features, as a photogrammetric orthomosaic
encompasses a larger percentage of a rock glacier’s surface than a set of ground-based
point measurements. In addition to optical imagery, interferometric synthetic aperture
radar (InSAR) has been used to measure rock glacier surface displacement with high preci-
sion [14–16]; however, such surveys are limited by the orbital geometry of the instrument
and the flow direction of each target, as the displacement is measured along the line of
sight of the InSAR system. Overall, remote monitoring provides a method to produce
regularly repeated measurements of features in rugged and isolated terrain, which benefits
time series analysis through the availability of a longer record length and higher sam-
pling frequency. The ability to consistently track rock glacier surface motion has led to
significant advances in the understanding of rock glacier kinematics and its relationship
with glacier and permafrost dynamics [7,17–24]. New information regarding the extents
and magnitudes of rock glacier flow fields addresses Tasks 1, 2, and 3 of the International
Permafrost Association Action Group for Rock Glacier Inventories and Kinematics (RGIK)
by contributing to a database of rock glacier attributes, including locations, surface areas,
and flow velocities [6,25].

With the objective of monitoring rock glacier activity, inferring their flow history,
and characterizing their kinematics and dynamics, we present new surface motion mea-
surements on four North American rock glaciers, two in Wyoming and two in Alaska.
We use an existing image correlation algorithm to detect feature displacement over time
intervals of up to eight years in an analysis using optical imagery collected with UAS,
airborne, and satellite platforms. Using the gridded velocity fields of the entire surface
area of each rock glacier, we estimate the age of each landform by integrating head-to-toe
velocity profiles, then we discuss their relationship with documented glacial advances in
the region of each study site. We use the elevation data produced by the photogrammetric
processing to estimate surface elevation change and modern rock glacier thinning rates.
Our study aims to examine the local heterogeneities in rock glacier evolution by comparing
the surface motion and elevation change of two rock glaciers in each geographic region. We
achieve these objectives using a combination of UAS, airborne, and satellite imagery with
photogrammetric processing and surface change analysis. High-resolution data capturing
the three-dimensional change of rock glacier surfaces can provide a foundation for future
monitoring campaigns and further investigation of rock glacier dynamics. Our study adds
new surface change datasets for four rock glaciers to the existing inventory of rock glacier
activity. In addition, it presents novel techniques for evaluating the uncertainty of surface
change results and interpreting these results in the context of Quaternary geology.

1.2. Study Areas
1.2.1. Absaroka Mountains, Wyoming

Due to their central location in the contiguous United States and their relative ac-
cessibility by road, the small population of rock glaciers in the Absaroka Mountains of
northwest Wyoming have been the subject of the longest-lived and most comprehensive
studies of any rock glaciers or debris-covered glaciers in North America. Galena Creek
Rock Glacier (Figure 1a, henceforth referred to as “Galena Creek”) has been the partic-
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ular focus of heated debate over the origins of ice in rock glaciers. The discussion has
centered on whether to classify these features as ice-cored (glaciogenic) or ice-cemented
(periglacial) rock glaciers [1,26–28]. Surface boulder displacement monitoring began at
Galena Creek in the 1960s [1]. Based on geomorphic and geophysical data, along with
observed ice exposures, it was concluded that the upper section of Galena Creek is an
active ice-cored rock glacier consisting of glacier ice buried beneath an unconsolidated
layer of debris. The debate has continued, as skeptics have attempted to refute the evidence
of the glacial ice core [26], although this debate was largely settled in the 1990s when a
drilling campaign at Galena Creek retrieved an ice core nearly 10 m long indicating the
present-day existence of a debris-covered glacier [29]. This drill core contained a unit of
bubbly ice with thin layers of gravel and sand, and the isotopic composition of this ice
indicated that it originated as a glacier rather than as frozen interstitial meltwater [30].
Further exploration using ground-penetrating radar (GPR) revealed dipping debris bands
in the cirque of Galena Creek, suggesting an ongoing ice accumulation process facilitated
by the deposition of debris on the surface of the glacier [3]. On this upper portion of the
rock glacier where there is a glacial ice unit, the debris is approximately 0.8–1.5 m thick [31].
With these observations in mind, we interpret the upper two-thirds of Galena Creek to be a
debris-covered glacier. In comparison, the lower third of Galena Creek has slower surface
velocities, a debris mantle thicker than 2 m, and a lower ice concentration, resembling an
older ice-cemented rock glacier modified by periglacial processes and possible interactions
with the advancing debris-covered glacier, similar to processes that have been documented
at other rock glaciers. [12,31–34].

Sulphur Creek Rock Glacier (Figure 1b, henceforth referred to as “Sulphur Creek”)
lies approximately 3 km southeast of Galena Creek. Despite this proximity to Galena
Creek, Sulphur Creek has received relatively less geological research attention due to its
larger surface area, higher topographic relief, and more difficult access. Historical photos
acquired in 1893 during a surveying expedition led by Thomas A. Jaggar, Jr., showed a
clean ice glacier in the cirque of the Sulphur Creek basin, with a thin supraglacial debris
layer developing a few hundred meters downslope of the location of the terminus of the
present-day debris-free snow and ice [35]. Recent GPR measurements indicate a transition
from an alpine debris-covered glacieret to a relatively ice-poor rock glacier as elevation
decreases along the length of Sulphur Creek [31]. The same measurements showed that the
debris on the glacieret ranges from 0.1–1 m thick, while the debris on the lower glacier is
greater than 2 m thick. Both Galena Creek and Sulphur Creek follow the Östrem curve [36],
showing evidence of sub-debris ice melt where the debris is thin; at the surface of both
sites, streams can be heard flowing at the debris–ice interface. These two rock glaciers
provide unique examples of the effect of debris supply and valley geometry on ice units
transitioning between glaciers, debris-covered glaciers, and rock glaciers [37].

1.2.2. Wrangell Mountains, Alaska

Sourdough Peak is a mountain in Wrangell–St. Elias National Park that hosts two large
lobate rock glaciers. The rock glacier flowing down the peak’s southern flank is named
Sourdough Rock Glacier (Figure 1d, henceforth referred to as “Sourdough” for simplicity),
and the rock glacier flowing down its northwest slope is McCarthy Creek Rock Glacier
(Figure 1e, henceforth referred to as “McCarthy Creek”). Sourdough has been surveyed
with GPR; these surveys detect a landform thickness of up to 50 m, and the dielectric
mixing model indicates volumetric ice concentrations greater than 50 percent based on the
radar wave speed within the rock glacier [31]. The ice-free debris thickness measurements
at Sourdough are generally greater than 2 m, although runoff can be observed through
the sound of localized sub-debris streams despite the thickness of the overburden. The
McCarthy Creek site has not been studied with in situ geophysical methods. A surface
motion survey at Fireweed Rock Glacier, which is a nearby rock glacier in the Wrangell
Mountains, measured velocities exceeding 3.5 m

yr [13]. The oversteepened terminus of this
rock glacier experiences periodic slope failure events when heavy precipitation swells its
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proglacial stream, a process that may impact the dynamics of the rock glacier and the
characteristics of its velocity field in comparison with Sourdough and McCarthy Creek.

Figure 1. Projected orthomosaics and surface photos showing the rock glaciers targeted in this study.
(a) Galena Creek Rock Glacier, Wyoming (Galena Creek), UAS image acquired in August 2022 and
projected to WGS 84/ UTM Zone 12N. The red arrow shows the location and viewing direction of
the photo in panel (c). (b) Sulphur Creek Rock Glacier, Wyoming (Sulphur Creek), satellite imaged
acquired in August 2022 and projected to WGS 84/ UTM Zone 12N. (c) Field photo at Galena Creek,
showing debris clast size distribution and topographic relief. The red arrow identifies the boulder
used for the example in Figure 2. (d) Sourdough Rock Glacier, Alaska (Sourdough), airborne image
acquired in May 2014 and projected to WGS 84/UTM Zone 7N. The red arrow shows the location
and viewing direction of the photo in panel (f). (e) McCarthy Creek Rock Glacier, Alaska (McCarthy
Creek), airborne image acquired in in August 2014 and projected to WGS 84/UTM Zone 7N. (f) Field
photo at Sourdough. The images have been rotated to make the direction of flow point roughly
towards the bottom of the page. All rock glacier outlines presented are the extended delineations [6],
including the input talus slopes and front and lateral margins. All subsequent maps use the same
projections as those shown here.
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2. Materials and Methods
2.1. Photogrammetric Data Acquisition and Processing

For this investigation, our objective was to measure feature displacement with remote
imagery over multiple time intervals and compile the longest possible time series of surface
displacement for each study site. To detect surface velocities less than 1 m

yr at seasonal
intervals, it is necessary to use decimeter-resolution imagery to resolve the details of
the surface features as well as to detect displacements on the order of decimeters. The
imagery for our two Wyoming sites was collected via UAS, crewed aircraft, and satellite
platforms between 2020 and 2022. The Alaska sites were targeted by a crewed airborne
photogrammetry campaign between 2014 and 2022. Supplementary Figure S1 details the
methodological workflow for measuring the surface displacement and elevation change
with these combined data sources. Below, we discuss the advantages and disadvantages
of these methods at each site and compare our remote sensing results with surface-based
boulder displacement measurements at Galena Creek.

2.1.1. Wyoming

In August 2020 and August 2022, we acquired photogrammetry data covering Galena
Creek using a DJI Phantom 4 RTK UAS. We used the DJI GS RTK flight planning software
in 2D Photogrammetry mode with terrain awareness. In 2022, eight ground control points
(GCP) were deployed and surveyed. For both years, the GCP locations were measured
using real-time kinematic positioning (RTK) with Emlid Reach RS2 GNSS receivers. The
coordinates of the base station were postprocessed with precise point positioning using the
Canadian Spatial Reference System Precise Point Positioning tool. We used Emlid Studio
software version 1.3 to apply the postprocessing kinematics to the UAS images.

The photogrammetric processing workflow was carried out using Agisoft Metashape
Professional software version 1.7.5 build 13229. After the photos were aligned and the dense
clouds were created, digital elevation models (DEM) and orthomosaics were generated
for further analysis. The detailed parameters used in the workflow for each flight are
provided in the processing reports included with the supplementary materials, and the
workflow diagram is shown in Supplementary Figure S1. These orthomosaics have a
spatial resolution of 7.9 cm

pixel for 2020 and 5.4 cm
pixel for 2022 (Table 1), and the DEMs have

a pixel width double that of their corresponding orthomosaics. In 2022, four points were
used as control at Galena Creek, with a root mean square (RMS) error of 0.012 m, and the
remaining four points were check point (CP), with an RMS error of 0.068 m. To supplement
the two UAS datasets, we purchased satellite imagery from the SkyMap50 system through
Soar.Earth, a commercial organization that distributes orbital imagery data. We obtained
one complete 41.1 cm

pixel SkyMap50 scene of Galena Creek without clouds, acquired on 10
July 2021.

We compared independent motion measurements at Galena Creek using surface-based
and remote sensing methods. Large debris clasts on the Galena Creek surface were marked
with paint in the 1960s to measure rock glacier surface motion, and the set of marked
clasts was expanded and updated with new paint and bolts in the 1990s [1,29]. The paint
markings and identifying symbols on the clasts remain legible. We collected positioning
data for 22 identifiable marked boulders using the Emlid Reach RTK system in August
2022 and compared these locations to measurements collected in 1997, 1998, 1999, and
2015 [12,29,38]. Because the measurements from the 1990s and 2015 were acquired with a
total station, we converted the local coordinate system used for these earlier datasets to
the WGS84 / UTM Zone 12N projected coordinate system using a USGS benchmark and
stationary points on stable bedrock for direct comparison with the 2022 RTK measurements.
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Table 1. List of acquisition details for the imagery used for the change detection analysis at each field
site (GC = Galena Creek; SC = Sulphur Creek; SRG = Sourdough; MC = McCarthy Creek). Each date
is provided in YYYYMMDD format.

Region Site Date # of Images
Avg. Camera

Error (cm)
Resolution

( cm
pixel ) # of GCP/CP

GCP/CP
RMSE (cm)

Wyoming

GC 20200823 U 1076 0.3 7.9 0/0 n/a
SC 20200825 A 269 n/a 10.8 10/3 0.44/28.3
GC 20210710 S 1 n/a 40.1 0/0 n/a
SC 20210710 S 1 n/a 41.0 0/0 n/a
SC 20220807 S 1 n/a 41.3 0/0 n/a
GC 20220808 U 941 0.8 5.4 4/4 0.97/7.59

Alaska

SRG, MC 20140525 A 433 16.2 20.0 0/0 n/a
SRG, MC 20140823 A 345 17.2 19.8 0/0 n/a
SRG, MC 20150523 A 546 15.2 20.6 0/0 n/a
SRG, MC 20150829 A 561 18.8 19.3 0/0 n/a
SRG, MC 20160601 A 614 14.5 25.3 0/0 n/a

SRG 20160817 A 494 21.9 24.2 0/0 n/a
SRG, MC 20190905 A 628 65.3 12.1 0/0 n/a

SRG 20200517 A 215 9.7 12.4 0/0 n/a
SRG, MC 20201018 A 520 80.5 12.4 0/0 n/a
SRG, MC 20210622 A 340 11.7 14.8 0/0 n/a

SRG 20220708 A 357 26.2 18.5 0/0 n/a
U UAS image; A Piloted airborne image; S SkyMap50 satellite image.

At Sulphur Creek, airborne imagery was collected on 25 August 2020 by Kestrel Aerial
Services using a Canon EOS 5D Mark III DSLR with a Canon EF 50 mm 1.2 lens. The
positioning information was recorded by a Garmin Aera 796 synchronized with the camera
clock mounted in the panel of the aircraft. For this acquisition, we used ten GCPs to
optimize the positioning of the imagery. The individual images and their positions were
delivered as georeferenced TIFF files, and these data were processed in Agisoft Metashape
to generate an orthomosaic and DEM. The ten points used as control had an RMS error of
0.0004 m, and three points used as check points had an RMS error of 0.283 m. In addition
to the 2020 airborne image, we obtained one partial image and one complete image of a
cloudless Sulphur Creek available in the SkyMap50 collection. The image from 7 August
2022, contains the full rock glacier, while the lowest 500 m section of Sulphur Creek is cut
off at the eastern edge of the 10 July 2021 scene.

2.1.2. Alaska

The photogrammetry data for Sourdough and McCarthy Creek were acquired during
eleven piloted overflights between May 2014 and July 2022 (Table 1). The flights were
planned with the objective that more than nine overlapping images would cover the target
surfaces. The 2014–2016 images were collected with a Nikon D800 DSLR and the 2019–2022
images were collected with a Nikon D850 DSLR, both with a Zeiss Distagon 25 mm lens.
Each raw image was collected in NEF format and postprocessed to maximize contrast
before conversion to JPG format. Aircraft positions were measured with a Trimble R7
GNSS receiver recording at 5 Hz. Following [39], an intervalometer was used to trigger
event markers in the GNSS data associated with each camera flash. These coordinates were
transformed from the GNSS antenna to the camera image plane using a triple coordinate
rotation of the measured lever arm for the aircraft’s antenna/camera configuration.

By interpolating the camera positions from the 5 Hz GNSS data with the event markers,
each image was tagged with a position to approximately 10 cm accuracy [39]. From these
tags, a camera position file associating each JPG image name and position was generated
and used as a reference for the photogrammetric processing steps. We followed the same
Agisoft Metashape workflow described in Section 2.1.1. The individual processing reports
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for each flight are provided in the supplementary information. Due to logistical limitations
in the field, no GCPs were used in the photogrammetric processing for the Alaska sites, and
there were no surface boulder measurements or GCPs to provide direct in situ validation
for these sites. Sourdough was imaged with all eleven flights, while McCarthy Creek
was only imaged on eight of the eleven flights due to variable weather conditions in the
narrower McCarthy Creek Valley. The acquisition dates and original resolutions of all rock
glacier imagery analyzed in this study are provided in Table 1.

2.2. Change Detection Analysis

To automatically measure the horizontal rock glacier surface displacement between
image pairs, we used the free correlation image analysis software CIAS [7,40]. This al-
gorithm, available as a compiled IDL program, requires grayscale images with identical
extents and resolutions in a Cartesian coordinate system. We preprocessed the images
using the Geospatial Data Abstraction Library (GDAL) within the QGIS user interface. Both
of these software packages are open source. To preprocess the images, we used the GDAL
Warp tool to project the raster data to their appropriate Cartesian coordinate systems from
the WGS84 geographic coordinates (UTM zone 7N for the Alaska sites and zone 12N for
the Wyoming sites). Warp was used to clip the images to an appropriate extent and to
resample the images to the resolution of the coarsest image in the pair with the cubic spline
resampling method. Finally, the grayscale images used for the change detection input were
extracted from the RGB data using the GDAL Translate tool.

After preprocessing the images, each image pair in the set was analyzed to derive
the surface displacement vectors over the time interval between acquisitions. All of the
image pairs at each field site were analyzed using a common set of grid points specified by
a file containing the Cartesian coordinates of each grid point. The Galena Creek datasets
were analyzed on a 5 m × 5 m grid, while the more extensive Sulphur Creek and Alaskan
sites were analyzed on a 10 m × 10 m grid. All of the image pairs were analyzed using
normalized cross-correlation and the normal pyramid matching speed. Our experiments
with CIAS determined that a reference block of 45 pixels × 45 pixels and a search window
of 100 pixels × 100 pixels at each grid point was optimal for correlating surface features and
detecting realistic displacements for all of the image resolutions and time periods analyzed
(Figure 2). Due to the forest cover surrounding the Alaska sites, which obscured the stable
terrain, co-registration was not performed for individual image pairs. Instead, we used the
minimum uncertainty in surface displacement as the averaged CIAS-derived displacement
value for stable, off-glacier terrain within each scene. We verified these displacement
values through manual inspection of stable surface features wherever possible. This added
the benefit of decreasing the processing time and avoiding the application of inconsistent
uncertainties due to an extra transformation step unique to the processing workflow of each
image pair. To convert the displacement results into the surface velocity in m

yr , we found
the precise number of years between images by dividing the number of days between each
image pair by 365.25 days per year, then divided the displacement in meters by the time
interval in years.

In image pairs for which one or both of the images is a SkyMap50 image targeting
Galena Creek or Sulphur Creek, there is a static offset in the images due to limitations
in image precision using the positioning of a space-borne camera. To solve this issue of
imprecise image co-registration, we first ran the change detection algorithm on the images
with their initial positioning information. We selected a subset of displacement vectors
over a portion of the images interpreted to be stable bedrock. The mean of this subset of
displacement vectors was subtracted from the projected coordinates of the corners of the
later image in the image pair to shift the geolocated image using the “-a_ullr” flag in the
GDAL Translate function to correct for the initial static shift. The largest magnitude of the
shifts that were used was 1.56 m for the Galena Creek July 2021 SkyMap50 image; the
parameters for each shift are shown in Table 2.
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Figure 2. Schematic of the change detection procedure applied to a boulder identified at a central
location in the August 2020/August 2022 image pair at Galena Creek (a), where the red box labeled RB
represents the 45 × 45 pixel reference block and the blue box labeled SW represents the 100 × 100 pixel
search window. The movement of RB between 2020 (b) and 2022 (c) shows the displacement
measured as the location of the peak normalized correlation coefficient within the search window.
The yellow arrows represent the two-year displacement vectors measured by CIAS; this boulder
moved approximately 1.2 m at an azimuth of 358º.

The change detection process was then performed again, this time using the shifted
SkyMap50 image with its corresponding unshifted image partner. Its results were verified
by manually examining off-glacier stationary features in both the unshifted and shifted
images for each pair containing a SkyMap50 scene. The new change detection results
were compared with the initial results of the unshifted images after subtracting the mean
displacement of the stationary subset for further verification and uncertainty analysis. The
added step of translating the second image of the pair, along with the relatively lower
resolution of the SkyMap50 imagery (42 cm

pixel ) compared with the drone imagery (<10 cm
pixel ),

leads to a higher uncertainty in those surface displacements estimated with pairs containing
a shifted satellite image.

Table 2. Static shift applied to the SkyMap50 images to minimize the measured displacement of
stationary terrain in each image pair.

Rock Glacier Image 1 Image 2 ∆x (m E) ∆y (m N)

Galena Creek 10 July 2021 S* 8 August 2022 U −0.99 −1.20
Sulphur Creek 10 July 2021 S 7 August 2022 S* 0.84 −1.25
Sulphur Creek 25 August 2020 A 7 August 2022 S* 0.81 0.68

U UAS image; A Piloted airborne image; S SkyMap50 satellite image; * Denotes that the image was shifted relative
to the other image in the pair.

2.3. Surface Elevation Change

For the UAS and airborne datasets, the photogrammetric processing workflow pro-
duces DEMs with pixel widths twice those of their corresponding orthomosaics (Supple-
mentary Figure S1); thus, the DEMs used in this study range from approximately 10–50 cm

pixel .
Using these elevation maps, we calculated the surface elevation changes for Galena Creek,
Sourdough, and McCarthy Creek over the time intervals between the earliest and latest
photogrammetric acquisitions in order to observe any detectable signatures of horizontal
flow or vertical thinning. For Galena Creek, the elevation change was calculated over the
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August 2020/August 2022 interval; for Sourdough, the May 2014/July 2022 interval was
used; and for McCarthy Creek, the May 2020/June 2021 interval was used. All of these
elevation differences were calculated by subtracting the earlier DEM from the later DEM
in each pair using the Raster Calculator tool in QGIS with the coarsest-resolution DEM as
the reference.

To examine the surface change at Sulphur Creek, we calculated the difference between
the DEM produced by the August 2020 airborne photogrammetry flight and the 1

3 arcsecond
resolution (approximately 10 m) DEM tile from the USGS 3D Elevation Program (3DEP) [41].
The spatial metadata for this tile indicate that the 3DEP data at Sulphur Creek was sourced
from topographic information measured in 1985. Because this location in the 3DEP dataset
is mostly barren land, the error of this 1

3 arcsecond DEM is estimated to have a mean bias
of −0.85 m with a standard deviation of 2.42 m [42]. We consider this bias in the data when
interpreting the elevation change results discussed below.

3. Results
3.1. Wyoming
3.1.1. Galena Creek

At Galena Creek, the August 2020/August 2022 image pair resampled to 8.0 cm
pixel

resolution provided the best change detection signal in the set of image pairs. Surface
displacement is detectable along the main trunk of the rock glacier, in contrast to the
adjacent stationary terrain (Figure 3b). The displacements have a strong correlation with the
surface slope, indicating a direct relationship between driving stress and flow velocity. The
change detection algorithm cannot measure displacements on surface regions when there
is snow in one or both of the images due to the low contrast and lack of pixel correlation
within the reference block. These regions cause “noisy” results, which are identifiable in
the mapped displacement vectors as regions with random displacement vector magnitude
and direction that are associated with the snow patches when the displacement vectors are
mapped over the base images. The effect of these noisy regions on the analysis of the data
is mitigated by ignoring the displacement vectors greater than a noise threshold, which
is determined by visually evaluating the flow field to find the maximum displacement
with a direction that agrees with the local topography. For the case of Galena Creek, this
threshold is approximately 1.6 m

yr . The noise may be further filtered by ignoring vectors
where the displacement direction differs from the slope azimuth by more than 45º. The
minimum displacement error for each image pair is taken to be the greater value of either
the minimum displacement over a region interpreted to be stationary or the pixel size
of the images. Using these metrics, a pair of low-altitude UAS images acquired with the
same camera and positioning system for both surveys returned the best displacement
measurements out of all the datasets presented here.

The photogrammetry data collected at Galena Creek allowed us an opportunity
to directly compare the efficacy of the change detection method using imagery from
homogeneous and heterogeneous platforms. We performed a hybrid change detection
experiment using the 42 cm

pixel SkyMap50 satellite image from July 2021 and the August 2022
UAS image resampled to 42 cm

pixel with the cubic spline method. The displacement patterns
in the upper two-thirds of the rock glacier are similar between the homogeneous change
detection results and the hybrid results. The magnitude of the displacement is directly
correlated with the surface slope (Figure 3c); however, the coarser resolution of the satellite
image in the lower third of the rock glacier means that the proportion of mismatches and
undetected movements increases due to the increased difference in pixel size between the
original UAS and satellite images [43].
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Figure 3. Galena Creek photogrammetry results: (a) DEM and hillshade produced from the August
2022 UAS flight; (b) surface velocity field derived from change detection between the August 2020
and August 2022 UAS-derived orthomosaics; (c) surface velocity field derived from change detection
between the shifted July 2021 satellite image and the August 2022 orthomosaic. For reference, the
extended rock glacier outline is delineated as a dashed line in each panel, the white line in (b) marks
the profile that was sampled for the age analysis discussed below, and the white boxes in (b) indicate
the stable points used in the uncertainty analysis.

3.1.2. Sulphur Creek

We detected a flow signal on the Sulphur Creek surface (Figure 4) using the August
2020 airborne imagery combined with the August 2022 SkyMap50 image, which was lin-
early shifted to account for the co-registration error between the two images (Table 2).
Although the displacement values on the stable surfaces of the rock glacier surface indicate
a relatively high baseline uncertainty, there is a signal of increased flow velocity on the
lowest lobe of the rock glacier. In contrast, there does not appear to be substantial downs-
lope movement in the middle portion of the rock glacier, where GPR and geomorphic
observations indicate ice thicknesses of less than 10 m and stagnation of the ice [31,37].

