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A Rail Profile Measurement Method Based on Polarization
Fusion Imaging

Qiang Han, Xinxin Zhao, Jing Shi, Shengchun Wang, Peng Dai, Ning Wang and Le Wang *

Infrastructure Inspection Research Institute, China Academy of Railway Sciences Corporation Limited,
Beijing 100081, China
* Correspondence: 13001988989@163.com

Abstract: The smooth area on the rail surface causes abnormal exposure in the laser section
image, resulting in measurement errors of the rail profile. To address this issue, a novel
rail profile measurement technique based on polarization fusion imaging is proposed. A
polarized camera is utilized to acquire the four-directional polarization component images,
Stokes parameter images, linear polarization angle images, and linear polarization degree
images of the rail laser section. A polarization image data fusion algorithm based on
Segmented Random Sample Consensus (S-RANSAC) is designed using these images as
data sources, and the optimal rail profile fitting curve is obtained. Experimental results
demonstrate that the proposed method can still obtain accurate and effective rail profile
data in regions where traditional methods fail to capture profile data. Compared with the
traditional method, the measurement error of the rail profile is reduced from 0.137 mm to
0.081 mm, and the measurement accuracy is improved by 40.9%. Evidently, this method
avoids data loss in key areas of the rail profile caused by local underexposure, thus signifi-
cantly enhancing the measurement accuracy. This method can provide a valuable reference
for high-precision measurement of the rail profile under complex working conditions.

Keywords: polarization fusion; underexposure; rail profile; image fusion

1. Introduction

It is widely acknowledged that changes in the rail profile directly impact the safe
operation of railways. As a vital means of railway operation and maintenance, rail profile
detection is instrumental in understanding the service condition of the rail. Based on this
understanding, more effective rail grinding can be carried out [1–3]. Rail profile detection
refers to the process of comparing the measured rail profile data with the standard rail
profile data. This comparison helps to obtain parameters such as vertical wear and side
wear of the rail [4]. Currently, rail profile detection mainly falls into two categories: contact-
type detection and non-contact-type detection. Specifically, contact-type detection has
disadvantages such as low detection efficiency and high labor costs. This is because it
requires probes to be in contact with the rail. In contrast, non-contact-type detection aims
to extract rail profile data from the intensity information of the reflected light on the rail
surface. The line-structured light profile detection technology is a typical non-contact-type
detection technology. The line-structured light rail profile detection technology, based
on the triangulation measurement principle enables real-time acquisition of rail profile
information. Due to its high speed, high precision, and non-contact nature, it is extensively
used for dynamic rail profile detection at home and abroad [5–7].

However, influenced by harsh working conditions, the rail will undergo some changes
after a period of operation. These changes include increased surface roughness, the presence

Sensors 2025, 25, 3489 https://doi.org/10.3390/s25113489
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of foreign matter on the surface, and rust on the rail head and the light stripe area of the
rail. These surface changes will affect the energy distribution of the reflected light on the
rail surface, leading to abnormal energy distribution. For example, the light stripe area of
the rail head has a relatively smooth surface, strong specular reflection ability, and very
weak diffuse reflection ability. Most of the incident light energy is distributed near the
specular reflection direction. Only a small amount of diffuse reflection light is collected by
the camera. The traditional line-structured light rail profile detection technology employs
the diffuse reflection light as the measurement signal. The specular reflection light is
considered the interference signal to obtain the intensity information of the reflected light
on the rail surface. For the smooth light stripe area of the rail, when the traditional light
rail profile detection method is used to acquire the light intensity image of the rail profile,
the phenomenon of underexposure occurs.

Accurately extracting the center of the light stripe is crucial for ensuring the accuracy
of rail profile detection [8]. Many scholars have conducted extensive research on the innova-
tion and improvement of light stripe center extraction algorithms [9–11]. In summary, light
stripe center extraction algorithms are mainly divided into geometric center extraction algo-
rithms and energy center extraction algorithms [12]. Geometric center extraction algorithms
are based on edge information, threshold information, or refinement techniques. They
are applicable to simple working environments and situations where the requirements for
measurement accuracy are not high. As prevailing light stripe center extraction algorithms,
energy center extraction algorithms are based on the center-of-gravity, directional template,
or maximum point. They are suitable for harsh working conditions, objects with complex
shapes, and scenarios where high-precision measurement is required. The underexposed
areas of rail profile light stripe images are characterized by weak light stripe energy, low
contrast, and low confidence in the light stripe center. In such underexposed areas, even
with more accurate light stripe center extraction algorithms like the center-of-gravity al-
gorithm and the Steger algorithm, accurate rail profile information cannot be obtained.
Moreover, when the light stripe energy is extremely low, the light stripe cannot be detected.
As a result, it gives rise to partial loss of profile data and reduces the accuracy of profile
detection [13–16]. Although the underexposure problem of the light stripe area can be
mitigated to some extent by prolonging the exposure time, it will cause overexposure of
light stripes in the normal area of the same image. This, in turn, affects the overall profile
detection accuracy.

Traditional imaging technology can only acquire light intensity information. In con-
trast, the information obtained by polarization imaging detection technology is expanded
from three dimensions (light intensity, spectrum, and space) to seven dimensions (light
intensity, spectrum, space, polarization degree, polarization angle, polarization ellipticity,
and rotation direction). The additional polarization information is often used to improve
the imaging quality of the measured object. Many scholars have conducted extensive
research on polarization imaging technology. For example, Wolff [17] developed a polariza-
tion imaging system composed of a polarization splitting prism and two CCD cameras to
analyze the polarization state of specular reflection light on the object surface. In terms of
enhancing contrast, Li [18] explored the potential of active polarization imaging technol-
ogy in various underwater applications. He fully utilized the polarization characteristics
of the target reflected light. Exponential functions were introduced to reconstruct cross-
polarized backscatter images. The proposed method demonstrated an improvement for
high-polarization objects under various turbidity conditions. Mo [19] proposed a method
to calculate the polarization characteristics image that can reflect the differences in po-
larization characteristics of different materials. They fused the multi-angle orthogonal
differential polarization characteristics (MODPC) image with the intensity image. The fused
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polarization image effectively enhanced the object detection information. This provided
a basis for object classification, recognition, and segmentation. Umeyama [20] captured
images of the measured object from different polarization angles by rotating the polarizer
and separated the specular reflection components from the diffuse reflection components
through independent component analysis. Overall, polarization imaging technology has
certain advantages in reducing the impact of specular reflection light on the object sur-
face, enhancing contrast, and improving imaging quality. Le Wang et al. [21] proposed a
line-structured light imaging method for rail profiles based on polarization fusion. They
proposed obtaining polarization component images and total intensity images of the rail
laser section from multiple angles using a polarized camera. They solved the problem
of local overexposure of laser images caused by specular reflection on the rail grinding
surface through polarization fusion imaging technology. However, they did not discuss the
existing problem of local underexposure.

Statistic features of multiple images are effectively extracted based on information
complementarity after the image fusion. This compensate for the information insufficiency
problems of single images, such as image information interference by noise, and too little
image information. The result is more accurate information about the measured object. In
consideration of the information correlation and complementarity between polarization
images, researchers have proposed a variety of polarization image fusion methods, mainly
including the frequency domain image fusion and spatial domain image fusion. In terms
of frequency domain image fusion, Zhang Jingjing et al. proposed decomposing an image
into low-frequency and high-frequency parts of different scales using the discrete wavelet
transform (DWT). The wavelet coefficients of the fusion image are determined based on
the wavelet coefficients of the low-frequency and high-frequency images as the statistical
features [22]. Qiao Juan put forward a polarization image fusion algorithm based on
the two-dimensional DWT, to enhance image details and improve the visual effect of
images [23]. In terms of spatial domain image fusion, Yin Haining et al. proposed a
polarization image fusion method based on feature analysis. Through this method, the
fusion weight of an image can be calculated according to its gray feature, texture feature
and shape feature. In addition, image fusion is used to solve the problem of detail loss that
occurs when the polarization parameter image is calculated [24]. Recently, some image
fusion methods based on deep learning, such as DPFN [25] and Gan [26], have become
research hotspots. However, they are usually specific to natural scenes with rich color and
texture features, while laser stripe data are relatively insufficient and lacks rich texture
and color features. Therefore, these methods are not suitable for fusion of laser polarized
stripe images.

To solve the above problems, based on previous research results, this paper proposes
an improved rail profile measurement method based on polarization imaging. Specifically, a
polarized camera is first used to capture the polarization component images of the rail laser
section from multiple angles. Then, the polarization information of the rail laser section is
extracted, and the Stokes parameter images, linear polarization angle images, and linear
polarization degree images are calculated. Based on the S-RANSAC algorithm, the rail
profile data corresponding to multiple polarization component images are fused. The fused
data are used as the final rail profile measurement result. This method effectively improves
the accuracy of rail profile measurement results under complex working conditions.

The structure of this paper is as follows: Section 2 introduces the traditional rail profile
measurement methods and the exposure anomaly problems they face. Section 3 describes
the rail profile measurement model based on polarization fusion. This includes the basic
principle of polarization imaging, rail polarization component images, and the polarization
data fusion method. Section 4 presents the experimental results, including laboratory static
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experiments and field dynamic experiments, and makes comparisons with other methods.
Finally, Section 5 summarizes the conclusion of this paper.

2. The Structured Light Measurement Model and Exposure
Anomaly Problem

2.1. The Structured Light Measuring Model

Figure 1 shows the perspective projection geometric model of the line-structured light
profile measurement technology. The line-structured light profile measurement components
are composed of the line laser, lens and camera. The line-structured light incident on the
measured object surface is modulated into a light stripe reflecting the profile information
of the measured object. The laser section image of the measured object is captured by
photographing the light stripe. The actual profile of the measured object is calculated based
on the pixel coordinates of image light stripe center, pixel coordinates of light stripe center,
and system calibration parameters.

Figure 1. The geometric model of line-structured light perspective projection.

Before the rail profile measurement, the measurement system needs to be calibrated
to obtain the internal parameters of cameras on both sides. It is also important to deter-
mine the parameters of laser planes on both sides. As shown in Figure 1, owxwywzw is
the world coordinate system, ocxcyczc represents the camera coordinate system, ol xlylzl

denotes the laser plane coordinate system, and ouxuyu indicates the pixel coordinate system.
Pw = (xw, yw, zw, 1)T refers to the coordinate (in the world coordinate system) of Pl in the
laser plane, and Qu = (xu, yu, 1)T represents the image point corresponding to Pl. The
expression based on the pinhole imaging model is as follows.

sQu = A[R, t]Pw (1)

where s is the scale factor, matrix A refers to the internal parameter matrix of the camera,
and [R, t] denotes the external parameter matrix of the camera, representing the rotation
matrix and translation vector from the world coordinate system to the camera coordinate
system respectively. In addition, Pw in the laser plane meets the requirements of the
following laser plane equation.

axw + byw + czw + d = 0 (2)
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where a, b, c, d represent the laser plane parameters. The mathematical model of line-structured
light profile measurement can be obtained through combining Equations (1) and (2).

{
sQu = A[R, t]Pw

axw + byw + czw + d = 0
(3)

Calculate the internal parameter matrix, external parameter matrix and laser plane
parameters of the camera according to the method specified in the literature [27] first,
then calculate Pw according to the Equation (3), and finally obtain the actual profile of the
measured rail.

2.2. Abnormal Exposure Issues

Figure 2 shows the intensity image of the rail laser section captured by the traditional
profile measurement method based on an unpolarized camera. The light stripe area of the
rail head and the area near the rail gauge point are prone to low contrast and underexposure.
This is because of the smooth surfaces and curvature changes in these areas, which result
in a lack of diffuse reflection components in the camera. These factors lead to insufficient
light reflection, making it difficult for the camera to capture clear images. This issue is
highlighted in the dotted rectangular box in Figure 2c. Figure 3 shows the results of light
stripe center extraction from the area in the dotted rectangular box in Figure 2. Here, (a), (b),
and (c) represent the maximum value algorithm [28], the center-of-gravity algorithm [29],
and the Steger algorithm [30] respectively, while (d) indicates the result of mapping the
measurement data of the Miniprof profilometer to the image coordinate system. The
Miniprof profilometer can achieve high-accuracy measurement because it directly contacts
the test object. Its measurement results can be used to compare the effects of different
light stripe center extraction algorithms. The comparison results show that in the normal
intensity image area of the rail laser section, the rail profiles obtained by different light
stripe center extraction algorithms are basically the same as those obtained by the Miniprof
profilometer. In the underexposed area of the image, due to weak light stripe energy
and low contrast, the light stripe center obtained by any light stripe center extraction
algorithm is interrupted to varying degrees. The interrupted light stripe center cannot
reflect the actual profile of the rail, resulting in the loss of rail profile data and affecting
the rail profile registration. Severe underexposure will lead to the loss of data near the rail
gauge point. Since the rail gauge point is a characteristic point for rail wear measurement,
rail wear measurement may fail when this characteristic point is missing. The imaging
quality and accuracy of traditional rail profile measurement based on intensity information
need to be improved. Prolonging the exposure time can alleviate local underexposure.
However, it causes overexposure of light stripes in the normal area. This undermines
the accuracy of light stripe center positioning in the normal area. Therefore, the problem
of local underexposure of rail laser section images cannot be effectively solved only by
adjusting the exposure time.
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Figure 2. Local underexposure of the rail laser section image. (a) Rail areas prone to underexposure;
(b) image acquisition device; (c) local underexposure image.

Figure 3. The center-of-light stripe in the underexposed area of the rail laser section image. (a) The
maximum value algorithm; (b) the center-of-gravity algorithm; (c) the Steger algorithm; (d) the
Miniprof profilometer.

3. The Measurement Principle

3.1. Polarization Imaging

Through polarization optical imaging, multiple intensity images of the measured
object in different analyzer directions can be captured. Polarization information of the
measured object can also be acquired. In other words, intensity information and polar-
ization information of the measured object can be collected simultaneously. In contrast,
traditional imaging technology is mainly used to capture intensity images of the measured
object, without polarization information. For convenience, the cameras through which both
intensity information and polarization information of the measured object can be acquired
are collectively referred to as polarized cameras. Cameras through which only intensity
information can be acquired are referred to as unpolarized cameras.

A polarized camera is equipped with four polarization filters in different directions,
which can simultaneously capture the polarization component images of the rail laser
section from four directions. These images are abbreviated as four-directional polarization
component images. Figure 4 shows the polarization filters and pixel distribution of the
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polarized camera. The four polarization filters of the polarized camera are arranged in
a 2 × 2 configuration. Sub-pixels in the 2 × 2 template correspond to nanowire grating
polarization filters at 0 degrees, 135 degrees, 45 degrees, and 90 degrees, respectively.
The polarized light whose vibration direction is perpendicular to the nanowire grating
will pass through the filter, while the polarized light whose vibration direction is parallel
to the nanowire grating will be filtered out. All sub-pixels of the 2 × 2 template in the
same polarization direction constitute a polarization component image. The gray values
of all the sub-pixels at the same position in the 2 × 2 template are extracted to obtain
four polarization component images that are 1/2 of original images in width and height.
The four images are marked as I0, I45, I90 and I135 respectively. According to the Stokes
representation method of polarized light, total intensity image It is expressed below:

It = I0 + I90 = I45 + I135 (4)

Figure 4. Polarization filters and pixel distribution of polarized camera.

In fact, the total intensity image is an intensity image captured through the tradi-
tional method and an ordinary intensity camera. Each pixel in a polarization component
image is derived from the same 2 × 2 template. Polarization component images are pixel-
aligned. Therefore, the total intensity image, generated by the superposition of polarization
component images, is also pixel-aligned with the polarization component images.

According to reference [16], both the normal area and the overexposed area of the light
stripe have partially polarized light with the same polarization angle. The interference part
of the overexposed area has a high degree of polarization, while the non-interference part
of the overexposed area and the normal area have a relatively low degree of polarization.
Therefore, the four polarizers of the polarized camera in the orthogonal transmission
direction can be used to filter out the interference components with a higher degree of
polarization in the overexposed area. However, because the four-directional polarization
component images have the effect of polarization filtering, this method cannot solve the
problem of local underexposure of the rail laser section image. In this case, the polarization
information of the rail laser section needs to be further extracted.

According to electromagnetic theory, light is defined as a transverse wave, and its
electric field direction and magnetic field direction are perpendicular to the direction of
propagation. In a plane perpendicular to the direction of light propagation, the electric
vector may have different vibration states, which are also known as the polarization states
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of light. According to the polarization state, light can be further divided into natural light,
partially polarized light, and fully polarized light. Fully polarized light is further divided
into elliptically polarized light, linearly polarized light, and circularly polarized light. The
Stokes vector S can be used to describe the polarization state of any light. The relationships
between each component of the Stokes vector and the amplitude components Ex, Ey of the
light’s electric vector and the phase difference are shown in Equation (5).

⎡
⎢⎢⎢⎣

S0

S1

S2

S3

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

E2
x + E2

y

E2
x − E2

y

2ExEy cos δ

2ExEy sin δ

⎤
⎥⎥⎥⎦ (5)

where S0 represents the total intensity of light, S1 denotes the light intensity difference
between the linear polarization component of light wave in the x direction and the linear
polarization component in the y direction, S2 refers to the light intensity difference between
the linear polarization component of light wave in the 45 degree direction and the linear
polarization component in the 135 degree direction, and S3 represents the light intensity
difference between the left-handed circular polarization component and the right-handed
circular polarization component. Natural light is usually partially polarized light, while
partially polarized light can be regarded as a combination of fully polarized light and
natural light. The first three components of the Stokes vector S can be expressed as follows:

⎡
⎢⎣S0

S1

S2

⎤
⎥⎦ =

⎡
⎢⎣ I0 + I90

I0 − I90

I45 − I135

⎤
⎥⎦ (6)

The linear polarization degree DoLP can represent the proportion of linearly polarized
light in the partially polarized light. The linear polarization degree is represented in
the Equation (7). The linear polarization angle AoP is the angle between the long axis
of polarization ellipse and the x axis, namely the angle between the strongest vibration
direction and the x axis. The expression of AoP is shown in the Equation (8).

DoLP =

√
S2

1 + S2
2

S2
0

(7)

AoP =
1
2

tan−1 S2

S1
(8)

Polarization information of the measured object mainly involves the linear polarization
components in various directions, Stokes vector, linear polarization degree DoLP, and
linear polarization angle AoP. Through a traditional camera, only the intensity information
of the measured object, namely the first component of the Stokes vector, can be acquired.
In contrast, a polarized camera based on the polarization imaging technology makes it
possible to obtain all the above polarization information. Therefore, rail profile information
collected through a polarized camera is much more than that obtained through a traditional
camera. Being capable to collect both polarization information and intensity information, a
polarized camera is often used to enhance the contrast and reduce the impact of specular
reflection light.

3.2. Polarization Component Images of Rail

The same position of the rail shown in Figure 2 was photographed with a polarized
camera, to obtain four polarization component images of the rail laser section, as shown

8



Sensors 2025, 25, 3489

in Figure 5, the red box represents the same position as the red box in Figure 2. Then, the
Stokes parameter images S0, S1 and S2, linear polarization degree image IDoLP, and linear
polarization angle image IAoP were obtained based on the results of calculation according
to the Equations (6), (7) and (8) respectively, as shown in Figures 6 and 7. The red box
represents the same position as the red box in Figure 2.

Figure 5. Four-directional polarization component image of the rail laser section. (a) 0 degree;
(b) 135 degree; (c) 45 degree; (d) 90 degree.

Figure 6. Stokes parameter image and linear polarization angle image. (a) S0; (b) S1; (c) S2; (d) IAoP.

 
Figure 7. Linear polarization degree image.

Polarization component images are pixel-aligned. Therefore, the synthesized Stokes
parameter image, linear polarization degree image, and linear polarization angle image are
also pixel-aligned. These images can reflect the rail profile information to a certain extent.
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There is a certain information correlation between them. Stokes parameter image S0 is an
intensity image captured through the traditional rail profile measurement method, and
is equivalent to that in Figure 2c. The low gray value of the underexposed area of Stokes
parameter image S0 leads to the low confidence of the light stripe center. In contrast, the
corresponding area of the linear polarization degree image is characterized by the strong
light stripe energy. It also exhibits high imaging contrast and light stripe center confidence.
This shows a certain degree of information complementarity.

The four-directional polarization component image, Stokes parameter image, linear
polarization degree image, and linear polarization angle image are pixel-aligned with each
other. They are correlated and complementary in rail profile information. Therefore, fusion
of the aforesaid images to obtain the rail laser section images on the principle of reducing
the fusion weight of the underexposed area and improving the fusion weight of the normal
area. This approach can better solve the problem of underexposure of light stripe images
captured through the traditional rail profile detection technology.

Based on the above analysis results, this paper proposes a rail profile measurement
method based on polarization imaging, as shown in Figure 8. Specifically, the laser is
equipped with a linear polarizer to obtain the linearly polarized light in the laser plane in
the vibration direction, and the polarization direction of the laser is shown in the figure.
In addition, a polarized camera is used to capture the polarization component images
of the rail laser section from multiple polarization angles. Stokes parameter images S0,
S1 and S2, linear polarization degree image IDoLP, and linear polarization angle image
IAoP are synthesized from such polarization component images. The aforesaid images
are fused through the image fusion algorithm to obtain rail laser section images, which
lays a foundation for light stripe center extraction, calibration, profile stitching, profile
registration, and final rail profile measurement.

Figure 8. Schematic diagram of the rail profile measurement based on polarization imaging.

3.3. The Polarization Data Fusion Method

The determination of fusion weights is crucial for improving the quality of multi-
polarized light image fusion. Wang [21] introduced a light stripe reliability evaluation
mechanism to determine the fusion weights of source images. For light stripe reliability
evaluation, statistical features such as light stripe width, gray value, and average residual
sum of squares were used as evaluation indicators. For each source image, the light
stripe reliability in each column needed to be calculated. The total pixel intensity or light
stripe width was separately selected as an evaluation index to calculate the reliability of
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stripe polarization imaging, and the weights of each component image were continuously
adjusted to achieve the optimal fusion effect. Additionally, these two evaluation indexes
could also be used comprehensively to calculate the light stripe reliability and obtain image
fusion weights. This method effectively overcomes the problem of rail surface reflection.
However, when applied to the dynamic measurement of the profile system, there are still
some issues to be resolved:

(1) The fusion strategy and weight calculation lack systematic quantitative analysis,
overly depending on qualitative analysis results and artificial experience thresholds.

(2) Light stripes change during train operation, and unpredictable changes may occur
due to factors such as rail wear, sunlight, and foreign matter interference. Thus, using
the light stripe width and brightness as criteria for determining fusion weights makes it
difficult to adapt to the complex and ever-changing conditions of an entire railway line.

(3) The fusion calculation of multiple polarization images is time-consuming, thus
affecting the real-time performance of the measurement system.

To solve the above problems, and a data fusion algorithm for segmented RANSAC
polarization point cloud is proposed in this paper, as shown in Figure 9.

 

Figure 9. Flowchart of the polarization profile data fusion algorithm based on S-RANSAC.

The algorithm process is described as follows:
(1) For nine polarization component images represented by I0, I45, I90, I135, IAoP, IDoP,

S0, S1 and S2, solve the light stripe centers to obtain the corresponding polarization profile
data, denoted as P0, P45, P90, P135, PAoP, PDoP, S′

0, S′
1 and S′

2;
(2) According to point coordinates, merge nine pieces of polarization profile data into

one piece of profile data denoted as

P = ∪(P0, P45, P90, P135, PAoP, PDoP, S′
0, S′

1, S′
2
)

(9)

where ∪(·) represents the fusion of profile coordinate data.
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(3) Based on the top and gauge points, divide these profiles into five areas denoted as

(
Pt, PS1 , PS2 , Pw1 , Pw2

)
= segment

(
P, Tx,y, Gx,y

)
(10)

where segment(·) is a region-based segmentation, Tx,y is the coordinate of the rail top, and
Gx,y is the coordinate of the rail gauge point. The division of the five regions incorporates
strong prior information about rail shapes. By utilizing the rail top and gauge points, as
well as the rail model, the rails can be precisely divided into the rail top region, rail head
transition region, rail head side region, rail web region, and rail bottom region according
to Formula (10). Each region possesses a relatively fixed curvature, ensuring consistent
reflection of light.

(4) Implement the random sample consensus (RANSAC) for each region to obtain the
best-fit polynomial equation, denoted as

(Ct, Cs1 , Cs2 , Cw1 , Cw2) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

RANSAC(Pt, ξt, mt, nt)

RANSAC(Ps1 , ξs1 , ms1 , ns1)

RANSAC
(

PS2 , ξS2 , mS2 , nS2

)
RANSAC(Pw1 , ξw1 , mw1 , nw1)

RANSAC(Pw2 , ξw2 , mw2 , nw2)

(11)

where Ct, CS1 , CS2 , Cw1 , Cw2 represent the polynomial curves of RANSAC fitting for five
segments; ξt, ξS1 , ξS2 , ξw1 , ξw2 are interior point thresholds, the samples with values less
than such thresholds are used for fitting, while other samples with values greater than such
thresholds are removed as noise; mt, mS1 , mS2 , mw1 , mw2 represent the times of sampling
iterations; nt, nS1 , nS2 , nw1 , nw2 represent the optimal polynomial fitting powers for five
segments, which can be obtained by using the least square method on the basis of selecting
multiple pieces of typical profile data from actual railway line, and constructing a global
optimization model.

(5) Stitch the fitting curves Ct, CS1 , CS2 , Cw1 , Cw2 of the five segments into a complete
half section profile of steel rail denoted as C = stitching

(
Ct, CS1 , CS2 , Cw1 , Cw2

)
, where

C is the optimal profile fitting curve formed after fusion of multiple polarization point
cloud data.

4. Experimental Results

4.1. Laboratory Static Experiments

The rail profile measurement device was constructed, as shown in Figure 10. The rail
shown in Figure 2 was placed on the electronic control translation platform. The Genie
Nano M2450 polarized camera manufactured by Teledyne Dalsa, a Canadian company
headquartered in Waterloo, Ontario, was selected to photograph the same position of the
rail in Figure 2. The laser cross-sectional images of the rail were acquired at equal intervals
of 2 mm. The main parameters are shown in Table 1.

Table 1. The main parameters in laboratory static experiments.

Index Item Parameter

1 Camera Resolution: 2464 × 056, Pixel Size: 3.45 μm × 3.45 μm
2 Lens Focus: 12 mm
3 Laser Power: 500 mw

12



Sensors 2025, 25, 3489

 

Figure 10. Experimental setup.

This process enabled the acquisition of the four-directional polarization component
images of the rail laser section. Then, Stokes parameter images S0, S1 and S2, linear polar-
ization degree image IDoLP, and linear polarization angle image IAoP are calculated and
obtained respectively according to the Equations (6), (7) and (8), as shown in Figures 6 and 7.
We extracted the light stripe center using the gray centroid method [29]. The proposed
S-RANSAC algorithm was then employed to fuse each polarization component, and the
outcomes are illustrated in Figure 11. Data 1 to data 5 represent the partition fitting results,
which are respectively the rail top region, rail head transition region, rail head side region,
rail web region, and rail bottom region. By comparing with Figure 3, it becomes evident
that the traditional method incurs data loss in the rail head area. In contrast, the proposed
method is capable of obtaining effective contour data in the rail head area.

Figure 11. Experimental result of S-RANSAC: (a) fused point cloud points; (b) segmented
polyfit result.

To further verify the effectiveness of the proposed method for the three-dimensional
reconstruction of rails, the proposed method was utilized to perform 3D reconstruction of
the measured rail. Meanwhile, the profile of the rails obtained from the Stokes parameter
image S0 was regarded as the measurement result of the traditional method. Figure 12
presents the 3D reconstruction results of the steel rails using the traditional method and the
proposed method respectively. It can be clearly observed that the traditional method led to
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partial data loss in the 3D-reconstructed steel rails due to abnormal exposure. Conversely,
the proposed method did not exhibit any data loss in the 3D-reconstructed steel rails, and
the reconstruction results still accurately reflected the true condition of the steel rails.

Figure 12. 3D reconstruction of rail: (a) the traditional method; (b) the proposed method.

4.2. The On-Site Dynamic Test

The on-site dynamic test was carried out near Qinghecheng Station at K 346 on the
Beijing–Kowloon Line. The Beijing–Kowloon Line is a trunk railway with shared passenger
and freight traffic. Due to its high traffic volume and diverse cargo types, the on-site
operational conditions are relatively complex: the rail surface is often relatively shiny
and mixed with foreign objects, which affects image quality. The profiles of the tested
railway line include situations such as web burial of the rail, ambient light interference,
and the polished rails. Miniprof, a contact-type rail profile measurement device with a
measurement accuracy of 0.02 mm, was used as a reference. The rail profile obtained from
the Stokes parameter image was considered as the measurement result of the traditional
method. Given the difference in the number of points collected by the measurement system
and the number of points obtained by Miniprof, it was necessary to perform smoothing
processing before discretizing the profile. This ensured that corresponding point pairs could
be compared, thereby enabling a genuine evaluation of the profile difference. Figure 13
shows a comparison diagram of the rail profile at one typical position. The figure contains
two enlarged areas, namely the underexposed area at the top of the rail (in the upper left
corner of the figure) and the overexposed area on the side of the rail head (on the right
side of the figure). In the underexposed area, partial data loss occurred (the red dots are
interrupted) when using the traditional method. However, since the proposed method
acquires more polarization information through the polarization imaging technology and
adopts a fusion method based on divided regions, continuous and valid contour data can
still be obtained in this area, and there is a high degree of consistency with the contour data
obtained by Miniprof. Similarly, in the overexposed area, data distortion and deformation
occurred (the red dots deviate significantly from the green dots) with the traditional method.
Nevertheless, the contour data obtained by the proposed method still show a high degree of
consistency with that obtained by Miniprof. Thus, it can be demonstrated that the proposed
method can simultaneously address the issues of both underexposure and overexposure.

14



Sensors 2025, 25, 3489

Figure 13. Comparison of rail profile measurement results between the proposed and traditional
methods.

To quantitatively compare the accuracy of the rail profile measurement of the proposed
method, 100 sets of rail profile data were collected using Miniprof. For each sampling
point, the Miniprof measurement data were taken as the true value, and the differences
between the rail profile data obtained by the traditional method and the proposed method
and the Miniprof data were statistically analyzed. The statistical parameters included
the maximum error (ME), average error (AE), and 95th percentile error (PE). The results
are presented in Figure 14, and Table 2 shows the average values of the three statistical
measures mentioned above. Compared with the traditional method, the maximum, average,
and 95th percentile values of the rail profile measurement errors have all decreased to
varying degrees. Taking the 95th percentile value of the rail profile measurement error
as an example, it has significantly declined from 0.137 mm, as recorded in conventional
methodologies, to 0.081 mm. This represents a remarkable reduction of 40.9%. This clearly
demonstrates the enhanced precision of the rail profile data obtained through the proposed
method, which now more accurately represents the true profile of the rail.

Table 2. Statistical results of 100 sampling points (mm).

Measurement
Error

Max Value Average Value
95th Percentile

Value

Traditional method 0.254 0.084 0.137
Proposed method 0.092 0.042 0.081
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(a) 

(b) 

(c) 

Figure 14. The measurement error of rail profile between the proposed and traditional methods.
(a) ME, (b) AE, and (c) PE.

To verify the execution efficiency of the S-RANSAC algorithm, typical profile data
were selected for testing. The computer CPU parameters were Intel(R) Core(TM) i7-10700K
CPU @ 3.80 GHz, and the programming language used was C++ (version 20). To improve
the efficiency of algorithm execution, a programming architecture for data concurrency
was designed. The 4000 sets of profile data collected per kilometer were divided into
10 concurrent queues, with each queue buffering 400 sets of profile data. The relationship
between algorithm execution efficiency and data size is shown in Figure 15. Due to the
randomness of RANSAC, the time consumption may vary slightly each time, but it can
process approximately 200 m of data per second.
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Figure 15. The relationship between algorithm execution efficiency and data size.

4.3. Comparison with Other Research Methods

To evaluate the performance of the proposed method, 550 sets of polarization compo-
nent images of steel rails were randomly selected, and the proposed method, along with
the methods in references Huang [31], Hayat [32], Qu [33], and Wang [34], were used for
fusion analysis. SSIM and PSNR are the most commonly used indicators for evaluating
multi-exposure fusion algorithms in dynamic scenes. The PSNR indicator measures the
similarity between the fused image and the source images in terms of image gray levels.
A larger PSNR means that the fused image is close to the source images and has less
distortion. Therefore, the larger the PSNR value, the better the fusion performance. SSIM

is used to model image losses and distortions, to which the human visual system is sen-
sitive. It consists of three parts, namely correlation, luminance, and contrast distortion.
The SSIM between the source image and the fused image is defined as the product of
these three parts. SSIM reflects the degree to which the fused image preserves the local
structural details of the input images. The larger the value of this indicator, the greater
the degree of structural preservation, and the better the fusion effect. ET represents the
algorithm execution time. As shown in Figures 16–18, it can be observed that the proposed
method achieved the highest scores in both PSNR and SSIM, which were 37.57 and 0.99
respectively. Compared with the PSNR of 36.44 and the SSIM of 0.928 of the method
proposed by Qu, who ranked second, and the execution time of 536.84 ms, the proposed
method is not only better in maintaining data quality and structural integrity, but also more
efficient in algorithm execution, with the time being only 175.86 ms, reflecting its efficient
processing ability and good fusion effect.

Figure 16. Mean value histogram of PSNR indicators obtained by the five fusion methods.
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Figure 17. Mean value histogram of SSIM indicators obtained by the five fusion methods.

Figure 18. Mean value histogram of algorithm time obtained by the five fusion methods.

On this basis, we compared the proposed S-RANSAC method with the above-
mentioned mainstream fusion methods before and after the sub-area division. The experi-
mental results are shown in Table 3. In line with Table 3, S-RANSAC has a more competitive
performance under PSNR, SSIM and time efficiency. In consequence, it is selected as the
for polarized component fusion task.

Table 3. Comparisons on polarization fusion algorithms.

Algorithm
PSNR

(Single/Multi-Region)
SSIM

(Single/Multi-Region)
Time

(Single/Multi-Region)

Huang 34.21/35.15 0.94/0.98 2057.85 ms/3125.14 ms
Hayat 34.29/34.98 0.79/0.91 6573.42 ms/7402.27 ms

Qu 36.45/37.05 0.93/0.97 536.84 ms/1026.33 ms
Wang 32.48/33.93 0.9210.97 1338.37 ms/1579.43 ms

S-RANSAC 36.57/37.91 0.98/0.99 175.86 ms/341.10 ms

5. Conclusions

A novel rail profile measurement method founded on multi-polarization fusion has
been presented to resolve the issue of insufficient local exposure in laser cross-section
images, which is a common hurdle in traditional rail profile measurement techniques. This
advance involves the creation of a profile data fusion algorithm that utilizes the S-RANSAC
algorithm, specifically designed for four-directional polarization component images, Stokes
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parameter images, linear polarization angle images, and linear polarization degree images.
This approach effectively alleviates the problem of local underexposure in the laser cross-
section of steel rails, securing a comprehensive and accurate depiction of the rail profile.
Following three-dimensional reconstruction, the method guarantees that the steel rail no
longer suffers from data loss, which is a crucial improvement over traditional methods.
This innovation surmounts the exposure insufficiency in key areas of laser cross-section
images of steel rails, which can significantly influence the extraction of light strip centers.
By preserving the integrity of profile data in critical areas, the method boosts the accuracy
and stability of profile detection under complex working conditions. This not only ensures
the effectiveness of profile analysis, comparison, and evaluation but also facilitates the
expansion of rail profile detection application scenarios.

Future research will probe into alternative image fusion methods, such as frequency-
domain fusion or deep-learning-based fusion, with the objective of further enhancing
algorithm efficiency and robustness. This could potentially result in more accurate and
reliable rail profile measurements, even in the most demanding operating environments.
Additionally, efforts will be made to optimize the existing S-RANSAC algorithm to re-
duce its computational complexity and improve its real-time performance, making it more
suitable for practical applications in railway infrastructure inspection. Through these con-
tinuous improvements, the proposed method is expected to play an increasingly significant
role in ensuring the safety and reliability of railway transportation systems.
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Abstract: The paper proposes and verifies a small-angle measurement method based on the defect
spot mode of the position-sensitive detector (PSD). With the output characteristics of the PSD in
the defect spot mode and the size transformation properties of a focused beam, the measurement
sensitivity can be significantly improved. Calibration experiments with the piezoelectric transducer
(PZT) indicate that compared with the current PSD-based autocollimation method, the proposed
method can improve the sensitivity of small-angle measurement by 57 times, and the measurement
sensitivity of the proposed method can be further improved by optimizing the system parameters,
while the proposed method has the advantages of a simple system and high real-time performance.
Therefore, the proposed method is expected to be used in high-precision motion error detection, as
well as in shape and position measurement.

Keywords: photoelectric technology; angle measurement; PSD; defect spot working mode

1. Introduction

High-precision angle measurement is important in many fields, such as motion er-
ror detection, shape and position measurement, etc. Due to their non-contact, real-time
applicability, and high sensitivity, many optical methods have been proposed and ap-
plied. Among them, the methods based on the polarization characteristics of light [1,2],
the Sagnac effect [3,4], and vortex beam transformation [5] have a larger measurement
range, while the methods based on internal reflection effect [6,7], laser interference [8,9],
and autocollimation [10–21] have higher sensitivity in small-angle measurement.

The sensitivity of the internal reflection methods can reach 0.015 μrad. Such methods
are based on polarized light intensity or phase detection, which is easily disturbed by
factors such as the change in polarization state and stray light. The sensitivity of the laser
interferometer can reach 0.03 μrad (Renishaw Corp., London, UK, XM-60). The interfer-
ometry methods represented by a laser interferometer are based on phase detection; the
change in light intensity does not influence measurement results, but the influences of
environmental stability need to be considered, and the interferometry system is complex
and expensive. The autocollimator is the most widely used high-precision angle measur-
ing instrument at present. Laser collimation measurement methods represented by the
autocollimator are based on the detection of the spatial position of the beam. The accuracy
of this kind of method is mainly determined by the spatial stability of the beam and the
sensitivity of the position detection device. There are many types of position-sensitive
detection devices, including the PSD, the quadrant detector (QD), and other photodiode
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(PD) combinations based on photocurrent detection, as well as the CCD and the CMOS
based on image recognition. The sensitivity of the current PSD-based photoelectric auto-
collimator is approximately 0.05 μrad [10,11]. The method proposed by Gao W.’s research
group, which used QD or PD photosensitive zone edges for focused spot position detection,
can further improve the measurement sensitivity, reaching 0.005 μrad. The principle is to
use the edge of the photosensitive area of a PD to convert the displacement of the focused
spot into the energy of the partial spot entering its photosensitive area and combine it with
the energy of the complete spot measured by another PD to convert it into the degree of
spot defect. The way to improve the sensitivity of this method is to reduce the size of the
focused spot to increase the degree of spot defect. Obviously, in order to further improve
sensitivity, obtaining a smaller focused spot that breaks through the diffraction limit is a
problem that needs to be solved. Meanwhile, directly utilizing the edge area of the detector
for energy detection is an unconventional use of the detection device, and the performance
of the edge area of the device needs to be considered [12,13]. The sensitivity of the CCD
or CMOS-based digital autocollimator can even reach 0.0005 μrad (Taylor Hobson Corp.,
Leicester, UK, Ultra HP 142-204); however, the high sensitivity of the digital autocollimator
is mainly due to the image processing algorithm [14–19]; therefore, the system is relatively
complex, and the real-time responsiveness needs to be considered.

In summary, for high-precision measurement of small angles, when comprehensively
considering the measurement sensitivity, system structure, and cost, laser collimation
measurement methods have more advantages. The further improvement of the sensitivity
of this kind of method is mainly limited by the sensitivity of the position detection device.
Although the sensitivity of the digital autocollimator is greatly improved by the image
processing algorithm, the system based on image processing is relatively complex, and the
real-time response is reduced.

In this study, a simple and high-precision small-angle measurement method is pro-
posed. For the first time, the innovative PSD in defect spot working mode has been used
for angle measurement, achieving ultra-high sensitivity improvement through a simple
projection relationship. The proposed method is an almost entirely analog system, which
has natural advantages in system complexity and real-time responsiveness compared to
digital autocollimators. Meanwhile, compared with the current PSD-based autocollimation
methods, the measurement sensitivity of the proposed method improved by 57 times. Com-
pared with the method of using the detector edge to detect the degree of spot defect [12,13],
the proposed method is more flexible, easier to generalize, and has greater potential for
sensitivity improvement.

2. Detection Principle

2.1. The Conventional PSD-Based Autocollimation Methods and the Defect Spot Working Mode of
the PSD

The PSD can identify the position of the spot energy center in its photosensitive
area. In the conventional working mode of the PSD, the complete light spot moves on
the photosensitive area of the PSD; the corresponding displacement of the complete spot
energy center is output linearly by the PSD [10,11].

The autocollimation method based on the normal working mode of the PSD is shown
in Figure 1. The collimated beam is incident on the mirror M. For any change in the angle
of M, the beam deflection will be twice the rotation angle of the M, and the focused spot
of the reflected light on the PSD moves accordingly. The angular change α of M can be
expressed as follows:

α = −ΔXa/2 f = k1ΔXa, (1)

where f is the focal length of the lens, ΔXa denotes the displacement of the light spot on
the PSD caused by α, and k1 represents the constant determined by system parameters.
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Figure 1. Measuring optical path of autocollimator based on conventional working mode of the PSD.

The defect of the spot can also lead to the change of the spot energy center, but there
are few related studies [12,22]. An innovative defect working mode [23] of the PSD is
shown in Figure 2. The spot received by the PSD is a circular Gaussian spot, which is the
most common shape and pattern of light spots, and its center is located at the center of the
PSD. When the beam is occluded, the light spot is no longer complete; the energy center of
the defect spot output from PSD changes according to the defect of light spot.

Figure 2. The defect spot working mode of the PSD. The black and white circles represent the spot
center before and after the change of the measured beam, respectively.

As shown in Figure 2, assuming that the defect is along the x direction, and the width
of the defect is D, and the spot energy center positions is X. The spot energy center position
output characteristics of the PSD in the defect spot mode are shown in Figure 3.

 
Figure 3. Spot energy center position output characteristics of the PSD in the defect spot mode.

It can be observed from Figure 3 that in the middle of the curve, the PSD is more
sensitive, and the output is approximately linear, although for light-displacement detection,
the sensitivity in the defect spot mode is lower than that in conventional working mode
of the PSD shown in Figure 1. However, the defect spot mode of the PSD, combined
with certain optical structures, can provide new features, which will be discussed in the
next section.

2.2. Small-Angle Measurement Principle Based on the Defect Spot Mode of the PSD

We propose a high-precision small-angle measurement method based on the defect
spot mode of the PSD. The optical path structure is shown in Figure 4. A single-mode
fiber-coupled semiconductor laser was used as the system light source, and the beam was
collimated using a collimating objective (CO). The collimated beam was reflected by the
mirror (target to be detected) mounted on the piezoelectric transducer (PZT) rotation stage
and focused by a lens with focal length f . A rectangular plate (RP) that partially (about
half) occluded the beam was placed near the focus point of the lens. The PSD was placed

24



Sensors 2024, 24, 7120

behind the focal point of the lens, and the direction in which the beam was occluded was
consistent with the x-axis direction of the PSD.

Figure 4. Optical path of high-precision small-angle measurement method based on defect spot mode
of the PSD.

Assuming that the distance between RP and focal point of the lens is L1, and the
distance between the PSD and focal point of the lens is L2, the relationship between the
defect width D of the spot on the PSD and the defect width d of the beam occluded by RP
can be expressed as follows:

D =

(
L2

L1

)
d. (2)

When the mirror rotates around the y-axis by an angle α, the focused spot moves
along the x-axis. According to the optical characteristics of the lens, as shown in Figure 1,
the collimated beam reflected by the mirror is focused on the intersection of the main ray
and the focal plane. The overall light spot displacement of the beam on the RP plane can be
expressed by the corresponding main ray displacement Δd. So, the relationship between
Δd and α can be expressed as follows:

Δd = 2( f + L1)α. (3)

From Equation (2), the size of the spot defect on PSD changed according to α.

ΔD = (L2/L1)2( f + L1)α (4)

It is known from Figure 3 that PSD has approximately linear output characteristics
within a certain range near half defect point; therefore, the change of the spot position
output from PSD caused by the spot defect can be expressed as follows:

ΔX(D) = X′(D)

(
L2

L1

)
2( f + L1)α. (5)

In practice, the spot displacement output from the PSD should be expressed as follows:

S = ΔX(D) + ΔXa, (6)

where ΔXa is the same as defined in Equation (1). From Figure 1, the overall light spot
displacement of the beam on the PSD can be expressed by the corresponding main ray
displacement ΔXα:

ΔXa = −2( f + L2)α. (7)

So, Equation (6) also can be expressed as follows:

S = 2
[
X′(D)(L2/L1)( f + L1)− ( f + L2)

]
α. (8)

The angle change α of mirror can be expressed by the following relation:

α = S/2
[
X′(D)(L2/L1)( f + L1)− ( f + L2)

]
= k2S, (9)
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where k2 represents a constant determined by system parameters.
Considering the size of the PSD sensitive area, L2 is about same as f . From Equations (5)

and (7), as long as L1 is sufficiently small, the magnification of the spot energy center dis-
placement ΔX(D) will be very large; ΔX(D) will be much greater than ΔXa. Therefore,
compared with the method shown in Figure 1, from Equations (1) and (9), the angle
measurement sensitivity of the proposed system can be significantly improved. This ampli-
fication property is derived from the defect spot mode of the PSD, which can amplify the
displacement of the spot energy center at the same magnification as the size transformation
of the asymmetric defect spot.

The proposed method can be used for biaxial rotation measurements as long as the
orthogonal double RP are used as the shield. In order to express this succinctly, follow-up
analysis and experiments are only carried out for the single-axis rotation.

Because the light beam reaching the RP is not collimated, and the RP has a certain
thickness, before and after the center of the light spot passes through the edge of the RP, the
position of the edge of the RP that blocks the light will change. As shown in Figure 5a, the
RP is placed behind the focal point, and before and after being obstructed by the RP edge at
the center of the light spot, the rear and front surfaces of the RP edge respectively block the
light. This implies that L1 changes before and after the center of the spot passes through
the edge of the RP. From Equation (9), it can be observed that the measurement sensitivity
changes abruptly. Therefore, the edge of the RP should be selected as a knife-edge (KE), as
shown in Figure 5b.

Figure 5. Influence of the thickness of RP. (a) Before adopting KE; (b) After adopting KE.

According to Equation (9), the greater the value of f , the smaller the value of L1, and
the higher the sensitivity of the system; at the same time, the influence of light drifts [21,24]
as noise on the measurement accuracy of the system is correspondingly greater. There-
fore, the parameter settings of f and L1 need to be considered comprehensively, and the
experiments described in Section 3.2 can be used as a reference.

3. Experiments and Analysis

The system structure and experimental setup for high-precision small-angle measure-
ment are shown in Figures 4 and 6, respectively. The light source of the experimental system
was a single-mode fiber-coupled semiconductor laser with a wavelength of 635 nm and a
power of 5 mW (Xilong Optoelectronics Technology Co., Ltd., Shanghai, China, FC-635-
005-SM). The laser power supply of this model is equipped with voltage and temperature
stabilization modules. The diameter of the collimated beam was approximately 3.6 mm.
The focal length f of the focusing lens was 50 mm, and the value of L2 was approximately
50 mm. The beam was partially (about half) occluded by a KE, and the defect spot energy
center position is detected by a PSD with a photosensitive area of 4 × 4 mm2 (First Senor
Corp., Berlin, Germany, DL16-7-PCBA3). The AD module adopts the ADS1256 module,
which has eight channels, 24 bits, and a maximum sampling frequency of 30 K, and the
data are transmitted to the computer through a USB. All experimental equipment was
fixed on a vibration isolation optical platform, and the experiments were conducted in a
laboratory environment.
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Figure 6. Experimental setup.

3.1. System Stability Experiment

In order to test the influence of electronic noise and environmental disturbance, the
stability experiment was performed. In the experiment, the value of L1 was approximately
3.5 mm, and the test point was chosen near the midpoint of the approximate linear working
region of the PSD output characteristic curve, where the spot defect is about half and the
relative position of the light spot on the PSD is 0.2327; the sampling frequency was 500 Hz,
and testing time was 15 min. The experimental results after the sliding average algorithm
(n = 10) for each sampling point are shown in Figure 7.

