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Article

Failure Mechanism of Tensile CFRP Composite Plates with
Variable Hole Diameter
Pawel Wysmulski

Department of Machine Design and Mechatronics, Faculty of Mechanical Engineering,
Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland; p.wysmulski@pollub.pl

Abstract: Real thin-walled composite structures such as aircraft or automotive structures are exposed
to the development of various types of damage during operation. The effect of circular hole size on
the strength of a thin-walled plate made of carbon fibre-reinforced polymer (CFRP) was investigated
in this study. The test object was subjected to tensile testing to investigate the strength and cracking
mechanism of the composite structure with variable diameter of the central hole. The study was
performed using two independent test methods: experimental and numerical. With increasing
diameter of the central hole, significant weakening of the composite plate was observed. The study
showed qualitative and quantitative agreement between the experimental and numerical results.
The results confirmed the agreement of the proposed FEM model with the experimental test. The
novelty of this study is the use of the popular XFEM technique to describe the influence of the hole
size on the cracking and failure of the composite structure. In addition, the study proposes a new
method for determining the experimental and numerical damage and failure loads of a composite
plate under tension.

Keywords: CFRP composite; damage mechanics; crack propagation; tensile analysis; finite
element method

1. Introduction

The design of modern structures with optimised strength and stiffness parameters re-
quires the use of advanced technologies. This particularly applies to high-tech aerospace or
automotive structures in which the most beneficial solutions in terms of operation and dura-
bility can be obtained by e.g., replacing previously used materials with advanced composite
materials [1–3]. These primarily include polymer laminates reinforced with continuous
fibres, predominantly carbon fibre-reinforced plastics (CFRPs) and glass fibre-reinforced
plastics (GFRPs). Due to very favourable mechanical properties of these materials in rela-
tion to their own weight, it has become possible to use fibre composites in the production of
carrying elements in thin-walled structures (e.g., for covering reinforcement profiles) [4–8].
Laminates make it possible to shape the mechanical properties of designed components
in terms of their ability to carry the desired type of load. As a result, it is possible to
achieve very advantageous construction designs; this, however, requires the use of modern
testing methods that enable the structural performance to be analysed over the full range
of loading conditions [9–12]. Previous studies on composite structures reported in the liter-
ature mostly focus on analytical and numerical considerations, with analyses conducted on
structures with typical cross-sections, operating under ideal conditions and subjected to
simple loading cases: compression, shear, or simple bending. Only to a limited extent are
such considerations verified by experimental tests on real construction elements [13–15].

In layered composites (laminates), the state of stress is a complex issue because it
depends on the fibre configuration and varies from layer to layer [16]. Therefore, the
stresses induced by a hole in the laminate vary from layer to layer, and the classical
Kirsch problem for isotropic materials cannot be applied in such cases [17]. The currently
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popular numerical methods could help in such cases [18,19]. As is known from scientific
publications, the occurrence of holes in thin-walled structures is unavoidable, if only
for technological reasons [20–22]. The complexity of the above issue, resulting from the
possibility of designing the material properties of laminated composites, makes this topic
still valid for researchers. The literature [23–26] offers solutions to the problem of hole
formation in composite materials.

The extended finite element method (XFEM) eliminates the need for a conformal finite
element mesh [27]. The extended finite element method was first introduced by Belytschko
and Black [28]. It is an extension of the conventional finite element method based on
Melenko and Babuska’s concept of partition of unity [29], which allows local enrichment
functions to be easily incorporated into the finite element approximation. The presence of
discontinuities is provided by special enrichment functions in combination with additional
degrees of freedom. However, the finite element structure and its properties, such as
sparsity and symmetry, are retained. The use of the XFEM method makes it possible to study
crack initiation and propagation along any path without numerical model remeshing [27].
Moving cracks are modelled using one of two alternative approaches: the cohesive segment
approach or the linear elastic fracture mechanics (LEFM) approach [27,30,31]. Using these
techniques, crack initiation is defined up to the onset of cohesive degradation in the
enriched component, and the degradation stage occurs when the stresses or strains meet
the specified crack initiation criteria [32].

The present study analysed the effect of variable diameter of the central hole on the
behaviour of a thin-walled composite plate under tension. The study was carried out
on plates weakened by a central hole with diameters of 2 mm, 4 mm, and 8 mm. The
tensile tests were carried out over the full range of loading, from failure initiation through
crack propagation to complete failure of the composite structure [33–36]. The research
was carried out using two independent methods: experimental and numerical using FEM.
This approach made it possible to develop numerical models that closely reproduced real
plates [37–40].

The novelty of the research problem undertaken in this study is that it describes the
fracture and failure of a hole-weakened composite plate using the currently popular XFEM
technique. The effect of hole size on the strength of the composite plate is investigated. The
state-of-the-art Aramis measuring system is used in experiments. In addition, the study
proposes a new method for determining the crack initiation and failure loads of the compos-
ite plate under tension, and the results obtained thereby are verified numerically. A review
of the literature shows that many studies have used XFEM for isotropic materials [41–44].
However, there is a lack of studies describing the failure of real sandwich composites
(CFRPs) using the numerical XFEM technique. A numerical model created based on
experimental results can be used to analyse the failure process for such composite elements.

2. Object and Methodology

The test object was a thin-walled laminated composite plate. Holes were cut in the plate
with diameters of 2 mm, 4 mm, and 8 mm. The holes were used to weaken the structure and
to cause the composite to crack in a specified area during the tensile test. The test object was
made from a unidirectional HeXPly prepreg strip (from Hexcel) of carbon fibre-reinforced
composite in an epoxy matrix. The polymerisation process took place in an autoclave. The
curing process was carried out in a package vacuum of 0.08 MPa, overpressure of 0.4 MPa,
and autoclave temperature of 135 ◦C for 2 h. The laminate structure had a symmetrical
fibre arrangement of the composite layers [0/90/0/902/0/90/0]—Figure 1b.

Table 1 shows the mechanical properties of a single layer of CFRP laminate in three
orthotropic directions. The properties of the carbon–epoxy composite were determined
experimentally in compliance with the ISO standard and as described in [45]. This allowed
for obtaining real mechanical properties of the produced material, as they may differ from
the ideal properties specified by the manufacturer. The determined properties were used to
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define the material model in a numerical analysis conducted by the finite element method
using Abaqus.

Figure 1. Real composite plate with a drilled hole: (a) sketch with dimensions, (b) section layup,
(c) hole 2 mm, (e) hole 4 mm, (g) hole 8 mm, (d,f,h) specimen with contrasting pattern.

Table 1. Mechanical properties of CFRP.

Tensile Modulus Shear
Modulus

Poisson’s
Ratio Tensile Strength Shear

Strength
Compressive

Strength

E1 E2,3 G12,13,23 ν12,13,23 FT1 FT2 FS FC1 FC2

GPa MPa MPa – MPa MPa MPa MPa MPa

130.71 6360 4180 0.32 1867.2 25.97 100.15 1531 214

Figure 1a shows the test object, which consisted of 3 plates with dimensions of
16 mm (width) × 180 mm (length) × 1.048 mm (overall thickness). For each specimen,
an oval hole with a diameter of H = 2 mm (Figure 1c,d), H = 4 mm (Figure 1e,f), and
H = 8 mm (Figure 1g,h) was made in the centre of the plate. The specimens were painted
in contrasting patterns (Figure 1d,f,h). The samples were measured during the experiments
using a non-contact optical measuring method.

The ARAMIS optical measuring system is designed for non-contact displacement
measurements in planar and spatial components under load. It consists of a set of
cameras recording changes in the shape of the object under test and a suitably adapted
and programmed computer storing and processing the recorded images. Depending
on the configuration, i.e., the number and speed of cameras, the system can be used to
analyse displacement and deformation fields of flat or spatial elements under static or
dynamic loading.

3



Materials 2023, 16, 4714

The measurement principle is the same as in photogrammetry, i.e., on the basis of the
images, the spatial coordinates of selected points are determined. Measurement proceeds as
follows. A photo of the object in its undeformed state is taken, followed by a series of photos
corresponding to the successive loading stages of the object. Each of the photographs is
then compared with the output and a set of displacement values of selected points on the
surface of the object is created. The selected points are points of interest on the surface
of the object. They can be things such as spots, dots, or other colour changes naturally
occurring on the surface. If the surface is low-contrast without visible colour changes,
it is first painted with white paint with sufficient adhesion and then tinted, preferably
with black spray paint to create an irregular pattern. Using this irregular pattern, the area
analysis programme creates a grid of analysed points. These points are the centres of
so-called “facets”, i.e., the centres of small areas into which the entire analysed area has
been divided. The programme records the coordinates of these points, then determines
changes in their position and further determines deformations on this basis. The program
records the coordinates of these points and determines the changes in their position and,
on this basis, determines the deformations, logarithmic or Green’s.

The manufactured plates with a central oval hole were subjected to axial tensile testing.
The Cometech QC-505 M2F (Taichung City, Tajwan) universal testing machine (Figure 2
item 1) equipped with a load cell with a range up to 50 kN and an accuracy class of
0.5% (Figure 2 item 3) was used in the experiments. Specially designed wedge grips with
facings for flat specimens with a thickness ranging from 0.2 to 11 mm were attached to the
pivots of the measuring machine (Figure 2 item 4). They were used to constrain the test
specimen (Figure 2 item 5), which was inserted axially, 30 mm each into the upper and
lower grips. This made it possible to obtain a 16 × 120 mm test area of the plate. During
the experimental tensile test, the load and elongation of the plate hole were measured
with a constant upper crosshead speed (Figure 2 item 2) of 1 mm/min. In addition, the
displacement of the composite structure in the frontal plane of the plate over time was
recorded using the Aramis non-contact optical measuring system (Figure 2 item 6). This
system is equipped with a 20 M resolution camera (5472 × 3648 px) and has a working area
from 20 × 15 mm2 to 5000 × 4000 mm2, which allows for the sample to be observed with
images captured at up to 17 Hz. The use of this system made it possible to examine the
behaviour of the plate during the tensile test, causing it to crack and fail. The experiments
were conducted in accordance with the ASTM D5766 Standard Test Method for Open-Hole
Tensile Strength of Polymer Matrix Composite Laminates [46].

The numerical analysis was performed by the finite element method using the com-
mercial version of the Abaqus system [47]. An adequate FEM model corresponding to
the experimental sample was prepared. To that end, a CAD model of a 16 × 120 object
with a thickness of 0.131 mm was designed, with oval holes made at the centre point of
the plate with diameters of 2 mm, 4 mm, and 8 mm. The mechanical properties of the
material of the numerical model were assigned in accordance with Table 1. The structure
of the laminate was made by modelling the layers as separate solids. The FEM model
consisted of 8 solids of 16 mm (width) × 120 mm (length) × 0.131 mm (thickness) stacked
layers. For each solid, the fibre stacking orientation was assigned according to the laminate
configuration [0/90/0/90/90/0/90/0]. In order to speed up the FEM computational time,
the numerical model was limited to the test area of the specimen used in the experiment
(16 mm × 120 mm × 1.048 mm). Therefore, boundary conditions were defined for the
cross-sections of the FEM model. The lower cross-section was fully restrained by taking
away all degrees of freedom as Ux = Uy = Uz = URx = URy = URz = 0, while the upper
cross-section was blocked with two translational degrees of freedom as Ux = Uz = 0 and
with three rotational degrees of freedom as URx = URy = URz = 0. To apply tension, the
upper cross-section was assigned a displacement of 5 mm, as shown in Figure 3a. In
addition, the longitudinal edges of the plate were defined as Uz = 0. In this multilayer FE
model, each layer was solid and treated as a unidirectional continuous layer [48]. These
orthotropic laminae were connected through Tie relations to form a lamina, thus creating

4



Materials 2023, 16, 4714

perfectly connected but discontinuous interfaces between the laminae. Furthermore, this
multilayer FEM model allowed the behaviour of the lamina interfaces to be made explicit
in order to simulate the damage and failure process of the FRP composite laminate. When
configuring the XFEM analysis, the contact interaction property was selected for each layer
of the laminate in order to define the tensile crack surface behaviour. The interactions
of the FEM model are represented schematically in Figure 3b. The numerical model was
discretised with hexahedral solid elements of C3D8R type, having linear interpolation with
8 nodes and reduced integration. For structural meshing, partitions of the FEM model
were made and the finite element mesh density was increased around the circumference of
the circular hole, as shown in Figure 3c,d. The finite element size was adopted based on a
preliminary numerical analysis, which proved that reducing the finite element size did not
affect the quality of the numerical results. Reducing the size of the elements near the holes
did not affect the results, but largely increased the CPU time.

Figure 2. Experimental test stand: 1—testing machine, 2—upper crosshead, 3—measuring head,
4—wedge grips, 5—test specimen, 6—Aramis system.
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Figure 3. Numerical model: (a) implementation of boundary conditions, (b) interlayer interactions,
(c) discretisation hole 2 mm, (d) discretisation hole 8 mm.
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Theory of XFEM

The use of the extended finite element method (XFEM) allows the study of crack
initiation and propagation without the need to re-mesh the model [27]. For crack analysis,
enrichment functions typically consist of asymptotic near-tip functions that capture the
singularity around the crack tip and a discontinuous function that represents the displace-
ment spike on the crack surfaces. The nodal displacement vector enrichment function u is
expressed as [49,50]

u =
N

∑
I=1

NI(X)

[
uI + H(X)AI +

4

∑
α=1

Fα(X)Bα
I

]
(1)

where NI(X) is the nodal shape function, uI is the nodal displacement vector of the
continuous part of the finite element solution, H(X) is the discontinuous jump function
across the crack surface; AI is the nodal vector of degrees of freedom; Fα(X) is the elastic
asymptotic crack tip function; Bα

I is the nodal vector of degrees of freedom. While the first
segment of the formula applies to all nodes in the model, the second segment is valid for
the nodes whose shape function support is intersected by the crack interior, and the third
segment is only used for the nodes whose shape function support is intersected by the
crack tip. Figure 4 illustrates the tangential and normal directions (with respect to the crack)
at various points along the crack interior as well as the crack apex. It also illustrates the
local polar coordinate system at the crack tip.

Figure 4. Normal and tangential vectors for a smooth fracture.

Asymptotic singularity functions are only taken into account when modelling sta-
tionary cracks in Abaqus/Standard. Within the moving cracks Fα(X) = 0 and the nodal
enrichment function, the displacement vector u is as follows:

u =
N

∑
I=1

NI(X)[uI + H(X)AI ] (2)

The discontinuous jump function across the fracture surface H(X) could be repre-
sented as follows [50]:

H(X) =

{
1 i f (X− X∗)· n ≥ 0
−1 otherwise

(3)

where X is the sample point (Gauss), X∗ is the point on the crack closest to X, n the unit
outward normal to the crack at X∗.
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Moving cracks are modelled in Abaqus using one of two alternative approaches: the
cohesive segment approach or the linear elastic fracture mechanics (LEFM) approach [27].
Crack initiation is defined to the onset of cohesive degradation in the enriched component.
In contrast, the degradation stage occurs when the stresses or strains meet certain crack
initiation criteria. One of these criteria is the maximum principal stress criterion (MAXPS),
which is expressed as follows:

F =
〈σMAX〉
σ0

MAX
(4)

where σ0
MAX is the maximum permissible principal stress.

The maximum principal stress ratio 〈σMAX〉 shown in the Macaulay brackets assumes
that the damage begins when the value equals 1:

{
〈σMAX〉 = 0 if σMAX < 0

〈σMAX〉 = σMAX if σMAX ≥ 0
(5)

3. Results and Discussion

An analysis of the effect of central hole diameter on the strength of the tensile plate
was performed in four stages. The process of plate deformation, failure initiation, crack
propagation, and failure of the CFRP composite material was described. The study proposes
a new method for determining the experimental and numerical damage and failure loads
of a composite plate under tension. The analysis was carried out using two independent
methods simultaneously: experimental and numerical.

3.1. Plate Deformation

The experimental tensile testing of a composite plate with variable-diameter hole
was conducted using the Aramis non-contact optical measuring system to measure the
displacement of the specimen during the whole test. In addition, this measuring system
made it possible to generate graphical displacement maps superimposed on real plates.
Figure 5 shows the elongation analysis results for the plates with 2 mm, 4 mm, and
8 mm diameter holes. The proposed experimental method allowed the elongation of the
specimens to be measured before complete failure. The highest elongation of 1.175 mm
was obtained for the plate with a central hole diameter of 2 mm, which accounted for 1.1%
of the elongation of its length (Figure 5a–c). On the other hand, the lowest elongation
of 0.91 mm (0.6% elongation) was obtained for the plate with an 8 mm diameter hole
(Figure 5h–j). In addition, the elongation of the hole was measured using the Aramis
system, yielding an elongation of 8.8% for the plate with a 2 mm diameter hole, 6.6% for
the plate with a 4 mm diameter hole, and 4% for the plate with an 8 mm diameter hole. The
experimental findings showed that increasing the diameter of the hole resulted in a decrease
in the total elongation of the plate. The experimental results were then compared with
the results of the numerical analysis. The deformations obtained with both test methods
used were found to be consistent. The maximum numerical elongation before failure
occurred for the same plate and was 1.175 mm (Figure 5c), while the minimum occurred
for the 8 mm diameter hole and amounted to 0.92 mm, which agreed with the experimental
measurements. An analysis of the results showed qualitative and quantitative agreement
between the experimental and numerical findings. The results confirmed the agreement of
the proposed FEM model with the experimental test.
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Figure 5. Hole elongation maps: (a,b) EXP_H_2 mm, (c) FEM_H_2 mm, (d,e) EXP_H_4 mm,
(f) FEM_H_4 mm, (g,h) EXP_H_8 mm, (i) FEM_H_8 mm.
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3.2. Crack Initiation

Figure 6 presents the onset of the cracking process in the laminate structure for all
tested plates. The numerical cracking process was determined by XFEM. The cracking
started when a value of 1 was reached according to the maximum principal stress ratio
criterion. For all tested plates, the damage of the composite structure initiated with trans-
verse cracking of the outer layer with a 0◦ fibre orientation in the area of the circular hole,
as shown in Figure 6a–c. It should be added that the damage criterion initiated cracking of
other laminate layers with a 0◦ fibre orientation.

Figure 6. Cont.
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Figure 6. Damage and crack propagation in the composite structure: (a) FEM_H_2 mm,
(b) FEM_H_4 mm, (c) FEM_H_8 mm.

3.3. Failure of the Composite

The experimental and numerical investigation was carried out over the full range of
tensile loading until complete failure of the composite. Figure 7a,c,e show the experimental
failure mode of the analysed plates with variable-diameter holes. The size of the hole did
not affect the mode of cracking; for all cases, the real specimen cracked in the expected area
where it had previously been weakened by the hole. The crack path passed across the plate
halfway along its length. The parallel numerical analysis showed the same failure mode, as
presented in Figure 7b,d,f. The crack propagation in the FEM model (Figure 6) initiated
in the same area as that observed in the experiment (Figure 7a,c,e) and proceeded in the
transverse direction. The strength of the plate with holes depended on the strength of the
layers with a 0◦ fibre orientation, which were the most stressed in the tensile test.

Figure 7. Cont.
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Figure 7. Cont.
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Figure 7. Complete failure of the laminate structure: (a) EXP_H_2 mm, (b) FEM_H_2 mm,
(c) EXP_H_4 mm, (d) FEM_H_4 mm, (e) EXP_H_8 mm, (f) FEM_H_8 mm.

3.4. Damage and Failure Loads

Tensile load as a function of specimen elongation was measured experimentally. The
experiments were extended to include a plate without a hole. This made it possible to
determine the working paths of the tensile plates over the full range of loading until failure.
The same characteristics were determined for the numerical model. This allowed validation
of the experimental and numerical working paths, which are summarised in Figure 8a–d.
For all cases, the numerical working path is stiffer than the experimental one, which is
due to the fact that the numerical model was not exposed to material imperfections that
may occur in the real plate. This approach allowed the damage load corresponding to the
initiation of laminate cracking and the failure load causing complete failure of the composite
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structure to be determined graphically for all cases under study. The damage load Pd(EXP)
corresponded to the first sudden increase in elongation measured along the working path,
while the failure load Pf(EXP) was determined at the point of sudden decrease in the tensile
load (Figure 8a–d). In the numerical analysis, Pd(FEM) and Pf(FEM) were determined in the
same way as in the experiment.

Figure 8. Cont.
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Figure 8. Work paths of the structure: (a) plate without a hole, (b) H_2 mm, (c) H_4 mm, (d) H_8 mm.

Table 2 presents the experimental and numerical damage and failure load values
measured for the plate without a hole and for the plate with a hole with diameters 2 mm,
4 mm, and 8 mm. For all cases, the numerical damage initiation load Pd(FEM) and the failure
load corresponding to complete failure of the composite due to cracking Pf(FEM) were higher
than the corresponding experimental loads Pd(EXP) and Pf(EXP). The highest stiffness was
obtained for the plate without a hole, for which Pd(EXP) was 9031 N and Pf(EXP) = 13,484 N.
In contrast, the lowest stiffness was obtained for the plate with an 8 mm diameter hole,
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for which Pd(EXP) = 2393 N and Pf(EXP) = 6299 N. The error in prediction between the
numerical and experimental values of the Pd load was in the range of <7% ÷ 15%>. The
error in prediction between the experimental and numerical failure load was in the range of
<6% ÷ 14%>. Based on the results, the percentage increase in the composite structure
failure load Pf(EXP) relative to the failure initiating load Pd(EXP) was determined. It was
found that after reaching the damage load value, the tensile real structure could still carry
a load increased by <49% ÷ 163%>. The largest increase in the failure load relative to the
damage load was obtained for the plate with an 8 mm diameter hole and the lowest for the
plate without a hole.

In order to demonstrate the influence of the hole on the tensile behaviour of the
composite plate, the experimental and numerical working paths for all tests are compared
in Figure 9. The experimental and numerical working paths show the expected agreement
between the results. The experimental paths reveal a decrease in the stiffness of the plate
with increasing hole diameter. The highest decrease in stiffness was observed for the plate
with an 8 mm diameter hole. For this case, the damage load Pd(EXP) (initiating cracking)
decreased by 73% and the failure load Pf(EXP) by 53% compared to the plate without a
hole. An analysis of the numerical working paths showed a similar effect of hole size
on the decrease in plate stiffness—Figure 9. The maximum decrease in the numerical
damage load Pd(FEM) was 72%, and the maximum decrease in the cracking load Pf(FEM) was
57% and was obtained for the plate with the largest hole diameter. The results showed
qualitative and quantitative agreement between the experiment and the numerical analysis.
The results also confirm the relevance of the developed numerical FEM/XFEM model to
the experiment.

Figure 9. Comparison of experimental and numerical working paths.
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Table 2. Damage load and failure load of the composite structure.

PLATE H_2 mm H_4 mm H_8 mm

Pd (EXP) [N] 9031 6894 3938 2393

Pd (FEM) [N] 10,153 7430 4659 2801

Pd (error in prediction) [%] 11% 7% 15% 15%

Pf (EXP) [N] 13,484 11,635 8954 6299

Pf (FEM) [N] 15,672 13,179 9650 6683

Pf (error in prediction) [%] 14% 12% 7% 6%

Pd (EXP) ÷ Pf (EXP)↑ [%] 49.31% 68.77% 127.37% 163.23%

Pd (FEM) ÷ Pf (FEM)↑ [%] 54.36% 77.38% 107.13% 138.59%

4. Conclusions

The proposed experimental method made it possible to measure the elongation of the
specimens before they underwent complete failure. The highest elongation of 1.175 mm
was obtained for the plate with a 2 mm diameter central hole, which accounted for 1.1% of
its elongation. On the other hand, the lowest elongation of 0.91 mm (0.6% of the specimen
elongation) was obtained for the plate with an 8 mm diameter hole. In addition, the Aramis
system was used to measure hole elongation, yielding an elongation of 8.8% for the plate
with a 2 mm diameter hole, 6.6% for the plate with a 4 mm diameter hole, and 4% for the
plate with an 8 mm diameter hole. The experimental findings showed that increasing the
diameter of the hole resulted in a decrease in the total elongation of the plate.

The size of the hole did not affect the mode of cracking; for all cases, the real specimen
cracked in the expected area where it had previously been weakened by the hole. The crack
path passed across the plate halfway along its length. The strength of the plate with 2 mm,
4 mm, and 8 mm diameter holes depended on the strength of the layers with a 0◦ fibre
orientation, which were the most stressed in the tensile test.

The study also proposed a new method for determining the experimental and nu-
merical damage and failure loads of a composite plate under tension. For all cases, the
numerical value of the damage initiation load Pd(FEM) and the failure load corresponding to
the total failure of the composite due to cracking Pf(FEM) were higher than the correspond-
ing experimental loads Pd(EXP) and Pf(EXP). The highest stiffness was obtained for the plate
without a hole, for which Pd(EXP) was 9031 N and Pf(EXP) = 13,484 N. In contrast, the lowest
stiffness was obtained for the plate with an 8 mm diameter hole, for which Pd(EXP) = 2393 N
and Pf(EXP) = 6299 N. The error in prediction of the numerical and experimental values of
the Pd load was in the range of <7% ÷ 15%>. The error in prediction of the experimental
and numerical failure load was in the range of <6% ÷ 14%>. The tensile real structure was
still able to carry a load increased by <49% ÷ 163%> after reaching the damage load value.
At the same time, the largest increase in the failure load with respect to the damage load
was recorded for the plate with an 8 mm diameter hole, while the smallest was for the plate
without a hole.

The largest decrease in stiffness was observed for the plate with an 8 mm diameter
hole. For this case, the damage load Pd(EXP) (initiating cracking) decreased by 73% and the
failure load Pf(EXP) by 53% compared to the plate without a hole. In contrast, the maximum
decrease in the numerical damage load Pd(FEM) was 72%, and in the failure load Pf(FEM),
it was 57% and occurred for the plate with the largest hole diameter. The results showed
qualitative and quantitative agreement between the experiment and the numerical analysis.
The results also confirmed the adequacy of the developed numerical FEM/XFEM model to
the experiment.

Future research will investigate the influence of composite material layer configuration
and the number of layers on crack propagation. As part of the research, experiments will be
performed and their results will be validated numerically using the popular finite element
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method (FEM). The research methodology and conclusions described in this paper will be
used in the future study.
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Abstract: This study investigated thin-walled plate elements with a central cut-out under axial
compression. The plates were manufactured from epoxy/carbon laminate (CFRP) with an asymmetric
layup. The study involved analyzing the buckling and post-buckling behavior of the plates using
experimental and numerical methods. The experiments provided the post-buckling equilibrium paths
(P-u), which were then used to determine the critical load using the straight-line intersection method.
Along with the experiments, a numerical analysis was conducted using the Finite Element Method
(FEM) and using the ABAQUS® software. A linear analysis of an eigenvalue problem was conducted,
the results of which led to the determination of the critical loads for the developed numerical model.
The second part of the calculations involved conducting a non-linear analysis of a plate with an initial
geometric imperfection corresponding to structural buckling. The numerical results were validated
by the experimental findings, which showed that the numerical model of the structure was correct.

Keywords: composites; critical state; finite element method; thin-walled structures; linear and
nonlinear analysis; stability of construction; matrix couplings

1. Introduction

Carbon fibre-reinforced polymer composites (CFRPCs) are among the most widely
studied lightweight materials. They are widely used in automotive, civil engineering [1,2]
and aircraft structures [3–7], among others. Due to their material properties, such as
a high strength-to-weight ratio [8,9], these materials are very popular as load-bearing
components [8–11]. Furthermore, their mechanical properties can be shaped by designing
specified characteristics and ply configurations for these materials.

Owing to their shape and the fact that they are usually thin-walled, plate elements
are particularly susceptible to stability loss [12–15]. Therefore, the determination of the
critical loads for the plates and the analysis of their behavior under dynamic loads are
very important parts of their strength analysis, which has been undertaken in a number of
studies [12,16,17].

It is worth emphasizing here that there are many numerical and experimental studies
on the stability of structures made of classical isotropic engineering materials, and their re-
sults are widely reported in the literature. In contrast, there are fewer studies investigating
the problem of conjugate buckling for plate structures made of composite materials. Fur-
thermore, there are no experimental studies investigating the buckling and post-buckling
behavior of asymmetric laminate plates.

In general, the analysis of layered plates is more complicated due to their anisotropy
and heterogeneity. However, with the development of computer techniques and numerical
programs, such as FEM, studies attempting to describe these aspects have begun to appear.
To give an example, one can mention here studies investigating the performance charac-
teristics for structures made of thin plates, both with open and closed cross-sections, with
reinforcements [18,19], initial geometric parameters [20] or cut-outs [21,22]. Special focus
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was placed on determining the effects of shape inaccuracy [9], the boundary conditions [23],
the geometric parameters of the structure [24] or the fibre arrangement [25]. Many of these
theoretical considerations were validated through experiments [22]. FEM analyses of the
behavior of plates were also conducted by Batoz et al. [26] and Cui et al. [27].

The stability of thin-walled plates made of composite materials was also investigated
by Kolakowski and Kowal-Michalska [28], Kolakowski and Krolak [29] and Kubiak [30,31].
These studies predominantly dealt with the problem of buckling in thin-walled composite
structures under compression. The above problems were solved by Koiter’s asymptotic
theory. Different approaches to stability analysis of laminated composite plates using the
Ritz method are presented in papers [32–34].

The problem of the stability of compressed thin-walled structures, including mixed-
mode buckling, was analyzed using the finite element method by Kubiak [30], as well as
by Bazant and Cedolin [35]. Examples of using FEM to solve the problems of the linear and
nonlinear stability of composite structures can be found in previous studies conducted by
the author [36,37], as well as in studies performed by Alfano and Crisfield [38], Kreja [39],
Kopecki [40], Mania et al. [41] and Teter and Kolakowski [42]. Numerical FEM simulations
of the behavior of composite structures under different loads were verified experimentally
by Debski et al. [43] and Banat et al. [44,45], among others.

The literature review shows that there are numerous studies on the problems of
deflection and stability. However, there is a lack of experimental studies on thin-walled
asymmetric plates with a cut-out and their use as elastic elements. Furthermore, there
are no experimental studies investigating the buckling and post-buckling behavior of
asymmetric elements, which is the novel aspect of the current work.

Therefore, the determination of the critical load value that causes the buckling of a
thin-walled structure is a very important research problem. The knowledge of this value
makes it possible to prevent the structure from premature failure due to a loss of stability
by its elements, a problem which was discussed, among others, in [36,46–49]. It is also
worth mentioning that this study involved using the FEM method, which is widely used in
many fields [50–56]. However, the numerically determined critical load value may only
yield an approximate estimation of the critical force because the numerical calculations
assume an ideal structure, without the geometric imperfections that occur in real structures.
This means that the analyzed numerical models of thin-walled structures should be further
validated experimentally. To that end, it is necessary to use approximation methods [57–59]
that enable the estimation of the critical load value based on the experimental results. In
this study, the straight-lines intersection method [60,61] was used to estimate the critical
forces.

This study investigated the buckling and early post-buckling behavior of compressed
thin-walled composite plates with a cut-out. The study involved determining the critical
load of a real structure using the straight-lines intersection method, based on the results
obtained using the ARAMIS system and analysis of the buckling and post-buckling be-
havior through the finite element method (FEM). The results showed that this approach
was effective for solving the problems of linear and nonlinear stability for thin-walled
composite structures.

2. Object of the Research

The study was conducted on rectangular thin-walled plates fabricated from an epoxy/carbon
composite material (M12/35%/UD134/AS7) through autoclaving [62]. The material proper-
ties of the CFRP laminate used for samples were determined experimentally in compliance
with the relevant ISO standards, as described in [63]. The mechanical properties of the
composite material are presented in Table 1. The plates were subjected to axial compression.
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Table 1. Material properties of the tested laminate.

Young’s Modulus [MPa] Poisson’s Ratio ν12 Kirchhoff’s Modulus G12 [MPa]

0◦ (E1) 90◦ (E2)
0.36

±45◦

143,530 5826 3845

The tested plates had a central rectangular cut-out with variable geometric parameters
and constant overall dimensions [64]. A schematic representation of the considered model
with its dimensions and ply arrangement is given in Figure 1.
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Figure 1. Schematic representation of the considered model: (a) geometric model, (b) real model with
ply arrangement.

Six plate models with different cut-out dimensions (20 × 100 mm, 30 × 100 mm,
40 × 100 mm, 30 × 120 mm) and three fibre arrangement angles (30◦, 45◦, 60◦) were
analyzed. The composite structure consisted of 18 plies; each 0.105 mm thick, in an
asymmetric arrangement with respect to the midplane. The considered ply layup is
presented in Table 2.
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Each plate model consisted of a core spread over the entire plate volume and vertical
strips arranged on both sides of the core along the longer edges of the plate (Figure 1b).
This ply layup was selected to ensure that flexural-torsional buckling would be the lowest
buckling mode of the plate, without additional forcing. The ply orientations were selected
using mechanical matrix couplings based on the studies conducted by Ch. York [65,66].
This concept was comprehensively described in the authors’ previous studies [68,69].

3. Methodology and Scope of the Study

The range of the conducted study included the analysis of the buckling and early post-
buckling behavior of a compressed thin-walled composite plate weakened by cut-outs of
various geometrical parameters and different fibre orientations. The study was performed
using both experimental and numerical methods. The experiments conducted on the
fabricated thin-walled laminate plates enabled the observation of the structure’s behavior
in the critical state and after the loss of stability. The numerical simulations conducted
in parallel with the experiments were aimed at developing adequate, experimentally
validated FEM models for simulating the buckling of a thin-walled laminated structure,
closely reproducing the real structure’s behavior.

3.1. Experimental

The experiments were carried out on a Zwick/Roell ZMART PRO universal testing
machine with a measuring range of up to 2500 kN, coupled with the ARAMIS system [70],
which enabled the collection of data in a graphical form and analysis of the deformation
and displacement [71]. The experiments were performed with a constant cross-bar velocity
of 2 mm/min at room temperature. The axially compressed thin-walled composite plates
were loaded with approximately 150% of the numerical critical load value. During the
compression process, the plate element was simply supported by specially designed and
manufactured grips mounted in the testing machine. The test stand with the mounted plate
sample is shown in Figure 2.

During the tests, the compressive force and the shortening of the sample in the
perpendicular direction to its cross-section were measured. The shortening of the sample
was measured at the top edge of the plate. The ARAMIS optical system was used to
measure the plate shortening. This system uses a series of digital images to read the
displacements taken during measurements at regular intervals by two cameras positioned
at an appropriate distance from the tested object. The cameras are placed on a special
tripod. This system is characterized by high resolution and high measurement accuracy.
After preparing the sample and setting up the tripod with the cameras, the system was
calibrated using a template with marked reference points. After the calibration, the first
photo of the sample was taken, which was the zero load state, as well the reference state,
against which all calculations were made for the subsequent images. The images were
captured in the Start/Mid/Stop Trigger mode until the measurement was completed. After
the measurement was completed, in order to start the analysis of the captured images,
the surface area (calculation mask) on which the calculations would be carried out was
determined based on the size of the facets (Figure 3). Each facet was assigned a unique
structure and coordinates, thanks to which they could be recognized in the images captured
during the loading process. The last step before the analysis was to manually select a
starting point from which the calculation process would begin.

Figure 4 presents a sample frame from a film generated based on the data obtained
with the ARAMIS system. By analyzing the frame, it is possible to determine:

- the values of the strains/main displacements in the specimen;
- changes in the specimen shape during the loading process.
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The post-critical equilibrium paths obtained from the measurements, illustrating the
relationship between the load and plate shortening, P-u, made it possible to determine the
critical load value, and thus to evaluate the structure’s performance in the early post-critical
range.
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3.2. Experimental Determination of the Buckling Load

Inaccuracies occurring during the experiments due to different factors—such as bound-
ary conditions and geometric imperfections of the structure, design of the test stand or
application of the load—make it difficult to precisely determine the value of the buckling
load. Therefore, it is necessary to use approximation methods that enable the estimation
of the buckling load value based on the experimental measurements. In this study, the
straight-lines intersection method was used to estimate the critical forces [61,72].

The application of the straight-lines intersection method consisted of the approxi-
mation of the post-buckling equilibrium path, which describes the relationship between
the load and sample shortening measured perpendicularly to the cross-section. To esti-
mate the approximate value of the critical force by solving two linear functions, the post-
buckling equilibrium path P-u in the early post-critical range—which were determined
experimentally—were used. The post-buckling equilibrium paths P-u were approximated
in selected intervals by two linear functions having the form [72]:

{
Pcr = P a1

a0
u + P

Pcr = P a2
a0

u + P
→ (Pcr; u) (1)

where a1, a2 are unknown function parameters, P is the applied load value, Pcr is an
unknown critical load value, u is the shortening of the plate corresponding to the critical
load.

The critical (buckling) load is determined based on the intersection point of the ap-
proximation function L1 with the second linear function L2, projected by the horizontal L3
on the coordinate system vertical axis of the post-buckling characteristic of the structure P-u
(Figure 5). The results obtained using approximation methods are not always unambiguous.
The degree of the approximated curve linearity is strictly dependent on the range of data
involved in the process of determining the critical loads. In addition, the result significantly
depends on the number of points with specific coordinates subjected to the approximation
stage.

In this study, the key determinant of the accuracy of the approximation process
was the correlation coefficient R2. This coefficient is used to determine the convergence
level between the approximating function and the selected range of the approximated
experimental curve. A higher value of the correlation coefficient ensured a higher accuracy
of the approximation process. In this experimental approximation of the post-buckling
paths, the minimum value of the correlation coefficient was assumed to be R2 ≥ 0.85.
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3.3. Numerical Model

The experimental investigation of the stability and post-buckling behavior was con-
ducted in parallel with the numerical modelling using the finite element method. The
numerical analysis was performed using the commercial ABAQUS® software. The scope of
the analysis included the investigation of the buckling and early post-buckling behavior up
to a value of ~150% of the lowest critical load value. The calculations for the critical state
included the solution of a linear eigenvalue problem, which led to the determination of the
lowest critical load value and the corresponding buckling mode. The maximum potential
energy condition was used to solve the eigenproblem. It was solved using the following
equation [30]:

([K] + λi[H]){ψ}i = 0 (2)

where [K] is the structural stiffness matrix, [H] is the stress stiffness matrix, λi is the i-th
eigenvalue and ψ is the i-th eigenvector of displacement.

When the {ψ}i value equals zero, this means that the solution is trivial and the structure
remains in the initial state of equilibrium. Equation (3) represents the eigenvalue problem,
which can help find n multiplier λ buckling load values and the corresponding buckling
mode.

|[K] + λi[H]|= 0 (3)

In the second part of the study, a nonlinear static analysis was performed. The initial
geometric imperfection was flexural-torsional buckling, and it was implemented with an
amplitude of 0.1 of the plate thickness. Although nonlinear analyses are carried out with the
progressive failure algorithm [67,73,74], this study only focused on the early post-buckling
range. In effect, the relationship between the load and column shortening P-u in the early
post-critical range could be determined. To solve the geometrically nonlinear problem, the
incremental-iterative Newton-Raphson method was used.

Numerical model discretization was carried out by means of shell elements with six
degrees of freedom at each node. In addition, 8-node shell elements (S8R) with a quadratic
shape function and reduced integration were used. More details about the numerical
analysis and the discretization process are given in [67,73]. A general view of the numerical
model is presented in Figure 6.
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The material properties of each layer of the CFRP were the same as those determined
experimentally (Table 1). The FEM model characteristics, such as the geometry, the method
of load application and the boundary conditions, were adopted as close as possible to those
in the experiments (Figure 2).

The boundary conditions for the numerical model reflected a simple support of the
compressed composite plate (Figure 4a). The boundary conditions were enforced by
constraining the movement of the kinematic degrees of freedom of the nodes located on the
top and bottom edges of the plate. The nodes located on the bottom edge had constrained
movement of two translational degrees of freedom Uy = Uz = 0 and of one rotational
degree of freedom URz = 0, but were allowed free rotation relative to the edge of the plate.
The top edge was assigned the same boundary conditions, additionally allowing node
displacement in the direction of loading, i.e., Uz = 0 and URz = 0. The vertical edges of the
plate remained free during the loading process. Axial compression was applied through
uniform loading of the top edge of the plate.

4. Results and Discussion

The experiments conducted on the axially compressed thin-walled plates provided
information that made it possible to establish a relation between the buckling of the
real structures and the external load. The experimental results allowed qualitative and
quantitative analyses of the pre-buckling and buckling behavior based on the obtained test
parameters. The buckling state was identified based on the obtained buckling mode and
its corresponding critical load. The experimental critical loads were used to validate the
numerical results.

Examples of the experimental and numerical flexural-torsional buckling modes ob-
tained for the tested plates are shown in Figure 7.

The results show good agreement in qualitative terms and confirm the stable behav-
ior of the tested plates in the post-buckling range. They also confirm that the selected
asymmetric configuration with couplings was correct. Examples of the post-buckling
flexural-torsional modes obtained for the compressed composite plate with a 40 × 100 mm
cut-out and 45◦ fibre arrangement angle and deflection maps are given in Figure 8.

28



Materials 2023, 16, 4948Materials 2023, 16, x FOR PEER REVIEW 9 of 17 
 

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 7. Flexural-torsional buckling modes obtained for the analyzed plates: (a) 45°_20 × 100 mm, 

(b) 45°_30 × 100 mm, (c) 45°_40 × 100 mm, (d) 45°_30 × 120 mm, (e) 30°_40 × 100 mm, (f) 60°_40 × 100 

mm. 

The results show good agreement in qualitative terms and confirm the stable behav-

ior of the tested plates in the post-buckling range. They also confirm that the selected 

asymmetric configuration with couplings was correct. Examples of the post-buckling flex-

ural-torsional modes obtained for the compressed composite plate with a 40 × 100 mm 

cut-out and 45° fibre arrangement angle and deflection maps are given in Figure 8. 

Figure 7. Flexural-torsional buckling modes obtained for the analyzed plates: (a) 45◦_20 × 100 mm,
(b) 45◦_30 × 100 mm, (c) 45◦_40 × 100 mm, (d) 45◦_30 × 120 mm, (e) 30◦_40 × 100 mm,
(f) 60◦_40 × 100 mm.