These change detection results support the hypothesis of ice stagnation on a deflating
debris-covered glacier that is transitioning to dead ice. The directions of the displacement
vectors on this central portion of the glacier agree with the slope aspect (approximately
150º), suggesting movement toward the middle line of the glacier. This movement may
be an effect of rapid recent thinning by incision of a supraglacial stream and subsequent
ice flow from the thicker ice at the glacier margins to the thinned ice in the middle (see
the elevation change results in Section 3.3). Alternatively, if the thinning is concentrated
along a longitudinal line associated with a stream in the center of the glacier, this could
lead to a reduction in the cross-flow buttressing force, allowing the lateral portions of
the glacier to cohesively slide along the base towards the central trough. With either
mechanism, this downwasting appears to preserve the surface debris structure, as the
change detection algorithm successfully tracks features in the region over a spatial scale of
a few hundred meters.
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Figure 4. Sulphur Creek photogrammetry results: (a) DEM and hillshade produced from the August
2020 piloted overflight and (b) surface velocity field derived from change detection between the
August 2020 airborne orthomosaic and the shifted August 2022 satellite image. For reference, the
extended rock glacier outline is delineated as a dashed line in each panel. The box in the lower right
corner of (b) indicates the stable area used for the uncertainty analysis.

3.2. Alaska
3.2.1. Sourdough

The data at Sourdough represent the longest monitoring period of the sites presented
here, spanning from May 2014 to July 2022 (Figure 5, Table 1). To characterize the temporal
variations in the flow field, we calculated surface displacements for image pairs from
adjacent years (Figure 6) and the progressive displacement for subsequent images with
respect to the May 2014 initial image. All of the annual image pairs show a consistently fast-
moving region with distinct shear margins on the lower trunk of the rock glacier flowing at
rates greater than 1 m

yr (Figure 6), indicating a high level of rock glacier activity. We ignore
velocity vectors with magnitudes greater than 1.8 m

yr , as visual examination indicates that
all greater values are qualitative outliers with no directional correlation to the surrounding
data points. These spurious velocity vectors are considered noise due to mismatched pixel
blocks in the change detection routine. The resulting velocity maps distinguish an active
secondary lobe that branches southeast from the main trunk after flowing around a bedrock
pinning point. Below this pinning point, the flow of the main trunk and secondary lobe
diverges and slows as the slope flattens, creating the characteristic tongue-shaped lobes
of the lower rock glacier. Stagnant overflow lobes with low displacements are observed
along the west edge of the feature (Figure 1a). While these flow patterns are evident when
observing the full set of image pairs with intervals of one year or greater; the results of
individual image pairs vary in quality, making it difficult to asses possible seasonal signals
in the flow field.
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Figure 5. Sourdough photogrammetry results: (a) DEM and hillshade produced from the May 2014
piloted overflight and (b) surface velocity field derived from change detection between the May
2014 and September 2019 airborne orthomosaics. For reference, the extended rock glacier outline is
delineated as a dashed line in each panel, the white line in (b) marks the profile that was sampled for
the age analysis detailed below, and stable area used for the uncertainty analysis is marked by the
white box in (b).

The displacement signal is generally stronger in the image pairs with longer time inter-
vals. This indicates that larger displacements are detected more readily and consistently as
long as the search window is large enough to contain the range of realistic displacements.
The image pair with the greatest amount of noise is the September 2019/October 2020
interval; this noise is largely correlated with the presence of snow on the upper two-thirds
of the rock glacier in the October 2020 image. This snow obscures surface features, which
leads to inconsistencies in pixel intensity patterns, causing the normalized cross-correlation
algorithm to fail. The remaining image pairs with annual time intervals exhibit a consistent
pattern of increased surface velocity in the trunk of the rock glacier, although these results
have varying degrees of signal and noise. To estimate the total displacement and average
velocity of the rock glacier surface over the entire measurement period, we measured the
displacement for all of the images as referenced to the May 2014 image (Supplementary
Figure S2). This method successfully detects a peak velocity of approximately 1.5 m

yr in the
central trunk of the rock glacier; however, comparing the results from images acquired at
different times of year does not reveal any surges or seasonal signals in the velocity field.
Shorter time intervals between acquisitions and imagery with increased spatial resolution
paired with permanent GNSS stations on the rock glacier’s surface could shed further light
on its seasonal flow patterns [44].
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Figure 6. Surface velocity results for Sourdough using image pairs with time intervals of one year or
more, demonstrating the range in quality of the change detection results for different image pairs
and time intervals. The grid used for these maps is equivalent to the grid used in Figure 5, where the
grid lines are drawn at 500 m intervals in the x and y directions in the projected coordinate system.
Each panel (a–h) shows the results from image pairs, progressing in chronological order.

3.2.2. McCarthy Creek

The results at McCarthy Creek are generally noisier than at Sourdough, and the change
detection results for the entire measurement period at McCarthy Creek show a flow pattern
with a maximum velocity approximately half that of Sourdough (Figure 7). We chose to
use the August 2014 image as the base image for the McCarthy Creek analysis because
there was lingering snow on the upper portion of the rock glacier in the May 2014 image,
meaning that the August 2014 image was able to detect a flow signal at higher reaches of
the rock glacier. The fastest section of the rock glacier surface is the southern/upstream
portion of its trunk, moving about 50 cm

yr , before slowing as the flow of the lower lobe
diverges. At approximately 1200 m elevation the rock glacier branches into a fast southern
lobe and a more stagnant northern lobe.
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Figure 7. McCarthy Creek photogrammetry results: (a) DEM and hillshade produced from the May
2014 piloted overflight and (b) surface velocity field derived from change detection between the
August 2014 and June 2021 airborne orthomosaics. For reference, the extended rock glacier outline is
delineated as a dashed line in each panel, the white line in (b) marks the profile that was sampled for
the age analysis below, and the stable area used for the uncertainty analysis is marked by the white
box in (b).

There appears to be an increase in flow speed at the toe of the rock glacier, which
could indicate a recent frontal advance or an increase in wasting and potential collapse
of the rock glacier toe near the river channel of the McCarthy Creek drainage. However,
this apparent signal could alternatively be caused by the combined geometric effects of the
photogrammetric data acquisition, the surface slope at this location, and/or uncertainty
due to vegetation on the surface. Similar to Sourdough, the change detection at McCarthy
Creek performs the best for time intervals greater than one year, and the signal is generally
stronger for longer time intervals (Figure 8). In Section 4.2, we discuss the estimation of the
baseline uncertainty in these change detection results and how this affects further analysis
and interpretation of the data.

3.3. Surface Elevation Change

At Galena Creek, subtracting the earlier DEM from the later DEM reveals indicators
of both vertical thinning and surface-parallel motion (Figure 9a). There is an apparent bias
of approximately −20 cm between the two DEMs, as shown by differencing the elevations
of stable terrain. The elevation difference measured along a longitudinal profile on the rock
glacier surface indicates a mean DEM difference of −40 cm with a standard deviation of
19 cm. By comparison, a sample of DEM differences on the stable ground provides a mean
value of −18 cm with a standard deviation of 6 cm. A cross-flow profile of the elevation
differences supports this observation as well (Supplementary Figure S3). This suggests
that the rock glacier surface has lowered by 22 ± 13 cm over the two-year time interval.
This 10 cm

yr thinning rate for the upper two-thirds of the rock glacier agrees with previous
estimates [12,38]. This thinning rate measurement further agrees with a thermal conduction
model using air temperature data from the Evening Star Snowpack Telemetry (SNOTEL)
meteorological station located <1 km east of Galena Creek at a similar elevation as the
rock glacier’s terminus (station ID = 472). This model uses an observed supraglacial debris
thickness of 1.5 m [31], and the measured thinning rate fits a plausible range of thermal
conductivities for the debris (Appendix A). The ice in the cirque of Galena Creek has a
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GPR-measured thickness of >50 m; thus, assuming that this interpreted thinning rate of
10 cm

yr remains constant, the glacial ice will be preserved here past the year 2500.

Figure 8. Surface velocity results for McCarthy Creek using image pairs, where each labeled panel
was derived in reference to the August 2014 base image, demonstrating the general increase in
quality of the change detection results at McCarthy Creek with increasing surface displacement while
showing the impact of snow in the October 2020 image. The grid used for these maps is equivalent to
the grid used in Figure 7, where the grid lines are drawn at 500 m intervals in the x and y directions in
the projected coordinate system. Each panel (a–g) shows the results where images are chronologically
compared to the August 2014 base image.

In addition to the overall thinning of the upper two-thirds of the rock glacier, flow-
parallel oscillations in the DEM difference rasters are indicative of the translational motion
of surface ridges/furrows, creating a positive value where a ridge has occupied previously
void space and a negative value where a furrow has replaced a ridge. The distances between
these troughs and crests in the oscillations of the DEM difference data are comparable with
the surface displacement measured over the same period. Furthermore, strong negative
values within the rock glacier boundaries appear to correlate with a sub-debris supraglacial
creek that has been observed to expose ice to the surface. This observation suggests that
ablation is concentrated in regions where ice has been exposed to the atmosphere due
to the mass wasting of debris by supraglacial melt. These results exemplify the utility
of high-resolution photogrammetry data in resolving cm-scale elevation changes on rock
glacier surfaces from year to year.

To estimate the surface elevation change at Sulphur Creek, we calculated the difference
between the 1

3 arcsecond resolution (about 10 m/pixel) USGS 3DEP DEM surveyed in
1985 [41] and the 2020 airborne-derived DEM. The surface elevation change appears to be
biased towards surface lowering, with a 0.315 km2 section interpreted to be stable ground
showing a mean difference of −4.9 ± 3.5 m, with the error here represented as one standard
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deviation. However, three regions in the Sulphur Creek image display surface lowering
that exceeds the bias in the difference calculated between the 1985 and 2020 DEMs. The
first region (labeled “1” in Figure 9b) has a surface area of 0.072 km2 and displays a mean
surface elevation change of −18.3 ± 4.1 m. Region 1 in this map corresponds with the
region exhibiting inward flow in the change detection results, and the combination of
these observations suggests rapid stagnation and collapse of the middle section of Sulphur
Creek, supporting the interpretation of [37]. Region 2 has a surface area of 0.085 km2

with −23.9 ± 3.5 m of surface change, while Region 3 has a surface area of 0.141 km2 with
−27.9 ± 5.9 m of surface change.

Regions 2 and 3 correspond with the two small cirque glaciers occupying the two forks
of the upper Sulphur Creek basin. Accounting for the bias in elevation change estimated
from the off-glacier terrain, Regions 1, 2, and 3 of Sulphur Creek have experienced mean
thinning rates of 38 ± 12 cm

yr , 54 ± 10 cm
yr , and 66 ± 17 cm

yr , respectively, over the 35-year
DEM interval. These thinning rates indicate significant recent negative mass balance for the
higher-elevation components of the Sulphur Creek system. We applied our simple thermal
model here using a debris thickness of 0.5 along with SNOTEL data spanning the years
1990–2020; this model supports the result that Sulphur Creek has lost upwards of 20 m of
ice to cumulative melt under a reasonable range of thermal conductivities for the debris
(Appendix A). At these melt rates, the Sulphur Creek basin may lose the entirety of its
glacial ice before 2100, and the only remaining subsurface ice in this basin will be preserved
in an ice-cemented rock glacier. Future Wyoming fieldwork should aim to collect a UAS-
derived DEM at Sulphur Creek to measure surface elevation change after the acquisition of
the 2020 dataset and compare the results with the 1985–2020 surface elevation change rates
as well as with the results from the neighboring Galena Creek.

In contrast to the Wyoming sites, the surface change between the earliest and latest
datasets for the Alaska sites does not suggest broad patterns of elevation increase or
decrease across the entirety of each rock glacier. Stationary regions near the rock glacier
margins show a mean systematic bias of about +40 cm for the May 2014/July 2022 DEM
pair for Sourdough (Figure 9c) and about +30 cm for the May 2014/June 2021 DEM pair for
McCarthy Creek (Figure 9d). The mean systematic biases have corresponding standard
deviations of about 50 cm for both rock glaciers. This estimate is complicated by the dense
vegetation surrounding much of the rock glaciers’ perimeters, meaning that stable bedrock
estimations must be taken from locations with steep slopes, where the DEM error is likely
the highest. There is not a clear change in the mean surface elevation change on either
rock glacier surface compared to the surrounding stable terrain in the photogrammetric
DEMs when compared with one another or when compared with the corresponding USGS
3DEP product. However, these elevation change results are similar to the Galena Creek
results in that the variability of the surface change increases on the surface of the rock
glaciers as opposed to off-glacier locations. This variability appears to be an effect of the
translational motion of surface ridges and furrows, as the topographic oscillations are
oriented perpendicular to flow while their wavelengths and velocities are generally out of
phase with the timing of the data acquisition.

The translational motion of ridges can be observed by plotting elevation profiles from
multiple flights. These profiles show that any thickness changes of the rock glacier are less
than the vertical uncertainty in the elevation data, which is on the order of a few decimeters
(Supplementary Figures S4 and S5). At Sourdough, there is a region of apparent thinning in
its uppermost reaches corresponding with debris and avalanche cones, as well as a broad
region of negative elevation change about 200 m wide on the lower lobe. The elevation
change variability in the trunks of the Alaskan sites may include localized thinning that
falls within the uncertainty of the elevation data; however, neither of the Alaskan sites
indicate broadly consistent thinning across the surface. This result is supported by the
thermal conduction model described in Appendix A. Localized elevation gain is observed
near the toe of Sourdough as a result of its terminus advancing, which is corroborated by
field observations of “bulldozed” trees.
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Figure 9. Surface elevation change results: (a) the August 2020/August 2022 UAS DEM pair for
Galena Creek, with the region of increased ablation outlined in the solid black line; (b) the 1985 DEM
from USGS 3DEP paired with the August 2020 airborne DEM for Sulphur Creek, where the regions
labeled 1, 2, and 3 indicate areas of high thinning rates; (c) the May 2014/July 2022 airborne DEM
pair for Sourdough; (d) the May 2014/June 2021 airborne DEM pair for McCarthy Creek.

In general, all of our rock glacier surface change maps exhibit indicators of longitu-
dinal flow in agreement with the optical change detection results. Further, the Wyoming
sites demonstrate clear signals of vertical thinning due to ice melt, with Sulphur Creek
experiencing the fastest melt rate. The Alaska sites do not exhibit the same thinning signals.
These trends are consistent with a thermal conduction model (Appendix A) using GPR-
derived debris thickness measurements that show the debris to be thinnest at the upper
part of Sulphur Creek and thickest at Sourdough [31]. Assuming similar mean annual
air temperatures and constant thermal conductivities for the debris at all four sites, it is
expected that the thinner debris at Sulphur Creek would lead to the highest melt rate, while
the thick debris at the Alaska sites would inhibit melt to a greater degree. In the following
section, we discuss the implications of these surface change results for the accumulation
and evolution of each of these field sites; in addition, we further consider the sources of
uncertainty in these results by defining criteria for assessing the accuracy of the horizontal
and vertical surface change products.

4. Discussion
4.1. Validation and Uncertainty Analysis

The image pair collected with the UAS in both August 2020 and August 2022 shows a
baseline velocity uncertainty of 6.8 cm

yr (Table 3). This is the average value of the displace-
ments returned from a subset of the CIAS results consisting of 320 points where bedrock
is assumed to be motionless (Figure 3b). Examining the means of the vector components
and their standard deviations provides information about the sources of uncertainty [45].
The mean x and y components of the UAS-derived velocity measurements at Galena Creek
show that the systematic error is less than 1 cm. The standard deviations indicate that
the random error is uniform in both directions and is comparable to the pixel size of the
image. These values are similar to the results of photogrammetric change detection surveys
in the Swiss Alps [46]. In comparison, the image pair using the coarser satellite image
returned much higher uncertainty values due to the increase in mismatches leading to
more noise in the results. Using repeated surface-based position measurements of marked
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boulders at Galena Creek, we validate our change detection results with independent
velocity measurements in consideration of the uncertainty of our remote sensing results.
We compare the velocities measured from boulder positions in 2015 and 2022 with the four
nearest UAS-derived velocity values over the 2020 to 2022 interval [38].

Table 3. List of image pairs used for velocity measurements and the associated velocity uncertainties
measured using regions of stable terrain at each field site. All means and standard deviations reported
here are provided in units of m

yr .

Site Stable Terrain Area (m2) # of Points Image Pair Mean (|v|) Mean (vx) Mean (vy) σ(vx) σ(vy)

Galena Creek 8400 320 August 20 August 22 0.068 0.009 −0.006 0.109 0.103
8400 320 July 21 August 22 5.65 −0.290 0.018 6.43 7.11

Sulphur Creek 11,550 111 August 20 August 22 0.104 0.010 −0.010 0.112 0.086

Sourdough

13,600 141 May 14 August 14 1.11 0.948 −0.011 0.877 0.519
13,600 141 May 14 May 15 0.246 −0.147 0.029 0.229 0.106
13,600 141 May 14 August 15 0.288 0.163 0.017 0.336 0.349
13,600 141 May 14 June 16 0.208 −0.171 0.070 0.118 0.059
13,600 141 May 14 August 16 0.466 −0.345 −0.250 0.114 0.198
13,600 141 May 14 September 19 0.057 0.014 0.003 0.063 0.134
13,600 141 May 14 May 20 0.105 −0.034 0.001 0.234 0.235
13,600 141 May 14 October 20 0.259 −0.091 −0.112 0.356 0.373
13,600 141 May 14 June 21 0.042 −0.004 −0.038 0.014 0.019
13,600 141 May 14 July 22 0.091 −0.014 −0.051 0.135 0.154

McCarthy Creek

11,030 111 May 14 August 14 6.64 2.02 0.293 8.30 6.17
11,030 111 August 14 May 15 0.470 0.006 0.018 0.612 0.721
11,030 111 August 14 August 15 0.403 0.046 0.067 0.407 0.327
11,030 111 August 14 June 16 1.31 −0.231 0.201 1.41 1.21
11,030 111 August 14 September 19 0.086 0.033 0.004 0.235 0.155
11,030 111 August 14 October 20 1.06 −0.043 −0.140 0.952 0.855
11,030 111 August 14 June 21 0.078 0−0.021 −0.018 0.086 0.146

In the upper section of Galena Creek, the change detection and boulder position
results are in good agreement, with a maximum velocity magnitude difference of about
5 cm

yr , similar to the baseline uncertainty in the August 2020/August 2022 CIAS results
(Figure 10). On the lower third of the rock glacier, four measurements show a discrepancy
of 10 cm

yr or greater between the 2015–2022 boulder measurements and the 2020–2022 change
detection measurements. The largest of these discrepancies (0.36 m

yr ) can be explained by
noise in the change detection data, where a patch of trees created a zone of mismatched
pixel clusters at the location of the surface measurement. The three other points with
discrepancies greater than 5 cm exhibit an anisotropic bias, where the change detection
measurements are about 10 cm

yr faster than the boulder point measurements; most of the
variation occurs along the y-axis. This could indicate a rapid acceleration of the lower rock
glacier lobe by 10 cm

yr between 2015 and 2020, or could be an effect of errors in measurement
and the coordinate system transformation of the boulder positions on this lower lobe
between the 2015 and 2022 surveys. A coordinate rotation was applied to the 2015 points,
and the boulders on the lower lobe are the most distant from the pole of rotation, making
them the most susceptible to an error in the rotation angle between coordinate systems.
The deviation between boulder displacements and CIAS results generally increases when
using boulder position measurements from 1997 to 1999 (Supplementary Figure S6), which
may be an effect of either a changing rock glacier surface velocity field or a decreased
measurement error with newer global positioning technology.
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Figure 10. Comparison of photogrammetric change detection results between August 2020 and
August 2022 UAS imagery with boulder velocities between August 2015 and August 2022 at Galena
Creek. (a) The boulder velocity vectors are shown as rectangles with white borders, color-coded
according to velocity magnitude and oriented according to the vector’s direction; these boulder
velocities are plotted over the automated change detection results using the same color scale. (b) The
difference in magnitude and azimuth between the measured boulder velocities and the four nearest
grid points in the change detection measurements. The size and color of each dot in (b) corresponds
to its magnitude and sign and the direction of the arrow indicates the difference in vector azimuth,
meaning that vectors with no change in azimuth display an arrow that faces directly upwards.

Although the airborne photogrammetry at the Alaska sites provides a clear signal
of flow on both rock glaciers, uncertainty estimation using stable bedrock points is com-
plicated by forest cover surrounding most of the perimeters of Sourdough and McCarthy
Creek. The seasonally changing tree canopy provides poor references for the change detec-
tion algorithm, and this leads to mismatched and noisy results immediately surrounding
the rock glacier. As we have no repeated surface-based boulder measurements for the
Alaska sites, we examine the uncertainty in our change detection measurements here
using two metrics: the range of peak velocities across a transverse profile, and the average
minimum velocity on stable ground.

The first measure used to characterize the velocity uncertainty for the change detection
results is the range in the magnitude of the peak velocities measured along a common
transverse profile on the rock glacier surface for all of the time intervals examined. This
range is about 0.4 m

yr , though this variability estimation may contain variations in the rock
glacier’s true velocity field during the measurement period. The second quantification
of the uncertainty in measured velocity for each image pair is calculated by averaging a
subset of low-magnitude displacement vectors selected at regions of the image interpreted
to be bare stable ground. This value represents the minimum apparent velocity between
stationary points in two images; therefore, we take these values as a representation of the
uncertainty for the on-glacier velocity.

The averaged minimum velocity magnitudes of stable terrain are variable for the
Sourdough image pairs, generally varying around a value of approximately 20 cm

yr . There
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is a trend of decreasing uncertainty with increasing time interval between image, though
other factors such as a warped orthomosaic (August 2016) or a snow-covered surface
(October 2020) contribute to these uncertainty values. Because the standard deviations of
the vector components are generally random random, showing that there is no directional
bias to these minimum velocity values, the value of ±20 cm

yr (total range of 40 cm
yr ) agrees

with the range of 40 cm measured from the difference between the velocity peaks along a
common profile for all image pairs. Therefore, we assume the random error in the Alaskan
airborne datasets to be approximately ±20 cm

yr , while the systemic error approaches values
less than 5 cm

yr , especially for longer time intervals.
Systematic biases likely exist in local regions of the individual image pairs. For

example, in the May 2020/June 2021 image pair, the lower lobe of the rock glacier exhibits
a velocity magnitude much greater than the magnitudes at the same area in the other
image pairs, where the velocity decreases with proximity to the terminus (Figure 6). We
suggest that this systematic bias in the May 2020/June 2021 image pair results from effects
in the photogrammetric processing step, which could have led to geometric warping of the
orthomosaics. The processing reports generated by the Agisoft Metashape software indicate
that these two images had the highest percentage of regions on the rock glacier where
the image overlap was less than nine (see the supplementary materials for the processing
reports), which supports the hypothesis that the systematic error in this image pair is due
to artifacts from the photogrammetric processing. Additionally, nonzero means of stable
terrain velocity magnitudes combined with unequal standard deviations are indicative of
systematic and/or nonuniform uncertainty distributions, such as that of the May 2014/June
2016 image pair at Sourdough (Table 3). Future studies should visually identify regions
that may contain warping of the orthomosaic and the associated increase in uncertainty in
order to avoid misinterpretation of the physical implications of the velocity field.

To further understand the relative quality of the change detection results for different
image pairs, we examined the distributions of output velocities and maximum correlation
coefficients for Sourdough and Galena Creek. We used the eight image pairs at Sour-
dough to examine the characteristics of velocity and correlation coefficient distributions.
Qualitatively, one way to compare velocity measurements for different image pairs is to
compare the tails of the distribution, where the output velocity is greater than the highest
expected real velocity (about 2 m

yr for Sourdough). For example, the August 14/August 2015
results for Sourdough have fewer outlying velocity values than those for May 14/May 15
(Figure 11). In Figure 6, it can be observed that the velocity field for August 2014/August
2015 has a lower baseline uncertainty than for May 14/May 15, leading to the conclusion
that the quality of the results can partially be characterized by the number of outlying
velocity magnitudes. These observations can be used to weight the velocity vector fields of
specific image pairs during future kinematic analyses.

The distributions of the maximum correlation coefficients output by the CIAS algo-
rithm provide another assessment of the reliability of the results for each image pair. These
histograms (Figure 12) show a relationship between the width of the distribution of the
maximum correlation coefficients and the quality of the change detection results. Two
of the highest quality velocity fields as assessed by baseline uncertainty and flow signal
continuity are August 2014/August 2015 and August 2016/September 2019. These two
image pairs return the narrowest distribution of the maximum correlation coefficients. On
the other hand, May 2014/May 2015 and September 2019/October 2020 have relatively
low quality results, and broader distributions of the maximum correlation coefficients are
observed. This effect is especially apparent for the September 2019/October 2020 pair.
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Figure 11. Histograms showing the distribution of velocity magnitudes for each image pair at
Sourdough with a time interval of one year or longer. Each panel (a–h) corresponds with the results
presented in the same panel labeled in Figure 6.

