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Abstract: In detection-free tracking, after users freely designate the location of the object to be tracked
in the first frame of the video sequence, the location of the object is continuously found in the
following video frame sequence. Recently, technologies using a Siamese network and transformer
based on DNN modules have been evaluated as very excellent in terms of tracking accuracy. The high
computational complexity due to the usage of the DNN module is not a preferred feature in terms
of execution speed, and when tracking two or more objects, a bottleneck effect occurs in the DNN
accelerator such as the GPU, which inevitably results in a larger delay. To address this problem, we
propose a tracker scheduling framework. First, the computation structures of representative trackers
are analyzed, and the scheduling unit suitable for the execution characteristics of each tracker is
derived. Based on this analysis, the decomposed workloads of trackers are multi-threaded under the
control of the scheduling framework. CPU-side multi-threading leads the GPU to a work-conserving
state while enabling parallel processing as much as possible even within a single GPU depending
on the resource availability of the internal hardware. The proposed framework is a general-purpose
system-level software solution that can be applied not only to GPUs but also to other hardware
accelerators. As a result of confirmation through various experiments, when tracking two objects,
the execution speed was improved by up to 55% while maintaining almost the same accuracy as the
existing method.

Keywords: GPU scheduling; object tracking; multi-DNN; multi-threading, detection-free tracker

1. Introduction

In a wide range of AI (artificial intelligence)-enabled service fields such as
human–computer interaction [1], traffic control [2], video surveillance [3], and augmented
reality [4], object-tracking technology has drawn constant attention. Object tracking is
largely divided into detection-free tracking and tracking-by-detection. Recent studies have
used tracking-by-detection methodologies to realize MOT (multi-object tracking). However,
this is a method of tracking classified objects in advance and the process of revealing the
association between the detection results. Detection-free tracking, which allows users to
track any object from the user point of view, can be a more useful technology for security
and safety-related applications such as crime prevention and facility safety. VOT (visual
object tracking) is a kind of detection-free tracking, which estimates the position of the
user-defined target object in a series of video frames. In doing so, the estimated position in
each frame is usually defined by the bounding box including the target object to be tracked.

Without loss of generality, in order to secure the improved inference accuracy, DNN
(deep neural network) models are getting bigger and more complicated [5]. Trackers
with the latest technologies are also equipped with DNN models, and the computational
complexity is also very high [6,7]. Therefore, tracking two or more user-specified objects in
a video frame is even more computationally complex and makes the system very slow.
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The recent trend of VOT technology can be divided into Siamese-network-based and
transformer-based studies. Siamese network structure tracks target object by computing
the similarity between the target patch designated by the user and the search region of
the video frames [6]. Transformer-based trackers conduct tracking by fusing the features
of the target patch and search region of the frames using attention mechanism [7]. These
two kinds of trackers have very different structures. Therefore, using the optimization
technique of the same method is not meaningful to make up for the speed-performance
deterioration incurred when tracking two or more objects.

In order to maximize the execution speed of DNN, hardware accelerators specialized
in specific DNN modules have been released [5]. However, these specialized accelerators
do not guarantee their performance even in the new DNN structure. Therefore, edge
devices and servers usually use GPUs to accelerate DNN modules. The DNN modules
used in object trackers are also dependent on the GPU-specific libraries used by deep
learning frameworks such as TensorFlow [8] and PyTorch [9], and the libraries are not
optimized for various kinds of GPU hardware structures. Furthermore, these deep learning
frameworks do not provide optimization techniques for two or more DNN modules to run
parallel in the GPU even when the GPU is experiencing under utilization, which may lead
the tracker performance to be suboptimal.

To tackle the above-mentioned issues, we propose a software-based solution approach,
which provides an efficient scheduling framework for the two well-performing object track-
ers running on edge devices and GPU-server computing systems. We first lay the ground-
work for the proposed scheduling framework to optimally map workloads included in the
tracker to computing units. To this end, an in-depth computational structure analysis is con-
ducted on SiamRPN++, which epitomizes Siamese-network-based trackers, and CSWinTT,
which best exemplifies transformer-based trackers. Particularly, we give most of our at-
tention to the large-scale computational structure of MHA (multi-head attention), which
transformer-based trackers have in common, from the DNN module perspective.

Second, the proposed scheduling framework improves the tracking speed of two or
more trackers when they are running together. This means that the tracking performance is
improved when two or more objects are simultaneously tracked in a detection-free manner.
The proposed scheduling framework is a system-level acceleration technology designed to
be independent of the different structures of GPUs. Additionally, the approach proposed in
this study can be applied to hardware accelerators other than GPUs. This is possible with
only a library provided by the accelerator manufacturer.

2. Background and Related Work

To provide an aid in understanding the remaining part of this paper, this section
gives background knowledge and related object tracking studies that have been pre-
viously conducted. In addition, the two types of trackers targeted in this paper are
technically described.

2.1. Object Tracking

Object tracking refers to the process of estimating the position of an object or several
objects that move over time in video frames, and generally, object tracking is divided into
two categories depending on employed tracking algorithms: VOT (visual object tracking)
and MOT (multiple object tracking). Object tracking typically outputs a bounding box,
which has the location information of the object in each video frame [6,10,11].

VOT tracks a single object and class-agnostic. In VOT, only the position (i.e., bounding
box) of the object in the first frame is given without any other information. There is
no detailed information about the object, but as long as the location information of the
object in the first frame is provided, the object can be tracked continuously in consequent
video frames. VOT falls under the category of detection-free tracking, which means that
a manually initialized bounding box is required for the tracking target rather than the
detection of the predefined target object.
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Unlike VOT, MOT tracks objects in predetermined classes. MOT automatically iden-
tifies multiple objects in a video and shows them as a series of trajectories. MOT tracks
multiple objects and is commonly known as detection-based tracking, thus performing
object detection every frame and associating the results with tracking. In other words,
connecting the detected location information of the current frame with the one of the
previous frame. For example, if there is a video of several cars driving on the road, MOT
tracks each car separately.

2.2. Detection-Free Tracking

Our target tracking systems are detection-free trackers, and thus the trackers in this
paper aim to keep track of multiple objects designated by the user in the first frame with
VOT as the default mechanism, not MOT. Representative trends of trackers using VOT
technology are based on either the Siamese network or the transformer architecture.

2.2.1. Siamese-Network-Based Trackers

SiamFC [10] is a seminal study using a Siamese network for object tracking. A user
creates an exemplar image z including a tracking target, and search image frames x means
video frames that need to be inferred. x and z pass through the same CNN and their output
tensors become the input of the cross-correlation operation. Thereafter, each component
of the calculated similarity map corresponds to the similarity with z with respect to the
inside x. The SiamRPN [11] adopts an RPN (region proposal network), which was used as
a standard in image detection problems, in SiamFC, and performs bounding box regression
to determine the location of tracked target. As a result, the size of the tracked object can be
estimated more accurately than before, and at the same time, the iterative calculation due
to the adoption of the image pyramid can be avoided. As a way to solve the problem of
decreasing accuracy by padding inside CNN, SiamRPN++ [6] proposes a spatial-aware-
sampling strategy to make the locations of tracked objects in the search image frame
have a uniform distribution. In fact, by applying learning data collected by the strategy,
a SiamRPN tracker that adopted ResNet-50 [12] as a backbone obtains a higher accuracy
than a SiamRPN with AlexNet [13].

2.2.2. Transformer-Based Trackers

Transformer-based approaches have drawn great performance in various AI applica-
tions such as object detection, semantic segmentation, and image recognition. The success
factors in such fields are from the fact that a cross-attention mechanism enables relevant
reasoning between image patches [14]. Even in object tracking research works, transformer-
based trackers have presented their excellent achievements by incorporating the pixel-level
attention to mingle the features of the target object and tracked object in search image
frames. TransT [15] introduces an attention mechanism to perform feature fusion of target
object and search image frames. The designed feature fusion network is structured with two
modules: ECA (ego-context augment) module and CFA (cross-feature augment) module.
The two modules expedite bounding box regression and object localization. STARK [16]
suggests an encoder–decoder structured transformer which takes both spatial and temporal
information into account. The encoder with self-attention modules learns the relationship
between the target object and the incoming video frames by analyzing feature dependen-
cies. To achieve target position estimation, the decoder learns a query embedding. Swin
Transformer [17] takes up a hierarchical structure and consists of transformers. To obtain an
expanded receptive region, it gradually increases the size of image patches. CSWinTT [7]
develops pixel-level attention into window-level attention while inheriting the structural
advantage of Swin Transformer. Cyclic shifting has the effect of expanding the window
area, which greatly improves the accuracy.
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2.3. Structural Analysis of Detection-Free Object Trackers

In this subsection, we provide a concise description of the architecture of two repre-
sentative detection-free object trackers.

2.3.1. SiamRPN++: Siamese-Network-Based

Figure 1 shows the overall workflow of SiamRPN++. For input data, the target patch
with the object to be tracked and the video frames are used, and the video frames are
generally called as search region or search image frames. In the first frame, the user sets the
location information of the target patch containing the object to be tracked. The location
information of the target patch consists of a total of four values, given the x and y coordinate
values at the upper left, and the values of width and height based on them.

The target patch and search image frames are transmitted to ResNet-50-based back-
bones. Each backbone outputs three different feature maps; then, they are inputted to three
RPN (region proposal network) blocks to perform a similarity check. To do so, two identical
DW-XC (depth-wise cross-correlation) modules are applied [6]. Through the weighted sum
operation, the three bounding box values and classification results from the three RPN
modules derive one bounding box regression and a classification result, which are the final
results of inference. The closer the value of classification result is to one, the higher the
probability that the object is in the bounding box.

Figure 1. Workflow of SiamRPN++.

Equation (1) details the two weighted sum procedures shown in Figure 1. Sall and Ball
represent the final classification and regression results, respectively [6]. Sl and Bl represent
the classification and regression of each RPN, and l is one of 3, 4, and 5, indicating that it is
the result from conv3, conv4, and conv5 in backbones. αi and βi are combination weights,
and they are obtained after offline end-to-end optimization [6].

Sall =
5

∑
l=3

αi ∗ Sl , Ball =
5

∑
l=3

βi ∗ Bl . (1)

2.3.2. CSWinTT: Transformer-Based

Basically, just as SiamRPN++ explained above, CSWinTT also receives the target
patch and search image frames while using just one ResNet-50 backbone. Overall, it
is constructed very similar to general transformer-based object trackers [14–17] and has
a large computational complexity. CSWinTT has six-layer encoder and decoder blocks,
and each encoder and decoder has MHA (multi-head attention). The core technology of
CSWinTT centers around MHA incorporating window-partitioning and cyclic shifting,
and the gray box in Figure 2 denotes it.

CSWinTT also sets the bounding box position as the final result and outputs confidence
score every frame along with the bounding box. Confidence score is the probability of the
presence or absence of the target object to be found in the bounding box, which is the result
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of inference about every single frame. The closer it is to the value of one, the higher the
probability that the object is in that bounding box.

Figure 2. Workflow of CSWinTT.

3. Problem Settings

In this paper, we aim to show a mechanism that maximizes the execution speed while
maintaining inference accuracy when multiple detection-free-based trackers are running
on edge device or GPU-server systems to track multiple objects. There are some difficulties
that must be noted in such an execution environment.

• Systems that run DNN models, such as embedded edge devices and server systems, are
typically composed of many CPUs and a much smaller number of DNN accelerators.
Thus, multiple tracker tasks hosted by the CPUs can throw DNN workloads required
for object tracking into the accelerator independently of each other. In this situation,
the performance of trackers may differ greatly depending on the scheduling policy
imposed on DNN workloads delivered to the accelerator.

• For instance, a GPU is a representative DNN accelerator. As shown in Figures 1 and 2,
backbone, RPN, and MHA blocks have different computational complexity. Here,
the GPU is not always 100% used depending on which block is computed. For example,
when there are two DNN workloads that occupy 30% of GPU utilization, they maintain
30% utilization if they are performed in order in a row. However, if the two workloads
are on the GPU at the same time, they can have twice the execution speed with
60% utilization. However, it is not easy to double GPU utilization under real-world
applications. Libraries such as cuDNN [18] and CUDA runtime [19] do not adaptively
allocate DNN workloads to all different GPU hardware architectures.

• Since multiple CPUs are supported, multiple trackers may allocate DNN workloads
to the accelerator such as the GPU. Moreover, with the help of commercial DNN
frameworks such as TensorFlow [8] and PyTorch [9], we can easily design trackers
using Python. However, if hardware blocks such as MPS (multi-process service) [20]
are not supported in an embedded environment, occurred overhead is unavoidable
due to the context-switching, where context means the virtual address boundary of
processes. In addition, even if multi-threading is available within the same context
(process), it is difficult to avoid the serialization problem caused by the GIL (global
interpreter lock) policy of Python.

• SiamRPN++ and CSWinTT have very heterogeneous structures, as shown earlier in
Figures 1 and 2. Thus, a uniform DNN workload scheduling scheme can lead to poor
performance for some trackers in a way that can benefit some trackers.

The problem we want to solve is providing an effective software-based means to get
out of the difficulties listed above.

4. Solution

In this section, to solve the aforementioned problems, we explain our solution ap-
proach with sufficient technical details. First, the overall solution architecture is given,
and then workload scheduling techniques and parallelization methods preferable to the
execution characteristics of each tracker are described in detail.
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4.1. Overall Solution Approach

Figure 3 details the operational workflow of the proposed solution approach in this
paper. Roughly, the approach consists of offline and run-time phases. Offline, first, the ex-
ecution time of each function block constituting the target tracker is measured through
profiling. Then, a basic scheduling unit is derived by comprehensively considering this
result and the data dependency between each functional block. In Figure 3, each work in
the work list becomes an instance scheduled on the CPU (i.e., scheduling unit), and the
figure shows an example of eight CPUs and w works. When each scheduling instance is
obtained, a computing unit suitable for each instance, either a CPU or a GPU, is defined.
Finally, the work list to be executed at run-time phase is completed according to this
offline procedure.

Figure 3. Overview of the scheduling framework for accelerating multiple detection-free object trackers.

In the run-time phase, multiple works in the work list are executed over the solution
architecture, which consists largely of an offline defined work list, a work queue, and a
worker-thread pool. A work Worki defined in the work list can be edited on a variety of
scales. Particularly, it is possible from a small layer of a DNN model to the entire tracker.
For example, Work0 is the tracker task itself, and Work1 and Work2 are DNN workloads
allocated by the tracker Work0 to the GPU. First, Work0 is mapped to one of threads in the
worker-thread pool, and then Work0 assigns Work1 and Work2 to the threads in the pool.

Object trackers can request their works (Work0, Work1, · · · , Work7) asynchronously
to the work queue. One of threads in the worker-thread pool immediately extracts the
work at the queue front of the work queue whenever it is in the idle state. Then the worker
thread first determines whether the delivered work is GPU-side or CPU-side. If the work is
a DNN workload it is mapped to one of the streams [5,21], and then enqueued to the EE
(execution engine) queue of the GPU [5,21], if not, it is assigned to one of the CPUs directly.

4.2. Scheduling Works in the Work List

The detailed operation of each function block shown in Figure 3 is explained through
Algorithm 1. In the algorithm, the function worker_thread( ) is the pseudo code of each
worker thread. Both queue_pull( ) and queue_push( ) are provisioned as tools for access-
ing the work queue, and queue_pull( ) is only called by worker threads and queue_push(

) is utilized by each work, i.e., work in the algorithm.
When the proposed scheduling framework starts, the all threads within the worker-

thread pool wait indefinitely since there is no work in the work queue. Then, offline defined
works in the work list arrive at the work queue through the function queue_push( ). At this
point in time, sig is broadcasted to all the threads in the worker-thread pool. Then, one of
threads in the pool receives sig and exits the blocked state, as shown in line 3. Immediately
after this, the function queue_pull( ) is used, and the work (work) at the front of the work
queue is transferred as an argument to the function execute( ). Looking at lines 13 and 14,
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queue_pull( ) also broadcasts sig. This allows worker threads to take the next work after
the first work is exited when there are two or more works in the work queue.

Algorithm 1 Scheduling framework for multiple object trackers.

1: function worker_thread( )
2: A:
3: wait_signal(sig)
4: work ← queue_pull( )
5: execute(work)
6: goto A:
7: end function

8: function queue_push(work)
9: insert work to the work queue

10: broadcast(sig)
11: end function

12: function queue_pull( )
13: if (number of works in the queue > 1) then
14: broadcast(sig)
15: end if
16: return work at the queue front
17: end function

18: function execute(work)
19: if (work is not a pure CPU workload) then
20: i ← index of work
21: set the stream index as i
22: end if
23: if (work is a pure DNN workload) then
24: executing work
25: synchronize host until the DNN workload in the ith stream has completed
26: return
27: end if
28: executing work
29: end function

The properties of the works in the work list can be expressed in three ways: pure
CPU workloads, pure DNN workloads, and CPU–GPU mixed workloads. The parameter
work passed to the function execute( ) is one of these three. First, if it is not a pure CPU
workload, it means that the GPU is used, so set the stream index for parallel processing in
the GPU (lines 19 to 22).

If work is a pure DNN workload, work is transferred to the GPU’s EE queue and
executed (line 24). At this time, synchronization must be performed with the host CPU for
the next operation. For instance, let us say we have Work1, Work2, and Work3 in the work
list. Work1 and Work2 are DNN workloads that use GPU, and Work3 needs to concatenate
the operation results of Work1 and Work2. In this case, Work3 using the CPU must wait for
the synchronization event that the GPU has finished all its assigned work (line 25).

In the case of a mix of CPU workload and DNN workload, work is simply executed as
in line 28. At this time, the internal operation of work uses the GPU sporadically, but there
is no synchronization process like in line 25. The reason for this is as follows. First, work is
a decomposed internal tracker function. Therefore, in one function flow, the next workload
that uses the CPU cannot be called until the GPU finishes its operation.

4.3. Execution Time Analysis for Decomposing Object Trackers

Tables 1 and 2 represent execution time profiles for each functional blocks of SiamRPN++
and CSWinTT trackers, respectively. For measurement, we used one NVIDIA RTX A6000
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GPU [22] and randomly extracted 3350 images from TrackingNet [23] as a dataset. As we
can see from the two tables, CSwinTT is a very large-sized tracker that takes more than
twice the time when dealing with 3350 images compared to SiamRPN++.

Table 1. Execution time profile of SiamRPN++.

Backbone RPN Others Total

Exe. Time (s) 22.7 8.87 37.13 68.7

Ratio 33.0% 12.9% 54.1% 100%

Table 2. Execution time profile of CSWinTT.

Backbone Encoder Decoder Others Total

Exe. Time (s) 22.6 100.69 11.41 36.83 171.53

Ratio 13.1% 58.7% 6.7% 21.5% 100%

If we look at closely the time required for each functional block, the execution time of
using DNN workloads (backbone and RPN) is shorter than that of others, where others in
the tables include image loading and pre-processing. In other words, it has a short use of
GPU. Therefore, it is not suitable to apply parallelism on DNN workloads, and because
the execution time is short as a whole, small-sized subdivided works are not efficient. Too
small-sized works can only cause scheduling overhead.

On the contrary, CSWinTT has a long overall processing time and has a long time to
use DNN workloads (backbone, encoder, and decoder). In particular, the encoder block
using DNN workloads accounts for almost 60% of the total execution time, so if we apply
parallelism to this part, considerable performance gain can be expected.

4.4. Placement of Works Constituting SiamRPN++

In Figure 4, we illustrate the operational flow of the proposed solution architecture
with a walk-through example in a sequence of four works. As mentioned above, based
on the computation analysis of SiamRPN++, each work is the entire SiamRPN++ tracker
itself. Di

j denotes a DNN workload of Worki where j does the operational sequence index,

and Ci
j means for a CPU-side workload. In this example, as explained earlier, Di

j and Ci
j are

defined offline.

Figure 4. Snapshot of functional blocks in the proposed solution architecture through a walk-through
example of SiamRPN++.

In the figure, the execution order of the DNN and CPU workloads inside the work list
starts from the right to the left. Work0 and Work1 are already assigned to the worker-threads
WT0 and WT1, respectively. Thus, C0

0 and C1
0, which are the first CPU-side workloads, are

running on the two CPUs, and the following DNN workloads D0
0 and D0

1 are assigned to
their streams. Note that in our design, each worker thread has its own dedicated stream;

8
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Worki has Streami. Through the streams, D0
0 and D0

1 are enqueued to the EE queue in the
GPU, and depending on the SM (streaming multiprocessor) availability inside the GPU,
D0

0 and D0
1 can be executed simultaneously. Since Work2 and Work3 are still in the work

queue, these two works are not assigned to any of the two remaining worker threads WT2
and WT3. Once WT2 pulls the queue from Work2, C2

0 of WT2 takes CPU2 and then starts to
assign D2

0 to Stream2. Even on embedded edge devices with only one GPU, this capability
allows multiple trackers to perform their tracking tasks in parallel.

4.5. Placement of Works Constituting CSWinTT

As shown in Table 2, the computational cost that the encoder block dominates in
CSWinTT is substantial. On the basis of this profile data, before proceeding further,
we closely analyze the encoder blocks with special focus on MHA blocks, which are
commonly included in transformer-based DNN models. Figure 5 details multi-head
attention MHAE performed inside the encoder block. The output of the backbone is
converted into Q (queries), K (keys), and V (values) tensors through embedding. Each
tensor consists of vectors as many as the number of heads and is represented as Q =
Concat(Q0, Q1, · · · , Q7), K = Concat(K0, K1, · · · , K7) and V = Concat(V0, V1, · · · , V7), re-
spectively. One of the heads headi takes Qi, Ki, Vi as input and outputs ith attention value
matrix AVMi through Attention(Qi, Ki, Vi) mechanism. Finally, the outputs of each trans-
former head (AVM0, AVM1, · · · , AVM7) are concatenated together. To sum up, the final
result of MHAE is obtained as below [7]:

MHAE(Q, K, V) = Concat(AVM0, AVM1, · · · , AVM7) (2)

where AVMi = Attention(Qi, Ki, Vi) (3)

= so f tmax(
QiKT

i√
dk

)Vi (4)

where dk means the dimension of key.

Figure 5. Workflow of multi-head attention in the encoder.

The point to note here is that each head has independent input, and thus all heads
in MHAE can be executed in parallel and independently with each other by model paral-
lelism [24]. Furthermore, as explained earlier, MAHE includes window partitioning and
cyclic shifting, and has a high computational complexity that occupies about 58.7% of
the total execution time. Accordingly, we can expect a significant reduction of CSWinTT
execution time by processing all the heads in MHAE in parallel inside the GPU.

For easy understanding, we explain how model parallelism applied to MHAE de-
scribed above actually works through a figure. In Figure 6, we illustrate the operational
flow of the proposed solution architecture with a walk-through example in a sequence of
five works. Different from the case of SiamRPN++, based on the computation analysis of
CSWinTT, a work can be the entire CSWinTT tracker itself or one of the transformer heads
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in MHA of the encoder. In the figure, headi means the ith transformer head and MHAE
performs multi-head attention in the encoder.

Figure 6. Snapshot of functional blocks in the proposed solution architecture through a walk-through
example of CSWinTT.

To demonstrate the effect of model parallelism in the tracker, unlike the case of
SiamRPN++, we just take an example of only one CSWinTT tracker. After the CPU-side
workload C0 finishes, WT3 on CPU0 performs Work4. Next, MHAE brings both Work0 and
Work1 one after the other from the work queue, assigning transformer heads head0 and
head1 to their designated streams. Finally, both head0 and head1 are launched to the EE
queue for parallel execution in side of the GPU.

An edge device such as NVIDIA AGX Xavier [25] has eight CPUs and one GPU,
and CSWinTT uses eight transformer heads in MHAE. Therefore, if we run one CSWinTT
tracker on that device, Figure 6 is changed to have nine works and nine worker threads.
In this case, all transformer heads (head0 ∼ head7) are performed in parallel as much
as possible, and then C1 holds one CPU (possibly CPU0) to process the obtained result
parallelly executed by head0∼head7.

5. Experiments

In this section, we present the experimental verification we have conducted to validate
the efficacy of the proposed solution approach. First, we explain implementation method
and then elaborate on measurement results along with the relevant analysis.

5.1. Implementation Details

Basically, we take DNN modules built in both SiamRPN++ and CSWinTT trackers
from the PyTorch framework [9]. All the threads in the worker-thread pool in Figure 3
are threads of the same process. This multi-threading scheme caters for several benefits in
terms of scheduling management; all the functions assembled in all the worker threads are
controlled under one single address space, providing the same synchronization primitives
and truthful data sharing [5].

DNN modules generated from PyTorch framework are made up of Python-based code,
and each module is executed by the Python interpreter. In such an execution environment,
GIL (global interpreter lock) enables only one thread to hold the access permission of the
Python interpreter, preventing multiple DNN modules from running on several threads [26].
The higher the number of DNN workloads that launch the kernel to the GPU, the more
work-conserving the GPU is, so CPU-side multi-threading is indispensable [21]. To clear
up the innate constraints of GIL, we propose a new execution methodology and Figure 7
shows the before and after.

10
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In our DNN execution method, to apply the C++-based execution environment, using
TorchScript, DNN modules of the both trackers are changed into a ScriptModule [27]. Af-
ter combining the libtorch library and ScriptModule, we compile it with a C++ compiler
g++, and then obtain an executable file. Since using the compiled C++-programmed execu-
tion file is not controlled by GIL, multi-threaded programming is possible, and accordingly,
multiple DNN workloads from DNN modules can be issued to the GPU at the same time.

(a) (b)
Figure 7. Comparing the execution environment: (a) existing mechanism for DNN module execution
with Python interpreter and (b) proposed execution methodology.

5.2. Experimental Setup

For a more comprehensive verification, we adopt an edge device with limited com-
puting resources and a server computing system, which is the opposite, as the target
systems. We take the Jetson AGX Xavier platform [25] as the target edge device, and a GPU
server equipped with 4 × NVIDIA RTX A6000 [22] for the target server computing system.
The detailed both hardware and software specifications of the target systems are presented
in Tables 3 and 4.

Table 3. Specification of the target edge device.

Classification Description

HW

CPU 8-core ARM v8.2 Carmel 64-bit CPU, 8 MB L2, 4 MB L3 cache
GPU 512-core Volta GPU with Tensor cores

Memory 32 GB 256-Bit LPDDR4x, 137 GB/s
Storage 32 GB eMMC 5.1

SW
Kernel Ver. Linux 4.9.140

SW Package JetPack 4.2
CUDA Ver. CUDA v10.2

Table 4. Specification of the target GPU-server computing system.

Classification Description

HW

CPU 16-core, 64 MB L3 cache, 3.9 GHz
GPU NVIDIA RTX A6000, 336 Tensor Cores, 10,752 CUDA Cores,

48 GB Memory, 309.7 TFLOPS
Memory 4 × 64 GB DDR4 PC4
Storage 1 × SSD 1.92 TBG 2.5” SATA

SW
Kernel Ver. Linux 5.15.0

SW Package MPI Horovod, NVIDIA GPU Monitoring SW
CUDA Ver. CUDA v11.6
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As for workloads, TrackingNet [23] with 225,589 images is used. When the trackers
are running on the edge device, only 3350 images, randomly selected, out of 225,589 total
images of the TrackingNet dataset were used considering the storage space in the target
edge device. Whereas for the GPU server, all images of TrackingNet were used.

To demonstrate the usefulness and practicality of the proposed solution approach
under various conditions, all the experimental results are from the target edge device as well
as from the target GPU server, and we diversified the validation methodologies suitable for
each experimental stage. We basically evaluated the proposed solution approach against the
original SiamRPN++ and CSWinTT trackers. In each graph, legend Org. denotes when the
images from TrackingNet are processed by the original SiamRPN++ or CSWinTT trackers
without any modifications, whereas Sol. is the case under our proposed solution approach.

We checked whether the approach we proposed is less accurate compared to the
original trackers and observed how much it was contributing to the improvement of
execution speed-up. As for the accuracy measurement, the evaluation metrics, area under
the curve (AUC), precision (P), and normalized precision (Pnormal) were adopted [7,23,28].
Given the ground truth bounding box (BBgt) and the tracked one (BBtr), the success score

(i.e., overlap score) is defined as S = |BBgt∩BBtr |
|BBgt∪BBtr | , where ∪ and ∩ imply the union and

the intersection of BBgt and BBtr, respectively, and | · | means the number of pixels in
that area [7,23,28]. The number of frames whose success score S is greater than the given
threshold is measured. Using this number, the success plot is obtained to display the
proportion of the success frames where the thresholds are ranged from 0 to 1. Ultimately,
we can get AUC (area under the curve) from the success plot. The precision is defined as
P = ‖Ctr − Cgt‖2, where Ctr and Cgt denote the centers of the tracker bounding box and
the one of ground truth, respectively [7,23,28].

To confirm the speed improvement, in the case of edge devices, the time taken by
trackers to process 3350 randomly selected images is compared through graphs, and in
the case of GPU servers, the time to process all the images in TrackingNet is measured.
In addition, the average frame per second (FPS) result is simultaneously presented on each
experimental graph.

5.3. Experimental Results
5.3.1. Inference Accuracy

As shown in Figure 7, DNN modules formed into the trackers are converted into
ScriptModule. Then ScriptModule is compiled together with the libtorch library, creating
an execution binary by the proposed execution environment. This may cause an inference
accuracy gap compared to the existing interpreter-based method. Thus, to closely examine
this, we measure the accuracy in terms of AUC, P, and Pnormal .

Tables 5 and 6 show the results from running SiamRPN++, and Tables 7 and 8 are the
cases for CSWinTT. Overall, comparing the accuracy of the tracker itself, it can be seen that
the accuracy of CSwinTT is relatively excellent in both the previous execution environment
and the proposed one.

When running SiamRPN++, we can see that the accuracy is slightly improved in three
aspects in the proposed execution environment in both edge devices and GPU servers,
but they are almost similar.

Table 5. SiamRPN++ running on the target edge device.

AUC P Pnormal

Org. 77.19 78.1 88.97

Sol. 78.56 80.45 90.32
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Table 6. SiamRPN++ running on the target GPU server.

AUC P Pnormal

Org. 60.92 58.495 70.49

Sol. 63.65 61.9 73.57

The case of CSWinTT showed the opposite result to the SiamRPN++ case. In the case
of both edge device and GPU server, the proposed method showed a small accuracy drop.
When running on the edge device, AUC decreased by 3.6, P by 6.3, and Pnormal by 2.576,
indicating larger values than in the case of the GPU server.

Table 7. CSWinTT running on the target edge device.

AUC P Pnormal

Org. 93.32 96.82 97.51

Sol. 93.72 90.52 94.93

Table 8. CSWinTT running on the target GPU server.

AUC P Pnormal

Org. 90.04 88.63 91.47

Sol. 88.46 87.19 89.78

5.3.2. Inference Speed

Here, we report on the comparison result of the execution speed when two identical
trackers are running simultaneously; multiple detection-free trackers are running together.
The y-axis of all graphs means the time it takes for the tracker to track all the images used
in the experiment. Therefore, the smaller the value, the higher the performance, and of
course, the higher the FPS, the higher the execution speed.

Figure 8 displays the result when two identical SiamRPN++ trackers are running
together. As can be seen in the figure, when our proposed approach is applied, the FPS
increase rate is 32% and 24% on the edge device and GPU server, respectively. As can be
seen in Table 1, the percentage of execution time occupied by the backbone and RPN, which
are DNN workloads performed on the GPU, is smaller than that of time using the CPU,
i.e., CPU dependence is relatively high. Compared with the GPU server, the difference in
performance between the CPU and the GPU in the edge device is relatively smaller than
that in the GPU server. Therefore, the execution speed improvement in the edge device is
about 8% higher.

(a) (b)
Figure 8. Comparing the execution time and speed when two identical SiamRPN++ trackers are
running: (a) on the edge device and (b) on the GPU server.
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Figure 9 shows the result when two identical CSWinTT trackers are running together.
As we can see, when the proposed approach is applied, the FPS increase rate is 43% and
55% on the edge device and GPU server, respectively. This is the opposite result from the
higher FPS increase rate on the edge device when we experimented with the SiamRPN++
tracker. As shown in Table 2, compared to SiamRPN++, CSWinTT has high computational
dependence on the GPU, and MHA accounts for 58.7% of the total computation. Since the
GPU server has a GPU with much better parallel processing capability than the embedded
GPU of the edge device and the heads of MHAE use multi-threading and multi-stream,
the FPS performance of the GPU server is remarkable.

(a) (b)
Figure 9. Comparing the execution time and speed when two identical CSWinTT trackers are running:
(a) on the edge device and (b) on the GPU server.

Since MHAE of CSWinTT itself is parallelized, we verify that the proposed parallel
scheduling technique works even when only one CSWinTT model is running. Figure 10
is the result of the experiment. As can be seen through the figure, the degree of FPS
performance improvement is more noticeable when only one CSWinTT is running. This
means that the case when the GPU embedded in the GPU server we target has 8 head
operations of one CSWinTT is more effective compared to when 16 head operations of two
CSWinTT trackers are mapped in parallel to SMs inside the GPU through the work queue.

(a) (b)
Figure 10. Comparing the execution time and speed when one CSWinTT tracker is running: (a) on
the edge device and (b) on the GPU server.

Next, only the effect when MHA is processed in parallel is verified, and Figures 11 and 12
compare the results with and without the parallel execution of heads in MHA in the case of
the edge device and the case for the GPU server, respectively. For the case of the edge device,
the FPS increase rate is higher when only one CSWinTT tracker is executed compared to the
case with two trackers. However, in case of GPU server, the result was the exact opposite.
This result implies that if the internal hardware resource of the GPU is sufficient to perform
multiple head operations in parallel, the effect of MHA parallel processing using CUDA
stream can be maximized. However, on the edge device using the GPU with the limited
hardware resource, the overall effect of multi-threading rather than MHA parallelization is
more significant.
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(a) (b)
Figure 11. Comparing the MHA parallelization effect on the edge device: (a) 1× CSWinTT and
(b) 2× CSWinTT.

(a) (b)
Figure 12. Comparing the MHA parallelization effect on the GPU server: (a) 1× CSWinTT and
(b) 2× CSWinTT.

6. Conclusions

Object tracking technology is widely used in areas such as crime prevention, facility
safety, traffic control, and information collection. Especially, detection-free object tracking
technology that can track objects that are not of a predefined class has been highlighted
as crucial in these applications. In this paper, we presented a framework that efficiently
schedules the workloads inside detection-free trackers to work out the computing-related
issues that occur when two or more detection-free-tracking tasks are running simultane-
ously. To achieve this, first, the computational structures of the Siamese-network-based
tracker and the transformer-based tracker, which exhibit excellent tracking performance,
are analyzed, and a scheduling unit suitable for each tracker is determined offline. At run-
time, multi-threading allows trackers to use multiple CPUs concurrently, delivering mul-
tiple DNN workloads included in trackers to the GPU at the same time. By doing so,
the GPU is kept work-conserving. As a result of experimental validation, when tracking
two user-specified objects, the proposed scheduling framework led to a 55% performance
improvement without reducing tracking accuracy.
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Abstract: Global Navigation Satellite Systems (GNSS) with weak anti-jamming capability are vul-
nerable to intentional or unintentional interference, resulting in difficulty providing continuous,
reliable, and accurate positioning information in complex environments. Especially in GNSS-denied
environments, relying solely on the onboard Inertial Measurement Unit (IMU) of the Micro Aerial
Vehicles (MAVs) for positioning is not practical. In this paper, we propose a novel cooperative relative
positioning method for MAVs in GNSS-denied scenarios. Specifically, the system model framework
is first constructed, and then the Extended Kalman Filter (EKF) algorithm, which is introduced
for its ability to handle nonlinear systems, is employed to fuse inter-vehicle ranging and onboard
IMU information, achieving joint position estimation of the MAVs. The proposed method mainly
addresses the problem of error accumulation in the IMU and exhibits high accuracy and robustness.
Additionally, the method is capable of achieving relative positioning without requiring an accurate
reference anchor. The system observability conditions are theoretically derived, which means the
system positioning accuracy can be guaranteed when the system satisfies the observability conditions.
The results further demonstrate the validity of the system observability conditions and investigate
the impact of varying ranging errors on the positioning accuracy and stability. The proposed method
achieves a positioning accuracy of approximately 0.55 m, which is about 3.89 times higher than that
of an existing positioning method.

Keywords: relative positioning; GNSS-denied environments; ranging; IMU; EKF; MAVs

1. Introduction

Micro Aerial Vehicles (MAVs), which refer to small Unmanned Aerial Vehicles (UAVs),
have gained popularity in aerial robotics due to their small size, agility, and versatility. It
is possible for MAVs to perform a wide range of tasks, including surveillance, inspection,
mapping, and environmental monitoring. However, achieving coordinated missions for
MAV formations is a challenging task, as it requires precise and reliable navigation and
positioning capabilities. Furthermore, such missions involve complex maneuvers and high
synchronization between multiple MAVs, and any errors or inaccuracies in navigation or
positioning can result in mission failure or even accidents. Therefore, developing robust
and efficient navigation and positioning methods is crucial for enabling MAVs to perform
coordinated missions effectively and safely.

Urban or forest environments are renowned for their complexity and heterogeneity,
which pose significant challenges to wireless communication systems due to issues such as
multipath propagation and shadowing [1]. In this context, Hermosilla et al. [2] proposed
the use of street-based urban metrics descriptions to quantify various spatial patterns
of urban types constructed at different periods, and provided eight different types of
urban environments (including urban, residential, and industrial areas) based on their
structural characteristics, such as building height distribution or vegetation coverage.
These differences may impact wireless signal propagation in different ways. For example,
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historic urban areas with lower building heights and narrower streets may experience
more severe multipath effects, while emerging industrial areas with taller buildings and
wider streets may face more severe signal blockage issues. As a result, there are numerous
challenges in receiving Global Navigation Satellite System (GNSS) signals in urban or
forest environments due to the weak anti-interference ability of GNSS [3]. Despite some
related studies [4–6] having reduced the error in GNSS-based positioning systems through
multi-information fusion technology, intentional interference may render GNSS unusable
in certain specialized fields, such as military applications. Therefore, achieving relative
positioning of MAVs in GNSS-denied scenarios has become a potentially fruitful area
of research.

The common methods for achieving relative positioning in GNSS-denied environ-
ments can be classified into the following three categories: visual positioning [7–17], inertial
navigation positioning [18–22], and radio positioning [23,24]. The development status of
each category of positioning technology is systematically discussed below, and the advan-
tages and limitations of each technology are analyzed, providing good inspiration for the
study of relative positioning methods for MAVs in GNSS-denied environments.

The visual localization methods can be broadly categorized into map-based localiza-
tion [7–11] and map-free localization [12–17], depending on whether prior visual maps
are utilized. (Note that visual refers to visual information, which is typically collected
using sensors such as cameras or laser scanners. Visual maps can be understood as maps
constructed based on visual information and used for visual localization and navigation.)
In the map-based localization, a pre-constructed visual map was used to aid in localization,
and the steps involved in map construction and updating, image retrieval, feature point
extraction and matching, and precise localization have been studied extensively [7–10].
The main focus of [7] was the construction of 3D maps, while reference [8] addressed
map quality issues by removing outliers and tracking lanes. Map matching problems
were mainly addressed in [9–11]. In contrast, map-free visual localization methods do not
rely on prior visual maps and instead estimate the pose of the object and surrounding
environment. This category can be further divided into Visual Simultaneous Localization
and Mapping (VSLAM) [12–15] and Structure from Motion (SFM) [16,17]. The VSLAM is
designed for real-time processing, making it well-suited for applications such as robotics
and autonomous vehicles, while SFM prioritizes accuracy and is more appropriate for
offline processing applications such as digital reconstruction of scenes [16]. Specific tech-
niques within these categories have also been put forward. For example, an efficient
distributed particle filter (EDPF) was proposed in [12] to address the difficulty of sampling
high-dimensional state spaces in range-only SLAM. Reference [13] proposed a weight-
optimized particle filter-based algorithm for monocular visual SLAM, which aimed to
improve the slow environmental interference repair speed of traditional filtering SLAM
algorithms. Three-level parallel optimization was adopted in [14], including the direct
method, feature-based method, and pose graph optimization. The method in [15] involves
two stages: the first stage implements a local SLAM process based on filtering techniques,
while the second stage utilizes optimization-based techniques for constructing and main-
taining a consistent global map of the environment, which includes addressing the loop
closure problem. To estimate the state of a MAV, the main filtering technique employed
is the Extended Kalman Filter (EKF). In terms of optimization techniques, three methods
are used: a local bundle adjustment technique to minimize the total reprojection error, the
minimization of the Perspective-n-Point (PnP) problem, and graph optimization to correct
the global map. In [16], 3D point clouds of close-range images were generated using SFM
technology. Homologous features between different images were found to determine the
shooting direction and position of each image. Finally, reference [17] used optimization to
enhance the convergence rate of SFM by retrieving maximum internal similarity between
images. The chosen images and query results were used to reconstruct a three-dimensional
scene and estimate relative camera positions with SFM.
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The inertial navigation positioning is an autonomous method that provides accurate
short-term navigation and positioning without relying on external information or emitting
radiation. However, the general positioning system is prone to an error accumulation due
to the second-order integration operation [18–22]. Various studies have been conducted to
address this issue. For instance, a 3D trajectory planning method based on Particle Swarm
Optimization-A star (PSO-A*) algorithm was proposed in [18] to solve the yaw problem
of intelligent aircraft. In [19], the nonlinear error model was considered, and internal
measurement information was utilized to correct the nonlinear error of inertial navigation.
The zero-velocity detection algorithm was adopted to compensate for the accumulated
error of pedestrian inertial navigation [20,21]. Additionally, reference [22] employed
Convolutional Neural Networks (CNN) to reduce the error of MEMS IMU sensors.

There are various wireless positioning methods based on radio technology, mainly
including infrared positioning [23], Ultra Wide Band (UWB) positioning [24], and radio
frequency identification (RFID) positioning [25]. In [23], the angle of an object equipped
with a positioning device was measured using an infrared laser beam emitted by a light-
house base station, and the position of the object was calculated. An indoor positioning
system based on improved adaptive Kalman filter (IAKF) was proposed in [24] that cal-
culated the distance between the tag and the base stations using the time it took for UWB
signals to travel, and then applied a triangulation algorithm to acquire the position of the
tag. Similar to [24], reference [25] differs mainly in the method of distance measurement,
using RFID technology to calculate the distance. In addition, Ref. [25] mentions that RFID
positioning tags can be classified into two types, active and passive, depending on their
power requirements. Passive tags mainly involve backscattering communication, and
therefore do not require direct power supply, but they have limited communication range
compared to active tags. Therefore, RFID technology is mostly used for indoor product
tracking. Furthermore, the design, installation, and maintenance of RF navigation systems
can be expensive and complex, which may pose challenges for deploying them in certain
applications, such as small unmanned aerial vehicles.

In addition, multi-technology fusion is an important means to improve the position-
ing performance. An important trend in VSLAM is to integrate visual sensor data with
other sensor data [26,27]. A method was proposed in [26] to integrate Inertial Measure-
ment Unit (IMU) and dynamic VSLAM, which avoided the static assumption of common
SLAM algorithms and solved the problems of fast vehicle motion and insufficient light.
This method exhibited higher robustness compared with pure visual dynamic SLAM
systems. In [27], a SLAM autonomous positioning algorithm combining magnetometer,
IMU, and monocular camera was proposed to address the initialization instability and
drift problem in the visual-inertial SLAM (VI-SLAM) algorithm. In wireless positioning,
UWB technology is a potentially productive area of research [28–30] in multi-information
fusion positioning due to its advantages such as strong penetration ability, low power
consumption, small impact of multipath effects, and high positioning accuracy [31–33].
In [28], UWB ranging was used in an indoor positioning scenario, and the position
was jointly estimated by fusing the ranging and IMU information through cooperative
positioning, which reduced the position drift of Inertial Navigation System (INS). A
relative positioning method based on trilateration was proposed for the multi-mobile
user mutual positioning scenario [29], where the UWB ranging and IMU information
were fused and integrated into a probabilistic framework for cooperative positioning
fault recovery. In [30], the pedestrian navigation was realized based on IMU and UWB
ranging, and a zero-velocity detection algorithm and single anchor point reference were
used. Due to the inherent error drift of IMU, relying solely on IMU for inertial navigation
positioning is uncommon. Typically, the fusion of multi-sensor information is required
to reduce the positioning errors [26–35].
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Authors have two observations on the existing research on positioning methods.

• In the visual-based positioning research, the positioning accuracy is weakened in
low-light environments and line-of-sight limitations lead to poor system robustness.
These factors pose significant challenges for MAVs to efficiently perform collaborative
tasks in diverse environments.

• In the research on IMU-based relative positioning, the multi-sensor fusion is mostly
employed to reduce the inertial drift. Solely relying on IMU for dead reckoning
cannot achieve long-term high-precision positioning [18–22]. When fusing with radio
information, there are restrictions on MAV cooperative formation tasks, such as the
existence of zero-velocity detection [31,33] and fixed reference anchor [33]. In addition,
there is a situation where two MAVs cannot be positioned [32].

Motivated by the above facts, this paper investigates a relative positioning method of
a two-MAV cooperative formation fusing inter-vehicle distance and IMU information in
GNSS-denied environments, which does not require the use of other auxiliary devices such
as odometers, except for the IMU and the devices used for ranging. The main contributions
of this paper are summarized as follows:

1. A novel method for relative positioning in GNSS-denied scenarios is proposed based
on ranging and IMU information. The method utilizes the EKF algorithm to jointly
estimate the relative positions of MAVs, providing continuous, precise, and reliable
information for the formation without being affected by the error accumulation
problem of IMU. Additionally, the method is capable of achieving relative positioning
for an arbitrary number of nodes without requiring an accurate reference anchor. This
innovative approach offers notable advantages over existing methods and has great
potential for applications in various fields of aerial robotics.

2. Theoretical derivations of the system observability conditions are presented, along
with the specific expressions. The conditions indicate that the system positioning
accuracy and reliability can be guaranteed when the flight trajectory of the MAV
formation satisfies the observability conditions. Failure to satisfy these conditions
may result in decreased positioning accuracy and reliability, as well as a possibility
of divergence.

3. Monte Carlo simulations were conducted, where the correctness of the system ob-
servability conditions was verified and the effects of different ranging errors on the
positioning accuracy and reliability were investigated. Moreover, the positioning
error was reduced by approximately 3.89 times compared to an existing positioning
method [32].

The rest of this paper is organized as follows. Section 2 describes the system model.
Section 3 presents a detailed description of the relative positioning method. Section 4 de-
rives the system observability conditions and provides the specific expressions. Section 5
presents simulation results, followed by Section 6 which concludes this paper.

2. System Model

In this paper, we consider a system model for relative localization of two cooperative
MAVs in GNSS-denied environments, as shown in Figure 1. The definitions of the reference
coordinate systems are explained as follows. The global coordinate system is the Earth-
fixed North-East-Down (NED) coordinate system, denoted as n, and assumed to be an
inertial frame. The origin of the body-fixed horizontal coordinate system (denoted as hi,
i = 1, 2) for MAV i (i = 1, 2) is located at its center of gravity, with x-y plane and z-axis
paralleling those of n, respectively, meaning that hi is obtained by rotating the n around its
z-axis by a yaw angle ϕ.
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Figure 1. Description of the system model (Gray: NED coordinate system (n); Olive: body-fixed
horizontal coordinate system (h1); Light blue: body-fixed horizontal coordinate system (h2 )).

It is worth noting that this paper does not use the typical body-fixed coordinate system
(denoted as bi, i = 1, 2) for the MAV i, which is represented by Euler angles with respect to
n. According to the 321-rotation sequence, the corresponding Euler angles are yaw angle
ϕ, pitch angle θ, and roll angle γ, respectively. The reason for using hi instead of bi is to
simplify the kinematic relationships and minimize the impact of unnecessary factors, such
as near-hovering states with small roll and pitch angles.

In the system model, MAV i can measure its own state variables, which include
acceleration, angular velocity, and velocity in hi. Furthermore, by means of wireless
communication, MAV i can also obtain velocity and distance information from the other
one in the system framework, where two MAVs utilize inter-vehicle distance information
to enhance the accuracy and robustness of relative positioning in the system framework.

The relative motion of two MAVs is described in h. Let pn
i denote the position vector of

MAV i in n, where the subscript i refers to the MAV number and the superscript n indicates
the vector is projected onto n. The projection of the relative position of MAV k (k = 1, 2, but
k 	= i) with respect to MAV i in hi can be expressed as:

phi
ik = Chi

n (pn
k − pn

i ) (1)

where Chi
n is the coordinate transformation matrix from n to hi (see Equation (2)). It is only

dependent on the yaw angle ϕi of MAV i, since x-y plane and z-axis of hi are parallel to
those of n, respectively.

Chi
n =

⎡⎣cos ϕi − sin ϕi 0
sin ϕi cos ϕi 0

0 0 1

⎤⎦ (2)

It can be inferred from Equations (1) and (2) that the z-component of the relative
position phi

ik corresponds to the difference in height (which can be measured by a barometric
altimeter) between MAV i and MAV k in n. Therefore, the system model can be simplified
from three-dimensional space to a two-dimensional plane in the horizontal direction.

Some of the parameters and symbols used in this section are shown in Table 1.
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Table 1. Descriptions of parameters or symbols in Section 2.

Parameters or Symbols Descriptions

n Earth-fixed North-East-Down (NED) coordinate system
h Body-fixed horizontal coordinate system
b Body-fixed coordinate system
ϕ Yaw angle
θ Pitch angle
γ Roll angle

‖·‖2 2-norm
pn

i ∈ R3 Position vector of MAV i in n

phi
ik ∈ R3 Projection of the relative position of MAV k with respect to

MAV i in hi
Chi

n ∈ R3×3 Coordinate transformation matrix from n to hi

3. A Ranging and IMU-Based Relative Positioning Method

We propose a relative positioning method that integrates the inter-vehicle distance
with on-board IMU information and employs the EKF algorithm for optimal position
estimation. The acquired data is transformed into the corresponding framework to estab-
lish the state differential equation. Based on the measurement information, the state of
the MAVs is updated. The system observability analysis is conducted before and after
the EKF algorithm’s prediction and update process to ensure the system positioning ac-
curacy. Specifically, in Section 3.1, the state differential equation between two MAVs is
simply derived, and the observation model and the overall system process are given in
Sections 3.2 and 3.3, respectively.

3.1. State Differential Model

The nonlinear state vector system for the localization model is defined as:{ .
x = f(x, u)
y = h(x)

(3)

where the vectors x ∈ Rn, u ∈ Rm, y ∈ Rl are the state vector, input vector, and output
vector of the system, respectively. f(x, u) is the system state differential vector function
containing the vector parameters x and u, and h(x) is the observation equation related to
the state vector x.

According to the discussion in Section 2, and considering the relative positioning
model of two MAVs, let p = R(p2 − p1) ∈ R2, which represents the projection of the
relative position of MAV 2 with respect to MAV 1 in h1, where R is the two-dimensional
case of Equation (2). Specifically, it is equal to:

R =

[
cos(Δϕ) − sin(Δϕ)
sin(Δϕ) cos(Δϕ)

]
(4)

where Δϕ = ϕ2 − ϕ1 is the yaw angle difference between MAV 1 and MAV 2.
Moreover, the other variables in the nonlinear system are defined below. The yaw

rate difference is denoted by Δ
.
ϕ = r2 − r1 (where ri is the yaw rate of MAV i, i = 1, 2).

The projections of velocity and acceleration of MAV i in hi are denoted as vi ∈ R2 and
ai ∈ R2, respectively.

It should be noted that the yaw rate ri and acceleration ai mentioned earlier refer
to the horizontal plane components in hi and cannot be equated simply with the actual
measured values ωi ∈ R3 and si ∈ R3 of the gyroscope and accelerometer. In particular,
the latter must undergo a conversion process, which can be expressed as:

ri =
sin γi
cos θi

· ωiy +
cos γi
cos θi

· ωiz, i = 1, 2 (5)
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ai =

[
cos θi sin γi sin θi cos γi sin θi

0 cos γi − sin γi

]
· si, i = 1, 2 (6)

where ωiy and ωiz represent the y-axis component (true pitch rate) and z-axis component
(true yaw rate) of ωi, respectively. γi and θi are the roll angle and pitch angle of MAV i,
respectively. Proofs of Equations (5) and (6) are provided in Appendix A for reference.

Let the state and input vector be x =
[
pT , Δϕ, vT

1 , vT
2
]T ∈ R7 and u =

[
r1, r2, aT

1 , aT
2
]T ∈

R6, respectively. The state differential equation of the system is simply derived as follows.
The derivative of the relative position p with respect to time t is (Note that in Equation (7),

the coordinate transformation matrix R does not act on v1. The reason is that, in the scenario
of mutual positioning between two MAVs, when calculating the relative position of MAV 2
with respect to MAV 1 in h1, there is no need to transform the velocity of MAV 1 in its own
coordinate system h1 by left-multiplying R):

dp
dt =

dR(p2−p1)
dt

= dR
dt (p2 − p1) + R d(p2−p1)

dt
= −r×i R(p2 − p1) + Rv2 − v1
= −r×1 p + Rv2 − v1

(7)

where the antisymmetric matrix r×i of cross product in two-dimensional case is equal to:

r×i =

[
0 −ri
ri 0

]
, i = 1, 2 (8)

vi is obtained by coordinate transformation of vn
i ∈ R2 in n, which is equal to vi = Rvn

i .
Taking the derivative of the velocity vi with respect to time t:

dvi
dt =

dRvn
i

dt
= dR

dt vn
i + R dvn

i
dt

= −r×i Rvn
i + ai

= −r×i vi + ai

(9)

According to Equations (7) and (9), and the definition of the yaw rate difference Δ
.
ϕ,

the state differential equation in Equation (3) can be written as:

.
x = f(x, u) =

⎡⎢⎢⎣
−r×1 p + Rv2 − v1

r2 − r1
−r×1 v1 + a1
−r×2 v2 + a2

⎤⎥⎥⎦ ∈ R
7 (10)

3.2. Observation Model

The observations involved in the positioning model are the distance information
‖p‖2 between two MAVs and the velocity vi of MAV i (where i = 1, 2). Converting the
distance information to ‖p‖2

2/2 can simplify the system observability theoretical analysis
in Section 4 without affecting the analysis results [36]. However, the distance observation
is still selected as ‖p‖2 in the experimental verification. The corresponding observation
model is expressed as:

y = h(x) =

⎡⎣‖p‖2
2/2

v1
v2

⎤⎦ ∈ R
5 (11)
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3.3. Overall System Process

The system process as a whole is depicted in Figure 2. In the system framework
illustrated in Figure 1, the MAVs acquire their motion states through onboard sensors,
encompassing acceleration, angular velocity, and velocity, which are transformed into h1
via transformation Blocks T1, T2, and T3, respectively.

Figure 2. The overall system process (including information acquisition and transformation, prelimi-
nary observability analysis, EKF algorithm, and complete system observability analysis).

Subsequently, a preliminary observability analysis is conducted to determine whether the
observability conditions presented in Equations (30)–(32) of Section 4 are satisfied. Provided
that the conditions are met, the positioning accuracy is adequately guaranteed. Otherwise,
the system fails to localize and awaits the next sampling interval to retry localization.

One important aspect of the system process is that the state differential equation is
constructed based on the MAVs’ states. In addition, the real-time distance measurement
between two MAVs and the target MAV’s velocity are obtained through radio communica-
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tion, with the measurement equation constructed accordingly. The EKF algorithm is then
used to estimate the optimal relative position of the target MAV.

A complete system observability analysis is performed based on the optimal position
estimation and the MAVs’ states, as shown in Equation (29). The result is expected to be
similar to that of the preliminary observability analysis, with the only difference being the
expression of the conditions.

Some of the parameters and symbols used in this section are shown in Table 2.

Table 2. Descriptions of parameters or symbols in Section 3.

Parameters or Symbols Descriptions

x ∈ R7 State vector
u ∈ R6 Input vector
y ∈ R5 Output vector
.
x = f(·) State differential vector function

h(·) Observation function

p ∈ R2 Projection of the relative position of MAV 2 with respect to
MAV 1 in h1

R ∈ R2×2 Two-dimensional case of Chi
n

Δϕ Yaw angle difference between MAV 1 and MAV 2
Δ

.
ϕ Yaw rate difference between MAV 1 and MAV 2

ri Yaw rate of MAV i
vi ∈ R2 Projection of velocity of MAV i in hi
ai ∈ R2 Projection of acceleration in hi
ωi ∈ R3 Gyroscope measurement
si ∈ R3 Accelerometer measurement

r×i ∈ R2×2 Antisymmetric matrix of cross product
vn

i ∈ R2 Velocity of MAV i in n

4. System Observability Analysis

Considering the nonlinear state vector system shown in Equation (3), the system
observability is analyzed by means of Lie derivative. The multiple Lie derivatives are
defined as follows:

L0
f h = h (12)

Li
fh = Lf

(
Li−1

f h
)
= J
(

Li−1
f h

)
· f, i ∈ N

∗ (13)

where J
(

Li
fh
)

represents the Jacobi matrix of Li
fh. Furthermore, the observability matrix of

the nonlinear system is:

H =

⎡⎢⎢⎢⎢⎢⎢⎣
J
(

L0
f h
)

J
(

L1
f h
)

...
J
(

Li
fh
)

⎤⎥⎥⎥⎥⎥⎥⎦, i ∈ N
∗ (14)

When the observable matrix H has full rank, the nonlinear system is considered locally
weakly observable [37].

The first term of the observability matrix H is equal to:

J
(

L0
f h
)
= J(h) =

⎡⎣ pT 0 01×2 01×2
02×2 02×1 E2 02×2
02×2 02×1 02×2 E2

⎤⎦ =

[
pT 0 01×4

04×2 04×1 E4

]
(15)
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Since the cross term of the last four rows and columns in the first term of the observ-
ability matrix H is the unit matrix, the rank of H cannot be increased by its corresponding
observation functions. Therefore, only the distance observation corresponding to the first
row in Equation (11), denoted as h1(x) = ‖p‖2

2/2, needs to be considered.
The first-order Lie derivative corresponding to the distance observation h1(x) is equal to:

L1
f h1 = J

(
L0

f h1

)
· f = pT(−r×1 p + Rv2 − v1

)
(16)

Calculating the Jacobi matrix of the first-order Lie derivative, the second term of the
observability matrix H can be obtained:

J
(

L1
f h1

)
=

⎡⎢⎢⎢⎣
(Rv2 − v1)

pT ∂R
∂Δϕ v2

−p
RTp

⎤⎥⎥⎥⎦
T

(17)

Given that the full rank of the observability matrix H is seven and the first term J
(

L0
f h
)

has rank five, calculation of the second-order Lie derivative is necessary. The second-order
Lie derivative is given by:

L2
f h1 = J

(
L1

f h1

)
· f

= (Rv2 − v1)
T(−r×1 p + Rv2 − v1

)
+ pT ∂R

∂Δϕ v2(r2 − r1)

−pT(−r×1 v1 + a1
)
+ pTR

(
−r×2 v2 + a2

)
= vT

2 v2 − 2vT
1 Rv2 + vT

1 v1 + pT ∂R
∂Δϕ v2r2 − pTa1 + pTR

(
−r×2 v2 + a2

) (18)

where the simplification is achieved using Equations (19) and (20). The result shows that
the yaw rate r1 of MAV 1 is completely cancelled out.

RTR = E2 (19)

RTr×1 = − ∂RT

∂Δϕ
r1 (20)

The third term of the observability matrix H is the Jacobi matrix of the second-order
Lie derivative (see Equation (18)), which can be expressed as:

J
(

L2
f h1

)
=

[
∂L2

f h1

∂p
∂L2

f h1

∂Δϕ

∂L2
f h1

∂v1

∂L2
f h1

∂v2

]
(21)

where the specific expressions of each term are derived simply as follows:

∂L2
f h1

∂p = vT
2

(
∂RT

∂Δϕ r2 − r×T
2 RT

)
− aT

1 + aT
2 RT

= −aT
1 + aT

2 RT
(22)

∂L2
f h1

∂Δϕ = −2vT
2

∂RT

∂Δϕ v1 + vT
2

(
∂2RT

∂Δϕ2 r2 − r×T
2

∂RT

∂Δϕ

)
p + aT

2
∂RT

∂Δϕ p

= −2vT
2

∂RT

∂Δϕ v1 + aT
2

∂RT

∂Δϕ p
(23)

∂L2
f h1

∂v1
= −2vT

2 RT + 2vT
1 (24)

∂L2
f h1

∂v2
= 2vT

2 − 2vT
1 R + pT

(
∂R

∂Δϕ r2 − Rr×2
)

= 2vT
2 − 2vT

1 R
(25)
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It can be seen from the above simplified results that the yaw rate r2 of MAV 2 is
completely offset. In the event that the combination matrix A consisting of the Jacobi
matrixes of the zero-order, first-order, and second-order Lie derivatives corresponding
to the distance observation h1(x) has full rank, the rank of observability matrix H is
guaranteed to have full rank, indicating that the nonlinear system is observable.