The measurements of the plate shortening made it possible to determine the post-
buckling equilibrium paths, which describe the relationship between the load and shorten-
ing, P-u (Figure 9). As mentioned above, all samples were tested until failure, according
to the progressive failure method, which is described in detail in [67,73,74], where some
of the results are reported. However, in the current work, the focus is on the analysis
of the buckling state and the determination of the experimental critical forces using the
approximation method. Therefore, the behavior in the low post-critical range is sufficient

29



Materials 2023, 16, 4948

for the analysis (Figure 10). As shown in Figure 10, the experimental results and FEM
curves show good agreement in terms of both quantity and quality.
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The experimental post-critical equilibrium paths served as a basis for determining
the critical load using the straight-lines intersection method. The key problem with this
approach is that the measuring range must be selected correctly in order to describe the post-
buckling equilibrium path, as this has a direct impact on the results. If the approximation
procedures are inappropriate, the experimental critical loads will significantly differ from
the numerical values. In addition, for a sufficient compliance of the approximation function
with the experimental curve, the approximation range should be selected in such a way as
to maintain a high value of the correlation coefficient R2 (R2 ≥ 0.85).

In the straight-lines intersection method, the post-buckling equilibrium path P-u was
approximated using two linear functions. The first one was used in the initial interval of
the experimental path (buckling), while the other was applied after a visible change in the
characteristic (post-buckling). The critical load value was determined as a horizontal line,
projecting the intersection point of the approximation functions onto the vertical axis of the
diagram (load axis). The critical load values obtained using the straight-lines intersection
method are given in Figure 11.
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The critical loads obtained using the approximation method were compared with the
eigenvalues determined through numerical analysis. The experimental and FEM critical
loads are listed in Table 3.

Table 3. Comparison of FEM and experimental critical loads.

Method 45◦_20 × 100 45◦_30 × 100 45◦_40 × 100 45◦_30 × 120 30◦_40 × 100 60◦_40 × 100

FEM [N] 735 444 333 394 533 247
straight-lines

intersection [N] 705 422 330 370 494 244

Difference [N] 20 22 3 24 39 3

Figure 12 shows a bar chart with the FEM and experimental critical loads obtained for
the tested samples. The highest agreement between the experimental and numerical results
was obtained for the 45◦_40 × 100 plate, while the lowest for the 30◦_40 × 100 plate.

It must be remembered that the numerical load values obtained through solving the
eigenproblem are upper estimates of the critical load. The agreement between the approxi-
mation and numerical critical loads causing a buckling of the thin-walled flat plates weak-
ened by a central cut-out ranges between 0.9% and 7.32% (Table 4). The greatest difference
between the experimental and numerical results was obtained for the 30◦_40 × 100 mm
plate. The smallest difference, of 0.9%, was obtained for the 45◦_40 × 100 sample. The
average error of the critical loads obtained using the FEM/EXP methods is ~4%, which is
an acceptable value as the experimental results represent a lower estimate of the buckling
state. The numerical and experimental results show high quantitative agreement, which
proves the correctness of the applied approximation method.
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(e) 30◦_40 × 100 mm, (f) 60◦_40 × 100 mm.
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Table 4. Difference [in %] between numerical and experimental critical loads.

Difference [%] 45◦_20 × 100 45◦_30 × 100 45◦_40 × 100 45◦_30 × 120 30◦_40 × 100 60◦_40 × 100

FEM/
straight-lines
intersection

4.08% 4.95% 0.9% 6.09% 7.32% 1.21%

5. Conclusions

In this study, the behavior of axially compressed thin-walled plate elements weakened
by a central cut-out was investigated. An attempt was made to determine the critical load
value based on the experimental post-buckling paths obtained using the straight-lines
intersection method. The experimental results were then compared with the numerical
critical load value determined using the finite element method. The comparison showed
high agreement between the experimental and numerical critical loads. This agreement
confirms that the proposed procedure can be employed to determine the critical load values
for real structures. The correctly determined critical load value of a thin-walled flat plate is
of vital importance for operational reasons because it helps prevent structural buckling.

The study has shown that the accuracy of the results strongly depends on the applied
approximation parameters. This particularly concerns the selection of an appropriate
approximation range and a high value of the correlation coefficient R2 in order to ensure
agreement between the experimental structural characteristics and approximation function.

The results provide important information about modelling thin-walled structures
made of composite materials. At the same time, they confirm that the numerical models are
designed correctly and are thus effective for both eigenproblem calculations and nonlinear
static analysis of an early post-buckling response. The results confirm that the numerical
model was designed correctly and thus made it possible to simulate the buckling and
post-buckling behavior of the compressed plates with a central cut-out.
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Abstract: The purpose of this research was the analysis of the stability of compressed thin-walled
composite columns with closed rectangular cross-sections, subjected to axial load. The test specimens
(made of carbon–epoxy composite) were characterized by different lay-ups of the composite material.
Experimental tests were carried out using a universal testing machine and other interdisciplinary
testing techniques, such as an optical strain measurement system. Simultaneously with the exper-
imental studies, numerical simulations were carried out using the finite element method. In the
case of FEA simulations, original numerical models were derived. In the case of both experimental
research and FEM simulations, an in-depth investigation of buckling states was carried out. The
measurable effect of the research was to determine both the influence of the cross-sectional shape and
the lay-up of the composite layers on the stability of the structure. The novelty of the present paper is
the use of interdisciplinary research techniques in order to determine the critical state of compressed
thin-walled composite structures with closed sections. An additional novelty is the object of study
itself—that is, thin-walled composite columns with closed sections.

Keywords: buckling; closed composite profiles; experimental studies; numerical simulations;
axial compression

1. Introduction

Thin-walled composite materials—carbon-epoxy laminates—are a special group of
structures that are used in the aerospace, automotive, or construction industries. Most often,
these thin composite materials are made using carbon fiber–epoxy resin (CFRP) [1,2] or glass
fiber–epoxy resin (GFRP) [3,4] configurations and are characterized by both open [5,6] and
closed cross sections [7–11]. The above-mentioned composite materials are characterized
by a certain behavior that occurs due to compression load [12,13]. The issue is commonly
known as loss of stability (buckling) [14,15] associated with the accompanying deformation
of the column. It is possible to distinguish several stages of compression of thin-walled
columns made of composites. Initially, the walls of the construction are only compressed
(pre-buckling stage), after which buckling occurs due to further loading (buckling stage),
and then, when the equilibrium path is stable, increasing loading is accompanied by an
increase in deflection (post-buckling stage) [16]. The issue of loss of stability has been
addressed in many scientific papers and is still relevant due to the possibility of modifying
the properties of the composite material [17–19].

Analysis of the critical state shows that the values of the failure load can even be
several times higher than the critical load [20–22]. The correct orientation of the fibers and
the number of layers can provide the thin-walled composite materials with a different range
of stiffness, which translates into the behavior characteristics of the construction [23–25].
Accurate analysis of the critical state allows us to determine the form of buckling and the
corresponding value of the critical load. In experimental studies, the value of critical load is
determined based on approximation methods presented in many scientific papers [26,27].
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These methods involve estimating the value of the critical load on the basis of experimental
equilibrium post-buckling paths. A detailed description of the methods for determining
the approximate value of the critical load is presented in many scientific papers, where a
group of results and the methods of analysis are presented [28]. For numerical simulations,
the critical load and the form of buckling are determined from the linear eigenproblem
solution [27].

The aim of analyzing the process of axial compression of composite columns with
closed cross-sections requires the use of several independent test methods. The evaluation
of the behavior of the structure in the case of experimental testing was based on a universal
testing machine, an acoustic emission testing system, and an optical system for measuring
the deformation of thin-walled composite materials [29,30]. Coupled tests based on several
independent methods make it possible to determine the limit states of the construction, the
deformations obtained, and the values of critical forces [31,32]. The current paper contains
a comparative stability analysis of two types of columns with closed cross-sections.

The novelty of the present research mainly includes:

• The use of interdisciplinary testing methods for structural stability assessment (testing
machine, optical deformation measurement system, numerical FEA simulations);

• Manufacture of a new object of research in the form of thin-walled carbon-epoxy
composite materials with closed sections;

• Study of the influence of the lay-up of the composite layers and the shape of the
cross-section of the composite materials on the critical state.

The manufactured thin-walled composite materials with closed sections made of
CFRP composite were developed through a project from the National Science Centre
(Poland)—project number 2021/41/B/ST8/00148.

2. Subject of the Study

The study focused on thin-walled composite profiles made of carbon fiber-reinforced
polymer (CFRP). Each profile consisted of eight layers of CFRP [33]. This paper de-
scribes two different types of profiles, denoted as B and C, with the following dimensions:
30 mm × 50 mm and 20 mm × 60 mm, respectively, with a wall thickness of 1.2 mm. The
profiles had a maximum height of 200 mm. The following stacking sequences were utilized:
B1/C1—[0◦/45◦/−45◦/90◦]s, B2/C2—[0◦/90◦/0◦/90◦]s, B3/C3—[45◦/−45◦/90◦/0◦]s,
B4/C4—[90◦/−45◦/45◦/0◦]s. The sequences of layer configurations were derived from
preliminary numerical simulations (which made it possible to predetermine critical loads
and the form of buckling in order to preserve variety in the study of construction stability).
For each of the layup configurations, three specimens were made. Note that every layout
was symmetrical with respect to the center surface, as indicated by the subscripts next to the
layout of the layer sequence. The columns were manufactured with autoclave technology
using prepreg tapes with the trade name: CYCOM 985-42%-HS-135-305 (Solvay, Tempe,
AZ, USA). For the production of the prepreg, epoxy resin type 985 was used, while the
reinforcement was high-strength (HS) carbon fibers with a density of 135 g/m2. The volume
fraction of the resin in the prefabricated material was 42%. Profiles were made by winding
a 305 mm wide prepreg tape at the desired angle, corresponding to the sequence of layers
in the final product, on a properly prepared inner core. The parameters of the autoclaving
curing process were set at a temperature of 177 ◦C and a pressure of 0.6 MPa and monitored
throughout the course of the process. The production of the profiles was carried out by an
external company specializing in making composite parts using an autoclave technique.
The expertise of the contractor resulted in top-quality profiles with high repeatability of
mechanical properties and dimensions. The quality of the profile fabrication was checked
by using several techniques, including the use of the Keyence VHX 970F digital microscope
(Keyence, Mechelen, Belgium) [34]. This microscope, equipped with a dedicated mobile
head, allowed thorough observation of the structure and digital image capture. Figure 1
shows examples of ready-made profiles for experimental studies.
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To obtain the material properties of the CFRP, test specimens for the determination
of material data were made in accordance with the ISO standards [35]. Static tensile tests
were carried out under the requirements and restrictions outlined in PN-EN ISO 527-5
(of 2010) [36] of which ASTM D 3039 [37] was the equivalent. Subsequent tests were
performed as static shear tests based on PN-EN ISO 14129 (of 2000) [38]—the equivalent of
ASTM D 3518 [39]. Finally, static compression tests were performed in accordance with
PN-EN ISO 14126 (of 2002) [40]; the American Standard equivalent was ASTM D 3410 [41].
The process of manufacturing the specimens, their preparation for testing, and the tests
themselves are described in detail in the paper [42]. The above-mentioned paper presents
the methodology for determining the required material parameters of CFRP extensively.
The data derived from these tests are shown in Table 1 [42,43].

Table 1. Material properties of the carbon–epoxy composite—average values (with standard deviation).

Mechanical Parameters Strength Parameters

Young’s modulus E1 [MPa] 103,014.11
(2145.73) Tensile Strength FTU (0◦) [MPa] 1277.41

(56.23)

Young’s modulus E2 [MPa] 7361.45
(307.97)

Compressive Strength FCU
(0◦) [MPa]

572.44
(46.20)

Poisson’s ratio v12 [-] 0.37
(0.17) Tensile Strength FTU (90◦) [MPa] 31.46

(9.64)

Kirchhoff modulus
G12 [MPa]

4040.53
(167.35)

Compressive Strength FCU
(90◦) [MPa]

104.04
(7.34)

- - Shear Strength FSU (45◦) [MPa] 134.48
(2.71)
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3. Experimental Study

Interdisciplinary research methods were used to perform the experimental tests. Ex-
perimental studies were conducted in order to determine the stability of composite materi-
als [42]. All the above-mentioned tests were conducted on a Zwick Z100 universal testing
machine (ZwickRoell GmbH & Co. KG, Ulm, Germany) [22,29]. The next stage of the
research was to run axial compression tests on thin-walled composite structures at room
temperature. The crosshead of the testing machine was moving at a rate of 1 mm/min. The
effect of the tests was to obtain the critical state by observing the formation of the buckling
of the profile and the subsequent determination of the critical load using approximate
methods [16,28]. To determine the critical force, one of the approximation methods was
chosen—the method of intersection of straight lines [26]. To determine the approximate
value of the critical load using this method, a load-displacement or, in other words, a
load-shortening curve for the chosen structure was required. The chosen method involves
approximating with a linear function two appropriately selected areas of the experimental
curve, one before the point of change in “stiffness” within the force-displacement curve
and the other after the change in “stiffness”. The selected areas cannot be arbitrary; the
requirement for the correct determination of the critical force by the method of intersection
of straight lines is the selection of the areas of the force-displacement characteristics that are
most nearly aligned with the straight line. Making the convergence between the two lines
as high as possible means keeping the correlation coefficient R2 as close as possible to the
value of 1. In practice, the value of the coefficient R2 cannot decrease below 0.95. The closer
to the value of 1 one is, the better the obtained results will be. Ideally, this coefficient is 1.
In order to correctly determine the critical force, the matrix method (determinant method)
was used.

As basic geometric relationships indicate, two lines that are not parallel to each other
intersect at a certain point. The point of intersection is located on both lines at the same time,
so the coordinates must concurrently satisfy the equations of both lines. These coordinates
can be obtained by solving a simple system of two linear equations:

{
A1x + B1y + C1 = 0
A2x + B2y + C2 = 0

(1)

where A1 and A2 are the values of the directional coordinates of the lines at x, B1 and B2 are
the values of the coefficients at y, while C1 and C2 are the numerical values that determine
the so-called free expression of the function.

For determining the intersection point, Equation (1) must be rearranged to the form
depicted in Equation (2): {

A1x + B1y = −C1
A2x + B2y = −C2

(2)

The system of first-degree equations in the form shown in Equation (2) with two
unknowns may be solved employing the method of determinants of matrices as follows:

W =

∣∣∣∣
A1 B1
A2 B2

∣∣∣∣ = A1·B2 − A2·B1 (3)

Wx =

∣∣∣∣
−C1 B1
−C2 B2

∣∣∣∣ = (−C1)·B2 − (−C2)·B1 (4)

Wy =

∣∣∣∣
A1 −C1
A2 −C2

∣∣∣∣ = A1·(−C2)− A2·(−C1) (5)

Under the initial assumptions that the above-mentioned lines are nonparallel, and for
W 6= 0, the system of equations is marked and has exactly a single solution:
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{
x = Wx

W
y =

Wy
W

(6)

where x and y are the coordinates of the intersection point of two straight lines.
Consequently, the approximation method made it possible to determine the approxi-

mate value of the critical load within the experimental load-shortening curve.
Moreover, experimental studies also allow one to determine the path of post-buckling

equilibrium. Such studies are carried out until the complete failure of the specimen and
provide an opportunity to capture the ultimate failure force, i.e., the maximum load
that the profile can carry. These tests were conducted on a universal testing machine,
as mentioned elsewhere. The total number of specimens tested was 24 (12 specimens
of type B and 12 specimens of type C). Axial compression tests were performed using
special heads with flat working surfaces that were parallel to each other. These heads were
rigidly attached to the bottom of the testing machine and to the top crosshead. Figure 2a
illustrates the test stand with the heads installed on the machine. In addition, a vision-based
system for measuring the deformation of the profile at the very moment of critical load
application—the ARAMIS 2D digital image correlation system [44,45]—was used. The use
of the referred device enables, in particular, the observation and measuring of deformations
at the moment of the loss of stability of the structure (buckling). Figure 2b presents the
test stand with the vision system employed. In order to obtain valid deformation values
using the ARAMIS 2D system, dedicated non-reflective, red-colored mats were used as a
background for the tests. When too much illumination is applied to the specimen during
the test, unwanted overexposed areas appear within the composite profile, which have an
adverse effect on the deformation registration of the structure. The use of a non-reflective
background eliminated the problem with overexposed areas due to the fact that the mats
absorb excess illumination and neutralize this unwanted effect. In order to obtain accurately
captured images of profiles in the axial compression test, proper lighting is required, which
was achieved using LED lamps.
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Figure 2. Experimental test stand: (a) experimental test heads, (b) general view of the test
stand—Zwick Z100 testing machine with Aramis 2D system.

In addition, the AMSY-5 acoustic emission measurement system was also used in
the experimental studies. By recording signals such as number of counts, number of hits,
amplitude and energy, the state of the structure and its damage could be assessed.
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Experimental studies made it possible to determine both the values of critical loads
and the structure’s buckling forms. The former was determined by means of the method of
the intersection of straight lines while the latter was established through the structure’s
deformations obtained using a digital image correlation system during the tests.

4. Numerical Simulations

Numerical studies were based on the finite element method and were conducted
using Abaqus software (Abaqus 2023, Dassault Systemes Simulia Corporation, Velizy
Villacoublay, France). The numerical studies used a Lamin-type material model, the data
of which was described in more detail during the presentation of the research subject. All
numerical studies were carried out in two steps. The first stage was determining the linear
stability of the structure (buckling) within the framework of which the linear eigenproblem
was solved, based on the criterion of minimum potential energy. In view of the above,
the buckling form of the thin-walled composite column was determined, along with the
determination of the value of the critical load, corresponding to the obtained buckling form.
The value of the critical load was determined by defining the unit load of the structure,
which made it possible to determine the critical state [29]. The following is the relationship
that allows the calculation of the critical load (7), it comes directly from the documentation
of the FEM software (Abaqus 2023):

(
KNM

0 + λiKNM
∆

)
vM

i = 0 (7)

where KNM
0 is structural stiffness matrix relating to the baseline (includes preload effects

PN), KNM
∆ refers to the differential matrix of initial stress and load stiffness caused by the

incremental loading pattern (QN), λi illustrates the eigenvalues, vM is the buckling mode
(known as the eigenvectors), M and N refer to degrees of freedom M and N of the whole
model, and i refers to the I th buckling mode. Furthermore, the critical buckling loads
represent then PN + λiQN. Additionally, vM is normalized vectors (do not reflect the actual
quantities of strain at critical load). They are normalized so that the maximum component
of displacement is 1.0. When all components of displacement are zero, the maximum
component of rotation is normalized to 1.0. Once damage is initiated, further loading of
the composite structure will degrade the stiffness parameters of the material.

The numerical model consisted of a composite structure and non-deformable plate
elements, which allowed correct modelling of the boundary conditions. The composite
column with rectangular cross-section consisted of eight layers of composite material
(CFRP) of equal thickness for both B- and C-type specimens. The numerical model in-
cluded four different arrangements of fiber composite orientation shown in Figure 3. The
composite structure had the same geometric parameters regardless of the arrangement
of the composite material layers used. Both experimental studies and numerical simula-
tions considered the following cases of arrangement of composite material layers: B1 and
C1—[0◦/45◦/−45◦/90◦]s, B2 and C2—[0◦/90◦/0◦/90◦]s, B3 and C3—[45◦/−45◦/90◦/0◦]s,
B4 and C4—[90◦/−45◦/45◦/0◦]s, as shown in Figure 3.

The discrete model was formulated using Continuum Shell elements (with a physical
representation of the thickness of the composite material, which included eight layers of
composite material), whereas the plate elements serving as supports were modelled using
Shell elements. The composite structure consisted of SC8R-type finite elements (8-node
quadrilateral continuous general-purpose shell in-plane, reduced integration with hour-
glass control, finite membrane deformations, having three translational degrees of freedom
per computational node). In contrast, the supports were defined by non-deformable finite
elements of type R3D4 (4-node three-dimensional rigid quadrilateral, having six degrees
of freedom (three translational and three rotational) per computational node). A mesh
density of 2 mm was used for the composite structure, while 2.5 mm was used for the
non-deformable plates. The discrete model consisted of 10,320 finite elements (9200 linear
hexahedral elements of type SC8R and 1120 linear tetrahedral elements of type R3D4).
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Contact properties representing the interaction of the contacting surfaces were reflected
by using normal and tangential contact (friction coefficient 0.2). To represent the correct
behaviors of the structure, boundary conditions were applied by assigning the load to refer-
ence points assigned to the lower and upper non-deformable plate, respectively. The upper
plate, acting as the loading element, had all degrees of freedom locked, with the exception
of the displacement relative to the Z axis, on which the load was applied. The bottom plate
serving as the base had all rotational as well as translational degrees of freedom locked.
The load was realized with a displacement relative to the Z axis. A discrete model of the
structure with defined boundary conditions is shown in Figure 4. The numerical model
presented below was used to perform a simulation using the finite element method of
stability (buckling) of thin-walled structures.
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5. Research Results

In the course of the experimental research and numerical simulations using the finite
element method, it was possible to assess the stability of thin-walled composite struc-
tures, which is important for the evaluation of composite structures for the use of such
components in the aerospace or automotive industries. Experimental research used interdis-
ciplinary testing techniques to assess the structural stability, while in the case of numerical
simulations, it was possible to determine critical (buckling) states using an advanced model
of the composite material.

The main purpose of the research conducted was to analyze the critical state. The
research included both an experiment on physical specimens and a numerical study using
the finite element method. The analysis of the critical state for physical specimens was
carried out using a universal testing machine, where the occurring form of buckling was
observed in axial compression of the structure using an optical strain measurement system,
while the critical load values were determined based on the approximation method of
intersecting straight lines. The method of determining the critical load for the described
method is presented in Equations (1)–(6) in Section 3. The procedure for estimating the
critical load values for all experimentally tested specimens was the same. To determine
the critical load value, we relied on load-displacement curves obtained from bench tests.
The effective approximation ranges for the experimental curves (the range before and after
the change in the “stiffness” of the experimental curve) were approximated by using linear
functions while maintaining the correct correlation coefficient between the approximation
functions and the selected approximation ranges at the highest possible level of R2 ≥ 0.95.
All tested cases obtained a coefficient value that was significantly higher, oscillating above
R2 ≥ 0.99, which indicates the high accuracy of the realized tests. Therefore, linear ap-
proximating functions were determined, which allowed further calculation of approximate
values of critical forces. The value was determined by solving a system of equations, that
is, determining the point of intersection of the approximating functions. As an example of
the first sample B1_1, the methodology for determining the critical load approximation is
presented, in which two approximation functions are initially compared using a system
of equations: {

A1x + B1y + C1 = 24, 008.79x− 1y− 1622.46 = 0
A2x + B2y + C2 = 16, 798.83x− 1y + 4850.59 = 0

(8)

To determine the point of intersection, the notation resulting from Equation (8) must
be transformed to another form, consistent with the following notation (9):

{
A1x + B1y = −C1 ↔ 24, 008.79x− 1y = 1622.46

A2x + B2y = −C2 ↔ 16, 798.83x− 1y = −4850.59
(9)

The obtained system of first-degree equations with two unknowns is solvable by the
matrix determinant method (10)–(12):

W =

[
A1 B1
A2 B2

]
↔
[

24, 008.79 −1
16, 798.83 −1

]
= −7209.96 (10)

Wx =

[−C1 B1
−C2 B2

]
↔
[

1622.46 −1
−4850.59 −1

]
= −6473.05 (11)

Wy =

[
A1 −C1
A2 −C2

]
↔
[

24, 008.79 1622.46
16, 798.83 −4850.59

]
= −143, 712, 226.41 (12)
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With the initial assumption that the aforementioned lines are not parallel, with W 6= 0,
the system of equations is determined and has exactly one solution (13):

{
x = Wx

W = 0.90
y =

Wy
W = 19, 932.46

(13)

With the method described above, the approximate critical load value was determined
for the first specimen of type B, designated B1_1. Thus, it was determined that the critical
load value, causing loss of stability of the thin-walled composite structure, is approximately
Pcr = 19,932 N and occurs when the structure is shortened by u = 0.90 mm (vertical displace-
ment of the crosshead of the testing machine). The above-described method was used to
derive the critical load values for all specimens in the experimental tests. Figures 5 and 6
show graphically how the critical load was determined for the six selected specimens, i.e.,
B1 and C1 (three specimens of each column type).
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Figure 5. Experimentally determined critical load: (a) specimen B1_1, (b) specimen B1_2, (c) speci-
men B1_3. 
Figure 5. Experimentally determined critical load: (a) specimen B1_1, (b) specimen B1_2, (c) specimen
B1_3.

In Figures 5 and 6, the depicted lines indicate successively: red dashed line—approximation
function, blue solid line—experimental curve, red solid line—effective range of approxima-
tion, black dashed line—line representing critical load. The determined values of critical
forces made it possible to compare the tested specimens in terms of the influence of the
arrangement of the fiber composite layers on the stability of the structure. In order to better
present the obtained experimental results, the values were presented in Tables 2 and 3 for
specimen types B and C, respectively.
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Table 2. Critical state results for column type B—experimental studies.

Specimen Type
Specimen No.

1 2 3 Average
Value

B1 19,932 N 19,716 N 19,837 N 19,829 N

B2 18,544 N 18,892 N 18,771 N 18,736 N

B3 21,654 N 22,054 N 22,133 N 21,947 N

B4 16,992 N 17,665 N 16,666 N 17,108 N
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Figure 6. Experimentally determined critical load: (a) specimen C1_1, (b) specimen C1_2, (c) specimen
C1_3.

Table 3. Critical state results for column type C—experimental studies.

Specimen Type
Specimen No.

1 2 3 Average
Value

C1 14,445 N 14,945 N 14,947 N 14,779 N

C2 13,818 N 13,352 N 13,284 N 13,485 N

C3 16,487 N 18,041 N 17,075 N 17,201 N

C4 13,864 N 13,656 N 13,091 N 13,537 N

It was determined that the highest critical load values were obtained by the B3 and C3
type profiles—characterized by composite material layer arrangements [45◦/−45◦/90◦/0◦]s,
where the average critical load value was Pcr = 21,947 N for the B3 model and Pcr = 17,201 N
for the C3 model. The composite columns with the lowest critical load were characterized
by B4 [90◦/−45◦/45◦/0◦]s and C2 [0◦/90◦/0◦/90◦]s, where the average load values were
Pcr = 17,108 N and Pcr = 13,485 N, respectively. In describing the type C column, it is
worth noting that models C2 and C4 had very similar values of critical loads. In the case
of specimens C2_3 and C4_3, it was the C4 column that obtained a lower value of critical
load, according to Table 3. Based on the results of the average values of critical load, it was
determined that specimens of type B3 showed about 1.28 times higher load than specimens
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of type B4, in the case of model C it was 1.28 for specimens of type C3 and C2, respectively.
Analyzing the extreme results, i.e., the highest value of critical load (sample B3_3) and the
lowest value of critical load (sample B4_3), it was determined that the ratio of maximum
to minimum load was 1.33. A similar comparison of extreme values for column type C
showed a ratio of load values of 1.38 between samples C3_2 (Pcr = 18,041 N) and C4_3
(Pcr = 13,091 N).

It was also noted that buckling of the structure occurs at different deflection values,
i.e., in the case of type B3 profiles, it occurs when the structure is shortened by u = 0.95 mm,
while in the case of type B4 profiles, it occurs when the structure is shortened by u = 0.81,
which is about a 0.14 mm difference between the above-mentioned structure types. In the
case of the type C column, the extremes of deflection at which the loss of stability occurred
were u = 0.91 mm (C3) and u = 0.55 (C2) on average. Thus, it was concluded that the
arrangement of fiber composite layers has a major impact on the stability of thin-walled
composite structures with a closed square section. In addition, it is noticeable that there
are significant differences in the values of critical loads and deflections at which stability is
lost for the two types of columns analyzed (B and C). The thin-walled column with a cross-
section of 20 × 60 mm (type C) was characterized by a lower critical load. The described
effect is observed when comparing all layer arrangements (1–4) shown for columns B and
C of Tables 2 and 3.

In addition, a qualitative evaluation of the critical condition was carried out in the
experimental study. The study consisted of recording buckling forms obtained by capturing
images of each type of composite profile during loss of stability (buckling), as well as
recording buckling forms using an optical strain measurement system—Aramis 2D. In
the case of the Aramis 2D optical system, it was necessary to use special filters applied
directly in the software, highlighting the buckling form (registration of deformations in the
longitudinal direction of the structure with a median filter). The registered experimental
buckling forms are shown below (Figures 7 and 8).
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Figure 7. Loss of structural stability—experimental studies: (a) specimen type B1, (b) specimen type
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During the execution of the experimental tests, it was observed that for the tested
profiles there were specific numbers of half-waves in the longitudinal direction of the
column: B1—three half-waves, B2—four half-waves, B3—five half-waves, and B4—seven
half-waves. In the case of the C-type model, a different number of half-waves was observed
for specific layer arrangements, whereas the values obtained reflected the results obtained
with numerical simulations using FEM.
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For numerical simulations using FEM, the critical state analysis was carried out based
on the solution of a linear eigenproblem. During the preparation of numerical models, the
effect of mesh density on the value of critical load was made (Figure 9). The study was
carried out on a sample specimen B1 that made it possible to estimate the value of critical
load—the most consistent with experimental results (a mesh density of 2 mm was adopted).
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The study of the critical state for numerical calculations made it possible to determine
the geometric form of buckling and the corresponding critical load values for each stacking
sequence of the composite material, as shown below (Figures 10 and 11).

The study of the critical state of thin-walled B- and C-type columns showed high
qualitative and quantitative convergence of the findings. The results of the numerical
analyses made it possible to determine the forms of buckling and the corresponding critical
load values. Therefore, the following results were determined for specimens with different
fiber arrangements: specimen B1—three half-waves with critical load value Pcr = 20,359 N,
specimen B2—four half-waves with critical load value Pcr = 19,556 N, specimen B3—five
half-waves with critical load value Pcr = 22,336 N, and specimen B4—seven half-waves
with critical load value Pcr = 17,753 N.
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Figure 10. Loss of structural stability—numerical studies: (a) specimen type B1, (b) specimen type
B2, (c) specimen type B3, (d) specimen type B4.

Similar results were obtained for C-type columns. The values of the critical forces
achieved and the number of half-waves are as follows for subsequent arrangements of
composite layers: specimen C1—three half-waves with critical load value Pcr = 15,170 N,
specimen C2—three half-waves with critical load value Pcr = 14,037 N, specimen C3—five
half-waves with critical load value Pcr = 18,221 N, and specimen C4—six half-waves with
critical load value Pcr = 13,937 N. It is worth noting that the number of half-waves obtained
for layer arrangement 1 and 3 was the same; however, the loss of stability for type C
columns occurred at a critical load 4–5 kN lower than for type B columns.

Qualitatively, the experimental tests and numerical simulations showed a high level
of agreement. The high qualitative agreement between the results of numerical simulations
and bench tests is shown in Table 4.
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Based on the tests conducted, it was observed that the results of the numerical sim-
ulations slightly exceeded the value of the obtained forces in experimental tests. Higher
values of critical loads in the case of simulations were due to the fact that in numerical
simulations perfectly reflected physical models were considered but without geometric
imperfections due to manufacturing technology. These models were characterized then by
a slightly higher stiffness, which translated into the values of the obtained forces. A direct
comparison of the results of the two types of analysis showed a discrepancy in the range
of 2–6%. In the case of type C3 specimens, the critical load obtained in FEM simulations
was 1.06 times higher than that obtained from the average result (of three specimens) from
experimental tests. The remaining results had a much smaller error, indicating a high
convergence of the obtained quantitative results. The highest value of critical load was
observed for sample type B3: Pcr = 22,336 N—FEM, Pcr = 21,947 N—mean value EXP.
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Table 4. Critical state results—comparison of experimental studies and numerical simulations.

Specimen Type Average Value Pcr
(EXP) [N] Pcr (FEM) [N] FEM/EXP

B1 19,829 20,359 1.03

B2 18,736 19,556 1.04

B3 21,947 22,336 1.02

B4 17,108 17,753 1.04

C1 14,779 15,170 1.03

C2 13,485 14,037 1.04

C3 17,201 18,221 1.06

C4 13,537 13,937 1.03

The findings presented in this paper were the result of research work carried out
within the framework of a project financed with resources from the National Science Centre
with registration number 2021/41/B/ST8/00148.

6. Conclusions

The research presented in this article constitutes a buckling analysis of thin-walled
composite columns with rectangular cross-sections. The study of two types of columns
(B and C) investigated four different layer arrangements (lay-ups). The analyses carried
out involved physically manufactured structures as well as numerical simulations using
the finite element method. The research was carried out using interdisciplinary testing
techniques using a universal testing machine, an optical deformation measurement system,
and numerical simulations using FEM. Evaluation of the achieved results was conducted
qualitatively (percentage discrepancies) and quantitatively (several samples of profiles with
the same layer stacking). The study showed that the highest stability is characterized by
columns with an arrangement of layers defined by the number 3 [45◦/−45◦/90◦/0◦]s for
both type B and C columns. It is worth noting that thin-walled structures with a shape closer
to a square (type B) show higher values of the critical load at which buckling of the column
occurs. Thin-walled structures of type B showed an average of 4–5 kN higher critical load
value than type C columns. The specimens characterized by the lowest critical load values
had a lay-up of [0◦/90◦/0◦/90◦]s for the type B column and [90◦/−45◦/45◦/0◦]s for the
type C column. Noteworthy is that the type C column with a cross-section of 20 × 60 mm
had similar critical load values for the C2 and C4 systems. All the results obtained through
the numerical analyses as well as the bench tests are characterized by high quantitative and
qualitative agreement. The presented results describe the critical condition of thin-walled
composite columns, and this is the first stage of the work. The next stage of the work in
the next article will realize the study of the load capacity of the structure using numerical
simulations, taking into account the failure of composite materials such as CZM, XFEM,
PFA, or LaRC05, among others [46–49].
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Abstract: Concrete, known for its high strength, durability, and flexibility, is a core ma-
terial in construction. However, defects such as voids and honeycombing often occur
due to improper pouring or vibration, weakening the concrete’s strength and affecting its
long-term performance. These defects typically require costly repairs. Therefore, timely
identification and repair of such early defects is crucial for improving construction qual-
ity. This paper proposes a method for non-destructive detection of honeycomb defects
in concrete using infrared thermography (IR) during the hydration stage. By analyzing
the temperature differences between defect and non-defect areas based on the tempera-
ture distribution generated during hydration, defects can be detected. Furthermore, the
study uses the COMSOL finite element model to explore the relationship between de-
fect size, ambient temperature, formwork thickness, and thermal contrast. The results
show that IR technology can effectively and reliably detect honeycomb defects, espe-
cially during the hydration phase. As a convenient and feasible non-destructive testing
method, IR technology has significant potential for application and development in concrete
defect detection.

Keywords: infrared thermography; hydration heat; concrete structures; thermal contrast

1. Introduction
Concrete is a versatile material used in constructing bridges, roads, buildings, and other

structures, owing to its ability to be molded into complex shapes and meet diverse construc-
tion requirements. Due to its high compressive strength, durability, and superior workability,
concrete has emerged as a critical component in contemporary civil engineering practices [1,2].
However, during concrete pouring, poor fluidity, insufficient vibration, and adverse envi-
ronmental conditions often result in the aggregates failing to compact fully, leading to the
formation of localized defects such as honeycombs and voids. These early-stage defects com-
promise concrete compactness, accelerating structural degradation and performance decline.
More critically, they persistently undermine integrity throughout the service lifespan, posing
significant safety risks [3,4]. During the concrete pouring stage, if honeycomb defects in the
concrete can be promptly identified, timely remedies (such as vibration or tamping) can be
applied using non-destructive methods. However, once the concrete has hardened, repairing
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these defects often requires significant human and material resources, thereby substantially
increasing construction costs. Therefore, quickly and accurately detecting honeycomb and void
defects in concrete during the pouring stage holds significant value.

In recent years, with the advancement of non-destructive testing (NDT) technologies,
numerous NDT methods for detecting defects in concrete structures have emerged [5–9].
Zhao et al. [10] combined Digital Image Correlation (DIC) technology with wavelet analysis
to identify and warn of concrete structures of micro-damage. Through four-point bending
experiments and the analysis of acceleration response signals, the experimental results
demonstrated that this method can effectively provide early warnings for micro-damage and
accurately locate and assess the extent of the damage. Janku et al. [11] measured concrete
bridges and defect test specimens using various NDT techniques, providing a comprehensive
comparison in terms of accuracy, operability, and cost. Jiao et al. [12] developed an automated
defect detection algorithm for concrete based on Ground Penetrating Radar (GPR). The
algorithm utilizes signal polarity and morphological features to identify delamination, voids,
and water infiltration defects. Experimental results showed the algorithm’s strong detection
capabilities in both simulated and real-world data. McCabe et al. [13] utilized GPR as a
non-destructive technique to detect early characteristics of honeycomb defects in concrete
pavements. Experiments validated the sensitivity of GPR in identifying the size, shape,
and depth of honeycombs, providing a reference for its application in pavement defect
detection. Chow et al. [14] proposed an automated concrete defect detection framework
based on a 360◦ camera and LiDAR. The framework utilizes deep learning algorithms
to identify defects and integrates the results into a Building Information Model (BIM),
effectively addressing the inefficiency of traditional manual inspection methods. Christoph
et al. [15] proposed a concrete honeycomb defect detection method based on multi-sensor
data fusion. By integrating impact echo (IE), Ultrasonic (US), and GPR technologies, the
method significantly improved detection reliability and accuracy through a feature-level
data fusion algorithm. Xu et al. [16] combined deep learning technology with the impact
echo method, utilizing wavelet transform to extract signal features and establishing a deep
learning network detection system. The results demonstrated that this system can efficiently
and accurately identify defects in concrete structures, achieving high detection accuracy.
However, these techniques still exhibit limitations in large-area coverage, adaptability to
complex environments, and real-time monitoring capabilities. In particular, there is an urgent
need for more efficient and reliable solutions for the emergent detection of concrete defects
and evaluating their dynamic evolution during the early stage of concrete hardening.

Infrared thermography (IRT), as a non-destructive testing method based on temperature
distribution differences, demonstrates unique advantages in concrete defect detection due
to its portability, efficiency, non-contact nature, and large-area coverage capabilities [17]. IRT
can rapidly capture temperature anomalies in infrared radiation, accurately locating defect
areas, making it particularly suitable for real-time monitoring in complex environments and
during hydration processes. Compared to other NDT techniques, IRT not only offers higher
detection efficiency but also enables the rapid acquisition of inspection results without
direct contact with the concrete structure. Cheng et al. [18] utilized IRT and elastic wave
technology to scan concrete specimens with prefabricated defects and analyzed the size of
the defects based on thermal images and elastic wave signals. Vemuri et al. [19] employed
IRT to detect defects in concrete structures and concluded that IRT offers advantages such as
short detection time and precise localization. Cheng et al. [20] cast concrete specimens with
defects and utilized IRT to detect these defects during concrete hydration. Hong et al. [21]
utilized IRT and Digital Image Correlation (DIC) technologies to detect early defects in
concrete. The results indicated that IRT could accurately identify surface and internal voids,
and the geometric dimensions of the voids significantly affected the temperature difference,
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showing a power function relationship with the product of thickness and depth. Cheng
et al. [22] investigated the effect of different time windows on the detection performance
of concrete delamination defects using infrared thermography (IRT). They found that the
appropriate selection of time windows is critical for improving detection sensitivity and
proposed the optimal time window for delamination detection under natural conditions.

Although IRT has unique advantages in concrete defect detection, its application
is typically limited to the post-hydration stage. In this hardened state, remediation of
identified defects incurs high complexity and cost. In contrast, during the hydration
stage, the concrete is still malleable, and timely detection and intervention can effectively
prevent defects from solidifying, significantly reducing repair costs and difficulty. Therefore,
using IRT for defect detection during the hydration stage is of great significance. This
study is the first to explore the use of IRT for detecting honeycomb defects during the
early stages of concrete hydration. Unlike previous studies, this research focuses on
the temperature changes caused by the release of hydration heat, using the temperature
difference between defective and non-defective areas to detect honeycomb defects [23]. This
method enables early intervention when defects occur, preventing high-cost and complex
repairs later, and improving the overall quality of concrete construction. Garg et al. [24]
experimentally studied the feasibility of using hydration heat as an internal heat source
to detect voids in prestressed tendon ducts. The results demonstrated that this method
is effective for void detection. Li et al. [25] proposed a method for detecting grouting
defects in external prestressed tendon ducts using IRT during the hydration stage and
discussed the impact of defect severity on the infrared detection capability. Wan et al. [26]
experimentally studied the application of IRT in defect detection during the concrete
hydration process, defining the detection time window and identifying the optimal timing
for IRT application. Cai et al. [27] proposed enhancing the detection performance of IRT for
interface debonding defects in CFST arch bridges by utilizing concrete hydration heat and
water cooling. Experiments demonstrated that thermal contrast improved by 2–3 times
after cooling excitation, and numerical simulations confirmed a linear relationship between
cooling intensity and thermal contrast. This method shows potential for early debonding
detection. Cheng et al. [28] experimentally investigated the effects of hydration heat rising
rate, void size, and environmental factors on the detection of debonding in CFST. The
results showed that the absolute temperature difference had the most significant impact
on detection performance, while the hydration rate had the least effect. The interaction
between hydration rate and void size had a secondary impact on detection performance,
and this interaction weakened as both the hydration rate and void size decreased.

This study aims to conduct numerical and experimental investigations on IRT de-
tection of honeycomb defects during the hydration stage of concrete under formwork
conditions. First, an experimental model is developed using COMSOL (version 6.2) finite
element simulations to investigate the feasibility and efficiency of infrared thermography
(IRT) in detecting defects during the concrete hydration stage. Next, physical experiments
are conducted to validate the simulation results, confirming the model’s accuracy and
reliability in replicating the hydration process. Finally, the validated model is applied to
analyze the effects of ambient temperature, honeycomb defect size, and formwork thick-
ness on the thermal contrast evolution between defective and intact regions. This study
proposes a concrete honeycomb defect detection method based on infrared thermography
technology, combined with finite element simulation, to thoroughly investigate the impact
of various factors on detection effectiveness. It provides an innovative technical approach
and methodology for detecting honeycomb defects during the concrete hydration stage.
Additionally, it offers significant theoretical foundations and practical references for opti-
mizing and developing defect detection technologies under complex working conditions.
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Particularly, the integration of numerical simulation and physical experiments to verify and
optimize the detection method ensures its reliability and applicability, providing strong
technical support for practical engineering applications.