Figure 12. Histograms showing the distribution of the maximum correlation coefficients for each
image pair at Sourdough with a time interval of one year or longer. Each panel (a–h) corresponds
with results presented in the same panel labeled in Figure 6.
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We tested these hypotheses with regard to the relationships between the number of
outlying data points, the maximum correlation coefficient distribution, and the quality
of change detection results by plotting the histograms for the August 2020/August 2022
image pair and the July 2021/August 2022 image pair at Galena Creek. Because the both
the August 2020 and Augusut 2022 images were acquired using the UAS, the velocity field
derived from this image pair has a low baseline uncertainty and a low amount of noisy
regions in the velocity field. In comparison, the July 2021 image is a lower resolution and
lower precision satellite product, leading to a higher baseline uncertainty and noise value
for the July 2021/August 2022 velocity field. The distributions for Galena Creek (Figure 13)
support our hypothesis that the velocity field quality can be characterized by both the size
of the tail of outlying velocity magnitudes and the width of the distribution of the maximum
correlation coefficients. In the case of the higher quality image pair at Galena Creek (August
2020/August 2022), the distributions contain a lower number of velocity magnitudes greater
than 2 m

yr and the peak of the maximum correlation coefficient distribution is narrower in
comparison with the July 2021/August 2022 pair. Our observations of uncertainty patterns
in the change detection results can be used to assess the propagation of error for future
analyses using the velocity fields presented here. Evaluating the benefits and limitations
of UAS, airborne, and satellite imaging platforms in regard to the measurement of rock
glacier surface motion will contribute to the planning requirements of ongoing and future
data acquisition campaigns [46,47].

Figure 13. Histograms showing the distributions of velocity magnitude (a) and maximum correla-
tion coefficient (b) for the August 2020/August 2022 image pair at Galena Creek and the velocity
magnitude (c) and maximum correlation coefficient (d) for the July 2021/August 2022 hybrid image
pair at Galena Creek.
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4.2. Interpreted Flow History

The timescale required to transport a debris clast from the head of the glacier to the toe
can estimated using the measured velocity fields, providing an estimate for the age of initial
rock glacier accumulation. To obtain the age Ax at distance x from the rock glacier headwall,
we integrate a smoothed profile of the inverse of calculated velocity magnitudes vx (moving
average window width = 5 pixels) along the central flowline for each rock glacier:

Ax =
∫ x

0
v−1

x dx. (1)

This method assumes a time-invariant velocity field along an interpreted flow path.
The velocity field for Galena Creek has likely been dependent upon surface slope through-
out its history, as it is today (Figure 14a); if the rock glacier was previously thicker and
flowed faster due to higher driving stress, then our assumption of a constant velocity field
would provide an upper bound for the age of the ice along the profile. Integrating the
surface velocity profile of Galena Creek produces a terminus age of 3070 years (Figure 14a).
This age falls between the estimated early neoglacial advance in Wyoming about 4000 years
ago and the Audubon advance approximately 2000 to 1000 years ago [28]. Assuming
that our age estimate is an upper bound, our results are most consistent with the rock
glacier terminus of Galena Creek originating from the Audubon advance, while the debris-
covered glacier comprising the upper two-thirds of the Galena Creek system contains
ice that accumulated during the Little Ice Age (LIA), which spanned approximately the
last half-millennium in the American Cordillera [48]. It is likely that this LIA advance
interacted with the pre-existing rock glacier system, similarly to other landforms observed
in the Swiss Alps and Chilean Andes [32–34]. This interaction of glacier ice and permafrost
resulted in the complex topography and variable ice distribution found at the inflection in
topography where they presently meet [31].

Our Galena Creek age profile is consistent with two calibrated radiocarbon measurements
in leaf fragments at locations along the center flowline of Galena Creek (Figure 14a) [12].
The radiocarbon age acquired 100 m from the cirque headwall is 0–310 calendar years
before present, and our velocity-derived age at this location is 180 years. Similarly, the
radiocarbon age 800 m along the flow profile is 1410–1730 years before present, while the
velocity-derived age is 1450 years. These independent measurements suggest that our
method of age estimation is suitable for Galena Creek, where the low width/thickness
ratio has allowed the velocity field to remain relatively consistent throughout the recent
history of the rock glacier. Although Sulphur Creek is a close neighbor to Galena Creek, we
did not perform a velocity profile analysis here, as the mid-glacier displacement vectors
and elevation change since 1985 indicate substantial stagnation and surface subsidence
in the past few decades, increasing the width/thickness ratio and likely invalidating the
assumption of a time-invariant velocity field over the past few centuries.

We used the velocity profiles for three of the highest quality change detection results for
Sourdough (August 2014/August 2015, August 2016/September 2019, and May 2014/July
2022) to better understand the propagation of uncertainty in the change detection results to
the rock glacier age estimates (Figure 14b). The three profiles show rock glacier terminus
ages ranging between 3,310 and 3,540 years. This range of ages is roughly consistent
with the oldest of four late Holocene advances inferred from radiocarbon and tree ring
dates [49], and although this indicates that these sites are older than the LIA, this result
does not support the hypothesis that the ice in this population of rock glaciers in the
Wrangell Mountains is related to the advance of the last glacial maximum (LGM), generally
considered to be much more than 10,000 years ago.
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Figure 14. Velocity magnitudes (blue), age profiles (red), and normalized surface slopes (black) for
(a) Galena Creek, including calibrated radiocarbon ages from [12] along the flow profile, (b) Sour-
dough, and (c) McCarthy Creek.

McCarthy Creek, just 2 km north of Sourdough, has a maximum velocity that is a factor
of two less than that of Sourdough while covering a relatively similar length (Figure 14c).
Using the August 2014/June 2021 velocity results for McCarthy Creek, which is the longest
time interval without surface obfuscation due to snow, the estimated terminus age is
approximately 6680 years. The August 2014/September 2019 image pair yields another
high quality velocity field, and returns an age estimate of 7330 years. This range is about
double the estimated age for Sourdough. Although this is an older age range, it is not
consistent with an advance related to the LGM. While there is uncertainty in the exact path
of a surface particle in comparison with our estimated flowline profiles, we do not expect
this potential source of error to be the primary cause of the factor-of-two difference in the
age calculations. Instead, this difference in estimated age for the two neighboring rock
glaciers suggests the existence of local heterogeneities in rock glacier evolution, even if we
assume that they are both related to the documented late Holocene ice advances in the
Wrangell Mountains.

Heterogeneities in rock glacier evolution could influence variance in the surface
velocity fields over time, refuting this age estimation’s assumption of a time-invariant
velocity field. Possible sources of differing velocity field evolution between the northward-
flowing McCarthy Creek and southward-flowing Sourdough include the effect of slope
aspect on accumulation and surface temperature as well as different series of rock glacier
surges overriding less active older lobes. For example, if McCarthy Creek is in the process
of stagnating while Sourdough’s activity remains constant, our method would estimate
an older age for McCarthy Creek due to the implication that slower surface velocities take
longer to transport surface material along the length of the rock glacier. One possible line
of evidence for a velocity field that has changed over time is the morphology and velocity
distributions of the different lobes at Sourdough and McCarthy Creek. Sourdough consists
of one major active lobe, where the peak velocity occurs within the steep trunk of the rock
glacier, and one smaller active lobe to the east, where the velocity appears to be correlated
to the surface slope as well. The western flank of Sourdough has two small steep lobes
which are presently inactive (Figure 1a). These minor lobes are interpreted to be remnant
overflow deposits from a past rock glacier advance when its thickness was greater than
at present, indicating that this zone of maximum velocity has likely been correlated with
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the steep trunk of the rock glacier throughout its history. Even though the age estimate
for Sourdough is taken to be an upper bound, we assume the relative velocities along its
longitudinal profile have maintained similar trends in correlation with surface slope.

By contrast, McCarthy Creek consists of a large stagnant lobe to the north of the main
active lobe, where the peak velocity is half that of Sourdough and which is found at the
upper reaches of the rock glacier as opposed to the mid-glacier trunk, as it is at Sourdough.
Sourdough is not substantially steeper than McCarthy Creek. In addition, McCarthy Creek
displays no overflow lobes, suggesting that its movement may be more limited by its
bedrock geometry and that the velocity field may be more susceptible to decreases in ice
accumulation. Because the northern lobe of McCarthy Creek is presently stagnant and the
peak velocity appears to have a lower correlation with surface slope (Figure 14c), it may
be reasonable to assume that the northern lobe was previously more active and that the
peak velocity would have been greater at the high slope regions on the rock glacier when
the ice unit was thicker. All of these observations support the inference that McCarthy
Creek has slowed over time, implying an overestimate of its total age; however, further
work is needed to determine whether these differences in evolution between Sourdough
and McCarthy Creek stem from heterogeneities in ice accumulation, debris input, valley
geometry, the effects of slope aspect on insolation, or a combination of these processes.

In both Alaska and Wyoming, neighboring rock glaciers exhibit differences in flow rate
distribution, suggesting that certain local controls may be influencing each rock glacier’s
evolution. As discussed above, the Alaskan rock glaciers differ significantly in their
maximum flow speed, with Sourdough approaching 1.5 m

yr and McCarthy Creek never
exceeding 0.6 m

yr . Additionally, in Wyoming, Galena Creek’s flow direction correlates
with the down-valley topographical gradient and the flow velocity magnitude correlates
with the magnitude of the longitudinal surface slope. Conversely, neighboring Sulphur
Creek’s velocity magnitude is greatest at the toe, and does not appear to be correlated with
the longitudinal surface slope. The middle section of the glacier appears to be flowing
perpendicular to the down-valley topography rather than parallel to it. This observation,
combined with significant surface subsidence and a measured ice thicknesses of only about
10 m at this same location [31], reveals a recent rapid destabilization of the debris-covered
ice in the upper Sulphur Creek basin. Although Galena Creek exhibits surface lowering
as well, a comparison of its velocity-derived age with radiocarbon ages suggests no major
deviations between its past and present velocity fields.

5. Conclusions

Our analysis demonstrates the capabilities and limitations of using multiple combi-
nations of repeated imagery acquisition methods to perform photogrammetric change
detection as a means of measuring rock glacier surface motion. The imagery acquired with
the Phantom 4 RTK UAS had the highest success rate for detecting rock glacier surface flow
due to this method’s high image resolution and positioning accuracy. This effect is most
apparent for the August 2020/August 2022 image pair at Galena Creek, Wyoming, where
both images were acquired with the UAS. With this image pair, a strong flow signal was
detected with a baseline measurement uncertainty of approximately 5 cm

yr . Airborne pho-
togrammetry successfully detects rock glacier surface motion over annual time intervals,
although the slightly diminished resolution and positioning accuracy due to the increased
flight speed and altitude can propagate to the change detection results in comparison with
the UAS-derived datasets. At each Alaska site (Sourdough and McCarthy Creek), strong
flow signals were detected across the rock glacier surface with airborne imagery, especially
for imaging intervals of three years or longer. The baseline uncertainty (20 cm

yr ) is higher
with the airborne method than that for image pairs where both images were acquired with
the UAS.

While high-resolution satellite imagery provides the potential for consistent mon-
itoring of rock glaciers, there is a tradeoff between this logistical convenience and the
limitations of resolution and positioning for civilian data acquired from an orbital platform.
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All of the orbital imagery used in this study required manual repositioning to improve
co-registration with the images they were paired with, and the relatively coarse resolu-
tion limited the lower bound of the annual displacement magnitudes detectable by this
method in comparison with the UAS and airborne platforms. The satellite imagery for
both Wyoming field sites detected flow signals when paired with UAS and airborne data;
however, the baseline uncertainty (40 cm) and the number of spurious displacement vectors
caused by feature mismatches in the change detection were both the highest for all of the
methods used.

A preliminary analysis of the rock glacier velocity fields shows that all of the study
sites in Alaska and Wyoming likely originated during the early to middle Holocene,
after the LGM and before the LIA. In addition to horizontal change detection, we used
a combination of digital elevation models that are publicly available or generated with
our photogrammetric processing method to estimate current thinning rates for each site.
We found that both Wyoming sites exhibit a thinning signal that is consistent with the
meteorological data and measured debris thickness, while neither of the the Alaska sites
exhibits surface elevation change consistent with rock glacier thinning.

Due to the slow flow of rock glaciers in comparison with glaciers, all of the imagery
applied to change detection experiments must have high-precision positioning information
to reduce measurement error and detect a flow signal, especially when the time sampling
interval is one year or less. This level of precision is vital for future studies focusing
on remote sensing of seasonal patterns in rock glacier flow. With current technological
resources, UAS imagery has the best resolution and positioning; however, it is limited to
small spatial footprints at locations and times where the target is directly accessible. While
airborne imagery provides a broader spatial extent and greater ease of data acquisition at
regular time intervals for less accessible sites, it sacrifices resolution and precision. Satellite
imagery offers a solution for regularly sampling a wide spatial area multiple times per
year; however, the presently available data lack the resolution and precise positioning
needed to achieve the lower uncertainty levels of UAS or airborne imagery. Increasing
the number of high-resolution satellite imaging constellations for environmental studies
would further improve the spatial and temporal capability to measure and monitor rock
glaciers. We intend for the results of this study to be analyzed further using established
glaciological principles, and our observations relating to the application of multi-platform
change detection should be considered when planning campaigns to measure rock glacier
surface motion.
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Appendix A. Thermal Conduction Model

To validate the remotely measured values of surface elevation change, we applied a
simple melt model via 1D thermal conduction through the supraglacial debris layer. The
objective of this model is to calibrate a realistic value for the thermal conductivity of the
debris using the thinning rate measured with differenced DEMs at Galena Creek alongside
temperature and snow depth data from the Evening Star meteorological station, which
belongs to the SNOTEL network operated by the United States Department of Agriculture
(station ID = 472). This station is located in the adjacent valley to the east of Galena Creek.

Using the SNOTEL data between the dates of 23 August 2020, and 8 August 2022, the
melt rate was fixed to zero for dates with nonzero snow depth. For dates with zero snow,
the melt rate ( m

day ) is provided by the following:

M = k
dT
dz

86,400
ρiceL f

, (A1)

where k is the thermal conductivity of the debris layer, dT is simplistically assumed to be the
SNOTEL air temperature measurement (Tice = 0 ºC), dz is the thickness of the debris layer,
ρice is the density of the ice (900 kg

m3 ), and L f is the latent heat of fusion (334,000 J
kg ) [50].

For Galena Creek, we assume the debris thickness to be 1.5 m based on previous ice
exposure observations and GPR measurements [1,3,31]. We test thermal conductivity
values spanning the range of 0.3–1.8 W

mK , which is a feasible range for supraglacial debris,
although it is likely that rock glacier debris resides on the lower end of this range due to its
relatively high porosity [51,52]. The interpreted result of 20 cm cumulative melt during the
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2020–2022 interval for Galena Creek is consistent with a thermal conductivity of 0.42 W
mK ,

approaching the lower bound of the plausible range (Figure A1b).

Figure A1. (a) Air temperature and snow water equivalent (SWE) data reported for the Evening
Star SNOTEL site between 23 August 2020, and 8 August 2020. (b) Modeled melt over that same
time interval for a range of possible thermal conductivity values for the debris layer and a debris
thickness of 1.5 m. The horizontal red lines indicate the mean (thick line) and standard deviation (thin
lines) of the photogrammetrically measured elevation change at upper Galena Creek. (c) Modeled
melt using the Evening Star SNOTEL data between 1 September 1990, and 1 September 2020 for a
debris thickness of 0.5 m as measured at upper Sulphur Creek in August 2020. The horizontal red
lines indicate the expected mean (thick line) and standard deviation (thin lines) of the cumulative
melt for that time period using melt rates measured between 1985 and 2020. (d) Modeled melt for
Sourdough using air temperatures measured by an automated weather station near the rock glacier’s
toe, assuming a value of 3 m for the debris thickness and a thermal conductivity of 0.42 W

mK . The red
line shows the standard deviation of the annual elevation change rate measured photogrammetrically
between 2014 and 2022.

We applied the same thermal conduction model to the Evening Star SNOTEL data for
the dates between 1 September 1990 and 1 September 2020 using a debris thickness of 0.5 m
in order to test the remotely sensed cumulative surface lowering of between 18–28 m for
upper Sulphur Creek over the 1985–2020 time interval. Although the SNOTEL data lack
five years of data in comparison with the DEM interval, the thermal conduction results
support the observation that upper Sulphur Creek thinned at a rate of tens of cm per
year over three decades for plausible conductivities of the debris (Figure A1c), leading to
cumulative melt well over 10 m for that period, further validating our photogrammetric
results for Sulphur Creek.
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We additionally tested the result of negligible surface elevation change for Sourdough
and McCarthy Creek with the thermal conduction model using air temperature data
acquired from an automated weather station on the lower lobe of Sourdough. Due to
gaps in field campaigns, only the years 2016, 2018, and 2021 contained a complete and
continuous calendar year of temperature data. We calculated the melt at Sourdough during
each of these years using dz = 3 m and k = 0.42 W

mK (Figure A1d). Each of these years returns
melt rates less than 10 cm

yr . Further, these melt rates are likely overestimates, as this weather
station does not measure the presence of snow; thus, this conditional step is removed from
the melt rate calculation. Removing the condition that the melt rate equals zero when the
snow depth is greater than zero leads to an increase in the estimated melt rates for both
Galena Creek and Sulphur Creek by a factor of approximately 1.3. After correcting the
Sourdough melt rates for this factor, the resulting these rates are within about 1 cm

yr of the
standard deviation of the 2014–2022 elevation difference product.

Additionally, the location of the weather station at the toe of the rock glacier may bias
this calculation towards higher melt rates, as its elevation at the bottom of the rock glacier
implies that it has the highest temperature on the surface of the rock glacier assuming
normal atmospheric lapse rates. In addition to the uncertainty in the temperature change
with increasing elevation and the relationship of the air temperature to the debris surface
temperature, this thermal conduction model is subject to uncertainties in the debris thick-
ness. Although the meteorological data indicate that melt may be occurring at Sourdough
and McCarthy Creek, the surface change due to this melt falls within the measurement
uncertainty of the DEMs used to calculate the surface change over the 2014–2021 interval
for McCarthy Creek and the 2014-2022 interval for Sourdough. Future refinement of rock
glacier melt rate estimates should consider the effects of nonconductive heat fluxes [52].
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Abstract: In the second half of the 20th century, the western Antarctic Peninsula recorded the highest
mean annual air temperature rise in the Antarctic. The South Shetland Islands are located about
100 km northwest of the Antarctic Peninsula. The mean annual air temperature at sea level in this
Maritime Antarctic region is close to −2 ◦C and, therefore, very sensitive to permafrost degradation
following atmospheric warming. Among geomorphological indicators of permafrost are rock glaciers
found below steep slopes as a consequence of permafrost creep, but with surficial movement also
generated by solifluction and shallow landslides of rock debris and finer sediments. Rock glacier
surface velocity is a new essential climate variable parameter by the Global Climate Observing System,
and its historical analysis allows insight into past permafrost behavior. Recovery of 1950s aerial
image stereo-pairs and structure-from-motion processing, together with the analysis of QuickBird
2007 and Pleiades 2019 high-resolution satellite imagery, allowed inferring displacements of the Hurd
rock glacier using compression ridge-and-furrow morphology analysis over 60 years. Displacements
measured on the rock glacier surface from 1956 until 2019 were from 7.5 m to 22.5 m and surface
velocity of 12 cm/year to 36 cm/year, measured on orthographic images, with combined deviation
root-mean-square of 2.5 m and 2.4 m in easting and northing. The inferred surface velocity also
provides a baseline reference to assess today’s displacements. The results show patterns of the Hurd
rock glacier displacement velocity, which are analogous to those reported within the last decade,
without being possible to assess any displacement acceleration.

Keywords: historical photogrammetry; structure-from-motion; rock glaciers; South Shetland Islands;
Antarctic Peninsula

1. Introduction

Rock glaciers are debris landforms generated by the former or current creep of frozen
ground (permafrost), detectable in the landscape due to front and lateral margins and gen-
erally ridge-and-furrow surface topography [1]. They result mainly from the deformation
of permafrost under the influence of gravity via permafrost creep, with solifluction playing
a role near the surface in the active layer, but also with the possibility of land-sliding. Rock
glaciers have been widely used as a geomorphic indicator of permafrost and are landforms
typical for the lower limit of permafrost in mountain regions, such as the European Alps [2].
Rock glacier surface velocities typically vary from centimeters up to a few meters per year.
It depends on slope steepness, material properties, hydrology, and ground thermal condi-
tions [3]. Rock glacier kinematics is forced by climate, with most rock glaciers accelerating
following the warming of permafrost and resulting changes in rheology and hydrology in
the debris masses [4]. Rock glacier velocity is hence a good proxy for the effects of climate
change on permafrost, and its significance [5,6] is leading to its possible integration as an
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associated parameter to the essential climate variable of permafrost in the Global Climate
Observing System—World Meteorological Organization (WMO).

Contrary to mountainous regions worldwide, where rock glaciers have been a focus
of research because they are significant for hazard assessment, hydrology (water supply),
ecosystem niches, climate reconstruction, and climate change impacts [7–9], very little is
known about rock glacier dynamics in the Antarctic. However, several rock glaciers have
been identified in the South Shetland Islands (SSI), mainly on ice-free peninsulas of King
George and Livingston islands, below 300 m above sea level (asl) [10]. Antarctic Peninsula
rock glaciers with lengths of 55–470 m and widths of 100–360 m are small when compared
to others in mountain environments worldwide. All those rock glaciers are active, three of
them showing signs of recently reduced activity [10].

Rates of surface displacement of rock glaciers have barely been reported for the
Antarctic Peninsula and the South Shetland Islands. One exception is the Hurd rock
glacier in Livingston Island, where this study focuses. Studied by Interferometric Synthetic
Aperture Radar (InSAR), its surface velocity was measured using phase-differential Global
Navigation Satellite Systems (GNSS) with reported velocities of up to about 30 cm/year [11].
Rock glaciers can also be monitored using ground- or aerial-based photogrammetry, laser
scanning, and visible-band satellite imagery [12]. Most data feeding these techniques
may only be used for recent years. For the SSI, the historical aerial photogrammetric
frames of the Falkland Islands and Dependencies Aerial Survey Expedition (FIDASE) from
the 1950s [13,14] are possibly the oldest remote sensing data for the archipelago and are
comparable to the decimeter-level pixel resolution of nowadays satellite imagery.

This study assesses the capability of extending monitoring back in time [15,16] to infer
the Hurd rock glacier mean surface velocity with cm/year precision over 60 years, from
1956 to 2019. For this purpose, we used historical aerial frames and recent high-resolution
satellite imagery.

2. Study Area

Since the 1950s, the western Antarctic Peninsula has suffered one of the highest
maximum mean annual air temperature (MAAT) increases of the Antarctic, with as much as
3.4 ◦C, or about 0.5 ◦C/decade based on the Faraday/Vernadsky station record [17], placing
the region as one of the world’s climate warming hotspots [18–20]. Higher temperatures
have been accompanied by increased precipitation [21,22] and higher snow accumulation,
particularly in the western Antarctic Peninsula [23]. However, a regional cooling has been
reported for the northwest Antarctica Peninsula from 1999 to 2015. Since then, the warming
trend has resumed, with the summer of 2020 breaking record highs with maxima of 18.3 ◦C
recorded at Esperanza Station [24]. In the SSI, about 100 km off the northwest Antarctic
Peninsula (Figure 1a), the MAAT increased nearly 2 ◦C from 1968 until 2022 (Figure 1b).
The MAAT is close to −2 ◦C at sea level [25], which makes the cryosphere very sensitive to
small air temperature changes [26–28].

Permafrost is widespread in the Antarctic Peninsula, except close to sea level in its north-
western sector [29]. Modeling of the temperature at the top of permafrost shows that the SSI
have permafrost temperatures above −2 ◦C, but frequently, just below freezing [28,30]. The
comparison between the first measurements of the active layer thickness in the 1950s–60s
and recent monitoring data has revealed an increase in the active layer depth in some areas
of the SSI and Anvers Island [26,27]. Starting in 2000 and extending along the Interna-
tional Polar Year 2007–2008, a borehole network was installed, first in the SSI and later
in the Antarctic Peninsula, measuring primarily permafrost temperature and active-layer
thickness but also geomorphological changes [26–28,31–33]. Accompanying the reported
atmospheric cooling, in some regions of the SSI, from 2006 to 2015, there has been a reduc-
tion of the active layer thickness at a rate of about 1.5–2.0 cm/year [31,32] and soil cooling
as inferred from annual freezing indexes [34]. Lower summer temperatures have promoted
a longer snow cover period [33,35], cooling the ground [25].
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Figure 1. Location of Hurd Peninsula, within the dashed box, in Livingston Island of the South 
Shetland Islands about 100 km north of the Antarctic Peninsula (a). Air temperature at 
Bellingshausen station, King George Island, retrieved from Reference Antarctic Data for 
Environmental Research (legacy.bas.ac.uk/met/reader/) (accessed on 19 April 2023). Annual (gray), 
winter (blue), and summer (orange) means in solid line for weighted moving average and dotted 
line for trend (b). Location of Hurd rock glacier, inside the dashed box, in Hurd Peninsula with 
digital elevation model from historical aerial frames and REMA outside the SfM computed area (c). 
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been a reduction of the active layer thickness at a rate of about 1.5–2.0 cm/year [31,32] and 
soil cooling as inferred from annual freezing indexes [34]. Lower summer temperatures 
have promoted a longer snow cover period [33,35], cooling the ground [25]. 