Figure 7. Stability experimental results.

As shown in Figure 7, the relative position of the spot on the PSD fluctuated between
−0.2329 and −0.2325. Therefore, according to the principle of significant figures in errors
theory, the output values of the experimental system can be read up to 1/10,000 bit. For the
selected PSD, the width of the photosensitive region is 4 mm, so a relative position change
of 0.0001 corresponds to a displacement of approximately 0.2 μm.

3.2. Calibration Experiments

We performed several sets of small-angle measurement calibration experiments with
different values of L1 using the PZT rotation stage (Core Morrow Technology Co., Ltd.,
Harbin, China, S21.R7S) as the standard meter. Corresponding to Figure 8a–c, the values
of L1 are 3.5 mm, 1.5 mm, and 0.5 mm, respectively. The resolution, repeatability, and
measuring range of the PZT rotation stage was 0.2 μrad, 0.2%, and 6 mrad, respectively.
According to Equation (8) and the output characteristics of the PSD shown in Figure 3, the
piecewise linear fitting method was used for the analysis and processing of the experimental
data. The experimental results are shown in Figure 8.

As shown in Figure 8a, the slops of the three piecewise fitting lines S1, S2, and S3
in the range of 0 mrad to 0.08 mrad, 0.08 mrad to 0.5 mrad, and 0.5 mrad to 0.66 mrad
were 0.67 mm/mrad, 0.80 mm/mrad, and 0.69 mm/mrad, respectively. According to the
results of stability experiment, the spot position sensitivity of the PSD was approximately
0.2 μm; therefore, the angle measurement sensitivity in the above three angular ranges
were 0.29 μrad, 0.25 μrad, and 0.28 μrad, respectively. The point-to-point deviations varied
from −1.3 μrad to 1.8 μrad, and the standard deviation was about 0.82 μrad. As shown
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in Figure 8b, the sensitivity was approximately 0.095 μrad in the range of 0.21 mrad. The
point-to-point deviations varied from −0.38 μrad to 1.0 μrad, and the standard deviation
was approximately 0.34 μrad. As shown in Figure 8c, the sensitivity was about 0.034 μrad in
the range of 0.084 mrad. The point-to-point deviations varied from −0.39 μrad to 0.63 μrad,
and the standard deviation was approximately 0.23 μrad.

 

Figure 8. Calibration experiments of the proposed method with different values of L1: (a) L1 = 3.5 mm;
(b) L1 = 1.5 mm; (c) L1 = 0.5 mm.

Corresponding to the three different values of L1, the sensitivities calculated by Equa-
tion (9) are 0.26 μrad, 0.10 μrad, and 0.032 μrad, respectively; the experimental results are
consistent with the theory. It can be observed from the numerical variations in the sensitiv-
ity, residuals, and standard deviation in Figure 8a–c that as L1 decreases, the sensitivity of
the system increases, and residuals and standard deviations decrease correspondingly, but
the decreasing trend of residuals and standard deviation gradually slows down, and the
ratio of residuals and standard deviation to sensitivity increases gradually, which means
that the relative stability of the system decreases. The residuals are mainly affected by the
electronic noise and environmental disturbances, such as light drift and so on. According
to the measuring principle of the proposed method, with a decrease in L1, the influence
of a factor such as light drift increases in same proportion to the sensitivity of the system,
whereas the influence of other factors such as electronic noise is basically unchanged. So,
the signal-to-noise ratio increases with the decrease in L1, and residuals and standard
deviations correspondingly decrease. The experimental results and analysis show that
the sensitivity of the proposed method can reach or even exceed 0.032 μrad, but at the
same time, the standard deviation is close to seven times the sensitivity. The sensitivity
determined by the results of the stability experiments, shown in Figure 7, corresponds to
1/10,000 of the relative position of the spot on the PSD. If the standard deviation is at least
10 times higher than the sensitivity, which means that the uncertainty bit of the measured
value moves forward by 1 bit, the actual sensitivity of the system should correspond to
1/1000 of the relative position of the spot on the PSD. When the influence of light drift
is dominant relative to the electronic noise, the further improvement of sensitivity is of
limited help to the improvement of measurement accuracy. Proper compensation of light
drift will be an important way to further improve the measurement accuracy of the system.
Moreover, the smaller L1 is, the smaller the size of the light spot on KE is, so the measuring
range is limited and there is a trade-off between large measuring range and high sensitivity.
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We also performed a calibration experiment on the conventional autocollimation
measurement method shown in Figure 1. The parameters of each device in the experimental
system were the same as those in the system shown in Figure 6 above.

The experimental results are shown in Figure 9. In the range of 3.2 mrad, the sensitivity
was approximately 2 μrad, the point-to-point deviations varied from −8.0 μrad to 9.5 μrad,
and the standard deviation was approximately 5.3 μrad.

Figure 9. Calibration experiment of the autocollimation method based on the PSD in normal mode.

Clearly, the method based on the conventional working mode of the PSD has a larger
linear measurement range; however, the detection sensitivity of the method based on the
defect spot mode of the PSD was improved by approximately 57 times, which could not be
realized by conventional methods.

3.3. Comparison Experiments

We conducted an angle measurement comparison experiment on the system corre-
sponding to Figure 8b with a PZT in the rotation stage (Core Morrow Technology Co.,
Ltd., S21.R7S) with a resolution of 0.2 μrad as the standard meter. The PZT in the rotation
stage rotates at a random angle, 12 times in total, and the corresponding measurement was
performed by the proposed system. The experimental results are shown in Figure 10.

 
Figure 10. Comparison experiment results.

As shown in Figure 10, the deviations between the proposed system and the PZT were
approximately −0.18 μrad to 0.37 μrad. Considering that the resolution of the PZT was
approximately 0.2 μra, and that the standard deviation of the corresponding experiment
was approximately 0.19 μrad in Figure 8b, these experimental data are quite consistent
with the expectation, which confirms the feasibility and reliability of the proposed method.

3.4. Error Analysis

The main error sources of the proposed system include electronic noise, light drift, and
the instability of the mechanical structure. Combining with Figure 4 and Equations (2)–(9),
mechanical structural instability, such as the translation, rotation, or vibration of the KE,
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affects the numerical stability of L1 and d. Therefore, it is necessary to analyze the angular
measurement errors caused by the fluctuation of L1 and d.

According to Equations (2)–(4), the fluctuation of d will cause the fluctuation of S.

δSd = X′(D)(L2/L1)δ (10)

From Equation (9), the angular measurement error caused by the fluctuation δd can be
expressed as follows:

δαd = X′(D)(L2/L1)δd/
[
2X′(D)(L2/L1)( f + L1)− 2( f + L2)

]
. (11)

According to Equation (9), the angular measurement error caused by the fluctuation
δL1 can be expressed as follows:

δαL1 = SX′(D)L2 f δL1/
[
2X′(D)L2 f + 2

(
X′(D)L2 − f − L2

)
L1

]2
. (12)

The values of the structural parameters of the system corresponding to Figure 8b are
substituted into the Equations (11) and (12), and the corresponding errors can be simulated
by using MATLAB, as shown in Figure 11. The simulation results show that the angular
measurement errors caused by fluctuations of 0.1 μm in d and 1 μm in L1 were 1.1 μrad
and 0.038 μrad, respectively. The structural stability of KE is very important.

 
Figure 11. The angular measurement error caused by δd and δL1. (a) Error introduced by δd; (b) Error
introduced by δL1.

Moreover, the method proposed in this paper is based on the detection of the energy
center of the light spot on the PSD; the diffraction caused by the KE needs to be considered.
The straight edge diffraction of the focused Gaussian beam and the point source uniform
spherical wave are analyzed in references [25,26], respectively. Although the analysis
processes and methods are different, the results of the two studies are similar. The closer
the KE is to the focus point, the wider the diffraction fringes on the receiving plane,
especially when the distance approaches 0 (the waist region); as a result, the receiving
region contains only the first fringes, which leads to a symmetrical distribution of the light
field, and the light field distribution based on the geometric projection relation used in
proposed method is no longer applicable. So, the distance between the KE and the focus is
the key to the feasibility of the proposed method.

The light field distribution of the incident light wave passing through the KE can
be seen as the interference of two superimposing waves: the geometrical wave from the
primary source of light and the boundary diffraction wave from the secondary source
(KE) [25].
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In our case, a slightly divergent Gaussian beam is incident on KE, as shown in Figure 12.
The field of Gaussian beam can be expressed as follows:

U(g) = exp
[
−
(

x2 + y2
)

/ω2(z)
]
exp
{
−j
[
k
(

z + (x 2 + y2
)

/ 2R)− arctan(z/F)
]}

/ω(z), (13)

where ω(z) is the radius of the Gauss’s spot, k = 2π/λ denotes the wave vector, R is the
radius of curvature of the equal phase plane of the Gaussian beam whose propagation
axis intersects at the observation point, and F denotes the confocal parameter of the
Gaussian beam.

Figure 12. Optical structure of knife-edge diffraction.

The boundary diffraction wave can be expressed as follows:

U(d) =
∫

Σ
exp
[
−l2/ω2(z)

]
exp
{
−j
[
k
(

z + s + l2/ 2R)− arctan(z/F)
]}

dl/[ω(z)s], (14)

where Σ denotes the boundary of the illuminated part of the KE, dl is an infinitesimal
element situated on Σ, l denotes the distance from dl to the center of the Gaussian beam
profile, and s denotes the distance from dl to the observation point.

The corresponding irradiance at the observation plane can be express as follows:

I =
∣∣∣U(g)

∣∣∣2 + ∣∣∣U(d)
∣∣∣2 − 2U(g)U(d)cos(ϕ), (15)

where ϕ denotes the phase difference between two beams.
In Equation (15), the first term represents the projection of the Gaussian beam, and the

other two terms represent the diffraction term and interference term, respectively. Therefore,
the light intensity distribution on the PSD can be regarded as the superposition of the
direct projection spot and the disturbance spot caused by the diffraction and interference
effect. In order to understand the influence of the disturbance spot on the direct projection
spot, combining the system parameters with Equations (13)–(15), the intensity of direct
projection light and diffraction light near the center (0.5 mm, 0) and the edge (1.5 mm, 0) of
the photosensitive surface of the PSD were simulated using MATLAB. The intensity ratios
of distribution light and direct projection light at the two test points, using the system
parameters in Figure 8a (L1 = 3.5 mm), were approximately 0.3% and 1.3%, respectively,
and those corresponding to Figure 8c (L1 = 0.5 mm) were approximately 0.9% and 3.5%,
respectively. The simulation results show that the influence of diffraction increases with
the decrease in L1 and the increase in x, but the influence is weak under the given system
parameters, which is consistent with the experimental results in Figure 3. Based on existing
research [25,26] and the above analysis, by approximating the diffraction limit spot size
to the minimum waist of the Gauss beam and combining the focused beam projection
relationship with the system parameters, the minimum distance (the beam waist region)
between the KE and the theoretical focus of the lens in the proposed system can be estimated
to be about 0.15 mm. The experimental and simulation results show that the proposed
method is feasible when the KE is not in the beam waist region.

Other factors that can change the position of the energy center of the spot can be
considered an interference spot directly superimposed on the spot of the direct projection
light. Because the KE and the structure of the system are invariable, the effects of the
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interference spot are almost invariable and can be eliminated via system calibration as
system errors. The influence of random errors such as electronic noise can be partially
reduced by means of the mean algorithm.

4. Conclusions

This paper proposed a simple and high-precision small-angle measurement method.
An innovative defect spot working mode of the PSD is used for angle measurement for the
first time. Owing to the output characteristics of the PSD in defect spot mode and the size
transformation properties of the focused beam, the small-angle measurement sensitivity
was amplified using the same multiple as the spot size. Under the set parameters, compared
with the current PSD-based autocollimation method, the sensitivity of the proposed method
based on the PSD in defect mode is increased by 57 times. The main purpose of the
experiments in this paper is to verify the feasibility and reliability of the proposed method,
and the detection sensitivity of 0.034 μrad, given by the experiments, is not the best result
of the proposed method. If the PSD with higher sensitivity [27] and the lens with larger
focal length are selected and, considering the diffraction limit, the collimation system with
the larger numerical aperture is selected, the sensitivity will be further improved, and it
is expected to reach the level of digital collimators based on CCD and image processing
algorithms, while the proposed method has the advantages of being a simple system with
good real-time performance. In addition, the expansion of the measurement range is also
important [13,28]. If the proposed angle measurement system is used as a “Null Detector”,
and the deviation (i.e., deflection angle) of the “Null Detector” is used to modulate the
position of the KE via a feedback compensation system based on a PZT, the measurement
method is expected to improve through the expansion of the measurement range. This
study used the most common circular Gaussian as an example. The other types of light
spots have different energy distributions, and accordingly, the linear interval and slope of
the PSD output characteristic curve shown in Figure 3 are different. How to obtain higher
angular sensitivity gain or a larger linear measurement range via beam/edge shaping is an
interesting and practical question to explore in future work. In any case, the key property
derived from the defect mode of the PSD remained unchanged; that is, the magnification of
the asymmetrical defect spot area on the PSD could be converted into the magnification of
detection sensitivity. Due to its comprehensive advantages in sensitivity, system complexity,
and real-time responsiveness, the proposed method has broad application prospects in
high-precision motion error detection, as well as in shape and position measurement.
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Abstract: Real-time quality monitoring through molten pool images is a critical focus in researching
high-quality, intelligent automated welding. However, challenges such as the dynamic nature of the
molten pool, changes in camera perspective, and variations in pool shape make defect detection using
single-frame images difficult. We propose a multi-scale fusion method for defect monitoring based
on molten pool videos to address these issues. This method analyzes the temporal changes in light
spots on the molten pool surface, transferring features between frames to capture dynamic behavior.
Our approach employs multi-scale feature fusion using row and column convolutions along with a
gated fusion module to accommodate variations in pool size and position, enabling the detection of
light spot changes of different sizes and directions from coarse to fine. Additionally, incorporating
mixed attention with row and column features enables the model to capture the characteristics of the
molten pool more efficiently. Our method achieves an accuracy of 97.416% on a molten pool video
dataset, with a processing time of 16 ms per sample. Experimental results on the UCF101-24 and
JHMDB datasets also demonstrate the method’s generalization capability.

Keywords: molten pool; welding defect monitoring; dynamic characteristics; multi-scale feature
fusion; light spots

1. Introduction

GMAW (Gas Metal Arc Welding) is widely used in various modern manufacturing
industries, such as shipbuilding and storage tank construction, due to its advantages
in automation and mechanization [1]. Despite the significant advancements in welding
technology, the advanced manufacturing industry continues to demand higher welding
production efficiency, intelligent automation, and superior welding quality. However,
various welding defects remain unavoidable in actual welding processes. Among these,
porosity is a critical issue affecting the quality of welded structures. The presence of porosity
reduces the cross-sectional area at the welded joints, leads to uneven stress distribution,
and severely impacts the quality of the weld. Therefore, monitoring porosity defects during
welding is an urgent problem that needs to be addressed.

Welding is a dynamic, interactive, and nonlinear process. Experienced welders can im-
prove weld quality and reduce defects by observing the molten pool and making real-time
adjustments during the welding process [2]. However, extended observation of the molten
pool can lead to welder fatigue, making it difficult to detect defects promptly and adjust the
process accordingly. Additionally, welding produces irritating gases that pose health risks
to welders. As a result, automated monitoring of the welding process using molten pool
images to detect defects has become a research focus among scholars worldwide, aiming to
replace the manual observation of the molten pool with automated methods.

When using features from molten pool images to identify welding defects, the critical
challenge is linking the image features to the welding defects and establishing a mapping
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model from molten pool image features to welding defects. Research based on molten
pool images can be broadly categorized into two types: one focusing on welding defect
detection using single-frame molten pool images, and the other utilizing sequences of
molten pool images (i.e., molten pool videos). For single-frame molten pool image analysis,
one approach involves performing a multi-level statistical analysis of the geometric features
of the molten pool, such as area, shape, and aspect ratio, to determine the state of the molten
pool when defects occur [3–8]. This method, based on geometric feature information, is
highly interpretable. However, this approach requires extensive statistical analysis, making
it time-consuming. Moreover, due to variations in welding techniques and types, molten
pool images may differ significantly, making it challenging to extend these geometric
feature-based methods to other images. With the continuous advancement of deep learning
technology, data-driven approaches like deep learning have been widely applied in image
classification, object detection, speech recognition, and natural language processing [9–12].
In the context of molten pool image analysis, deep learning allows for the direct, end-to-
end adaptive learning and extraction of molten pool features, replacing manual feature
extraction. This approach not only enhances efficiency but also achieves excellent results in
defect recognition [13,14]. To address the issue of CNNs (Convolutional Neural Networks)
often being perceived as black boxes and the lack of large datasets of welding defects, Di
Wu et al. [15] proposed a method that combines deep learning-extracted features with
manually designed geometric features for prediction. This approach improves model
accuracy and enhances the interpretability of the network. In studies involving molten pool
image sequences, some works [1,16] utilize LSTM (Long Short-Term Memory) networks [17]
to capture the differential features of the molten pool before and after changes during the
welding process. These studies infer future frames of molten pool images and identify
welding defects in those future frames, achieving early quality warnings.

In [2], Tianyuan Liu et al. proposed a CNN-LSTM model for online defect recognition in
CO2 welding. This model stretches the extracted features into two-dimensional representa-
tions, treating each row as a time series. By leveraging the strengths of LSTM in processing
sequential data, the model effectively selects features in the spatial dimension, enabling ac-
curate welding defect recognition. Although this approach utilizes LSTM, it only processes
single-frame molten pool images and does not take advantage of the dynamic information
inherent in the welding process. In contrast, Jun Lu et al. [1] developed a MPOM (Molten
Pool Online Monitoring) model for monitoring the welding process, incorporating prediction
and classification networks. The prediction model uses LSTM to capture the differences in
molten pool states caused by temperature variations, allowing for predicting future molten
pool shapes up to 10 time intervals in advance. These predicted future frames are then used
for welding defect classification, highlighting the importance of molten pool features during
the welding process for defect identification. However, research focusing on using dynamic
features from the welding process for defect detection remains scarce.

Traditional RNNs (Recurrent Neural Networks) were introduced to handle sequential
tasks, but they still need to be improved regarding gradient explosion and long-term de-
pendency issues [18]. LSTM [17] addresses the gradient vanishing and explosion problems
often occurring in long-sequence processing. However, LSTM models have a large number of
parameters and face challenges when dealing with even more extended sequences. The C3D
(3D Convolutional Network) [19] was introduced to handle three-dimensional spatial fea-
tures in data, effectively capturing spatiotemporal characteristics, but it requires significantly
more computation and resources compared to 2D convolution. Therefore, we employ the
TSM (Temporal Shift Module) [20] based on 2D CNNs in this study. TSM shifts a portion of
the feature channels from previous and subsequent frames along the temporal dimension,
facilitating temporal information exchange without adding additional computational burden.

Due to variations in the camera’s focal length, different installation angles, and weld-
ing scenarios, the position and size of the molten pool within the images are not fixed.
Additionally, the redundant background information in the molten pool images poses
challenges for welding defect detection. To address this, we segment the molten pool
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region in the images during preprocessing and crop the images based on the segmentation
results. However, as shown in Figure 1, the size and position of the molten pool in the
cropped images remain inconsistent, which complicates defect recognition. Inspired by
the spatial pyramid structures in [21–23] and the feature fusion modules in [24,25], we
added a MFF (Multi-Scale Feature Fusion) module at the head of the network. This module
increases the receptive field of the network, enabling it to capture multi-scale features of
the molten pool region. Additionally, we found that the attention mechanism further aids
in weighting the features, enhancing the propagation of molten pool region features.

(a) (b) (c) (d) (e) (f)

Figure 1. Images of the melt pool in different scenes. (a,b) are differences in the shape of the melt
pool; (c,d) are differences in the camera viewpoint; and (e,f) are differences in size.

In the Gas Metal Arc Welding (GMAW) process, porosity defects often arise due to
insufficient shielding gas flow, high humidity in the air, unclean weld seams, or moisture
contamination on the welding plates. When dense porosity occurs internally, the shape of
the molten pool and the surface light spots exhibit erratic and unstable changes. In contrast,
a normal molten pool and its surface light spots show stable variations. Figure 2 illustrates
the differences in molten pool behavior between porosity defects and normal conditions.
This study focuses on porosity defects, aiming to extract critical information from the spatial
characteristics of surface light spots and the dynamic features of molten pool image sequences
to enhance the identification of welding defects. Our main contributions are as follows:

(1) We propose a lightweight multi-scale feature fusion module that improves feature
propagation and fusion, capturing features from different scales and directions in
molten pool images. The module enhances the model’s expressive capability and its
adaptability to molten pool size variations.

(2) We introduce an attention module that combines features from different directions and
attention mechanisms to improve the model’s ability to recognize both large objects
and fine details, facilitating better propagation of features in the molten pool region.

(3) We establish a mapping model that links the temporal dependencies in molten pool
image sequences to welding defects, leveraging the dynamic characteristics of the
molten pool during the welding process to achieve efficient defect recognition.

(a) (b) (c) (d) (e) (f) (g) (h)

(i) (j) (k) (l) (m) (n) (o) (p)

Figure 2. Eight time intervals of molten pool surface changes. (a–h) is the normal molten pool image
of molten pool surface spot changes; (i–p) is the molten pool image of molten pool surface spot
changes in the case of porosity defects.
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2. Methods

Figure 3 illustrates the process of welding defect monitoring and identification. Images
captured by the molten pool vision system are first preprocessed, and then a sequence of
8 consecutive frames is fed into the defect monitoring model. The model identifies the type
of defect and issues a warning if necessary.

(a) (b)

Figure 3. Welding defect recognition process and melt pool vision system schematics: (a) welding
defects monitoring process; (b) schematic diagram of molten pool vision system.

2.1. Molten Pool Visual System

This study collected data and conducted related experiments using the trackless
crawling welding robot and the molten pool camera vision system developed by Beijing
BOTSING Technology Co., Ltd., Beijing 100176, China. Figure 3 shows the molten pool
vision system equipment used in this study, including the molten pool camera, the trackless
crawling welding robot, and the industrial control computer.

The molten pool camera captures videos with a 640 × 512 pixels resoulution at a
frame rate of up to 30 FPS. The camera is controlled by an industrial control computer,
allowing for flexible recording. The experiments were conducted within a GMAW welding
system. During GMAW welding, arc light can obscure many details in the weld pool image,
decreaseing image quality. This study utilized the company’s second-generation molten
pool camera, which can filter out most of the arc light, thereby revealing more details in the
molten pool images and reducing the negative impact of arc light on image quality.

2.2. Network Architecture

In the field of welding, there are stringent requirements for weld quality. Additionally,
detecting welding defects in real-time and making adjustments promptly can significantly
improve weld quality. To address this, we propose a lightweight welding defect detec-
tion model that processes video sequences as input. These sequences are represented as
A ∈ RNTCHW , where N is the batch size, T is the temporal dimension, C is the number
of channels, and H and W are the spatial dimensions. In our model, a CNN extracts
enhanced and effective features from each frame of the molten pool images, and the TSM
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module is used to capture the temporal dependencies of these features, enabling accurate
identification of welding defects.

As shown in Figure 4, the Multi-Scale Feature Fusion Network based on Molten
Pool Video (MFVNet) consists of a backbone and a head. The backbone processes the
original molten pool image sequence to extract feature information. The head then further
processes these features and performs the final classification. The head comprises three
main components: a multi-scale feature fusion (MFF) module, an attention module (AM),
and a fully connected layer. The MFF module has three branches and extracts and fuse
feature information from the feature maps. Each layer stacks convolutions with different
kernel sizes to further process the extracted molten pool features, combining branches with
different receptive fields. The MFF module allows the model to detect targets at various
scales. Additionally, we incorporate an attention module to enhance the model’s ability to
recognize both large objects and fine details. This is achieved by applying convolutional
block attention module (CBAM) [26] attention and stacked row-column convolutions
to the channel-shuffled features, weighting them for more effective feature processing.
To further improve the accuracy of welding defect detection, we add Temporal Shift
Modules (TSM) [20] after each layer of the backbone and after the MFF and AM modules.
These TSM modules capture dynamic feature information from the video sequence, which
is crucial for recognizing welding defects. Given the real-time requirements of welding
defect detection, we use a unidirectional TSM module, as shown in Figure 5, to shift features
from the previous frame to the current frame.

Figure 4. Structure of the proposed model MFVNet. the MFVNet consists of a backbone network and
a header, with multi-scale feature fusion module and attention module embedded in the header and
temporal shift module (temporal shift) in each layer.
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(a) (b)
Figure 5. The Temporal Shift Module (TSM) performs efficient temporal modeling by shifting the
feature map along the time dimension. The unidirectional TSM mixes the past frame with the current
one. (a) The original tensor without shift. (b) Temporal shift (uni-direction).

In the backbone section, we designed a relatively lightweight backbone network due
to the high real-time requirements of industrial applications for welding defect detection.
We chose the MobileNetV2 [9] as the backbone, which utilizes depthwise separable convo-
lutions and inverted residual structures. This design maintains a lightweight architecture
while achieving excellent performance, extracting features from molten pool images to
enhance welding defect recognition. Similar to the approach in [20], we integrated TSM
modules into each backbone layer, as illustrated in Figure 6. The TSM modules use residual
shifts to fuse temporal information within the residual branches, further improving the
model’s ability to detect welding defects.

Figure 6. Residual TSM.

In this study, we propose a lightweight Multi-Scale Feature Fusion (MFF) module,
which integrates concepts from feature pyramids to enhance the model’s ability to handle
multi-scale features. The MFF module consists of three branches and a feature fusion com-
ponent, each branch using convolutions with different kernel sizes to improve the model’s
ability to extract multi-scale features. The first branch comprises a pointwise convolution
layer (PW) and a depthwise convolution layer (DW). After the pointwise convolution,
the number of feature channels is reduced to half of the input. Then, the original number
of channels is restored through a residual structure and group convolution at the feature
layer. This operation significantly reduces the number of parameters and accelerates the
model’s inference speed. Inspired by the feature pyramids in [21–23], the second and
third branches also aim to capture features at different scales by increasing the receptive
field. However, unlike those works, we do not use dilated convolutions to achieve varying
receptive field sizes. Instead, we employ pointwise convolutions combined with row and
column group convolutions of different kernel sizes, capturing features at different scales
in various directions. In each branch, we stack these operations to enable the model to
capture both detailed and global information at the same level, thereby enhancing the
model’s ability to handle complex backgrounds and intricate details.

Before feature fusion, we set a relatively small batch size due to the equipment’s limita-
tions. To mitigate this impact on model performance, we introduced a Layer Normalization
(LN) layer. The LN layer normalizes all features within each sample, ensuring that features
from different sources have similar distribution ranges, thereby eliminating the influence
of batch size on the model’s performance. In the feature fusion module, we combined
depthwise convolution layers with a 3 × 3 kernel size and pointwise convolution layers
with a 1 × 1 kernel size. This setup allows for efficient information fusion and encoding.
We also implemented a gating mechanism, adding an extra path after the GELU activation
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function as a gate. This mechanism facilitates the effective propagation and fusion of
features, enabling the model to focus on finer details.

Attention mechanisms are widely used in deep learning to recognize large objects and
distinguishing between foreground and background. To enhance the model’s performance,
we designed a custom attention module. As shown in the Figure 7, we divided the feature
channels into different groups using grouped convolutions, followed by a channel shuffle
operation to increase interaction between different groups in the grouped convolution.
In one branch, we employed the Convolutional Block Attention Module (CBAM), while in
another branch, we used pointwise convolution combined with row and column group
convolutions. CBAM is a lightweight attention mechanism that combines channel atten-
tion [27] and spatial attention [28] and can be flexibly integrated into CNN networks [26].
CBAM assigns higher weights to important targets, allowing the model to focus more on
them while suppressing irrelevant features like background noise by assigning them lower
weights. This helps the model effectively filter out background interference and focus on
the critical features of the molten pool. Combining mixed attention with features from
different directions improves the model’s capability to detect fine details, enhancing its
ability to detect subtle changes, such as size and shape.

Figure 7. Attention mechanism flowchart.

2.3. Loss Function

Cross-entropy loss is a commonly used loss function in classification problems, particu-
larly in deep learning models like Convolutional Neural Networks (CNNs). It measures the
difference between the predicted probability distribution and the actual probability distri-
bution. In binary classification problems, the model’s output is typically a probability value
representing the likelihood that a sample belongs to the positive class. The cross-entropy
loss can be expressed as

Loss =
1
N

N

∑
i
−[yi log(pi) + (1 − yi) log(1 − pi)]. (1)

where yi denotes the truth value of the sample i , with 1 for the positive class and 0 for
the negative class. pi denotes the probability that the sample i is predicted to be in the
positive class.

3. Experiments Design

3.1. Dataset

This study used GMAW welding, two types of welding wire (solid wire and flux-cored
wire), and 980 high-strength steel with welds having different gaps and groove angles, and
a molten pool vision system was employed to collect regular and porosity defect molten
pool videos from horizontal and vertical welding on 30 welding plates. The data collected
from four plates in both the normal and porosity defect samples were used as the test
set. The captured videos had a 640 × 512 resolution at 30 frames per second. The videos
were segmented into 1 s samples, with one sample taken every 4 s. Eight frames were
evenly selected from each sample, with approximately 600 normal molten pool samples
and 600 porosity defect samples. Since the molten pool images include parts of the weld
seam, base metal, welding torch, and molten pool, with the molten pool region being the
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primary focus for detecting welding defects, this region occupies only a small portion of
the image. High resolution and unnecessary background details can negatively impact
the performance and speed of the neural network. Therefore, the molten pool region was
segmented in each of the eight frames per sample. Based on the segmentation results,
the molten pool region was cropped from the original image with a 1:1 aspect ratio, and the
size was then resized to 224 × 224 pixels without altering the original aspect ratio of the
molten pool region. This resizing preserves the image details and minimizes the impact
on accuracy while improving processing speed by four times. The resulting dataset was
named WELDPOOL.

3.2. Test Environment

In the experiment, we used a desktop computer with a GeForce RTX 3060 GPU and
a 12th Gen Intel(R) Core(TM) i9-12900H CPU running Windows 11 operating system.
The WELDPOOL dataset was utilized, with the dataset divided into training, validation,
and test sets in a ratio of 6:1:3. The training parameters were set as follows: an initial
learning rate of 0.0001, a weight decay coefficient of 0.00005, and, since we used pre-trained
weights from MobileNetV2, we followed the settings in [20] and set the number of training
epochs to 50. Parameters were updated using the gradient descent method. The batch size
for each training iteration was set to 4 due to GPU limitations.

3.3. Performance Metrics

To evaluate the effectiveness of the proposed model in identifying porosity defects
objectively, this study assesses the model from both performance and real-time capability
perspectives. We use accuracy (Top-1 and Top-5), recall, and F1-score as the key metrics
for performance evaluation. We consider the number of parameters and computational
complexity for real-time capability as evaluation criteria. Following the settings in [20],
we also include latency and throughput as real-time evaluation metrics. Latency refers
to the time taken to process a single sample during inference, which in this study is the
delay in processing a sequence sample consisting of 8 frames. Latency directly reflects the
model’s real-time capability. Conversely, throughput indicates the amount of data that can
be processed per second, serving as an essential metric for evaluating the model’s efficiency.

3.4. Experiments

The experiments were conducted in the environment specified in Section 3.2. First,
we conducted benchmark tests to validate the proposed approach and the effectiveness
of the model. To further assess the effectiveness of the proposed modules, we performed
ablation experiments using the TSM model with MobileNetV2 as the backbone. Specifically,
the Multi-Scale Feature Fusion (MFF) module and the Attention Module (AM) were tested
as validation components, and their impact was further illustrated using confusion matri-
ces. Next, to verify that the dynamic features of the molten pool can enhance the model’s
recognition capability and to assess the impact of sample frame count on the model, we
compared the model’s result under different sample frame counts. Additionally, to explore
the effect of different backbones on the model’s performance and real-time capability, we
conducted comparative experiments by replacing the backbone with several lightweight
alternatives and comparing them with the proposed model. Finally, to demonstrate the
superiority of our algorithm, we compared it with several existing video classification algo-
rithms. To further verify the generalizability of the proposed algorithm, we also conducted
classification tests on the UCF101-24 and JHMDB subsets of the action recognition datasets
UCF101 [29] and HMDB51 [30] to evaluate the performance of the proposed method.

4. Experiments Results

4.1. Benchmark Testing

This section primarily discusses the comparison between the proposed model and
the baseline model. We enhance defect recognition by utilizing the dynamic features of
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the molten pool. To improve the model’s adaptability to different molten pool scales, we
apply multi-scale feature fusion. Additionally, we use attention mechanisms to strengthen
the model’s ability to identify the molten pool region. Based on this approach, we set up a
baseline model that includes TSM, a spatial pyramid module, and CBAM.

As shown in Table 1, the proposed model has a lower parameter count and computa-
tional complexity compared to the baseline model. It achieves higher accuracy in Top-1
classification, although slightly lower in Top-5 accuracy. This indicates that the effective
stacking of row and column group convolutions at different scales, combined with efficient
feature fusion, is superior to using dilated convolutions with various dilation factors and
pooling layers. This approach allows the proposed model to extract multi-scale features
from different directions accurately and effectively while maintaining lower parameters
and computational load. Moreover, incorporating the attention mechanism within the
channel shuffle branch proves to be more effective than using the CBAM attention mech-
anism alone. Additionally, the proposed model demonstrates a significant advantage in
processing speed.

Furthermore, we evaluated the proposed model using seven-fold cross-validation.
The model achieved an average accuracy of 97.16%, with a standard deviation of 0.24%. This
result indicates high accuracy and remarkable stability across different folds, demonstrating
the model’s generalization ability.

Table 1. Results for different benchmark configurations on the WELDPOOL dataset.

Moudle #Test-Top1 #Test-Top5 #Param #FLops #Thrput

Baseline 96.833% 99.911% 13.108 M 6.912 G 22 ms
Baseline-AM 96.997% 98.95% 13.108 M 6.914 G 22 ms
Baseline-MFF 97.322% 98.962% 4.839 M 3.669 G 15 ms

MFVNet 97.416% 99.728% 4.840 M 3.671 G 16 ms

4.2. Ablation Study

The results of validating the Multi-Scale Feature Fusion module (MFF) and the At-
tention Module (AM) on the TSM baseline model with MobileNetV2 as the backbone are
shown in Table 2. The experimental results indicate that when the proposed Attention
Module (AM) is integrated directly into the baseline model, the Top-1 accuracy improves
by 0.258%, and the recall rate increases by 0.2%. The results also demonstrate that the AM
module helps the model leverage more effective features, significantly enhancing overall
performance. The model incorporating the Multi-Scale Feature Fusion module (MFF) out-
performs the baseline model on our dataset due to its enhanced capability for multi-scale
feature extraction. The Top-1 accuracy improved by 1.292%, and the recall rate and F1 score
of the baseline model and the model with only the AM module were also lower than those
of the TSM model with the MFF module. Consequently, we integrated both modules into
the TSM model to improve performance. Compared to other model combinations, MFVNet
demonstrated superior results across the board. Therefore, from these experiments, we
can conclude that the proposed Attention Module (AM) and Multi-Scale Feature Fusion
module (MFF) effectively capture molten pool features and are well-suited for real-time
monitoring and identification of welding defects in our welding scenarios.

Table 2. Results of different model configurations on the WELDPOOL dataset.

Moudle #Test-Top1 #Test-Top5 #Recall #F1 #Δacc

TSM 95.866% 98.325% 95.9% 95.9% 0%
TSM-AM 96.124% 98.85% 96.1% 96.1% 0.258%
TSM-MFF 97.158% 98.9% 97.2% 97.2% 1.292%
MFVNet 97.416% 99.728% 97.4% 97.4% 1.55%
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To further demonstrate the effectiveness and impact of each module, we also cal-
culated the confusion matrix for the inference results under each model configuration,
as shown in Figure 8. In the confusion matrix, each column represents the predicted
class, with the total number in each column indicating the count of data predicted as that
class. Each row represents the actual class, with the total number in each row showing the
number of instances of that class. The experimental results indicate that, regardless of the
model configuration, a minimal number of normal samples are misclassified as porosity
defects, possibly due to other unstable factors in the welding process causing instability
in the molten pool surface light spots. However, after integrating the proposed modules,
the model’s misclassification rate decreases, demonstrating that the MFF and AM modules
enhance the model’s ability to identify welding defects.y y

(a) (b)

(c) (d)
Figure 8. Confusion matrix results for different configuration models on the WELDPOOL test set.
(a) TSM. (b) TSM-AM. (c) TSM-MFF. (d) MFVNet.

To further investigate the causes of model misclassification, we conducted tests on
normal molten pool samples with different conditions: the presence or absence of spatter,
variations in shape, and differences in size. Case1 represents no spatter, while Case2
represents the presence of spatter. The results are shown in the Table 3. It can be observed
that variations in shape and size have minimal impact on the model’s performance, while
the presence of spatter has a more significant effect. This is likely due to the bright spots
caused by metal spatter, which interfere with the model’s ability to accurately recognize
the true state of the molten pool. Therefore, improving the model’s robustness to spatter
interference remains a critical direction for further optimization.

Table 3. Results of the proposed model on normal molten pool samples with different conditions.

Conditions #Case1 #Case2

splashes 99.617% 94.839%
shapes 99.774% 99.735%

size 99.769% 99.803%
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Figure 9 presents the class activation map (CAM) visualizations for each model con-
figuration. As shown in Figure 9b,c, the proposed MFF and AM modules significantly
enhance the model’s ability to identify the molten pool spots. Furthermore, Figure 9d
demonstrates that combining the MFF and AM modules enables the model to focus more
effectively on critical regions, thereby improving detection accuracy.

(a) (b) (c) (d)

Figure 9. In Class Activation Map (CAM), the importance of features is visualized using different
colors, where the heatmap colors range from blue, yellow, orange to red, representing the low-
est to highest feature importance, respectively. Class Activation Map (CAM) results for different
configuration models on the WELDPOOL test set: (a) TSM; (b) TSM-AM; (c) TSM-MFF; (d) MFVNet.

4.3. Impact of Sample Frames Number on the Model

This section discusses the impact of different sample frame counts on the model’s
real-time performance and accuracy. When the sample frame count is 1, only a single frame
is in the time series, and no feature shifting is applied. Unidirectional feature shifting is
used for sample frame counts ranging from 2 to 16. To ensure a fair comparison, we use the
inference time of a single frame as a metric for real-time performance in this experiment.

As shown in Figure 10a, when the sample frame count is between 2 and 16, the model’s
performance improves compared to when the frame count is 1, indicating that dynamic
features in the molten pool images enhance the model’s ability to identify welding defects.
Furthermore, when the sample frame count reaches 12 to 16 frames, the model’s ability
to extract dynamic features from the molten pool video stabilizes. From a real-time per-
spective, as illustrated in Figure 10b, the inference time per image decreases as the sample
frame count increases. However, after the sample frame count reaches 8, the improvement
in inference speed becomes negligible. Therefore, the experimental results suggest that
with a sample frame count of 8, the model’s accuracy and real-time performance meet the
requirements for real-time welding defect monitoring in industrial applications.

(a) (b)
Figure 10. Impact of different sample frame sizes on the real-time and performance of the model.
(a) Accuracy of models with different sample frame sizes. (b) Time to reason about single-frame
images for different sample frame number models.
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4.4. Comparison with Other Backbone

The comparison results with two other popular lightweight backbone networks, Shuf-
fleNetV2 [31] and GhostNetV2 [32], are shown in Table 4. The model using MobileNetV2 as
the backbone performs the best across several evaluation metrics, including Top-1 accuracy,
recall, F1 score, and inference latency. While GhostNetV2 and MobileNetV2 achieve the
same accuracy, GhostNetV2 has a significantly slower inference latency of 27ms compared
to MobileNetV2’s 16ms, likely due to the higher number of parameters in GhostNetV2.
Although ShuffleNetV2 matches MobileNetV2 in inference latency, it falls short in Top-1
accuracy. We speculate that the extensive channel shuffle operations in ShuffleNetV2,
while enhancing information flow, may have slightly compromised its feature extraction
capability on our dataset. The model with MobileNetV2 as the backbone achieves an
accuracy of 97.416% with an inference latency of 16ms, meeting the accuracy and real-time
requirements necessary for monitoring welding defects during the welding process.

Table 4. Results of the proposed model using different backbone on the WELDPOOL dataset.

Backbone #Test-Top1 #Test-Top5 #FLOPs #Param #Latency #Thrput

MFVNet (ShuffleNetV2) 96.641% 99.128% 2.435 G 4.260 M 16 ms 62.5 V/s
MFVNet (GhostNetV2) 97.416% 99.728% 3.619 G 9.048 M 27 ms 37 V/s
MFVNet (MobileNetV2) 97.416% 99.728% 3.671 G 4.840 M 16 ms 62.5 V/s

4.5. Comparison with Other Methods and Dataset

In this section, we analyzed the work presented in this paper in comparison to the
latest research on molten pool analysis. For a fair comparison, we made adjustments to
AMSegNet (additive manufacturing–SegNet) [33]. Specifically, we added Temporal Shift
Modules to the convolutional layers after each downsampling and upsampling step to
better handle time-series data. Additionally, we modified the final output to categorical.
As shown in the Table 5, although AMSegNet demonstrates excellent performance in terms
of top-1 accuracy, recall, and F1 score, its computational complexity is significantly higher,
reaching 64.003 G FLOPs, with 17.064 M parameters. This results in a higher latency of
71 ms and a lower throughput of only 14.1 V/s. Although AMSegNet uses lightweight
CNN modules, modifying its input to image sequences considerably increased the number
of parameters and computational load. However, with profit from the attention mechanism,
AMSegNet still achieved outstanding performance in detecting molten pool defects.

Table 5. The latest research on the WELDPOOL dataset.

Model #Top1 #recall #F1 #FLOPs #Param #Latency #Thrput

AMSegNet 97.158% 97.2% 97.2% 64.003 G 17.064 M 71 ms 14.1 V/s
MFVNet 97.416% 97.4% 97.4% 3.671 G 4.840 M 16 ms 62.5 V/s

The experimental results of CNN+LSTM, C3D [19], Video Swin (Tiny) [34], and our
proposed MFVNet across different datasets are shown in Table 6. The performance trends
of the models are consistent across all three datasets: they perform well on our custom
WELDPOOL dataset and the UCF101-24 dataset but show weaker performance on the
JHMDB dataset, possibly due to the weaker temporal relationships in JHMDB. Our model
has been optimized for the WELDPOOL dataset, primarily by capturing features from
molten pool images at different scales and improving defect recognition through temporal
modeling. This optimization also leads to strong performance on the action recognition
dataset UCF101-24, with similar improvements observed in the CNN+LSTM model when
these modules are incorporated. On our custom dataset, the proposed modules enable our
model to achieve the best performance, with significantly lower inference latency compared
to other models. The Video Swin model’s performance is moderate, possibly be due to
the reduced number of layers in the tiny version. Although our model demonstrates a
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clear advantage in inference latency on the UCF101-24 dataset, its accuracy is only slightly
better than that of the CNN+LSTM model. As noted in the literature [20], methods that
integrate temporal fusion across all layers generally outperform those like CNN+LSTM,
which only apply temporal fusion in later feature extraction stages. On the JHMDB dataset,
our model’s accuracy is 0.989% lower than that of Video Swin, but it still outperforms the
other two models and achieves the best inference latency.

Table 6. Experimental results of different models on different datasets.

Model WELDPOOL UCF101-24 JHMDB

CNN-LSTM 96.425% 96.596% 69.681%
(50.9 ms) (52.6 ms) (52.2 ms)

C3D 95.85% 98.234% 68.989%
(123.89 ms) (119.53 ms) (126.48 ms)

video swin 96.37% 98.338% 71.372%
(62.26 ms) (55.49 ms) (66.14 ms)

MFVNet(our) 97.416% 97.819% 70.383%
(16 ms) (13 ms) (17.5 ms)

In summary, our proposed MFVNet demonstrates excellent performance across multi-
ple datasets, with a significant advantage in inference speed. While its accuracy on certain
datasets, such as UCF101-24, is slightly lower than the top-performing model (e.g., Video
Swin), MFVNet’s substantial advantage in inference latency, combined with superior ac-
curacy on our custom welding defect dataset, makes real-time welding defect monitoring
feasible during the welding process.

5. Discussion

This study presents MFVNet, a video-based model for welding defect classification.
The model uses the lightweight MobileNetV2 as the backbone for feature extraction and
incorporates lightweight temporal shift modules in each layer, making the model more
efficient. To address the characteristics of our molten pool images, we added a Multi-Scale
Feature Fusion (MFF) module, which captures features from different scales and directions
of the molten pool and integrates them across feature channels. The structure allows the
model to better capture temporal dependencies within the sequence. Additionally, we
introduced an attention mechanism module (AM) that combines attention with features
from different directions, enabling the model to focus on the most important features.
The dataset used in this study was created using a trackless crawling welding robot
from Beijing BOTSING Technology, with molten pool videos captured by a molten pool
camera, consisting of 1200 samples, with eight frames uniformly sampled from each video
for training and validation. Experimental results demonstrate that the proposed model
achieves low latency (16ms per sample) and high throughput (62.5 video samples per
second), meeting the real-time requirements of practical applications. The model also
achieved a welding defect recognition accuracy of 97.416%, laying a solid foundation
for molten pool video-based welding defect detection. Furthermore, experiments on the
UCF101-24 and JHMDB datasets indicate that our model is generalizable.

While our model has shown high performance and good real-time capabilities on our
custom dataset, some limitations remain. The current algorithm focuses on identifying
potential porosity defects, but further exploration is needed to extend it to identify a wider
range of welding defects. Although we built a dataset with 1,200 samples, deep learning
models typically benefit from larger datasets for improved generalization and robustness.
Future research should delve deeper into the model, welding defects, and molten pool
characteristics, and collect more diverse and larger-scale welding defect video data to
enhance the model’s performance.
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Abstract: Aiming at the shortcomings of single-sensor sensing information characterization ability,
which is easily interfered with by external environmental factors, a method of intelligent perception
is proposed in this paper. This method integrates multi-source and multi-level information, including
spindle temperature field, spindle thermal deformation, operating parameters, and motor current.
Firstly, the internal and external thermal-error-related signals of the spindle system are collected by
sensors, and the feature parameters are extracted; then, the radial basis function (RBF) neural network
is utilized to realize the preliminary integration of the feature parameters because of the advantages
of the RBF neural network, which offers strong multi-dimensional solid nonlinear mapping ability
and generalization ability. Thermal-error decision values are then generated by a weighted fusion
of different pieces of evidence by considering uncertain information from multiple sources. The
spindle thermal-error sensing experiment was based on the spindle system of the VMC850 (Yunnan
Machine Tool Group Co., LTD, Yunnan, China) vertical machining center of the Yunnan Machine
Tool Factory. Experiments were designed for thermal-error sensing of the spindle under constant
speed (2000 r/min and 4000 r/min), standard variable speed, and stepped variable speed conditions.
The experiment’s results show that the prediction accuracy of the intelligent-sensing model with
multi-source information fusion can reach 98.1%, 99.3%, 98.6%, and 98.8% under the above working
conditions, respectively. The intelligent-perception model proposed in this paper has higher accuracy
and lower residual error than the traditional BP neural network perception and wavelet neural
network models. The research in this paper provides a theoretical basis for the operation, maintenance
management, and performance optimization of machine tool spindle systems.

Keywords: spindle; thermal-error modeling; multi-source information fusion; intelligent perception;
machine tool

1. Introduction

The spindle system plays a crucial role in machine tools, and its stability and accuracy
directly affect the machining quality. Under complex working conditions, the uneven
distribution of the temperature field of the spindle system may lead to unpredictable
thermal deformation, which, in turn, affects the machining accuracy. Therefore, study-
ing intelligent-sensing methods for spindle thermal errors is crucial for improving the
performance and intelligence of CNC machine tools. The ability of the spindle system to
independently perceive its own state and environmental conditions can allow the system to
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realize real-time monitoring and adjustment of the machining process, thereby improving
machining accuracy and stability. The research on this intelligent-perception method not
only helps to improve the machining quality of the machine tool but also enhances the
intelligent level of operation and maintenance management of the machine tool, making it
more adaptable to the complex and changing machining environment and its needs [1,2].