2. Materials and Methods
During the concrete pouring, construction issues such as insufficient vibration may

result in honeycomb defects in localized areas. These defects are typically air-filled, leading
to a significantly lower thermal conductivity than the surrounding dense concrete. This
difference causes temperature variations between the defective and non-defective regions.
By analyzing the temperature differences on the surface of the concrete formwork, early
defects can be effectively identified and located. Therefore, conducting an in-depth analysis
of the temperature difference (i.e., thermal contrast) between defective and non-defective
regions is of significant importance for the early detection of defects.

During the concrete hydration process, the temperature difference on the surface of
the formwork is influenced by multiple factors, including ambient temperature, formwork
thickness, the particle size of the honeycomb defect, and the initial pouring temperature
of the concrete. As shown in Figure 1, this study employed the finite element method
(COMSOL Multiphysics) to simulate the heat conduction process in concrete structures
containing honeycomb defects under hydration heat conditions. The research procedure
was as follows: (1) a three-dimensional concrete model with honeycomb defect was estab-
lished; (2) boundary conditions were defined for the model; (3) the model was meshed
according to the shape and size of the material; (4) the concrete hydration process was
simulated; (5) real concrete specimens were cast to validate the 3D model and assessed its
accuracy; and (6) the simulation results were analyzed to reveal the variation patterns of
thermal contrast. Subsequently, a parametric study was conducted to quantify the impact
of ambient temperature, formwork thickness, and defect size on the detection sensitivity of
honeycomb defects during hydration.
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2.1. Concrete Hydration Heat Calculation

Hydration heat, a fundamental phenomenon occurring during concrete hydration,
induces internal temperature variations due to exothermic chemical reactions. This thermal
behavior can be accurately modeled through numerical simulations, offering a robust
approach to investigating spatiotemporal temperature field evolution in hydrating concrete.
In this study, the hydration heat process was simulated using COMSOL Multiphysics soft-
ware (version 6.2), where heat transfer was modeled as a transient solid-phase conduction
process. The results quantitatively delineated the temperature field dynamics driven by
hydration heat, facilitating in-depth analysis of formwork surface temperature gradients
and their implications for defect detection.

Zhu [29] explicitly pointed out that cement hydration heat is closely related to the
age of the concrete. In commonly used models for calculating cement hydration heat,
there are typically three main types: the exponential calculation model, the composite
exponential calculation model, and the hyperbolic calculation model. Liu [30] compared
the three hydration heat calculation models by comparing their calculated results with the
measured data. The results showed that the calculated results of the composite exponential
hydration heat model were closer to the measured values. Through a series of experimen-
tal and computational studies, Lin et al. [31,32] conducted an in-depth investigation of
the hydration heat release model. They concluded that, compared to other models, the
composite exponential model exhibits higher accuracy in describing the hydration heat
release process. In this study, the composite exponential model was adopted to calculate
the cement hydration heat, as expressed in Equation (1) [33]:

Q(t) = Q0

(
1− e−atb

)
(1)

where Q(t) is the cumulative heat of hydration of concrete at time t, and its unit is kJ/kg.
Q0 is the cumulative hydration heat as t→∞, with its value selected based on reference [33],
and its unit is kJ/kg. t is the time, and its unit is days (d). a, b are constants related to
cement varieties.

Rewriting Equation (1) to the unit of hours and the derivative of time yields the formula
for the heat generation rate of concrete, after unit conversion: 1 w = 1 J/s = 3.6 kJ/h, as (2):

HENG = W
dQ(t)

dt
=

ab
24

WQ0tb−1e−a( t
24 )

b
(2)

where Q(t) is the cumulative heat of hydration of concrete at time t, and its unit is kJ/kg.
Q0 is the cumulative hydration heat as t→∞, with its value selected based on reference [33],
and its unit is kJ/kg. t is the time, and its unit is days (d). a, b are constants related to cement
varieties. W is the cement content, and its unit is kg/m3. HENG is the heat generation rate,
and its unit is kJ/(h·m3).

After unit conversion, 1 W = 1 J/s = 3.6 kJ/h, the heat generation rate HENG can be
obtained as follows:

HGEN = W
dQ(t)

dt
=

ab
24 WQ0tb−1e−a( t

24 )
b

3.6
=

abWQ0tb−1e−a( t
24 )

b

24× 3.6
(3)

2.2. Numerical Modeling

This section focuses on the establishment of the finite element model. The accurate
simulation of honeycomb defects forms the basis for temperature field analysis during
the concrete hydration process, as the presence of honeycomb defects significantly affects
the temperature field distribution on the surface of concrete formwork. To precisely
simulate the detection of honeycomb defects, a concrete column model with dimensions
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of 400 mm × 400 mm × 1000 mm was designed. A honeycomb defect region measuring
200 mm × 200 mm was placed at the center of the inner surface of the formwork, with
these defects typically filled with air. Additionally, to further investigate the sensitivity of
infrared thermography to honeycomb defects with varying particle sizes, three types of
honeycomb defects were designed: defects with particle sizes of 10–20 mm, 40–50 mm, and
a single defect block with an overall size of 200 mm × 200 mm. The specific layout of the
defects is shown in Figure 2.
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To study the detection of honeycomb defects, a three-dimensional finite element
model (as shown in Figure 3) was developed using the heat transfer module in COMSOL
Multiphysics software to simulate the concrete hydration process. The material parameters
used in the model are listed in Table 1. In this model, the formwork, concrete column,
and honeycomb defect regions were finely meshed to improve computational accuracy
(as shown in Figure 4). The meshing used a “physics-controlled mesh” setting, with the
element size set to “finer”, resulting in a total of 135,201 domain elements, 32,656 boundary
elements, and 4405 edge elements.
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Table 1. Material parameters of the model.

Material
Specific Heat

Capacity
(J/(kg·K))

Density
(kg/m3)

Thermal
Conductivity

(W/(m·K))

Wooden Board 2700 532 k(T)
Air k(T) k(T) k(T)

Concrete 980 2450 0.17
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In the numerical simulation, natural convection boundary conditions were applied
at the formwork-air interface to represent the heat exchange process. Fresh concrete
has high fluidity and self-weight characteristics. During the pouring stage, the concrete-
formwork system formed a gapless contact interface. As a result, the impact of interfacial
contact thermal resistance on the heat transfer process was neglected in the model. To
capture the transient nature of the heat released during hydration, an unsteady-state
heat transfer model with a time step of 1 min was established. This setting ensured the
accurate representation of the spatial and temporal evolution of the temperature field
on the formwork surface while balancing computational accuracy and efficiency. By
adopting physically justified boundary conditions and dynamic solution strategies, the
study successfully simulated the temperature difference formation mechanism on the
formwork surface during hydration. Furthermore, the mapping relationship between these
temperature differences and defect features was quantitatively characterized.

2.3. Case Design

This study specifically examined the impact of honeycomb size, ambient temperature,
and formwork dimensions on detecting honeycomb defects in concrete structures. The
study designed a 200 mm × 200 mm area as the honeycomb simulation region. Apart from
differences in particle size, the honeycomb particles occupied 50% of the total simulation
area. Additionally, a single 200 mm × 200 mm solid honeycomb block was designed to
simulate a large void in the concrete structure. The relevant working condition information
is shown in Table 2. Specifically, the defect sizes were determined based on common
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types of concrete defects in actual engineering projects: 200×200 mm corresponds to void
defects, and 10–30 mm and 30–60 mm correspond to small and large honeycomb defects,
respectively, while 4–10 mm corresponds to surface pitting defects. For formwork thickness,
considering that the most commonly used formwork thickness in engineering practice falls
within the 10–20 mm range [34], the study selected several representative thickness values
within this range for comparative analysis to investigate the effect of formwork thickness
on detection performance.

Table 2. Working condition design.

Parameters Group 1 Group 2 Group 3

L × D × H
(mm) 400 × 400 × 1000 400 × 400 × 1000 400 × 400 × 1000

Ambient
temperature

Ta (◦C)
10, 16, 22, 28, 34 22 16, 22

Honeycomb size
(mm) 30–60 4–10, 10–30, 30–60, 200 × 200 30–60

Formwork thickness
(mm) 14 14 11, 14, 17, 20

2.4. Evaluation Indicators

When honeycomb defects exist in a concrete structure, air entrapped in the defect
area results in a significant thermal conductivity contrast between the concrete and air,
creating a measurable temperature gradient between the two regions. This study analyzed
the temperature difference between the honeycomb defect area and the non-defect area as
an indicator of detection performance. As shown in Figure 5, the temperature difference
(also referred to as absolute thermal contrast) can be defined using the following equation:

∆T = Tnd− Td (4)

in the equation, Tnd, Td, and ∆T represent the average surface temperature of the non-
defect area, the defect area, and the temperature difference between the non-defect and
defect areas, respectively. When ∆T > 0, it indicates that Tnd > Td, meaning the temperature
of the non-defect area is higher than that of the defect area. Conversely, when ∆T < 0, it
indicates that the temperature of the non-defect area is lower than that of the defect area.
To enhance the clarity and coherence of the paper, several parameters were defined for use
in subsequent analysis and discussion. The details are provided in Table 3.

Table 3. Defined parameters for analysis.

Parameter Name Parameter Explanation

Tc The initial temperature of concrete
Ambient temperature

Formwork surface temperature
Ta
Ts
σ Standard deviation
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3. Experimental Validation
3.1. Experimental Design

In the physical experiment, three honeycomb defects identical to those in the simula-
tion were set up, and their spatial configuration is shown in Figure 6. After assembling the
formwork containing pre-installed defects, a formwork system enclosing the concrete was
assembled. The detailed structure and arrangement of the formwork frame are shown in
Figure 7.
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Figure 7. Concrete formwork frame design: (a) finite element simulation formwork frame; (b) physi-
cal experiment formwork frame.

This study used the FLIR A300 and MAG-F6 infrared thermal imaging cameras
to perform infrared detection on the experimental specimens. The parameters of the
thermal imaging cameras are listed in Table 4. The FLIR A300 camera has a resolution
of 320 × 240 pixels, a spectral range of 7.5–13 µm, and an accuracy of ±2 ◦C or ±2%.
The MAG-F6 camera has a resolution of 640 × 480 pixels, a spectral range of 7.5–13 µm,
and an accuracy of ±0.7 ◦C or ±0.7%. Both cameras were positioned on the formwork
side adjacent to the honeycomb defect, approximately 3 m from the outer surface of the
specimen, with their height aligned with the center height of the specimen. Data acquisition
was configured at a sampling rate of 1 frame/min, and the thermal images were stored on
a connected PC. The detailed layout of the experimental site is shown in Figure 8.

Table 4. Specifications of infrared cameras.

Camera Name FLIR A300 MAG-F6

Detector type Uncooled microbolometer Uncooled microbolometer
Accuracy ±2 ◦C or ±2% ±0.7 ◦C or ±0.7%

Resolution 320 × 240 pixels 640 × 480 pixels
Spectral range 7.5–13 µm 7.5–13 µm

As shown in Figure 8, the formwork was reinforced to ensure the smooth progress
of the experiment and prevent the formwork from being damaged due to excessive force.
Before the experiment officially began, the infrared data acquisition equipment (computer)
was used to preset the acquisition frequency of the infrared thermal camera. Parameters
affecting the accuracy of temperature measurements, such as measurement distance, hu-
midity, airflow velocity, and emissivity, were also configured to ensure the precision of
infrared temperature measurement. The height and focus of the cameras were precisely
adjusted to ensure that the infrared image acquisition system obtains clear and accurate im-
ages. Subsequently, the temperature data acquisition system was activated simultaneously
with the concrete pouring process to obtain real-time temperature distribution images of
the column specimen’s surface.
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The concrete pouring process is shown in Figure 9. First, the uniformly mixed concrete
was loaded into a hopper, which was then moved above the concrete column structure
using a forklift. Next, the hopper valve was opened to pour concrete until the formwork
was fully filled. The entire process was carried out strictly by the experimental design
requirements to ensure the accuracy of data collection.
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3.2. Experimental Materials

This study designed physical specimens with dimensions consistent with the simu-
lation model and used experimental data to validate the numerical model. The materials
required for producing concrete include cement, sand, water, and aggregates. The con-
crete mix design followed the “Technical Specification for High-Strength Concrete Structures”
(CECS104:99). The material mix proportion for the concrete specimen is shown in Table 5.
The sand (fine aggregates) had a maximum particle size of 2.36 mm, while the crushed
stone (coarse aggregates) ranged from 4.75 mm to 9.5 mm.

Table 5. Concrete mix proportion (1 m3).

Cement
(kg)

Fly Ash
(kg)

Silica Ash
(kg)

Sweller
(kg)

Sand
(kg)

Aggregate
(kg)

Water
(kg)

Polycarboxylate
Superplasticizer

(kg)

411 89 35 59 968 731 143 7.08

In actual concrete pouring processes, honeycomb defects (air voids) typically form
due to insufficient vibration, and these honeycomb defects are filled with air. Under
standard atmospheric pressure at 15 ◦C, the thermal conductivity values are as follows: air
(0.023 W/(m·K)), concrete (1.7 W/(m·K)), and polystyrene foam (0.02–0.05 W/(m·K)). The
thermal conductivity of polyethylene foam is close to that of air; therefore, this experiment
used polystyrene foam as the prefabricated material to simulate a honeycomb defect.
The formwork for casting the concrete columns was constructed from standard wooden
formwork, with thickness dimensions matching those defined in the simulation model.

3.3. Validation Results

As shown in Figure 10, five minutes after pouring, the defects began to appear. Addi-
tionally, a vertical shadow region appeared at the column center in the infrared image. This
shadow resulted from the formwork frame’s support structure, which physically blocked
the infrared detection of the honeycomb defect region. However, excluding this elongated
shadow region, significant temperature differences were still observed between the defect
and non-defect areas in Figure 10a,b. At this stage, the thermal contrast (∆T) between the
non-defect area and the defect area was 0.2 ◦C. Thus, a thermal contrast threshold of 0.2 ◦C
was established in this study. The results demonstrate that infrared thermography enables
real-time detection of honeycomb defects in early-stage concrete hydration.

To validate the accuracy of the finite element (FE) simulations for concrete structures,
experimental infrared thermograms were compared with FE-simulated temperature dis-
tributions. Figure 10c,d shows the infrared temperature images obtained by simulating
the concrete hydration process using COMSOL Multiphysics software. To ensure the con-
sistency of the validation results, the temperature data from both the experimental and
simulated images were extracted using the same method. Specifically, the honeycomb de-
fect area’s average temperature was selected as the honeycomb defect’s surface temperature,
while the surrounding area’s average temperature was selected as the surface temperature
of the non-defective area. Through comparative analysis, the consistency between the
simulation results and the experimental data were validated, further demonstrating the
reliability of the simulation model.
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Figure 11 presents a detailed comparison of thermal contrast between the FE simu-
lations and concrete experiments. After concrete pouring, the thermal contrast gradually
increased over time. After 30 min, differences in thermal contrast began to emerge for differ-
ent sizes. The figure shows that the larger the size of the honeycomb defect, the greater the
thermal contrast ∆T. Experimental and simulated temperature profiles showed congruent
trends, though minor deviations were observed. The mean errors between experimental
and simulated curves were 0.06 ◦C, 0.04 ◦C, and 0.05 ◦C, respectively. These discrepancies
are mainly due to three influencing factors: environmental variables, measurement system
errors, and differences in simulation settings. External factors such as ambient temperature,
humidity, and airflow can affect the temperature measurement accuracy of the infrared
thermal camera. Furthermore, the materials used in the specimen and the idealized condi-
tions set in the simulation model, including material properties and boundary conditions,
can also introduce errors. Although there are some minor differences, these discrepancies
are within an acceptable range for this study. Therefore, the simulation method used in
this research demonstrates accuracy and reliability in predicting the temperature field of
honeycomb defects in concrete.
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4. Results and Analysis
4.1. Influence of Ambient Temperature on Thermal Contrast

This section discusses the influence of honeycomb defects under conditions where
the initial concrete pouring temperature is 22.5 ◦C, the formwork thickness is 14 mm, the
honeycomb defect size ranges from 30 mm to 60 mm, and the defect thickness is 60 mm. The
analysis was conducted for ambient temperatures of 10 ◦C, 16 ◦C, 22 ◦C, 28 ◦C, and 34 ◦C.

Figure 12a illustrates the trend of thermal contrast (∆T) in the area of the honeycomb
defect over time at different ambient temperatures (Ta). From the figure, it can be observed
that after concrete pouring, when Ta is 10 ◦C and 16 ◦C (below the initial concrete tempera-
ture, Tc), ∆T increases sharply and reaches its peak at around 50 min (Phase I), then starts to
decrease (Phase II), gradually slowing down after 200 min (Phase III). When Ta is 28 ◦C and
34 ◦C (above the initial concrete temperature, Tc), ∆T increases immediately in the negative
direction, reaches its peak in the negative direction at around 50 min, then starts to increase
again, gradually rising after 200 min. When Ta is 22 ◦C, ∆T increases slowly, reaching its
peak at t = 200 min, and then slowly decreases and stabilizes. Based on the above analysis,
it can be concluded that the greater the temperature difference between the initial concrete
temperature (Tc) and the ambient temperature (Ta), the higher the peak value of ∆T. When
the ambient temperature is closer to the initial concrete temperature, the peak value of ∆T
is smaller. Therefore, it can be concluded that when the temperature difference (Tc − Ta) is
large, ∆T is mainly influenced by the ambient temperature, while when Tc − Ta is small,
∆T is mainly influenced by the heat generated by the concrete hydration process.
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Figure 12. Influence of ambient temperature on thermal contrast: (a) variation in thermal contrast dur-
ing the hydration process; (b) relationship between thermal contrast and the temperature difference
between the initial concrete temperature and ambient temperature.

Figure 12b presents bar charts of the thermal contrast at the maximum value and
t = 1200 min for different values of Tc − Ta. It can be observed from the figure that thermal
contrast is positively correlated with Tc − Ta. By fitting the relationship between the
maximum thermal contrast and Tc − Ta, the following equation is obtained:

y = 0.1603x + 0.0388
R2 = 0.9985

Figure 13 illustrates the evolution patterns of infrared images of honeycomb defects
under different ambient temperatures (Ta). Firstly, due to the wide range of ambient
temperatures, the color scale on the right is adjusted accordingly: Ta = 10 ◦C and Ta = 16 ◦C
use the first color scale on the right, Ta = 22 ◦C uses the second color scale on the right,
and Ta = 28 ◦C and Ta = 34 ◦C use the third color scale on the right. Secondly, at ambient
temperatures of 10 ◦C and 16 ◦C, the overall trend in the infrared images shows an initial
temperature rise followed by a decline. The temperature in the defect area is lower than that
in the non-defect area, with the thermal contrast being greater than zero. The defect features
are more pronounced in the early stages of the hydration process, but as the hydration
reaction progresses, the thermal contrast gradually weakens. Additionally, the lower the
ambient temperature, the greater the color contrast in the infrared images of the defect area,
resulting in clearer defect features. When the ambient temperature is 22 ◦C, the overall
changes in the infrared images are relatively minor, and the temperature distribution tends
to stabilize. As the hydration reaction progresses, the color contrast between the defect
and non-defect areas slightly increases. However, the overall thermal contrast remains low,
making the defect features relatively indistinct. At ambient temperatures of 28 ◦C and 34 ◦C,
the infrared images show an initial temperature decrease followed by an increase. The
temperature in the defect area is higher than that in the non-defect area, with the thermal
contrast being less than zero. In the early stages of the hydration process, the defect features
are more pronounced, but as the thermal contrast weakens in the later stages, the defect
features gradually become indistinct. Additionally, the higher the ambient temperature,
the greater the color contrast in the infrared images of the defect area, resulting in clearer
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defect features. Finally, at the same hydration time, the greater the difference between
the initial concrete temperature and the ambient temperature, the more pronounced the
thermal contrast between the defect area and the non-defect area, resulting in clearer defect
features in the infrared images.
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Simultaneously, statistical analysis of temperature data is conducted for each infrared
image, with the standard deviation (σ) calculated for each image. As Figure 13 demon-
strates, a larger σ value indicates a more uneven distribution of temperature data across the
image. Furthermore, the standard deviation exhibits a highly synchronized relationship
with the absolute value of thermal contrast (|∆T|), revealing their synergistic role in defect
detection. These findings validate the accuracy and reliability of the selected evaluation
metric (∆T) proposed in this study. Consistent conclusions are confirmed in subsequent
analyses presented in Sections 4.2 and 4.3, reinforcing the robustness of the methodology.

As evidenced by the temporal evolution characteristics in Figure 12, the study reveals
that 50 min post-casting constitutes a critical threshold for thermal contrast development,
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during which the thermal contrast (∆T) approaches its peak values across varying ambient
temperature conditions. Figure 14 further elucidates the quantitative heat transfer within
this 50 min window, demonstrating that the temperature gradient between the formwork
surface and ambient environment (Ts − Ta) serves as the governing parameter for ∆T
evolution. A statistically significant linear correlation emerges between these variables
(y = 0.347x + 0.0075, R2 = 0.99). Specifically, as Ts − Ta increases from −6 ◦C to 6 ◦C, ∆T
transitions linearly from negative to positive thermal contrast regimes, achieving peak mag-
nitudes of approximately ±2 ◦C. The positive temperature gradient domain (Ts − Ta > 0)
exhibits a maximum ∆T of +2 ◦C, while the negative gradient regime (Ts − Ta < 0) reaches
a contrasting minimum of −2 ◦C.
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Figure 14. Response characteristics of thermal contrast (∆T) to surface-to-ambient temperature
gradient (Ts − Ta) under varying ambient temperatures during the initial casting phase (Phase I).

4.2. Influence of Honeycomb Particle Size on Thermal Contrast

This section discusses the relationship between the thermal contrast of the area of the
honeycomb defect and the non-defect area under the conditions of an initial concrete pour-
ing temperature of 22.5 ◦C, a formwork thickness of 14 mm, and an ambient temperature
of 16 ◦C. The honeycomb defect sizes considered are 4–10 mm, 10–30 mm, 30–60 mm (with
a thickness of 30 mm), 30–60 mm (with a thickness of 60 mm), and a 200 × 200 mm void
(with a thickness of 60 mm).

Figure 15 shows the variation trend of thermal contrast (∆T) over time for honeycomb
defects of different sizes. From the figure, it can be observed that, in the early stages after
concrete pouring, the thermal contrast of honeycomb defects of different sizes initially
increases sharply, then reaches a peak (Phase I) and rapidly decreases (Phase II). After
200 min, the thermal contrast of the honeycomb defect starts to decrease slowly and
eventually levels off (Phase III). At the same time point, the larger the size of the honeycomb
defect, the higher its thermal contrast. Among them, void defects should be observed using
the data on the right y-axis. It can be seen that the thermal contrast of the void defect
is significantly higher than that of other types of honeycomb defects, indicating that the
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surface temperature of the formwork in the void defect areas reflects the differences in heat
conduction more noticeably than in other defect areas.
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Figure 15. Thermal contrast trends of honeycomb defects in concrete columns under different
honeycomb defect sizes.

Figure 16 illustrates the evolution pattern of infrared images of honeycomb defects
with different sizes. Overall, the colors in the figure transition gradually from deep purple
to yellow, reflecting the gradual increase in the formwork surface temperature, followed by
a subsequent decrease. This temperature variation is primarily influenced by the differences
in heat transfer between the defect and non-defect areas, as the presence of a honeycomb
defect significantly alters the temperature distribution characteristics of the formwork
surface. Additionally, honeycomb defects of different sizes exhibit noticeable differences in
their thermal behavior. For smaller honeycomb defects (4–10 mm, 10–30 mm), during the
hydration process, the color contrast in the defect areas of the infrared images is minimal,
especially for defects in the 4–10 mm range, where only a slight color difference is visible
in the early stages. For defects in the 10–30 mm range, the color contrast in the infrared
images is slightly more noticeable compared to the 4–10 mm defects. For medium-sized
honeycomb defects (30–60 mm), throughout the entire hydration stage, the color contrast in
the defect areas of the infrared images is higher than that of small-sized defects, indicating
a greater temperature variation between the defect and non-defect areas. Additionally, the
defect remains visible in the infrared images for a longer period. For void defects (200 mm),
throughout the entire hydration process, the color contrast in the defect areas of the infrared
images is consistently significantly higher than that of defects of other sizes. This indicates
that void defects strongly impede heat transfer, resulting in a pronounced increase in color
contrast between defect and non-defect areas, with the thermal contrast being the most
prominent. Finally, at the same point in time, the larger the size of the honeycomb defect,
the more pronounced the thermal contrast between the defect area and the non-defect area,
and the clearer the characteristics of the defect area appear in the infrared images.
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As evidenced by the temporal evolution characteristics in Figure 15, the critical time
threshold for thermal contrast development is identified at 45 min post-casting, during
which the thermal contrast ∆T reaches peak responses across varying honeycomb de-
fect sizes. Figure 17 further elucidates the coupled size-gradient mechanism governing
heat transfer: When the formwork surface-to-ambient temperature gradient (Ts − Ta)
exceeds 2 ◦C, the fitted slope increases ninefold from 0.0913 to 0.8287 as defect size ex-
pands from 4 to 10 mm to 200 mm, confirming enhanced linear sensitivity in large-scale
defects. Notably, sublinear growth (R2 = 0.74–0.82) dominates small defects (<30 mm)
under Ts− Ta ∈ [0, 3] ◦C, whereas large defects (>30 mm) exhibit robust linearity (R2 > 0.96)
within the same gradient range. Dual-axis scaling analysis reveals a 12-fold amplification
in peak ∆T (3.2 ◦C for 200 mm defects vs. 0.26 ◦C for 4–10 mm defects), demonstrating that
defect size governs thermal contrast amplification effects.
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Figure 17. Response characteristics of thermal contrast (∆T) to surface-to-ambient temperature
gradient (Ts − Ta) under varying defect sizes during the initial casting phase (Phase I).

4.3. Influence of Plate Thickness on Thermal Contrast

This section discusses the relationship between the thermal contrast of honeycomb
defect areas and non-defect areas under different formwork thicknesses. The study was
conducted under the conditions of an initial concrete pouring temperature of 22.5 ◦C,
an ambient temperature of 16 ◦C, and honeycomb particle sizes of 30–60 mm (with a
thickness of 60 mm).

Figure 18 illustrates the trend of the thermal contrast (∆T) of honeycomb defects over
time under different formwork thicknesses. As shown in Figure 18a, after concrete pouring,
the thermal contrast (∆T) for formwork of different thicknesses initially increases sharply
and reaches a peak (Phase I), followed by a rapid decrease (Phase II). After approximately
200 min, all curves begin to decrease gradually (Phase III), with the trends of the ∆T curves
for formworks of different thicknesses becoming essentially similar. Furthermore, it is
observed that the smaller the formwork thickness, the higher the peak value and the greater
the final thermal contrast. Conversely, the larger the formwork thickness, the lower the peak
value and the smaller the final thermal contrast. In Figure 18b, bar charts representing the
maximum thermal contrast and the thermal contrast at t = 1200 min for different formwork
thicknesses are presented. The figure demonstrates an inverse relationship between thermal
contrast and formwork thickness. By fitting the relationship between maximum thermal
contrast and formwork thickness, the following equation is obtained:

y = −0.0483 + 1.7717
R2 = 0.9986

Figure 19 illustrates the simulated infrared temperature images at different times
under various formwork thickness conditions. Overall, the colors in the figure transition
from deep purple to light yellow and then back to a deeper shade, reflecting the gradual
increase in the formwork surface temperature initially, followed by a subsequent decrease.
The yellow areas correspond to higher surface temperatures of the formwork, while the
deep purple areas correspond to lower temperatures. Secondly, for formworks with
smaller thicknesses, the color contrast in the defect areas of the infrared images is greater,
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indicating that thinner formworks pose less resistance to heat transfer, resulting in more
pronounced thermal contrast and making the defect areas easier to observe. In contrast, for
thicker formworks, the color contrast in the defect areas of the infrared images is smaller,
suggesting that thicker formworks provide stronger resistance to heat transfer, resulting in
less pronounced thermal contrast and making the defect areas harder to detect.

Materials 2025, 18, x FOR PEER REVIEW 21 of 27 
 

 

 

Figure 18. Influence of formwork thicknesses on thermal contrast: (a) variation in thermal contrast 
with the hydration process; (b) relationship between thermal contrast and formwork thickness. 

Figure 19 illustrates the simulated infrared temperature images at different times un-
der various formwork thickness conditions. Overall, the colors in the figure transition 
from deep purple to light yellow and then back to a deeper shade, reflecting the gradual 
increase in the formwork surface temperature initially, followed by a subsequent de-
crease. The yellow areas correspond to higher surface temperatures of the formwork, 
while the deep purple areas correspond to lower temperatures. Secondly, for formworks 
with smaller thicknesses, the color contrast in the defect areas of the infrared images is 
greater, indicating that thinner formworks pose less resistance to heat transfer, resulting 
in more pronounced thermal contrast and making the defect areas easier to observe. In 
contrast, for thicker formworks, the color contrast in the defect areas of the infrared im-
ages is smaller, suggesting that thicker formworks provide stronger resistance to heat 
transfer, resulting in less pronounced thermal contrast and making the defect areas harder 
to detect. 

 

Figure 18. Influence of formwork thicknesses on thermal contrast: (a) variation in thermal contrast
with the hydration process; (b) relationship between thermal contrast and formwork thickness.

Materials 2025, 18, x FOR PEER REVIEW 22 of 27 
 

 

 

Figure 19. Evolution of infrared images of honeycomb defects under different formwork thick-
nesses: (a) t = 20 min; (b) t = 50 min; (c) t = 100 min; (d) t = 300 min; (e) t = 600 min; (f) t = 1200 min. 

Temporal evolution analysis in Figure 18 reveals that 40 min post-concrete casting 
marks the critical time threshold for thermal contrast development, during which the ther-
mal contrast ΔT reaches peak responses across varying formwork thickness conditions. 
Figure 20 further quantifies the inverse correlation between formwork thickness and heat 
transfer efficiency: Under a constant surface-to-ambient temperature gradient (Ts − Ta) of 
3 °C, increasing formwork thickness from 11 mm to 20 mm reduces the thermal contrast 
sensitivity coefficient (slope of linear fit) by 21.4% (from 0.3552 to 0.2794), demonstrating 
that thickened formwork significantly impedes thermal flux transmission and thereby di-
minishes defect detection sensitivity. Furthermore, all thickness formworks exhibit robust 
linear responses within Ts − Ta ∈ [0, 3.5] °C (R2 = 0.9566 − 0.9777). 

  

Figure 19. Evolution of infrared images of honeycomb defects under different formwork thicknesses:
(a) t = 20 min; (b) t = 50 min; (c) t = 100 min; (d) t = 300 min; (e) t = 600 min; (f) t = 1200 min.
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Temporal evolution analysis in Figure 18 reveals that 40 min post-concrete casting
marks the critical time threshold for thermal contrast development, during which the
thermal contrast ∆T reaches peak responses across varying formwork thickness conditions.
Figure 20 further quantifies the inverse correlation between formwork thickness and heat
transfer efficiency: Under a constant surface-to-ambient temperature gradient (Ts − Ta) of
3 ◦C, increasing formwork thickness from 11 mm to 20 mm reduces the thermal contrast
sensitivity coefficient (slope of linear fit) by 21.4% (from 0.3552 to 0.2794), demonstrating
that thickened formwork significantly impedes thermal flux transmission and thereby
diminishes defect detection sensitivity. Furthermore, all thickness formworks exhibit
robust linear responses within Ts − Ta ∈ [0, 3.5] ◦C (R2 = 0.9566 − 0.9777).
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Figure 20. Response characteristics of thermal contrast (∆T) to surface-to-ambient temperature
gradient (Ts − Ta) under varying formwork thicknesses during the initial casting phase (Phase I).

4.4. Comprehensive Analysis and Technical Validation
4.4.1. Influence of Key Parameters on Thermal Contrast

Based on the experimental data analysis, the control mechanisms of thermal contrast
(∆T) by ambient temperature (Ta), defect size (D), and formwork thickness (L) can be
summarized as follows:

1. Ambient Temperature: The extreme response of ∆T is strictly controlled by the tem-
perature gradient between the formwork surface and the environment (Ts − Ta).
When the absolute value of the temperature gradient exceeds 4 ◦C (|Ts − Ta| > 4 ◦C),
the peak value of ∆T can reach ±2 ◦C (R2 = 0.99). Under low-temperature condi-
tions (Ta < Tc), ∆T is primarily dominated by heat dissipation from the environment
(Tc − Ta > 0), whereas under high-temperature conditions (Ta > Tc), the accumulation
of hydration heat takes over (Tc − Ta < 0).

2. Defect Size: The sensitivity of ∆T exhibits a nonlinear increase with defect size. When
D ≥ 30 mm, the sensitivity coefficient (k) increases sharply from 0.0913 to 0.8287
(a 9-fold increase), with the peak value of ∆T reaching 3.2 ◦C (12 times higher than
for D = 4–10 mm). Large defects (D ≥ 30 mm) show a strong linear response within
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the temperature gradient range of Ts − Ta ∈ [1, 4] ◦C (R2 > 0.96), while small defects
(D < 30 mm) exhibit a significantly reduced linear response (R2 = 0.74–0.82).

3. Formwork Thickness: The detection sensitivity of ∆T is negatively correlated with
formwork thickness. As the thickness increases from 11 mm to 20 mm, the sensitivity
coefficient (k) decreases from 0.3552 to 0.2794 (a 21.4% reduction).
In summary, the temperature gradient between the formwork surface and the envi-
ronment is the primary driving force of ∆T. The defect size determines the thermal
signal strength of both the defect and non-defect areas, while the formwork thickness
governs the attenuation of detection sensitivity. Together, these three factors define
the technical boundary for infrared detection of concrete honeycomb defects during
the initial casting phase.

4.4.2. Analysis of the Optimal Detection Window Based on Temporal Evolution

The time-varying characteristics of thermal contrast (∆T) reveal the key time con-
straints for infrared detection. As shown in Figures 12a and 15, and Figure 18, the evo-
lution of ∆T under different conditions exhibits a three-stage pattern: “rapid rise—peak
maintenance—slow decay”. The time threshold analysis is as follows:

1. Effect of Ambient Temperature: Under low-temperature (Ta ≤ 16 ◦C) and high-
temperature (Ta ≥ 28 ◦C) conditions, ∆T reaches positive (+2.1 ◦C) and negative
(−1.8 ◦C) peak values 50 ± 5 min after pouring. When the ambient tempera-
ture is close to the initial concrete temperature (Tc), the peak value is delayed to
around 200 min.

2. Effect of Defect Size: For small defects (D < 30 mm), the ∆T peak occurs earlier,
between 30 and 35 min, while for large defects (D ≥ 30 mm), the peak is delayed to
50 to 60 min.

3. Effect of Formwork Thickness: As the formwork thickness increases, the time to reach
the ∆T peak is delayed. For example, with a formwork thickness of 11 mm, the peak
occurs at 35 min, while with a thickness of 20 mm, the peak is delayed to 65 min.

In conclusion, considering the combined temporal characteristics of various factors,
the optimal window for infrared detection of concrete honeycomb defects is between 35 and
60 min after pouring. During this period, the thermal contrast is close to its peak across
different conditions, making it the most favorable phase for defect detection.

4.4.3. Error and Uncertainty Analysis and Future Research Directions

This study demonstrates the theoretical feasibility of using infrared detection tech-
nology for identifying concrete defects through idealized models. However, its practical
application still faces the following key limitations:

1. Incomplete Decoupling of Environmental Coupling Effects: In actual engineering sites,
environmental conditions are complex and variable. High wind speeds can cause
significant convective heat loss, which in turn affects the accuracy of temperature
measurements by infrared devices and reduces the thermal contrast (∆T). In addition,
fluctuations in solar radiation may induce extra temperature variations, further im-
pacting both the precision of infrared temperature measurements and the subsequent
defect identification.

2. Idealization Deviations of Material and Model Parameters: In this study, both ex-
perimental and simulation models assumed that material property parameters are
uniformly distributed. However, in practice, discrepancies exist between the actual
thermal conductivities—such as the uniformity of heat conduction in formwork mate-
rials and concrete—and those assumed in the models. These differences can lead to
errors in predicting the thermal contrast (∆T). In particular, the presence of air gaps
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between the formwork and concrete may introduce additional thermal resistance,
resulting in deviations between the predicted ∆T peak and the actual condition.

3. Limitations in Dynamic Equipment Detection: The thermal sensitivity of infrared
cameras poses challenges for detecting small-scale defects within thicker formworks.
Moreover, the operational complexity of infrared cameras limits their practical appli-
cation on concrete pouring sites.

To address these challenges, future research should focus on the following directions:

1. Multi-Physical Field Coupled Modeling: Future studies should integrate complex
experimental conditions—including ambient temperature, humidity, wind speed, and
solar radiation intensity—to conduct experiments and simulations under multiple
coupled conditions. The primary focus should be on investigating the mechanisms
and performance of infrared detection of honeycomb defects when influenced by
multiple factors simultaneously.

2. Refined Characterization of Materials and Interfaces: Based on practical engineering
requirements, further research should be conducted on the material parameters and
interfacial heat transfer characteristics. The goal is to elucidate the influence of
material properties and interfacial heat transfer on the infrared detection of concrete
honeycomb defects, thereby achieving more accurate prediction outcomes.

3. Upgrading Intelligent Detection Systems: Develop an unmanned aerial vehicle (UAV)
platform equipped with a high-frame-rate infrared module. By integrating image
enhancement techniques and deep learning-based image fusion methods, the signal-
to-noise ratio of the thermal contrast (∆T) can be improved, thereby enhancing the
precision and reliability of infrared detection.

5. Conclusions
This study investigated honeycomb defects in concrete using infrared thermography

during the hydration heat process. Finite element modeling (FEM) was employed to sim-
ulate the thermal conduction of concrete containing honeycomb defects, exploring the
feasibility of defect detection via the heat generated during hydration. Infrared testing veri-
fied the accuracy and reliability of the model, ensuring the applicability of the simulation
results. Furthermore, the study analyzed the effects of ambient temperature, formwork
thickness, and defect size on defect detection. The experimental results show that ambient
temperature, defect size, and formwork thickness have significant impacts on thermal
contrast, with different environmental conditions and material parameter combinations
leading to varying thermal contrast responses. Specifically, when the temperature differ-
ence between the ambient temperature and the initial concrete temperature is large, the
peak value of thermal contrast is more pronounced. Large defects generate significantly
higher thermal contrast than small defects, and thinner formworks provide higher thermal
contrast, which is beneficial for defect detection. By analyzing the temporal evolution
characteristics of thermal contrast, the optimal time window for infrared detection was
determined to be between 35 and 60 min after concrete pouring. Although this study
demonstrates the theoretical feasibility of infrared thermography, practical applications still
face challenges such as environmental coupling effects, idealization deviations of material
parameters, and limitations in equipment detection capabilities. Future research should
focus on multi-physical field coupled modeling, refined characterization of material and
interface heat transfer properties, and the upgrading of intelligent detection systems to
enhance the accuracy and reliability of infrared detection.
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Abstract: The optimization of multilayer composite structures requires balancing mechani-
cal performance, economic efficiency, and computational feasibility. This study introduces
an innovative approach that integrates Curriculum Learning (CL) with a multi-fidelity
surrogate model to enhance computational efficiency in engineering design. A multi-fidelity
strategy is introduced to generate training data efficiently, leveraging a high-fidelity finite
element model for accurate simulations and a low-fidelity model to provide a larger dataset
at reduced computational cost. Unlike conventional surrogate modeling approaches, the
proposed method applies CL to iteratively refine the surrogate model, enabling step-by-
step learning of complex structural patterns and improving prediction accuracy. Genetic
algorithms (GAs) are then applied to optimize structural parameters while minimizing com-
putational expense. The integration of CL and multi-fidelity modeling allows for a reduction
in computational burden while preserving accuracy, demonstrating practical applicability in
real-world structural design problems. The effectiveness of this methodology is validated by
evaluating Pareto front quality using selected performance indicators. Results demonstrate
that the proposed approach reduces optimization burden while achieving accurate predic-
tions, highlighting the benefits of integrating surrogate modeling, multi-fidelity analysis,
CL, and GAs for efficient composite structure optimization. This work contributes to the
advancement of optimization methodologies by providing a scalable framework applicable
to complex engineering problems requiring high computational efficiency.

Keywords: multi-objective optimization; composite; multi-fidelity models; surrogate models;
deep neural networks; genetic algorithms; curriculum learning

1. Introduction
Multilayer composite structures are widely used in various industries, including

aerospace, automotive, and construction, where the optimization of parameters such as
load-bearing capacity, fatigue resistance, and vibration damping is essential [1–4]. The
design of multilayer composite structures poses a significant engineering challenge, par-
ticularly in the selection of materials with different mechanical properties and economic
factors [5]. This process requires precise selection of materials for individual layers so that
the resulting structure meets specified strength, technological, and operational requirements
while minimizing costs. The complexity of this issue makes classical single-optimization
methods insufficient, leading to the necessity of applying a multi-criteria approach that
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allows the simultaneous analysis of multiple design aspects, including both mechanical
and economic parameters.

One of the effective tools for solving complex optimization problems is the application
of genetic algorithms (GAs) [6–9]. These methods enable the efficient exploration of the
solution space to minimize the objective function while considering both mechanical and
economic constraints. Genetic algorithms, inspired by evolutionary processes, allow for
the iterative improvement of solutions through selection, crossover, and mutation of a
population of solutions. However, the use of GAs involves repeated objective function
evaluations, which, in the case of advanced analyses based on the Finite Element Method
(FEM), leads to high computational costs.

To reduce computational time, surrogate models are used to quickly approximate FEM
analysis results [10–12]. A key challenge is building a sufficient dataset to train the surrogate
model. A multi-fidelity (MF) approach is often applied in this process, utilizing FEM models
with varying levels of accuracy [13]. Lower-resolution numerical models (low-fidelity, LF)
enable fast data generation but require correction techniques to improve their reliability.
Various methods exist for integrating results obtained from models of different fidelity levels,
including statistical methods and machine learning-based algorithms. The choice of an
appropriate strategy affects both the training time and the accuracy of the surrogate model.