No data has yet been published on the effects of the warming recorded since 2015 on 
permafrost temperatures and the active layer, but these are expected to warm and increase 
in thickness. In this paper, we study the Hurd rock glacier, which is located in a small 
glacial valley in the south of Hurd Peninsula in Livingston Island (Figure 1c). The bedrock 
is composed of sandstones, shales, and greywackes of the Myers Bluff Formation [10]. 
Binn Peak (392 m) is the highest summit on the ridge, with over 200 m elevation that 
bounds the valley. The rock glacier is formed by a debris accumulation about 470 m long 
and 360 m wide, with the surface showing longitudinal and transversal pressure ridges 
and furrows (Figure 2). The latter are especially present in the lower sector close to the 
front, which shows a maximum slope of 45° and is 15 to 20 m high [10]. The rock glacier 
forms in front of a small retreating cirque glacier and extends from about 110 m to 20 m 
asl, terminating over a fluvioglacial infill lying in contact with a raised marine terrace [36] 

Figure 1. Location of Hurd Peninsula, within the dashed box, in Livingston Island of the South
Shetland Islands about 100 km north of the Antarctic Peninsula (a). Air temperature at Bellingshausen
station, King George Island, retrieved from Reference Antarctic Data for Environmental Research
(legacy.bas.ac.uk/met/reader/) (accessed on 19 April 2023). Annual (gray), winter (blue), and
summer (orange) means in solid line for weighted moving average and dotted line for trend (b).
Location of Hurd rock glacier, inside the dashed box, in Hurd Peninsula with digital elevation model
from historical aerial frames and REMA outside the SfM computed area (c).

No data has yet been published on the effects of the warming recorded since 2015 on
permafrost temperatures and the active layer, but these are expected to warm and increase
in thickness. In this paper, we study the Hurd rock glacier, which is located in a small
glacial valley in the south of Hurd Peninsula in Livingston Island (Figure 1c). The bedrock
is composed of sandstones, shales, and greywackes of the Myers Bluff Formation [10]. Binn
Peak (392 m) is the highest summit on the ridge, with over 200 m elevation that bounds the
valley. The rock glacier is formed by a debris accumulation about 470 m long and 360 m
wide, with the surface showing longitudinal and transversal pressure ridges and furrows
(Figure 2). The latter are especially present in the lower sector close to the front, which
shows a maximum slope of 45◦ and is 15 to 20 m high [10]. The rock glacier forms in front
of a small retreating cirque glacier and extends from about 110 m to 20 m asl, terminating
over a fluvioglacial infill lying in contact with a raised marine terrace [36] about 150 m
from the shoreline of False Bay. The glacial cirque headwalls the rock glacier with debris
feeding the rock glacier, especially on the eastern side.

Permafrost in the Hurd Peninsula is continuous above about 150 m asl and absent in
the raised beach terraces up to 30 m asl but is known to occur in relict bodies in ice-cored
moraines, as well as in rock glaciers down to sea level [37]. Permafrost temperatures
range from −0.4 to −1.8 ◦C, showing that it is very susceptible to thawing and generating
thermokarst features in ice-rich terrain, but also debris flows and active-layer detachment
slides [26–28]. The MAAT at sea level is about −1.2 ◦C and, in the short summer, rainfall
events are frequent, and mean summer temperatures are 1.9 ◦C [38]. In Hurd rock glacier,
the snow cover can melt completely in warm summers, but it is frequent that it prevails in
furrows and sheltered areas.
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Figure 2. Oblique photograph of Hurd rock glacier depicting the eastern valley slope and the ridge
and furrows topography, as well as the frontal zone over the Holocene raised beach.

The first detailed research about Hurd rock glacier presented a geomorphological map
and several vertical electrical soundings [36] that showed the presence of a high resistivity
unit below a 1 to 3 m unfrozen superficial layer, having about 2 m thickness, and being
interpreted as permafrost. The fluvioglacial plain in front of the rock glacier showed no
permafrost, but the lobate debris features present in the slopes at the same elevation as
the top of the rock glacier body suggested that its roots were in the continuous permafrost
sector. The study of impacts of the atmosphere on phase delay for using InSAR to detect
surface displacement of the rock glaciers in Livingston Island [11] refer to annual phase-
differential GNSS data for the period of 2011 to 2015, which showed surface velocities at
the Hurd rock glacier body of up to 30 cm/year, with faster sectors in the rock glacier front
and central body and slower sectors in its eastern and western margins.

3. Materials and Methods
3.1. Structure from Motion and Rational Polynomial Processing

Classical stereo-photogrammetry is a mapping tool applied for almost one century,
where from several overlapping images of the Earth’s surface, both surface models and
orthographic images are derived. The geometric consistency of the obtained information is
appropriate for studying topographical changes and geomorphological dynamics [12].

Recently, structure from motion (SfM) was developed, being a near-automated compi-
lation of digital imagery processing strategies that solves, together, camera position and
surface geometry [39]. SfM’s complete solution is based on the geometry of the photography
and a highly redundant number of automatically detected matching features proportional
to surface texture and image resolution identified in several images from diverse perspec-
tives and preferably with a high degree of overlap [40]. Together with the ongoing increase
in processing power, SfM made digital stereo-photogrammetry cost-effective, which gave a
significant advance to the field [39,41,42].

Furthermore, by independently detecting and computing additional matching features
on handy subsets of the overlapping images by multi-view stereo (MvS) processing, mas-
sive geometric data on dense point clouds allow for complete surface reconstruction [43].
The SfM-MvS together involves the detection of matching features in individual images,
their coordinates being measured in the camera reference system, and the computation
of camera and features’ relative positions in a non-scaled arbitrary coordinate system.
Therefore, ground control points or known camera centers’ positions in an appropriate
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Earth reference system are required to generate a dense point cloud and, from it, a surface
mesh and surface reconstruction or digital elevation model.

The camera positions and digital elevation model are then needed to correct the
displacement of each pixel in the images to form the orthographic image. The displacement
of each pixel position is due to the projection of the feature by a non-vertical line-of-
sight between the camera center and the feature, thus radial function of feature height [44].
Hence, the complete imagery processing can be performed with human intervention almost
limited to the ground control points’ identification [45].

In recent years, satellite imagery has also been acquired in stereo-pairs, but typically
only a single image is acquired in each passage [44]. Similarly, orthographic images from
satellite imagery require the sensor geometry, position, and digital elevation model to
correct the displacement of each pixel due to feature height. The rational polynomial coeffi-
cients (RPC) models are commonly applied in satellite imagery to describe the acquisition
process of its sensors without a camera geometry model. Handily, the coefficients of the
RPC model of each satellite image are provided with them and enhanced using ground con-
trol points to relate surface coordinates to image coordinates by cubic polynomials [46,47].
To detect topographical changes and geomorphological dynamics, digital elevation models
and orthographic images can be compared. The surface reconstruction is not obtainable
from satellite single images; however, their orthographic images can be applied to quantify
geomorphological dynamics [45].

3.2. Dataset Characteristics and Selection of Ground Control Points

Two sets of stereo-pairs of aerial frames of the Hurd Peninsula and two satellite single
images were analyzed. The stereo-pairs made with a Fairchild metric camera were from
17 December 1956 and 26 December 1957, with a lens focal distance of 152.88 mm on the
first and 153.19 mm on the second date. The flight altitudes were about 3960 m on the first
and about 4115 m on the second date, with the subsequent scales of 1:26,000 and 1:27,000.
The digital softcopies’ pixel length is about 0.02 mm on the hardcopy frame (1016 dpi),
standard panchromatic-film grain resolution [44], and about 0.6 m on the Earth’s surface.

Two satellite single images from 7 February 2007 and 28 February 2019, respectively
taken by QuickBird and Pleiades sensors, with pixel length resolution better than 0.6 m in
panchromatic mode, were also used. Hence, the initial estimated resolutions of all digital
images involved were similar (Table 1).

Table 1. Applied imagery material information.

Proprietary Type and
Details

Number of
Frames/Images

Altitude
and Scale Date

Falkland Islands and
Dependencies Aerial
Survey Expedition
(FIDASE)

f: 152.9 mm
f: 153.2 mm

4 3960 m
1:26,000

17 December
1956

4 4115 m
1:27,000

26 December
1957

DigitalGlobe
(QuickBird)

panchromatic
4 bands

f: 8800.0 mm
1 450,000 m 7 February

2007

CNES/Airbus
(Pleiades)

panchromatic
4 bands

f: 12,905.0 mm
1 694,000 m 28 February

2019
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Additional topographic data was accessed on the Reference Elevation Model of Antarc-
tica (REMA) 2 m resolution digital elevation model. REMA was constructed from several
individual stereoscopic digital elevation models extracted from pairs of submeter resolu-
tion satellite imagery acquired between 2009 and 2021 and vertically registered to satellite
altimetry measurements, resulting in absolute uncertainties of less than 1 m and relative
uncertainties of decimeters [48].

Apart from the selection of a few parameters, the identification of the ground control
points was the main human intervention in the image processing and the main potential
error source. Because of mobility and security reasons, it was not possible to survey
these points with phase-differential GNSS, except on the rock glacier surface. Further, the
lack of artificial ground control points was a strong limitation, as the interpretation of
natural ground control points can be somewhat ambiguous, making it less crucial to survey
with phase-differential GNSS precision. Nonetheless, phase-differential GNSS accuracy is
expected to impact the overall precision of the orthographic images [45].

Scale and reference frame are the main purposes of ground control points, and hence,
the same was used in all orthographic images to minimize the effect of a possible reference
frame bias when differentiating them to quantify displacements and also accounting for
the maximum height difference to constrain vertical scale. Their precision influence on
the horizontal scale and reference frame rotation is inversely proportional to the distance
between them, as for larger distances, lesser inaccuracy in reference frame rotation and scale
is imposed. The required lens and frame centering, optional lens distortion, frame aspect,
and skew calibration are adjusted to the scaled surface model and hence also affected by
the ground control points precision.

While satellite images were processed by the ENVI 5.2 software with their rational
polynomial coefficients and REMA digital elevation model, stereo-pairs were processed by
the PhotoScan 1.0 software with SfM-MvS strategies.

The 2007 QuickBird satellite image was orthorectified with their RCP and the REMA
model only and pan-sharpened (Figure 3a). This orthographic image was chosen as the
reference for co-registration, from where coordinates in the World Geodetic System 84
reference system and projected in Universal Transverse Mercator at fuse 20 South were
retrieved. Height was retrieved from the REMA model. Nine well-identified features in
the historical aerial frames and satellite images, mostly at rock outcrops and dispersed
locations (Figure 3a), were selected as ground control points in the common area to the
aerial frames and satellite images. The 2019 Pleiades satellite image was then orthorectified
with their RCP, the REMA model, and nine ground control points to be co-registered to the
QuickBird orthographic image and pan-sharpened (Figure 3b).

Historical aerial frames were processed together: three stereo-pairs from 17 December
1956 and three stereo-pairs from 26 December 1957, totaling eight frames, and the nine
ground control points, to generate a common dense point cloud and digital elevation model
with 2.6 m resolution (Figure 1c). All stereo-pairs were processed together to increase the
degree of overlap and, therefore, increase the common digital elevation model precision,
also increasing the constraint in the co-registration of both orthographic images. The 1956
and 1957 orthographic images were generated from each date single frame with its center
closer to the rock glacier (Figure 4a,b), which is the area where features are less affected by
radial displacement due to ground height.
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Figure 3. Orthographic image of 2007 by QuickBird sensor (©DigitalGlobe Inc., Boulder, Colorado, 
USA, 2007) with the location of the ground control points used shown in red circles (see Appendix 
A) and profile (A-B-C) of measured heights comparison (a). Orthographic image of 2019 by Pleiades 
sensor (©CNES, Paris, France, 2019, Airbus distribution service) with the location of the twenty-six 
assessed features and their orthographic images (1956, 1957, 2007, and 2019) coordinates’ common 
deviation root-mean-squared (rms), varying from 0.9 m to 6.2 m (see Appendix B) (b). 

Figure 3. Orthographic image of 2007 by QuickBird sensor (©DigitalGlobe Inc., Boulder, Colorado,
USA, 2007) with the location of the ground control points used shown in red circles (see Appendix A)
and profile (A-B-C) of measured heights comparison (a). Orthographic image of 2019 by Pleiades
sensor (©CNES, Paris, France, 2019, Airbus distribution service) with the location of the twenty-six
assessed features and their orthographic images (1956, 1957, 2007, and 2019) coordinates’ common
deviation root-mean-squared (rms), varying from 0.9 m to 6.2 m (see Appendix B) (b).
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4. Results
Orthographic Images Generation and Combined Accuracy Assessment

The orthographic 2019 Pleiades satellite image was co-registered to the 2007 QuickBird
orthographic image with a deviation root-mean-squared (rms) of 3.4 m and 2.4 m in easting
and northing, respectively, at the nine ground control points. The 1956 and 1957 historical
aerial frames processed together gave a deviation rms of 2.1 m, 3.1 m, and 5.6 m in easting,
northing, and height, respectively, at the nine ground control points.

Furthermore, to assess the relative accuracy among all orthographic images, twenty-
six features were selected based on their expected immobility (Figure 3b). The coordinates
of each feature were measured in every orthographic image, and their deviation rms
were computed. The identification of corresponding features can be ambiguous and was
minimized by avoiding steep terrain, shadows, and snow. Still, to evenly disperse the
analyzed features throughout the orthographic images, this criterium was not always
achieved, particularly due to shadows in the 1957 and 2019 orthographic images covering
most of the southeast coastline (Figures 3b and 4b). A common deviation rms of all
orthographic images (1956, 1957, 2007, and 2019) of 2.5 m and 2.4 m in easting and northing,
respectively, was computed. The deviation rms computed at each feature is shown in
Figure 3b, where 0.3 m and 6.0 m (easting) and 0.6 m and 4.6 m (northing) were the
extreme values.

5. Discussion
Hurd Rock Glacier Surface Velocity

The controls of climate on rock glacier displacement have been analyzed by several
authors, and rock glacier acceleration has been shown to be a consequence of climate
warming in many cases [4]. However, other environmental factors control rock glacier
displacements, such as variable sediment and ice/water supply to the rock glacier body.
All these require being interpreted carefully and framed within the geomorphological and
climate setting of each rock glacier. In steep and thin rock glaciers, rapid impact from
atmospheric warming on rock glacier temperatures and creep are expected, while thicker
rock glaciers may need decades for deformation to occur [3].

From the orthographic images of 1956, 1957, 2007, and 2019, mean displacement
velocities can be measured at the rock glacier and the moraine at its root over nearly
60 years. As the rock glacier develops from nearly 100 m asl, north, to nearly 10 m asl,
south, its gravity-driven displacement is expected mainly from north to south, and the
features that best serve to measure it are the pressure ridges not covered by snow and with
a nearly east–west direction (Figures 5 and 6). Due to different conditions of snow cover
and illumination, no automatic inference of displacements was possible. These different
conditions were useful to visually select common features on the rock glacier, for which
displacement was inferred, as the identification of individual ridges benefits from furrows
covered by snow and by the lack of shadows over the rock glacier. In Figures 5 and 6,
the displacement vectors can be depicted, where their initial points are at the measured
features in 1956 and 1957 (Figure 5) while their terminal points are at these features in 2007
and 2019 (Figure 6), allowing for their identification in each orthographic image.

The southward displacement is measured with uncertainty mainly from the northing
component. Over 60 years, the deviation rms of 2.4 m in northing implies a north-to-
south displacement velocity uncertainty of 4 cm/year. For achieving a 95% confidence
level, only north-to-south displacements above 4.7 m were considered. All displacements
were measured via the difference of corresponding features’ coordinates in each pair of
orthographic images of 1956 with 2007 and 2019, and 1957 with 2007 and 2019. Therefore,
the average displacement velocities have an uncertainty of about 2 cm/year.

Displacements measured on the rock glacier surface vary between 7.5 m and 22.5 m,
and the corresponding surface velocity values were from 12 cm/year to 36 cm/year for the
period of 1956 to 2019, with the fastest sectors being the eastern front sector, as well as the
front moraine at the root of the rock glacier.
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Figure 5. Initial point of displacement and displacement vectors (in red) at the measured features in
1956 (a) and 1957 (b). Displacement vectors in image scale range from 7.5 m to 22.5 m. Coordinates in
WGS84–UTM20S.
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in 2007 (©DigitalGlobe Inc., Boulder, Colorado, USA, 2007) (a) and 2019 (©CNES, Paris, France, 
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Figure 6. Terminal point of displacement and displacement vectors (in red) at the measured features
in 2007 (©DigitalGlobe Inc., Boulder, Colorado, USA, 2007) (a) and 2019 (©CNES, Paris, France, 2019,
Airbus distribution service) (b). Displacement vectors in image scale range from 7.5 m to 22.5 m.
Coordinates in WGS84–UTM20S.

The highest displacement velocities were measured at the front moraine at the root of
the rock glacier, ranging from 29 cm/year to 36 cm/year (Figure 7). The lower displacement
velocity values were measured at the western sector of the rock glacier body, ranging from
12 cm/year to 18 cm/year. At the eastern sector of the rock glacier body and its front, the
displacement velocity ranges from 21 cm/year to 26 cm/year. Any displacement could be
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detected on the rock glacier for the very short interval of 1956 to 1957. No displacement
was detected greater than 4.7 m from 2007 to 2019 (Figure 6). This measured velocity field
agrees well with that measured by phase-differential GNSS and reported within the last
decade [6], not allowing for a clear assessment of any displacement acceleration.
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Although the height precision obtained from SfM applied to the 1956 and 1957 photo-
graphic images was inferred at about 5.6 m, the height profile relative to the 2021 REMA
digital model (Figure 8) reveal high agreement between them, both above the rock glacier
(A–B), over the rock glacier and its adjacent raised beach (B–C). Horizontal displacements
at the rock glacier root can be measured at about 10–20 m between profile inflections,
although displacement at the rock glacier foot is less clear, perhaps smoothed by the snow
accumulation at the 1956 and 1957 images. At the eastern sector of the rock glacier, a slight
surface uplift may have taken place, extending to a small, elevated terrace at the raised
beach. Yet, these differences may be associated to the limited vertical precision.

The Hurd rock glacier rheology and evolution of its permafrost thermal state are
unknown, limiting its surface velocity modeling. The regional temperature evolution
at the South Shetland Islands may be assessed by analyzing the MAAT time series of
Bellingshausen station in King George Island (Figure 1b). MAAT shows an increase of
about 1.5 ◦C from 1967 to 1999, followed by a decrease of about −1.0 ◦C until 2014, and
again by an increase of about 1.5 ◦C in MAAT until 2022 (Figure 1b). Despite the significant
atmospheric warming reported for the archipelago, since at least the 1950s, the measured
displacement velocities do not show a clear acceleration, as could be expected following the
warming in the climate series. This may be due to the very warm setting of the Hurd rock
glacier in the permafrost zone of the South Shetland, below the continuous permafrost [23].
Furthermore, the complex interannual variability in snow cover conditions [30], with poorly
understood impacts on ground hydrology, may add extra complexity to the understanding
of Hurd rock glacier rheology as well as its reaction to climate change.
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6. Conclusions

The analysis of co-registered high-resolution satellite orthographic images from 2007
and 2019 together and orthographic images generated from SfM-MvS processed stereo-
pairs from 1956 and 1957 shows that historical photogrammetric frames allow developing
detailed surface deformation monitoring studies in remote Antarctic areas. This is the first
time that long-term displacement velocities for rock glaciers are presented for the Antarctic
Peninsula and the South Shetland Islands region, which makes this data especially valuable
and shows the potential applicability of the technique and datasets used.

Results depict that the analysis of historical aerial frames of the South Shetland Islands
from the 1950s provides reliable information for the analysis of geomorphological changes
with considerable resolution. Nevertheless, this type of analysis requires a sufficient
time span to accommodate its uncertainty level. In this study, the 1950s stereo-pairs
recovery and SfM-MvS processing allowed inferring displacements of the Hurd rock glacier
compression ridges over 60 years. Orthographic images’ precision can be enhanced by
ground control points with accurate coordinates at least one order of magnitude above the
images’ resolution, measured by phase-differential GNSS. The uncertainty of the produced
orthographic images was 2.5 m and 2.4 m in easting and northing, respectively.

At the Hurd rock glacier, displacement velocities were measured over about 60 years,
ranging from 12 cm/year to 36 cm/year, depending on the rock glacier sector. These
values reveal a similar spatial distribution to that reported from short phase-differential
GNSS time series within the last decade. From 2007 to 2019, no displacement surpassing
the displacement uncertainty on the orthographic images was detected. Jointly, these
statements support the long-term strength and the short-term limitation of visible-band
imagery to detect ground displacements. The implemented strategy, where no automatic
co-registration with local adjustment of features and additional pixel displacements to
those acknowledged for camera and central projection geometry, showed to be trustworthy
at metric-level, avoiding spurious diminished to null displacements. The orthographic
image data did not allow for detecting changes in the Hurd rock glacier displacement
velocities above the inferred 4 cm/year uncertainty when compared to reported short
time series of phase-differential GNSS measurements at this time, following the recorded
atmospheric warming of the South Shetland region.
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2019, Airbus distribution service) (d) for assessment of visual identification and relative precision.
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Appendix B

Table A1. Coordinates of ground control points for precision assessment in WGS84-UTM20S.

1956 1957 2007 2019
X (m) Y (m) X (m) Y (m) X (m) Y (m) X (m) Y (m)

631,523.445 3,042,909.857 631,525.561 3,042,907.211 631,526.818 3,042,912.039 631,528.406 3,042,913.098
631,253.305 3,043,775.044 631,253.570 3,043,774.780 631,253.702 3,043,777.227 631,249.733 3,043,782.783
631,980.248 3,043,675.958 631,981.306 3,043,674.899 631,981.835 3,043,675.098 631,981.571 3,043,679.066
632,141.908 3,044,346.610 632,142.437 3,044,346.081 632,142.173 3,044,346.081 632,142.702 3,044,347.801
633,005.111 3,044,584.801 633,006.170 3,044,585.066 633,005.773 3,044,586.323 633,006.831 3,044,584.206
631,986.598 3,044,978.171 631,989.508 3,044,979.626 631,986.333 3,044,977.377 631,984.216 3,044,979.494
632,971.906 3,045,301.359 632,971.377 3,045,303.740 632,971.245 3,045,304.137 632,969.393 3,045,303.873
633,962.506 3,044,934.382 633,962.241 3,044,935.176 633,965.549 3,044,927.900 633,961.051 3,044,929.223
632,358.205 3,043,488.633 632,358.999 3,043,486.384 632,364.158 3,043,479.174 632,359.925 3,043,484.730
631,730.481 3,044,419.834 631,731.539 3,044,419.305 631,733.656 3,044,420.032 631,730.481 3,044,424.001
632,490.894 3,044,479.630 632,490.629 3,044,478.571 632,489.174 3,044,480.754 632,496.053 3,044,476.851
632,475.812 3,043,658.892 632,478.194 3,043,658.495 632,480.839 3,043,650.161 632,480.046 3,043,653.071
631,336.120 3,043,439.685 631,336.649 3,043,439.949 631,331.952 3,043,442.331 631,327.984 3,043,447.887
631,848.618 3,043,978.906 631,846.765 3,043,978.376 631,848.948 3,043,978.906 631,844.979 3,043,984.991
631,639.861 3,044,313.074 631,640.390 3,044,311.222 631,641.515 3,044,312.016 631,634.900 3,044,318.366
631,807.607 3,043,727.287 631,806.813 3,043,725.435 631,815.875 3,043,720.672 631,813.229 3,043,725.699
632,669.487 3,044,727.213 632,671.869 3,044,726.949 632,669.950 3,044,725.824 632,666.775 3,044,728.206
633,441.938 3,044,906.270 633,441.872 3,044,902.037 633,446.106 3,044,899.920 633,444.518 3,044,898.862
631,900.079 3,045,711.331 631,899.021 3,045,710.273 631,896.441 3,045,711.662 631,895.383 3,045,710.868
633,577.802 3,045,792.426 633,573.833 3,045,795.138 633,569.600 3,045,798.048 633,567.483 3,045,796.395
632,323.677 3,044,774.706 632,322.619 3,044,776.294 632,316.798 3,044,770.870 632,321.560 3,044,781.982
632,663.402 3,045,197.378 632,662.608 3,045,197.180 632,662.608 3,045,197.709 632,658.110 3,045,200.288
632,657.449 3,045,001.454 632,661.021 3,044,998.742 632,660.095 3,044,997.022 632,657.713 3,044,997.882
632,959.074 3,044,894.364 632,960.926 3,044,895.422 632,964.762 3,044,892.313 632,961.984 3,044,894.033
633,146.680 3,043,955.199 633,150.120 3,043,956.787 633,152.501 3,043,947.791 633,153.824 3,043,948.585
633,530.591 3,044,556.862 633,528.739 3,044,554.216 633,539.322 3,044,548.660 633,534.057 3,044,554.102
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Abstract: As a significant component of the cryosphere, snow cover plays a crucial role in modulating
atmospheric circulation and regional hydrological equilibrium. Therefore, studying the dynamics of
snow cover and its response to climate change is of great significance for regional water resource
management and disaster prevention. In this study, reanalysis climate datasets and a new MODIS
snow cover extent product over China were used to analyze the characteristics of climate change and
spatiotemporal variations in snow cover in the Keriya River Basin (KRB). Furthermore, the effects of
climate factors on snow cover and their coupling effects on runoff were quantitatively evaluated by
adopting partial least squares regression (PLSR) method and structural equation modeling (SEM),
respectively. Our findings demonstrated the following: (1) Air temperature and precipitation of
KRB showed a significant increase at rates of 0.24 ◦C/decade and 14.21 mm/decade, respectively,
while the wind speed did not change significantly. (2) The snow cover frequency (SCF) in the KRB
presented the distribution characteristics of “low in the north and high in the south”. The intra-annual
variation of snow cover percentage (SCP) of KRB displayed a single peak (in winter), double peaks
(in spring and autumn), and stability (SCP > 75%), whose boundary elevations were 4000 m and
6000 m, respectively. The annual, summer, and winter SCP in the KRB declined, while the spring
and autumn SCP experienced a trend showing an insignificant increase during the hydrological
years of 2001–2020. Additionally, both the annual and seasonal SCF (except autumn) will be further
increased in more than 50% of the KRB, according to estimates. (3) Annual and winter SCF were
controlled by precipitation, of which the former showed a mainly negative response, while the latter
showed a mainly positive response, accounting for 43.1% and 76.16% of the KRB, respectively. Air
temperature controlled SCF changes in 45% of regions in spring, summer, and autumn, mainly
showing negative effects. Wind speed contributed to SCF changes in the range of 11.23% to 26.54%
across annual and seasonal scales. (4) Climate factors and snow cover mainly affect annual runoff
through direct influences, and the total effect was as follows: precipitation (0.609) > air temperature
(−0.122) > SCP (0.09).