The research on intelligent sensing of thermal error in machine tool spindles mainly
has two aspects: thermal-error signal analysis and thermal-error modeling. Thermal-error
signal analysis mainly collects the relevant signals in the machine tool and the surround-
ing machining environment through temperature sensors, displacement sensors, etc. It
performs signal analysis and feature extraction on them. Brecher, C. et al. [3] used the
unscented Kalman filter (UKF) to estimate machine tool kinematic error model parameters.
The kinematic error model of a machine tool contains the time-varying errors, both geomet-
ric and thermal. The researchers used an unscented Kalman filter to fuse three-dimensional
probe data with a low sampling rate, three-dimensional probe data with a high sampling
rate, and comprehensive deformation sensor data with a high sampling rate for the real-
time calibration of thermal-error models. This reduces the impact of modeling errors caused
by nonlinearity and measurement noise and improves the machining accuracy and stability
of the machine. Guo et al. [4] proposed a static thermal deformation modelling method (ST-
CLSTM) for machine tools based on a spatiotemporal correlation hybrid CNN-LSTM. They
used a convolutional neural network (CNN) to extract temperature features and construct
the dataset and a long short-term memory (LSTM) network to capture the temperature
change features, considering the sequential nature of the temperature data. The experiment
verifies that the model has higher prediction accuracy than the traditional model and
solves the problem of temperature-sensitive point selection in thermal-error modeling.
Jia et al. [5] constructed a thermal-error prediction model using a one-dimensional convo-
lutional neural network-gated recurrent unit (1DCNN-GRU-Attention). The convolution
module is used to replace the traditional temperature-sensitive point selection method. The
experiment’s results show that the prediction accuracy of the proposed model is 81.53%
under multi-coupled factors. The root-mean-square error (RMSE) is 40% lower than that of
the traditional method.

Regarding thermal-error modeling, there are presently mainly thermal-error modeling
methods based on heat transfer theory, and polynomial fitting or neural network modeling
methods based on experimental data [6]. The thermal-error modeling method based on heat
transfer theory is mainly based on the energy conservation equation of heat conduction–
convection–thermal radiation used to solve the temperature field and the corresponding
displacement field of the machine tool spindle or key components. The classical methods
are the centralized mass method and the finite element method [7]. The centralized mass
method simplifies the geometry and material distribution of the analyzed object, and
by reasonably selecting the location and mass value of the concentrated mass points,
connecting each of them with each other using thermal resistance, and establishing the
energy conservation equation, a thermal-error model can be obtained in order to predict
the characteristics and response of the structure [8].

Kim et al. [9] used the centralized mass method to model the thermal error of the ball
screw feed drive system to calculate the temperature distribution and thermal deformation
of the ball screw feed drive system. Huang et al. [10], who used the centralized mass
method to model the thermal errors of tension rods and bending beams, investigated the
relationships between thermal deformation and temperature and heat. In this case, the
thermal-error model of the spindle was established by using the thermoelastic mechanics
theory and the lumped heat capacity method, and the average fitting accuracy of the
model reached 91.3%. The finite element analysis method uses finite element software
to model the structure and material properties of the machine tool. Then, it analyzes the
thermal error of the machine tool under different operating conditions [11]. Wu et al. [12]
used the finite element method to analyze the thermal characteristics of a ball screw feed
drive system under long-term operating conditions. By estimating the heat source inten-
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sity, based on the temperature profile, through inverse analysis, the primitive domain of
the ball screw is divided into multiple units so that the discrete system is equivalently
replaced by a continuous system. The temperature distribution is then converted into
transient heat transfer in a non-deforming medium, and the thermal expansion of the
ball screw is simulated based on the calculated heat flux. Yang et al. [13] have numeri-
cally simulated the thermal expansion process of a high-speed motorized spindle under
normal operating conditions using a transient thermal–structural coupled finite element
analysis method. The finite element prediction results were also compared with the mea-
sured temperatures and deformations, and it was found that the thermal model can be
used to predict the transient thermal characteristics under various operating conditions.
Ma et al. [14] developed a three-dimensional finite element model, considering thermal
contact resistance and bearing stiffness, for transient thermal–structural coupling analysis
of a high-speed electrical spindle. They verified the validity of the model through thermal
balance experiments.

Thermal-error modeling methods based on heat transfer theory generally involve com-
plex mathematical and physical equations, which may require significant computational
resources and time, to solve complex structures. The centralized mass method and the
finite element method usually require some approximations to reduce the computational
complexity, but these approximations, to a certain extent, affect the accuracy of the analysis
results, which need to be evaluated and verified according to the actual situation in the
specific application.

A polynomial fitting or neural network modeling method based on experimental data
is used to construct a correlation model using internal and external information from the
machine, such as temperature rise at sensitive points and machine speed obtained from
thermal-error experiments, as inputs, and thermal drift as output. Among these methods,
the polynomial fitting method usually uses a polynomial function to fit the thermal-error
data of a machine tool in order to model and predict it. In contrast, the neural network
method trains a neural network model with a large amount of data, thus realizing the
modeling and prediction of the thermal error of the machine tool. These classical methods
have been widely used and studied in practical engineering.

Gowda Chethana, R. et al. [15] used multiple linear regression methods to develop a
prediction model for thermal errors in CNC machine tools. They used the experimentally
measured diameter deviation as the dependent variable and the temperature data as the
independent variable. They obtained the regression coefficients in multiple linear regres-
sions using the least-squares method to determine the deviation between the tool point
and the workpiece. The experiment’s results show that the method effectively predicts
the radial deviation of CNC machine tools. Zhao et al. [16] proposed a three-dimensional
thermal-error analysis method based on rotation error vector and translation error vector,
obtained six vectors of thermal error in the three-dimensional space of the spindle through
the testing experiments, and used the thermal-error compensation technique of space
coordinate transformation parameters to verify the machining of S samples before and after
the compensation for the thermal error. The machining accuracy of the parts was improved
by 34.1%, which laid a theoretical foundation for the detection of and compensation for
thermal error in asymmetric spindles in the same kind of high-torque CNC machine tools.
Li [17] and others established a least-squares support vector machine (LSSVM) prediction
model optimized by Aquila Optimizer (AO), and the experiment’s results showed that
the prediction accuracy of the AO-LSSVM prediction model for the thermal error of the
electrical spindle can reach 94%, and it has a good stability and generalization ability.
Huang et al. [18] introduced a genetic algorithm to optimize the initial weights and thresh-
olds of the traditional back-propagation neural network. They used the combination of
genetic algorithm and neural network in the thermal-error prediction of high-speed spin-
dles, which showed advantages in solving the global minimum search problem quickly,
compared with the traditional back-propagation neural network model. Lee et al. [19]
applied fuzzy logic decision to thermal-error modeling, and many other scholars [20–22]
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have applied a gray model and an artificial neural network to spindle thermal-error predic-
tion, an approach which has fewer learning samples and avoids the loss of information in
a single modeling approach. All of these methods reflect the thermal error by modeling
the correlation between the temperature-sensitive points and the thermal deformation, so
selecting the temperature-sensitive points is particularly important.

The methods mainly used for selecting temperature-sensitive points are the empir-
ical correlation coefficient and the cluster analysis [23]. The empirical analysis method
empirically analyses the components in which thermal deformation occurs and uses the
temperature-sensitive points associated with them as model inputs. Among these efforts,
Wu et al. [24] used three temperature measuring points, associated with spindle speed,
spindle movement, and coolant system, as temperature-sensitive points; Yang et al. [25]
used measuring points related to the spindle base, X-axis screw, and spindle column as
the temperature-sensitive points, according to empirical statistics; the correlation coef-
ficient method involves screening the temperature measuring points by describing the
correlation coefficient between the temperature field and the thermal error to determine its
temperature-sensitive point. Using this, Guo et al. [26] used the correlation coefficient to
classify the 12 groups of temperature measuring point data. A group of data was selected
in each category to reflect the temperature information in the group. Three groups of
temperature-sensitive-point data were obtained as inputs for the model after screening.
Liu et al. [27] used the correlation coefficient method to evaluate the correlation between
temperature-sensitive points and thermal errors. They found that this method has advan-
tages in selecting temperature-sensitive points that remain stably correlated with thermal
errors over time. The cluster analysis method of screening temperature-sensitive points
generally uses a clustering algorithm to group temperature data, calculate the distance
between data points and the clustering centers, and group data points with similar temper-
atures into one category. Fu et al. [28] used correlation analysis and K-means clustering
to select combinations of global temperature sensitivities for machine tools. Liu et al. [29]
used a fuzzy clustering algorithm combined with average influence values to optimize the
temperature collection points, which ensured the robustness of the model by classifying the
variables and prompting the selection of typical variables to reduce the inputs. Hu [30] used
fuzzy C-mean (FCM) clustering and correlation analysis to select temperature-sensitive
points in the thermal-error modeling and introduced the Dunn index to determine the
optimal number of clusters, a tactic which can effectively suppress the multicollinearity
problem between temperature measuring points. Li et al. [31] used the fuzzy C-mean
clustering algorithm to screen the temperature-sensitive points and then used the Pearson
correlation coefficient to improve the covariance and correlation between the temperature
variables; the covariance and correlation problems between the temperature variables were
effectively weakened.

In summary, most existing studies only consider the spindle temperature field’s
influence on the spindle’s thermal error. In contrast, the spindle speed, spindle load, cooling
system, spindle structure, ambient temperature, lubrication, and the thermal conductivity
of processing materials, and so on, will affect the thermal error of the spindle system in the
actual working process, so it is necessary to analyze the internal and external information
from the machine tool in a comprehensive perception of the tool and the use of multi-source
information fusion can help to obtain a more accurate thermal-error model.

The rest of this paper is structured as follows: Section 2 firstly briefly analyzes the
generation mechanism of the thermal error of the CNC machine tool spindle and then
systematically introduces the proposed intelligent-sensing method and model of spindle
thermal error based on multi-source information fusion and describes in detail the multi-
source information feature extraction and information fusion algorithm in the model.
Section 3 describes the experimental design testing thermal-error sensing for spindles.
Then, the experiment’s results are analyzed and discussed in Section 4, and the proposed
intelligent thermal-error sensing method based on multi-source information fusion is
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compared and analyzed with the existing algorithms. Finally, conclusions are drawn in
Section 5.

2. Intelligent-Sensing Method of Thermal Error

2.1. Mechanism Analysis of Thermal Error of CNC Machine Tool Spindle

During the machining process, CNC machine tools are affected by internal and external
heat sources such as cutting heat, friction heat, and the surrounding environment. The
heat generated {Q} is transferred to the machine components by radiation, convection, and
conduction. This can result in an uneven distribution of the temperature field {φ} and
the thermal deformation {u} of the machine tool due to the incomplete symmetry of the
structure of the machine tool, the different materials of the internal components, and the
differences in the degree of heat dissipation on the surface of the machine tool. This causes
the CNC machine to produce a change in the relative positions of the components compared
to the standard steady-state condition, which ultimately leads to a relative displacement
{δ} between the workpiece and the tool, affecting the machining accuracy, as shown in
Figure 1.

Figure 1. Thermal deformation mechanism of the vertical machining center.

As a critical core component of CNC machine tools in high-speed operation, the
spindle will be subject to friction, cutting heat, and other factors, resulting in a rise in the
spindle’s local temperature and causing thermal deformation. Meanwhile, the spindle
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is affected by high temperatures during the working process, and the local area will be
affected by thermal stress, which will change the shape of the spindle and cause thermal
error. In addition, with the complexity and variability of the machining environment and
working conditions, the spindle in the operation process or machining process produces
unpredictable thermal errors, so it is vital to carry out intelligent sensing of the spindle
thermal error of the machine tool under complex working conditions. In the actual opera-
tion of the machine tool, machine settings, staff operation, maintenance, calibration, and
other aspects of these factors may have impacts on the thermal error. However, the impact
on the thermal error is relatively small, so in order to simplify the model analysis, these
factors can be ignored.

Existing thermal-error sensing models generally model the correlation between
temperature-sensitive points and thermal deformation. However, the selection of the
sensitive points, given that the thermal-error model has been established using a single
sensor, has certain limitations. These points cannot accurately reflect the correlation of
temperature field and thermal deformation under different working conditions. In order
to improve the robustness of the thermal-error sensing model, the factors affecting the
thermal error of the spindle system are analyzed, and it is found that the main signals
related to the thermal error of the spindle are the spindle temperature field, the spindle
working-condition parameters, and the motor current signal. In addition, elements of
working-condition information such as the spindle reach, thermal balance time, spindle
speed, and size of the cutting force directly affect the thermal deformation of the spindle;
when the spindle is at a high speed, the friction and cutting heat will increase, resulting
in rises in the spindle’s temperature, increasing the possibility of thermal error. The spin-
dle motor current signal reflects the spindle load condition and working status, and the
increase in cutting load will increase the spindle force, generate more heat, and aggravate
the thermal error of the spindle system.

Therefore, the work of utilizing sensors to collect multi-source thermal information
associated with both the machine tool spindle itself and the machining environment, and
analyzing, processing, and fusing it in real-time to construct a thermal-error model is indeed
critical to improving the performance and accuracy of the machine tool. Such an intelligent-
sensing system allows the machine tool to know, in real time, its own thermal state and
the influence of the surrounding environment, allowing it to make timely adjustments
and optimizations during the machining process to improve the quality and efficiency of
its machining.

2.2. CNC Machine Tool Spindle Thermal-Error Sensing Methods

Thermal-error sensing of machine tool spindles generally requires thermal perfor-
mance tests under different operating conditions to obtain temperature rise data and
thermal deformation data at measurement points. Then, using the test data, with the corre-
sponding method for the optimization of the selection of each temperature measurement
point, the experimental thermal deformation data and optimized measurement point data
are used to establish the spindle system’s temperature-sensitive points and determine
the thermal deformation using the correlation model. This employs a large number of
samples to obtain the parameters of the correlation model, and then relies on the measured
temperature rise data for thermal-error sensing prediction.

Referring to the structural characteristics of the vertical machining center spindle and
the thermal deformation mechanism, this paper proposes an intelligent-sensing method
architecture for spindle thermal error based on multi-source information fusion, as shown
in Figure 2. This consists of three main layers: the perception layer, the analysis layer, and
the reasoning decision-making layer. The perception layer senses the internal and external
signals of the machine tool spindle system by arranging a number of sensors, including
an infrared thermal imager (Japan Avionics Co., Ltd. Yokohama, Japan) and eddy current
displacement sensors, and inputs them into the PC to complete the acquisition of signals.
The analysis layer prepares the multi-source information by filtering, denoising, and uti-
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lizing other pre-processing and feature extraction techniques to achieve the screening of
information, in order to obtain the spindle temperature, motor current, and spindle oper-
ating conditions, as well as other characteristics and parameters, enabling high-precision
intelligent sensing, to provide more accurate information to the decision-making layer.
Data preprocessing reduces the complexity of the data by considering only the extracted
or selected data for modeling, thus improving the performance of the model [32]. The
decision-making layer fuses the multi-source information, takes the multi-physical-domain
fusion information as the input to the intelligent-sensing model of the thermal error of the
machine tool spindle, adopts the corresponding intelligent algorithm to process to deter-
mine the estimated result of the thermal error, and analyzes the decision to detetermine the
optimal strategy by considering the specific constraints [33].

 
Figure 2. Thermal error intelligent-perception architecture.

2.3. Intelligent-Perception Model of Spindle Thermal Error Based on Multi-Source
Information Fusion

By analyzing the causes of thermal error in the spindle systems of CNC machine
tools, it can be seen that the primary sources of information related to thermal error are
the spindle temperature field, operating condition information, and motor current signals.
According to the thermal error intelligent-sensing architecture, the thermal-error sensing
model of the spindle system is constructed as shown in Figure 3, including key steps such
as signal acquisition, signal preprocessing, feature extraction, feature fusion, and decision
fusion. In order to obtain comprehensive information about the temperature field and to
avoid arranging a large number of contact temperature sensors that would interfere with
normal processing, a non-contact infrared thermometer is used to obtain the temperature
value of the measurement point from the thermal image. Since the spindle speed and motor
current have large influences on the temperature field distribution and thermal deformation
of the spindle system, the built-in speed sensor and current sensor of the machine tool
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are used here to obtain the spindle speed signal and motor current signal, respectively.
Signal preprocessing requires filtering and denoising of multi-source signals to improve
the efficiency and accuracy of the system’s signal processing. The spindle temperature
field, operating condition information, and motor current associated with thermal error are
extracted to construct a collection of evidence bodies in the feature space. In view of the
advantages of the RBF neural network, with strong multi-dimensional nonlinear mapping
ability, generalization ability, and clustering analysis ability, the RBF neural network is
used to perform feature-layer fusion on the collection of evidence bodies in the feature
space. At the same time, considering the uncertain information from multiple sources, the
improved D-S evidence theory is further used to fuse the fusion results of the feature layer
at the decision-making layer to solve the problem of accurate sensing of thermal errors of
CNC machine tool spindles under complex machining environments. By weighting the
fusion of different evidence, the degrees of contribution of different information sources
can be more accurately reflected, making the final fusion result closer to the real situation.
The specific steps are as follows:

Step 1 Analyze the main causes of thermal error, identify multiple sources of information
associated with thermal error, and specify the type of sensor.

Step 2 Obtain the signal from the sensors, perform signal preprocessing, extract the
feature parameters associated with the thermal error, and construct a collection of
evidence bodies in the feature space to complete the training of the temperature
rise–thermal error neural network model for temperature-sensitive points.

Step 3 The RBF neural network is used to diagnose the body of evidence in each feature
space separately, and the set of preliminary diagnostic results is obtained.

Step 4 Calculate the basic credibility of each preliminary diagnostic result set.
Step 5 The reliability interval of each evidence body in the recognition framework under

the action of a single evidence body is calculated according to the basic credibility
assignment of the evidence body in each feature space.

Step 6 According to the weighted evidence fusion algorithm, the spindle thermal-error
prediction value is calculated, and the thermal-error sensing result is obtained.

 

Figure 3. Thermal-error perception model of machine tool based on multi-source information fusion.

The image of the temperature field of the spindle system obtained by the infrared
thermal imager contains a large number of temperature measuring points. In order to
reduce the amount of computation associated with the sensing model and to ensure the
accuracy of the sensing model, it is necessary to optimize the selection of the temperature
measuring points. A combination of gray correlation and principal component analysis
is used to screen the temperature sensitivities of the temperature field. Firstly, the tem-
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perature measuring points highly correlated with thermal error are roughly screened by
gray correlation analysis. Then its n uncorrelated principal components are extracted by
principal component analysis. The principal components are used instead of the original
temperature data as inputs for the thermal-error sensing model; the steps are shown in
Figure 4.

 

Figure 4. Temperature-sensitive point optimization process.

Firstly, the reference sequence in the gray correlation analysis is determined to be the
thermal deformation data, and the comparison sequence is the temperature rise data of
the temperature measuring points; the two sequences of data are standardized. Then, the
gray comprehensive relational grade between each comparison sequence and the reference
sequence is calculated, and the comparison sequence corresponding to the gray comprehen-
sive relational grade is selected as the primary temperature rise variable, that is, the sample
sequence for principal component analysis. The covariance between different factors of the
sample series is calculated. Specifically, the temperature rise data of different temperature
measuring points are ascertained; the contribution rates of the principal components corre-
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sponding to each characteristic root are found by calculating the characteristic root, and
then selecting the first q characteristic roots and the corresponding characteristic vectors
according to the contribution rate to obtain the principal components. Finally, based on
the characteristic vectors, the contribution rates of the temperature measuring points as
to each principal component are obtained, and the optimal temperature-sensitive points
are determined.

The feature extraction of the spindle condition information needs to correspond to the
sampling frequency of the temperature field to determine the speed of the spindle at the
current moment, as does the signal processing of the rotational speed. Data dimension cor-
respondence is first needed to ensure that the spindle speed sampling time is aligned with
the temperature field sampling time. The data are then normalized, and the dimensionless
numbers obtained from the normalization are used as features of the speed signal.

The current signal collected through RS232 is a continuous sinusoidal quantity, so
the spindle motor current feature extraction must first carry out a Fourier-transform (FFT)
on the continuous current flow. Spectral analysis of the current is performed to find the
statistical characterization of the current signal in the frequency domain, that is, the center of
gravity frequency; the calculation is shown in Equation (1). The center of gravity frequency
and the effective value of the motor current are used as current signal characteristics.

fc =
∑n

i=1 fi pi

∑n
i=1 pi

(1)

where qi is the frequency domain signal of the current, the center of gravity frequency is fc,
and n is the number of points of spectral data obtained after FFT.

In order to improve the performance of the thermal-error sensing model, the tempera-
ture features, operating condition features, and current features from different data sources
are fused in the feature layer to construct a collection of evidence bodies in the feature space.
Then, the RBF neural network is used to initially fuse the body of evidence in each feature
space separately; the specific steps are shown in Figure 5. The number of hidden nodes
is first estimated based on an empirical formula, and the number of data centers is deter-
mined using the trial-and-error method. The K-means clustering algorithm determines the
primary function’s data centers and expansion constants. Then, the pseudo-inverse method
is utilized to calculate the output layer weights, the model error is calculated, and the
training is completed after reaching the standard. When the trained RBF neural network is
modeled and saved, the preliminary fusion results of a thermal error are recorded, as well
as the accuracy of each neural network for decision-making layer fusion.

The RBF neural network obtains the preliminary fusion result set after fusing the fea-
ture layers of the body of evidence in each feature space, which reduces the dimensionality
of the interest and extracts the effective features in it. In order to improve the accuracy
of the model and make the final fusion result closer to the actual situation, this paper
introduces evidence fusion at the decision-making layer; the degrees of contribution of
different sources of information can be more accurately reflected through evidence fusion
of different evidence.

Since the spindle mechanism speed, motor current, and temperature field of a CNC
machine tool are interrelated with each other, the signals related to each thermal error
cannot be independent of each other. Classical D-S evidence theory is sensitive to the
basic probability assignment function and lacks robustness [34]. It suffers from fusion
failure in the face of conflicting evidence. This paper employs a weighted evidence fusion
theory at the decision level to address this issue. By introducing weight parameters to
weight different evidence, the evidence with higher credibility or more importance has
more influence in the fusion process, thus effectively solving the problem of conflicting
evidence. The weighted evidence fusion is calculated as follows.
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Figure 5. Training process of the generalized RBF neural network model.

It is assumed that the set of independent possible conclusions of a problem is the
identification framework Θ = {A1, A2, . . . An}, Ai is the basic-element of Θ, and 2Θ is the
power set of Θ. If the set function mapping m : 2Θ → [0, 1] satisfies

{
m(∅) = 0

∑
A⊆Θ

m(A) = 1, A �= ∅ (2)

then the mapping m : 2Θ → [0, 1] is called the basic probability distribution function on
the identification framework Θ. ∀A ⊆ Θ, m(A) is called the basic probability assignment
of A. The identification framework Θ is defined by

⎧⎨
⎩

Bel(A) = ∑
B⊆A

m(B)

Pl(A) = 1 − Bel(A) = ∑
B∩A=∅

m(B)
(3)
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The mapping Bel : 2Θ → [0, 1] is the belief function on the identification framework Θ.
Mapping Pl : 2Θ → [0, 1] is the plausibility function of Bel. For ∀A ⊆ Θ, [Bel(A), Pl(A)] is
called the belief interval of A. The belief interval describes the upper and lower bounds on
the degree of confidence that the current evidence holds in proposition A.

When two pieces of evidence are combined, m1 and m2 are the basic probability
distribution functions on the same identification framework Θ. The basic-elements are
E1, E2, . . . Ek and F1, F2, . . . Fn, respectively. If ∀A ⊆ Θ and

N = ∑
E∩F �=∅

m1(E)·m2(F) > 0 (4)

then, the synthesized basic probability distribution function m : 2Θ → [0, 1] is

{
m(∅) = 0
m(A) = 1

N ∑
E∩F=A

m1(E)·m2(F), A �= ∅
(5)

In the above formula, N is a normal number. The function is to assign the lost reliability
on the empty set to the non-empty set, in proportion, to meet the requirements of the
probability assignment. The N value can reflect the degree of evidence conflict; the greater
the evidence conflict, the smaller the N value. The above formula is called the orthogonal
sum, denoted by m1 ⊕ m2. Moreover, the combination of evidence is independent of the
order of operation. Therefore, the calculation of multiple evidence combinations can be
recursively derived from the calculation of two evidence combinations to obtain

m = {[(m1 ⊕ m2)⊕ m3]⊕ . . .} ⊕ mn (6)

In the weighted evidence theory, the evidence weight factor is determined by the
degree to which that evidence conflicts with other evidence. For the same identification
framework Θ, let the reliability of each body of evidence for identifying n propositions in
the identification framework be R(A) → [0, 1], ∀A ⊂ Θ, then by

W(A) =
n·Rk(A)

∑A⊂Θ Rk(A)
(7)

The mapping W (·) is a weight coefficient assignment function on the identification
framework Θ. ∀A ⊆ Θ, W(A) is referred to as the weight coefficient assignment of the body
of evidence to A; in the formula, and when the data on the reliability of the evidence for
the identification of each proposition is more reliable, k takes a larger value. The weight
coefficient W(A) of the evidence reflects that the evidence has different degrees of reliability
in identifying the propositions in the identification framework.

The basic probability assignment function m:2ˆΘ→[0,1] is weighted to take full account
of the weight of each piece of evidence for each proposition when the evidence is combined.
∀A ⊆ Θ, and then there are⎧⎪⎨

⎪⎩
Wm(A) = W(A)·m(A)

m(Θ)+ ∑
A⊂Θ

W(A)·m(A)

Wm(Θ) = 1 − ∑
A⊂Θ

Wm(A)
(8)

The mapping Wm : 2Θ → [0, 1] is a weighted probability assignment function on
the identification framework Θ. ∀A ⊆ Θ, Wm(A) is called the weighted probability
assignment of A.

Therefore, the weighted synthesis rule for multiple evidence is

Wm = {[(Wm1 ⊕ Wm2)⊕ Wm3]⊕ . . .} ⊕ Wmn (9)
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As a result of the weighting of the basic probability assignment function, rational
evidence is strengthened, irrational evidence is weakened, and conflicts between evidence
are significantly reduced. Therefore, the improved weighted evidence theory can more
widely meet various practical applications. The improved weighted evidence theory fully
utilizes the information from the evidence sources and eliminates the incompleteness and
uncertainty of the information contained in a single data source.

3. Thermal-Error Perception Experiment Setup

3.1. CNC Machine Tool Spindle Thermal-Error Perception Experiment

A large number of scholars’ experimental research has found that the spindle, in
the X and Y directions, does not produce significant thermal error [35]. In contrast, the
Z-direction thermal error is very obvious. So the spindle thermal error is generally es-
tablished as a mapping relationship between the spindle temperature measuring points
and the Z-direction thermal error. This paper’s intelligent-sensing model of thermal error
mainly establishes the relationship between the temperature field at the corresponding
moment, the working conditions, the spindle motor current and thermal deformation mea-
surement point data. Therefore, the data to be measured in the thermal-error experiment are
the temperature field, spindle speed, spindle current, and Z-direction thermal deformation.

The experiment takes the Yunnan Machine Tool Factory VMC850 vertical machining
center as the perceived object. This paper’s experiments select an eddy current displace-
ment sensor to measure the thermal error of the spindle system. The contact temperature
sensor has many installation elements and cumbersome wiring is employed in the actual
measurement, leading to inaccurate measurement results. So, in this paper, we select an
infrared thermal imager to collect the temperature data from the temperature measurement
points of the spindle system of the vertical machining centers. Then, the data is transmitted
to the computer through USB transmission. Speed and motor current can be monitored
and collected in real time by connecting the spindle’s built-in sensor to the PC through the
RS232 transmission bus. The eddy current displacement sensor can realize the real-time
measurement of thermal deformation of the spindle under the idle state of the machine
tool through non-contact measurement. The experimental platform built for each device is
shown in Figure 6.

 

Figure 6. Experimental platform of thermal error intelligent-sensing system.
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Considering the huge structure of the machine tool and the large number of sensors
required, this paper adopts an infrared imager to take pictures of the spindle system. The
thermal image and its temperature measuring points are arranged as shown in Figure 7.
Points a, b, c, g, h, and i are the spindle box shell temperatures; points d, e, and f are the
points for the spindle motor shell temperature; points j and k are for the temperature of
spindle bearing; l is the temperature of the spindle claw disc; and the m and n points will
not produce noticeable temperature changes with the extension of the spindle working
time, so they are used to represent the workbench and the ambient temperature.

 

Figure 7. Layout of temperature measuring points at a certain time during machine operation.

In order to simulate the change of spindle speed during the actual machining process,
the experiment was carried out in no-load mode. We edited the working procedure of the
vertical machining center according to the set working conditions, collected data every
1 min, and produced four groups of data in total. Constant speed and ISO-variable-speed
experimental data were used for modelling, and stepped variable speed data were used to
validate the model’s predictive accuracy.

3.2. Experimental Conditions Design

In order to simulate the thermal drift of the spindle under actual processing condi-
tions through no-load experiments, this project carried out thermal-error test experiments.
ISO [36] testing standards identified three no-load experiments at different speeds. The
temperature, spindle motor current, spindle speed, and thermal-error data were collected
under different speed conditions to provide basic data for intelligent-perception modelling
and model verification of thermal error. The three groups of no-load test conditions are
composed of one group at constant speed conditions, and two groups at variable speed
conditions. The constant speed idling was 2000 r/min for 2 h and 4000 r/min for 2 h,
respectively. The two sets of variable speed conditions comprised ISO-standard variable
speed conditions and stepped variable speed conditions, as shown in Figures 8 and 9.
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Figure 8. ISO-standard variable speed operation: speed–time diagram.

Figure 9. Stepped variable speed operation: speed–time diagram.

The two working conditions of constant speed and ISO-standard variable speed
were used for model training, and the stepped variable speed condition was used for
model testing.

4. Results of the Experiment and Discussion

4.1. Results of the Experiment and Data Analysis

The thermal characteristic experiment was carried out at the two sets of off-line speeds
described in Section 3.2; the temperature rises for the measured points in the temperature
field of the spindle at a constant speed of 2000 r/min, a constant speed of 4000 r/min, and
a variable speed of ISO are shown in Figure 10.

(a) (b) (c) 

Figure 10. Temperature rises at temperature measuring points at 2000 r/min, 4000 r/min constant
speed, and ISO-standard variable speed: (a) 2000 r/min constant speed; (b) 4000 r/min constant
speed; and (c) ISO-standard variable speed.
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The figure shows that under a constant speed of 2000 r/min, the temperature field no
longer produces apparent changes after the spindle is run for 95 min. Point l (temperature
measuring point of spindle claw disc) has the most drastic temperature change, with an
eventual stable temperature rise of about 7.8 ◦C. Under the conditions of 4000 r/min con-
stant speed, the spindle bearing and claw disc at first produced a significant temperature
rise; it then dropped back to normal temperature as the cooling air conditioning started
working. The spindle bearing and claw disc reached a stable temperature rise after 80 min
of operation, within which the temperature rise at point l was the most obvious, rising to
about 34.8 ◦C. After 100 min, the other temperature measuring points no longer produced
significant temperature rises, and reached a stable state. Under ISO variable speed condi-
tions, the spindle temperature field produced different temperature rises with speed, and
the stable thermal equilibrium time is no longer apparent. The temperature change at point
g (the temperature measuring point of the spindle bearing) is most drastic under variable
speed conditions. This proves that the temperature field variation of the spindle is closely
related to the speed. Between 0 and 20 min, the rotation speed of the spindle is small,
and the temperatures of the relevant measuring points also change little in this period.
Between 20 and 40 min, the speed of the spindle is larger, and the temperature rise of the
measuring point is also larger. Between 40 and 100 min, the speed of the spindle decreases,
and the temperature rise of the measuring point does not change significantly. Between
100 and 120 min, the spindle speed increases, so the measuring point has a significant
temperature rise. After 120 min, the speed of the spindle decreases, and the temperature of
the measuring point slowly falls back and tends to be stable.

In the off-line experiment of spindle thermal characteristics, the Z-direction thermal
deformations produced by the spindle at 2000 r/min constant speed, 4000 r/min constant
speed, and ISO variable speed are shown in Figure 11. As can be seen from the figure, the
maximum change in thermal error when the spindle is running at constant speed occurs
between 10 min and 20 min; the main reason is that the temperature of the machine tool is
low after the tool is switched on, and the heat only begins to gather. The machine tool then
works for a period of time, producing temperature field changes, and thus causing thermal
deformation of the spindle. After 80 min, the machine reaches thermal equilibrium, and
the thermal error reaches a stable value. Moreover, according to the graph for the variable
speed, it can be seen that due to its lower speed, the change of thermal error in the initial
state is much smaller than that in the constant speed state. It can be seen that the thermal
error of the spindle is positively correlated with the speed of the spindle, and the thermal
error is generated with a certain lag.

  
(a) (b) (c) 

Figure 11. Z-axis thermal deformation at 2000 r/min constant speed, 4000 r/min constant speed,
and ISO variable speed: (a) 2000 r/min constant speed; (b) 4000 r/min constant speed; and
(c) ISO-standard variable speed.

4.2. Comparison and Analyses of Prediction Performance of Thermal Error Intelligent
Perception Models

The BP neural network is the most widely used network in thermal-error modeling,
one which has good results for thermal-error prediction and is universal across different
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machine tools [37]. Moreover, the combination of wavelet analysis and BP neural networks
can solve artificial neural networks’ slow-convergence problems and transition fitting.
The wavelet neural network optimized with the genetic algorithm has higher accuracy
and faster convergence. Therefore, this paper uses two thermal-error modeling methods,
the traditional BP neural network and the wavelet neural network optimized by genetic
algorithm, for the thermal-error comparison model.

The performance of the three models is compared for thermal-error prediction under
three different operating conditions, namely, 2000 r/min constant speed, 4000 r/min
constant speed, and ISO variable speed, respectively, as shown in Figures 12–14. In order to
verify the robustness of the model proposed in this paper, the experimental data measured
under the working conditions of a stepped variable speed are input into the thermal-error
prediction model as test data and compared with the measured Z-axis thermal-error, as
shown in Figure 15.

Figure 12. The comparison between the measured value of 2000 r/min idling and the predicted value
of the three models: (a) Intelligent-perception method of multi-source information fusion; (b) BP
neural network speed; and (c) Wavelet neural network.

Figure 13. The comparison between the measured value of 4000 r/min idling and the predicted value
of the three models: (a) Intelligent-perception method of multi-source information fusion; (b) BP
neural network speed; and (c) Wavelet neural network.

 

Figure 14. The comparison between the measured value of ISO-standard variable speed idling and
the predicted value of the three models: (a) Intelligent-perception method of multi-source information
fusion; (b) BP neural network speed; and (c) Wavelet neural network.
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Figure 15. The comparison between the measured value of idling with step change speed and the
predicted value of the three models: (a) Intelligent-perception method of multi-source information
fusion; (b) BP Neural Network speed; (c) Wavelet neural network.

As can be seen from the figure, the maximum residuals of the thermal error intelligent-
sensing method based on multi-source information fusion, BP neural network and wavelet
neural network optimized by genetic algorithm are 0.49 μm, 1.26 μm, and 0.96 μm, re-
spectively, under the idling at a constant rotational speed of 2000 r/min. The maximum
residuals of the thermal error intelligent-sensing method based on multi-source information
fusion, BP neural network, and wavelet neural network optimized by genetic algorithm
are 0.47 μm, 2.41 μm, and 0.99 μm, respectively, under idling at a constant rotational speed
of 4000 r/min. The maximum residuals of thermal errors of the main shaft based on
the intelligent-sensing method of thermal error with multi-source information fusion, BP
neural network, and wavelet neural network optimized by genetic algorithm, under online
prediction of step-variable rotational speed conditions, are 0.57 μm, 2.09 μm, and 1.52 μm,
respectively. The model’s superiority under complex working conditions is further verified.
The intelligent-sensing model performs well under a variety of operating conditions, prov-
ing that it is robust and able to adapt to different operating conditions and environmental
changes, which reduces the need for model retraining and parameter tuning.

The results of the comparison of these three models are shown in Table 1, which
com-pares and analyses the effectiveness of thermal-error prediction of the spindle under
constant speed, standard variable speed, and stepped variable speed conditions. We found
that the prediction accuracy of the intelligent-perception model based on multi-source
in-formation fusion reaches 98.8%, which is 6.6% higher than the traditional BP neural
network perception model. The traditional BP neural network has low prediction accuracy
under high and variable speed conditions, is easily affected by noise and non-linearity, and
has poor robustness. The intelligent-perception model based on the fusion of multi-source
information improved by 4.3% over the wavelet neural network optimized by genetic
algorithm. Although the optimization effect of the wavelet neural network optimized
by genetic algorithm is significant, there is still room for improvement under dynamic
and complex working conditions. The maximum residual errors of the thermal error
intelligent-sensing model based on multi-source information fusion proposed in this paper
are generally smaller than those of the traditional thermal-error prediction model. The
stepped variable speed as test data in the intelligent-perception model obtained good
prediction results with small maximum residual errors and high accuracy.
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Table 1. Comparison of the prediction-effectiveness of the three models.

Model

BP Neural Network Model Wavelet Neural Network Model Intelligent-Perception Model

Maximum Residual
Error (μm)

Fitting Accuracy
Maximum

Residual Error
(μm)

Fitting Accuracy
Maximum

Residual Error
(μm)

Fitting Accuracy

2000 r/min
off-line detection 1.26 94.7% 0.96 96.3% 0.49 98.1%

4000 r/min
off-line detection 2.41 96.2% 0.99 98.5% 0.47 99.3%

ISO variable speed off-line
detection 2.97 85.2% 1.79 91.4% 0.48 98.6%

Stepped variable speed online
prediction 2.09 92.6% 1.52 94.5% 0.57 98.8%

5. Conclusions

The spindle system is an essential core component of CNC machine tools, and its
operational status plays a vital role in machining quality. The main idea of realizing the
intelligent sensing of thermal error in the spindle system is to utilize multiple sensors to
monitor the relevant information of spindle thermal errors. Through suitable mathematical
models, these pieces of information are comprehensively analyzed, modeled, and processed
in order to make decisions, resulting in an intelligent perception of thermal error. The
decision given is the result of intelligent sensing of thermal error. The realization of
intelligent spindle autonomous perception plays a vital role in its subsequent active control
and predictive reasoning. This paper introduces the evidence theory, based on a neural
network, establishes the intelligent-sensing model of spindle thermal error, and adopts
the feature layer–decision layer approach to realize the fusion of multi-source information
at different levels, which further improves the accuracy and robustness of the thermal-
error sensing.

(1) Aiming at the shortcomings of single-sensor-based information, namely, characteriza-
tion ability, high contingency, and susceptibility to being interfered with by external
environmental factors, this paper proposes a multi-source and multi-level informa-
tion fusion intelligent-sensing method. A multi-source and multi-layer thermal error
intelligent-sensing model is established by feature extraction and fusion of multiple
related signals affecting the thermal error of the spindle. In the model construction,
the RBF neural network is used for the initial fusion of feature layers to improve the
model’s generalizing ability. At the same time, the weighted evidence fusion theory
is introduced, which can more accurately reflect the contribution degree of different
information sources by weighted fusion of varying evidence, making the final fu-
sion results closer to the actual value. Thus, the intelligent-perception model has a
higher prediction accuracy and lays a specific theoretical foundation for developing
intelligent spindles.

(2) This project conducted thermal-error perception experiments on the spindle system of
the VMC850 vertical machining center manufactured by Yunnan Machine Tool Factory,
under the conditions of constant speed, standard variable speed, and stepped variable
speed. Then we compared the effectiveness of the traditional thermal-error sensing
model and the intelligent-sensing model with multi-source information fusion. The
experiment’s results show that the prediction accuracy of the multi-source and multi-
level information fusion intelligent-sensing model proposed in this paper can reach
98.8%, which is significantly better than the traditional model. This shows that the
method proposed in this paper has significant advantages and application potential
in solving the thermal-error sensing problem of the CNC machine tool spindle.

(3) This paper summarizes and analyzes the signals related to thermal error inside and
outside the machine tool and finally selects three signals for multi-source information
fusion to obtain the thermal-error model. The amount of data is increased compared
with the traditional thermal-error model. However, because the thermal-error influ-
encing factors of the machine tool under complex working conditions are multifarious,
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the number and types of training samples can be gradually increased in the next study
to further train and optimize the model’s parameters.

(4) In addition, in order to obtain a more comprehensive thermal-error model under
the various working conditions of the machine tool, it is necessary to measure the
thermal error changes under different working conditions, especially under the cutting
working condition. However, due to the limitations of the experimental conditions,
this paper simulates the thermal error changes of the spindle under different working
conditions only through the spindle’s different rotational speeds. It does not take into
account the effect of the cutting heat on the thermal error. Therefore, the experiments,
as to the working-condition information, can be further enriched, and a more complete
thermal-error model can be obtained.
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Abstract: This study explores the feasibility of analyzing soil organic carbon (SOC) in carbonate-rich
soils using visible near-infrared spectroscopy (VIS-NIR). Employing a combination of datasets, feature
groups, variable selection methods, and regression models, 22 modeling pipelines were developed.
Spectral data and spectral data combined with carbonate contents were used as datasets, while raw
reflectance, first-derivative (FD) reflectance, and second-derivative (SD) reflectance constituted the
feature groups. The variable selection methods included Spearman correlation, Variable Importance
in Projection (VIP), and Random Frog (Rfrog), while Partial Least Squares Regression (PLSR), Random
Forest Regression (RFR), and Support Vector Regression (SVR) were the regression models. The
obtained results indicated that the FD preprocessing method combined with RF, results in the model
that is sufficiently robust and stable to be applied to soils rich in calcium carbonate.

Keywords: VIS-NIR spectrometry; carbonate soils; SOC

1. Introduction

Visible near-infrared spectroscopy (VIS-NIR) has become an increasingly widely used
research tool in recent years [1–3]. The technique is based on the phenomenon of reflectivity,
and the material under examination is exposed to electromagnetic radiation of a certain
range and intensity. Specific chemical bonds absorb the radiation, reaching the object in
different ways; by estimating how much radiation has been reflected from the object in the
electromagnetic spectrum range from 400 to 2500 nm, the content of selected compounds
can be determined indirectly. The visualization of the acquired information—a characteristic
reflectance curve within which there are substance-specific peaks and valleys—provides
a spectral signature that, when properly processed, can provide valuable qualitative and
quantitative data. The acquired data require the necessary processing—preprocessing—
for which various tools are used, such as curve smoothing, moving averages, etc. [4]. In
many cases, the curves need to be corrected in specific ranges at the interface between
the measurement ranges of the sensors used in the instrument; in a broad spectrum, it
is impossible to use a single sensor. The data, prepared in an appropriate manner, are
analyzed statistically, with the analysis usually studying either whole spectral curves or
selected continuous fragments of them, dedicated—usually on the basis of previous scientific
studies—to specific chemical compounds [5].

VIS-NIR spectroscopy is used in many fields: for instance, in agriculture, including
precision agriculture, it is related to the appropriate application of the right amounts of
substances necessary for plant growth and the assessment of the condition of the plant
cover [6,7]. It is also used in geological studies, providing important information on, among
other things, the mineralogical composition or the broader genesis of bedrock [8]. It can
also be used indirectly to predict erosion risk [9].
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A key feature of VIS-NIR spectroscopy is its high throughput, which allows a signif-
icant number of samples to be analyzed in a relatively short time. This feature plays a
key role in projects requiring extensive research or the continuous monitoring of a given
object [10]. The real-time analysis provided by VIS-NIR spectroscopy is another impor-
tant advantage, enabling qualitative and quantitative assessments on site or in the field.
This real-time feature is invaluable in situations where rapid or immediate decisions are
required [11].

The quantitative analysis capabilities of VIS-NIR spectroscopy contribute significantly
to the understanding of soil properties. The method can provide information on a range
of parameters, including organic matter content [12,13], moisture levels [14] and nutrient
concentrations [15], soil contamination with different types of pollutants [16], and electric
conductivity [17]. Moreover, VIS-NIR spectroscopy is multifunctional and offers a holistic
view by simultaneously assessing different soil characteristics, such as texture and mineral
composition [18]. This comprehensive approach enables a detailed understanding of the
conditions in a soil environment [19,20].

VIS-NIR spectrometric measurements are usually performed under controlled labora-
tory conditions. Samples are suitably prepared, above all in terms of material homogeniza-
tion. The predictive models for individual soil properties obtained in the laboratory have a
high accuracy. Attempts are made to carry out tests under field conditions, but the data
obtained deviate significantly from the values obtained under laboratory conditions, and
the predictive models developed are much weaker in this case [3,21]. Importantly, however,
it should always be considered whether it is more important to obtain a better model or
obtain information in an easier and much faster way.

In order to precisely identify characteristics, so-called spectral libraries are created [19,22].
Reflectance curves are collected for specific soils with specific characteristics, and these
characteristics should include both the parameter directly covered by the spectral survey (e.g.,
organic carbon) as well as other soil characteristics that may have a significant impact on the
spectral response (e.g., grain size, carbonates, mineralogical composition, etc.). A predictive
model based on a broad spectral library should, in principle, produce higher-quality results.
However, due to the enormous variability in soils on a global scale, the use of such libraries
may be effective on a local scale or for specific soil types, under the additional assumption of
limiting the availability of these studies.

Mapping spatial variability, facilitated by the integration of VIS-NIR spectroscopy with
geospatial technologies, represents a higher level of soil survey methodology [23,24]. Creat-
ing detailed maps showing differences in soil properties within a given area is invaluable
for precision agriculture and land use optimization. By identifying spatial patterns, this
approach allows for targeted interventions, optimizing resource use and improving overall
land management practices [25].

Among the soil parameters that have been determined by researchers is grain size, in
varying aspects, both in terms of individual granulometric fractions and of the individual
finest clay fraction [26], organic carbon content [27], soil color [28], salinity [29], and calcium
carbonate content, sometimes presented as calcium carbonate equivalent [30,31].

Good results in terms of prediction based on spectral response have so far been
achieved precisely for the analysis of soil organic carbon [32,33]. VIS-NIR spectrometry
data can also be successfully used to determine the spatial variability in soil organic carbon
saturation at the field scale [10]. Nevertheless, researchers indicate that the evaluation
of the parameter in question can be affected by various other additional factors, such as
aggregate structure, moisture content, content of specific substances, etc. [34,35]. One of
the substances that could interfere and significantly affect the quality of SOC prediction is
calcium carbonate; a significant interrelation of the two components in the samples studied,
in terms of spectral properties, was pointed out by Rasooli et al. [36], among others.

The purpose of this study is to determine the feasibility of analyzing soil organic
carbon in carbonate-rich soils using VIS-NIR spectroscopy.
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2. Materials and Methods

The materials for this analysis consisted of samples of soils, developed on the weather-
ing of carbonate rocks—rendzinas—collected in Eastern Poland. The distinguishing feature
of these soils is the high abundance of calcium carbonate and the associated high pH. All
the soils at the time of collection were not in agricultural use and were perennial fallows,
covered with vegetation of a natural-succession nature; nevertheless, no trees or shrubs
were found. Soil samples were taken from the humus horizon of the soil, from the face
wall of the excavated pit, from a depth of 5–15 cm, which ensured that the sample had not
been disturbed due to processes on the ground surface, such as biological activity. The
collected material was dried under room conditions and then sieved through a 2 mm sieve
and placed in cardboard boxes. Chemical determinations were made on the material in the
laboratory. Carbon was determined using a LECO TruSpec automatic analyzer, according
to ISO 10694:1995 [37]. The analysis was performed in triplicate, in separate analytical
samples. The carbonate (inorganic carbon) content was determined by volume, using a
Scheibler apparatus, based on ISO 10693:2014 [38]. The proportion of organic carbon was
at an average level, but the presence of carbonates affected the brightening of color, which,
to some extent, masked the abundance of organic matter. The basic properties of the soils
are summarized in Table 1.

Table 1. Descriptive analysis of soil organic matter and calcium carbonate equivalent in soil samples.