Different methods, such as Kriging and co-Kriging, statistical models, and deep neural
networks, are commonly used to develop surrogate models [11,12,14–20]. Each of these
approaches offers varying levels of accuracy and computational complexity, making it crucial
not only to assess the effectiveness of the surrogate model itself but also its impact on opti-
mization results. Kriging, as one of the widely used interpolation methods, enables the precise
modeling of nonlinear relationships between input parameters and FEM analysis results. On
the other hand, deep neural networks can model highly complex nonlinear dependencies but
require substantial computational resources and large training datasets [21–23].

The concept of Curriculum Learning (CL) originates from human cognition, where
learning involves acquiring knowledge through exposure to successive samples in a structured
sequence—progressing from the simplest to the most complex examples. This idea was first
introduced into machine learning by Bengio et al. [24] in 2009, who suggested that such an
approach not only accelerates the training process but also improves the quality of the local
minima obtained. In subsequent years, the concept of progressive learning was applied across
various domains with numerous modifications and extensions. Despite these differences,
a common feature of these approaches is the emphasis on refining models by focusing on
increasingly challenging or problematic examples. For instance, Hsiao and Chang [25] utilized
CL for constructing surrogate models to describe chemical processes (namely, an amine
scrubbing process), demonstrating its effectiveness in improving model accuracy.

The concept has also been extended to continual learning, where models are incremen-
tally trained on new data while retaining previously acquired knowledge, as explored by
Fayek et al. [26]. Another advanced adaptation, referred to as adaptive continual learning,
was proposed by Kong et al. [27], in which each learning step was dynamically adjusted
based on results obtained in preceding steps, further enhancing model performance. A
notable application of CL to highly complex systems includes its use in modeling unsteady
hypersonic flows in chemical nonequilibrium, as demonstrated by Scherding et al. [28].
This study highlights the potential of curriculum-based approaches in computationally
demanding simulations, reinforcing the broader utility of this learning paradigm across
various scientific and engineering disciplines.

The effectiveness of CL has been demonstrated across various complex applications,
where structured, progressive training significantly enhances model performance. In many
challenging problems, the approach described in this study as CL provides substantial im-
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provements in result quality while simultaneously reducing computational effort, making
it a valuable tool for optimizing surrogate modeling and numerical simulations.

The verification of solution quality cannot rely solely on comparing the surrogate
model with FEM results but must also consider the correctness of the optimization at a
global level. This necessitates evaluating the influence of the surrogate model on results
obtained using GA-based optimization. Furthermore, the optimization process must
account for modeling uncertainties, which may require applying probabilistic methods for
result analysis.

Due to the multi-criteria nature of the problem and the need for a continuous compari-
son of optimization results, appropriate indicators are used to assess solution quality [29,30].
One of the widely used tools is the analysis of Pareto fronts, enabling the evaluation of
trade-offs between different optimization criteria. The Pareto front identifies a set of non-
dominated solutions, where each represents an optimal compromise between multiple
optimization objectives. This allows for determining optimal material configurations and
evaluating their effectiveness concerning predefined design criteria.

Addressing these challenges is a key aspect of effective composite structure optimiza-
tion, enabling the development of design methodologies that provide optimal solutions
both in technical and economic terms. By integrating computational methods, optimization
algorithms, and machine learning techniques, it is possible to create more efficient tools to
support the design process of multilayer composites. Modern optimization approaches
also consider sustainability and environmental constraints, which can serve as additional
factors in the design analysis.

Queipo et al. [31] explored surrogate-based methods for analysis and optimization,
addressing key aspects such as loss function selection, regularization criteria, experimental
design strategies, sensitivity analysis, and convergence assessment. Their study also illus-
trated state-of-the-art applications through a multi-objective optimization case involving a
liquid rocket injector.

In their comprehensive review, Forrester and Keane [12] examined the latest advance-
ments in surrogate model construction and their integration into optimization strategies.
Their work provided a detailed evaluation of the advantages and limitations of various
surrogate modeling techniques, offering practical guidelines for their implementation.
Additionally, Hwang and Martins [32] analyzed the behavior of several popular surrogate
modeling approaches when applied to problems requiring thousands of training samples.

The optimization of the dynamic behavior of shell structures has been widely stud-
ied, with numerous algorithms proposed in recent research to tackle this challenge. For
example, Jing et al. [33] introduced a sequential permutation search algorithm aimed at
optimizing the stacking sequence of doubly curved laminated composite shallow shells to
maximize the fundamental frequency. Similarly, Chen et al. [34] developed a multivariate
improved sparrow search algorithm to enhance the fundamental frequency of composite
laminated cylindrical shells while minimizing vibrational resonance. Chaudhuri et al. [35]
performed a numerical investigation into the free vibration response of composite stiffened
hypar shells with cutouts, utilizing an FE analysis. Their optimization relied on parametric
tuning based on the Taguchi approach to achieve the desired frequency response. Another
study by Serhat [36] focused on optimizing the eigenfrequencies of circular cylindrical lam-
inates by examining the influence of parameters such as cylinder length, radius, thickness,
and boundary conditions. Likewise, Alshabatat [37] explored the optimization of natural
frequencies in circular cylindrical shells using axially functionally graded materials. Collec-
tively, these studies contribute to advancing optimization methodologies for improving the
dynamic performance of composite structures.
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This study aims to address the challenges associated with optimizing the dynamic
properties of multilayer composite structures while minimizing computational costs. The
proposed methodology integrates MF FE models with deep neural network-based surrogate
modeling, enabling efficient and accurate multi-objective optimization.

The novelty of this research lies in the systematic use of surrogate models within a CL
framework specifically tailored for multi-objective optimization. Unlike traditional surro-
gate modeling approaches, where training is performed using a fixed dataset, the proposed
method dynamically improves the surrogate model by incorporating new high-fidelity
samples in successive CL iterations. This iterative refinement enhances the predictive accu-
racy of the surrogate model while ensuring better convergence of the optimization process.
By progressively increasing the quality of the surrogate model, the CL-based approach
enables a more reliable identification of the Pareto front, leading to improved trade-off
solutions between competing objectives while maintaining computational efficiency.

Furthermore, this study explores different architectures for the surrogate model, com-
paring three distinct configurations. The effectiveness of these variants is assessed using
Pareto front quality indicators, providing a comprehensive evaluation of their impact on
optimization performance.

By incorporating these innovations, the proposed methodology offers a robust and
scalable solution for optimizing composite structures, demonstrating its applicability to
engineering problems requiring a balance between accuracy and computational feasibility.

2. Materials and Methods
2.1. Vibration Problem

In dynamic structural analysis, an essential issue is determining the system’s natural
frequencies and mode shapes. The equation of motion describing the system’s dynamics
can be written as:

Mẍ + Cẋ + Kx = P (1)

where

M is a n× n mass matrix;
C is a n× n damping matrix;
K is a n× n stiffness matrix;
x is a n-element vector of nodal displacements;
P is a n-element vector of external forces at nodes;
n is the number of dynamic degrees of freedom.

For the free-vibration analysis, when external forces are absent and damping is ne-
glected, the equation simplifies to:

Mẍ + Kx = 0 (2)

Solving this system leads to the so-called eigenvalue problem:

KΦ = MΦΩ2 (3)

where Φ represents the matrix of mode shapes φi (stored in successive columns of matrix Φ),
and Ω is the matrix of eigenvalues ωi. The angular frequencies ωi divided by 2π yield
the natural frequencies fi corresponding to the vibration shapes φi. Determining the
system’s eigenvalues and eigenvectors allows for the analysis of the dynamic properties
of the structure, which is crucial for designing and optimizing structures subjected to
dynamic excitation.
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2.2. Analysis of Dynamic Parameters to Avoid the Resonance Phenomenon

In the analysis of structures subjected to dynamic loads, a key aspect is optimizing
their dynamic properties to prevent resonance, which can lead to catastrophic consequences.
Resonance occurs when the excitation frequency coincides with or is very close to one of
the system’s natural frequencies, resulting in a rapid increase in vibration amplitude, which
may lead to structural failure. To avoid this, it is necessary to shape the system’s natural
frequency spectrum appropriately at the design stage.

If the excitation frequency is known, optimizing the natural frequency spectrum
involves maximizing the separation of natural frequencies from this value, creating a
frequency gap around the excitation frequency. This approach significantly reduces the risk
of resonance. It is also crucial for low-stress structures, where even minor vibrations can
cause premature damage or degradation of functional properties.

Shaping the natural frequency spectrum can be performed as part of an optimization
procedure with a properly defined objective function. In its basic form, the objective
function can be formulated to maximize the distance between the natural frequencies and
the excitation frequency:

g f (p) = −min|f (p)− fexc|, (4)

where the vector f (p) gathers the natural frequencies of the investigated model obtained for
specific values of design parameters collected in vector p, and fexc stands for the considered
excitation frequency. In this paper, fexc = 80 Hz.

If an additional criterion, such as minimizing the structure’s cost, is considered, the
optimization problem becomes multi-objective. In this case, the second objective function
can be expressed as:

gc(p) =
8

∑
i=1

(
V(p)

8
· ci

)
(5)

where V(p) is the total volume of the structure, and ci is the cost per unit volume of the
material used in layer i.

In this case, the multi-objective optimization aims to minimize both objective functions
simultaneously. The standard formulation of the multi-objective optimization problem—
finding the values of the arguments collected in an m-element structure’s control parameters
vector p for which two considered objective functions yield the lowest possible values—is
given by:

popt = arg min
p∈Pm

{
g f (p), gc(p)

}
, (6)

where p is a vector of structure parameters, and Pm is the m-dimensional space of the
decision parameters gathered in vector p.

The solution to the multi-objective optimization problem is the so-called Pareto front. The
Pareto front represents the set of non-dominated solutions in a multi-objective optimization
problem. A solution is considered non-dominated if no other solution exists that improves
one objective without worsening at least one other. In practical applications, the Pareto front
provides decision-makers with a range of optimal trade-offs between competing objectives,
allowing for a more informed selection of the most suitable design configuration.

To compare results obtained from different optimization approaches, numerical mea-
sures of Pareto front quality must be introduced. Pareto front indicators assess the distribu-
tion and diversity of solutions. One example is the hypervolume indicator, which measures
the volume of space enclosed by the Pareto front concerning a reference point. The greater
the value of this indicator, the better the quality of the obtained solutions regarding the
distribution of trade-offs among objective functions. Another commonly used metric is the
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distance of generated solutions from the theoretically optimal Pareto solution, which helps
evaluate the accuracy of the optimization process.

Considering these aspects in the design process allows us to obtain a system with
optimized dynamic properties while simultaneously minimizing production costs and
reducing the risk of damage due to uncontrolled dynamic excitations.

2.3. The Analyzed Structure

The axisymmetric structure analyzed in this study was generated by rotating a flat
hyperbola (marked with blue in Figure 1) around a fixed axis. This hyperbola had pre-
defined fixed start point A and end point C (namely, r1 = 61.03 cm, r2 = 73.236 cm, and
the overall length equaled 600 cm), while its middle point B could change its position
(given by d parameter) along the axis perpendicular to the axis of rotation, allowing control
over the shape of the generated shell. This geometry enabled a broad range of structural
configurations with varying dynamic and mechanical properties.

The shell was asymmetrically supported—one end was fixed, meaning all degrees of
freedom are constrained, while the other end remained free. These boundary conditions
led to specific dynamic properties of the structure, directly affecting its natural frequency
spectrum and susceptibility to resonance phenomena. The structure is shown in Figure 1.

A

300cm
300cm

B Cr1

r2
d

Figure 1. The analyzed structure: cantilever axisymmetric hyperboloid with varying middle-length
diameter d.

The analyzed structure was made of a composite material with a constant thickness of
16 mm and consisted of eight layers. Each layer had the same thickness but could be made
from one of three available composite materials. Additionally, each layer had a unique
fiber orientation, meaning that the orientation of fibers in each layer differed, affecting the
mechanical and dynamic properties of the shell.

The complete configuration of the structure was described by the parameter vector p,
which consisted of m = 17 variables: eight fiber orientation angles λi, material selections
for each of the eight layers µi, and one coordinate defining the position of the middle point
of the base hyperbola d; see Equation (7). This set of parameters allowed for a precise
modeling of the shell and its optimization concerning various criteria, including structural
dynamics, stiffness, and material and manufacturing costs.

p
17×1

= {λ1, λ2, . . . , λ8 µ1, µ2, . . . , µ8, d}′. (7)

The materials used to construct the shell included two real composite materials:
Carbon Fiber-Reinforced Polymer (CFRP) and Glass Fiber-Reinforced Polymer (GFRP).
Additionally, a theoretical material, the theoretical Fiber-Reinforced Polymer (tFRP), was
introduced for optimization purposes. The parameters of this material were calculated
as the average values of the properties of the CFRP and GFRP. The introduction of this
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material increased the complexity of the optimization task by introducing an additional
value for one of the decision variables.

Table 1 presents a summary of the mechanical and physical properties of the avail-
able materials.

Table 1. The properties of three fiber-reinforced composite materials: CFRP, GFRP and tFRP (see [38]).

Material µ Ea Eb Ec νab νac νbc Gab Gac Gbc Mass Density Cost
Label [-] [GPa] [GPa] [GPa] [-] [-] [-] [GPa] [GPa] [GPa] [kg/m3] [-]

CFRP 1 120 8 8 0.014 0.028 0.028 5 5 3 1536 10.20
tFRP 2 80 6 6 0.020 0.036 0.036 4 4 3 1428 5.78
GFRP 3 40 4 4 0.026 0.044 0.028 3 3 3 1320 1.36

2.4. Finite Element Models

This study employed two FE models that differed only in their FE size, which effectively
means variations in mesh density. Each model consisted of four-node MITC4 multilayered
shell elements, which are based on the first-order shear deformation theory [39].

Each layer of the shell structure corresponded to a single composite layer, with poten-
tially different material properties and fiber orientation angles. The maximum side length
of an approximately square finite element, denoted as h, for the primary FE model (referred
to here as M1), was selected to be approximately h = 1.25 cm. However, slight variations
existed in both the circumferential and longitudinal directions, and also at different loca-
tions along the shell’s axis. In addition to the M1 model, one coarse model, labeled as M5,
was introduced, featuring element sizes of h = 5 cm.

The high-fidelity M1 model served as the basis for constructing a pseudo-experimental
model. Meanwhile, the lower-fidelity M5 model contributed to expanding the dataset for
training the surrogate model. Given that the element size in the coarser model M5 was four
times larger than that in M1, the computational cost was reduced by a factor 42. However,
this efficiency gain came at the expense of accuracy—errors in M5 increased by factors of
44. While this loss of precision was substantial, the proposed methodology was designed
to account for and mitigate this issue.

The pseudo-experimental model was derived from the M1 FE model, where the
computed natural frequencies underwent the following nonlinear transformation:

f Me = f M1 + 20 · sin
(

1
60
· f M1 − 5

)
= Me

(
f M1

)
, (8)

where f M1 represents the vector of natural frequencies (in Hz) obtained from the M1 model,
corresponding to specific mode shapes φi within the mode shape matrix Φ (see [40]). Unlike
a typical approach where the frequency vector contains the lowest natural frequencies in
sequential order, in this study, it included only frequencies corresponding to selected mode
shapes. To enable such selection, the mode shapes obtained from numerical simulations
first had to be identified and subsequently filtered to retain only the eleven most relevant
ones [40].

This strategy enhanced the accuracy of the surrogate model by focusing on the most
meaningful vibrational modes and eliminating unnecessary information that could intro-
duce noise into the learning process. As a result, the optimization procedure benefited
from improved convergence and solution quality, as demonstrated in the authors’ previous
studies [40].

The transformed vector f Me represents the pseudo-experimental model’s natural
frequencies, and the function Me(·) mimics experimental testing procedures. The neural
network-based approximation—surrogate model application—of f Me is denoted as f Me

SM.
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It is important to note that the function Me(·) does not stem from actual experimental
research but is instead an attempt to model discrepancies between numerical simulations
and laboratory experiments. The authors’ previous studies relied entirely on numerical
analyses; thus, incorporating the pseudo-experimental model into the optimization frame-
work enables the consideration of potential deviations encountered in experimental studies.
Furthermore, this approach helps address practical limitations related to the number of
feasible experimental tests.

2.5. Optimization Strategy Using Genetic Algorithms, Surrogate Models, and
Curriculum Learning

The optimization problems given by Equation (6) were herein solved using the Non-
dominated Sorting Genetic Algorithm II (NSGAII) [41], a GA-based multi-objective search
method that is not derivative-based. Genetic algorithms are widely used in complex
engineering problems, particularly where traditional optimization methods prove insuf-
ficient [6,40]. They work on a population of possible solutions and use deterministic
computations and random number generators. The GA’s advantage, crucial from the
point of view of the problem to be solved, is the ability to search the entire solution space
when trying to find a global minimum. However, this requires repeated evaluations of
the objective function, which is computationally expensive when the FEM is applied. In
the proposed optimization procedure, the objective function was solved using a surrogate
model instead of FEM calculations. Therefore, the GA procedure worked extremely fast.

However, one of the key challenges associated with GAs is the need to repeatedly
evaluate the objective functions. This process can be computationally expensive, especially
when the objective functions require time-consuming numerical analyses, such as FEM
simulations. To significantly mitigate this issue, the present approach employed surrogate
models based on deep neural networks (DNNs).

The use of DNNs as surrogate models enables the rapid approximation of analysis
results, replacing costly simulations with near-instantaneous predictions. This allows for
large-scale optimization while drastically reducing computation time. The effectiveness
of this approach was confirmed in the authors’ previous studies, where it was demon-
strated that using a DNN for objective function prediction led to a significant reduction in
computational burden compared to conventional methods [42].

The process of selecting DNN parameters required a thorough evaluation of network
errors, taking into account the following aspects:

• The number of input variables, denoted as I;
• The number of layers, represented by NL;
• The number of neurons H within each hidden layer (expressed as H(·), maintaining

consistency across all hidden layers within a specific network);
• The number of output nodes, denoted as O;
• The choice of learning algorithms and regularization techniques, along with other

contributing factors;
• The choice of activation and loss functions.

A summary of the different network parameter values considered is presented in
Table 2. It is worth noting that the architecture 17-50-50-50-11, in combination with the Tanh
activation function and the RMSProp learning algorithm, provided optimal performance in
over 80% of the evaluated DNNs. This configuration was frequently used alongside Batch
Normalization (BN) for regularization and Early Stopping strategies. Also, the best results
were achieved using the MAE as the loss function.

Preparing surrogate models in the form of a DNN requires generating an appropriate
dataset for training. To achieve this, an MF approach was introduced to limit the number
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of calls to the high-fidelity M1 model during data generation. The less accurate M5 model
was employed, allowing the acquisition of a large number of training samples at the cost of
reduced accuracy. In the authors’ previous study [43], it was demonstrated that increasing
the FE size by a factor of h resulted in an approximately h2 reduction in computational
time. However, this simplification came at the expense of accuracy, as the numerical
error increased by a factor of h4. This trade-off underscores the necessity of incorporating
correction mechanisms, such as auxiliary neural networks, to mitigate the errors introduced
by the lower-fidelity M5 model. The number of cases computed using the M1 model (which
also provided pseudo-experimental data samples) was an order of magnitude smaller than
the number of cases evaluated with the M5 model. To further enhance the accuracy of the
surrogate model, auxiliary neural networks were incorporated to compensate for the errors
introduced by the lower-fidelity M5 model. The number of M1 model evaluations was
denoted as nM1, while the number of M5 model evaluations was denoted as nM5.

Table 2. Architecture, algorithms, function, and methods used in DNN simulations [44].

DNN architecture I = {17, 28}
I − H(·) −O NL = {4, 5, 6, 7, 8}

H(·) = {20, 30, 40, 50, 75, 100}
O = 11

Learning algorithms ADAM
* RMSProp
SGD

Regularization methods * Early Stopping
L2 Regularization
Dropout
* Batch Normalization

Activation functions SoftMax
* Tanh
ReLu
Sigmoid

Loss functions MSE
* MAE
ArcSin

* Option selected based on preliminary testing.

Within this framework, two FEM models of varying accuracy were utilized: a high-
fidelity model (M1) and a low-fidelity model (M5). The M1 model served as a reference and
was used to generate pseudo-experimental data by introducing a nonlinear perturbation
function Me(·). This function aimed to account for potential discrepancies between numer-
ical results and real experimental data, thereby enabling optimization under conditions
closer to real-world scenarios. This introduced an additional verification step, allowing for
the assessment of the robustness of the applied optimization methods against inevitable
errors and uncertainties present in experimental data. The low-fidelity model M5, on
the other hand, facilitated the rapid estimation of preliminary values while significantly
reducing computational costs.

The integration of MF modeling with deep neural networks enhanced the efficiency of
the surrogate model training process, allowing for more precise representation of dependen-
cies in the design space, while maintaining an acceptable computation time. The following
sections provide a detailed discussion of three different approaches, each varying in the
construction of surrogate models and their integration with the optimization procedure.
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Regardless of the applied variant, the primary objective of the surrogate model re-
mained unchanged. Its purpose was to predict the pseudo-experimental frequency values
f Me based on a given vector of model parameters p. Ultimately, regardless of the method-
ology adopted for constructing and training the surrogate model, its operation can be
symbolically depicted as in Figure 2.

p

17×1

Surrogate model

SM
f Me

SM

11×1

→ →
Figure 2. The surrogate model.

The optimization procedure, whose concept is presented in Figure 3, was based on
an iterative approach involving multiple refinements of the surrogate model within the
framework of CL.

Initial bounds

for variables→

Patterns

generation→
Surrogate model

trainig→

Multi-objective

optimization→

Results

verification

Surrogate model

retraining

→
Additional

patterns→

Final solution:

Pareto front

C
L

x lo
o

p

Figure 3. The optimization scheme, including CLx loops.

The process begins with data generation, which includes a large number of samples
obtained using the simplified M5 model (nM5) and a significantly smaller number of
samples derived from the pseudo-experimental Me(M1) model (nM1). This approach
allows for the collection of a comprehensive dataset while simultaneously limiting the
computational cost associated with the high-fidelity M1 model.

Based on the generated dataset, a surrogate model in the form of a deep neural network
is constructed and appropriately trained. Once the training process is completed and the
surrogate model is prepared, the optimization procedure is initiated using a GA. At that
stage, the surrogate model plays a crucial role in enabling the efficient and rapid estimation
of the objective function values.

After completing the first optimization cycle, the obtained results are validated and
subsequently used to build an additional dataset. The new samples focus on regions of
the design space located in the vicinity of the optimal solution, facilitating the further
refinement of the surrogate model.

In the subsequent steps, the surrogate model is retrained based on the newly generated
data, and the optimization process is restarted, this time utilizing the improved surrogate
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model. The iterative refinement cycles of the surrogate model form the core of the CL
approach, where x represents the number of performed iterations.

The procedure terminates after reaching a predefined number of CL cycles, ensuring
a systematic improvement in the quality of the surrogate model and yielding the final
optimized solution.

2.5.1. Variant I

In the first approach variant, an auxiliary surrogate model was first developed to
generate training data for the primary surrogate model. The purpose of the auxiliary
model was to refine the results obtained from the low-fidelity M5 model so that they
would closely match the values derived from the pseudo-experimental model Me

(
f M1

)
.

To achieve this, FEM calculations were performed for a limited number of cases using both
the high-fidelity M1 model and the low-fidelity M5 model. Based on the collected data,
an auxiliary model was trained. Its inputs consisted of the structural design parameters,
gathered in the vector p, along with a vector f M5 of eleven selected natural frequencies
obtained from the M5 model. The neural network was trained to accurately estimate the
pseudo-experimental frequencies f Me = Me

(
f M1

)
, which served as approximations of real

experimental measurements (see Figure 4a).
Upon completion of the training process, the trained auxiliary surrogate model was

used to predict pseudo-experimental frequency values f Me
aux based on the results from rapid

calculations using the M5 model only (see Figure 4b).
This approach enabled the generation of a large dataset, which was subsequently

used to train the primary surrogate model (see Figure 5a). The role of this final surrogate
model was to predict pseudo-experimental frequency values f Me

SM solely based on the design
parameter vector p, eliminating the need for any additional numerical simulations (see
Figure 5b).
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Figure 4. Variant I: (a) training and (b) application phase of the auxiliary surrogate model.
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Figure 5. Variant I: (a) training and (b) application phase of the primary surrogate model.

This methodology significantly reduced the necessity of repeatedly utilizing the com-
putationally expensive M1 model (as well as the pseudo-experimental model). Moreover,
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it facilitated the development of an accurate and efficient primary surrogate model. The
large number of training samples generated by the auxiliary model allowed for precise
predictions while maintaining a low computational cost.

2.5.2. Variant II

In the second approach, a different architecture was employed for the auxiliary surro-
gate model, while the primary surrogate model remained unchanged from the first variant.
The key modification introduced in this version was the division of the auxiliary neural
network structure into two distinct modules: one dedicated exclusively to processing
linear dependencies and the other responsible for capturing nonlinear components of the
mapping. Despite its more complex architecture, the auxiliary surrogate model remained a
single neural network.

This architectural choice for the auxiliary model was based on the assumption that
for functions that can be decomposed into linear and nonlinear components, processing
these elements separately should yield more accurate approximation results [45–47]. By
structuring the auxiliary model in this manner, it was possible to better align its design with
the characteristics of the data, thereby improving its ability to capture the relationships
between structural parameters and the resulting pseudo-experimental frequencies.

The training procedure of the auxiliary surrogate model (see Figure 6a), its application
phase (see Figure 6b), and its objective remained identical to those in the first variant. The
precomputed values from the simplified M5 model were still utilized and subsequently
corrected using the trained network to best match the values obtained from the pseudo-
experimental model. The refined data were then used to construct the main surrogate
model, whose purpose was to estimate the pseudo-experimental frequency values f Me

SM
based solely on the design parameter vector p, eliminating the need for multiple costly
numerical computations (see Figure 5b).
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Figure 6. Variant II: (a) training and (b) application phase of the auxiliary surrogate model; (c) the
structure of the applied two-module DNN.

A similar modular architecture to the one described above for the auxiliary surrogate
model (see Figure 6c) was also tested for the primary surrogate model. The goal was to
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examine whether separating linear and nonlinear processing could enhance the accuracy of
pseudo-experimental frequency predictions. However, the results obtained with this con-
figuration did not show significant improvements over the standard approach, and in some
cases, even led to increased approximation errors in the surrogate model. Consequently,
this approach was abandoned.

2.5.3. Variant III

The third variant of the approach differed significantly from the two previous methods.
It still utilized two surrogate models; however, their role and application underwent
substantial modifications. Unlike variants I and II, where the auxiliary surrogate model
was used solely for preparing training data for the primary surrogate model, in this
approach, both models were employed simultaneously and actively participated in the
entire optimization process.

The first surrogate model was designed to replace computations performed using the
simplified M5 model. Its primary function was to directly estimate the selected natural
frequencies f M5 obtained originally from the M5 model based on the vector of design
parameters p. This eliminated the need for the repeated use of the M5 model during the
optimization process.

The second surrogate model, in turn, was responsible for estimating the pseudo-
experimental frequencies f Me, which are essential for optimization. Its input consisted of
an extended input vector comprising both the design parameter vector p and the vector of
frequencies f M5

aux obtained from the first surrogate model. As a result, this model accounted
for both the structural characteristics and the dynamic properties derived from the analysis
of the M5 model (or, more precisely, from the first surrogate model). The training and
application of both surrogate models is presented in Figures 7 and 8.
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Figure 7. Variant III: training phase of (a) the first surrogate model and (b) the second surrogate
model.
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With this configuration, both surrogate models were utilized at every stage of the
optimization process.

2.6. Indicators: Pareto Front Quality Metrics

The results of the multi-objective optimization problem analyzed in this study, which
involved two objective functions, resulted in a two-dimensional Pareto front.

For an objective assessment of the quality of solutions obtained through multi-objective
optimization, appropriate evaluation metrics must be introduced. While visual inspection
of several Pareto fronts is effective for distinguishing qualitative differences, it becomes
insufficient when variations between the compared fronts are merely quantitative. In such
cases, the repeated comparison of Pareto fronts necessitates the definition of numerical
quality metrics. These indicators allow for an objective evaluation of various characteristics
of the analyzed fronts. Audet et al. [30] reviewed a total of 57 performance indicators
and categorized them based on the evaluated parameters into four groups: (i) cardinal-
ity indicators, (ii) convergence indicators, (iii) distribution and spread indicators, and
(iv) convergence and distribution indicators. Alternatively, Tian et al. [48] proposed a more
simplified classification, distinguishing only between (i) diversity indicators (assessing the
evenness and spread of the Pareto front) and (ii) convergence indicators.

In this study, four indicators were selected. The first was the hypervolume indicator,
denoted as IH , and the second was the relative hypervolume indicator, denoted as Ir

H .
The hypervolume indicators are classified as convergence and distribution indicators
in [30] or as convergence and diversity indicators in [48]. The hypervolume indicator
IH is recognized as the most widely used metric [29]. The third metric utilized was the
Epsilon ε-indicator [49], referred to as Iε. It is classified as a convergence indicator in [30]
and ranks as the third most frequently used indicator according to [29]. The second most
common metric, the Generational Distance indicator, was applied in this study as the
fourth indicator.

Originally introduced by Zitzler [50], the hypervolume indicator measures the area
covered by the examined Pareto front A relative to a suitably chosen reference point.
When comparing two fronts, A and B, this indicator can be adapted as the difference
IH(A) − IH(B). If one of the compared fronts represents the true Pareto front (TPF),
meaning the optimal front sought during the optimization process, the indicator can be
redefined as a unary metric: IH2(A) = IH(TPF) − IH(A). The relative hypervolume
indicator used in this study is given by:

Ir
H =

IH(TPF)− IH(A)

IH(TPF)
, (9)

where IH(TPF) and IH(A) denote the areas covered by the TPF and the examined Pareto
front A, respectively. The true Pareto front was defined in this study as the envelope of
the results obtained from all examined approaches and variants considered in the analysis.
Therefore, it did not represent a fully legitimate TPF, which should ideally be derived
analytically. Instead, it served as the most accurate possible approximation of the true
optimal front within the scope of this study.

The third selected indicator, Iε(A, B), represents the smallest scalar ε that scales Pareto
front B so that every point in ε · B is dominated by at least one point in A. If the second
Pareto front corresponds to the TPF, this metric can be treated as a unary indicator, denoted
as Iε1(A), which was applied in this form in the present study.
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The fourth selected indicator, the Generational Distance indicator IGD [51] measures
the average distance of the obtained Pareto front solutions from the TPF and is defined as:

IGD =

(
1
N

N

∑
i=1

d2
i

) 1
2

(10)

where

• N is the number of points in the approximated Pareto front;
• di is the distance of each solution from the nearest point in the TPF.

3. Results
3.1. Evaluation of High-Fidelity Sample Size and Training Strategies for Surrogate Models

The initial analyses aimed to determine the optimal number of M1 samples in the
training dataset for the surrogate model. Table 3 and Figure 9 present the first set of results,
where the table provides numerical values, and the figures offer a graphical representation
with the vertical axes representing the values of four selected indicators and the horizontal
axes indicating the number of M1 samples used in the applied datasets. For the reader’s
convenience, the desired trend for each indicator is repeated in parentheses (higher or
lower values preferred):

• Hipervolume indicator IH : see Figure 9a (the higher the better),
• ε indicator Iε: see Figure 9b (the lower the better),
• relative Hipervolume indicator Ir

H : see Figure 9c (the lower the better),
• Generational Distance indicator IGD: see Figure 9d (the lower the better).

Table 3. The optimization outcomes obtained using a surrogate model trained with a single-step
training Variant II (no CLx) or CL iterative approach on Variant II CL0–CL2.

Me(M1) Samples

125 250 500 750

IH Variant II 14.8924 15.1581 14.8327 14.8594
Variant II CL0–CL2 — 15.1581 15.3016 15.3572

“Variant II CL0–CL2” improvement vs. “Variant II” 3% 3%

Iε Variant II 1.3082 1.2241 1.3453 1.3258
Variant II CL0–CL2 — 1.2241 1.2004 1.2004

“Variant II CL0–CL2” improvement vs. “Variant II” 11% 9%

Ir
H Variant II 0.0464 0.0294 0.0502 0.0485

Variant II CL0–CL2 — 0.0294 0.0202 0.0166
“Variant II CL0–CL2” improvement vs. “Variant II” 60% 66%

IGD Variant II 0.0391 0.0230 0.0289 0.0223
Variant II CL0–CL2 — 0.0230 0.0187 0.0089

“Variant II CL0–CL2” improvement vs. “Variant II” 35% 60%

The analysis of these indicators enabled the evaluation of the effectiveness of successive
iterations in improving the surrogate model and their impact on the final quality of the
optimization outcomes.

This analysis focused on comparing the optimization outcomes obtained using a
surrogate model trained with a nearly identical number of computationally expensive
Me(M1) samples but employing two distinct training strategies: (i) a single-step training
approach utilizing all randomly generated samples at once, and (ii) an iterative refinement
approach based on CL.
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The tests presented in the table and figures were conducted exclusively for the second
variant of the surrogate model, in which the auxiliary neural network consisted of separate
modules dedicated to processing linear and nonlinear dependencies. It is important to note
that Figure 9 does not encompass the entire range of simulations performed within the CL
procedure. The results displayed in the figures correspond only to those cases for which
calculations were also performed using a surrogate model trained without CL iterations,
allowing for a direct comparison.
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Figure 9. The optimization outcomes obtained using a surrogate model trained with a single-step
training (no CLx) or CL iterative approach: (a) IH , (b) Iε, (c) Ir

H , (d) IGD.

The results obtained for the variant that did not utilize CL are additionally presented
not only in the form of Pareto front quality indicators but also through the resulting Pareto
fronts themselves. A graphical representation of these fronts is provided in Figure 10,
allowing for a direct comparison of their shape and distribution.
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Figure 10. Comparison of Pareto fronts obtained without CL iterations, using different numbers of
high-quality samples for surrogate model training.
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The analysis of the results shown in Figure 9a–d leads to several key conclusions.
First and foremost, there is no need to use more than 250 high-fidelity M1 samples in the
initial stage of optimization (CL0), as increasing their number did not improve results
and could even degrade performance in some cases. Comparing Pareto fronts obtained
from different approaches that did not incorporate CLx loops (see Figure 10) was more
complex; however, even in this case, the benefits of using 250 M1 samples could be observed.
Another important finding is the impact of successive CLx loops on optimization quality.
The conducted analyses demonstrated that the iterative refinement of the surrogate model
led to a noticeable improvement in all applied performance indicators, as confirmed for CL1
and CL2 iterations. These findings highlight the effectiveness of the proposed approach
and confirm that the key factors influencing the quality of the surrogate model are the
proper management of high-fidelity samples and the application of iterative learning.

3.2. Evaluation of Different Surrogate Model Configurations at CL0 Stage

In the next step, a preliminary comparison (see Figure 11) was conducted at the CL0
stage (i.e., without refinement loops improving the model’s accuracy) to evaluate the results
obtained from three different surrogate model construction approaches (Variants I through
III). Additionally, two alternative surrogate models were examined, where the auxiliary
neural network (see Variant I, Figure 4a) was replaced by either Gradient Boosted Trees
(GBTs) or Kriging inference (Krig). In this comparison, 250 high-fidelity M1 samples and
4000 low-fidelity, corrected M5 samples, were used. The only exception was the case labeled
as “VarI: 5S”, where the number of M5 samples was increased to 5000.
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Figure 11. Comparison of performance indicators for different surrogate model variants at the CL0
stage: (a) IH , (b) Iε, (c) Ir

H , (d) IGD.
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The analysis of the obtained results indicates that the best optimization outcomes were
achieved using Variant II and Variant III surrogate models.

A comparison of the results obtained for the Variant I surrogate model (denoted in the
figures as “VarI: 4S” and “VarI: 5S”) suggests that employing 4000 M5 samples was justified.
A further analysis of these cases demonstrated that increasing the number of M5 samples
to 5000 (as in “VarI: 5S”) did not provide significant improvements in result quality.

Additionally, the results obtained using Gradient Boosted Trees (GBTs) and Kriging
(Krig) indicated that in the Variant I surrogate model, during the construction phase of the
auxiliary surrogate model (Figure 4a), alternative machine learning methods could be applied.
This was feasible because the number of training samples in this phase was relatively small
(250), allowing the effective use of techniques such as GBTs and Kriging. However, in the
second phase (where the number of training samples increased to 4000), the results obtained
using GBTs and Krig significantly deteriorated and were unsuitable for optimization purposes.
Consequently, a DNN (deep neural network) was selected as the final surrogate model.

This finding suggests the potential for a hybrid approach, where GBTs or Kriging
could be applied in the initial phase, followed by a DNN as the final surrogate model
(GBT→DNN or Krig→DNN). However, this hybrid methodology was not further explored
in the present study.

3.3. Analysis of Effectiveness of Optimization Utilizing Curriculum Learning

This section presents the results of the analysis of three surrogate model variants, each
subjected to an iterative refinement process within the framework of CL; see Figure 12. The
plots in the subsequent subfigures show the values of the applied performance indicators
(vertical axes) as a function of the number of applied CL loops (horizontal axes). A detailed
analysis was conducted for the case where the number of M1 samples (and consequently
Me samples) was 250, while the number of M5 samples was 1000. This configuration is
symbolically referred to as V025-4S. In each case of different surrogate models variants, five
optimization cycles were conducted, denoted as CL0, CL1, CL2, CL3, and CL4. The results
are presented in figures summarizing the tendencies of four selected performance indicators.

Each CL iteration required verification of results, allowing for the preparation of a new
batch of training samples. In the applied approach, each CL iteration introduced approxi-
mately 250 additional training samples. Consequently, iterations from CL0 to CL3 resulted in
around 1000 new samples generated using the M1 model, which was utilized for verification.

The surrogate models applied in the CL0 iteration were trained on an initial dataset
containing 250 Me(M1) samples. After completing the CL3 stage, these models were
further refined through four additional training phases, each incorporating approxi-
mately 250 new samples. With reasonable approximation, it can be stated that the sur-
rogate models used in the CL4 iteration were trained on a dataset containing a total of
250 + 4× 250 = 1250 samples of M1 quality.

Additionally, this study examined an alternative approach in which a surrogate model,
built according to Variant I, was trained using all 1250 M1 simulation samples from the
outset, without iterative refinement through CL cycles. In Figure 12, the results of this
approach are marked with a red dot labeled V125-4S (1250 high-quality M1 samples and
4000 lower-quality auxiliary network-refined M5 samples). Due to the comparable number
of high-fidelity samples, these results are presented in the CL4 column. However, it should
be noted that formally, these correspond to CL0 since no iterative learning process was
applied. Nevertheless, the number of high-fidelity samples used in this approach closely
matched that of the V025-4S configuration at the CL4 stage.

For the reader’s convenience, the numerical results presented graphically in Figure 12
are additionally provided in Table 4. To clarify the interpretation of the data presented
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in the table, several explanations are necessary. The columns labeled CL1, CL2, CL3, and
CL4 display the values obtained in successive iterations of the CL process. The values in
parentheses within these columns indicate the improvement achieved compared to the
previous step, allowing for an assessment of the effectiveness of each iterative refinement
in the surrogate model training process. The second-to-last column represents the overall
improvement between CL4 and CL0. Additionally, the last column presents the overall
improvement in results obtained using Variant I or Variant II relative to Variant III. The
values in this column provide insight into which surrogate model approach yielded superior
final results and quantify the extent to which Variant I or Variant II outperformed Variant III.
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Figure 12. Surrogate model variants and Pareto front indicators obtained for subsequent CL loops:
(a) IH , (b) Iε, (c) Ir

H , (d) IGD.

Table 4. Surrogate model variants and Pareto front indicators obtained for subsequent CL loops.

CL4 Improvement
CL0 CL1 CL2 CL3 CL4 vs. CL0 vs. Variant III

Variant I 14.331 14.676 (2%) 15.153 (3%) 15.400 (2%) 15.439 (0%) 8% 1%
IH Variant II 15.158 15.302 (1%) 15.357 (0%) 15.559 (1%) 15.569 (0%) 3% 2%

Variant III 15.095 15.161 (0%) 15.248 (1%) 15.286 (0%) 15.318 (0%) 1% —

Variant I 1.5580 1.4119 (9%) 1.2241 (13%) 1.2241 (0%) 1.1288 (8%) 28% 1%
Iε Variant II 1.2241 1.2004 (2%) 1.2004 (0%) 1.1057 (8%) 1.0968 (1%) 10% 4%

Variant III 1.2241 1.2241 (0%) 1.2241 (0%) 1.1640 (5%) 1.1449 (2%) 6% —

Variant I 0.0824 0.0603 (27%) 0.0297 (51%) 0.0139 (53%) 0.0114 (18%) 86% 41%
Ir
H Variant II 0.0294 0.0202 (31%) 0.0166 (18%) 0.0037 (78%) 0.0031 (16%) 89% 84%

Variant III 0.0334 0.0292 (13%) 0.0236 (19%) 0.0212 (10%) 0.0192 (9%) 43% —

Variant I 0.0515 0.0347 (33%) 0.0198 (43%) 0.0201 (−2%) 0.0164 (18%) 68% 10%
IGD Variant II 0.0230 0.0187 (19%) 0.0089 (52%) 0.0076 (15%) 0.0072 (5%) 69% 60%

Variant III 0.0221 0.0344 (−56%) 0.0226 (34%) 0.0227 (0%) 0.0182 (20%) 18% —

99



Materials 2025, 18, 1469

The Pareto fronts (not their indicators, as previously) obtained from the optimization
process using different surrogate model variants and varying numbers of CL loops are
presented in Figure 13a–c. These plots also include the TPF, which serves as a reference
(benchmark) for assessing the quality of the obtained solutions.

An alternative visualization of the same results (displayed only for every second
CL loop) is provided in Figure 13d–f. The magenta color is used to indicate the region
enclosed by the Pareto front obtained for CL0. The green-shaded region corresponds to
the area bounded by the Pareto front obtained in the CL2 iteration. However, only those
portions of this region where the CL2 front dominated over the CL0 front are visible in the
figure. Notably, the front obtained in CL2 was never inferior to the one from CL0. Similarly,
regions where the Pareto front from CL4 outperformed the front from CL2 are highlighted
in yellow. Finally, the red color marks areas where the True Pareto Front (TPF) provided
superior results compared to the front obtained in CL4.
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Figure 13. Pareto fronts obtained for subsequent CL loops: (a,d) Variant I, (b,e) Variant II, (c,f) Variant III.