Keywords: snow cover; climate change; runoff; partial least squares regression; Keriya River Basin

1. Introduction

Snow cover, as an indispensable constituent of the cryosphere, plays a highly im-
portant role within the global and regional climate system, exerting an essential impact
on surface radiation balance, energy balance, and hydrological partitioning [1–4]. Con-
current with the relentless warming of the global climate, the Northern Hemisphere is
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experiencing a pronounced decline in snow cover [5,6], which profoundly impacts the
regional water cycle [7,8]. Inland rivers situated in the arid and semi-arid regions of north-
west China predominantly rely on the runoff derived from the thawing of adjacent alpine
mountain snowpacks [9]. Changes in the total and seasonal runoff distributions caused by
snow cover changes will affect social and economic development in the middle and lower
reaches [10–12]. Therefore, studying the influence of snow cover dynamics and climate
change on runoff to inform decisions about the scientific management and planning of
water resources in Northwest arid areas has become imperative [13,14].

The conventional method for monitoring snow cover involves the collection of snow
cover data from meteorological stations or observation sites. However, this approach
suffers from spatial inhomogeneity due to the uneven distribution of the stations, pri-
marily concentrated in low-altitude regions [15–18]. In remote alpine areas, the complex
terrain and challenging environmental conditions impede field monitoring efforts [19].
Nevertheless, recent advancements in remote sensing technology have unlocked new op-
portunities for snow cover research. Remote sensing data offer the advantages of wide
broad coverage, frequent updating, and high spatial resolution, which compensates for the
limitations of ground-based monitoring data [20,21]. Currently, various remote sensing
data are leveraged for snow cover research, including the moderate resolution imaging
spectroradiometer (MODIS), advanced very high resolution radiometer (AVHRR), scan-
ning multichannel microwave radiometer (SMMR), and other related products [22–24].
Among these products, MODIS snow cover products have emerged as the mainstream
data of remote sensing snow cover products due to their high spatiotemporal resolutions.
Additionally, they have been widely adopted in the study of snow cover changes across
regions of varying scales [25–27]. For instance, Zou et al. [28] employed MOD10A2 and
MYD10A2 snow cover products to explore the variation of snow cover in Northern Xin-
jiang, Qinghai-Tibet Plateau, and Northeast China. Their study revealed an insignificant
increasing trend in snow cover areas and snow depths from 2001 to 2020. Thapa et al. [29]
combined three different 8 day composite snow products, including MOD10A2, MYD10A2,
and MOYDGL06, to analyze the variation trend of snow cover in the Karakoram region.
They discovered a negligible decline in snow cover areas from 2003 to 2018. However,
despite the widespread utilization of MODIS data in snow cover research, the accuracy
of MODIS data can be affected by factors such as cloud cover and land cover. Therefore,
a daily cloud-gap-filled MODIS snow cover extent product produced by Hao et al. [30],
which comprehensively considered the impact of land cover and cloud on original MODIS
snow cover data, was selected as the main data source for the present study. A detailed
explanation of these data can be seen in Section 2.2.1.

Snow cover, as an exceedingly responsive component of the cryosphere, is pro-
foundly influenced by climate change and is regarded as a vital indicator of global climate
change [31]. Unveiling the response of snow cover to climate change has emerged as a
primary focus within snow cover research, garnering extensive attention from the scholarly
community. For instance, Du et al. [32] conducted an analysis of the relationship between
snow cover frequency (SCF) and climate factors in the Qilian Mountains from 2000 to 2020.
They suggested that the SCF was dominated by precipitation rather than air temperature,
with precipitation playing a positive role. However, Hussain et al. [33] investigated the
impact of climate factors on snow cover area within the Gilgit River Basin from 2001 to 2015
and reported a negative correlation between snow cover area and air temperature, while
precipitation exhibited no evident relationship. In recent years, the focus of scholars has
predominantly centered around the influence of air temperature and precipitation on snow
cover, often neglecting the potential effect of wind speed. Although certain researchers
have discussed the potential impact of wind speed on snow cover [34–36], the majority of
these discussions lie within the realm of qualitative studies, with few quantitative analyses
conducted on the impact of wind speed on snow cover [37]. Moreover, regarding research
methods, most researchers mainly applied the Pearson correlation method to investigate
the influence of climate factors on snow cover. However, this kind of method ignores the
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interactions among various climate factors, which subsequently affects the accuracy of
the results derived from the analysis. In contrast, partial least squares regression (PLSR)
represents a new multivariate statistical data analysis method capable of eliminating the
multiple correlations among independent variables [38], which enables one to clarify the
degree of influence of different climate factors on snow cover change.

The Keriya River, a typical inland river in the arid region, stands as the largest river
and primary water source for the Yutian Oasis. The alpine mountains contribute crucial
meltwater, which serves as the principal supply for the Keriya River and represents a valu-
able resource for the survival and development of the downstream regions [39]. Although
most of the glaciers within the Keriya River Basin (KRB) exhibited stability, there existed
a slight trend of total area reduction [40]. In contrast, the snow cover area experienced a
trend depicting a slight increase [41]. From 1957 to 2017, the KRB witnessed an increase in
runoff depth at a rate of 4.27 mm/decade, which was mainly affected by air temperature
and precipitation [41,42]. Recent studies concerning the KRB only focus on the changes in
snow cover or runoff, with few conducting quantitative and systematic analyses regarding
the relationship between climate, snow cover, and runoff. Structural equation modeling
(SEM) can comprehensively analyze the relationship between various variables, allowing
one to quantify the direct and indirect effects of climate and snow cover on runoff.

The research objectives of this study were as follows: (1) to reveal the variation
characteristics of climate and snow cover in KRB based on reanalysis climate datasets and
the new MODIS snow cover extent product over China, (2) to analyze the influence of
different climate factors (air temperature, precipitation, and wind speed) on SCF at the
pixel scale by adopting PLSR method, and (3) to discuss the interplay between snow cover,
climate factors, and their collective influence on runoff through the application of structural
equation modeling (SEM). The results of this paper could facilitate a better understanding
the spatiotemporal variation of snow cover in the KRB and its influencing mechanism and
clarify the regional water cycle process. Furthermore, this study is of great significance to
the utilization and management of water resources in the context of climate change.

2. Materials and Methods
2.1. Study Area

The Keriya River, originating from the Guliya Ice Cap in the West Kunlun Mountains,
holds the distinction of being the largest river coursing through Yutian County in Xin-
jiang Uygur Autonomous Region (Figure 1). The KRB exhibits a distinctive topographical
gradient, with higher elevations situated in the southern region and lower elevations in
the north. The KRB, controlled by Keriya Hydrological Station (36◦45′N, 81◦48′E), spans
a geographical range from 35◦11′ to 36◦27′N and 81◦27′ to 82◦50′E with an altitude of
1972–6858 m and an expansive area of approximately 8350.25 km2. The glacier-covered
region in the source region of the KRB spans 682 km2, approximately constituting 8.2%
of the total basin area. Characterized by a warm temperate arid desert climate, the KRB
experiences an average annual evaporation of 1922 mm (as observed by the Keriya Hy-
drological Station), an average annual air temperature of 9.6 ◦C, and an average annual
precipitation of 129.7 mm. The average annual runoff depth of the KRB is 91.3 mm, with
glacier and snow meltwater contributing to 47.3% of the total runoff, which is one of the
important sources of replenishment for the KRB.

2.2. Data Sources
2.2.1. Snow Cover Dataset

The new MODIS snow cover extent product over China was obtained from the Na-
tional Tibetan Plateau Data Center (http://data.tpdc.ac.cn/ (accessed on 1 October 2022)).
This dataset offered a daily temporal resolution and a spatial resolution of 500 m for the pe-
riod spanning from 2000 to 2020. The creation of this dataset involved the utilization of the
MODIS reflectivity product MOD/MYD09GA, incorporating a snow-discriminant decision
tree algorithm for diverse surface types. Furthermore, a vacancy-filling algorithm, such
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as a spatiotemporal interpolation algorithm for the hidden Markov random field model,
was employed to complete the cloud removal within the dataset. The overall accuracy of
the dataset exceeds 93%, with omission error and commission error values constrained
within 10% [30,43], thus affirming the reliability and suitability of the dataset for snow
cover research. In this study, the dataset was extracted according to the hydrological year
(HY) scale (from 1 September to 31 August of the following year), enabling an analysis
of the spatiotemporal variation characteristics of snow cover within the KRB from 2001
to 2020.
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2.2.2. Climate and Runoff Data

The observation data regarding air temperature, precipitation, and wind speed from
2000 to 2020 were obtained from meteorological and hydrological stations positioned within
the KRB and its surrounding areas. The monthly runoff data was sourced from the Keriya
Hydrological Station.

The 1-km monthly mean temperature dataset for China was obtained from the Na-
tional Tibetan Plateau Data Center (http://data.tpdc.ac.cn/ (accessed on 5 January 2023)).
This dataset encompasses a temporal resolution of monthly intervals, a spatial resolution of
1 km, and a time series spanning from 1960 to 2020. The dataset underwent spatial down-
scaling from CRU TS v4.02 using WorldClim datasets, employing the Delta downscaling
method. Its accuracy was verified against 496 national weather stations, confirming its high
reliability [44–48]. We further evaluated its applicability to the KRB by using the observed
air temperature data at stations and found that the correlation coefficients of both were
above 0.97, which proved the reliability of the datasets.

The precipitation data utilized in this study was sourced from ERA5-Land monthly
averaged data provided by European Centre for Medium-Range Weather Forecasts (https:
//cds.climate.copernicus.eu/ (accessed on 5 January 2023)). This dataset demonstrates
a temporal resolution of monthly intervals, a spatial resolution of 0.1◦, and a time series
spanning from 1960 to 2020. ERA5-Land is derived by replaying the land component
of the European Centre for Medium-Range Weather Forecasts ERA5 climate reanalysis,
there providing an accurate description of the historical climate conditions [49]. Here,

130



Remote Sens. 2023, 15, 3435

the accuracy of this dataset was analyzed based on the observed monthly precipitation
data of different stations, and we found that the correlation coefficients were above 0.64 at
the significance level of 0.05, indicating that this dataset could sufficiently reflect the real
precipitation situation in the KRB.

The wind speed data adopted in this study were obtained from the High Asia Refined
(HAR) analysis version 2 dataset (https://www.klima.tu-berlin.de/ (accessed on 8 January
2023)). This dataset offers a temporal resolution of monthly intervals, a spatial resolution
of 10 km, and a time series spanning from 1980 to 2020. The HAR v2 dataset was generated
through the application of the Weather Research and Forecasting model (WRF) version 4.1
to dynamically downscale the ERA5 reanalysis data, which is widely utilized for research
purposes [50]. The accuracy of this dataset was analyzed based on the observed wind
speed data from different stations, and the average correlation coefficient reached 0.50,
meeting the needs of this study.

To align with the spatial resolution of the snow cover data, a statistical downscaling
method was employed to reduce the spatial resolution of the three climate reanalysis
datasets to 500 m. Subsequently, the data were divided according to the hydrological
year scale.

2.2.3. Digital Elevation Model (DEM)

The DEM employed in this study possesses a spatial resolution of 90 m, which was
provided by the Shuttle Radar Topography Mission (http://srtm.csi.cgiar.org (accessed
on 1 October 2022)). To match the spatial resolution of the snow cover data, the DEM was
resampled to 500 m by using a bilinear interpolation method. Subsequently, aspect and
slope were calculated based on the DEM. Table 1 presents the zonal division results of
elevation, aspect, and slope.

Table 1. Zonal features extracted from DEM of the KRB.

Elevation (m) Area (km2) Aspect Area (km2) Slope (◦) Area (km2)

≤2500 145.75 North (N) 1427.75 ≤5 2088.75
2500–3000 281.75 Northeast (NE) 1119.50 5–10 2039.00
3000–3500 324.5 East (E) 801.75 10–15 1713.00
3500–4000 357.75 Southeast (SE) 920.75 15–20 1263.25
4000–4500 692.75 South (S) 1050.00 20–25 772.00
4500–5000 2129.25 Southwest (SW) 818.00 25–30 348.50
5000–5500 2815.00 West (W) 891.75 >30 125.75
5500–6000 1271.50 Northwest (NW) 1320.75

>6000 332.00

2.3. Methods
2.3.1. Snow Cover Indices

Snow cover percentage (SCP) and snow cover frequency (SCF), regarded as two
commonly used snow cover indices, hold substantial significance in investigating the
spatiotemporal variation of snow cover. SCP is defined as the percentage of snow cover
within the basin. The formula is as follows:

SCP =
S
A
× 100% (1)

where S represents the snow cover area within the KRB, and A represents the total area of
the KRB.

SCF is defined as the proportion of days with snow cover on a pixel within the basin
to the total number of days. The formula is as follows:

SCF =
Ds

D
× 100% (2)
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where Ds represents the number of days with snow cover in a specific pixel, and D repre-
sents the total number of days in a year (or a season).

2.3.2. Time-Series Analysis

Sen’s slope method, a nonparametric statistical approach, was adopted to estimate
increasing or decreasing trend changes within time series [51]. The Mann–Kendall trend
test, a quantitative analysis tool, was used to assess the significance of the changing trends in
the time series, while the Mann–Kendall mutation test was applied to identify the position
of mutation points within the time series [52,53]. Typically, the combination of Sen’s slope
method and the Mann–Kendall trend test allows for the evaluation of trend characteristics
and the rates, which is why they are widely applied in hydro-climatic studies [54]. In this
study, these methods were used to analyze changing trends and mutation points in snow
cover and climate factors in time series.

The Hurst exponent, often determined via R/S analysis, is an effective method for the
prediction of future change trends according to the long-term dependence or persistence of
time series [55]. In this study, the Hurst exponent was adopted to analyze and predict the
future change trends of SCF at each pixel.

2.3.3. Partial Least Squares Regression (PLSR)

PLSR is a comprehensive analysis method that combines principal component anal-
ysis, canonical correlation analysis, and multiple linear regression analysis. It possesses
the advantages of these three methods and can eliminate multiple correlations among
independent variables [38]. PLSR can be divided into univariate PLSR and multivariate
PLSR. Since this study only involved a single dependent variable, univariate PLSR was
adopted to explore the response of snow cover change to climate change.

Firstly, both the snow cover and climate data were standardized. F0 represents the
standardized variable of snow cover data (dependent variable), and E0 represents the
standardized matrix of the set of air temperature, precipitation, and wind speed data. A
component u1 was extracted from F0, satisfying u1 = F0c1, where c1 represents the first
axis of F0. Similarly, component t1 was extracted from E0, satisfying t1 = E0w1, where w1
represents the first axis of E0. Following the principles of principal component analysis
and canonical correlation analysis, the following can be obtained:

w1 = ET
0 F0/

∥∥∥ET
0 F0

∥∥∥ (3)

Next, the regression equations for E0 and F0 with respect to t1 are obtained, respectively.

E0 = t1 pT
1 + E1 (4)

F0 = t1r1 + F1 (5)

where p1 and r1 represent regression coefficients, and E1 and F1 represent residual matrices
of the regression equation. Subsequently, components t1, t2, . . . , tm were successively
extracted from component th using the same approach. The regression equation for F0 with
respect to th can be obtained using the formula:

F0 = r1t1 + r2t2 + · · ·+ rmtm + Fm (6)

When x∗j = E0j and y∗ = F0, the following formula can be obtained:

ŷ∗ = α1x∗1 + α2x∗2 + · · ·+ αpx∗p (7)

The regression coefficient of x∗j is expressed as follows:

αj =
m

∑
h=1

rhw∗hj (8)
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where w∗hj represents the jth component of w∗h . If xj contributes significantly to the construc-
tion of th, the coefficient of xj in the regression model will be larger. In this study, PLSR was
applied to examine the influence of climate factors on SCF at each pixel.

2.3.4. Structural Equation Modeling (SEM)

SEM allows for the representation of complex direct and indirect causal relationships
among multiple variables. It involves the establishment of a specific model based on exist-
ing theoretical knowledge, encompassing both the measurement model and the structural
model for the hypothesized causal relationship among observed variables [56]. Path analy-
sis, which is considered a special case in SEM, refers to the situation where all variables
are directly available, resulting in the existence of only the structural model [57]. This
approach not only enables the determination of the total effect of independent variables
on the dependent variable but also observes the mutual effect between the independent
variables and further divides the total influence into direct and indirect effects. In this study,
SEM was employed to investigate the extent to which snow cover and climate elements
affect runoff.

3. Results
3.1. Characteristics of Climate Change in the KRB

In this study, the average annual values of climate reanalysis data were extracted
based on the hydrological year. Subsequently, Sen’s slope method and the Mann–Kendall
trend and mutation test were employed to analyze the trends and mutation characteristics
of air temperature and precipitation in the KRB from 1961 to 2020, as well as wind speed
from 1981 to 2020 (Figure 2).
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Figure 2. Mann–Kendall trend (a1,b1,c1) and mutation test (a2,b2,c2) of average annual air tempera-
ture (a1,a2), precipitation (b1,b2), and wind speed (c1,c2) in the KRB. The dotted lines in the right
column figures represent critical Zc values at the significance level of 0.05.
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From 1961 to 2020, there was a significant increase in air temperature and precipita-
tion, with rates of 0.24 ◦C/decade and 14.21 mm/decade, respectively (both passing the
significance level of 0.001). These findings aligned with the climate change trend observed
in Xinjiang over the past 60 years [58]. The average annual air temperature was −7.3 ◦C,
reaching a maximum value of −5.9 ◦C in 2007 (Figure 2(a1)). As shown in Figure 2(a2), the
mutation year for air temperature occurred in 1996. Prior to the mutation year, the average
annual air temperature demonstrated a fluctuating trend, which continued to rise after the
mutation year and exceeded the significance level of 0.05 after 2001. The average annual
precipitation was 431.9 mm, with a maximum value of 516.3 mm in 2016 (Figure 2(b1)).
As depicted in Figure 2(b2), the variation trend of annual precipitation can be roughly
divided into three stages: an increase during 1961–1965, a decrease during 1965–1973, and
another increase during 1973–2020. There was a mutation year in 1986, followed by a
significant increase after 1989. From 1981 to 2020, the average annual wind speed was
5.0 m/s, reaching a maximum value of 5.5 m/s in 1988 (Figure 2(c1)). As can be seen from
Figure 2(c2), the average annual wind speed indicated a slight overall upward trend, with a
significant increase from 1985 to 1990. However, the changing trend during the remaining
periods was insignificant (without an abrupt change point).

3.2. Characteristics of Snow Cover Change in the KRB
3.2.1. Spatial Distribution Characteristics of Snow Cover

Figure 3 illustrates the spatial distribution characteristics of the average annual SCF
in the KRB across 20 hydrological years. The SCF exhibited lower values within the low
elevation area in the northern part of the KRB, while higher SCF values were observed
within the high elevation area in the southern part. This spatial pattern demonstrated a
positive correlation between SCF and elevation.
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To study the distribution characteristics of SCP across different terrains in the KRB,
regional statistics for SCP were conducted based on elevation, aspect, and slope (Figure 4).

134



Remote Sens. 2023, 15, 3435

Remote Sens. 2023, 15, x FOR PEER REVIEW 9 of 18 
 

 

To study the distribution characteristics of SCP across different terrains in the KRB, 

regional statistics for SCP were conducted based on elevation, aspect, and slope (Figure 4). 

The impact of elevation on SCP is presented in Figure 4a. With the increase in eleva-

tion, the SCP in the KRB increased from 4.46% to 93.22%. The SCP exhibited a gradual 

increase at an elevation below 5000 m, while a more rapid increase was observed above 

5000 m. This may be due to the higher temperature in low-elevation areas compared to 

high-elevation areas, which hindered the formation of stable snow cover. 

Figure 4b shows the distribution of SCP across various aspects. The SCP exhibited 

distinct patterns among different aspects. Specifically, the SCP values exceeded 35% in 

the north, northeast, and east aspects, with the highest SCP (38.12%) observed in the 

northeast aspect. In contrast, the SCP values were relatively low in the south, southwest, 

and west aspect, with the lowest SCP observed in the south aspect at only 28.78%. This 

difference can be attributed to the increased solar radiation received by the south-facing 

region, leading to more rapid snow melting compared to other regions. 

Figure 4c depicts the relationship between SCP and slope. The SCP demonstrated 

an initial increase followed by a decrease as slope values increased, with a distinct 

boundary observed at 15 degrees. The highest SCP value, reaching 37.07%, was observed 

within the 10–15 degree zone. SCP values were relatively low at about 30% in the 0–5 

degree and above 30 degree zones. This pattern can be attributed to the flatter terrain in 

the downstream areas of the KRB, particularly at lower elevations, where higher tem-

peratures prevailed. When the slope exceeded 30 degrees, the terrain became steeper 

and more susceptible to avalanches[59]. 

 

Figure 4. SCP distribution at different elevations (a), aspects (b), and slopes (c) in the KRB from 

2001 to 2020. 

3.2.2. Intra-Annual Variation of Snow Cover 

This study extracted the annual average daily SCP for the KRB and different eleva-

tion zones over a period of 20 hydrological years. As shown in Figure 5a, the accumula-

tion of snow cover in the KRB initiated in September, gradually increasing until it 

reached its peak in mid-October. Between November and December, the SCP experi-
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to 2020.

The impact of elevation on SCP is presented in Figure 4a. With the increase in elevation,
the SCP in the KRB increased from 4.46% to 93.22%. The SCP exhibited a gradual increase
at an elevation below 5000 m, while a more rapid increase was observed above 5000 m. This
may be due to the higher temperature in low-elevation areas compared to high-elevation
areas, which hindered the formation of stable snow cover.

Figure 4b shows the distribution of SCP across various aspects. The SCP exhibited
distinct patterns among different aspects. Specifically, the SCP values exceeded 35% in the
north, northeast, and east aspects, with the highest SCP (38.12%) observed in the northeast
aspect. In contrast, the SCP values were relatively low in the south, southwest, and west
aspect, with the lowest SCP observed in the south aspect at only 28.78%. This difference can
be attributed to the increased solar radiation received by the south-facing region, leading
to more rapid snow melting compared to other regions.

Figure 4c depicts the relationship between SCP and slope. The SCP demonstrated an
initial increase followed by a decrease as slope values increased, with a distinct boundary
observed at 15 degrees. The highest SCP value, reaching 37.07%, was observed within the
10–15 degree zone. SCP values were relatively low at about 30% in the 0–5 degree and above
30 degree zones. This pattern can be attributed to the flatter terrain in the downstream
areas of the KRB, particularly at lower elevations, where higher temperatures prevailed.
When the slope exceeded 30 degrees, the terrain became steeper and more susceptible to
avalanches [59].

3.2.2. Intra-Annual Variation of Snow Cover

This study extracted the annual average daily SCP for the KRB and different elevation
zones over a period of 20 hydrological years. As shown in Figure 5a, the accumulation
of snow cover in the KRB initiated in September, gradually increasing until it reached its
peak in mid-October. Between November and December, the SCP experienced a slight
decrease and was relatively low due to low precipitation. Subsequently, the SCP exhibited
a fluctuating upward trend, with a maximum value of 49.68% observed in mid-April. As
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the air temperature increased, the SCP began to decline rapidly from June, reaching a
minimum of 13% in early August. Overall, the SCP exhibited two peak periods, one in
autumn and the other in spring. The inter-annual fluctuation of SCP was slight in summer
but extensive in other seasons.
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elevation zones (b).