Sample Set n
SOC CaCO3

Range [%] Mean Sd Range [%] Mean Sd

All samples 68 0.1–5.1 1.5 1.2 0.1–86.1 44.1 25.4
Calibration set 51 0.1–5.1 1.5 1.2 0.1–86.1 43.6 26.4
Validation set 17 0.3–4.7 1.6 1.3 1.5–73.9 45.6 22.9

Spectroradiometric data acquisition was carried out in laboratory conditions, using
a Spectral Evolution RS-3500 instrument. The instrument’s operating range is between
350 and 2500 nm, and its resolution is 2.8nm (up to 700 nm), 8 nm (up to 1500 nm), and
6 nm (up to 2100 nm). The measurement was performed by contact, directly on samples
homogenized immediately before the measurement, using a custom light source (Tungsten
lamp). Due to the nature of the material tested (very light color), reflectance calibration was
performed on a reference plate (Spectralon Reflectance Standard) before each measurement.
At the end of the measurements, the results were digitally brought down to 1 nm resolution

2.1. Spectral Preprocessing

Prior to processing raw spectral data for the development of qualitative or quantitative
analytical models in multivariate data analysis, mathematical transformations are applied.
This essential preprocessing step is implemented to mitigate spectral variability and noise
unrelated to the intended objectives of the models, while concurrently augmenting selectiv-
ity. In this study, two commonly used pretreatments for raw spectra, which included first
(FD) and second (SD) using Savitzky–Golay smoothing filtering with 8 points and a poly-
nomial order of 3, were selected. All the spectral pretreatments were performed in Python
3.8. To reduce the impact of low-intensity signals, two sections of the spectra spanning the
complete wavelength spectrum were excluded: 350–400 nm. Thus, the spectral range from
400 to 2500 nm was retained for subsequent analysis.

2.2. Selection of Optimal Wavelengths

Due to the high dimensionality of hyperspectral data, selecting variables helps de-
crease the number of features to the most relevant ones. This process mitigates overfitting
and enhances the predictive accuracy of regression models. For this investigation, Spear-
man correlation, Variable Importance in Projection (VIP), and Random Frog (Rfrog) were
employed to select variables across three feature groups: raw reflectance, FD, and SD.
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2.3. Spearman Correlation

A Spearman correlation analysis was conducted to evaluate the magnitude and di-
rection of the monotonic relationship between the ranked response variable (the stem
characteristics of each vine) and the ranked predictor variables (spectral data at various
wavelengths). This analytical approach captures the tendency for paired variables to change
in a synchronized manner, albeit not necessarily at a uniform rate, thereby facilitating the
detection of nonlinear associations without imposing assumptions regarding the normal
distribution of variables. The Spearman correlation coefficient, ranging from +1 to −1,
signifies the strength of a monotonic relationship, with values closer to ±1 indicating
stronger associations. Spearman correlation coefficients were calculated to indicate the
relationships among SOC, SIN, raw reflectance, FD, and SD spectra. Variables exhibiting
coefficients surpassing the threshold of 0.6 were deemed significant for inclusion in this
study. The correlation analysis was conducted using “spearmanr” from the scipy library in
Python 3.8.

2.4. Variable Importance in Projection (VIP)

The assessment of VIP is pivotal in multivariate analysis, particularly in the context
of Partial Least Squares (PLS) modeling. The VIP selection method utilizes coefficients
derived from a fitted PLS model to evaluate the significance of individual wavelengths
(variables) within the dataset. In this method, key matrices including the X-score matrix (T),
the y-loading vector (q), and the normalized X-weight matrix (W) are instrumental. Here,
N represents the number of samples, M denotes the number of features, and K signifies the
number of latent variables. The VIPs are computed using the following equation:

VIP =

√
M

W2(q2 Tt T)t

∑k(q2TtT)k
(1)

This approach offers a comprehensive framework for assessing variable importance,
aiding in feature selection and enhancing the interpretability of PLS models within scientific
research and analysis [39]. Since the average of squared VIP scores equals 1, only influential
wavelengths with a VIP score greater than 1 were kept in the calibration model.

2.5. Random Frog (Rfrog)

The Rfrog technique is an iterative selection method that commences with randomly
chosen features, which are dynamically adjusted throughout the iteration process. During
each iteration, a random subset or superset is generated and evaluated against the previ-
ously selected features through cross-validation. The Rfrog method maintains a counter
for each feature, and the counters for all features within the “winning” set (i.e., achiev-
ing higher cross-validation scores) are incremented after each iteration. Following the
completion of all iterations, the features with the highest selection frequencies are chosen
for inclusion [40]. The number of iterations (N) was set to 50 in this study. In this study,
VIP and Rfrog analyses were performed in Python 3.8 using the AUSWAHL (AUtomatic
Selection of WAvelengtH Library) package.

2.6. Prediction Models

In this work, two types of datasets were proposed to achieve the best prediction
accuracy for SOC estimation. The first type of dataset contained only spectral bands
selected based on Spearman’s rank correlation coefficients and the VIP and Rfrog methods.
In the second type of dataset, hyperspectral data were combined with information about
the SIC obtained from laboratory measurements. As a result, sixteen different dataset
combinations were utilized as inputs for the SOC prediction models, employing RF and
PLSR algorithms.
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2.7. Random Forest

RF is an ensemble regression technique that employs multiple decision trees. It con-
structs m decision trees from the training dataset using bootstrap resampling on m samples.
Each decision tree split is built using a random subset of the dataset to measure a random
subset of features in each partition [41]. This introduces variability among individual
trees, thereby reducing the risk of overfitting and enhancing the overall prediction perfor-
mance [42]. During the prediction phase, the algorithm aggregates the results of all trees
by averaging, fostering a collaborative decision-making process supported by multiple
trees and their insights. This approach yields stable and precise results, making Random
Forests a versatile and reliable tool for various regression tasks. Throughout the training of
the RF algorithm, a range of values were explored for the tuning parameters. Ultimately,
the following parameter settings were selected: n_estimators = 10; max_depth = 20; and
random_state = 101.

2.8. Partial Least Squares Regression Method (PLSR)

The PLSR algorithm amalgamates aspects of multiple linear regression analysis, canon-
ical correlation analysis, and principal component analysis, offering not just a fitting re-
gression model but also a comprehensive expression of information. The method operates
under the assumption that the dependent variable can be estimated through a linear
combination of explanatory variables [43]. Particularly advantageous in scenarios where
numerous variables exhibit multiple correlations and the sample sizes are small, PLSR
provides a many-to-many linear regression modeling approach. Unlike traditional classical
regression analysis, which can lead to overfitting due to correlations among independent
variables, PLSR identifies new linearly independent variables to replace the original ones,
maximizing the difference between them.

The performance of the Rf and PLSR models was evaluated utilizing the Scikit-Learn
python machine learning library package on the Windows (Spyder) platform.

2.9. Model Evaluation

In all dataset variants, the soil samples were divided at a 75:25 ratio into a calibration
set and a validation set. For merged datasets containing hyperspectral and SIC data, the
preprocessing phase involved standardizing the data to ensure compatibility with the
analysis algorithms. Data integration plays a vital role when handling diverse data sources,
often requiring merging and integration to create a cohesive and comprehensive dataset.
To standardize the data, the Scikit-Learn library’s StandardScaler was utilized, providing a
robust and efficient method for scaling features to a common mean and standard deviation.

The coefficient of determination (R2), the root mean squared error (RMSE), and the
mean squared error (MAE) were calculated as indexes to evaluate the performance of the
used models. Generally, a well-performing model tends to achieve a high R2 alongside low
RMSE and MAE values, suggesting accurate predictions with minimal error.

3. Results and Discussion

The descriptive statistics of the soil organic matter and calcium carbonate equivalent
in the soil samples are presented in Table 1 for both the calibration and validation sets. This
includes calculations for the number of samples (N), the mean, the standard deviation (SDe),
and the range. This finding indicated that the mean SOC for the calibration set and the
validation set was 1.5% and 1.6%, respectively, whereas the average CaCO3 content in the
calibration and validation set was 43.6% and 45.6%, respectively. The dataset distribution
closely resembled that of the entire dataset, suggesting a representative division. Clearly,
the inorganic carbon content in the form of calcium carbonate exceeded the organic carbon
content by an order of magnitude. This is the distinguishing feature of carbonate soils in
this type of rendzina.

Figure 1 shows raw spectra and pretreated spectra with FD and SD. In the raw spectra,
consistent shapes can be observed across all the samples. The course of the curves is typical
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for soil material, as reported by many authors (LIT). Notably, three distinct absorption
peaks are discernible in the near-infrared region, attributed to the hydroxyl group of free
water (at 1410 nm and 1900 nm) and the Al-OH group of clay minerals, at 2210 nm [13].

 

Figure 1. Raw and pretreated spectra. FD—first derivative; SD—second derivative.

Raw, unprocessed spectra showed reflectance in some sections exceeding the value
of 1.0. This was due to the fact that the analyzed material had specific properties. First
of all, the very bright color of the soil containing a high amount of carbonates resulted
in a specific spectral response: the reflectance was locally higher than the reflection from
the reference plate. In order to avoid error, calibration was performed before measuring
each soil sample, as indicated in the Section 2. The highest recorded values, reaching 1.2
(reflectance at 120% relative to the reference), were recorded for soil samples containing up
to 85% turbulent carbonates. This may be an important contribution to the discussion on
the reference materials to be used for the heaviest soils (in terms of grain-size distribution)
containing large amounts of inorganic carbon. In the literature, one does not encounter
reflectance data exceeding 1. Nevertheless, the carbonate contents in the works analyzed
are much lower (up to a maximum of 60%), and all the works showed very high correlations
between reflectance and the amount of carbonate in the samples.

In Figure 2, Spearman’s rank correlation coefficients are presented for both the raw
spectra and the spectral bands after FD and SD preprocessing. Notably, a significant
negative correlation, approximately −0.7, was detected between the SOC content and the
raw spectral data across the entirety of the spectrum range. Moreover, the SOC and the
FD and SD spectra exhibited significant negative correlations within specific wavelength
ranges, including 400–550 nm, 1400–1500 nm, and 1900–2000 nm. Conversely, a statistically
significant and notably strong positive correlation was observed within the spectral regions
spanning from 1700 to 1900 nm and from 2200 to 2500 nm. The strong correlation of the FD
spectrum at 2300 nm was influenced by the characteristic absorption peak of C–H. However,
a distinct response pattern was observed for SIC. Unlike SOC, a positive correlation was
observed between the raw spectral data and SIC across the entire spectral range. A strong
negative correlation was evident around 2300 nm and 2500 nm, while a strong positive
correlation (higher than 0.75) was observed near 2400 nm. This indicated a contrasting
relationship between the spectral data and the SIC compared to the SOC.
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Figure 2. Spearman’s correlation coefficient distribution between the SOC and the SIC content with
different preprocessing methods of spectral reflectance soil spectral data. The black dotted lines
indicate significance at p < 0.01.

After conducting the Spearman correlation analysis, 187 wavelengths were identified
for the FD spectra, while 19 wavelengths were deemed relevant for the SD spectra, all with
a Spearman correlation rank higher than 0.6. These selected wavelengths are illustrated
in Figure 3. For the FD spectra, the chosen wavelengths are aggregated into four ranges:
515–538 nm, 1420–1433 nm, 2165–2207 nm, and 2310–2333 nm. Meanwhile, the majority of
wavelengths in the SD spectra are concentrated within the range of 1406–1417 nm.

 

Figure 3. The distribution of spectral variables selected by a Spearman correlation analysis, VIP, and
RFrog with different spectral pretreatments.

The VIP scores of the wavelengths obtained for the raw FD and SD spectra are depicted
in Figure 4. In the case of the raw spectra (Figure 4A), three primary spectral zones were
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identified, spanning from 520 to 920 nm, around 1900 nm, and 2250–2500 nm. Additionally,
five major spectral zones were distinguished as significant for the FD spectra, ranging
from 450 to 570 nm, 1300–1520 nm, 1860–2600 nm, 2130–2200 nm, and 2270–2340 nm.
Conversely, in the SD spectra, significance was observed across the entire spectrum. The
implementation of the VIP method facilitated reduction, enabling the development of
accurate and reliable models. The number of wavelengths decreased from 2100 to 765 for the
raw spectra, resulting in a data size reduction of approximately 64%. Similarly, for the first-
and second-order differentiations, the data size was reduced by approximately 57% and
61%, respectively. All the selected variables are illustrated in Figure 4. Four main spectral
zones were observed for the raw spectra (525–927 nm, 1886–1974 nm, 2194–2250 nm, and
2287–2500 nm), while six spectral ranges were identified for the FD spectra pretreatments.

Figure 4. VIP scores of the wavelengths obtained for the raw (A), FD (B), and SD (C) spectra.

The feature wavelengths were selected by the Random Frog algorithm through the
calculation of their selection probabilities within the spectrum. In Figure 5, the selection
probabilities of each wavelength, determined by the Random Frog algorithm, are sum-
marized for the raw and first- and second-order differentiations of the reflectance spectra.
The threshold, established at 0.7 based on prior experience, was utilized to select impor-
tant wavenumbers, with a selection probability surpassing this threshold as characteristic
waves. Additionally, the number of model simulation iterations was set to 50 to ensure
convergence. When employing a selection probability cutoff of 0.7, a total of 77, 169, and
93 significant wavelengths were identified for the raw, FD, and SD spectra, respectively
(Figure 5).

Figure 5. VIP scores of the wavelengths obtained for the raw (A), FD (B), and SD (C) spectra.

With the hyperspectral data as an independent variable, two methods, Random Forest
(RF) and Partial Least Squares Regression (PLSR), were employed to predict the SOC. The
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performance metrics of the proposed models utilizing various feature variable extraction
methods are presented in Table 2.

Table 2. The prediction results of SOC from the established RF and PLSR models, using Spearman,
VIP, and Rfrog as data reduction methods on spectral input data.

Model
Feature

Selection
Preprocessing

Calibration Set Prediction Set

R2 MAE RMSE R2 MAE RMSE

RF

–
- 0.88 0.28 0.42 0.51 0.59 0.89

FD 0.96 0.18 0.25 0.79 0.43 0.59
SD 0.91 0.27 0.37 0.82 0.42 0.54

COR
FD 0.95 0.18 0.26 0.77 0.44 0.61
SD 0.88 0.29 0.42 0.61 0.59 0.79

VIP
- 0.91 0.26 0.36 0.38 0.69 0.99

FD 0.90 0.28 0.38 0.74 0.51 0.65
SD 0.92 0.25 0.34 0.59 0.60 0.81

Rfrog
- 1 0.63 0.71 0.69 0.71 0.63

FD 0.94 0.19 0.28 0.79 0.46 0.58
SD 0.95 0.20 0.26 0.53 0.54 0.87

PLSR

–
- 0.27 0.74 1.02 0.41 0.69 0.98

FD 0.55 0.61 0.8 0.65 0.61 0.76
SD 0.57 0.57 0.79 0.62 0.79 0.57

Spearman Cor FD 0.64 0.72 0.53 0.73 0.50 0.66
SD 0.51 0.56 0.74 0.66 0.56 0.75

VIP
- 0.28 0.73 1.01 0.41 0.70 0.98

FD 0.56 0.60 0.80 0.67 0.57 0.73
SD 0.59 0.54 0.72 0.68 0.54 0.72

RFrog
- 0.29 0.73 1.02 0.41 0.70 0.97

FD 0.64 0.54 0.72 0.75 0.47 0.64
SD 0.68 0.45 0.66 0.73 0.45 0.66

For all the studied variants, the prediction accuracies exceeded 65%. The models
were constructed after band selection but still required fine-tuning to make better SOC
predictions. The first derivative transformation of reflectance afforded the best predictions.
The RF model attained the highest R2 value of 0.79 when employing variable extraction by
Rfrog and preprocessing using FD. The model constructed based on the 19 wavelengths
selected through Spearman’s correlation could predict the SOC with an R2 value of 0.77.

The highest prediction accuracy was observed in the SOC prediction model based
on the 169 wavelengths selected using the Rfrog method, with an R2 value of 0.79 and an
RMSEP of 0.58%. Remarkably, the linear PLSR model demonstrated an inferior performance
compared to the nonlinear RF model. The prediction models constructed using the PLSR
algorithm demonstrated an adjusted validation R2 of between 0.41 and 0.75, with RMSE
values of 0.98 and 0.64.

Scatter plots depicting the predicted versus the measured values of SOC, generated by
these high-quality models, are illustrated in Figure 6.
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Figure 6. Scatter plots of the measured vs. predicted SOC values for different RF models based on
spectral data. Black dotted lines represent the 1:1 lines.

To enhance the predictive capability of the models, the hyperspectral data were inte-
grated with the measured values of the SIC (Table 3). Compared to the model constructed
solely based on the spectral data, the fused models showed an increase in their prediction
accuracies of up to 20% and 13% for the RF and PLSR models, respectively.

Table 3. The prediction results of SOC from the established RF and PLSR models, using Spearman,
VIP, and Rfrog as data reduction methods on fused input data.

Model
Feature

Selection
Preprocessing

Calibration Set Prediction Set

R2 MAE RMSE R2 MAE RMSE

RF

–
- 0.88 0.28 0.42 0.51 0.59 0.89

FD 0.96 0.18 0.25 0.79 0.43 0.59
SD 0.91 0.27 0.37 0.82 0.42 0.54

COR
FD 0.95 0.27 0.18 0.88 0.32 0.45
SD 0.93 0.32 0.23 0.77 0.46 0.61

VIP
- 0.89 0.26 0.42 0.42 0.65 0.97

FD 0.95 0.19 0.28 0.81 0.38 0.56
SD 0.93 0.24 0.32 0.75 0.44 0.63

Rfrog
- 0.87 0.28 0.44 0.54 0.61 0.86

FD 0.95 0.20 0.28 0.86 0.32 0.47
SD 0.93 0.24 0.32 0.58 0.62 0.82

PLSR

–
- 0.48 0.65 0.87 0.42 0.74 0.97

FD 0.72 0.49 0.64 0.70 0.50 0.69
SD 0.74 0.47 0.52 0.69 0.52 0.70

Spearman Cor FD 0.78 0.46 0.57 0.65 0.55 0.76
SD 0.61 0.57 0.75 0.69 0.50 0.71

VIP
- 0.53 0.65 0.83 0.51 0.60 0.89

FD 0.78 0.45 0.56 0.77 0.45 0.61
SD 0.80 0.42 0.54 0.74 0.51 0.65

RFrog
- 0.56 0.63 0.79 0.55 0.57 0.85

FD 0.81 0.40 0.52 0.81 0.40 0.55
SD 0.84 0.37 0.48 0.68 0.61 0.72

From Table 3, it can be noticed that the prediction accuracy, as indicated by R2, is
satisfactory. However, there are notable discrepancies in the MAE and RMSE, attributed to
the significant variability in the SOC samples. The best prediction model for the combined
data was achieved with RF-Spearman-FD (R2 = 0.88; RMSE = 0.45).
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The obtained results indicated that the FD preprocessing method combined with RF,
results in the model that is sufficiently robust and stable to be applied to soils rich in calcium
carbonate. However, from Figures 2 and 3, some discrepancy between the predicted and
the measured values of the SOC content can be observed. The prediction of soil organic
carbon (SOC) content is influenced by a range of environmental and management factors.
Key factors affecting SOC prediction include the mineral composition and soil texture and,
indirectly, soil structure, biological activity, vegetation cover, and climate conditions. These
factors interact in complex ways, leading to spatial and temporal variability in the SOC
content. Thus, effective SOC prediction models need to consider these diverse factors to
improve accuracy and reliability. Due to the complex influence of many factors on the
quality of organic carbon prediction, it should be taken into account that the laboratory
testing of standardized soil samples (of a homogeneous structure, with water removed,
free of plant debris and plant fragments) eliminates many factors that affect the results in
unpredictable ways. Hence, testing in a systematic way, according to a specific protocol,
allows one to achieve more reliable test results that are, in addition, directly comparable
with the results of other researchers [44].

Figures 6 and 7 illustrate the precision of the prediction model, observable through
the dispersion of points along the Y-axis. A narrower spread of these points around the
predicted values signifies a higher precision. However, the observed scatter indicates that
the model has certain limitations in its precision. This dispersion may stem from various
factors, including inherent model constraints, data variability, and potentially unaccounted-
for variables. Comparing prediction precision and instrumental measurement precision
is vital for the validation and reliability assessment of the SOC prediction model. The
precision of instrumental measurements, such as those obtained through the laboratory
analysis of soil samples, serves as a benchmark for the prediction model. When instruments
demonstrate a high precision, the SOC prediction model should ideally achieve a compara-
ble precision to be considered reliable. Comparing the variability in the model’s predictions
with the known precision of the instruments allows for a more detailed error analysis. If
the model’s predictions show greater variability than the instrument’s measurements, this
excess variability is likely due to the model’s limitations rather than issues with the SOC
data’s quality.

Figure 7. Scatter plots of the measured vs. predicted SOC values for different RF models based on
combined datasets (spectral data and SIC). Black dotted lines represent the 1:1 lines.

Recognizing the precision of both the SOC prediction model and the instruments
can inform targeted improvement strategies. For instance, if the instrument’s precision
surpasses that of the model, efforts should focus on enhancing the model’s precision. This
can be achieved by incorporating additional relevant features, refining existing algorithms,
or exploring more sophisticated modeling techniques tailored to SOC data.
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In summary, the precision of the prediction model, as depicted in Figures 6 and 7,
reveals certain limitations when compared with the higher precision typically associated
with instrumental measurements.

In summary, while prediction precision and instrumental measurement precision
pertain to different domains, they share common principles, such as dependence on data
quality, the necessity of validation and calibration, and the use of statistical methods to
evaluate and enhance precision. Understanding their interconnection can lead to the better
design and implementation of both predictive models and measurement systems, ensuring
higher reliability and accuracy in various applications.

In light of the literature data, determining the precise wavelength at which a substance-
specific signal is recorded can be debatable. For calcium carbonate, specific wavelengths
have been determined: 1800 nm, 2350 nm, 2360 nm [45], 2325 nm [46], 2338 nm [47],
2340 nm [36], and 2341 nm (Gomez et al. 2008). However, in light of our analyses, the
authors would suggest indicating wider ranges, related, on the one hand, to the diversity
in soil samples and, on the other hand, the measurement method. The determination of a
single length of the order of 1 nm, taking into account the spectral resolution of the appara-
tus at the level of 6 nm, seems methodologically unjustified. The reflectance/absorbance
values at the suggested wavelengths may also be affected by the presence of certain clay
minerals in the samples, such as chlorite or illite, which increase the absorbance of a given
material in a similar range of the electromagnetic spectrum [47,48].

Organic carbon is one of the most commonly analyzed soil parameters using VIS-NIR
spectrometry [7], considering the high importance of analyzing samples in the laboratory,
with samples prepared in a specific way, which allows one to achieve more reliable results
in contrast to analysis in the field. This is because in situ analysis must take into account
local soil conditions, such as moisture content, structure, and, above all, the heterogeneity
of the material [44]; the influence of the aforementioned factors is offset by the preparation
of the material and its homogenization. The results of organic carbon prediction presented
by many authors in available publications are highly promising and indicate the feasibility
of using spectrometric techniques to analyze soil organic matter. R2 values, indicating the
accuracy of prediction, at levels exceeding 0.8–0.9, should be considered satisfactory.

Nevertheless, the selection of analytical material seems to be crucial in terms of
prediction. Interfering factors are important, affecting the direct measurement of the
spectral response of the soil in certain ranges or the specific “offset” of the entire spectral
curve, due to high reflectance [36]. This is of great importance in the case of soils rich in
calcium carbonate, such as those analyzed in this publication. The results obtained clearly
indicate that it is necessary to use input fusion techniques, allowing researchers to take
into account analytical laboratory results of calcium carbonate content. An increase in the
quality of prediction using auxiliary data is also indicated in studies by other authors, who
have taken into account, for example, soil moisture or temperature parameters [3].

One of the most important advantages of the VIS-NIR spectrometry method is that it
facilitates and speeds up the analysis of soil materials. However, in the authors’ opinion, it is
necessary, at least at this stage, to take into account traditional techniques (laboratory analytics)
to improve the quality of prediction. In any case, adopting a compromise—analyzing calcium
carbonate in the laboratory and incorporating the results into a combined prediction model—
represents a cost-effective solution in terms of labor input and analytical costs.

A methodological problem may be the relatively small database used for calibration,
especially with a small total number of samples [49]. In the case of the present work, the
number of samples used for calibration appeared to be sufficient [50]. On the other hand,
increasing the measurement base would be difficult to achieve due to the uniqueness of the
study material.

The comparison of the results obtained with those of other authors, in the case of VIS-
NIR spectroscopy, often poses methodological problems. On the one hand, the analyzed
material is highly diverse, including soils from different regions, with different basic
properties (mineralogy, grain size, etc.). Nevertheless, it can be pointed out that most
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researchers obtain prediction results at an R2 level in the range 0.6–0.9 [7]. However, it
seems that the published values cannot be generalized due to the high variability in the
research material. The soils used in the present study, with carbonate contents exceeding
40%, have not yet been analyzed in detail in terms of organic carbon prediction by VIS-
NIR spectroscopy.

On the other hand, the processing of input data is performed in a differentiated way,
which is due to the fact that authors are looking for the optimal solution (in the sense
of the one producing the most reliable results). The use of diverse modeling techniques
(e.g., Partial Least Squares Regression, cubist, Random Forest, Support Vector Machine,
convolution neural network, XGBoost, memory-based learning, etc.) can lead to strongly
divergent results in terms of prediction quality [4,51–53]. Consequently, there is no model
solution that can be universally applied, but only a collection of individual case studies.
Nevertheless, they provide an indispensable foundation for the creation of a library that
takes into account different types and species of soils. The contribution of this publication
in this regard is the inclusion of a particularly high carbonate content as an interfering
factor in the organic carbon measurement range.

4. Conclusions

This study demonstrates the potential of VIS-NIR spectroscopy for SOC analysis in
carbonate-rich soils. By integrating spectral data with SIC information and employing
advanced modeling techniques, accurate predictions of SOC levels can be achieved, offering
valuable insights for soil management and environmental monitoring.

In the case of some soils, it should be taken into account that, in certain ranges of the
spectrum, reflectance may exceed the values for the reference materials.
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Abstract: Autocollimators are widely used optical axis-measuring tools, but their measurement
errors increase significantly when measuring under non-leveled conditions and they have a limited
measurement range due to the limitations of the measurement principle. To realize axis measurement
under non-leveled conditions, this paper proposes an autocollimator axis measurement method based
on the strapdown inertial navigation system (SINS). First, the measurement model of the system was
established. This model applies the SINS to measure the change in attitude of the autocollimator.
The autocollimator was then applied to measure the angular relationship between the measured axis
and its own axis, based on which the angular relationship of the axis was measured via computation
through signal processing and data fusion in a multi-sensor system. After analyzing the measurement
errors of the system model, the Monte Carlo method was applied to carry out a simulation analysis.
This showed that the majority of the measurement errors were within ±0.002◦ and the overall
measurement accuracy was within ±0.006◦. Tests using equipment with the same parameters as
those used in the simulation analysis showed that the majority of the measurement errors were
within ±0.004◦ and the overall error was within ±0.006◦, which is consistent with the simulation
results. This analysis proves that this method solves the problem of the autocollimator being unable
to measure the axis under non-leveled conditions and meets the needs of axis measurement with the
application of autocollimators under a moving base.

Keywords: axis measurement; data fusion; autocollimation; SINS; computational measurement

1. Introduction

Axis measurement is an essential method for determining relative position and atti-
tude [1,2], and it is widely used in industrial production, military operations, aerospace,
and other fields. It is also employed in scientific research, including in straightness calibra-
tion [3], photon energy detection [4], and surface measurement [5]. In the aspect of axis
angle measurement, it can be divided into mechanical methods, electromagnetic methods,
optical methods, and inertial methods [6]. Among them, the mechanical and electromag-
netic methods are more mature and less expensive to measure. However, the accuracy of
electrical methods is easily affected by the environment, while mechanical methods are
mostly contact measurements, which are limited in many fields. Optical measurement is a
non-contact measurement method with high accuracy and sensitivity, which is widely used.

As a type of optical axis-measuring equipment, autocollimators benefit from advan-
tages such as a high measuring accuracy, wide range, and non-contact measurement.
The working principle of autocollimator is to use the orientation of the reflected beam
from the target for pose calculation, which can realize precise single- and multi-axis angle
measurements.
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As technology has developed, so have autocollimators, from the traditional optical
autocollimators to photoelectric autocollimators. The latter replaces the human eye with
sensors such as charge-coupled devices (CCDs), quadrant photodiodes (QPDs), position
sensitive detectors (PSDs), or complementary metal oxide semiconductors (CMOSs) for
measurement, which improves the resolution and measurement accuracy [7–10]. The
current research on measurement methods based on autocollimators mainly includes
several aspects such as improving the measurement accuracy, increasing the measurement
range, and increasing the number of measurement targets. For example, the use of new
sensors improves the measurement accuracy [11–13], the design of the optical system
improves the measurement accuracy and range [3,14], and the design of cooperative
targeting achieves the measurement of the target’s angle in three directions: yaw, pitch,
and roll [15,16].

However, due to the limitation of the autocollimation measurement principle, its
measurement range is mainly determined by the field of view of the optical system, the
type of light source, and the image sensor, and usually the angular measurement range
of the high-precision autocollimator is less than 1◦, and the measurement distance is less
than 50 m. In addition, in order to ensure measurement accuracy, the autocollimator
needs to be roughly leveled with a geodetic coordinate system as a reference before use to
avoid causing more significant measurement errors or making measurement impossible.
However, in many measurement scenarios, it is impossible to level the autocollimator,
which needs to remain stationary during the measurement process, making it impossible
to carry out dynamic measurement. Therefore, autocollimators are usually used in the
laboratory or after leveling on a stable platform. It is not possible to measure across long
distances and on a large scale, such as, for example, in the case of ship installations, where
the axes between the upper and lower layers of the hull are measured; in the case of large
airplanes, where the axes are calibrated between each of the long-distance axes; or in the
case of fast axes measurements of carrier vehicles in an off-site environment.

The principle of the strapdown inertial navigation system (SINS) is based on inertial
characteristics; through the fusion data of the internal gyroscope and accelerometer sensors,
it can realize accurate measurement of its angle and that of its strapdown equipment relative
to the geodetic coordinate system. Accelerometers usually use micro-electromechanical
system technology, and the displacement and angle can be inferred by integrating the
acceleration in three directions [17–19]. Currently, the laser gyro and fiber-optic gyro
measurement principles are based on the Sagnac effect, i.e., the beam propagation time
slightly differs with rotation, and by measuring the time difference, the rotational speed
and direction of an object can be obtained [20,21]. Compared with traditional gyroscopes,
they have the advantages of high precision and shock resistance, so they are widely used
in navigation systems [22,23].

At present, precision measurement is usually not limited to one kind of equipment, and
multi-device cooperative work is one of the hot topics in current research [24,25]. With the
improvement of the accuracy of laser gyro, fiber-optic gyro, and micro-electromechanical
system (MEMS) inertial guidance technology, as well as the decrease in the cost and volume,
inertial guidance has been employed in a large number of applications for the solution of
position and navigation under multi-sensors. For example, inertial guidance is usually com-
bined with a global navigation satellite system (GNSS) for integrated navigation [26–28],
with a Doppler velocity log (DVL) for underwater navigation [29], and with a radar or
camera for simultaneous localization and mapping (SLAM) algorithms [30].

Based on SINS characteristics and the defects that mean the autocollimator cannot
measure under long-distance, wide-angle, or non-leveled conditions, it is of great practical
significance and application value to proposes a non-leveled dynamic axis measurement
method based on an SINS and autocollimator.

This paper is organized as follows: In Section 2, the system composition, measure-
ment modeling, and experimental setups are described. Section 3 shows the simulation
results and experimental results. Section 4 explains the experimental results, the potential
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limitations of this study, and how the system could be improved in future work. Section 5
presents the conclusions.

2. Methodologies

2.1. System Composition

Figure 1a shows the system composition, which includes a dual-axis photoelectric
autocollimator and a strapdown inertial guide. The SINS consists of three fiber-optic gyros;
it is a customized version purchased by the laboratory. The measurement errors of the
inertial guide were within ±0.001◦ over a short time. The autocollimator consists of an
optical system, a light source, and a CMOS sensor. The optical system was made by our lab
and is designed for a focal length of 60 mm, an aperture of 25 mm, and a measuring range
of 5 m. The model of the CMOS sensor is NOIP1SN5000A, made by ONSEMI, Scottsdale,
AZ, USA; the sensor utilizes 4.8 μm × 4.8 μm pixels that support low-noise “pipelined” and
“triggered” global shutter readout modes with 2592 × 2048 active pixels, with a plane mirror
as the measurement target. The autocollimator has a measurement accuracy of ±0.001◦
in yaw and pitch under horizontal conditions, theoretically. The SINS has a measurement
accuracy of ±0.01◦ theoretically, and had a measurement accuracy of ±0.001◦ in a short
time proven by tests in the yaw, pitch, and roll directions. The measurement principle is
shown in Figure 1b. In the measurement system, the inertial guide is used to measure the
angular information between the system and O-XYZ relative to the geodetic coordinate
system (i.e., northeast sky coordinate system), and the autocollimator is used to measure the
angular relationship between the equipment and the YB axis of the target being measured
(planar mirror). The fusion of the two data points is used to obtain the relationship between
the axis of the target being measured relative to the geodetic coordinate system for the yaw
and pitch angles.

(a (b

Figure 1. System composition and principle. (a) The system includes an autocollimator and a
strapdown inertial guide as the measurement equipment and a plane mirror as the target; (b) the
autocollimator measures the plane mirror’s axis and the SINS measures the geodetic coordinate
system. The red arrows represent the return of beam from the collimator after reflection by the
plane mirror.

2.2. Measurement Modeling
2.2.1. Coordinate System Establishment

The first step in establishing the system measurement model is to establish the measure-
ment coordinate system, as shown in Figure 2, with the plane mirror as the measurement
target. O-XYZ is the geodetic coordinate system (i.e., the northeast celestial coordinate sys-
tem), O-XAYAZA is the SINS coordinate system, O-XCYCZC is the lens coordinate system,
O-XPYPZP is the camera coordinate system, and O-XBYBZB is the plane mirror coordinate
system. Among them, the inertial coordinate system, the lens coordinate system, and the
camera coordinate system are all based on the Earth’s level; the coordinate axes of these
three coordinate systems are in the same direction, and the orientation is based on the YC
direction along the optical axis.
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Figure 2. Measurement coordinate system. The measurement model is constructed using the
geodetic coordinate system O-XYZ, the SINS coordinate system O-XAYAZA, the lens coordinate
system O-XCYCZC, the camera coordinate system O-XPYPZP, and the plane mirror coordinate system
O-XBYBZB.

2.2.2. Measurement Modeling of the Autocollimator

First, we consider the measurement model of the autocollimator in a leveled case.
Projection along the opposite direction to the X-axis in Figure 2 yields the system shown
in Figure 3. For this, we let the focal length of the autocollimator be f. The plane mirror
reflects the emitted target, point P, to the image plane, point P (xp,zp). Then, the yaw angle
α and pitch angle β of the plane mirror concerning the autocollimator can be computed
using Equation (1).

α = 1
2 ∗ tan−1

(
xp
f

)
β = 1

2 ∗ tan−1
(

zp
f

) (1)

Figure 3. Autocollimator measurement coordinate system. By calculating the position of the reflected
point P (xp,zp), the yaw angle α and pitch angle β of the plane mirror concerning the autocollimator
can be obtained.

A further analysis of the measurement system under non-leveled dynamic conditions
is shown in Figure 4 for the O-XZ planar projection obtained by projecting the measurement
coordinate system in Figure 2 along the positive direction of the Y-axis. When the roll angle
between the autocollimator and the horizontal plane is γA, the target is set to image point
P (xp,zp) on the image plane of the camera and converted from the O-XpZp coordinate
system to the O-XZ coordinate system. The position coordinate conversion equations are
as follows:

x = xp ∗ cos γA − zp ∗ sin γA
z = xp ∗ sin γA + zp ∗ cos γA

(2)

Substituting Equation (2) into (1) yields the relative value of the measurement target
to the axis of the measurement system in the non-leveled state:

α = 1
2 ∗ tan−1((xp ∗ cos γA − zp ∗ sin γA)/ f )

β = 1
2 ∗ tan−1((xp ∗ sin γA + zp ∗ cos γA)/ f )

(3)
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Figure 4. Autocollimator angle measurement under non-leveled conditions. γA is the roll angle
between the autocollimator and the horizontal plane, which causes measurement errors.

2.2.3. Measurement Modeling of the SINS

As shown in Figure 5, the inertial guidance measurement angles are defined, respec-
tively, as follows:

1. Yaw angle, αA: the horizontal angle between the projection of the YA-axis onto the
horizontal plane and the actual north direction;

2. Pitch angle, βA: the angle between the YA-axis in the vertical projection plane and the
horizontal plane;

3. Roll angle, γA: the angle between the XA-axis in the vertical projection plane and the
horizontal plane.

Figure 5. SINS measurement coordinate system. The yaw angle αA, pitch angle βA, and roll angle γA

can be measured using the SINS.

Combined with Equation (3), the orientation and pitch angle of the measurement
target relative to the geodetic coordinate system can be obtained as follows:

α0 = 1
2 ∗ tan−1((xp ∗ cos γA − zp ∗ sin γA)/ f ) + αA

β0 = 1
2 ∗ tan−1((xp ∗ sin γA + zp ∗ cos γA)/ f ) + βA

(4)

2.3. Measurement Error Analysis

Based on the measurement model and the calculation formulae provided in Section 2,
the sources of errors in the measurement system are further analyzed to prove the validity
of the measurement system and its measurement accuracy.

The measurement errors of the system include systematic errors and random errors.
Using Equation (4), the systematic errors of the system include the installation errors and
focal length errors, and the random errors include the pixel errors and SINS measure-
ment errors.
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2.3.1. Installation Errors

Due to the virtual axis of the SINS, it is difficult to achieve parallelism between
the coordinate system of the SINS and the autocollimator’s coordinate system through
installation and adjustment, which leads to a small deviation between the two coordinate
systems. If we let the angle of the autocollimator rolling direction relative to the horizontal
plane be γA, the angle between the autocollimator rolling axis and the inertial guide rolling
axis be γ, and the angle between the inertial guide rolling axis and the horizontal plane be
γ0, then we have

γA = γ0 + γ (5)

Substituting Equation (5) into (4), we obtain

α0 = 1
2 ∗ tan−1((xp ∗ cos(γ0 + γ)− zp ∗ sin (γ0 + γ))/ f ) + αA

β0 = 1
2 ∗ tan−1((xp ∗ sin(γ0 + γ) + zp ∗ cos(γ0 + γ))/ f ) + βA

(6)

From Equation (6), the roll angle γ between the SINS and the autocollimator affects
the measurement results, and this error cannot be eliminated in the relative measurement.

This systematic error can usually be measured and corrected. The measurement
of angle γ is usually realized through methods such as optical–mechanical calibration.
However, the SINS cannot be measured accurately, because of its virtual axis. According
to engineering experience, this measurement error can be controlled at about 10′′, so the
cross-roll error in the subsequent simulation is taken as γ = ±0.003◦.

2.3.2. Focal Length Errors

The lens’s focal length is usually determined by the optical design, but manufacturing
and mounting errors will cause the focal length to be inconsistent with the design value.
According to engineering experience, the actual focal length of the lens can usually be
controlled within 0.1–0.5% of the theoretical value. After calibration, the actual focal length
value can be controlled within 0.1% [31]. In this study, the theoretical focal length of the
self-collimator is 60 mm and the actual value after calibration measurement is 59.64 mm.
Accordingly, the following simulation takes the focal length error value as ±0.05 mm.

2.3.3. Pixel Errors

In Equation (5), xp and zp are the coordinates of the target’s imaging position on the
camera at the time of measurement. The errors in xp and zp are determined by the resolution
of the camera image element. According to research on the pixel subdivision algorithm,
the pixel errors can usually be reduced to within 0.1 pixels using differential calculation
and other methods [32]. The actual camera pixel resolution used in this system is 4.8 μm.
In order to ensure that the simulation was consistent with the actual test, the pixel error
value was taken to be 0.5 pixels in the simulation process, which is 2.4 μm.

2.3.4. SINS Measurement Errors

From Section 2.2.2, the measurement error of the SINS is determined by its measure-
ment accuracy. This system uses the fiber-optic inertial guide for measurement. For the
measurement system in this study, the measurement is usually completed in a short period
of time in a single power-up, so the effects of system errors can be ignored. The random
errors of fiber-optic inertial guides include zero bias and noise. However, random errors
usually have a negligible effect on the measurement results when measuring in a short
period of time. After testing the inertial guide used in the system, it was proven that the
measurement errors of this inertial guide were within ±0.001◦ over a short period of time,
so this value was taken for the simulation.

2.4. Experiments

Experimental validation was carried out using laboratory equipment to verify the
validity of the measurement model and simulation results. The instrumentation used in
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this testing included the SINS, an autocollimator, a roll adjustment stage, a plane mirror
with a 2D adjustment stage, and a parallel light tube for measurements with the follow-
ing accuracies:

• The installation error was taken as γ = ±0.003◦;
• The focal length error was taken as ±0.05 mm;
• The CMOS sensor measurement error was taken as ±0.1 pixel;
• The SINS measurement error was taken as ±0.001◦ in yaw, pitch, and roll;
• The parallel light pipes had a measurement accuracy of ±0.2′′ in yaw and pitch;
• The roll adjustment table had a ±15◦ adjustment range.

The experimental setup is shown in Figure 6. The experimental procedure was as
follows: The measuring system (SINS with the autocollimator) was placed on the roll
adjustment stage, and the plane mirror with the 2D adjustment stage was placed between
the measuring system and the parallel light tube. Adjusting the 2D adjustment table
changed the plane mirror’s axis, and its axis changes were monitored with the parallel light
tube. Measurement started from the position when the SINS was horizontal, and the range
of roll adjustment was ±10◦, with an interval of 2◦ between each adjustment. After each
set of the system’s roll values was adjusted, its yaw and pitch values were adjusted using
the initial angle of the plane mirror as a reference. Each yaw and pitch adjustment interval
was 0.2◦, with a range of ±1◦. The yaw and pitch values of each set of the plane mirror
adjustments were recorded, as well as the coordinate points of the image obtained from the
autocollimator in the image plane (xp,zp). A total of 121 sets of corresponding data values
were obtained.

Figure 6. Experimental setup, including a measurement system, a plane mirror (measurement target),
and a parallel optical tube to measure the true value of the amount of change in the target. The
measurement accuracy of the system is verified by changing the angle of the plane mirror.

3. Results

3.1. Simulation Results

To ensure the accuracy and validity of the measurement model presented in Section 2.2,
as well as the error analysis provided in Section 2.3, a Monte Carlo analysis based on
Equation (6) was conducted. The Monte Carlo method, also known as the statistical test
method, is a numerical simulation technique that focuses on probabilistic phenomena. Its
fundamental principle is random sampling. By constructing a probabilistic model that
closely represents the measurement system’s performance and running random trials, the
simulation can replicate the system’s random measurement characteristics. The simulation
results can be considered as actual measurement outcomes when the number of simulations
is large enough. Substituting the four measurement error values from the error analysis in
Section 2.3, all of the parameters used in the simulation were the same as those used in the
experiments, specifically including the following:
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• The installation error was taken as γ = ±0.003◦;
• The focal length error was taken as ±0.05 mm;
• The CMOS sensor measurement error was taken as ±0.1 pixel;
• The SINS measurement error was taken as ±0.001◦ in yaw, pitch, and roll.

The specific calculation steps were as follows:

1. Randomly generate an initial set of truth data, including the measurement of the
system’s roll angle (within ±5◦) and the yaw and pitch angles of the plane mirror axis
measured with the autocollimator (within ±4.5◦);

2. Based on the generated truth data, back-project the theoretical truth data measured
with the sensor, and randomly add the error data in Section 3.1 to them as the
measurement data of the sensor;

3. Substituting the sensor measurement data into Equation (4), recalculate the yaw and
pitch angles of the plane mirror as measurements;

4. Calculate the difference between the measured data and the true value data as the
measurement error.

Scatter plots of the measurement errors of the system and the distribution of the errors
when repeating the calculation 10,000 times are shown in Figure 7. The figures show that
the system’s measurement errors are overwhelmingly within the range of ±0.002◦ and the
overall measurement accuracy is within the range of ±0.006◦. The mean square deviations
of the yaw and pitch errors are σ_yaw = 0.0020◦ (1σ) and σ_pitch = 0.0019◦ (1σ).

 
(a  (b  

 
(c  (d  

Figure 7. Simulation results. The red line refers to the probability distribution curve fitted to the
simulated data. (a) Yaw error scatter plot; (b) pitch error scatter plot; (c) yaw error histogram; (d) pitch
error histogram.
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3.2. Experimental Results

The data measured in Section 2.4 are listed in Table 1. The measurement group 0
includes the initial yaw and pitch values of the mirror, as well as the position of the reflected
target. For measurement groups 1 to 5, we sequentially increased the yaw and pitch of
the plane mirror by about 0.2◦ in the same direction, using measurement group 0 as a
reference. For measurement groups 6 to 10, we sequentially increased the yaw and pitch
of the plane mirror by about 0.2◦ in the other direction, using measurement group 0 as a
reference. The exact amount of change was measured by means of a parallel light tube, and
the corresponding xp and zp values were also recorded.

Table 1. Experimental data.

Roll
Angle (◦)

Data Type
Measurement Groups

0 1 2 3 4 5 6 7 8 9 10

−0.001

Mirror yaw (◦) 58.9891 59.1843 59.3862 59.5881 59.7882 59.9858 58.7882 58.5838 58.3834 58.1838 57.9819

Mirror pitch (◦) 90.2941 90.4921 90.6908 90.8952 91.0932 91.2998 90.0947 89.8982 89.6941 89.4959 89.2971

xp in CMOS 996.21 1082.25 1171.07 1259.81 1347.67 1434.39 908.08 818.45 730.23 642.92 554.45

zp in CMOS 985.64 1072.45 1159.24 1248.72 1334.92 1425.21 898.62 812.91 723.92 637.33 550.85

2.010

Mirror yaw (◦) 58.9342 59.1346 59.3338 59.5343 59.7375 59.9371 58.7369 58.5367 58.3347 58.1356 57.9309

Mirror pitch (◦) 90.2945 90.4973 90.6951 90.8961 91.0947 91.2951 90.0933 89.8943 89.6949 89.4949 89.2946

xp in CMOS 996.78 1081.68 1166.11 1251.16 1337.37 1421.56 912.98 828.17 742.57 658.29 571.78

zp in CMOS 985.57 1077.33 1166.81 1257.67 1347.51 1437.87 894.77 805.01 715.01 624.82 534.54

4.002

Mirror yaw (◦) 58.9664 59.1654 59.3642 59.5692 59.7686 59.9669 58.7627 58.5658 58.3646 58.1605 57.9634

Mirror pitch (◦) 90.2976 90.4936 90.6922 90.8951 91.0959 91.2957 90.0921 89.8914 89.6961 89.4982 89.2925

xp in CMOS 996.29 1077.64 1158.83 1242.53 1323.64 1404.31 913.21 832.94 750.86 667.69 587.58

zp in CMOS 985.66 1077.11 1170.01 1264.51 1358.31 1451.31 889.87 796.47 705.27 613.01 517.77

6.003

Mirror yaw (◦) 58.9835 59.1883 59.3879 59.5843 59.7841 59.9892 58.7867 58.5819 58.3824 58.1865 57.9832

Mirror pitch (◦) 90.2931 90.4925 90.6961 90.8969 91.0935 91.2999 90.0967 89.8933 89.6947 89.4956 89.2954

xp in CMOS 996.43 1076.82 1154.83 1231.56 1309.67 1389.84 919.34 839.02 761.07 684.71 605.31

zp in CMOS 985.58 1081.81 1179.34 1275.66 1370.41 1469.31 891.17 793.71 698.31 603.02 507.11

8.007

Mirror yaw (◦) 59.0043 59.2053 59.4065 59.6031 59.8038 60.0064 58.8056 58.6067 58.4061 58.2053 58.0048

Mirror pitch (◦) 90.2923 90.4947 90.6924 90.8946 91.0965 91.2957 90.0921 89.8955 89.6918 89.4951 89.2913

xp in CMOS 996.53 1071.88 1147.14 1220.53 1295.46 1371.41 922.08 847.62 772.76 697.43 622.66

zp in CMOS 985.35 1085.26 1182.96 1282.49 1382.28 1480.58 886.62 789.21 689.19 592.02 492.45

10.005

Mirror yaw (◦) 59.0086 59.2059 59.4079 59.6074 59.8075 60.0061 58.8081 58.6015 58.4021 58.2022 58.0018

Mirror pitch (◦) 90.2878 90.4854 90.6857 90.8844 91.0879 91.2847 90.0821 89.8816 89.6849 89.4802 89.2815

xp in CMOS 996.58 1066.86 1139.08 1210.33 1281.35 1352.29 924.97 850.85 779.46 708.71 637.19

zp in CMOS 985.35 1085.76 1187.43 1288.21 1391.17 1490.91 882.17 780.19 680.59 577.41 477.05

−2.006

Mirror yaw (◦) 58.9537 59.1531 59.3571 59.5554 59.7552 59.9555 58.7547 58.5509 58.3521 58.1568 57.9529

Mirror pitch (◦) 90.2958 90.4984 90.6992 90.8985 91.0972 91.2952 90.0911 89.8948 89.6965 89.4907 89.2906

xp in CMOS 996.41 1087.01 1179.91 1270.05 1360.52 1451.51 905.81 813.51 723.12 634.23 542.01

zp in CMOS 985.56 1071.19 1155.72 1239.63 1323.51 1406.63 899.65 817.05 733.63 647.11 563.26

−4.004

Mirror yaw (◦) 59.0021 59.2047 59.4041 59.6004 59.8015 60.0088 58.8028 58.6031 58.4021 58.2037 58.0012

Mirror pitch (◦) 90.2947 90.4979 90.6974 90.8953 91.0954 91.2957 90.0922 89.8922 89.6928 89.4938 89.2909

xp in CMOS 996.21 1091.18 1184.89 1276.97 1371.23 1468.07 902.77 809.02 715.01 622.04 527.32

zp in CMOS 985.37 1067.94 1148.86 1229.01 1310.05 1390.91 903.54 822.61 742.01 661.53 579.94

−6.000

Mirror yaw (◦) 58.9945 59.1977 59.3999 59.5983 59.7976 59.9975 58.7913 58.5925 58.3916 58.1939 57.9945

Mirror pitch (◦) 90.2922 90.4963 90.6957 90.8931 91.0932 91.2976 90.0955 89.8923 89.6914 89.4948 89.2926

xp in CMOS 996.27 1094.52 1191.97 1287.85 1383.99 1480.52 898.61 802.44 705.53 610.31 514.13

zp in CMOS 985.32 1064.99 1142.36 1218.89 1296.79 1376.34 909.37 830.68 752.81 676.65 598.34
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Table 1. Cont.