The next figure, namely, Figure 14, presents the Pareto fronts obtained after the CL4
iteration for each of the considered surrogate model variants, as well as the Pareto front corre-
sponding to the V125-4S case, previously described in the context of Figure 12. In the four cases
depicted in the figure (supplemented by the TPF), the number of Me samples, which required
computationally expensive evaluations, was very similar, amounting to approximately 1250.

This figure provides a clear assessment of the quality of the CL0 approach (where no
CL iterations were applied, as in the case of V125-4S) compared to the iterative improvement
strategy, in which the surrogate model was refined through successive CL loops.
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Figure 14. Pareto fronts obtained for CL4 loops and CL0 case V125-4S: (a) line-based representation
of Pareto fronts, (b) surface-based representation of Pareto fronts.

4. Discussion
The analytical mode shape identification procedure employed in this study did not

achieve the same level of precision for the analyzed geometries as it did for the originally
considered cylindrical structure, on which it was initially developed (see [40,52]). This method
involved identifying the node with the highest displacement for a given mode shape and
determining the corresponding vibration mode based on the displacement direction and
comparison with selected reference points. The application of concave or convex hyperboloid
geometries introduced additional challenges in the identification process, as the curvature
variation affected the displacement patterns and complicated the interpretation of mode shapes.

Although the identification accuracy could potentially be improved by fine-tuning
selected parameters and coefficients within the identification procedure, the authors rec-
ognized this as an opportunity to assess the robustness of the proposed optimization
framework in the presence of identification errors. While for a cylindrical structure, the
identification method proved highly effective, with an estimated error rate of only about 1%,
the more complex hyperboloid of revolution, which could exhibit both concave and convex
configurations, resulted in a significantly higher error rate, increasing by several times.

Despite this increased error rate, the optimization process remained stable and ef-
fective, demonstrating its resilience to imperfections in mode shape identification. The
observed identification inaccuracies did not introduce critical disruptions in the algorithm’s
performance, further validating the applicability of the proposed approach to optimizing
complex geometries.

5. Conclusions
Based on the presented results, the following key conclusions can be drawn:

1. Effectiveness of CL iterations: The introduction of CL loops significantly enhanced
the optimization outcomes. The results demonstrated that iterative refinement of the
surrogate model through CL1 and CL4 led to a noticeable improvement in all applied
performance indicators. This confirmed the effectiveness of CL in refining surrogate
models and improving optimization performance.

2. Pareto front analysis: The visualization of Pareto fronts obtained for different surro-
gate models and CL iterations confirmed the positive impact of iterative learning on
optimization quality. Moreover, the comparison of Pareto fronts from CL4 iterations
with the V125-4S approach provided insights into the advantages of an iterative model
refinement strategy over direct surrogate model training with a large dataset.
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3. Comparison of different surrogate model variants: The best optimization results were
achieved using the surrogate models from Variant II, then Variant I. These models
consistently outperformed Variant III in terms of Pareto front quality indicators.
Additionally, the comparison of Variant I results confirmed that increasing the number
of low-fidelity samples above 4000 did not yield significant benefits.

4. Optimal number of high-fidelity samples: The analyses indicated that using more than
250 high-fidelity M1 samples in the initial optimization stage (CL0) did not improve
results and, in some cases, could even degrade performance. This suggests that the
selection of an appropriate number of high-fidelity samples is crucial for balancing
computational cost and optimization accuracy.

5. Evaluation of alternative machine learning approaches: the findings suggest that,
in the auxiliary surrogate model construction phase, alternative machine learning
methods such as GBTs and Kriging can be effectively used.

These findings underscore the importance of iterative refinement in surrogate-based
optimization and suggest that a carefully structured training approach, incorporating CL, can
significantly enhance optimization performance while maintaining computational efficiency.
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Abstract: Spacecraft are subjected to various external loads during flight, and these loads
have a direct impact on the structural safety and functional stability of the spacecraft.
Obtaining external load information can provide reliable support for spacecraft health
detection and fault warning, so accurate load identification is very important for spacecraft.
Compared with the traditional time-domain load identification method, the neural network-
based time-domain load identification method can avoid the establishment of the inverse
model and realize the response-load time-sequence mapping, which has a broad application
prospect. In this paper, a CNN-LSTM-SA neural network-based load identification method
is proposed for load acquisition of a thin-walled spacecraft model. Simulation results show
that the method has higher identification accuracy and robustness (RMSE and MAE of 8.47
and 10.83, respectively, at a 20% noise level) in the load identification task compared to other
network structures. The experimental results show that the coefficients of determination
(R2) of the proposed neural network load recognition model for time-domain identification
tasks of sinusoidal and random loads are 0.98 and 0.93, respectively, indicating excellent
fitting performance. This study provides a reliable new method for load identification in
thin-walled spacecraft cabin structures.

Keywords: load identification; CNN-LSTM-SA; thin-walled compartment; time sequence
mapping

1. Introduction
In the field of aerospace, the acquisition of external load information is directly related

to the stability and reliability of spacecraft. However, due to the harsh external environment
and complex dynamic loads during spacecraft flight, it is difficult to measure external loads
directly with sensors, so it is necessary to use load identification techniques to estimate
external loads from the response inside the spacecraft [1]. The concept of load identification
originated in the 1970s. At that time, load identification techniques were used to determine
actual aircraft loads in order to improve aircraft performance [2]. It has since been widely
applied in various engineering fields due to its ability to improve product reliability and
durability. Dynamic load identification is divided into two categories: time-domain load
identification methods and frequency-domain load identification methods. Time-domain
load identification technology does not need to consider the frequency characteristics of the
structure and is suitable for dynamic problems with significant nonlinearity and uncertainty.
At the same time, the time-domain method can realize the on-line monitoring of structural
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loads, so the research on time-domain load identification methods has received more and
more attention in recent years [3].

Time-domain load identification usually relies on the Green’s kernel function decon-
volution method (GKFM) [4], which is mainly for linear systems. Meanwhile, in order to
solve the matrix ill-posedness problem, the regularization method is needed in the solution
process. However, the selection of the regularization parameters is a more complicated
task [5]. With the development of deep learning, neural networks are gradually being
applied to the task of load identification. Compared with the traditional time-domain load
identification methods, the neural network-based method has the ability of automatic fea-
ture extraction and powerful nonlinear modeling capability, as well as better robustness [6].
Luis et al. [7] used a neural network to achieve the identification of horizontal and vertical
forces on automobile wheel hubs and discussed the potential of the method for online
monitoring of loads applied to automobiles. Tang et al. [8] proposed a method combin-
ing stochastic response power spectral density and deep convolutional neural network
(CNN) to accurately recognize vehicle load information. Zhang et al. [9]. proposed a
CNN network based on a transform domain approach, using decomposed signals from
wavelet transforms of multiple vibration signals as input; combined with a CNN network
to achieve load identification in the time domain. Zhou et al. [10] performed impact load
identification for nonlinear structures using a deep recurrent neural network consisting of
two long short-term memory network (LSTM) layers and one bi-directional long short-term
memory network (BiLSTM) layer; the network trained on numerous dynamic responses
and impact loads demonstrated the ability to identify complex impact loads, even when
the impact location was unknown. Yang et al. [11] proposed a neural network model with
a bi-directional LSTM layer, an LSTM layer, and two fully connected layers to identify
typical dynamic loads (sinusoidal, impact, and random loads) for simply supported beams.
Furthermore, Yang et al. [12] developed a depth-expanded convolutional neural network,
which directly constructs a transfer model between the structural acceleration response and
excitation for data-driven dynamic load identification. Wang et al. [13] proposed a deep
regression adaptive network based on model migration that learns to improve the accuracy
and efficiency of neural networks for load identification.

Due to the different characteristics of different neural networks, recent research in time-
series data prediction has focused on combining multiple networks, thereby leveraging
their strengths and building more accurate and efficient models. Lu et al. [14] proposed a
CNN-BiLSTM-AM (attention mechanism) neural network for predicting stock data, which
confirms the significant advantages of this method over other neural network methods.
Huy et al. [15] used a CNN-LSTM model combined with an attention mechanism to predict
short-term power loads, addressing issues with input–output relationships, mitigating
information loss from long input time-series data and improving prediction accuracy.
Marios [16] examined dynamic structural loads of gated cyclic units, using an LSTM and
CNN trained on small datasets, and compared the results with a physically based residual
Kalman filter (RKF). Zhang et al. [17] proposed a method to predict wave height based on a
CNN-LSTM neural network, and the results show that the method can effectively improve
the prediction accuracy as well as robustness. Hu et al. [18] proposed a fall detection
method based on a CNN-LSTM neural network and compared the CNN network and
LSTM network alone, and the results showed that the network can significantly improve the
accuracy of detection. Divya et al. [19] proposed a new hybrid deep learning method SSA
(Singular Spectrum Analysis)-CNN-LSTM, which demonstrated the superior performance
of this network for solar power generation prediction over a long time period in the future.
Numerous studies have shown that higher prediction accuracy as well as robustness can
usually be achieved by employing hybrid neural networks in time-series tasks. Whereas
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most of the related studies are currently focused on time-series prediction tasks, there are
fewer related studies on time-series mapping tasks similar to load identification.

In order to further improve the identification accuracy and applicability of neural
networks in load identification tasks, and to promote the engineering application of neural
network load identification models, this paper proposes a load identification model based
on a CNN-LSTM-SA (self-attention mechanism) hybrid neural network. The CNN layer
performs feature extraction on the time-series data, the LSTM layer captures the long-term
dependencies in the time series, and the SA layer establishes the global dependencies
of the time series and assigns different weights. In this paper, the initial time-series
data are segmented and used as inputs to the neural network for network training, the
load identification accuracy of this neural network is compared to other network models,
and its noise immunity is discussed. Finally, experimental studies are conducted on the
identification of sinusoidal and random load time-domain information using the method
to prove its value for engineering applications.

2. CNN-LSTM-SA Neural Network Load Identification Model Building
2.1. Load–Response Relationship in the Time Domain

For a linear system, the response induced by the load in the time domain satisfies the
principle of linear superposition, and the time-domain response data R(t) and the time-
domain load F(t) at the response measurement point satisfy the following Equation [20]:

R(t) =
∫ t

0
F(t)h(t− τ)dτ (1)

where R(t) denotes the dynamic response of the system measurement points, e.g., strain,
stress, displacement, velocity, acceleration, etc. h(t) is the response point–excitation point
impulse response function. By discretizing the continuous time domain into a number of
discrete time periods ∆t, Equation (1) can be expressed as follows:




R1

R2
...

Rn



=




h1 0 . . . 0
h2 h1 . . . 0
...

...
. . .

...
hn hn−1 . . . h1







F0

F1
...

Fn−1




∆t (2)

That is to say, for time-series data with time sampling length, the relationship between
response and loading satisfies Equation (3). From Equation (3), it can be seen that the
response r(t) of the structure at the moment t is not only affected by the current moment
f (t) but also by all previous moments f (0)~ f (t− 1). In other words, the response at any
moment t contains all the information about the loads between the moments 0~t. For the
inverse of the above process, the load f (t) at the moment t can be written as Equation (4).





r(1)
r(2)

...
r(k)


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=


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. . .
h(k)∆t h(k− 1)∆t · · · h(1)∆t
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





f (0)
f (1)

...
f (k− 1)





(3)

f (t) = G(r(t), r(t + ∆t), · · · , r(t + n∆t)) (4)

2.2. CNN-LSTM-SA Network Architecture

The CNN model has excellent feature extraction ability and is widely used in various
classification problems. The LSTM model has a special gate structure and weight sharing
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mechanism, which can avoid losing the long-term features of time-series data and is widely
used in time-series analysis. The SA model has the importance of adding the past feature
state of the time-series data to the output results and is widely used in adjusting the
prediction results from an LSTM model. In this paper, according to the characteristics of
the CNN, LSTM, and SA models, a load identification model based on a CNN-LSTM-SA
architecture is established, and the structure of the model is shown in Figure 1. The main
structure of the model consists of an input layer, CNN layer (one-dimensional convolutional
layer and maximum pooling layer), LSTM layer, SA layer, fully connected layer, and
output layer.
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CNN is a feed-forward neural network with good performance in digital image pro-
cessing, image denoising [21], and classification problems [22]. Its main structure includes
a convolutional layer, pooling layer, fully connected layer, and output layer, as shown in
Figure 2. The convolutional layer is the core of the CNN, which performs convolutional
operations on input data by convolutional kernels of specific sizes. Each convolutional
layer contains multiple convolutional kernels, which can extract high-dimensional features
from the data and establish the relationship between input and output units through sparse
connections. Its unique weight sharing feature allows all output units to share a common
set of parameters to connect with the input units, which greatly reduces the training param-
eters required for the model and saves training time. The pooling layer is used to downsize
the data, reducing redundant information while retaining key information and reducing
the number of parameters required by the network. The calculational procedure of the
convolutional layer is shown in Equation (5):

yt = f (xt ∗ kt + bt) (5)

where xt is the input, kt is the weight of the convolution kernel, bt is the bias, f is the
activation function, and yt is the output.

Materials 2025, 18, x FOR PEER REVIEW 5 of 17 
 

 

 

Figure 2. CNN network model (The dashed squares are convolution kernels and the circles indicate 
the flattened data). 

The LSTM neural network is a special type of recurrent neural network which is espe-
cially used for processing and predicting temporal data [23]. Compared with a recurrent 
neural network (RNN), a LSTM solves the problems of gradient vanishing and gradient 
explosion through a special network structure, which is especially suitable for tasks involv-
ing long-term dependencies. The memory cell of an LSTM is shown in Figure 3, which con-
trols the flow of data through a “gating mechanism” to selectively remember or forget in-
formation to preserve the long-term dependencies of the temporal data. The memory cell of 
the LSTM consists of three gates (forget gate, input gate, and output gate), each consisting 
of a sigmoid activation function and a point multiplication operation with values between 

0 and 1, which are used to control the flow of data. In Figure 3, −1tC  is the state of the cell at 

the previous moment, −1th  is the final output value of the LSTM cell at the previous mo-

ment, tf  is the output value of the forget gate, ti  is the input of the current input gate, 


tC  is the temporary state of the current cell, to  is the output value of the output gate, 

tC  is the state of the cell at the current moment, and th  is the final output value of the 

current cell. The computational procedure of an LSTM is as follows: 

 

Figure 3. LSTM network memory cell. 

(1) The forget gate generates an output value tf  between 0 and 1 by reading the final 
output −1th  of the previous moment and the input tx  of the current moment and 
using Equation (6), where 1 represents the complete retention of information and 0 rep-
resents the complete discarding of information. 

( )−= ⋅  + 1 ,t f t t ff σ W h x b  (6)

where fW  is the weight matrix of the forget gate, fb  is the bias term, and σ  is 
the Sigmoid activation function; 

Figure 2. CNN network model (The dashed squares are convolution kernels and the circles indicate
the flattened data).

108



Materials 2025, 18, 1255

The LSTM neural network is a special type of recurrent neural network which is
especially used for processing and predicting temporal data [23]. Compared with a re-
current neural network (RNN), a LSTM solves the problems of gradient vanishing and
gradient explosion through a special network structure, which is especially suitable for
tasks involving long-term dependencies. The memory cell of an LSTM is shown in Figure 3,
which controls the flow of data through a “gating mechanism” to selectively remember
or forget information to preserve the long-term dependencies of the temporal data. The
memory cell of the LSTM consists of three gates (forget gate, input gate, and output gate),
each consisting of a sigmoid activation function and a point multiplication operation with
values between 0 and 1, which are used to control the flow of data. In Figure 3, Ct−1 is the
state of the cell at the previous moment, ht−1 is the final output value of the LSTM cell at
the previous moment, ft is the output value of the forget gate, it is the input of the current

input gate,
_
Ct is the temporary state of the current cell, ot is the output value of the output

gate, Ct is the state of the cell at the current moment, and ht is the final output value of the
current cell. The computational procedure of an LSTM is as follows:

(1) The forget gate generates an output value ft between 0 and 1 by reading the final
output ht−1 of the previous moment and the input xt of the current moment and
using Equation (6), where 1 represents the complete retention of information and
0 represents the complete discarding of information.

ft = σ
(

W f · [ht−1, xt] + b f

)
(6)

where W f is the weight matrix of the forget gate, b f is the bias term, and σ is the
Sigmoid activation function;

(2) The input gate generates the temporary state of the cell at the current moment
_
Ct by

reading the final output of the previous moment ht−1 and the input of the current
moment xt and then updates the cell state in conjunction with the output of the forget
gate to obtain the new cell state Ct which taking the values from 0 to 1.

it = σ(Wi · [ht−1, xt] + bi) (7)

_
Ct = tanh(Wc · [ht−1, xt] + bc) (8)

Ct = ft ∗ Ct−1 + it ∗
_
Ct (9)

where it is the output value of the input gate at the current moment, which determines
the extent to which the current input xt affects the update of the unit state Ct. Wc and

bc are the weight matrix and bias terms for computing the temporary unit state
_
Ct.

tanh is the hyperbolic tangent activation function and ∗ denotes the matrix element-
by-element multiplication;

(3) The output gate extracts and outputs key information from the current unit state. It
also reads the final output value ht−1 of the cell at the previous moment and the input
value xt of the cell at the current moment and calculates ot through Equation (10).

ot = σ(Wo[ht−1, xt] + bo) (10)

where ot takes values from 0 to 1, Wo is the weight of the output gate, and bo is the
bias of the output gate;
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(4) Finally, the final output of the unit at the current moment is calculated from the output
value of the output gate ot and the current state of the unit Ct by Equation (11).

ht = ot ∗ tanh(Ct) (11)
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SA (self-attention mechanism) is a technique that can dynamically capture the depen-
dencies between different positions in a sequence and is widely used in natural language
processing, computer vision, and time-series prediction. Its core idea is to decide how
to summarize information by calculating the correlation weights of each element in a
sequence with other elements. This mechanism allows the model to model the backward
and forward relationships of the input sequences on a global scale, effectively capturing
long-term dependencies. The main computational procedure for SA is as follows:

The input sequence X is mapped to the Query (Q), Key (K), and Value (V) for repre-
senting the characteristics of the current element, the importance of other elements, and
the information to be summarized, respectively, through three sets of learnable linear
transformations as in Equation (12).

Q = XWQ, K = XWK, V = XWV (12)

where WQ, WK, and WV are trainable weight matrices.
The similarity score is obtained by computing the dot product of the Query and Key

as in Equation (13), which is usually divided by
√

dk in order to balance the numerical
stability, where dk is the Key dimension:

Similarityi,j =
Qi · KT

j√
dk

(13)

Use the softmax function to normalize the scores to a probability distribution:

αi,j = softmax
(

Similarityi,j

)
=

exp
(

Similarityi,j

)

n
∑

k=1
exp

(
Similarityi,k

) (14)

A new representation Z is obtained by weighted summation of V using the
attention weights:

Zi =
n

∑
j=1

αi,jVj (15)
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2.3. Constructing the CNN-LSTM-SA Load Identification Model

Since the load identification problem is a time-series mapping problem rather than a
direct time-series prediction, therefore, it is necessary to construct the obtained response
data and load data into a time series that the network can handle. The method used
here is to construct the time-series mapping dataset by cutting the time-series data X(t)
with a sampling length of n into m segments with a length of k short time-series data
X1(t), X2(t) . . . Xm(t), as shown in Equation (16). The time series constructed by this
method can fully utilize the information of the original time domain data, ensure that the
length of each time sample is consistent, and can also perform load identification with an
arbitrary time-series length. At the same time, the data were normalized to the interval
[−1,1] to prevent too large a gap in the order of magnitude of the data from causing the
model to converge slowly or fail to converge.




X1(t)
X2(t)

...
Xm(t)



=




X1(1) · · ·X1(k)
X2(1) · · ·X2(k)

...
Xm(1) · · ·Xm(k)



=




x(1) x(2) · · · x(k)
x(2) x(3) · · · x(k + 1)

...
...

...
...

...
...

x(m) x(m + 1) · · · x(n)




(16)

The structural diagram of the constructed CNN-LSTM-SA network is shown in
Figure 4, and the main steps of the model applied to the load identification work are
as follows:

(1) Segment the load and response data according to the method described above and
perform data normalization as well as division of the training and test sets;

(2) After initialization of the network, the response data first pass through a one-
dimensional convolutional CNN network for convolutional operation and average
pooling operation to extract the high-dimensional features of the data;

(3) In order to make the highly dimensional data adapt to the LSTM neural network,
the data output from the CNN network need to be flattened. The flattening process
consists of pulling the feature maps of each channel into one-dimensional vectors in
order and then connecting the vectors of all channels;

(4) The flattened data go sequentially through the LSTM neural network, the SA network,
and the fully connected network, and finally the predicted load is generated;

(5) Judge whether to terminate network training based on the error between the network’s
predicted load and the actual load;

(6) The trained network performs load identification on the test set to verify the
recognition effect.

The hyperparameters of this network are as follows:

(1) CNN layer: 1D convolutional kernel size, number of convolutional kernels, number
of convolutional layers, and pooling size;

(2) LSTM layer: number of LSTM units, number of LSTM layers, and dropout rate;
(3) SA layer: number of attention heads, attention head dimension, and dropout rate;
(4) Hyperparameters of the network: optimizer type, learning rate, learning rate decay,

batch size, max epochs, etc.

The hyperparameters of the network structure described above can be adjusted ac-
cording to the complexity of the task and whether it is overfitted or not. The network
hyperparameters can be determined by grid search, Bayesian optimization, and empiri-
cally. Due to the limitation of the arithmetic power, the key hyperparameters of the neural
network are determined in this study by small batch grid search.
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Figure 4. CNN-LSTM-SA network structure diagram.

It is worth noting that the optimal value of the segmentation sequence length is
affected by a variety of factors, which will not be investigated in detail here, and the length
of the segmentation time sequence set in the subsequent simulation and experimental
studies in this paper is 200.

3. Numerical Simulation Study
Thin-walled cabins are efficient structural designs widely used in aerospace, industrial

production, and scientific research, and have attracted considerable attention due to their
light weight, high strength, and excellent material utilization. This paper presents both
numerical simulations and experiments using a thin-walled cabin as the research object,
applying the proposed method for load identification.

The simulation model is shown in Figure 5. The bottom face of the model is con-
strained with a fixed constraint and a simple harmonic excitation is applied at a point
on the bulkhead wall, and the response is measured at the bulkhead bracket. Both the
wall thickness of the bulkhead model and the bracket thickness inside the bulkhead are
5 mm. The model is made of aluminum alloy with a density of 2770 kg/m3, Young’s
modulus of 71 GPa, and Poisson’s ratio of 0.33. The simulation was performed by transient
analysis. The transient simulation module of ANSYS(2024R2) Mechanical software is used
to calculate the simulation results. The simulation was performed using transient analysis
with a time step of 0.001 s and a damping ratio of 0.03. Considering the calculation time
and the accuracy of the simulation results, the mesh size is set to 2 mm.

Fifty sets of transients were analyzed for sinusoidal excitations of different frequen-
cies and amplitudes lasting 1 s. The acceleration response at the measurement points was
recorded. The sinusoidal excitation frequency ranges from 5 to 7 Hz, and a simulation
calculation frequency is selected every 0.2 Hz (except 7 Hz), and transient analyses of sinu-
soidal excitations with amplitudes of 80 N, 110 N, 140 N, 170 N, and 200 N are performed
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at each frequency, respectively. The applied load time-domain data and the acquired
acceleration time-domain data were divided into training (80%) and test (20%) sets for
network training and load identification. To evaluate the effectiveness of the model, LSTM,
CNN-LSTM, and CNN-LSTM-SA networks were selected for load identification, and their
performance in load identification and ability to handle noisy data were compared.
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This section uses test set error metrics to evaluate the effectiveness of the neural
network load identification. The root mean square error (RMSE) and mean absolute error
(MAE) are chosen as the error metrics, as defined by the following formulas:

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2 (17)

MAE =
1
n

n

∑
i=1

(ŷi − yi)× 100% (18)

where ŷi is the neural network predictive value load, yi is the true load of the test set, and
n is the number of samples in the test set; the smaller the value of RMSE and MAE, the
higher the prediction accuracy of the model.

The three neural networks are trained separately, and the load identification results
of each network under 0% noise data are shown in Table 1. It can be seen that the load
identification accuracy of CNN-LSTM-SA has a significant advantage over the other two
neural networks. Figure 6 shows the recognition effect and absolute error of the three neural
networks for load identification under the data without the influence of noise. From the
figure, it can be seen that the CNN-LSTM-SA network can not only recognize the peak of
sinusoidal excitation well, but also the absolute error is smaller than the other two networks
in the whole sampling time, indicating that the CNN-LSTM-SA load identification method
proposed in this paper has obvious advantages.

Table 1. Neural network load recognition effect (0% noise).

RMSE MAE

LSTM 1.10 0.61
CNN-LSTM 0.74 0.55

CNN-LSTM-SA 0.47 0.53
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three neural network load recognition (0% noise).

In practical engineering problems, there is often noise interference during signal
data acquisition using sensing devices, so it is necessary to verify the effectiveness
of the CNN-LSTM-SA network for load recognition tasks in the presence of noisy sig-
nals. Researchers have confirmed in previous studies that CNN networks have filtering
capabilities [23]; in this paper, we use the CNN-LSTM neural network as a reference to eval-
uate the adaptability of the CNN-LSTM-SA for load recognition tasks with noisy signals.
White noise signals of 2%, 5%, 10%, and 20% are added to the simulated collected dataset,
and the load recognition task is performed using the above two neural networks. Here,
RMSE and MAE are still used as the indexes to evaluate the model load recognition effect,
and the specific results are shown in Table 2. It can be seen that the CNN-LSTM-SA neural
network has higher recognition accuracy and better noise immunity than the CNN-LSTM
neural network in the load recognition work in the case of containing noise. Figure 7
shows the effect and absolute error of load recognition of both networks under different
noise levels.

Table 2. Neural network load recognition effect (with noise).

Noise Level 2% Noise 5% Noise 10% Noise 20% Noise

RMSE MAE RMSE MAE RMSE MAE RMSE MAE

CNN-LSTM 1.62 1.27 3.55 3.18 6.43 5.10 13.89 12.73
CNN-LSTM-SA 1.29 1.13 2.58 2.86 4.76 4.45 8.47 10.83

Based on the results of the analysis of the graphical data, it can be clearly seen that with
the gradual increase in the noise level, the performance of both neural networks in the load
recognition task shows a significant decrease, which is manifested by the trend of increasing
their absolute error and root mean square error (RMSE). However, it is worth noting that
under the influence of noise interference, the CNN-LSTM-SA neural network is still able to
maintain the accuracy of load recognition well, with a relatively small increase in its error
and a more stable recognition performance. In contrast, the performance of the CNN-LSTM
neural network decreases more significantly, and the recognition accuracy is much lower
than that of the CNN-LSTM-SA network. This indicates that the CNN-LSTM-SA network
has obvious advantages in robustness and accuracy in the noisy environment.
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4. Experimental Study
4.1. Test Object and Test System

The bottom of the test object is a fixed constraint, as shown in Figure 8, which is used
to simulate the thin-walled segment of the spacecraft; the material is aluminum alloy, and
the wall thickness of the model is 5 mm. Excitation is applied by the shaker to simulate
the external load of the thin-walled cabin, and the acceleration sensor is used to measure
the structural response. The excitation position of the shaker and the mounting position of
the acceleration sensor are shown in Figure 9a, and the test system consists of a personal
computer, a power amplifier, and a data acquisition system, as shown in Figure 9b. In order
to reflect the superiority of the load recognition method proposed in this paper, two load
recognition methods, an LSTM neural network and a CNN-LSTM neural network, are still
used for comparison, and the evaluation indexes are the RMSE, MAE, and coefficient of
determination R2, where R2 is used to evaluate the fitting effect of the regression model,
and the closer the value is to 1, the better the model fitting effect.
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4.2. Time-Domain Identification of Sinusoidal Load

The experimental study of sinusoidal load identification is first carried out, and the
sampling frequency of the time-series data is 6400 Hz. In this paper, 30 sets of sinusoidal
excitation information with different frequencies and amplitudes and the corresponding
structural acceleration responses are collected. A total of 25 sets were used to train the
neural network load recognition model, and 5 test sets were used to evaluate the load
recognition effectiveness of the model. The sinusoidal excitation frequency ranges from
50 to 100 Hz, and an experimental frequency (including 50 Hz) is selected every 10 Hz;
data acquisition is performed at each frequency with amplitudes of 1 N, 1.5 N, 2 N, 2.5 N,
and 3 N, respectively.

The sinusoidal time-domain load recognition effect of the model is shown in
Figure 10a–c. From the figure, it can be observed that all three neural networks exhibit
high accuracy for sinusoidal load identification. Specifically, Figure 10d shows the absolute
errors of the three networks, where the CNN-LSTM-SA neural network has significantly
lower errors than the other two networks in the time domain of the test set. This indicates
that this network outperforms the other two models in the sinusoidal load identification
task. Therefore, the CNN-LSTM-SA neural network used in this study has more superior
accuracy and robustness in the sinusoidal load identification task. The model evaluation
indices are shown in Table 3; compared with the other two neural networks, the neural
network load identification method used in this paper has a smaller RMSE and MAE. This
indicates that the method has excellent load recognition performance. Meanwhile, the
R2 value of the proposed network in this paper is closest to 1, indicating that the method
used in this paper has the best fitting effect among the three neural networks.

Table 3. Effect of time-domain identification of sinusoidal loads.

RMSE MAE R2

LSTM 0.12 0.14 0.97
CNN-LSTM 0.09 0.11 0.97

CNN-LSTM-SA 0.08 0.10 0.98

4.3. Time-Domain Identification of Random Load

Since the structure is often subjected to not only stable sinusoidal loads but also
random loads under real working conditions, this paper also applies the proposed method
to the time-domain load identification of random vibration tests to verify the generaliz-
ability of the method. Random signals are commonly described by power spectral density
(PSD). In the experimental part of this study, 30 sets of time-domain excitation force and
acceleration response information are collected under the same PSD with a sampling
frequency of 12,800 Hz. A total of 25 of these sets are used as a training set to train the
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neural network load identification model, and 5 sets are used as a test set to evaluate the
load identification effect of the model. The evaluation metrics used here are the same as
those used for sinusoidal excitation identification. The PSD for the experimental setup is
shown in Figure 11.
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The random time-domain load recognition effect of the model is shown in Figure 12a–c,
from which it can be seen that the three kinds of neural networks for random time-domain
load have this good recognition effect. But the CNN-LSTM-SA network still has this
certain advantage, which can be proved from the absolute error diagram; the absolute
error diagram of the three kinds of neural networks is shown in Figure 12d. The model
evaluation indices are shown in Table 4. It can be seen that, compared with the other two
neural networks, the RMSE and MAE of the neural network load identification method
used in this paper are smaller, which indicates that this method has an excellent load
identification effect. At the same time, the R2 value of this network is closest to 1, which
indicates that the method used in this paper has the best fitting effect among the three
neural networks, and it also indicates that the neural network model used in this paper has
the best result for recognizing the time-domain information of random loads. In summary,
the neural network model used in this paper has good applicability for the time-domain
information recognition of random loads.
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Table 4. Random load time-domain recognition effect.

RMSE MAE R2

LSTM 2.07 3.42 0.88
CNN-LSTM 1.39 2.57 0.90

CNN-LSTM-SA 0.83 1.69 0.93
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It can be seen from the above study that under the experimental data, the load iden-
tification effect of the neural network decreases compared to the simulation data. This is
mainly due to the fact that the experimental data are not only disturbed by white noise
but also by abnormal time-series data and other uncertainties. Nevertheless, the neural
network model proposed in this paper still shows good identification ability, which fully
proves its adaptability and effectiveness in complex environments. On the other hand,
the number of training parameters for the model increases significantly due to the mixing
of multiple network structures. In addition, under high-frequency excitation, a higher
sampling frequency is required to ensure sufficient accuracy, which also leads to an in-
crease in the size of the dataset. The combination of these factors increases the cost of
network training.

5. Conclusions
This paper proposes a time-domain load identification method based on a CNN-LSTM-

SA neural network. The method takes segmented time-series data as input and combines
the advantages of the three networks to achieve higher recognition accuracy and robustness.
The main conclusions are the following:

(1) Simulation results show that for sinusoidal load identification, the CNN-LSTM-SA
network has obvious advantages in terms of recognition accuracy and noise immunity.
The RMSE and MAE are 0.47 and 0.53 under 0% noise and 8.8 and 8.5 under 20%
noise, respectively;

(2) The experimental results show that the CNN-LSTM-SA network achieves high identi-
fication accuracies in both sinusoidal and random load identification tasks (RMSE of
0.08 and 0.83; R2 of 0.98 and 0.93, respectively);

(3) The CNN-LSTM-SA-based load identification method provides researchers with a tool
with higher accuracy and noise immunity, as well as a reliable method for structural
health monitoring and optimal design.
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Abstract: Bolted connections are extensively utilized in aircraft structures, and accurately
simulating these connections is a critical factor affecting the precision of vibration and
noise response predictions for aircraft. This study focuses on an instrument compartment
of a specific aircraft model, employing the virtual material method to simulate the bolted
joints within the structure. Parameters for the virtual material layer were obtained through
theoretical calculations combined with parameter identification methods, achieving precise
modeling of the instrument compartment. By comparing the calculated modes with
the experimental modes of the instrument compartment, it was found that the first four
modal shapes from both calculation and experiment were completely consistent, with the
error in natural frequencies within three percent. Subsequently, acoustic and vibration
computations were performed using both the virtual material model and the tied constraint
model, with comparisons made against experimental results. The findings indicate that the
root mean square (RMS) acceleration response of the virtual material model was 11.23 g,
closely matching the experimental value of 10.35 g. Additionally, the total sound pressure
level inside the acoustic cavity was 136.98 dB, closely aligning with the experimental value
of 135.76 dB. These results demonstrate that the virtual material method offers higher
accuracy in structural acoustic and vibration calculations.

Keywords: aircraft instrument compartment; virtual material method; modal testing;
vibration and noise

1. Introduction
Bolted connections are prevalent in various aircraft structures, but the complex mecha-

nisms at their interfaces can lead to nonlinear dynamic phenomena such as energy dissipa-
tion, stiffness softening, and increased local damping at the bolted interfaces [1–3], which
can influence the entire structure’s modal and transfer function characteristics [4]. Precise
models are required to describe the dynamic characteristics of significant and complex
equipment like aircraft devices.

During high-speed flight, the interaction between high-speed fluid and the wall sur-
face forms a turbulent boundary layer on the aircraft’s surface, resulting in powerful
aerodynamic fluctuation pressures and inducing an aerodynamic noise field with frequen-
cies reaching up to 8000 Hz. This high-frequency noise strongly couples with the aircraft
structure, producing vibrations with root-mean-square (RMS) acceleration responses as
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high as 50 g [5], subjecting the aircraft structure and internal instruments to complex and
harsh environments. To understand the response levels and reveal the response patterns to
improve the aircraft’s resistance to acoustic and vibrational effects, simulation predictions
and ground-based acoustic and vibration tests must be conducted [6–8]. The dynamic
response calculation of structures with nonlinear characteristics is a complex problem.
Karpenko et al. [9] obtained reliable nonlinear material properties by combining experimen-
tal research with numerical simulations. Due to the wide frequency spectrum of the noise
environment, it is challenging to predict the full-band acoustic and vibration responses
using a single method [10]. Typically, the frequency band is divided into low, medium, and
high segments, with the finite element method used for the low-frequency band, statistical
energy analysis for the high-frequency band, and hybrid methods for the mid-frequency
band. Given the numerous components and complex interconnections of aircraft structures,
accurately simulating joint connections is crucial for predicting acoustic and vibration
behavior.

Currently, scholars have achieved fruitful results in modeling structural joints,
with common bolted interface characterization methods including the Iwan equivalent
model [11–13], thin-layer element method [14–16], and virtual material method [17–19],
among others, the latter being widely applied due to its high modeling accuracy and low
computational cost. Although equivalent models of bolted joints can accurately represent
the nonlinear dynamic characteristics of simple connection structures, research applying
this theory to large, complex assembled structures like aircraft for acoustic and vibration
issues is relatively scarce. As the modeling of bolted joints significantly impacts structural
dynamics, further investigation into its influence on acoustic and vibration prediction
problems is necessary. This study uses an aircraft instrument compartment model as the
object of research, establishing models using both the virtual material method and the tied
constraint method for predicting low-frequency band acoustic and vibration responses
under specified noise excitation conditions, followed by experimental validation. Since the
finite element method is suitable for low-frequency band acoustic and vibration response
predictions, considering the model’s characteristics, the calculation frequency band is se-
lected as 50–400 Hz, investigating the impact of micro-contact characteristics of bolted joints
on the low-frequency band acoustic and vibration prediction results, aiming to enhance the
precision of low-frequency band acoustic and vibration predictions.

2. Parametric Modeling of Structural Bolted Joint Virtual Material
Layer Dynamics
2.1. Basic Principles of Assumptions in the Virtual Material Method

The virtual material method involves adding a layer of virtual material between two
component bolted joints, simulating the dynamic characteristics of the bolted joint by
altering parameters such as the density, elastic modulus, and Poisson’s ratio of the virtual
material [20]. The isotropic virtual material theory posits that the interface has varying
degrees of roughness, which can be considered as a whole, formed by microasperities dis-
tributed according to different features, with the heights of these microasperities following
a normal distribution, and being isotropic, with the essence of rough interface contact being
the deformation of microasperity contacts.

The parameters of the virtual material layer include elastic modulus E, Poisson’s ratio
µ, thickness h, and density ρ. These parameters are related to the material properties of the
two components and the contact surface data (such as surface roughness, bolt preload, etc.).

123



Materials 2025, 18, 932

2.2. Determination of Virtual Material Layer Parameters for Structural Bolted Joints
2.2.1. Determination of Virtual Material Layer Thickness and Density

The thickness h of the virtual material layer is the sum of the thicknesses of two layers
of microasperities on the rough surfaces, calculated using the formula:

h = h1 + h2 (1)

where h1 and h2 are the thicknesses of the microasperity layers on the contact surfaces of
the two parts, which are typically 1 mm.

According to the definition of material density, the density ρ of the virtual material
can be obtained by the following equation:

ρ =
m1 + m2

V1 + V2
=

ρ1 AaV1 + ρ2 AaV2

Aa(h1 + h2)
=

ρ1h1 + ρ2h2

h1 + h2
(2)

where Aa is the nominal contact area of the two connectors.
Thickness and density can be relatively simply derived from formulas. However,

the calculation of the elastic modulus and Poisson’s ratio is more complex and theoretical
calculations often contain some error. In engineering applications, parameter identification
methods are frequently used to obtain these values [21].

2.2.2. Parameter Identification for Elastic Modulus and Poisson’s Ratio of the Virtual
Material Layer

Parameter identification involves iteratively adjusting model parameters so that the
computational results approach experimental results, ultimately obtaining an optimal
set of parameters within an acceptable error range. The specific identification process
is illustrated in Figure 1. The basic steps for parameter identification in this paper are
as follows:

1. Establish a finite element model of the aircraft instrument compartment structure
in Ansys, incorporating a virtual material layer at the bolted joints, and perform
simulation calculations to obtain initial computed frequencies and mode shapes.

2. Conduct modal experiments on the aircraft instrument compartment to acquire actual
natural frequencies and mode shapes of the structure.

3. Formulate an objective function based on the structural computed frequencies and the
experimental frequencies obtained from modal testing, with the elastic parameters of
the virtual material layer serving as design variables.

4. Set constraints and apply genetic algorithms to identify the elastic parameters of the
virtual material layer.

5. Once the objective function meets the termination criteria, the identified parameters
for the virtual material layer model are obtained.

The objective function of parameter recognition is defined as the finite element calcula-
tion and the natural frequency difference obtained by the modal experiment is minimized,
as shown in the following equation:

Ful = min
3

∑
j=1

(
f a
j

f e
j
− 1

)2

(3)

In the formula: f a
j represents the calculated natural frequency; f e

j represents the exper-
imental natural frequency; The objective function is defined to minimize the differences
between the first three experimental frequencies and the calculated frequencies of the air-
craft compartment. The accuracy of the parameter identification for the equivalent model
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of the virtual connection layer is validated using the fourth natural frequency, which was
not involved in the identification process.

Figure 1. Flowchart of virtual material layer parameter identification.

3. Modal Acquisition of Instrument Compartment and Identification of
Elastic Parameters of Virtual Material Layer

The instrument compartment model of the aircraft discussed in this paper features a
conical shell structure with a thickness of 5 mm. The lower part is sealed with a circular
plate, and the upper part is closed by a second-order curved surface plate. The material used
is aluminum alloy, and it includes two bolted interfaces, each connected by six uniformly
distributed M16 bolts. The surface roughness of any two component surfaces is considered
in the design. According to the parameter identification method presented in this paper, it
is necessary to obtain both the experimental modes and calculated modes of the aircraft
instrument compartment. By iteratively adjusting the elastic parameters of the virtual
material layer, the optimal set of parameters is ultimately obtained.

3.1. Modal Test of Aircraft Instrument Compartment

To conduct free modal testing on the aircraft instrument compartment model, it was
suspended as shown in Figure 2. The modal experiment employed the impact hammer
method for pulse excitation to obtain the structure’s free modes. Considering the structural
characteristics, 193 equidistant measurement points were arranged on the second-order
curved plate and the conical shell body. One accelerometer is arranged on the structure
surface. Since the mass of the accelerometers is much smaller compared to the model mass,
their influence on the test can be neglected. Each measurement point was measured four
times to ensure data reliability. The Hunter Box (Hanhang (Beijing) Technology Co., Limited,
Beijing, China) data acquisition system recorded the experimental data and performed
modal analysis. The modal shapes and frequency data obtained will be presented in the
following sections for comparative purposes.
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Figure 2. Modal experiment of aircraft instrument cabin.