A =

⎡⎢⎣ pT 0
vT

2 RT − vT
1 pT ∂R

∂Δϕ v2

−aT
1 + aT

2 RT −2vT
1

∂R
∂Δϕ v2 + pT ∂R

∂Δϕ a2

⎤⎥⎦ ∈ R
3×3 (26)

In light of the above discussion, the observable system needs to satisfy the follow-
ing condition:

|A| 	= 0 (27)

Multiplying each element in the third column of determinant |A| with the corresponding
algebraic cofactor, adding and expanding to calculate, we can obtain the following expression:

|A| = −pT ∂R
∂Δϕ v2 ·

(
−aT

1 + aT
2 RT)RΔϕ=π/2p

+
(
−2vT

1
∂R

∂Δϕ v2 + pT ∂R
∂Δϕ a2

)
·
(
vT

2 RT − vT
1
)
RΔϕ=π/2p

=
(

pT ∂R
∂Δϕ

(
v2aT

1 − a2vT
1
)
− 2vT

1
∂R

∂Δϕ

(
v2vT

2 RT − v2vT
1
))

RΔϕ=π/2p

(28)

Considering the properties of matrix RΔϕ=π/2, when p 	= 0 and Equation (28) satisfies
the following inequality (where m is an arbitrary constant), Equation (27) holds, and the
nonlinear system is observable.

pT ∂R
∂Δϕ

(
v2aT

1 − a2vT
1

)
− 2vT

1
∂R

∂Δϕ

(
v2vT

2 RT − v2vT
1

)
	= mpT (29)

While the inequality (29) is not intuitive in revealing the motion constraints of MAVs,
it can be used to extract some more obvious conditions (as seen in Equations (30)–(32)),
which greatly aid our comprehension of Equation (29).

p 	= 0 (30)

vi 	= 0 or ai 	= 0, i = 1, 2 (31)

v1 	= nRv2 or (a1 	= 0 or a2 	= 0) (32)

Equation (30) serves as a prerequisite for Equation (29), which means that the relative
position between two MAVs cannot be equal to zero. Equation (31) indicates that the MAVs
cannot remain stationary. Both the conditions are obvious. Equation (32) shows that two
MAVs cannot fly in parallel unless at least one of the MAVs has a non-zero acceleration,
where n is an arbitrary constant.

According to the system observability analysis in this section, we derived the motion
conditions that must be satisfied by MAVs (see Equations (29)–(32)), which means if the
relative motion between two MAVs in the system violates the observability conditions,
the positioning accuracy and reliability of MAVs cannot be guaranteed. In such a case, by
actively intervening in the relative motion of MAVs to satisfy the observability conditions,
MAVs in the system can still achieve mutual positioning.

Some of the parameters and symbols used in this section are shown in Table 3.
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Table 3. Descriptions of parameters or symbols in Section 4.

Parameters or Symbols Descriptions

Li
fh The i-th order Lie derivative of h with respect to f

J(·) Jacobi matrix
H Observability matrix
Ei The i-th order identity matrix
∂ Partial derivative

A ∈ R3×3 Combination matrix
|·| Determinant

5. Results

In this section, we employ computer simulations to demonstrate the performance of
the proposed relative positioning method. Section 5 is structured as follows: Section 5.1
describes the experimental setup, followed by Section 5.2 which verifies the system observ-
ability conditions. In Section 5.3, we investigate the impact of different ranging errors on
the positioning accuracy and stability. Finally, an error comparison experiment with an
existing method is conducted in Section 5.4.

5.1. Experimental Setup

Assuming two MAVs, A and B, in the system framework depicted in Figure 1, we use
the proposed relative positioning method to calculate the position of MAV B relative to
MAV A. The specific parameter settings for the simulation experiment are listed in Table 4,
where deg = π/180 and mg = 9.8 × 10−3.

Table 4. Parameter settings.

Parameters/(Unit) Values

Filtering step/(s) 0.1
Total simulation duration/(s) 1000

Constant gyroscope drift/(rad/s) 0.05 deg/3600
Constant accelerometer bias/

(
m/s2 ) 0.1 mg

Barometric altimeter error/(m) 1
Ranging error/(m) 2

Velocity error/(m/s) 0.1
Noise matrix diag

(
0, 0, 10−8, 10−6, 10−6, 10−6, 10−6)

Initial error [2, 2, 2deg, 0.1, 0.1, 0.1, 0.1]T

Explanations for certain simulation parameters in Table 4 are provided below. The
gyroscope and accelerometer parameters are typical electrical parameters of commercial
IMU inertial sensors (such as MPU6050) commonly available on the market [38]. The
error of the barometric altimeter was referenced from [39], where an ultrahigh resolution
pressure sensor based on percolative metal nanoparticle arrays was designed. The sensor
has an ultra-high resolution of 0.5 Pa and high sensitivity of 0.13 kPa−1, and the pressure
range and sensitivity can be adjusted by changing the thickness of the PET membrane,
which extends the working pressure range to 40 kPa. In actual altitude tests, the altitude
measurement sensitivity was calculated as −0.00025 m−1 according to the slope of the
response curve. RMS noise analysis shows that the accuracy of the sensor can be as low
as 1 m. As a high-precision barometric sensor, the sensor can be used for high-resolution
barometric altimeters (Note that it is possible to have different pressure at the same height
but at different horizontal locations. However, in this work, we mainly focus on the relative
positioning of two MAVs, where two MAVs are generally not distant from each other. Thus,
it is reasonable to assume that the pressure difference of two MAVs only comes from the
altitude level) [39]. The ranging error in this paper is referenced from [40], which proposed
an improved through-the-wall (TTW) NLOS ranging method using UWB technology to

29



Sensors 2023, 23, 4366

achieve ranging errors of 0–2 m in NLOS environments. In addition, the noise used in the
simulation is close to actual noise, and an adaptive adjustment method is employed for
the noise matrix of the system to better adapt to the changes in noise characteristics and
maintain good filtering performance.

In accordance with the system observability analysis presented in Section 4, the
flight trajectory of the two MAVs needs to satisfy Equation (29) to guarantee the system
positioning accuracy and reliability. A trajectory satisfying the requirements of Equation
(29), called Trajectory 1, can be defined as follows: the straight-line AB rotates around the
geometric center O in the horizontal plane, while O undergoes sinusoidal motion. The
MAV height is measured using a barometric altimeter. The motion parameters are listed in
Table 5. Setting the rotational angular velocity of AB and sinusoidal angular velocity of O
to zero in Table 5, results in a straight-line flight of the MAVs in parallel, which is denoted
as Trajectory 2.

Table 5. Motion parameter settings.

Parameters/(Unit) Values

Rotational angular velocity of AB/(rad/s) 0.03
Sinusoidal angular velocity of O/(rad/s) 0.03

Linear velocity of O/(m/s) 20
Initial angle of MAV A/(rad) π/3
Initial angle of MAV B/(rad) π

5.2. Verification of the System Observability Conditions

Section 5.2 aims to validate the system observability conditions derived in Section 4
and evaluate the effectiveness of the proposed relative positioning method.

In Section 5.1 of the experimental setup, two trajectories for the MAVs are defined:
Trajectory 1 and Trajectory 2. Trajectory 1 satisfies the system observability condition shown
in Equation (29), while Trajectory 2 fails to comply with it. More specifically, Trajectory 2
violates the observability sub-condition shown in Equation (32).

Figure 3 shows the filtered error results for the two trajectories, while the correspond-
ing relative motion trajectories are presented in Figure 4. The average filtering errors for
x and y axes of Trajectory 1 are approximately 1.22 m and 0.57 m, respectively, with the
errors gradually converging to zero over time. In contrast, Trajectory 2 has significantly
larger average filtering errors of 6.23 m and 3.86 m for x and y axes, respectively, exceeding
those of Trajectory 1 by factors of 5.1 and 6.77. Furthermore, the errors of Trajectory 2 tend
to diverge over time. These results indicate that system observability conditions are critical
for ensuring the higher positioning accuracy and reliability, whereas failing to meet it, the
system accuracy and reliability cannot be guaranteed.

For the purpose of avoiding experimental randomness, Monte Carlo simulation ex-
periments were conducted to investigate the error statistical characteristics of Trajectory 1
and Trajectory 2. Figure 5 presents the results of 100 Monte Carlo simulation experiments
for error statistics. The upper and lower dashed lines of the error curves represent the
+3σ and −3σ boundaries, respectively, while the solid lines represent the error mean. The
boundary values represent the positioning accuracy, and the boundary range represents
the positioning stability. The specific data for Figure 5 is listed in Table 6. It can be con-
cluded from Figure 5 and Table 6 that the positioning accuracy and stability of Trajectory
2 are worse than those of Trajectory 1, and the positioning error of Trajectory 2 exhibits a
diverging trend.
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Figure 3. Filtering errors for the two trajectories.

Figure 4. The relative motion trajectories of MAV B relative to A.
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Figure 5. 100 Monte Carlo simulations, which are conducted to verify the system observability conditions.

Table 6. Mean statistical data from 100 Monte Carlo simulation tests.

Parameters +3σ Boundary Mean −3σ Boundary

Trajectory 1 x 1.62 m −0.04 m −1.69 m
y 2.07 m 0.02 m −2.03 m

Trajectory 2 x 8.47 m 2.44 m −2.59 m
y 4.19 m 1.39 m −3.41 m

Trajectory 2
Trajectory 1

x 5.23 / 1.53
y 2.02 / 1.18

The simulation experiments in Section 5.2 demonstrate that the system has smaller
positioning errors when it satisfies the observability conditions, versus larger errors with a
divergent trend when it fails to meet the conditions. The result further confirms the validity
of the system observability theoretical analysis in Section 4.

5.3. The Influence of Different Ranging Errors on the Positioning Accuracy and Stability

In this section, we investigate the impact of different ranging errors on the positioning
accuracy and stability of the proposed relative localization method, which integrates
ranging and IMU information. The ranging errors for Trajectory 1 are set to four levels:
1 m, 2 m, 4 m, and 8 m. The results of a single experiment’s positioning errors are shown in
Figure 6. Since Trajectory 1 satisfies the system observability conditions, the corresponding
positioning accuracy is within 2 m after approximately 100 s, despite the different ranging
errors, and the system remains stable.
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Figure 6. The positioning errors corresponding to different ranging errors, where four ranging error
levels of 1 m, 2 m, 4 m, and 8 m are set.

Subsequently, 100 Monte Carlo simulations are conducted, and the simulation results
are presented in Figure 7. It can be visually observed that the larger the ranging error, the
worse the system’s positioning accuracy and stability. However, increasing ranging errors
did not cause the positioning accuracy and stability of the proposed system to deteriorate
significantly, meaning the system did not diverge, but only increased the error. Specifically,
the average boundary value increased from about 2 m to around 3 m as ranging errors
increased from 1 m to 8 m. These experimental results indicate that different ranging errors
have a limited impact on the system’s positioning accuracy and stability.

5.4. Error Comparison with an Existing Positioning Method

In Section 5.4, we compare the performance of the proposed method with an existing
method introduced in [32].

To demonstrate the rationality of the parameter settings in the comparative experiment,
we offer the following explanations: The UWB ranging error in [32] was set to 2 m, and
the IMU used was the 9-DOF MPU-9150, with assumed displacement errors of 0.2 m
and orientation errors of 0.1 rad. The rationality of the parameters has been previously
confirmed in [32]. Therefore, we adopt the ranging error of 2 m from [32]. In addition, the
IMU data used in this paper is from MPU-6050, whose data parameters are essentially the
same as those of MPU-9150. Based on these considerations, we conclude that our parameter
settings are appropriate for the purposes of our simulation.
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Figure 7. 100 Monte Carlo simulations, which are conducted to investigate the impact of different
ranging errors on the positioning accuracy and stability.

The experimental results of the two methods are shown in Figure 8. It can be observed
that the average positioning error of the proposed method in this paper is approximately
0.55 m, while that of the method in [32] is about 2.14 m, which is approximately 3.89 times
the error of the proposed method. In contrast, the relative positioning method proposed in
this paper, which fuses ranging and IMU information, achieves better positioning accuracy.

Figure 8. A comparison of the positioning errors between the method proposed in this paper and
that in [32] is presented.
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At the initial startup phase of the positioning system, EKF may have uncertainty about
the initial state, that is, the initial estimate of the system state may not be accurate enough,
which may lead to large errors. As time goes on, since the system has started to operate,
through measurement updates and filtering, the state estimate of the system will gradually
become more accurate, and the error will gradually decrease until it stabilizes.

6. Conclusions

In this paper, we have presented a novel cooperative relative positioning method
for MAVs in GNSS-denied scenarios. Within the framework of the system model, we
have employed the EKF algorithm to fuse ranging and IMU information, addressing the
problem of IMU error drift and enabling high-precision and robust MAV positioning. In
addition, our proposed method has the following several distinctive features: it eliminates
the requirement for precise reference anchors, expands the application scope of the system,
and solves the problem of limited number of nodes in MAV formation. Furthermore,
we have theoretically derived the system observability conditions and provided specific
expressions that guarantee the system positioning accuracy when the system satisfies the
observability conditions. We have verified the correctness of the observability theoretical
analysis through simulations and investigated the influence of different ranging errors on
the positioning accuracy and stability. Finally, we have demonstrated the superiority of the
proposed method through simulation comparisons with an existing method.

We have verified the proposed method through simulation experiments. To ensure that
the experiments are as close to reality as possible, the system parameters considered in this
paper are taken from the official datasheet of the sensor and previous research [32,38–40].
However, there is still a certain gap between simulation and reality, mainly in the follow-
ing aspects:

1. The presence of obstacles, wind conditions, and other environmental factors may
affect the performance of MAVs in practical applications.

2. Simulated noise cannot fully reflect the noise experienced by MAVs in actual applications.
3. There may be a certain difference in air pressure at the same altitude but different

horizontal positions due to the influence of factors such as atmospheric pressure,
temperature, and humidity, which may result in some spatial variations. In addition,
the scale of pressure gradient varies across different regions. As a result, the barometric
altimeter readings may be affected and may introduce some measurement bias.

4. In practical applications, the airflow generated by the movement of MAVs may have
an impact on the flight stability and control of MAVs.

These factors are difficult to model accurately in simulation experiments. Therefore,
actual verification will direct our research in the future.
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Appendix A.

Appendix A.1. Proof of Equation (5)

The relationship between the Earth-fixed North-East-Down coordinate system n and
the typical body-fixed coordinate system b is shown in Figure A1. The following unit
vectors are defined:

n1 �
[
1 0 0

]T , n2 �
[
0 1 0

]T , n3 �
[
0 0 1

]T (A1)

Figure A1. The relationship between the Earth-fixed North-East-Down (NED) coordinate system n
and the body-fixed coordinate system b.

The unit vectors along onxn, onyn, and onzn axes in n are represented by n1, n2, and n3,
respectively. The following relationships are satisfied by the unit vectors along obxb, obyb,
and obzb axes in b:

bb1 = n1, bb2 = n2, bb3 = n3 (A2)

Furthermore, the unit vectors along obxb, obyb, and obzb axes in n are represented by
nb1, nb2, and nb3, respectively.

The schematic diagram of the rotational relationship from the Earth-fixed North-East-
Down coordinate system n to the body-fixed coordinate system b is shown in Figure A2.
Assuming on1n2n3 is a right-handed Cartesian coordinate system, the following three
rotations are performed: First, the on1n2n3 system is rotated about the positive on3-axis by
an angle ϕ, resulting in the ok1k2k3 system, which shares the same oz axis as the on1n2n3
system. Next, the ok1k2k3 system is rotated about the positive ok2-axis by an angle θ,
resulting in the oe1e2e3 system, which shares the same oy axis as the ok1k2k3 system. Finally,
the oe1e2e3 system is rotated about the positive oe1-axis by an angle γ, resulting in the
ob1b2b3 system, which shares the same ox axis as the oe1e2e3 system. The rotation sequence
and the sign of each rotation angle can be denoted as ‘(+3)(+2)(+1)’, or simply ‘321’ by
omitting the plus sign, where the numbers 1, 2, and 3 represent the rotations about ox,
oy, and oz axes, respectively, and the plus sign in the parentheses indicates the positive
direction of rotation according to the right-hand rule.
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Figure A2. Define Euler angles by the 321-rotation sequence. (a) Yaw angle ϕ; (b) Pitch angle θ;
(c) Roll angle γ.

Assuming that the body angular velocity is bω =
[
ωxb ωyb ωzb

]T , the relationship
between the attitude change rate and the body angular velocity is given by the following
equation [41]:

bω =
.
ϕ·bk3 +

.
θ·be2 +

.
γ·bb1 (A3)

where,
bb1 =

[
1 0 0

]T (A4)

be2 = Rb
e · ee2 = Rb

e · n2 = Rx(γ) · n2

=

⎡⎣1 0 0
0 cos γ sin γ
0 − sin γ cos γ

⎤⎦⎡⎣0
1
0

⎤⎦
=
[
0 cos γ − sin γ

]T
(A5)

bk3 = Rb
k·kk2 = Rb

k · n3 = Rx(γ)Ry(θ) · n3

=

⎡⎣ 1 0 0
0 cos γ sin γ
0 − sin γ cos γ

⎤⎦⎡⎣ cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

⎤⎦⎡⎣ 0
0
1

⎤⎦
=
[
− sin θ sin γ cos θ cos γ cos θ

]T
(A6)

According to Equations (A3)–(A6), the following equation is obtained:⎡⎣ωxb
ωyb
ωzb

⎤⎦ =

⎡⎣1 0 − sin θ
0 cos γ sin γ cos θ
0 − sin γ cos γ cos θ

⎤⎦
⎡⎢⎣

.
γ
.
θ
.
ϕ

⎤⎥⎦ (A7)

Then we can obtain the following expression by applying the inverse transformation
to Equation (A7): ⎡⎢⎣

.
γ
.
θ
.
ϕ

⎤⎥⎦ =

⎡⎣ 1 0 − sin θ
0 cos γ sin γ cos θ
0 − sin γ cos γ cos θ

⎤⎦−1⎡⎣ ωxb
ωyb
ωzb

⎤⎦
=

⎡⎣ 1 sin γ tan θ cos γ tan θ
0 cos γ − sin γ

0 sin γ
cos θ

cos γ
cos θ

⎤⎦⎡⎣ ωxb
ωyb
ωzb

⎤⎦
(A8)

where,
.
ϕ =

sin γ

cos θ
ωyb +

cos γ

cos θ
ωzb (A9)
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Since the yaw angles in both coordinate systems (h and b) are identical, the yaw rate in
the horizontal body-fixed coordinate system h is the same as that given by Equation (A9).
Therefore, Equation (5) is confirmed.

Appendix A.2. Proof of Equation (6)

According to the relationship between the direction cosine matrix and the equiva-
lent rotation vector, the transformation matrix from b to n in Figure A2 can be obtained
as follows:

Cn
b =

⎡⎢⎢⎣
cos ϕ − sin ϕ 0

sin ϕ cos ϕ 0

0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

⎤⎥⎥⎦
⎡⎢⎢⎣

1 0 0

0 cos γ − sin γ

0 sin γ cos γ

⎤⎥⎥⎦
=

⎡⎢⎢⎣
cos ϕ cos θ − sin ϕ cos γ + cos ϕ sin θ sin γ sin ϕ sin γ + cos ϕ sin θ cos γ

sin ϕ cos θ cos ϕ cos γ + sin ϕ sin θ sin γ − cos ϕ sin γ + sin ϕ sin θ cos γ

− sin θ cos θ sin γ cos θ cos γ

⎤⎥⎥⎦
(A10)

In this paper, we use the fixed-body horizontal coordinate system h, whose yaw angle
is the same as that of the typical fixed-body coordinate system b, and x-y plane is parallel
to that of the NED coordinate system n. Therefore, the transformation matrix from b to h is
equivalent to Cn

b with ϕ = 0, which is given by:

Ch
b =

⎡⎣ cos θ sin θ sin γ sin θ cos γ
0 cos γ − sin γ

− sin θ cos θ sin γ cos θ cos γ

⎤⎦ (A11)

Since this paper considers the two-dimensional case, according to Equation (A11), the
transformation matrix of Equation (6) can be obtained.
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Abstract: Motion capture systems have enormously benefited the research into human–computer
interaction in the aerospace field. Given the high cost and susceptibility to lighting conditions of
optical motion capture systems, as well as considering the drift in IMU sensors, this paper utilizes a
fusion approach with low-cost wearable sensors for hybrid upper limb motion tracking. We propose
a novel algorithm that combines the fourth-order Runge–Kutta (RK4) Madgwick complementary
orientation filter and the Kalman filter for motion estimation through the data fusion of an inertial
measurement unit (IMU) and an ultrawideband (UWB). The Madgwick RK4 orientation filter is
used to compensate gyroscope drift through the optimal fusion of a magnetic, angular rate, and
gravity (MARG) system, without requiring knowledge of noise distribution for implementation.
Then, considering the error distribution provided by the UWB system, we employ a Kalman filter
to estimate and fuse the UWB measurements to further reduce the drift error. Adopting the cube
distribution of four anchors, the drift-free position obtained by the UWB localization Kalman filter
is used to fuse the position calculated by IMU. The proposed algorithm has been tested by various
movements and has demonstrated an average decrease in the RMSE of 1.2 cm from the IMU method
to IMU/UWB fusion method. The experimental results represent the high feasibility and stability of
our proposed algorithm for accurately tracking the movements of human upper limbs.

Keywords: motion estimation; inertial measurement unit (IMU); ultrawideband (UWB); Madgwick
orientation filter; Kalman filter

1. Introduction

Motion capture (MoCap) systems provide technical support for the operation of space
robots, which has enormously benefited the research into human–computer Interaction in
the aerospace field. By capturing human upper limb movement and mapping it to space
robot motion, space operators can remotely control space robot arms and allow them to
perform complex and elaborate actions, such as grasping and handling. Thus, we need to
accurately estimate the movement of human upper limbs [1–3]. Optical Mocap systems
employ multiple cameras to capture the positions of reflective markers and have been
widely used in human motion tracking. Although these systems share precise real-time
tracking and strong anti-interference abilities, they are expensive and suffer from light and
occlusion problems [4,5]. In order to flexibly track human movements, it is necessary to
employ ubiquitous wearable sensors.

With the intensive study and rapid advancement of micro-electro-mechanical systems,
wearable inertial measurement units (IMUs) have been extensively adopted for 3-D human
motion tracking due to their low cost, portability, and high independence [6]. In many of
the proposed IMU Mocap methods, accelerometers and gyroscopes are fused to estimate
the body segment orientation [7,8], including the knee joint angle [9,10], arm adduction
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angle [11], and shoulder and elbow joint angles [12,13]. However, it has been illustrated
that there is obvious drift error of the attitude angle calculated by the gyroscope, which con-
tributes to the poor estimation accuracy and stability. Considering that the accelerometers
can only compensate for the tilt angles relative to the direction of gravity, it is necessary to
introduce magnetometers to provide compensation for the yaw angles, which is known as
nine-axis IMU or the magnetic, angular rate, and gravity (MARG) system [14]. Data fusion
of three inertial sensors can be achieved by adopting either a complementary filter [14–17]
or a classic Kalman filter [18,19]. The Kalman filter has been widely used as an orientation
filter for the majority of the proposed methods. Wu et al. [20–23] employed a particle
filter and an unscented Kalman filter for information fusion and developed a micro-sensor
Mocap system to achieve real-time tracking. Roetenberg et al. [24] designed a Kalman
filter and improved the orientation estimation through the compensation of magnetic
disturbances. Considering that the Kalman filter requires knowledge of noise distribution
and is prone to computational load and parameter tuning issues, many researchers tend
to use the complementary filter. Fourati et al. [25] proposed a complementary observer
based on the quaternion method for motion tracking. However, only adopting inertial
sensors fusion for motion estimation will still cause drift, so it is expected that a stable and
high-precision technology will be introduced to fuse with IMU.

Considering the flexibility and high sampling rate of IMU, ultrawideband (UWB)
technology is attractive for data fusion due to its low cost, portability, and low energy
consumption [26,27], but it requires a clear line-of-sight (LOS) channel [28]. Compared
with traditional UWB positioning methods consisting of maximum likelihood estimation
(MLE), linearized least square estimation (LLSE), and weighted centroid estimation (WCE),
the extended Kalman filter (EKF) performs with less computational time and less com-
plexity [29]. Applying UWB and IMU fusion for human motion tracking can not only
compensate for the low sampling rate of the UWB system, but reduce the drift of IMU
as well. Depending on whether the fusion is based on raw time or location, data fusion
methods are divided into tightly coupled [30] and loosely coupled [31,32] categories. Kok
et al. [33] provided tightly coupled IMU and UWB fusion using an optimization method
that showed good performance in terms of handling outliers, but suffered from clock skew
challenges. Therefore, in order to facilitate the calculation, the loosely coupled method
is often employed. Zihajehzadeh et al. [32,34,35] proposed a Kalman-filter-based IMU
and UWB fusion method without a magnetometer and accurately captured lower body
motion under magnetic disturbances. However, when extending the rotation matrices to
the upper limb, their algorithm may suffer from the singularity problem. Zhang et al. [36]
adopted a Mahony filter and quaternion for foot attitude estimation via IMU and UWB
fusion, but the use of acceleration double integration to obtain the position would lead to
huge cumulative errors.

In this paper, the human upper limb is taken as our research subject, and a novel
IMU/UWB data fusion method is proposed for 3-D motion estimation by applying the
Runge–Kutta Madgwick filter, the UWB localization Kalman filter, and the IMU/UWB
Kalman filter. On the basis of the established kinematics model of the upper limbs,
the quaternion method was employed to calculate the attitude angle to avoid the gim-
bal lock problem. Our proposed algorithm comprises the following two novel aspects:
(1) we combined the Madgwick RK4 complementary orientation filter and Kalman filter
for motion tracking, the Madgwick RK4 filter was employed to reduce gyroscope drift
without leading to noise distribution, and the Kalman filter was implemented for UWB
localization and fusion with known error distribution from the UWB system; and (2) the
drift-free position obtained by the UWB localization system was used to fuse the position
calculated by IMU for upper limb motion estimation, which enormously reduced the drift
caused by the double integration of acceleration. The good experimental results represent
the high feasibility and stability of our proposed algorithm.

The rest of the paper is structured as follows. In Section 2, the theoretical fusion
method for 3-D upper limb tracking is described. The experimental setup and protocol
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are demonstrated in Section 3. Then, the experimental results are shown and analyzed in
Section 4. Finally, conclusions are provided in Section 5.

2. Theoretical Method

In this section, the proposed information fusion algorithm for human upper limb
motion estimation is described. As shown in Figure 1, we first simplified the human upper
limb as a kinematics model with three joints (shoulder, elbow, and wrist) and two segments
(upper arm and forearm) [21]. The shoulder joint was set as a fixed point with three degrees
of freedom (DoFs) and two DoFs for the elbow and wrist [37]. Taking the right arm as an
example, two IMU sensors were arranged on the lateral side above the wrist and the elbow,
respectively, as well as two UWB tags. The navigation coordinate frame (n) was set as the
reference system, which was consistent with the coordinate system of UWB and MoCap.
The body frame (b) was attached to each body segment where the sensors were located.
It aligned with the n-frame initially. Neglecting the installation errors, the sensor frame (s)
was attached to each IMU and aligned with the b-frame to track the movements of human
upper limbs.

Figure 1. Upper limb kinematics model and sensor unit arrangement.

The overall framework of the proposed algorithm consists of three parts, illustrated
in Figure 2, including (1) Quaternion RK4 Based Madgwick Orientation Complementary
Filter, (2) UWB localization Kalman filter, and (3) IMU/UWB Fusion Kalman filter. For the
purpose of estimating the 3-D spatial trajectory of the movements of human upper limbs,
we first employed the quaternion method to calculate the attitude angle using gyroscope
measurements. However, the integration of gyroscope measurement errors contributed to
an accumulating error in the quaternion algorithm [14]. Therefore, we considered adopting
the Madgwick orientation filter to improve the motion estimation accuracy through the
optimal fusion of the accelerometer, gyroscope, and magnetometer of the MARG system.
Then, in order to further reduce the drift error, we proposed that the UWB localization
system be combined with the IMU sensors. An extended Kalman filter was utilized to
fuse IMU and UWB in order to perform stable and high-precision motion estimation of the
human upper limbs.

Figure 2. Framework of the proposed upper limb motion tracking algorithm.
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2.1. Quaternion RK4 Based Madgwick Orientation Complementary Filter
2.1.1. Fourth-Order Runge–Kutta-Based Quaternion Update Algorithm

Rotation transformation can be described as a vector rotating around a specified
rotation axis with a certain angle in a coordinate system. The unit quaternion is defined as

q = q1 + iq2 + jq3 + kq4 (1)

For the same vector nr and br, defined in the n-frame and b-frame, respectively, nr′

and br′ are their extended forms, containing a 0 inserted as the real part [14]. n
b q describes

the rotation of the n-frame relative to the b-frame, so nr′ can be expressed as

nr′ = n
b q ⊗ br′ ⊗ n

b q∗ = n
b q ⊗

[
M′(n

b q∗
)br′
]
= M

(n
b q
)

M′(n
b q∗)br′

=

⎡⎢⎢⎣
q1 −q2 −q3 −q4
q2 q1 −q4 q3
q3 q4 q1 −q2
q4 −q3 q2 q1

⎤⎥⎥⎦
⎡⎢⎢⎣

q1 q2 q3 q4
−q2 q1 −q4 q3
−q3 q4 q1 −q2
−q4 −q3 q2 q1

⎤⎥⎥⎦
⎡⎢⎢⎣

0
x
y
z

⎤⎥⎥⎦ (2)

n
b q ⊗ br′ =

⎡⎢⎢⎣
q1 −q2 −q3 −q4
q2 q1 −q4 q3
q3 q4 q1 −q2
q4 −q3 q2 q1

⎤⎥⎥⎦
⎡⎢⎢⎣

0
x
y
z

⎤⎥⎥⎦ (3)

where q∗ is the conjugate of q; the symbol ⊗ denotes the quaternion product [21], as defined
in (3); M

(n
b q
)

is the left multiplication matrix of the quaternion n
b q; and M′(n

b q∗) is the right
multiplication matrix of the conjugate quaternion n

b q∗. Furthermore, the rotation can be
represented by a rotation matrix.

nr = n
b Cbr (4)

where n
b C represents the rotation of the n-frame relative to the b-frame.

n
b C =

⎡⎣(q1
2 + q2

2 − q3
2 − q4

2) 2(q2q3 − q1q4) 2(q2q4 + q1q3)
2(q2q3 + q1q4) (q1

2 − q2
2 + q3

2 − q4
2) 2(q3q4 − q1q2)

2(q2q4 − q1q3) 2(q3q4 + q1q2) (q1
2 − q2

2 − q3
2 + q4

2)

⎤⎦ (5)

The quaternion update algorithm uses the angular velocity increment in the sample
period measured by the IMU sensors to calculate the quaternion at each time in order to
update the human motion data. The quaternion derivative is given by

n
b

.
q = 1

2
n
b q ⊗ bω = 1

2 M
(n

b q
)bω = 1

2 M′
(

bω
)

n
b q

= 1
2

⎡⎢⎢⎣
q1 −q2 −q3 −q4
q2 q1 −q4 q3
q3 q4 q1 −q2
q4 −q3 q2 q1

⎤⎥⎥⎦
⎡⎢⎢⎣

0

bωx

bωy

bωz

⎤⎥⎥⎦ = 1
2

⎡⎢⎢⎢⎣
0 −bωx −bωy −bωz

bωx 0 bωz −bωy

bωy −bωz 0 bωx

bωz bωy −bωx 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎣

q1
q2
q3
q4

⎤⎥⎥⎦ (6)

where bω =
[
0 bωx bωy bωz

]T is the angular velocity measured by the gyroscope.
Given the initial value and the rotational angular velocity, the orientation at each time

n
b qω,t can be obtained by numerically integrating the quaternion derivative n

b
.
qω,t.

n
b qω,t =

n
b q̂est,t−1 +

n
b

.
qω,tΔt = n

b q̂est,t−1 +
1
2

Δtn
b q̂est,t−1 ⊗ bωt (7)

where Δt is the sampling period, n
b q̂est,t−1 is the estimation of the quaternion at the previous

time, and bωt is the angular velocity at time t.
Although increasing the order of the above algorithm can improve the computational

accuracy, the complexity is also increasing. The Runge–Kutta method is a high-precision
single-step algorithm; the most classic and widely used is the fourth-order Runge–Kutta
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algorithm. It can perform iterative operations on definite solution problems with known
initial values and equations without solving differential equations, which enormously
reduces the computational complexity. In this paper, the calculation of human upper
limb motion can be regarded as the initial value problem of a differential equation. The
calculation formulas are as follows.

Δn
b

.
q1 = 1

2
n
b q̂est,t−1 ⊗ bωt−1

Δn
b

.
q2 = 1

2

(
n
b q̂est,t−1 +

Δn
b

.
q1

2

)
⊗ bωt−1/2

Δn
b

.
q3 = 1

2

(
n
b q̂est,t−1 +

Δn
b

.
q2

2

)
⊗ bωt−1/2

Δn
b

.
q4 = 1

2
(n

b q̂est,t−1 + Δn
b

.
q3
)
⊗ bωt

n
b qω,t = n

b q̂est,t−1 +
1
6 Δt
(
Δn

b
.
q1 + 2Δn

b
.
q2 + 2Δn

b
.
q3 + Δn

b
.
q4
)

(8)

where bωt−1/2 is the angular velocity at the intermediate time between t − 1 and t.
The quaternion fourth-order Runge–Kutta algorithm is designed to interpolate in the

integration interval, and the slope is iteratively optimized at each step of the calculation to
obtain an updated value.

2.1.2. Madgwick RK4 Orientation Complementary Filter for MARG

By formulating an objective function, this filter fuses the data of the tri-axis accelerom-
eter, gyroscope, and magnetometer of the MARG system, then iteratively optimizes it to
calculate the orientation n

b q̂.
Let the predefined reference vector in the n-frame be nd̂ and the sensor measurement

in the b-frame be bŝ. The objective function is defined as

min
n
b q̂∈R4

f
(

n
b q̂, nd̂, bŝ

)
f
(

n
b q̂, nd̂, bŝ

)
= n

b q̂∗ ⊗ nd̂ ⊗ n
b q̂ − bŝ

nd̂ =
[
0 dx dy dz

]
bŝ =

[
0 sx sy sz

]
(9)

By recording the initial quaternion n
b q̂0 and step size μ, the estimation of n

b q̂n+1 is
obtained for n iterations, adopting the general gradient descent algorithm illustrated in (10).
The symbol ∇ represents the gradient of the objective function, which can be computed by
the objective function and its Jacobian, as shown in (11).

n
b q̂k+1 = n

b q̂k − μ
∇f
(

n
b q̂k, nd̂, bŝ

)
∥∥∇f

(n
b q̂k, nd̂, bŝ

)∥∥ , k = 0, 1, 2 · · · n (10)

∇f
(

n
b q̂k, nd̂, bŝ

)
= JT(n

b q̂k, nd̂
)
f
(

n
b q̂k, nd̂, bŝ

)
(11)

The specific algorithm expression of the accelerometer is described in (12). Normalized
gravity nĝ and normalized accelerometer measurements bâ substituted nd̂ and bŝ, respectively.

nĝ=
[
0 0 0 1

]
bâ=

[
0 ax ay az

]
fg

(
n
b q̂, bâ

)
=

⎡⎣ 2(q2q4 − q1q3)− ax
2(q1q2 + q3q4)− ay

2
(
0.5 − q2

2 − q2
3
)
− az

⎤⎦
Jg(

n
b q̂)=

⎡⎣−2q3 2q4 −2q1 2q2
2q2 2q1 2q4 2q3
0 −4q2 −4q3 0

⎤⎦
(12)
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The accelerometer compensated the tilt angle of motion estimation obtained by the
gyroscope measurement, but the heading angle was not compensated, as this requires the
introduction of a magnetometer. The magnetometer can be used to measure the strength
and direction of the magnetic field and to determine the orientation of a device.

As for the magnetometer, the geomagnetic field nb̂, as the substitution of nd̂, can
be decomposed into a horizontal axis and a vertical axis theoretically. Additionally, the
normalized magnetometer measurement bm̂ is the substitution of bŝ. The specific form can
be written as

nb̂=
[
0 0 by bz

]
bm̂=

[
0 mx my mz

]
fb

(
n
b q̂, nb̂, bm̂

)
=

⎡⎣ 2by(q1q4 + q2q3) + 2bz(q2q4 − q1q3)− mx
2by
(
0.5 − q2

2 − q2
4
)
+ 2bz(q1q2 + q3q4)− my

2by(q3q4 − q1q2) + 2bz
(
0.5 − q2

2 − q2
3
)
− mz

⎤⎦
Jb
(n

b q̂, nb̂
)
=

⎡⎣2byq4 − 2bzq3 2byq3 + 2bzq4 2byq2 − 2bzq1 2byq1 + 2bzq2
2bzq2 −4byq2 + 2bzq1 2bzq4 −4byq4 + 2bzq3
−2byq2 −2byq1 − 4bzq2 2byq4 − 4bzq3 2byq3

⎤⎦
(13)

However, the magnetometer may be disturbed by the bias of hard iron and soft iron,
causing errors in the measurement direction of the earth’s magnetic field, so magnetic
distortion compensation needs to be employed.

nĥt =
[
0 hx hy hz

]
= n

b q̂est,t−1 ⊗ bm̂t ⊗ n
b q̂∗

est,t−1 (14)

nb̂t =
[
0 0

√
h2

x + h2
y hz

]
(15)

where nĥt is the normalized magnetometer measurement in the n-frame and nb̂t is the
compensated geomagnetic field at time t.

Combining the specific algorithms of the accelerometer and magnetometer, the formu-
las were developed as follows.

fg,b

(
n
b q̂, bâ, nb̂, bm̂

)
=

⎡⎣ fg

(
n
b q̂, bâ

)
fb

(
n
b q̂, nb̂, bm̂

)⎤⎦
Jg,b
(n

b q̂, nb̂
)
=

[
JT

g
(n

b q̂
)

JT
b
(n

b q̂, nb̂
)] (16)

By substituting (16) into (11), the gradient of the combined objective function can be
written as

∇f = JT
g,b
(n

b q̂est,t−1, nb̂
)
fg,b

(
n
b q̂est,t−1, bâ, nb̂, bm̂

)
(17)

And the estimated quaternion n
b q∇,t calculated at time t can be given by

n
b q∇,t =

n
b q̂est,t−1 − μt

∇f
‖∇f‖ (18)

Employing the Madgwick orientation filter, an estimated rotation n
b qest,t was obtained

by fusing n
b qω,t and n

b q∇,t.

n
b qest,t = γt

n
b q∇,t + (1 − γt)

n
b qω,t, 0 ≤ γt ≤ 1 (19)

where γt represents weight, ensuring that the weighted divergence of n
b qω,t equals the

weighted convergence of n
b q∇,t.
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According to [14], it is known that when noise augmentation of μt is assumed to be
extremely high, (19) can be rewritten as

n
b qest,t =

n
b q̂est,t−1 +

n
b

.
qest,tΔt = n

b q̂est,t−1 + Δt
(

n
b

.
qω,t − β

∇f
‖∇f‖

)
(20)

where β is the divergence rate of n
b qω,t.

By substituting (8) into (20), it can be written in the fourth-order Runge–Kuta form as

n
b qest,t =

n
b q̂est,t−1 + Δt

(
1
6
(
Δn

b
.
q1 + 2Δn

b
.
q2 + 2Δn

b
.
q3 + Δn

b
.
q4
)
− β

∇f
‖∇f‖

)
(21)

The process of the quaternion RK4-based Madgwick orientation filter algorithm is
summarized as follows in Algorithm 1.

Algorithm 1: Process of quaternion RK4-based Madgwick orientation complementary filter.

Initialization:nb q0
Input: bω t, Δt, bât, bm̂t, β

Output: n
b qest,t

1: n
b

.
qω,t ← 0.5 n

b q̂est,t−1 ⊗ bω t
2: n

b qω,t ← n
b q̂est,t−1 +

n
b

.
qω,tΔt

3: Δn
b

.
q1, Δn

b
.
q2, Δn

b
.
q3, Δn

b
.
q4 ← n

b q̂est,t−1, bω t−1, bω t−1/2, bω t
4: n

b qω,t ← n
b q̂est,t−1 + Δt

(
Δn

b
.
q1 + 2Δn

b
.
q2 + 2Δn

b
.
q3 + Δn

b
.
q4
)
/6

5: nĥt ← n
b q̂est,t−1 ⊗ bm̂t ⊗ n

b q̂∗
est,t−1 ; nb̂t ← nĥt

6: fg,b

(
n
b q̂, bâ, nb̂, bm̂

)
←
[
fg

(
n
b q̂, bâ

)
fb

(
n
b q̂, nb̂, bm̂

)]T

7: Jg,b
(n

b q̂, nb̂
)
←
[
JT

g
(n

b q̂
)

JT
b
(n

b q̂, nb̂
)]T

8: ∇f ← JT
g,b
(n

b q̂est,t−1, nb̂
)
fg,b

(
n
b q̂est,t−1, bâ, nb̂, bm̂

)
9: n

b qest,t ← n
b qω,t − Δtβ

∇f
‖∇f‖

Return: n
b qest,t

2.2. UWB Localization Kalman Filter

The UWB positioning system contained a tag-anchor wireless communication channel,
as shown in Figure 3. The calculation of the distances between each tag and anchor
exploiting double-sided two-way ranging (DS-TWR) method and position estimation
employed distances [28,29]. In addition to classical UWB positioning algorithms such as
MLE, LLSE, and WCE, we used EKF for position estimation due to its lower complexity
and shorter computational time [29].

Figure 3. UWB positioning system.
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It was defined that the UWB localization system was aligned with the n-frame. The
system model adopted for UWB EKF algorithm can be expressed as

xu,t = xu,t−1 + wu,t−1
yu,t = hu,t

(
xu,t
)
+ vu,t

(22)

where the subscript u represents the UWB localization Kalman filter, and the state vector
xu,t = PUWB,t =

[
xt yt zt

]T is a 3 × 1 vector where PUWB,t represents the 3-D position of

UWB tags in the n-frame. The measurement vector yu,t =
[
d1,t d2,t d3,t d4,t

]T denotes
the distances between each anchor and tag. The expansion form of hu,t

(
xu,t
)

is expressed
in (23). The process noise wu,t−1 and measurement noise vu,t are zero mean additional
Gaussian white noise with covariance matrices of Qu,t−1 and Ru,t respectively. These
matrices were obtained from the UWB system, and distinguished the ranging accuracy of
different anchors.

hu,t
(
xu,t
)
=

⎡⎢⎢⎢⎢⎢⎢⎣

√
(xt − x1)

2 + (yt − y1)
2 + (zt − z1)

2√
(xt − x2)

2 + (yt − y2)
2 + (zt − z2)

2√
(xt − x3)

2 + (yt − y3)
2 + (zt − z3)

2√
(xt − x4)

2 + (yt − y4)
2 + (zt − z4)

2

⎤⎥⎥⎥⎥⎥⎥⎦ (23)

where xi, yi, zi, i = 1, 2, 3, 4 represent the position of the i-th anchor.
Thus, the Jacobian matrix Hu,t could be calculated as shown in (24). And for the sake

of brevity, Di,t, i = 1, 2, 3, 4 is the corresponding row of hu,t
(
xu,t
)
.

Hu,t =
∂hu,t

(
xu,t
)

∂xu,t

∣∣∣∣∣
xu,t

=

⎡⎢⎢⎢⎢⎢⎣
(xt−x1)

D1,t

(yt−y1)
D1,t

(zt−z1)
D1,t

(xt−x2)
D2,t

(yt−y2)
D2,t

(zt−z2)
D2,t

(xt−x3)
D3,t

(yt−y3)
D3,t

(zt−z3)
D3,t

(xt−x4)
D4,t

(yt−y4)
D4,t

(zt−z4)
D4,t

⎤⎥⎥⎥⎥⎥⎦ (24)

Assuming that Pu,0 is the initial state estimation covariance and is known as the prior,
as well as the initial, state vector xu,0, the posterior estimations Pu,t and xu,t were recursively
obtained by employing the prediction and update functions. It was defined that Pu,t|t−1
and xu,t|t−1 were the prediction forms illustrated in (25) and could be calculated using the
posterior estimations Pu,t−1 and xu,t−1 at time t − 1.

Pu,t|t−1 = Pu,t−1 + Qu,t−1
xu,t|t−1 = xu,t−1

(25)

Then, the prediction and the measurement vector yu,t were used to update the prior
estimations, and the posterior estimations at time t could be expressed as

ku,t = Pu,t|t−1HT
u,t

[
Hu,tPu,t|t−1HT

u,t + Ru,t

]−1

xu,t = xu,t|t−1 + ku,t

[
yu,t − hu,t

(
xu,t|t−1

)]
Pu,t = (I3×3 − ku,tHu,t)Pu,t|t−1

(26)

where xu,t is the 3-D position of the UWB tag, and will be used as the measurement vector
in the IMU/UWB Kalman filter.

2.3. IMU/UWB Fusion Kalman Filter

The innovative aspect of this IMU/UWB Kalman filter is that it uses the drift-free
position calculated by the UWB system to compensate for the orientation and position
estimated by the IMU system. The information obtained by the IMU system was employed
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as the state vector, and the position calculated by the UWB system was applied as the
measurement vector. The system model can be expressed as

xiu,t = fiu,t−1

(
xiu,t−1, uiu,t−1, wiu,t−1

)
yiu,t = hiu,t

(
xiu,t, viu,t

) (27)

where the subscript iu represents the IMU/UWB Kalman filter. xiu,t is the state vector,
uiu,t−1 is the input vector, yiu,t is the measurement vector, and wiu,t−1 and viu,t are the
process noise and measurement noise, respectively.

The state vector xiu,t =
[
PIMU,t

n
b qest,t

]T is a 7 × 1 vector where PIMU,t represents
the 3-D position of human upper limb and n

b qest,t is the orientation obtained from the
Madgwick complementary filter. The state model consists of two parts, and the part n

b qest,t
can be expressed as

n
b qest,t = n

b qest,t−1 + Δtn
b

.
qest,t

= n
b qest,t−1 + Δt

(
n
b

.
qω,t − β

∇f
‖∇f‖

)
= n

b qest,t−1 + Δt
[

1
2

n
b qest,t−1 ⊗

(
bω t + bωb,t

)
− β

∇f
‖∇f‖

] (28)

where bωb,t is the bias of the gyroscope and ∇f
‖∇f‖ is the input vector.

Supposing that PIMU,0 is the initial position of the IMU sensors, then PIMU,t can be
recursively calculated from a geometric perspective using the rotation quaternion n

b qest,t
or the rotation matrix n

b Ct in (5), updated by n
b qest,t. The position part of the state model is

given by (29) and (30).

Pu
IMU,1 =

[
n
b Cu,1

(
Pu

IMU,0

)T
]T

Pu
IMU,2 =

[
n
b Cu,2

(
Pu

IMU,0

)T
]T

=

[
n
b Cu,2

n
b CT

u,1

(
Pu

IMU,1

)T
]T

Pu
IMU,3 =

[
n
b Cu,3

(
Pu

IMU,0

)T
]T

=

[
n
b Cu,3

n
b CT

u,2

(
Pu

IMU,2

)T
]T

· · ·

Pu
IMU,t =

[
n
b Cu,t

n
b CT

u,t−1

(
Pu

IMU,t−1

)T
]T

(29)

where Pu
IMU,t and n

b Cu,t represent the position and rotation matrix of the upper arm. The
position of the forearm relies on the upper arm, and is given by

P f
IMU,t = Pu

IMU,t +

[
n
b C f ,t

n
b CT

f ,t−1

(
P f

IMU,t−1 − Pu
IMU,t−1

)T
]T

(30)

where P f
IMU,t and n

b C f ,t represent the position and rotation matrix of the forearm. When using
the Kalman filter for the forearm, the input vector should contain the upper arm position.

The Jacobian matrices Fiu,t−1 and Liu,t−1 were obtained.

Fiu,t−1 =
∂ fiu,t−1

∂xiu,t−1

∣∣∣∣∣
xiu,t−1

=

[n
b Ct

n
b CT

t−1 03×4

04×3 I4×4 +
1
2 ΔtM′

(
bω t + bωb,t

)] (31)

Liu,t−1 =
∂ fiu,t−1

∂wiu,t−1

∣∣∣∣∣
xiu,t−1

=

[
03×4

1
2 ΔtM

(n
b qest,t−1

)] (32)
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The measurement vector yiu,t = [PUWB,t]
T is a 3 × 1 vector obtained from the UWB

localization Kalman filter, representing the 3-D position of UWB tags in the n-frame. The
measurement equation can be expressed as

yiu,t = Hiu,txiu,t + viu,t (33)

where Hiu,t is the Jacobian matrix, expressed as

Hiu,t =
[
I3×3 03×4

]
(34)

The covariance matrices Qiu,t−1 and Riu,t of the process noise wiu,t−1 and the measure-
ment noise viu,t were calculated as

Qiu,t−1= E
[
wiu,t−1wT

iu,t−1

]
= ∑

G
= σ2

GI4×4

Riu,t= E
[
viu,tv

T
iu,t

]
= ∑

P,UWB
= σ2

P,UWBI3×3

(35)

It was assumed that Piu,0 and xiu,0 were the initial state estimation covariance and
state vector, respectively, and the prediction forms Piu,t|t−1 and xiu,t|t−1 could be recursively
calculated using the following equations.

Piu,t|t−1 = Fiu,t−1Piu,t−1FT
iu,t−1 + Liu,t−1Qiu,t−1LT

iu,t−1

xiu,t|t−1 = fiu,t−1

(
xiu,t−1, uiu,t−1, 0

) (36)

Then, the prior estimations were updated, and the posterior estimations Piu,t and xiu,t
were written as

kiu,t = Piu,t|t−1HT
iu,t

[
Hiu,tPiu,t|t−1HT

iu,t + Riu,t

]−1

xiu,t = xiu,t|t−1 + kiu,t

[
yiu,t − hiu,t

(
xiu,t|t−1, 0

)]
Piu,t = (I7×7 − kiu,tHiu,t)Piu,t|t−1

(37)

where xiu,t is the fused 3-D position in the IMU/UWB Kalman filter, which was used for 3-D
motion reconstruction of human upper limbs. A detailed flowchart of the UWB localization
and the IMU/UWB Kalman filters is shown in Figure 4. The parameters were set as follows.
The initial state estimation covariance Pu,0 was set to 0.1 × I3×3. All elements of Piu,0 were
set to 0.1. xu,0 and xiu,0 were obtained from the UWB system and the optical MoCap system
for each trial of movement, respectively.

Figure 4. Flowchart of UWB localization and IMU/UWB Kalman filters.
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3. Experimental Demonstration

3.1. Experimental Setup

To estimate the movement of human upper limbs, wearable 9-axis MPU9250 inertial
sensor units (each sensor unit included a tri-axis accelerometer, a tri-axis gyroscope, and
a tri-axis magnetometer) were adopted in our experiments. To avoid the extrusive effect
of muscles of the human upper limbs, these two IMU sensors were placed on the lateral
side, above the wrist and the elbow, respectively [11,21]. Each IMU sensor was connected
to the computer via a serial port module for data transmission. The sample rate of the IMU
sensors was set to 100 Hz, and the installation direction is shown in Figure 1.

Additionally, a DW1000 UWB real-time localization system manufactured by Haoru
Technology, Dalian, China, was employed to track the 3-D position with an update rate of
about 10 Hz. The UWB communication technology was implemented between the anchors
and tags through the DS-TWR method based on time-domain transmission of radio signals,
and the anchors were also connected to the computer via a serial port module. It provided
an accuracy of 10 cm for the X/Y axis and 30 cm for the Z axis. Two UWB tags were fixed
on the bracelets with the IMU sensors to avoid relative movement, as shown in Figure 5.
To ensure the positioning stability of UWB, four anchors were arranged in our laboratory
in a cube distribution.

 

Figure 5. Setup of IMU sensors, UWB system, and optical MoCap system.

The Nokov optical MoCap system captures human motion through sixteen cameras
evenly arranged in the laboratory, as illustrated in Figure 5, and is used as a reference
system for algorithm verification and further comparison [34]. For each segment of the
human upper limb, at least four reflective markers were attached to the skin surface and
sensors, constituting an envelope rather than a cluster [9,11,38,39]. The optical MoCap
system achieved sub-millimeter positioning accuracy and higher reliability.

3.2. Experimental Protocol

Our experiments aimed to capture several common movements of the human upper
limbs, including simple whole-arm movements and combined upper-arm and forearm
movements. These common movements comprised motion 1: shoulder flexion/extension
and abduction/adduction (the whole arm moving along a circular trajectory); motion 2:
shoulder abduction/adduction, internal/external rotation, and elbow flexion/extension;
and motion 3: shoulder flexion/extension, internal/external rotation, and elbow flex-
ion/extension, as shown in Figure 6. In each trial, one type of movement was performed
periodically, with a duration of about one minute.
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(a) (b) (c) 

Figure 6. Tested movements. (a–c) represent motions 1–3, respectively.

As for the UWB system, four anchors arranged in conventional cube distribution were
employed, as shown in Figure 7. The above movements were performed by one subject
under each distribution throughout the experiment. The subject was a 24-year-old healthy
female 165 cm in height and 40 kg in weight. It is important to mention that the optical
MoCap system tracked the movement of the human upper limbs for each trial, which could
be used to initialize the IMU sensors and obtain the positions of UWB anchors. Before each
trial, the IMU sensors were calibrated, and a few seconds of stillness then enhanced the
stability of the proposed algorithm.

 

Figure 7. Cube distribution of four anchors of the UWB system.

4. Experimental Results and Discussion

4.1. Performance of Madgwick RK4 Orientation Filter

The performance of the Madgwick orientation filter in terms of attitude angle and 3-D
position estimation is shown in this section. Figure 8 shows the Euler angles of the wrist
for motion 1, the whole arm moving along a circular trajectory, which is beneficial for us
in verifying the tri-axis rotation (roll, pitch, and yaw) of the upper limbs. On the basis of
the attitude angle obtained by the quaternion fourth-order Runge–Kutta algorithm and
the original second-order update algorithm illustrated in (7), the Madgwick orientation
filter was combined, as shown in (21) and (20), respectively, and the tri-axis positions of
sensor unit 1 during the movement were calculated as shown in Figure 9. The solid lines
represent the positions calculated using various methods from the IMU system, whereas
the black dotted lines are the reference positions obtained by the optical Mocap system. As
can be seen, the proposed methods were able to track the movements of the upper limbs in
spite of the errors at the inflection points.
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Figure 8. Euler angles of the forearm for motion 1 using the IMU system.

Figure 9. Positions of sensor unit 1 for motion 1.

The position accuracies of the three kinds of movements are summarized in Table 1. It
shows the 3-D position accuracy of forearm motion tracking by the fourth-order Runge–
Kutta Madgwick method and the original second-order update algorithm compared with
the optical Mocap system. According to Table 1, the root mean square error (RMSE) values
of tri-axis motion tracking of Madgwick RK4 method varied from 6.17 cm to 12.76 cm,
which shows the feasibility of precise motion tracking of the human upper limbs. In order
to further reduce the error, it is necessary to utilize the UWB measurements.

Table 1. The tri-axis position accuracy of forearm motion tracking by the Madgwick RK4 method
and the original second-order update algorithm compared with the optical Mocap system.

Position RMSE—Original Second
-Order (cm)

Position RMSE—MadgwickRK4 (cm)

X Y Z X Y Z

Motion 1 9.8361 4.9402 10.1491 8.6124 6.1745 9.3199
Motion 2 7.4554 7.5898 10.7254 6.6717 7.6876 10.5322
Motion 3 13.2050 11.1597 11.2611 12.7563 10.3026 11.9849
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4.2. Performance of UWB Localization Kalman Filter

As for the UWB localization Kalman filter, we utilized multiple sets of movements of
the human upper limb to verify the accuracy of the UWB positioning system. It is important
to mention that the installation direction of the IMU was always the same as that in Figure 1
during the experiment. And the subject stood at the edge of the UWB area to ensure that
there was no occlusion between the tags and anchors during the movement of the upper
limbs. Before the experiment, we first kept the tag still and verified the static positioning
accuracy of UWB. Table 2 shows the static positioning variance of the four-anchor UWB
system. The mean values of the tri-axis variances fell within 0.6 cm2, so it shared the good
positioning robustness of the UWB system.

Table 2. Static positioning variance of the four-anchor UWB system.

Static Positioning Variance (cm2)

X Y Z

1 0.2970 0.4106 0.4080
2 0.2803 0.2255 0.7632
3 0.1668 0.3004 0.2671
4 0.1990 0.1649 0.2265
5 0.3813 0.4273 0.9591

mean 0.2649 0.3057 0.5248

Figure 10 shows a comparison of the position of upper limb motion tracking for
three kinds of movements by the IMU, UWB, and optical Mocap systems. Motion 1,
represented by Figure 10a, consisted of movement along a circular trajectory, which is
consistent with of the motion in Figure 9. And motion 2 was a combined motion, represented
by Figure 10b, comprising shoulder abduction/adduction, internal/external rotation, and
elbow flexion/extension. Motion 3 was another combined motion, represented by Figure 10c
and similar to motion 2, consisting of shoulder flexion/extension, internal/external rotation,
and elbow flexion/extension. As can be seen in these figures, it is obvious that compared
with the position calculated by the IMU sensors, the position calculated by the UWB system
was closer to the reference value of the optical Mocap system at certain steps, especially
the inflection points. Therefore, as for the measurement, the UWB system can be fused
with IMU for upper limb motion estimation to reduce the error caused by the drift of the
IMU sensors.

(a) (b) (c) 

Figure 10. Comparison of the sensor unit 1 position of upper limb motion tracking for three kinds of
movements by the IMU, UWB, and optical Mocap systems: (a–c) represent motion 1, motion 2, and
motion 3, respectively.
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4.3. Performance of IMU/UWB Kalman Filter

The performance of the IMU/UWB Kalman filter in 3-D upper limb motion tracking is
shown in this section. As mentioned previously, by adopting the cube distribution of four
anchors, the measurement of UWB was fused with IMU for drift error reduction and better
positioning accuracy in motion estimation. The position’s RMSE values are illustrated in
Table 3, where motion 1, motion 2, and motion 3 are represented in Figure 10a–c, respectively.
This shows a comparison of the 3-D position accuracy of various upper limb motion tracking
methods, i.e., the IMU method, UWB method, and IMU/UWB fusion method with the optical
Mocap system. Although the position accuracy of the UWB system may have sometimes
fallen lower than that of the IMU, the adopted Kalman filter adaptively adjusted the weights
between them based on the covariances. It can be observed that the tri-axis position RMSE
calculated by the IMU/UWB Kalman filter was consistently less than that without UWB fusion.
In our experiment, the proposed method was been extensively tested by various movements.
For simple movements like motion 1, consisting of a circular trajectory, the tri-axis position
RMSE values were all less than 10 cm. Compared with the IMU method, the relative errors
calculated by the IMU/UWB fusion method were reduced by 40%, 3.6%, and 25.5% in the
X-axis, Y-axis, and Z-axis, respectively. Complex combined movements such as motion 2
and 3 always consisted of multiple simple movements, such as shoulder flexion/extension,
abduction/adduction, internal/external rotation, and elbow flexion/extension. Despite the
fact that the tri-axis errors with combined motions are usually more significant than those with
simple movements, the IMU/UWB fusion method still demonstrated better position accuracy
than the IMU method, with a maximum RMSE of 12.2 cm. And our proposed methodology
achieved an average decrease in the RMSE of 1.2 cm from the IMU method to the IMU/UWB
fusion method. In comparison, by transferring the angle RMSE into position RMSE, the
position RMSE values illustrated in Table 3 fell within the accuracy range of forearm motion
without the constraints represented in [21].