Roll
Angle (◦)

Data Type
Measurement Groups

0 1 2 3 4 5 6 7 8 9 10

−8.001

Mirror yaw (◦) 58.9714 59.1781 59.3785 59.5754 59.7751 59.9758 58.7727 58.5719 58.3701 58.1722 57.9702

Mirror pitch (◦) 90.2911 90.4971 90.6935 90.8979 91.0926 91.2933 90.0906 89.8917 89.6966 89.4977 89.2969

xp in CMOS 996.14 1098.83 1197.91 1296.01 1394.55 1494.01 897.39 798.02 698.53 600.47 500.78

zp in CMOS 985.68 1062.31 1135.11 1211.58 1283.52 1358.11 911.36 837.71 765.87 692.09 617.83

−10.006

Mirror yaw (◦) 58.9665 59.1671 59.3617 59.5681 59.7611 59.9665 58.7616 58.5667 58.3666 58.1639 57.9635

Mirror pitch (◦) 90.2917 90.4933 90.6942 90.8944 91.0939 91.2957 90.0971 89.8946 89.6902 89.4913 89.2969

xp in CMOS 996.36 1098.48 1198.05 1302.56 1401.21 1505.27 893.01 793.38 691.28 588.71 487.71

zp in CMOS 985.79 1057.29 1129.02 1199.38 1270.61 1341.91 917.94 845.85 773.25 703.45 635.44

We substituted the xp and zp data in Table 1 into Equation (6) to calculate the measure-
ment values of the mirror’s change in yaw and pitch. The measurement group 0 was also
used as the initial value in these calculations, and the measured values were compared with
the true values to obtain the errors. From these calculations, the measurement errors are
shown in Table 2, and each measurement error matches those of the measurement groups
in Table 1.

Table 2. Measurement errors.

Roll
Angle (◦)

Data Type
Measurement Groups

1 2 3 4 5 6 7 8 9 10

−0.001
Yaw error (◦) 0.0016 0.0029 0.0040 0.0048 0.0053 −0.0007 −0.0014 −0.0027 −0.0028 −0.0031
Pitch error (◦) 0.0013 0.0018 0.0028 0.0026 0.0031 −0.0004 −0.0007 −0.0008 −0.0013 −0.0008

2.010
Yaw error (◦) 0.0011 0.0021 0.0033 0.0043 0.0042 −0.0016 −0.0025 −0.0034 −0.0041 −0.0042
Pitch error (◦) 0.0009 0.0016 0.0021 0.0026 0.0026 −0.0004 −0.0005 −0.0006 −0.0006 −0.0003

4.002
Yaw error (◦) 0.0013 0.0026 0.0036 0.0042 0.0047 −0.0012 −0.0024 −0.0030 −0.0034 −0.0041
Pitch error (◦) 0.0004 0.0015 0.0016 0.0025 0.0026 −0.0006 −0.0009 −0.0013 −0.0012 −0.0006

6.003
Yaw error (◦) 0.0011 0.0023 0.0035 0.0040 0.0047 −0.0012 −0.0024 −0.0031 −0.0036 −0.0037
Pitch error (◦) 0.0010 0.0013 0.0020 0.0028 0.0028 −0.0007 −0.0005 −0.0010 −0.0010 −0.0005

8.007
Yaw error (◦) 0.0015 0.0020 0.0033 0.0040 0.0046 −0.0014 −0.0022 −0.0031 −0.0038 −0.0042
Pitch error (◦) 0.0006 0.0010 0.0015 0.0024 0.0022 −0.0004 −0.0015 −0.0012 −0.0012 0.0004

10.005
Yaw error (◦) 0.0011 0.0022 0.0033 0.0041 0.0046 −0.0010 −0.0019 −0.0029 −0.0034 −0.0033
Pitch error (◦) 0.0008 0.0017 0.0023 0.0030 0.0037 0 −0.0002 −0.0006 −0.0004 0.0002

−2.006
Yaw error (◦) 0.0009 0.0025 0.0035 0.0037 0.0046 −0.0013 −0.0019 −0.0030 −0.0039 −0.0039
Pitch error (◦) 0.0011 0.0017 0.0021 0.0031 0.0029 −0.0003 −0.0003 −0.0006 −0.0003 −0.0001

−4.004
Yaw error (◦) 0.0010 0.0025 0.0035 0.0044 0.0050 −0.0009 −0.0022 −0.0028 −0.0036 −0.0040
Pitch error (◦) 0.0011 0.0020 0.0023 0.0028 0.0030 0.0001 −0.0002 −0.0004 −0.0005 −0.0010

−6.000
Yaw error (◦) 0.0013 0.0023 0.0037 0.0044 0.0049 −0.0008 −0.0020 −0.0029 −0.0036 −0.0041
Pitch error (◦) 0.0014 0.0020 0.0023 0.0030 0.0032 −0.0002 0.0003 0.0002 0.0002 0.0007

−8.001
Yaw error (◦) 0.0015 0.0024 0.0033 0.0039 0.0046 −0.0014 −0.0022 −0.0029 −0.0035 −0.0035
Pitch error (◦) 0.0010 0.0018 0.0025 0.0027 0.0032 0 −0.0003 −0.0003 −0.0003 −0.0005

−10.006
Yaw error (◦) 0.0010 0.0021 0.0031 0.0038 0.0045 −0.0018 −0.0028 −0.0037 −0.0041 −0.0046
Pitch error (◦) 0.0014 0.0021 0.0028 0.0036 0.0038 0.0010 −0.0005 0.0005 0.0003 0.0008

Analyzing the measurement errors in Table 2 and Figure 8 reveals the following:
When the system measures within ±10◦ of the roll angle, most of the measurement

errors are within ±0.004◦ and the overall error is within ±0.006◦. The root mean square
(RMS) values of the measurement errors are σ_yaw = 0.003◦ (1σ) and σ_pitch = 0.0018◦ (1σ).
The measurement consistency is good, which is consistent with the simulation results.
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Figure 8. Experimental error distribution. Different color represents the amount of the surface in the
z-axis direction. (a) Yaw error distribution; (b) pitch error distribution.

4. Discussion

Through Monte Carlo simulation of this measurement model, the variance of the yaw
and pitch is obtained as σ_yaw = 0.0020◦ (1σ) and σ_pitch = 0.0019◦ (1σ) after running the
simulation 10,000 times. It can be deduced from the simulation results that the measurement
error of this system is stable and consistent for the target yaw and pitch angles.

As can be seen from the experimental results, when the system roll angle is unchanged
and the angle of the measurement target changes, the measurement error increases with
the change in angle of the measurement target, and the sign of the measurement error is
related to the sign of the change in angle of the target. Also, within a specific range, the
system’s measurement error does not change due to the change in roll angle.

Comparing the experimental results with the simulation results, it can be seen that the
yaw measurement error of the experimental results is larger than that of the simulation
results. The reason for these different results may be the fact that the measurement group
is too small to reflect the actual measurement capability of the system, or the fact that the
CMOS sensor in the autocollimator does not coincide with the axis of the optical system
when it is installed, or other reasons, which need to be further explored.

For axis measurements under non-leveled dynamic conditions, the accurate measure-
ment of angles is usually achieved by optimizing the measurement environment, e.g., by
designing vibration damping and leveling planes. This study started without optimizing
the measurement equipment, which has an advantage in terms of preparation time, volume,
and weight, although the accuracy is slightly lower in comparison. This measurement ac-
curacy can still be suitable for vehicle-related axis measurement, aircraft axis measurement
target calibration, and naval weapon axis measurement. Since the work presented in this
paper involves only a measurement model and its validation under laboratory conditions,
subsequent field tests need to be carried out to explore its engineering practicality further.

In this study, the data between the two sensors were only calculated and processed
using the measurement model, but there may have been a time delay in the two sensors,
which could have led to a decrease in the measurement accuracy due to the unsynchronized
data when measuring on a dynamic platform; so, further exploration of data fusion and
synchronization methods is required subsequently.
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5. Conclusions

In order to realize axis measurement under non-leveled dynamic conditions using
an autocollimator and extend the measuring range, an autocollimator axis measurement
method based on the SINS is proposed. This article demonstrates the system model and
measurement calculations, simulation analyses, and experimental verification of the model
were carried out. The latter demonstrated that the majority of the method’s measurement
errors were within ±0.002◦ and the overall measurement error was within ±0.006◦. The
measurement system was tested over a roll angle range of ±10◦, showing that most of the
measurement errors were within ±0.004◦ and the overall measurement error was within
±0.006◦. This was consistent with the simulation results, showing a good measurement
consistency.

Our system has certain advantages over other measurement methods, and the mea-
surement accuracy can be further improved from the point of view of data fusion and
synchronization of the two sensors in future work. According to the proposed study, a new
measurement method can be provided for axis measurement in the case of a moving base.
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Abstract: Film cooling technology is of great significance to enhance the performance of aero-engines
and extend service life. With the increasing requirements for film cooling efficiency, researchers and
engineers have carried out a lot of work on the precision and digital measurement of cooling holes.
Based on the above, this paper outlines the importance and principles of film cooling technology and
reviews the evolution of cooling holes. Also, this paper details the traditional measurement methods
of the cooling hole used in current engineering scenarios with their limitations and categorizes
digital measurement methods into five main types, including probing measurement technology,
optical measurement technology, infrared imaging technology, computer tomography (CT) scanning
technology, and composite measurement technology. The five types of methods and integrated
automated measurement platforms are also analyzed. Finally, through a generalize and analysis of
cooling hole measurement methods, this paper points out technical challenges and future trends,
providing a reference and guidance for forward researches.

Keywords: film cooling; cooling hole; optical measurement; online digital measurement; simultaneous
measurement of multiple parameters

1. Introduction

With the continuous development of the aviation industry, the improvement of aero-
engine performance has become a crucial issue with great attention in the modern aeronauti-
cal field. The turbine inlet temperature is one of the key technical indicators of aero-engines,
and improve of turbine inlet temperature is an effective way to increase thrust and thrust-to-
weight ratio. According to calculations, for each 55 ◦C increase in total turbine temperature,
the engine thrust will increase by approximately 10% [1]. Nowadays, the turbine inlet
temperature of the fourth-generation aero-engine, which has a thrust-to-weight ratio of
around 10, has reached approximately 2000 K [2]. A proposed method from the Beihang
University Comprehensive Thermal Management Team indicated that the turbine inlet
temperature has even achieved 2400 k. This advancement can increase the theoretical speed
range by 156%, reduce fuel consumption by 15%, and enable higher Mach numbers and
longer flight range [3].

The extremely high temperature means hot section components face harsh operating
conditions, especially for turbine blades. To address this issue, the advanced alloy ma-
terial with thermal barrier coating has been developed to process better heat resistance
capacity [4]. However, fourth-generation single-crystal alloy material has a maximum
temperature tolerance of about 1450 K [5], which cannot meet the required operational
condition of approximately 2000 K. To overcome the heat resistance limitations of blade ma-
terials and avoid blade failure due to excessive operating temperature, thermal protection
technology should be integrated in the blade’s design and manufacturing. This integration
fills the temperature gap and ensures blades maintain excellent reliability and service life
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in harsh operating conditions. Figure 1 illustrates the development of blade materials in
response to the increase turbine temperatures.

Figure 1. Development trend of aero-engine blade material.

In addition to high temperature-resistant materials and thermal barrier coating, ther-
mal protection technologies mainly include air cooling technology which can be generally
divided into two types: internal cooling and film cooling (external cooling). Figure 2
presents a schematic diagram of turbine blade film cooling technology [6], including ex-
ternal and internal cooling. In internal cooling, the cool airflow is guided through the
internal passage to enhance the heat transfer. In film cooling, cool airflow expels from the
internal passage and cooling holes and is applied to the blade surface as the protection
layer, shielding the blade from the impact of high-temperature air. And Figure 3 presents a
schematic diagram of principle of film cooling [7].

Moreover, the essential of the film cooling technology is to have numerous cooling
holes (with diameters about 0.3 to 0.5 mm and depth-to-diameter ratios up to 10:1) dis-
tributed as rows along the leading edge, pressure and suction side, and blade tip region to
generate air circulation [8,9]. According to the literature reports, thermal barrier coatings
can reduce the temperature of turbine blades’ surface by around 100 to 150 K. In compar-
ison, film cooling technology can decrease the temperatures from around 400 to 500 K
with more effective cooling performance [10]. Since 1970, film cooling technology has been
designed into turbine blades and has become an effective method of thermal protection.
Also, this method can be used in conjunction with other cooling methods. Figure 4 presents
the development of blade cooling methods since 1960 [11].

The geometrical structures of cooling holes, including axial angle, diameter, orifice
shape, spacing, and hole positional accuracy, are key indicators of film cooling technology
which influence the effectiveness of cooling performance [12–17]. To meet measurement
requirements for cooling hole geometrical parameters, it is vital to quantitatively assess
all cooling hole characteristics by an efficient and precise method. Measurement results
of critical indicators are helpful to understand the relationship between the geometrical
structure of cooling holes and the effectiveness of film cooling technology. As well as
this, researchers can further ensure safe, reliable operation and extend the service life of
aero-engines according to the measurement results.
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(a) External cooling 

(b) Internal cooling 

Figure 2. Schematic diagram of turbine blade cooling technologies [6].

 

Figure 3. Schematic diagram of film cooling principle [7]. (a) Turbine blade model; (b) Schematic
diagram of film cooling principle for blade; (c) Schematic diagram of film cooling principle for
cooling hole.
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Figure 4. Development trend of cooling methods against the turbine inlet temperature [11].

In this paper, some of the literature related to the cooling hole measurement are
reviewed. The overall structure of this paper is presented as follows. Section 2 briefly
describes the development of shaped cooling holes with their geometrical features and
corresponding enhanced cooling performance. Section 3 summaries and compares com-
mon manufacturing processes of the cooling hole. Section 4 focuses on the measurement
technologies for the cooling holes. The key measurement indicators, traditional measure-
ment methods, and principles of digital measurement technology are detailed, respectively.
Further, the advantages, disadvantages and applied scenarios of each digital measurement
technology are analyzed and compared. Finally, Section 5 gives the conclusion and outlook
for future work.

2. Development of Shaped Cooling Hole Geometrical Design

The most common type of cooling hole is the cylindrical hole, which can be manufac-
tured by mature and low-cost methods, such as laser processing and electrical discharge
machining (EDM). With the development of film cooling technology, more and more novel
shaped cooling holes have been utilized to enhance the efficiency of cooling performance
when compared to the cylindrical hole [18–23].

In 2005, Bunker [19] categorized the geometrical features of early shaped cooling holes
into four types, as shown in Figure 5. The projection of the hole axis on the blade surface is
considered as the longitudinal direction, and then its orthogonal direction is considered as
the lateral direction. The cooling hole of shape A is the classic fan-shaped form, with both
lateral and longitudinal expansion on the outlet area (angle β and angle δ). The cooling
hole of shape B contains only lateral expansion on the outlet area (angle β), while the
cooling hole of Shape C contains only longitudinal expansion on the outlet area (angle δ).
Shape D is the conical shape hole, expanding equally in all directions from the inlet to the
outlet, centered around the hole axis.
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(a) shape A (b) shape B 

 

(c) shape C (d) shape D 

Figure 5. Geometries for 4 types of shaped cooling hole [19].

Shaped cooling holes mainly adopt the design concept involving expanded outlets.
The expansion of the outlet area facilitates the diffusion of the airflow to achieve a lower
blowing ratio, reduce aerodynamic loss, and a larger cooling air coverage area, which is
beneficial to enhancing cooling performance [20].

References [21–23] evaluate the cooling performances of various shaped cooling holes.
Liu [23] concluded the improvements in the cooling performance of various shaped cooling
holes against cylindrical cooling holes in Table 1. However, shaped cooling holes require
more complex manufacturing processes, demanding higher precision and more advanced
manufacturing technologies. Also, compared with the cylindrical hole, shaped hole in-
volves more geometrical features can result in measurement difficulties. Finally, as the
outlet area of cooling holes expands, the spacing between each hole gets larger. This means
that there are fewer shaped holes for the definite blade surface area than normal cylindrical
holes. The reformation of shape poses a challenge for the arrangement of cooling holes.

Table 1. Improvement in cooling performance against shaped cooling holes [23].

Hole Shape
%

Improvement of Cooling Performance

Fan shape 10–40

Conical 15

Console 20

Sister hole 15–23

Compound angle 4–10

Trench shape 15–20
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3. Development of Cooling Hole Manufacturing Processes

3.1. Cooling Hole Manufacturing Processes

The main manufacturing processes for cooling holes include electrical discharge
machining (EDM), electrohydrodynamic (EHD) jet drilling, and laser drilling.

Currently, EDM is the most widely used process with mature technology. The principle
of EDM is removing material through electro-erosion which is caused by spark discharge
between the positive and negative electrodes of the tool and the workpiece, whereas
due to the limitation of the material properties, the ceramic material has poor electrical
conductivity. It is particularly challenging to process ceramic thermal barrier coatings.
Also, EDM is characterized by low efficiency and low precision. The noise, smoke, and
harmful gases generated in manufacturing are potentially hazardous to operators [24].

The principle of EHD jet drilling method is based on the micro holes manufacturing
using a metal tube electrode. The workpiece is connected to the positive electrode, while
a metal tube in a glass nozzle is connected to the negative electrode, and then electrolyte
solution is ejected from the glass tube through a high-voltage electric field. Eventually,
excess material from the positive electrode metal workpiece is removed under the influence
of an electric field [25]. This method is not a thermal manufacturing method. Therefore,
it can lead to better surface quality and lower roughness without microcracks or recast
layers on the inner walls of the cooling holes. However, a drawback of this method is the
difficulty in controlling the shape of cooling holes during the electrolytic etching process.
Compared to the other two methods, its application is less widespread.

The principle of the laser drilling method is removing excess material by heating and
melting with a high-energy light beam [26]. This method is known for its high precision,
high efficiency, and wide applicability of materials, making it a key area of current research
for the cooling hole manufacturing process.

Considering the trade-off against economic benefits and production quality, nanosec-
ond laser drilling and electrical discharge machining (EDM) are common choices in en-
gineering production. However, both methods are thermal processes, which create heat-
affected zones on the inner walls of cooling holes, leading to microcracks and recast layers.
These effects can significantly impair the cooling efficiency, overall reliability and service
life of the turbine [27]. To mitigate thermal damage, important progress has been made
in cooling technologies, specifically for cooling hole manufacturing. General Electric (GE)
company in the USA, in collaboration with SYNOVA corporation in Switzerland, developed
the water-assisted laser method. Water helps to lower the temperature in the manufactur-
ing area, wash away debris, and guide the laser beam to the manufacturing target [28].
Similar research on water-assisted laser methods has been conducted in China, with Zhang
Wenwu of the Chinese Academy of Sciences proposing a method [29]. These technologies
effectively reduce thermal damage and enable high-quality manufacturing of cooling holes.

On the other hand, drilling processes continuously evolve, with researchers develop-
ing methods such as femtosecond laser drilling [28,30] and compound laser drilling with
varying pulse width [31]. To some extent, these methods have improved issues related
to microcracks and recast layers, reduced the harm caused by the heat-affected zone, and
enhanced precision and efficiency in processing. However, these drilling processes cannot
completely eliminate the effects of thermal manufacturing, indicating that manufacturing
processes of cooling holes should be optimized further [32]. Figure 6 displays three types
of micro holes drilled by nanosecond, picosecond, and femtosecond lasers [33].

104



Sensors 2024, 24, 2152

   

Figure 6. Manufacturing quality against three types laser drilling method [33]. (a) Micro hole
drilled by nanosecond laser. (b) Micro hole drilled by picosecond laser. (c) Micro hole drilled by
femtosecond laser.

3.2. Difficulties in Cooling Hole Manufacturing

Currently, there are several technical challenges that exist in the manufacturing of
cooling holes.

Back strike is a common issue during the laser drilling process. Due to immature
manufacturing parameters, hollow and complex structure of blades, and other factors,
the control system is unable to accurately identify the location and timing of drilling.
These factors may result in incomplete perforation, creating blind cooling holes, or over-
penetration even after the hole is made, leading to melting or scorching on the inner
wall of cooling hole and damage to the internal cooling paths of blade [34], as shown in
Figure 7 [35]. Due to the complexity of internal cooling paths in the blade, conventional
methods cannot observe the internal condition, making it difficult to detect back strike.
Hence, it is necessary to implement quality control during the manufacturing of the cooling
holes to improve manufacturing precision.

 
(a) 

 
(b) 

Figure 7. Schematic diagram of back strike. (a) Principle of back strike. (b) Example of back strike [35].
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Drilling holes in blades covered with a thermal barrier coating presents another
challenge in manufacturing cooling holes. For the blades with a thermal barrier coating,
the conventional sequence of the hole manufacturing process is “drilling before coating”.
This method can result in cooling hole shrinkage, where the coating may obstruct or cover
the orifices, causing a reduction in orifices area, diminishing the airflow capability, and
even leading to the clogging of the cooling holes. According to the literature reports, the
shrinkage rate of this method can be 15% to 20%, with the hole diameter reducing from
0.35–0.4 mm (before coating) to 0.25–0.3 mm (after coating). Additionally, the drilling
process may damage the material structure around the edges of the orifice, resulting in
fatigue cracks, which ultimately affect the bonding strength between the thermal barrier
coating and the blade surface, as well as their impact resistance capabilities [36].

“Drilling after coating” is a new developing trend. The SYNOVA corporation [37]
proposed a method that combines abrasive water jet machining and EDM, applying the
“drilling after coating” technology to alloy blades. But differences in thermal expansion co-
efficients, toughness, stiffness, interface geometric structures and other material properties
between the thermal barrier coatings and the alloy materials can result in potential issues
such as interlayer tearing and cracking [38], impacting the safe service of the blades.

In response to these challenges in the cooling hole manufacturing processes, engi-
neered solutions are unavailable nowadays. It is necessary to improve manufacturing
precision to avoid or mitigate the risks associated with the above issues.

4. Development of Cooling Hole Measurement Technology

4.1. Key Quality Indicators for Cooling Hole

The key quality indicators for cooling holes primarily include:

1. Hole Diameter: The diameter of hole orifice, with a general tolerance of 0.10 mm.
2. Hole Positional Accuracy: the hole geometric position and hole spacing. The geomet-

ric position is the coordinate value of the point where the hole’s axis intersects the
blade profile in the blade coordinate system. The tolerance for position accuracy is
generally between 0.10–0.15 mm.

3. Hole Axis Orientation: The angular tolerance of the hole axis is generally within
±1◦ [39]. Currently, there are no explicit design standards or technical requirements
for the axis angle [40].

4. Orifice Shape: orifice shapes have two main types: circular orifices and shaped
orifices.

5. Internal Surface Roughness: The surface quality of inner wall is influenced by the
manufacturing process. Presently, there are no specific numerical requirements.

6. Maximum Thickness of recast layer: thermal manufacturing processes induce thermal
effects, forming a recast layer on the hole’s inner walls. The thickness of recast layer
needs to be controlled. Presently, there are no specific numerical requirements.

7. Blind Hole Rate: Design specifications require that the blind hole (blocked hole) rate
should be 0%, ensuring that each hole is fully open and functional for proper airflow
distribution.

The schematic diagram of discrete cooling hole quality indicators is demonstrated in
Figure 8.
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Figure 8. Schematic diagram of discrete cooling hole quality indicators.

4.2. Cooling Hole Measurement Technology
4.2.1. Traditional Measurement Method

Currently, the measurement of cooling holes often relies on manual inspection by
quality checkers, including plug gauges, visual comparison, and water flow tests.

1. Plug gauge method

Quality checkers use plug gauges with different diameters, inserting them into a
cooling hole to approximate the internal diameter and thus measure the diameter of the
hole. This method is extremely slow and risks the plug gauge breaking inside the hole if
mishandled, potentially resulting in scrap. Due to the manufacturing process of cooling
holes, the actual internal surface has high roughness, poor roundness, and taper shape. The
plug gauge can only measure the maximum ideal diameter in such cases, the schematic
diagram is shown in Figure 9.

Figure 9. Schematic diagram of plug gauge measurement.

2. Sample Visual Comparison Method

This method relies on the visual judgment of quality checkers. They compare the blade
with the standard sample to judge the positional accuracy, orifice shape, and diameter of the
cooling hole. Presently, there is no unified national calibration standard for calibrating the
standard sample blades used in visual comparisons, nor are there instruments to calibrate
the positional accuracy of cooling holes in standard samples. It is challenging to use
standard blade samples for quantitative traceability or data transfer [40].
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3. Water Flow Method

This method involves injecting water inside the blade and visually observing whether
the cooling holes allow water to pass through and whether the flow value is similar. This
method depends on the blade’s internal cooling path design and does not apply to all
blades, making it less common than the other methods.

The measurement methods commonly used in engineering scenarios rely heavily on
manual operation and invasive inspection techniques. Subjective manual judgments can
only provide qualitative indicators. They cannot quantitatively evaluate critical quality
indicators simultaneously, such as positional accuracy, hole axis orientation, hole diameter,
and blind hole verification. As for the manufacturing quality of the internal surface of
cooling holes, including issues like microcracks, recast layers, and thermal barrier coating
defects, no corresponding measurement methods are currently available.

The automation and intelligence levels of traditional measurement methods urgently
need improvement. By utilizing automated data collection and processing, it is possible to
reduce manual intervention, thereby increasing efficiency and the accuracy and precision
of measurement results.

4.2.2. Digital Measurement Method

1. Probing Measurement Technology

Researchers have taken advantage of miniature-sized probes for in-depth micro-hole
measurements, including fiber probe technology [41–45] and capacitive probe technol-
ogy [46–51]. The working mechanism of this method is presented in Figure 10. Salah
crafted a rotational wire probe using stainless steel wire and a microtube, employing an
acoustic emission device to perform contact detection by approaching and impacting the
inner walls of cooling hole [41]. This method is utilized for measuring the diameter and
roundness of the holes. Their experiment successfully measured the micro holes with
diameters less than 1 mm and depth-to-diameter ratios of approximately 10:1, obtaining
3D profiles of the inner walls. Cui Jiwen [42] developed a twin Fiber Bragg Grating (FBG)
probe for measuring large depth-to-diameter ratio micro holes. This design achieved
multidimensional tactile perception along the X-axis and Z-axis while guiding the optical
signal through the probe [43]. The design mitigates shadow effects to some extent, and
the probe, with a diameter of less than 100 μm, is suitable for measuring micro holes in
various industries. Building on this research, Feng Kunpeng [44] integrated the FBG probe
with a measuring machine and introduced a data processing method with transforma-
tion of the signal domain and multiple fitting, enhancing the measurement accuracy of
micro-hole diameters. Muralikrishnan [45] employed fiber deflection probing technology
(FDP), integrating the fiber probe with a coordinate measuring machine to measure the
diameter and shape of micro holes, achieving a measurement uncertainty of 0.07 μm. This
technology can measure micro holes with depth-to-diameter ratios up to 20:1. However,
the accuracy depends on the alignment of the probe with the hole axis and the machine
axis, as there is no established reference standard for measurement. Figure 11 displays the
measurement principle.

Figure 10. Working mechanism of probing measurement method.
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Figure 11. Measurement principle [45].

Ma Yuzhen [46,47] researched the capacitive probe measurement method for micro
holes. To measure the diameter of deep and angled holes, they developed a non-contact
capacitive probe that measures the gap between the probe electrode and the hole’s inner
wall. They proposed a hole axis fitting algorithm that combines the projection and least
squares fitting. Experiment results confirm that the measurement data maintains consistent
accuracy for holes with a depth-to-diameter ratio exceeding 10:1 and is not affected by
where the probe enters the hole. Sun Xuan [48] established a micro hole diameter measure-
ment system based on a coaxial cylindrical capacitive sensor. By identifying the central axis
of the sensor and the micro hole using a charge-coupled device (CCD) camera and aligning
the probe with the hole center using a movement system, then driving the capacitive probe
into the hole and measuring micro holes with a depth-to-diameter ratio of 13:1. This system
can measure the internal diameter at any depth within the hole, with a standard deviation
0.167 μm. Lee Neville [49] introduced a low-cost capacitive probe hole measuring system,
determining the center position of the signal by locating the position of the minimum
capacitive signal. Bian [50] developed a specialized hole diameter measurement system
based on spherical scattering electric field technology. This system converts the tiny gap
between a detection sphere on the probe and the test piece into an electrical signal, enabling
non-contact, nanoscale resolution measurements of hole diameters.

Li Qi [8] utilized the principle of laser interferometry to design a cooling hole mea-
surement system based on a laser rangefinder sensor. Guided by a digital blade model, the
coordinate measuring machine (CMM) drives the probe into the cooling hole at various
depths. The sensor acquires measurement data, which is processed by specialized software
to determine the diameter of cooling holes and any position deviations.

In addressing the micro-probe measurement methods, researchers predominantly
integrate CMMs with probes, controlling the probe to follow a planned path and scan the
inner wall of cooling holes. These approaches offer high reliability and are not influenced by
the hole depth or the inner wall’s characteristics, allowing precise measurements for critical
areas. However, these methods cannot provide information on the positional accuracy or
minor damages. These notable limitations include low efficiency, not being applicable for
measuring curved holes, the potential for causing damage to the sample surface, and the
inability to meet the demands of large-scale industrial measurements.

2. Optical Measurement Technology

Optical measurement technology represents a principal approach for non-contact
measurement of cooling holes, encompassing machine vision, 3D reconstruction, stripe
pattern projection, and luminous flux methods. The non-contact character of optical meth-
ods enables in situ measurement capabilities. Additionally, by not physically interacting
with the object, these technologies offer significant advantages in preventing any potential
damage to cooling holes during the measurement process. The working mechanism of this
method is presented in Figure 12.
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Figure 12. Working mechanism of optical measurement method.

Cheng Yuqi from Huazhong University of Science and Technology utilized a stereo
vision 3D reconstruction technology to measure the diameter of cooling holes. The experi-
ment results indicate that the evaluation error in measuring diameters is within 0.05 mm.
This method allows simultaneous measurement of multiple cooling holes, significantly en-
hancing measurement efficiency [51]. Li Lei from Xi’an Jiaotong University [52] developed
a cooling hole measurement method based on microscopic image sequence topographi-
cal reconstruction. A new measuring operator was established to measure the focus of
the cooling hole image sequence. The reconstructed models obtained by this method
show a standard deviation ranging from 0.007 mm to 0.018 mm. For cooling holes with
a depth-to-diameter ratio close to 5:1, the absolute error in diameter is less than 0.01 mm.
Figure 13 demonstrated measurement system. Zhao Yuanyuan from Shanghai Jiaotong
University [53] employed a light field camera to capture sub-aperture images of cooling
holes. Epipolar plane images (EPI) was generated from sub-aperture images and convert
depth information into 3D point cloud data through EPIs. This method captures the 3D
point cloud of cooling holes in a single exposure, greatly enhancing the measurement
efficiency of cooling holes and demonstrating the potential of light field cameras in the
micro hole measurement area. Figure 14 presents the original light field image and 3D
cloud point of cooling hole.

Figure 13. Principle of optical measuring system [52].
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(a) Original light field of cooling hole 

(b) 3D cloud point of cooling hole 

Figure 14. Experimental results of cooling hole [53].

Munkelt [54] addressed the issue of thermal barrier coating potentially covering
or filling cooling holes. An optical 3D scanning method based on the fringe projection
principle was utilized to scan the blades, enabling the automatic detection of covered
cooling holes and precise guidance for the laser drilling process. Xu Dongjing at Nanjing
University of Aeronautics and Astronautics [55,56] proposed a method for measuring
the geometric parameters of micro holes based on luminous flux. They established a
mathematical model correlating the area of an orifice with the emitted luminous flux. A
measured hole is non-compliant if the measured luminous flux does not align with the
luminous flux values for standard holes. This method can meet the industrial measurement
requirements, which is a variation rate of 5%. Still, it only provides qualitative assessments,
lacking the capability for quantitative measurement of hole geometry parameters. Jin,
from South Korea [57], studied through silicon via (TSV) used in semiconductor device
packaging. TSVs have an aspect ratio of 20:1 and diameters ranging from 50 to 200 μm [58].
Jin used an optical comb of femtosecond pulse laser in the infrared range as a light source
and, based on spectral resolved interferometry, achieved measurement for micro holes with
a depth-to-diameter ratio of 7:1. However, this method cannot provide information on
the 3D profile of inner walls [57]. Wu Chunxia [59] developed a near-infrared microscopic
interferometry technology with aberration compensation for TSV inspection. This method
enabled micro hole measurement with a depth-to-diameter ratio up to 6:1, including the
depth and bottom surface morphology.
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The above measurement methods primarily focus on finished cooling holes. However,
in situ measurements during the manufacturing process of cooling holes can timely detect
errors, allowing for adjustment and optimization of manufacturing parameters, enhancing
manufacturing quality to its maximum and avoiding defective workpieces. Weifang Sun [7]
implemented an in-situ measurement method during the drilling process by integrating an
image-capturing device into a laser drilling machine with an image edge feature extraction
algorithm, enabling the measurement of cooling holes’ diameter and roundness. The
experimental results indicate that the absolute errors of the diameter and roundness are
0.05 μm and 11.13 μm, respectively. This method demonstrates the potential and feasibility
of in situ measurements in the domain of cooling holes. Shetty [60] utilized a vision system
to acquire the diameter and orifice shape of cooling holes, coupled with a collimating tube
to illuminate the inner wall to determine the presence of hole bottom. This method enables
real-time in situ measurement of the drilling depth and drilling speed.

3. Infrared Imaging Technology

Besides optical measurement technologies, researchers have exploited the principles
of infrared imaging, generating heat within the blade and identifying the geometric charac-
teristics of cooling holes through infrared images. The working mechanism of this method
involves detecting and measuring the infrared radiation emitted by object. By using a
detector to measure the difference in infrared radiation between the object and background,
infrared images can be obtained [61]. The detailed working mechanism of this method is
presented in Figure 15. Rosemau [62] developed a measurement system for cooling holes
based on infrared imaging. This system cyclically heats and cools the blade, capturing
infrared images of the thermal airflow effusing from the cooling holes. The temperature
intensity change rate during the heating and cooling processes is utilized to assess hole
quality. Experiment results indicate that the system achieved a 98.3% recognition rate for
defective holes and a 99.7% recognition rate for qualified holes. This method allows for
preliminary filtering of cooling hole quality through qualitative assessment, although it
is limited in measuring precise geometric parameters due to its measuring principle. He
Qing [63] proposed a high-pressure turbine cooling hole testing method based on infrared
imaging principles, capable of identifying whether the holes are clear or blocked. Xia
Kailong [36] optimized He Qing’s work by constructing an infrared measurement system,
including a thermal imager, heat excitation source, turntable, and movement system. The
system applies thermal excitation to cooling holes, captures infrared image sequences, and
uses the canny algorithm and Hough circle transform function for image processing to
calculate the diameters of cooling holes. Experiment results demonstrate that average
deviations between the horizontal and vertical row of cooling holes and plug gauge are
4.40% and 2.32%, respectively. The infrared map of cooling hole is shown in Figure 16.

Figure 15. Working mechanism of infrared imaging measurement method.
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Figure 16. Infrared image of cooling hole [36].

4. CT Scanning Technology

Industrial CT technology is a widely used non-destructive testing method that involves
a series of X-ray measurements taken from different angles to generate cross-sectional
images and 3D profiles of the scanned object, allowing users to see inside of the object
without cutting. This technology applies to various aerospace components [64]. The
working mechanism of this method is presented in Figure 17. Wang Wenhu [65] conducted
measurements on blades using industrial CT scanner. They extracted a 3D point cloud of
shaped cooling holes as key features. Through computational processing, they obtained
critical parameters such as the size, shape, and contour of cooling holes.

Figure 17. Working mechanism of computer tomography measurement method.

Jiang Qilin [66] conducted quality inspections on blades, using industrial CT to mea-
sure the cooling hole profiles. By examining cross-sectional scans, any internal wall inter-
sections can be observed clearly. Figure 18 demonstrates a blade cross-section by industrial
CT scan. Yang Zenan [67] utilized cone-beam CT technology to compare cooling holes man-
ufactured with different manufacturing parameters and analyze their geometrical features
and manufacturing quality. This work demonstrates the feasibility of using cone-beam CT
technology to evaluate the quality of cooling holes.
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(a) 

 
(b) 

Figure 18. Blade profile image from industrial CT [66]. (a) Measurement results of squealer tip
from industrial computer tomography (CT). (b) Measurement results of 2nd row cooling hole from
industrial computer tomography (CT).

5. Composite Measurement Technology

Due to the limitations of single-method measurements in obtaining comprehensive
quality indicators of cooling holes, multi-sensor composite measurement methods have
garnered attention.

Chen Xiaomei [68] researched measuring micro hole positions on complex curved
surfaces. Traditional methods typically employ a single optical vision sensor, but the
optical focusing function faces limitations due to the complexity of surfaces. Consequently,
they proposed a dual-sensor autofocus method combining vision with tactile sensing, and
experiment results indicate that for measuring micro holes with a diameter of 0.5 mm
distributed on an elliptical cylinder, the focusing deviation ranges from −23 μm to +95 μm.
This dual-sensor autofocus method proves to be a more accurate and reliable method for
measuring micro holes on complex surfaces, detailed diagram is shown in Figure 19. Sui
Xin from Changchun University of Science and Technology [69,70] developed a multi-
sensor technology combining contact and non-contact measurements. They utilized a
fiber probe to touch the inner wall along the hole, with a CCD recording the relative
position of the inner wall and the probe. This method achieves the measurement of
five parameters for micro holes, including cylindricity, diameter, roundness, taper, and
straightness. Additionally, measurement results for cylindricity and taper demonstrate
repeatability of 1.36 μm and 1.51 μm, respectively.

Stimpson [71] conducted research on the cooling performance of cooling holes pro-
duced via additive manufacturing. To assess these cooling holes, they employed a com-
bination of Industrial CT and Scanning Electron Microscope (SEM), which allowed them
to measure the geometric features of cooling holes and the roughness of inner walls. The
integration of these two technologies provided a comprehensive analysis of both the macro-
structural and micro-structural characteristics of cooling holes, offering insights into how
additive manufacturing technology affects these critical components.

114



Sensors 2024, 24, 2152

Figure 19. Dual-sensor autofocusing configurations [69].

NOVACAM company from Canada [72] developed the cooling hole inspection system,
EDGEINSPECTTM, based on low coherence interferometry measurement technology.
This non-contact inspection system is capable of acquiring high-precision 3D point cloud
at speeds from 2100 to 100,000 points per second. The measurement results provided
by this system include parameters such as the orifice shape, inner diameter, and the
axial orientation of cooling holes. SURVICE Metrology, a company based in the United
States, have integrated blade surface images from optical scanners with internal 3D profile
from industrial CT, and analyzed the manufacturing accuracy of cooling holes [73]. The
technology roadmap is illustrated in Figure 20. Additionally, General Electric (GE)company
proposed a composite method combining CMMs with optical scanners to inspect the
distribution of cooling holes in blades [74].

Figure 20. Technology roadmap of composite measurement system from SURVICE Metrology
corporation [32].

6. Automated Measurement Platform

To meet the measurement requirements of cooling holes, researchers have constructed
an automated measurement platform that integrates machine vision and image processing
methods to address practical inspection challenges and to study problems encountered in
engineering applications. Bao Chenxing [75] designed and developed a 4-axis cooling hole
measurement system based on CCD. This system uses a turntable to rotate the blade along a
specific axis, and the CCD captures images of cooling holes during rotation without aligning
a CCD with a hole. Further, the standard for cooling hole alignment is where the image of
the cooling hole is a perfect circle. The hole axis and diameter are identified and calculated
with Halcon17.12, an open-source image processing software. This system demonstrates
the repeatability error of 0.2◦ for the hole axis and 0.1 mm for the hole diameter. Figure 21
illustrates the detection device and imaging system used in the experiment.
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Figure 21. Diagram of detection device and imaging system [75].

Bi Chao and team from the Precision engineering Institute for aircraft industry con-
ducted a series of studies [76–82] focused on cooling hole measurement and construction
and design of the measurement system. These studies include establishing coordinate
systems within the measurement systems and transforming measurement data from 2D
coordinates in the image coordinate systems to 3D coordinates in global coordinate sys-
tems by mathematical approach [76]. Additionally, Bi constructed 4-axis and 5-axis visual
measurement platforms using CMM, high-precision turntables, and CCD [39,77–80]. The
4-axis visual measurement platform captures sequential images of the inner wall of cooling
holes with different depths by axially moving the CCD, using depth from focus methods to
get the 3D profile of the inner wall of cooling holes, the detailed measurement system is
illustrated in Figure 22, whereas it cannot provide specific dimensions of the inner wall.
The 5-axis visual measurement platform organizes the measurement trajectory based on
the 3D digital model of blades, achieving a repeatability accuracy for hole diameter within
−10 μm to +10 μm and for hole center coordinates within −12 μm to +12 μm. Building
on this research, Bi [81] proposed a method for synthesizing axis of cooling hole using
a 3D point cloud. By fitting the annular point cloud of inner wall to obtain the center
coordinates and then fitting the center coordinates at different depths into a straight line,
the axis of cooling hole is finally established. To simplify, convert the calculated direction
vector of axis into the angle between the vector and the coordinate axis, as well as the angle
between the vector projection and the coordinate axis. The angles show a repeatability
error within 0.3◦.

Wang Cheng [40] utilized a 5-axis optical CMM to measure cooling holes. They
employed a CCD to capture images of cooling holes and calculate the diameter and center
coordinates of the holes. To validate the measurement accuracy, the measuring platform
was used to measure a simulation specimen (standard disc), and limit error is 0.024 mm
for diameter and 0.042 mm for positional accuracy. Nevertheless, since the measurement
process requires continuous adjustments relative position of the CCD and cooling hole to
align the hole axis, it relied on manual experience and subjective visual judgment, which
can potentially affect the precision of the measurement results.

Liao Tao [82] modelled a digital virtual specimen of blades by extracting blade pro-
file parameters, including the number and position information of cooling holes. They
developed specialized software based on the digital virtual specimen, enabling real-time
prediction and compensation of drilling positions during the manufacturing, according to
the extent of blade deformation. The simulation results and experiment results demonstrate
that the positioning errors of cooling holes are 1.34 μm and 4.25 μm, respectively, proving
this prediction method can satisfy the cooling efficiency requirements. Zhang Min [83]
researched the issue of axial inspection of cooling holes. They proposed an inspection
scheme for the axial direction based on an improved Gaussian mapping algorithm. Using
a line laser scanner, the high-precision point cloud is obtained to extract the axial feature
parameters of cooling holes. The experiment results confirm that this method achieved an
extraction precision of 0.6290◦.
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Figure 22. Schematic diagram of measurement a 4-axis vision coordinate measuring machine
(CMM) [80].

Based on the above studies, Table 2 organizes and summarizes the main measurement
technologies for cooling holes, outlining the measurement parameters of each technology
along with their advantages and disadvantages.

Table 2. Comparison of main measurement technology for cooling hole.

Main Measurement Technology Measured Features Advantage Disadvantage

Optical
measurement

Light field

Geometrical feature of
hole inner wall (partial)

Orifice shape and
diameter

High efficiency Limited data

Image recognition Orifice shape and
diameter High efficiency Limited data

luminous flux Orifice diameter High efficiency Limited data

3D reconstruction

Geometrical feature of
hole inner wall (partial)

Orifice shape and
diameter

High efficiency Limited data

Industrial CT Geometrical feature of
hole inner wall

Generalized
measurement result

High cost,
low efficiency

Infrared imaging Orifice diameter

High efficiency
convenient

construction of
measurement system

Limited data

Probing
measurement

Capacitive probe Geometrical feature of
hole inner wall

Suitable for high depth
to diameter ratio hole

Low efficiency,
low resolution,

limited data

Fiber probe Geometrical feature of
hole inner wall

Suitable for high depth
to diameter ratio hole

Low efficiency,
low resolution,

limited data

Laser interferometry Geometrical feature of
hole inner wall

Suitable for high depth
to diameter ratio hole

Low efficiency,
low resolution,

limited data
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4.3. Difficulties in Application of Digital Measurement Technology for Cooling Hole

Based on the background mentioned above, this section summarizes the technological
difficulties in applying digital measurement technologies to cooling holes:

• Microscale and Complex Geometries

Cooling holes typically have small sizes, large depth-to-diameter ratios, and complex
axial angles. It is challenging for light to illuminate the cooling holes and reflect to the
camera, which restricts ordinary visual observation and visual inspection of orifice areas.
These geometric characteristics result in significant inconvenience to the measurement.

• Requirements for High Precision and High Resolution

In addition to vital quality indicators such as the diameter and axis orientation of
cooling holes, which evidently impact cooling efficiency, some minute damages like recast
layers and microcracks are hard to measure accurately. Traditional measurement equipment
and technologies often struggle to achieve the aim of precise measurement, failing to meet
the requirements for high precision and resolution.

• Standardization and Uniformity

The absence of uniform quality assessment standards and standardized measurement
methods can influence the accuracy and reliability of cooling hole measurement results.
Different measurement devices and technologies may generate varying data types, posing
an adverse to ensuring data consistency and comparability across different measurement
platforms and methodologies.

• Time Efficiency

While ensuring measurement accuracy, the time cost of measurement must also be
considered. Given that a single blade has hundreds of cooling holes and an aero-engine
requires several hundred blades, manual inspection methods are impractical for large-
scale production. Therefore, efficient measurement methods are crucial to meet large-scale
production requirements without sacrificing high precision.

4.4. Shortcoming of Current Measurement Technology for Cooling Hole

The shortcomings of current measurement technologies are analyzed in this section.