3.2. Modal Calculation of the Instrument Compartment of the Aircraft

When establishing the finite element model of the instrument compartment, we re-
moved the bolts top hooks, and other parts that have little influence on the structural
dynamics, and retained the bolt holes. The finite element model of the instrument compart-
ment obtained based on the virtual material method is shown in Figure 3, with a minimum
grid size of 5 mm, including 114,049 elements and 288,505 nodes. The model was analyzed
in free mode.

Figure 3. Finite element model of the virtual materials method instrument compartment.

3.3. Identification of Elastic Parameters of Structural Virtual Material Layer Based on
Genetic Algorithm

The comparison of the first four modal shapes of the aircraft instrument compartment
obtained from experiments and calculations is shown in Figure 4. The calculated modal
shapes are fundamentally consistent with the experimental modal shapes. On the premise
of consistent modal shapes, according to Equation (2), the objective function for the genetic
algorithm is defined as the minimization of the differences between the experimental and
simulated values of the structure’s first three natural frequencies. With each iteration
of the genetic algorithm, the updated elastic modulus and Poisson’s ratio after iteration
are applied to the connection layer model. The process continues until the termination
criteria are met.

The initial values and ranges of variation for the material parameters are provided in
Table 1.

Table 1. Initial values and variation range of virtual material layer parameters.

Material Parameters Initial Value Lower Limit Upper Limit

Elastic modulus/GPa 70 0.1 80
Poisson’s ratio 0.3 0.15 0.45
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Figure 4. (a) 1st order test mode shape; (b) 1st order simulated mode shape; (c) 2nd order test mode
shape; (d) 2nd order simulated mode shape; (e) 3rd order test mode shape; (f) 3rd order simulated
mode shape; (g) 4th order test mode shape; (h) 4th order test mode shape.

After calculation, the objective function converges after 22 iterations, and 20 design
points are calculated for each iteration. The elastic parameters of the virtual material layer
of the structure after parameter identification are shown in Table 2. The calculated modal
frequencies obtained by the virtual material model and the binding constraint model are
compared with the experimental modal frequencies, as shown in Table 3. The frequency
error of the first three modes of the model obtained by using the virtual material method
is less than 3%, and the calculation accuracy is high, and the error of the fourth natural
frequency that does not participate in the recognition is also less than 3%, which verifies the
accuracy of the parameter identification method. Compared with the traditional binding
constraint method, the modal frequency error obtained by the virtual material method
is lower, which indicates that the virtual material method has higher accuracy than the
binding constraint method.

Table 2. Model virtual material layer elastic parameters.

Elastic Modulus/GPa Poisson’s Ratio

Connection Layer 1 4.836 0.287
Connection Layer 2 3.556 0.265

Table 3. Instrument compartment calculation and test modal frequency comparison.

Order
Test Modal

Frequency/Hz

Virtual Materials Method Binding Constraint Method

Calculate Modal
Frequency/Hz Error % Calculate Modal

Frequency/Hz Error %

1 98.44 101.24 2.84 105.61 7.28
2 201.56 204.66 1.54 217.81 8.06
3 240.63 246.79 2.56 258.51 7.43
4 309.38 315.85 2.09 330.23 6.74

4. Calculation and Test Comparison and Analysis of the Acoustic and
Vibrating Response of the Instrument Compartment

To compare the differences in computational results between the virtual material
method and the tied constraint method, models of the instrument compartment are created
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using both approaches. The vibration and noise responses are then analyzed based on these
models. The mesh models are imported into acoustic and vibration analysis software, and
the frequency band from 50 to 400 Hz, as shown in Figure 5 according to environmental
test standard spectra, is selected as the noise excitation spectrum for both computation and
experimentation. The calculated values of the structural acoustic and vibration responses
are obtained through this process.

Figure 5. Experimental spectrum of the external acoustic field.

The experiment in this article is based on the acoustic control module of the HAN-
HANG testing system and conducted in a simple reverberation room at Xi’an Jiaotong
University. The volume of the reverberation room is 70 m3, and the walls are made of
high-density concrete, which can effectively reflect sound waves. The experiment measured
the structural vibration response and the internal noise response under a specified noise
spectrum excitation, with a noise exposure duration of 30 s. The model was suspended
within the reverberation chamber using rubber cords. Three microphones were arranged
around the model to employ a three-point averaging method for closed-loop control of the
acoustic field. The test site is illustrated in Figure 6.

Figure 6. Model noise excitation test site.
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4.1. Comparison of the Vibration Response Calculation and Test Results of the
Instrument Compartment

Figure 7 shows the comparison of the calculated acceleration power spectral density
curves of the two models with the experimental measured acceleration power spectral
density curves, and gives the root mean square value of acceleration. As seen in Figure 7,
the acceleration power spectral density curve calculated based on the virtual material
model is closer to the experimental values, and the frequency position of the vibration peak
is very close. Table 4 shows the frequency of the peak in the experimental and simulated
response curves, as well as the frequency offset and error percentage of the simulated values
relative to the experimental values. The frequency offset of the virtual material model
is much lower than that of the binding constraint model, not exceeding 7 Hz, while the
frequency offset of the third peak point of the binding constraint model exceeds 20 Hz. This
is caused by the natural frequency of the computational model. The binding constraint law
rigidly connects the joint surface, increasing the structural stiffness and natural frequency
accordingly. In addition, the vibration peak of the virtual material model is also closer to
the actual value. The root mean square value of acceleration obtained from the experiment
is 10.35 g, and the root mean square values of acceleration calculated by the virtual material
model and the binding constraint model are 11.23 g and 11.71 g, respectively. Obviously,
the accuracy of the virtual material model is higher.

Figure 7. (a) Comparison of Calculated and Experimental Values of Acceleration PSD (Virtual
Material Method); (b) Comparison of Calculated and Experimental Values of Acceleration PSD
(Binding Constraint Method).
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Table 4. Comparison of Peak Frequency Calculation and Experiment between Two Models.

Test Peak
Frequency/Hz

Virtual Materials Method Binding Constraint Method

Calculate Peak
Frequency/Hz

Frequency
Offset/Hz Error % Calculate Peak

Frequency/Hz
Frequency
Offset/Hz Error %

97.52 102.86 5.34 5.48 105.87 8.09 8.30
200.32 198.87 −1.45 −0.72 216.96 17.49 8.73
238.45 237.01 −1.44 −0.60 256.43 21.5 9.02
307.89 314.43 6.54 2.12 328.55 15.8 5.13
349.76 346.67 −3.09 −0.88 361.87 14.87 4.25

4.2. Calculation of Noise Response of Acoustic Cavity Inside the Instrument Compartment and
Comparison of Test Results

Table 5 shows the comparison of the calculated and experimental values of the
two modeling methods within the 1/3 octave range of the sound pressure level of the
internal acoustic cavity. At each center frequency point, the sound pressure level obtained
based on the virtual material method is closer to the test value, and the total sound pressure
level error is not more than 2 dB. The result obtained by the binding constraint method is
larger, and the total sound pressure level error is 2.97 dB, because the binding constraint
method makes the structural connection surface rigidly connected, which will amplify the
noise response to a certain extent.

Table 5. Comparison of sound pressure level calculation and test in sound cavity.

Center Frequency/Hz
Sound Pressure Level in the Internal Acoustic Cavity/dB

Test Values Virtual Materials Method Binding Constraint Method

50 108.4 110.4 113.2
63 112.2 113.7 114.9
80 116.7 118.4 119.7
100 119.3 121.3 122.5
125 122.5 124.8 126.9
160 124.2 125.4 129.1
200 127.5 128.2 130.7
250 128.7 129.9 131.1
315 129.9 130.7 131.9
400 129.5 131.1 132.6

Total sound pressure level 135.76 136.98 138.73

5. Conclusions
This paper focuses on the instrument compartment of a specific aircraft model, em-

ploying the virtual material method for precise modeling. The virtual material parameters
for the bolted joints were obtained through theoretical calculations and parameter identi-
fication, further analyzing the impact of joint contact characteristics on the prediction of
structural vibration and noise. The main conclusions are as follows:

1. Accurate Simulation with Virtual Material Method: By adding a layer of virtual
material at the bolted interfaces, the virtual material method can accurately simulate
the contact characteristics of the joints. While theoretically calculating the elastic
parameters (elastic modulus, Poisson’s ratio) of the virtual material is complex, using
parameter identification provides a simpler approach to obtaining these parameters
with high precision.

2. High Precision in Modal Analysis: For structures modeled using the virtual material
method, the calculated modal shapes are consistent with experimental modal shapes,

130



Materials 2025, 18, 932

and the error between computed frequencies and experimental frequencies is within
3%. Compared to the tied constraint method, this approach offers higher accuracy,
indicating that the virtual material method better approximates real-world conditions
when simulating bolted connections.

3. Superior Vibration and Acoustic Prediction: The structure modeled using virtual
material method has a smaller frequency offset of peak vibration response, not ex-
ceeding 7 Hz, while the peak frequency offset of the bound constraint model exceeds
20 Hz; The root mean square value of the vibration response acceleration of the virtual
material model is also closer to the experimental results. In terms of noise response,
the sound pressure level error at each center frequency point is smaller, and the total
sound pressure level error does not exceed 2 dB. The above results indicate that the
virtual material method is more accurate in describing the dynamic characteristics
of structures.
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Abstract: Due to the uncertainty of material properties of plate-like structures, many
traditional methods are unable to locate the impact source on their surface in real time.
It is important to study the impact source-localization problem for plate structures. In
this paper, a data-driven machine learning method is proposed to detect impact sources
in plate-like structures and its effectiveness is tested on three plate-like structures with
different material properties. In order to collect data on the localization of the impact
source, four piezoelectric transducers and an oscilloscope were utilized to construct an
experimental platform for impulse response testing. Meanwhile, the position of the impact
source on the surface of the test plate is generated by manually releasing the steel ball.
The eigenvalue of arrival time in the time domain signal is extracted to build data sets
for machine learning. This paper uses the Back Propagation (BP) neural network to learn
the difference in the arrival time of each sensor and predict the location of the impact
source. The results demonstrate that the machine learning method proposed in this paper
can predict the location of the impact source in the plate-like structure without relying
on the material properties, with high test accuracy and robustness. The research work in
this paper can provide experimental methods and testing techniques for locating impact
damage in composite material structures.

Keywords: damage localization; composite structures; machine learning; back propagation
neural network; arrival time

1. Introduction
Plate structures, especially composite ones, can be seen everywhere in various fields,

such as aerospace and civil engineering [1,2]. The structural health monitoring (Structure
Health Monitoring, SHM) method and non-destructive testing (Non-destructive Testing,
NDT) technology for these structures are of great significance [3–5]. In transportation,
service, and maintenance, the plate structure will inevitably bear the impact of various
impact objects, such as bird impact, hail impact, tool drops, etc. [6]. The impact can usually
be divided into high speed and low velocity [7]. An impact velocity of more than 100 m/s
is called high-speed impact. The strain rate is exceptionally high, and it is easy to form
apparent damage in the plate-like structure. If the impact velocity is below 10 m/s, it
is called low-velocity impact, and the strain rate is low at this time. Phenomena such
as falling impacts are all low-speed impacts. This type of damage is often invisible and
highly concealed and, to some extent, is more harmful than the more apparent high-speed
impact damage. When composite structures are subjected to such impacts, it may cause
severe damage to the internal structure without obvious damage marks on the surface,
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resulting in a relatively low probability of visual detection of damage. If this hidden
damage cannot be detected and maintained in time, it may cause disastrous consequences
if allowed to accumulate [8]. Currently, the identification methods for low-speed impact
load localization mainly include identification methods based on time difference in arrival,
impact location identification methods based on optimization algorithms, and impact
location identification methods based on signal similarity. Gaul et al. [9] used wavelet
transform to extract the difference in arrival time at different frequencies to achieve impact
localization on aluminum alloy plates. Sai et al. [10] used the wavelet basis function
based on Morlet to extract the wave arrival time difference in the impact response signal.
They determined the position of the impact point according to the triangular sensor array.
Jiang et al. [11] used the Shannon wavelet to extract the narrowband signal difference
in the arrival of the impact response signal. They used the MUSIC algorithm to obtain
the position of the impact point. Kundu et al. [12] used six sensors to determine the
position of the excitation source on the composite plate without knowing the wave velocity
in each direction. Zheng et al. [13] provided an effective strategy for extracting second
harmonic Lamb waves from dynamic response signals based on wavelet transforms for the
detection of closed microcracks, accurately locating closed microcracks in plate-like metals
and composite structures in both numerical simulation and experimental environments.
The traditional method based on the time difference in arrival has a certain degree of
uncertainty, and it is easy to produce significant errors for the impact localization problem.
Seydel [14] roughly calculated the location of the impact load by the time-of-arrival method
and then used an optimization algorithm to calculate the minimum difference between
the predicted response and the actual response to estimate the impact location. Sai [15]
established a nonlinear relationship model between the stress wave time difference in
arrival and the spatial position of the sensor. They used the quasi-Newton algorithm to
solve the nonlinear equations. The wide application of the optimization algorithm has
improved the positioning accuracy very well. Shrestha et al. [16] compared the root mean
square error and error outliers of the sample impact point response signal and the unknown
impact point response signal to locate the impact of the composite plate structure. Kim
et al. [17] achieved the impact localization of composite plate structures by comparing
the cross-correlation between the sample point response signal and the unknown point
response signal. Zhao et al. [18] performed impact localization based on the k-order natural
frequency amplitude deviation between the sample point response signal and the unknown
point response signal. Limited by the uncertainty of the material properties of some plate-
like structures, its velocity model is often difficult to obtain accurately, leading to deviations
in positioning results. Various optimization algorithms can improve accuracy to a certain
extent but cannot achieve real-time and fast positioning.

Based on the emerging field of computational intelligence in recent years, new methods
exist to process the obtained signals to further improve the accuracy and efficiency of health
monitoring of plate structures [19]. Cuomo et al. [20] first obtained a baseline consisting
of the structural response induced by the impact test and subsequently evaluated the
impact location using the highest cross-correlation coefficient, somewhat overcoming the
limitations of the current composite impact localization process. Geng et al. [21] used fiber-
grating sensors to obtain structural dynamic response signals and trained neural networks
by extracting frequency-domain response features to realize impact damage identification of
composite laminates. Using numerical simulation, Dipietrangelo et al. [22] used the K-Fold
cross-validation procedure to evaluate the performance of polynomial models of different
degrees using different combinations of training/test sets and calculated the average
radial error. For shallow neural networks, three learning algorithms were compared:
Levenberg–Marquardt, Bayesian Regularization, and Scaled Conjugate Gradient, which
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confirmed the effectiveness of machine learning for impact detection. Liu et al. [23] used the
Empirical Mode Decomposition (EMD) method to remove the trend component in the low-
speed impact signal, and extracted time-domain features, frequency-domain features and
time-frequency domain features from the preprocessed impact signal, building a Hybrid
Support Vector Model to determine the location of low-velocity impacts on composite panel
structures. Jiang et al. [24] used fiber Bragg gratings to detect low-velocity impact sources
on the surface of carbon fiber-reinforced plastic structures, and used Extreme Learning
Machines (ELM) for regional localization. Sai et al. [25] established an Extreme Learning
Machine (ELM)-based impact localization model with faster training speed and fewer
parameters according to the energy of available frequency band signals. Ai et al. [26]
collected an Acoustic Emission (AE) data set by performing impact experiments on a full-
scale thermoplastic aircraft elevator in a laboratory environment. A data set consisting of
AE parametric features and a data set consisting of AE waveforms were assigned to random
forest classifiers and deep-learning networks to study their suitability for impact source
localization. Chen et al. [27] utilized a Convolutional Recurrent Encoder-Decoder Neural
Network (ED-CRNN) and a Deep Convolutional Recurrent Neural Network (DCRNN) for
impact load reconstruction and localization. Jierula [28] installed the sensor in the concrete
column, applied the Neighborhood Component Analysis (NCA) feature selection method
to select important parameters as the input of the neural network, and proposed a machine
learning-based method to locate the impact source in the concrete column. The data-driven
method can effectively analyze damage characteristics for classification and identification,
overcome the complexity and uncertainty of traditional methods, significantly reduce
the workload, and effectively improve the process of structural damage identification.
However, complex machine learning algorithms make it difficult to provide the required
input parameters in practical engineering testing, resulting in poor engineering practicality.
BP neural networks are relatively mature in both network theory and performance. Its
outstanding advantages are strong nonlinear mapping ability and flexible network structure.
The number of intermediate layers and neurons in each layer of the network can be set
arbitrarily according to specific situations, and their performance varies with the difference
in structure. However, BP neural networks also have some major shortcomings. The
learning speed is slow, and even a simple problem usually requires hundreds or even
thousands of learning iterations to converge, therefore, it is easy to fall into local minima.
There is no corresponding theoretical guidance for the selection of network layers and
the number of neurons. The ability to promote online is limited. There have been many
improvement measures for the above issues, with the most researched being on how to
accelerate the convergence speed of the network and avoid falling into local minima as
much as possible [29,30]. In this paper, the BP neural network is used to detect impact
sources in plate-like structures and its effectiveness is tested on three plate-like structures
with different material properties.

The follow-up content of this paper is divided into four parts. Section 2 introduces
the working principle of the BP neural network used in this paper and the preprocessing
of time-domain signals. Section 3 presents the experimental setup and data acquisition
system. Section 4 gives the training and prediction results of the model. Section 5 concludes
the work.

2. Algorithm of BP Neural Network and Signal Preprocessing
2.1. The Mechanism of the BP Neural Network

The BP neural network is relatively mature in terms of its theoretical basis and per-
formance. Its outstanding advantages are its nonlinear solid mapping ability and flexible
network structure. A typical BP neural network consists of three parts: input layer, hidden
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layer, and output layer, as shown in Figure 1. It has a precise learning mechanism, mainly
including two processes: forward propagation of signals and backpropagation of errors.
When the input layer of the BP neural network receives the signal, it will pass the signal to
the hidden layer, and the hidden layer will process the signal according to the weight, bias,
and activation function of the connection, and then pass it to the output layer to output
the corresponding predicted value. When the error between the predicted and expected
values does not meet the preset target accuracy requirements, the network will feed back
the error information layer by layer from the output layer to the input layer. When the
error is backpropagated, the weights and offsets of every layer connection will be adapted
and updated according to the method of gradient descent. Through continuous training
and correction, the error between the predicted and actual values will gradually become
smaller, and the predicted result will reach expected outcome. Then, the learning process
is over.
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The linear function is selected as the activation function of the input layer, and the
sigmoid function is used as the activation function of the hidden layer. For the input layer
part, the input data are the extracted signal feature value X = [x1, x2, . . . , xi, xn]

T , and the
output yi = Xi due to the use of a linear function.

For the hidden layer part, the input value of the neuron is equal to the sum of the
input value connected to it multiplied by the corresponding weight plus the additional bias
of the neuron:

netj =
n

∑
i=1

wijyi + bi (1)

n represents the input layer neurons, and j represents the hidden layer neurons.
The output value of the hidden layer is the value calculated by the sigmoid function:

yj = f
(
netj

)
=

1
1 + exp

(
−netj

) (2)

For the input layer part, the input value of the neuron is equal to the sum of the input
value connected to it multiplied by the corresponding weight and then the additional bias
of the neuron:

netk =
n

∑
k=1

wjkyj + bk (3)
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Similarly, the output value of the output layer is the value after the sigmoid function
operation:

yk = f (netk) =
1

1 + exp(−netk)
(4)

Randomly assign a set of non-zero numbers and small initial values to the weights
wij and wjk between the input layer, the hidden layer, and the output layer. After setting a
series of hyperparameters, such as training target, learning rate, the number of iterations,
etc., the output yi, yj, and yk of each layer can be calculated from the output layer. Then,
calculate the magnitude of the error between the predicted value and the expected value of
each neuron in the output layer:

δk =
∑n

k=1(y
′ − yk)

2

n
(5)

After obtaining the predicted value of the output layer, continue to calculate the error
size of each neuron in the hidden layer forward:

δj = ∑
j

δkwkj (6)

Use the resulting error to adjust the weights and biases of each layer:

wij(m + 1) = wji(m) + ∆wji(m) (7)

In the following:

∆wji(m) = mc·wij(m− 1) + lr·δj· f ′
(
netj

)
(8)

In Equation (7), m is the number of iterations, and in Equation (8), mc is the momentum
coefficient; generally 0.9~1. lr is the hyperparameter learning rate.

After a calculation of forward propagation, compare the error δk of the output layer
with the maximum error ε of the set training target. If δk ≤ ε, stop training. Otherwise, the
error is passed forward, the weights and biases between the layers are adjusted, and the
forward propagation is performed again. After the conditions for stopping the training are
met, the training ends.

The Sigmoid function requires the input value to be in the interval [−1, 1]. Hence,
the samples must be normalized to avoid neuron saturation during training and make the
model converge faster. This study uses the mapminmax function for normalization, which
can map each sample value to between −1 and 1. The model chosen in this study has a
three-tier architecture, including one layer of an input layer, a hidden layer, and an output
layer, and its diagrammatic sketch is shown in Figure 2. The programming and training of
the BP neural network are carried out on the MATLAB platform. Use the trainlm function as
the training function and set the following hyperparameters simultaneously: the maximum
training times are 1000, the learning rate is 0.0001, and the minimum error goal is 0.000001.
There is no clear theory about determining the number of hidden layer nodes in the neural
network. When the nodes’ number is small, it is easy to cause underfitting and affect the
prediction accuracy. When the number of hidden layer nodes is too large, the training time
of the model may be prolonged, and overfitting is more likely to occur. Here, this study
uses the empirical formula: the hidden nodes number =

√
(m + n) + a for determining

the number of nodes, where m is the amount of input neurons, n is the amount of output
neurons, and a is a random number between 1 and 10. Finally, six hidden node numbers
are selected according to the formula.
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Figure 2. Schematic diagram of the BP neural network model established in this study.

2.2. Processing of Captured Signals

The training of the BP neural network needs to choose a typical characteristic value as
the input, so we need to process the time domain signal received by the sensor. Clearly,
the position of the sound source strongly correlates with the wave propagation time in the
plate. Therefore, we choose the time-of-first-arrival parameter in the time-domain signal.
According to the set integration time step and total duration, the length of each sensor
signal is 1000 samples, as shown in Figure 3. The time-of-first-arrival of the time-domain
signals obtained from the four sensors is collected as the input of the model. It is worth
noting that to prevent data leakage during neural network training, this paper performs
data segmentation before model evaluation. Then, it performs data preparation only on
the training data set and then, applies the data preparation techniques to the training and
test sets.

Materials 2025, 18, x FOR PEER REVIEW 6 of 19 
 

 

amount of output neurons, and a is a random number between 1 and 10. Finally, six hid-
den node numbers are selected according to the formula. 

 

Figure 2. Schematic diagram of the BP neural network model established in this study. 

2.2. Processing of Captured Signals 

The training of the BP neural network needs to choose a typical characteristic value 
as the input, so we need to process the time domain signal received by the sensor. Clearly, 
the position of the sound source strongly correlates with the wave propagation time in the 
plate. Therefore, we choose the time-of-first-arrival parameter in the time-domain signal. 
According to the set integration time step and total duration, the length of each sensor 
signal is 1000 samples, as shown in Figure 3. The time-of-first-arrival of the time-domain 
signals obtained from the four sensors is collected as the input of the model. It is worth 
noting that to prevent data leakage during neural network training, this paper performs 
data segmentation before model evaluation. Then, it performs data preparation only on 
the training data set and then, applies the data preparation techniques to the training and 
test sets. 

 

Figure 3. Received signal of a sensor when the aluminum plate is subjected to an impact. 

Alt Text: The time-domain signal received by a certain sensor has a signal length of 
1000 microseconds. The abscissa of the signal is time in microseconds. The ordinate is the 
amplitude, and the unit is volts due to the use of an oscilloscope for reception. 

3. Experimental Procedure 
3.1. Experimental Setup 

Generate and record impact signals using the experimental setup shown in Figure 4. 
The experimental objects in this paper are three different plate structures. The aluminum 
plate is a representative of isotropic materials, while the unidirectional composite plate 
and orthotropic plate are typical layering representatives of transversely isotropic mate-
rials and composite materials. Among them, the size of the isotropic aluminum plate is 400 ൈ 500 ൈ 1 mmଷ, which is divided into nine regions with an area of 133.3 ൈ 166.7 mmଷ 
on average. The dimensions of the orthotropic laminate and the unidirectional laminate 
are both 450 ൈ 450 ൈ 3 mmଷ, and the thickness of a single layer is 0.125 mm. There are 16 
layers in total, equally divided into nine areas. Polymer foam is padded at the bottom of 

Figure 3. Received signal of a sensor when the aluminum plate is subjected to an impact.

Alt Text: The time-domain signal received by a certain sensor has a signal length of
1000 microseconds. The abscissa of the signal is time in microseconds. The ordinate is the
amplitude, and the unit is volts due to the use of an oscilloscope for reception.

3. Experimental Procedure
3.1. Experimental Setup

Generate and record impact signals using the experimental setup shown in Figure 4.
The experimental objects in this paper are three different plate structures. The aluminum
plate is a representative of isotropic materials, while the unidirectional composite plate
and orthotropic plate are typical layering representatives of transversely isotropic mate-
rials and composite materials. Among them, the size of the isotropic aluminum plate is
400× 500× 1 mm3, which is divided into nine regions with an area of 133.3× 166.7 mm3

on average. The dimensions of the orthotropic laminate and the unidirectional laminate are
both 450× 450× 3 mm3, and the thickness of a single layer is 0.125 mm. There are 16 layers
in total, equally divided into nine areas. Polymer foam is padded at the bottom of the board
to reduce vibration and energy transfer from the environment to the board. A circular
piezoelectric transducer (PZT) with a diameter of 10 mm and a thickness of 1 mm is used
as the piezoelectric chip, and it is arranged in the middle of the four sides at a distance of
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20 mm from the boundary as the receiving source. Before pasting the piezoelectric chip, the
surface of the aluminum plate is cleaned with alcohol. Apply the quick-drying adhesive
evenly to the designated position and then paste and fix the PZT. A 54820A oscilloscope
produced by Agilent was used to record the measurement results. The acquisition signals
from all four channels have 16-bit resolution, the sampling rate is set to 1 MHz, the duration
of each measurement is 1 ms, and the trigger level is set to 100 mV.
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Figure 4. Schematic diagram of the experimental platform.

Alt Text: The steel ball is impacted on the surface of the plate structure by paper
guides, and the resulting signal is received by piezoelectric sensors on the four edges of the
plate and displayed by an oscilloscope.

Impact signals are generated by impacting pellets of different diameters. Steel balls
made of hardened steel excite elastic waves in the plate, which are released from different
heights. The diameters of the respective balls were 8 mm, 10 mm, and 15 mm. The repeata-
bility of the impact position and height is ensured by a paper guide, which determines
the orientation of the steel ball during free fall. The thin plate entirely absorbs the impact
energy of the steel ball, and elastic deformation mainly occurs during the impact process.
The acquired sensor signal shows only a single waveform, which is excited by the ball’s
impact. The lack of other waveforms in the captured time-domain signal indicated that the
rebound of the steel ball was not recorded. The model’s training needs to input a certain
number of samples with specific variability. The resulting waveform after each impact is
differently affected by damping, dispersion, and edge reflections, allowing us to obtain a
highly variable database.

3.2. Experimental Process

This paper tests the influence of three factors on the accuracy of the BP neural network
in predicting the impact area of the falling ball. The experimental procedure is as follows:

(1) At the center points of nine areas, use a small steel ball with a diameter of 10 mm to
drop from a height of 200 mm; repeat ten times for each area center, and a total of
90 sets of data are utilized as the training set of the model.

(2) Explore the impact of different drop heights on prediction accuracy. Also, use 10 mm
small steel balls to fall at the center points of each area, change the length of the
guide rail, and make the small balls fall from the heights of 150 mm and 100 mm,
respectively, as shown in Figure 5a. Each regional center is repeated ten times, and a
total of 90 sets of data are used as the test set of the neural network.

(3) Explore the influence of different steel ball diameters on the prediction accuracy. Also,
use a 200 mm long guide rail at the center point of each area to ensure that the steel
balls fall at the same height, change the diameter of the small balls used, and use
small steel balls with diameters of 8 mm and 15 mm to drop from the same height, as
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shown in Figure 5a. Each regional center is repeated ten times, and a total of 90 sets of
data are utilized as the test set of the model.

(4) Explore the impact of different falling positions on prediction accuracy. Steel balls
of the same diameter as the test set were dropped from the same height. For the
aluminum plate, offset the drop point by 30 mm and 60 mm from the center of the
area. For two composite material panels, the landing point positions are randomly
selected at 20 mm and 60 mm from the center of the area. As shown in Figure 5. Each
drop point is repeated ten times, and 90 sets of data are used as the test set.
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Figure 5. Schematic diagram of different test sets (red marks are 30 mm and 20 mm from the center
of the area, and blue is 60 mm): (a) balls with different diameters and guide rails with different
lengths; (b) schematic diagram of the impact position of the aluminum plate; (c) schematic diagram
of the impact position of the orthotropic laminate; (d) schematic diagram of impact position of
unidirectional laminate.

Alt Text: The three plate-like structures used in this paper were all divided into nine
identical areas, and each area was marked with a marker pen. The red mark is 20 mm from
the center of the area, and the blue mark is 60 mm from the center of the area.

4. Prediction Results of Impact Source Localization
4.1. Prediction Results of Impact Source Localization in Aluminum Plate

At nine center points of the area, a small steel ball with a diameter of 10 mm was
dropped from a height of 200 mm, each area center was repeated ten times, and a total of
90 samples were used as the training set. It can be seen from Figure 6 that in the isotropic
plate, due to the different positions of the sensors, there are apparent differences in the
arrival time of the wave generated by the impact source to the four sensors. A neural
network model can learn this difference and map the arrival times of the four sensors to
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the source of the impact. After preprocessing the time of arrival of each time-domain signal
as described in Section 2.2, input it into the BP neural network described in Section 2.1 for
training. After the training is completed, collect the test set data described in Section 3.2,
and input the neural network as the test set according to the same steps. Figure 7 shows
the training results of two different data sets when predicting. The correlation coefficient R
in the figure indicates the degree of fitting of the data. It can be seen from the figure that
the correlation coefficients of all groups in the aluminum plate are above 0.99, the fitting
accuracy is high, and the model performs well. At the same time, the fitting degree of the
training set and the test set is very high, and there is no over-fitting phenomenon, which
also benefits from the relatively simple structure of the BP neural network.
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respectively, correspond to No. 1–4 piezoelectric sheet (PZT) in Figure 4.
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Figure 7. Training results for different test sets in aluminum plates: (a) test sets for different steel ball
diameters and dropping heights; (b) test sets for different impact positions.

Alt Text: There is a significant difference in the arrival time of the waveforms of the
signals received by the piezoelectric sensor located at the midpoint of the four sides after
an impact in the aluminum plate. The arrival time of the waveform is extracted as the input
of the neural network.
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Alt Text: The training results of each test are set in the aluminum plate experiment.
The horizontal and vertical coordinates show the error between the expected value and the
actual value, and the fitting coefficient shows the fitting accuracy of each group.

Figure 8 shows the prediction results of the six test sets in the aluminum plate. The
blue circle in the figure represents the expected value, that is, the area where the steel ball
falls in the experiment, and the red represents the discriminant result of the falling area
by the trained neural network based on the eigenvalues input from the test set. It can
be seen from the results that the prediction accuracy rate of the first four groups is 100%,
and different drop heights and different steel ball diameters do not affect the prediction
accuracy. The trained BP neural network can very accurately judge the area where the
steel ball falls at this time and has a strong robustness to these two influencing factors.
Figure 8e shows that the neural network model trained by the data sets of each regional
center can accurately predict the location of the impact source within 30 mm nearby with
100% accuracy, which has specific prospects for practical engineering applications. When
we change the training set’s position to 60 mm, the position of the impact is close to the
area’s boundary. Figure 8f shows that the prediction accuracy is 96.7%, and only three
misjudgments occur, which is still a more precise result. These three misjudgments were
all misjudgments from area 6 to area 5. It can be seen from the blue mark in Figure 5b, the
impact point of the steel ball at this time is close to the boundary of these two areas, so a
wrong prediction is produced.
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Figure 8. Prediction results for different test sets in aluminum panels. (a) The test set at 150 mm in
3.2 (2). (b) The test set at 100 mm in 3.2 (2). (c) The test set at 8 mm-diameter steel balls in 3.2 (3). (d)
The test set of 15 mm-diameter steel balls in 3.2 (3). (e) 3.2 (4). The test set at 30 mm from the center
of the area. (f) The test set at 60 mm away from the center of the area in 3.2 (4).
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Alt Text: The prediction results of each test set in the aluminum plate experiment. The
blue markers represent the expected value, and the red markers represent the output of the
neural network. The abscissa represents the sample number of the test set, and the ordinate
represents the area code of the output. In the test results of different steel ball diameters
and different drop heights, the red mark and the blue mark completely coincide, which
means that the prediction accuracy is 100%. There were three wrong predictions in the test
set where the impact location was close to the region border.

Because of the situation in Figure 8f, this paper tries to improve the prediction accuracy
by expanding the training set. Specifically, as shown in Figure 9, continue to take three
points at the same distance of 60 mm from the center of the area and mark them as black.
Drop a steel ball with the same diameter from the same height at the black mark and repeat
10 times for each. In this way, the training set of each region is increased by 30, and the
entire training set is expanded to 360. After expansion, the neural network is retrained, and
the 90 sets of data marked in blue are also used as the test set. The prediction results at this
time are shown in Figure 10. When the types of training sets were expanded, the neural
network newly learned the characteristics of the arrival time when the impact source was
60 mm from the center of the area, thus improving the accuracy of this part of the test set,
reaching 100% like other test sets.
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Alt Text: On the basis of Figure 6a, continue to use a black marker to mark at the same
distance from the center of the area 60 mm. The new sampling points will be used as the
expansion of the training set to input the neural network.

Alt Text: The prediction results after adding the samples marked in black in Figure 10
to the training set. The prediction results in Figure 8f are improved, so that the three
wrongly predicted samples are correct again.

4.2. Impact Source Localization Results in Composite Panels

The wavefield information in the composite slab was collected using the same ex-
perimental platform as in Figure 4. This paper uses two types of carbon fiber-reinforced
composite laminates: orthotropic and unidirectional laminates. The geometric parameters
are described in Section 3.1. Due to the difference in lay-up direction, the propagation mode
of the wave in the two plates is also different, and both are different from the isotropic
aluminum plate. This section aims to test whether the neural network can still map arrival
times to impact sources under different propagation modes. Figures 11 and 12 show the
signals received by the sensors for a ball impact at the center of zone 1 in two panels.
Although the steel ball impact is also performed in area 1, the signals captured by the
piezoelectric sheets are also different due to the different laying directions of the composite
materials. There are apparent differences in the arrival times of the three plates. Traditional
methods based on the time difference in arrival often require accurate material properties,
so it is difficult to achieve fast and accurate positioning for composite material panels with
uncertain material properties. Perform data processing and network testing the same way
as in the aluminum plate experiment. Set the same training set and test set according to
Section 3.2. The training results of different test sets are shown in Figures 13 and 14. The
fitting degree of each data set in the two composite material plates is good. The test is set at
60 mm from the center of each area. Both of them have relatively low correlation coefficients,
0.97474 and 0.97262, respectively, which may affect the model prediction accuracy, but is
still an acceptable result. No overfitting was observed.
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Figure 12. Signals received by four sensors during a fall in zone 1 in a unidirectional laminate. (a–d),
respectively, correspond to No. 1–4 PZT in Figure 4.
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Figure 13. Training results for different test sets in orthotropic laminates: (a) test sets for different
steel ball diameters and dropping heights; (b) test sets for different impact positions.

Alt Text: The signals received by the four sensors during an impact at the center of
zone 1 in an orthotropic laminate. Compared with the signal in the aluminum plate in the
previous section, there are obvious differences in the arrival time of the waveform, and the
relationship between different arrival times is no longer linear, the wave speed is faster,
and the arrival time values are smaller.

Alt Text: The signal received by the sensor when the central position of area 1 in the
unidirectional laminate receives an impact. Although the impact is also performed in area
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1, the signals captured by the piezoelectric sensor are also different due to the different
laying directions of the composite material. The wave velocity in unidirectional laminates
is between aluminum and orthotropic laminates, and the wave velocity along the ply
direction is relatively fast.

Alt Text: Training results for each set of test sets in orthotropic laminates. A similar
fitting accuracy to the data set in the aluminum plate was achieved.
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Figure 14. Training results for different test sets in unidirectional laminates: (a) test sets for different
steel ball diameters and dropping heights; (b) test sets for different impact positions.

Alt Text: Training results for each set of test sets in unidirectional laminates. The fitting
accuracy of each test set is above 0.97.

Alt Text: The prediction results of each test set in the orthotropic laminate experiment.
In the test results of different steel ball diameters and different drop heights, the red mark
and the blue mark completely coincide, which means that the prediction accuracy is 100%.
There were four wrong predictions in the test set where the impact location was close to
the region border.

Alt Text: The prediction results of each test set in the unidirectional laminate exper-
iment. In the test results of different steel ball diameters and different drop heights, the
accuracy rate is also 100%. There were four wrong predictions in the test set where the
impact location was close to the region border, they both appeared in area 4 and were
misjudged to area 7.

Figures 15 and 16 are the prediction results of the trained model for the location of
the impact source in two composite laminates. The prediction results of the test set at
different drop heights, different steel ball diameters, and 20 mm near the center of the area
are the same as the aluminum plate and also have strong robustness, and the prediction
accuracy reaches 100%. The prediction accuracy of the steel ball drop position test set at
60 mm from the center of each area is slightly lower than that of the aluminum plate, both
of which are 95.6%, and four wrong predictions are different from the expected results. In
the orthogonal plate, two samples of the test set in region 1 were mispredicted to region 2;
mispredictions also occurred in region 5, and 2 samples were judged to belong to region 6.
The four mispredictions in the one-way board all occurred in area 4 and were misjudged
in area 7. Combined with the blue marks in Figure 5c,d, it can be seen that because they
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are very close to the boundaries of each region, the samples with wrong predictions are all
mistaken by the network as the impact source of the adjacent region. Like the aluminum
plate in Section 4.2, this study also tries to expand the training set to improve prediction
accuracy. Figure 17 is the newly added impact position of the falling ball. Three black
marks are added in each area of the two laminated plates. All of them are 60 mm away
from the center of each area. A small steel ball with a diameter of 10 mm is dropped from
200 mm at each mark, repeated 10 times. This increases the number of samples to train the
neural network to 360. Figure 18 shows the predicted results at this time. Similarly to the
aluminum plate experiment results, after increasing the diversity of the training set, the
model can predict with 100% accuracy the area where the impact source of the small steel
ball belongs.
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Figure 15. Prediction results for different test sets in orthotropic laminates. (a) The test set at 150 mm
in 3.2 (2). (b) The test set at 100 mm in 3.2 (2). (c) The test set at 8 mm-diameter steel balls in 3.2 (3).
(d) The test set at 15 mm-diameter steel balls in 3.2 (3). (e) 3.2 (4) The test is set at 30 mm from the
center of the area. (f) The test set at 60 mm away from the center of the area in 3.2 (4).
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Figure 16. Prediction results for different test sets in unidirectional laminates. (a) The test set at
150 mm in 3.2 (2). (b) The test set at 100 mm in 3.2 (2). (c) The test set at 8 mm-diameter steel balls in
3.2 (3). (d) The test set at 15 mm-diameter steel balls in 3.2 (3). (e) 3.2 (4) The test set at 20 mm from
the center of the area. (f) The test set at 60 mm away from the center of the area in 3.2 (4).

Materials 2025, 18, x FOR PEER REVIEW 17 of 19 
 

 

  
(a) (b) 

Figure 17. Schematic diagram of the location of the added training set sampling points: (a) ortho-
tropic laminates; (b) unidirectional laminates. 

Alt Text: On the basis of Figure 5c,d, continue to use a black marker to mark at the 
same distance from the center of the area 60 mm. 

(a) (b) 

Figure 18. Prediction results of each plate after expanding the training set: (a) schematic diagram of 
increased sampling points of orthotropic laminates; (b) schematic diagram of sampling points 
added to unidirectional laminates. 

Alt Text: The prediction results after adding the samples marked in black in Figure 
18 to the training set. The prediction results in Figure 16f are improved, the respective for 
wrong samples were re-predicted as correct. 

5. Conclusions 
This paper uses a machine learning approach to locate the source of a falling ball 

impact on the surface of three panel-like structures with different material properties, in-
cluding an isotropic aluminum panel and two composite laminates with different ply ori-
entations. In this study, the impact sources are from signals at different positions of the 
piezoelectric sensor at different times. The most typical three-layer BP neural network is 
utilized to learn this feature. When the material properties are unknown, four sensors are 
used to test the low-velocity impact source of the steel ball through regional targeting. A 
training data set is generated in the center of each area, and the area in which the impact 
sources in other locations belong is predicted. The robustness of the model is tested at the 
same time. Experiments were carried out on three plate structures with different material 
properties to verify the proposed scheme. The results reveal that the trained model can 
precisely predict the area where the impact source is located, whether in isotropic alumi-
num panels or composite panels with different ply directions. At the same time, the pre-
diction result has strong robustness. Changing the diameter and drop height of the falling 
steel ball within a specific range does not affect the prediction accuracy (100%). When the 
falling position of the steel ball is 20 mm or 30 mm away from the center of the area where 
the training set data are located, all the training samples in the three boards can accurately 

Figure 17. Schematic diagram of the location of the added training set sampling points: (a) orthotropic
laminates; (b) unidirectional laminates.

148



Materials 2025, 18, 449

Materials 2025, 18, x FOR PEER REVIEW 17 of 19 
 

 

  
(a) (b) 

Figure 17. Schematic diagram of the location of the added training set sampling points: (a) ortho-
tropic laminates; (b) unidirectional laminates. 

Alt Text: On the basis of Figure 5c,d, continue to use a black marker to mark at the 
same distance from the center of the area 60 mm. 

(a) (b) 

Figure 18. Prediction results of each plate after expanding the training set: (a) schematic diagram of 
increased sampling points of orthotropic laminates; (b) schematic diagram of sampling points 
added to unidirectional laminates. 

Alt Text: The prediction results after adding the samples marked in black in Figure 
18 to the training set. The prediction results in Figure 16f are improved, the respective for 
wrong samples were re-predicted as correct. 