Table 3. Comparison of the 3-D position accuracy of various upper limb motion tracking methods,
i.e., the IMU method, UWB method, and IMU/UWB fusion method with the optical Mocap system.

Position RMSE—IMU (cm) Position RMSE—UWB (cm) Position RMSE—IMU/UWB (cm)

X Y Z X Y Z X Y Z

Motion 1 9.1448 8.6423 8.5407 5.7678 4.3311 12.8657 5.4827 8.3291 6.3664
Motion 2 5.1256 8.5176 10.7520 11.5741 5.6851 15.9024 4.9606 7.8206 9.7357
Motion 3 12.7599 10.2743 11.9922 16.0117 12.5021 13.7803 12.2170 9.0845 11.1169

Figure 11 shows a comparison of the 3-D spatial trajectory of upper limb motion
reconstructed by the proposed algorithm and the real movement for motion 3. As can be
seen in this figure, the proposed method was able to accurately track the movement of the
human upper limb, and showed high feasibility and stability.

(a) (b) 

Figure 11. 3-D spatial trajectory of sensor units 1 and 2 for motion 3. (a) Sequences of the real
movement. (b) Motion reconstructed by the proposed algorithm.
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4.4. Power Consumption and Cost

According to the datasheet of the MPU9250 which was adopted in our experiment,
the power consumption of the sensor depends on the selected operating mode and sensor
configuration. In general, the device consumes between 8.3 μA and 3.9 mA. When the
voltage is 3.3 V, the power consumption is as follows: in low-power mode, it ranges from
27.4 μW to 66.7 μW; in normal mode, with both the accelerometer and the gyroscope
enabled, it varies from 31.5 μW to 764.7 μW; and in normal mode with all three sensors
(accelerometer, gyroscope, and magnetometer) enabled, the power consumption ranges
from 37.3 μW to 926.7 μW. The average price for a single MPU9250 chip is between USD 1
and 5.

As for the UWB system, according to the DW1000 datasheet, the typical power con-
sumption values for the device in different modes are as follows: in idle mode, 24.75 mW;
in receive mode, 56.84 mW; in transmit mode (at 6.8 Mbps data rate), around 270.76 mW;
and in sleep mode, 20 nW. Typically, the cost of a single DW1000 module ranges from
around USD 10 to 25.

However, the power consumption of an optical MoCap system can range from a
few hundred watts to several kilowatts. This is because the cameras employed in this
system require significant processing power and strict light conditions. And the cost of
a basic system with a few cameras and basic software is around USD 1000. Therefore,
compared with the optical MoCap system, the IMU/UWB system which we adopted
exhibits extremely lower power consumption and is more economical and applicable.

5. Conclusions

In this paper, we proposed a novel method for hybrid upper limb motion tracking and
3-D positioning by fusing the IMU and UWB systems. We first simplified the human upper
limb as a kinematics model and employed the quaternion method to calculate the attitude
angle of each segment. To compensate for the accumulated error of gyroscope measurement,
the fourth-order Runge–Kutta Madgwick orientation filter was adopted to improve the
accuracy of 3-D motion tracking through the optimal fusion of the accelerometer, gyroscope,
and magnetometer of the MARG system. The RMSE values varied from 6.17 cm to 12.76 cm,
which shows feasibility for the precise motion tracking of human upper limbs. The error
was mainly caused by drift of the IMU sensors. And it was inevitable that there would be a
slight misalignment of coordinate frames at the initial moment.

In order to further reduce the drift error, we combined the UWB localization system
with the IMU sensors. The static positioning variance of the four-anchor UWB system was
tested, and the mean values of the tri-axis variances were within 0.6 cm2, so it shared good
positioning robustness. By employing the UWB localization Kalman filter, the accuracy of
UWB was verified by multiple sets of movements of the human upper limbs.

Adopting the four-anchor UWB system, we employed various movements to test the
IMU/UWB Kalman filter. The experimental results represent that our proposed fusion
algorithm achieved an average decrease in the RMSE of 1.2 cm from the IMU method to
the IMU/UWB fusion method. With high feasibility and stability, our proposed algorithm
was able to accurately track the movements of the human upper limbs.

In future work, we aim to study the effects of various distributions of multiple anchors
on UWB localization accuracy, as well as to extend the proposed algorithm to the whole-
body motion estimation.
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Abstract: In recent times, the realm of remote sensing has witnessed a remarkable surge in the area of
deep learning, specifically in the domain of target recognition within synthetic aperture radar (SAR)
images. However, prevailing deep learning models have often placed undue emphasis on network
depth and width while disregarding the imperative requirement for a harmonious equilibrium
between accuracy and speed. To address this concern, this paper presents FCCD-SAR, a SAR target
recognition algorithm based on the lightweight FasterNet network. Initially, a lightweight and
SAR-specific feature extraction backbone is meticulously crafted to better align with SAR image
data. Subsequently, an agile upsampling operator named CARAFE is introduced, augmenting
the extraction of scattering information and fortifying target recognition precision. Moreover, the
inclusion of a rapid, lightweight module, denoted as C3-Faster, serves to heighten both recognition
accuracy and computational efficiency. Finally, in cognizance of the diverse scales and vast variations
exhibited by SAR targets, a detection head employing DyHead’s attention mechanism is implemented
to adeptly capture feature information across multiple scales, elevating recognition performance on
SAR targets. Exhaustive experimentation on the MSTAR dataset unequivocally demonstrates the
exceptional prowess of our FCCD-SAR algorithm, boasting a mere 2.72 M parameters and 6.11 G
FLOPs, culminating in an awe-inspiring 99.5% mean Average Precision (mAP) and epitomizing its
unparalleled proficiency.

Keywords: synthetic aperture radar (SAR); automatic target recognition (ATR); deep learning;
lightweight; fasterNet

1. Introduction

Synthetic aperture radar (SAR) [1] has achieved extensive utilization in diverse fields
such as reconnaissance detection, geological exploration, disaster detection, and public area
security screening. Its ability to operate round the clock and in all weather conditions makes
it a vital tool. Automatic target recognition (ATR) [2] plays a crucial role in SAR image
interpretation, encompassing the recognition of target regions of interest and inference of
target class attributes. This paper focuses on SAR-ATR, which holds immense practical
value and theoretical significance, providing valuable insights for image recognition [3],
target recognition [4], image matching [5], and other remote sensing applications.

SAR achieves high-resolution imaging through linear FM signals and matched filtering
techniques for distance direction, while the azimuth direction employs motion-based virtual
aperture synthesis. It possesses remarkable attributes such as all-day [6], all-weather oper-
ability [7], high penetration capability [8], long-range observation [9], and high-resolution
ground imaging [10]. The wealth of surface electromagnetic scattering information offered
by SAR has contributed to its widespread adoption in various domains, including ocean
exploration [11], forestry census [12], topographic mapping [13], land resource survey, and
traffic control, as well as military applications like battlefield reconnaissance, radar guid-
ance, and strike effect evaluation [14]. Enhancing image quality plays a crucial role in SAR
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applications, encompassing image super-resolution, denoising, deblurring, and contrast
enhancement. These techniques not only improve visual effects but also enhance feature
extraction quality, thereby facilitating subsequent image understanding and interpretation.
However, traditional SAR imaging algorithms face challenges in effectively detecting and
imaging moving targets due to their complex scattering characteristics and motion features.

With the rapid advancements in deep learning, convolutional neural networks (CNNs)
have been increasingly employed for ship recognition in SAR images, exhibiting promis-
ing outcomes. However, deeper CNNs focus on accuracy at the expense of real-time
performance, speed, and compatibility with resource-constrained embedded platforms.
Hence, there is a pressing need to develop lightweight models that strike a balance be-
tween speed and accuracy, enabling real-time ship target recognition in SAR images and
seamless deployment on embedded platforms [15]. In the realm of traditional machine
learning, feature extraction and classification algorithms are commonly used for target
recognition. Feature extraction techniques include edge, texture, shape, and polarization
characteristics, enabling the extraction of target feature information from SAR images. The
wavelet transform, Gabor filter, grayscale co-occurrence matrix, and principal component
analysis are popular feature extraction algorithms. Following feature extraction, classifiers
such as support vector machines (SVMs) [16], artificial neural networks, and decision trees
are utilized for target classification. Traditional machine learning methods also encompass
feature matching-based approaches, such as polarized scattering similarity and adaptive
local orientation patterns. Du proposed the Fast C&W algorithm to counter attacks on
SAR target recognition by deep convolutional neural networks [17]. Peng proposed a
Speckle-variant attack algorithm for the adversarial attack on SAR target recognition of
deep convolutional neural networks [18].

While traditional machine learning methods can achieve satisfactory results in SAR
target recognition, they have limitations. Subjectivity and incompleteness arise from the
need for manual feature selection during extraction. Furthermore, the performance of
traditional machine learning methods is constrained by the capabilities of feature extraction
and classifiers.

In recent years, the emergence of deep learning has prompted researchers to explore its
application in SAR target recognition. Two-stage target recognition methods generally offer
higher accuracy compared to single-stage methods. However, two-stage algorithms often
exhibit slower training and recognition speeds compared to their single-stage counterparts.
To address this limitation, researchers have increasingly turned to single-stage algorithms
to ensure real-time recognition. However, single-stage methods are more susceptible to
false recognitions and localization errors, particularly for small targets. Thus, there is a
need to enhance the performance of single-stage algorithms in detecting small targets in
real-time applications.

Existing target recognition algorithms primarily cater to optical images, focusing on
accuracy improvement. Few detectors have been specifically tailored for SAR images.
Directly applying target recognition algorithms designed for optical images to SAR images
may yield suboptimal results due to differences in imaging mechanisms, target charac-
teristics, and resolution disparities. Therefore, it is crucial to develop target recognition
algorithms that consider the unique complexities and characteristics of SAR images.

Given the extensive SAR image data and high feature dimensionality, traditional
deep learning models often suffer from a large number of parameters and high compu-
tational complexity. Hence, the research focus has shifted toward lightweight networks.
Lightweight networks refer to neural network structures that achieve computational effi-
ciency by reducing parameters and computations. In SAR automatic target recognition,
lightweight networks offer improved computational speed and memory efficiency without
compromising classification accuracy.

In conclusion, the demand for a lightweight and readily deployable single-stage target
recognition algorithm for SAR image target recognition, especially on embedded platforms,
is becoming increasingly urgent. This paper introduces the FCCD-SAR method, which
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addresses the SAR image target recognition challenge by striking a well-balanced approach.
Our approach significantly improves recognition accuracy while minimizing the number
of parameters and floating-point operations (FLOPs) required. The main contributions of
this paper can be summarized as follows.

(1) To facilitate the development of a SAR image target recognition algorithm that is
well-suited for embedded platforms, we adopt a more rational approach by employing
the FasterNet algorithm for dataset lightening and feature extraction. This enables better
alignment with the unique characteristics of SAR image data. Moreover, we effectively
reduce the number of parameters while preserving satisfactory performance.

(2) To enhance the extraction of scattering information from targets and improve target
recognition accuracy, we propose the utilization of a lightweight upsampling operator
called CARAFE. This operator exhibits a wide perception field during reconfiguration,
allowing for effective improvement in the recognition performance of SAR targets. Addi-
tionally, this design enables a reduction in the number of parameters and floating-point
operations (FLOPs) required while maintaining high recognition performance.

(3) To further improve the model’s recognition accuracy and computational efficiency,
a faster and lighter module C3-Faster is used to reduce the number of parameters and
computation while ensuring recognition accuracy.

(4) For the characteristics of multi-scale and large-scale variation of SAR targets,
DyHead’s attention-based mechanism detection head is used to better detect feature infor-
mation at different scales adequately and improve the recognition effect of SAR targets.

(5) To obtain the ultimate network model, a pruning operation is introduced to prune
the network structure to obtain the minimum optimal network model with guaranteed
accuracy.

2. Related Work

Numerous publicly available datasets exist for SAR target recognition, with the
MSTAR ten-class classification dataset being the most renowned. Various algorithms,
including traditional and deep learning-based approaches, have been employed for SAR
target recognition. Traditional algorithms often prove ineffective, relying heavily on man-
ual parameter setting and design, lacking robustness, and exhibiting poor generalization to
other SAR datasets. Additionally, their recognition speed and real-time performance fall
short of engineering application requirements.

Consequently, the benefits of end-to-end deep learning algorithms have become
increasingly evident. In recent years, researchers have shifted towards deep learning
algorithms for SAR image target recognition, capitalizing on advancements in deep learning
techniques. These algorithms eliminate the need for intricate manual feature extraction,
instead focusing on designing robust network structures to effectively extract SAR target
features. Convolutional neural networks (CNNs) have gained significant popularity in SAR
image target recognition, particularly for ship targets. Pre-trained CNN [19] models have
yielded promising results for feature extraction in SAR images, followed by classification
using traditional classifiers. With the continuous evolution of deep learning techniques,
researchers have explored complex deep neural network models such as RNNs and graph
convolution neural networks (GCNNs) [20] for SAR target-recognition tasks.

The development of deep learning algorithms has introduced new methods for SAR
target recognition. For instance, region extraction algorithms commonly used in target
recognition, such as region-based convolutional neural networks (R-CNN) [21] and Single
Shot MultiBox Detectors (SSD) [22], have been adapted for SAR target recognition. Ad-
ditionally, novel network architectures and techniques have been proposed, such as the
feature pyramid network for target recognition [23] and the fully convolutional attention
block algorithm for SAR target recognition [24]. However, these methods often rely on
deep network structures without considering practical engineering applications, leading to
imbalanced parameters, FLOPs, and recognition accuracy.
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Improving the accuracy and robustness of target recognition can be achieved by fusing
SAR images with data from multiple sources, such as optical and infrared images. Multi-
source data fusion plays a crucial role in SAR automatic target recognition [25], utilizing
information from various sources for comprehensive analysis [26] and feature extraction to
enhance accuracy and robustness. Data-level fusion and feature-level fusion are two main
aspects of multi-source data fusion [27].

Given the growing interest in lightweight SAR target-recognition models, the focus
has shifted toward networks with reduced parameters and computational requirements.
Lightweight networks offer improved computational speed and memory efficiency without
sacrificing classification accuracy [28]. Notable lightweight designs include a lossless
lightweight CNN proposed by Zhang [29] and a modified convolutional random vector
function link network [30] for SAR target recognition. However, existing models often fail
to strike the appropriate balance between accuracy and lightweight design and neglect the
need to tailor recognition models specifically for SAR image target recognition datasets.

Therefore, to address the requirements of real-world engineering applications, we
have devised an innovative SAR target recognition algorithm that is both lightweight and
highly precise. This algorithm has been specifically designed to cater to SAR image target
recognition datasets.

3. Materials and Methods

In this paper, we propose a lightweight SAR ART algorithm based on FasterNet, the
FCCD-SAR. As a consequence, we strike the best balance between accuracy and lightweight
design. The FCCD-SAR model mainly consists of the following modules and strategies:
the state-of-the-art target-recognition benchmark framework YOLOV5, the faster neural
network backbone network FasterNet, the lightweight upsampling operator CARAFE
that solves the problems of some general modules and operators, the faster lightweight
module C3- Faster, and DyHead, which uses an attention mechanism to unify different
target-detection heads. Compared to the current state-of-the-art methods, such as YOLOV8
and YOLOV7, YOLOV8 has just been released recently, and its model is still in the stage
of frequent modification, thus it is not stable enough. YOLOV7, on the other hand, has
a slightly lower inference speed than YOLOV5 and requires more memory resources. In
contrast, YOLOV5, after many official modifications, has a more stable performance, a more
mature network, and a faster inference speed, and at the same time, it is more economical
in terms of memory consumption. Therefore, YOLOV5 was chosen as the benchmark
framework for this study.

3.1. Architectural Overview of FCCD-SAR Network

The schematic representation in Figure 1 depicts the holistic network architecture of
our FCCD-SAR model. Figure 2 shows the basic YOLOV5 network framework diagram,
which facilitates the comparison with the improved structure. The model depicted in
the figure comprises five distinct components: input, backbone, neck, head, and output.
Notably, the input image initially undergoes processing through FasterNet [31], a custom-
designed lightweight backbone network. This backbone network is adept at extracting the
discrete scattering features of SAR images more rationally.

62



Sensors 2023, 23, 6956

Figure 1. The overall network architecture of the FCCD-SAR model. There are five parts in the network
structure, and the contents of each part are shown in the figure. SPPF: Spatial Pyramid Pooling-Fast.

Figure 2. Basic YOLOV5 network framework.
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Then, the backbone network into the neck meets the lightweight, universal upsampling
operator CARAFE [32], which is used to achieve significant improvements in different tasks
while introducing only a small number of parameters and computational costs. Then, before
extracting the small target scale features output, a faster lightweight module C3-Faster is
introduced to combine the respective advantages of CNN and self-attention to complement
each other, which can improve the recognition performance of SAR targets while reducing
the number of parameters and FLOPs. Finally, the processed image flows into DyHead [33],
our chosen attention-based detection head. DyHead incorporates attention mechanisms
across scale-aware feature layers, spatial locations for spatial perception, and output chan-
nels for task perception. This innovative approach greatly enhances the expressiveness of
the model’s target-detection head without imposing an additional computational burden.
We will discuss the detailed improvements in these four areas later on.

3.2. Faster and Better Neural Networks: FasterNet

To design fast neural networks, much work has focused on reducing the number of
FLOPs. However, we observe that this reduction in FLOPs does not necessarily lead to
a similar degree of reduction in latency. This mainly stems from the inefficiency of low
FLOPS per second.

To achieve faster networks, we revisited the popular operators and demonstrated that
such low FLOPS are mainly due to frequent memory accesses of the operators, especially
deep convolution. Therefore, we adopted a new partially convolutional (PConv) that can
extract spatial features more efficiently by reducing both redundant computations and
memory accesses.

To optimize the backbone network, we incorporated FasterNet-T0, the smallest version
of FasterNet, and retained its MLPBlock architecture. Additionally, we made improvements
by eliminating unnecessary MLPBlocks through stacking. The resulting lightweight back-
bone, FasterBackbone, was specifically designed to efficiently extract scattering features
from SAR datasets.

Figure 3 provides an overview of the structural details of FasterBackbone, while Table 1
presents the specific parameters used. Through extensive experimental validation using
the SAR dataset, we demonstrated the remarkable feature extractability of the backbone
we designed.

Figure 3. Details of the FasterBackbone network structure. The FasterBackbone consists of a total of
four MLPBlocks, and the specific structure of the MLPBlock is shown in Figure 3. GELU: Gaussian
Error Linear Unit.
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Table 1. Parameters of FasterBackbone network structure.

Out Channel Kernel Size Stride Expand

MLPBlock 40 3 1 3
MLPBlock 80 3 1 3
MLPBlock 160 3 1 3
MLPBlock 320 3 1 3

SPPF 1024 3 1 -

3.3. Lightweight Upsampling Operator: CARAFE

The upsampling operation was achieved through feature recombination, which in-
volves the dot product between the upsampling kernel and the corresponding neighbor-
hood pixels in the input feature map. The fundamental network structure, with a small
receptive field, ignores some useful information, and therefore, the receptive field needs
to be enlarged. The upsampling operation CARAFE, on the other hand, can have a large
receptive field during reorganization and guides the reorganization process based on the
input features. Meanwhile, the whole CARAFE operator structure is small, which meets
the lightweight requirement. Specifically, the input feature map is utilized to predict
unique upsampling kernels for each position, followed by feature recombination based on
these predicted kernels. CARAFE demonstrates significant performance improvements
across various tasks while only introducing minimal additional parameters and computa-
tional overhead.

CARAFE consists of two primary modules: the upsampling kernel prediction module
and the feature recombination module, as depicted in Figure 4. Assuming an upsampling
multiplier of σ and an input features map with dimensions H × W × C, the process begins
by predicting the upsampling kernel through the upsampling kernel prediction module.
Subsequently, the feature recombination module is employed to complete the upsampling
procedure, resulting in an output feature map with dimensions σH × σW × C.

Figure 4. The overall framework of CARAFE. CARAFE is composed of two key components, i.e.,
kernel pre-diction module and content-aware reassembly module. A feature map with size C × H ×
W is upsampled by a factor of σ (=2) in this figure.

Given an input feature map of shape H × W × C, our initial step involves channel
compression, reducing the channel number to Cm using a 1 × 1 operation. The primary
objective of this compression is to alleviate the computational burden on subsequent steps.
Following that, we proceeded with content encoding and upsampling kernel prediction,
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assuming a specific upsampling kernel size of kup × kup. It is worth noting that a larger up-
sampling kernel offers a broader perceptual field, but it also entails a higher computational
cost. To incorporate distinct upsampling kernels for each position in the output feature
map, it is necessary to predict the shape of the upsampling kernel as σH × σW × kup × kup.
In the initial step, after compressing the input feature map, we employed a convolutional
layer with kencoder × kencoder channels to predict the upsampling kernel. The number of
input channels is Cm, and the number of output channels is σ2k2

up. Following this, we
expanded the channel dimension across the spatial dimension, resulting in an upsampling
kernel with the shape σH × σW × k2

up.
At each location within the output feature map, we performed a mapping back to

the corresponding region in the input feature map. This region, centered on the location,
encompassed a region of size kup × kup. Subsequently, we computed the dot product
between this region and the predicted upsampling kernel specific to that point, resulting in
the output value. It is worth noting that different channels at the same location shared the
same upsampling kernel.

3.4. Faster and Lighter Modules: C3-Faster

In recent years, the fields of computer vision (CV) have witnessed a surge of interest
in convolutional neural networks (CNNs) and self-attention networks (SNNs). CNNs have
achieved remarkable breakthroughs in CV domains, including image classification, target
recognition, and target tracking, consistently attaining state-of-the-art performance across
diverse datasets. Concurrently, the rapid development of vision transformers has led to
the emergence of transformer-based models with various self-attention mechanisms that
have begun to surpass CNNs in several vision tasks, thereby redefining the performance
benchmarks in these areas.

ACmix offers a compelling fusion of convolution and self-attention, making it a
suitable approach for enhancing hybrid representation learning in SAR image target recog-
nition. With the challenge of detecting small targets in SAR images in mind, we opted to
replace the original YOLOV5 C3 module with C3-Faster, provided by FasterNet. Faster-
Block and BottleNeck structures are shown in Figure 5. Among them, Faster-Block has
one more partial convolution than BottleNeck for spatial fusion and one Drop path to
reduce the amount of calculation. Figure 5 showcases the design of this faster, lightweight
module. By incorporating the lightweight C3-Faster, we further enhanced the speed of
target recognition, addressing the need for efficient and swift target identification.

Figure 5. Comparison of C3-Faster of FCCD-SAR and the C3 structure of YOLOV5. Faster-Block and
BottleNeck structure are shown in Figure 5.

3.5. Detection Head Based on Attention Mechanism: DyHead

In Figure 1, the third component showcased our attention mechanism-based detection
head called DyHead, which was tailored for the SAR image dataset. DyHead introduced
a novel dynamic head framework that unifies various target detection heads using an
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attention mechanism. By leveraging attention between feature levels for scale perception,
spatial locations for spatial perception, and output channels for task perception, this
approach substantially enhances the expressiveness of the model’s target detection head
without imposing additional computational burden.

DyHead is a fusion of three attention mechanisms: scale-aware attention πL, spatial
attention πS, and channel attention πC. These attention mechanisms are stacked together
to form a single block. The final head consists of multiple blocks, each incorporating this
stack of attention mechanisms.

With the feature tensor F ∈ RL×H×W×C at hand, we can describe the generalized form
of self-attentiveness as follows:

W(F) = π(F)× F (1)

The simplest approach would be to employ a fully connected layer, but directly learn-
ing the attention function across all dimensions would result in excessive computational
requirements and prove impractical due to the high dimensionality. Instead, we tackled
this challenge by breaking down the attention function into three sequential attentions,
each targeting a single dimension:

W(F) = πC(πS(πL(F)× F)× F)× F (2)

Scale-aware attention πL: to address the fusion of features at different scales based on
their semantic significance, we began by introducing scale-aware attention:

πL(F)× F = σ

(
f

(
1

SC ∑
S,C

F

))
× F (3)

In this context, f (·) corresponds to a linear function that utilizes 1 × 1 convolutional
approximation, while σ(x) represents a hard-sigmoid activation function.

Spatial-aware Attention πS: continuing with our exploration, we then introduced
another module called spatial location-aware attention to emphasize the discriminative
capabilities of various spatial locations. Given the large extent of S, we decoupled it into two
stages: first, we employed deformation convolution to achieve sparse attention learning,
and then we integrated features across different scales to complete the process:

πS(F)× F =
1
L

L

∑
l=1

K

∑
k=1

wl,k × F
(
l; pk + Δpk ; c

)
× Δmk (4)

In this scenario, K represents the number of sparsely sampled positions. The remain-
ing parameter information is analogous to that in deformation convolution, ωl,k is an
importance factor to add bias, and Δmk is an importance factor for adaptive weighting and
thus, it is omitted for brevity.

Task-aware attention πC: to facilitate collaborative learning with the enhanced general-
izability of goal representation capabilities, we devised a task-aware attention mechanism.
This attention mechanism dynamically adjusts feature channels to assist various tasks
as needed:

πC(F)× F = max
(

α1(F)× Fc + β1(F), α2(F)× Fc + β2(F)
)

(5)

The hyperparameter plays a crucial role in controlling the activation threshold, akin
to DyReLU. α and β are used as rescale and reshift, respectively. By sequentially imple-
menting the aforementioned attention mechanism, we can stack multiple instances of
it. The configuration of the DynamicHead is illustrated in Figure 6, providing a visual
representation of its structure.
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Figure 6. A detailed design of Dynamic Head.

3.6. Pruning

The deployment of CNNs in practical applications is often hindered by their high
computational requirements. In this study, we propose a straightforward and efficient
approach called network pruning, which involves the sparsity of network channels. This
method is particularly well-suited for CNN architectures, as it minimizes the training
overhead and yields models that can be deployed without the need for specialized hardware
or software acceleration while still maintaining high performance. By training on thick
networks and automatically filtering and removing redundant channels during the training
process, we can generate streamlined networks that achieve comparable accuracy levels.

This process involves applying L1 regularization to the scaling factor within the Batch
Normalization (BN) layer and iteratively adjusting the scaling factor. By converging the
scaling factor towards zero, we can identify and remove unimportant channels. This can be
visualized in Figure 7, where the regularization gradually reduces the scaling factor values,
leading to the elimination of unnecessary channels.

By applying L1 regularization to the scaling factors, each corresponding to a specific
convolutional channel or neuron in the fully connected layer, we can effectively discriminate
and prune unimportant channels in subsequent operations. Although the additional
regularization term has a minimal impact on model performance, it can potentially enhance
training accuracy. While pruning unimportant channels may initially lead to a temporary
performance drop, this can be rectified through subsequent fine-tuning.

The pruned network obtained after the pruning process exhibits a more compact size,
reduced running time, and decreased computational operations compared to the original
network.

Figure 7. Pruning process diagram.
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For each channel in the network, a scaling factor γ is introduced, which is multiplied
by the output of that channel. Both the network and these scale factors undergo training,
and sparse regularization is continuously applied to the scaling factors throughout the
training process. Eventually, channels with significantly small scaling factor values are
pruned, and the network is further fine-tuned. Here are the specific details of the process:

L = ∑
(x,y)

l( f (x, W),) + λ ∑
γ∈Γ

g(γ) (6)

In the training process, the loss function is defined as a combination of terms. The
first term on the left represents the loss for the normal training of the CNN, where (x, y)
denotes the input and target. The second term g(·) introduces a sparsity penalty on the
scaling factor. The balance factor λ normalizes the latter term. In our experiments, the
L1 paradigm, g(s) = |s| is chosen for the later sparsification training. To optimize the
non-smoothed L1 penalty term, we use the subgradient descent method. Alternatively, the
non-smoothed L1 penalty can be replaced with a smoothed L1 penalty to avoid the need
for subgradients at non-smoothed points.

Channel pruning involves removing the input-output connectivity related to the
channel, leading to a narrower network. The scaling factors serve as channel selectors, and
when optimized with the network, they facilitate the removal of unimportant channels
without significantly affecting the generalization performance.

BN finds extensive application in contemporary CNNs, facilitating rapid model con-
vergence and enhancing generalization performance. We draw inspiration from BN’s
technique of normalizing activation values and employ it as a basis to devise a straightfor-
ward yet efficient approach for combining channel scaling factors. Specifically, the BN layer
employs mini-batch statistics to normalize the activation values within a given segment.
Considering zin as the input and zout as the output of the BN layer, with B representing the
present mini-batch. The BN layer executes the subsequent transformation:

z =
zin − μB√

σ2
B + ε

; zout = γz + β (7)

where μB represents the mean and σB represents the variance of the inputs in B. γ and β de-
note trainable affine transformation parameters responsible for normalizing the activation
values and subsequently linearly transforming them to an arbitrary scale.

The conventional approach is to add a BN layer after the convolutional layer with
a channel scaling/offset factor. This allows us to directly use the γ parameter in the BN
layer as the scaling factor for network pruning. It offers the advantage of avoiding any
additional overhead in the network and is an efficient way to implement channel pruning.

4. Results

In our experimental setup, we employed the MSTAR standard 10-class classification
dataset to showcase the performance of FCCD-SAR. Additionally, we conducted a compar-
ative analysis between FCCD-SAR and existing recognition methods, which reveals the
superior performance of the former.

4.1. Dataset Introduction and Experimental Settings
4.1.1. MSTAR Dataset

To precisely evaluate the effectiveness and performance of the proposed model, we
utilized the renowned MSTAR dataset, as illustrated in Figure 8. This dataset comprises
measured SAR ground stationary target data made available by the MSTAR program
and supported by the Defense Advanced Research Projects Agency. It encompasses SAR
target images obtained from various vehicle targets at varying azimuths. The MSTAR
dataset consists of ten ground targets under standard operating conditions (SOC), including
artillery (2S1, ZSU234), armored vehicles (BRDM2, BTR60, BTR70, BMP2, D7, ZIL131), and
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tanks (T62, T72). Notably, the T72 in the BRDM2 armored vehicle category encompasses
three variant types (9563, 9566, C21), while the T72 in the tank category includes three
variant types as well (132, 812, S7). Please refer to Table 2 for specific parameters.

Figure 8. Introduction to the MSTAR dataset.

Table 2. Basic information and experimental settings of experimental datasets.

Images Size for Training Train:Valid Number of Class Batch Size Epoch

MSTAR 640 × 640 8:2 10 16 300
SSDD 640 × 640 8:2 1 16 300

4.1.2. SSDD Dataset

The SAR ship dataset SSDD was then selected and used to validate the generalization
in comparison experiments to avoid model overfitting. SSDD is the first publicly available
dataset specialized in SAR image ship target recognition at home and abroad, which can be
used for training and testing to examine the algorithm, and has been used by thirty levels
of colleges and research institutes.

SSDD was obtained by downloading publicly available SAR images on the Internet
and cropping the target area to a size of 640 × 640 pixels and by manually labeling the ship
target positions. The dataset is shown in Figure 9. The models were trained using identical
parameters, including YOLOV5, a batch size of 16, and a training image size of 640 × 640.
The experiments were performed.

Figure 9. Examples of some of the samples in the SSDD sample.

4.2. Experimental Index

In this experiment, we employ the visual object classes (VOCs) evaluation criteria to
assess the recognition performance of our proposed method. To quantify the accuracy of
our method, we utilized the average precision at 50% intersection-over-union (mAP50)
index. The mAP was calculated by considering both precision (P) and recall (R) values.
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Precision measures the proportion of accurate predictions among the samples predicted as
positive instances. It was determined based on the number of true positives (TPs) and false
positives (FPs) using the following formula:

P =
TP

TP + FP
(8)

The recall is a measure of the probability that the predicted positive instances cover all
true positive (TP) samples among the actual positive samples. This probability is computed
using the TP and false negatives (FN) according to the following formula:

R =
TP

TP + FN
(9)

Accordingly, the mAP is determined by computing the integrated area under the
precision-recall (PR) curve using the given formula:

mAP =
∫ 1

0
P(R)dR (10)

The F1 score is a commonly employed evaluation metric that provides a comprehen-
sive assessment of the model’s performance by incorporating both precision and recall
indicators. It combines accuracy and recall measures to gauge the overall quality of the
model:

F1 = 2 × P × R
P + R

(11)

In the realm of deep learning, it is customary to evaluate the model’s parameter size,
FLOPs, and model volume while designing a model, considering the specific requirements
of the application.

(1) Parameters: Parameters serve as a measure of the model’s size, akin to the space
complexity of an algorithm. The number of parameters is determined by the video memory
size. This encompasses all layers of the model, including convolutional, BN, and fully
connected layers, along with the total number of weight parameters in the visual network
components.

(2) FLOPs: An abbreviation for floating-point operations, FLOPs represent the quantity
of floating-point operations, which can be regarded as a measure of the computational
workload. It can be employed to gauge the complexity of an algorithm or model.

4.3. Experimental Results

We conducted experimental validation on the MSTAR dataset and performed compat-
ibility experiments to verify the effectiveness and performance of the methods presented in
this paper, showcasing the efficacy of each proposed module and improved method. Lastly,
we compared our proposed FCCD-SAR with existing SAR target-recognition methods to
establish the superior performance of our method.

4.3.1. Comparison of Parameters for CARAFE

We compared different parameters of CARAFE and selected the optimal CARAFE
parameters for our method. The results of this comparison are presented in Table 3:

Table 3. Recognition results with various encoder kernel sizes kencoder and reassembly kernel sizes kup.

kencoder kup Params (M) FLOPs (G) mAP (%)

1 3 7.07 16.1 98.8
1 5 7.08 16.1 98.8
3 3 7.11 16.1 98.9
3 5 7.19 16.3 99.1
5 5 7.21 16.4 99.0
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Upon analyzing the data in the table, we observed variations in the number of param-
eters, FLOPs, and mAP values corresponding to different choices of kencoder and kup. After
comparing the data in the table, we ultimately selected kencoder as 3, kup as 5 to achieve the
optimal results.

4.3.2. Ablation Experiments

Ablation experiments were conducted on the MSTAR dataset to validate the effec-
tiveness of our proposed module and improved method. The experiments focused on the
following aspects:

1. Replacing the DarkNet53 backbone of the YOLOV5 benchmark with the more efficient
and faster neural network, FasterNet;

2. Substituting the original upsampling operator with the lightweight CA-RAFE upsam-
pling operator;

3. Exchanging the original C3 module with the faster and lightweight C3-Faster module;
4. Incorporating DyHead, a recognition head based on the attention mechanism. The

experimental results are presented in Table 4.

Table 4. Results of the ablation experiments on the MSTAR dataset.

Model FasterNet CARAFE C3-Faster DyHead Params (M) FLOPs (G) mAP (%)

YOLOV5s × × × × 7.05 16.0 98.1
FCCD-SAR

√ × × × 5.57 11.3 98.8
FCCD-SAR

√ √ × × 5.86 12.0 99.1
FCCD-SAR

√ √ √ × 5.84 11.9 99.1
FCCD-SAR

√ √ √ √
6.00 12.2 99.5

From the results of the ablation experiments, the following findings are evident:

1. By adopting the improved and more efficient neural network FasterNet, the FLOP
is reduced from 16.0 G to 11.3 G, resulting in a 0.7% improvement in mAP and
a reduction in parameters from 7.05 M to 5.57 M. These results validate that our
FasterBackbone exhibits superior feature extraction capabilities with fewer parameters
and FLOPs. It also proves the correctness of choosing FasterNet as the main network,
and FasterNet has a strong lightweight property.

2. Substituting the original upsampling operator with the lightweight CARAFE upsam-
pling operator leads to a 0.6% improvement in mAP, accompanied by a slight increase
in FLOPs and parameters. The experimental results demonstrate that CARAFE en-
hances accuracy while reducing the model’s size. The upsampling operator CARAFE
has excellent recognition performance and has the advantage of model lightweight.

3. By replacing the original C3 module with the faster and lightweight C3-Faster module,
FLOPs are reduced while maintaining mAP stability. The number of parameters is
reduced from 5.86 M to 5.84 M, and the computation is reduced from 12.0 G to 11.9 G.
It is also proved that C3-Faster is better than C3 in structure and more in line with the
requirements of lightweight.

4. The incorporation of DyHead, a detection head based on the attention mechanism,
yields a 0.4% improvement in mAP. After using DyHead, the number of parameters
and FLOPs have a small increase, but compared with this, it is an increase of mAP,
which meets the expected goal. Experimental results show that the addition of the
DyHead attention mechanism can identify more detailed image features.

In conclusion, the employed FCCD-SAR method showcases notable improvements in
reducing the model size and minimizing FLOPs and parameters, all while maintaining a
high level of accuracy. These findings substantiate the lightweight nature of our proposed
model. Figure 10 presents the visualization comparison results of the ablation experiment.
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Figure 10. Comparison results of ablation experiment visualization on the MSTAR dataset. The blue
rectangular box indicates the missed recognition target, and the yellow rectangular box indicates the
false recognition target.

4.3.3. Comparison of Network Model Pruning Results

Pruning experiments were performed on the proposed network structure on the
MSTAR dataset to compare the pruning results and select the best one.

The experimental results presented in Table 5 demonstrate that as the pruning degree
increases, there is a corresponding decrease in the number of parameters and computational
requirements. However, accuracy degradation becomes evident when the pruning magnitude
exceeds 50%. Therefore, we selected a pruning rate of 50% to strike a balance between achieving
a favorable reduction in parameters and computation while maintaining training accuracy.

Table 5. Pruning results for FCCD-SAR.

Method Params (M) FLOPs (G) mAP (%)

FCCD-SAR (Baseline) 6.00 12.2 99.5
FCCD-SAR (20%Pruned) 5.12 10.98 99.5
FCCD-SAR (40%Pruned) 3.91 8.54 99.5
FCCD-SAR (50%Pruned) 3.34 7.32 99.5
FCCD-SAR (60%Pruned) 2.72 6.11 99.2
FCCD-SAR (80%Pruned) 1.50 3.66 98.6
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4.3.4. Comparative Experiment

Comparison results with the latest target-recognition methods on the MSTAR dataset:
To further validate the robust detectability of our proposed FCCD-SAR model, we con-
ducted experiments to compare it with commonly used single-stage and two-stage target
recognition methods on optical images, including YOLOV3, YOLOV5, Faster R-CNN,
Cascade-RCNN, and other methods. Compared to the single-stage target recognition
method with fewer parameters and lower computational effort, the present experimental
method has fewer parameters and less computational effort and is more accurate. Com-
pared to the more accurate two-stage target recognition method, this experimental method
is more accurate than it. Meanwhile, this experimental method had fewer parameters and
fewer computations, which could satisfy the lightweight requirement. The parameters for
each method were set to be approximately the same, ensuring fairness in the comparison
experiments. The results are presented in Table 6. Our proposed method achieves the
lowest computational and parametric requirements while surpassing the accuracy and
exhibiting the highest overall performance among the compared methods. Visualization of
the predictions for each recognition method is shown in Figure 11. Our method demon-
strated superior target-recognition performance and a lower false recognition miss rate
compared to other target recognition methods.

Table 6. Comparison with the latest target-recognition methods on the MSTAR dataset.

Method Params (M) FLOPs (G) P (%) mAP (%) Inference Time (ms)

YOLOV5s 7.05 16.0 97.8 98.1 4.1
YOLOV3 8.7 13.0 96.9 97.2 5.7

Faster-RCNN 41.12 91.41 96.5 96.4 82.6
Cascade-RCNN 69.17 119.05 96.9 96.8 98.5

MobileNetV3 4.29 7.2 96.3 96.6 4.4
FCCD-SAR 2.72 6.11 99.5 99.5 3.4

In order to verify the generalization and avoid overfitting, the article added the SAR
ship dataset SSDD to corroborate the model performance. Under the SSDD dataset, the
experimental results are shown in Figure 12. The experimental results are shown in Table 7.
According to the experimental results, it can be found that the model proposed in this
paper has certain generalization, and no overfitting occurs, which fully proves the excellent
effect of the proposed model.

Table 7. Comparison with the latest target-recognition methods on the SSDD dataset.

Method Params (M) FLOPs (G) P (%) mAP (%) Inference Time (ms)

YOLOV5s 7.06 16.2 96.8 97.8 4.2
YOLOV3 8.9 13.3 96.2 96.8 6.7

Faster-RCNN 44.34 92.11 95.2 94.3 85.1
Cascade-RCNN 71.32 120.48 96.1 95.9 100.8

MobileNetV3 4.58 8.2 93.5 93.6 5.3
FCCD-SAR 3.32 7.4 98.8 98.7 3.6
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Figure 11. Comparison of visualization recognition results under MSTAR dataset with the latest
method. The blue rectangular box indicates the missed recognition target and the yellow rectangular
box indicates the false recognition target.
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Figure 12. Comparison of visualization recognition results under the SSDD dataset with the latest
method. The blue rectangular box indicates the missed recognition target and the yellow rectangular
box indicates the false recognition target.

5. Discussion

This paper presented FCCD-SAR, a lightweight algorithm for SAR target recognition
based on FasterNet. The method was specifically designed for deployment on embedded
devices, taking into consideration the lightweight requirements. Moreover, it incorporates
the unique feature information characteristics of SAR images.

In this study, the lightweight benchmark model YOLOv5 was initially introduced, and
subsequently, FasterNet, a more efficient and faster neural network, was used to replace the
main network. The choice of FasterNet was motivated by its compatibility with the unique
characteristics of the SAR image dataset, striking a balance between speed and accuracy.

To minimize both the model size and computational effort, we employed the lightweight
upsampling operator CARAFE. CARAFE performs a dot product between the upsampling
kernel and the pixels in the surrounding neighborhood of each position within the input
feature map. This operation allows for a broader perceptual field during recombination
and guides the recombination process using input features. As a result, it enhances the
recognition performance of SAR targets while simultaneously reducing the number of
parameters.

To improve both the recognition accuracy and computational efficiency of the model,
we incorporated the C3-Faster module, which is faster and lighter. This module effec-
tively reduced the number of parameters and computational requirements by selectively
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discarding unimportant information while maintaining the required level of recognition
accuracy.

The attention mechanism-based detection head, DyHead, was incorporated to handle
the multi-scale features of SAR targets. DyHead is a dynamic head framework that utilizes
an attention mechanism to unify various target detection heads. It leverages attention
mechanisms across feature levels for scale perception, spatial locations for spatial percep-
tion, and output channels for task perception. By employing this approach, the model’s
target detection head achieved enhanced expressiveness and improved target recognition
accuracy without increasing the computational effort.

To obtain the optimal model, we employed a pruning technique to reduce the net-
work’s complexity while preserving its accuracy. Subsequently, we evaluated the proposed
method on the MSTAR dataset, and the results demonstrated its exceptional performance,
achieving an MAP of 99.5%. Notably, the number of parameters was merely 2.72 M, and
the FLOPs amounted to 6.11 G, showcasing the model’s efficiency.
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Abstract: The rapid advancement and increasing number of applications of Unmanned Aerial Vehicle
(UAV) swarm systems have garnered significant attention in recent years. These systems offer a
multitude of uses and demonstrate great potential in diverse fields, ranging from surveillance and re-
connaissance to search and rescue operations. However, the deployment of UAV swarms in dynamic
environments necessitates the development of robust experimental designs to ensure their reliability
and effectiveness. This study describes the crucial requirement for comprehensive experimental
design of UAV swarm systems before their deployment in real-world scenarios. To achieve this, we
begin with a concise review of existing simulation platforms, assessing their suitability for various
specific needs. Through this evaluation, we identify the most appropriate tools to facilitate one’s
research objectives. Subsequently, we present an experimental design process tailored for validating
the resilience and performance of UAV swarm systems for accomplishing the desired objectives.
Furthermore, we explore strategies to simulate various scenarios and challenges that the swarm
may encounter in dynamic environments, ensuring comprehensive testing and analysis. Complex
multimodal experiments may require system designs that may not be completely satisfied by a
single simulation platform; thus, interoperability between simulation platforms is also examined.
Overall, this paper serves as a comprehensive guide for designing swarm experiments, enabling the
advancement and optimization of UAV swarm systems through validation in simulated controlled
environments.

Keywords: UAV; swarm; robotics; simulation

1. Introduction

UAV (Unmanned Aerial Vehicle) swarms refer to a collective group of UAVs that
operate in a coordinated manner to achieve a common goal. UAV swarms are characterized
by their ability to exhibit coordinated behaviors, where individual UAVs collaborate and
interact with one another to accomplish tasks efficiently and effectively. This enables UAV
swarms to perform complex operations for applications in surveillance [1,2], agriculture [3],
military [4], search and rescue missions [5], and environmental monitoring [6,7].

The use of swarms offers several advantages over single UAVs, including increased
robustness, redundancy, scalability, and enhanced mission capabilities. By leveraging
swarm intelligence and advanced coordination algorithms, UAV swarms have the potential
to revolutionize various industries and applications, opening up new possibilities for au-
tonomous and collaborative aerial operations. Current swarm development can be broadly
classified by their topology [8,9], by type of swarm agents such as homogeneous [10] or
heterogeneous [11], and by application-specific usage such as remote sensing [12]. Of
course, more advanced swarm descriptions and classifications exist that are created with a
specific development goal in mind.

The environment that these swarms work in is prone to disruptions, which can impede
their operation. With the degree of close-knit topology built into these swarms, damage or
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failure of swarm agents can result in a compromise in mission progress [13]. Additionally,
swarms have a multilayered architecture of various components working cohesively to
bring about acceptable operation. The creation of resilient UAV swarms requires the
integration of multiple components [14]. Researchers across the globe are creating novel
methods for engineering resiliency in UAV swarms [15]. For safety and reliability, it is
necessary to perform rigorous testing of swarm systems in all phases of development.
A wide range of general robotic or UAV specific simulation platforms exists that may
be explored for this. Choosing a suitable simulator is important, as different simulation
environments offer different performance, model detail, and built-in features, all of which
may affect the success and the merit of a simulation-based study. Despite numerous options
to choose from, there is a lack of descriptive research that categorizes and indexes them for
the convenience of future experiment designers.

There are a multitude of tools available in the robotics development scenario, such that
it is almost impossible to keep track of all of them without studies like this one to track and
describe use-case scenarios. Each simulator tool and the platforms they are built on have
their strengths and weaknesses, which the developer must be aware of before choosing
a simulator. However recent trends in development have shifted focus in terms of the
compatibility of these tools, such that a lot of these tools can be used in conjunction with
each other. It is now entirely possible to connect integral as well as third-party plugins from
different platforms to talk to each other for data sharing and system design. This leads to
advantages such as distributing simulation tasks among various platforms. While this may
not necessarily increase simulation performance, it opens up a wider array of capabilities
and features during system design and control. The domain of mobile robot simulation,
design, and development is a growing field along with its associated subcategories. The
authors in [16] portray swarm robotics as a subclass of mobile robots.

The objectives of this study are to present a descriptive case study of UAV swarm
simulation tools that the authors have used to design experiments and validate results.
However, not all simulation platforms were capable enough to support the expectations
of all experiments. Hence, a variety of tools were needed to perform them. Sometimes
interfacing the various tools for real-time and post-processed data exchange was also
necessary. Additionally, this study highlights the experimental design process required to
conduct both real-world and simulation tests of several UAV swarm experiments. While
making progress on specific objectives in UAV swarm development that require the design
of a variety of experiments, the authors have examined and used a range of simulators
capable of expressing UAV swarms. The experiment designs were aimed at incorporating
resiliency into UAV swarms.

The three objectives for resilient UAV swarm development currently being worked on
as part of building resilient UAV swarms by the authors are as follows:

(1) Creating inter-agent and global policies for path planning, swarm movement, and
collision avoidance using techniques such as artificial potential fields and bioinspired
pheromone maps.

(2) Creating swarm agent-specific SAR (Search and Rescue) frameworks that focus on
improving operational swarm resilience rather than external operations.

(3) Examining the impacts to swarm dynamics and performance on the introduction of
heterogeneous agents in the UAV swarm.

This study describes a concise experiment design strategy executed while creating
resilient swarm protocols for various UAV swarm scenarios. These experiments were
planned and categorized in an experimental series each having unique objectives and
outcomes. The major contributions of this research paper include a thorough examination
of existing simulation platforms, aiding researchers in selecting the most suitable tool for
their swarm experimentation needs. Additionally, the outlined experimental design process
will provide a valuable framework to assist users in selecting the appropriate simulation
tool for developing specific objectives for UAV swarms. Presently, surveys concerning
simulation platforms offer general overviews of these platforms without delving into
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specific case scenarios. The designed experiment series herein are implemented for the
choice of simulation platforms, and sample experimental results are shown.

The novelty of this research lies in its systematic approach to designing experiments
for UAV swarm systems. While the development of UAV swarm technology has gained
traction due to its diverse applications, there has been a lack of standardized experimental
procedures to validate and optimize the performance of these systems. This research
bridges the gap by offering a well-defined and rigorous experimental design process,
encompassing the selection of appropriate simulation platforms and the formulation of spe-
cific objectives. By addressing the need for robust experimental validation before deploying
UAV swarms in dynamic environments, this study contributes to the advancement and
resilience of swarm technology, paving the way for its successful integration in real-world
applications. Researchers and practitioners can utilize the insights from this paper to
conduct evidence-based evaluations, ensuring the reliability and efficiency of UAV swarm
systems across various scenarios and challenges.

Our findings are condensed in this brief article below and organized in the following
manner. Section 2 outlines previous work on simulation platforms and lists reasons to
re-examine them. Section 3 briefly defines swarm characteristics such as network topology,
deployment strategies, and composition. Section 4 describes the experimental series and
their targeted development objectives. Section 5 shows implementation scenarios of the
selected simulation platforms for every experiment series. Section 6 outlines future work
considerations and Section 7 has a concluding statement.

2. Background and Motivation

A structured framework design for important UAV swarm processes, such as exper-
iment design and validation, is of paramount importance for several reasons. Firstly, it
provides a systematic and organized approach to tackle complex problems and research
questions. By following a well-defined framework, researchers can establish clear objec-
tives, identify variables, and establish a coherent plan, ensuring that their experiments
yield reliable and meaningful results. Secondly, a structured framework enhances the
reproducibility and comparability of experiments. With a detailed and standardized
methodology, other researchers can replicate the study to validate its findings or build
upon the existing knowledge, fostering scientific progress and collaboration. Furthermore,
a well-designed framework helps in minimizing bias and errors in the experimental pro-
cess [17]. By carefully considering potential confounding factors and controlling variables,
researchers can enhance the accuracy and validity of their conclusions, strengthening the
overall credibility of their work. Lastly, a structured approach aids in identifying limitations
and potential pitfalls early in the research process. By incorporating rigorous validation
procedures and statistical analyses, researchers can gain a deeper understanding of the
robustness of their results, acknowledge any shortcomings, and suggest areas for further
investigation. Thus, a structured framework design experiment design and validation is a
cornerstone of reliable and impactful research. It fosters clarity, reproducibility, objectivity,
and efficiency, ultimately advancing knowledge and facilitating evidence-based decision
making in various domains.

A search for recent articles focused on UAV simulator review yielded only a few
results and are outlined in Table 1. A comparison of three simulation tools for UAV use
is described in [18]. While this is a more concise approach, the authors in [19] present a
broader review of the various platforms available. Article [20] further expands the review
process by considering 17 different simulation platforms to review. Article [16] presents a
broad view of swarm robotics, simulators, hardware, and behavior.
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Table 1. Recent works focusing on robotic simulators arranged by their published year.

Reference Published Year Description

[18] 2018 Comparing the performance of three popular robot simulators.
[21] 2019 Survey on UAV simulators, their features, and architecture.

[16] 2021 Survey on robotic simulators, platforms, and frameworks, with a distinction
between the three terms.

[20] 2021 An overview of robotic simulators suitable for use in education.
[19] 2022 Review on swarm-focused simulators, real-life hardware, and applications.

This study 2023
An updated and comprehensive examination of simulation platforms
capable of handling UAVs with an accompanying experimental design
process for swarm-based research objectives.

During the course of the literature review, it was observed that multiple tools men-
tioned in past literature are now deprecated and, thus, were not included in Table 1. As
technology rapidly evolves, previous studies may not reflect the current state-of-the-art in
terms of available simulators and their capabilities. Tools such as USARSim [22] have pre-
2020 development dates and are no longer updated. Additionally, tools such as VREP [23]
have changed names, whereas Microsoft AirSim [24] while still having workable versions
has been archived in favor of future projects. Additionally, as observed in [25], many re-
searchers create custom scenario-based simulation packages for testing certain components.
These lack code reusability and further support. Even currently acceptable broad-range
simulation platforms may not satisfy all requirements for the objective study [26].

Therefore, there is a pressing need to create an updated and comprehensive list of
UAV simulators that encompasses the latest advancements in the field. This list will serve
as a valuable resource for researchers, developers, and practitioners, providing them with
accurate and relevant information to choose the most suitable simulator for their specific
needs. Researchers can stay informed about the latest options and make informed decisions
when it comes to simulation-based studies and the development of UAV systems.

Article [27] in its literature review survey concludes that MATLAB was the most widely
used simulation platform for UAV swarm experiments. However, their methodology
compares items such as Java against Visual Studio, which are a programming language
and an IDE, respectively. Our search parameters were more concentrated and considered
simulation platforms only. Based on our analysis, we have summarized our findings in
the following figures and tables. Figure 1 shows the top six platforms that were used
by researchers working on aerial robotic swarms in the past five years. Table 2 presents
additional information about simulation platforms examined such as OS support and cross-
platform availability. Table 3 lists notable publications on swarm robotic development in
the past three years (2021–2023) along with the simulation platform used for experiments
and result validation.

Figure 1. The number of studies examined using different simulation platforms over the past five
years (2019–2023).

82



Sensors 2023, 23, 7359

Table 2. Simulation tools examined.

Name OS Support 1 UAV
Specific?

Possibility of
Cross-Platform
Connectivity 2

Notable Publication
by Platform
Creators

Remarks

Gazebo W *, M *, L No Yes — —

Webots W, M, L No Yes —
Independent simulation
platform with support for
various robot platforms.

CoppeliaSim W, M, L No Yes [23] Formerly known as VREP.

UAV toolbox
(MATLAB) W, M, L * No Yes —

Although MATLAB is not
UAV specific, the UAV
toolbox is designed for
UAV development.

RflySim W No Yes [28]

Independent simulation
platform inspired by PX4
and MATLAB simulation
platform.

ARGoS M *, L No Yes+ [29] Multiphysics robot
simulator.

OMNET++ W, M, L No Yes —

Discrete event simulation
platform focused on
networking and
communication.

AVENS W Yes Yes [30]
Works with the OMNET++
network simulator and
X-Plane flight simulator.

MORSE W *, M *, L * No Yes [31] —

1 A * near the OS label indicates that direct binaries of the tool may not be available; however, alternatives such as
docker deployments or community supported guides do exist. 2 A + near the yes indicates that the software has
indirect passing of model data for cross-platform connectivity or the possibility of self-developed plug-ins.

Table 3. Recent work on UAV swarm development and the simulation platform they used is
categorized by published year (Range 2021 to 2023).

Reference Year Published Study Description Platform Used 1

[32] 2021 Formation control of heterogeneous UAV and
USV swarms. CoppeliaSim

[33] 2021 Architecture of UAV swarm to find a load and
transport it to its destination cooperatively. CoppeliaSim

[34] 2021
Adaptive formation control for UAV swarms
with multiple leaders and switching
topologies.

Gazebo

[35] 2021 Control of UAV agents in a swarm using
vision-based approaches. Gazebo

[36] 2021
Development of control layers to enable the
autonomous and cooperative navigation of a
swarm of UAVs.

Gazebo

[37] 2021 Optimized area coverage by autonomous
multi-UAV. Gazebo + MATLAB

[38] 2021 Approach to address coverage and flocking
problems in multi-UAV. Gazebo

[39] 2021 Bioinspired neural network for cooperative
planning of multi-UAV. Gazebo

[40] 2021 Safe allocation of UAV swarm mission
resources based on random labels. OMNET++

[41] 2022
Coverage and path planning algorithm for
swarms to detect points of interest and collect
information from them.

OMNET++
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Table 3. Cont.

Reference Year Published Study Description Platform Used 1

[42] 2022 A distributed UAV swarm formation system
optimized by a hybrid evolutionary algorithm. ARGoS

[43] 2022 Approach to optimized UAV swarm for
improved intruder detection. ArGoS

[44] 2022 A framework for simulating cooperative UAV
swarms performing joint missions. OMNET++

[45] 2022 Task decomposition and task correlation of
UAV swarm OMNET++

[46] 2022 Multiple UAVs collaborating for improved
field phenotyping. Gazebo

[47] 2022 Resource balancing for MAV (Mobile Aerial
Vehicle). Gazebo

[48] 2022 Development of a PSO-based threat avoidance
and reconnaissance FANET. Gazebo

[49] 2022 Entrap multiple targets using a robot swarm. MATLAB + CoppeliaSim

[50] 2023 A decentralized method for multiple UAVs to
explore separate areas. Gazebo

[51] 2023
A novel IDS (Intrusion Detection System) that
identifies deviation in normal UAV behaviors
as means of indicating external threats.

Gazebo

[52] 2023 A multiple tracking methodology for aircraft at
low altitudes. MATLAB

[53] 2023 Collision avoidance strategy for D2D (Device
to Device) communications in UAV networks. MATLAB

[54] 2023 Evaluation of routing protocols in UAV ad hoc
networks in SAR scenarios MATLAB

[1] 2023
Autonomous cooperative mission planning for
multiple UAVs conducting surveillance
missions.

MATLAB

[55] 2023
Trajectory planning and formation
maintenance in swarm using MPC and
standoff algorithm.

MATLAB

[56] 2023 An improved PSO for optimized base station
placement for UAVs. CoppeliaSim

1 With regards to the use of MATLAB for experimental design, all cited references may not necessarily use the
UAV toolbox, Simulink, or other add-ons, choosing to rely only on the main program. However, they are included
in the table since the standalone MATLAB platform may be sufficient for their validation requirements.

3. Generalized Swarm Process Consideration during Development

It is vital to understand swarm characteristics before experiment design. Based on
the three research objectives highlighted in the introduction, the experiment series will be
created to observe and validate the performance of developed resilient mechanisms for the
major swarm processes as discussed below.

3.1. Network Topologies and Communication

Network topologies and communication play a crucial role in the coordination and
effectiveness of UAV swarm systems. The selection and design of appropriate network
topologies significantly impact the swarm’s ability to exchange information, make collective
decisions, and execute coordinated actions. Various topologies, such as centralized, decen-
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tralized, and hybrid architectures [57], can be employed based on the specific requirements
and constraints of the swarm application.

Centralized topologies, with a central controller, facilitate efficient communication
and decision making but may suffer from single points of failure. Decentralized topologies
distribute the decision-making across multiple UAVs, promoting resilience [58] and scal-
ability but introducing challenges in synchronization and coordination. Figure 2 shows
a centralized communication topology on the left and a decentralized communication
topology on the right.

Figure 2. Centralized topology (left) and decentralized topology (right) for a swarm of UAV agents.

Hybrid topologies combine centralized and decentralized elements to strike a balance
between efficiency and robustness. Communication protocols and mechanisms, such
as direct or indirect communication, broadcast, or multi-hop routing, determine how
UAVs exchange information and collaborate within the swarm. Efficient communication
protocols must address issues such as packet loss, latency, and bandwidth constraints
to ensure reliable and timely data transmission. Additionally, incorporating advanced
techniques like adaptive routing [59], dynamic network reconfiguration, and cognitive
radio systems [60] can further enhance the swarm’s communication capabilities. Future
research should focus on developing efficient network topologies and communication
protocols tailored to the specific needs of UAV swarm systems, considering factors such as
scalability, robustness, energy efficiency [61], and adaptability to dynamic environments.
By improving network topologies and communication, UAV swarms can achieve enhanced
coordination, cooperation, and performance, enabling them to tackle a wide range of
complex tasks and operate effectively in diverse scenarios.