The intra-annual variation of SCP at different elevation zones can be divided into
three types (Figure 5b). (1) Below 4000 m, the SCP demonstrated a unimodal trend, with
the peak value mainly concentrated in late-winter and early-spring. Below 3500 m, the
peak value of SCP appeared in February, while it appeared in March for elevations between
3500 m and 4000 m. As the elevation increased, the peak value of SCP tended to be delayed.
(2) The SCP between 4000 m and 6000 m exhibited bimodal variation characteristics, with
the peaks occurring in autumn and spring, respectively. The autumn peak period, except
for the 4500–5000 m zone in late-September, generally appeared in mid-October across
other elevation zones. In the spring peak period, each elevation zone had a different peak
period, ranging from early-March to early-June. With the increase in elevation, the peak
time of SCP was further delayed, the peak value increased, and the duration of the snow
accumulation period lengthened. (3) The SCP above 6000 m remained relatively stable,
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with the SCP values exceeding 75%. This zone was characterized by perennial snow and
glaciers, which were less affected by seasonal changes.

3.2.3. Interannual Variation of Snow Cover

This study employed Sen’s slope method and the Mann–Kendall methods to assess
the interannual variation of SCP in the KRB across 20 hydrological years between 2001 and
2020 considering both annual and four-season time scales (Figure 6). Overall, the trends
observed for SCP on both the annual and seasonal scales did not exhibit the statistical
significance level of 0.05, and no evident mutation year was identified. In terms of annual
scale, the SCP demonstrated a decrease at a rate of −1.17%/decade, with an average
annual SCP of 34.09%. The SCP was higher in 2003 and 2019, reaching 43.05% and 45.02%,
respectively. Prior to 2014, the UF values were greater than 0 in most years, whereas
after 2014, the UF values were less than 0. Thus, based on a division at 2014, the average
annual SCP displayed an increasing trend followed by a decreasing trend. Regarding the
four-season time scale, the highest average seasonal SCP was observed in spring (42.95%),
while the lowest was recorded in summer (24.72%). The change rate of SCP in summer was
the highest, reaching −2.13%.
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Figure 6. Mann–Kendall trend (in the left column) and mutation test (in the right column) of average
SCP in the KRB from 2001 to 2020 at different time scales: annual (a1,a2), spring (b1,b2), summer
(c1,c2), autumn (d1,d2), and winter (e1,e2). The dotted lines in the right column figures represent
critical Zc values at a significance level of 0.05.
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The spatial variation trend of the annual and seasonal SCF in the KRB during the study
period was investigated by applying Sen’s slope method (in the left column of Figure 7).
The significance of the variation trend was analyzed in conjunction with the Mann–Kendall
trend test (in the middle column of Figure 7). In addition, the Hurst exponent was adopted
to predict the future variation trends (in the right column of Figure 7). The results indicated
that the trends observed for the annual and seasonal SCF in the KRB from 2001 to 2020
were dominated by insignificant changes. Regions exhibiting a decreasing trend of SCF
accounted for more than 50% of the total area in the annual, spring, summer, and winter
seasons. Specifically, the areas with a decreasing trend of SCF in annual, spring, and winter
were mainly concentrated in the northern, central, and southwestern regions of the KRB,
while they were mainly located in the southern regions in summer. On the other hand,
SCF in autumn displayed a primarily increasing trend, accounting for 38.24% of the total
area of the basin, with 4.04% of the area showing a significant increase (significant at the
0.05 level), mainly distributed in the central area of the basin. In terms of future change
trends, both the annual and seasonal SCF (except autumn) are expected to increase, with
more than 45% of the regions displaying a reversal in the past change trend.
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Figure 7. Spatial distribution of SCF variation trends (in the left column), significance (in the middle
column), and future changes (in the right column) in the KRB from 2001 to 2020 at different time scales:
annual (a1,a2,a3), spring (b1,b2,b3), summer (c1,c2,c3), autumn (d1,d2,d3), and winter (e1,e2,e3).

4. Discussion
4.1. Response of Snow Cover Change to Climate Change

Considering the multiple correlations among air temperature, precipitation, and wind
speed, PLSR method was used to investigate the influence of different climate factors on
SCF. By comparing the maximum of absolute value of PLSR coefficients on each pixel, the
main controlling factors of SCF in each pixel of the KRB across 20 hydrological years (from
2001 to 2020) were obtained (Figure 8). On an annual scale, precipitation emerged as the
main factor affecting the SCF, with a mainly negative influence, accounting for 43.10% of
the total area. In contrast, SCF in winter was mainly positively affected by precipitation,
accounting for 76.16% of the area. During spring, summer, and autumn, air temperature
controlled SCF in over 45% of the KRB, with a dominant negative influence. Among these
seasons, autumn accounted for the largest proportion (60.93%). The influence of wind
speed on annual and seasonal SCF accounted for 11.23% to 26.54%, primarily exerting a
positive effect on the annual and spring scales while having a negative influence during
summer, autumn, and winter.
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In both annual and seasonal scales, air temperature exerted a predominantly negative
influence on SCF due to the snow cover’s susceptibility to air temperature changes. An
increase in air temperature directly led to the snow melting. The influence of precipitation
on SCF varied across the four seasons. In spring, autumn, and winter, precipitation mainly
demonstrated a positive effect on SCF, possibly because most of the precipitation occurred
as solid snow, facilitating snow accumulation. However, in annual and summer scales,
precipitation had a negative effect on SCF, particularly in the high elevation areas in
the southern part of the KRB. These regions contained a large amount of eternal snow,
where additional snowfall did not contribute to increased SCF. Instead, excessive snow
accumulation can lead to a decrease in the SCF due to snow avalanches [60]. In addition to
air temperature and precipitation, wind speed also played a role in influencing SCF. In the
annual and spring scales, wind speed exhibited a positive effect on SCF. It redistributed
snow cover within the KRB, resulting in a more uniform spatial distribution. Conversely,
wind speed had a negative impact on SCF in summer, autumn, and winter, mainly observed
in the high elevation areas. This could be due to the persistently subzero air temperatures
and arid conditions in these regions. Under the influence of wind speed, snow cover
sublimation was significant, and the wind speed could also promote the occurrence of
snow drifts and avalanches [61]. Combining three kinds of climate data, this study focuses
on the effects of climate change on SCF. However, terrain also plays an important role in
snow cover change. In the future, we will continue to examine the influencing factors of
snow cover and attempt to analyze the elevation effect of snow cover change on climate
response [62].

4.2. Effect of Snow Cover and Climate on Runoff

In this study, SEM was employed to analyze the impact of air temperature, precipi-
tation, and SCP on runoff from 2001 to 2020. The results indicated the total effect, direct
effect, and indirect effect of these three factors on runoff at the annual scale (Figure 9). In
terms of the total effect, the standardized regression coefficients of the effect for air temper-
ature, precipitation, and snow cover on runoff were −0.122, 0.609, and 0.09, respectively.
Precipitation emerged as the major driver of runoff.
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The direct effect of air temperature on runoff exhibited a magnitude of −0.197. This
can be due to the consistently low average annual air temperature in the KRB, where the
majority of areas experienced temperatures below 0 ◦C. The increase in air temperature
had a limited effect on snow melt, but it resulted in higher evaporation rates, leading
to a decrease in the runoff. Both precipitation and SCP had a direct positive effect on
runoff, with the effect coefficients of 0.663 and 0.113, respectively. Wang et al. [63] found
that the annual runoff of the Keriya River was negatively correlated with air temperature
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and positively correlated with precipitation, which was consistent with the findings of
this study.

Regarding the indirect effects, the indirect effect coefficients of air temperature and
SCP on runoff through precipitation were relatively significant, measuring 0.123 and
−0.107, respectively. However, it is worth noting that the indirect effect coefficients of
air temperature, precipitation, and SCP on runoff were all smaller than the direct effect
coefficients, indicating that the three factors mainly exerted direct effects on runoff. Due to
the temporal extent of the MODIS snow cover data, this study only analyzed the impact of
SCP and climate factors on runoff across 20 hydrological years. In the future, it would be
beneficial to incorporate observational data from meteorological stations to supplement the
snow cover data. This would enable an analysis of the effect mechanism on runoff at longer
time scales, facilitating a deeper understanding of the water cycle processes of the KRB.

5. Conclusions

In this study, reanalysis climate datasets were used to analyze the characteristics of
climate change in the KRB. The spatiotemporal distributions of snow cover in the KRB
during 20 hydrological years from 2001 to 2020 were analyzed utilizing a new MODIS snow
cover extent product over China. The response of snow cover change to climate factors
was evaluated using PLSR. Furthermore, the study delved into the impact of snow cover
and climate factors on annual runoff by employing SEM. The findings from the present
study can be summarized as follows:

(1) There was a significant increase in air temperature and precipitation, with rates of
0.24 ◦C/decade and 14.21 mm/decade, and the mutation year occurred in 1996 and
1986, respectively. However, wind speed did not change significantly.

(2) In terms of spatial distribution, the SCF in the KRB presented “low in the north and
high in the south” distribution characteristics. The SCP in the KRB demonstrated an
elevation-dependent increase, with the highest values observed in the north aspect
and in the 10–15 degrees slope zone. Regarding the intra-annual variation, the SCP
within the KRB demonstrated distinctive patterns, including a single peak in winter,
double peaks in both spring and autumn, and a consistent high value (SCP > 75%)
with turning elevations of 4000 m and 6000 m, respectively. Moreover, the peak
SCP values showed a delayed trend with increasing elevation. In terms of temporal
change, the SCP in the KRB decreased annually and in summer and winter; however,
it increased in spring and autumn between 2001 and 2020. More than 50% of the
KRB experienced a decreasing trend for annual, spring, summer, and winter SCF,
whereas 38.24% of the areas showed an increasing trend in autumn. In addition to
autumn, annual and seasonal SCF is estimated to show an upward trend in the future,
accounting for more than 50% of the KRB.

(3) The annual SCF was mainly negatively affected by precipitation, while in winter, it
was mainly positively affected by precipitation, accounting for 43.1% and 76.16% of
the area, respectively. The spring, summer, and autumn SCF changes in more than
45% of KRB were controlled by air temperature, exerting a predominantly negative
influence. Annually and during spring, the impact of wind speed on SCF was mainly
positive; however, it negative in summer, autumn, and winter, with the area controlled
by wind speed ranging from 11.23% to 26.54%.

(4) The total effect of climate factors and SCP on the annual runoff in the KRB was as
follows: precipitation (0.609) > air temperature (−0.122) > SCP (0.09). Climate factors
and SCP mainly exerted a direct effect on the changes in annual runoff.
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Abstract: Unmanned aerial vehicle (UAV)-based snow depth is mapped as the difference between
snow-on and snow-off digital surface models (DSMs), which are derived using the structure from
motion (SfM) technique with ground control points (GCPs). In this study, we evaluated the impacts
of the quality and deployment of GCPs on the accuracy of snow depth estimates. For 15 GCPs in our
study area, we surveyed each of their coordinates using an ordinary global positioning system (GPS)
and a differential GPS, producing two sets of GCP measurements (hereinafter, the low-accuracy and
high-accuracy sets). The two sets of GCP measurements were then incorporated into SfM processing
of UAV images by following two deployment strategies to create snow-off and snow-on DSMs and
then to retrieve snow depth. In Strategy A, the same GCP measurements in each set were used
to create both the snow-on and snow-off DSMs. In Strategy B, each set of GCP measurements
was divided into two sub-groups, one sub-group for creating snow-on DSMs and the other sub-
group for snow-off DSMs. The accuracy of snow depth estimates was evaluated in comparison to
concurrent in-situ snow depth measurements. The results showed that Strategy A, using both the
low-accuracy and high-accuracy sets, generated accurate snow depth estimates, while in Strategy B,
only the high-accuracy set could generate reliable snow depth estimates. The results demonstrated
that the deployment of GCPs had a significant influence on UAV-based SfM snow depth retrieval.
When accurate GCP measurements cannot be guaranteed (e.g., in mountainous regions), Strategy
A is the optimal option for producing reliable snow depth estimates. When highly accurate GCP
measurements are available (e.g., collected by differential GPS in open space), both deployment
strategies can produce accurate snow depth estimates.

Keywords: UAV; structure from motion (SfM); snow depth; ground control points (GCP)

1. Introduction

Over one billion of people around the world rely on snowmelt water for domestic,
agricultural, and industrial activities [1]. Snow accumulation in the winter season shows a
rapidly decreasing trend in recent decades for North America in terms of snow depth [2],
snow cover extent [3], and snow mass [4]. In particular, the continental-scale snowmelt
water originating from mountainous regions is in steep decline [5]. To better understand
its impact on the environment and human activities, it is necessary to accurately monitor
winter snow accumulation and its dynamics in mountain ranges.

The amount of water contained in snowpack (snow water equivalent, or SWE) is jointly
determined by snow density and snow depth. It has been documented in previous studies
that snow depth has much stronger spatial variation than snow density [6–8]. The accurate
mapping of snow depth is therefore critical for the estimation of SWE. Traditionally, snow
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depth is monitored by automated sensors at weather stations or measured manually using
a snow probe in field surveys. These methods are typically limited to point-based locations
or cover very sparse areas. Remote sensing technologies have also been used to derive
snow depth information, such as satellite laser altimetry [9], passive microwave remote
sensing systems [10–13], and snow radar systems [14–16]. Although these technologies
have made positive contributions to snow depth mapping in relatively open space with
gentle topography, their performances are mostly unsatisfactory in mountain ranges where
snow accumulation varies drastically along with rapid changes in topography and vegeta-
tion within a short distance [17–19]. It has been proven that accurate estimation of snow
accumulation in mountain ranges is hampered by the complex topography and varying
vegetation cover [20–22]. The airborne LiDAR system has also been used to retrieve snow
depth [23] and is a promising technique for mapping snow accumulation in mountainous
regions. This technique, because of its high cost, is inapplicable for monitoring snow
accumulation dynamics since this requires frequent and repeated observations. A more
nuanced, efficient, flexible, and economic method that can accommodate the mountain envi-
ronment and simultaneously provide accurate snow depth mapping is needed, particularly
for a relatively small area and for ephemeral snowpack.

In recent years, the possibility of retrieving snow depth with unmanned aerial vehicle
(UAV)-based structure from motion (SfM) photogrammetry has been discussed in a number
of studies [24–34] due to the advancement of UAV technology, the development of low-cost
lightweight cameras, and the availability of open-source and commercial SfM software
packages. Compared to airborne and spaceborne remote sensing platforms, the prominent
advantages of UAV-based SfM photogrammetry are its lower demand of personnel training,
lower cost for purchasing and maintaining the equipment, and much higher flexibility for
inaccessible areas (e.g., cliffs and valleys) and undesirable weather conditions (e.g., rain,
strong wind, and heavy cloud). The basic idea of this method is to collect overlapping
photos of a study area (e.g., open or vegetated, flat or rugged) with a UAV-based optical
camera on snow-on and snow-off dates. Then, digital surface models (DSMs) of the study
area are generated for each of the two dates by stitching the overlapping photos with an
SfM workflow that has been implemented in many software packages [35]. The surface
elevation increase due to snow accumulation over the study area is then calculated by
differencing the two DSMs and treated as snow depth estimates. In general, the snow
depth accuracy varies from several centimeters to several decimeters depending on the
surface roughness, ground topography, and underlying vegetation [26,28,32,34].

In addition to the environmental characteristics of the snow accumulation field (i.e.,
topography, vegetation, surface roughness, etc.), the quality of snow-on and snow-off DSMs
generated by SfM is a more dominant factor that determines the accuracy of UAV-based
snow depth estimates. Two options are mostly adopted in existing studies to constrain
the errors in DSMs and to improve snow depth accuracy. The first one uses an expensive
real-time kinematic (RTK) UAV to collect optical photos of which the coordinates can be
georeferenced to an accuracy of 2–4 cm by on-board RTK correction [26,27,33]. The accurate
photo locations are then used directly to constrain the DSM uncertainties. In the second
option, a regular customer-grade UAV is used to collect photos. Then, ground control
points (GCP) evenly distributed across the study area are incorporated in SfM processing
to reduce DSM errors [24,25,28,29,32,34]. The GCPs are often accurately surveyed with
an RTK or post-processing kinematic (PPK) differential global positioning system (DGPS).
Vander Jagt, Lucieer and Wallace et al. [27] compared the two options and reported that
incorporating GCPs in the generation of DSM can produce a lower root mean square
error (RMSE) between UAV-based snow depth estimates and in-situ measurements than
simply using RTK UAV. Additionally, if a minimal number of GCPs is jointly used with
RTK UAV, the RMSE can be further reduced. Harder, Schirmer and Pomeroy et al. [26]
also suggested that inclusion of GCPs for RTK UAV would result in a great reduction of
DSM bias, thus increasing the accuracy of snow depth estimates. Both studies indicated
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the necessity of incorporating GCPs for accurate snow depth retrieval with UAV-based
SfM photogrammetry.

RTK UAV is a promising solution for snow depth mapping over inaccessible areas
(e.g., areas susceptible to snow avalanche) [33]. The much higher cost of an RTK UAV
than a regular customer-grade UAV limits its wide application in snow depth mapping.
Most existing studies used a regular UAV to collect photos and incorporated GCPs to
constrain DSM errors [24,28,31,32,34] and then retrieve snow depth. Lee, Park, Choi and
Kim et al. [24] evaluated the influence of the number of GCPs on the accuracy of UAV-
based snow depth and concluded that areas with higher densities of GCPs tended to
have more accurate snow depth estimates. In other words, the more GCPs included, the
better the snow depth accuracy. In these studies, GCPs over the study area were surveyed
twice, one for snow-on date and one for snow-off date. The snow-on GCPs were usually
differently from the snow-off GCPs. The two different sets of GCPs were used to produce
the snow-on and snow-off DSMs, respectively. With this strategy, the errors in snow-on
GCP coordinates (x, y, z) were completely independent from the errors in snow-off GCP
coordinates. These errors could be propagated independently into the corresponding
snow-on and snow-off DSMs, thus affecting the retrieved snow depth accuracy. However,
no study has investigated how the errors in GCP coordinates influence UAV-based snow
depth retrieval and how to improve the accuracy of snow depth estimates when DGPS
performance is hampered by the surrounding environment.

The overall objective of this paper was to assess in detail the influence of GCP errors on
the accuracy of snow depth measurements estimated by UAV-based SfM photogrammetry.
Specifically, this paper (1) assesses how the errors in GCP horizontal coordinates (x, y) and
vertical height (z) influence the accuracy of snow depth estimates; and (2) discusses the
optimal GCP deployment strategy that can accommodate the errors in GCP coordinates (x,
y, z) to help produce better snow depth estimates. The remainder of this paper is organized
as follows: Section 2 describes the study area and the collection of UAV-based photos and
in-situ snow depth data. Section 3 introduces SfM concepts and GCP deployment strategies.
Section 4 presents the performance of UAV-based snow depth retrieval using different
GCP deployment strategies. Section 5 analyzes the results and discusses the strategy of
improving snow depth estimates.

2. Study Area and Data Collection

Our study area was located in the southern Appalachian Mountains at 36.215◦N
and 81.693◦W, close to the Blue Ridge Parkway, which is the longest linear national park
way in the U.S. The elevation was about 1070 m above mean sea level. The study area
was beside a wind turbine near the campus of Appalachian State University in Boone,
western North Carolina. It was a small open space surrounded by trees and shrubs with
different heights. As shown in Figure 1, the extent of the study area was approximately
120 m × 150 m. The surface elevation decreased gradually from the west to the east (as
shown in Figure 2a,b), while the middle part of the study area was relatively flat with
a slope less than 3◦. This study area was chosen as an ideal place for experimenting
UAV-based SfM snow depth retrieval for the following reason. In the winter, mountainous
areas often experience frequent wind gusts, which have a strong redistributing effect on
snow accumulation. Our study area was close to a wind turbine. It represented a typical
small open space in the Appalachian Mountains for snow accumulation that is heavily
influenced by winter wind. In this mountainous region, the mean annual snowfall can
vary from several decimeters to two meters [36–38]. On 8 January 2021, a snow storm
struck Boone and yielded an average snow accumulation of 10.16 cm (4 inches) on that
day and another 5.08 cm (2 inches) in the morning of January 9 (National Weather Service,
https://www.weather.gov/wrh/Climate?wfo=rnk, accessed on 23 April 2023).
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after snowfall at 3:30 p.m. on 9 January 2021 and after snowmelt at 3:40 p.m. on 24 Febru-

ary 2021. The DJI Phantom 4 is a customer-grade UAV that carries a low-cost CMOS cam-

era, which well-suited the purpose of this study. The camera has a field of view (FOV) of 

84° and focal length of 8.8 mm (comparable to 24 mm focal length on a 35 mm film cam-
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ground height of 45.72 m (150 feet). The front and side overlapping rates are 70% and 80%, 

respectively. The ground sampling distance  (spatial resolution) of  the generated ortho-

photo and DSM is about 1.5 cm. 

Figure 1. SfM-based orthophoto of the study area: (a) with snow cover on 9 January 2021, and
(b) without snow cover on 24 February 2021. The ID number of each GCP is displayed in red color.
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Figure 2. (a) DSM for snow-on date (9 January 2021); (b) DSM for snow-off date (24 February 2021);
and (c) snow depth based on the difference between the two DSMs.

We used a DJI Phantom 4 quadcopter UAV to collect photos of the study area right
after snowfall at 3:30 p.m. on 9 January 2021 and after snowmelt at 3:40 p.m. on 24
February 2021. The DJI Phantom 4 is a customer-grade UAV that carries a low-cost CMOS
camera, which well-suited the purpose of this study. The camera has a field of view (FOV)
of 84◦ and focal length of 8.8 mm (comparable to 24 mm focal length on a 35 mm film
camera). The dimension of each photo is 5472 × 3648. The photos were acquired at an
above-ground height of 45.72 m (150 feet). The front and side overlapping rates are 70%
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and 80%, respectively. The ground sampling distance (spatial resolution) of the generated
orthophoto and DSM is about 1.5 cm.

Concurrent in-situ snow depths accurate to one tenth of a centimeter were measured
using a snow probe at 27 sampling points in the study area, as shown by the green points in
Figure 1. These in-situ snow depths ranged from 5.0 to 29.3 cm. Compared to the 12 points
on the left side, the 15 points on the right side had relatively higher depths (ranging from
15.0 to 29.3 cm) due to the blocking effect of the fence on the east of the 15 sampling
points. We also surveyed 15 ground control points (red diamonds in Figure 1) across the
entire study area using two GPS instruments, including the handheld Trimble GeoXH
and the Trimble DA2 GNSS receiver. All 15 GCPs were free from snow cover on the two
dates. The Trimble DA2 uses the real-time kinetic (RTK) technique and is able to achieve
horizontal and vertical accuracies of 1 and 2 cm, respectively, under optimal conditions.
The coordinates (x, y, z) measured by the Trimble GeoXH were not processed with any
differential correction. The survey generated two sets of GCP measurements, one set
with highly accurate coordinates and the other with low accuracy coordinates (hereinafter
referred to as the high-accuracy and low-accuracy sets). To verify the accuracies of the two
sets of GCPs, we also measured the coordinates of the 15 GCPs using a Nikon NPL-322
Series Total Stations, which provides measurements of the GCP coordinates at a millimeter-
level accuracy for the spatial scale of our study area. Compared to the coordinates (x, y,
z) measured by the total stations, the root mean square error (RMSE) values of the high-
accuracy set coordinates were 3.08, 3.02, and 7.0 cm, respectively, and the RMSE values of
the low-accuracy set coordinates were 30.25, 40.84, and 78.34 cm, respectively.

3. Methodology

In this study, the optical photos collected on the snow-on and snow-off dates were
separately processed using ERSI Drone2Map software, which implemented the general
SfM workflow described in Section 3.1 to generate orthophotos and DSMs for the two dates.
The high-accuracy and low-accuracy sets of GCP measurements were incorporated into the
SfM workflow following the strategies described in Section 3.2 in order to reduce the errors
in DSMs and orthophotos and to georeference them to a real-world coordinate system.
Figure 1a,b shows the orthophotos of the two dates. The SfM-based snow depth over the
study area were then derived by subtracting snow-off DSM from snow-on DSM. Figure 2a,b
shows the DSMs on the two dates and Figure 2c shows the derived elevation change. The
accuracy of SfM-based snow depth (elevation change) was evaluated in comparison to the
concurrent in-situ snow depths at the sampling points in Figure 2c (green points) with the
metrics described in Section 3.3.

3.1. Generation of DSM and Orthophoto with SfM

The structure from motion (SfM) technique originated from the field of computer vi-
sion and has been implemented by many software packages, for example, ESRI Drone2Map
used in this study. In general, the SfM workflow consists of the following five steps [39,40]:
(1) identifying keypoints (e.g., corners, line ends, intersections, etc.) from each photo using
the scale invariant feature transform (SIFT) algorithm [41,42]; (2) matching the correspon-
dence keypoints in the overlapping areas of two adjacent photos using the approximate
nearest neighbor k-dimensional trees approach [43]; (3) removing the outlier keypoints
using the random sample consensus (RANSAC) approach [44]; (4) determining the extrin-
sic camera parameters (referred to as “motion”) for each photo, such as camera location
and orientation, and simultaneously estimating the 3D position of each keypoint (referred
to as “structure” or sparse point cloud) by solving and optimizing a set of collinearity
equations [27]; (5) generating a dense 3D point cloud for each pixel on each photo based
on the sparse point cloud and the camera parameters obtained in Step 4 by applying a
patch-based multi-view stereo image matching [45].