5. Conclusions 
This paper uses a machine learning approach to locate the source of a falling ball 

impact on the surface of three panel-like structures with different material properties, in-
cluding an isotropic aluminum panel and two composite laminates with different ply ori-
entations. In this study, the impact sources are from signals at different positions of the 
piezoelectric sensor at different times. The most typical three-layer BP neural network is 
utilized to learn this feature. When the material properties are unknown, four sensors are 
used to test the low-velocity impact source of the steel ball through regional targeting. A 
training data set is generated in the center of each area, and the area in which the impact 
sources in other locations belong is predicted. The robustness of the model is tested at the 
same time. Experiments were carried out on three plate structures with different material 
properties to verify the proposed scheme. The results reveal that the trained model can 
precisely predict the area where the impact source is located, whether in isotropic alumi-
num panels or composite panels with different ply directions. At the same time, the pre-
diction result has strong robustness. Changing the diameter and drop height of the falling 
steel ball within a specific range does not affect the prediction accuracy (100%). When the 
falling position of the steel ball is 20 mm or 30 mm away from the center of the area where 
the training set data are located, all the training samples in the three boards can accurately 

Figure 18. Prediction results of each plate after expanding the training set: (a) schematic diagram of
increased sampling points of orthotropic laminates; (b) schematic diagram of sampling points added
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Alt Text: On the basis of Figure 5c,d, continue to use a black marker to mark at the
same distance from the center of the area 60 mm.

Alt Text: The prediction results after adding the samples marked in black in Figure 18
to the training set. The prediction results in Figure 16f are improved, the respective for
wrong samples were re-predicted as correct.

5. Conclusions
This paper uses a machine learning approach to locate the source of a falling ball impact

on the surface of three panel-like structures with different material properties, including
an isotropic aluminum panel and two composite laminates with different ply orientations.
In this study, the impact sources are from signals at different positions of the piezoelectric
sensor at different times. The most typical three-layer BP neural network is utilized to
learn this feature. When the material properties are unknown, four sensors are used to
test the low-velocity impact source of the steel ball through regional targeting. A training
data set is generated in the center of each area, and the area in which the impact sources in
other locations belong is predicted. The robustness of the model is tested at the same time.
Experiments were carried out on three plate structures with different material properties to
verify the proposed scheme. The results reveal that the trained model can precisely predict
the area where the impact source is located, whether in isotropic aluminum panels or
composite panels with different ply directions. At the same time, the prediction result has
strong robustness. Changing the diameter and drop height of the falling steel ball within a
specific range does not affect the prediction accuracy (100%). When the falling position of
the steel ball is 20 mm or 30 mm away from the center of the area where the training set
data are located, all the training samples in the three boards can accurately determine the
area they belong to, with an accuracy rate of 100%. When the drop position continues to be
away from each center point to 60 mm, the prediction result in the aluminum plate is better,
with an accuracy rate of 96.7%. The accuracy within the two composite panels was slightly
lower at 95.6%. In addition, a method of augmenting the training set is adopted to improve
the case of misassignment of shocks at the boundaries of each region. After adding samples
at the same distance of 60 mm from the center as the training set, the model’s performance
improved, and the prediction accuracy reached 100%. The above results demonstrate the
potential of the method proposed in this study in effectively characterizing the impact
source locations on the surface of plate-like structures. This paper did not consider the
impact of the environment and the anti-interference ability of the proposed model. Our
future research will focus on discussing the impact of environmental factors such as noise
and temperature on the results.
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Abstract: It is widely recognized that certain structures, when subjected to static compression,
may exhibit a bifurcation point, leading to the potential occurrence of a secondary equilibrium
path. Also, there is a tendency of deflection increment without a bifurcation point to occur for
imperfect structures. In this paper, some relatively unknown phenomena are investigated. First, it is
demonstrated that in some conditions, the linear buckling mode shape may differ from the result of
geometrically nonlinear analysis. Second, a mode jumping phenomenon is described as a transition
from a secondary equilibrium path to an obscure one as a tertiary equilibrium path or a second
bifurcation point. In this regard, some non-square plates with unsymmetric layer arrangements (in
the presence of extension–bending coupling) are subjected to a uniaxial in-plane compression. By
considering the geometrically linear and nonlinear problems, the bucking modes and post-buckling
behaviors, e.g., the out-of-plane displacement of the plate versus the load, are obtained by ANSYS
2023 R1 software. Through a parametric analysis, the possibility of these phenomena is investigated
in detail.

Keywords: post-buckling; second bifurcation; mode jumping; tertiary equilibrium path

1. Introduction

For square plates without the effect of extension–bending coupling, the mode shapes
based on linear buckling (or so-called eigenvalue solution) and nonlinear post-buckling
analysis are the same. For instance, Figure 1 demonstrates the equilibrium path of the
square, which is a simply supported plate made of glass-fiber-reinforced polymer (GFRP),
with the material properties outlined in [1] and the layer arrangement of [(45/−45)4]T.
The plate is subjected to a uniform uniaxial in-plane compression Fex, and the variation in
the deflection of the center of the plate wc with respect to the total thickness of the plate
h is plotted in this figure. As seen, both analyses (linear eigenvalue and geometrically
nonlinear) lead to one half-wave in both in-plane directions. For tracing the nonlinear
analysis, the plate with conditions such as imperfections, lateral load, extension–bending
coupling, eccentricity of in-plane loads, and so on may tend to show behavior close to
the ideal curve. It should be noted that the ideal curve with a bifurcation point is a
rare phenomenon, and usually a tendency to this black solid curve exists by using the
above conditions. In Figure 1, there are no extension–bending coupling coefficients (i.e.,
B11 = B12 = B22 = 0). However, an imperfection with different amplitudes ζ is applied. In
the case of initial imperfection, there are interesting studies which have focused on different
types of imperfections [2–4]. However, the current study is limited to the imperfection
of the first linear buckling mode [5]. Another point is that the solution has two curve
parts. First, the right curve is the result of a load increment from zero, and the left curve
is the result of a load decrement from a large value. However, both curves correspond
to the same mode of deflection. These two parts of the solutions are also reported for
different structures as truss [6] and general systems [7]. One question that may arise is that
is the mode of both linear and nonlinear analysis always the same? In this paper, a special
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circumstance will be demonstrated where there are possibilities to observe different modes
based on different linear and nonlinear analyses.
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Figure 1. The post-buckling curves of a square GFRP plate [(45/−45)4]T with different amplitudes
of imperfections.

Concerning the nonlinear analysis of the structures, there is a very rare phenomenon
called mode jumping, which is introduced by a limited number of investigators because it
usually happens under special circumstances. Among them, Ungureanu et al. [8] presented
the possibility of a second bifurcation point for thin-walled steel members with different
types of profile sections. Zhang and Murphy [9] worked on the secondary buckling point
of the beams by a judicious choice in the beam length. In other words, longer beams have
different modes with respect to shorter beams. But at a special length, the possibility of
jumping from one mode to another is high. In another case [10], they investigated the effect
of a partial elastic foundation on the tertiary equilibrium state of the beams.

Based on different terminology in the literature, mode jumping, second bifurcation
point, and tertiary equilibrium path can be significant for those structures for which the
conditions of the occurrence of two different modes exist at the same time. However, mode
jumping differs from interactive buckling [11,12], where the structure has a mix of more
than one mode shape at the same time. In the case of interactive buckling, the beams and
columns with I-section profiles have a significant role, where local and global buckling
can be seen simultaneously. In particular, the term cellular buckling can be raised in such
structures [13–15]. Similar behavior has been discovered in other mechanical systems such
as rectangular hollow strut [16] and cylindrical shells [17].

In the case of laminated composites, Pirrera et al. [18] and Coburn et al. [19] investi-
gated the possibility of bi-stability and tri-stability in cylindrical and double curved shells,
respectively. However, the effect of the extension–bending coupling matrix for unsym-
metric laminated composite structures is one of the interesting topics in the field of the
structural stability of composite materials. In this regard, Carrera et al. [20] found that
unsymmetric and non-square plates may have a special mode shape in the nonlinear range
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for which the amplitudes of the half-waves are not same. In other words, one may deal
with some larger and smaller half-waves in the post-buckling range. Bohlooly Fotovat
and Kubiak [21] presented an analytical solution to understand the reason for the non-
bifurcation response in the presence of the extension–bending coupling matrix. Now, there
is a good opportunity to combine these two studies [20,21] and focus on the mode jumping
of non-square plates.

In this paper, two novel aspects of unsymmetric laminated composite plates under
uniaxial compressions are presented. First, the effect of the boundary condition on the
deflection response of the plate is presented in Section 2. In the case of simply supported
boundary conditions, the mode shape of linear buckling analysis (eigenvalue) and post-
buckling (geometrically nonlinear) can be different. The reason for and possibility of this
difference are explained in Section 3. Second, the plates with different modes (based on
linear and nonlinear analyses) have a possibility of jumping to another mode. This is
possible in the presence of imperfection. The details of such a mode jumping are explained
in Section 4. In all sections, the results of different analyses are obtained from finite element
analysis using ANSYS APDL version 2023 R1 software.

2. Finite Element Analysis: Set-Up and Solver

To obtain the linear buckling results of ANSYS, the plate is modeled with the shell
element. It should be noted that a four-node element with a size of 1 × 1 mm2 is selected.
This size selection is based on a convergence study. In the geometrically nonlinear analysis,
the equilibrium paths are obtained by static analysis. The element size is 5 × 5 mm2. In this
analysis, an initial imperfection with the shape of the first buckling mode is employed. The
solver is the load-control Newton–Raphson method. Due to the absence of any snapping
conditions, it is not necessary to apply any path-following techniques [22]. In order to
avoid rigid body motions, one edge is considered immovable, and the opposite edge is
considered movable and then compressed. A coupled boundary condition is applied for
two movable edges in both in-plane directions. This is the reason why mode shapes in
the current study have straight edges. However, they were curved in a similar study [20].
A verification study of the current results of ANSYS is reported in our previous similar
work [21].

3. Unsymmetric Laminated Composite Plates with Simply Supported Edges

According to the classical lamination theory in thin-walled structures, the lack of
symmetry with respect to the middle plane results in a behavior of so-called extension–
bending coupling [23]. This means that applying in-plane loads can induce deflection in the
structure, and conversely, the deflection may influence the in-plane loads. This is due to the
nonzero components of the extension–bending coupling matrix. However, this coupling
matrix is necessary, but not in a sufficient condition, for plates being deformed before
buckling. Another important factor of such a situation is the existence of simply supported
boundary conditions. Figure 2 demonstrates a schematic of a two-layer unsymmetric
plate [0/90] considering two different kinds of movable boundary conditions (e.g., simply
supported and clamped). As seen, the plate is subjected to an external load Fex, and the
reaction force of a 0-degree layer Fin1 is higher than 90-degree layer Fin2. According to the
free body diagram of a pin in the simply supported edge (located in the middle plane of the
plate), this different value of loads leads to a moment Min which is inserted from the plate to
the pin. Since the pin has no resistance to any moment, it starts to rotate. The rotation of the
pin leads to the deflection of the plate. In contrast, the free body diagram of the attaching
layer in the clamped edge shows that it obliterates the moment very easily (by Mre), and
the plate remains flat during compression (before buckling). Therefore, the next sections of
this paper focus on an unsymmetric laminated plate with all simply supported edges.
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Figure 2. The schematics of reaction forces in a two-layer plate [0/90] with different kinds of boundary
conditions and their free body diagrams: (a) movable simply support; (b) movable clamped.

4. Different Modes in Buckling and Post-Buckling of Non-Square Plates

Usually, the result of buckling mode based on a linear analysis (eigenvalue problem)
is the same as the result in the geometrically nonlinear analysis. Therefore, a very small
amplitude of this linear mode can be employed as an imperfection to be sure that the plate
tends to this mode in a nonlinear analysis. However, one exceptional phenomenon can
occur in the unsymmetric and non-square laminated composites. This means that there are
possibilities to see different modes of deflection based on linear buckling and nonlinear
post-buckling analysis (even with the presence of imperfection of linear buckling mode).
The reason for this is illustrated in Figure 3. For instance, it is obvious that a GFRP plate
with a lay-up arrangement of [(0/90)4] and aspect ratio r = 2 (i.e., length/width) has a
linear buckling mode (or LBM) as (m, n) = (2, 1). In other words, two waves and one
half-wave will appear in the loading and perpendicular in-plane directions of the plate,
respectively. As seen, due to the existence of edge moments on both of the opposite sides
of the plate (see Section 2), the results of the nonlinear analysis indicate that the mode can
be either (1,1) or (3,1). Because the directions of these moments do not lead to observing an
even number of half-waves, the selection of actual mode (between m = 1 or 3) lies in the
value of the second buckling load. Therefore, the variations in the buckling loads versus
the aspect ratio are plotted in Figure 4a. As seen, blue areas correspond to an even number
of half-waves in critical buckling mode (e.g., m = 2, 4, . . .). This means that these areas are
for those non-square plates which are prone to having different modes based on linear and
nonlinear analyses. For example, in the first blue area, the critical buckling load (in a range
r = 1.42∼2.42 ) corresponds to the mode with two half-waves m = 2 (in LBM). In this range,
the second buckling load plays a vital role. By considering this quantity, the blue area can
be divided into two other sub-areas (Figure 4b). First, there is a range as r = 1.42∼1.72,
where the second buckling mode is m = 1 and there is another range as r = 1.72∼2.42
for m = 3. Therefore, the deflections of the plates based on the geometrically nonlinear
analysis of the red sub-area are like (m, n) = (1, 1), and those of the green sub-area are
like (m, n) = (3, 1), according to Figure 4b. It should be noted that these modes are for a
very initial post-buckling range. Then, a question arises: what is the deflection when it is
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slightly far away (i.e., not very initially)? By conducting many nonlinear studies in ANSYS
software, the evidence proved that for a plate with an aspect ratio in the first sub-area (for
this case, r = 1.42∼1.72), the possibility of the occurrence of a tertiary equilibrium path is
almost zero. This means that the plate keeps the mode (m, n) = (1, 1) and then will be a
mixed of (m, n) = (1, 1) and (3, 1) in a very far post-buckling range [24]. However, the
second sub-area is unstable, and the occurrence of a tertiary equilibrium path is possible,
which is described in the next section.
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Figure 3. (a) A rectangular plate (r = 2) under compression, (b) linear buckling mode (LBM), and (c),
(d) possible deflections in nonlinear post-buckling analysis (either m = 1 or 3).
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5. Existence of Tertiary Equilibrium Path

Figure 5 demonstrates the equilibrium paths of the GFRP plates (r = 1.5) with lay-up
arrangements of [(0/90)4]T and [(90/0)4]T. According to Figure 3b, it is obvious that the
linear and nonlinear modes of such an aspect ratio are (m, n) = (2, 1) and (1, 1), respectively.
In Figure 5, there is not any imperfection. In this case, the solution has no two curve parts
(see Figure 1) due to the presence of extension–bending coupling. The right curve is
the result of [(0/90)4]T, and the left curve is the result of [(90/0)4]T. This order of layer
arrangement from the bottom to the top is highly effective on the direction of moment (see
Figure 2). However, both curves correspond to the same mode of deflection. In addition,
a small value of imperfection of the first buckling mode (m, n) = (2, 1) will not affect
the curves.
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Figure 5. The post-buckling curves of perfect GFRP plates with r = 1.5.

Now it is time to select a plate with an aspect ratio higher than 1.72 (see green area
in Figure 4b). The post-buckling response of the GFRP plate with r = 2 is demonstrated
in Figure 6. In this figure, there is no imperfection and, as mentioned previously, the
linear buckling mode is (m, n) = (2, 1) and the deflection in post-buckling has a shape like
(m, n) = (3, 1). However, this post-buckling curve is unstable, and by adding a small value
of imperfection of the first buckling mode, the results will be different.

In this regard, the post-buckling curves of the perfect and imperfect plate are plotted in
Figure 7a. In this figure, a plate with r = 2.2 and different amplitudes of imperfection of the
first buckling mode is analyzed. As seen, the second bifurcation point, tertiary equilibrium
path, or jumping mode (based on different terminology in the literature) can occur by
applying an amplitude of imperfection larger than 0.006. Also, the moment of separation
of different curves is magnified in this figure. The differences between the equilibrium
paths of a plate with imperfections of 0.006 and 0.008 can be interpreted as confrontation of
two quantities. Both parameters (extension–bending coupling and imperfection) force the
plate to have a different mode. When the plate has higher imperfection, it overcomes the
extension–bending coupling and the mode shape of plate is the same as the mode shape of
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imperfection. However, a plate with a lower value of imperfection has a mode shape based
on a condition that the extension–bending coupling forces on the plate (see Figure 3d).
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Figure 6. The post-buckling curve of perfect GFRP plate [(0/90)4]T with r = 2.

The counterpart of Figure 7a for the deflection of another point as d with (x, y) =
(a/4, b/2) is plotted in Figure 7b. In this case, the curve corresponding to imperfection
ζ/h = 0.006 shows well that the plate tries to adopt mode jumping. However, due to the
very small value of imperfection, the moments of extension–bending coupling return the
plate to the mode of second buckling load.

Figure 8 presents the different aspect ratios (e.g., r = 1.9, 2.0, 2.1, and 2.2) to illustrate
the time of mode jumping. In other words, the time of mode jumping means the location
of the point where the red path separates from the blue path. As seen, the location of this
point is delayed by increasing the value of the aspect ratio. The physical meaning of this
delay comes from Figure 4b. According to the green sub-area of Figure 4b, by increasing
the aspect ratio from r = 1.72 to 2.42, the second buckling load (with the same mode in
blue path) is decreased, and it comes closer to the first buckling load (with the same mode
in red path). This means that the second buckling mode is becoming stable, and the time of
mode jumping from the second to first buckling mode will be postponed.
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6. Conclusions

In this paper, two linear and geometrically nonlinear analyses of ANSYS software
are used and two new topics are presented. (1) A laminated composite plate may have
different mode shapes of linear buckling and nonlinear post-buckling analysis. (2) Such
a structure may have a behavior called mode jumping in the post-buckling response. In
order to observe different modes, the plate should have the following conditions:

(a) Nonzero extension–bending coupling: These couplings, i.e., B11 and B22, are present
for some unsymmetric laminated composite plates. The plate with cross ply lamina-
tion, i.e., [0/90]n (n = 2, 4, 8, . . .), is one of the practical examples.

(b) Simply supported boundary conditions: The edges should have no resistance against
rotation. It is like a simple pin or free edge without any moment reactions. In the
current results, a simple pin or so-called simply supported boundary conditions
are investigated.

(c) No eccentricity of load and boundary conditions: The resultant of in-plane compres-
sions (through the thickness) and locations of pins should coincide in the middle
plane. One of the practical cases is the uniform distribution of compression with
which the resultant will coincide in the middle plane.

(d) Aspect ratio: The length of the plate should be larger than the width to have an even
number of half-waves in the first linear buckling mode. For GFRP material and a layer
arrangement of [(0/90)4], the aspect ratio should be higher than 1.4.

In the case of the presence of mode jumping, the plate should meet all the above
conditions, and the two following cases should be present:

(a) Unstable second buckling mode: The number of half-waves in the second linear
buckling mode should be higher than those in the first linear buckling mode. For
example, a GFRP plate with [(0/90)4] and an aspect ratio of 2.1 has first and second
buckling mode shapes as (2,1) and (3,1), respectively. So, such a plate has potential to
have mode jumping in the post-buckling response.

160



Materials 2024, 17, 3856

(b) Imperfection: An amplitude of the imperfection of the first buckling mode should
be applied as an initial deflection of the plate. However, it should be a bit larger to
overcome the effects of the extension–bending coupling.

If the rectangular plate meets all the above conditions, the extension–bending coupling
makes the plate have a mode which is the same as the second buckling mode, and the
initial imperfection makes the plate have a mode which is same as the first buckling mode.
However, the plate will select a mode shape with a lower value of strain energy, which is
the first buckling mode. Therefore, the plate will jump to this mode in the post-buckling
response. However, the time of jumping is highly dependent on the value of the aspect ratio.
For the last result of the current study, it is concluded that the higher value of the aspect
ratio has a severe conflict between imperfection and extension–bending coupling. This is
because both modes require strain energy in the same range (both modes are approximately
stable). This will result in mode jumping with a longer delay in the response.
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Abstract: Ultrasonic welding (USW) of thermoplastics plays a significant role in the automobile
industry. In this study, the effect of the welding time on the joint strength of ultrasonically welded
acrylonitrile–butadiene–styrene (ABS) and the weld formation mechanism were investigated. The
results showed that the peak load firstly increased to a maximum value of 3.4 kN and then dropped
with further extension of the welding time, whereas the weld area increased continuously until
reaching a plateau. The optimal welding variables for the USW of ABS were a welding time of 1.3 s
with a welding pressure of 0.13 MPa. Interfacial failure and workpiece breakage were the main
failure modes of the joints. The application of real-time horn displacement into a finite element model
could improve the simulation accuracy of weld formation. The simulated results were close to the
experimental results, and the welding process of the USW of ABS made with a 1.7 s welding time can
be divided into five phases based on the amplitude and horn displacement change: weld initiation
(Phase I), horn retraction (Phase II), melt-and-flow equilibrium (Phase III), horn indentation and
squeeze out (Phase IV) and weld solidification (Phase V). Obvious pores emerged during Phase IV,
owing to the thermal decomposition of the ABS. This study yielded a fundamental understanding of
the USW of ABS and provides a theoretical basis and technological support for further application
and promotion of other ultrasonically welded thermoplastic composites.

Keywords: ultrasonic welding; ABS; weld formation; simulation; horn amplitude

1. Introduction

Lightweight materials have become essential in the automotive industry with the
governmental regulations on energy savings and CO2 emission reduction. The applica-
tion of lightweight materials, such as thermoplastic composites is considered an effective
strategy in structural and manufacturing applications [1]. Acrylonitrile–butadiene–styrene
(ABS) is regarded well for use in automobiles due to its advantageous combination of
being lightweight, having a high specific strength and good processability [2]. In this
context, an effective technique for joining ABS is imperatively important. Mechanical
fastening, adhesive bonding, and welding are alternative methods to realize the permanent
bonding of thermoplastic materials. The former two techniques have drawbacks of addi-
tional weight, stress concentration, complex pre/post-processing, etc., which hinder their
further application in automobile manufacturing [3]. Ultrasonic welding (USW), a type
of welding, has been demonstrated to be suitable for the production of polymeric joints
with solid mechanical strength, but energy directors with various geometries, including
triangular, semi-circular, or rectangular, are usually presented on the surfaces of adherends
to concentrate the welding energy [4]. However, the existence of an energy director (ED)
would easily bring defects, such as incomplete fusion or cracks [5]. Therefore, the ultrasonic
welding of thermoplastic materials without EDs has become a research hotspot.
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To date, the researches on the USW of thermoplastics without ED mainly focus on the
optimization of the welding variables and understanding the heating generation mech-
anism. Gao [6] et al. investigated the effects of welding parameters on joint strength,
microstructure and weld appearance, and concluded that an ultrasonically welded carbon
fiber-reinforced polyamide 66 (CF/PA 66) joint without ED can obtain a tensile strength
of 5.2 kN with acceptable cosmetic quality and fine compact weld microstructure. Several
researchers were devoted to enhancing the mechanical properties of the joint by heat treat-
ment. Prior to the USW of a CF/PA composite, preheating [7] and annealing treatments [8]
were applied and the tensile strength increased by approximately 40% compared to that of
a normal joint. This phenomenon was correlated with the viscoelastic behavior and crys-
tallinity of the thermoplastic, in which the proper heat pretreatment temperatures (95–125
◦C for CF/PA 66 and 180 ◦C for CF/PA 6) concentrated the welding heat at the contact
surface and decreased the dissipation within the workpieces. Accordingly, a proper weld
without an obvious porous area was formed. Others also applied mechanical grinding [9],
a blank holder [10,11] and a double pulse [12] to improve the welding conditions for the
enhancement of tensile strength. These pretreatments aimed to ameliorate the contact be-
havior at the workpiece/workpiece interface prior to welding, and a robust tensile strength
with small data variance was simultaneously obtained.

Finite element analysis (FEM) is a helpful tool in analyzing the weld formation in the
USW of polymers, which can provide a comprehensive insight into the dynamic deforma-
tion behavior of the workpieces, and the strain/stress distribution at the overlapped region
is also possible to predict. Currently, most FEM-related works are concentrated on reveal-
ing the heat generation mechanism during the USW process. Tutunjian [13] declared the
frictional heat generated in the early stages of the ultrasonic spot welding of 5-HS-woven
carbon fabric-reinforced thermoplastic through explicit mechanical 3D FEM analysis. The
composite laminates were defined using a 3D continuum shell (only displacement degrees
of freedom and no rotation) with eight nodes and reduced integration with the hourglass
effect. Friction heating reduces the stiffness of the interface layers inside the weld center,
and the applied cyclic strain focuses on the softer interfacial layers and induces a much
higher viscoelastic heat. Consequently, the heating process is accelerated and restricted to
the weld center with the combination of friction and viscoelastic heat. Li [14] proposed an
integrated process–performance model to predict the failure load of the CFRP joint and
weld formation information. It was verified that the heat generation mechanisms in the
USW of thermoplastics came from friction and viscoelastic dissipation.

In practical USW, the ultrasonic oscillations change quickly, and transient vibrations
are difficult to simulate. Currently, several researchers have applied a static pressure and
constant horn displacement [14] on the tip of the horn or considered horn displacement
changes step by step [15]. However, the experimental and simulated results have shown
large differences. The horn vibration during USW was complicated not only because
of its high frequency but also due to the resonance effect [16,17]. To date, there is scant
research simulating the weld formation in the USW of thermoplastics by applying real-
time vibrations in an FEM model. Therefore, there is an urgent need to understand weld
initiation and growth by FEM analysis with real-time oscillations.

In this context, the actual vibrations during the USW of ABS were collected by a
high-frequency sensor (400 kHz). The real-time oscillations were integrated into the FEM
model to investigate the heat generation and weld formation. The effect of the welding
time on joint performance and weld area evolution was assessed. The experimental results
were also compared with the simulated results.

2. Materials and Methods
2.1. Laminate

ABS laminate with dimensions of 100 mm in length, 30 mm in width and 2 mm in
thickness was purchased from Changzhou Xinhejiu Composite Materials Technology Co.,
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Ltd. (Changzhou Xinhejiu Composite Materials Technology, Changzhou, China). The
properties of ABS provided by the supplier (25 ◦C) were listed in Table 1.

Table 1. Properties of ABS laminate.

Materials Density/(kg ·m−3) Poisson’s Ratio Elastic Modulus/(MPa) Thermal Conductivity/(W ·m−1K−1)

ABS 1100 0.394 2000 0.2256

2.2. Ultrasonic Welding

All the ABS laminates were joined on a KZH-2026 welder (Weihai Kaizheng Ultra-
sonic Technologies Co., Ltd., Weihai, China) with a nominal frequency of 20 kHz, and a
nominal amplitude of 25 µm. The welder had three working modes of time-, energy- and
displacement-control, and time-control was selected in this experiment. Prior to USW, the
delay time, welding time and holding time were preset. The delay time (from the initial
welding process to ultrasonic oscillations began) and holding time (ultrasonic oscillations
stopped to the welding horn retracted back) were set as 2 s and 3 s on the basis of prelimi-
nary experiments, respectively [18]. Three high-frequency sensors—displacement, pressure
and power sensors—at 400 kHz were installed on top of the pneumatic motion axis in
the welder to collect real-time USW process information. Then, a data acquisition system
(>500 kHz) connected the end of the sensor with a computer as shown in Figure 1a. A
single lap joint with an overlap distance of 25 mm was applied.

Figure 1. Schematic illustration of ultrasonically welded ABS without energy directors: (a) welding
configuration; (b) single-lapped joint (dimensions in mm).

2.3. Characterization

Tensile testing of the joint was conducted on an MTS E45.105 tester (MTS, Prairie,
MN, USA) with a stroke rate of 2 mm/min based on ASTM standards [19]. Two filler
plates were attached to the ends of the workpieces to accommodate the offset as shown in
Figure 1b. Five sets of joints were welded with identical welding variables and the average
joint strength (peak load) was obtained. The microstructure of the joint was examined with
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scanning electrical (SEM, SU3500 Hitachi, Tokyo, Japan). Prior to the examination, the
sample was sputter-coated with gold to increase conductivity.

2.4. Rheological Experiment

The rheological experiment was carried out to measure the viscoelastic properties of ABS
by using a shear-strain-controlled rotational rheometer (ARES-G2, Waters, Milford, MA, USA).
The ABS specimen, in a circular shape of coin size, was subjected to a frequency sweep in the
temperature range from room temperature to 180 ◦C with an ascending temperature rate of
2 ◦C/min to study its temperature/frequency-related performance. The storage modulus and
loss modulus were obtained as a function of frequency, with a shear strain of 1% by applying
the angular frequency in the range between 10−1 and 102 rad/s.

3. Modelling
3.1. Material Property

ABS polymer is a typical viscoelastic material, and the Maxwell or Voigt–Kelvin model
is usually utilized to describe the elastic and viscous properties. The Maxwell model,
consisting of a spring (representing the elastic part) and a dashpot (denoting the viscous
part), is selected in this simulation. Ten Maxwell units in parallel are used as also reported
in other literature [19].

The constitutive relation of viscoelastic polymer is needed to understand the stress
and deformation of ABS. Combing the Maxwell model, the constitutive behavior of ABS
can be defined using [20]:

σ(t) = ε0e(t) +
∫ t

0
e(t− λ)

dε(λ)

dλ
dλ (1)

where σ(t) is stress, ε0 is the initial value of strain, t and λ are the current and past time,
respectively. e(t) is the relaxation modulus. The experimental frequency-related data are
input into the model to define the viscoelastic property of the material. To connect the
experimental test of storage and loss modulus with the constitutive model of ABS, the
Maxwell series is converted to the frequency domain from the time domain using the
Fourier transform and can be expressed as follows [21]:

E′(ω) = G0

[
1−∑N

i gi

]
+ G0 ∑N

i=1
eiλ

2
i ω2

1 + λ2
i ω2

(2)

E′′(ω) = G0 ∑N
i=1

eiλ
2
i ω2

1 + λ2
i ω2

(3)

G0 =
e0

2(1 + µ0)
(4)

where ω is the angular frequency, G0 is the transient shear modulus, µ is the transient
Poisson ratio, and N is the number of Maxwell series. The relaxation spectra of ABS in the
range from 10−1 to 102 rad/s are shown in Figure 2.

In defining the viscoelastic property of the material, which varies with frequency in
Abaqus, the storage/loss moduli-related real and imaginary parts of ω<(g∗) and ω=(g∗),
and the volume modulus-related ω<(k∗) and ω=(k∗) are needed. Since the ABS composite
is a viscoelastic polymer, the imaginary parts are neglected [22].
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ω<(g∗) =
E′′
G∞

(5)

ω=(g∗) = 1− E′

G∞
(6)

G∞ = G0[1 −∑N
i ei] (7)

where G∞ is the long-term shear, with 789.09 MPa for ABS material.
The temperature dependence of the materials can be considered with the WLF model [21]:

−logαT =
C1(T − T0)

C2 + (T − T0)
(8)

where αT is the horizontal shift factor, T is the temperature, T0 is the reference temperature
and chosen as 180 ◦C to generate the master curve, and C1 and C2 are the fitting parameters,
with C1 = 5.8 and C2 = 120.8 K in this study.

After defining the viscoelastic property of the material, the heat-transfer-related prop-
erty of heat capacity, which changes with temperature, is considered. The specific heat (c)
is expressed as follows [23]:

c =
1
m
× dQ/dt

dT/dt
(9)

where m is the mass of the tested material, dQ/dt is the heat flux and dT/dt is the heating
rate during the DSC test. The specific heat curve of ABS varies with temperature as shown
in Figure 3 (blue line). The thermal gravity curve is also included in Figure 3, where melting
and decomposition of ABS occur at 220 ◦C and 265 ◦C (intersections of the green dotted
line and black solid line), respectively. Therefore, careful selection of the welding time is
crucial in the USW of ABS.
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Figure 3. Heat-specific and weight loss curves of ABS.

3.2. Finite Element Modelling

The commercial Abaqus software (version 6.22) is implemented for the finite element
modelling of the ultrasonically welded ABS process, and this software enables one to
perform geometric modelling, material property definitions, meshing, and visualization.
Then, the temperature evolution and stress distribution can be simulated.

In this study, a three-dimensional finite element model, consisting of a 7075 aluminum
horn, aluminum anvil and two pieces of 2 mm-thick ABS laminates, is built in Abaqus as
shown in Figure 4. The C3D8T hexagonal solid element is utilized to divide the mesh. The
total number of meshed grids of the model is 5724, consisting of 9142 nodes. Considering the
calculation accuracy and time taken for the analysis, the mesh size for the overlapped region
between upper and lower workpieces is 1 while that for the rest of the regions is set as 5.

Figure 4. Finite element model (integrating transient vibrations which presented at top right of the
figure into model) of ultrasonically welded ABS without energy directors.
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Thermal–mechanical coupling analysis is applied to simulate the temperature field in
the USW of ABS. The fixture is fixed in the X-/Y-/Z-direction. The workpieces are fixed in
the X- and Z-direction, with a small gap of 0.1 mm between the workpiece and fixture set
as a boundary condition, and are illustrated in Figure 4. To improve simulation accuracy,
real-time vibration (unveiling the amplitude change) during the USW process, which is
recorded using a high-frequency sensor and data collector software installed in the welder,
is introduced into the model and applied on the tip of the horn.

The initial temperature of the model is set as 20 ◦C, and the governing equation of
heat conduction is expressed as [24]:

ρc
∂T
∂t

=
∂

∂x

(
λ

∂T
∂x

)
+

∂

∂y

(
λ

∂T
∂y

)
+

∂

∂z

(
λ

∂T
∂z

)
+ Q (10)

where ρ is the material density, λ is the thermal conductivity of ABS, and Q is the welding
energy. As for heat convection, the convection boundary conditions between the horn
and upper workpiece, lower workpiece and the fixture are set as 90 W/(m2 K) since the
horn and fixture are both made of 7075 aluminum alloy. The contacting heat conduction
coefficient between upper and lower workpieces (R) is defined using [25]:

R =
KA
L

(11)

where K is the thermal conductivity of ABS, with a value of 0.226 W/m/K, L is the sheet
thickness of 2 mm, and A is the sectional area where the ABS sample is perpendicular to
the conduction direction. The contact area in this model is the overlapped region, with a
sectional area of 900 mm2. The calculated contacting thermal conductivity coefficient R is
0.1 W·m−2·K−1. Heat conduction between the components and ambient atmosphere is not
considered owing to the short welding time (less than 2 s).

Surface-to-surface contact is utilized to define component contact in the model. Hard
contact is applied when it is normal to the workpiece where a separation is allowed during
the USW process. A penalty function is used to define the friction between two parts.
Friction coefficients at the horn to upper workpiece and lower sheet to fixture interfaces
are set as 0.1 [7,26,27]. At the workpieces contacting surface, the friction coefficient is
0.3 when the temperature at the contacting interface is below the melting point of ABS
(220 ◦C) while it is defined as 0.1 with a further increase in temperature.

4. Results and Discussion
4.1. The Joint Strength of Ultrasonically Welded ABS

Preliminary experiments show the welding pressure of 0.13 MPa is more suitable for
the USW of ABS. Herein, the effect of the welding time on peak load and weld area of
the joint welded with a welding pressure of 0.13 MPa is evaluated as shown in Figure 5.
With the increase in the welding time, the peak load of the joint increases to the maximum
value of 3.4 kN and then decreases, while the weld area (measured by the IPP 6.0 software)
expands gradually to a plateau. A peak load of 0.37 kN is obtained for the joint with a
0.1 s welding time, and the joint strength and weld area increase dramatically in the first
0.9 s then increase moderately to their peak values. Combining the peak load and weld
area, the optimal welding time is selected as 1.3 s, where it can reach the maximum peak
load and weld area. Interestingly, the data variance in joint strength becomes larger when
the welding time is extended to above 1.3 s. This characteristic is likely attributed to the
thermal decomposition of ABS, where the position and distribution of the resultant porous
region affect the joint strength severely [6,28].
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Figure 5. Effect of the welding time on peak load and weld area of ultrasonically welded ABS.

4.2. Microstructure of the Joint

The fractured surfaces of the joints after tensile testing are observed and two main
fracture modes of interfacial failure and workpiece breakage are presented as shown in
Figure 6. The joint usually fractures at the nugget for underweld joints (welding time shorter
than 1.1 s) where the insufficient weld area cannot bear enough tensile force. Prolonging
the welding time to above the optimal value, the joint is likely to break at the workpiece
(mostly at the upper workpiece), which is closely related to the material property [28] and
will be elaborated on later.
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Careful examination of the fractured morphology of the joint shown in Figure 7 shows
that the weld area expands with the welding time and there is a loose microstructure with
pores on the surface when it exceeds the optimal time. The effective bonding region is
localized in an approximately circular area (directly under the welding horn) and the bonding
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area can be categorized into two types: compact normal weld area and loose porous area.
The microstructure in the normal weld area is dense, while numerous deconsolidation voids
appear in the central area of the weld region and are labelled as porous regions in Figure 7.
Cross-sectional morphologies of representative joints welded in 1.1 s, 1.3 s, 1.5 s and 1.7 s are
observed to analyze the weld nugget. Referring to Figure 8, there is no obvious boundary
between the weld zone and matrix when the welding time is less than 1.1 s. The distinction
of the weld region is mostly based on the direction of the fracture texture, where the stress
conditions for upper and lower workpieces during the tensile test are different. Increasing the
welding time to 1.3 s, some pores randomly distribute in the weld zone. The pore increases in
density and quantity. The thickness of the porous layer increases with increased welding time,
which is harmful to the joint [7,29]. For joints made in 1.7 s, the scale of the porous region
enlarges remarkably, and it exhibits a mouth-like shape, where the thickness of the lateral side
is small and the central region is relatively large. This behavior is intimately associated with
heat generation and melt flow during USW [12,18,29], where thermal decomposition of the
polymer releases gases. The pressure in the gases is large, and large pores extend to the faying
interface and squeeze the molten materials out. The decomposed material flows bilaterally
along the weld area and forms a mouth-like shape (joints with a 1.7 s welding time).
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A small number of pores in the central region of the weld area slightly influence joint
performance, as reported previously [6,28]. Increased pores in the weld zone separate the
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polymer matrix and weaken its ability to bear loading. Thus, the maximum peak load
occurs at a welding time of 1.3 s and drops afterwards.

4.3. Simulation of the USW Process
4.3.1. Heat Generation

To fully understand the weld formation of ultrasonically welded ABS, the joints made
with 0.13 MPa and 1.7 s are simulated using Abaqus 6.22 software, and the side views of the
simulated weld with various welding times are shown in Figure 9. The melting temperature
of the matrix is assigned as Tm while the thermal decomposition point is denoted as Td.
The regions in red or grey color represent the polymer melts or decompose under ultrasonic
heat. The highest temperature at the contact interface is in the middle of the overlapped
region. Surprisingly, the polymer melts with only a 0.1 s welding time, which is much faster
than that of polyamide composites [6,18]. This characteristic verifies that the amorphous
polymer is easier to weld than the a polymer with a semi-crystal structure [29–31]. With
increased welding time, the red melted region expands gradually into the X/Y/Z plane.
The grey decomposed region emerges at joints made in 1.1 s and displays an analogous
expansion trend with the melted region.
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The theory that the heat generation in the USW of thermoplastics generally contains
frictional heat and viscoelastic dissipation has been well accepted by scholars [16,19,32]. The
frictional heat and viscoelastic dissipation in the USW of ABS are derived using “process
output” in Abaqus, as presented in Figure 10. The varying tendencies of frictional and
viscoelastic dissipations are contrary, which is consistent with the opinion that frictional
heat dominates at the early stage of the USW while viscoelastic heating dominates in the
following stages [9,19,24].
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At the initial stages of USW, the upper and lower workpieces retain their stiffness
and toughness, along with the rough surface of the adherends. Before the steady melt
forms, the perpendicular vibrations transfer to horizontal deformation at the interface of
workpieces. Horizontal deformation adds to slippage and friction at the interface. Friction
generates heat on the rough surfaces of workpieces. Once the weld nugget forms, frictional
heat greatly decreases. When the temperature of the workpiece rises up to above the glass
transition temperature under friction heat, viscoelastic dissipation dominates the ultrasonic
welding process, as shown in Figure 10 (blue lines).

4.3.2. The Weld Formation Mechanism

Real-time vibrations for joints with a 1.7 s welding time (the semi-transparent grey
region) are also included in Figure 10. As seen from the enlarged view of horn displacement,
the vibrations are complicated and change quickly during USW. Hence, simulating weld
growth of ultrasonically welded ABS by applying real-time vibration into the model should
primarily improve simulation accuracy. Horn displacement in Figure 10 exhibits typical
characteristics in the USW of thermoplastics [33,34], and the weld area of the simulated area
and measured areas shows similar varying trends in Figures 11–14 as expected. Comprehen-
sively considering the variation characteristics in amplitude, vibration, horn displacement
and energy dissipation, the weld formation of ultrasonically welded 2 mm-thick ABS
without energy can be divided into five phases.
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Phase I (0~0.1 s): This phase lasts approximately 0.1 s and the fractured surface shows
a clear weld initiation with random hot spots as depicted in Figure 11. At this stage, the
melting of the matrix is mainly attributed to friction heating, which results from contact
point slippage [18]. Since this phase is very short and most of the matrix remains un-melted,
no significant horn displacement or indentation is observed. Thus, the amplitude in phase
I is larger than the nominal amplitude owing to the resonance in the system [27].

Phase II (0.1~0.6 s): This stage is an unsteady phase. The amplitude changes irregularly
and the small asperities at the contact surface melt gradually to form a favorably intimate
contact condition for the following phase. Fiction and viscoelastic heat together dominate
weld growth at this stage [18]. The heat reduces the stiffness of the interface layers inside
the weld apex and the sinusoidal cyclic strain focuses on the softer interfacial area to expand
the weld area, as shown in Figure 12. The simulated result is smaller than the measured
one owing to the flow and expansion of the melt. A slight horn indentation is presented
on the joint. A downward trend in displacement at Phase II is presented in Figure 10,
which is mainly due to the thermal expansion of the ABS matrix under the accumulation of
ultrasonic heat and causes horn retraction.