3.2. Deployment Strategies

Deployment strategies [62] play a critical role in the effective utilization of UAV
swarms over an ROI (Region of Interest). The choice of strategy depends on various factors,
including the mission objectives, environmental conditions, available resources, and desired
outcomes [63]. One commonly employed strategy is the grid-based deployment approach,
where the ROI is divided into a grid pattern and UAVs are strategically positioned at
predefined grid points. While the decomposed grid may be any polygon [64], four-sided
cells are the most common. A collection of such cells is called a subgrid [65]. Depending on
a use case scenario these subgrids may be of different shapes and dimensions. Grid-based
decomposition ensures comprehensive coverage of the entire area and facilitates systematic
exploration of the ROI. Deploying agents to assigned grids or subgrids is particularly useful
in scenarios that require even distribution of surveillance or data collection efforts, such as
monitoring large agricultural fields or conducting wide-scale search and rescue operations.
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Another deployment strategy is targeted deployment, which involves placing UAVs
at specific locations within the ROI based on the mission requirements. This strategy
allows for a more focused approach, concentrating the swarm’s resources on critical areas
of interest. For instance, in disaster management scenarios, UAVs can be deployed near
disaster-stricken regions or potential danger zones to gather detailed information, assess
damage, or provide real-time situational awareness to aid response teams in their decision-
making process. Figure 3 shows examples of deployment strategies that were visualized
during the experiment design process. Predefined agent deployment assumes the initial
placement of agents at selected points in the ROI; randomized deployment uses a single
take-off point and is then relined on a randomized search by agents backed by consensus for
target detection. On the left, the different colors indicate that each agent was preassigned
its subgrid to search. On the right, randomized deployment shows all agents flying from a
single take-off point, with no pre-assignment of subgrids.

Figure 3. Predefined agent deployment (left); single point deployment (right).

Figure 4 shows the two possible subgrid selections highlighted in yellow and green.
These are just examples. In practice, the size and shape can be defined by the operator
depending on factors such as agent capability, sensor range, coverage, or ROI geograph-
ical features. These subgrids can be selected initially and stay constant or may change
dynamically across the mission timeline.

Figure 4. Possible subgrid selections are shown as A or B.
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Randomized deployment strategies introduce variability and unpredictability into
the swarm’s positions. By using algorithms that generate random or pseudo-random
deployment patterns, the swarm can explore the ROI in a non-deterministic manner.
This strategy can be beneficial in scenarios where it is essential to reduce predictability,
enhance resilience, or counteract potential adversarial efforts to anticipate the swarm’s
behavior. Randomized deployment strategies can be particularly useful in surveillance and
security applications, where diverse and unpredictable movement patterns can make it
more challenging for adversaries to identify and track the swarm’s activities.

In certain dynamic scenarios, adaptive deployment strategies come into play. These
strategies involve dynamically adjusting the swarm’s configuration based on real-time
information and changing mission requirements. By leveraging feedback from sensors,
communication networks, or external data sources, the swarm can adapt its deployment
pattern, alter its flight paths, or redistribute resources [66] within the ROI. Adaptive deploy-
ment strategies enhance the swarm’s flexibility, responsiveness, and ability to prioritize and
allocate resources based on evolving situational demands. This adaptability is especially
valuable in scenarios with dynamic events, such as monitoring traffic congestion, tracking
fast-moving targets, or responding to emerging threats in real-time.

The choice of deployment strategy depends upon careful consideration of mission
objectives, environmental factors, available resources, and the desired level of coverage and
redundancy. By selecting an appropriate deployment strategy, UAV swarms can maximize
their effectiveness, optimize data collection or surveillance efforts, and accomplish the
intended mission goals within the ROI.

3.3. Swarm Formation Control Strategies

Swarm formation control strategies are fundamental to achieving coordinated be-
havior and desired spatial arrangements within UAV swarms. These strategies involve
designing algorithms and mechanisms that enable the swarm agents to self-organize and
maintain specific formations while dynamically adapting to changes in the environment or
mission requirements. Various approaches, such as potential fields, artificial potential func-
tions, behavior-based methods, distributed consensus algorithms, and network-to-distance
strategies can be employed to govern swarm formation control.

Potential field-based methods utilize attraction and repulsion forces to guide agents
toward desired positions while avoiding collisions. Artificial potential functions [67] define
a mathematical representation of the desired formation and drive the swarm toward it.
Behavior-based methods focus on defining individual agent behaviors and interactions that
collectively result in the desired formation. Distributed consensus algorithms [32,68] enable
agents to reach a consensus on their positions and orientations through local interactions
and information exchange. These strategies typically rely on local sensing, communication,
and decision-making capabilities to achieve the desired formations without relying on
centralized control.

A network-to-distance formation controller in a UAV swarm operates on the principle
that agents in close proximity should have a stronger network link between them. This
relationship allows the network strength to serve as a representation of the distance con-
straints between two agents. By setting a network strength threshold, the controller can
establish and maintain the desired formation among the UAVs. The controller continuously
monitors the network connectivity and measures the strength of communication links
between neighboring agents. When the network strength between two agents exceeds the
predefined threshold, it indicates that the agents are within the desired distance range.
In this case, the controller maintains their current positions to preserve the formation.
However, if the network strength falls below the threshold it signifies that the agents are
too far apart, potentially violating the desired formation. The controller then initiates
appropriate control actions, such as adjusting the agents’ velocities or orientations, to bring
them back within the desired distance range. By leveraging the network strength as a
surrogate for distance, the network-to-distance formation controller enables coordinated
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movement and formation control in a UAV swarm. It allows the swarm to dynamically
adapt to environmental changes or mission requirements. This controller facilitates robust
and scalable coordination among the UAVs, enabling them to collectively perform complex
tasks and accomplish objectives efficiently and effectively.

The choice of formation control strategy depends on factors such as the desired
formation shape, scalability, robustness, and computational complexity. By enhancing
swarm formation control strategies, UAV swarms can achieve precise spatial arrangements,
coordinated movements, and cooperative behaviors, enabling them to effectively tackle a
wide range of tasks, including surveillance, mapping, and collaborative sensing in diverse
real-world scenarios.

3.4. Swarm Composition and Vehicle Characteristics

Heterogeneous UAV swarms, composed of UAVs with different capabilities, have
gained significant attention in the field of swarm robotics due to their potential to enhance
swarm performance in various applications [69]. By combining UAVs with diverse func-
tionalities, such as different sensor payloads, communication capabilities, or task-specific
capabilities, heterogeneous swarms offer increased versatility and adaptability compared
to homogeneous swarms [70]. The inclusion of heterogeneous agents is predicted to sur-
pass the performance set by homogeneous agent swarms as well as pave the way for
coevolutionary abilities [71].

One significant advantage of heterogeneous UAV swarms is their ability to efficiently
accomplish complex tasks through task specialization. By assigning specific roles or
functions to different types of UAVs within the swarm, the workload can be distributed
effectively, leading to improved task completion times. For instance, UAVs equipped
with high-resolution cameras can focus on detailed surveillance and target identification,
while UAVs with heavy-lift capabilities can handle payload transport or deployment tasks.
This division of labor enhances the overall efficiency and enables the swarm to tackle
tasks that would be challenging for a homogeneous swarm. A UGV (Unmanned Ground
Vehicle) and UAV combination can work together to produce survey maps from different
perspectives [72] or cooperative surveillance [73].

Moreover, heterogeneous UAV swarms demonstrate improved coverage capabili-
ties [74]. The diverse range of sensors and payloads in heterogeneous swarms enables them
to gather more comprehensive and diverse data about the environment. This enhanced
coverage facilitates better situational awareness, enabling the swarm to make informed
decisions and respond effectively to dynamic environmental changes. Additionally, the
heterogeneous nature of the swarm allows for optimized resource allocation, as UAVs with
specific capabilities can be strategically deployed in areas where their expertise is most
valuable. This targeted deployment ensures efficient resource utilization and maximizes
the coverage area, ultimately improving the overall effectiveness of the swarm.

Another critical aspect influenced by heterogeneous UAV swarms is fault tolerance.
The inclusion of different types of UAVs with redundant or complementary capabilities
enhances the swarm’s resilience in the face of individual UAV failures. In the event of a
malfunction or system failure, other UAVs within the heterogeneous swarm can compensate
for the loss by taking over the failed UAV’s responsibilities. This fault-tolerant behavior
increases the reliability and robustness of the swarm, ensuring the continuity of mission
execution even in challenging or unpredictable scenarios. Figure 5 shows two possible
scenarios where cooperative behavior between heterogeneous agents is enabled. Scenario
A shows applications where UAV and UGV work together to produce multi-perspective
maps of environments. Scenario B shows a UWSV (Unmanned Water Surface Vehicle)
equipped with a landing platform [75]. Such deployments have been popularly used in
marine search and rescue scenarios where the landing platform allows UAVs to recharge or
synchronize data between flights, thus extending their capability and flight time.
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Figure 5. Two scenarios showing cooperation operation between heterogeneous robots.

However, the integration of heterogeneous UAVs also presents challenges that must
be carefully addressed. Communication and coordination between different UAV types
become crucial factors in maintaining the coherence and efficiency of the swarm. Effective
communication protocols and coordination mechanisms must be developed to enable
seamless collaboration and exchange of information between heterogeneous UAVs. Fur-
thermore, the heterogeneity of the swarm necessitates sophisticated task allocation and
decision-making algorithms to optimize resource allocation and task assignments based
on individual UAV capabilities and mission objectives. The incorporation of UAVs with
diverse capabilities enhances the swarm’s efficiency, adaptability, and resilience. How-
ever, addressing communication, coordination, and task allocation challenges become
imperative to fully harness the potential of heterogeneous UAV swarms.

A UAV-specific simulation platform may not be the best choice for the design and
validation of heterogeneous swarms, particularly if the participation of swarm agents over
a variety of operational spaces is needed. This highlights the need for platforms with
cross-platform interfacing as well as generalized tools that are capable of simulating a wide
range of robots. A systematic experimental design process should be tailored specifically
for validating the resilience and performance of UAV swarm systems exhibiting the above
swarm process and application-specific usage.

4. Simulator Selection and Experimental Design

A set of experiments were formulated to consider the assessment of the aforemen-
tioned simulation platforms and the specific research objectives. While complete experi-
ment descriptions are not included in this article, a series categorization was created for
each one. The selection of the most appropriate simulation platform was made for each
experiment series to ensure an optimal environment for conducting the experiments. The
experiment series and their characteristics along with the selected platform are outlined in
Table 4.

Each experiment series addresses specific aspects of UAV behavior, communication,
and performance. ES1 focuses on observing fast swarm phenomena, specifically flocking
maneuvers and 2D path planning. The goal is to study the collective behavior of swarms
and their ability to navigate efficiently in two-dimensional space. Experiments observing
swarm phenomena such as flocking maneuvers and 2D path planning were initiated here.
MATLAB was the choice of simulation tool used due to its robust environment for algorithm
development and simulation, with specialized toolboxes for robotics and control systems.
Developers also have the option to transfer created deployments into in-house higher-level
modules such as Simulink and UAV toolbox. Cross-platform abilities allow interfacing
with community-created packages such as the RYZE TELLO application to control Tello
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EDU swarms or other simulations such as CoppeliaSim. ES2 was used for observing
FANET (Flying Ad Hoc Networks) and MANET (Mobile Ad Hoc Networks) topology and
performance for developing inter-agent communication and routing protocols [76,77]. The
choice of simulation platform was OMNET++ and associated plugins.

Table 4. Experiment series with descriptions, target observations, and simulation platforms used.

Experiment
Series (ES)

Description
Target Mechanisms Developed
and Observed

Simulation Tools Used

1 Basic swarm phenomenon
observation

Flocking maneuvers, 2D path
planning.

MATLAB
UAV Scenario Designer

2 Studying FANET topology and
performance.

Examine inter-agent
communication process,
equipment range, and routing
protocols.

OMNET++ and associated
plugins.

3 Photorealistic Single UAV design
and observation.

Examine the addition of various
cameras, sensors on UAV, and
data collection using simulated
environments.

Webots, MATLAB
UAV toolbox, & Simulink

4 Examining basic movement
operations of UAV swarm.

Establishing and defining
inter-swarm policies, agent
deployment, and defining swarm
topology

CoppeliaSim

5
Implementing ground terrain
features as well as realistic obstacles
with varied agents.

Defining buildings, trees, and
realistic heterogeneous agents CoppeliaSim, Webots

ES1 and ES2 focus on critical swarm developments and on producing fast accurate
results using bare simulation mechanisms. Use of high-level graphical components was
limited because scenario design for swarms in a pure MATLAB based implementation is
overly complex. Additional support from toolboxes, external simulator platforms, and
graphic engines would be required. These methods were instead used starting from ES3.
Additionally, the introduction of realistic environments such as 3D UAVs and environ-
ment models may increase the computational load, shifting the focus away from crucial
observations by creating unnecessary bottlenecks. ES3 involved designing and observing
photorealistic single UAVs in associated environments. Different cameras and sensors were
added to the UAV, and their impact on the overall performance and capabilities of the
UAV was examined through simulations. The choice of platform was the UAV toolbox in
MATLAB accompanied by Simulink and the MATLAB inspired RflySim platform.

ES4 focused on examining basic movement and specific operations of the UAV swarm.
Inter-swarm communication policies and swarm topology developed in ES2 were used to
understand coordination and cooperation among UAVs in a swarm. The choice of platforms
used was Webots and CoppeliaSim. Webots, much like CoppeliaSim has excellent support
for the creation of UAV swarms and associated topologies. While the newer versions of
CoppeliaSim have a generic UAV frame with modifiable physical characteristics and the
ability to mount sensors such as vision and ultrasonic sensors, GPS, and LiDAR, Webots
has two specific UAV models. They are Crazieflie [78] and the DJI Mavic 2 Pro [79]. Both
allow the use of MATLAB scripts to function as agent-specific or global swarm controllers.
ES5 implemented ground terrain features and realistic static and dynamic obstacles.

In this series, ground terrain features and realistic obstacles were implemented in
the simulations. The focus was on defining buildings, trees, and heterogeneous agents to
create a realistic environment for UAVs. This allowed for the study of UAV navigation
and obstacle avoidance strategies. CoppeliaSim has so far proven to be the best choice for
this series with the ability to define random and specific behavior for obstacles, including
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physics, as well as porting control and network parameters from previous ES. Figure 6
shows the swarm development process flow using the above-mentioned experiment series.

Figure 6. A suggested workflow using the above-proposed experiment series to design a comprehen-
sive robust swarm.

5. Experiment Descriptions

This section shows the preliminary experiment progress in the various simulation
platforms mentioned above. Quick 2D swarm simulations in MATLAB such as agent
consensus and formation control in application scenarios such as target convergence using
distance-to-network formation controller and pheromone techniques [80]. Figure 7 shows
a swarm of five agents moving to a target and carrying out an encircling process. While
basic results are possible using pure MATLAB, supported applications such as the UAV
Scenario Designer extend functionality.

Figure 7. Using MATLAB to model five simple agents navigating with two programmed charac-
teristics: formation control using network strength and target convergence using basic pheromone
strategy moving on a fixed target in a 2D map. Triangles are targets, circles are agents.

Figure 8 shows a swarm of three homogeneous fixed-wing agents that were pro-
grammed to survey a city block. The experiment examined the relationship between
trajectory point selection and flying altitude on agent fuel efficiency. Using minimum
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overhead graphics to examine essential swarm constraints is made possible using the
ES1 process.

Figure 8. A MATLAB simulation of a top-down view of three agents and selected trajectory for a city
block survey, and a sectional 3D view of the agents at their respective highest trajectory section.

The UAV swarm development domain is large enough that multiple components
are needed and requires separate development and testing. It is easier to test standalone
components in isolated scenarios before implementation with other components. ES2
involves the creation and testing of the underlying swarm network. FANET topologies may
be based on previous MANET deployments. However, the former has been specifically
designed to undergo more severe dynamic changes in node movement than a MANET.
Additionally, MANET may be constricted to movement in two dimensions, with the rate
of altitude change being very slow. OMNET++ allows the modeling of mobile nodes
implemented with UAV characteristics and network underlay. Simulation of network node
phenomenon for clustering, multi-hop data forwarding, and edge computing are necessary
operations for a robust swarm network [81]. Figure 9 shows a swarm of 3, 7, and 10 agents
that were created to optimize area coverage under a shared network load for data transfer.

Routing protocols form the basis of the network creation for UAV swarms for reliable
node-to-node packet transmission, security, and energy efficiency. AODV (Ad Hoc On-
Demand Distance Vector) is a self-starting routing protocol that has a degree of tolerance
toward node failures [82–84]. A request–response cycle is initiated for hops. Although
lacking in implicit security, it is used as the basis for future development of routing
protocols [84]. Figure 10 shows interactions between a UAV agent acting as a leader and a
set of mobile UAV swarm agents.

For ES3, a single high-fidelity 9 DOF (Degree Of Freedom) drone equipped with a
fisheye camera is simulated flying in a city block scenario. The UAV Toolbox works with
MATLAB and Simulink platforms the implementation of mathematical constraints gov-
erning the aircraft model as well as simulation environment parameters. In this particular
experiment, the weather was adjusted to fog and light rain. The Simulink model makes it
possible to implement additional sensors such as LiDAR and ultrasonic sensors or tweak
fuel level, GPS parameters, and aircraft framework physics. A randomly generated traffic
light overlay was added as the targeted data for collection in the form of image data from
the onboard sensor. Figure 11 shows the UAV agent simulation from different angles and a
feed from the image sensor.
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Figure 9. A swarm of three, seven, and ten UAV agents for area coverage using OMNET++.

Figure 10. A mobile AODV routing protocol for a set of mobile and non-mobile agents using
OMNET++.
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Figure 11. MATLAB simulation using the UAV Toolbox sub-figures on top show different angles of
the simulated UAV and the bottom shows the feed from the fisheye image sensor.

ES4 experiments focused on swarm topology and inter-agent policies discussed above.
Formation controllers can be further fine-tuned to adjust the allowable intrusion into an
agent’s sphere of minimum distance. Low tolerance controllers record even the least
amount of intrusion by one agent into another agent. These incidents are then noted by
swarm control and corrective action for agent movement is taken. There is a fine tradeoff
between the set tolerance and the computation power required. Low tolerance controllers
promise lower collision rates; however, even minimum intrusions are examined. This
results in more computational power used to examine intrusions and take corrective action.
Higher tolerance controllers may not realize all intrusions except the most severe, freeing
up computation power but opening up the risk for unpredictable collisions. Inaccuracies
in measurement can be supplemented by additional methods. This can work for any
sensor reading including GNSS (Global Navigation Satellite System) readings. A GNSS
positioning system can be supplemented with localized passive beacons that transmit
exact information, whereas drifts in agent movement can be compensated using formation
control and additional sensors. Figure 12 shows this simulated approach.

Figure 12. A 3-agent swarm simulated in MATLAB with a downward sensor for passive beacons
and a limited-range lateral sensor to detect other agents.
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Figures 13 and 14 show three and fourteen agents in a swarm, respectively. A mini-
mum and maximum distance between agents are set as means to complement other sensors
and swarm formation methods. Based on the tolerance level set and the level of intrusion
by one agent into the space of another, the controller alerts the possibility of an inter-agent
collision such that suitable adjustments can be made to avoid it.

Figure 13. Three agents in an airspace with maximum and minimum inter-agent distances are set for
formation control.

Figure 14. Fourteen agents flying the airspace with maximum and minimum inter-agent distances
set for formation control.

An ES5 experiment has been designed in Webots for examining the application-specific
functionality of a homogeneous swarm in a realistic environment. Here a swarm of low-
level UAVs indicated by the green oval in Figure 15 work to locate a person in distress. An
external agent controlled by an operator is also shown to provide an additional POV (Point
Of View). Floating windows show an agent POV that has located the person in distress, a
second POV from a different agent in the swarm, and the view of the manually controlled
Mavic 2 camera following the swarm.
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Figure 15. A distributed low-cost UAV swarm working towards targeted search and rescue simulated
in a hyper-realistic environment in Webots.

An additional pass-on module to MATLAB tracked agent positions to collect and
visualize position data as a means of creating an efficient distance to network strength
formation controller for maintaining inter-agent distances. The developed approach uses
the concept of proportional changes in inter-agent network strengths as a result of changes
in distance between them. APF (Artificial Potential Field) is used to create attraction and
repulsion forces. The figure shows the Crazieflie [78] agents in a swarm converging on the
person. Target search and detection applications such as this open a range of possibilities
in disaster management and emergency response [5,85,86].

The inclusion of agents with different capabilities in swarms is necessary to push the
limitations of performance set by homogeneous swarms. A heterogeneous swarm can
be recognized by various factors such as different operational spaces the swarm agents
work in, the different nature of agents, or their hardware. An example of a swarm with all
three properties was simulated in a CoppeliaSim simulation in Figure 16. An agent with a
close-range sensor for obstacle detection works with an agent that has a long-range vision
sensor; a ground-based wheeled robot is also a part of the swarm, and a tree is included
as a sample for a static obstacle and a walking person is a dynamic obstacle. The aerial
agents work in conjunction to detect obstacles and share information across the swarm.
The ground-based robot is assigned different functions depending on the scenario such as
acting as a platform for the safe landing of aerial agents or finding safe spots for the agents
to land on the ground. The green spheres indicate possible zones for movement as mapped
by the ground robot. Efficient information exchange pathways and the demonstration of
heterogeneous agents with extended parameters are one of the targets for ES5. Simulation
quality is enhanced with features such as obstacle variety, realistic scenery, and a mixed-
sensor array. To design and test varied systems such as this, it is necessary for the right
choice of simulation platforms that can support it.

Experiments beginning from ES3 use simulation platforms where it might be possible
to introduce variability in experiments scenarios using weather effects. Rain, wind, and
snow exert significant influence on UAV operations, underscoring the need for compre-
hensive testing. Rain can compromise UAV sensors and electronics, potentially disrupting
communication and navigation systems. Wind poses challenges in maintaining stable
flight paths and can increase energy consumption. Snow accumulation can alter UAV
weight and aerodynamics, affecting maneuverability. The sun’s azimuth angles collectively
shape the complex interplay of factors affecting UAV operations. The sun’s azimuth angle
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determines the direction of sunlight and casts shadows, impacting visual perception and
sensor data accuracy. UAVs’ ability to interpret their environment and execute tasks can
be compromised by glare, changing illumination, and altered shadow patterns. Properly
accounting for the sun’s angle is crucial for accurate navigation, object recognition, and ob-
stacle avoidance. All of these factors collectively impede control precision and reduce flight
endurance, necessitating robust algorithms and hardware designs to ensure reliable UAV
performance in adverse weather conditions. Integrating these environmental variables
into UAV operation testing provides a comprehensive understanding of their combined
impact, enabling the development of more robust and adaptable UAV systems capable of
functioning effectively under a wide range of real-world conditions.

 

Figure 16. A heterogeneous swarm scenario with two UAV and one ground robot using CoppeliaSim.

Figure 17 shows an example of how the presence of fog and changes in the sun’s
angles may influence object detection by vision sensors. Adverse weather conditions may
require the implementation of add-on methods to ensure that the output of sensors remain
coherent [87]. The performance of other sensors such as LiDAR may also be affected.
Table 5 summarizes some simulation platforms and the various weather effects that they
are capable of supporting. Weather conditions such as wind, rain, and fog, can significantly
impact the performance of UAVs, challenging their navigation, communication, and coor-
dination capabilities. By incorporating weather effects, researchers can more accurately
assess the resilience of swarm algorithms and control strategies under diverse environ-
mental conditions. This approach not only provides a more comprehensive evaluation of
UAV swarm behavior but also aids in identifying potential vulnerabilities and optimizing
strategies for real-world deployment. Ultimately, the integration of weather variability
lends a vital layer of complexity to UAV swarm experiments, promoting the development
of more adaptable and robust swarm technologies.

The operating weather in UAV swarm experiments is an important factor as it en-
hances the realism and robustness of simulated scenarios. However, modifying graphical
environment parameters may require additional development during the development
phase of a platform as well as more computational resources while executing scenarios.
The capability of a simulator to support different weather conditions can also be a crucial
parameter that can assist in deciding which simulation platform to choose to perform
experiment validation.
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Figure 17. Top two figures show the effect of sun azimuth angle and fog affecting vision sensor
capabilities. The bottom two figures show a UAV flying in clear weather (left) and in fog and snow
weather (right) using Microsoft AirSim.

Table 5. A comparison of simulation platforms and the various weather effects they support.

Simulation Platform Weather Effect Additional Notes

CoppeliaSim Limited to scripted animations No built-in support for weather effects

Gazebo Supports weather effects through plugins Rain, fog, snow, and more can be simulated
using community plugins

Webots Simulates environmental conditions Offers tools to adjust parameters like
lightening, wind, and physics

UAV toolbox Sun angle, time of day fog, and rain are
possible by default

A slight variability in the mentioned weather
factors is possible

Microsoft AirSim A larger number of weather variations
are possible.

In-built functions include controlling wind
direction, rain, snow, dust, and fog.

6. Future Work

A future research direction is to bridge the gap between simulation platforms and
real-world UAV systems by establishing interfaces that enable bidirectional communication
and synchronization. This would allow for the testing and validation of simulation results
in controlled environments using fly nets and motion capture cameras. By integrating
motion capture systems that accurately track and trace the movement of UAV agents,
the collected data can be fed back into the simulation platform to validate and refine the
simulated behaviors and algorithms. Modern simulation platforms or their associated
packages allow for the transfer and deployment of code on supported hardware. There has
been an increase in the number of platforms that hardware manufacturers support out of
the box. The Ryze Tello package screen for MATLAB shown in Figure 18 supports Tello
EDU drones. Control data can be exported for use and analysis. Multiple Tello drones in a
swarm can also be programmed [88]. The easy interface of Tello drones with MATLAB and
code functionality with Python, along with their low cost and swarming capability, were
some of the reasons that they were chosen as the platform for conducting all hardware
in-loop experiments by the authors. The framework in this article is not hardware specific
and could be implemented using other platforms. The technology landscape is constantly
evolving, and newer hardware such as the Robolink Codrone Edu platform introduced in
a 2022 drone version offers similar capabilities to the Tello [89].
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Figure 18. Ryze Tello package for Tello Edu drones.

This closed-loop approach enables a continuous feedback loop between simulation
and real-world experiments, enhancing the fidelity and reliability of the simulation results.
Furthermore, the controlled environment provided by fly nets ensures the safety of the
experiments while enabling the examination of intricate swarm behaviors and complex
interaction dynamics. Such an approach would not only enhance the accuracy and realism
of simulation results but also facilitate the transferability of findings from simulation to real-
world applications. The ability to update simulation platforms also invites the possibility
of allowing them to work with older hardware that supported the use of simulation tools
but lacked certain features. A popular example is the now discontinued Robolink Codrone
Pro platform which does not have swarm functionality, as seen in Figure 19–left. This
platform was replaced by the Robolink Codrone Edu UAV. Swarming on the old version is
still possible by creating custom scripts that pass position data to intermediaries. Every
agent sends information to a node that updates other agents. Using this method, a decen-
tralized proof-of-concept was created for the pro drone platform to enable agent swarming.
Manufacturers now are more aware of the value of creating easily implementable bridges
between simulation platforms and hardware. The DJI Tello EDU platforms now support
swarm mode using MATLAB packages, as seen in Figure 19–right.

Figure 19. Two Robolink CoDrones flying in formation, (left side), and a swarm of three DJI Tello
EDU drones including two active and one reserve agent (right side).
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It is vital that the UAV designs themselves and the swarm experiments designed for
them evolve to stay in line with new regulations enforced on the airspace that they fly
in. The recently enforced rule by the FAA [90] mandates the presence of a RID module
either as a modification to current hardware or by extension. The purpose of this module
is to broadcast vital self-identifying information of the UAV and its controlling entity as
a means to deter unauthorized activity, as well as to reduce load on conventional aircraft
tracking measures. Simulation tools such as CoppeliaSim allow the creation of additional
objects that can be fused to a prebuilt UAV and custom behavior can be defined for them.
In this case, it would be the RID module periodically broadcasting information about the
UAV such as position, task ID, and operator information. While this new rule has multiple
concerns such as privacy concerns and extra costs, the data that it broadcasts can also be
imbibed into existing swarm policies for resource tracking and management [91].

Future work should focus on developing standardized protocols and methodologies
for integrating simulation platforms with motion capture systems and fly nets, enabling
comprehensive and systematic validation of UAV swarm behaviors in controlled envi-
ronments. Other than the experiment design itself, advances in the operation of UAV
agents themselves should be explored. ANNs have been used to mitigate challenges with
MBC design of flight controllers [92]. Similar approaches can be used to tweak experiment
parameters that would enable observing a wider range of agent responses to introduced
disruptions. This approach would significantly contribute to the advancement and practical
applicability of UAV swarm research, fostering the development of robust and reliable
autonomous systems for various domains, including surveillance, disaster response, and
environmental monitoring.

7. Conclusions

The goal of the descriptive analysis presented here is to serve as a reference to other
researchers who are currently working on similar swarm development experiments and
are looking for various tools that might assist them in doing so. The contributions of
this research lie in its thorough examination of simulation platforms and the proposed
experimental design process. By providing a comprehensive guide for designing swarm
experiments, the paper enables researchers to validate the robustness and efficiency of
UAV swarm systems before field implementation. Also provided is a concise review of
existing simulation platforms, assessing their suitability for swarm experimentation needs.
This evaluation was used during the process of platform selection for designing swarm
experiments. In future work, researchers can explore further advancements in simulation
platforms, refine experimental design processes, and investigate novel swarm behaviors
and coordination strategies. With continued research and evidence-based evaluation, UAV
swarm systems can be further optimized, enabling their widespread implementation, and
contributing to the advancement of autonomous aerial operations.
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Abbreviations

ANNs Artificial Neural Networks
APF Artificial Potential Field
AODV Ad Hoc On demand Distance Vector
D2D Device to Device
DOF Degree of Freedom
ES Experiment Series
FANET Flying Ad Hoc Networks
GNSS Global Navigation Satellite System
IDS Intrusion Detection System
MAV Micro Air Vehicle
MPC Model Predictive Control
MANET Mobile Ad Hoc Network
PSO Particle Swarm Optimization
POV Point Of View
ROI Region of Interest
RID Remote Identification
SAR Search and Rescue
UAV Unmanned Aerial Vehicle
UGV Unmanned Ground Vehicle
USV Unmanned Surface Vehicle
UAS Unmanned Aircraft System
UWSV Unmanned Water Surface Vehicle
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Abstract: Monitoring and analyzing radio interference sources play a crucial role in ensuring the safe
operation of civil aviation navigation, communication, airport management, and air traffic control.
Traditional ground monitoring methods are slow and inadequate for tracking aerial and mobile
interference sources effectively. Although flight methods such as helicopters and airships can effec-
tively monitor aerial interference, the flight approval process is time-consuming and expensive. This
paper investigates a novel approach to locating civil aviation radio interference sources using four
unmanned aerial vehicles (UAVs) to address this issue. It establishes a model for aerial positioning of
radio interference sources with the four UAVs and proposes a method for time synchronization and
data communication among them. The paper conducts simulations of the four-UAV time–frequency
difference positioning method, analyzing the geometric accuracy dilution with different deployment
configurations of the UAVs, positioning biases, and root mean square errors (RMSEs) under vary-
ing interference source movement speeds. The simulation results provide crucial data to support
subsequent experiments.

Keywords: four UAVs; civil aviation; radio interference source; time–frequency difference positioning

1. Introduction

In the realm of aviation, radio technology plays a critical role in communication,
navigation, surveillance, meteorology, and various other aspects. However, the unau-
thorized establishment of “black radio”, “pseudo-base stations”, and similar devices has
become a growing concern. These devices operate at frequencies perilously close to civil
aviation radio frequencies, leading to escalating and severe interference with civil aviation
communications. Such radio interference can significantly diminish air traffic control com-
munications and crucial avionics equipment [1–5], posing a serious threat to aviation safety.
Over the years, reported cases of radio interference at airports worldwide have shown a
marked increase. For instance, according to the CAAC East China Regional Administration,
there were 334 radio interference incidents in East China in 2015, and the number has
remained consistently high, with over 300 incidents reported annually since then [6]. Ad-
ditionally, the airspace near the airports of the Civil Aviation Flight University of China’s
branches in Luoyang, Xinjin, and Suining has experienced multiple instances of radio
interference, severely affecting normal flight training operations. In comparison to ground
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monitoring methods, air platform-based radio monitoring offers distinct advantages. Utiliz-
ing UAVs for monitoring circumvents airspace limitations and eliminates the complications
and lengthy approval processes required for route clearance. Employing multiple UAVs
provides several benefits, including heightened flexibility, increased positioning accuracy,
extensive coverage, and rapid positioning. This approach proves particularly valuable in
monitoring aerial and mobile interference sources, ultimately advancing the ranking of
civil aviation radio interference sources.

In this paper, we present a novel approach for identifying the sources of civil avia-
tion radio interference using a time–frequency difference positioning technique with four
UAVs. By employing this method, we effectively mitigate the impact of multipath radio
wave propagation caused by obstacles, while addressing the limitations of ground-based
troubleshooting methods. The proposed method offers the capability not only to monitor
aerial interference but also to effectively detect ground-to-air interference and ground
interference. Furthermore, in comparison to existing unmanned aerial vehicle (UAV)-based
methods for locating civil aviation interference sources, our approach demonstrates supe-
rior positioning accuracy, broader coverage area, faster positioning speed, and increased
flexibility in tracking moving point targets.

2. Related Work

The concept of radio monitoring was initially introduced by Western countries, and
subsequently, the Federal Aviation Administration (FAA) [7] implemented multiple fixed
and relocatable stations to establish the Airport Radio Interference Monitoring System
(AIMS) and Radio Interference Monitoring System (IMDS). The requirements for an in-
terference source monitoring/direction finding system include a frequency coverage of
25–3000 MHz, a frequency scan rate of 1000 MHz/s, and a direction finding accuracy better
than 2° [8]. In recent studies, various researchers proposed innovative techniques for differ-
ent applications. Rakshit Ramesh et al. [9] proposed a new protocol and technique based
on the time difference of arrival (TDOA) method for UAV positioning. Kilari et al. [10] in-
troduced a linear programming initialization method to complement the TDOA algorithm.
Mario Nicola et al. [2] presented a novel interference management concept capable of
detecting intentional interference in navigation satellite system signals and determining its
source. Sanat K Biswas et al. [11] explored the use of Kalman filters to efficiently geolocate
and track dynamic and static RF interference sources based on real measurements from a
geolocation system. Additionally, Adrien Perkins et al. [12] detailed the design, develop-
ment, and flight testing of the JAGER visual navigation system. In China, radio monitoring
networks are extensively employed to identify and exclude interference sources that may
affect aviation, railroad, and telecommunication units. Notably, recent research by Hao
Caiyong et al. [13] proposed a high-precision positioning method utilizing UAV assistance.
Xu Bojian et al. [14] from Beijing Global Information Application Development Center
performed an analysis based on radio frequency parameters and established a specimen
database. Jin Ping et al. [15] from the School of Information Science and Engineering at
Yanshan University introduced an improved MUSIC algorithm for localizing coherent
interference cognitive users. Wang Guangyu [16] from the Technical Support Center of
CAAC Northeast Regional Administration achieved precise positioning of radio interfer-
ence sources. Additionally, Li Jinshan [17] from the School of Information Engineering and
Automation at Kunming University of Science And Technology proposed an existing radio
interference source positioning technique.

The positioning of radio wave sources plays a crucial role not only in military applica-
tions like electronic warfare but also in civilian domains such as navigation systems [18,19],
internal security [20], and search and rescue missions [21,22]. The majority of methods
analyzed in the literature apply to stationary interference sources. The potential of using
widely available UAVs to enhance communication service quality and to extend coverage
has been explored in the context of fifth-generation (5G) mobile networks and fixed inter-
ference source positioning systems, as presented in references [23–25], respectively. Among
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the more commonly used techniques for estimating the positions of mobile transmitters are
TDOA and frequency difference of arrival (FDOA) measurements obtained from multiple
sensors, as discussed in references [25,26]. In [27], target tracking techniques based on
wireless sensor network (WSN) TDOA measurements are described. Sathyan et al. [28] also
recommended the use of the extended Kalman filter (EKF). Similarly, Kim et al. [29] pro-
posed a method involving correlated TDOA and Gaussian mixture. Kelner J M et al. [30]
evaluated the effectiveness of signal Doppler frequency methods in locating mobile radia-
tion sources using swarms of UAVs. The team led by Zhou Chao at the Civil Aviation Flight
University of China (CAFUC) has undertaken extensive research in this field, constructing
various UAV monitoring platforms dedicated to monitoring civil aviation radio interference
sources [31–39].

The commonly employed techniques for localizing stationary radiation sources using
UAV swarms primarily include the FDOA method, the positioning algorithm using a
phase interferometer, the Dual Station Direction Finding (DF) cross-positioning algorithm,
and the TDOA method for passive positioning techniques. Regarding the positioning of
dynamic radiation sources by UAV swarms, the principal methods consist of the least
squares method [40], spatial electromagnetic environment platform positioning [41], and
radar positioning of dynamic radiation sources based on active positioning [42].

Although the time and angle positioning methods mentioned above can achieve a
high level of positioning accuracy, they are constrained by the continuous operation of the
target jammer and the complexity of the positioning algorithm. This paper introduces a fast
and intuitive positioning method with a simple algorithm to determine the position of the
interference source. In the designated measurement area, a matrix of several radio monitors
is deployed, forming a radio monitoring network. This network continuously monitors the
signal strength of the interference source within the area, measures the magnitude of its
received power, and analyzes the received power magnitude data from the radio monitors.
The proposed algorithm deduces the location of the interference source based on the data
detected by the radio monitors, and its efficacy is validated through simulation.

3. Design of Four-UAV Time–Frequency Difference Positioning Method for
Interference Sources

The technique of cross-location between two UAVs primarily involves measuring the
arrival angles between the interfering source and the monitoring station. The ray, origi-
nating from the monitoring station and passing through the interfering source, intersects
with another ray to determine the position of the interference source. However, it should
be noted that the cross-location method is only suitable for non-moving radio interference
sources since the positioning accuracy is not sensitive to the positional errors of UAVs. In
the case of a moving interference source, this method cannot provide precise positioning.
Moreover, according to mathematical principles, the trajectory of a moving point with a
constant difference in distances from two fixed points forms a hyperbola. To determine a
point in three-dimensional space, at least three difference in distances and four monitoring
stations are required. Therefore, TDOA positioning requires a minimum of four unmanned
aerial vehicles (see Figure 1).

3.1. The Four-UAV Time–Frequency Difference Positioning Algorithm for Interference Sources

The four UAVs can be operated independently using their own paired remote controls
or ground control computers. Once the UAVs have established a synchronized time
reference, the signal-receiving equipment on each UAV monitoring platform measures the
arrival time of the same interference source signal separately. Subsequently, the arrival time
information, along with position, speed, and other relevant data from all UAVs, is collected
and sent to the ground station through the downlink. The interference source’s position is
then calculated using the TDOA–FDOA joint positioning method, and the location of the
radio interference source is displayed on a map. The UAV ground station serves as the core

107



Sensors 2023, 23, 7939

component of the system, responsible for system control and data processing, enabling
efficient cooperative control of the UAVs.

Figure 1. Four-UAV-based radio interference source positioning scenario for civil aviation.

In the data processing of a multi-UAV cooperative monitoring network, it is essential
to ensure that the measurement values provided by each UAV can be transformed into
the same reference station coordinate system for analysis and expression. The geodetic
coordinate system represents the position of the UAV in terms of longitude Li, latitude Bi,
and geodetic height Hi, i = 1, 2, . . . , P. In the Cartesian coordinate system, the position of
the UAV is represented by variables Xi, Yi, and Zi. Given the geodetic coordinates of the
UAV, the formula for calculating the Cartesian coordinates of UAV is as Equation (1):⎧⎨⎩

xi = (N + Hi) cos Bi cos Li
yi = (N + Hi) cos Bi sin Li
zi =

[
N
(
1 − e2

1
)
+ Hi

]
sin Bi

(1)

where e1 represents the first eccentricity of the meridian ellipse and N denotes the curvature
radius of the ellipsoidal surface along the prime vertical.
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When the spatial Cartesian coordinate Ui(xi, yi, zi) of a UAV is known, the formula
for calculating the geodetic coordinates of UAV is as Equation (2).⎧⎪⎪⎪⎨⎪⎪⎪⎩

Li = arctan yi
xi

Bi = arctan (N+Hi)zi

(N+Hi−e2
1 N2)

√
x2

i +y2
i

Hi =

√
x2

i +y2
i

cos Bi
− N

(2)

Let R = [x, y, z]T represent the position of the moving civil aviation radio interference
source and Ṙ = [ẋ, ẏ, ż]T denote its moving speed. There are a total of four UAVs with
their flight positions described in spatial Cartesian coordinates as Ui = [xi, yi, zi] and their
flight speeds as U̇i = [ẋi, ẏi, żi], i = 1, 2, . . . , 4. Considering UAV U1 as the master station,
the distance difference, known as the range difference of arrival (RDOA) between the
remaining UAVs and the master station concerning the mobile interference source can be
expressed using Equation (3) as follows:

ri,1 = di − d1 + ni,1 (3)

where di = ‖R − Ui‖2 =
√
(x − xi)

2 + (y − yi)
2 + (z − zi)

2 represents the actual distance
between the i-th UAV and the mobile interference source and ni,1 denotes the measurement
error of the i-th time.

Expand Equation (3) as follows:

2(Ui − U1)
T R + 2ri,1d1 =

(
UT

i Ui − UT
1 U1 − r2

i,1

)
+ 2dini,1 (4)

The time derivative of Equation (4) allows us to utilize the relevant information
of FDOA:

2
(
U̇i − U̇1

)T R + 2(Ui − U1)
T Ṙ + 2ri,1ḋ1 + 2ṙi,1d1

= 2
(

U̇T
i Ui − U̇T

1 U1 − ri,1ṙi,1

)
+ 2diṅi,1 + 2ḋini,1

(5)

The time derivative of the actual distance di = ‖R − Ui‖2 between the i-th UAV and
the mobile interference source is represented as Equation (6):

ḋi =

(
U̇i − U̇1

)
(Ui − U1)

di
(6)

Based on the monitoring data, the TDOA information of the three UAVs is represented
by Td = [t2,1, t3,1, t4,1], the FDOA information is denoted by Fd = [ f2,1, f3,1, f4,1], their
RDOA is indicated as r = [r2,1, r3,1, r4,1] and the rate of change in RDOA is expressed
as ṙ = [ṙ2,1, ṙ3,1, ṙ4,1]. The relationship between these parameters can be expressed as
Equation (7): {

r = c × Td = d + n
ṙ = c × Fd

f0
= ḋ + ṅ (7)

where f0 represents the carrier frequency; c denotes the transmission speed of the radio
interference source frequency; and n = [n2,1, n3,1, n4,1] and ṅ = [ṅ2,1, ṅ3,1, ṅ4,1] refer to the
time noise vector and the frequency noise vector, respectively. In this algorithm, the noises
are temporarily assumed to be zero-mean Gaussian white noise.

In the first step, we estimate by combining Equations (4) and (5), resulting in the
following:

Q1θ1 − h1 = ε1 (8)
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where θ1 =
[
RT , R1, ṘT , Ṙ1

]T
8×1, B = 2 × diag([d2, d3, d4]), Ḃ = 2 × diag

([
ḋ2, ḋ3, ḋ4

])
, h1 =⎡⎢⎢⎢⎢⎢⎢⎢⎣

UT
2 U2 − UT

1 U1 − r2
2,1

· · ·
UT

4 U4 − UT
1 U1 − r2

4,1
2
(
U̇T

2 U2 − U̇T
1 U1 − ṙ2,1r2,1

)
· · ·

2
(
U̇T

4 U4 − U̇T
1 U1 − ṙM,1rM,1

)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
6×1

, Q1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(U2 − U1)
T r2,1 01×3 0

. . . · · · · · · · · ·
(U4 − U1)

T r4,1 01×3 0(
U̇2 − U̇1

)T ṙ2,1 (U2 − U1)
T r2,1

· · · · · · · · · · · ·(
U̇4 − U̇1

)T ṙ4,1 (U4 − U1)
T r4,1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
6×8

,

ε1 = B1Δη =

[
B 03×3
Ḃ B

][
n
ṅ

]
.

Based on the preceding matrix, Equation (8) is transformed to the following:

θ1 =
(

QT
1 T1Q1

)−1
QT

1 T1h1 (9)

The obtained Equation (9) represents the weighted least squares estimate of the first
step, where T1 =

(
B1Z−1BT

1
)−1, Z denote the covariance matrix of the measurement

noise Δη.

cov(θ1) =
(

QT
1 T1Q1

)−1
(10)

In the second-step estimate, the time–frequency difference joint positioning algorithm
has two constraints on distance:

(R − U1)
T(R − U1) = d2

1 (11)(
Ṙ − U̇1

)T
(R − U1) = ḋ1d1 (12)

Based on Equations (11) and (12), we can establish the following constraint model:

Q2θ2 − h2 = ε2 (13)

Let θ1,R = [θ1(1), θ1(2), θ1(3)]
T , θ1,Ṙ = [θ1(5), θ1(6), θ1(7)]

T ,

θ2 =

[
(R − U1)� (R − U1)(

Ṙ − U1
)
� (R − U1)

]
Q2 =

⎡⎢⎢⎣
I3×3 03×3
11×3 01×3
03×3 I3×3
01×3 11×3

⎤⎥⎥⎦,

h2 =

⎡⎢⎢⎢⎣
(θ1,R − U1)� (θ1,R − U1)

θ1(4)2(
θ1,Ṙ − U1

)
� (θ1,R − U1)

θ1(8)θ1(4)

⎤⎥⎥⎥⎦, where I3×3 is a 3 × 3 identity matrix, 03×3 is a

3 × 3 zero matrix, 11×3 is a 1 × 3 matrix with all ones, 01×3 is a 1 × 3 zero matrix, and �
represents the product of vectors.

Based on the preceding matrix, Equation (13) is transformed to the following:

θ2 =
(

QT
2 T2Q2

)−1
QT

2 T2h2 (14)

The obtained Equation (14) represents the weighted least squares estimation of the second

step, where T2 =
(

B2 cov(θ1)BT
2
)−1, B2 =

⎡⎢⎢⎣
2 diag(R − U1) 0 03×3 0

01×3 2d1 01×3 0
diag

(
Ṙ − U̇1

)
0 diag(R − U1) 03×1

01×3 d1 01×3 ḋ1

⎤⎥⎥⎦.
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Estimate θ2 and utilize Equations (15) and (16) to calculate the position information
and velocity information of the mobile interference source:

R = V
[√

θ2(1),
√

θ2(2),
√

θ2(3)
]T

+ U1 (15)

Ṙ = V

[
θ2(4)√

θ2(1)
,

θ2(5)√
θ2(2)

,
θ2(6)√

θ2(3)

]T

+ U̇1 (16)

where V = diag(sgn(θ1,R − U1)), where sgn is the positive or negative sign.
The first-step estimation and the second-step estimation mentioned above are repeated

in a cycle until the difference between the two estimation results is smaller than the
predefined threshold or the number of cycles reaches the set limit. At that point, the cycle is
terminated, and the final result at the end of the cycle represents the most accurate estimate
obtained using the algorithm.

Accordingly, the overall flow of the four-UAV time–frequency difference positioning
interference source algorithm can be obtained: (See Algorithm 1).

Algorithm 1: The overall flow of the four-UAV time–frequency difference posi-
tioning interference source

Step 1: Input the UAV position and velocity information, followed by a conversion
of the geodetic coordinates of the UAV into spatial Cartesian coordinates using a
coordinate system transformation model specifically tailored for the algorithm;

Step 2: Construct a joint four-UAV TDOA–FDOA positioning model ( Q1 and h1 ),
and let T1 be the identity matrix;

Step 3: Calculate the weighted least squares estimate for the first step based on the
localization model: θ1 =

(
QT

1 T1Q1
)−1QT

1 T1h1;
Step 4: Calculate the coefficient matrix B1 from θ1, and reconstruct the weight
matrix: T1 =

(
B1Z−1BT

1
)−1;

Step 5: Repeat steps 3 and 4 until the absolute difference between the two results is
smaller than the predefined threshold or the set number of cycles is reached. At
this point, terminate the cycle, and obtain cov(θ1) =

(
QT

1 T1Q1
)−1;

Step 6: The constraint models for the joint four-UAV TDOA–FDOA positioning are
constructed based on θ1 ( Q2 and h2 );

Step 7: Construct the coefficient matrix B2 of the constraint model weight matrix,
and calculate the weight matrix: T2 =

(
B2 cov(θ1)BT

2
)−1;

Step 8: Calculate the weighted least squares estimate for the second step based on
the constrained model: θ2 =

(
QT

2 T2Q2
)−1QT

2 T2h2;
Step 9: Calculate R and Ṙ for mobile radio interference sources based on θ2;
Step 10: Repeat steps 6 to 8 until the absolute difference between the two results is
smaller than the predefined threshold or the set number of cycles is reached. At
this point, terminate the cycle and obtain the final calculated interference sources
R and Ṙ;

Step 11: Transform the spatial Cartesian coordinates of the radio interference
source into geodetic coordinates using the coordinate system conversion model
and then output them.

3.2. Design of Four-UAV Time Synchronization

Due to the different clock behaviors on each UAV, ensuring meaningful time mea-
surements necessitates adopting one UAV’s time as the standard and synchronizing the
time of the other three UAVs with it. In this paper, the utilized clock synchronization
method involves transmitting the time difference between all UAVs and the GPS time
to the ground station. Following processing using the time–frequency synchronization
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algorithm, the time difference information is inputted into the time–frequency difference
positioning algorithm. Figure 2 depicts the schematic diagram of the four UAVs’ time
synchronization settings.

Figure 2. Schematic diagram of the four UAVs’ time synchronization settings.

Let the clock time of UAV U1 be tU1 , the clock time of UAV U2 be tU2 , the clock time of
UAV U3 be tU3 and the clock time of UAV U4 be tU4 , while the GPS time is denoted as tGPS.
The measurement method for the clock difference of the four UAVs is as follows: Under the
same co-viewing schedule constraint, the GPS receivers of the four UAVs simultaneously
receive the same GPS satellite signal. The output of the GPS receivers of all four UAVs
produces a GPS time second pulse, which is then transmitted to the built-in counter of the
GPS receivers, resulting in the GPS on-star time. By subtracting the received GPS on-star
time from the local atomic clock seconds signal generated by the clock synchronization
module, along with the time delays of the UAV monitoring platform equipment and the
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GPS signal reaching the UAV monitoring platform, we obtain the difference between
the clock time of each UAV and the GPS on-star time. This process is executed by the
GPS receiver management and data processing software within the clock synchronization
module. The resulting difference data are then transmitted from the UAVs to the ground
for further processing. Consequently, subtracting the air–ground signal transmission delay
from this difference yields the clock difference between the ground clock and the GPS clock.

ΔtiGPS = ti − tGPS − tRi − τi − κi (i = U1, U2, U3, U4) (17)

where ti represents the local time generated by the clock synchronization module of each
UAV platform when the GPS signal is received by the UAV; tGPS is the on-star time of the
GPS satellite transmit signal; tRi denotes the equipment time delay of the corresponding
UAV platform; τi is the transmission time delay of the GPS satellite signal reaching the UAV;
and κi is the ground-to-air signal transmission time delay and is given by the following:

τi =

√
(x − xi)

2 + (y − yi)
2 + (z − zi)

2

c
(i = U1, U2, U3, U4) (18)

where (x, y, z) represents the Cartesian coordinates of the GPS satellite and (xi, yi, zi)
denotes the Cartesian coordinates of each UAV. By utilizing Equations (17) and (18), it
is possible to calculate the difference between the local clock of the four UAVs and the
GPS clock at the ground station, resulting in the values of ΔtU1,GPS, ΔtU2,GPS, ΔtU3,GPS
and ΔtU4,GPS. By subtracting the values of ΔtU1,GPS from U2, U3, U4 and U1, we obtain the
differences ΔtU1,U2 , ΔtU1,U3 , and ΔtU1,U4 between the clocks of the three UAVs U2, U3, and
U4 and that of UAV U1.

ΔtU1,U2 = tU1 − tU2

=
(
ΔtU1,GPS + ΔtGPS + τU1 + tRU1 + κU1

)
−
(
ΔtU2,GPS + ΔtGPS + τU2 + tRU2 + κU2

)
=
(
ΔtU1,GPS − ΔtU2,GPS

)
+
(
τU1 − τU2

)
+
(
tRU1 − tRU2

)
+
(
κU1 − κU2

) (19)

ΔtU1,U3 = tU1 − tU3

=
(
ΔtU1,GPS + ΔtGPS + τU1 + tRU1 + κU1

)
−
(
ΔtU3,GPS + ΔtGPS + τU3 + tRU3 + κU3

)
=
(
ΔtU1,GPS − ΔtU3,GPS

)
+
(
τU1 − τU3

)
+
(
tRU1 − tRU3

)
+
(
κU1 − κU3

) (20)

ΔtU1,U4 = tU1 − tU4

=
(
ΔtU1,GPS + ΔtGPS + τU1 + tRU1 + κU1

)
−
(
ΔtU4,GPS + ΔtGPS + τU4 + tRU4 + κU4

)
=
(
ΔtU1,GPS − ΔtU4,GPS

)
+
(
τU1 − τU4

)
+
(
tRU1 − tRU4

)
+
(
κU1 − κU4

) (21)

In this way, the three UAVs U2, U3, and U4 can be synchronized on time based on the
reference of the U1 UAV’s clock.

3.3. Design of Four UAVs’ Data Communication

The communication system for monitoring civil aviation radio interference sources
using four UAVs can be divided into three main parts: inter-aircraft link communication,
UAV platform to ground station link communication (downlink), and ground station to
UAV platform link communication (uplink). The inter-aircraft link is established based
on a UAV self-assembling network architecture. All four UAVs are equipped with self-
assembling network communication radios, enabling interaction and information exchange
among them. Through the inter-aircraft link, each UAV shares its position, speed, and
other relevant information with the other UAVs. For the downlink communication, data
transmission radios are utilized. Each UAV is equipped with an antenna and a hardware
front-end for the Software Defined Radio (SDR) platform, known as the Universal Software
Radio Peripheral N321 (USRP N321) . This setup enables the UAVs to receive signals from
radio interference sources. The received signals are then processed and transmitted to
the ground station via data radios. In addition, the four UAVs transmit their collected
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information to the ground station using data radios. The uplink communication relies on
wireless self-assembling radios. Each of the four UAVs is equipped with a self-assembling
radio, similar to the inter-aircraft communication equipment. These radios receive control
commands from the ground self-assembling transmitter radio, which is connected to a
laptop computer functioning as the ground station. The laptop runs the necessary software
for UAV flight, facilitating communication between UAVs, between UAVs and ground
stations, and between ground stations and UAVs.

Figure 3 depicts the schematic design of the four UAVs’ data communication. For the
downlink design, each UAV is equipped with a digital transmission radio responsible for
the real-time transmission of both the UAV’s flight information and the USRP-converted
digital signal information to the digital reception radio. This arrangement enables the
ground station to display the radio spectrum monitored by the UAV platform and facilitates
the monitoring of the UAV’s flight status.

Figure 3. Schematic diagram of four UAVs’ data communication design.

The flight control system of UAV is based on the open-source hardware and software
Pixhawk 2.4.8 , utilizing the Mavlink communication protocol. The design of the inter-
aircraft link and downlink is as follows: For the uplink, the on-board self-assembling
device is the Xbee Pro S3B radio, which operates using the DIGI mesh protocol and is
configured as a routing model. This setup allows it to receive control commands from the
ground station and facilitates data interaction among the four UAVs. As for the ground
device, the Xbee radio is chosen and configured as a coordinator. The Mavlink protocol is
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nested within the outer mesh protocol to enable the ground station to send flight control
commands to the UAVs.

To ensure a smooth communication link, it is essential to appropriately reduce the
communication load. As a result, the uplink currently transmits only UAV control com-
mand packets and UAV-desired position packets. The inter-aircraft link, on the other hand,
solely requires UAV flight position data packets. Lastly, the downlink necessitates only the
transmission of UAV flight position packages, UAV flight attitude packages, UAV flight
status packages, and radio spectrum packages.

4. Simulation of Four-UAV Time–Frequency Difference Positioning Model for
Interference Sources

We have set up simulated interference sources within the university premises, with
a frequency set around 442 MHz. The joint positioning method for civil aviation radio
interference sources based on four UAVs was implemented using the MATLAB program.
The simulation involved analyzing the UAV deployment configurations and different
moving speeds of radio interference sources independently.

4.1. Positioning Performance of UAVs with Different Deployment Configurations

According to the star, flat rhombus, inverted triangle, and parallelogram deployment
patterns, four UAVs were set up with their respective spatial Cartesian coordinate systems.
A GDOP positioning accuracy analysis was conducted for each deployment pattern, and
the specified UAV coordinates can be found in Table 1.

Table 1. Cartesian coordinates of UAVs under different deployment configurations.

Deployment Configurations xi (km) yi (km) zi (km)

Star deployment configuration UAV1 0 0 0.1
Star deployment configuration UAV2 −17 10 0.1
Star deployment configuration UAV3 17 10 0.1
Star deployment configuration UAV4 0 −20 0.1
Flat rhombus deployment configuration UAV1 0 0 0.1
Flat rhombus deployment configuration UAV2 −17 10 0.1
Flat rhombus deployment configuration UAV3 17 10 0.1
Flat rhombus deployment configuration UAV4 0 20 0.1
Inverted triangle deployment configuration UAV1 0 0 0.1
Inverted triangle deployment configuration UAV2 −20 20 0.1
Inverted triangle deployment configuration UAV3 20 20 0.1
Inverted triangle deployment configuration UAV4 0 20 0.1
Parallelogram deployment configuration UAV1 0 0 0.1
Parallelogram deployment configuration UAV2 −14 14 0.1
Parallelogram deployment configuration UAV3 14 14 0.1
Parallelogram deployment configuration UAV4 28 0 0.1

The yellow markers represent the star deployment configuration, the red markers
represent the flat rhombus deployment configuration, the green markers represent the
inverted triangle deployment configuration, and the blue markers represent the parallelo-
gram deployment configuration, as shown in Figure 4.

The measurement time error is set to 10 ns, and the UAV station error is set to 5 m. The
interference source is considered a fixed source, and the observation ranges are denoted
as x = −200 km∼200 km, y = −200 km∼200 km, with the target height as z = 10 km.
In the spatial Cartesian coordinate system, interference source positions are randomly
generated. Each interference source location is traversed, and the GDOP is calculated for
UAV positioning.

Based on Figure 5a, the positioning errors of the star deployment configuration in
the vertical dimension can be observed. From Figure 5b, it can be seen that when using
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star deployment configuration, the time–frequency difference positioning method has a
balanced performance in three-dimensional space, with UAV1 as the center, and the farther
the interference source is from UAV1, the larger the positioning error is. The position of the
interference source is about 75 km from the position of UAV1, and the positioning error is
about 360 m; the position of the interference source is about 100 km from the position of
UAV1, and the positioning error is about 700 m; and the position of the interference source
is about 120 km from the position of UAV1, and the positioning error is more than 1 km.

Figure 4. Diagram of UAV deployment configurations.

(a) (b)
Figure 5. The GDOP of UAV star deployment configuration. (a) Three-dimensional plot of positioning
error for star deployment configuration. (b) The GDOP of star deployment configuration.

Based on Figure 6a, the positioning errors of the flat rhombus deployment configura-
tion in the vertical dimension can be observed. Figure 6b illustrates the performance of
the time–frequency difference positioning method in three-dimensional space using a flat
rhombus deployment configuration with UAV1 as the center. The results show a relatively
balanced performance, but there is a notable monitoring blind area. As the interference
source moves farther away from UAV1, the range of this blind area increases. Moreover,
the positioning performance of the interference source in the vertical direction of UAV1 is
better than that in the horizontal direction. At approximately 40 km from the horizontal
direction of UAV1, the positioning error of the interference source location is approximately
930 m. At the same positioning error, the distance from the vertical direction of UAV1 is
approximately 140–160 km.