• Single Measurement Quality Indicators

Research on non-contact measurement primarily focused on the geometric shape of
the orifice, with less emphasis on positional accuracy and inner wall manufacturing quality.
Contact measurement can measure the geometry of the inner walls, but fails to reflect
manufacturing quality and micro defects accurately. So far, single-measurement methods
can only assess the geometric shape, positional accuracy, or inner wall quality of cooling
holes and cannot measure all quality indicators in a single operation.

• Absence of Digital Measurement Strategy

Most current research primarily focuses on individual cooling hole measurement
methods and enhancing measurement precision. The absence of comprehensive measure-
ment planning, position and orientation modelling of blades and measuring equipment,
digital modelling of cooling hole geometric features, and the construction of cooling hole
measurement platforms are notable. It is urgent to fulfil the aim of efficient and precise
automated measurement.

• Absence of Error Analysis

In the actual measurement process of cooling holes, due to the wide distribution of
holes and significant variation in axial orientation, measuring each cooling hole individually
requires the measurement devices to vary the position and orientation continuously. This
process may induce cumulative errors, affecting the final measurement results. Currently,
there is no specialized research addressing this issue.
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• Absence of Comprehensive Multi-Hole Measurement

Discrete hole characteristics cannot estimate the influence of positional accuracy on
cooling performance from the perspective of cooling hole distribution. At the moment,
there is limited research on combining multiple discrete hole measurement data to obtain a
comprehensive cooling hole distribution pattern on the blade.

5. Summary and Outlook

As the requirements of aero-engine performance continuously increase, the devel-
opment of cooling technologies, including the optimization and improvement of shaped
cooling holes and manufacturing processes, presents problems for precise measurement.
This paper focuses on analyzing various cooling hole measurement methods with different
principles, comparing their advantages and appropriate applied scenarios, and identifying
the difficulties and current technological drawbacks. This paper is of significant value for
future research.

Future work in this field should be developed in the following directions:

• Establishing a Comprehensive Technical Framework for Cooling Hole Measurement

This framework involves generating measurement planning strategies based on digital
blade models, implementing automated digital measurement based on intelligent equip-
ment, and conducting data analysis and quality assessment. The ultimate goal is to enhance
the level of automation and efficiency in cooling hole measurement.

• Optimizing Vision Measurement Methods

For vision-based measurement technologies, the design of the optical path and the se-
lection of measurement equipment and construction of the measurement system should be
refined. These optimizations point to improving the precision of measurement results and
operation efficiency. Enhancements should include advanced image processing algorithms,
calibration technologies, and the utilization of higher resolution CCD.

• Focusing on Comprehensive Cooling Hole Quality Indicators

Future research should not only concentrate on measuring discrete hole geometrical
features, but also pay attention to a comprehensive study of the overall distribution of
cooling holes and the manufacturing quality of inner walls. By employing composite
measurement methods and integrating results, a 3D digital model of the blade can be estab-
lished. This model will facilitate analysis of the relationship between cooling performance
and cooling hole distribution, as well as their geometrical features and manufacturing
quality. Understanding these relationships is beneficial for optimizing blades’ design and
manufacturing processes to enhance cooling efficiency.

• Analyzing and Assessing Errors in Cooling Hole Measurement Systems

The sources and quantity of error in cooling hole measurement systems should be
analyzed and evaluated in detail. Implementing software algorithms helps mitigate the
impact of the errors and enhances measurement precision consequently. This aspect
should be harmonized with the efficiency of automated measurement equipment to balance
accuracy against efficiency. Application strategies should include developing advanced
calibration technologies, improving data processing algorithms, and integrating real-time
feedback mechanisms into the measurement process.

Author Contributions: Conceptualization, S.Y.; methodology, S.Y., J.S. and W.Z.; resources, S.Y.,
J.S., G.L., Y.W., H.Y. and C.H.; investigation, S.Y., J.S., G.L., Y.W. and C.H.; writing—original draft
preparation, S.Y.; writing—review and editing, S.Y., J.S. and W.Z.; supervision, J.S., Y.W. and W.Z. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Key Research and Development Program of
China, grant number 2023YFF0722803. This research was sponsored by Institute of Microelectronics of
the Chinese Academy of Sciences, and all research results are owned by Institute of Microelectronics
of the Chinese Academy of Sciences.

119



Sensors 2024, 24, 2152

Conflicts of Interest: Authors Shuyan Yan and Hao Yu are employed by the China Aviation Planning
and Design Institute (Group) Co., Ltd.

References

1. Han, J.C.; Dutta, S.; Ekkad, S. Gas Turbine Heat Transfer and Cooling Technology, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2012;
pp. 1–27.

2. Liu, J.Y.; Quan, Y.K.; Xu, G.Q.; Chai, J.M.; Yin, Q.Y.; Liu, J.S. Research Progress on Phosphor Thermometry Technology for Aero
Engine Hot Section Components. J. Aerosp. Power 2023, 38, 2861–2871.

3. Ding, S.T.; Liu, C.K.; Qiu, T.; Li, G. A Combined Cycle Method of Primary and Secondary Flows in Turbine Engines. Patent
CN111237085B, 14 May 2021.

4. Chen, R.Z.; Wang, L.B.; Li, J.H. Review and Prospect of the Development of Casting Superalloys. J. Aeronaut. Mater. 2000, 1, 55–61.
5. Cumpsty, N.A. Jet Propulsion: A Simple Guide to the Aerodynamic and Thermodynamic Design and Performance of Jet Engines; Cambridge

University Press: Cambridge, UK, 1997.
6. Han, J.C. Recent Studies in Turbine Blade Cooling. Int. J. Rotating Mach. 2004, 10, 443–457.
7. Sun, W.; Yi, J.; Ma, G.; Li, F.; Liu, X.; Gao, F.; Lu, C. A Vision-Based Method for Dimensional in Situ Measurement of Cooling

Holes in Aero-Engines during Laser Beam Drilling Process. Int. J. Adv. Manuf. Technol. 2022, 119, 3265–3277. [CrossRef]
8. Unnikrishnan, U.; Yang, V. A Review of Cooling Technologies for High Temperature Rotating Components in Gas Turbine.

Propuls. Power Res. 2022, 11, 293–310. [CrossRef]
9. Zhang, J.; Zhang, S.; Wang, C.; Tan, X. Recent Advances in Film Cooling Enhancement: A Review. Chin. J. Aeronaut. 2020, 33,

1119–1136. [CrossRef]
10. Li, Q.; Ma, Y.L.; Zhang, L. Discussion on Blade Film Hole Detection Technology Based on Laser Ranging Principle. Sci. Informatiz.

2021, 1, 94–96.
11. Clifford, R.J. Rotating heat transfer investigations on a multi-pass cooling geometry. AGARD Heat Transf. Cool. Gas Turbines 1985,

N86-29823, 7–21.
12. Ni, M.; Zhu, H.R.; Qiu, Y. Overview of Cooling Technology for Aero Engine Turbine Blades. Gas Turbine Technol. 2005, 4, 25–33+38.
13. Li, S.F.; Huang, K.; Ma, H.S.; Chen, D.Y. Research Progress on Design and Manufacture Technology of Film Cooling Holes for

Aeroengine Turbine Blades. J. Therm. Eng. Power 2022, 37, 1–11.
14. Huang, K.N.; Zhang, J.Z.; Guo, W. Effect of Partial Blockage inside Film Hole on Film Cooling Characteristics. J. Aerosp. Power

2014, 29, 1330–1338.
15. Li, G.C.; Zhu, H.R.; Bai, J.T.; Xu, D.C. Experimental Investigation of Film Cooling Effectiveness on Leading Edge with Various

Geometries. J. Propuls. Technol. 2008, 2, 153–157.
16. Liu, Z.; Ding, Y.Q.; Xie, Y.H.; Zhang, W.X.; Wei, Z.P. Study on Effects of Film Hole Arrangement on Turbine Endwall Film Cooling

Characteristics and Aerodynamic Performance. J. Xi’an Jiaotong Univ. 2023, 57, 22–33.
17. Tang, X.Z.; Li, L.P.; Huang, Z.J.; Liang, Y.C.; Zhong, W.L. Influence of Hole Spacing on the Film Cooling Effectiveness of a Gas

Turbine Moving Blade. J. Power Eng. 2018, 38, 105–113+131.
18. Goldstein, R.J.; Eckert, E.R.G.; Burggraf, F. Effects of Hole Geometry and Density on Three-Dimensional Film Cooling. Int. J. Heat.

Mass. Transf. 1974, 17, 595–607. [CrossRef]
19. Bunker, R.S. A Review of Shaped Hole Turbine Film-Cooling Technology. J. Heat Trans. 2005, 127, 441–453. [CrossRef]
20. Wilson, D.J.; Goldstein, R.J. Effect of Film Cooling Injection on Downstream Heat Transfer Coefficients in High-Speed Flow. J.

Heat Trans. 1973, 95, 505–509. [CrossRef]
21. Kim, S.; Lee, K.; Kim, K.-Y. A Comparative Analysis of Various Shaped Film-Cooling Holes. Heat. Mass. Trans. 2012, 48, 1929–1939.

[CrossRef]
22. Zhai, Y.N.; Liu, C.L. Experimental Study on the Film Cooling Performance of Odd-Shaped Film Holes with Large Inclination

Angle under High Turbulence Intensity. J. Xi’an Jiaotong Univ. 2017, 51, 16–23.
23. Liu, J.S.; Malak, M.F.; Tapia, L.A.; Crites, D.C.; Ramachandran, D.; Srinivasan, B.; Muthiah, G.; Venkataramanan, J. Enhanced Film

Cooling Effectiveness with New Shaped Holes. In Proceedings of the ASME Turbo Expo, Glasgow, UK, 14–18 June 2010.
24. Kang, X.L. Principles and Applications of EDM Composite Machining. Mech. Electr. Prod. Dev. Innov. 2007, 4, 175–176.
25. Shi, W.X.; Zhang, M.Q.; Yin, M. Research and Development of Electro-Stream Machining Technology. Aeronaut. Manuf. Technol.

2001, 1, 25–27.
26. Shirk, M.D.; Molian, P. A Review of Ultrashort Pulsed Laser Ablation of Materials. J. Laser Appl. 1998, 10, 18–28. [CrossRef]
27. Xia, K.L.; Ge, C.; Wang, Q.T.; He, Q. Research Progress on Detection Technology for Film Cooling Holes and Coating Defects of

Turbine Blades. Aeronaut. Manuf. Technol. 2022, 65, 13.
28. Song, J.B.; Yi, H.Y. Technology for Gas Film Hole of Aircraft Engine Turbine Blade. Tool Technol. 2020, 54, 82–86.
29. Zhang, W.W.; Wang, Y.F.; Wang, B.; Zhang, G.Y.; Zhang, T.R. A Composite Water-Assisted Laser Processing System and Its

Processing Method. Patent CN112824004B, 22 November 2022.
30. Li, X.J.; Dong, Y.W.; Yin, C.P.; Zhao, Q.; You, Y.C. Geometric Parameters Evolution experiment of Hole during Femtosecond Laser

helical drilling. Chin. J. Lasers 2018, 45, 102–111.
31. Zhang, X.B.; Sun, R.F. Sequential Laser Drilling Technology. Acta Aeronaut. 2014, 35, 894–901.

120



Sensors 2024, 24, 2152

32. Dong, Y.W.; Wu, Z.P.; Li, X.J.; Yin, C.P.; You, Y.C. Current Situation and Development Trend of Processing and Measurement
Technology for Turbine Blade Film Cooling Hole. Aeronaut. Manuf. Technol. 2018, 61, 16–25.

33. Liu, X.L.; Tao, C.H.; Liu, C.J.; Hu, C.Y.; Chen, X. Investigation of Processing Methods and Development of Gas Holes of Engine
Blade. Mater. Rep. 2013, 27, 117–120.

34. Wang, J.Q.; Zhao, W.S. Breakthrough Detection Technology of High-Speed EDM Drilling Based on Support Vector Machine.
Electr. Mach. Moulds 2017, 4, 56–59+67.

35. Zeng, Q.Y.; Wang, B.; Zhang, W.W. Monte Carlo simulation and experimental investigation on back strike protection in laser
drilling. Chin. J. Lasers 2023, 51.

36. Xia, K.L.; He, Q.; Zhang, Y.S. Measurement Method of Turbine Blade Film Aperture Based on Infrared Thermal Imaging and
Shrinkage Law. Acta Aeronaut. 2022, 43, 594–606.

37. Gao, C.; Zhuang, L.; Zhao, K.; Guo, C. Abrasive Water Jet Drilling of Ceramic Thermal Barrier Coatings. Procedia CIRP 2018, 68,
517–522. [CrossRef]

38. Gao, C.; Zhuang, L.; Qiu, Y.; Zhao, K. Feasibility of Drilling Holes on Thermal Barrier Coated Superalloy Using Electrical-
Discharge Machining. Procedia CIRP 2020, 95, 522–526. [CrossRef]

39. Bi, C.; Hao, X.; Liu, M.C.; Fang, J.G. Design and Establishment of the Machine Vision Measuring System for Film cooling Holes.
Acta Metrol. Sin. 2020, 41, 775–780.

40. Wang, C.; Liu, T.; Mu, X.; Liu, P.; Zhu, L.Z. Research on Aero Engine Blade Film Hole Measuring Technology. Meas. Technol 2012,
32, 27–30.

41. Elfurjani, S.; Ko, J.; Jun, M.B.G. Micro-Scale Hole Profile Measurement Using Rotating Wire Probe and Acoustic Emission Contact
Detection. Measurement 2016, 89, 215–222. [CrossRef]

42. Cui, J.; Feng, K.; Hu, Y.; Li, J.; Tan, J. A Twin Fiber Bragg Grating Probe for the Dimensional Measurement of Microholes. IEEE
Photonics Technol. Lett. 2014, 26, 1778–1781. [CrossRef]

43. Chen, C.; Li, D.G. Optical Properties and Applications of Fiber Bragg Gratings. J. Naval Univ. Eng. 2000, 4, 11–15+22.
44. Feng, K.; Cui, J.; Zhao, S.; Li, J.; Tan, J. A Twin FBG Probe and Integration with a Microhole-Measuring Machine for the

Measurement of Microholes of High Aspect Ratios. IEEE-ASME Trans. Mechatron. 2016, 21, 1242–1251. [CrossRef]
45. Muralikrishnan, B.; Stone, J.A.; Stoup, J.R. Fiber Deflection Probe for Small Hole Metrology. Precis. Eng. 2006, 30, 154–164.

[CrossRef]
46. Ma, Y.Z.; Yu, Y.X.; Wang, X.H. Diameter Measuring Technique Based on Capacitive Probe for Deep Hole or Oblique Hole

Monitoring. Measurement 2014, 47, 42–44. [CrossRef]
47. Ma, Y.Z.; Ma, L.; Zheng, Y.Z. The Measurement Techniques for Angular 3-D Pinholes Based on Capacitive Probe. Measurement

2017, 97, 145–148. [CrossRef]
48. Sun, X.; Ma, Y.Z.; Yu, Y.X.; Zheng, Y.Z. Inner Hole Diameter Measuring Based on Capacitive Sensor. Adv. Mater. Res. 2013, 739,

596–601. [CrossRef]
49. Lee, N.K.-S.; Chow, J.; Chan, A.C.K. Design of Precision Measurement System for Metallic Hole. Int. J. Adv. Manuf. Technol. 2008,

44, 539–547. [CrossRef]
50. Bian, X.; Cui, J.; Lu, Y.; Tan, J. Ultraprecision Diameter Measurement of Small Holes with Large Depth-To-Diameter Ratios Based

on Spherical Scattering Electrical-Field Probing. Appl. Sci. 2019, 9, 242. [CrossRef]
51. Cheng, Y.Q.; Li, W.L.; Jiang, C.; Wang, G.; Xu, W.; Peng, Q.Y. A Novel Cooling Hole Inspection Method for Turbine Blade Using

3D Reconstruction of Stereo Vision. Meas. Sci. Technol. 2021, 33, 015018. [CrossRef]
52. Li, L.; Li, B.; Zhang, R.; Xue, Z.; Wei, X.; Chen, L. Geometric Parameters Measurement for the Cooling Holes of Turbine Blade

Based on Microscopic Image Sequence Topographical Reconstruction. Measurement 2023, 210, 112562. [CrossRef]
53. Zhao, Y.Y.; Zeng, F.; Li, Y.; Gan, M.Y.; Shi, S.X. 3D Measurement Technique for Film Cooling Holes Based on Light Field Imaging.

Acta Aeronaut. 2021, 42, 416–426.
54. Munkelt, C.; Kühmstedt, P.; Aschermann, L.; Seidel, F. Automatic Complete High-Precision Optical 3D Measurement of Air

Cooling-Holes of Gas Turbine Vanes for Repair. In Proceedings of the Optical Measurement Systems for Industrial Inspection IX,
Munich, Germany, 22–25 June 2015.

55. Xu, D.J. Research on Micro-Aperture Rapid Measuring System Based on Luminous Flux. Master’s Thesis, Nanjing University of
Aeronautics and Astronautics, Nanjing, China, 2013.

56. Xu, D.J.; Ye, M.; Ni, Z.Q. The Study of the Micro-Aperture Rapid Measuring Theory Based on Luminous Flux. J. Mech. Eng. 2013,
2, 7–9.

57. Jin, J.; Kim, J.W.; Kang, C.-S.; Kim, J.-A.; Lee, S. Precision Depth Measurement of through Silicon Vias (TSVs) on 3D Semiconductor
Packaging Process. Opt. Exp. 2012, 20, 5011. [CrossRef]

58. Wang, M.Y.; Zhang, H.B.; Hu, W.B.; Mei, Y.H. Review on the through Silicon Via Technology in the 3D System in Package (3D-SiP).
J. Mech. Eng. 2023, 59, 1–16.

59. Wu, C.X.; Ma, J.Q.; Gao, Z.S.; Guo, Z.Y.; Yuan, Q. Measurement of through Silicon Via by Near-Infrared Micro Interferometry
Based on Aberration Compensation. Opt. Precis. Eng. 2023, 31, 12. [CrossRef]

60. Shetty, D.; Eppes, T.; Campana, C.; Filburn, T.; Nazaryan, N. New Approach to the Inspection of Cooling Holes in Aero-Engines.
Opt. Laser. Eng. 2009, 47, 686–694. [CrossRef]

121



Sensors 2024, 24, 2152

61. Ciampa, F.; Mahmoodi, P.; Pinto, F.; Meo, M. Recent Advances in Active Infrared Thermography for Non-Destructive Testing of
Aerospace Components. Sensors 2018, 18, 609. [CrossRef]

62. Rosemau, R.D.; Nawaz, S.; Niu, A.; Wee, W.G. Aircraft Engine Blade Cooling Holes Detection and Classification from Infrared
Images. In Proceedings of the Nondestructive Evaluation of Aging Aircraft, Airports, and Aerospace Hardware III, Newport
Beach, CA, USA, 3–5 March 1999.

63. He, Q.; Ge, C.; Wang, Q.T. Method and Platform for Detecting Cooling Film Holes on Working Blades of High-Pressure Turbines.
Patent CN109751972B, 26 February 2021.

64. Li, X.Y.; Yang, L.; Sun, C.G.; Li, X.J.; Liu, Y. High-Pressure Turbine Blade Defect Technology Based on Micro-Focus Industrial CT.
Foundry 2023, 72, 904–908.

65. Wang, W.H.; Zhang, Z.F.; Jiang, R.S.; Qin, C.C.; Zhu, X.X.; Huang, B. Method for Detecting and Evaluating the Geometric
Structure of Shaped Film Holes Based on Industrial CT Scanning. Patent CN201910970716.7, 14 October 2019.

66. Jiang, Q.L.; Cao, K.Q.; Chen, L.; Feng, Z.P.; Jia, T.Q.; Sun, Z.R. Process of Turbine Blade Film Cooling Holes by Nanosecond and
Femtosecond Laser Pulses. Aeronaut. Manuf. Technol. 2021, 64, 53–61.

67. Yang, Z.N.; Zha, H.Y.; Huang, Z.Y.; Xu, J.J.; Liang, W.; Zhang, Z.; Wang, Z.D.; Huang, H.D. Development and Prospect of the
Drilling and Detection of Film Cooling Hole on Turbine Blade and Vanes. Fail. Anal. Prev. 2023, 18, 14–20.

68. Chen, X.; Longstaff, A.P.; Fletcher, S.; Myers, A. Analysing and Evaluating a Dual-Sensor Autofocusing Method for Measuring
the Position of Patterns of Small Holes on Complex Curved Surfaces. Sens. Actuators 2014, 210, 86–94. [CrossRef]

69. Sui, X.; Xu, X.P.; Sun, J.; Zhang, L. Microhole Geometry Measurement Applying Multi-Sensor Technology. Opt. Optoelectron.
Technol. 2009, 7, 79–82.

70. Sun, Q.S.; Sui, X.; Xu, H.F. Research on an Optoelectronic Detection System for Microhole Shape Measurement. Sci. Technol. Inf.
2008, 14, 14.

71. Stimpson, C.K.; Snyder, J.C.; Thole, K.A.; Mongillo, D. Effectiveness Measurements of Additively Manufactured Film Cooling
Holes. J. Turbomach. 2017, 140, 011009. [CrossRef]

72. Cooling Holes Inspection & 3D Metrology—Novacam. Available online: https://www.novacam.com/applications/cooling-
holes-inspection (accessed on 27 January 2024).

73. Survice_Measurement of Cooling Hole CMSC 2011 Sub. Available online: https://www.cmsc.org/stuff/contentmgr/files/0/
2bdcf766d9d5daf6e892c46153c591d3/misc/cmsc2011_wed_gh_0800_survice.pdf (accessed on 27 January 2024).

74. Nigmatulin, T. Turbine Shroud Cooling Hole Diffusers and Related Method. Patent US20030082046A1, 26 October 2001.
75. Bao, C.X.; Wang, L.; Li, K.; Min, L.X.; Geng, C.K. Research on Rapid Detection Technology of Gas Film Hole Based on CCD. Aviat.

Precis. Manuf. Technol. 2017, 53, 52–55.
76. Bi, C.; Hao, X.; Liu, M.C.; Liu, Y. Establishment and Conversion of Coordinate System in Visual Measurement of Film Cooling

Holes. J. Sens. Technol. 2019, 32, 1515–1521.
77. Bi, C.; Hao, X.; Liu, M.; Ji, G.B. Design and Establishment of Five-Axis Visual Measuring System for Film cooling Holes. Mach.

Tool Hydraul. 2021, 49, 123–127.
78. Bi, C.; Pi, K.S.; Sheng, B.; Long, K.; Hao, X. Measurement Technology of blade-Shaped Holes Based on Machine Vision. Tool

Technol. 2022, 56, 147–151.
79. Bi, C.; Zhang, Y.; Zhang, C.; Zhou, P. Study on Automatic Focusing Strategy of Visual Coordinate Measuring System. Tool Technol.

2022, 56, 136–141.
80. Bi, C.; Hao, X.; Liu, M.C.; Fang, J.G. Study on Calibration Method of Rotary Axis Based on Visual Measurement. Infrared Laser

Eng. 2020, 49, 167–174.
81. Bi, C.; Zhang, C.; Fan, C.Y.; Fang, J.G. Study on Visual Measuring Technology of Axis Direction of Film Cooling Holes. J. Aerosp.

Metro Meas. 2022, 42, 37–42.
82. Liao, T.; Dong, Y.W.; Zhang, S.T.; Bi, C.; Fang, J.G. Error Analysis Method of Turbine Blade Film Hole Based on Virtual

Measurement. Aeronaut. Sci. Technol. 2021, 32, 50–59.
83. Zhang, M.; Yan, X.S.; Xi, X.C.; Zhao, W.S. Measurement of Axial Orientation of Film Cooling Holes of Turbine Blade Based on

Laser Sensor. Procedia CIRP 2022, 113, 172–177.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

122



sensors

Article

Measurement Method for Contact Wire Wear Based
on Stereovision

Wei Zhou *, Zhe Qin, Xinyu Du, Xiantang Xue, Haiying Wang and Hailang Li

Infrastructure Inspection Research Institute, China Academy of Railway Sciences Corporation Limited,
Beijing 100081, China
* Correspondence: wzhou@rails.cn

Abstract: The contact wire wear is an important parameter to ensure the safety operation of electric
railways. The contact wire may break if the wear is serious, which leads to transportation interrup-
tions. This study proposes an optical measurement method of contact wire wear, using stereovision
technology. The matching method of stereovision based on line-scan cameras is proposed. A lookup-
table method is developed to exactly determine the image resolution caused by the contact wire
being in different spatial positions. The wear width of the contact wire is extracted from catenaries’
images, and the residual thickness of the contact wire is calculated. The method was verified by
field tests. The round-robin tests of the residual thickness at the same location present excellent
measurement repetitiveness. The maximum difference value between dynamic test results and
ground measurement results is 0.13 mm. This research represents a potential way to implement
condition-based maintenance for contact wire wear in the future in order to improve the maintenance
efficiency and ensure the safety of catenary infrastructure.
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1. Introduction

The contact wire is one of the most important components in an electrified railway
system. It makes direct contact with the pantograph of the electric locomotive and supplies
current to the locomotive. Because of the continuous friction between the pantograph and
the contact wire, the wire surface wears out, thus reducing the effective cross-section of
the wire [1–3]. The reduction of the cross-section causes different problems. Firstly, the
mechanical strength of the contact wire reduces. If the cross-section is too small, the contact
wire may break, which might cause hazardous accidents. Secondly, the resistance increases
as the cross-section becomes smaller, and the voltage reduces which may not be able to meet
the operational needs of electric locomotives. As a result, the contact wire wear should be
monitored regularly to ensure the safety of the catenary infrastructure. If a section of contact
wire with serious wear is detected at an early stage, this section of contact wire could be
strengthened or replaced by a new section. Therefore, the lifetime of contact wire could
be extended. In the past few decades, the measurement of contact wire wear has mainly
relied on the method of manual measurement. For the manual measurement method, the
safety risk for the maintenance workers is high; the power on the catenary has to be cut off,
which leads to the traffic interruption; and the inspection workload is heavy because of
the point-by-point measurement way. With the development of the high-speed electrified
railway, the requirements were put forward to develop the dynamic inspection method of
contact wire wear. The automatic measurement method of contact wire wear on rolling
stock improves the maintenance efficiency and reduces the maintenance cost, because of the
timely and fast defect detection. Furthermore, the continuous wear measurement along the
railway line helps the railway operators to diagnose the abnormal function state, evaluate
the quality of catenary, and implement the condition-based maintenance of catenary.
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The contact wire height, stagger, and wear are the primary geometrical properties
of the contact wire. The height and stagger describe the spatial position of the contact
wire relative to the rail surface. The residual thickness indicates the degree of contact wire
wear. With the rapid development of sensor technology in the past few decades, various
measurement methods for the geometry parameters of contact wire have been developed [4–
7], such as the microwave reflection analysis and electrical and optical methods. Among
them, the optical method has been the most successful one to perform the measurement
of contact wire wear, which includes the residual thickness measurement method, the
laser scanning method, and vision measurement method [6]. The residual thickness
measurement method presents a few limitations, such as the necessity of modifying the
pantograph, a limited measurement range, and the fact that the maximum number of
detectable wires is only one [6,7]. The obstacles of the laser scanning method are the
limitation of the total measurement points per second, and it is sensitive to the reflectivity
of contact wires. For the vision measurement method, the wear surface of contact wire
is illuminated, and the wear width is extracted by analyzing the image taken by the
cameras. Several vision measurement methods were reported, such as structured light
vision measurement [8–10] and stereovision measurement [11–13]. For example, researchers
from RTRI developed a contact wire wear measurement system based on structured light
vision measurement [8]. The RTRI’s system was installed on a Shinkansen vehicle and was
capable of an accuracy of within ±0.1 mm in residual thickness. Chugui et al. [9] developed
a structured light vision measurement system with an RMS error of the residual thickness
of 0.15 mm and a measurement rate of ~150 Hz. Nie [10] adopted a 2D laser sensor (ELAG
Elektronik AG, Winterthur, Switzerland) to measure the wire wear of metro rigid catenary.

The limitations of structured light vision measurement are the low measurement
frequency and the influence of sunlight in daytime inspection.

Stereovision measurement using two or more line-scan cameras is a better solution for
the measurement of contact wire wear on rolling stock [7,14]. The advantages of stereovi-
sion measurement are the high scanning frequency and the high resolution because of the
one-dimensional imaging chip of the line-scan camera. For this application, the scanning
plane of the line-scan camera is perpendicular to the direction of the train. However, it
is still a challenging work since it has to overcome several obstacles, such as the image
quality during day and night, the measurement resolution, and the variations in both
contact wire height and stagger [7,14]. Great efforts have been made to overcome the above
challenges. Laser diodes combined with interference filters are used as the active light
source, which improves the image SNR (signal-noise ratio) in daytime inspection [7,12].
Due to considerations of operational safety and laser temperature control, the power of the
laser needs to be carefully designed. In order to cover the range of stagger with high reso-
lution, multiple line-scan cameras were adopted by ATON and MEDES [7]. To minimize
the influence of the variation in contact wire height on measurement, Van Gigch et al. [15]
and Borromeo et al. [7] proposed a method of adjusting the focal lengths of cameras online
separately, while Kusumi et al. [16] developed a method for keeping a constant distance
from cameras to contact wire by controlling the mirrors. You et al. [12] derived the equation
of calculating the wear width using the pinhole camera model, which involved the impact
of height variation on resolution. On the other hand, stereo matching is another challenge
in stereovision measurement. For a binocular vision system, stereo matching can be defined
as finding the corresponding points between the stereo image pairs. Interest point detectors
and feature descriptors are commonly used methods for solving the stereo-matching prob-
lem [14]. Zhou et al. [17] proposed a trinocular stereovision system that includes a projector
and two area-scan cameras and utilized the phase information of pixels to complete the
matching of homonymous points. Shu et al. [18] designed a trinocular stereovision system
by using three area-scan cameras arranged in equilateral triangles and solved the matching
problem by using the method of epipolar constraint with three intersecting cameras.

The author previously studied the method based on multi-view stereovision to mea-
sure the height and stagger of contact wire [19,20]. Four CCD line-scan cameras with a
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resolution of 4096 pixels and different angles and four high power spotlights (575 W for
each spotlight) were adopted to form a robust system under most of the environmental
conditions. If one of the four cameras was influenced by the direct sunlight, the other
two cameras were used to perform the measurement. However, since the spectrum of the
spotlight is wide and continuous, the strong sunlight is hard to weaken, and the grayscale
feature of the wear surface could be hardly highlighted because of the poor image SNR. The
contact wire in the image is usually a black object against a bright background in daytime
inspection, thus making it difficult to measure the contact wire wear. Based on previous re-
search, this paper proposes a contactless optical measurement method of contact wire wear,
using the multi-view stereovision technology. A matching method of stereovision based
on line-scan cameras is proposed. The third line-scan camera is adopted to overcome the
correspondence problem. Compared with the matching method of binocular stereovision
in the literature, this matching method is fast and robust, which satisfies the requirement
of real-time measurement in day and night inspection. The wear width of the contact
wire is extracted from catenaries’ images. A lookup-table method is developed to exactly
determine the image resolution in various sections of measurement plane. Compared
with the methods reported in the literature [7,15,16], no additional adjustment device is
required to adjust the focal lengths of cameras or maintain a constant working distance
in this study. Currently, little attention is being paid to the impact of stagger variation
on resolution. In most existing studies, the focus is on minimizing the influence of the
variation in contact wire height on measurement [7,15,16] or on evaluating the impact of
height variation on resolution [12]. In this study, the impact of both the height variation
and the stagger variation on the image resolution has been taken into account by using
the lookup-table method, which ensures the accuracy of the wear measurement of contact
wires. Then, the residual thickness is calculated according to the rated cross-sectional
parameters of contact wire. In order to highlight the grayscale feature of the wear surface
and improve the image SNR in daytime inspection, a new kind of high-speed synchronized
stroboscopic lighting technology using monochromatic LED lamps combined with narrow
band-pass optical filters is developed as an alternative active lighting method. Compared
with the laser diode lighting method reported in the literature [7,12], the stroboscopic LED
lighting method avoids the risk of laser operation and is harmless to nearby people. In
addition, there is no need to design a precise mechanical adjustment device to make the
scanning plane of the line-scan camera coincide with the laser irradiation plane.

The remaining sections of this paper are organized as follows: Section 2 introduces the
basic principle of contact wire wear measurement using the vision measurement method.
The measurement model and implementation method are detailed in Section 3. The test
results and a discussion are given in Section 4. Finally, the work of the full paper is
summarized, and conclusions and suggestions are given.

2. Basic Principle

Figure 1 shows the cross-section of a new contact wire (left side) and the cross-section
of a contact wire with wear (right side). The key feature to be measured may be classified
as the residual thickness (h) or the width of the wear surface (w), as can be seen in Figure 1b.
For most railway companies, the residual thickness (h) or the worn section area (A) of the
contact wire is used as the indicator of the degree of wire wear.

As shown in Figure 1, the lower half part of the cross-section of the wire is arc-shaped.
In the case of a circular contact wire with radius, r, the residual thickness (h) can be
calculated from the width of the wear surface, w:

h = r +

√
r2 −

(w
2

)2
(1)
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The relationship between the worn section area, A, and the width of the wear surface,
w, can be described by [7,21]:

A = r2sin−1
( w

2r

)
− w

2

√
r2 −

(w
2

)2
(2)

 

(a) (b) 

Figure 1. Cross-section of a contact wire: (a) a new contact wire and (b) a contact wire with wear.

The contact wire wear measurement using the vision measurement method is based
on the fact that the wearing surface of the contact wire presents good light-reflecting char-
acteristics. The wearing surface is illuminated by the active lighting source, i.e., spotlights,
laser diodes, and LED. Because of the continuous friction between the pantograph and the
contact wire, the wearing surface is flat and has much greater light-reflecting characteristics
than the lateral surface of the contact wire. In common, the grayscale of the wear surface
region is much higher than the rest of the region of the contact wire. The red lines in
Figure 2 show the grayscale curve of a new contact wire (Figure 2a) and the grayscale
curve of a contact wire with wear (Figure 2b). Appropriate image-processing techniques
are adopted to extract the key points, including the edge points and the central point of
the wear surface, such as the Sobel operator and cross-correlation template matching. The
width of the wear surface is the distance between the two edge points (points A and B
in Figure 2b), indicating the residual geometric thickness of the contact wire. The central
point of the wear surface (point C in Figure 2b) is usually chosen to calculate the values of
height and stagger.

 
(a) (b) 

Figure 2. Grayscale curves (red lines) of cross-section of contact wires: (a) a new contact wire and
(b) a contact wire with wear.
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3. Materials and Methods

3.1. Stereovision Measurement Model

Since the image resolution varies with both the height and stagger values of the
contact wire, the measurement of height and stagger is the basis of the measurement of
contact wire wear. The measurement principle of the contact wire geometry parameters
using the stereovision method is shown in Figure 3. In the figure, OwXwZw is the world
coordinate system. The origin of this coordinate system, Ow, is set at the midpoint of the
train roof, and Yw represents the direction of the train. O1X1 and O2X2 are the imaging
coordinate systems of the left and right cameras, respectively. Oc1Xc1Zc1 and Oc2Xc2Zc2 are
the camera coordinate systems of the left and right cameras, respectively. For these two
camera coordinate systems, each origin is located at the principal point of the camera lens.
The point P is projected onto the imaging chip of the line-scan camera through the optical
lens. The imaging locations of the point P on the two cameras are P1 and P2, respectively.
U01 and u02 are the image coordinates of the principal points of the two camera lenses.

Figure 3. Measurement principle of the contact wire geometry parameters using stereovision method
with line-scan cameras.

By using perspective projection transformation, the transformation relation between
the camera imaging coordinate system and the camera coordinate system is shown in
Equation (3):

s
[

u
1

]
= M1

[
Xc
Zc

]
(3)

where s is the non-zero scale factor; u is the coordinate of image point of point P in any
camera imaging coordinate system; [Xc, Zc] is the coordinate of point P in the corresponding
camera coordinate system; and M1 is the internal parameter matrix of the camera and is
given by the following:

M1 =

[
fe u0 0
0 1 0

]
(4)

In Equation (4), f e is the normalized focal length of the camera lens, and u0 is the
image coordinate of the principal point of the camera lens.

By using Euclid-space transformation, the transformation relation between the camera
coordinate system and the world coordinate system is as shown below [22]:

[
Xc
Zc

]
= M2

[
Xw
Zw

]
=

[
R T
0 1

][
Xw
Zw

]
(5)

where [Xw, Zw] is the coordinate of point P in the world coordinate system; M2 is the
external parameter matrix of the camera; and R and T are the rotation matrix and translation
vector, respectively.
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Combining Equation (3) with (5), the line-scan camera model is given by the following:

s
[

u
1

]
= M1

[
Xc
Zc

]
= M1M2

[
Xw
Zw

]
= M

[
Xw
Zw

]
(6)

where M is the intrinsic parameter matrix. M is described by the following:

M = M1M2 =

[
m11 m12 m13
m21 m22 m23

]
(7)

By eliminating the variables in Equation (6), we can obtain the equation as follows:

u =
m11Xw + m12Zw + m13

m21Xw + m22Zw + m23
(8)

Equation (8) is the perspective projection equation of the line-scan camera, which
describes the relationship between the coordinate of point P in the world coordinate system
and the image coordinate of point P in the camera imaging coordinate system.

Multiple sets of calibration point data are obtained within the measurement range,
including the world coordinate data, [Xw, Zw], and the corresponding imaging coordinate
data, u. Then, the parameters of the matrix, M, in Equation (8) are calculated using
mathematical procedures.

In principle, the coordinate of point P in the world coordinate system, [Xw, Zw], could
be calculated by using the imaging coordinate data, u, of any two line-scan cameras. The
subscripts a and b are used to represent the left and right cameras in Figure 3, respectively.
By combining the perspective projection equations of the two cameras, Xw and Zw are
given by the following:

Xw = q2k1−q1k2
p1q2−p2q1

Zw = p1k2−p2k1
p1q2−p2q1

(9)

The parameters p1, p2, q1, q2, k1, and k2 in Equation (9) are given by the following:

p1 = m11a − uam21a
p2 = m11b − ubm21b
q1 = m12a − uam22a
q2 = m12b − ubm22b
k1 = uam23a − m13a
k2 = ubm23b − m13b

(10)

Equation (9) is the measurement model of the contact wire geometry parameters
based on stereovision via triangulation. To perform the dynamic measurement, the pixel
coordinates of the contact wire in the two line-scan cameras, ua and ub, are extracted
through image processing. Then, the positions of the contact wire in the world coordinate
system, [Xw, Zw], are calculated using Equation (9) and the calibrated parameters of the
intrinsic parameter matrix, Ma and Mb, of the two line-scan cameras.

In the overlapping section [1], not only the two contact wires, but also the messenger
wires located above the contact wires, would be captured. As mentioned above, when there
is one target in the FOV (field of view) of the line-scan camera, the world coordinate of the
target could be calculated by using the imaging coordinate of the target in the images of
two cameras. However, when the number of the targets is more than one, it is necessary to
find the corresponding points of the same target between the stereo image pairs, that is,
to solve the stereo-matching problem. Various research studies have been conducted to
determine the accurate corresponding points, such as feature descriptors, interest point
detectors, and epipolar constraint method [14,22].

This article proposes a matching method based on the position feature of the target.
The third line-scan camera is adopted to overcome the correspondence problem. The target
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imaging coordinate information of the third line-scan camera is used to check the matching
of corresponding points in the first two line-scan camera images, which could eliminate
the uncertainty caused by the matching of binocular images.

The proposed matching method is illustrated in Figure 4. A, B, and C are three targets
in the FOV of the stereovision system; O1, O2, and O3 are the principal points of the three
camera lenses; a1, b1, and c1 are the imaging points of the three targets in the left camera; a2,
b2, and c2 are the imaging points of the three targets in the right camera; and a3, b3, and c3
are the imaging points of the three targets in the middle camera. The matching procedure
operates in three steps, which are described as follows.

Figure 4. Stereovision matching method using the third line-scan camera.

Step 1: All possible spatial points are reconstructed based on the extracted image
coordinate data of the left and the right cameras, using the enumeration method. Among
the possible spatial points shown in Figure 4, A, B, and C are the real targets, while D, E,
and F are the false targets. Then, the key to the matching procedure is to verify all of the
reconstructed spatial points.

The verification of points A and D is illustrated bellow. Point A is reconstructed using
the imaging point a1 of the left camera and a2 of the right camera. Point D is reconstructed
using b1 of the left camera and a2 of the right camera.

Step 2: The reconstructed points A and D are re-projected onto the imaging chip
of the middle line-scan camera and form the re-projected imaging points a3p and d3p.
The re-projection imaging coordinates of points a3p and d3p are denoted as ua3p and ud3p,
respectively.

Step 3: The imaging coordinates of a3, b3, and c3 are denoted by ua3, ub3, and uc3. The
validity of the re-projected imaging points a3p and d3p is verified by calculating the distance
between the extracted image coordinate data and the re-projected imaging coordinate
data. An appropriate threshold, T, is adopted by taking into account the average deviation
distance of re-projection of the line-scan camera. With regard to the re-projected imaging
point a3p, the distance between ua3 and ua3p is less than the threshold (T), verifying the
effectiveness of reconstructed point A. However, reconstructed point D is judged as a false
target since there is no candidate imaging point near the re-projected imaging point d3p.

The verification-procedure speed in this study is fast and satisfies the requirement
of real-time measurement. In addition, the matching method is robust for both day and
night inspection since the matching precision is not easily affected by the changes in
ambient lighting.
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3.2. Determining the Wear Width of the Contact Wire

Determining the wear width of the contact wire includes two steps, the extraction of
wear width in pixels from the image and the calculation of the physical wear width in mm.
The specific steps of extracting the wear width in pixels from the image are as shown below:

Step 1: The candidate wires are extracted by using the edge detection operator. The
first-order difference of grayscale curve is designed to detect the candidate objects in
different weather conditions. Figure 5 shows the original grayscale curve of catenary on
a cloudy day in an overlapping section. Therefore, there are two peak-shaped regions
and two valley-shaped regions in the background grayscale curve, where the peak-shaped
regions are the two contact wires in the overlapping section and the valley-shaped regions
are the two messenger wires. Figure 6 shows the processed images by using the first-order
difference operator. The grayscale gradient of the contact wire is obviously higher than
that of the messenger wire, which helps to minimize the interference from the messenger
wire in matching.

Figure 5. Original grayscale curve of catenary in an overlapping section.

Figure 6. First-order difference of grayscale curve of catenary in an overlapping section.

Step 2: The peak-shaped regions and the valley-shaped regions are extracted from the
fitting background grayscale curve. Mean filter operator is adopted to acquire the fitting
background grayscale curve and minimize the influence of noise. Then, the boundary
between the contact wire and the background is carefully determined. An empirical
threshold of the pixel width of a contact wire is used to assist in determining boundaries.
The threshold is determined by experimental statistics, and the value of the threshold is
affected by the resolution of the line-scan camera, the FOV of the camera and the height
variation in the contact wire.
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Step 3: The left and right edge points of the wear surface are located within the peak-
shaped region of a contact wire in the image. As mentioned above, the wearing surface has
much higher light-reflecting characteristics than the lateral surface of the contact wire. As a
result, the grayscale of the wear surface region is several times higher than that of the rest
of regions of the contact wire. As shown in Figure 7, the grayscale of the lateral surface
regions of the contact wire decreases rapidly from the wear edge point to the background.
In this case, the second-order difference of the grayscale curve is adopted to locate the left
and right wear edge points within the peak-shaped region of the local grayscale curve of
the contact wire. The wear width in pixels is extracted by calculating the difference of the
coordinates between the left and the right wear edge points. Meanwhile, the central point
of the wear surface is determined.

Figure 7. Original grayscale curve of a contact wire with a wear surface.

Step 4: The real targets in the FOV are determined by using the stereovision matching
method proposed in this study. Several targets may be extracted in an overlapping section
in daytime inspection, i.e., the operating contact wire, the non-operating contact wire, and
the two messenger wires which support these two contact wires. The position of each
target in the world coordinate system is calculated by triangulation, using Equation (9).

Step 5: The messenger wires are excluded based on the fact that the height of the
contact wire is lower than that of the messenger wire. A target-tracking operator is used
to exclude the other interference targets, such as the droppers and the cantilevers of the
support system. This is due to the fact that the contact wire is continuous along the
railway line, while the projections of both the droppers and the cantilevers on the image
are discontinuous in the direction of the railway line.

The calculation of the physical wear width in mm relies on the determination of the
image resolution in the measurement range. For different types of electrified railways in
China, the height from the car roof to the contact wire would be in the range between
1300 mm and 2500 mm. The stagger would vary from −400 mm to 400 mm in an electrified
railway to avoid the continuous friction at the same point of the pantograph. If the effect
of the stagger variation is not taken into account, a significant error would be introduced
when considering the image resolution. In this study, the image resolution in various
sections of measurement range is carefully calibrated using a calibration tool, which takes
into account the impact of both the height variation and the stagger variation. As shown in
Figure 8a, a set of horizontally arranged targets is fixed on top of a slide bar, with a spacing
of 100 mm between each target. A flat surface with a width of 6 mm is fabricated on the
bottom of each target, which simulates a contact wire with a wear surface, as shown in
Figure 8b. Each target in the horizontal array denotes a contact wire with a different stagger
value. The height of the target array could be set in the measurement range by moving the
slider bar up and down.
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(a) (b) 

Figure 8. Calibration tool of image resolution: (a) calibration tool setup and (b) a target with a
wear surface.

First, the parameters of the matrix (M) in Equation (8) of each line-scan camera are
calculated using multiple sets of calibration data, including the world coordinate data,
[Xw, Zw], and the corresponding imaging coordinate data, u. After that, the wear width
of each target is extracted in pixels from the captured grayscale curve, using the above
image-processing procedure, as shown in Figure 9.

Figure 9. Grayscale curve of the arranged targets of the calibration tool.

The image resolution with a fixed position is calculated by dividing the preset physical
width of 6 mm by the extracted image width of the wear surface, with the unit of mm/pixel.
Table 1 illustrates the calibrated image resolutions of the second line-scan camera at different
horizontal positions with a height of 1300 mm from the car roof. The image resolutions
of each line-scan camera at different horizontal or vertical positions are determined by
repeating the above calibration. Thus, the measurement range is divided into an array of
small square areas. The image resolution within the same small square area is considered
to be uniform. As a result, the distribution of the image resolution in the measurement
range is determined by using this lookup-table method. Then, the physical wear width is
calculated accordingly. Finally, the residual thickness, h, of the contact wire is calculated
according to the wire type and the rated cross-section diameter of the contact wire by using
Equation (1).
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Table 1. Calibrated image resolution of the second line-scan camera at different horizontal positions
with a height of 1300 mm from the car roof.

Horizontal Position
(mm)

Image Resolution
(mm/pixel)

−400 0.33

−300 0.32

−200 0.32

−100 0.31

0 0.30

100 0.30

200 0.29

300 0.28

400 0.27

3.3. Measurement Apparatus Design

The architecture diagram of the measurement apparatus based on the measurement
method for contact wire wear in this study is shown in Figure 10. The measurement appara-
tus is composed of the stereovision measurement module on the train roof, the processing
module inside the train, and the vehicle compensation measurement module under the
train. The stereovision measurement module consists of four line-scan cameras with differ-
ent angles and three LED lamps. The vehicle compensation measurement module includes
three displacement sensors. When the train sways, two sensors are used to measure both
the left and the right vertical displacement of the train relative to the rail surface, and then
the roll angle of the train is calculated by using the displacement data of these two sensors
and the width of the train; the third sensor is applied to measure the horizontal displace-
ment of the train relative to the center line of the track. The processing module processes
the image data of catenary captured by the line-scan cameras and the vehicle compensation
data and calculates the geometry parameters (stagger and contact wire height) and the
wear parameters (residual thickness, h; or worn area, A). The processing module receives
the distance pulses produced by the photoelectric encoder, which is installed on the train
wheel and triggers all the line-scan cameras to exposure simultaneously.

Figure 10. Architecture diagram of the measurement apparatus.
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The flowchart of the processing module to perform the measurement of the contact
wire wear is shown in Figure 11, which includes four steps:

Figure 11. Architecture diagram of the processing module.