In Step 4, initial values of the extrinsic camera parameters are first obtained from
the EXIF tags of UAV-collected photos, and they are used to estimate the 3D positions
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of keypoints through collinearity equations [39]. The camera parameters and keypoint
positions are then further refined by optimizing a non-linear cost function that represents
the errors between the observed and estimated keypoint positions on UAV-collected photos.
The optimization process is called bundle adjustment and is the step at which GCPs are
incorporated. The objectives of incorporating GCPs are twofold. First, it can help constrain
the non-linear cost function and refine the camera parameters and keypoint positions.
Second, it helps georeference the original sparse point cloud from the arbitrary coordinate
system to a real-world geographic or projected coordinate system. A seven-parameter
linear similarity transformation (i.e., three global translation parameters, three rotation
parameters, and one scaling parameter) is performed to achieve the georeferencing [39].
The coordinate system used for this study was NAD 1983 StatePlane North Carolina (2011).
DSMs and orthophotos are then generated based on the refined camera parameters and
dense 3D point cloud.

3.2. Strategy of Incorporating GCPs in SfM

Two sets of GCP measurements, the high-accuracy and low-accuracy sets, were col-
lected for our study area. To assess the influences of GCP measurement accuracy and
GCP deployment strategy on snow depth retrieval, each set of GCP measurements was
incorporated into SfM by following two strategies to produce DSMs.

In Strategy A, the same GCP measurements in each set (hereinafter referred to as the
Same-GCP strategy) were used to generate both the snow-on and snow-off DSMs and then
to estimate snow depth, as shown in Figure 3. We incorporated all 15 GCP measurements
at the beginning (Step 1 in Table 1) to generate the two DSMs and estimate snow depth.
Then, we removed one GCP measurement at each of the following steps. For example, in
Step 2 in Table 1, GCP 4 was removed. The coordinate measurements of the other 14 GCPs
(1–3, 5–15) were used to produce the snow-on and snow-off DSMs.
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Table 1. GCPs incorporated at each step in Strategies A and B.

Step Number of GCPs
Incorporated

GCPs Incorporated in Strategy A GCPs Incorporated in Strategy B

Snow-On/Snow-Off Subgroup1: Snow-On Subgroup2: Snow-Off

1 15 1–15
2 14 1–3, 5–15
3 13 1–3, 6–15
4 12 1–3, 6–9, 11–15
5 11 1–3, 6, 8, 9, 11–15
6 10 1, 3, 6, 8, 9, 11–15
7 9 1, 3, 6, 8, 9, 12–15
8 8 3, 6, 8, 9, 12–15 1, 3, 4, 6, 7, 9, 13, 15 2, 5, 6, 8, 10, 11, 12, 14
9 7 3, 6, 8, 9, 12, 13, 15 1, 4, 6, 7, 9, 13, 15 2, 5, 6, 8, 11, 12, 14

10 6 3, 6, 8, 9, 12, 15 1, 4, 6, 9, 13, 15 2, 6, 8, 11, 12, 14
11 5 3, 6, 8, 9, 15 1, 6, 9, 13, 15 2, 6, 8, 11, 14
12 4 3, 6, 8, 9 1, 6, 9, 15 2, 6, 8, 11
13 3 3, 6, 8 1, 9, 15 2, 6, 8

In Strategy B, different GCP measurements in each set (hereinafter referred to as
the Different-GCP strategy) were used to generate the snow-on and snow-off DSMs. As
shown in Figure 3, the 15 GCP measurements in each set were divided into two subgroups,
one subgroup for generating the snow-on DSMs and the other subgroup for the snow-off
DSMs. At the beginning (Step 8 in Table 1), each subgroup had eight GCP measurements
(with GCP 6 in Figure 1 shared by the two subgroups). Then, one GCP measurement was
removed from each of the two subgroups at each step to generate the two DSMs. For
example, in Step 9 in Table 1, GCP 3 was removed from subgroup 1 and GCP 10 was
removed from subgroup 2. The remaining GCP measurements in the two subgroups were
then used to produce the snow-on and snow-off DSMs, respectively. The GCPs in each
sub-group were evenly distributed across the study area to ensure that the in-situ snow
depth sampling points were encompassed by the GCPs.

Strategy B in this study, the Different-GCP strategy, replicated the approach used by
most previous studies to incorporate GCPs and estimate snow depth [24,31,32,34]. Strategy
A served as a reference for Strategy B. By comparing the results of the high-accuracy and
low-accuracy sets under the two strategies, we were able to assess how SfM-based snow
depth retrieval is influenced by the errors in GCP coordinate measurements and how GCP
deployment strategies can help to mitigate the influence of the errors.

To further separate and evaluate the influences of horizontal (x, y) and vertical (z)
coordinate errors on SfM-based snow depth retrieval, we replaced the GCP heights (z)
in the low-accuracy set with the GCP heights in the high-accuracy set. This created a
new set of GCPs with relatively inaccurate horizontal coordinates and accurate vertical
coordinates, which was referred to as the accurate-Z set. We also created an accurate-
XY set by replacing the GCP horizontal coordinates (x, y) in the low-accuracy set with
the horizontal coordinates in the high-accuracy set. These two sets of GCPs were then
incorporated into SfM following Strategy B in Table 1 to generate DSMs and estimate
snow depth.

3.3. Assessment of SfM-Based Snow Depth Accuracy

For surfaces not covered by snow (e.g., the road surface in Figure 1, which had been
cleared after snowfall), the elevation was supposed to remain the same in both snow-off
and snow-on DSMs and the derived snow depth (i.e., elevation change) should be close to
zero. When the snow depth estimates on the road surface have a systematic (positive or
negative) deviation from zero, a bias between the two DSMs is observed. This bias could be
wrongly interpreted as snow accumulation or depletion. This study used the road surface
to estimate and remove bias in the derived snow depth. The bias was estimated as the
mean value of snow depth within the black polygon on the road surface in Figure 1.
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The accuracy of SfM-based snow depth was assessed in comparison to the in-situ
snow depths measured at the 27 sampling points in Figure 1. At each sampling point, the
SfM-based snow depth was estimated by an inverse-distance interpolation of the elevation
changes in the surrounding 9 pixels (in a 3 × 3 neighborhood). The accuracy was measured
by the Pearson correlation coefficient r [46], the root mean square error (RMSE), and the
slope of regression between in-situ snow depth and SfM-based snow depth at the 27
sampling points. The RMSE represents the absolute accuracy of SfM-based snow depth.
The smaller the RMSE, the higher the accuracy. The correlation coefficient r represents
the capability of the SfM-based technique to capture the variation in snow depth across
the study area. The closer the r value is to one, the stronger the capability. The slope of
regression represents the tendency to over-estimate or under-estimate snow depth. Ideally,
the slope value should be equal to one. If the intercept of regression equals zero, a slope
of regression larger than one usually indicates a tendency to overestimate snow depth,
whereas a slope less than one means a tendency to underestimate snow depth.

4. Results
4.1. Strategy A: High-Accuracy Set Verses Low-Accuracy Set

The high-accuracy set of GCP measurements was first incorporated into SfM following
Strategy A (the Same-GCP strategy) to generate DSMs and orthophotos for the two dates
and then to derive snow depth estimates. The low-accuracy set was also incorporated in
the same way to derive snow depth estimates. Figure 4 shows the scatterplots of SfM-based
snow depth estimates against in-situ snow depths for the two sets of GCP measurements.
Figure 5 shows the variations in RMSE, correlation coefficient r and linear regression slope
along with the number of incorporated GCPs.
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As expected, the high-accuracy set of GCP measurements produced better results than
the low-accuracy set in terms of the three metrics. The RMSE values of the high-accuracy
set ranged from 2.3 to 4.3 cm, slightly better than the RMSE values of the low-accuracy
set that ranged from 2.6 to 6.5 cm. The correlation coefficient r and regression slope of the
high-accuracy set remained quite stable along with the number of incorporated GCPs, as
shown in Figure 5, whereas clear variations were observed for the low-accuracy set. The
correlation coefficients were mostly higher than 0.9 for both sets.

The regression slope of the high-accuracy set was less than one (around 0.85) all the
time, indicating an underestimation of snow depth. For the low-accuracy set, the regression
slope was less than one when all GCPs were incorporated at the beginning. It increased
with the removal of GCPs and remained mostly larger than one (around 1.1) when the
number of GCPs was less than and equal to 10. This suggested that when using the low-
accuracy set of GCPs, the snow depth was underestimated at the beginning, then became
slightly overestimated as the number of GCP decreased. This trend can be clearly observed
in Figure 4 when the number of GCPs decreased from 14 to 4.

Another interesting observation is that as shown in Figure 5a for both sets, the RMSE
values gradually decreased as GCPs were removed at each step and then increased when
GCPs were further removed. The highest accuracies occurred when the number of GCPs
was 12 for the low-accuracy set and 10 for the high-accuracy set. This suggested that when
using the Same-GCP strategy, more GCPs did not necessarily produce more accurate snow
depth estimates. In general, the Same-GCP strategy helped generate highly accurate snow
depth estimates. With this strategy, the low-accuracy set of GCPs could generate snow
depth estimates with an accuracy comparable to that of the high-accuracy set. One thing to
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note is that in Figure 5 there was a relatively big jump in RMSE, r, and regression slope
when the number of GCPs decreased to 13. This was possibly caused by the large errors in
coordinate measurements of GCP 5 in Figure 1. After the removal of this GCP, the three
indicators became more stable.

4.2. Strategy B: High-Accuracy Set Verses Low-Accuracy Set

The high-accuracy and low-accuracy sets of GCP measurements were also incorpo-
rated following Strategy B (the Different-GCP strategy) to estimate snow depth for our
study area. Figure 6 shows the scatterplots of SfM-based snow depth estimates against
in-situ snow depths. For the high-accuracy set of GCP measurements, the accuracy of
SfM-based snow depth estimates was still quite high, even though its performance in terms
of the three metrics was slightly inferior to that of Strategy A (the Same-GCP strategy).
The correlation between snow depth estimates and in-situ snow depths was strong, with
r varying from 0.87 to 0.92. The regression slopes remained stably less than one (around
0.85), which was consistent with Strategy A and indicated an underestimation of snow
depth. The RMSE values were slightly higher than those in Strategy A and increased from
4.0 to 5.4 cm when the number of GCPs decreased from 8 to 3, indicating a degradation in
accuracy when fewer GCPs were incorporated. This echoed the results observed by Lee,
Park, Choi and Kim [24] that more GCPs produced better accuracy. In general, when using
the high-accuracy set of GCP measurements, the influence of Strategy B on the accuracy
of SfM-based snow depth estimates was limited. The snow depth accuracy was slightly
inferior, but still comparable to that of Strategy A.
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In contrast, when the low-accuracy set of GCP measurements was incorporated follow-
ing Strategy B to retrieve snow depth, the accuracy was much lower than that of Strategy
A. As shown in Figure 6, the RMSE values were high all the time and varied from 22.3 to
38 cm. Even though a correlation between SfM-based and in-situ snow depths could still
be observed, the regression slopes were mostly much higher than one. The SfM technique
heavily underestimated the snow depths for thin snow cover and produced negative snow
depths, while it largely overestimated the snow depth for relatively thick snow. The fewer
GCPs incorporated, the higher the slope. When the number of GCPs decreased to 3, a
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negative correlation between SfM-based and in-situ snow depths was observed, which was
not reasonable for accurate snow depth mapping. By comparing the performances of the
two sets of GCP measurements in Strategies A and B, it was reasonable to deduce that the
errors in GCP horizontal and vertical coordinates (x, y, z) were propagated into SfM-based
snow depths when using Strategy B to incorporate GCP measurements. It was also clear
that Strategy A could effectively prevent the propagation of GCP coordinate errors and
produce reliable SfM-based snow depths.

4.3. Strategy B: Accurate-Z Set Verses Accurate-XY Set

To further evaluate the individual influence of GCP horizontal coordinates (x, y) and
vertical height (z) on SfM-based snow depth retrieval, the accurate-Z and accurate-XY sets
of GCP measurements were incorporated separately following Strategy B to derive snow
depth for our study area. Figure 7 shows the scatterplots of SfM-based and in-situ snow
depths. Figure 8 summarizes and compares the results generated by incorporating the
high-accuracy, low-accuracy, accurate-Z, and accurate-XY sets following Strategy B. As
shown in Figure 7, the incorporation of the accurate-Z set produced evidently better snow
depth estimates than the incorporation of the accurate-XY set. For the accurate-Z set, the
RMSE values ranged from 6.6 to 12.5 cm, the correlation coefficient r varied from 0.85 to
0.92, and the regression slopes were in the range of 0.81–1.17. For the accurate-XY set, the
RMSE values were much higher, ranging from 17 to 39.6 cm, the r decreased from 0.83
to 0.48 along with the removal of GCPs, and the regression slope was higher than one
all the time. This comparison suggested that in this study the accuracy of GCP height (z)
was more crucial than that of GCP horizontal coordinates (x, y) for accurate snow depth
mapping using the SfM technique.
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On the other hand, compared to the high-accuracy set in Strategy B, the result pro-
duced by incorporating the accurate-Z set was relatively inferior in terms of all three
metrics, as shown in Figure 8. In particular, the incorporation of the accurate-Z set pro-
duced negative snow depth estimates for thin snow cover, as shown in Figure 7a,b,e,f. In
addition, it can be observed from Figure 8 that the results produced by the accurate-XY
set were generally better than the results produced by the low-accuracy set in Strategy B.
These two observations indicated that even though GCP height (z) was more important for
SfM-based snow depth retrieval, reducing the errors in GCP horizontal coordinates was
still a necessary step to further improve SfM-based mapping of snow depth. In particular,
this was more important for mountainous regions where acute topographic change can
occur within a short distance.

5. Discussion

As observed in Sections 4.1 and 4.2, the results generated by the high-accuracy and low-
accuracy sets of GCP measurements in Strategies A (Same-GCP strategy) and B (Different-
GCP strategy) were markedly different. The high-accuracy set produced reliable snow
depth estimates in both strategies, whereas for the low-accuracy set, reliable snow depth
estimates were only derived in Strategy A. The contrast highlights the effectiveness of
Strategy A in mitigating the influence of GCP coordinates errors on SfM-based snow depth
retrieval. It also entails a thorough discussion on how the errors in GCP coordinates are
propagated in SfM-based snow depth estimates and how we should survey and incorporate
GCPs in order to produce more accurate snow depth estimates.
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5.1. Influence of GCP Coordinate Errors under Different GCP Deployment Strategies

As mentioned in Section 3.1, the role of GCPs in SfM workflow is twofold. It helps to
optimize camera parameters and the 3D locations of keypoints (sparse point cloud) and
then georeference the sparse point cloud. The DSMs and orthophotos are then generated
based on the optimized camera parameters and the georeferenced sparse point cloud.
Therefore, the optimizing and georeferencing processes are the two ways though which the
errors in GCP coordinates (x, y, z) are propagated to the two DSMs and then to snow depth
estimates. The optimizing process determines the 3D position of each keypoint relative
to the surrounding keypoints. In other words, it determines the relative topographic
undulation of the surface in our study area, on both the snow-off and snow-on dates.
Georeferencing is achieved by using a linear similarity transformation [39]. It lines up the
sparse point cloud (therefore, DSMs and orthophotos) with a real-world coordinate system
through linear global translation, rotation, and scaling. These operations are applied in the
same way to all points in the cloud. They are not involved in the determination of keypoints’
relative locations nor change the surface’s relative topographic undulation. When GCP
measurements are incorporated, both the optimizing and georeferencing processes treat the
GCP measurements as ground truth and try to minimize the overall discrepancy between
the GCP measurements and the corresponding keypoints.

Figure 9 shows a schematic of the influence of GCP coordinate errors on snow depth
estimates. Figure 9a–c illustrates the influence of coordinate errors on the snow-on and
snow-off surface profiles when using Strategy A, while Figure 9d–f illustrates the influence
of coordinate errors when using Strategy B. Figure 9a,d shows the true snow-on and snow-
off surface profiles (snow and ground surfaces). As shown in the two figures, when the GCP
coordinates are accurate and have no errors, the snow depth estimates are accurate for both
strategies. These were the results observed in Sections 4.1 and 4.2 when the high-accuracy
set of GCP measurements was used.
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Figure 9. Influence of Strategies A and B on SfM-based snow depth estimates. (a–c) Strategy A.
(d–f) Strategy B.

If errors exist in GCP horizontal coordinates (x, y) and/or vertical height (z), when
incorporating GCPs using the Same-GCP strategy (Strategy A), the snow-on and snow-off
surface profiles will both be modified or transformed in the same way to best fit the GCPs.
For example, as shown in Figure 9b, the snow-on and snow-off profiles were shifted to
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the right with the same distance. Similarly, in Figure 9c, both profiles were changed in the
same way. Even though the errors in GCP (x, y) and (z) were propagated to the snow-on
and snow-off profiles, they were canceled out when the two profiles were subtracted, thus
generating quite reliable snow depth estimates. This was the result observed in Section 4.1
when the low-accuracy set of GCP measurements was used.

However, if the Different-GCP strategy (Strategy B) is used, the errors in GCP (x, y)
and (z) are propagated separately and independently to the snow-off and snow-on profiles.
As shown in Figure 9e, the snow-off profile was shifted to left whereas the snow-on profile
was shifted to right due to the errors in GCP (x, y). In Figure 9f, the snow-off profile was
shifted to a lower location than the true snow-off surface profile whereas the snow-on
profile was dragged to a higher location than the true snow-on profile due to the errors
in GCP (z). These errors were largely amplified when the snow-off profile was subtracted
from snow-on profile, thus producing highly inaccurate snow depth estimates. This was the
result observed in Section 4.2 when the low-accuracy set of GCP measurements was used.

Note that for legibility, the errors in horizontal coordinates (x, y) and in vertical height
(z) are displayed separately in Figure 9b,e and Figure 9c,f. In addition, the snow-on and
the snow-off surface profiles in Figure 9b,c,e,f maintain the same shapes of the true snow-
on and snow-off surface profiles in Figure 9a,d, for the purpose of legibility. This may
deliver a false message that the accuracy of snow depth estimates could be improved by
manually co-registering the snow-on and snow-off DSMs, particularly for Figure 9e,f. In
real situations, however, the GCP horizontal and vertical errors are entangled and can
hardly be separated from each other. Therefore, simply reducing the horizontal or vertical
errors cannot significantly improve the accuracy of snow depth estimates. This was the
result observed in Section 4.3. Additionally, when inaccurate GCPs are incorporated into the
SfM optimizing process, the errors in GCP coordinates would result in inaccurate camera
parameters and sparse point clouds, which could largely change the relative locations of
surface features on either the snow-on or snow-off DSMs. In other words, the shape of
the snow-on and snow-off surface profiles in Figure 9b,c,e,f could be quite different from
the shape of the true snow-on and snow-off profiles in Figure 9a,d. The errors caused
by inaccurate camera parameters and sparse point clouds cannot be easily removed by
co-registering the snow-on and snow-off DSMs. In fact, we co-registered the snow-on and
snow-off DSMs generated by low-accuracy set in Section 4.2 and by the accurate-Z set in
Section 4.3 to derive snow depth estimates. The results showed no big improvement in the
accuracy of snow depth estimates.

5.2. Optimal GCP Deployment Strategy for UAV-Based SfM Snow Depth Retrieval

Existing studies have rarely investigated whether the GCP deployment strategy could
help improve snow depth retrieval using the UAV-based SfM technique. Rigorous com-
parisons of the results reported by previous studies were not possible due to the huge
differences in their study areas and snow cover conditions. However, such comparisons
could provide a general sense of how the GCP deployment strategy may influence UAV-
based SfM snow depth retrieval. For example, Harder et al. [26] used the same GCPs (the
Same-GCP strategy in this study) to generate snow-on and snow-off DSMs and reported
RMSE values of 8.5, 8.8, and 13.7 cm for areas with alpine, short, and tall vegetation,
respectively. Fernandes et al. [25] used the Same-GCP strategy and reported RMSE values
varying from 1.58 to 10.56 cm. Goetz et al. [32] and De Michele et al. [31] used different
GCPs (the Different-GCP strategy in this study) to produce snow-on and snow-off DSMs
and reported overall RMSE values of 15.2 and 14.3 cm, respectively. Lendzioch et al. [47]
used the Different-GCP strategy and reported RMSE values of 16, 32, and 31 cm for open
area (snow ablation), forest (snow accumulation), and forest (snow ablation), respectively.

In this study, we conducted a rigorous investigation of how different GCP deploy-
ment strategies could mitigate errors in GCP measurements and improve snow depth
estimates. It is reasonable to conclude that the Same-GCP strategy is a better option than
the Different-GCP strategy for accurately mapping snow depth with SfM-based photogram-
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metry technology. Even though DGPS (either PPK or RTK) is usually used to survey GCPs
for SfM-based snow depth mapping, incorporating GCPs using the Same-GCP strategy can
further improve the accuracy of snow depth estimates, as observed in Sections 4.1 and 4.2.
Furthermore, DGPS performs best in open space. In mountainous areas, its accuracy is
often heavily hampered by the surrounding topography and vegetation. For example,
the horizontal and vertical uncertainties of the DGPS used in this study were observed
to be two times larger in the valley than in open space. The Same-GCP strategy was less
susceptible to errors in GCP horizontal and vertical coordinates, as observed in Section 4.
It is a more suitable option for mapping snow depth in mountainous regions.

The Same-GCP strategy requires the same set of GCP measurements for both snow-on
and snow-off DSMs. In this study, the average snow depth was about 15 cm. We managed
to identify 15 GCPs that were not covered by snow in our study area. In some areas, the
snow can be thick enough to cover most of the surface features in a natural setting. In this
case, it would be hard to identify GCPs that are free from snow cover on both snow-on
and snow-off dates. A viable solution for those areas is to manually set up a series of
GCPs that are higher than the snowpack and are maintained during the whole period
between the snow-on and snow-off dates. For example, Fernandes et al. [25] used 30
cm square plywood and 15 cm diameter plastic disks as GCPs, which were suspended 1
and 1.3 m above ground surface. As observed in Section 4.1, when using the Same-GCP
strategy, more GCPs did not necessarily improve snow depth accuracy. Actually, three
GCPs were sufficient to produce snow depth estimates with quite high accuracy (4.3 cm
for the high-accuracy and low-accuracy sets). This does not require significant extra labor
effort in the field and is worthwhile for accurate snow depth mapping.

One thing to note is that the snow depth in our study area varied from 5 to 30 cm,
with an average of about 15 cm. According to the experiments in this study, Strategy
A performed best to retrieve snow depth in our study area. In the future, this strategy
will be further tested in areas with relatively thick snow using the method discussed
above and in areas with complex underlying surface conditions (e.g., grass, short shrubs),
different topographic undulations, and various surrounding environments. In addition,
when collecting drone optical photos for snow depth mapping, the drone should be flown
following several communication protocols to avoid potential security issues, as denoted
in [48,49].

6. Conclusions

This study investigated the influence of errors in GCP coordinates on the accuracy
of snow depth estimates. Two sets of GCP measurements with different accuracy levels
(high-accuracy and low-accuracy) were incorporated following two strategies (Same-GCP
and Different-GCP) into SfM processing to generate snow-on and snow-off DSMs and
derive snow depths for our study area. The results showed that the Different-GCP strategy
tended to amplify and propagate GCP coordinate errors into snow depth estimates, thus
heavily decreasing the accuracy. Conversely, if the Same-GCP strategy was applied, the
GCP coordinate errors were propagated in the same way to the snow-on and snow-off
DSMs and were canceled out when the two DSMs were subtracted to derive the snow depth
estimates. These results therefore demonstrated that the Same-GCP strategy effectively
mitigated the influence of GCP coordinate errors on SfM-based snow depth mapping and
increased the accuracy of derived snow depth estimates. When using the Different-GCP
strategy, increasing the number of GCPs improved the accuracy of snow depth estimates,
which was consistent with the observations in a previous study [24]. When using the
Same-GCP strategy, increasing the number of GCPs did not help produce better snow
depth accuracy. In fact, three GCPs that enclosed the area of interest helped to produce
highly accurate snow depth estimates.
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After comprehensively evaluating the effectiveness of different sets of GCP measure-
ments using the two strategies, the Same-GCP strategy—using the same GCP measure-
ments to generate snow-on and snow-off DSMs—is highly recommended for UAV-based
SfM snow depth retrieval. For areas in which thick snow covers most of the natural surface
features and identifying the same GCPs on the two dates is difficult, man-made targets
higher than the snow cover, e.g., the square plywood and plastic disks used by Fernan-
des et al. [25], are recommended to be set up and maintained for UAV flights collecting
data throughout the whole snow season.
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Abstract: The steep and unstable terrain found on debris-covered glaciers, rock glaciers, talus slopes,
moraines and other proglacial features often make terrestrial ground-penetrating radar (GPR) surveys
unsafe or cost-prohibitive. To address these challenges, this research introduces a novel approach
for studying buried ice using multi-low-frequency drone-based GPR. Monostatic antennas of 50,
100, and 200 MHz were flown along a transect spanning a debris-covered glacier and an ice–debris
complex at Shár Shaw Tagà (Grizzly Creek) in southwest Yukon, Canada. The drone-based results
were compared to manual GPR at two locations along the transect. The two manual segments were
conducted using the same radar system in a bi-static mode and included common mid-point (CMP)
surveys. Overall, the drone-based radar successfully identified buried ice and enabled estimation of
ice body thickness. Notably, CMP results confirmed layer characteristics and enabled depths to be
measured across the entire drone-based transect. Discrimination of detail across a range of depths
was made possible by comparing the three low frequencies, highlighting the possibility of using
this method for future investigations of debris thickness in addition to quantifying buried ice. This
study confirms the effectiveness of drone-based GPR combined with manual CMP for surveying ice
beneath previously inaccessible terrain.