Based on Figure 7a, the positioning errors of the inverted triangle deployment con-
figuration in the vertical dimension can be observed. Figure 7b presents the performance
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analysis of the time–frequency difference positioning method in three-dimensional space,
employing an inverted triangle deployment configuration with UAV1 positioned at the
center. The results demonstrate a relatively balanced performance; however, there is a
significant monitoring blind area when the interference source is located 100 km away
from the horizontal direction of UAV1. Furthermore, as the interference source moves
farther away from UAV1, the range of this monitoring blind area expands. Moreover,
the positioning performance of the interference source in the vertical direction of UAV1
surpasses that in the horizontal direction. At a distance of approximately 50 km from the
horizontal direction of UAV1, the positioning error for the interference source location is
approximately 930 m. At the same positioning error, the distance from the vertical direction
of UAV1 is approximately 140–170 km.

(a) (b)
Figure 6. The GDOP of UAV flat rhombus deployment configuration. (a) Three-dimensional plot
of positioning error for flat rhombus deployment configuration. (b) The GDOP of flat rhombus
deployment configuration.

(a) (b)
Figure 7. The GDOP of UAV inverted triangle deployment configuration. (a) Three-dimensional
plot of positioning error for inverted triangle deployment configuration. (b) The GDOP of inverted
triangle deployment configuration.

Based on Figure 8a, the positioning errors of the parallelogram deployment config-
uration in the vertical dimension can be observed. Figure 8b illustrates the performance
of the time–frequency difference positioning method in three-dimensional space using a
parallelogram deployment configuration with UAV1 as the center. The results indicate a
relatively balanced performance; however, a monitoring blind area is present. Notably,
as the interference source moves farther away from UAV1, the range of this monitoring
blind area expands. Moreover, the positioning performance of the interference source in
the vertical direction of UAV1 outperforms that in the horizontal direction. The positioning
error of the interference source location is approximately 930 m at distances ranging from
about 40 km to 55 km from the horizontal direction of UAV1. For the same positioning
error, the distance from the vertical direction of UAV1 is approximately 150 km to 160 km.
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Through the GDOP analysis of the four UAV deployment configurations, it is evident
that the star-based deployment configuration exhibits a balanced positioning performance
with smaller errors compared to other deployment configurations. When employing
the UAV platform for monitoring, the star-based formation flight yields comprehensive
positioning coverage and high positioning accuracy.

(a) (b)
Figure 8. The GDOP of UAV parallelogram deployment configuration. (a) Three-dimensional plot
of positioning error for parallelogram deployment configuration. (b) The GDOP of parallelogram
deployment configuration.

4.2. Interference Source Positioning Performance at Different Moving Speeds

Assuming fixed initial coordinates and speeds for the four UAVs, Table 2 presents their
respective coordinates and speed information. The initial position of interference source is
R(280, 320, 270), and its speed is set at Ṙ1(0, 0, 0), Ṙ1(20, 0, 0), Ṙ1(40, 0, 0), and Ṙ1(80, 0, 0).
To analyze the positioning performance, we utilize the time–frequency difference posi-
tioning algorithm through 5000 Monte Carlo simulations. The TDOA measurement value
is subject to noise variance levels 10 log

(
c2σ2

d
)

ranging from −20 to 20, while the FDOA
measurement value experiences noise variance levels set at 0.1 times that of TDOA. We
evaluate the positioning performance using both bias and RMSE.

Table 2. Coordinates and speed information of four UAVs.

UAV xi (m) yi (m) zi (m) ẋi (m/s) ẏi (m/s) żi (m/s)

U1 290 100 150 20 −20 20
U2 380 150 100 −20 10 20
U3 300 490 200 10 −20 10
U4 340 200 90 10 20 30

When the moving speed of the interference source is set to Ṙ1(0, 0, 0), indicating the
interference source is stationary, the four UAVs conduct aerial monitoring at the speeds
specified in Table 2. The obtained simulation data were visualized to analyze the positioning
bias and RMSE variation trends, as shown in Figure 9.

The speed of the interference source is Ṙ1(0, 0, 0)). The position bias remains below
1 m when the noise variance level is not greater than 4. For noise variance levels ranging
from −20 to 4, the position bias shows minimal changes. However, the position bias is
greater than 1 m when the noise variance level is greater than 4. The position bias changes
more when the noise variance level is from 6 to 20. At a noise variance level of 20, the
position bias reaches approximately 39 m. Similarly, for speed bias, when the noise variance
level is not greater than 0, the velocity bias is less than 1 m/s. The velocity bias changes
less when the noise variance level is from −20 to 0. The velocity bias is greater than 1 m/s
when the noise variance level is greater than 0. The position bias varies more when the
noise variance level is from 0 to 20. At a noise variance level of 20, the velocity bias reaches
about 15 m/s.
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Figure 9. Positioning bias and RMSE (Ṙ1(0, 0, 0)).

When the noise variance level is not greater than 2, the position RMSE remains below
5 m. In the range of −20 to 2, the position RMSE is comparable to the CRLB. However,
for noise variance levels greater than 2 and from 2 to 20, the position RMSE diverges
significantly from the CRLB. At a noise variance level of 20, the position RMSE reaches
approximately 108 m, whereas the CRLB is around 27 m. For the velocity RMSE, when
the noise variance level is not greater than −4, it remains below 1 m/s. From −20 to −4,
the velocity RMSE shows minimal deviations from the CRLB. However, when the noise
variance level exceeds −4 and ranges from −4 to 20, the velocity RMSE diverges more
significantly from the CRLB. At a noise variance level of 20, the velocity RMSE reaches
about 230 m/s, while the CRLB is approximately 13 m/s.

When the moving speed of the interference source is set to Ṙ1(20, 0, 0), indicating the
interference source moves horizontally at a speed of 20 m/s, the four UAVs conduct aerial
monitoring at the speeds specified in Table 2. The obtained simulation data was visualized
to analyze the positioning bias and RMSE variation trends, as shown in Figure 10.

The speed of the interference source is Ṙ1(20, 0, 0)). The position bias remains below
1 m when the noise variance level is not greater than 4. For noise variance levels ranging
from −20 to 4, the position bias shows minimal changes. However, the position bias is
greater than 1 m when the noise variance level is greater than 4. The position bias changes
more when the noise variance level is from 6 to 20. At a noise variance level of 20, the
position bias reaches approximately 33 m. Similarly, for speed bias, when the noise variance
level is not greater than 12, the velocity bias is less than 1 m/s. The velocity bias changes
less when the noise variance level is from −20 to 12. The velocity bias is greater than 1 m/s
when the noise variance level is greater than 12. The position bias varies more when the
noise variance level is from 12 to 20. At a noise variance level of 20, the velocity bias reaches
about 25 m/s.
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Figure 10. Positioning bias and RMSE (Ṙ1(20, 0, 0)).

When the noise variance level is not greater than 2, the position RMSE remains below
5 m. In the range of −20 to 2, the position RMSE is comparable to the CRLB. However,
for noise variance levels greater than 2 and from 2 to 20, the position RMSE diverges
significantly from the CRLB. At a noise variance level of 20, the position RMSE reaches
approximately 108 m, whereas the CRLB is around 28 m. For the velocity RMSE, when
the noise variance level is not greater than −2, it remains below 1.5 m/s. From −20 to −2,
the velocity RMSE shows minimal deviations from the CRLB. However, when the noise
variance level exceeds −2 and ranges from −2 to 20, the velocity RMSE diverges more
significantly from the CRLB. At a noise variance level of 20, the velocity RMSE reaches
about 363 m/s, while the CRLB is approximately 13 m/s.

When the moving speed of the interference source is set to Ṙ1(40, 0, 0), indicating that
the interference source moves horizontally at a speed of 40 m/s, the four UAVs conduct
aerial monitoring at the speeds specified in Table 2. The obtained simulation data were
visualized to analyze the positioning bias and RMSE variation trends, as shown in Figure 11.

The speed of the interference source is Ṙ1(40, 0, 0)). The position bias remains below
1 m when the noise variance level is not greater than 4. For noise variance levels ranging
from −20 to 4, the position bias shows minimal changes. However, the position bias is
greater than 1 m when the noise variance level is greater than 4. The position bias changes
more when the noise variance level is from 6 to 20. At a noise variance level of 20, the
position bias reaches approximately 33 m. Similarly, for speed bias, when the noise variance
level is not greater than 6, the velocity bias is less than 1 m/s. The velocity bias changes
less when the noise variance level is from −20 to 6. The velocity bias is greater than 2 m/s
when the noise variance level is greater than 8. The position bias varies more when the
noise variance level is from 8 to 20. At a noise variance level of 20, the velocity bias reaches
about 36 m/s.
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Figure 11. Positioning bias and RMSE (Ṙ1(40, 0, 0)).

When the noise variance level is not greater than 2, the position RMSE remains below
5 m. In the range of −20 to 2, the position RMSE is comparable to the CRLB. However,
for noise variance levels greater than 4 and from 4 to 20, the position RMSE diverges
significantly from the CRLB. At a noise variance level of 20, the position RMSE reaches
approximately 110m, whereas the CRLB is around 28 m. For the velocity RMSE, when
the noise variance level is not greater than −6, it remains below 1 m/s. From −20 to −6,
the velocity RMSE shows minimal deviations from the CRLB. However, when the noise
variance level exceeds −2 and ranges from −2 to 20, the velocity RMSE diverges more
significantly from the CRLB. At a noise variance level of 20, the velocity RMSE reaches
about 204 m/s, while the CRLB is approximately 13 m/s.

When the moving speed of the interference source is set to Ṙ1(80, 0, 0), indicating the
interference source moves horizontally at a speed of 80 m/s, the four UAVs conduct aerial
monitoring at the speeds specified in Table 2. The obtained simulation data were visualized
to analyze the positioning bias and RMSE variation trends, as shown in Figure 12.

The speed of the interference source is Ṙ1(80, 0, 0)). The position bias remains below
1 m when the noise variance level is not greater than 4. For noise variance levels ranging
from −20 to 4, the position bias shows minimal changes. However, the position bias is
greater than 1 m when the noise variance level is greater than 4. The position bias changes
more when the noise variance level is from 6 to 20. At a noise variance level of 20, the
position bias reaches approximately 28 m. Similarly, for speed bias, when the noise variance
level is not greater than 6, the velocity bias is less than 3 m/s. The velocity bias changes
less when the noise variance level is from −20 to 6. The velocity bias is greater than 7 m/s
when the noise variance level is greater than 8. The position bias varies more when the
noise variance level is from 8 to 20. At a noise variance level of 20, the velocity bias reaches
about 65 m/s.
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Figure 12. Positioning bias and RMSE (Ṙ1(80, 0, 0)).

When the noise variance level is not greater than 2, the position RMSE remains below
5 m. In the range of −20 to 2, the position RMSE is comparable to the CRLB. However,
for noise variance levels greater than 4 and from 4 to 20, the position RMSE diverges
significantly from the CRLB. At a noise variance level of 20, the position RMSE reaches
approximately 101 m, whereas the CRLB is around 28 m. For the velocity RMSE, when
the noise variance level is not greater than −4, it remains below 2.5 m/s. From −20 to −4,
the velocity RMSE shows minimal deviations from the CRLB. However, when the noise
variance level exceeds −2 and ranges from −2 to 20, the velocity RMSE diverges more
significantly from the CRLB. At a noise variance level of 20, the velocity RMSE reaches
about 220 m/s, while the CRLB is approximately 15 m/s.

Based on the comparative analysis above, the following conclusions can be drawn:
The velocity of the interference source in the horizontal direction ranges from 0 m/s to
80 m/s when considering certain initial positions and velocities for the UAV platform
and the initial position of the interference source. For position estimation, when the noise
variance level is below 4, the position bias remains below 1m. At a noise variance level
of 20, the position bias ranges from 29 m to 39 m. For the RMSE of position, at noise
variance levels below 2, it remains below 5 m. At a noise variance level of 20, the RMSE
of the position ranges from 101 m to 110 m. These findings indicate that the movement
velocity of the interference source has little effect on the positioning location results. On
the other hand, the velocity of the interference source has a more significant impact on
the positioning velocity results. The velocity bias remains below 1 m/s for different noise
variance levels. At a noise variance level of 20, the velocity bias ranges from 15 m/s to
65 m/s. For the RMSE of velocity, when the noise variance level is below −6, it remains
below 1 m/s and shows similarity to the CRLB. At a noise variance level of 20, the RMSE
of velocity ranges from 204 m/s to 363 m/s, while the CRLB is approximately 13 m/s.
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5. Conclusions

In this paper, through a combination of theoretical analysis, simulations, and other
technical means, we conducted a study of the civil aviation radio interference source
positioning method using four UAVs. Our study encompassed the design of time synchro-
nization and communication for the four UAVs, the model of locating civil aviation radio
interference sources by four UAVs, and the simulation of the positioning performance of
this model. The simulation results show that the positioning performance of the four UAVs’
star-based deployment configuration is balanced and the positioning error is small, and
the interference source movement velocity has a small impact on the positioning location
accuracy and a large impact on the positioning velocity accuracy. The simulation results
provide data support for the next experiments.

6. Outlook

The application of civil aviation radio interference source positioning based on multi-
ple UAVs is still in the development stage, and limited by time, experimental equipment,
experimental conditions, personal ability, and other factors, this paper is not perfect.
Therefore, the following points are now proposed to carry out in-depth research in the
following work.

(1) In order to be able to apply multi-UAV localized radio interference source equip-
ment in practice, it is also necessary to integrate multi-UAV collaboration techniques,
including UAV formation, UAV obstacle avoidance, and integration of all ground-based
software into a single system.

(2) This paper does not consider the atmospheric refractive index error of the radio
signals received by UAVs for the time being, and in order to improve the positioning
accuracy, the empirical model of atmospheric refractive index can be incorporated into the
multi-UAV positioning algorithm.
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Abstract: Despite the significant advancements in drone sensory device reliability, data integrity from
these devices remains critical in securing successful flight plans. A notable issue is the vulnerability of
GNSS to jamming attacks or signal loss from satellites, potentially leading to incomplete drone flight
plans. To address this, we introduce SiaN-VO, a Siamese neural network designed for visual odometry
prediction in such challenging scenarios. Our preliminary studies have shown promising results,
particularly for flights under static conditions (constant speed and altitude); while these findings are
encouraging, they do not fully represent the complexities of real-world flight conditions. Therefore,
in this paper, we have furthered our research to enhance SiaN-VO, improving data integration from
multiple sensors and enabling more accurate displacement predictions in dynamic flight conditions,
thereby marking a significant step forward in drone navigation technology.

Keywords: visual odometry; drone; autonomous flight

1. Introduction

Unmanned Aerial Vehicles (UAVs) use Global Navigation Satellite System (GNSS)
signals as their primary location tool. Knowing the global position (latitude and longitude
coordinates) allows the flight control system to perform missions in outdoor environ-
ments. However, this system is susceptible to various types of attacks and interruptions in
signal reception [1,2].

During the aircraft’s flights, particularly during search and rescue (SAR) missions,
an accurate position estimation of the aircraft is crucial, even in the absence of Global
Navigation Satellite System (GNSS) data [3]. Research in this domain has explored various
methodologies, including sensor fusion, the use of Inertial Measurement Units (IMUs),
and image-based inference techniques. Notably, image-based navigation employs multiple
strategies for location estimation, such as recognizing environmental landmarks and ana-
lyzing optical flow [4–7]. However, these image-based methods typically demand extensive
computational resources due to their reliance on intricate image processing pipelines.

In the existing literature, various studies have proposed image-based methods for
estimating displacement from a reference point, such as the initial position, to facilitate col-
lision avoidance [8–10]. However, there needs to be more research regarding the exclusive
use of Convolutional Neural Networks (CNNs) and dataflow for global position estimation
of Unmanned Aerial Vehicles (UAVs). Hence, using lightweight Artificial Neural Network
(ANN) models in image-based approaches could reduce computational costs during the
inference phase.

Moreover, CNNs have become a cornerstone in computer vision, often serving as a
fundamental component in image processing within machine learning frameworks [11,12].
Compared to traditional fully connected ANN layers, CNNs are more efficient in processing
local spatial patterns in images and require significantly fewer parameters [13].
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Building on this, we introduce the Siamese Neural Network for Visual Odometry
(SiaN-VO), a method capable of determining displacement between a pair of sequential im-
ages captured by a drone. SiaN-VO represents an advanced version of a method previously
discussed in another study [14]. It uses inferred displacement and the haversine formula to
calculate the UAV’s new geographic coordinates (latitude and longitude). We assume that
flight direction and vehicle altitude are acquired from other sensors, such as a compass
and a radio altimeter. This novel approach enables displacement inference during flights
with varying altitudes, addressing the limitations of earlier methods that required constant
altitude flights. We also keep the number of parameters in the network low, so that we can
enable the future implementation of the solution in an embedded system on the aircraft.

The remainder of this paper is organized as follows: In Section 2, we review the
relevant scientific literature that relates to our proposal. Section 3 provides a comprehensive
description of the system we propose. Section 4 elaborates on the methodology employed
in our experiments, including details about the dataset, the training phase of our proposed
method, and the testing procedures. Section 5 presents the results we obtained. The
paper concludes with Section 6, wherein we discuss our conclusions and directions for
future research.

2. Scientific Literature

Numerous works in the literature have highlighted the importance of investigating
methods and approaches for different vehicles (ground or air) to have location information
without the dependency on external sources [8–10]. In general, these works investigate
approaches that allow vehicles to move safely and reach their goal.

Visual approaches, such as visual odometry, have attracted attention for several
reasons, among them, price, accessibility, accuracy, and the independence of external
signals, as in the case of GNSS-based methods [15,16]. Visual odometry is the process of
estimating the motion of an agent (e.g., vehicle, human, and robot) using only the input
from a single or multiple cameras [17].

There are works describing good results in merging visual odometry information
with other information to achieve better accuracy in location inference [18,19]. The results
show that merging information from visual odometry with other sensors can increase the
accuracy of the positioning and movement information. Visual odometry commonly uses
an important concept called optical flow.

Optical flow has been used to detect the motion of objects and scenery to help au-
tonomously drive vehicles and avoid collisions [20]. An example of this scenario can be
seen in [21], where the proposed method (named LiteFlowNet2) is evaluated on datasets
from different contexts. The MPI Sintel dataset is a dataset derived from the open-source
3D animation short film Sintel. In this setting, the method receives a pair of sequential
images, and its output is a segmented image of the regions occupied by the characters’
movements in the time interval between the images received as input. Another dataset used
is KITTI [20,22], which is a set of images captured by a car on urban routes. In this dataset,
the method is evaluated for the goal of detecting the surrounding scenery in motion.

Works that use CNN to estimate the position and displacement of unmanned aerial
vehicles are found in the scientific literature [14,23,24]. Olawoye and Gross [23] propose
applying a deep learning approach to 3D object detection to calculate the relative position
of an Unmanned Aerial Vehicle (UAV). However, this approach requires an Unmanned
Ground Vehicle (UGV) equipped with a LiDAR sensor in order to operate in GPS-denied
environments. In a study by Araveti et al. [24], another method is proposed to estimate
drone displacement, but this method is not designed to deal with altitude variation. This
weakness is also observed in the paper originally published by the authors of the current
work [14], where the proposed method was unable to deal with altitude variation. In view
of this, it is possible to note that the current work proposes a method capable of overcoming
the obstacles of altitude variation and the requirement for additional vehicles.
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One can observe in the literature works that use the concepts above to estimate the
movement of unmanned aerial vehicles [25,26]. The proposed methods can be used in
outdoor and indoor environments.

However, it is common for navigation systems to use geographic coordinate informa-
tion to manage UAV flights. Considering this context, we were not able to find works with
the objective of inferring the geographic coordinates of UAVs during flight.

3. Siamese Network for Visual Odometry (SiaN-VO)

In this section, we describe the proposed new ANN model and its training procedure.
It is important to emphasize that the proposed method presents the evolution of previously
published work and the overcoming of the limitation on flight dynamics.

Network Architecture

The proposed neural network model must be able to receive two images and two other
matrices as input. One of them must contain the altitude value, while the other matrix
must contain data from a sensor that captures the aircraft yaw variable (the angle at which
the front of the drone is facing, based on magnetic north.). The matrices have the same
dimensions as the images and their values are repeated in all the cells. The transformation
of the unit values into matrices with the value repeated in all the cells aims to provide
stimulation similar to that of the images. This prevents the altitude and yaw data stimuli
from being ignored because they are weak stimuli compared to the number of values in the
image pair. The detailed architecture can be seen in Figure 1. The total number of trainable
params is 2,004,801, i.e., around 7.65 MB of data.

Feature extractor
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BatchNormalization

Conv2D + ReLU

BatchNormalization

MaxPooling2D

Dropout

n × n × 64

n × n × 64

n × n × 64
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Figure 1. Architecture of the Siamese Network for Visual Odometry (SiaN-VO).
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Pixel values are normalized between 0 and 1 for the image pairs. Yaw is also normal-
ized between 0 and 1, where 0.5 denotes magnetic north, 0 denotes −180 degrees, and
1 denotes 180 degrees. Altitude input that the aircraft flies with maximum altitude h from
the ground. Thus, we divide the input by h so its maximum value is also 1.

Our network can be divided into two parts:

1. In the first part, we have a Siamese network, where the model receives a pair of
images taken at consecutive time steps, and these images are passed through identical
neural network layers and weights. We chose such a design assuming that the
images could be processed independently. The neural network can find useful coarse
patterns in them, like edges, before joining both images. Parallel to the Siamese
network, there is an AveragePooling step that will adjust the dimensions of the
altitude and yaw matrices to the same dimensions as the feature maps resulting from
the Siamese network.

2. The results of the Siamese network and AveragePooling are concatenated, effectively
overlaying the image maps and the two complementary data matrices. The concate-
nated feature maps then pass through a normal CNN pipeline, ending in a prediction
head containing three fully connected layers, the last of which has only a single
output—the displacement output.

During the search for the best hyperparameters for the neural network, we find
that larger filter sizes work best for our problem, and we ultimately employ 7 × 7 filters
throughout the network. Apart from the filter size, our design choices took inspiration
from the VGGNet architecture [27]: at every new set of convolutional layers, we double
the number of filters, as well as reduce, by half, the spatial dimensions of the image maps
by means of applying MaxPooling layers with a kernel size of 2 × 2. In summary, our
model is composed of six convolutional layers (two layers in the Siamese network and four
sequential convolutional layers) and three fully connected layers. Dropout layers are set
at 20%. In total, the neural network is nine layers deep. It is important to note that the
Siamese network is encapsulated in the figure within the “Feature extractor” element.

Once the model is to be employed in a small unmanned aircraft, computational power
and storage are important restrictions. With this in mind, we designed our neural network
to receive gray-scale images of dimensions 32 × 32. The use of gray-scale images should
suffice for the task of displacement prediction, as the color information transmitted by the
red, green, and blue channels should not give any significant insights into the movement
of the vehicle. We highlight that we have reduced the size of the images used compared to
the method proposed previously, allowing for a less computationally expensive execution.

4. Methodology for the Experiments

In this section, we will describe the dataset used and the methodology employed in
the training and testing stages to evaluate SiaN-VO.

4.1. Dataset

In order to develop a large-scale simulated dataset for the task of UAV displacement
estimation, we leverage the capabilities of AirSim [28], which is an open-source simulator
for autonomous vehicles, including self-driving cars and drones.

We simulated drone flying in three different scenarios: a mountainous arctic region
(mountains), a tropical forest (forest), and a city with a green area (downtown). These
scenarios include artifacts like lakes and rivers, as well as different sizes of streets, buildings,
and vegetation. Besides the inherent heterogeneity of these choices of maps, we also varied
the weather conditions, adding dust, mist, and rain, creating a diversified range of settings.
This variability in scenarios is important if we want the machine learning model trained on
this data to be able to generalize well to scenes never seen before, which is paramount once
we employ these models in real-world applications. We also vary the flight dynamics and
characteristics such as altitude, acceleration, direction, and environment. Figure 2 shows
an example of the images in the dataset.
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Figure 2. Examples of images considering the environments in which the flights were simulated.

Table 1 shows details of the flights simulated in AirSim. The length of the flights
varies, as do their maximum and minimum altitudes. It is important to note that the “map”
column refers to the region in which the flight took place. Thus, the environment may
be forest, but in regions other than forest. It is important to note that, in some cases, the
number of flights is less than the standard 50 flights. This is because the map we used was
smaller, and we did not want to use it to exhaustion.

Table 1. Details of the flights that make up the simulated dataset.

Environment Map Number of Routes

Downtown A 50
Downtown B 50
Downtown C 50
Forest A 12
Forest B 10
Forest C 50
Mountains A 50
Mountains B 50
Mountains C 50

The images taken from the drone have a resolution of 720 × 480 pixels. Even though
most applications may need a smaller resolution, the operation of resizing in the data
pipeline is very cheap, and on the plus side, the choice of a large resolution gives the user a
choice to apply operations of data augmentation, like random-cropping, which need an
image larger than the input of the network. The use of data augmentation operations in the
preprocessing step can greatly increase the generalization ability of the models trained, as
well as virtually increasing the dataset size.

The images are taken from a camera mounted under the vehicle, pointing vertically
to the ground. In this configuration, the captured images should obtain the maximum
information about the drone movement in the horizontal plane. Additionally, the images
are taken with approximately 3 frames per second, which is a slow rate but sufficient to
obtain enough superposition between each pair of images, as well as easy to replicate.

Unlike the previous work, the current study shows variation in the drone’s horizontal
position and also in its altitude. In addition, the speed sampled for each flight segment
comes from a uniform distribution.

Furthermore, each image has an associated file with the ground truth information of
the complete status of the drone at the instant the picture was taken, which includes linear
and angular speeds, linear and angular accelerations, position, latitude and longitude, and
attitude of the vehicle. We explicitly annotated the images with this set of information for
the prediction of the vehicle displacement.

4.2. Training

For training our model, we employed ReLU activation functions throughout the
network, except in the last layer, where we used a linear activation function. Additionally,
we used batch normalization layers after every weight layer and dropout layers with a
probability of 0.2.
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We trained the network on the Tensorflow framework and applied the Adam optimizer
with a learning rate of 0.001. For our loss function, we used mean squared error, and we
trained the network for 30 epochs. At the end of each epoch during the training stage, the
model was evaluated against a validation group. The model that showed an improvement
in the value of the metric (considering the validation group) was saved as the best model
found. This was the model used for the testing stage.

The dataset was divided into three sets for training: training, validation, and testing.
To make up the test set, one flight made on each map of each environment was preserved
with the complete sequence of images. In this way, the prediction and its impact during the
flight could be evaluated. For the other sets, 80% was set aside for the training set and 20%
for the validation set. In the training stage, the sets used were the training and validation
sets. Thus, the training set was presented to the model, and at the end of each epoch, the
model was evaluated on the validation set. If it showed an improvement in the value of
the metric, the model was saved as the best model found so far.

Additionally, during training, the image pairs were shuffled before being presented to
the neural network: This ensures that we do not feed correlated data to the model, as the
image pairs seen in a single batch will not all be from the same flight or will not have been
taken in a sequence by the camera mounted on the drone.

4.3. Test

The model generated in the training stage was evaluated in the test stage. In this stage,
we used one route from each map (and from each environment) to predict displacement,
considering execution during a flight. Table 2 shows the size of each route used in this stage.
The name of the route was composed of the name of the environment and the conversion
of the map into a numerical value (i.e., A is 1 and B is 2).

Table 2. Details of the name and size of each route used in the test stage.

Name Flight Size (m)

Downtown1 346.03
Downtown2 674.80
Downtown3 458.49
Forest1 783.77
Forest2 321.01
Forest3 1001.24
Mountains1 906.62
Mountains2 784.24
Mountains3 569.84

Three levels of prediction were made for the final parts of each route. This approach
allowed us to better represent the negative impact of prediction on the completion of the
mission. The three levels of prediction corresponded to 20%, 40%, and 60%. Finally, the
flight was also predicted for the entire route, assuming that only the initial displacement
coordinate was known.

It is important to note that although the drone is subject to unknown influences (such
as weather conditions) during flight, causing it to move in an undesired direction, we used
the yaw (these data can be provided by sensors such as a gyroscope) data to calculate
the drone’s new geographical position. This approach allowed us to use the geographical
position reported by the drone’s flight system as the “expected position”. The geographical
position indicated in our proposal is the “inferred position”, which is used by the drone if
there is no GNSS signal. By using data from different sources, we aimed to maintain the
integrity of the evaluation stage.

5. Results

We emphasize that we conducted experiments to assess the proposed method’s ability
to estimate the displacement based on the received inputs. Therefore, the method was used

131



Sensors 2024, 24, 973

to infer the aircraft’s displacement, and we calculated the new geographical coordinates
(lat and long). In this case study, we considered that heading and altitude are obtained by
other variables and sensors, such as yaw and radio altimeter.

Firstly, Figure 3 shows the routes used in this test stage. The green dot on each route
indicates the starting point of the flight. The blue line outlines the expected route, while the
red line represents the route taken using the displacement estimation model. In the flights
shown in this picture, doom was suffered in the final 20% of the flight. It is important to
note that the flights used speed variations, meaning that the distance covered during the
prediction varied in size.

Figure 3. Example of expected routes (blue line) compared with routes that used prediction (red line)
for 20% of the flight. The green dot signals the starting position of the flight.

More details of the flights can be seen in Table 3, which summarizes the size of the
route, the number of predictions made, the distance of the drone’s final position from
the expected position, and the average distance between each inferred and expected
geographical positions of the drone. It should be noted that this last piece of information is
calculated based only on the period in which the displacement was inferred. Tables 4–6
present similar information to Table 3. This makes it possible to compare the changes that
occurred at different points in the prediction.
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Table 3. Summarization of results for flights with 20% predictions.

Route
Number of
Predictions

Distance between
Endpoints (m)

Average Distance between Expected
and Predicted Position (m)

Downtown1 136 11.15 5.03
Downtown2 193 5.07 3.99
Downtown3 111 36.71 17.74
Forest1 72 1.17 6.28
Forest2 72 42.66 27.74
Forest3 83 19.14 21.17
Mountains1 197 13.32 21.17
Mountains2 275 52.84 43.68
Mountains3 195 55.71 48.33

Table 4. Summarization of results for flights with 40% predictions.

Route
Number of
Predictions

Distance between
Endpoints (m)

Average Distance between Expected
and Predicted Position (m)

Downtown1 271 8.64 7.28
Downtown2 386 28.55 19.48
Downtown3 221 16.87 27.93
Forest1 143 1.00 5.94
Forest2 143 65.17 36.05
Forest3 166 36.05 23.79
Mountains1 393 22.46 23.33
Mountains2 550 94.10 56.95
Mountains3 390 58.78 34.87

Table 5. Summarization of results for flights with 60% predictions.

Route
Number of
Predictions

Distance between
Endpoints (m)

Average Distance between Expected
and Predicted Position (m)

Downtown1 406 7.44 12.18
Downtown2 579 7.22 18.19
Downtown3 331 24.75 36.70
Forest1 214 15.96 16.82
Forest2 214 91.74 48.61
Forest3 249 34.53 19.67
Mountains1 589 28.07 32.06
Mountains2 825 129.05 69.73
Mountains3 585 49.05 49.85

Table 6. Summarization of results for flights with 100% predictions.

Route
Number of
Predictions

Distance between
Endpoints (m)

Average Distance between Expected
and Predicted Position (m)

Downtown1 677 17.73 19.28
Downtown2 985 16.96 27.06
Downtown3 551 30.40 29.33
Forest1 357 15.58 12.23
Forest2 357 81.69 25.93
Forest3 415 48.94 28.81
Mountains1 981 22.82 15.31
Mountains2 1375 127.61 54.67
Mountains3 975 146.51 115.04

In these results, it was impossible to find a clear link between the number of predictions
and the metrics relating to comparing the final position and the average positional error
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during in-flight predictions. In other words, even if the number of predictions is higher
on one flight than on another, it does not mean the errors will also be higher. This growth
characteristic between the metrics mentioned could not be affirmed when we analyzed the
increase in the prediction period considering isolated flights. This behavior occurs because,
presumedly, the errors are generated by a normal distribution with the center close to the
expected value, causing predictions with positive (greater than expected) and negative
(less than expected) error polarities. Figure 4 makes it possible to compare the predicted
values with the expected values, preserving the order in which the predictions were made
during the flight.

In-flight prediction sequence

Figure 4. Predicted and expected displacement values along the route Forest1.

With the variation in environments and routes used in the experiments presented, the
SiaN-VO method is capable of predicting displacement in a variety of conditions (even
with a change in altitude). Another interesting feature presented by the method in the data
set is its ability not to accumulate noise in its prediction.

6. Conclusions

Inferring the position of a UAV with high accuracy without the use of a GNSS is an
obstacle to several studies in the scientific literature. The increasing evolution of UAVs and
the high range of possible contexts in which they can be applied further highlights the need
for independence from the GNSS signals for safe navigation.

The evolution provided by the proposed new architecture, giving rise to the SiaN-VO
method, could infer the drone’s displacement and allow the value to be used to calculate
the new geographical position. SiaN-VO predicts based on a sequential pair of ground
images, altitude and yaw data.

The results suggest that noise does not accumulate (or is imperceptible) in the predic-
tions during flights on the routes described. Although we bear in mind that it is possible
that noise accumulation becomes noticeable on long journeys and that this characteristic
needs to be investigated further, we would like to emphasize that this characteristic is
exciting and makes us believe that the SiaN-VO method is a promising approach in the
field of visual odometry.

Furthermore, it is important to emphasize that the SiaN-VO method overcame the
obstacle of predicting drone displacement on routes with altitude variation. The successful
displacement prediction in these flight characteristics means that SiaN-VO surpasses the
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previous proposal, which exclusively uses images. Another point that surpasses the current
approach is the possibility of using images with smaller dimensions (1/4 of the previous
size), which allows for less computational processing.

Given the results obtained in this work, we aim to advance our studies in the
following directions:

• Evaluate the performance of SiaN-VO with real flight data;
• Evaluate SiaN-VO on long routes and with more variations in flight dynamics;
• Measure the performance of SiaN-VO in the face of data failures and inconsistencies;
• Test our proposed model during a UAV flight, effectively embedding the network in

the aircraft.
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Abstract: The demand for precise indoor localization services is steadily increasing. Among various
methods, fingerprint-based indoor localization has become a popular choice due to its exceptional
accuracy, cost-effectiveness, and ease of implementation. However, its performance degrades sig-
nificantly as a result of multipath signal attenuation and environmental changes. In this paper, we
propose an indoor localization method based on fingerprints using self-attention and long short-term
memory (LSTM). By integrating a self-attention mechanism and LSTM network, the proposed method
exhibits outstanding positioning accuracy and robustness in diverse experimental environments. The
performance of the proposed method is evaluated under two different experimental scenarios, which
involve 2D and 3D moving trajectories, respectively. The experimental results demonstrate that our
approach achieves an average localization error of 1.76 m and 2.83 m in the respective scenarios,
outperforming the existing state-of-the-art methods by 42.67% and 31.64%.

Keywords: fingerprinting; indoor localization system; long short-term memory (LSTM); self-
attention mechanism

1. Introduction

The rapid development of global digitization has created a high demand for location-
based services (LBS) in many industries [1]. These services have become essential for
various systems and applications, including transportation [2], logistics [3,4], emergency
response [5], etc. [6,7]. In outdoor environments, mobile users already have access to estab-
lished outdoor positioning technologies such as the Global Positioning System (GPS) [8] and
the BeiDou Satellite Navigation System (BDS) [9] to obtain accurate location information.
However, the effectiveness of these technologies is often limited in indoor environments
due to the scattering and attenuation effects of satellite signals.

In the field of indoor localization, various wireless signals have been proposed and
utilized, including Wi-Fi [10–13], Bluetooth [14,15], ultra-wide bandwidth (UWB) [16,17],
radio frequency identification (RFID) [18], and custom radios [19]. Typical ranging-based
methods for processing wireless signals in indoor localization involve using information
such as angle of arrival (AOA) or time of arrival (TOA) to estimate the specific positions
of the user equipment (UE) [20]. However, these methods require prior knowledge of the
locations of access points (APs) and are susceptible to errors in the distance measurement
between the UE and APs, which can negatively impact the accuracy of the positioning. In
contrast to these methods, the fingerprint-based indoor localization method is characterized
by simplicity and efficiency [21]. This technique relies on the unique characteristics of
wireless signals in indoor environments to create a map or “fingerprint” of the received
signal strength indicator (RSSI) at different locations. The fingerprint can then be used to
estimate the position of the UE based on the signal strengths measured at that location.
Fingerprint-based methods are highly accurate and can offer sub-meter-level positioning
accuracy in many cases, making them a promising alternative to ranging-based methods.
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However, in the context of fingerprint-based methods, the radio propagation environment
introduces multi-path effects, shadowing, signal fading, and other forms of signal degrada-
tion and distortion, leading to significant fluctuations in RSSI values. In the experiments
described in this paper, the observed RSSI values for different APs at a fixed location exhibit
a wide range of fluctuations, as illustrated in Figure 1. The fluctuation in RSSI makes it
challenging to discern the pattern of RSSI between the test points (TPs) and reference points
(RPs), thereby significantly impacting the accuracy of positioning.

Figure 1. The range of variation in RSSI for APs observed at a fixed location.

With the development of machine learning algorithms in recent decades, numerous
machine learning algorithms have been proven to be effective in recognizing the RSSI
pattern [22]. M. Brunato et al. proposed applying support vector machines (SVMs) in
location fingerprint positioning systems [23]. Hoang et al. introduced a soft range-limited
k-nearest neighbors (KNN) fingerprinting algorithm that addresses spatial ambiguity in
localization by scaling the fingerprint distance with a range factor based on the physical dis-
tance between the previous position of users and the reference location in the database [24].
Fang et al. utilized feedforward neural networks (FNNs) to extract fingerprint features
from the RSSI, enabling the accurate localization of the actual position [25]. However, the
performance of these algorithms can easily be limited when learning features in complex
indoor environments. To achieve superior performance, some research studies have sug-
gested using long short-term memory (LSTM) for handling sequential trajectory prediction
in indoor localization systems [10,26,27], which has been experimentally demonstrated to
be more effective than the conventional KNN method. Meanwhile, self-attention has been
proposed as a promising technique for enhancing the performance of sequence processing
tasks [28–31]. By enabling the model to attend to various regions of the input sequence,
self-attention improves its capacity to capture the connections between various features in
a sequence.

This paper introduces a novel method named self-attention and LSTM (SA-LSTM)
that effectively improves the positioning accuracy and robustness. We conducted ex-
periments in two different scenarios to validate the effectiveness and robustness of the
proposed approach. The experimental results demonstrate that SA-LSTM exhibits greater
robustness and higher accuracy in indoor localization compared to some of the most
advanced algorithms.

The main contributions of this paper are as follows:

1. We propose a novel deep neural network that integrates the self-attention mecha-
nism and LSTM networks for indoor localization. The proposed SA-LSTM method
processes the RSSI values of consecutive time instances and predicts the position at
the final moment in the input sequence. To the best of our knowledge, this is the
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first time that the self-attention mechanism and LSTM networks have been fused for
RSSI-based fingerprinting localization.

2. Based on LSTM, the SA-LSTM introduces the self-attention mechanism, which en-
ables the LSTM to effectively capture the interdependencies between the RSSI values
at different time instances, thereby facilitating the improved extraction of location
information and reducing the localization error.

3. We conducted a comparative analysis between our proposed model and several state-
of-the-art methods. The experimental results reveal that our proposed SA-LSTM
model achieves the highest localization accuracy in both experimental scenarios,
demonstrating its robustness and precision.

The rest of this paper is structured as follows. Section 2 provides an overview of
related works in the area of fingerprint indoor localization systems. Section 3 presents
the technical details of our proposed model. Section 4 outlines the experimental setup
utilized in our study. Section 5 presents and analyzes the experimental results obtained
from various datasets. Finally, Section 6 offers concluding remarks and outlines our future
research plans.

2. Related Work

In this section, we present an overview of the existing research on fingerprint-based
indoor localization and the application of self-attention mechanisms.

In the current landscape, numerous clustering-based and ensemble-based models have
been applied in the field of fingerprint-based indoor localization. In terms of clustering-
based models, Bahl et al. [32] were the first to propose the utilization of the KNN algorithm
in fingerprint-based indoor localization. By evaluating the Euclidean distance of the RSSI
vector from multiple base stations, the KNN algorithm assigns the nearest reference points
for target points and computes the average position as their predicted positions. Expanding
on KNN, Brunato et al. [23] introduced weighted KNN (WKNN), which calculates the
weighted average of reference point positions and enhances the overall positioning accuracy.
Within the realm of ensemble-based models, Jedari E. et al. [33] employed a random forest
classifier for RSSI-based indoor positioning. Experimental outcomes demonstrate that the
random forest classifier outperforms KNN in terms of positioning accuracy. Furthermore,
the effectiveness of the AdaBoost method is validated in [34], where AdaBoost is utilized to
leverage the channel state information (CSI) from Wi-Fi signals for localization. In another
study, Singh N. et al. [35] presented an indoor localization scheme based on XGBoost,
capable of accurately classifying the positions of mobile devices in indoor environments,
achieving an average positioning error of 4.93 m, 7.02 m, and 1.5 m in three different
environments. Moreover, Tekler Z. D. et al. [36] proposed a supervised ensemble model
and a semi-supervised clustering model and evaluation revealed that the supervised
ensemble model outperforms in terms of positioning accuracy.

Except for ensemble-based models, Yerbolat Khassanov et al. explored the use of
end-to-end sequence models for Wi-Fi-based indoor localization at a finer level [10]. The
study showed that the localization task can be effectively formulated as a sequence learning
problem using recurrent neural networks (RNNs) with regression output. The use of
regression output allows for estimating three-dimensional positions and enables scalability
to larger areas. The experiments conducted on the Wi-Fi dataset reveal that RNN models
outperform non-sequential models such as KNN and FNN, achieving an average position-
ing error of 3.05 m for finer-level localization tasks. Furthermore, Zhenghua Chen et al.
proposed a deep LSTM network for indoor localization using Wi-Fi fingerprinting [37].
The network incorporates a local feature extractor that enables the encoding of temporal
dependencies and the learning of high-level representations based on the extracted se-
quential local features. The experimental results demonstrate that the proposed approach
achieves state-of-the-art localization performance, with mean localization errors of 1.48 m
and 1.75 m in research lab and office environments, respectively.
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In the field of neural machine translation tasks, Bahdanau et al. introduced the self-
attention mechanism to the encoder–decoder model. This enables the model to learn
alignment and translation simultaneously, allowing for the adaptive selection of encoded
vectors [38]. Building on the effectiveness of the self-attention mechanism, several other
deep learning architectures have been redesigned to incorporate self-attention for perfor-
mance enhancement. Yang C. H. et al. [39] integrated self-attention into DNN to effectively
improve the adversarial speech signals. Additionally, Mittag G. et al. [40] proposed a
deep CNN-self-attention model for multidimensional speech quality prediction, which
outperformed CNN. Moreover, an LSTM structure based on the self-attention mechanism
was introduced in [41], which showed a superior performance in forecasting temporal
sequences compared to other benchmark methods.

In general, LSTM has demonstrated exceptional performance in sequence prediction
tasks, including fingerprint localization. It has been experimentally verified that it outper-
forms conventional methods such as KNN and WKNN. Additionally, the self-attention
mechanism enables the model to consider the relationship between each element in the
sequence. This leads to a better understanding of contextual information and a more precise
processing of sequence data. Based upon that, we propose an SA-LSTM model with high
accuracy and strong robustness for indoor localization systems based on fingerprinting.

3. Methodology

In this section, we will begin by introducing the framework of the SA-LSTM-based
localization algorithm. Subsequently, we will provide detailed introductions to the working
principles of its subcomponents.

3.1. SA-LSTM-Based Localization Algorithm

Figure 2 illustrates the framework of the SA-LSTM-based localization algorithm, com-
prising an offline training stage and an online estimation stage. During the offline training
stage, the RSSI values collected at different points and their corresponding coordinates of
locations are recorded and stored in the fingerprint database. Subsequently, the collected
RSSI data are normalized and used to train the SA-LSTM network. The trainable weights
of the SA-LSTM network will be updated to minimize the loss between the output and
the ground true locations. The trainable weights of the SA-LSTM network are adjusted to
minimize the loss between the output and the actual locations. During the online estima-
tion stage, real-time RSSI data from the device are normalized and input into the trained
SA-LSTM model, which then generates real-time location estimates.

Figure 2. The framework of SA-LSTM-based localization algorithm. ti: the ith time slice. ri: the RSSI
value from AP i. (x̂, ŷ, ẑ): the coordinates of predicted positions. (x, y, z): the coordinates of real positions.

3.2. LSTM Network

LSTM is a unique form of recurrent neural network that has been extensively re-
searched in deep learning. In contrast to conventional RNN, the LSTM network introduces
gated states to modulate the flow of information, thereby enabling it to selectively retain
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relevant information over extended periods while filtering out irrelevant data, which allows
it to effectively analyze the long temporal sequences.

Figure 3 shows the common architecture of LSTM, which is composed of connected
memory units. In this context, Ct and Ht represent the unit state and hidden state at time t,
respectively. Focus on the time t, the memory unit receives the Ct−1 and Ht−1 from the
previous memory unit, as well as the current input value xt. After performing internal
arithmetic operations, the unit generates the updated cell state Ct and hidden state Ht,
which are subsequently passed on to the next memory unit. The hidden state Ht also serves
as the output result yt corresponding to the current time step.

Figure 3. Architecture of LSTM.

Each memory unit in the LSTM architecture comprises three components: a forget
gate, an input gate, and an output gate. The forget gate can be mathematically expressed
as follows:

ft = σ(Wf [Ht−1, xt ] + b f ) (1)

Here, σ represents the activation function, while Wf and b f denote the weights and bias of
the forget gate, respectively. By multiplying with Ct−1, the forget gate aims to decide what
information should be forgotten in it. For the implementation of the input gate, the sigmoid
activation function [42] is initially employed to determine the values that require updating,
as illustrated in (2), where Wi and bi are the weight matrices and the bias. Subsequently, the
tanh activation function generates a new candidate value, denoted by C

′
t . The mathematical

expression is shown in (3), where Wc and bc represent the weight matrices and the bias,
respectively.

it = σ(Wi[Ht−1, xt ] + bi) (2)

C
′
t = tanh(Wc[Ht−1, xt ] + bc) (3)

These two stages are subsequently combined to generate an updated state value, which is
then added to the unit state to update the long-term memory of LSTM (i.e., Ct), as indicated
by the following equation:

Ct = ft � Ct−1 + it � C
′
t (4)

� represents the Hadamard product operation. The output gate is responsible for generat-
ing the hidden state, which can be calculated as:

Ht = σ(Wo[Ht−1, xt ] + bo)� tanh(Ct) (5)

where Wo and bo are the weight matrix and the bias of the output gate. LSTM is capable of
selectively memorizing and forgetting features via the regulation of three gates, thereby
mitigating the issue of long-term dependency. Additionally, LSTM addresses the issue of
vanishing gradients that often occurs in RNN. As a result, LSTM has gained widespread
adoption in time series prediction tasks.
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3.3. Self-Attention Mechanism

The attention mechanism is inspired by the human visual attention mechanism, which
selectively focuses on specific regions of interest and allocates more attentional resources to
extract relevant information while suppressing irrelevant information. Self-attention is a
type of attention mechanism, which enables the model to capture the degree of association
between each position in a sequence and all other positions. By computing the attention
weight of each position with respect to all other positions, the model is able to selectively
focus on the most relevant parts of the input sequence and generate more precise predictions
or representations.

The self-attention mechanism is based on the query matrix Q, the key matrix K, and
the value matrix V , the generation of which is depicted in Figure 4. Given an input sequence
X, the attention mechanism employs three trainable weight matrices (corresponding to WQ,
WK , and WV in Figure 4) to compute the query matrix, the key matrix, and the value matrix
V , respectively. By computing the dot product between Q and K, and normalizing the
resulting scores using a softmax function, the attention weight coefficients can be obtained,
which can be expressed as:

AW(Q, K) = so f tmax
(

QKT
√

d

)
(6)

where d refers to the dimension of the hidden layer in the key and query matrices. Due to
the potentially large dot product of the query matrix Q and the key matrix K when their
dimensions are high, numerical instability may occur during training. To address this issue,
dividing the dot product by

√
d normalizes the scale of the product across all dimensions,

enhancing the stability and performance of the model. Furthermore, based on the attention
weight AW(Q, K), the attention value can be expressed as:

A(Q, K, V) = so f tmax
(

QKT
√

d

)
V (7)

Figure 4. The generation of the Q, K, and V matrices.

Specifically, for each position in the sequence, the corresponding value vector is multi-
plied by its attention weight coefficient. The resulting products are then summed to obtain
the attention value, allowing the model to place greater emphasis on the most relevant
positions. This process is illustrated in Figure 5, where {αi,1, αi,2, · · · , αi,d} represents the
attention weight coefficients.
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Figure 5. The generation of the attention value.

3.4. Proposed SA-LSTM Network

Based on the LSTM model and the self-attention mechanism, this paper proposes an
SA-LSTM model for indoor localization enhancement. The framework of the SA-LSTM
model is depicted in Figure 6. The input data for SA-LSTM are constructed using the
collected RSSI data.

Figure 6. The framework of proposed SA-LSTM model.

3.4.1. Input Sequence Data

At first, a recorded trajectory can be expressed as a matrix:

R =

⎡⎢⎢⎢⎣
r1,1 r1,2 · · · r1,N
r2,1 r2,2 · · · r2,N

...
...

. . .
...

rT,1 rT,2 · · · rT,N

⎤⎥⎥⎥⎦ (8)

In this context, N refers to the total number of APs, while T represents the length of
a trajectory. Each element in the matrix R corresponds to the received RSSI. To prepare
the data for analysis, we apply the normalization method described in [43]. This involves
using the following expression:

r
′
i,j =

( ri,j − c
−c

)e
(9)

where e represents the Euler’s number [44]. The constant value c should be set to a number
less than or equal to the minimum value of RSSI. This ensures that all RSSI values can
be scaled between 0 and 1 through normalization. Once the normalization is complete,
trajectory segmentation will be performed on all the collected trajectories. Considering
trajectories as [(r̃1, l1), (r̃2, l2), · · · , (r̃T , lT)], where r̃i = [r1,1, r1,2, · · · , r1,N ] represents the
RSSI from all APs in a given position, while li = [xi, yi] represents the corresponding
coordinates of this position. To facilitate the analysis, each trajectory is divided into smaller
segments using a sliding window of a fixed length, denoted by L. These segments are then
used as inputs for the SA-LSTM model. Mathematically, this process can be expressed
as follows:
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li+L = F (r̃i, r̃i+1, · · · , r̃i+L−1) (10)

where F (·) is the mathematical expression of SA-LSTM, and the li+L represents the position
of the last time step for the input data.

3.4.2. The Layers of Network

After preprocessing the data, the prepared dataset will be fed into the SA-LSTM
model. The input layer of the SA-LSTM model employs a fully connected layer with a
rectified linear (ReLU) activation function to increase the dimension of the feature space.
Mathematically, this can be expressed as follows:

X
′
= ReLU(W1X + b1) (11)

The resulting output will then be passed through an LSTM layer to generate the
corresponding output for each time step. This output will serve as the input for the
subsequent self-attention layer. Within the self-attention layer, several enhancements are
implemented to decrease the number of network parameters. As shown in Equation (6),
the attention weights are computed using the query matrix Q and the key matrix K. This
computation can be further simplified as follows:

AW(X, Wa) = so f tmax
(

QKT
√

d

)
= so f tmax

(
(XWQ)(XWK)

T
√

d

)

= so f tmax

(
X(WQW T

K )XT
√

d

) (12)

Given the relationship WA = WQW T
K , it follows that a fully connected layer with

trainable weights WA can be utilized in the attention layer to facilitate the computation of
attention weights. Afterward, the output of the fully connected layer will be divided by

√
d

and normalized using the softmax function to obtain the attention weights. It is noteworthy
that the output of the LSTM layer contains the information required for SA-LSTM, which
means it can be directly considered as the key matrix K. After calculating the attention
weights, the next step involves performing a dot product operation between the attention
weights and the transposed output from the LSTM layer.

SA-LSTM utilizes a shortcut connection [45] to propagate the attention values obtained
from the attention layer, which enhances the backpropagation of gradients and mitigates
gradient vanishing. A convolutional layer is then applied to modify the data channels
before moving on to the final layer. In the final layer, a fully connected layer is employed to
convert the input into location coordinates. The model then calculates the mean square
error (MSE) between the predicted output Ỹ and the practical location coordinates Y . The
loss is calculated as:

LMSE(Ỹ , Y) =
∑n

i=1(‖Y − Ỹ‖2)

n
(13)

where n denotes the number of samples in a batch. According to the loss value, the gradients
of the trainable parameters in the model will be computed through backpropagation.
Simultaneously, the trainable parameters will be updated in the direction of the negative
gradient to minimize the loss value.

4. Experimental Setup

To verify the performance of the proposed SA-LSTM method, Bluetooth, and Wi-Fi finger-
print data are applied, which are collected from 2D and 3D moving scenarios, respectively.
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4.1. Two-Dimensional-Moving Experiment Setup

The experimental location for the 2D-moving scenarios is located in an office room on
the 28th floor of the Guangdong Telecom Science and Technology Building in China. In
this experiment, we deployed 24 Bluetooth beacons at various locations within an office
room. These beacons are used to track the movement and location of individuals. Figure 7
shows the layout of the office room, which has an area of 9.6 m × 20.4 m. The solid red dot
in Figure 7 represents the origin point in a customized absolute coordinate system. The
trajectories used for feature analysis are based on the coordinates of an absolute coordinate
system, which serves as a reference point for all position measurements. Additionally, the
green cross marks in Figure 7 represent the positions of the Bluetooth beacons, while the
blue dashed line indicates the trajectories followed during data collection. The E5 Pilot
Positioning Beacon version V006 is applied as the Bluetooth signal transmitter. The specific
product parameters are shown in Table 1.

Table 1. The product parameters of the Bluetooth beacon.

Parameters Values

Bluetooth version BLE 5.0

Bluetooth protocol iBeacon

Working temperature −30 ∼ 25 ◦C

Maximum transmission distance 120 m

Transmitted power −30 ∼ +4 dBm (default: 0 dBm)

Broadcast interval 100 ms ∼ 10 s (default: 500 ms)

Figure 7. The layout of the office room.

During the experiment, we employed a Xiaomi 10 Pro mobile phone (Xiaomi, Beijing,
China) and a ZTE Axon 40 mobile phone (ZTE, Shenzhen, China), both equipped with
cameras. To facilitate the data collection task, we developed a mobile phone data collection
application capable of capturing Bluetooth signals and logging user positions. In Figure 8,
we depict the page of the application. This application leverages the visual simultaneous
localization and mapping (VSLAM) framework to acquire real-time coordinates, which
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were then logged onto files for further analysis. The working principle of VSLAM involves
analyzing the visual data captured by the camera to track the movement of the camera
and identify features in the environment. By comparing these features with those from
previous frames, VSLAM can estimate the motion of the camera and update its position in
real time.

Figure 8. The application used for the (a) RSSI collection and (b) position recording.

To ensure the accuracy of the collected position coordinates, we conducted data
acquisition by moving the acquisition device at a constant speed along the predetermined
trajectories. The trajectory data for RSSI collection were obtained by following the blue-
dashed lines shown in Figure 7. Specifically, we followed each dashed line from the starting
point to the end and then retraced our steps from the end back to the exit point, creating two
distinct trajectories. The two mobile phones used for data acquisition were programmed to
perform signal acquisition and collect corresponding addresses at different times. Overall,
these measures ensured that the collected data were of sufficient quality to support our
research objectives. The sampling frequency of the collecting devices was set to 1 Hz while
moving along the trajectories. In total, we collected 28 trajectories, which were subsequently
partitioned into three sets: training, validation, and test sets, in a ratio of 3:1:1. The test
and validation datasets mainly contain two categories of trajectories. The first category
consists of trajectories that were not included in the training set. The second category
includes trajectories that are identical to those in the training set but were collected using
different devices.

4.2. Three-Dimensional-Moving Experiment Setup

The 3D-moving experiment dataset is publicly available as an open source dataset [10].
In contrast to the 2D-moving experiment, the 3D-moving experiment dataset is based
on Wi-Fi fingerprints and covers trajectories across the fourth, fifth, and sixth floors of
the C4 building at Nazarbayev University. This dataset provides a comprehensive and
representative set of data, enabling a thorough evaluation of the performance of indoor
localization systems in complex, multi-floor environments. This Wi-Fi dataset comprises
290 trajectories that were sequentially collected with a fine spatiotemporal resolution.
The dataset covers a total area of over 9564 m2 across three floors. The experimental
environment is equipped with 439 wireless access points. During the experiment, the
validation and test trajectories were collected a few days after obtaining the training set.
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These trajectories were uniquely designed to be dissimilar from the training trajectories.
Moreover, the users were authorized to switch floors using the four elevators installed
in the building while collecting the data, which helps to evaluate the performance of the
model in 3D-moving scenarios. A total of 170 unique trajectories were collected, with an
even distribution between the validation and test sets.

4.3. SA-LSTM Training Setup

In the two experimental scenarios, the hyperparameters of the SA-LSTM model were
adjusted differently. The details of these hyperparameters are presented in Table 2. For
each L of consecutive input RSSI vectors at a given moment, the network predicts the exact
location of the last recorded time point. The initial learning rate is set to 0.001 for both
scenarios. During the training process, we reduce the learning rate to one-tenth of the
previous rate after a fixed number of training epochs. In the 2D scenario, the learning rate
was adjusted every 30 epochs, while in the 3D scenario, the learning rate was adjusted
every 20 epochs. All models were trained using an NVIDIA GeForce RTX 2080 Ti GPU,
manufactured by NVIDIA, based in Santa Clara, CA, United States.

Table 2. The hyperparameters of SA-LSTM.

Layer 2D Experiment 3D Experiment

Linear layer 1 (24 × 64) (436 × 128)
LSTM layer (64 × 64) (128 × 128)

Linear layer 2 (64 × 4) (128 × 4)
Convolution layer 3 × 3 kernels, 1 filter 3 × 3 kernels, 1 filter

Linear layer 3 (62 × 2) (126 × 3)
Batch size 2 2

Initial learning rate 0.001 0.001
Optimizer Adam Adam

Loss function MSE MSE
Training epochs 200 100

5. Results and Discussion

Before comparing the performance of various methods, the sliding window length L
for the SA-LSTM method needs to be determined. Figure 9 illustrates the mean positioning
error as a function of the window size. As shown in the figure, SA-LSTM performs poorly
when L is set to 1 or 2. As L increases, the average localization error of SA-LSTM shows
a significant decrease. This occurs because when L is set to a smaller value, the network
model obtains less information, resulting in lower positioning accuracy. When L is taken to
5 or 6, the average localization error fluctuates within a small range. To avoid additional
computational complexity, L is determined to be set to 4.

To compare our indoor localization approach, we implemented an indoor localization
system network based on LSTM, as described in [37]. Additionally, we implemented
other methods such as RNN [10], KNN, WKNN, FNN, and linear regression. We adjusted
the parameters of these models within a certain range to optimize their performance.
During the training process, all the model was validated using the validation set after each
training epoch, and the model with the minimum average position error was saved for
further evaluation.

The average and maximum positioning errors of all these methods are presented in
Table 3. The SA-LSTM method outperforms other methods in terms of average positioning
accuracy. Among these methods, the LSTM approach achieves the second-best performance
in mean positioning accuracy, following the proposed SA-LSTM method. On the test set,
the LSTM method results in a maximum error of 13.73 m and an average error of 3.07 m,
which is 0.98 m and 1.31 m higher than the proposed SA-LSTM method. Compared to
the RNN method, which has a mean positioning error of 4.16 m and a maximum error
of 12.64 m, SA-LSTM improves the positioning accuracy by 2.4 m and 0.29 m. Moreover,
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SA-LSTM achieves a maximum improvement of 66.85% in average positioning accuracy
compared to the linear regression method.

Figure 9. The length of the sliding window against the mean positioning error.

Table 3. The positioning error for 2D-moving experiment.