Step 1: Acquire the image data of the four line-scan cameras and the voltage data of
the three displacement sensors.

Step 2: Extract the features from each line-scan camera’s image, including the central
point coordinate and the wear width of the candidate targets.

Step 3: Execute the stereovision matching algorithm to determine the corresponding
points of the contact wire among the stereo images, and then calculate the position of the
contact wire in the train roof coordinate system.

Step 4: Calculate the position of the contact wire in the rail surface coordinate system
by using the calculated position data from Step 3 and the measurement data of the vehicle
compensation measurement module based on the Euclid-space transformation. Then,
the physical wear width of the contact wire is determined by using both the data of the
wear width in pixels from Step 2 and the image resolution data corresponding to the
current position.

The catenary image quality is essential to the wear measurement of the contact wire.
In this study, a new kind of high-speed synchronized stroboscopic lighting technology
is developed as an alternative active light source. The high-speed synchronization of
lighting and camera exposure is realized by a same-trigger pulse. The imaging and lighting
devices are able to work stably at 1000 Hz in the pulsed mode, which ensures the dynamic
measurement of contact wire wear on the inspection train. Since the duty cycle of the pulsed
lighting is low (less than 0.1), the power consumption of the light source is greatly reduced,
which is no more than 5% of the spotlights’ total power in our previous research [19,20].
Compared with the continuous LED lighting, the thermal performance of the LED chip in
stroboscopic mode is significantly improved, which greatly extends the lifetime of the light
source. Moreover, compared with the continuous intensity lighting with rated current, an
over-driven pulsed current is used to obtain a light beam with higher luminous flux, which
highlights the image features of the wear surface of the contact wire.

Blue LED lamps combined with band-pass optical filters are adopted to minimize the
influence of sunlight. A comparison test in daytime was performed on two light sources,
that is, the white LED lamp and the blue stroboscopic LED lamp with the optical filter, as
shown in Figure 12. In Figure 12a, the light zigzag lines are the contact wires due to the
good light-reflecting characteristics, while the dark zigzag lines are the messenger wires
due to the poor reflectivity. In Figure 12b, the grayscale of the sky is greatly reduced, and
the image SNR in the daytime environment is significantly improved by using the proposed
lighting technology. The messenger wires disappear in Figure 12b because of the little
difference in grayscale between the messenger wires and the sky. In this case, the number
of the extracted candidate targets is reduced, which accelerates the stereo matching.
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(a) (b)

Figure 12. Comparison of catenary images illuminated by two types of light sources in daytime
inspection: (a) white LED lamps and (b) blue stroboscopic LED lamps with band-pass optical filters.

4. Results and Discussion

4.1. Experimental Result

The measurement apparatus based on the proposed measurement method was fixed
on an inspection train. The four line-scan cameras are the Eliixa+ multi-line high-speed
CMOS cameras (Teledyne E2V company, Thousand Oaks, CA, USA), with a resolution of
4096 pixels. Compared with the CCD camera used in the previous research [19,20], the
CMOS camera used in this study eliminates the blooming effect and smear effect under
strong light illumination. The lens is an Interlock C 35 mm lens (Carl Zeiss AG, Oberkochen,
Germany), with robust full-metal construction and low distortion, and then the angle of
FOV for each camera is about 60◦. The parameters of the intrinsic parameter matrix, M,
are calculated using the proposed calibration tool. Figure 13 shows the re-projection error
diagram of the four cameras. The average re-projection error for all calibration points of
the four line-scan cameras is 0.42, 0.55, 0.55, and 0.52 pixels, respectively. The measurement
accuracy of both stagger and height is within ±3 mm in the train roof coordinate system.

Figure 13. Re-projection error distribution of four line-scan cameras.

Field tests were performed in National Railway Track Test Center of China Academy
of Railway Sciences. The following three groups of experiments were carried out to verify
the availability of the proposed measurement method for contact wire wear.

The first group of experiments is functional testing. The type of contact wire in this
test is CTA110, and the rated diameter of the contact wire is 12.34 mm. Figure 14 shows the
measurement results of residual thickness, stagger, and contact wire height in a straight-line
section, while Figure 15 shows the results of these parameters in a curve-line section. The
blue and orange lines in Figure 15 represent two contact lines, which belong to two adjacent
anchor segments. As shown in Figure 14, the variation in the residual thickness in the
straight-line section is relatively small, probably due to the well-distributed elasticity within
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a span of the straight-line section. In contrast, the minimum residual thickness of each
span (except the overlapping section) locates around the catenary mast (refer to the three
blue squares in Figure 15) in the curve-line section, which indicates that the distribution of
catenary elasticity within a span in the curve-line section is not uniform. This is probably
due to the large pull-off force on the contact wire at the mast in the curve-line section with
a small curve radius, resulting in better elasticity mid-span than around the mast. The local
minimum residual thickness in Figure 15 is located in the overlapping section (refer to the
yellow ellipse), probably because of the poor catenaries’ elasticity around the conversion
point of the two operating contact wires.

The second group of experiments is the repeatability verification experiment. The
round-robin tests of the residual thickness in the same line section present good measure-
ment repetitiveness, which is shown in Figure 16. According to the statistical results of the
difference between the two tests shown in Figure 16b, for more than 90% of the measuring
points, the absolute difference between the two tests is less than 0.1 mm, indicating that the
method presents high repeatability.

Figure 14. Test results in a straight-line section.

Figure 15. Test results in a curve-line section.
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(a) (b) 

Figure 16. Repeatability verification experiment: (a) measurement curves of residual thickness of two
tests and (b) statistical results of difference between the two tests.

The third group of experiments is the accuracy validation test. The type of contact
wire in this test is CTA120, and the rated diameter of the contact wire is 12.90 mm. Eight
groups of data were collected via a dynamic test and ground measurement, respectively.
The difference between the dynamic test data of residual thickness and the ground manual
measurement data is listed in Table 2. The average difference value and the maximum
difference value are 0.08 mm and 0.13 mm, respectively, which demonstrate that the method
has good measurement accuracy. The measurement accuracy of contact wire wear in this
study is basically consistent with that reported in the literature [8,9].

Table 2. Comparison between dynamic test results and ground measurement results.

Test Data
(mm)

Ground Measurement Data
(mm)

Difference
(mm)

12.72 12.62 0.10
12.80 12.77 0.03
12.83 12.75 0.08
12.80 12.75 0.05
12.80 12.73 0.07
12.77 12.73 0.04
12.83 12.73 0.10
12.83 12.70 0.13

4.2. Discussion

Figure 17 shows the stagger effect on the measurement of the wear width of the contact
wire. The black solid line with the zigzag shape indicates the stagger distribution along the
line. The horizontal dash dot line represents the trajectory of the train roof center during
the train’s movement. Then, the measurement plane of the apparatus is perpendicular to
the dash dot line. As a result, as shown in the partial enlarged drawing in Figure 17, w
denotes the measured wear width of the contact wire, w0 denotes the actual wear width,
which is perpendicular to the direction of the contact wire, and there is a small angle θ
between the measured dot line and the actual dot line.
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Figure 17. Stagger effect on the measurement of wear width of contact wire in a straight-line section.

For the straight-line section shown in Figure 17, points A and B denote two adjacent
masts of the catenary with the design stagger of S1 and S2, respectively. The span of the
two masts is L. Then, the angel, θ, can be calculated as follows:

sin θ =
|S1|+ |S2|

L
(11)

Then, the relationship between the measured wear width, w, and the actual wear
width, w0, is as follow:

w0 = wcos θ (12)

For a typical catenary design in a straight-line section in China, S1 = 300 mm, S2 = −300 mm,
and L = 50 m. Then, we can calculate the value of sin θ; sin θ = 0.0120, and cos θ = 0.9999.

As shown in Figure 15, the stagger curve is arc-shaped in a curve-line section, and the
angle, θ, varies from one mast to the midpoint of two neighboring masts. The maximum
value of θ appears next to the mast, while the minimum value of θ locates at the midpoint
of two neighboring masts and is approximately equal to 0. The maximum value of θ could
be evaluated by calculating the change in stagger value per length along the catenary. For a
typical curve line section, the maximum value of sin θ is about 0.0200, and cos θ = 0.9997.

It may seem that the stagger effect on the measurement of the wear width of the
contact wire for a typical straight- or curved-line section is small. However, when the
train passes through the turnout, the lateral position of the contact wire relative to the roof
center changes rapidly, rather than the case of the normal curve-line section. Future work
should be done by performing more experiments to further evaluate the stagger effect on
the measurement of the wear width in the special section, such as turnout.

5. Conclusions

In order to guarantee the operational safety of the catenary infrastructure of railway
lines, this paper develops an optical measurement method of contact wire wear using
multi-view stereovision technology. The experimental results demonstrate that this method
enables the accurate calculation of both the wear width and residual thickness of the contact
wire, exhibiting excellent repeatability and precision. This research offers a promising av-
enue for future condition-based maintenance of contact wire wear, enhancing maintenance
efficiency and safeguarding the integrity of catenary infrastructure. However, dynamic
measurements on rolling stock present challenges, as the stagger arrangement can influence
wear width measurements. Consequently, a further assessment of this stagger effect in
regard to specific railway sections is crucial.
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Abstract: A greenhouse gas sensor has been developed to simultaneously detect multiple gas species
within a hollow-core photonic bandgap fiber (HC-PBF) structure entirely composed of fibers. To
enhance sensitivity, the gas cell consists of HC-PBF enclosed between two single-mode fibers fused
with a reflective end surface to double the absorption length. The incorporation of side holes for gas
diffusion allows for analysis of the relationship between gas diffusion speed, number of drilled side
holes, and energy loss. As the number of drilled holes increases, the response time decreases to less
than 3 min at the expense of energy loss. Gas experiments demonstrated detection limits of 0.1 ppm
for methane and 2 ppm for carbon dioxide, with an average time of 50 s. In-situ testing conducted
in rice fields validates the effectiveness of the developed gas detection system using HC-PBF cells,
establishing all-fiber sensors with high sensitivity and rapid response.

Keywords: greenhouse gas; fiber sensor; infrared absorption

1. Introduction

The 2020 greenhouse gas bulletin from the World Meteorological Organization empha-
sizes carbon dioxide and methane as the primary components of greenhouse gases [1]. As
per the Kyoto Protocol report, approximately 21% of greenhouse gases arise from agricul-
tural activities [2]. Therefore, the development of a highly sensitive gas detection system
tailored explicitly for agricultural applications becomes imperative. Ensuring accurate gas
concentration measurements without environmental interference is essential.

Since 1996, HC-PBF has captured researchers’ interest [3] due to its portable and flexi-
ble advantages [4–7]. Highly sensitive species detection, including liquid and gas, is carried
out for qualitative and quantitative analysis using different technologies, such as Raman
sensing and tunable diode laser absorption spectroscopy [8–10]. In gas detection applica-
tions, HC-PBFs are commonly used as gas cells. Considering light–gas interaction, HC-PBF
maintains at least 95% optical power propagating within its central hollow cores [11]. The
primary advantage of HC-PBF lies in its long absorption length despite its compact size,
as demonstrated by numerous researchers [12]. However, the prolonged gas filling time
into the hollow core hampers HC-PBF sensors from becoming a strong contender in gas
sensing [13]. It is crucial to explore and uncover effective methods to enhance the response
speed of HC-PBF while evaluating the potential impact of these methods.

HC-PBFs, functioning as gas cells, are commonly linked to single-mode fibers (SMFs)
at one or both ends [14–17]. Using an open end of the HC-PBF represents the simplest
approach for gas inlet and outlet [18]. In 2018, L. E. He et al. minimized mode interference
effects by employing a free space coupling structure, achieving a methane detection limit
of 4.35 ppm. However, due to the single open-ended structure, gas diffusion time extends
to nearly 80 min [19]. Employing C-shaped rings spliced to PCF and SMF for connection
can create pathways similar to the free space coupling method [17]. Besides gas diffusion
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driven by concentration gradients, actively exchanging gases can significantly enhance
response speed. Vacuum chambers and extreme pressure applications are two common
methods for actively increasing gas exchange [20,21]. Valiunas et al. effectively reduced
response time, achieving sub-ppmv capability in detecting nitrous oxide gas [20]. However,
employing active gas exchange methods inevitably disturbs external gas distribution and
may be influenced by mechanical noise. Comparatively, employing multiple drilled side
holes in HC-PCF allows for more rapid gas exchange without disturbing environmental
gas distribution [22]. Besides the two possible reasons, strand thickness variation and
surface roughness scattering, mentioned by T. Frosch, the energy loss from drilled holes
should be considered [23]. Nevertheless, the impact of drilled HC-PBF on energy loss and
response time requires testing to establish their relationship. Experiment data can provide
a balanced trade-off between response time and signal-to-noise ratio.

A greenhouse gas sensor utilizing an all-fiber configuration based on wavelength
modulation spectroscopy (WMS) and frequency-division multiplexing (FDM) has been
developed for simultaneous multi-species detection. The diffusion gas cell, made from
micron-sized diameter HC-PBF, is arranged in a compact setup with multiple side holes
drilled into the cell to enhance gas exchange speed. In the experiment, methane and carbon
dioxide, as the most typical greenhouse gases, were chosen as representative examples. By
optimizing operational parameters, the sensor’s performance, including detection limit,
long-term stability, and the relationship among the number of holes, energy loss, and
response time, was extensively investigated.

2. Materials and Methods

2.1. Sensor Configuration

A self-developed dual-gas sensor for methane (CH4) and carbon dioxide (CO2), based
on HC-PBF, has been designed and implemented, with the sensor structure illustrated in
Figure 1. The core sensing component is the gas cell formed by HC-PBF and SMFs. The
HC-PBF, approximately 0.9 m in length, features an air core of nearly 10 μm, providing an
absorption length of over 1.78 m in a reflection structure. Gas exchange occurs through
drilled holes in the fiber, facilitating exchange between the interior and exterior gas. At
one end of the gas cell, the SMF termination is coated with a reflective surface, reflecting
over 95% of the energy back to the input end. The detected signal is then separated by a
circulator and directed to the detector.

Figure 1. The implemented dual-gas detection sensor designed for in-situ greenhouse applications.
PD refers to the photodiode; ADC stands for analog-to-digital converter. The red arrows and blue
arrows represent CH4 detection channel and CO2 detection channel, respectively.

Two butterfly-packaged 14-pin distributed feedback (DFB) lasers, emitting wave-
lengths of 1653.7 nm and 1573 nm, are employed to scan absorption lines for methane and
carbon dioxide detection, respectively. The gas cell comprises two main parts: an inner
HC-PBF-based fiber cell and an outer protection chamber. The original fiber length is one
meter. After fusion processing at both ends, the left length is reduced to 0.89 m, which
is measured using the time domain reflection method. The laser beam enters the fiber
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cell through side-drilled holes and undergoes reflection at the opposite side, effectively
doubling the absorption length to 1.78 m. The outer chamber serves to mechanically shield
and maintain stable working conditions, ensuring consistent pressure and temperature.
Analog electrical signals are converged through a sampling and impedance-matching
circuit and further processed by a self-developed FPGA circuit. With this all-fiber optical
structure, the developed sensor finds application in in-situ greenhouse monitoring, with
the potential for optimization towards miniaturization and enhanced portability.

2.2. HC-PBF Fiber Characteristic and Fusion

The HC-PBF utilized in this design, HC-1550-02, is a mature product from NTK. This
fiber has an outer diameter of 120 μm, and the central air core measures nearly 10 μm.
The bandpass wavelength range is 1490–1680 nm, encompassing the required absorption
wavelengths. Within this range, the transmission loss is below 20 dB/km, and the bending
radius is approximately 10 cm. The gas cell development involves fusing SMFs with
HC-PBF, as depicted in the scanning electron microscope photograph of the fusion joint in
Figure 2a. According to finite element analysis (Figure 2b), over 95% of the beam energy is
concentrated in the gas-filled hollow-core region, while the remaining energy disperses
in the micro-structured cladding region. Energy experiments confirm an energy loss of
approximately 0.6–0.8 dB per fusion end face, with fluctuations influenced notably by the
process. In the capacity of a gas cell, multiple drilled side holes facilitate gas exchange.
These holes have a diameter matching the air core, approximately 10 μm, and are designed
as buried holes to mitigate noise and energy loss. The SEM image surface in Figure 2c
displays the drilled holes, which measure between 11.2–14.8 μm, slightly larger than the
intended size. Experimental energy loss registers between 0.17–0.42 dB with filled nitrogen
in fiber, nearly 3.84–9.2% energy loss per hole, indicating a considerable impact of the
drilling process on light beam propagation. When the number of drilled holes is increased
to seven, the response time is less than 3 min and the energy loss is already higher than 33%.

 

Figure 2. (a) SEM image showing the fusion end, (b) distribution of the fundamental mode in the
HC-PBF, and (c) SEM image displaying the surface of the drilled hole.
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2.3. Dual-Gas Detection Mechanism

In consideration of the HC-PBF fiber gas cell application, the absorption lines selected
for CH4 and CO2 should be in the operation wavelength range from 1490 nm to 1680 nm.
Therefore, the CH4 absorption targeted line selected is around 1650.9 nm which is a typical
absorption line for CH4 detection. Within this absorption wavelength range, the common
interference gases like CO2 and H2O are at least three times weaker than CH4. When
the absorption effect of interference gas is very low, this effect is able to be effectively
suppressed by signal processing codes based on FPGA. Similarly, the selected absorption
lines of CO2 are around 1573 nm. The absorption strength ratio between CH4 and CO2 is
nearly 80 which matches approximately the concentration in the atmosphere. In addition,
before pumping into the gas chamber, the gas will undergo drying treatment to ensure
that the water vapor concentration is not sufficient to affect the detection results. Upon the
above design and analysis, the error caused by the interference gas has no effect on the
detection precision of CH4 and CO2 in the selected absorption ranges. Detailed information
on selected absorption wavelength ranges is shown in Figure 3.

 

Figure 3. (a) Gas absorption spectrum of CH4 at 1651 nm, the red and green lines represent CH4 and
H2O absorption lines, respectively; (b) gas absorption spectrum of CO2 at 1573 nm, the blue and
green lines represent CO2 and H2O absorption lines, respectively.

2.4. Gas Cell Structure Design

The HC-PBF fiber is an exposed fiber with drilled holes. Due to the absence of
protective armor, the operational state of the HC-PBF fiber is susceptible to external factors
such as vibrations, temperature fluctuations, and airflow. These unpredictable interferences
can significantly impact detection results. To mitigate this, a self-designed mechanical
protection chamber has been developed and implemented. This chamber serves to shield
the HC-PBF fiber from external influences and maintain a stable environmental condition
conducive to reliable operation. The mechanical structure of the protection chamber is
depicted in Figure 4. The chamber structure is primarily rectangular, with the HC-PBF
fiber arranged along the inner wall. Figure 4a shows the design drawing of the mechanical
structure, while Figure 4b presents an image of the chamber. The chamber’s central region
is filled to minimize internal gas volume, allowing for the pump in of external gases
through air vents. Considering the sensitivity of the detection system to environmental
temperature fluctuations, thermal insulation is applied to the chamber, as illustrated in
Figure 4c.
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Figure 4. (a) Design drawing depicting the mechanical structure of the chamber, (b) an image showing
the chamber, and (c) the gas cell with a thermal package.

2.5. Harmonic Detection Theory

Wavelength Modulation Spectroscopy (WMS) is commonly employed to enhance the
signal-to-noise ratio (SNR) in detection. In the process, a low-frequency periodic saw-
tooth signal and a high-frequency sine wave are utilized to scan the absorption lines and
modulate the laser’s injection current, respectively. Post modulation, the output light
energy from the laser can be expressed as follows:

I(t) = I(t)[1 + u(t) + nsin(wt)], (1)

where u(t) represents the periodic saw-tooth signal, and n is the light intensity modulation
parameter. According to the Beer–Lambert law, following the detection of gas absorption,
the resulting light energy is

I′(t) = I0[1 + u(t) + nsin(ωt)] exp(−α(t)LC). (2)

Therefore, the absorption coefficient can be obtained by using Lorentz linear fitting:

α(t) =
α0

1 + ( υt−υc
υFWHM

)
, (3)

where υt is the wavelength of the emitted beam with modulation, υc is the central wave-
length of the absorption peak, a0 is the absorption parameter at the absorption peak, and
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υFWHM represents the full width at half maximum. Under typical conditions, the detected
gas concentration, which is low, can be expressed as a function of

α[λ(t)]LC << 1, (4)

when the driven output laser wavelength is matched with the absorption peak, the output
light signal can be sampled as

I′(t) = I0[1 + nsin(wt)− α0LC
1 + m2 sin2(ωt)

]. (5)

Following the Fourier series expansion of the aforementioned function, various har-
monics can be extracted, including the first harmonic (1f ) and second harmonic (2f ). In
stable conditions, the output laser energy remains stable, allowing for the establishment of
a relationship between the amplitude of the 2f signal and gas concentration. Considering
environmental influences on the initial laser intensity, the ratio of amplitudes between 2f
and 1f can be employed to mitigate unpredictable variations caused by changes in the
initial intensity of the laser. This ratio function can be expressed as

A2 f

A1 f
=

−kα0LC
n

, (6)

where k is the modulation parameter. This design establishes the relationship between
A2 f
A1 f

and gas concentration.
In consideration of the previous research, the modulation depth in wavelength modu-

lation should be nearly 2–2.5 times the half width at half maximum of the gas absorption
lines. In this case, both the difficulty of hardware utilization of FPGA and the frequency
domain distribution of environmental noise are considered. With the signal and noise test,
to achieve a satisfying signal and noise ratio, the optimized modulation coefficient is set to
1.9 and 2.1, corresponding to CH4 and CO2, respectively.

3. Results

3.1. Waveform Measurements

Compared to previous reports, our research aims to develop an embedded detection
system applied for on-situ applications rather than a testing prototype limited to laboratory
applications. Therefore, in contrast to employing commercial products, our system is almost
entirely self-developed and an implemented detection system, including signal sampling,
actuation, and processing. The above-mentioned functions are realized in an embedded
system based on an FPGA chip XC7A200T (Xilinx, San Jose, CA, USA), which is a Xilinx
Artix-7 type chip. Compared with the detection system using PC, the challenge is how to
use the limited hardware logic resources to achieve the expected detection performance.
The system clock of this chip is set to 30 MHz with a maximum 120 KHz sample frequency.
As a parallel process chip, the synchronization between laser driving and electrical signal
demodulation is well ensured. As a price of parallel process, the greatest consumption of
embedded logic resources results from iterative operations using multipliers and dividers.
In the implementation of all functions, core iterative operations take place in the high-order
low-pass finite impulse response (FIR) filter of the digital lock-in amplifier, with its order
being directly proportional to the filtering performance. In consideration of the logic source
utilization, a cascade integrator comb (CIC) filter and a lower order FIR are used to replace
a high order FIR. After trial and error, the CIC order parameter is set to eight with an analog
signal sampling of 20 KHz. The order of FIR is set to 246, and the 2f signal is extracted
every 0.1 s. With a cascade filter, 32,600 logic elements and 110 embedded 18*18 multipliers
were set as a standard resource cost to realize the lock-in amplification function.

To evaluate the sensor’s performance, sample gas mixtures of known concentrations
are generated by diluting 500 ppm CH4, 2000 ppm CO2, and pure N2 using a commercial
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gas dilution instrument. With an absorption length of 1.78 m for the HC-PBF, the waveform
is saved and observed using a self-developed CPU based on an FPGA chip. The observed
original signal is depicted in Figure 5a. The processed 1f and 2f signals are displayed in
Figures 5b and 5c, respectively.

 
Figure 5. Normalized 2f amplitude plotted against modulation depth for optimization purposes.
(a) the original detecting signal; (b) the demodulated 1f signal; (c) the demodulated 2f signal.

As a portable sensor, the power consumption of the CPU chip is a significant parameter.
When the temperature of the laser is stable, the most power consumption comes from
the embedded processor. During this experiment, power consumption was continuously
monitored, and the average power consumption was about 1.71 W, including power
consumption from the laser, DC-DC chip, FPGA, and other hardware components. It
should be noted that power consumption in practical application environments should be
re-evaluated because of the unpredictable changes in ambient temperature and variations
in the detection period. In this case, the power consumption under the rice field application
is lower than 2.12 W. A significant portion of the power consumption is attributed to laser
temperature control.

3.2. 2f Signal Fitting

The signal-to-noise ratio of the demodulated 2f signal, without subsequent algorithm
optimization, directly determines the system’s detection performance. The standard de-
viation, approximately 0.327 mV (1σ), was determined within the non-absorption range.
There is an inevitable fluctuation in achieving the peak value of the 2f signal. To obtain an
accurately related 2f amplitude signal, the 2f signal is fitted before being recorded.

For comparing hardware resource utilization, the waveform of the 2f signal is sep-
arately fitted using Gaussian and sine wave fitting techniques. With the same hardware
resources, the R-squared values for Gaussian fitting and sine wave fitting are 99.21% and
98.79%, respectively. Figure 6 shows the original demodulated 2f signal and the filtered
2f signal based on sine wave fitting. The fluctuation around the 2f peak signal is effec-
tively suppressed.

3.3. Natural Diffusion Process of HC-PCF Cell

A specialized experiment was conducted to assess the optimal values for the number
of holes and response time. With an increase in the drilled hole count, the corresponding
energy loss and response time were recorded. During the experimental process, the
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protective chamber was purged with pure N2 to prevent operational errors stemming from
external pressure differences. Dynamic gas distribution was employed instead of static
injection distribution for this purpose. In the response experiment, methane was used as the
sample, and the amplitude of the 2f signal was recorded every second. The results for the
response time are depicted in Figure 7a. When the number of drilled holes was increased
to seven, the response time decreased to less than 3 min, meeting the requirements for
many applications such as precision agriculture and industrial pollution gas detection.
Specifically, the decrease in response time exhibited an almost exponential relationship
with the number of drilled holes, as illustrated in Figure 7b. Overall, a noticeable reduction
in response time resulting from an increased number of drilled holes aligns with some
previous findings (e.g., ref. [19]). Discrepancies between our experimental results and
reference papers may arise from factors like the total length of the microchannel, the
drilled hole placement, and machining errors in their creation. Moreover, for the sake of
faster response, each drilled hole consumes approximately 0.2–0.3 dB, implying a trade-off
between energy loss and response speed.

 
Figure 6. Normalized 2f signal flitting and standard deviation.

  

Figure 7. Measurements of the natural diffusion process of CH4 into the HC-PCF gas cell by observing
the change in the 2f signal amplitude. (a) Response time with seven drilled holes and (b) the impact
of the number of drilled holes on response time and energy loss. The red lines and green lines
represent the response time and optical transmission loss, respectively.
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3.4. Calibration and Data-Fitting

Adjusting to match the gas concentration in the greenhouse, dual-gas calibrations
are applied across various concentration ranges. Figure 8a and Figure 8b depicts the
representative 2f signal amplitudes of the two species at different gas concentrations while
maintaining a constant gas pressure, respectively. The data-fitting results demonstrate
a linear relationship between 2f amplitude and concentration, with R-squared values of
0.996 and 0.993, respectively. The calibrated linear fitting results of CH4 and CO2 are
shown as Equation (7) and Equation (8), respectively. The parameter C is the detecting gas
concentration, and ΔU is the ratio of 2f signal and 1f signal.

C = 723.94 × ΔU − 1.121. (7)

C = 1214.21 × ΔU − 17.62. (8)

  

Figure 8. Dot plots for the extracted processed signal with different concentrations of (a) CH4 and
(b) CO2.

3.5. Detection Limit

The Allan deviation was employed to determine the minimum detection limit of this
system. With an optimal averaging time, the detection system can meet various application
requirements across different application backgrounds. In the experiment, pure dry N2
was used to flush the gas cell for 180 s before injecting the sample gas. The analysis is based
on the Allan deviation. For CH4 detection, as depicted in Figure 9a, the 1σ detection limit
is approximately 1.12 ppmv for a 1s averaging time. Increasing the averaging time to 50 s
improves the detection limit to 0.1 ppm, meeting the detection limit requirement under
atmospheric conditions. Due to the weak absorption line, the detection limit for CO2 is
nearly 51.9 ppm for a 1s averaging time, as shown in Figure 9b. Extending the averaging
time to 50 s enhances the detection limit to 2 ppm.

  

Figure 9. Allan deviation analysis of the sensor system based on one-hour measurements in a pure
N2 atmosphere concentration of (a) CH4 and (b) CO2.
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3.6. Field Application

An on-situ test was conducted in a rice field located in Jilin Province, a city in northern
China, a typical source and sink for greenhouse gases. Before the on-situ test, a comparative
test with a G2401 was carried out to ensure the varying concentrations of water vapor
would not influence our test results. Since the experiment took place in October, the
selected rice plants were at a mature stage, reaching a height of over 1.2 m. The sampling
location was near the roots of the rice field to monitor the greenhouse effect within the
group of rice plants. As illustrated in Figure 10, the measured CH4 concentration was
slightly higher than the average atmospheric concentration, which was marginally lower
than the anticipated concentration. The most probable reason is the decreased activity of
methanogens in the mature-stage rice plants. Meanwhile, the cultivation method of mature
rice is not a flooded mode, which significantly suppresses the generation of CH4 from
rice fields. In contrast, the concentration of CO2 primarily aligned with photosynthesis,
indicating satisfactory detection performance. Moreover, the rice field was an outdoor open
structure, and the detected gas concentrations were influenced by environmental factors
such as wind speed and human activities, contributing to the fluctuations and ripples in
the detection results.

Figure 10. Continuous monitoring of CH4 concentration and CO2 concentration in a greenhouse on
November 2023 in Jilin.

Compared to the indoor laboratory environments with nearly constant temperatures
without wind, the on-situ application has a more stringent external environmental con-
dition. The most significant influencing factor is the time consumed for temperature
stabilization. When the sensor starts up, the time consumed is nearly 90 min, which is
30 times longer than the time consumed in the laboratory. Fortunately, the temperature
change in ambient conditions is slow related to the sensor. After the warm-up process, the
developed sensor will no longer require any adjustments.

4. Discussion

Compared to the other previously reported sensors using a hollow-core photonic
crystal fiber, our research has a better performance in gas cell structure design and response
time improvement. The single-end reflection structure doubles the absorption length
without increasing the sensor volume. The self-developed mechanical protection structure
ensures the applicability of the gas cell under in-situ environments, which is verified
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through testing in rice fields. What is more, the experiment data concerning drilled
hole numbers, energy loss, and response time provides a reference for the trade-offs in
further design.

5. Conclusions

The design and implementation of an in-situ trace gas sensor within an all-fiber
structure were presented for the simultaneous detection of multiple greenhouse gas species.
Gas experiments were conducted using a gas cell to determine the response time for gas
diffusion within the core of an HC-PBF. The experimental results quantified the relationship
between the number of drilled holes and response time. However, caution is required
in increasing the number of drilled holes due to the associated increase in energy loss.
Utilizing the self-developed gas cell, the detection limits for CH4 and CO2 were determined
to be 1.12 ppm and 51.9 ppm, respectively, at 1 s. Performance was notably enhanced
to 0.1 ppm and 2 ppm with an average time of 50 s, meeting atmospheric application
requirements. An application test in a rice field confirmed the applicability of outdoor
use. Future work will focus on improving stability by mitigating the effects of working
conditions on the HC-PBF fiber cell. This includes controlling and limiting internal pressure
and temperature within a narrower fluctuation range.
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Abstract: This paper presents a simple engineering method for evaluating the optical power emitted
by light-emitting diodes (LEDs) using infrared thermography. The method is based on the simultane-
ous measurement of the electrical power and temperature of an LED and a heat source (resistor) that
are enclosed in the same plastic packaging under the same cooling conditions. This ensures the calcu-
lation of the optical power emitted by the LED regardless of the value of the heat transfer coefficient.
The obtained result was confirmed by comparing it with the standard direct measurement method
using an integrated sphere. The values of the estimated optical power using the proposed method
and the integrated sphere equipped with a spectrometer were consistent with each other. The tested
LED exhibited a high optical energy efficiency, reaching approximately η ≈ 30%. In addition, an
uncertainty analysis of the obtained results was performed. Compact modelling based on a thermal
resistor network (Rth) and a 3D-FEM analysis were performed to confirm the experimental results.

Keywords: IR thermography; LED; optical power; thermal modelling

1. Introduction

The optical power of light sources is usually measured with Ulbricht integrating
spheres [1], which are equipped with calibrated and certified spectrometers for precise
spectral measurements. This means that optical power measurements can only be per-
formed in laboratories equipped with advanced measurement systems. In the general case,
this ensures the high accuracy of optical power measurements. There is another approach
to such measurements using goniometers, which is more difficult to apply in practice.
It requires a dark room, and the entire measurement is performed step by step for each
emission direction. It is characterized by a long measurement time and is obviously not
suitable for use in the case of diodes operating in a lighting system in the field.

In many practical cases, there is a need to measure the optical power of LEDs using
simple technical methods. Typically, LEDs emit light in one or more narrow bands. In addi-
tion, due to production tolerances, manufacturers indicate the light intensity or luminous
flux with a large scatter, which causes difficulties in selecting the appropriate element for
new solutions where an exact value of radiant power is required.

Nowadays, highly efficient LEDs are available, in which a significant part of the
electrical power is converted into radiation [2–5]. On the other hand, the high optical
power emitted involves a large amount of thermal power dissipated, which increases the
temperature of the device. Knowing the radiant power helps to develop effective heat
management for LED light sources. The radiation characteristics of LEDs are expressed in
terms of either photometric or radiometric parameters. The photometric parameters of light
sources are calculated and measured in relation to green color radiation at a wavelength
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of λ = 555 nm. Typically, manufacturers provide the photometric parameters, while for
energy analyses, radiometric data are needed [6].

Measuring the emitted infrared radiation and the electrical power consumption allows
one to obtain the optical power and efficiency of an LED.

Thermography, as a noninvasive, cost-effective, and fast method, could be applied in
many fields of engineering practice, including electronics [7,8]. In electronics, it is often used
for estimating the heat loss of components and entire systems. In many cases, it can replace
much more expensive and sophisticated measurement equipment. The Joule heating of
an LED can be compared with the Joule heating of a resistor, both being encapsulated
in identical housings. Measuring the emitted infrared radiation and the electrical power
consumption allows one to obtain the optical power and efficiency of an LED. The results
of the thermographic method and the radiometric measurement of the luminous flux
using an integrating sphere and calibrated spectrometer are presented in this paper. This
paper considers both thermal and radiation problems and hence both research domains
are taken into account. Heat transfer analysis can support the investigations of optical
phenomena. In the literature, there are numerous thermal analyses of LED structures based
on different modelling approaches, such as 3D-FEM (finite element method), analytical
conjugate analyses, and compact simplified models [4,9–13]. In this research, a heat
transfer analysis using compact 3D-FEM modelling was performed to validate the obtained
experimental results.

2. Materials and Methods

2.1. Thermal Modelling

High-efficiency LEDs were sealed in a variety of plastic packages. An example cross-
section of a 5 × 5 mm2 package used in this research is shown in Figure 1. It is an
RGB module with semiconductor diodes placed in a row in the middle of the substrate.
Metal connectors/electrodes play a very important role in heat dissipation. Above the
semiconductors is a semi-transparent diffusive material that acts as an optical lens and
provides an emission angle of 110◦. The rated current is 20 mA. For the red diode, the
forward voltage is about 2.0 V and the typical luminous intensity is 1090 mcd. The central
wavelength is 620 nm and the full width at half maximum (FWHM) wavelength is about
20 nm.

 
Figure 1. Cross-section of a high-efficiency LED.

In this research, an R-LED was considered. This light source was attached to the sub-
strate closer to one side of the housing. This research began with heat transfer modelling to
estimate the temperature rise above the ambient temperature. Two models were developed:
a simple, compact one for rapidly estimating the steady-state LED temperature using
Matlab R2023b software, and a 3D model implemented in the ANSYS R19.1 environment
using the FEM to solve heat transfer differential equations. For the external walls of the
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model, convective boundary conditions were set. The model assumptions were comparable
with Rth network compact thermal modelling. In the compact Rth network model, the
power cables were modelled as infinite wires, while in the FEM, the boundary conditions
were modified to consider heat dissipation by the powering connections. In this way, heat
transfer through the wires was simulated by increasing the values of the heat transfer
coefficients. The simulation was carried out for power of P = 27.72 mW dissipated in the
diode, corresponding to the thermal power obtained in measurements.

2.1.1. Rth Network—Compact Thermal LED Model

A simple thermal compact LED model consisting of a network of thermal resistances Rth
is shown in Figure 2. The heat source is inside the plastic housing. A part of the generated
thermal power PTD is dissipated to the environment in all directions: vertically to the top
and bottom surfaces, represented by the thermal resistance R1e, and horizontally to all four
side surfaces, represented by R2e1, R2e2, and R3e. A significant part of the dissipated power
is transferred through the electrical connectors soldered to the LED pins (Rpin). Finally, all
power is transferred to the environment by free convection, modelled using the heat transfer
coefficients represented by thermal resistances Rh1, Rh2, Rh3, and Rh4.

Figure 2. Scheme of thermal model of a diode (a) and Rth-network compact thermal model of an LED (b).

The compact thermal model of an LED based on Rth network consists of six main branches
corresponding to six side sides of the LED housing, as shown in Figure 2. The electrical power
is divided into optical and thermal parts. The dissipated thermal power PTD is assumed to be
transferred through thermal resistances representing heat conduction and free convection. The
material parameters and dimensions of each part of the diode are given in Table 1. Convective
heat transfer coefficients were estimated using the optimization method in order to match the
model results to the results obtained in the measurements [4,8].

The resistance R1e associated with heat conduction to the top and bottom surfaces of
the diode takes the form (1):

R1e =
d1

kepoxyS1e
(1)

The resistance Rh1 corresponding to convection cooling is expressed as (2):

Rh1 =
1

h1Sd
(2)
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Table 1. Parameters of the compact thermal model of the LED.

Parameter Value Description

kepoxy 2 W/(m·K) Thermal conductivity of epoxy resin

kCu 300 W/(m·K) Thermal conductivity of metal contacts containing mainly copper (wire)

Sd 4.92 × 4.92 × 10−6 m2 Diode top and bottom surface

S1e 3 × 3 × 10−6 m2 Epoxy resin replaced cross-section surface

S2e 4.92 × 2.7 × 10−6 m2 Left and right diode surface

S3e 4.92 × 3 × 10−6 m2 Side surfaces of the diode

r 300 × 10−6 m Connecting wire radius

d1 1.5 × 10−3 m Half the thickness of the epoxy layer

d2 2 × 10−3 m The length of the inner connector to the outer conductor

dCu 2.5 × 10−3 m The length of the copper pad on which the diode is placed

h1 10.61 W/m2K Heat transfer coefficient for the top surface

h2 5.96 W/m2K Heat transfer coefficient for the bottom surface

h3 13.33 W/m2K Heat transfer coefficient for the side’s surfaces

h 12.09 W/m2K Heat transfer coefficient for the connecting wire

Temperature measurements with the IR camera take place on the upper surface of the
diode (node 2). On both sides (left—node 4, right—node 5), there are connecting wires that
transfer a large part of the heat to the environment—Rpin. The value of Rpin is calculated
assuming an infinite length of the wire in Figure 3.

Figure 3. Connection wire model.

The one-dimensional thermal model of the wire is represented by Equations (3)–(5).

−dq ∗ πr2 = 2πr ∗ dx ∗ hT (3)

q = −k
dT
dx

(4)

d2T
dx2 − 2h

rk
T = 0 (5)

The temperature T in all equations is the temperature difference between the thermal
object and the environment. In other words, we assumed that the ambient temperature is
equal to 0. In practice, this means that in order to find the real object temperature when
modelling, the actual ambient temperature must be added to the temperature obtained by
the model.

The general solution of (5) takes the form:

T = T0e−
x
L (6)

where the diffusion length L is expressed as:
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L =

√
rk
2h

(7)

The boundary condition for x = 0 allows us to obtain a special solution of (5).

dT
dx

∣∣∣∣
x=0

= −T0

L
(8)

q = − kT0

L
= − P

πr2 (9)

Finally, the thermal resistance of the wire Rpin can be presented as (10).

Rpin =
T0

P
=

L
kπr2 =

1
πr

√
1

2hkr
(10)

On the left side of the diode, there is a thin wire leading to the diode’s left electrical
contact—Figure 1. The thermal resistance here, R2e2, is slightly different to the resistance
on the right side, R2e1, where the diode lies directly on the thermal pad. The equations of
thermal resistances for these branches are given by (11)–(13):

R2e2 =
d2

kCu ∗ S2e
(11)

R2e1 =
dCu

kCu ∗ S2e
(12)

Rh3 =
1

h3 ∗ S3e
(13)

The two other branches (back and forward) are the same, so they are analyzed together
as node 6. The corresponding resistances are given by (14) and (15).

R3e =
d2

kepoxy ∗ 2 ∗ S2e
(14)

Rh4 =
1

h3·2·S2e
(15)

2.1.2. Three-Dimensional FEM Model

A 3D FEM model was developed in the ANSYS environment (version R19.1). For
geometry preparation, Space Claim software was used (part of the ANSYS R19.1 software
package). The dimensions and material properties correspond to the Rth network compact
thermal model as well as the real diode and package sizes.

In this case, steady-state simulation was performed. For this purpose, Workbench
software (part of the ANSYS R19.1 software package) was used. The simulation type was
Steady-State Thermal.

2.2. Thermographic Method of LED Optical Power Evaluation

The proposed method consists of the simultaneous measurement of the temperature
of the tested LED, TD, the heating element (resistor—R), TR, and the power cables on both
sides of the elements: T1D, T2D, T1R, and T2R. All measurements were performed using
a thermal imaging camera, as shown in Figure 4. The emissivity values of the measured
elements were estimated at the value ε = 0.92.
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Figure 4. The concept of thermovision measurements of the optical power of LEDs.

The flowchart illustrating the method and experiment is shown in Figure 5.

 
Figure 5. Block diagram of the proposed measurement method for LED optical power.

Electrical power, PelD and PelR, is supplied to both elements connected in series simul-
taneously. This allows us to obtain the same current and comparable power dissipated
in them. The key issue of the proposed method is to ensure equal convection cooling
conditions of both elements: the LED diode and resistor R. This can be achieved by using
the same shape and geometric dimensions for both elements. This will ensure equal con-
ditions for heat dissipation from them to the environment. In addition, there should be
equal and stable thermal cooling conditions around the LED and the resistor R during the
measurement. This makes it possible to obtain identical values of the averaged convective
and radiation heat transfer coefficient h for both elements.

As a result, power balance equations can be obtained for the measurement system
shown in Figure 4:

PelD = PTD + Popt = hTD + P12D + Popt (16)
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PelR = PTR = hTR + P12R (17)

where PelR and PelD—the electrical power supply of the resistor and the diode, respectively,
PTR and PTD—thermal powers dissipated to the environment by the resistor and the diode,
respectively, P12R and P12D—thermal powers dissipated to the environment through the
supply wires of the resistor and the diode, respectively, Popt—radiant power of the diode,
TR and TD—temperature differences between the resistor and diode and the ambient
temperature, respectively, and h—heat transfer coefficient.

The thermal power dissipated to the environment through the resistor and diode
connecting wires is calculated by determining the temperature gradient along the power
cables on both sides of each element, P1D(R) and P2D(R), with the knowledge of the cable
thermal conductivity coefficient k and its diameter 2r—Figure 6.

Figure 6. Determination of the thermal power dissipated to the environment through the wires
supplying the resistor and the diode.

The thermal power transferred to the environment through the wires supplying the
resistor and the diode can be determined by:

P12D(R) = P1D(R) + P2D(R) = −k
ΔT1D(R)

Δx
πr2 − k

ΔT2D(R)

Δx
πr2 (18)

where T1D and T2D—temperature of the diode supply cable on side 1 and 2, respectively, and
T1R and T2R—temperature of the cable supplying the resistor on side 1 and 2, respectively.

From Equations (16) and (17), the optical power Popt of the diode is finally expressed as:

Popt = PelD − P12D − TD
TR

(PelR − P12R) (19)

2.3. Measurement Setup

A diagram of the measuring system is presented in Figure 7. The system consists
of a resistor (1) and an LED (2). Both elements, the LED and resistor R, are connected in
series and supplied from the current source (4) with an adjustable current in the range
of 10–30 mA. Both measuring elements (LED and R) were placed in a trough (3) with
dimensions of L = 25 cm, W = 10 cm, and H = 5 cm. In order to ensure the lack of thermal
impact of both heat sources, the distance between them should not be less than 15 cm. A
support (6) placed in the middle of the trough separates and insulates both elements. The
tested elements were suspended in the trough by means of power supply wires at a height
of approx. 1/2 of the height H from the bottom of the trough to ensure stable thermal
conditions during the measurement. The trough was closed except for the upper part, over
which the thermal imaging camera was placed. The trough with the support was made via
3D printing. Similarly, using the same method, a thermal element (1) was made, in which a
heat source in the form of a small resistor with dimensions similar to the dimensions of the
semiconductor structure of the LED diode was embedded.
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Figure 7. Experimental setup and the tray with the measured elements: resistor R (1) and an LED (2).

A special measurement stand equipped with an IR microbolometer camera, a precise,
adjustable current source, and current/voltage meters was prepared. Measurements were
performed under laboratory conditions inside a closed chamber where the free convection
is stable and homogenous. Airflow was reduced to a minimum throughout the experiment.
The IR camera was places on top of the measurement section and it could monitor the
temperature of the objects through a dedicated speculum made for an IR camera in the
measurement section of the stand—Figure 8.

 

Figure 8. Scheme of the measurement system.

In order to prepare a non-radiant heat source, an SM-0603 surface-mounted resistor
was inserted into the LED housing using 3D printing.

3. Results and Discussion

In order to compare the obtained results, the optical power emitted by the LED was
measured directly using an integrating sphere—Figure 9. Using an integrated sphere is the
most reliable and standard method for measuring radiant power, commonly used by light
source producers, including LED manufacturers. This direct measurement is the standard
method in this field. The used integrated sphere was calibrated in order to obtain proper
values of emitted radiant power. A sphere with a diameter of 500 mm was equipped with a
spectrometer, enabling the measurement of luminous flux and radiant power in the spectral
range of λ ∈ (340–1700) nm.
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Figure 9. Integrating sphere with a mounted LED.

In order to power the analyzed elements, a precise laboratory power supply was
applied. For measuring the voltage and current of the diode and the resistor, two digital
multimeters were used: one as a voltmeter and the other as an ampere meter. A DIAS
640Lc thermal imaging camera with Pyrosoft Compact software ver. 3.4.1.1 was used
for the tests. This thermal imaging camera allows for precise non-contact temperature
measurements from −20 ◦C to 500 ◦C. The IR camera has an uncooled microbolometer
array with 640 × 480 pixels operating in the spectral range of 8–14 μm. The measurement
frequency of this IR camera was 50 frames per second and the NETD (Noise Equivalent
Temperature Difference) was less than 0.08 K.

3.1. Modelling Results

The result of the simulation of the Rth network thermal model presented in Section 2
gives the values of temperatures in all nodes (Table 2).

Table 2. Temperature in all nodes obtained by the Rth network compact model.

Node No 1 2 3 4 5 6

ΔT, ◦C 7.07 6.93 6.99 7.07 7.07 6.98

As can be seen, the temperature inside the diode housing is almost uniform. The
temperature rise in node 2 corresponds to the temperature value on the upper surface of
the diode, which was measured during the experiment and estimated to be 6.93 ◦C for a
thermal power equal to PTD = 27.72 mW.

An example of the simulation results obtained using the 3D-FEM model is shown
in Figure 10.
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Figure 10. Temperature distribution inside the LED enclosure in a steady state.

The initial temperature as well as the boundary air temperature was set to 25 ◦C.
The results of the modelling, presented as the values of the temperature at the specified
measurement points, are shown in Table 3.

Table 3. Temperature obtained by the 3D FEM thermal model.

Measuring Point Heat Source Top Surface Bottom Surface Electrical Contact 1 Electrical Contact 2 Side Surfaces

ΔT◦C 7.46 6.95 7.02 7.26 7.24 7.11

The geometry is not very complex; thus, the 3D model could be used without incurring
a very long computation time. It took about 10 h using a desktop computer with an AMD
EPYC 7301 16-Core Processor, 2.20 GHz, and 128 GB of RAM, which is not much for a
3D model.