Phase III (0.6~1.3 s): The amplitude change is relatively stable in this phase and is
characterized by a continuously increasing displacement. The melt rate and flow of the ABS
matrix are in equilibrium. Then, weld growth enters into the paramount phase—steady
melt flow—which is critical to the joint quality [19,35]. It is worth mentioning that there is
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a small step-like shape to the smoothed displacement. This phenomenon is correlated with
melt flow behavior. It is seen in Figure 10 that viscoelastic heating plays a chief role in weld
growth. The simulated weld growth at this stage is also smaller than the measured weld
growth as explained in Phase II, while the squeeze out of molten ABS and horn indentation
become significant when the welding time exceeds 1.3 s, as illustrated in Figure 13. Before
this meltdown, a large amount of ABS melts within the upper plate and is about to be
squeezed out. Hence, there is a slight change in the amplitude.

Phase IV (1.3~1.7 s): This phase is characterized by a combination of horn indentation
on the upper workpiece and squeezed out of molten ABS. The amplitude at this stage is
much more stable and the displacement of the horn increases linearly with the welding
time (with a larger increase rate than that in Phase III). At this phase, more viscoelastic
dissipation is consumed within the workpiece and leaves numerous voids in the weld
region and deep indentation on the joint surface (Figure 14). To thoroughly understand the
origin of the pores, Fourier transform infrared spectroscopy (FTIR) tests are conducted in
the ABS matrix, weld area and porous region. Referring to Figure 15, the bending vibration
of C-H, deformation of C-H for hydrogen atoms and out-of-plane C-H bending in ABS
polymer are in the range of 700–1038 cm−1. Stretching vibration peaks of the benzene ring,
C≡N and C=C are present at 1450–1600 cm−1, 2237 cm−1 and 1630 cm−1, respectively. The
aromatic and aliphatic C-H are detected at 3200–2800 cm−1 [36,37]. It is clear that the peak
positions are similar but the absorption intensity differs significantly. The peak intensity for
the porous area is much lower, but similar for the weld area and the matrix, indicating the
ABS material decomposes in the porous area [28,38]. Generally, a solid joint should have a
dense microstructure, thus the occurrence of this phase is detrimental to the joint strength
and should be avoided in actual production.
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It has been verified that the voids result from the thermal decomposition of the ABS
matrix. The decomposed ABS releases volatile products, such as HCN, CO, and NOx. The
pressures in these voids are large and will be expanded to the welding interface, accompa-
nied by the squeeze out of molten ABS. With the accumulation of viscoelastic dissipation,
the upper workpiece (dissipated the majority of the heat) decomposes consequentially
and some of the decomposed ABS flows bilaterally along the weld apex, while the rest
of the residues are in the joint. As a result, the joint with a welding time of 1.7 s shows a
microstructure with a mouth-like shape and numerous pores, as presented in Figure 8.

Phase V (>1.7 s): Ultrasonic vibration stops at this stage and horn displacement is
slightly increased owing to the cold contraction of the weld. The weld solidifies under the
welding pressure for 3 s (holding time).
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Based on the aforementioned analysis, the characteristics of each phase during the
USW of ABS are different. Weld initiations with randomly distributed hotspots are observed
in Phase I. The unsteady and steady phases have a sequential pattern with a downward
and increasing trend in horn displacement, respectively. Then, thermal decomposition of
ABS occurs, with faster and increased horn displacement. When ultrasonic vibration is
paused, the process enters Phase V with a slight increase in horn displacement.

5. Conclusions

The USW of ABS without ED was investigated in this study. The effects of the welding
time on joint performance, weld area and the weld formation mechanism were analyzed
systematically. The following main conclusions were drawn:

(1) The peak load of ultrasonically welded ABS increased with the welding time (less
than 1.3 s) and then decreased with a prolonged welding time. The maximum value
of 3.4 kN was obtained with an optimal welding time of 1.3 s and 0.13 MPa.

(2) On prolonging the welding time to 1.7 s, the weld areas of joints increased gradually
to the maximum value and then reached a plateau. Two typical failure modes of
interfacial failure and workpiece breakage appeared during tensile tests.

(3) Integrating real-time horn displacement into the finite element model can improve
simulation accuracy in the USW of ABS.

(4) Weld formation of ultrasonically welded ABS without ED (welding time of 1.7 s)
consisted of five distinct phases of weld initiation, horn retraction, melt and flow
equilibrium, horn indentation and squeeze out, weld solidification based on the
variation characteristics, horn displacement and energy dissipation during welding.

(5) An obvious porous area emerged in the joint made with a welding time greater than
1.3 s, which was mainly ascribed to the thermal decomposition of ABS and was
detrimental to the joint strength.
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Abstract: Research has established that the incorporation of 3D-printed lattice structures in cement
substrates enhances the mechanical properties of cementitious materials. However, given that 3D-
printing materials, notably polymers, exhibit varying degrees of mechanical performance under
high-temperature conditions, their efficacy is compromised. Notably, at temperatures reaching
150 ◦C, these materials soften and lose their load-bearing capacity, necessitating further investigation
into their compressive mechanical behavior in such environments. This study evaluates the com-
pressibility of cement materials reinforced with lattice structures made from polyamide 6 (PA6) across
different structural configurations and ambient temperatures, employing ABAQUS for simulation.
Six distinct 3D-printed lattice designs with equivalent volume but varying configurations were tested
under ambient temperatures of 20 ◦C, 50 ◦C, and 100 ◦C to assess their impact on compressive
properties. The findings indicate that heightened ambient temperatures significantly diminish the
reinforcing effect of 3D-printed materials on the properties of cement-based composites.

Keywords: 3D printing; cement-based composites; numerical simulation; mechanical properties

1. Introduction

The rapid expansion of the construction industry has led to the widespread adoption
of concrete due to its exceptional compressive strength. Consequently, there has been a
growing demand for enhancements in the material’s performance attributes. Concrete is
recognized for its low tensile strength and susceptibility to brittle fractures, classifying
it as a quasi-brittle composite material [1]. This vulnerability allows the formation of
cracks under external stresses, facilitating the ingress of corrosive agents and thereby
accelerating material degradation and diminishing structural durability. This phenomenon
is particularly evident in traditional steel reinforcement, which is more likely to corrode
under such conditions, significantly reducing the lifespan of structures. In response to
these challenges, polymers fabricated through 3D-printing technology [2,3] have emerged
as a novel solution, owing to their superior corrosion resistance compared to conventional
rebar. This makes them capable of withstanding the penetration of harmful substances into
the cement matrix. The advancement of 3D-printing technology has not only facilitated
the creation of polymers with intricate lattice structures [4–7] but also holds the potential
to expedite construction timelines and simplify the building process. As a result, 3D-
printed polymer-lattice-reinforced cement-based composites have garnered substantial
interest from the academic community, highlighting a promising direction for enhancing
the durability and performance of concrete structures.

The integration of fiber materials into cement matrices has been demonstrated to
effectively mitigate the brittleness inherent in cement-based materials. Notably, inves-
tigations into the enhancement of toughness through the inclusion of steel fibers have
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underscored the beneficial interactions between fibers and the cementitious matrix [8,9].
These interactions bolster the material’s energy absorption capacity via robust bonding,
thereby augmenting the performance characteristics of cement. Nonetheless, achieving
uniform dispersion of fibers within the cement presents significant construction chal-
lenges, revealing limitations in this approach. To address these limitations, Nam et al. [10]
leveraged 3D-printing technology to design models capable of precisely controlling the
orientation and placement of fibers in concrete. Their methodology involved examining
the flexural mechanics of fiber-reinforced cement mortars with diverse spatial distribu-
tions through three-point bending tests. The advancements in 3D-printing technology
have since captivated the research community, prompting extensive experimentation to
explore the reinforcing potential of 3D-printed structures as alternatives to fiber materials
in cement-based composites. Researchers like Farina [11] have prepared polymer and
metal-reinforced 3D-printed structures with varied surface textures, employing them to
fortify cement mortar. These studies, which included three-point bending tests, delved into
the influence of surface roughness on the mechanical behaviors of cement mortars, reveal-
ing how steel bar surface roughness can amplify load-bearing capabilities by altering the
adhesion with the cement mortar. Tian et al. [12] conducted experimental assessments on
the uniaxial compressive strength of an innovative composite column comprising precast
grid-reinforced ultra-high-performance concrete (UHPC) within stay-in-place formwork
and post-cast concrete. The findings indicate that polymer grids with carbon fiber rein-
forcement (CFRP) can foster strain hardening and enhance ductility and toughness through
improved lateral confinement compared to stainless steel (SS) grids. Rosewitz et al. [13] de-
signed a 3D-printed biomimetic polymer, utilizing it to reinforce cement-based composites
and analyze their mechanical properties and failure mechanisms across different geometric
structures. Similarly, Xu et al. [14] and Salazar et al. [15] experimented with varying tac-
tics of 3D printing to reinforce cementitious materials with polymer network structures
and investigated the effects on the materials’ properties. Particularly, Salazar et al. [15]
focused on ultra-high-performance concrete (UHPC) materials reinforced by 3D-printed
polymer lattices, assessing their flexural behavior through four-point bending tests. These
studies have collectively reinforced the notion that 3D-printed lattice structures can sig-
nificantly improve the ductility of ultra-high-performance concrete materials. However,
the existing research has mainly discussed the mechanical properties of 3D-printed struc-
tural reinforcement materials at room temperature, and paid little attention to the effect of
high-temperature environment on 3d printed lattice-reinforced cement-based composites.
Notably, the compressive mechanical properties of PA6 [16,17] lattice structures fabricated
using Multi Jet Fusion (MJF) technology [18,19] degrade at elevated temperatures, poten-
tially leading to softening of the polymer material. Herein, we assess the elastic modulus of
PA6 under varying temperatures through experimental samples. The investigation reveals
that high temperatures detrimentally affect the material’s elastic modulus. Thus, under-
standing the mechanical behavior of 3D-printed lattice-reinforced cement-based composites
in high-temperature conditions is crucial. This study innovatively proposed the influence
of a high-temperature environment on the mechanics of 3D-printed lattice-reinforced
cement-based materials. Through numerical simulation, a high-temperature uniaxial com-
pression test was carried out on 3D printed lattice-reinforced cement-based composite
materials prepared by MJF technology, and its compression mechanical properties and
failure mechanism were discussed.

2. Finite Element Model Modeling
2.1. Material Parameters

In this research, the specimens utilized were subjected to uniaxial compression testing.
The material properties of the cement matrix are detailed in Table 1, which include a density
of 2400 kg/m3, an elastic modulus of 30 GPa, and a Poisson’s ratio of 0.2. Additionally, the
dilatancy angle is set at 30◦, eccentricity at 0.1, the ratio of biaxial to uniaxial compressive
strength at 1.16, and the tension-compression strength ratio (k) at 0.6667. The viscosity
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parameter is specified as 0.0005, with the failure mode characterized by the concrete damage
plasticity (CDP) model [20–23]. The specimens were designed as cubic structures with a
side length of 42 mm, featuring an internal lattice prepared using MJF technology. MJF
employs powder materials and utilizes a binding agent and detailing agent, sprayed onto
the powder; subsequently, energy is applied to fuse the material in the designated area.
This 3D-printing technique is noted for producing samples whose mechanical properties
are largely invariant to the build direction. Material parameters of the 3D-printed lattice,
detailed in Tables 2 and 3, indicate a mass density of 1100 kg/m3 and a Poisson’s ratio
of 0.38. To accurately assess the impact of high-temperature environments on the elastic
modulus of PA6 material, tensile samples, as illustrated in Figure 1, were designed. The
Young’s modulus of the lattice material was measured at ambient temperatures of 23 ◦C
(room temperature), 50 ◦C, and 100 ◦C. Experimental results demonstrated that at room
temperature, the material’s Young’s modulus was 934 MPa (E1). This value decreased to
564 MPa (E2) at 50 ◦C and plummeted to 200 MPa (E3) at 100 ◦C, indicating a significant
softening behavior under elevated temperatures.

Table 1. 3D-printing polymer material parameters.

Density (kg/m3) 2.4 × 10−9

Young’s modulus (GPa) 30
Poisson’s ratio 0.2

expansion angle (◦) 30
eccentricity ratio 0.1

fb0/fco 1.16
k 0.6667

Viscous parameter 0.0005

Table 2. PA6 material parameters.

Density (kg/m3)
Indoor Temperature Young’s

Modulus (MPa) Poisson’s Ratio

1.1 × 10−9 934 0.38

Table 3. Elastic modulus of PA6 at different ambient temperatures.

Environment
Temperature Indoor Temperature 50 ◦C 100 ◦C

elasticity modulus 934 MPa 564 MPa 200 MPa

Materials 2024, 17, x FOR PEER REVIEW 3 of 15 
 

 

2. Finite Element Model Modeling 
2.1. Material Parameters 

In this research, the specimens utilized were subjected to uniaxial compression test-
ing. The material properties of the cement matrix are detailed in Table 1, which include a 
density of 2400 kg/m3, an elastic modulus of 30 GPa, and a Poisson’s ratio of 0.2. Addition-
ally, the dilatancy angle is set at 30°, eccentricity at 0.1, the ratio of biaxial to uniaxial com-
pressive strength at 1.16, and the tension-compression strength ratio (k) at 0.6667. The 
viscosity parameter is specified as 0.0005, with the failure mode characterized by the con-
crete damage plasticity (CDP) model [20–23]. The specimens were designed as cubic struc-
tures with a side length of 42 mm, featuring an internal lattice prepared using MJF tech-
nology. MJF employs powder materials and utilizes a binding agent and detailing agent, 
sprayed onto the powder; subsequently, energy is applied to fuse the material in the des-
ignated area. This 3D-printing technique is noted for producing samples whose mechan-
ical properties are largely invariant to the build direction. Material parameters of the 3D-
printed lattice, detailed in Tables 2 and 3, indicate a mass density of 1100 kg/m3 and a 
Poisson’s ratio of 0.38. To accurately assess the impact of high-temperature environments 
on the elastic modulus of PA6 material, tensile samples, as illustrated in Figure 1, were 
designed. The Young’s modulus of the lattice material was measured at ambient temper-
atures of 23 °C (room temperature), 50 °C, and 100 °C. Experimental results demonstrated 
that at room temperature, the material’s Young’s modulus was 934 MPa (E1). This value 
decreased to 564 MPa (E2) at 50 °C and plummeted to 200 MPa (E3) at 100 °C, indicating 
a significant softening behavior under elevated temperatures. 

 
Figure 1. PA6 Elastic modulus measurement sample. 

Table 1. 3D-printing polymer material parameters. 

Density (kg/m3) 2.4 × 10−9 
Young’s modulus (GPa) 30 

Poisson’s ratio 0.2 
expansion angle (°) 30 

eccentricity ratio 0.1 
fb0/fco 1.16 

k 0.6667 
Viscous parameter 0.0005 

Table 2. PA6 material parameters. 

Density (kg/m3) Indoor Temperature Young’s Modulus 
(MPa) 

Poisson’s Ratio 

1.1 × 10−9 934 0.38 
  

Figure 1. PA6 Elastic modulus measurement sample.

181



Materials 2024, 17, 2370

2.2. Structural Design

In this study, the cement-based composite specimen is a cube with each side measuring
42 mm, resulting in a total volume of 74,088 mm3. Following the guidelines provided in the
literature [21], this paper explores six distinct 3D-printed polymer lattice configurations for
reinforcement. The selected cellular structures are circular, cubic, Kelvin, octagonal (Oct),
rhombicuboctahedron (RO), and a reinforced octagon variant (SO). Each 3D-printed lattice
is designed to occupy a volume fraction of 8% within the cement matrix (Table 4). The
diameters of the lattice cells, varying according to their structural forms, are determined
using the formula provided below:

Vcircular = f (d1) = 98.125d1 + 4240.9d2
1 − 400.94d3

1 (1)

Vcubic = f (d2) = 0.0005d2 + 2356.2d2
2 − 121.52d3

2 (2)

Vkelvin = f (d3) = 0.00005d3 + 4804.4d2
3 − 497.67d3

3 (3)

VOct = f (d4) = 910.78d4 + 4045.2d2
4 − 31.93d3

4 (4)

VRO = f (d5) = −2 × 10−5d5 + 8115.9d2
5 − 1151.5d3

5 (5)

Vso = f (d6) = 0.0003d6 + 7072.3d2
6 − 900.55d3

6 (6)

Table 4. 3D-printed lattice structures.

Structure
Serial

Number

Lattice
Unit
Cell
Type

Unit
Cell

Design

Cell Design
Parameters

(mm)

CAD
Southwest

View

1 circle
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the 3D-printed lattice structure, alongside its small cellular dimensions, the mesh is 
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engineering disciplines due to its robust capabilities. It facilitates a broad spectrum of 
analyses, ranging from basic linear to intricate nonlinear problems, enabling the calcula-
tion and analysis of the mechanical behavior of complex engineering structures with high 
precision. This study employs ABAQUS to conduct a numerical simulation of a uniaxial 
compression experiment on cement-based composites, specifically focusing on specimens 
without any pre-existing cracks. 
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Firstly, a geometric model is established through 3D modeling of the polymer lattice 
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the analysis.  

Regarding interactions, within a specific region and scope, interactions and mutual 
constraints exist between models. Specifically, contact is established between the upper 
and lower rigid plates and the corresponding upper and lower surfaces of the sample. 
Furthermore, the 3D-printed lattice introduces internal constraints within the cement ma-
trix, as depicted in the figure. 

Mesh discretization involves dividing the entity into grids. Given the complexity of 
the 3D-printed lattice structure, alongside its small cellular dimensions, the mesh is 
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ABAQUS, a finite element simulation software, is extensively utilized across various 

engineering disciplines due to its robust capabilities. It facilitates a broad spectrum of 
analyses, ranging from basic linear to intricate nonlinear problems, enabling the calcula-
tion and analysis of the mechanical behavior of complex engineering structures with high 
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assembly module. 
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the analysis.  

Regarding interactions, within a specific region and scope, interactions and mutual 
constraints exist between models. Specifically, contact is established between the upper 
and lower rigid plates and the corresponding upper and lower surfaces of the sample. 
Furthermore, the 3D-printed lattice introduces internal constraints within the cement ma-
trix, as depicted in the figure. 

Mesh discretization involves dividing the entity into grids. Given the complexity of 
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2.3. Finite Element Simulation  
ABAQUS, a finite element simulation software, is extensively utilized across various 

engineering disciplines due to its robust capabilities. It facilitates a broad spectrum of 
analyses, ranging from basic linear to intricate nonlinear problems, enabling the calcula-
tion and analysis of the mechanical behavior of complex engineering structures with high 
precision. This study employs ABAQUS to conduct a numerical simulation of a uniaxial 
compression experiment on cement-based composites, specifically focusing on specimens 
without any pre-existing cracks. 

Figure 2 illustrates the schematic representation of the finite element model used in 
the simulation. The process of conducting simulations using ABAQUS (2022) software en-
compasses several key steps, detailed as follows: 

Firstly, a geometric model is established through 3D modeling of the polymer lattice 
within the sample, utilizing CAD (2023) software. This model is then exported and im-
ported into ABAQUS, where the component is constructed as a cohesive entity within the 
assembly module. 

The analysis step size is adjusted by configuring the output variables for each step of 
the analysis.  

Regarding interactions, within a specific region and scope, interactions and mutual 
constraints exist between models. Specifically, contact is established between the upper 
and lower rigid plates and the corresponding upper and lower surfaces of the sample. 
Furthermore, the 3D-printed lattice introduces internal constraints within the cement ma-
trix, as depicted in the figure. 

Mesh discretization involves dividing the entity into grids. Given the complexity of 
the 3D-printed lattice structure, alongside its small cellular dimensions, the mesh is 
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2.3. Finite Element Simulation  
ABAQUS, a finite element simulation software, is extensively utilized across various 

engineering disciplines due to its robust capabilities. It facilitates a broad spectrum of 
analyses, ranging from basic linear to intricate nonlinear problems, enabling the calcula-
tion and analysis of the mechanical behavior of complex engineering structures with high 
precision. This study employs ABAQUS to conduct a numerical simulation of a uniaxial 
compression experiment on cement-based composites, specifically focusing on specimens 
without any pre-existing cracks. 

Figure 2 illustrates the schematic representation of the finite element model used in 
the simulation. The process of conducting simulations using ABAQUS (2022) software en-
compasses several key steps, detailed as follows: 

Firstly, a geometric model is established through 3D modeling of the polymer lattice 
within the sample, utilizing CAD (2023) software. This model is then exported and im-
ported into ABAQUS, where the component is constructed as a cohesive entity within the 
assembly module. 

The analysis step size is adjusted by configuring the output variables for each step of 
the analysis.  

Regarding interactions, within a specific region and scope, interactions and mutual 
constraints exist between models. Specifically, contact is established between the upper 
and lower rigid plates and the corresponding upper and lower surfaces of the sample. 
Furthermore, the 3D-printed lattice introduces internal constraints within the cement ma-
trix, as depicted in the figure. 

Mesh discretization involves dividing the entity into grids. Given the complexity of 
the 3D-printed lattice structure, alongside its small cellular dimensions, the mesh is 
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2.3. Finite Element Simulation  
ABAQUS, a finite element simulation software, is extensively utilized across various 

engineering disciplines due to its robust capabilities. It facilitates a broad spectrum of 
analyses, ranging from basic linear to intricate nonlinear problems, enabling the calcula-
tion and analysis of the mechanical behavior of complex engineering structures with high 
precision. This study employs ABAQUS to conduct a numerical simulation of a uniaxial 
compression experiment on cement-based composites, specifically focusing on specimens 
without any pre-existing cracks. 

Figure 2 illustrates the schematic representation of the finite element model used in 
the simulation. The process of conducting simulations using ABAQUS (2022) software en-
compasses several key steps, detailed as follows: 

Firstly, a geometric model is established through 3D modeling of the polymer lattice 
within the sample, utilizing CAD (2023) software. This model is then exported and im-
ported into ABAQUS, where the component is constructed as a cohesive entity within the 
assembly module. 

The analysis step size is adjusted by configuring the output variables for each step of 
the analysis.  

Regarding interactions, within a specific region and scope, interactions and mutual 
constraints exist between models. Specifically, contact is established between the upper 
and lower rigid plates and the corresponding upper and lower surfaces of the sample. 
Furthermore, the 3D-printed lattice introduces internal constraints within the cement ma-
trix, as depicted in the figure. 

Mesh discretization involves dividing the entity into grids. Given the complexity of 
the 3D-printed lattice structure, alongside its small cellular dimensions, the mesh is 
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ABAQUS, a finite element simulation software, is extensively utilized across various 

engineering disciplines due to its robust capabilities. It facilitates a broad spectrum of 
analyses, ranging from basic linear to intricate nonlinear problems, enabling the calcula-
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precision. This study employs ABAQUS to conduct a numerical simulation of a uniaxial 
compression experiment on cement-based composites, specifically focusing on specimens 
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Firstly, a geometric model is established through 3D modeling of the polymer lattice 
within the sample, utilizing CAD (2023) software. This model is then exported and im-
ported into ABAQUS, where the component is constructed as a cohesive entity within the 
assembly module. 

The analysis step size is adjusted by configuring the output variables for each step of 
the analysis.  

Regarding interactions, within a specific region and scope, interactions and mutual 
constraints exist between models. Specifically, contact is established between the upper 
and lower rigid plates and the corresponding upper and lower surfaces of the sample. 
Furthermore, the 3D-printed lattice introduces internal constraints within the cement ma-
trix, as depicted in the figure. 
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2.3. Finite Element Simulation  
ABAQUS, a finite element simulation software, is extensively utilized across various 

engineering disciplines due to its robust capabilities. It facilitates a broad spectrum of 
analyses, ranging from basic linear to intricate nonlinear problems, enabling the calcula-
tion and analysis of the mechanical behavior of complex engineering structures with high 
precision. This study employs ABAQUS to conduct a numerical simulation of a uniaxial 
compression experiment on cement-based composites, specifically focusing on specimens 
without any pre-existing cracks. 
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Firstly, a geometric model is established through 3D modeling of the polymer lattice 
within the sample, utilizing CAD (2023) software. This model is then exported and im-
ported into ABAQUS, where the component is constructed as a cohesive entity within the 
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Regarding interactions, within a specific region and scope, interactions and mutual 
constraints exist between models. Specifically, contact is established between the upper 
and lower rigid plates and the corresponding upper and lower surfaces of the sample. 
Furthermore, the 3D-printed lattice introduces internal constraints within the cement ma-
trix, as depicted in the figure. 
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and lower rigid plates and the corresponding upper and lower surfaces of the sample. 
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2.3. Finite Element Simulation  
ABAQUS, a finite element simulation software, is extensively utilized across various 

engineering disciplines due to its robust capabilities. It facilitates a broad spectrum of 
analyses, ranging from basic linear to intricate nonlinear problems, enabling the calcula-
tion and analysis of the mechanical behavior of complex engineering structures with high 
precision. This study employs ABAQUS to conduct a numerical simulation of a uniaxial 
compression experiment on cement-based composites, specifically focusing on specimens 
without any pre-existing cracks. 

Figure 2 illustrates the schematic representation of the finite element model used in 
the simulation. The process of conducting simulations using ABAQUS (2022) software en-
compasses several key steps, detailed as follows: 

Firstly, a geometric model is established through 3D modeling of the polymer lattice 
within the sample, utilizing CAD (2023) software. This model is then exported and im-
ported into ABAQUS, where the component is constructed as a cohesive entity within the 
assembly module. 

The analysis step size is adjusted by configuring the output variables for each step of 
the analysis.  

Regarding interactions, within a specific region and scope, interactions and mutual 
constraints exist between models. Specifically, contact is established between the upper 
and lower rigid plates and the corresponding upper and lower surfaces of the sample. 
Furthermore, the 3D-printed lattice introduces internal constraints within the cement ma-
trix, as depicted in the figure. 

Mesh discretization involves dividing the entity into grids. Given the complexity of 
the 3D-printed lattice structure, alongside its small cellular dimensions, the mesh is 
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In the numerical simulation, the polymer lattice is integrated within the cement matrix,
serving as an internal constraint condition. This configuration ensures that the lattice is
encased by the cement matrix, effectively simulating its embedded position.

In conducting numerical simulations with ABAQUS (2022) software, aligning closely
with physical laboratory operations improves the accuracy of the simulations [24–26]. This
involves designing rigid plates to interact with both the upper and lower surfaces of the
cube specimen, thereby restricting its movement. This simulation step is critical for ac-
curately replicating the compressive constraints applied by the laboratory’s compression
apparatus on the specimen. For the rigidity-enforced plates, it is crucial to apply fixed con-
straints to the lower surface to simulate the restraining effect of the laboratory compressor’s
heads. This entails limiting displacement in all directions, effectively preventing any move-
ment of the surface. In ABAQUS, such a scenario is facilitated through the application of
boundary conditions that enforce these fixed constraints. Conversely, the plate on the upper
surface is subjected to a fixed displacement constraint, which allows for the specification of
displacement in certain directions while permitting the application of force or displacement
in others. Given the focus on uniaxial compression tests in this simulation, a vertical
displacement constraint is applied perpendicular to the sample surface. This approach
effectively simulates the compressive force exerted during the actual laboratory test.

2.3. Finite Element Simulation

ABAQUS, a finite element simulation software, is extensively utilized across various
engineering disciplines due to its robust capabilities. It facilitates a broad spectrum of
analyses, ranging from basic linear to intricate nonlinear problems, enabling the calculation
and analysis of the mechanical behavior of complex engineering structures with high
precision. This study employs ABAQUS to conduct a numerical simulation of a uniaxial
compression experiment on cement-based composites, specifically focusing on specimens
without any pre-existing cracks.

Figure 2 illustrates the schematic representation of the finite element model used in
the simulation. The process of conducting simulations using ABAQUS (2022) software
encompasses several key steps, detailed as follows:
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Figure 2. ABAQUS computational modeling.

Firstly, a geometric model is established through 3D modeling of the polymer lattice
within the sample, utilizing CAD (2023) software. This model is then exported and im-
ported into ABAQUS, where the component is constructed as a cohesive entity within the
assembly module.

The analysis step size is adjusted by configuring the output variables for each step of
the analysis.

Regarding interactions, within a specific region and scope, interactions and mutual
constraints exist between models. Specifically, contact is established between the upper
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and lower rigid plates and the corresponding upper and lower surfaces of the sample.
Furthermore, the 3D-printed lattice introduces internal constraints within the cement
matrix, as depicted in the figure.

Mesh discretization involves dividing the entity into grids. Given the complexity of the
3D-printed lattice structure, alongside its small cellular dimensions, the mesh is configured
as tetrahedral. The mesh size is finely adjusted based on the varying structural forms to
optimize computational outcomes. In contrast, the cement matrix exhibits a regular cubic
structure, which is discretized using a hexahedral mesh.

The loading methodology involves establishing a reference point on the rigid plate
located at the model’s upper surface. A vertical downward load is applied at this reference
point to simulate the pressure dynamics observed in uniaxial compression testing. In this
study, a fixed displacement loading approach was employed, with the displacement set at
5% of the sample’s side length, to apply the load to the sample.

3. Results and Discussion

This study examined six varieties of cement-based composites reinforced with 3D-
printed polymer lattices of different structural configurations through uniaxial compression
numerical simulations. By varying the elastic modulus of the polymer materials, the
simulation explored how different ambient temperature conditions affect the compressive
strength of these 3D-printed polymer lattice-reinforced cement-based composites. The
mechanical and deformation properties of the samples were determined by comparing
stress–strain curve analyses and strain distribution maps with the results obtained from
ABAQUS numerical simulations.

3.1. Stress–Strain Curve Analysis

The stress–strain curve of conventional concrete material is shown in Figure 3, and the
numerical simulation results and experimental results of uniaxial compression are shown
in Figures 4 and 5, respectively. It can be observed that the stress–strain curve of the 3D
printed lattice-reinforced cement-based composite is consistent with that of conventional
concrete materials. By comparing the simulation results with the experimental results,
it is shown that the compressive mechanical properties of cement-based materials with
different mesh structures are similar under uniaxial compression. These findings delineate
the mechanical response process of 3D-printed polymer lattice-reinforced cement-based
composite specimens under uniaxial compression, characterized by the following stages:
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Figure 3. The stress–strain curve of the standard concrete specimen under uniaxial compression test.
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Figure 4. Numerical simulation of stress–strain curves for uniaxial compression of specimens strength-
ened with different lattice structures.
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Figure 5. Laboratory-displacement curve for compressive test of cement-based specimens.

(1) Initial Stage (O-A): During this phase, the stress level reaches approximately 70% to
85% of the peak stress. At this point, the deformation observed in the specimen is
predominantly elastic, resulting from the interaction between the cement matrix and the
polymer lattice. This behavior is interpreted as linear elastic deformation, evident from
the near-linear relationship depicted in the stress–strain curve. Concurrently, material
displacement changes are minimal, despite the significant alterations in the load.

(2) Second Stage (A-B): At this stage, stress levels range from approximately 85% to 93%
of the peak stress. The deformation behavior of the specimen is marked by the gradual
emergence and expansion of small cracks within the sample, commensurate with the
loading process.

(3) Second Stage (A-B): In this stage, the stress reaches roughly 85% to 93% of the peak
load. The stage is characterized by the gradual appearance and steady expansion of
small cracks within the specimen.

(4) Third Stage (B-C): Stress levels during this stage approximate 93% to 100% of peak
stress. This phase is marked by a deceleration in the material’s compressive capacity
enhancement. Concurrently, the stress–strain curves exhibit an increasing curvature,
transitioning towards a more gradual trend. The predominant deformation observed
in the specimen is of an irreversible plastic nature, with a minor component of elastic
deformation also present at this stage.
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(5) Fourth Stage (C-): Upon exceeding the peak stress, the sample’s compressive proper-
ties begin to diminish correspondingly. As the external force applied to the material
escalates with continued loading, the damage to the specimen progressively worsens.

Additionally, the maximum stress the sample can endure before failure is designated
as the peak stress, depicted at point C in Figure 4. The stress–strain curve of concrete
material serves as a metric for assessing the effectiveness of cement-based composites
reinforced by 3D-printed polymer lattice structures. Notably, 85% of the peak stress is
utilized as the demarcation between the plastic deformation and elastic deformation phases,
corresponding to point B in Figure 3.

An analysis of Table 2, which presents peak stress data from the numerical simulations
of different lattice structures, reveals a consistent trend: a decrease in the elastic modulus of
the 3D-printed lattice results in a reduction in the peak stress experienced by all specimens
compared to the control specimens. Specifically, in Table 5 when the lattice’s elastic modulus
decreases to 60.4% of the control modulus, the peak load of the cement-based composite
reinforced with a Circular lattice is 0.8% lower than that of the ideal condition. With the
use of Cubic, Kelvin, Oct, RO, and SO lattice configurations as reinforcements, the peak
loads decrease by 0.8%, 0.14%, 17.82%, 10.57% and 11.73%, respectively.

Table 5. Peak stress of lattice numerical simulation of different structures.

Crystal Structure

Elasticity Modulus
E1 = 934 MPa E2 = 564 MPa E3 = 200 MPa

Circular 26.23 26.04 22.74
Cubic 25.23 25.17 23.16
Kelvin 28.49 28.45 21.79

Oct. 28.57 23.48 20.21
RO 26.02 23.27 19.46
SO 26.26 23.18 19.41

The analysis of the stress–strain curve for 3D-printed Circular lattice reinforced cement-
based composite materials, as illustrated in Figure 6 reveals that the contribution of the
3D-printed polymer lattice to the overall cement-based material is minimal, with its volume
fraction being only 8%. Consequently, the reduction in its elastic modulus exerts a negligible
impact on the peak stress of the cement-based composite samples. Nevertheless, following
the failure of the cement matrix, the influence of elastic modulus attenuation on the peak
stress of the cement-based composite specimens becomes marginally more significant.
It is observed that during the failure stage, denoted as the C-stage, the reduction in the
elastic modulus of the 3D-printed lattice has a more pronounced effect on the compressive
strength of the sample.
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Figure 6. Stress–strain curve of Circular lattice reinforced cement-based composites.
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For instance, when the elastic modulus is set at 564 MPa, there is no significant decrease
in the peak stress of the sample. However, following the degradation of the cement matrix,
a notable trend is observed during the failure stage (referred to as the C-stage); the reduction
in the elastic modulus due to environmental temperature fluctuations has a marked impact
on the compressive strength of the sample. Conversely, at an elastic modulus of 200 MPa,
analysis of the corresponding figure demonstrates a discernible decrease in the peak stress
of the material under these experimental conditions.

By comparing the numerical simulation outcomes for five distinct structural con-
figurations, as depicted in Figures 6–11, it becomes evident that variations in ambient
temperature lead to a diminution of Young’s modulus in the 3D-printed polymer lattice.
This reduction directly contributes to a decline in the peak stress of the cement-based
material, subsequently impairing its performance.
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Figure 7. Stress–strain curve of Cubic lattice reinforced cement-based composites.
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Figure 8. Stress–strain curve of Kelvin lattice reinforced cement-based composites.
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Figure 9. Stress–strain curve of Oct lattice reinforced cement-based composites.
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Figure 10. Stress–strain curve of RO lattice reinforced cement-based composites.

Materials 2024, 17, x FOR PEER REVIEW 11 of 15 
 

 

 
Figure 11. Stress–strain curve of SO lattice reinforced cement-based composites. 

3.2. Strain Analysis 
In the uniaxial compression experiment, as load is applied, the specimen experiences 

cracking, leading to its failure. The physical test phase employed the DIC monitoring tech-
nique to examine the deformation and the areas of surface cracking under compression. 
This study simulated the stress–strain relationship of the specimen prior to cracking in a 
uniaxial compression setting using finite element simulation. Accordingly, this chapter 
analyzes the strain distribution patterns in the specimen to forecast potential failure 
points. 

Figures 12–17 depict the stress–strain curves for six varieties of cement-based com-
posites reinforced with 3D-printed lattices, derived from numerical simulations of uniax-
ial compression. Specifically, Figure 12 illustrates the evolution of strain distribution in 
cement-based composites reinforced with circular lattice specimens under varying ambi-
ent temperatures. As the ambient temperature increases, Young’s modulus of the polymer 
lattice diminishes, leading to a reduction in strain capacity and an enlargement of the 
strain distribution region. Notably, when the ambient temperature reaches 100 °C and 
Young’s modulus of the polymer decreases to 200 MPa, there is a marked increase in the 
specimen’s propensity for failure under pressure. This trend suggests that at elevated tem-
peratures, the compressive properties of the polymer lattice are significantly compro-
mised. Coupled with the cracking of the cement matrix, the lattice becomes increasingly 
susceptible to ambient temperature effects, heightening the likelihood of specimen failure. 
This observation underscores the fact that high-temperature environments substantially 
degrade the stability and load-bearing capabilities of lattice-reinforced cement-based ma-
terials, elevating the risk of material failure. 

 

   

(a) E1 = 934 MPa (b) E2 = 564 MPa (c) E3 = 200 MPa 

Figure 12. Strain cloud image of cement-based samples reinforced with circular lattice structures at 
different ambient temperatures. 

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

25

30

St
re

ss
 (M

Pa
)

Strain (%)

 E1=934MPa
 E2=564MPa
 E3=200MPa

Figure 11. Stress–strain curve of SO lattice reinforced cement-based composites.

3.2. Strain Analysis

In the uniaxial compression experiment, as load is applied, the specimen experiences
cracking, leading to its failure. The physical test phase employed the DIC monitoring
technique to examine the deformation and the areas of surface cracking under compression.
This study simulated the stress–strain relationship of the specimen prior to cracking in a
uniaxial compression setting using finite element simulation. Accordingly, this chapter
analyzes the strain distribution patterns in the specimen to forecast potential failure points.

Figures 12–17 depict the stress–strain curves for six varieties of cement-based com-
posites reinforced with 3D-printed lattices, derived from numerical simulations of uniax-
ial compression. Specifically, Figure 12 illustrates the evolution of strain distribution in
cement-based composites reinforced with circular lattice specimens under varying ambient
temperatures. As the ambient temperature increases, Young’s modulus of the polymer
lattice diminishes, leading to a reduction in strain capacity and an enlargement of the strain
distribution region. Notably, when the ambient temperature reaches 100 ◦C and Young’s
modulus of the polymer decreases to 200 MPa, there is a marked increase in the specimen’s
propensity for failure under pressure. This trend suggests that at elevated temperatures,
the compressive properties of the polymer lattice are significantly compromised. Coupled
with the cracking of the cement matrix, the lattice becomes increasingly susceptible to am-
bient temperature effects, heightening the likelihood of specimen failure. This observation
underscores the fact that high-temperature environments substantially degrade the stability
and load-bearing capabilities of lattice-reinforced cement-based materials, elevating the
risk of material failure.
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Figure 12. Strain cloud image of cement-based samples reinforced with circular lattice structures at
different ambient temperatures.
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Figure 17. Strain cloud image of cement-based samples reinforced with SO lattice structures at dif-
ferent ambient temperatures. 
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For cement matrix composites, the stress–strain curves under vertical compression
can generally be segmented into two phases: the ascending and descending phases. In the
initial compression phase, the exerted load on the specimen is minimal, and the correspond-
ing deformation primarily results from the elastic deformation of the material’s internal
structure, rendering the stress–strain curve nearly linear. At this juncture, the specimen
predominantly exhibits compression zones. Strain distribution analyses reveal that the
cement base test block is subjected to relatively low pressure without significant stress con-
centration zones. This suggests a fairly uniform stress distribution throughout the material
during the initial loading phase, indicating an absence of marked stress concentration.

As the loading process progresses, the stress–strain curve transitions into a descending
phase where the material begins to exhibit plastic deformation and the impact of stress con-
centration on the specimen becomes increasingly evident. In high-temperature conditions,
the thermal expansion of the material’s various phases and the reduction in Young’s modu-
lus of the polymer lattice contribute to diminished compressive performance, leading to a
more uneven strain distribution and elevating the risk of material damage. The alterations
observed in the strain distribution maps from numerical simulations further elucidate the
deterioration in compressive mechanical properties of cement-based composites reinforced
with 3D-printed lattices when subjected to high temperatures. These simulations provide
insights into the failure dynamics and mechanical property degradation of materials across
different ambient temperature conditions.

4. Conclusions

In this study, ABAQUS (2022) software facilitated the numerical simulation of uniaxial
compression tests on composite materials featuring 3D-printed polymer lattices embedded
within a cement matrix. This approach yielded a series of insightful conclusions, which
are instrumental in elucidating the compressive mechanical properties of cement-based
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composites under varying high-temperature conditions. Presented below is an analytical
summary of the key research findings:

(1) Through the creation of a precise finite element model and the simulation of laboratory
uniaxial compression tests, this study has successfully validated the accuracy of its nu-
merical analysis model. This achievement not only furnishes a dependable simulation
methodology for subsequent research endeavors but also lays a robust groundwork
for the enhanced analysis and application of experimental data. Moreover, the pro-
cess of developing and validating the model serves as a valuable benchmark for the
numerical simulation of analogous materials and structures.

(2) The study reveals that variations in ambient temperature markedly influence the elastic
modulus of 3D-printed polymer materials, subsequently altering the compressive me-
chanical properties of cement-based composites. This finding underscores the necessity
of accounting for material performance shifts under diverse temperature conditions in
practical engineering applications to ensure the reliability and safety of structures.

(3) This study demonstrates that the compressive strength of composite materials tends
to decrease as the elastic modulus of polymer materials is reduced. This observation
holds significant implications for the optimization of composite material design and
the enhancement of their structural characteristics.

(4) The findings indicate that as Young’s modulus of the polymer decreases, the strain
region widens while the maximum strain diminishes, suggesting an impact on both
the ductility and load-bearing capacity of the structure. Furthermore, when the elastic
modulus falls to a specific critical threshold, specimen cracking occurs at the onset of
the compression test. This highlights the necessity for meticulous attention to the lower
limits of material properties during the design process to prevent premature failure.

In conclusion, this study not only introduces a novel approach for examining the
mechanical properties of cement-based composites but also lays a crucial theoretical and
practical foundation for material design and structural optimization in related domains.
Building upon this foundation, future investigations can delve into the properties of
various material combinations, structural configurations, and loading scenarios, thereby
broadening the application spectrum of cement-based composites in diverse fields.
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