Method
Average Error (m) Maximum Error (m)

Validation Set Test Set Validation Set Test Set

KNN 2.53 3.36 18.39 15.22
WKNN 2.53 3.33 18.41 15.42

FNN 3.49 5.28 12.44 12.54
Linear regression 3.64 5.31 13.06 12.34

RNN 3.37 4.16 12.67 12.64
LSTM 2.57 3.07 13.73 13.73

SA-LSTM 1.67 1.76 12.35 12.35

Figure 10 illustrates the MSE loss curve of the SA-LSTM and LSTM methods during
the training process with 2D-moving trajectories. Our results indicate that exhibits a faster
convergence rate in terms of training loss compared to the LSTM model. Moreover, after
200 epochs of training, the training loss of SA-LSTM converges to around 0, while the
training loss of LSTM converges to around 0.5. The validation loss of SA-LSTM converges
faster to near-stabilization values compared to LSTM, as demonstrated in the black-dotted
box in Figure 10. Throughout the entire training process, we observed that the SA-LSTM
model achieved a slightly lower minimum validation loss than the LSTM model. These
results suggest that the SA-LSTM model is more effective in terms of training efficiency
with the help of a self-attention mechanism and shortcut connection.

Figure 11 illustrates the cumulative distribution function (CDF) of localization errors
for the 2D-moving experiment. In total, a maximum localization error of 12.35 m is recorded
for SA-LSTM, 15.22 m is recorded for KNN, and the largest maximum localization error
of 15.42 m is recorded for WKNN. Compared to the KNN and WKNN methods, the
SA-LSTM method showed a decrease in the maximum localization error by 2.87 m and
3.07 m, respectively. Meanwhile, the maximum localization error of LSTM is 12.47 m, which
is also higher than that of SA-LSTM. When considering the 90% percentile of the CDF,
the proposed SA-LSTM model demonstrates a 90% location error of approximately under
3.86 m. In comparison, the LSTM, RNN, and KNN models exhibit location errors of around
4.36 m, 5.74 m, and 6.31 m, respectively. This suggests that the proposed SA-LSTM can
achieve an improvement of 11.47%, 32.75%, and 63.47% in the 90% CDF compared to LSTM,
RNN, and KNN, respectively.
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Figure 10. The MSE loss curve of SA-LSTM and LSTM methods in 2D-moving experiment.

Figure 11. The CDF of localization errors for 2D-moving experiment.

Regarding the 3D-moving experiment, the proposed SA-LSTM model continues to
exhibit superior performance in the localization system. Similarly, we compare the average
and maximum positioning error of KNN, WKNN, FNN, linear regression, RNN, LSTM, and
SA-LSTM. As shown in Table 4, the proposed SA-LSTM achieves an average positioning
error of 2.83 m and a maximum positioning error of 57.64 m in the 3D-moving experiment.
Compared to LSTM, SA-LSTM improves the average positioning accuracy by 31.64%. In
addition, SA-LSTM reduces the average positioning errors by 2.1 m and the maximum
localization errors by 3.32 m compared to RNN. Compared to KNN and WKNN, the SA-
LSTM has an average positioning error that is 0.62 m and 0.61 m lower, respectively. The
SA-LSTM has achieved the lowest average positioning error and the maximum positioning
error in scenes involving 3D motion.

The loss curves for SA-LSTM and LSTM in the 3D-moving experiment are depicted in
Figure 12. The training loss of SA-LSTM and LSTM converge at a similar rate. As shown in
the zoomed-in image in Figure 12, the final convergence value of SA-LSTM is a bit lower.
In terms of the validation loss, the SA-LSTM model exhibited a better performance than
the LSTM model. Specifically, the validation loss of SA-LSTM could eventually converge to
3, while that of LSTM remained above 4. Based on these findings, we can conclude that
our proposed SA-LSTM model is significantly more efficient in terms of training efficiency
compared to the conventional LSTM model.
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Figure 12. The MSE loss curve of SA-LSTM and LSTM methods in 3D-moving experiment.

Table 4. The positioning error for 3D-moving experiment.

Method
Average Error (m) Maximum Error (m)

Validation Set Test Set Validation Set Test Set

KNN 3.42 3.45 68.95 69.99
WKNN 3.41 3.44 68.95 69.99

FNN 6.41 6.81 68.79 58.70
Linear regression 7.06 7.56 100.44 89.74

RNN 3.73 4.93 40.71 60.96
LSTM 3.91 4.14 66.91 69.29

SA-LSTM 2.56 2.83 28.46 57.64

Figure 13 illustrates the CDF of localization errors for the 3D-moving experiment.
Overall, the proposed SA-LSTM still outperforms the other classical algorithms. The LSTM
network performs the second best, which achieves a 90% location error below 6 m, while
RNN achieves a 90% location error below 8.45 m. Compared to LSTM and RNN, SA-LSTM
decreased the 90% CDF by 1.99 m and 4.44 m.

Furthermore, a couple of estimated trajectories are drawn in a 3D-moving experiment
using the SA-LSTM model. Figure 14a,b depict the moving trajectories, which involve
transitions between two and three different floors, respectively. The red lines correspond to
the reference trajectory, whereas the blue lines depict the estimated trajectories generated
by SA-LSTM. The experimental results indicate that the measured position points in the
referenced trajectories exhibit anomalous behavior during pedestrian transitions between
different floors. This behavior is attributed to the reliance on elevators for inter-floor
movement, which leads to abnormal fluctuations in the measurement signal, resulting
in anomalous measured positions. From the trajectories shown in Figure 14a,b, it can
be demonstrated that the proposed SA-LSTM model exhibits a satisfactory performance
when the pedestrians under test move within a single floor. However, when pedestrians
move between floors, the estimated position points generated by the SA-LSTM model may
exhibit some fluctuations within a narrow range. Nevertheless, once the pedestrians reach
a specific floor, the SA-LSTM model can promptly resume its effective operation.
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Figure 13. The CDF of localization errors for 3D-moving experiment.

Figure 14. Schematic diagram of referenced and estimated trajectories with a range of movement
involving (a) two floors and (b) three floors.

The 90% quantile of CDF is an important performance evaluation metric in location
systems, as highlighted in 3GPP Rel.18 [46]. To comprehensively evaluate the performance
of each algorithm in both 2D-moving and 3D-moving experiments, we calculate the 90%
error for each algorithm and present the results in Figure 15.

In both experimental scenarios, SA-LSTM demonstrates the highest localization accu-
racy compared to the other algorithms, as indicated by its remarkably low 90% positioning
error. Under the 3D-moving experimental environment, SA-LSTM achieves a 90% local-
ization error under 3.86 m, which is 0.5 m and 1.88 m lower than that of LSTM and RNN,
respectively. Compared to classical KNN algorithms, the SA-LSTM model consistently
exhibits a lower 90% positioning error under both experimental environments. These
results suggest that SA-LSTM demonstrates high accuracy and stability in the field of
indoor positioning, highlighting its potential to outperform traditional methods and pave
the way for more advanced and reliable indoor positioning systems.
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Figure 15. The histogram of a 90% positioning error for two experiments.

Furthermore, we implemented several ensemble-based algorithms in the mainstream
and compared their performance to that of the proposed SA-LSTM. As depicted in Figure 16,
the random forest and AdaBoost exhibited a similar positioning accuracy in the 2D-moving
experiment, with an average positioning error of 3.96 m. In the 3D-moving experiment,
random forest and AdaBoost demonstrate average positioning errors of 5.69 m and 4.37 m,
respectively. Additionally, the SA-LSTM model shows lower positioning errors regarding
the 90% CDF in both experimental environments. When compared to the SA-LSTM and
LSTM algorithms, the ensemble-based models only focus on the wireless fingerprint signal
characteristics at the current moment and do not consider the temporal characteristics of
the signal. Moreover, the fluctuation of RSSI can lead to changes in the RSSI pattern at
a particular location. These factors seriously impair the performance of these ensemble-
based models.

Figure 16. The CDF of SA-LSTM and implemented ensemble-based models in (a) 2D-moving
experiment and (b) 3D-moving experiment.
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Based on our experimental results, the proposed SA-LSTM shows an outstanding
performance in RSSI-based fingerprinting indoor positioning. However, there are still a
number of limitations that need to be addressed in our future work. However, there are
still several limitations that need to be addressed in our future work. We identified that
the density of deployed beacons has a significant impact on the performance of SA-LSTM.
To achieve a high positioning accuracy, we tried to have a Bluetooth beacon within every
8 m2 based on our beacon configuration. Nevertheless, this strategy necessitates a great
number of beacons for large areas. Our future plan involves developing a positioning
method that integrates Bluetooth signal data fusion with Wi-Fi and cellular signals. By
leveraging these existing wireless signals, we aim to reduce the number of required Blue-
tooth beacons. Furthermore, we observed that the performance of SA-LSTM is influenced
by the movement trajectory. While the training and testing trajectories do not necessarily
need to align in the experiments discussed in this paper, it is essential for the training
trajectory to comprehensively cover the entire experimental area to ensure localization
accuracy. In our future research, we will focus on enhancing the fingerprint acquisition
method to mitigate the challenges and costs associated with RSSI acquisition. Finally, due
to resource constraints, the performance of SA-LSTM was only validated in two specific
environments. As illustrated in the experimental results, SA-LSTM demonstrated a supe-
rior performance in an office room compared to the C4 building. This discrepancy can be
attributed to the larger size of the C4 building and the increased obstruction by objects
within it. Theoretically, the localization accuracy of SA-LSTM is anticipated to be higher
in less obstructed environments. For future research endeavors, we aim to validate our
approach in a more diverse array of environments.

6. Conclusions

This paper introduces a novel SA-LSTM method for fingerprint-based indoor local-
ization systems. The proposed model utilizes the self-attention mechanism to calculate
attention scores between each element and all other elements in the output sequence of the
LSTM. This enables the SA-LSTM model to focus on the relationship between the position
features at different time steps, thereby improving the accuracy of real-time position es-
timation. The performance of SA-LSTM has been evaluated under various experimental
environments that involve 2D and 3D moving trajectories. The experimental results show
that SA-LSTM achieves an average localization error of 1.76 m and 2.83 m in the respective
scenarios, with 90% of the positioning errors being under 3.86 m and 4.01 m, respectively.
Furthermore, when compared with existing state-of-the-art methods in the same test envi-
ronment, SA-LSTM exhibits a significant improvement in positioning accuracy by 42.67%
to 31.64% under the same test environment.

Our study has successfully showcased the potential of the self-attention mechanism in
enhancing the accuracy and efficiency of indoor localization systems. In our future work,
we plan to conduct further research to explore the applicability and effectiveness of this
mechanism in improving the accuracy of indoor localization.
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Abbreviations

The following abbreviations are used in this manuscript:

LBS Location-based services
GPS Global Positioning System
BDS BeiDou Satellite Navigation System
UWB Ultra-wide bandwidth
RFID Radio frequency identification
AOA Angle of arrival
TOA Time of arrival
APs Access points
UE User equipment
LSTM Long short-term memory
RSSI Received signal strength indicator
TPs Test points
RPs Reference points
KNN K-Nearest neighbors
WKNN Weighted K-nearest neighbors
SVM Support vector machines
FNN Feedforward neural networks
SA-LSTM Self-attention and LSTM
VSLAM Simultaneous localization and mapping
RNN Recurrent neural networks
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Abstract: Multi-robot Simultaneous Localization and Mapping (SLAM) systems employing 2D lidar
scans are effective for exploration and navigation within GNSS-limited environments. However,
scalability concerns arise with larger environments and increased robot numbers, as 2D mapping
necessitates substantial processor memory and inter-robot communication bandwidth. Thus, data
compression prior to transmission becomes imperative. This study investigates the problem of
communication-efficient multi-robot SLAM based on 2D maps and introduces an architecture that
enables compressed communication, facilitating the transmission of full maps with significantly
reduced bandwidth. We propose a framework employing a lightweight feature extraction Convo-
lutional Neural Network (CNN) for a full map, followed by an encoder combining Huffman and
Run-Length Encoding (RLE) algorithms to further compress a full map. Subsequently, a lightweight
recovery CNN was designed to restore map features. Experimental validation involves applying
our compressed communication framework to a two-robot SLAM system. The results demonstrate
that our approach reduces communication overhead by 99% while maintaining map quality. This
compressed communication strategy effectively addresses bandwidth constraints in multi-robot
SLAM scenarios, offering a practical solution for collaborative SLAM applications.

Keywords: deep compressed network; multi-robot system; Huffman encoder; 2D-lidar SLAM;
communication-limited application

1. Introduction

Recent years have witnessed significant advancements in multi-robot SLAM algo-
rithms due to their potential applications in search and rescue operations, environmental
monitoring, and the exploration of unknown or hazardous environments [1–5]. Single-
robot SLAM, where a solitary robot independently navigates and maps its surroundings,
is often constrained by time-consuming exploration and limited observation capabilities
in large areas. In contrast, multi-robot SLAM has the advantage of efficiently exploring
large-scale environments, enhancing mapping accuracy, and improving robustness through
the collaborative efforts of multiple robots in various challenging scenarios.

Traditional multi-robot SLAM is developed directly from expanding the single SLAM
into multiple robots under a centralized scheme. For example, the CCM-SLAM [6] stands
out as a well-established centralized system for visual-inertial multi-robot SLAM. In this
system, a central server takes charge of multi-robot map management, fusion, and opti-
mization. By building upon [6], COVINS [7,8] is an extension that has been demonstrated
to scale effectively to 12 robots. Another recent addition to centralized CSLAM systems
is CVIDS [9], which has achieved the collaborative localization and dense reconstruction
of multiple agents in a unified co-ordinate system by using a monocular visual-inertial
sensor suite and a centralized loosely coupled framework. LAMP [10,11] is a computa-
tionally efficient and outlier-resilient centralized multi-robot SLAM system that consists
of a scalable loop closure detection module and GNC (graduated nonconvexity)-based
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pose map optimization module. Though centralized systems are simply realized and with
high precision, they require stable communications and are not robust to the failure of the
central node.

Distributed systems can alleviate these problems by reducing the reliance on a central
server. Ref. [12] proposed a metric-semantic 3D mesh model for a distributed multi-robot
SLAM system, which includes an outlier-resistant fully distributed trajectory estimation
method based on GNC and a novel outlier-resistant distributed PGO algorithm. In [13],
Kimera-Multi [12,14] is improved to adapt to large-scale real-world deployments, with spe-
cial emphasis on handling intermittent and unreliable communications. DOOR SLAM [15]
uses a distributed frontend to detect inter-robot loop closures without exchanging raw
sensor data, successfully rejecting outliers and obtaining accurate trajectory estimates
while requiring low communication bandwidth. At the same time, lidar-based distributed
multi-robot SLAM is also underway. In [16], the Scan-Context algorithm is proposed to
project a 3D point cloud onto a low-resolution 2D plane, thus converting it into a compact
feature vector for retrieving the created map and enabling localization, greatly reducing
the amount of data and computational complexity. In [17], a distributed backend is used to
remove inter-robot loop closure redundancy and perform position map optimization to
optimize the global robot cluster position.

The selection of appropriate map representations of multi-robot SLAM directly impacts
its performance on computation efficiency, memory usage, and communication burden.
For instance, in environments where ground robots navigate indoor spaces, employing
a 2D map is sufficient [18]. Studies have demonstrated that occupancy grid maps pro-
vide a compact and accurate solution compared to feature-based maps [19,20]. However,
certain applications necessitate 3D representations despite the associated computational
and storage complexities. This complexity presents challenges, particularly for resource-
constrained robotic platforms. Given the communication limitations in multi-robot SLAM
systems, there is a preference for compact or sparse map representations, such as the
topological maps used in [21,22]. Additionally, efforts are underway to develop semantic-
based representations, such as sparse maps annotated with labeled regions [23]. The
choice of map representation is critical for long-term operations due to increasing memory
requirements, posing a persistent challenge in multi-robot SLAM [24]. Communication
bottlenecks in multi-robot SLAM systems typically arise from the exchange of sensor data
or representations used for computing inter-robot loop closures [25]. Robots must exchange
sufficient data to determine if other robots have explored the same areas and subsequently
estimate map alignment using overlapping map sections. Therefore, advancements in the
frontend of multi-robot SLAM systems often involve efficient methods for searching loop
closure candidates across a team while considering communication constraints. The increas-
ing challenge of balancing efficientinformation transmission with limited communication
bandwidth is a pressing issue in multi-robot SLAM systems.

Distributed multi-robot SLAM highly relies on the exchange of data among the net-
work to realize co-ordination processes, such as place recognition, relative pose compu-
tation, loop closure detection, and so on. There is increasing work attempting to relieve
the communication burden such that the multi-robot system can be deployed to critical
environments with less communication capacity. Instead of communicating the merged full
map, only the key points and descriptors from parts of the keyframes (using the camera) or
submaps (using lidar) are exchanged to realize these co-ordination processes. As depicted
in Table 1, segments are extracted in [26] from the source point cloud to generate a source
map that contains lists of low-dimensional segment descriptors. In [9], BRIEF descriptors
are extracted from each frame and exchanged with another robot. In [27], the keyframes and
map points of each robot are transmitted to the server and then distributed by the server
to other robots. In [28], two communication modes are designed in different situations:
compact and greedy. In compact mode, the communication overhead is minimized by
sending compact descriptors. In greedy mode, each drone shares as much information as
possible, which is suitable for good network conditions. In [17], NetVlAD descriptors are

158



Sensors 2024, 24, 3154

transmitted between the robots to perform place recognition. In [12], the data flow between
different robots are key points and feature descriptors. Compact representations have
been explored, incorporating semantic features [29] that rely on objects as landmarks. This
approach requires communicating only object labels and poses to other robots, presenting
a condensed object-based descriptor that depends on the configuration of objects in a scene
for place recognition. In addition to compacting representations, ensuring the sharing
of only pertinent information is valuable. However, the data types transmitted by these
methods are partial or compact representations of the data, which will lead to the loss of
detail. In a wide range of task scenarios, if there will be an accumulation of errors, it is
meaningful to study the transmission of the merged full map.

Table 1. Comparison of the types of data transferred with the related methods.

Method Type of Data Transfer Map Density

Dubé et al. [26] Segmentation description Sparse
CVIDS [9] Descriptor extraction Sparse

CVI-SLAM [27] Keyframe and map point Sparse
D2SLAM [28] Landmarks and descriptors Sparse

Zhang et al. [24] Descriptor extraction Sparse
DCL-SLAM [17] Descriptor Sparse
Door-SLAM [15] NetVlAD descriptor Sparse

Kimera-Multi [12] Keypoints and feature descriptors Dense
Our methoed 2D occupancy full map Dense

We present a multi-robot SLAM system utilizing 2D occupancy grid maps as a repre-
sentation of the environment, enabling merged, full-map transmission. Due to the specific
format characteristics of raster maps, we have devised intelligent compression algorithms
aimed at significantly reducing redundancy in the information contained within these
maps while preserving their overall integrity. These intelligent compression algorithms
consist of a lightweight network for both map feature extraction and recovery, along with a
map feature coder and decoder.

The main innovations and contributions of this paper are as follows:

1. We present a compressed communication framework for multi-robot SLAM, enabling
merged, full-map transmission among robots, which can reduce the duration of explo-
ration and produce a map of the whole environment quickly. Such a whole map plays
a key role in many robotic tasks, such as path planning, collision avoidance et al.

2. According to the characteristics of the occupancy grid map, we designed an intelligent
compression algorithm by combining a convolutional neural network, Huffman coding,
and RLE coding that compress the transmitted full map by both image downsampling
and stream encoding.

3. We use Ultra-Wide Band (UWB) as a communication medium to validate the multi-
robot SLAM system proposed in this paper. The results show that our method is able to
reduce the communication burden by up to 99 percent and the localization error is less
than 5 cm compared to when no compression is employed.

The remainder of the paper is organized as follows: In Section 2, we describe the
proposed multi-robot SLAM method based on an intelligent compression algorithm. In Sec-
tion 3, the experimental results are provided to validate the performance of the intelligent
compression algorithm. Finally, we conclude this paper in Section 4.

2. The Compressed Communication Approach

The multi-robot SLAM framework based on compressed communication consists
of the following three main components: full-map creation, full-map compression and
transmission, and full-map fusion. In Figure 1, the robots first use Gmapping to build the
full map. The map is then compressed by our proposed algorithm and transmitted to other
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robots using the UWB device. After receiving maps, a robot can decompress maps and
merge them with its own created full maps. Eventually, the robot can navigate through the
environment using the merged maps.

Figure 1. The framework for compressed communication application in multi-robot SLAM.

2.1. Full-Map Creation

Gmapping [30] is a SLAM algorithm that combines particle filtering and FastSLAM.
The algorithm predicts the robot’s position using a motion model and then uses sensor data
for position correction and map updates. As the robot moves through the environment,
it gradually builds an accurate occupancy grid map and is able to determine the robot’s
position on the map. We use Gmapping to create full maps for each robot.

2.2. Full-Map Compression and Decompression

Map compression consists of a map feature extraction CNN CNN f eature and an en-
coder. The map feature m f eature that retains the key information of the full map is generated
by CNN f eature. Then, m f eature is fed into the encoder to form a string encoding e. Cor-
responding to the above, map decompression consists of a decoder and a map recovery
CNN CNNrecovery. The decoder recovers e into m f eature, and then the m f eature is processed
through CNNrecovery to obtain the new full map. Although the new full map is slightly dif-
ferent from the map before compression, it does not affect its ability to provide navigation
for the robot, as demonstrated in the experiments in Section 3.

(1) CNN f eature: As shown in Figure 2, CNN f eature consists of three weight layers,
which preserve the structural information of the input map while obtaining storage space-
saving m f eature. The first layer consists of convolution (set the convolution kernel to 3 × 3)
and ReLU (enhance the model’s expressive power) for the purpose of extracting the features
of the map. Considering the computing power of the processing unit on the robot, we set
16 sets of 3 × 3 filters. The second layer, composed of convolution, Batch Normalization
(BN), and ReLU, aims to downsample and enhance features. In order to change the map
resolution to a quarter of the original, the parameter stride of the convolution was set to 2,
and 16 filters of size 3 × 3 × 16 were used. In the last layer, a filter of size 3 × 3 × 16 is used
to get the m f eature. Compared to downsampling the map directly, the m f eature obtained by
CNN f eature contains more map information.
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Figure 2. Map feature CNN.

(2) Encoder for map f eature: The encoding process of m f eature is shown in Figure 3. The
algorithm of m f eature encoder based on RLE and Huffman is shown in Algorithm 1. Firstly,
the values that appear in the m f eature are recorded V = {v1, v2, ..., vn}, and the probability
of each value in m f eature are calculated. We order the probability of occurrence of each
value from highest to lowest to obtain the set P = {p1, p2, ..., pn}, where pi represents the
probability of the i-th value in m f eature. N = {n1, n2, ..., nn}, which are initialized according
to P = {p1, p2, ..., pn}, and ni corresponds to pi. Then, the two smallest values in the set
N are merged into a new node, so N and P are updated to {p1, ..., pn−2, pmerged}, and
{n1, ..., nn−2, nmerged}. We repeat this step until only one node remains in N . According to
the process of node emergence, we can get the Huffman coding tree, e.g., Figure 4, where
the grey nodes represent the initial nodes and the white nodes are the new nodes generated
by merging the initial nodes. As a result, we can encode each value in m f eature to obtain the
code table T = {code1 : v1, ..., coden : vn}. Then, according to the code table T , m f eature is
encoded into the binary code. Finally, the binary code is converted into hexadecimal code h
to compress the length of the code. In order to further enhance compression efficiency and
reduce communication pressure, consecutive repeated characters in hexadecimal encoding
are subsequently processed. We replace the consecutively repeated code segments in h with
the repeated characters themselves and the number of times they are repeated to obtain e.
Therefore, m f eature is compressed into a code table T and a string e.

Figure 3. Encoding and decoding process.
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Figure 4. The Huffman coding tree.

Algorithm 1 m f eature compression algorithm

Input: m f eature
1: record the values in the m f eature V = {v1, v2, ..., vn}, count the probability of different

value P = {p1, p2, ..., pn}, initialize nodes N = {n1, n2, ..., nn}
2: repeat
3: merge the two nodes with the lowest probability to get the new node and update

P ,N
4: until there is only one node left in the set N
5: encode each value according to the Huffman encoding tree to get code table T : {code1 :

v1, ..., coden : vn}
6: rewrite m f eature data into binary code according to the code table
7: convert binary code to hexadecimal code h
8: Initialize e as an empty string and count as 1.
9: For index from 1 to length(h) - 1:

a. Set currentChar as the character at the current index.
b. Set previousChar as the character at the previous index.
c. If currentChar equals previousChar, count + 1.
d. If currentChar does not equal previousChar, append count and previousChar to e,

then reset count to 1.
Output: T , e

(3) Decoder for m f eature: The decoding process of m f eature is shown in Figure 3. The
algorithm of the decoder is shown in Algorithm 2. First, the e obtained by the compression
algorithm is restored to hexadecimal code d. Then, the hexadecimal code d is converted
into the binary code. According to the code table T , we can replace the corresponding
code with the corresponding value in m f eature. Finally, m f eature is recovered according to
T and e.

Algorithm 2 m f eature decompression algorithm

Input: T , e
1: Initialize d as an empty string.
2: While there are characters remaining in e:

a. Extract the next count-value pair from e.
b. Append count occurrences of the associated character to d.

3: convert hexadecimal code d to binary code
4: Recover m f eature from binary code according to the code table T

Output: m f eature

(4) CNNrecovery: In Figure 5, CNNrecovery consists of six weighting layers, and there
are three types, namely Convolution + ReLU, Convolution + BN + ReLU, and Convolution.
The purpose of CNNrecovery is to recover the full map from m f eature, and a residual block is
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employed in CNNrecovery. The jump connections of the residual block can help the network
learn the difference between the input and the output. This allows CNNrecovery to better
recover the full map, thus preserving the detailed information of m f eature. A total of 16
filters of size 3 × 3 are used to generate 16 feature mappings with ReLU in the first layer.
For the second to fifth layers, 16 filters of size 3 × 3 × 16 are utilized, and BN is inserted
between Convolution and ReLU. The last layer uses a filter of size 3 × 3 × 16 to generate
the final single-channel output, i.e., the full map.

Figure 5. Map recovery CNN.

(5) Learning algorithm: The entire network consists of CNN f eature, the encoder, the
decoder, and CNNrecovery. The optimization function for the network is designed as follows:

(θ̄1, θ̄2) = arg min
θ1,θ2

‖R(θ2, Cod(F(θ1, m)))− m‖2 (1)

where R(·) and F(·) represent CNNrecovery and CNN f eature, respectively. Cod(·) represents
the encoder and decoder. m is the full map that is the input of the network. θ1 and θ2 are
the parameters of the optimization function.

Therefore, we calculate the mean square error between the map of network output
and the original full map as the loss and the gradient of the whole network parameters
concerning loss by backpropagation. Then, we use the Adaptive Moment Estimation
(Adam) optimization algorithm to update the parameters θ1 and θ2 to minimize the opti-
mization function.

(6) Code transmission based on UWB: When m f eature is processed by the encoder, it
becomes a string. In order to facilitate the transmission, we split the string and transmitted
it to other robots using UWB segment by segment. After a string has been transmitted, the
integrity of the received string is judged. If any data are missing, the receiver commands
the transmitter to resend the string.

2.3. Multi-Occupancy Grid Maps Fusion

We consider two cases of multi-occupancy grid map fusion:
(1) The initial positions of the robots are known: In this case, the rigid transformation

(R, t) between the maps can be computed directly from the initial position of the robot (the
x, y co-ordinates and the yaw angle) so that accurate fusion results can be obtained.

R =

[
cosθ −sinθ
sinθ cosθ

]
, t =

[
tx
ty

]
(2)

The (R, t) of the two maps are known; then, the two maps are fused as follows:

map f usion = map1 + (map2 × R + t) (3)
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(2) The initial positions of the robots are unknown: We used the approach in [31] to
estimate the transformation relationship between maps using feature matching when the
initial position is unknown. This requires that the maps have enough overlapping regions
for reliable matching. The approach detects the features in each map, computes a match for
the map pair, estimates the transform using RANSAC, and computes a confidence score
for each match. Then, the matches with sufficient confidence are selected for map fusion.
In this way, fusion can be performed in the case of overlapping maps, even if the initial
positions of the robots are not known.

3. Experiments

In this section, we build the robot platform in Figure 6 and deploy the trained network
model to the robots. The performance of the trained model was verified in Figures 7 and 8a.
Figure 7 shows the multi-robot SLAM process with and without the compressed commu-
nication method, demonstrating that compressed communication has little effect on map
quality. Then, multi-robot co-operative SLAM experiments based on the method in this
paper are conducted to validate the method further.

Figure 6. Robot hardware platform.

Figure 7. Compressed communication in multi-robot SLAM.
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(a) The quality of the recovery map and compression rate. (b) Transmission time and the required bandwith.

Figure 8. Performance of the proposed methodologies; (a) chage in map quality (upper) with change
in map compression rate (lower) during the operation of multi-robot SLAM based on compressed
communication; (b) comparison of map transfer time required with and without compressed commu-
nication (upper) versus bandwidth required with and without compressed communication (lower).
T and TC denote the time to transmit the map using UWB with compressed communication and
without compressed communication, respectively, where TC is the sum of TCtrans (time to transmit
the compressed map) and TCde (time to decompress the compressed map).

3.1. Datasets and Model Training

We used the Gmapping algorithm to build maps of different environments. A total of
2,800 occupancy grid maps were saved and used for model training. Model training based
on the Pytorch framework was implemented on a computer with AMD Ryzen 5 2600X
Six-Core Processor 3.60 GHz (AMD, Santa Clara, CA, USA), NVIDIA GeForce GTX 1050 Ti
(NVIDIA, Santa Clara, CA, USA), and 16 G RAM. It takes about 10 h to train the network
proposed in this paper.

3.2. Robotic Platform

As shown in Figure 6, the robots for collaborative SLAM are mainly composed of
a Kobuki drive chassis, an NUC (a microcomputer), Rplidar, and a UWB module. The
Gmapping algorithm utilizes information from the chassis’ odometer and Rplidar for
full-map creation; then, the full maps are processed by the model deployed in the NUC
to get the string. Finally, the string is transmitted via the UWB module. Similarly, the
robot receives the string through the UWB module, and it is processed by NUC to get
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the recovery map. The recovered map is fused with the locally created map to obtain the
global map.

3.3. Experimental Result

In order to validate the compressed communication frame in Figure 1, we used two
robots to collaboratively build maps of a hallway and obtained the map data in Figure 7.
In Figure 7, the whole process of the global maps obtained with and without compressed
communication for the two robots is shown. The first row of Figure 7 shows the global
map obtained without compressed communication; the second row shows the global map
obtained with compressed communication; from left to right, the initial state of mapping to
the end state of mapping can be seen, and each state of mapping is separated by 30 s.

We evaluated the method of this paper by calculating the metrics for the correspon-
dence maps in Figure 7. The metrics Peak Signal-to-Noise Ratio (PSNR) and Structural
Similarity Index Measure (SSIM) were calculated, and the changes in these two metrics with
the running time of multi-robot SLAM are plotted in the upper figure of Figure 8a. PSNR is
a metric used to quantify the quality of a map, where higher PSNR values typically indicate
less distortion introduced by compression and higher map quality. A PSNR above 40 dB
indicates excellent map quality (i.e., very close to the original map). On the other hand,
SSIM takes values in the range of [−1, 1], with a value closer to 1 indicating more similarity
between two maps and a value closer to −1 suggesting greater dissimilarity. The objective
is to measure the structural and content similarity between the recovered and original
maps. As global map quality depends not only on pixel-level differences but also on factors
such as structure and texture, SSIM provides a more accurate assessment of the recovered
map’s quality. As shown in the upper figure of Figure 8a, the mean values of PSNR and
SSIM are 50.649 dB and 0.975. Therefore, the difference between maps obtained with and
without compressed communication is very small, and the quality of maps obtained with
compressed communication can be guaranteed. As shown in the lower figure of Figure 8a,
the map compression rate of up to 99% significantly reduces the communication burden.
Based on the data in Figure 8a, we can conclude that the compression method in this paper
has a high compression rate while maintaining good recovery quality. The recovered map
can be well utilized to construct the global map.

The upper figure of Figure 8b illustrates the time consumed with compressed com-
munication and without compressed communication. The blue and red lines represent
the time for map transmission and decompression, respectively. The black line depicts the
total time for a map transmission without compressed communication, while the green line
shows the time for a map transmission with compression. As shown in the lower figure
of Figure 8b, the blue line (12.5 kb/s) is the bandwidth that can be stably achieved by the
UWB model in this framework, and the red (124.7 kb/s) and green (Average 720.4 bit/s)
lines represent the bandwidth required for transmission of the map without and with com-
pression, respectively. By using compressed communication, the bandwidth required to
transmit the maps is greatly reduced. From Figure 8b, we can conclude that the compressed
communication in this paper can satisfy the UWB hardware bandwidth and allow for the
fast transmission of maps.

In order to verify the effect of the maps obtained from the compressed communication
method in robot localization, we used the occupancy grid map obtained with and without
compressed communication to provide localization to the robot, respectively. We selected
28 locations in a realistic environment to cover the entire occupancy grid map. Each location
was used separately with compressed and uncompressed maps to provide localization to
the robot. We used two sets of data and calculated their errors, as in Figure 9. Figure 9a
shows the error variation of the robot in the 28 sets of data, and Figure 9b shows the
distribution of the error. The mean values of errors errorx, errory, and erroryaw are 3.59 cm,
3.43 cm, and 0.72◦, respectively. This result shows that the compressed communication
method in this paper can be applied in a multi-robot SLAM and that the subtle changes
produced by compressing the map have little effect on robot localization.
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(a)

(b)

Figure 9. Robot’s localization error using the merged map with compressed communication; (a) Per-
formance of localization errors regarding the robot’s position (x, y) and its yaw angle θ; (b) Distribu-
tion of the localization error over time.

4. Conclusions

The compressed communication method proposed in this paper consists of the follow-
ing three main components: (1) full-map creation, (2) full-map compression and transmis-
sion, and (3) full-map fusion. We designed a lightweight map-feature extraction CNN and
a map recovery CNN that can process occupancy grid maps in real time when processing
units with limited arithmetic power. Meanwhile, the encoder and decoder are designed
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by combining the Huffman and RLE algorithms, which greatly reduce the code length
and make the bandwidth required for the transmission code fully satisfy the hardware
UWB. The compressed communication framework is validated in a multi-robot system,
employing two robots for the collaborative mapping of an unknown environment. One
robot compresses and transmits its full map, and the other robot receives and recovers
it. Subsequently, the recovery map is fused with its map to generate the global map. The
experimental results demonstrate that the method achieves a high compression ratio (99%)
and maintains recovered map quality with a PSNR of 50.649 dB and SSIM of 0.975. In
summary, the compressed communication method proposed in this paper satisfies the
bandwidth-constrained multi-robot SLAM system.
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Abstract: Localization of unmanned aircraft systems (UASs) in indoor scenarios and GNSS-denied
environments is a difficult problem, particularly in dynamic scenarios where traditional on-board
equipment (such as LiDAR, radar, sonar, camera) may fail. In the framework of autonomous UAS
missions, precise feedback on real-time aircraft position is very important, and several technologies
alternative to GNSS-based approaches for UAS positioning in indoor navigation have been recently
explored. In this paper, we propose a low-cost IPS for UAVs, based on Bluetooth low energy
(BLE) beacons, which exploits the RSSI (received signal strength indicator) for distance estimation
and positioning. Distance information from measured RSSI values can be degraded by multipath,
reflection, and fading that cause unpredictable variability of the RSSI and may lead to poor-quality
measurements. To enhance the accuracy of the position estimation, this work applies a differential
distance correction (DDC) technique, similar to differential GNSS (DGNSS) and real-time kinematic
(RTK) positioning. The method uses differential information from a reference station positioned at
known coordinates to correct the position of the rover station. A mathematical model was established
to analyze the relation between the RSSI and the distance from Bluetooth devices (Eddystone
BLE beacons) placed in the indoor operation field. The master reference station was a Raspberry
Pi 4 model B, and the rover (unknown target) was an Arduino Nano 33 BLE microcontroller, which
was mounted on-board a UAV. Position estimation was achieved by trilateration, and the extended
Kalman filter (EKF) was applied, considering the nonlinear propriety of beacon signals to correct
data from noise, drift, and bias errors. Experimental results and system performance analysis show
the feasibility of this methodology, as well as the reduction of position uncertainty obtained by the
DCC technique.

Keywords: UAS; indoor positioning system; BLE beacon; RSSI; trilateration; extended Kalman filter;
differential distance correction

1. Introduction

The possibility of gathering real-time information from the environment by means of
sensors onboard smart devices and objects has paved the way for the concept of Internet
of Things (IoT), with which all smart things, such as devices, sensors, and industrial and
utility components, are interconnected through networks, changing our way of living,
working, and studying [1]. IoT is becoming important for context awareness [2], network
management and security, health monitoring [3], personal delivery [4], location-based
services (LBS), cellular network-based indoor positioning [5], and so on.

Unmanned aircraft systems (UASs) are being used in several operational tasks and in
civil, military, and scientific contexts, thanks to their flexibility, versatility, low cost, and
ease of use, especially in environments that are very dangerous or impossible for human
intervention [6]. UASs also show the potential to save lives, increase safety and efficiency,
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and enable more effective science and engineering research. Knowing the aircraft position
in real time during a mission, particularly during beyond visual line of sight (BVLOS) or
full autonomy operations, is essential [7–9]. As is well known, in outdoor operations, UAS
positioning depends on onboard GNSS receivers that provide location coordinates in a
geographical reference system. In many cases, the GNSS positioning accuracy (typically
less than 5 m) is not sufficient for precision navigation (e.g., maneuvering in crowded
areas, landing in impervious sites, or precision landing), due to attenuation, multipath
errors, or signal reflections into urban canyons. On-board sensors and detect-and-avoid
systems (DAA) can be used for supporting UAS navigation in harsh environments or
sites where GNSS systems have low accuracy or in the absence of GNSS signals [10–17].
Moreover, positioning ability is limited in indoor scenarios or shelters because of blocked
GNSS signals [18].

Indoor navigation systems have a wide range of applications: for example, wayfind-
ing for humans in railway stations, bus stations, shopping malls, museums, airports, and
libraries. Visually impaired individuals also could significantly benefit from indoor naviga-
tion systems. Needless to say, navigation through indoor spaces is more challenging [19].
Currently, UAS usage is not limited to outdoor operations, and unmanned aircraft can
be useful in unknown or challenging indoor environments like hospitals, production
companies, greenhouses, and manufacturing facilities. Many researchers are focusing
their attention on the development of technical solutions for accurate and reliable UAS
positioning during indoor operations, exploiting alternative technologies that must be
compared to existing methods in terms of accuracy, precision, coverage, computational
complexity, cost, and compatibility. Most of the solutions proposed in the literature are
based on multi-sensor data fusion between INS/IMU (inertial navigation systems/inertial
measurement unit) and other sensors such as camera, visual laser LiDAR, camera radar,
LiDAR, or ultrasonic [20–23]. Alternative methodologies are based on image fusion with
ultra-wide band (UWB) systems [24,25], on Wi-Fi access points (APs) [26], infrared (IR),
radio frequency identification systems (RFID) [27], and computer vision [28]. Table 1
shows a comparison among typical technologies for indoor positioning [29] compared with
our method.

Table 1. Overview of indoor positioning technologies.

Technology
Accuracy

(m)
Power

Consumption
Extra

Device
Cost

Wi-Fi ~2–5 High No Low

Bluetooth 2–5 Low No Low

BLE 1–5 Very low No Very low

RFID ~1–3 Low Yes Moderate

UWB ~0.1–0.5 Low Yes High

Infrared 0.5–3 Low Yes Moderate

Acoustic
signal 0.3–0.8 Low No Moderate

BLE + DDC
(our method) 0.4–0.6 Very low Yes Very low

In this work, we propose a low-cost UAS indoor positioning system based on Bluetooth
low energy (BLE) beacons. A differential distance correction method (DDC) is proposed
to improve the positioning accuracy. Sharing the same indoor propagation characteristics
as 2.4-GHz Wi-Fi transceivers, BLE is the new specification of Bluetooth technology that
guarantees transmission of small amounts of data and ultra-low power consumption [30,31];
consumption is up to 1% of the classic Bluetooth (with typical power consumption of
2.5 mW [32]. BLE beacons are a promising method for indoor positioning, especially in

171



Sensors 2024, 24, 7170

applications of position-based services, thanks to their low deployment cost, low power
and dimensions, and suitability for a wide range of mobile devices. Table 2 shows some
differences between classic Bluetooth and BLE.

Table 2. Classic Bluetooth vs. BLE technology.

Propriety Bluetooth BLE

Frequency 2.4 GHz 2.4 GHz

Data rate 1 to 3 Mbps 1 Mbps

Range Up to 10 m Up to 40 m

Power consumption Low Very low

Battery life Multiple weeks Multiple months

Cost Low Very low

Accuracy 2–5 m 1–5 m

The beaconing, or advertising, mode of BLE devices allows the hardware transmitter to
broadcast advertising packets, i.e., short unsolicited messages, at flexible update rates [33].
Among the kinds of information permitted in the BLE standard, the received signal strength
indicator (RSSI), which decreases with increasing distance, can be used to allow a receiving
device to detect proximity to a specific BLE beacon based on the received signal strength
(RSS). The flexibility of BLE device deployment can also allow good signal geometries for
radio positioning; on the contrary, the location of Wi-Fi access points, typically near power
sources, is chosen in order to maximize the signal coverage of the indoor area, rather than
to optimize the wireless positioning of objects in the field.

BLE-based positioning methods typically consist of two approaches: range-based
and fingerprint-based. The range-based method uses a predefined radio frequency (RF)
path loss model to estimate the distance between the receiver (user) and the beacons.
Assuming a minimum of three RSSI measurements, the user’s position can be solved by
trilateration [34]. The fingerprint-based methods refer to the pattern of RSS measurements
at a given location and consist of signal identity information (e.g., Wi-Fi MAC addresses
or cellular IDs) and RSS values. Fingerprinting involves an offline and an online phase.
During the offline phase, fingerprints at different places are collected to create a reference
fingerprint map (RFM). In the online phase, a fingerprint collected at an unknown place is
compared to the fingerprints in the RFM to solve for the user position [35].

This work applies to a range-based methodology by exploiting RSSI measurements for
estimation of the distance between the receiver and a series of transmitters (beacons) using
trilateration. To improve the accuracy, an extended Kalman filter (EKF) was employed on
the noisy RSSI values. This study used a differential distance correction (DDC) method-
ology to correct the measured distances of a reference station from the beacons, and the
position estimation of an object (rover) was calculated by trilateration and the RSSI-derived
measurements. The differential correction was sent to the rover to attain a refined estimate
of its location. During experimental tests, a Raspberry Pi 4 model B board was used as
the reference (or master) station, and the Arduino Nano 33 BLE as the rover, whereas
the anchor points (transmitters) were BLE Eddystone beacons. Experimental data were
collected during several indoor tests conducted by the PFDL (Parthenope Flight Dynamics
Labs) team of the University of Naples “Parthenope” (Italy).

The paper is organized as follows. In Section 2, the theoretical framework (RSSI
distance method, trilateration method, EKF and DDC techniques) is presented. Section 3
describes the hardware used for the prototype of our positioning system. Simulations and
results are shown and discussed in Section 4. Section 5 concludes the paper with final
considerations and future work directions.
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2. Theoretical Framework

The observation geometry of the BLE-based indoor positioning system (IPS) prototype
mounted on a UAV is depicted in Figure 1. BLE was introduced in the Bluetooth 4.0
Standard, allowing advanced use for indoor localization technology by introducing a
new type of device called “BLE beacons”. This new technology reduces costs and power
consumption with respect to the “classical” Bluetooth; indeed, unlike the devices using
the previous standard, the new ones have the option of transmitting at set intervals, which
contributes significantly to the energy efficiency of the system, also improving the hardware
and the immunity to interference. BLE has many similarities with Wi-Fi (in the 2.4-GHz
band), and it is often used for indoor positioning in the same way as Wi-Fi, i.e., applying
RSSI-based techniques. The BLE advertisement channels are labelled 37, 38, and 39 and
are centered on 2402 MHz, 2426 MHz, and 2480 MHz, with 2 MHz bandwidth. Frequency
hopping is used to communicate, each advertisement is repeated on each of the three
channels, and the receiving device cycles over the advertising channels listening to the
sent packets.

Figure 1. UAS indoor 3-D positioning system with four BLE devices. The ideal aircraft position is
provided by the intersection of four spheres with centers on the known positions of the beacons
B1, . . ., B4.

2.1. RSSI Distance Model

The principle of distance measurements by RSSI consists of transforming the signal
attenuation into distance from the signal source, using the following empirical formula,
which relates the BLE RSSI with the transmission distance based on the commonly used
logarithmic attenuation model [36–39]:

Ld = Ll + 10 nlog10d + ν (1)

L l = 10 log10

[
GtGr

(
c/ f
4π

)2
]

(2)

where Gt and Gr are the transmitting and receiver antenna gain, respectively; c is the speed
of light; f is the carrier frequency; n is the channel attenuation coefficient (typically in
a range from 2 to 6); ν is the noise (modeled as zero-mean, Gaussian, with variance σ2,
i.e., N

(
0, σ2)); d is the distance between receiver and transmitter; and Ld is the channel

loss after d meters. It is important to mention that the measurement error in RSSI does
not regularly produce a Gaussian distribution, but for simplicity, the RSSI measurement
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error is treated as a Gaussian random variable [40,41]. A simplified relationship, based on
Equation (1), in which we set the reference distance equal to 1 m, is [42]:

Pr (d) = A − 10 n log10d (3)

where Pr represents the RSSI (in dBm); A (dBm) is the RSSI obtained when the signal
transmits from 1 m distance from the receiver; and n is the propagation factor (also known
as environmental factor or attenuation factor), which, as well as the noise standard deviation
σ, depends on environmental conditions. When a BLE beacon is used, it periodically
broadcasts an advertisement packet containing a unique ID and a calibrated RSSI value,
relative to the distance with respect to receiver. This value allows us to determine the
distance between a beacon and a device using the model in Equation (3), where n can also be
interpreted as a calibration parameter for the path loss exponent. Obviously, the approach
assumes that all installed beacons possess their predefined location information, including
their exact coordinates. The general expression relating the RSSI to the distance is:

RSSI = A − 10 n log10

(
d
d0

)
(4)

where d0 is the reference distance value.
Time and space variations of the signal environment inevitably degrade the environ-

mental factor of BLE reference nodes. When a BLE receiver (rover) enters the coverage area,
there are not only reference nodes but also walls, other wireless devices, obstacles, and so
on. The n factor describes the influence of walls and other obstacles inside the scenario.
The environmental factor ni between two reference nodes can be estimated by:

ni =

(
RSSI − A
10log10di

)
(5)

where RSSI is the received power of the i-th reference node and di is the known distance
between the two reference nodes. At the reference distance d0 (1 m), proximity and distance
estimation can be calculated from Equation (4) as follows:

d = 10
A−RSSI

10n (6)

The localization algorithm can then be applied to use this distance and estimate the
position using trilateration.

2.2. Extended Kalman Filter (EKF)

To obtain accurate position estimates from the ideal values of RSSI, filtering techniques
are applied in order to mitigate noise effects and RSSI signal drift, resulting in better
proximity estimation [43–45]. In this study, EKF was adopted for noise reduction and
bias corrections considering the nonlinear characteristics of the beacon signal [46]. During
the initial simulation tests, it was assumed that the UAV maintains a constant altitude
(zero for simplicity). Consequently, dynamic behavior was equivalently characterized on a
2-D surface. EKF was designed to implement a measurement model, where the distance
measurement based on the RSSI from the beacons exhibits a nonlinear relationship with
the state values (UAS position). The measurement process model is

xk+1 = f (xk, uk, υk) (7)

zk = g(xk, uk, vk) (8)
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where k is the generic time index; x is the state; u is the input; z is the measured output;
and υ and v are the process and measurement noises, respectively. We assume normal
distribution for the noises υk and vk, with known covariance matrices Qk and Rk:

υk ∼ N (0, Qk) vk ∼ N (0, Rk) (9)

The algorithm is divided into two phases, prediction and correction. At each time step,
the prediction phase provides the a priori state estimation x̂−k+1 and the state covariance
matrix P−

k+1, whereas during the correction phase (update phase), the a posteriori state
estimate x̂+k+1 and the state covariance matrix P+

k+1 are carried out.
The a priori estimation of the state x̂−k+1 is performed by Equation (7), considering null

process noise (υ k = 0) :
x̂−k+1 = f

(
x̂+k , uk, 0

)
(10)

The a priori state covariance matrix P−
k+1 is obtained as follows:

P−
k+1 = Ak P+

k AT
k + Wk Qk WT

k (11)

where

Ak =

(
∂ f
∂x

)
x̂+k , uk ,0

Wk =

(
∂ f
∂υ

)
x̂+k , uk ,0

are the Jacobian matrices of the function f , and the P+
k is the a posteriori state covariance

matrix at time index k. Once a new measurement has been acquired, the a posteriori state
estimation can be computed by updating the a priori state estimation:

x̂+k = x̂−k + Kk
(
zk − h

(
x̂−k
))

(12)

where the Kalman gain (Kk) is given by

Kk = P−
k HT

k

(
HkP−

k HT
k + VkRkVT

k

)−1
(13)

Hk is the observation matrix:

Hk =

(
∂z
∂x

)
x̂−k , uk ,0

Vk =

(
∂z
∂v

)
x̂−k , uk ,0

Finally, the a posteriori state matrix is updated as follows:

P+
k = (I − Kk Hk)P−

k (14)

where I is the identity matrix.

2.3. Trilateration Method and Least-Squares Solution

Trilateration is a classical signal-based positioning technique that utilizes the estimated
distances from known reference points to determine the target location [47]. At least three
reference nodes are required to identify a unique solution. Each line of position is a circle
with radius equal to the exact distance from the reference point, and the intersection of
the circles is the target position, represented in Figure 2a for an ideal scenario. In real
scenarios, errors in distance measurements will transform the intersection point into an
overlap among the three circumferences, creating an uncertainty area (Figure 2b).
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(a) (b)

Beacon 3
(x3, y3)

Beacon 1
(x1, y1)

Beacon 2
(x2, y2)

d1

d2

d3

(x, y)

Beacon 3
(x3, y3)

Beacon 1
(x1, y1)

Beacon 2
(x2, y2)

d1

d2

d3

(x, y)

Figure 2. The 2-D trilateration method in an ideal (a) and a real (b) scenario.

Consequently, there will be various possible solutions in the intersection area. When
the number of distance measurements N is ≥ 3, the least squares method is adopted to
calculate the optimal position of the target by minimizing the square of the offset in the
user’s position relative to a linearization point (initial estimate of the user position), that is,

the 2 × 1 vector δ
⇀
r , which is related to the n × 1 vector δ

⇀
d (distance error, or offset in the

distance values) by [48]

δ
⇀
d = di − d̂ı = Hδ

⇀
r , i = 1, . . . , N (15)

The parameters present in Equation (15) are described below:

di =

√
(x − xi)

2 + (y − yi)
2 (real beacon-target distance) (16)

d̂ı =

√
(x̂ − xi)

2 + (ŷ − yi)
2 (estimated distance) (17)

H =

⎡⎢⎢⎢⎢⎢⎣
x̂−x1

d̂1

ŷ−y1
d̂1

x̂−x2
d̂2

ŷ−y2
d̂2

...
...

x̂−xn
d̂n

ŷ−yn
d̂n

⎤⎥⎥⎥⎥⎥⎦ (18)

δ
⇀
r =

[
x − x̂
y − ŷ

]
=

[
δx
δy

]
(19)

where (x, y)T are the real target coordinates, or user’s position, where the superscript
T stands for transpose; (xi, yi)

T are the known i-th beacon coordinates; (x̂, ŷ)T are the
estimated target coordinates; and H is the ∈ RNx2 design matrix derived by linearizing
Equation (18) about an initial position guess. The least-squares solution provides the offset

of the user’s position from the linearization point expressed as a linear function of δ
⇀
d :

δ
⇀
r =

(
HT H

)−1
HT δ

⇀
d (20)

Once δ
⇀
r is calculated, a new estimate of the user’s position is obtained from Equation

(19), and a linearization around the new estimate is performed, obtaining the optimal
solution by the iteration [

x̂
ŷ

]
k+1

=

[
x̂
ŷ

]
k
+

[
δx
δy

]
k

(21)
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where k + 1 denotes the updated coordinate vector and k denotes the vector at the previous
iteration. The acceptable displacement (δx, δy)T is related to the accuracy requirements.
The 3-D positioning by trilateration allows one to find the user position using the RSSI
signal received from at least four non-coplanar beacons at known positions (the fourth
equation removes the ambiguity between two possible solutions given by three spheres
intersecting in two points):⎧⎪⎪⎪⎨⎪⎪⎪⎩

(x − x1)
2 + (y − y1)

2 + (z − z1)
2 = d2

1
(x − x2)

2 + (y − y2)
2 + (z − z2)

2 = d2
2

(x − x3)
2 + (y − y3)

2 + (z − z3)
2 = d2

3
(x − x4)

2 + (y − y4)
2 + (z − z4)

2 = d2
4

(22)

where (x, y, z) are the unknown 3-D coordinates of the target Bluetooth receiver.
During preliminary simulation tests, the z coordinates were set to zero to evaluate the

accuracy and stability of the method. Considering 2-D positioning, it is possible to obtain
the (x, y) coordinates of the receiver by

x =

(
x2

1 + y2
1 − d2

1
)
(y3 − y2) +

(
x2

2 + y2
2 − d2

2
)
(y1 − y3) +

(
x2

3 + y2
3 − d2

3
)
(y2 − y1)

2[y1(x3 − x2) + y2(x1 − x3) + y3(x2 − x1)]
(23)

y =

(
x2

1 + y2
1 − d2

1
)
(x3 − x2) +

(
x2

2 + y2
2 − d2

2
)
(x1 − x3) +

(
x2

3 + y2
3 − d2

3
)
(x2 − x1)

2[y1(x3 − x2) + y2(x1 − x3) + y3(x2 − x1)]
(24)

With the known locations of the beacons B1 = (0, 0); B2 = (0, y2); B3 = (x3, 0), as
shown in Figure 3, Equations (23) and (24) are simplified as follows [49]:

x =
x2

3 +
(

d2
1 − d2

2

)
2x3

(25)

y =
y2

2 +
(
d2

1 − d2
3
)

2y2
(26)

R (x, y)

x

y

d2

B1 (0, 0)

B2 (0, y2)

B3 (x3, 0)

Figure 3. Positioning based on 2-D trilateration with three BLE beacons.

2.4. Differential Distance Correction Technique

The distance converted from RSSI is an estimated value influenced by environmental
issues such as multipath, reflections, and shadowing. The DDC methodology uses multiple
reference stations to estimate the distance error [50]. The concept is similar to differential
GNSS (DGNSS) and real-time kinematic (RTK) positioning that use the differential infor-
mation from the reference station (Master), i.e., the error δ

⇀
r , to correct the position of the

rover, in the hypothesis that the measurements performed by the master station(s) and the
rover are affected by the same environmental errors (i.e., with low temporal and spatial
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latency). Figure 4 shows the schematic diagram of differential correction [51,52] with four
beacons located at known positions. The coordinates of the master station are also known
in advance.

MASTER
(known)

ROVER
(unknown)

correction

Beacon
(known)

Beacon
(known)

Beacon
(known)

Beacon
(known)

Figure 4. Schematic diagram of DDC methodology with a single master station of known position.

The master station compares the estimated position to its known coordinates to
evaluate the errors and sends the corrections to be applied to the RSSI values measured
by the rover. To estimate the residual at every location in the field, the inverse distance
weighted (IDW) interpolation method is adopted. The estimated residual rest at unknown
coordinate (x, y) by IDW can be calculated from the equation as follows [50,52]:

rest = ∑N
i=1 wi × ri (27)

where rest is the estimated residual from IDW, ri is the estimated residual of the i-th reference
station, and wi is the weight of the i-th reference station.

3. Hardware Description

The prototype of our experimental BLE-based IPS is composed of

• Raspberry Pi 4 model B is used as the master station.
• Arduino Nano 33 BLE used as the rover.
• BLE Eddystone beacons as transmitting nodes.

3.1. Master Station: Raspberry Pi 4 Model B

The Raspberry Pi 4 Model B used for our prototype system (Figure 5) is a board
with features like a camera connector, 802.11ac Wi-Fi, Bluetooth 5, full gigabit Ethernet
(throughput not limited), two USB 2.0 ports, two USB 3.0 ports, 1–8 GB of RAM, dual-
monitor support via a pair of micro-HDMI (HDMI type D) portsFirst bullet, GPIO pins
for interfacing sensors and switches, USB ports to connect to external devices (keyboard,
mouse, Wi-Fi adapter, etc.), and an audio jack [53]. The board has no internal mass storage
or built-in operating system, requiring an SD card preloaded with a version of the Linux
Operating System. Due to its relatively low current consumption, Raspberry Pi can be
powered using a 5 V USB Power Bank, and it can be carried around by a subject or placed
on the object to be tracked. The main algorithm is hosted on the 1.5 GHz 64-bit quad core
ARM Cortex-A72 processor on-board the Pi 4.
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Figure 5. Raspberry Pi 4 model B.

The master station is connected to a PC-based ground control station (GCS) by hotspot
connection to send and store RSSI values of each single transmitter. The main task of the
Raspberry Pi microcomputer is to receive and process the messages transmitted by the BLE
beacons, in particular, the beacon identifier address and the RSSI value. From these values,
the algorithm estimates the real-time position and compares it to its real position in order
to calculate the error (residual) and send the correction to the rover.

3.2. Rover: Arduino Nano 33 BLE

Arduino Nano 33 BLE is a multiprotocol microcontroller (Figure 6, Table 3), supporting
only 3.3 V I/Os. In addition, the 5 V pin is connected, through a jumper, to the USB
power input. There are two 15-pin connectors on the board, one on each side, pin to pin
compatible with the original Arduino Nano. The main processor is the nRF52840 (Nordic
Semiconductors), a 32-bit ARM Cortex-M4 running at up to 64 MHz. The main processor
includes other features like Bluetooth pairing via NFC (near field communication) and
ultra-low-power-consumption modes. It has an embedded 9-axis inertial sensor that makes
this board ideal for wearable devices but also for a large range of scientific experiments in
the need of short-distance wireless communication. Most of its pins are connected to the
external headers; however, some are reserved for internal communication with the wireless
module and the on-board internal I2C peripherals (IMU and Crypto) [54,55].

Figure 6. Arduino nano 33 BLE.

Table 3. Arduino nano 33 BLE main characteristics.

Type Characteristics Nano 33 BLE

Microcontroller nRF52480
Clock speed 64 MHz

Flash 1 MB
RAM 256 KB

Connectivity BLE
Sensors 9-axis IMU

The Arduino nano 33 BLE is powered by two 2600-mAh Li-ion 18650 3.7-V batteries
and has a microSD connected to the board to store RSSI values. Figure 7 shows the
prototype of the rover station. The algorithm running on the Arduino can receive data from
the beacons and save them on the micro-SD.
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Figure 7. Rover station prototype.

3.3. Transmitters: BLE Eddystone Beacons

A beacon is a hardware transmitter capable of broadcasting periodically a short
message to nearby portable electronic devices. The basic information of the advertising
packet from the beacon is shown in Table 4.

Table 4. Beacon advertising packet [51].

Beacon prefix Fixed by beacon protocol and makes information follow the protocol.

UUID identifier Identifier that should be used to distinguish the different classes of
beacons in a wide range.

Major Identifier for determining a different group of beacons.

Minor Identifier for determining individual beacons.

RSSI The radio signal strength indicator (RSSI) is a measurement of the
power present in a received radio signal.

Measured power The RSSI value, which is measured at 1 m away from a beacon.

We used Eddystone BLE beacons with an embedded nRF51822 chip (Figure 8). Eddy-
stone is a protocol specification that defines a BLE message format for proximity beacon
messages. It describes several different frame types that may be used individually or in
combinations to create beacons that can be used for a variety of applications [56].

(a) (b)

Figure 8. Eddystone beacon: (a) silicon cover, (b) chip nRF51822.