Keywords: drones; ground-penetrating radar; buried ice; debris-covered glacier

1. Introduction
1.1. Ground-Penetrating Radar for Surveying Buried Ice

Debris-covered ice is present on an estimated 44% of Earth’s glaciers (excluding
Antarctica) and may account for 7.3% of the global mountain glacier area [1]. In addition
to debris-covered glaciers, buried glacial ice is commonly found in deglaciating environ-
ments where retreating glaciers have left residual ice that is covered by sediments through
paraglacial and gravitational processes [2]. Methods have been developed to improve
the detection of buried ice, including the application of terrain models and deep learning
methods to satellite remote sensing data [3,4]. Despite these advancements, high-quality
field data are needed on the ground truth of the extent of buried ice. As warming continues
to impact glaciers globally, heavily debris-covered features such as debris-covered glaciers
and rock glaciers will become more important to quantify as hydrologic resources [5]. Ad-
ditionally, the impacts of debris cover feedback on ice mass balance are inherently difficult
to study and remain a poorly quantified part of glacier modeling efforts due to difficulties
measuring buried ice melt [6,7].

Ground-penetrating radar (GPR) is a standard geophysical approach that has been
used extensively over the last two and a half decades to detect and characterize buried
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massive ice in debris-covered glaciers, rock glaciers and permafrost [6,8–11]. However,
past studies investigating the ice content of steep terrain using ground-based manual GPR
surveys often feature a limited number of transects with paths determined by the landscape
topography [12,13]. Airborne GPR, whether mounted on helicopters or fixed-wing aircraft,
is a potential solution to overcome these challenges. For instance, a helicopter-mounted
GPR has been successfully used to create a quasi-three-dimensional map of a rock glacier
in the Swiss Alps using multiple hatched passes, a feat only achievable with an airborne
system [14]. However, airborne options have most often been limited to mapping the
depths of large glaciers and ice sheets due to high costs [15–18]. These surveys use lower-
frequency radars for measuring glacier thickness and have a lower resolution as a result.
In addition, most airborne GPR surveys conducted using aircraft or helicopters sacrifice
spatial resolution as measurements are made at several tens of meters above the surface.

Altitude separation between airborne GPR and the surface can be reduced with recent
advancements in relatively low-cost drone-based GPR [19]. Drone-based GPR systems have
been used in recent years for snow hydrology surveys, where GPR enables undisturbed
detection of strata within snowpack [20]. Fixed-wing drone-based ice-penetrating radar
systems have also been developed for surveys of larger, mostly clean ice glaciers [21,22].
These systems use lower-energy radars which work well for mapping glacier thickness
where there is limited debris coverage. More recently, rotary wing drone-based GPR has
been developed for 3D and 4D coverage of mostly clean ice glacial tongues [23].

The development of drone-based GPR methods for the detection of buried glacial ice
over complex terrain is a logical next step, building on the capability of drone-based radar
technology. To the best of our knowledge there are no other publications that document
the application of drone-based GPR for studying buried ice. The objective of this study is
to provide the first test of the effectiveness of a drone-based radar survey to survey buried
ice content in terrain that would be effectively inaccessible to ground-based GPR.

1.2. Shár Shaw Tagà (Grizzly Creek) Field Site

This study was conducted within a deglaciating sub-catchment of Shár Shaw Tagà
valley in southwest Yukon, Canada. The study area is located on the Kluane and White
River First Nation territory within Kluane National Park and Reserve. In the literature,
Shár Shaw Tagà is referred to as Grizzly Creek, its non-indigenous toponym. The sub-
catchment exhibits a glacier to debris-covered glacier to rock glacier continuum typical
of the St. Elias Mountains greenbelt [24]. Moving down the valley, the clean glacier ice
above 2100 m a.s.l. transitions to a debris-covered glacier and an ice–debris complex (as
described by Bolch et al. [25]) between 2100 and 1900 m a.s.l, and then to a rock glacier
from 1900 to 1700 m a.s.l., where the sub-catchment meets the main valley (Figure 1). This
sub-catchment at Shár Shaw Tagà remains unnamed by the Kluane First Nation community
to the best of our knowledge. It was identified as the “Ice-cored moraine and rock glacier”
in initial fieldwork in the area by Johnson [24] and as the “glacier debris system rock glacier”
with a “tributary glacier” by Evin et al. [26].

The drone-based GPR transect for this study is located along the transition from the
debris-covered glacier to the ice–debris complex (Figure 2). Talus slopes intersect with the
debris-covered glacier, and morainic accumulations near the study transect, obscuring clear
distinctions between these features. At the upper end of the transect, exposed ice cliffs
indicate the presence of buried glacial ice. The transect location was chosen to evaluate
the continuity of buried ice between the exposed ice cliffs and the ice beneath the unstable
talus, downhill from the end of the debris-covered glacier.
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Figure 1. (a) Location of Shár Shaw Tagà (Grizzly Creek) valley within southwestern Yukon, Can-
ada, with the study area identified by a red rectangle. (b) Geomorphological interpretation of the 
study area. Terrain data are from ArcticDEM by the Polar Geospatial Center under NSF-OPP awards 
1043681, 1559691, 1542736, 1810976, and 2129685 [27]. Basemap credits: Esri, Maxar, Earthstar 

Figure 1. (a) Location of Shár Shaw Tagà (Grizzly Creek) valley within southwestern Yukon, Canada,
with the study area identified by a red rectangle. (b) Geomorphological interpretation of the study
area. Terrain data are from ArcticDEM by the Polar Geospatial Center under NSF-OPP awards
1043681, 1559691, 1542736, 1810976, and 2129685 [27]. Basemap credits: Esri, Maxar, Earthstar
Geographics, National Geographic, and the GIS User Community. Place names are given in Southern
Tutchone and English.
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were shown to remain within 3 m of each other. 
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2. Materials and Methods
2.1. Drone-Based GPR

During June 2023, a Radar Systems Zond Aero LF GPR was flown in a monostatic con-
figuration onboard a DJI M600 Pro drone along a 430 m transect (Figure 2). Three complete
passes of the transect were flown, each with one of the 50, 100, and 200 MHz unshielded
dipole antennas. A laser altimeter was used to set a target altitude of 5 m above the
ground, to prevent collision with boulders on the undulating terrain. The Zond Aero LF
radar was integrated with the DJI M600 using an SPH Engineering SkyHub 3 onboard
computer with firmware version 2.13.1 and UgCS version 4.15 flight planning software.
Drone-borne radargrams were georeferenced using the post-processed kinematic (PPK)
method, with signals collected by an onboard Emlid Reach M2 RTK module and an Emlid
Reach RS2+ base station. The pre-programmed flight paths of the drone followed the path
indicated in Figure 2 for the three antennas. The drone transect paths after post-processing
were shown to remain within 3 m of each other.

2.2. Manual Ground-Penetrating Radar

The Zond Aero LF system was operated in a bi-static configuration for ground-based
manual surveys, serving as a reference for the drone-based configuration. The detachable
nature of the antenna and receiver in the bi-static operation allowed for a common mid-
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point (CMP) survey at each of two manual transects to aid in layer identification and
thickness estimation. The first manual and CMP transects, “Manual 1” and “CMP 1,”
were conducted along the same 20 m span of the drone-based transect on the ice-cored
moraine and talus slope. The second manual and CMP transects, “Manual 2” and “CMP 2,”
were conducted on the debris-covered glacier in the upper portion of the transect near the
exposed ice cliffs. The antenna configurations for both drone-based CMP and manual GPR
transects are shown in the Supplementary Information in Table S1.

The Manual 2 GPR transect was aligned as close as possible with the path of the drone
but did not correspond perfectly to the drone-based transect due to the steep slope on the
debris-covered glacier (Figure 2b). The Manual 2 GPR transect spanned a 40 m path upslope
onto the debris-covered glacier. Unlike the CMP 1 transect, the 20 m CMP 2 transect did not
align with the Manual 2 transect. CMP 2 was conducted perpendicular to the manual transect,
roughly parallel to the slope of the debris-covered glacier for safety and practical reasons.
Conducting the CMP perpendicular to the slope at this location avoided the issue of varying
interface depth, allowing for a more consistent substrate beneath the CMP 2 transect.

2.3. Drone Photgrammetry and DEM

Aerial photogrammetry with 620 images of the study area was conducted using a DJI
Mavic 2 Pro within two days following the drone-based GPR data collection. Ground control
points (n = 9) and the ends of the CMP and manual transects were surveyed using an Emlid
Reach M2 RTK module connected to an Emlid Reach RS2+ base station. The orthomosaic
and digital elevation model (DEM) used for the survey map and terrain rectification of the
radargrams were produced using Pix4D Mapper and are shown in Figure 2b.

2.4. Radar Data Processing

Subsequent processing of drone-based and manual radargrams was conducted in
the Radar Systems Prism2 software version 2.70.05. All radargrams underwent the same
processing sequence: (i) background removal; (ii) Ormsby bandpass filter targeting the
central frequency +/− 50%; and (iii) linear gain adjustment for optimal readability. Re-
flections at layer interfaces were picked manually. In addition, terrain rectification was
applied to both the drone-based transects based on PPK outputs and to the manual transect
using elevations from the DEM produced for the study area. Calculation of velocities from
the CMP transects and depth correction followed methods used in comparable ice–debris
environments [13,28,29]. The layer velocities were applied across the drone-based transect,
enabling depths to be compared across the two methods. Interpretation of GPR facies
and debris thickness followed standard interpretation methods for debris-covered glaciers
(e.g., [6,30]). Processed radargrams without annotations can be found in the Supplementary
Materials of this article.

2.5. Measuring Buried Ice Heights and Depths

Velocities determined through the CMP analysis enabled buried ice heights and depths
of the ice base reflector to be compared between the drone-based and Manual 1 transects.
These heights and depths were calculated from the GPR traces by multiplying one-half the
two-way travel time between the top and bottom of ice and debris layers by the respective
velocities derived from the CMP analysis. The calculation of velocities allowed the depths
to the base reflector and the height of the buried ice to be calculated. The interfaces between
each layer for calculating the two-way travel time were manually picked from the data.
Depth measurements were taken at points 0 m, 10 m and 20 m along the CMP 1 transect
and compared to the same locations in the drone-based radargrams. These locations were
chosen to compare the results at three (3) points evenly spaced along the CMP transect.
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3. Results
3.1. Drone-Based Radargrams

The processed and annotated drone-based radargrams for all three frequencies are
shown in Figure 3. Three major areas of buried ice, B.I.1, B.I.2 and B.I.3, are identified along
the drone-based transects as voids of low reflection observed with all three antennas. The
detection of a base reflector beneath the ice bodies was possible using only the 50 MHz and
100 MHz antennas. The delineated shape of the ice bodies varies slightly from antenna to
antenna, with the 50 MHz antenna yielding the thickest debris estimates due to its inherent
low resolution. Surface multiples can be seen in the 100 MHz and 50 MHz radargrams
caused by repeated reflections from the near surface. This noise in the 100 MHz and 50 MHz
radargrams makes determination of the debris layer thickness, T, difficult to discern. On the
top of the debris-covered glacier, at B.I.2, the apparent thickness shown in the radargram
can be compared across the results from the three frequencies. In the 200 MHz radargram,
the debris layer appears thinner than that shown in the two lower frequencies, showing
a thickness closer to the field observation of approximately 30 cm depth at the top of the
debris-covered glacier.
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zoomed in by a factor of 1.5× to emphasize the differing levels of detail of debris thickness, T,
discernable across the three antenna frequencies. In (b), h1, h2 and h3 indicate buried ice layer
heights, and d1, d2 and d3 show the depths from the surface to the base reflector measured at the
locations corresponding to the beginning, middle and end of the CMP and Manual 1 transect. The
location of the Manual 2 transect is also indicated in (b).

3.2. Manual Radargrams

Each of the manual GPR transects surveyed show similar locations and thicknesses of
the ice masses (Figure 4). Comparing the results from the drone-based radargrams in Figure 3,
the manual GPR radargrams from the Manual 2 transect (Figure 4a–c), agree with the shape
and location of B.I.2. The improved quality of the manual transect radargrams is likely due to
the coupling between the antenna and the surface, reducing the signal loss and enabling the
200 MHz antenna to penetrate deeper into the debris-covered glacier. Radargrams from the
Manual 1 transect along the ice-cored moraine also capture the same shape and location of
the B.I.1 feature identified in the drone-based transects. The B.I.1 at this location is covered
by a thicker debris layer than what was found on the debris-covered glacier. Overall, the 200
MHz and 100 MHz radargrams show a 5–7 m thick layer of ice, while the 50 MHz radargram
is particularly noisy, confounding the identification of a clear ice layer.
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The radargrams collected at the two CMP transects were used to compute the relative
permittivity and the wave velocities and estimate the thickness of both debris and ice
layers (Figure 5). The 50 and 100 MHz CMP transects showed clear signal trajectories. The
200 MHz CMP transects did not provide clear separations between the different layers,
preventing the estimation of layer characteristics with this antenna. The values for the
thickness, velocity, and relative permittivity of the ice and debris layers at each CMP
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transect are presented in Table 1. The values of permittivity for ice range from 2.9 to 4.1
and debris primitivities range from 3.3 to 4.7.
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Table 1. Results of CMP analysis.

CMP 1 CMP 2
50 MHz 100 MHz 200 MHz 50 MHz 100 MHz 200 MHz

Debris Layer
Thickness (m) 2.9 3 N/A 2.6 1.6 N/A

Velocity (cm/ns) 13.8 14.1 N/A 15.6 16.7 N/A
Permittivity (dim) * 4.7 4.5 N/A 3.7 3.3 N/A

Ice Layer
Thickness (m) 9.4 7.6 N/A 13.6 9.8 N/A

Velocity (cm/ns) 14.8 17.0 N/A 16.6 17.8 N/A
Permittivity (dim) * 4.1 3.2 N/A 3.2 2.9 N/A

* Relative permittivity values are reported as dimensionless values, indicated by units of “dim”.

3.3. Height and Depth Measurements

At the 0 m, 10 m and 20 m distances along the 100 MHz Manual 1 transect, ice body
heights of h1 = 8.5 m, h2 = 7 m and h3 = 6.8 m were estimated. The 100 MHz frequency was
chosen for making comparisons between the airborne and ground observations since it was
the best compromise between depth and resolution. The 200 MHz radar did not have sufficient
penetration in the drone-based configuration and the 50 MHz radar sacrificed resolution.

The corresponding 100 MHz drone-based GPR heights sampled resulted in h1 =
10.3 m, h2 = 9.7 m and h3 = 7.7 m. Comparing the ice layer height measurements at each
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location, the mean absolute difference between the measurements is 1.8 m. Measurements
of the depth of the ice base reflector at the same locations were calculated by adding the
thickness of the surficial debris layer to the buried ice layer height. Total depths from the
Manual 1 transect were found to be d1 = 12.9 m, d2 = 10 m and d3 = 9.8 m. Drone-based
depths were calculated as d1 = 12.1 m, d2 = 11.8 m and d3 = 10.5 m. The mean absolute
difference between the depth measurements was found to be 1.1 m. Differences between
heights and depths measured with the drone and manual GPR are discussed further in the
discussion in Section 4.2.

4. Discussion
4.1. CMP Results

The relative permittivity values for ice across both transects range between 2.9 and 4.1,
aligning with commonly reported values in the literature. For example, Thomson et al. [31]
place relative permittivity for ice under debris between three and five, while Wu and Liu [29]
report values between three and four. The results indicate that CMP1 (4.7 to 4.5) and CMP2
(3.7 to 3.3) exhibit different relative permittivity for the debris layers, highlighting the variabil-
ity reported in the literature for such media [32]. Overall, the addition of CMP to the aerial
GPR acquired in this study enable high confidence in the layers of ice and debris identified in
the radargrams across the drone-based transect and allow ice thickness measurements.

4.2. Differences between Drone and Manual GPR Measurements

Discrepancies between the depths and heights measured in the drone and manual
radargrams can be linked to (i) limitations inherent to the airborne radar method used and
(ii) the uncertainty introduced by the surface and debris media which impact both GPR
methods. The mean absolute error is 1.8 m between the ice heights measured and 1.1 m
between the base reflector depths. It is important to note that there is still uncertainty asso-
ciated with the manual observations, so the manual measurements cannot be considered
ground truth. The uncertainty in georeferencing uncovered after post-processing the exact
position of the drone indicate that the measurements were not always taken at exactly the
same spot between the manual and drone-based surveys. Future work could be carried
out to improve transect positioning through RTK. Digging debris pits for ground truthing
would also allow for accurate validation of debris thickness measurements.

The sources of uncertainty associated with the drone-based operation alone limit the
performance of the drone radar compared to manual surveys, but these considerations
must be acknowledged when deploying drone-based radar beyond where manual surveys
would be possible. Drone-based GPR also enables much larger areas to be covered at the
same time, improving the efficiency of field surveys. In this case, it is important to consider
the tradeoffs in the data quality associated with an aerial GPR survey. The following
two sections address the possible uncertainties associated with the airborne method and
the field conditions.

4.2.1. Uncertainty Related to Aerial GPR Operation

The first noted source of uncertainty in the drone-based radargrams is the user identifi-
cation of the air/ground interface. When the antenna is decoupled from the surface during
an aerial GPR survey, the exact position of the ground is more difficult to determine due to
the separation of the antenna from the surface [33]. This error impacts the measurements
used in our study to locate the surface of the debris layer, which was used for calculating
the debris thickness and total depth of the ice base reflector.

The height of the drone above the surface also presents a challenge for the quality of
the results. Increasing the separation of the GPR antenna from the surface is known to result
in a lower signal to noise ratio (SNR) because of the increase in the effective antenna beam
pattern footprint [34]. This altitude effect reduces the precision that can be used to identify
small targets and causes subsurface features to have locational error since reflections will not
always come from directly beneath the antenna. The altitude of the drone varied due to the
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altimeter compensation lag over the rough debris surface, which contained large boulders.
This effect complicates the interpretation of the GPR through a variable layer of error.

Additionally, aerial GPR antennas that are decoupled from the surface present the
additional challenge of high power loss caused during the first reflection at the air/ground
interface [35]. The change in permittivity between the air and ground combined with the
debris surface roughness both contribute to power loss, which limits the penetration of
the radar. This factor contributes to the issue seen with the 200 MHz antenna used in the
drone-based configuration in the present study, where penetration depth is dramatically
limited when compared to the corresponding manual surface GPR transect. For example,
in the drone-based GPR in Figure 3, the location of the debris/ice interface is not clear and
indicated by a dotted line, but it is clearly visible along the Manual 1 transect in Figure 4.

Reflections from outside the survey plane are an additional consideration for airborne
radar surveys over steep terrain, such as the terrain at the study site at Shár Shaw Tagà.
The pitch and roll of the drone also contribute to additional reflections originating outside
the mapped path of the drone. Migration techniques have been described in the literature
to address these concerns [36], but these methods were not applied to the standard GPR
processing conducted to produce the radargrams used for this study. Migration was
not applicable for our study since it would involve the development of new techniques
to account for the chaotic surface media comprising various sized rocks and boulders
in addition to the surface topography. Future research could address these concerns to
improve radargrams obtained from an airborne GPR over steep and rough terrain.

The effect of the target altitude above the surface was not investigated in this study
due to the limited flight time permitted by field conditions and battery life. Additionally,
the high risk of collision with large boulders scattered on the steep slopes prevented testing
the GPR at lower altitudes. It can be concluded that the target altitude separation of 5 m
used for the drone-based transects contributed to these described errors of lower SNR and
diminished capacity to identify the ice–debris interface.

4.2.2. Other Sources of Uncertainty

Beyond the error originating from airborne GPR operation, conditions in the field
contributed to potential uncertainties. The first of these sources originates from the potential
misinterpretation of interfaces [30]. This misinterpretation could be caused by a potential
integration of small debris into the top layer of the ice, limiting the dielectric contrast
between the ice and debris in the radargrams and causing a weaker reflection. This effect
would be present with the data acquired using both methods but would have an increased
effect with the drone-based GPR which already experiences higher energy loss due to
antenna decoupling from the surface.

The manual GPR measurements presented additional potential uncertainty due to
difficulty maintaining a consistent antenna position over the surface [37]. Changes in angle
and height varied as the antenna was moved over the irregular rocky surface. The noisy
data from the 50 MHz radargram in Figure 4 can be explained by the technical challenge of
maintaining a consistent antenna position over the ground when handling larger antennas
exceeding 2 m in length over steep, unstable terrain. Accidental collisions of the antenna
with the surface were difficult to avoid when conducting the 50 MHz survey and, as a
result, caused the drone-based GPR to outperform the manual radar in this case.

The thickness of the surficial debris layer varied from 30 cm to a few meters across the
study area. Depending on the antenna frequency used, the minimum depth of investigation
varies based on the wavelength of the radar. The thinner areas of debris, especially at
the top of the debris-covered glacier where debris is as thin as 30 cm, would prevent the
two lower-frequency antennas from being able to resolve the debris–ice interface. Wave
theory indicates that the best vertical resolution that can be achieved is one-quarter of
the dominant wavelength, which would be around 0.75 m for the 100 MHz antenna [38].
This detection limit impacts the measurements of the debris thickness estimations and the
calculations of total ice body height reported in the results.
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If the 200 MHz radar had been able to identify the ice–debris interface, it could be
able to be used to measure debris thickness more accurately than the 100 MHz antenna.
However, the 200 MHz radar did not have sufficient penetration in the drone-based transect
to facilitate a direct comparison between the drone and ground-based radar transects.

4.3. Methodological Recommendations

The results of this study demonstrate that the detection of large continuous buried
ice bodies is particularly effective using drone-based GPR. The dielectric contrast of the
ice and the surrounding media at this site permits effective detection of the ice base
reflector. Improvements in processing and field collection could likely further improve the
measurement of the debris layer thickness given the difficulties seen with surface multiples
and complex reflections from the air/ground interface.

For geophysical investigations using drone-based GPR, ice detection is most effective
when operating the drone as close to the surface as possible, at slow speeds, with flat terrain
that has a high dielectric contrast between the media and ice. Thinner debris layers permit
easier detection of ice compared to thicker debris layers.

For thinner debris layers, higher-frequency radars should have sufficient penetration
to resolve the base reflector. For example, in this study, the 200 MHz drone-based radar
was able to detect the base reflector below the thinner debris near the Manual 2 transect
and was not able to detect the base reflector to the deeper debris along Manual 1 transect.
Specific frequencies for drone-based GPR investigations should be chosen specifically for
the field conditions present at a study site.

As discussed in the methods and results, the thickness of the debris layer was not
directly measured in this study and was not the focus of the investigation. However,
given the results seen with the surface multiples and difficulty discerning the debris layer
thickness using the drone-based GPR, it could be suggested that finer debris would likely
improve the determination of the surface reflector and could contribute to more effective
determination of debris layer thickness when compared to manual GPR.

5. Conclusions

This study demonstrates the effectiveness of drone-based GPR for detecting and
measuring buried ice where traditional manual GPR methods would not be possible. The
inclusion of the two manual transects with a CMP survey using the same radar system
provide a valuable comparison of the performance of the radar in airborne and ground-
based operations. Comparing the two methods, the drone-based radargrams agree with
the location and shape of buried ice detected in the manual GPR performed at the same
frequencies and locations. The addition of CMP along the two manual transects enabled
depths to be calculated accurately using the drone-based radar.

Across three measurements of the total height and depth of B.I.1, the drone-based
GPR is within 1.8 m of the height and 1.1 m of the depths determined using the manual
GPR on average. Despite these discrepancies, which can likely be improved upon with
additional processing and methodological improvements, the ability to detect buried
ice over complex and dangerous terrain provides significant opportunities for future
investigations of processes and changes in debris-covered glacier systems.

Acknowledging the inherent limitations in data resolution when performing GPR
with an elevated antenna that is decoupled from the surface, the drone-based methods
matched the detection ability of the manual radar. Notably, the 50 MHz drone-based radar
outperformed the manual antenna of the same frequency, a testament to the difficulty of per-
forming GPR surveys in challenging terrain. However, noise and signal loss caused by the
lack of antenna coupling with the surface when using the drone-based radar complicated
efforts to determine debris layer thickness in the radargrams. Future research directions
building upon this work point towards the application of more advanced algorithms for
processing radargrams to improve the near-surface signal quality, enabling more precise
measurements of debris layer thickness.
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Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/rs16132461/s1: Table S1: Configuration parameters for the
Zond Aero LF GPR system; Figure S1: The 50 MHz raw processed radargram; Figure S2: The 100 MHz
raw processed radargram; Figure S3: The 200 MHz raw processed radargram. Figure S4: Manual
Transect 1 50 MHz Raw. Figure S5: Manual Transect 1 100 MHz Raw. Figure S6: Manual Transect 1
200 MHz Raw. Figure S7: Manual Transect 2 50 MHz Raw. Figure S8: Manual Transect 2 100 MHz Raw.
Figure S9: Manual Transect 2 200 MHz Raw.
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