The nRF51822 is a powerful multi-protocol single chip solution for wireless applica-
tions. It incorporates a 32-bit ARM Cortex M0 CPU and 256 kB flash + 16 kB RAM memory,
and it supports Bluetooth low energy and 2.4 GHz protocol stacks [57]. The programmable
peripheral interconnect (PPI) system provides a 16-channel bus for direct and autonomous
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system peripheral communication without CPU intervention. This brings predictable
latency times for peripheral-to-peripheral interaction and power saving benefits associated
with leaving the CPU idle.

4. Simulation and Results

The software for IPS is divided into three phases, shown in Figure 9, each running
on its own platform. MATLAB 2024b® runs on the GCS and is used for non-real-time
algorithms (post-processing).

CALIBRATION

DDC METHOD 
APPLICATION

POSITION 
ESTIMATION

Figure 9. Phases of the proposed IPS.

4.1. Calibration Phase

During the first phase, environment calibration is performed, necessary for environ-
mental factor (n) modelling and Kalman filter calibration. Preliminary data collection
consisted of indoor RSSI measurements at known distances between the beacons and
the receiver. The distance range considered was 0.25–5 m, with steps of 0.25 m for the
range 0.25–3 m, and with steps of 0.50 m for the range 3–5 m. The acquisition time was
about 10 min in static conditions. The measurement procedure was performed in a clean
environment (without metallic objects and the presence of other nearby devices). This
first phase (environmental calibration, n factor modeling and Kalman filter calibration) is
presented in [58], where the data collections and preliminary results are shown in detail.
Noting the high presence of instability in the RSSI signal, a simple smoothing filter based
on a moving average was applied before implementing the EKF algorithm. Figures 10
and 11 show data collections (raw RSSI values and smoothing filtered data), during the
calibration phase, where the distances between receiver and transmitters (four beacons
were used) were 3 and 0.75 m, respectively. Figure 12 shows the comparison between
variances of the raw and filtered RSSI values, and Figure 13 shows the RSSI mean values
of the filtered data.

181



Sensors 2024, 24, 7170

(a) (b)

Figure 10. RSSI values, raw (a) and filtered (b), at 3 m distance.

(a) (b)

Figure 11. RSSI values, raw (a) and filtered (b), at 0.75 m.

(a) (b)

Figure 12. Variance of the RSSI raw (a) and filtered (b) values.
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Figure 13. Mean RSSI values of the filtered data.

After data collection, the environmental factor n was evaluated for each known
distance and for each beacon, following Equation (5). This factor describes the influence of
walls and other obstacles inside the scenario (Figure 14).

Figure 14. Trend of the measured environmental factor.

4.2. Experimental Tests: 2-D Scenario

After the calibration phase, experimental tests were conducted by positioning the
beacons and the master station within a designated area. The rover, simulating a UAV
maintaining a constant altitude (in this case equal to zero simulating take-off positioning
area, reducing dynamic behavior on a 2-D surface), was placed at unknown distances from
the transmitters and the master station within this area. Experimental indoor tests were
performed in a free area inside the University of Studies of Naples “Parthenope” (Italy).
The field has a length of 3 m and width of 3 m. The arrangement of the experimental field
is depicted in Figure 15, where there were four beacons (B1, . . ., B4) and one reference
station in the field. Table 5 shows the coordinates of the work area, delimited by the beacon
positions, and of the master station.
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Figure 15. Experimental setup area.

Table 5. Work area: beacon and maser coordinates (origin in B1 position).

Devices Coordinates (m)

Master (1, 2)

B1 (0, 0)

B2 (3, 0)

B3 (0, 3)

B4 (3, 3)

During the static tests, the master station was connected to the GCS by hotspot
connection to store RSSI data from the beacons, whereas the rover was equipped with a
micro-SD, allowing RSSI data storage. The acquisition time was about 10 min.

In post-processing, the raw master receivers’ coordinates were calculated following
Equations (25) and (26), where d1, d2 and d3 were the unknown distances from B1, B2,
and B3, respectively (B4 was added in case of failure of one of the other beacons). These
distances were derived from Equation (6), where n (see Figure 14) was obtained by using
Equation (5). Figure 16 shows the raw coordinates of the master station compared to its
actual position.

Figure 16. Comparison among real and raw master coordinates.

184



Sensors 2024, 24, 7170

In the successive step, EKF was applied to mitigate noise, bias, and drift issues. Table 6
shows the parameters used during the EKF initialization phase.

Table 6. EKF initial parameters.

Parameter Value

Initialization state x [0, 0]
σ2

R (dbm2) 2
σ2

Q (dbm2) 1
P I(2)
R σ2

R · I(4)
Q σ2

Q · I(2)

Figures 17 and 18 show a comparison between raw data, EKF data, and the actual
position of the master station and rover station, respectively.

(a) (b)

Figure 17. (a) Raw and EKF coordinates estimation, compared to the real position of the master
station. (b) Zoom view of the EKF data estimation.

(a) (b)

Figure 18. (a) Raw and EKF coordinates estimation, compared with the real position of the rover
station. (b) Zoom view of the EKF data estimation.

Table 7 presents the real positions of the master and rover stations, along with their
corresponding raw and EKF coordinate mean values.
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Table 7. Comparison among real, raw, and EKF coordinates of the master station and rover.

Master Station Coordinates Rover Coordinates

Real
(m)

Raw
(m)

EKF
(m)

Real
(m)

Raw
(m)

EKF
(m)

(1, 2) (1.48, 1.37) (0.99, 1.02) (2, 2) (1.45, 1.41) (1.51, 1.01)

Following these steps, the coordinates of the master station were calculated and
compared to the real coordinates to evaluate the residual (correction), used to correct the
rover position (Figure 19). Then, the rover coordinates were calculated, and the residual
was added, correcting its position.

Figure 19. Error calculated on known master coordinates, used to correct the rover position by the
DDC method.

Figure 20 shows the configuration area and the comparison between the testing point’s
estimated position and the real position of the rover.

Figure 20. Configuration area representing final positioning results.

Table 8 compares raw and filtered data in terms of the standard deviation of the error.
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Table 8. Error standard deviation (raw and EKF data).

Master Station Rover

STD Raw Data
(m)

STD EKF
(m)

STD Raw Data
(m)

STD EKF
(m)

(0.05, 0.59) (0.002, 0.003) (0.10, 0.18) (0.02, 0.03)

Table 9 shows the results indicating the final position corrected using the DDC method,
in terms of mean value.

Table 9. Positioning results with DDC methodology during the first test.

Rover Coordinates

Real (m) With DDC (m)

(2, 2) (1.52, 1.99)

The second test was conducted using the same configuration area, beacons, and
master positions as the first test, but with a different rover position. Figure 21 illustrates
the configuration area, and Table 10 presents the obtained results.

Figure 21. Configuration area representing final positioning results during the second test.

Table 10. Positioning results with the DDC method during the second test.

Rover Coordinates

Real (m) With DDC (m)

(1.5, 1.5) (1.54, 1.28)

4.3. Experimental Test: 3-D Scenario

In this section, a 3-D test is presented, considering the same scenario depicted during
the tests performed and described in the previous section. For this test, the rover station
was positioned on a vertical structure, at 1.50 m above the ground (as shown in Figure 22),
simulating a drone in hovering phase.
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Figure 22. Rover prototype placed on a vertical structure.

The beacons were positioned at the same coordinates as in the 2-D tests. To include
the third dimension, they were placed one meter above the ground. The master station’s
coordinates remained similar, simulating a ground station. Table 11 shows the coordinates
of the work area during the 3-D test, whereas Table 12 shows the parameters used during
the EKF initialization phase for the 3-D scenario.

Table 11. Work area: beacon and maser coordinates (origin in B1 position) during the 3-D test.

Devices Coordinates (m)

Master (1, 2, 0)

B1 (0, 0, 1)

B2 (3, 0, 1)

B3 (0, 3, 1)

B4 (3, 3, 1)

Table 12. EKF initial parameters.

Parameter Value

Initialing state x [0, 0, 0]
σ2

R (dbm2) 2
σ2

Q (dbm2) 1
P I(3)
R σ2

R· I(4)
Q σ2

Q· I(3)

Figure 23 depicts the filtered coordinates of the master station, which will be compared
to its real position to calculate the residual and subsequently correct the rover’s position, as
illustrated in Figure 24.

188



Sensors 2024, 24, 7170

Figure 23. EKF data estimation of the master station in the 3-D scenario.

Figure 24. Configuration area representing final positioning results during the 3-D scenario.

Table 13 shows the results indicating the final position corrected using the DDC
method in terms of mean value.

Table 13. Comparison among real, EKF, and DDC methods for the rover coordinates.

Rover Coordinates

Real (m) EKF (m) With DDC (m)

(2, 2, 1.5) (1.54, 0.74, 0.81) (1.50, 1.67, 1.22)

5. Conclusions and Further Work

This research proposes a preliminary indoor positioning system prototype utilizing
BLE technology for indoor missions using small UAVs. The methodology is based on
the RSSI measured from BLE beacons and on trilateration. To improve the performance
of the positioning method, extended Kalman filtering (EKF) and the differential distance
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correction (DDC) method were used. The DDC technique, similar to differential GNSS
and RTK positioning, uses differential information from the reference station to correct the
position of the rover station. The reference station (master) in a known position computes
the residual of distance, sending a correction to be applied to the distance observation
made by the receiving station (rover). The DDC-corrected distance value is used in the
trilateration scheme to obtain a better estimate of the rover’s position. In order to reduce
noise effects, bias, and RSSI signal drift, EKF was applied on raw data. The components of
the IPS prototype consist of the transmitters (Eddystone BLE beacons) placed in the indoor
operating field, a master station (Raspberry Pi 4 model B), and an autonomous rover station
(Arduino Nano 33 BLE), which will be mounted on-board the UAV, added to the standard
instrumentation, to enhance the UAS position during indoor operations.

A first analysis was performed to verify the device characteristics and the functionality
and accuracy of the methodologies applied, considering only 2-D positioning in static
conditions. The most critical aspect was found to be the accurate modeling of the envi-
ronmental factor, which can cause signal fluctuations due to multipath, increasing the
measurement errors. To reduce multipath effects, reflection, and fading, the tests were
carried out in a clean environment (without metallic objects and other devices in the test
area). The results demonstrate an improved position estimate after the DDC correction.
As shown in Table 9, the estimated residual errors were 0.48 m on the x-coordinate and
0.01 m on the y-coordinate. The rover position estimate improved from an error of 27.5%
and 29.5% for the x- and y-coordinates, respectively, before DDC correction (Table 7), to
an error of 24% on the x-coordinate and 0.5% on the y-coordinate after the application
of the EKF and DDC methodology during test 1. Additionally, an error of 2.7% on the
x-coordinate and 14.7% on the y-coordinate was obtained during the second test. Finally,
a test considering a 3-D scenario was performed. In this test, a hovering phase within a
terminal area was simulated by positioning the rover prototype on a vertical structure
at 1.50 m above the ground. Following the same process described during the 2-D tests,
the application of EKF and DDC methods resulted in an error of 25% on the x-coordinate,
16.5% on the y-coordinate, and 18.6% on the z-coordinate.

Further research will focus on conducting other experiments in an empty room, as
well as new tests with obstacles and a greater number of beacons and master stations,
performing 3-D positioning in dynamic conditions, to compare the influence of the obstacles
in the experimental environment, and mounting the rover device on-board a UAV. Based
on these promising results, our future objective is to expand coverage to larger areas by
implementing a “mosaic” strategy. This would entail covering extensive areas by creating
multiple smaller, controlled zones similar to the test area used in this study, ensuring
consistent performance across a broader field. Additionally, future developments will
concern analysis of the accuracy of BLE RSSI values as a function of the environmental
changes (for example, considering more targets, changes in the density of people present
in the test area, position of furniture or walls, and changes that will require regular re-
calibration of the IPS to ensure the accuracy of the methodology), as well as the study
of BLE data fusion with other systems, for example, Wi-Fi for increasing the number of
reference nodes, or on-board devices as IMUs to reduce positioning errors. In the future,
the proposed IPS will be integrated into a safe landing area determination system recently
developed by the authors [17].
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Abstract: The three performance indexes of the space robot, travel time, energy consumption, and
smoothness, are the key to its important role in space exploration. Therefore, this paper proposes a
multi-objective trajectory planning method for robots. Firstly, the kinematics and dynamics of the
Puma560 robot are analyzed to lay the foundation for trajectory planning. Secondly, the joint space
trajectory of the robot is constructed with fifth-order B-spline functions, realizing the continuous
position, velocity, acceleration, and jerk of each joint. Then, the improved multi-objective particle
swarm optimization (MOPSO) algorithm is used to optimize the trajectory, and the distribution
uniformity, convergence, and diversity of the obtained Pareto front are good. The improved MOPSO
algorithm can realize the optimization between multiple objectives and obtain the trajectory that
meets the actual engineering requirements. Finally, this paper implements the visualization of the
robot’s joints moving according to the optimal trajectory.

Keywords: Puma560 robot; multi-objective trajectory planning; MOPSO; B-spline

1. Introduction

With the rapid development of science and technology in today’s world, humankind’s
space exploration has shown unprecedented momentum, and space technology has grad-
ually risen to the focus of public attention. Among them, space robots have become
indispensable to space activities due to their powerful functions and high adaptability to
the space environment. A series of challenging tasks, such as assembling satellite parts,
capturing space targets, and monitoring alien spacecraft, cannot be realized without the
support of space robots. These tasks and harsh working environments also set higher
requirements for space robots’ travel time, energy consumption, and smoothness.

The primary method to improve each performance index is to design and plan the
robot’s trajectory rationally. Trajectory planning can be performed both in Cartesian space
and in joint space. The latter plans the trajectory of each joint of the robot, which has a small
amount of calculation and enables the real-time control of the robot. Trajectory planning
can usually be divided into two steps. The first step is to interpolate between given path
points using interpolation algorithms to obtain a trajectory-time sequence. The second step
is to optimize the trajectory in terms of single or multiple performance indexes within the
constraints of the kinematics and dynamics of the robot [1].

The mainstream interpolation algorithms in joint space are polynomial interpolation
and spline curve interpolation, and the former is mainly used in early research [2–5]. To
obtain the robot’s trajectory, Ref. [6] used a cubic polynomial to connect the path points.
This method is simple to calculate, but the acceleration curve obtained is not continuous,
the smoothness could be better, and it tends to cause rigid impacts. Ref. [7] used quintic
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polynomial interpolation to ensure the continuity of acceleration, but it increased the
amount of calculation, and there was still a problem of easy distortion. Compared to the
fifth-degree polynomial, the seventh-degree polynomial adds constraints to the jerk at
the start and termination points, realizing the continuity of the jerk. However, the eight
boundary conditions increase the difficulty of the solution, and the high-order polynomial
interpolation may cause the Runge phenomenon [8]. With the deepening of research, some
scholars have applied spline curves to the trajectory planning of robots [9–14]. Ref. [15]
used the fifth-order B-spline curves to interpolate the joint space trajectory, which realized
the continuity of the jerk and set the velocity and acceleration at the start and stop time to
be 0. When interpolating with seventh-order B-spline curves, it is possible to specify the
acceleration at the start and stop time, but the calculation process is complicated [1].

Trajectory optimization mostly takes a single performance index as the optimization
objective. Robot efficiency, the shortest time required by the robot to perform a task, was
the earliest goal of trajectory planning [16–19]. Ref. [20] constructed the trajectory with a
quintic polynomial and reduced the robot’s travel time by 74.35% through the improved
MOPSO algorithm under the constraints of each joint’s angles, velocities, and accelera-
tions. The time-optimal trajectory often leads to a large impact on the robot, affecting its
motion accuracy and shortening the service life of the robot structure. Many scholars have
solved this problem by optimizing the jerk. Ref. [7] effectively increased the smoothness
of the robot by optimizing the maximum value of joint jerks. Ref. [21] combined the PSO
algorithm with K-means clustering to achieve a fast solution for joint trajectories with
minimal shocks. Energy consumption optimization is also an important issue for robots
working in unique environments such as oceans, deserts, and space [22–25]. Ref. [26]
obtained a parameterized dynamic robot model through identification experiments and
used a sequential quadratic programming solver to minimize a mechanical energy-based
cost function under consideration of physical constraints. These three performance indexes
all play an important role in the motion of the space robot, and the single optimization
objective ignores the intricate balance between them. Therefore, there are studies on the
comprehensive optimization of multiple objectives [27–29]. Ref. [30] realized the compre-
hensive optimization of time, energy, and smoothness by a differential evolution algorithm.
Ref. [31] used the NSGA-II algorithm to optimize the same three objectives and obtained
Pareto optimal solution sets, thus obtaining the high-order continuous optimal trajectories.

There are few studies on multi-objective optimization problems, so this paper proposes
a trajectory planning method that can make the robot’s travel time, energy consumption,
and smoothness achieve the integrated optimal state when performing the task. In this
paper, continuous and smooth joint space trajectories are constructed using fifth-order
B-spline functions, which also realize the specification of the velocity and acceleration of
the robot at the start/stop moment. The trajectories are then optimized using the improved
MOPSO algorithm to obtain the Pareto optimal solution sets, from which suitable solutions
are selected according to practical needs.

The rest of the paper is organized as follows. Section 2 analyzes the kinematics
and dynamics of the Puma 560 robot manufactured by Unimation, USA. Section 3 uses
fifth-order B-spline curves to construct the joint space trajectories of the robot, builds a
mathematical model for the multi-objective optimization problem based on Section 2, and
solves the model with the improved MOPSO algorithm. Section 4 performs simulation
experiments on multi-objective trajectory planning. Section 5 summarizes this article.

2. Kinematics and Dynamics Analysis

2.1. Kinematics Analysis

This section gives the kinematics model of the Puma560 robot and analyzes its forward
and inverse kinematics. The MDH (Modified Denavit–Hartenberg) coordinate system [32]
shown in Figure 1 is established on the Puma560 robot with six rotary joints. The link
parameters from the MATLAB R2020b Robot Toolbox are shown in Table 1.
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Figure 1. The MDH coordinate system of the Puma560 robot.

Table 1. Link parameters of the Puma560 robot.

Link i αi-1 (rad) ai-1 (m) di (m) θi (rad)

1 0 0 0 θ1
2 −1.5708 0 0.2435 θ2
3 0 0.4318 −0.0934 θ3
4 1.5708 −0.0203 0.4331 θ4
5 −1.5708 0 0 θ5
6 1.5708 0 0 θ6

The simulation model of the Puma560 robot is established by using the Robot Toolbox
in MATLAB, as shown in Figure 2.

 
Figure 2. Robot model in MATLAB.

2.1.1. Forward Kinematics Analysis

Forward kinematics analysis refers to obtaining the end-effector pose relative to
the base according to the angle of each robot joint. The transformation matrix between
neighboring links, that is, the coordinate system {i} relative to the coordinate system {i − 1},
can be represented by

i−1
iT =

⎡⎢⎢⎣
cos θi

sin θi cos αi−1
sin θi sin αi−1

0

− sin θi
cos θi cos αi−1
cos θi sin αi−1

0

0
− sin αi−1
cos αi−1

0

ai−1
− sin αi−1di
cos αi−1di

1

⎤⎥⎥⎦ (1)
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Substituting the parameters in Table 1 into (1), the six homogeneous transformation
matrixes of the Puma560 robot can be obtained by

0
1T =

⎡⎢⎢⎣
cos θ1 − sin θ1 0 0
sin θ1 cos θ1 0 0

0 0 1 0
0 0 0 1

⎤⎥⎥⎦ 1
2T =

⎡⎢⎢⎣
cos θ2 − sin θ2 0 0

0 0 1 d2
− sin θ2 − cos θ2 0 0

0 0 0 1

⎤⎥⎥⎦ 2
3T =

⎡⎢⎢⎣
cos θ3 − sin θ3 0 a2
sin θ3 cos θ3 0 0

0 0 1 d3
0 0 0 1

⎤⎥⎥⎦
3
4T =

⎡⎢⎢⎣
cos θ4 − sin θ4 0 a3

0 0 −1 −d4
sin θ4 cos θ4 0 0

0 0 0 1

⎤⎥⎥⎦ 4
5T =

⎡⎢⎢⎣
cos θ5 − sin θ5 0 0

0 0 1 0
− sin θ5 − cos θ5 0 0

0 0 0 1

⎤⎥⎥⎦ 5
6T =

⎡⎢⎢⎣
cos θ6 − sin θ6 0 0

0 0 −1 0
sin θ6 cos θ6 0 0

0 0 0 1

⎤⎥⎥⎦.

(2)

The transformation matrixes in (2) can be multiplied together to find the transfor-
mation matrix of the end-effector coordinate system {6} relative to the base coordinate
system {0}

0
6T = 0

1T1
2T2

3T3
4T4

5T5
6T =

⎡⎢⎢⎣
r11
r21
r31
0

r12
r22
r32
0

r13
r23
r33
0

px
py
pz
1

⎤⎥⎥⎦ (3)

where px, py, pz represent the position of the end-effector, and r11, r12, r13, r21, r22, r23,
r31, r32, r33 represent the orientation of the end-effector. These 12 elements are calculated
by the joint angles.

2.1.2. Inverse Kinematics Analysis

Inverse kinematics analysis refers to the inverse solution of the angle of each joint by
using the end-effector pose relative to the base. Analyzing the structural characteristics of
the Puma560 robot, it is easy to know that its last three axes intersect at one point, and the
six joints of the robot are all rotary joints. So, the Pieper method [33] can solve the inverse
kinematics of the Puma560 robot. When sin(θ5) 	= 0, the joint angles can be obtained by

θ1 = A tan 2

(
g1y − g2x

g2
1 + g2

2
,

g1x + g2y
g2

1 + g2
2

)
(4)

θ2 = A tan 2

(
−z
ρ2

,±
√

1 − z2

ρ2
2

)
− A tan 2( f2, f1) (5)

θ3 = A tan 2

⎛⎝C − r
ρ3

,±
√

1 − (C − r)2

ρ2
3

⎞⎠− A tan 2(a3, d4) (6)

θ4 = A tan 2
(

x33

sin(θ5)
,

x13

sin(θ5)

)
(7)

θ5 = A tan 2
(
±
√

x2
21 + x2

22,−x23

)
(8)

θ6 = A tan 2
( −x22

sin(θ5)
,

x21

sin(θ5)

)
(9)

where A tan 2 is predefined in many programming language libraries; its function is to
judge the quadrant of the angle according to the positive and negative of x and y while
calculating tan−1( y

x
)
. Unknown in (4)–(9), such as g1, g2, are the intermediate quantities in

the derivation process of the Pieper method, which are defined as

f1 = a2 + a3c3 + d4s3, f2 = a3s3 − d4c3, f3 = d3 (10)

g1 = f1c2 − f2s2, g2 = f3 + d2, g3 = − f1s2 − f2c2 (11)
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r = f 2
1 + f 2

2 + f 2
3 + d2

2 + 2 f3d2, C = r −
(

a2
2 + a2

3 + d2
4 + d2

2 + d2
3 + 2d2d3

)
(12)

x = ( f1c2 − f2s2)c1 − ( f3 + d2)s1, y = ( f1c2 − f2s2)s1 + ( f3 + d2)c1, z = − f1s2 − f2c2 (13)

ρ2 =
√

f 2
1 + f 2

2 , ρ3 = 2a2

√
a2

3 + d2
4 (14)

φ2 = A tan 2( f2, f1), φ3 = A tan 2(a3, d4) (15)

x13 = r13c23c1 − r33s23 + r23c23s1, x21 = −r31c23 − r11c1s23 − r21s1s23 (16)

x22 = −r32c23 − r12c1s23 − r22s1s23, x23 = −r33c23 − r13c1s23 − r23s1s23, x33 = r23c1 − r13s1 (17)

where ci = cos θi, si = sin θi, sij = sin
(
θi + θj

)
, cij = cos

(
θi + θj

)
, i, j = [1, 2, 3, 4, 5, 6], and

i 	= j.
If sin(θ5) 	= 0 and θ5 = 0, then the solutions of θ1, θ2, θ3 do not change, and θ4, θ5,

θ6 become
θ4 = 0 (18)

θ5 = 0 (19)

θ6 = A tan 2(−x12, x11) (20)

where x11 = r11c23c1 − r31s23 + r21c23s1, x12 = r12c23c1 − r32s23 + r22c23s1.
If sin(θ5) 	= 0 and θ5 = π, then the solutions of θ1, θ2, θ3 do not change, and θ4, θ5,

θ6 become
θ4 = 0 (21)

θ5 = π (22)

θ6 = A tan 2(x12,−x11) (23)

2.2. Dynamics Analysis

The iterative Newton–Euler dynamics algorithm [34] is computationally efficient,
suitable for real-time control, and commonly used for modeling robot dynamics. The
algorithm is composed of two parts. First, link velocities and accelerations are iteratively
calculated from the base. Second, starting from the end-effector, the force and torque of
each link are calculated in reverse. The specific iterative calculation process is as follows.

Outward iterations: i : 0 → nl − 1

i+1wi+1 = i+1
i R

iwi +
.
θi+1

i+1Ẑi+1 (24)

i+1 .
wi+1 = i+1

i R
i .
wi +

i+1
i R

iwi ×
.
θi+1

i+1Ẑi+1 +
..
θi+1

i+1Ẑi+1 (25)

i+1 .
vi+1 = i+1

i R
[

i .
wi × iPi+1 +

iwi ×
(

iwi × iPi+1

)
+ i .

vi

]
(26)

i .
vCi

= i .
wi × iPCi

+ iwi ×
(

iwi × iPCi

)
+ i .

vi (27)

Fi = m
.
vCi (28)

Ni =
Ci I

.
wi + wi × Ci Iwi (29)

where nl is the number of links, i+1Ẑi+1 is the unit vector of the coordinate system {i + 1}
on the Z axis, Fi and Ni are, respectively, the inertia force and torque acting on the mass
center of the link i.

Inward iterations: i : nl → 1

i fi =
i
i+1Ri+1 fi+1 +

iFi (30)

ini =
i Ni +

i
i+1Ri+1ni+1 +

iPCi
× iFi +

iPi+1 × i
i+1Ri+1 fi+1 (31)

τi =
inT

i
i Ẑi (32)
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where i fi,
ini are, respectively, the force and torque acting on the link i, and τi is the driving

force of the joint motor.

3. Multi-Objective Trajectory Planning

3.1. Construction of Joint Space Trajectory

A kth-degree B-spline curve [35] is defined by

p(u) =
n

∑
i=0

di Ni,k(u) (33)

where di is the control point, n+1 is its number, p(u) is the path point at node u, Ni,k(u) is
the kth-degree B-spline basis function, and its specific definition is⎧⎪⎪⎪⎨⎪⎪⎪⎩

Ni,0(u) =
{

1, ui ≤ u < ui+1
0, others

Ni,k(u) =
u−ui

ui+k−ui
Ni,k−1(u) +

ui+k+1−u
ui+k+1−ui+1

Ni+1,k−1(u)
0
0 = 0.

(34)

The interval of Ni,k(u), u ∈ [ui, ui+k+1], contains k + 1 node intervals. It can be seen
from (34) that for any node u ∈ [ui, ui+k+1] on the parameter axis, there are only up to
k + 1 nonzero basis functions Nr,k(u)(r = i − k, i − k + 1, . . . , i). This is the local support
property of the B-spline curve. Therefore, the B-spline curve can also be expressed as

p(u) =
i

∑
r=i−k

dr Nr,k(u) (35)

In this paper, the joint space trajectory of the robot is obtained by fifth-order B-spline
curve interpolation, so k = 5. Assuming that the position-time series of a certain joint is
P =

(
pj, tj

)
, j = 0, 1, . . . , m, then the node vector is U = [u0, u1, . . . , um+2k], and

n = m + k − 1.
In order to make the B-spline curve pass through the first and end position points of

the joint, the node repetition degree of these two positions needs to be defined as

u0 = u1 = . . . = u5 = 0 (36)

um+5 = un+6 = . . . = um+10 = 1 (37)

Moreover, the accumulative chord length parameterization method normalizes the
remaining m − 1 inner nodes

ui = ui−1 +
|Δti−6|

m−1
∑

r=0
|Δtr|

, i = 6, 7, . . . , m + 4 (38)

The n + 1 equations are needed to solve n + 1 control points, where m + 1 equations
can be given by

p(ui+5) =
i+5

∑
r=i

dr Nr,5(ui+5) = pi, ui+5 ∈ [u5, um+5], i = 0, 1, . . . , m (39)

Additional conditions determine the other k − 1 equations. For the fifth-order B-spline
curve, specifying the velocity and acceleration of the joint at the start and end points can
add four additional equations{

p′(u)
∣∣u=u5 = vs, p′(u)

∣∣u=um+5 = ve
p′′ (u)

∣∣u=u5 = as, p′′ (u)
∣∣u=um+5 = ae

(40)
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where p′(u), p′′ (u) are, respectively, the first and second derivatives of the B-spline curve,
representing the velocity and acceleration of the joint. The deBoor–Cox recurrence formula
can calculate the lth derivative of the B-spline curve⎧⎪⎪⎪⎨⎪⎪⎪⎩

pl(u) =
i

∑
r=i−k+l

dl
r Nr,k−l(u), ui ≤ u < ui+1

dl
r =

{
dj, l = 0

(k + 1 − l)
(

dl−1
r − dl−1

r−1

)
/(ur+k+1−l − ur), l = 1, 2, . . . , r.

(41)

Expression (39) is combined with (40) to obtain

And = p (42)

where d = [d0, d1, . . . , dn−1, dn]
T , p = [p0, p1, . . . , pm, vs, ve, as, ae]

T , and the coefficient
matrix is

An =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
N1,5(u6) N2,5(u6) · · · N5,5(u6)

N2,5(u7) N3,5(u7) · · · N6,5(u7)
. . . . . .

Nm−2,5(um+3) Nm−1,5(um+3) · · · Nm+2,5(um+3)
Nm−1,5(um+4) Nm,5(um+4) · · · Nm+3,5(um+4)

1

cs1 cs2
ce1 ce2

as1 as2
ae1 ae2 ae3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Some parameters in the coefficient matrix are defined by

cs1 = −5/(u6 − u1)
cs2 = 5/(u6 − u1)

ce1 = −5/(um+9 − um+4)
ce2 = 5/(um+9 − um+4)

as1 = 20/[(u6 − u2)(u6 − u1)]
as2 = −20{1/[(u6 − u2)(u6 − u1)] + 1/[(u6 − u2)(u7 − u2)]}

as3 = 20/[(u6 − u2)(u7 − u2)]
ae1 = 20/[(um+8 − um+4)(um+8 − um+3)]

ae2 = −20{1/[(um+8 − um+4)(um+8 − um+3)] + 1/[(um+8 − um+4)(um+9 − um+4)]}
ae3 = 20/[(um+8 − um+4)(um+9 − um+4)].

(43)

From (42), all the control points can be obtained by

d = A−1
n p (44)

Bringing the control points back to (35), the angular displacement curve of each robot
joint can be obtained. Then, the angular velocity, angular acceleration, and angular jerk
curves of each joint are obtained by (41).

3.2. Establishing the Multi-Objective Optimization Model

This model consists of objective functions and constraint conditions. Firstly, the
specific expressions of travel time, energy consumption, and smoothness are shown in
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(45)–(47). It is assumed that the trajectory of each joint of the Puma560 is divided into m
segments, which means that each joint is assigned m + 1 angle values in turn.

The total travel time of the robot is the sum of the travel time of each trajectory, so its
expression is

S1 = T =
m

∑
j=1

Δtj =
m

∑
j=1

(
tj − tj−1

)
(45)

where tj−1, tj, Δtj are, respectively, the starting time, ending time, and travel time of the
jth trajectory, and T is the total travel time.

The average accelerations of joints represent the energy consumption

S2 =
6

∑
i=1

√√√√√ 1
T

T∫
0

..
θ

2
i dt (46)

where
..
θi is the acceleration of the ith joint.

The average jerks of joints measure the smoothness

S3 =
6

∑
i=1

√√√√√ 1
T

T∫
0

...
θ

2
i dt (47)

where
...
θ i is the jerk of the ith joint.

Constraints of kinematics and dynamics of the robot need to be considered when the
robot performs tasks. Kinematic constraints mainly include the limitation of joint angle,
velocity, and acceleration. Dynamic constraints mostly refer to the restriction of the joint
torque. Therefore, the multi-objective optimization model can be established as

Minimize
S = [S1, S2, S3]

T

Subject to
gi,1 = θmin

i − min(θi(t)) ≤ 0
gi,2 = max(θi(t))− θmax

i ≤ 0

gi,3 =
.
θ

min
i − min

( .
θi(t)

)
≤ 0

gi,4 = max
( .

θi(t)
)
−

.
θ

max
i ≤ 0

gi,5 =
..
θ

min
i − min

( ..
θi(t)

)
≤ 0

gi,6 = max
( ..

θi(t)
)
−

..
θ

max
i ≤ 0

gi,7 = τmin
i − min(τi(t)) ≤ 0

gi,8 = max(τi(t))− τmax
i ≤ 0.

(48)

where θi(t),
.
θi(t),

..
θi(t), τi(t) are, respectively, the angle, velocity, acceleration, and driving

torque of the ith joint at t time, and θmax
i , θmin

i ,
.
θ

max
i ,

.
θ

min
i ,

..
θ

max
i ,

..
θ

min
i , τmax

i , τmin
i are,

respectively, the upper and lower limits of the angle, velocity, acceleration, and driving
torque of the ith joint.

3.3. Solving the Multi-Objective Optimization Model

The three optimization objectives conflict with each other, and there is a complex
balance between them, so they cannot achieve the best solution simultaneously. When
the improved MOPSO algorithm is used to solve the previous model, the result is no
longer a single optimal solution, but an optimal solution set called the Pareto optimal
solution set [36]. There is no good or bad solution in the Pareto optimal solution set, and
the appropriate solution can be selected according to the actual engineering needs.
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The MOPSO algorithm [37] originated from the study of bird foraging behavior and
has the advantages of fast convergence speed, strong global search capability, and a wide
range of application. In this algorithm, each particle’s position represents a solution to
the problem. Under the influence of the individual optimal position and group optimal
position, particles update their velocity and position

vk+1
id = wvk

id + c1r1

(
pk

id,pbest − xk
id

)
+ c2r2

(
pk

d,gbest − xk
id

)
(49)

xk+1
id = xk

id + vk+1
id (50)

where w is the inertia weight, c1 and c2 are the individual and group learning factors, r1
and r2 are random numbers in the range of [0,1], k is the current iteration number, d is
the vector’s dimension number, xk

id and vk
id are the position and velocity of particle i, and

pk
id,pbest and pk

d,gbest are the optimal position of individual and group.
Furthermore, the algorithm determines the dominance relationship between particles

by comparing the objective function values of particles. To better manage and preserve the
non-dominated solution, it is saved to the external archive.

The traditional MOPSO algorithm determines the global leader and deletes the redun-
dant particles in the external archive by random selection. The convergence, distribution
uniformity, and accuracy of the Pareto front are not good. When facing complex problems,
the algorithm easily falls into the local optimum.

In order to solve these problems, this paper uses the adaptive grid technology and
roulette strategy to change the selection of the global leader and redundant particles in
the external archive, applies the adaptive mutation technique to the position of particles,
and makes the inertia weight, individual, and group learning factors change nonlinearly
with the iterations number. The workflow flow chart of the improved MOPSO algorithm is
show in Figure 3.

Figure 3. The improved MOPSO algorithm.
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The combination of the adaptive grid technology and roulette strategy enables the
algorithm to select particles in a suitable sub-grid. For each iteration, the maximum value
fimax and minimum value fimin of the ith objective function on all particles are found as the
upper and lower bounds of the initial grid. In order to cover the boundary particles, the
range of the grid is expanded according to

LBi = fimin − α( fimax − fimin), UBi = fimax + α( fimax − fimin) (51)

where LBi, UBi are the new upper and lower bounds of the grid, and α is the expansion ratio.
The number of grids for each dimension is set to nd, and the grid is equally divided

into ne
d sub-grids, where e is the number of objective function. Figure 4 shows the general

process of adaptive grid technology.

   
(a) (b) (c) 

Figure 4. The adaptive grid technology in two-dimensional case. (a) The minimum and maximum
values of each objective function; (b) the enlarged grid range; (c) the uniform distribution of grids
when nd = 3.

Suppose that there are ns sub-grids containing particles, and the number of particles
in the ith sub-grid is Ni. When selecting the global leader of particles, the probability that
the ith sub-grid is selected is

Pi,1 =
e−βNi

e−βN1 + e−βN2 + · · ·+ e−βNb
(52)

where i = 1, 2, . . . , ns, and β is a non-negative leader selection pressure parameter. It can be
seen from (52) that the global leader of particles is more likely to come from sub-grids with
fewer particles, which encourages the algorithm to explore areas that have been searched
less before and increase the diversity of solutions.

When the number of particles in the external archive is greater than the set number,
it is necessary to delete the redundant particles. At this time, the probability that the ith
sub-grid is selected is

Pi,2 =
eσNi

eσN1 + eσN2 + · · ·+ eσNb
(53)

where σ is a non-negative delete selection pressure parameter. It can be seen from (63)
that the deleted redundant particles are more likely to come from the sub-grids with more
particles, promoting the uniform distribution of the solutions.

Expressions (52)–(53) are the individual selection probabilities in the roulette strategy,
and the cumulative probabilities of each grid are defined as

Qi,1 =
i

∑
j=1

Pj,1, Qi,2 =
i

∑
j=1

Pj,2. (54)

The individual selection strategy is to generate a random number r ∈ [0, 1], compare
it with Qi,1 or Qi,2, find the first cumulative probability exceeding r, and select its sub-grid.
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When the particle’s velocity and position are updated, the particle’s position is adap-
tively mutated. The mutation rate in the kth iteration is

pmk =

(
1 − k − 1

M − 1

) 1
h

(55)

where k is the current iteration number, M is the maximum iteration number, and h is a
given constant.

The mutation step of the particle i is defined as

Δxk
i = pmk · (xmax − xmin) (56)

where xmax, xmin are the limit values of particle position. When pmk decreases nonlinearly
with the increase in the iterations number, Δxk

i also decreases.
Now, it is randomly specified that the dth dimensional component xk

id of the position
vector is mutated. The upper and lower bounds of the range of mutation are

lb = xk
id − Δxk

i , ub = xk
id + Δxk

i (57)

A random number is generated in the continuous distribution of lb and ub as the value
of the position vector after mutation in this dimension. This makes the algorithm jump out
of the local optimum in the early stage and converge to the global optimal solution better
in the later stage.

The relationship between the inertia weight and the number of iterations is

w = wmax − (wmax − wmin)

(
k
M

)2
(58)

where wmax, wmin are the upper and lower limits of w. As the number of iterations k
increases, the inertia weight decreases nonlinearly.

The individual and group learning factors are defined as

c1 = c1s + (c1e − c1s) sin
(

πk
2M

)
, c2 = c2s + (c2e − c2s) sin

(
πk
2M

)
(59)

where c1s and c2s are, respectively, the initial values of c1 and c2, and c1e and c2e are,
respectively, the final values of c1 and c2. As the number of iterations increases, c1 decreases
from large to small, and c2 is the opposite.

These give the particle a strong global search capability at the beginning of the algo-
rithm iterations to avoid falling into local optimum and a strong local search capability at
the later stages to improve convergence accuracy.

4. Simulation

In this section, the multi-objective trajectory planning simulation of the Puma560 robot
is carried out in MATLAB. The constraints of each joint are shown in Table 2.

Table 2. Kinematic and dynamic constraints.

Constraints Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6

Angle/(rad) 3.100 3.100 3.100 3.100 3.100 3.100
Velocity/

(
rad · s−1 ) 0.876 0.876 1.598 0.876 0.926 0.926

Acceleration/
(
rad · s−2 ) 0.725 0.725 2.378 0.725 1.450 1.450

Torque/(N · m ) 44.940 44.940 8.866 44.940 0.050 0.050
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The target captured by the robot is a small ball moving at a constant speed of 0.5 m/s
along the Z-axis, and its trajectory is known. Six key positions of each joint in the process
of catching the ball are given, as shown in Table 3.

Table 3. Position sequence of each joint.

Node Joint 1/(rad) Joint 2/(rad) Joint 3/(rad) Joint 4/(rad) Joint 5/(rad) Joint 6/(rad)

1 0.5821 −0.3805 −0.8168 0.6283 −0.9390 0.2531
2 0.4829 −0.3735 −0.7981 0.6299 −0.9245 0.2621
3 0.0383 −0.1212 0.0608 0.4289 −0.4005 0.6502
4 −0.5872 0.1770 1.0702 0.1995 0.2189 1.1091
5 −1.0317 0.3890 1.7877 0.0364 0.6592 1.4352
6 −1.1310 0.4363 1.9478 0 0.7547 1.5080

The MOPSO algorithm takes the time interval of each trajectory Δtj as the decision
variable, which is in the range of [0.75, 7]. The population size and the maximum iteration
number of the traditional and improved MOPSO algorithms are both 200, and the size
of the Pareto optimal solution set is 100. In addition, this paper sets nd in the improved
MOPSO algorithm to 5, β to 2, and σ to 2.

The Pareto front obtained by the traditional MOPSO algorithm is shown in Figure 5a.
It falls into the local optimum, and the distribution and convergence of the Pareto front
are also poor. The Pareto front obtained by the improved MOPSO algorithm is shown in
Figure 5b. It jumps out of the local optimum, and the convergence and distribution are
significantly improved, which proves the effectiveness of the improved MOPSO algorithm.

 
(a) (b) 

Figure 5. The Pareto front. (a) The traditional MOPSO algorithm and (b) the improved MOPSO algorithm.

Four points are taken on the Pareto front, which, from top to bottom, are A, B, C, and
D. The closer to A, the shorter the travel time, the more the energy consumption, and the
greater the jerk; the closer to D, the less the energy consumption, the smaller the jerk, and
the longer the travel time. It follows that smoothness is positively correlated with energy
consumption, while they are negatively correlated with travel time. The values of the three
objective functions for A, B, C, and D are shown in Table 4.
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Table 4. The partial optimum solution.

Solution Travel Time/(s) Energy Consummation/(rad·s−2) Jerk/(rad·s−3)

A 3.7566 3.2251 8.2585
B 4.8760 1.6688 3.0157
C 9.0883 0.4932 0.4656
D 39.5825 0.0286 0.0069

Taking B and C points as examples, the travel time of point B is 4.8760 s, 46.35% less
than that of point C. The energy consumption of point C is 0.4932 rad · s−2, 70.45% lower
than that of point B. The jerk of point C is 0.4656 rad · s−3, 84.56% lower than that of point B.

C is selected as the actual solution of the project, and its time series is [0, 1.1990,
3.6445, 5.3612, 7.2749, 9.0883]. As shown in Figure 6, the curves of joint angles, velocities,
accelerations, and jerks varying with time can be obtained by interpolating fifth-order
B-spline curves.

 
(a) (b) 

 
(c) (d) 

Figure 6. (a–d) are the angle, velocity, acceleration, and jerk curves of the joints under solution C.

A dominant solution E is randomly selected outside the Pareto optimal solution set as
the time series [0, 1.3, 2.4, 5.3, 8.4, 10.4] before the trajectory optimization. Under this time
series, the three performance indexes of the robot are shown in Table 5.
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Table 5. Comparison before and after optimization.

Solution Travel Time/(s) Energy Consumption/(rad·s−2) Jerk/(rad·s−3)

C 9.0883 0.4932 0.4656
E 10.4000 1.1457 1.8733

According to the data in Table 5, the travel time of point C is 12.61% less than that of E,
the energy consumption is decreased by 56.95%, and the jerk is decreased by 75.15%. The
three objective function values of point C are better than the results before optimization,
improving the robot’s comprehensive performance.

Taking robot joint 2 as an example, Figure 7 shows that the trajectories after optimiza-
tion are smoother and more continuous than before optimization, especially the curves of
joint velocity, acceleration, and jerk.

 
(a) (b) 

 
(c) (d) 

Figure 7. (a–d) show the curves of angle, velocity, acceleration, and jerk of robot joint 2 before and
after optimization.

An optimal solution is randomly selected in the Pareto optimal solution set, called D,
and its time series is [0, 1.7255, 4.5821, 6.1810, 7.7798, 10.0000]. The motion of the Puma560
robot under this solution can be visualized by the Robot Toolbox of MATLAB, as shown in
Figure 8.
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(a) (b) (c) 

Figure 8. (a) The pose of the robot at the start moment; (b) the pose of the robot at the middle moment;
and (c) the pose of the robot at the end moment.

5. Conclusions

This paper investigates a trajectory planning method for a robot which enables it to
reach a comprehensive optimal state of travel time, energy consumption, and smooth-
ness when executing a task. In order to fully understand the kinematics and dynamics
characteristics of the robot and lay a solid theoretical foundation for follow-up research,
this paper first deduces the position and orientation of the end-effector relative to the
base and uses the Pieper method to calculate the closed solutions of the inverse kinemat-
ics. Finally, the dynamic model of the robot is established by the iterative Newton–Euler
dynamics algorithm.

The joint space trajectory of the Puma560 robot is constructed using fifth-order B-spline
curves, which has the advantages of continuous jerk and zero velocity and acceleration
at the start/stop time. Then, the improved MOPSO algorithm is used to optimize the
trajectory of the robot with the time interval between the path points as the decision
variable. The convergence and distribution of the Pareto front are good, and the different
solutions in the Pareto optimal solution set correspond to different engineering needs.
In addition, by comparing the robot’s travel time, energy consumption, and smoothness
before and after optimization, it can be seen that its three performances have improved.
This paper also visualizes the robot movement according to the planned trajectory in the
Robot Toolbox of MATLAB.
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Abstract: This paper presents an improved approach for scene-aware camera relocalization
using RGB images and poses. Building upon the ACE network, we proposed a refined
head structure that integrates skip and dense connections alongside channel attention
mechanisms. Additionally, we introduced modifications to the loss function and pose
solver, leveraging SQPnP and iterative optimization. These enhancements led to significant
improvements in the localization accuracy and speed, as evidenced by our experiments on
the 7scenes, 12scenes, and wayspots datasets. Here, we show that the average localization
errors were reduced by up to 30% and the computational times were cut by approximately
10% compared to the original ACE network, demonstrating the practicality and robustness
of our approach.

Keywords: ACE network; scene-aware; camera relocation; pose calculation

1. Introduction

Visual relocalization is a task within the field of computer vision; it is aimed at
determining the camera’s position and orientation (i.e., its location and direction) by
analyzing visual information within a scene. Currently, the use of camera relocalization
algorithms to predict six-degrees-of-freedom camera poses from input images plays an
important role in various application areas, such as autonomous driving, robotics, and
augmented reality (AR)/mixed reality (MR). Camera relocalization methods can be mainly
divided into two broad categories: those based on regression and those based on structure.
Early relocalization techniques primarily relied on regression-based methods, which could
directly deduce camera poses from images; however, due to their susceptibility to image
retrieval influences, they offered a lower accuracy, leading to a trend towards structure-
based camera relocalization methods [1]. Structure-based camera relocalization methods
can primarily be divided into two stages: establishing a coordinate mapping relationship
between 2D pixel coordinates and 3D spatial coordinates through matching or regression,
and then estimating the camera pose using the perspective-n-point (PnP) [2] series of
pose-solving methods in conjunction with the random sample consensus (RANSAC) [3]
algorithm.

Structure-based camera relocalization methods consist of two types: sparse feature
matching and scene coordinate regression. Sparse feature matching relies on using local
descriptors to establish correspondences between 2D map inputs and a given explicit 3D
model, mainly comprising two steps: feature detection with feature detectors and feature
decoding with descriptors. The learning approaches can be classified into three types based
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on the sequence of these steps: detect-then-describe, detect-and-describe-simultaneously,
and describe-then-detect [4]. Scene coordinate regression eliminates the need for explicit
3D map construction and descriptor extraction, enabling an implicit transformation to be
learned from 2D pixels to 3D point coordinates, which is relatively more efficient. Although
scene coordinate regression can achieve an accuracy and relocalization times comparable
to sparse feature matching, this method requires retraining with data when applied to new
scenes, making it imperative to accelerate the retraining process as much as possible [5].
To address this, Brachmann et al. proposed the accelerated coordinate encoding (ACE)
network architecture [6], which divides the network into a scene-agnostic backbone and a
scene-specific head. When introducing new images, only the head needs to be retrained,
effectively achieving the goal of accelerated coordinate encoding.

On one hand, to maintain the advantages of accelerated coordinate encoding, this
paper retained the use of the pretrained, scene-transferable backbone from the original
model and the concept of decorrelating image feature gradients. On the other hand, to
achieve a more efficient and accurate camera coordinate computation, we improved the
network structure of the model’s head, the computational scheme of the loss component,
and the calculation method and early exit conditions for the pose solver.

Firstly, we designed a new network structure for the head section that predicts pixel
3D coordinates with a higher precision and robustness. Subsequently, we modified the
loss computation scheme to reduce the computational complexity. Next, we introduced a
new pose-solving scheme that, in conjunction with the original approach, enables the pose
solver to achieve an equivalent accuracy at a faster rate. Lastly, our experiments indicated
that, compared to the previous ACE network, our improved network can achieve camera
relocalization with a greater precision and at a faster pace in the majority of scenarios.

2. Related Work

2.1. Feature Extraction

Feature extraction is a key step in the fields of computer vision and image processing,
serving to extract useful feature information from raw data to support subsequent tasks
such as classification, detection, and recognition. Initially, feature extraction relied on
manually designed methods such as edge detection and corner detection, which possess
invariance and distinctiveness, requiring extensive expert knowledge and a targeted de-
sign [7]. Subsequently, with the development of deep learning, data-driven feature learning
has become mainstream. Early classic models such as LeNet [8], AlexNet [9], and VGG [10]
that utilize convolutional neural networks learn feature representations from raw data,
overcoming the limitations of manual feature extraction and making feature detection
learning and usage more efficient and automated. In recent years, with the increase in
computing resources and the prevalence of large-scale datasets, transfer learning using pre-
trained models has become increasingly popular. For instance, models such as ResNet [11]
and EfficientNet [12] include a wealth of pre-trained weights available online, and utilizing
these pre-trained weights can significantly enhance the performance for specific tasks
while reducing data requirements and computational costs. The backbone used in our
model, derived from the ACE model, consisted of eleven convolutional layers and two
skip connections. The convolutional layer weights were obtained from a week-long pre-
training on the first 100 scenes of the ScanNet dataset [13], enabling the rapid and effective
extraction of crucial feature information from images. Moreover, for scene localization, the
information from the image feature extraction part is transferable across scenes, and not
affected by scene variations in terms of the localization accuracy. Therefore, this structure
can effectively reduce the training time required for new scenes, better meeting the practical
demands of application scenarios.
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2.2. Coordinate Regression

Coordinate regression refers to the generation of 3D coordinates from input images,
with conventional methods including random forest regression algorithms and deep learn-
ing neural networks. The random forest regression algorithm is a tree-based regression
method that constructs multiple uncorrelated decision trees by randomly sampling data
and features, obtaining prediction results in parallel. Each decision tree yields a predictive
outcome based on the sampled data and features; by aggregating and averaging the results
of all trees, the overall regression prediction of the forest is obtained. Deep learning neural
networks establish an end-to-end coordinate mapping relationship between 2D pixel coor-
dinates and 3D spatial coordinates and can be divided into two types as mentioned above:
sparse feature matching and scene coordinate regression methods [14]. Scene coordinate
regression methods, such as SANet [15]; DSAC [16] and its derivatives, DSAC++ [17] and
DSAC* [18]; KFNet [19]; etc., are deep learning neural network approaches that implicitly
establish coordinate mapping relationships. Compared to sparse feature matching methods
that explicitly create 3D models, these approaches not only serve the purpose of privacy
protection, but they also have lower storage requirements [20]. The main drawback of
scene coordinate regression methods is the considerable time required for mapping in
new scenes [21]. The ACE network architecture significantly reduces the training time for
new scenes, effectively addressing this issue. Our proposed improvements enabled the
model to achieve faster localization speeds during testing while maintaining a training
duration similar to that of the ACE, making it better suited to the demands of practical
scene localization.

2.3. Pose Estimation

Pose estimation relies on the fundamental principles of analytical geometry, deduc-
ing a camera’s external parameters through known 3D points and their corresponding
points in the camera image [22]. The PnP solution method can estimate the camera pose
from the 3D spatial coordinates of at least three known points on an object and their cor-
responding 2D-pixel coordinates. With the enhancement of computational capabilities,
optimization algorithms have been increasingly incorporated into camera pose-estimation
processes, such as estimating a camera pose by minimizing the reprojection error, thereby
further improving the accuracy and robustness of camera pose estimation. Common
PnP algorithms include ITERATIVE [23], [24], which refines the pose using the nonlinear
Levenberg–Marquardt minimization scheme; squared quadratically constrained quadratic
program for perspective-n-point (SQPnP) [25], which can quickly and globally optimize
for the perspective-n-point problem; and accurate and practical three-point perspective
(AP3P) [26], which is tailored for the three-point relocalization issue. Building upon this,
the RANSAC algorithm was introduced, repeatedly sampling and fitting models to obtain
the optimal model parameters, thus mitigating the adverse effects of noise and outliers,
estimating the best inlier set, and endowing camera pose estimation with a greater precision
and robustness. The pose solver we used originated from DSAC*, where the pose solver
in DSAC* first randomly selects 64 sets of pixel points to relocalize the camera using the
perspective-3-point (P3P) [27] method, and then scores the relocalization results, applying
RANSAC’s pose optimization method to the highest-scoring result to involve as many
valid predicted points as possible. We effectively improved this pose solver by altering the
PnP pose-estimation approach and the iterative optimization process, ultimately achieving
a faster execution of pose estimation.
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3. Methods

3.1. Overview

In Figure 1, we present the general processing flow of the model on images. Initially,
the backbone part extracts and compresses feature information from the image, and then
randomly selects some features to feed into the head, predicting the three-dimensional
coordinates of pixels in the image. Finally, these coordinates are used to relocalize the
camera that captured the image. If needed, the obtained three-dimensional coordinates can
be used for scene reconstruction, which, although more time-consuming, allows for a more
intuitive acquisition of scene information and the display of the camera pose.

Figure 1. The model’s image processing workflow.

Our improved model adopted the backbone part of the ACE network, which was
trained for one week on the first 100 scenes of the ScanNet dataset, yielding a transferable
feature extraction module. Given its superior performance and training costs, we chose not
to attempt further modifications here. The enhancements made to the ACE network are
described in the following subsections. Firstly, in Section 3.2, we detail the improvements
to the head section of the ACE network, including the stacking of network layers, the
types of modules referenced, the activation functions used, and the introduction of channel
attention mechanisms. Then, in Section 3.3, we introduce improvements to the ACE loss
function. On one hand, by modifying the computation sequence and logic, we ultimately
reduced the computational complexity; on the other hand, by combining the Manhattan
and Euclidean distances, we adapted the method to different datasets. Lastly, in Section 3.4,
we present improvements to the pose solver. We not only changed the computation method
for relocalizing the camera using predicted three-dimensional points, but we also added
conditions for early termination during camera relocalization optimization, leading to both
enhanced relocalization results and significantly shortened localization times.

3.2. Head Network Architecture

In the original ACE, the primary structure comprises eight 1 × 1 convolutional layers
with an input and output channel count of 512 each, where skip connections are introduced
after the third and sixth layers. Skip connections facilitate faster information propagation
and gradient capture within the network, helping to address the problems of vanishing
and exploding gradients. However, the sole use of serial 1 × 1 convolutions with skip
connections still has its limitations, leading us to introduce dense connections in our
network [28]. Dense connections not only reinforce gradient flow to mitigate the issue
of gradient vanishing, but they also reduce the number of parameters, improving the
parameter efficiency.
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Initially, we replaced the three layers spanned by skip connections with three lay-
ers of dense connections, yet the test results indicated no improvement in the network
performance, as the dense connections discarded some features preserved by skip con-
nections. Therefore, considering the need to combine the strengths of both dense and
skip connections, we proposed a parallel architecture incorporating three layers of both,
allowing for the full exploitation of the advantages of each connection type to enhance the
overall feature representation capabilities and optimization efficiency, enabling the model
to perform well under various conditions.

Subsequently, after the dense and skip connections, we introduced a channel attention
mechanism [29] by drawing on the ECA layer architecture using adaptive average pooling
to weight the output channels, thereby further enhancing the feature representation ability
and enabling the neural network to more effectively express key features in the data while
reducing the impact of other noise.

Next, we switched all the activation functions in the network structure from ReLU to
parametric ReLU (PReLU) [30]. The ReLU activation function used in the original model
had its limitations, causing neuron death during training, whereas replacing it with PReLU
can alleviate this issue, introducing a slight gradient in the negative region to maintain
gradient flow.

Finally, the head network returns a 4D tensor
( .

x,
.
y,

.
z, ŵ

)
, where

.
x,

.
y,

.
z represent the

homogeneous coordinates of the predicted three-dimensional scene, and the fourth element
ŵ is a non-normalized homogeneous parameter. To obtain the normalized homogeneous
parameter w, preprocessing was applied to ŵ using a biased and clipped Softplus operator,
as defined by the following equation.

w = min
(

1
Smin

, β−1 · log(1 + exp(β · ŵ)) +
1

Smax

)
, β =

log(2)
1 − S−1

max
(1)

Here, Smin and Smax are used to clip the value of the scaling factor determined by w,
and w ensures that, when ŵ is 0, the output homogeneous parameter w is 1. The normalized
homogeneous parameter w, computed as described, enables the dehomogenization of the

network’s output coordinates according to the formula y =
.
y
w , resulting in the predicted

actual coordinates of the 3D scene. Figure 2 illustrates the head network structure of the
meta-model and the improved results of the head network described in this section. It is
evident that our designed network, while maintaining a similar parameter count, enhances
the connectivity between its upper and lower layers, thereby more effectively extracting
and transmitting image features.

3.3. Improvements to the Loss Function

In the original ACE framework, the loss function first converts predicted 3D coordi-
nates into 2D pixel coordinates and computes the reprojection error, using eπ to quantify
the robust reprojection error for valid coordinate predictions. All points are classified
into two categories based on hyperparameters, including the maximum depth threshold,
minimum depth threshold, and maximum reprojection error threshold, resulting in two
distinct loss computations. Points within the threshold apply a scaled tanh function to
tighten the reprojection error distribution.

êπ

(
xi, yi, h*

i

)
= τ(t)tanh

(
eπ

(
xi, yi, h*

i
)

τ(t)

)
(2)
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The scaling factor for tanh is dynamically adjusted with a training-dependent thresh-
old.

τ(t) = k(t)τmax + τmin, with k(t) =
√

1 − t2 (3)

Figure 2. The head section of the original model (a). The modified head section (b).

In this approach, where t ∈ (0, 1) represents the relative training progress, the
threshold is dynamically adjusted to gradually decrease as training progresses, enabling
more effective model convergence and generalization. For points outside the threshold,
the Manhattan distance between the predicted and actual three-dimensional coordinates
is used as the loss. The two types of losses are summed and divided by the batch size to
obtain the final loss value participating in the iteration.

Regarding this loss function, we revised the computation order to filter out some pixel
points using the maximum and minimum depth thresholds first, thereby reducing the
computational load of subsequent two-dimensional remapping errors. On the other hand,
considering the occurrence of overfitting, we introduced an additional penalty term that
incorporates the Euclidean distance for pixels outside the threshold in the loss function.
The Manhattan distance measures the distance between two points in space along the
coordinate axes, while the Euclidean distance calculates the straight-line distance between
two points. The former tends to capture local variations, whereas the latter captures global
variations. These two metrics are complementary, and combining them in the loss function
enables the capture of multi-scale characteristics of the data. As a result, this improvement
enhances the compatibility of the loss function across different datasets, leading to a better
generalization performance.

3.4. Enhancements to the Pose Solver

In the original ACE, a pose solver from DSAC* is employed, which randomly selects
64 sets of four pixels with reprojection errors not exceeding the threshold for camera relo-
calization. The scoring of each relocalization result is performed according to Equation (4).⎛⎝1 − 1

1 + e
−5∗(err−τin)

τin

⎞⎠ ∗ αin
width ∗ height

(4)
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In this approach, err denotes the current reprojection error value, while τin serves
as the threshold for distinguishing between valid inliers and outliers. αin quantifies the
weighting factor of the inliers’ contributions to scoring, where the width and height repre-
sent the image height and width, respectively. The relocalization result with the highest
score is selected for iterative pose refinement. Points are iteratively incorporated with
reprojection errors within the threshold to refine the camera pose estimation. These refined
pose estimates subsequently enhance the 3D point reprojection accuracy. Through succes-
sive refinements, the algorithm maximizes the number of inlier points until saturation is
achieved.

Initially, we considered replacing the current pose solver with one from SRC [31].
However, experiments demonstrated that this solver’s performance was significantly infe-
rior to that of the DSAC*-based solver. A code analysis revealed that, on one hand, this pose
solver lacked a threshold constraint for the upper limit of depth error, leading to substantial
shifts due to noisy data with large errors. On the other hand, its optimization logic involved
calling all points with reprojection errors within the threshold for camera relocalization,
iterating until the displacement between the current and previous reprojection results fell
below the threshold. In contrast, the DSAC* pose solver ensured that the number of points
used for camera relocalization exceeded that of the last iteration, allowing for more stable
optimization.

Consequently, we decided to directly optimize the existing DSAC*-based pose solver.
For four-point relocalization, we substituted the traditional P3P pose-solving method with
the AP3P method, which introduced additional geometric constraints for more accurate,
faster, and robust pose estimation. Subsequently, in terms of multi-point relocalization
iterative optimization, we initially referred to SQPnP, using the SQPnP pose-estimation
method as an optimization scheme for camera relocalization with multiple points within
the reprojection error range, replacing the preceding nonlinear Levenberg–Marquardt
minimization approach. Compared to the previous method, SQPnP offers a higher com-
putational efficiency and is suitable for sparse feature point sets, significantly improving
the model efficiency. Yet, our experiments indicated that directly utilizing SQPnP still had
limitations, causing significant declines in localization precision and insufficient robustness
in certain scenarios. Therefore, we further refined our approach by integrating the SQPnP
pose-estimation method with the nonlinear Levenberg–Marquardt minimization scheme.
Specifically, we employed the SQPnP algorithm when the iteration of the camera pose was
rapid to achieve a quicker correction, while the nonlinear Levenberg–Marquardt scheme
was used for slower iterations to correct the camera pose more accurately and robustly.
Lastly, regarding the relocalization iteration conditions, we believe that an optimization
criterion solely focusing on involving more points in reconstruction is not prudent. The in-
clusion of new points may cause significant shifts in the majority of the already-established
points, implying erroneous shifts in camera pose estimation as well. Therefore, we recorded
the average reprojection error of the points within the threshold for the current reprojection
results. If the next iteration led to an average reprojection error exceeding a certain multiple
of the previous error, it suggested that subsequent iterations would degrade the accuracy
of the camera pose estimation, necessitating the early termination of the iteration process.

4. Experiments

In this section, we provide a detailed description of the network training process. First,
in Section 4.1, we introduce the training details and network configuration. In Section 4.2,
we present the performance of our improved model compared to the baseline ACE model
on two indoor datasets, 7scenes [32] and 12scenes [33], as well as the outdoor dataset
wayspots. The results demonstrate the enhancements of our model, with example images
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from the three datasets shown in Figure 3. Finally, in Section 4.3, we conducted isolated
ablation studies on the two improvements, proving their necessity.

Figure 3. Example plots of the 7scenes (a), 12scenes (b), and wayspots (c) datasets.

4.1. Experimental Setup

In the implementation of this work, for the feature extraction component, we retained
the ACE backbone network and its pre-trained weights, with a batch size of 5120. For the
training phase, we utilized the AdamW optimizer with learning rates ranging between(
2.5 × 10−4) and (7.5 × 10−3). In the pose-estimation component, we employed an im-

proved DSAC* pose solver with 64 RANSAC hypotheses. Throughout the implementation
process, data storage was maintained in a half-precision format as much as possible to
reduce memory usage.

4.2. Quantitative Evaluation

Firstly, we compared the test results of various models previously proposed with
those of our model on the 7scenes dataset. The 7scenes dataset comprises seven types
of indoor localization scenes, providing 7000 mapped images for each scene with areas
ranging from 1 m3 to 18 m3, making it a commonly used dataset for camera relocalization.
Table 1 presents the discrepancies between the predicted and actual camera poses in the
7scenes dataset using different models. It is evident that, compared to previously proposed
models, our model achieved a higher precision in camera relocalization tasks.

Table 1. Comparison of relocalization results for the 7scenes dataset between the improved model
and previous camera relocalization methods.

Chess Fire Heads Office Pumpkin Redkitchen Stairs

PoseNet [34] 4.5◦/0.13 m 11.3◦/0.27 m 13.0◦/0.17 m 5.6◦/0.19 m 4.8◦/0.26 m 5.4◦/0.23 m 12.4◦/0.35 m
SANet 0.9◦/0.03 m 1.1◦/0.03 m 1.5◦/0.02 m 1.0◦/0.03 m 1.3◦/0.05 m 1.4◦/0.04 m 4.6◦/0.16 m
KFNet 0.7◦/0.02 m 0.9◦/0.02 m 0.8◦/0.01 m 0.7◦/0.03 m 1.0◦/0.04 m 1.2◦/0.04 m 1.0◦/0.03 m

DSAC++ 0.5◦/0.02 m 0.9◦/0.02 m 0.8◦/0.01 m 0.7◦/0.03 m 1.1◦/0.04 m 1.1◦/0.04 m 2.6◦/0.09 m
DSAC* 0.7◦/0.02 m 1.0◦/0.03 m 1.3◦/0.02 m 1.0◦/0.03 m 1.3◦/0.05 m 1.5◦/0.05 m 49.4◦/1.9 m
Ours 0.7◦/0.02 m 0.8◦/0.02 m 0.6◦/0.01 m 0.8◦/0.03 m 1.1◦/0.04 m 1.3◦/0.04 m 1.1◦/0.04 m

4.2.1. Indoor Relocalization

Subsequently, we conducted a more detailed assessment of the improved model on
the 7scenes dataset. Table 2 presents the assessment results comparing the improved and
original models. The test results include the percentage of scenes with coordinate prediction
errors within 10 cm/5 deg, 5 cm/5 deg, 2 cm/2 deg, and 1 cm/1 deg; the median of the
camera coordinate prediction error in terms of the angle and distance; and the average time
spent on the prediction. The results show that, in most scenarios, our model achieved a
higher localization accuracy and a faster localization speed compared to the original model.
Additionally, the median errors in the angle and distance predictions were mostly reduced.
However, it is important to note that both the improved model and the original model
performed poorly in certain scenarios, such as the “pumpkin” scene. This was likely due
to interference from factors such as unnatural lighting in the dataset itself. Therefore, the
optimization effectiveness should be comprehensively evaluated across multiple scenarios.
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Table 2. Test results for the 7scenes dataset using the improved model compared to the original model.

Error Range Chess Fire Heads Office Pumpkin Redkitchen Stairs

10 cm/5 deg (%) 100/100 99.7/99.8 100/100 98.0/97.8 88.8/87.4 91.9/91.3 93.8/93.1
5 cm/5 deg (%) 96.7/96.6 92.5/93.3 99.7/99.4 86.6/85.0 59.2/58.2 61.2/59.3 68.6/70.2
2 cm/2 deg (%) 55.4/52.3 56.0/54.6 92.4/90.3 30.2/28.8 15.0/15.2 14.1/13.3 9.8/8.3
1 cm/1 deg (%) 18.1/16.9 16.1/13.8 54.0/49.6 6.5/6.0 3.5/3.1 2.6/1.8 1.3/1.2
Rotation (deg) 0.7/0.7 0.8/0.9 0.6/0.7 0.8/0.8 1.1/1.1 1.3/1.4 1.1/1.1

Translation (cm) 1.8/1.9 1.8/1.9 0.9/1.0 2.7/2.8 4.3/4.4 4.2/4.3 3.9/3.8
Avg. time (ms) 30.5/34.6 34.4/37.8 32.6/35.9 33.6/38.6 36.8/40.8 38.5/41.9 41.3/42.6

Subsequently, we replicated the experiments on the 12scenes dataset using the same
metrics, with the assessment results of both models presented in Tables 3 and 4. The results
demonstrate that, compared to the original model, our model achieved a higher precision
and a faster speed in relocalization across most indoor scenes, and it generalized well
to different scenarios across various datasets. Furthermore, we observed that the same
model achieved a higher relocalization accuracy on the 12scenes dataset compared to the
7scenes dataset, which may be attributed to the characteristics of the dataset itself. Under
the premise of easily achieving high-precision localization, our improved model showed a
relatively significant enhancement in relocalization speed. This reflects the effectiveness of
our approach, which utilized SQPnP and the early termination of iterative pose solvers to
reduce the localization time, particularly in scenarios with a lower complexity.

Table 3. Test results for the first six scenes in the 12scenes dataset, comparing the improved model
with the original model (ours/ACE).

Error Range apt1_kitchen apt1_living apt2_bed apt2_kitchen apt2_living apt2_luke

10 cm/5 deg (%) 100/100 100/100 100.0/100 100/100 100/100 100/100
5 cm/5 deg (%) 100/100 100/100 100.0/100 100/100 100/100 99.4/99.0
2 cm/2 deg (%) 99.2/98.3 84.8/83.0 91.2/89.2 97.1/96.2 92.8/92.3 78/76.3
1 cm/1 deg (%) 68.3/70.3 47.7/46.7 57.8/52.5 72.4/66.2 62.2/63.6 34.5/31.9
Rotation (deg) 0.4/0.4 0.4/0.4 0.4/0.4 0.4/0.4 0.3/0.3 0.6/0.6

Translation (cm) 0.7/0.7 1.0/1.1 0.9/1.0 0.8/0.8 0.8/0.8 1.3/1.3
Avg. time (ms) 22.4/36.1 21.4/34.4 22.5/38.2 19.9/32.7 21.4/32.6 24.5/38.2

Table 4. Test results for the last six scenes in the 12scene dataset, comparing the improved model
with the original model (ours/ACE).

Error Range Office1-gates362 Office1-gates381 Office1-Lounge Office1-Manolis Office2-5a Office2-5b

10 cm/5 deg (%) 100/100 100/100 100/100 100/100 100/100 100/100
5 cm/5 deg (%) 100/100 99.9/99.1 100/100 100/100 98.2/97.0 99.5/100
2 cm/2 deg (%) 92.0/90.7 86.0/83.4 85.9/83.8 92.6/90.8 81.7/79.5 76.3/74.8
1 cm/1 deg (%) 54.7/54.9 38.7/37.2 35.2/33.9 56.0/56.7 35.6/38.6 36.0/35.1
Rotation (deg) 0.4/0.4 0.5/0.6 0.4/0.4 0.4/0.4 0.5/0.5 0.4/0.4

Translation (cm) 0.9/0.9 1.2/1.2 1.3/1.3 0.9/0.9 1.2/1.2 1.3/1.3
Avg. time (ms) 22.6/37.4 27.8/40.3 21.8/34.4 23.1/34.3 25.3/37.7 23.7/35.2

4.2.2. Outdoor Relocalization

We also conducted equivalent tests on the wayspots outdoor dataset, which is derived
from the MapFree dataset [35] and comprises ten consecutive outdoor scenes. Following
the testing methodology mentioned in the ACE paper, we utilized scenes 200–209 from the
MapFree dataset, with each scene containing 580 training images and 580 testing images.
The experimental results are displayed in Tables 5 and 6. Although both our model and the
original model struggled to achieve results comparable to those for the indoor datasets in
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outdoor settings, relatively speaking, our model’s camera localization performance proved
superior to that of the original model in most parts of the dataset.

Table 5. Test results for the first five scenes in the wayspots dataset, comparing the improved model
with the original model (ours/ACE).

Error Range Bears Cubes Inscription Lawn Map

10 cm/5 deg (%) 80.0/79.1 87.0/89.7 51.2/42.5 35.1/35.4 56.1/56.1
5 cm/5 deg (%) 67.1/66.2 30.1/41.9 20.7/17.3 23.5/23.7 37.2/34.0
2 cm/2 deg (%) 9.0/6.2 3.8/5.9 1.8/1.8 2.1/0.3 3.4/3.0
1 cm/1 deg (%) 0.5/0.7 0.0/1.0 0.0/0.0 0.0/0.0 0.0/0.0
Rotation (deg) 1.1/1.2 0.8/0.8 1.5/1.6 37.0/30.9 1.2/1.2

Translation (cm) 3.6/3.8 6.5/5.7 9.7/12.0 124.3/128.7 7.0/7.6
Avg. time (ms) 85.5/84.9 40.8/46.4 78.3/81.2 108.3/109.3 46.1/47.3

Table 6. Test results for the last five scenes in the wayspots dataset, comparing the improved model
with the original model (ours/ACE).

Error Range Squarebench Statue Tendrils Therock Wintersign

10 cm/5 deg (%) 66.6/64.0 0.0/0.0 34.6/33.0 98.4/100 0.9/0.7
5 cm/5 deg (%) 43.0/42.6 0.0/0.0 5.3/5.7 63.7/75.6 0.0/0.0
2 cm/2 deg (%) 6.1/6.4 0.0/0.0 0.0/0.0 19.6/30.1 0.0/0.0
1 cm/1 deg (%) 0.3/0.0 0.0/0.0 0.0/0.0 6.7/7.4 0.0/0.0
Rotation (deg) 0.7/0.7 13.1/15.6 45.2/49.9 0.8/0.8 0.9/1.1

Translation (cm) 5.9/6.0 476.9/576.2 165.8/183.5 3.9/3.1 388.2/484.7
Avg. time (ms) 41.0/42.6 120.0/126.9 104.9/104.0 21.5/29.7 126.7/123.7

4.2.3. Scene Reconstruction Results

We reconstructed the chess scene from the 7scenes dataset using our improved model.
Given that scene reconstruction requires depth information predicted from all the pixels,
we provisionally employed the previous loss function for this task. As the primary objective
of the model is to enable faster and more accurate camera relocalization, which does not
necessitate scene reconstruction, we retained the improvements made to the loss component
within the model. In Figure 4, we present the process and results of scene reconstruction
using the improved model on the chess scene from the 7scenes dataset.

4.3. Ablation Studies

Subsequently, we conducted isolated ablation studies on the two innovative aspects of
our model using the 7scenes dataset, to separately validate their effectiveness and analyze
the underlying reasons.

4.3.1. Head and Loss Function Improvements

In this section, we discuss improvements made to the model’s head and loss function
while retaining the original pose solver. Table 7 shows the experimental results of the model
on the 7scenes dataset. It is evident that the model achieved an improved accuracy in
camera localization. Unlike the original model, which utilized three serial skip connections
in its head, our improved version included parallel skip and dense connections. Skip
connections help mitigate performance degradation and address potential issues with
vanishing or exploding gradients, while dense connections exploit the network’s feature
information to enhance gradient flow. The parallel structure allowed both to exert their
respective advantages, improving the overall representational power and optimization
efficiency, thereby enhancing the model’s performance. Furthermore, we incorporated
the calculation of Euclidean distance into the loss function for pixels outside a certain
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threshold, in addition to the existing Manhattan distance. The amalgamation of these two
distance measures allowed the loss function to achieve a more comprehensive assessment
of distances, adapting to various data distributions.

Figure 4. The scene reconstruction process and results for the chess scene of the 7scenes dataset using
the improved model. (a) shows the scene reconstruction during the initial phase of model training,
(b,c) depict the scene reconstruction during the model-training process, (d) illustrates the scene
reconstruction after the completion of model training, and (e,f) display the camera localization and
scene reconstruction during model testing, with the bar graph in the top-right corner representing
the percentage of pixel offsets within various segmented thresholds.

Table 7. Performance results for the 7scenes dataset using the model with improvements to only the
head section and loss function compared to the original model (our_head/ACE).

Error Range Chess Fire Heads Office Pumpkin Redkitchen Stairs

10 cm/5 deg (%) 100/100 99.8/99.8 100/100 98.0/97.8 88.5/87.4 91.7/91.3 93.4/93.1
5 cm/5 deg (%) 96.8/96.6 93.2/93.3 99.9/99.4 86.2/85.0 59.2/58.2 59.7/59.3 71.8/70.2
2 cm/2 deg (%) 54.3/52.3 56.1/54.6 91.4/90.3 29.1/28.8 16.3/15.2 13.6/13.3 10.1/8.3
1 cm/1 deg (%) 15.7/16.9 16.0/13.8 51.1/49.6 7.1/6.0 3.4/3.1 2.2/1.8 1.3/1.2
Rotation (deg) 0.7/0.7 0.8/0.9 0.6/0.7 0.8/0.8 1.1/1.1 1.3/1.4 1.1/1.1

Translation (cm) 1.9/1.9 1.8/1.9 1.0/1.0 2.7/2.8 4.2/4.4 4.3/4.3 3.7/3.8
Avg. time (ms) 35.6/34.6 38.2/37.8 34.1/35.9 37.4/38.6 40.6/40.8 42.1/41.9 41.8/42.6

However, as one can see from Table 7, the improved head required additional time
for some scenes only. One reason for this is the increased number of parameters; we
calculated the parameters for the head component and found that, while the original model
had approximately 2.1 million parameters in its head, the improved model’s parameter
count exceeded 2.2 million. On the other hand, compared to residual connections, dense
connections require more computational resources, and to enhance the performance further,
we integrated a channel attention mechanism into the head, which also added to the
time required. Consequently, to compensate for this increased time expenditure and
achieve faster computational results, we improved the loss function by restructuring the
program to delay pixel offset computations, thereby reducing the overall computational
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load. Additionally, we enhanced the pose solver, resulting in an accelerated resolution
process.

4.3.2. Pose Solver Enhancements

In this section, we report on the enhancements made to the pose solver part of our
model, while retaining the original head. Table 8 shows the experimental results for the
7scenes dataset. It is observable that there was an increase in the computational speed
during the camera localization by the model. Compared to the DSAC*-based pose solver
used in the original model, our improved solver integrated two pose-estimation methods:
SQPnP and ITERATIVE. SQPnP can solve for camera poses more quickly and directly via
sparse linear systems, but is slightly less accurate than ITERATIVE, which solves for camera
poses with a greater precision through iterative optimization, albeit at a cost to real-time
performance. The pose-estimation method utilized by this model sequentially invoked
both techniques, comparing the pre- and post-optimization offsets with a threshold of
0.01. SQPnP was selected for substantial corrections to the camera pose, while ITERATIVE
was employed when incremental adjustments neared the accurate value. Additionally,
we imposed further constraints on the early termination of the pose-estimation process.
The previous approach terminated early only if the pixel displacement remained below
a threshold. We introduced a criterion where, if the mean pixel displacement prior to
iteration exceeded 1.2 times that following iteration, the process terminated early as well,
effectively addressing issues where pursuing the accuracy of discrete points results in
overall larger deviations, thus achieving more precise and faster localization in certain
scenarios.

Table 8. Performance results for the 7scenes dataset using the model with improvements to only the
pose solver compared to the original model (our_PnP/ACE).

Error Range Chess Fire Heads Office Pumpkin Redkitchen Stairs

10 cm/5 deg (%) 100/100 99.8/99.8 100/100 97.8/97.8 88.2/87.4 91.9/91.3 93.7/93.1
5 cm/5 deg (%) 96.9/96.6 93.2/93.3 99.6/99.4 85.5/85.0 57.6/58.2 59.3/59.3 67.6/70.2
2 cm/2 deg (%) 52.2/52.3 53.2/54.6 90.6/90.3 29.5/28.8 14.6/15.2 13.1/13.3 9.5/8.3
1 cm/1 deg (%) 17.4/16.9 16.4/13.8 49.6/49.6 6.1/6.0 3.7/3.1 2.0/1.8 1.3/1.2
Rotation (deg) 0.7/0.7 0.8/0.9 0.6/0.7 0.8/0.8 1.1/1.1 1.3/1.4 1.2/1.1

Translation (cm) 1.9/1.9 1.9/1.9 1.0/1.0 2.8/2.8 4.4/4.4 4.4/4.3 4.1/3.8
Avg. time (ms) 30.3/34.6 32.6/37.8 32.3/35.9 33.3/38.6 35.7/40.8 37.0/41.9 37.8/42.6

As indicated by Table 8, the pose solver that integrated ITERATIVE and SQPnP
effectively enhanced the speed of pose estimation. It compensated for the computational
slowdown caused by the improved head component without noticeably affecting the
accuracy of pose estimation.

5. Conclusions

In this paper, we proposed a novel network model that rapidly relocalizes cameras
in three dimensions using RGB images. This model improves upon the ACE model with
refinements to the head section, the loss computation, and the pose-estimation components,
achieving higher camera localization precision and a faster localization speed compared
to the original ACE model. Firstly, for the head section, we restructured it by integrating
dense connections, skip connections, and channel attention mechanisms, replacing the
previous two-layer skip connections. Subsequently, we rewrote the loss calculation code,
adjusting the order of coordinate offset computations that map to the pixel coordinate
system to reduce the computational load. Simultaneously, we incorporated both Euclidean
and Manhattan distances as losses for significant coordinate offsets, enhancing the model’s
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generalizability. Lastly, we modified the pose solver by adopting the AP3P method instead
of the conventional P3P within RANSAC pose-estimation hypotheses. In the subsequent
iterative optimization process, we integrated SQPnP and ITERATIVE methods, replacing
the previous ITERATIVE pose solution, and added early-exit conditions during pose
iteration optimization to mitigate the risk of converging to local optima. Ultimately, this
allowed us to achieve faster pose estimation while maintaining the accuracy, better suiting
the needs of real-world applications. The model was validated on the 7scenes, 12scenes, and
wayspots datasets, demonstrating that the improvements in our model exhibited a certain
level of generalizability across different scenarios. Furthermore, the ablation experiments
elucidated the theoretical basis for the improvements, further confirming the effectiveness
of our enhancements. Our work still has limitations. On one hand, the model was only
trained and tested on datasets and has not yet been evaluated in real-world application
scenarios, which will be the focus of our future work. On the other hand, similar to most
previous models, our model still struggles to achieve a high localization accuracy under
significant outdoor lighting variations, and it cannot guarantee robust generalizability
across diverse environments. In the future, we will further refine the model to enhance its
performance under varying lighting conditions and improve its environmental adaptability.
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Abstract: The q-method for pose estimation utilizes on-board measurement vectors of
reference objects to calculate air vehicle position and orientation with respect to an Inertial
frame. This new method solves for the quaternion eigenvalue solution of the optimal
pose to minimize the error in the derived system of equations. The generalized q-method
extends Davenport’s q-method for satellite attitude estimation by incorporating inertial
position into the relative model and eliminating assumptions throughout the derivation
that require spacecraft applications. Thus, the pose estimation model is developed and
implemented for UAV applications using an onboard camera to obtain measurements
in a controlled environment. Combined with numerical methods, algorithm outputs for
position and orientation are validated against truth data to prove accurate estimation
despite sensor error.

Keywords: q-method; drone; UAV; pose; estimation; attitude; quaternion; relative; navigation

1. Introduction

In aerospace engineering and robotics, the estimation of attitude and position is an
essential factor for precise autonomous operations [1–5]. Attitude estimation enables one to
determine the vehicle’s orientation in a three-dimensional space, while position estimation
determines the vehicle’s translational coordinates in a three-dimensional space. Modern
methods integrate optimal filtering techniques by fusing measurements from local or
global sensors with knowledge of the vehicle’s motion dynamics. Traditional methods
often involve sensor fusion techniques combining visual, inertial, and GPS data. Visual
odometry and simultaneous localization and mapping (SLAM) have been widely adopted
for pose estimation using cameras and other imaging sensors, while inertial measurement
units (IMUs) are often used to provide complementary motion information [6]. Techniques
such as the Kalman filter, Extended Kalman Filter (EKF), and Unscented Kalman Filter
(UKF) have been extensively applied. For instance, Zhang et al. [7] demonstrated the
effectiveness of EKF in fusing data from inertial measurement units (IMUs) and global
navigation satellite systems (GNSSs) to improve the robustness of UAV positioning in
urban environments. Similarly, Liu et al. [8] explored the use of particle filters for attitude
estimation in multi-sensor setups, highlighting their resilience to sensor noise and dynamic
changes. One significant challenge in these methods is to deal with sensor noise and
environmental conditions [9] that affect sensor performance, such as poor lighting or
featureless scenes. Several researchers have focused on enhancing these techniques through
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the integration of LiDAR and deep learning-based approaches [10] to improve robustness
and real-time performance, particularly in GPS-denied environments. Another challenge is
associated with handling the coupled dynamics with the estimated position and attitude
simultaneously [11]. Therefore, this research develops a generalized formulation that
combines the estimation of position and attitude based on the well-known q-method
framework [12].

Using the quaternion (q-method) for attitude estimation was a method developed by
Paul Davenport [12,13] as a compact solution for optimal estimation of the rotation of a
body relative to an Inertial frame. Quaternions are widely used because of their efficiency
and computational advantages [14,15] over other three-parameter attitude representations,
such as Euler angles [16,17]. They are ideal for avoiding singularities, such as gimbal lock,
which can occur when using Euler angles during large rotations [18]. Quaternions are also
computationally lighter and more stable in dynamic conditions, which makes them popular
in real-time applications [19,20]. The integration of a quaternion-based algorithm with
the Kalman filter has been widely applied for real-time attitude estimation in aerospace
applications [21,22]. Another progression has led to the development of more advanced al-
gorithms, such as Unscented Kalman Filters (UKFs) and particle filters, which demonstrate
enhanced performance in handling non-linear systems [23]. Additionally, recent advance-
ments have incorporated deep learning approaches to enhance the pose estimation process.
For example, methods that fuse quaternions with convolutional neural networks (CNNs)
have demonstrated high levels of accuracy in both orientation and position estimation [24].
These developments have researched uncoupled attitude estimation without integrating
the translational dynamics. The need for solutions that integrate the coupled dynamics is
essential for many motion-based proximity applications.

This paper generalizes Davenport’s q-method to solve for the relative pose—the cou-
pled state of attitude and translation—for estimation of UAVs with onboard measurements.
This paper first provides a comprehensive overview of mathematical preliminaries and
Davenport’s q-method for attitude estimation, including a background on the Wahba prob-
lem [25] and laying a solid foundation for the subsequent advancements. The development
of the quaternion-based approach is explained, highlighting its advantages over traditional
methods in terms of simplicity and reduced computational overhead. Following this, the
q-method pose estimation model is formulated as a novel, more generalized approach that
optimally estimates a body’s position and orientation. This approach requires two sets of
measurements for reference points, enabling the calculation of the optimal relative pose
from an Inertial frame. This framework eliminates various assumptions inherent to the
original technique for spacecraft application and provides a precise method for aircraft and
spacecraft pose estimation when given known inertial reference data and body-generated
measurements. The intricacies and methodologies here are fully documented. Subse-
quently, a simulation is constructed to corroborate the practical application of the newly
devised pose estimation method in a controlled environment. Numerical methods are
employed to solve the newly formed six degrees of freedom (6DoF) estimation equations
to minimize the system error. This multifaceted analysis ensures empirical evidence of this
effective technique in real-world settings.

By unifying the models for attitude and position estimation, the generalized q-method
offers a comprehensive solution for the relative pose estimation problem, bridging the gap
between quaternion-based rotation estimation and full pose determination. Through rigor-
ous derivation of the governing equations and models, we provide a cohesive framework
that extends the reach of the q-method, setting the stage for its practical application in
aerospace systems and beyond. The main contribution is summarized as the development
of a generalized q-method for pose estimation. This method is based on formulating the
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coupled dynamics of 6DoF motion in a singularity-free manner. The generalized q-method
was tested using relative pose environments in two different attitude configurations with
realistically acquired data and an experimental setup in the SPACE lab. The performance of
the method was validated against ground truth data obtained from a Vicon system, which
provides sub-millimeter accuracy.

2. Mathematical Preliminaries

2.1. Coordinate Frame and System Definition

Illustrated in Figure 1, there are three frames: the Inertial reference (I) frame, the Body
reference (B) frame, and the relative reference (D) frame. The Inertial frame remains fixed in
space, while the Body frame is free to move throughout the system, relative to the I frame.
The B frame is oriented by some rotation C (Direction Cosine Matrix) relative to the I frame.
The respective position vectors from the Inertial frame (system origin) are given by rB/I and
rD/I. rD/B goes to D from B, and can be given with respect to the body-centered frame rB

D/B,
or the inertial-centered frame rI

D/B ∵ CrI
D/B = rB

D/B. This relation will be upheld across
estimation methods; the upfront definitions are given because individual notation varies,
but the fundamentals bind together the varying models with a unifying system. Ultimately,
the final goal is to obtain a solution that yields the rotation C or q and the position of the
body with respect to the Inertial frame rI

B/I. This general system relation will be interrelated
across all forms of this problem.

Figure 1. Relative coordinate frame system definition.

2.2. Wahba’s Least Squares Optimization Problem

In 1965, mathematician Grace Wahba formulated an intuitive way to describe a rota-
tion between two coordinate systems [25]. This method built the problem as a least squares
optimization problem to minimize the error between the known relative reference position
vector in the Inertial frame rI

D/B and the measurements in the B frame rB
D/B. This optimiza-

tion problem can then lead to the optimal estimate of the rotation matrix C that satisfies
the relation between the two frames CrI

D/B = rB
D/B . For ease, we will designate r̂ as the

unit vector for rI
D/B and b̂ as the unit vector for rB

D/B used in this model. Also, this model
was derived for spacecraft attitude estimation purposes and finds use in [26] with the
simplification r = rI

D/I ≈ rI
D/B (Referencing Figure 1). This assumption can be made when

rI
D/I >> rI

B/I where the relative distance of a celestial body for D reference measurements
(e.g., star catalog) is far greater than the distance of a satellite body to the earth.
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Now, the relation for each reference vector Cr̂i = b̂i is applicable in an ideal world
where body-frame measurements are without any error. In reality, all N measurements b̂i

will posses some form of innate sensor error, noise, or uncertainty. The error term for each
measurement can be condensed into δi and gives the relation b̂i = Cr̂i + δi.

This can then be formulated as a least squares problem to find the solution for C to
minimize the error δi in the system shown in Equation (1). Furthermore, by expanding the
least squares it is converted into a minimization problem for L(C) with Equation (2), and
solving for the optimal direction cosine matrix C.

δ2
i = ‖b̂i − Cr̂i‖2 =

(
b̂i − Cr̂i

)T(
b̂i − Cr̂i

)
(1)

L(C) =
1
2

n

∑
i=1

αiδ
2
i =

1
2

n

∑
i=1

αi

(
b̂T

i b̂i + r̂T
i CTCr̂i − r̂T

i CTb̂i − b̂T
i Cr̂i

)
(2)

Given that L(C) = min, it can also be modeled as a maximization problem where
G(C) = max. The term αi is a set of non-negative weights for each observation; αi may
remain unweighted with a scalar value of one if desired or uncertain. Through some
algebraic simplification, the following equation is obtained:

G(C) =
n

∑
i=1

αib̂
T
i Cr̂i = 1 − L(C) = max (3)

This leads to the one final equation in simplified form, maximizing the trace of the direction
cosine matrix C, Equation (4), and the summation matrix B, Equation (5).

G(C) = tr[CBT] = max (4)

B =
n

∑
i=1

αib̂i r̂
T
i (5)

This forms the basis of Wahba’s problem for optimal attitude estimation. The objective
is to solve for a direction cosine matrix C that maximizes the function G(C). However, it
is not always the easiest to solve for C directly—although there have since been solutions
developed to do so [27]. The formalized solution to obtain the solution using the quaternion
is given in the following sections.

2.3. Functional Concepts for Quaternions

The quaternion [28] q is an application of complex numbers on a Clifford algebra in
R4 defined as the following:

q = q0 + q1i + q2 j + q3k (6)

The group of quaternions as defined by Hamilton in 1843 [29] utilizes the imaginary
units that follow the definition i2 = j2 = k2 = ijk = −1 and {q0, q1, q2, q3 ∈ R}. It is also
common to represent the quaternion as two components, the vector component (i, j, and
k) and the scalar component (denoted by q0). The purpose of the scalar component is to
provide an additional, redundant parameter that keeps the quaternion fully defined in the
event that a singularity may occur. This keeps the quaternion singularity free. Another
way of thinking of it is thus:

q = (q0, q) (7)

Note that q0 = cos
(

φ

2

)
∈ R and q = [q1, q2, q3]

T = e sin
(

φ

2

)
,∈ R3. Here, e is

the principal axis unit vector [i, j, k] and φ is the principal angle for attitude and rotation
representation purposes. Additionally, the quaternion may sometimes be defined with the

229



Sensors 2025, 25, 1939

scalar component last as q4. However, for the purpose of this paper, the quaternion will
always use the scalar component as the first element q0. In practice, the scalar component
tells the angle of rotation, and the normalized vector component provides the direction of
the rotation axis.

A quaternion used for attitude representation is a unit quaternion (also called rotation
quaternion) with norm ‖q‖ = 1 and satisfies the condition qTq = 1—similarly to how a
direction cosine matrix (DCM) possesses its orthogonal property such that CCT = I3×3.
The norm constraint is the additional parameter that fully constrains the quaternion in the
event of an angular singularity. A quaternion describing the orientation of the X frame
from the Y frame (qX/Y) satisfies the condition (qY/X)

∗(qY/X) = (qY/X)(qY/X)
∗ = 1q, where

1q � (1, 03×1). See Table 1 for operation definitions.
Due to the quaternion being defined in such a way that it is constructed with a scalar

component and a vector component, ordinary linear algebra operations may not apply
to the quaternion as they would a typical vector. As such, Table 1 [30] summarizes the
operations that are implemented when working with quaternion algebra. For example, the
distinction must be made that (qY/X)

∗(qY/X) is the quaternion multiplied with its conjugate
using the quaternion operations, while qTq is to be taken as the traditional 4 × 1 column
vector ordinarily multiplied by its transpose.

Table 1. Quaternion operations.

Operation Definition

Addition a + b = (a0 + b0, a + b)
Scalar multiplication λa = (λa0, λa)
Multiplication ab = (a0b0 − a · b, a0b + b0a + a × b)
Conjugate a∗ = (a0,−a)
Dot product a · b = (a0b0 + a · b, 03×1)
Cross product a × b = (0, a0b + b0a + a × b)
Norm || a ||= √

a · a

Three-dimensional vectors may also be interpreted as special cases of quaternions.
This allows for combined use of quaternions along with vectors in a three-dimensional
space for dynamics governing equations. Redefining a vector s such that s ∈ R3 is in the
form of a quaternion is carried out as shown below.

sq =
(
s0, s
)

with s0 = 0 (8)

Thus, the distinction is formed to differentiate the quaternion itself used for attitude
representation, and variables in ‘quaternion’ form. Consider that when a vector s is
converted into quaternion form, it will not be a unit quaternion. Lastly, the quaternion has
explicit applications for changing reference frames—both in general and also for variables
in quaternion format. The change of reference frame for a vector in quaternion form from
the X frame to the Y frame is achieved via the following:

sY
q = q∗Y/XsX

q qY/X (9)

2.4. Davenport’s q-Method for Attitude Estimation

A solution for this estimation problem may be obtained by substituting the quaternion
in place of the direction cosine matrix. The equation below is an identity for a direction
cosine matrix as a function of q. Here, q0 is the quaternion scalar component, q is the
quaternion vector component, and [q×] is the skew-symmetric matrix of q.
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C(q) =
(

q2
0 − qTq

)
I3×3 + 2qqT − 2q0[q×] (10)

Through some manipulation, this optimization problem can be parameterized in
terms of q. By substituting Equation (10) into G(q) for Equation (4) and isolating the
quaternion, the system objective function G(q) can be put into a compact format of qTKq.
K is a 4 × 4 matrix, and this provides a quadratic form which will allow for easy minimiza-
tion [31] (or maximization, in this case).

G(q) = {q0 q}T

⎡⎣ tr(B) ∑n
i=1 αi

[
b̂i×
]
r̂i(

∑n
i=1 αi

[
b̂i×
]
r̂i

)T (
B + BT − tr(B)I3×3

)
⎤⎦{q0

q

}

= qTKq

(11)

A constraint qTq = 1 is then added to solve for the nontrivial solution of the opti-
mization problem, as shown in Equation (12). This provides the optimal quaternion qopt

that defines the rotation between two frames. Afterwards, differentiating with respect
to q and equating q = 0 solves for the maximum value of this quadratic form, shown in
Equation (13).

G∗(q) = qTKq − λ
(

qTq − 1
)
= max (12)

dG∗(q)
dq

= 2Kq − 2λq = 0 (13)

Kqopt = λmaxqopt (14)

This yields a very straightforward solution where the optimal quaternion qopt is exactly
the eigenvector that corresponds to the maximum real eigenvalue λmax for matrix K. There-
fore, following this procedure provides qopt to minimize the error in the attitude estimation
system via the K matrix. This involves using summations of the B matrix—constructed
with measurement vectors b̂i and known reference direction vectors r̂i. Given the relation
for Equation (10), the solution will provide the rotation matrix C that describes the rotation
transformation from the Inertial frame to the Body frame.

For awareness, there are some nuances that can be added to the q-method attitude
estimation process, the first being that b̂i and r̂i are not required to be directional unit
vectors. Both bi and ri can be positional vectors instead. The results for attitude estimation
are identical; the exact derivation of the Wahba problem and q-method would differ slightly
due to a lack of simplification that comes with the unit vectors, but the core process and
equations will remain the same. In practice, unit directional vectors are more commonly
used [32] because knowledge of the precise distance for a reference body can be difficult,
especially for satellite applications.

With the above assumptions in play, Davenport’s q-method yields great results. How-
ever, we can develop a more generalized model that will continue to be applicable for
satellite applications, but will not be limited by approximations or simplifications. The
following section will expand on this knowledge to incorporate position estimation in
tandem with attitude estimation to formulate a robust pose estimation method.

3. q-Method Pose Estimation Derivation

This section will now shift focus onto the newly developed q-method for pose estima-
tion. Prior use of the q-method focused on spacecraft applications for attitude estimation,
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whereas this more generalized approach eliminates both the unit vector direction and
r = rI

D/I ≈ rI
D/B assumptions for the ’known’ reference values of ri. This indeed compli-

cates the problem and makes it more difficult to estimate, but also incorporates inertial
position p into the estimation; the final model shows promising compatibility for 6DoF
drone pose estimation. Figure 2 illustrates how the q-method pose estimation will relate
back to the global system definitions in Figure 1, differing from the original q-method.
The objective is to estimate the attitude, C, as well as the satellite position, p, in order to
estimate the pose of the air vehicle. A list of variables is provided:

• rI
B/I—Body position from Inertial Reference (Earth), to be estimated, p.

• rI
D/I—Known reference position from Inertial frame (Earth), r.

• rB
D/B—Measured position vectors in the Body frame, with error, b.

• rI
D/B—Unknown. Essentially requires prior knowledge. If we had this, position

estimation would be easy. Let it be known as d. We will use this to estimate p given
that d = r − p by following the vector addition for the system definition.

Figure 2. Definition of q-method pose estimation system.

We are able to take advantage of a simple substitution for rI
D/B by virtue of system

definition commonality. The q-method takes rI
D/B = r̂. For the q-method pose derivation,

let rI
D/B = d = r − p. The relation for the drone body measurements with error continues as

b̂i = Cd̂i + δi. Substituting this equivalence into Equation (1), a slight modification is made
to the original Wahba problem. This straightforward substitution unifies the estimation
derivations, allowing for a similar system of equations. Throughout this derivation, all
aforementioned variables will be kept identical, including the weighting factor αi. Cu-
riously, there exists other research expanding upon the Wahba problem to incorporate
position [33,34], but not for the quaternion-based purposes used here.

L(C) = δ2
i = ‖bi − C(ri − pi)‖2 =

(
bi − C(ri − pi)

)T(bi − C(ri − pi)
)

=
(
bi − Cdi

)T(bi − Cdi
) (15)

Further expanding the minimization cost function L(C, d), and then grouping terms, gives

L(C, d) =
1
2

n

∑
i=1

αiδ
2
i =

1
2

n

∑
i=1

αi

(
b

T
i bi + d

T
i CTCdi − d

T
i CTbi − b

T
i Cdi

)
(16)
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L(C, d) =
1
2

n

∑
i=1

αib
T
i bi +

1
2

n

∑
i=1

αid
T
i di −

n

∑
i=1

αib
T
i Cdi (17)

Note that (17) possesses two terms that Equation (3) combines into one, due to unit
vector measurements. Equation (3) also converts the problem into a maximization problem
for simplicity, but the above form continues with the form L(C, d) and L(q, d), opting to
keep the third term negative. Also, note the dimensions of q (4 × 1) and d (3 × 1); the
following equations make use of the aforementioned ’quaternionized’ vector format in
Equation (8) when required.

The third term also still resembles that in (3), and subsequently will be equivalent to
tr[CβT]. Like B in Equation (5), β is defined as

β =
n

∑
i=1

αibid
T
i (18)

Similarly, the cost function is put into terms of L(q, d) using Equation (10). Only the
third term is a function of q (or C), and substituting d for r̂ allows for the use of (11), as
derived by Davenport. The cost function then becomes

L(q, d) =
1
2

n

∑
i=1

αib
T
i bi +

1
2

n

∑
i=1

αid
T
i di − qTκq (19)

where the third term qTκq is expressed as

qTκq = {q0 q}T

⎡⎣ tr(β) ∑n
i=1 αi

[
bi×
]
di(

∑n
i=1 αi

[
bi×
]
di

)T (
β + βT − tr(β)I3×3

)
⎤⎦{q0

q

}
(20)

With the cost function f (x) now in terms of the variables x = [q, d] of interest, the
quaternion norm constraint qTq = 1 is imposed as an equality constraint g(x). The La-
grangian function [35] is applied to obtain the optimal solution that minimizes the objective
function f (x) (minimizing the error), therefore obtaining the optimal solution for q and d.
The Lagrangian function is defined as L(x, λ) ≡ f (x)− λ〈g(x)〉.

L(q, d, λ) =
1
2

n

∑
i=1

αib
T
i bi +

1
2

n

∑
i=1

αid
T
i di − qTκq − λ(qTq − 1) (21)

The necessary condition is implemented to minimize the system such that
∂L
∂d

= 0

and
∂L
∂q

= 0. The partial differential equations used to solve the system are shown below.

∂L
∂d

= 0 =
n

∑
i=1

αidi − qT ∂κ

∂d
q (22)

∂L
∂q

= 0 = 2κq − 2λq (23)

Equations (22) and (23) can now be used to solve for the optimal position estimation

p∗ and optimal quaternion to describe the rotation qopt.
∂L
∂q

fortunately gives a solution

comparable to the q-method, making use of κ shown in (20) to find qopt as the eigenvector
for the corresponding maximum real eigenvalue. E.g., (22) will substitute di = (ri − p∗)
so that ∑n

i=1 αidi = ∑n
i=1 αiri − ∑n

i=1 αi p∗. The end set of equations for q-method pose
estimation are hereby formed.
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p∗ =
1
N

( n

∑
i=1

αiri − qT ∂κ

∂d
q
)

(24)

κqopt = λmaxq∗ (25)

One last simplification is made due to the term
∂κ

∂d
within Equation (24). The partial

differential of κ4×4 w.r.t. a vector d ∈ R3 yields a 4 × 4 × 3 higher-order tensor. The
evaluation of this term can be found in a prior publication [36] as well as validation of
q-method pose estimation for simulated spacecraft applications. Thus, an intuitive equation
for p∗ exists by again referencing the system definition and taking a weight average for
p = rI

B/I = rI
D/I − rI

D/B. By definition, rI
D/B = qI/BrB

D/Bq∗I/B = q∗B/IbiqB/I, where q∗ is the
quaternion conjugate.

p∗ =
1
N

( n

∑
i=1

αiri − q〈
n

∑
i=1

αibi〉q∗
)

(26)

To summarize, the goal of q-method pose estimation is to find p∗ and qopt. In order
to do so, one must first formulate κ, making use of β, which makes use of d. If one of the
optimal values (p∗ or qopt) is known, the other can then easily be calculated. However, a
solution can be found using any valid numerical solving method. The next sections will
investigate the results using a numerical solving scheme in parallel with physical sensors
in a controlled lab environment.

4. Experimental Setup and Methodology

4.1. Experimental Overview and Setup

To further verify the functionality of the system of equations, the q-method pose
estimation is incorporated with onboard measurements obtained from drone-camera ex-
periments. Figure 3 illustrates how a Quanser drone used an Intel RealSense (R200) camera
to measure the locations of five objects/beacons in 3D space. The beacons are placed at
varying locations and depths upon a curved surface. The camera’s depth-sensing feature
was used to determine the location of each beacon in space relative to the camera/drone
frame. Camera detection of each beacon is shown in Figures 4 and 5. These are used to
provide positional estimates in a pictured frame, and then converted into the body-centered
drone frame.

To validate correct estimates, the results were compared against true reference data.
Vicon’s motion capture system defined the locations of the five beacons as well as the
drone. The Vicon system consists of eight high-resolution cameras that capture moving
objects at a rate of 120 Hz. Each beacon and drone were defined as rigid bodies (objects)
in three dimensions using reflective markers. Figure 4 shows two of the eight Vicon
cameras mounted across the lab and test setup, forming the Inertial frame. This provides
a full overview of the hardware used for the experimental setup across the Body and
Inertial frames.

To test the method for orientation and position estimation in a physical setting, the
drone operated on a static mount while detecting the beacons to obtain reference measure-
ments. The first experiment used a stabilized, nominally oriented (no-tilt) drone to measure
beacons, as shown in Figure 5 with the drone camera. A second experiment was performed
where the drone was statically tilted at a roll angle of −15 degrees in the Body frame, as
shown in the Figure 6, also with the onboard camera.
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Figure 3. Quanser drone and five reference beacons.

(a) (b)

Figure 4. (a) RGB imagery from drone camera. (b) Partial Vicon system within SDSU SPACE lab.

Two corrections to the experimental setup were required while post-processing data.
First, the camera position placed on the drone needed to be taken into account, as it was
+15 cm ahead of the true Vicon-defined drone centroid. This fix was performed by adding
a +15 cm bias to the Vicon positional truth data during the pose estimation analysis and
validation. Second, the camera measurements contained a constant bias outside of the
camera position that needed to be considered. This was achieved by performing a static
calibration in the same position as the experiment for both drone orientations. Afterwards,
the mean bias of the camera for each individual reference marker was subtracted. Further
details will be provided in the following section after the inputs.
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Figure 5. Beacon detection and location definitions.

Figure 6. Reference beacons measured with 15◦ tilted drone.

4.2. Initial Conditions and Inputs

The two experiments were performed and the resulting output data were fed into
MATLAB 2018a for post-processing, algorithm implementation, and analysis. Figure 7
provides an illustration of or pseudo-code for the validation process for both configurations.
Figure 8 provides a visual representation of the true data within MATLAB using the Vicon
system. A correction factor of +15 cm is added to account for the position of the camera on
the drone with respect to the Body frame. This offset can be seen in the figure, as the camera
centroid is offset from the drone body itself. Additionally, several hundred measurements
were taken to characterize the average measurement bias of the camera sensor and correct
the input reference measurements. The estimation algorithm and results come from a single
instantaneous state—one each for the 0◦ roll and −15◦ roll.

The pose estimation using the previously outlined system of equations was accom-
plished with the aid of the built-in MATLAB numerical equation solver fsolve for this
multi-variable system. The function uses a Trust-Region Dogleg method to solve for the
optimal solution that minimizes the residual error of the system. The following is the exact
input to calculate the residual f (x) used within the solver based on Equations (25) and (26).

f (x) = 0 =

⎡⎣∑n
i=1 αi(ri − p∗)− q〈∑n

i=1 αibi〉q∗

(2κq − 2λq)/10

⎤⎦ (27)

The second row of f (x) is multiplied by 10−1 in order to better condition the system.
Equating both sides of the equation to 0, this multiplication scalar does not make a differ-
ence to the solution. λ is included for the purpose of solving the system numerically. Thus,
f (p, q, λ) = 0 where x = [p, q, λ] to minimize the system.
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Figure 7. Procedural validation for q-method pose estimation.

Figure 8. Experimental visualization. [Left: 0◦ roll. Right: −15◦ roll].

An initial guess x0 is required to iteratively solve the function via numerical methods.
As such, a nearby initial guess is arbitrarily selected for the quaternion q0, position p0, and

λ of the system. For this experiment, let p0 = [0, 0, 1] m, q0 = [1; 0; 0; 0], and λ0 = Σbi bi
T

.
This formulation for λ0 is obtained through empirical observations of what generally works
well while using this estimation model in conjunction with a numerical equation solver.

Table 2 provides the value of each parameter to initialize the system. The results
generated hereafter make use of these provided inputs. Given N reference points for
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known reference vectors rI
D/I and N body measurements bi with measurement error σi, the

objective is to estimate p∗ and qopt to be as close to the true values rI
B/I and qB/I as possible.

Measurement errors and correction factors across each roll condition are all provided
in Table 2 for transparency. Starting with the reference measurement error σi, a scalar
percent error value is given for each on-board measurement of each reference vector in
the Body frame. σi is computed using the experimental and true positional values of the
reference beacons with respect to the camera given as |rB

D/B − bi|/|rB
D/B| × 100%. Mean

measurement error ‖σi‖2 is the average error across all N measurements used in this
procedure. This measurement error, while missing directional value, is moreso a simplified
method to partially quantify the error in the system when comparing the accompanying
algorithm results.

In addition, the average sensor error σ is the average error across time (700 data points)
of the camera sensor for each reference beacon. A static collection of data identical to bi is
performed to verify that the snapshot state obtained in bi is not drastically different from
the average of the camera’s ordinary noisy measurements. The same static collection of
data was also used to detect the sensor’s average experimental bias δrB

D/B to correct the

raw measurement vectors bi
†
. Thus, the bias correction is made such that bi = bi

†
+ δrB

D/B.
Information for methods and error are disclosed, but procedures for absolute correction
and minimization of sensor error are intentionally not incorporated here due to the desire
to understand estimation performance with some degree of measurement error.

Table 2. Simulation initial condition inputs.

Parameter Sym. Unit Input 0◦ Roll Input −15◦ Roll

Num. Ref. Measurements N — 5 5

True Orientation qB/I — [0.9999; 0.0007; −0.0014; −0.0044] [0.9913; −0.1309; 0.0003; 0.0004]

True Position rI
B/I [m] [0.1454, −0.0038, 1.0788] [0.1539, −0.0127, 1.0842]

Ref. Measurement Error σi [%] [0.28, 0.29, 0.23, 0.05, 0.40] [0.63, 0.64, 0.01, 0.27, 0.36]

Mean Measurement Error ‖σi‖2 [%] 0.2487 0.3809

Average Sensor Error σ [%] [0.25, 0.24, 0.30, 0.33, 0.25] [0.29, 0.40, 0.31, 0.42, 0.22]

Measurement Vectors
(w/Error) bi [m]

⎛⎜⎜⎜⎜⎝
1.317 0.326 0.241
1.390 0.186 −0.080
1.472 −0.201 0.336
1.339 −0.490 0.102
1.464 −0.192 −0.261

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

1.327 0.276 0.312
1.367 0.224 −0.036
1.465 −0.252 0.267
1.459 −0.091 −0.307
1.324 −0.470 −0.032

⎞⎟⎟⎟⎟⎠

True Reference Positions rI
D/I [m]

⎛⎜⎜⎜⎜⎝
1.467 0.335 1.316
1.530 0.194 0.994
1.616 −0.190 1.411
1.606 −0.1821 0.814
1.485 −0.481 1.178

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

1.469 0.333 1.316
1.533 0.193 0.993
1.618 −0.188 1.409
1.608 −0.180 0.812
1.485 −0.478 1.177

⎞⎟⎟⎟⎟⎠

Raw Measurements bi
†

[m]

⎛⎜⎜⎜⎜⎝
1.416 0.131 0.241
1.507 0.013 −0.089
1.495 −0.279 0.315
1.495 −0.274 −0.276
1.355 −0.483 0.084

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

1.404 0.173 0.142
1.507 −0.008 −0.140
1.548 −0.171 0.353
1.478 −0.314 0.213
1.363 −0.456 −0.198

⎞⎟⎟⎟⎟⎠

Camera
Correction Factor δrB

D/B [m]

⎛⎜⎜⎜⎜⎝
−0.099 0.196 0.000
−0.117 0.173 0.009
−0.023 0.078 0.021
−0.156 −0.216 0.378
0.109 0.291 −0.346

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
−0.077 0.103 0.170
−0.140 0.232 0.104
−0.083 −0.081 −0.087
−0.019 0.222 −0.520
−0.038 −0.014 0.167

⎞⎟⎟⎟⎟⎠
Weight Parameter α — 1.0 1.0
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5. Results

The generalized q-method pose estimation formulation was able to successfully esti-
mate both the position p and orientation qopt of the drone for both attitude configurations.
Both p and qopt are the optimal values for the pose that minimizes the error of the system
given the drone camera measurements with sensor noise. Figure 9 is designed to mirror the
system definition (Figure 2). It overlays the estimated position p onto the true body position
vector rI

B/I. Here, all inertial and truth data obtained from the Vicon system are used to
validate the results of the pose estimation. The inertial system origin is the center floor
of the laboratory in which the experiment is performed. True reference position vectors
rI

D/I are essential prior-knowledge of the Inertial frame or system, or wherever the drone
intends to operate—also obtained by Vicon.

The position error (∼1.8% and 1.56%) is calculated as ‖rI
B/I − p∗‖/‖rI

B/I‖, and the
position angular error is defined as cos−1((rI

B/I · p∗)/‖rI
B/I · p∗‖

)
to represent the angular

error between the true vector and estimated position. The quaternion attitude error is
not as intuitive to represent, but is found by the principal angle φ within the quaternion
product δq = qB/Iq∗opt [15] where q∗opt is the conjugate of the estimated quaternion. The
equation for φ is given by φ = 2 cos−1(q0) from the prior quaternion definition. Observe
that the quaternion error (principal angle error, δφ) for both test cases is ∼0.453°and 0.716°
respectively, between the true and estimated quaternion. The small positional error and
small quaternion error demonstrate the reliability and accuracy of the q-method for pose
estimation despite the relatively few reference measurements.

Figure 9. Pose estimation results.
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The remaining figures detail the results of interest across each iteration of the numerical
solver until convergence is reached. Iterative results for both the 0° roll and −15° roll cases
are overlaid within Figures 10–12 for ease of presentation. Figure 10 displays the principal
angle error δφ for an understanding of the aggregate attitude error. The bottom plot of the
same figure shows the norm of the residual error ‖ f (x)‖ as the function fsolve converges
to a stopping condition.
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Figure 10. Principal angle error between true and estimated quaternions (Top) and norm of residual
error for numerical solver (Bottom) across iterations.

Figure 11 itemizes each element of the attitude error (δq1, δq2, δq3, δq4) between the
true quaternion qB/I and the estimated quaternion qopt. Lastly, Figure 12 shows the error
for each element between the estimated and true positions. The deltas are not expected
to be exactly zero; the expectation is not to find the exact true value, but rather to find
the optimal estimation that minimizes the error of the system (introduced by the noisy
measurements). Further performance enhancements could be made with the addition of
more reference points. For an estimation model like this, the enhancements will directly
lead to improved performance.

All figures and results presented show the advantage of the pose estimation q-method
in its ability to solve for the state of the system with minimal error. In each instance, the
numerical equation solver concluded its convergence and obtained a sufficient solution for
the UAV. When compared to the inertial, Vicon truth data, the outcome for the predicted
position and orientation is greatly comparable despite the error embedded in the attached
camera measurement reference vectors.
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Figure 11. Attitude error between true and estimated quaternion elements [δq1, δq2, δq3, δq4] across
iterations for numerical solver.

Estimated Position Error

0 50 100 150
iterations

-0.2

-0.1

0

E
rr

or
 p

x [m
]

0 50 100 150
iterations

-0.02

0

0.02

E
rr

or
 p

y [m
]

0 50 100 150
iterations

-0.1

-0.05

0

E
rr

or
 p

z [m
]

0° roll 15° roll

Figure 12. Error for estimated position elements [px, py, pz] across iterations for numerical solver.

Method Comparison and Evaluation

The generalization of the q-method focuses on adopting a solution to estimate both ori-
entation and position simultaneously. The main aim of this paper is not to assess estimation
performance or related metrics. Since the proposed algorithm solves the algebraic equation
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using an eigenvalue approach, it is not entirely fair to compare it with other methods that
may involve additional computational steps beyond the scope of this approach. Never-
theless, tests were conducted to compare this method with the q-method (for orientation
only) and the modified Optimal Linear Attitude Estimator, OLAE (for orientation and
position) [37], showing nearly identical performance results. The same sensor data and
initial conditions were used for the comparison.

OLAE is a single-point real-time estimator that utilizes the Rodrigues (or Gibbs) vector,
a minimal-element attitude parameterization. The optimality criterion, which differs
from Wahba’s constrained criterion, is strictly quadratic and unconstrained. This method
estimates both position and orientation based on vector observations obtained through
vision-based camera technology. The generalized q-method also estimates the translation
vector with the same accuracy and rate. Table 3 summarizes the results.

Table 3. Comparison of error results for different roll angles.

Roll Angle Estimation Method Position Error ‖δp‖[m] Angle Error δφ [deg]

0° q-Method Pose 0.01965 0.4493
OLEA 0.01898 0.4544

15° q-Method Pose 0.01708 0.7159
OLEA 0.01720 0.7202

The results show that both the generalized q-method and OLEA perform similarly
in terms of position and orientation errors. At 0° roll angle, OLEA has a slightly smaller
position error but a slightly higher orientation error. At 15° roll angle, the position errors
for both methods are nearly identical, with OLEA having a marginally larger error. Both
methods show an increase in orientation error at 15°, with the generalized q-method
maintaining a slight advantage in orientation accuracy. Overall, the differences are small,
with both methods offering comparable performance depending on the roll angle.

6. Conclusions

The q-method for pose estimation was designed to take the body-frame positional
reference measurements and compare them to relative, known positions from an Inertial
frame. Doing this, both the orientation and position of the body may be estimated to
minimize the error introduced into the system via the measurements. This paper first
provided a summary of Davenport’s q-method for attitude estimation and then built on
the existing model, while also acknowledging the assumptions and differences that went
into the original model. The pose estimation model presented here went to great lengths to
keep a consistent system relation between the Inertial, Body, and reference frames in a way
that mirrors the q-method. It is via this common system definition that the pose estimation
equations were derived by mirroring the original q-method derivation. From this newly
developed model, the pose estimation results proved to provide a very accurate solution
with relatively simple equations. The computational cost for the numerical methods could
be a limitation of this method, but further work could be performed to develop closed-
form solutions for this system of equations. Nevertheless, with ample processing power
and computing speed, any conventional numerical method used in conjunction with the
q-method for pose estimation will provide reliable results.

While results within this paper are promising, the experiment performed was for
a single steady-state estimation. Additional estimation approaches like these offer an
extra layer of redundancy and dependability for any autonomous aircraft or spacecraft.
Further integration into a dynamic system would be required with parallel use of filters,
GPS, dynamic models, and/or accelerometer and gyroscopic sensors. Any hardware or
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communication failures for these flight-essential features would require backup methods
for state estimation; the generalized q-method pose estimation provides a backup mea-
sure preventing loss of the vehicle, provided prior environmental reference knowledge
is utilized.

The estimation error itself is determined by the optimality of the Wahba problem,
which is formulated based on the measurement noise. This paper does not aim to reduce
the estimation error further, but rather focuses on generalizing the classical q-method to
provide pose estimation solutions for coupled vehicle dynamics. Certain validation steps
of this pose estimation method were omitted due to redundancy, but additional validation
was performed to verify equivalency between the generalized q-method and the classical
q-method. Noise reduction and elimination can be fourthly investigated according to the
estimation tolerance defined by the problem itself. Preceding work has also previously
been performed as part of the validation of the q-method pose estimation by investigating
error sensitivity to initial conditions and numerical convergence through a Monte Carlo
analysis [36].

Unlike Davenport’s q-method, which will often make the far-away star assumption
and use a star-catalogue with respect to earth, this pose estimation method generalizes the
model to be more mathematically intuitive for general applications. The pose estimation
model is unrestricted to just satellite attitude estimation, as demonstrated in this paper
using a drone/UAV. This itself is a benefit. In addition, if the position is already known,
these equations will function identically to the q-method. In essence, the integration of
pose estimation methodologies with the q-method represents a significant advancement,
promising more robust and adaptable solutions for spatial perception and analysis across
various domains.
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