Simulations of developed models were performed based on the shape and the struc-
ture of the measured diode and including the conditions of the measurement setup. In
the FEM analysis in ANSYS, the mesh was hexahedral and almost regular in the whole
simulated structure. Its side dimensions were equal to about 5 × 10−5 m, which balances
the computation time and results accuracy.

The simulation was carried out for a thermal power equal to 27.72 mW. The tempera-
ture difference between the diode and the environment was 6.93 ◦C in the measurement, the
same as the Rth model (node 2), and 6.95 ◦C in the 3D FEM analysis. Moreover, the temper-
ature distributions in the corresponding nodes of the Rth compact model and surfaces from
the 3D FEM are comparable. Both thermal models gave similar results—Tables 2 and 3.
The difference between the results could be reduced by using a denser mesh and a more
accurate geometry.

3.2. Optical Power Evaluation

Optical power measurements were separated into six experimental sessions that lasted
a few hours in one day. Each session consisted of six measurements to average the results.
The maximum temperature of both the LED and the resistor was taken for the calculations.
The average temperature could also be considered, but the maximum temperature was
selected for further calculations due to the difficulties in precisely determining the LED area
for averaging. The experiments were carried out with RGB LEDs in 5 × 5 mm housings
and a non-radiating resistive heat source with resistance R = 220 Ω. During this experiment,
the thermal resistance of the LED package inside the measuring stand was estimated at
approximately Rth ≈ 255 K/W. Exemplary results of temperature measurements using the
IR camera are shown in Figure 11 and Table 4.
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Figure 11. Thermogram of a series connection of the diode (on the left) and the resistor (on the right).

Table 4. Measurement results of temperature TD and TR and optical power Popt for a supplying current of
I = 20 mA for six measurement sessions lasting a few hours. The last row presents mean values.

PelD

mW
PelR

mW
Tamb◦C

Td◦C
Tr
◦C

ΔTd =
TD◦C

ΔTr =
TR◦C

P12D

mW
P12R

mW
Prad

mW
η

%

38.7 87.3 26.3 33.8 47.7 7.05 20.95 1.5 11 11.55 29.80

38.7 87.3 26.7 33.77 47.6 7.02 20.85 1.6 9 10.77 27.79

38.8 87.6 27.3 33.73 47.72 6.98 20.97 1.5 9 11.15 28.77

38.7 87.3 26.9 33.67 47.70 6.92 20.95 1 9 11.88 30.66

38.7 87.2 26.8 33.47 47.52 6.72 20.77 3 10 10.72 27.66

38.8 87.5 26.5 33.62 47.7 6.87 20.95 3 10 10.39 26.82

38.8 87.4 26.75 33.68 47.66 6.93 20.91 1.93 9.67 11.08 28.58

All temperature results are presented as the excess of ambient temperature. The
temperature of the LED is much lower due to the significant amount of optical energy
emitted. The main achieved results confirm the high optical energy efficiency of the tested
LED, reaching η ≈ 30%.

Using the integrating sphere, it was possible to measure both the spectrum and
the power density of the emitted radiation within the 350–750 nm wavelength range [1].
The spectrum of emitted LED radiation at a current of I = 20 mA is shown in Figure 12.
It confirms the narrow band of the radiation and the high optical power effectiveness
of the tested LED. The optical power measured with the integrating sphere was Popt
= 11.3 mW and agrees with the thermographic measurement very well. The optical
efficiency of the tested LED was high and estimated at η≈30%. This result agrees with the
manufacturer’s data.

Figure 12. Power density of emitted LED radiation vs. wavelength for I = 20 mA.
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The measurements carried out in the integrating sphere for different currents flowing
through the diode confirm the linear relationship between the optical power generated and
the current of the diode—Figure 13.

 
Figure 13. Optical power of a diode as a function of the current.

3.3. Uncertainty Analysis

The measurement uncertainty was calculated according to the specifications given
in the literature [14–17]. Optical power (19) depends on the temperature and both the
electrical power supplied to the diode and the resistor and the thermal power dissipated
in them. It was assumed that the measurement uncertainty of radiant power depends on
the uncertainty of measurements of TR and TD and the uncertainty of power dissipated
in the connecting wires—Equation (20). The uncertainty of electrical power is negligible
because this power was measured using professional electrical quantity meters with a high
accuracy and a high resolution.

In order to obtain reliable results from thermographic measurements, it is necessary
to determine the maximum permissible range of variability in the measured quantity
with a given probability, called the confidence level. This value refers to the expanded
uncertainty, denoted as U. Expanded uncertainty provides the range of potential variation
in measurement results due to random fluctuations in the measured data and systematic
errors of the apparatus used. It uses a coverage factor to increase uncertainty as the number
of measurements decreases.

The expanded uncertainty of the optical power measurement can be expressed as:

UPopt = kpuc
(

Popt = f (TD, TR, P12D, P12R)
)

(20)

where kp is the coverage factor depending on the number of measurements performed and
uc is the combined uncertainty.

The combined uncertainty can be expressed as:

uc
(

Popt
)
=

√(
∂Popt

∂TD
uc(TD)

)2

+

(
∂Popt

∂TR
uc(TR)

)2

+

(
∂Popt

∂P12D
uc(P12D)

)2

+

(
∂Popt

∂P12R
uc(P12R)

)2

(21)

The combined uncertainty consists of A- and B-type uncertainties, uA and uB, relating
to the stochastic nature of the measurement and the maximum absolute error of the
measurement devices.

uc =
√

uA
2 + uB2 (22)

Both uncertainties uA and uB were calculated independently for both temperature
values of the diode TD and the resistor TR. The entire measurement process consisted
of six sessions in which six measurements were taken in order to average the results of
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the measured quantities. The entire measurement lasted for several hours at a variable
ambient temperature. A variable ambient temperature is one of the main sources of
increasing uncertainty in temperature measurements with bolometric cameras. Averaging
the measurement results allowed us to reduce the type A uncertainty of the temperature
measurement significantly.

uA(x) =

√
∑N

i=1(xi − x)2

N(N − 1)
(23)

where x is the measured value (temperature of the diode and resistor and power of the
connecting wires) for each measurement and x is its average value. The symbol x refers to
the temperature of the diode, TD, and the resistor, TR, and the power, P12R and P12D, and
N = 6 means the number of measurements in each session.

Note that all temperature values presented in this work refer to the excess in tempera-
ture over the ambient temperature. Type A uncertainty results are shown in Table 5.

Table 5. Uncertainties uA, uB, and uc for measurements of temperature, TD and TR, as well as for
power dissipated in the connecting wires, P12D and P12R.

Parameter Mean Value uA uB uc

TD (◦C) 6.93 0.05 0.08 0.09

TR (◦C) 20.91 0.03 0.24 0.24

P12D (mW) 1.93 0.35 0.00 0.35

P12R (mW) 9.67 0.33 0.00 0.33

The systematic error component of uncertainty uB(T)—type B uncertainty—is deter-
mined by the maximum absolute error ΔTmax of a single measurement from the thermal
imaging camera. It was assumed that the source of this measurement uncertainty is the IR
camera itself [16,17]. The accuracy of the thermal camera used in this work is ΔTmax = 2%
of the measured value.

uB(T) =
ΔTmax√

3
=

0.02T√
3

(24)

For the power dissipated in the connecting cables, the uncertainty uB is scaled by the
factor kS/Δx, where k is the thermal conductivity of the cable, S = πr2 is the cross-sectional
area, and Δx is the length of the cable for which the gradient is calculated.

uB(P) =
kS
Δx

ΔTmax√
3

=
kS
Δx

0.02T√
3

(25)

where k = 200 W/(m·K), Δx = 1.26 cm, S = πr2, and r = 0.1 mm.
According to uncertainty standards [17,18], if the uncertainty of uB dominates over

uA, then the random variable has a uniform probability distribution and the value of the
coefficient kp (20) is equal to

√
3 for a 100% confidence level.

Based on (19) and (21), the combined uncertainty of the optical power measurement
uc is estimated as:

uc(Popt) =

√(
TD(PelR − P12R)

TR
2 uc(TR)

)2
+

(
(PelR − P12R)

TR
uc(TD)

)2
+ u2

c (P12D) +

(
TD
TR

uc(P12R)

)2
(26)

Using actual measurement values, U = 1.17 mW was estimated, so the final result of
estimating the LED optical power is Popt = 11.08 ± 1.17 mW for a thermal camera with a
2% accuracy. When this accuracy is lowered to 1%, the uncertainty U = 0.92 mW. In order
to further reduce the uncertainty, it is necessary to increase the number of measurements
that are averaged.
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4. Conclusions

This article presents a simple engineering method for evaluating the optical power of
LEDs by measuring the temperature using infrared thermography. The presented results
seem promising. In addition, during this research, a compact thermal model in the form of
a network of thermal resistances was constructed. Advanced 3D-FEM thermal modelling
was performed in the ANSYS environment to compare the results with the measurements.
In order to verify the obtained results, the optical power of the diode was measured using
an integrating sphere. The results were very close to each other. In order to show the
practical potential of the proposed new thermographic method of measuring the optical
power of LEDs, an uncertainty analysis was carried out. This analysis shows how the
accuracy of such measurements can be improved. First, the accuracy of the IR camera must
be high, at least 1%. The temperature then needs to be averaged over both time and space.
It is recommended to choose an area of interest containing at least a dozen pixels of the
thermal image to average the temperature.

The proposed method of measuring the optical power of LEDs is an engineering
alternative to using an integration sphere and spectrometer that can only be used in the
laboratory, as it cannot be used remotely, but, on the other hand, it is very accurate. It needs
expensive equipment, requires calibration, and cannot be used while diodes are operating
in a system.
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Abstract: To improve the measurement accuracy of the three-dimensional rotation angle of a spherical
joint, a novel approach is proposed in this study, which combines magnetic detection by a Hall sensor
and surface feature identification by an eddy current sensor. Firstly, a permanent magnet is embedded
in the ball head of a spherical joint, and Hall sensors are set and distributed in the ball socket to
measure the variation in the magnetic flux density when the spherical joint rotates, which are related
to the 3D rotation angle. In order to further improve the measurement accuracy and robustness, we
also set grooves on the ball head and use eddy current sensors to synchronously identify the rotation
angle of the ball head. After the combination of two signals is performed, a measurement model
is established using the RBF neural network by training, and the real-time measurement of the 3D
rotation angle of the spherical joint is realized. The feasibility and superiority of this method are
validated through experiments. The experimental results indicate that the measurement accuracy
is substantially promoted compared to the preliminary measurement scheme based on spherical
coding; the average measurement error of the single axis is reduced by 9′9′′. The root mean square
errors for the measurements of the 3D rotation angles in this proposed method are as follows: pitch
angle α has an error of 1′8′′, yaw angle β has an error of 2′15′′, and roll angle γ has an error of 29′6′′.

Keywords: spherical joint; 3D rotation angle; RBF neural network

1. Introduction

The spherical joint is a mechanism that can present three rotary degrees of free-
dom [1–3]. It is compact in structure and flexible in motion, and is widely used in parallel
mechanisms, machine tools, measuring instruments, medical devices, optical devices, and
various other equipment [4–6]. As a purely passive component, a spherical joint cannot
determine its own rotation direction and rotation angle value [7,8]. If an embedded precise
measurement method for its rotation angle can be obtained, the spherical joint becomes an
intelligent device with broader application prospects, which is beneficial for improving the
motion accuracy and facilitating the control of equipment for which spherical joints are
used [9,10].

In recent decades, the identification of spherical rotation direction and angle mea-
surement techniques have been researched and developed [11,12]. Several measurement
methods based on different principles have emerged, which mainly include optical [13,14],
magnetic [15], and inertial fields [16,17].

For example, Min Li utilized embedded sensors to simultaneously measure the mag-
netic flux density and back electromotive force of a spherical motor [18]. The data from
these sensors were input into a sensor fusion system based on Kalman filtering to estimate
the three degrees of freedom of angular displacement and the angle in real time. The idea
for the implementation of this system is to use embedded non-contact sensors to measure
the magnetic flux density of the spherical motor and the back electromotive force generated
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by the stator. Then, these two quantities are taken as two sets of decoupled inputs for the
sensor fusion system based on the Kalman filter. This system includes an artificial neural
network for estimating the rotor position and a mathematical model for calculating the
angular velocity. Experimental results show that, within a certain measurement range, the
average measurement error of the system in a single axis is 0.08◦.

Jae-Hyeok Kim et al. proposed using a precision mechanical sensor called the atti-
tude and heading reference system (AHRS), comprising a gyroscope, accelerometer, and
magnetometer, to measure the tilt angle of a spherical motor [19]. The AHRS sensor is
arranged on the ball joint. When the motor tilts, the sensor outputs a corresponding signal.
By processing the signal, the tilt angle can be obtained. The measurement accuracy values
of the two axes are 0.27◦ and 0.83◦, but this method cannot measure the self-rotation angle
of the motor, and the accuracy still needs to be improved.

Wang Q et al. also proposed a sensorless rotor attitude detection method based on
the mutual inductance voltage of a stator coil [20]. In the online detection process of the
rotor position, the three-dimensional angle of the rotor was inversely calculated based
on the real-time collected mutual inductance voltage information, using an intelligent
optimization algorithm, combined with the distribution law of the mutual inductance
voltage and the constraints of the rotor structure. This detection method has a good online
detection effect, with a standard deviation of the group within 1.8◦; but, the accuracy is
not high.

Yang S et al. proposed a two-degree-of-freedom angle displacement measurement
method using a spherical capacitive sensor to measure a spherical pair [21]. The capacitance
sensor proposed in this method had a four-quadrant differential electrode configuration.
Compared with other angle measurement detection methods, it has an integrated structure,
occupies a small space, and is convenient to integrate into the sphere. However, this
method was unable to calculate measurements around the rotation axis.

Under the support of the National Natural Science Foundation of China, our team
proposes a measurement scheme for three-dimensional rotational angles in the spherical
joint space based on eddy current sensors and pseudo-random coding [22]. As shown in
Figure 1a, a sensor array consisting of multiple sensors is used to identify spherical en-
coding. Two-dimensional spherical grooves are employed. The groove width is generated
using pseudo-random encoding, and the groove depth is generated using an arithmetic
sequence, ensuring the uniqueness of the spherical head’s three-dimensional encoding.
An artificial neural network is employed to establish a measurement model between the
output voltage of the eddy current sensors and the spatial three-dimensional (3D) rotational
angles. Consequently, the measurement of 3D rotational angles in the spherical joint space
is realized. In this scheme, the pitch angle α and the twist angle β are within the range of
−10◦ to 10◦, with root mean square errors of 22′32′′ and 25′58′′, respectively. The rotational
angle, γ, of the spherical joint along the axis of the spherical joint rod is within the range
of 0◦ to 120◦, with a root mean square error of 30′17′′. Figure 1b presents an alternative
approach proposed by our team for measuring the two-dimensional rotational angle of
a ball joint [23]. In this approach, a cylindrical permanent magnet is embedded at the
bottom of the ball head, and a Hall sensor installed in the ball socket is used to measure the
rotational angle of the ball head in any direction in space. Finally, the measured values are
decomposed into rotational angle components α and β around the X- and Y-axes, respec-
tively. This approach has two modeling methods: one is to establish an equivalent magnetic
charge model, and the other is to establish a neural network model. The experimental
results demonstrate that the neural network model has higher accuracy, a simpler structure,
faster data processing speed, and the highest single-axis angle measurement accuracy can
reach 4′. However, this method has a lower accuracy for measuring the rotational angle,
γ, of the spherical joint along the axis of the spherical joint rod; thus, it can be considered
unsuitable for measuring the γ angle.
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Figure 1. Two measurement schemes (a,b) for the rotation angle of a spherical joint.

The accuracy level of the measurement scheme for the three-dimensional rotation
angle of the spherical joint space based on eddy current sensors and pseudo-random codes
is not able to meet the needs of the precision engineering field. Therefore, in order to solve
the problem that the measurement system of the spherical hinge based on the magnetic
effect method cannot effectively measure the rotational angle, γ, of the spherical joint along
the axis of the spherical joint rod, this article combines the advantages of the magnetic effect
and spherical coding methods based on previous research and constructs a new combined
measurement scheme.

2. Measurement Plan Design

This scheme embeds a permanent magnet into the bottom of the ball head and uses
three Hall sensors to detect the magnetism of the ball head. When the spherical joint rotates,
the Hall sensors perceive the 3D rotation angle of the ball hinge through the change in
the magnetic field. However, this scheme has a low measurement accuracy for the roll
angle, γ. Therefore, a one-dimensional groove was machined on the surface of the metal
ball head to improve the measurement accuracy of the self-rotation angle, γ, using the
distance measuring principle of eddy current sensors, and also to enhance the measurement
accuracy of the pitch angle, α, and yaw angle, β. The overall design is shown in Figure 2.
This measurement scheme limits the three translational degrees of freedom along the X-,
Y-, and Z-axes of the ball hinge, and does not limit the three rotational degrees of freedom
around the X-, Y-, and Z-axes.

 X

Y

Z

 

Figure 2. Schematic diagrams of measurement scheme.

169



Sensors 2024, 24, 90

2.1. Sensor Placement Location

First, three Hall sensors were horizontally placed at the bottom of the ball socket. Then,
the sensor positioning fixture inside the ball socket was used to fix the three Hall sensors
in the same plane. Two different sensor placement schemes are used here for comparison.
Scheme 1: as shown in Figure 3a—sensor S1 is located on the X-axis and senses the magnetic
field in the X-axis direction, sensor S2 is located on the Y-axis and senses the magnetic field
in the Y-axis direction, and sensor S3 is located on the axis that is 135◦counterclockwise
from the Y-axis, sensing the magnetic field in the axial direction. Scheme 2: as shown in
Figure 3b—sensors S1 and S2 are rotated by 90◦, respectively. S1 measures the magnetic
field component in the Y-axis direction and S2 measures the magnetic field component in
the X-axis direction. The position of S3 remains unchanged. The coordinates in Figure 3
represent the position of the sensor in a plane coordinate system.

Y

X

 

Y

X

 
(a) Scheme 1 (b) Scheme 2 

Figure 3. Hall sensor-placement angle design.

Using COMSOL and MATLAB, simulations were conducted for two different schemes.
During the finite element simulation process in COMSOL, the γ angle remained constant,
while the α and β angles varied within a range of ±20◦. An RBF (radial basis function)
neural network model was constructed in MATLAB, and the simulated α and β angles
were inputted to fit the error results, as shown in Figure 4. It can be seen that scheme 2
has higher measurement accuracy results for the α and β angles, so scheme 2 is adapted
to place the Hall sensor. The design of the ball socket is shown in Figure 5. Based on the
spherical coding scheme described above, the eddy current sensor was installed at any
four asymmetric positions on the surface of the spherical socket, which could improve the
measurement accuracy of the three-dimensional rotation angle of the spherical joint to a
certain extent [22].
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(a) The  angle errors of scheme 1. (b) The  angle errors of scheme 1. 

(c) The  angle errors of scheme 2. (d) The  angle errors of scheme 2. 

Figure 4. The α and β angle errors of the neural network fitting process.
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(a) Three-dimensional view of ball socket. (b) Bo om of ball socket. 

Figure 5. The design scheme of the ball socket.

2.2. Spherical Groove Design

Using the AD/DC module of the COMSOL physics field simulation tool, a three-
dimensional finite element model was established, as shown in Figure 6b. The colored
graphics on the sensor represent the magnitude of the magnetic induction, the direction of
the arrows represents the direction of the current, and the color of the arrows represents
the magnitude of the current. From the simulation results, it can also be seen that the eddy
current field is mainly distributed around the sensor, and the apparent range of the eddy
current field does not exceed the size of the sensor. This also indicates that the width of
the grooves and protrusions should not exceed the size of the sensor; otherwise, there is a
“blind spot” in the measurement.
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(a) Simulation results of permanent magnets. 

 
(b) Simulation results of eddy current sensor. 

Figure 6. Simulation results based on COMSOL.

At the same time, the simulation also shows that the direction of the eddy current
is opposite to the direction of the sensor current. From Figure 6a, it can be seen that the
magnetic field generated by the magnet is distributed around the magnet, and the farther
away from the magnet, the weaker the magnetic field. The eddy current sensor can only
sense the magnetic field around the sensor, and the influence on the eddy current sensor
is minor when the magnet is far away from the eddy current sensor. Moreover, since the
magnetic field around the magnet is a uniform demagnetized field, this fixed influence
is beneficial to the measurement of the angle when we need the eddy current sensor to
generate specific data to identify the angle.
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In addition, by simulating and analyzing the grooves with different parameters on a
metal block, the parameter settings of the grooves on the surface of the spherical head were
determined. Based on the research results for the output characteristics of the eddy current
sensors, it is known that the inductance of the sensor will undergo significant changes when
scanning grooves with different parameters, especially when the sensor is located at the
center of the groove, where the difference value is the maximum [24]. For grooves with the
same width, the larger the groove depth, the greater the change in inductance; for grooves
with the same depth, the larger the groove width, the greater the change in inductance.
Additionally, the sensor is more sensitive to the groove depth than groove width.

Therefore, in this study, only the parameter setting of the groove depth was modi-
fied. Finally, through a large number of combination schemes, the optimal solution was
determined as follows: the spherical head was divided into 24 groups, with each group
consisting of a 15◦ interval, and the groove width occupied 7◦l (where l was the arc length
when the central angle of the equatorial plane of the sphere was 1◦). Among these groups,
12 groups had groove depths starting from 0.1 mm and increased by 0.1 mm each time,
while the other 12 groups ad groove depths starting from 1.25 mm and decreased by 0.1 mm
each time. Based on the design scheme described above, the physical structures of the ball
head and ball socket are shown in Figure 7. The ball head was made of aluminum alloy
and the ball socket was manufactured using 3D printing with nylon material, which does
not affect the sensor measurements.

  
(a) Ball head. (b) Ball socket. 

Figure 7. Physical diagrams of the ball head and socket.

3. RBF Neural Network

Based on the team’s previous experience of using neural network modeling [22],
establishing a measurement model for the rotational angle of the spherical joint space based
on artificial neural networks can simplify the algorithm model, eliminate the complex
and lengthy model derivation process, and the high robustness of the neural network
can also compensate for the defects in prototype structural parameters, installation errors,
and gap errors during ball head movements. Among them, the RBF neural network can
approximate any nonlinear function with arbitrary precision and has a good generalization
ability. When the network parameters are determined, the output of the network is the
linear weighted sum of the hidden layer node outputs, so various linear optimization
algorithms can be used to solve the network weights, speed up the learning speed, and
avoid local minimum value problems [25–27].
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The RBF neural network structure, as shown in Figure 8, is composed of an input
layer, hidden layer, and output layer. The transformation from the input layer space to the
hidden layer space is non-linear, while the transformation from the hidden layer space to
the output layer space is linear.

Figure 8. Structure of the RBF neural network.

The network input is the output of the Hall sensor and eddy current sensor, denoted as
X = [x1, x2, . . ., x7] T. The network output is the predicted values of three rotational angles,
denoted as Y = [ y1, y2, y3] T. The expression of the output layer of the RBF network is:

y(xi) =
l

∑
i=1

ωihi(x) (1)

h(x) = exp

(
−||x − ci||2

σ2
i

)
, i = 1, 2, . . . , l (2)

where ωi is the ith output weight vector and l is the number of nodes in the hidden
layer; hi(x) is the activation function and the Gaussian function is the most commonly used
radial basis function; and ci represents the center parameter of the kernel function for the
ith hidden layer neuron, while σi is the expansion constant for the ith hidden node.

Due to the fact that the center point selection of the RBF algorithm uses the K-means
algorithm, the training process adjusts the weights of the network using either gradient
descent or least squares method, which often leads to overfitting and reduces the model’s
generalization ability. While the RBF neural network optimizes the centers of the hidden
layer (ci), expansion constants (σi), and output weights (ωi) as particles in the particle
swarm algorithm, this approach effectively avoids overfitting and other problems that
may arise during model training [28–30]. Therefore, this paper used the PSO algorithm to
optimize the RBF neural network, improved its robustness and generalization ability, and
enhanced the accuracy of the measurement system.

The optimization process of the PSO (particle swarm optimization) algorithm for RBF
neural networks can be roughly divided into the following steps. First, the particle swarm
is generated by determining the structure of the RBF neural network. The particles are then
mapped to the RBF neural network, establishing the RBF neural network model. Then, the
expansion constant (σi) is calculated using Formula (3). Based on the expansion constant
(σi) values, the global best particle and individual best particle are updated, and then it
is determined whether the threshold targets are met. If the requirements are not met, the
velocity and position of the particles are updated and the particle swarm is regenerated. If
the requirements are met, the optimal particle is outputted and the particles are mapped to
the RBF neural network for testing.

The calculation formula of the extended constant is:

174



Sensors 2024, 24, 90

σ =
dmax√

2n
(3)

where dmax represents the maximum distance between the selected centers. n represents
the number of samples.

The optimization goal of the PSO algorithm is to minimize the error function value
between the actual output and the expected output of the RBF neural network [31]. The
fitness function is set as the objective:

F =
n

∑
i=1

e

∑
j=1

(
dij − oij

)
(4)

where n represents the number of samples, e represents the number of outputs of the neural
network, dij represents the j expected output of the i sample of the RBF neural network,
and oij represents the j actual output of the i sample of the RBF neural network.

The RBF and PSO optimized RBF neural network models were established. The data
of sensors S1, S2, and S3 obtained from the simulation of scheme 2 in Section 2.1 were used
as inputs, and the corresponding alpha and beta angles were used as outputs. The RBF
neural network and the improved PSO optimized RBF neural network were tested. In
order to reduce the impact of randomness on the network performance, 50 simulation tests
were conducted.

The test results are shown in Figure 9. From the graph, it can be observed that, for each
simulation, the fitting effect of the PSO optimized RBF neural network model is superior to
the unoptimized RBF neural network. The PSO optimized RBF neural network model is
capable of controlling the root mean square errors of the α and β angles to around 0.09◦,
whereas the unoptimized RBF neural network model yields an RMSE of the α and β angles
of around 0.16◦. The reason why the unoptimized results in the graph appear as a straight
line is because this study utilizes MATLAB’s newrb function for the RBF neural network.
Under the condition of a consistent training set and unchanged sample order, the results of
multiple training using this function are consistent and not affected by randomness.

  
(a)  angle with PSO-RBF and RBF neural networks. (b)  angle with PSO-RBF and RBF neural networks. 

Figure 9. The comparison of test results for α and β angles with the PSO optimized RBF neural
network and unoptimized RBF neural network.

Through the validation of the γ angle with the COMSOL simulation data in Section 2.2,
it can be seen in Figure 10 that the error distribution of the optimized RBF neural network
is similar to that of the unoptimized RBF neural network, with a slight improvement in the
accuracy. Through the data analysis, the improved PSO algorithm optimized the maximum
error of the γ angle tested by the RBF neural network model to be 1.68◦, with a root mean
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square error of 0.52◦, while the unoptimized RBF neural network model tested a maximum
error of 1.73◦ for the γ angle, with a root mean square error of 0.59◦.

 

(a) Absolute error of angle for unoptimized . (b) Absolute error of angle for optimized . 

Figure 10. The comparison of test results for γ with the PSO optimized RBF neural network and
unoptimized RBF neural network.

4. Experiment

4.1. Experimental Equipment

The three-dimensional diagram of the experimental setup, as shown in Figure 11,
includes three calibrated rotary stages for rotation around the X-, Y-, and Z-axes, namely,
the RPI (rotary precision instrument), LS (Lian Sheng), and PI (Physik Instrumente) stages,
with respective accuracies of ±1′′, ±4′′, and ±2′′. The ball head was composed of an
aluminum alloy material with a diameter of 50 mm. The permanent magnet used was a
cylindrical sintered neodymium iron boron magnet, with a residual magnetic parameter of
1.2 mT and magnetization direction along the axis, with a diameter of 15 mm and height of
5 mm. The Hall sensor had a measurement range of 0~3 T and a resolution of 10–5 mT. The
eddy current sensor had a measurement range of 1.5 mm and a resolution of 0.15 um.

(a) Three-dimensional diagram of the calibration device. 

Figure 11. Cont.
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(b) Vertical view of the experimental platform. 

Figure 11. Experimental installation.

The experimental process was carried out according to the rotation sequence of Euler
angle x–y–z, first rotating the RPI table (α angle), then rotating the LS table (β angle), and
finally rotating the PI table (γ angle).

4.2. Experimental Data Analysis

A total of 21*21*181 sets of the data were collected in the experiment, with a measure-
ment range of ′′−10◦≤′′ α ≤ 10◦, ′′−10◦≤′′ β ≤ 10◦, ′′−90◦≤′′ γ ≤ 90◦ and a sampling
interval of 1◦. Due to the amount of data, inputting all the data into the network resulted
in excessively long training times, so the data were partitioned. Based on γ, each 20◦ was
taken as an independent region, with a total of 9 regions. Table 1 shows the test results
for each region, ME represents the mean error, and RMSE represents the root mean square
error. It can be seen that the results between regions are not significantly different. The
average difference in the RMSE value of the three rotation angles is less than 1′.

Table 1. Comparison of test results across all regions.

α β γ

ME RMSE ME RMSE ME RMSE

Q1 50.4′′ 1′22.8′′ 1′19.2′′ 2′9.6′′ 22′15.6′′ 28′44.4′′

Q2 61.2′′ 1′19.2′′ 1′22.8′′ 2′20.4′′ 23′31.2′′ 29′38.4′′

Q3 50.4′′ 1′8.4′′ 1′26.4′′ 2′34.8′′ 23′24′′ 29′49.2′′

Q4 46.8′′ 1′4.8′′ 1′26.4′′ 2′31.2′′ 23′34.8′′ 29′52.8′′

Q5 46.8′′ 1′1.2′′ 1′26.4′′ 2′24′′ 23′38.4′′ 30′7.2′′

Q6 43.2′′ 57.6′′ 1′19.2′′ 2′20.4′′ 22′44.4′′ 28′37.2′′

Q7 54′′ 1′12′′ 1′15.6′′ 1′48′′ 23′13.2′′ 29′24′′

Q8 54′′ 1′8.4′′ 1′8.4′′ 1′40.8′′ 21′46.8′′ 27′32.4′′

Q9 54′′ 1′12′′ 1′15.6′′ 1′58.8′′ 22′26.4′′ 28′8.4′′

By integrating the measurement results from nine regions, the RMSE values of the
rotation angles α, β, and γ are 1′8′′, 2′15′′, and 29′6′′, respectively. The test results of all
regions are shown in Figure 12, where the color represents the magnitude of the error. Due
to the large number of test points, only points with significant errors are shown in this
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figure. Figure 12a shows the test error of the α angle in all regional test sets. For the α

angle, most of the errors are below 0.1◦. The errors in each region are relatively balanced,
and the points with large errors are concentrated near 0◦ for α, β, and γ. Figure 12b shows
the test errors for the beta angle of the test sets in all regions. For the beta angle, most of
the errors are below 0.4◦. As with the alpha angle, the larger errors are concentrated near
0◦ for α, β, and γ. Figure 12c shows the test errors of the γ angle in all regional test sets.
Most of the errors of the γ angle are below 1◦, which is equivalent to α and β angles with
large errors and uniform error distributions.

(a)  angle error plots for the test set in all areas. 

(b)  angle error plots for the test set in all areas. 

(c)  angle error plots for the test set in all areas. 

Figure 12. Three rotation angle error plots for the test set in all areas.
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5. Analysis of Uncertainty

From the perspective of research progress and experimental experience, the main
error factors affecting the measurement accuracy of the three-dimensional rotation of
the spherical joint included the error of the permanent magnet structure parameters and
magnetic field eccentricity, the eccentricity error of the ball head, the rotational error of
the turntable, the error of repeated measurements, the stability error of the sensor, and the
fitting calculation error of the neural network mode. Based on these sources of error, several
types of uncertainty sources can currently be observed and verified through calculations.

5.1. Uncertainty Introduced by Sensor Measurement Repeatability

Under the same experimental conditions, measurements were repeated 10 times at the
same spherical position (5◦, 5◦, 5◦). Based on the results of the 10 repeated measurements,
the uncertainty components introduced by the measurement repeatability error were
evaluated, as shown in Table 2.

Table 2. Repeatability measurement data for (5◦, 5◦, 5◦).

1 2 3 4 5 6 7 8 9 10

α/◦ 4.9264 4.9364 4.9344 4.9264 4.9625 4.9731 4.9311 4.9645 4.9564 4.9820

β/◦ 4.9689 4.9785 4.9805 4.9689 4.9536 4.9566 4.9720 4.9431 4.9513 4.9852

γ/◦ 4.3970 4.5035 4.5538 4.3970 4.557 4.6025 4.4078 4.5124 4.6031 4.3395

The standard uncertainty calculation formula for repetitive errors is as follows [32]:

uR =

√
∑n

i=1(ai − a)2

10 × 9
(5)

where uR is the uncertainty introduced by sensor measurement repeatability, ai is the
respective angular value for the i measurement, and a is the average value of the angles.
The calculation results are shown in Table 3.

Table 3. Standard uncertainty components introduced by repeatability.

Rotation Angle a/◦ uR/◦ vR

α 4.94932 0.006549 9

β 4.96586 0.004435

γ 4.48736 0.030254

5.2. Uncertainty Introduced by Drift

With the continuous changes in the experimental environment (temperature, vibration,
etc.), the measurement system experienced a drift in the parameters of its components or
mechanisms during the operation, which affected the accuracy of the measurement results.
To assess the uncertainty introduced by drift to the system, the measurement system was
kept stationary in a constant-temperature laboratory for a while, and the system’s output
values were recorded in real time. The uncertainty was then evaluated by calculating the
range difference of the drift data during this period.

Under the assumption that the drift error follows a uniform distribution, the formula
for calculating the standard uncertainty is as follows [32]:

uD =
a√
3

(6)
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where uD is the uncertainty introduced by drift and a is the maximum value of the error of
the measured value. The probability that the measurement error falls within the interval
(x − a, x + a) is 1. The calculation and results are shown in Table 4.

Table 4. Standard uncertainty components introduced by drift.

Rotation Angle a/◦ uD/◦ vD

α 0.0038 0.00219 5305

β 0.0133 0.00768

γ 0.0394 0.02275

Due to the fact that the two uncertainties are caused by different errors, it can be
considered that they are independent of each other. Therefore, the formula for the combined
standard uncertainty is [32]:

uC =
√(

u2
R + u2

D
)

(7)

The synthetic degrees of freedom is [32]:

vC =
u4

C
u4

R
vR

+
u4

D
vD

(8)

The combined uncertainty results are shown in Table 5.

Table 5. Combined uncertainty.

Rotation Angle uC/◦ vC

α 0.006905 11

β 0.008868 141

γ 0.037853 22

The confidence probability was set to p = 0.95, we determined the inclusion factor, k,
by checking the t-distribution table through the degrees of freedom, and calculated the
spreading uncertainty. The results are:

(α, β, γ) = (4.94932, 4.96586, 4.48796) ± (0.015191, 0.017381, 0.078356) (9)

6. Conclusions

This article presented a new method for the precise measurement of the 3D rotation
angles of a spherical joint based on Hall and eddy current sensors. The spatial position
matching of the permanent magnet and Hall sensor was optimized. The relationship
between the output of the eddy current sensor and groove parameters was explored to
determine the appropriate groove scheme for the ball head. A measurement model was
established using the PSO-RBF neural network algorithm, and the feasibility of the method
was verified through experiments. The three-dimensional rotation angles of the spherical
joint were measured, with the root mean square errors of rotation angles α, β, and γ

being 1′8′′, 2′15′′, and 29′6′′, respectively, and the mean errors being 51′′, 1′20′′, and 22′57′′.
Compared with the spherical encoding three-dimensional rotation angle measurement
scheme with root mean square errors of 22′32′′, 25′58′′, and 30′17′′, the accuracy was
significantly improved.

The innovation of this method lies in the combination of the eddy current and Hall
sensors, which solves the problem that the two-dimensional rotation angle scheme of ball
hinge based on a magnetic effect cannot effectively measure rotation angle γ on the rotation
axis. This scheme enabled the measurement of the three-dimensional rotation angle and
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provided a new method for the measurement of the three-degree-of-freedom rotation angle.
On this basis, the PSO-RBF neural network algorithm was used to improve the precision
of the spherical hinge measurement system. This scheme presents benefits for industrial
precision manufacturing applications because it can work in harsh environments, such
as situations where grating measurements are difficult to perform. It has excellent envi-
ronmental adaptability, high accuracy, and fast response results, among other advantages.
When implementing this scheme, there are no limitations on the required dimensions.
As long as it is within the processable range of the spherical head, this scheme can be
successfully used, and it has a wide range of applications. Compared to previous sensor
modeling methods, this scheme simplifies the establishment of measurement models and
reduces the impact of data processing on measurement accuracy.
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Abstract: The complete and accurate acquisition of geometric information forms the bedrock of main-
taining high-end instrument performance and monitoring product quality. It is also a prerequisite
for achieving the ‘precision’ and ‘intelligence’ that the manufacturing industry aspires to achieve.
Industrial microscopes, known for their high accuracy and resolution, have become invaluable tools
in the precision measurement of small components. However, these industrial microscopes often
struggle to demonstrate their advantages when dealing with complex shapes or large tilt angles. This
paper introduces a ray-tracing model for point autofocus microscopy, and it provides the quantified
relationship formula between the maximum acceptable tilt angle and the beam offset accepted in
point autofocus microscopy, then analyzing the maximum acceptable tilt angle of the objects being
measured. This novel approach uses the geometric features of a high-precision reference sphere to
simulate the tilt angle and displacement of the surface under investigation. The research findings
show that the maximum acceptable tilt angles of a point autofocus microscope vary across different
measured directions. Additionally, the extent to which the maximum acceptable tilt angles are
affected by the distances of the beam offset also varies. Finally, the difference between the experiment
results and the theoretical results is less than 0.5◦.

Keywords: point autofocus microscopy; small components; complex components; maximum acceptable
tilt angle; reference sphere

1. Introduction

In the era of artificial intelligence, complex and tiny components have seen wide appli-
cation, especially in strategic sectors [1–3] such as next-generation communications, service
robots, automotive electronics, intelligent sensors, defence equipment and aerospace. Both
the geometric accuracy and product quality of these components are crucial for ensuring
stable and accurate system operations. Accurate evaluation of product characteristics
and quality relies on obtaining sufficient information about their condition, which in turn
depends on the continuous improvement of measurement theory and technological devices.
Therefore, high-precision measurement methods are indispensable tools for guiding the
high-precision processing of complex and small components, thereby improving product
quality. Complex small components, despite their overall diminutive size, often possess
geometric features with large depth-to-width or length-to-diameter ratios [4]. Traditional
contact measurement methods struggle to effectively obtain comprehensive information
about complex small surfaces [5]. Furthermore, for components with different sizes but
equivalent accuracy levels, the tolerance requirements for smaller ones are stricter than
those for larger ones [6,7]. This makes it challenging for non-contact measurement methods
such as structured light and machine vision to meet the required measurement accuracy.
In this context, point autofocus microscopy technology provides a better solution for
measuring the geometric errors of complex small components [8,9].

Point autofocus microscopy can be used to measure various complex surfaces, espe-
cially for small machine elements, such as micro gears and micro splines. Similarly to other
microscopic measurement systems, point autofocus microscopy has limitations, including
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a narrow measurement field of view and a small maximum acceptable tilt angle [10]. To
effectively gather complete surface information from a complex and small component,
multiple measurements and data stitching are typically required to keep the tested region
within the microscopy’s maximum acceptable tilt angle [11,12]. However, this approach
not only decreases the measurement efficiency but also amplifies potential errors [13–15].
Increasing the maximum acceptable tilt angle of the microscopic measurement systems can
effectively reduce the need for data stitching and expand the measurement range. Simulta-
neously, it can improve the ability of point autofocus microscopy to measure the geometric
information of complex surfaces. Nikolaev et al., 2016 conducted a study on the maximum
acceptable tilt angle for a focus variation microscope, primarily focusing on the impact
of different tilt angles of the measured surface on surface roughness measurements [16].
Thomas et al., 2021 investigated the maximum acceptable tilt angle for a coherence scan-
ning interferometer by modeling a coherence scanning interferometer [17]. Gao et al., 2023
analyzed the maximum measurable tilt angle accepted by a confocal microscope under
different numerical aperture (NA) objectives [18]. The maximum acceptable tilt angle of
point autofocus microscopy is related to the offset distance and direction of the incident
laser beam when the reflected laser beam from the workpiece remains within the receiving
range of the objective [19]. Therefore, quantifying the relationship between the offset of
the incident laser beam and the maximum acceptable tilt angle is crucial for expanding the
measurement range of point autofocus microscopy.

This article expounds the principles of point autofocus microscopy and quantifies the
relationship between the laser beam offset and the maximum acceptable tilt angle in the
second part. In the third part, a maximum acceptable tilt angle measurement method based
on a reference sphere and the parameters of several crucial components are given. In the
fourth part, via theoretical calculations and experimental verification, we determine the
maximum acceptable tilt angle of a point autofocus microscope with a sub-micrometre
measurement accuracy. Finally, in the fifth part, the contents of this article are summarized
and a reasonable point autofocus microscopy measurement scheme is given.

2. Basic Principle and Optical Model

2.1. Measurement Principle of Point Autofocus Microscopy

Point autofocus microscopy is a non-contact surface measuring tool that can auto-
matically focus a collimated laser beam onto a target surface. This, in conjunction with
the motion of a two-dimensional motion stage (2D motion stage), allows for dynamic
scanning measurements of a surface [20]. Using an Olympus 100× objective (NA = 0.8),
the focused spot can reach a minimum diameter of 1 μm. This data then enable a more
in-depth analysis of the geometric accuracy of the measured surface.

Figure 1 illustrates the main structure of point autofocus microscopy, which comprises
multiple components, including a laser source, LED source, beam splitter, objective, 2D
motion stage, tube lens, focusing lens, PSD sensor, CCD camera (CCD, Charge Coupled
Device), objective scanner (PZT, Piezoelectric Transducer) and motion control system.
These components collectively form two systems: the laser measurement system and the
white light imaging system. In the laser measurement system, the laser beam is reflected
by the beam splitter and transmitted through the objective at a certain offset distance from
the optical axis of the objective. The focused laser beam forms a micron-sized spot on the
workpiece surface. After reflecting off the workpiece, the laser beam passes through the
objective again and travels through the beam splitter as collimated light. It is then focused
by the focusing lens onto the centre of the PSD sensor. When the 2D motion stage moves
to a new position, the laser spot on the workpiece no longer aligns with the focal plane of
the objective. Therefore, the laser beams passing through the objective, beam splitter and
focusing lens deviate from their original positions, and the final laser beam is no longer
focused on the centre of the PSD sensor. This shift in the focused position of the laser
spot generates the corresponding photoelectric signals in the PSD sensor. These signals
control the objective scanner, moving it in the direction of the optical axis with nanometre
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precision until the spot returns to the centre of the PSD sensor again. The distance that the
objective scanner moves along the optical axis represents the difference in distance between
the two measured positions on the workpiece towards the optical axis. This, combined
with the motion of the 2D motion stage, facilitates the measurement of the 3D surface.
However, the white light imaging system works entirely differently. Here, the broadband
light emitted by the LED source is reflected by the beam splitter and transmitted through
the objective without any offset. The white light reflected from the workpiece is projected
onto the imaging plane of the CCD camera after transmission through the objective and the
tube lens. When the surface of the workpiece aligns with the focal plane of the objective,
the clearest image of the surface appears on the CCD imaging plane. In other words,
when the workpiece surface aligns with the focal plane of the objective, the laser beam is
focused on the centre of the PSD sensor, presenting the clearest image of the surface on the
CCD camera.

Figure 1. The schematic diagram of point autofocus microscopy.

2.2. The Relationship between Laser Beam Offset and Maximum Acceptable Tilt Angles

The maximum acceptable tilt angles of the point autofocus microscope are dependent
on the direction and distance of the laser beam offset. As depicted in Figure 2, when the
laser beam is positioned in the negative x-axis direction with an offset of Δx, A1 and A2
represent the maximum acceptable tilt angles for the clockwise and anti-clockwise rotation
of the measured surface around the y-axis, respectively. Conversely, for both clockwise
and anti-clockwise rotations of the surface measured around the x-axis, the maximum
acceptable tilt angle is depicted at A3; however, A3 will change according to the direction
and distance of the laser beam offset.

To quantify the maximum acceptable tilt angles under different directions and dis-
tances of the laser beam offset, an optical model of point autofocus microscopy is estab-
lished, as shown in Figure 3. This model incorporates several key parameters. For the
objective, these include a refractive index of n1, a working distance of WD1, a centre thick-
ness of t1 and a curvature radius of R1. The focusing lens has a refractive index of n2,
a working distance of WD2, a centre thickness of t2 and a curvature radius of R2. The
distance between the objective and the centre of the BS3 is l1, while l2 represents the distance
between the focusing lens and the centre of the BS3. In this model, the laser beam enters
the optical system with the pose of [din, θin], and exits with the pose of [dout, θout]. Here, din
and θin represent the offset displacement and deflection angle of the laser beam reflected
by the measured surface when it enters the objective with respect to the optical axis of the
objective. Similarly, dout and θout represent the offset displacement and deflection angle of
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the laser beam when it passes through the focusing lens and enters the PSD sensor relative
to the optical axis of the focusing lens. Applying the principle of paraxial ray tracing (see
(1)), it is possible to calculate the position of the spot on the PSD sensor [21,22].

dout =
[
1 f2

] · [1 0
0 n2

]
·
[

1 t2
0 1

]
·
[

1 0
1−n2
n2R2

1
n2

]
·
[

1 l1
0 1

]

·
[

1 0
n1−1

R1
n1

]
·
[

1 t1
0 1

]
·
[

1 0
0 1

n1

]
·
[

din
θin

] (1)

Figure 2. The relationship between laser beam offset and maximum acceptable tilt angles. (a) The
measured surface tilts around the y-axis; (b) The measured surface tilts around the x-axis. The red
arrow represents incident laser beam, and the blue arrow represents reflected laser beam.

Figure 3. Optical model of point autofocus microscopy.

Figure 3 illustrates two propagation paths of the laser beam depending on the location
of the measured surface. The solid red line represents the propagation path of the laser
beam when the measured surface is located at the focal plane of the objective. Reflected by
the measured surface, the laser beam enters the objective with the pose of [din1, θin1]. The
reflected laser beam is focused onto the PSD sensor surface with the pose of [dout1, θout1].
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Alternatively, the solid blue line in Figure 3 represents the propagation path of the laser
beam when the measured surface is moved a certain distance din in the negative z-axis
direction. Reflected by the measured surface, the laser beam enters the objective with the
pose of [din2, θin2]. The reflected laser beam is focused onto the PSD sensor surface with the
pose of [dout2, θout2]. Formula (2) can be used to determine the position of the laser spot on
the PSD sensor.

dout2 =
[
A B

] · [din1
θin1

]
= A · din2 + B · θin2 (2)

Here, [
A B

]
=
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1
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]
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[
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0 1

]

·
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1 0
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]
·
[
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0 1

]
·
[

1 0
0 1

n1

] (3)

According to the geometric characteristics of the optical model, θin1 equals θin2. There-
fore, changes in the position of the laser spot on the PSD sensor can be determined using
Formula (4).

dout2 − dout1 = A · (din2 − din1) = A · Δdin (4)

Step 1: Figure 2a illustrates a scenario where the measured surface tilts anti-clockwise
around the y-axis. As shown in Figure 4, din of the reflected laser beam increases as the
surface moves away when the tilt angle θ < θlim, resulting in Δdin > 0. When the tilt angle θ
continues to increase to θlim, the reflected laser beam aligns with the incident laser beam and
din remains constant irrespective of surface movements; hence, Δdin = 0. At this inclination
angle, the PSD sensor fails to accurately determine the displacement and direction of the
objective. However, if the tilt angle θ continues to increase, din of the reflected laser beam
decreases as the surface moves away, resulting in Δdin < 0. The position where the reflected
laser beam aligns with the incident laser beam determines the maximum acceptable tilt
angle A1, which can be calculated using Formula (5). In this formula, Δx represents the
offset displacement of the incident laser beam on the objective.

A1 = arctan
Δx

WD1
(5)

Figure 4. The relative position for the incident and reflected laser beam when the measured surface
tilts anti-clockwise around the y-axis. (a) The tilt angle θ < θlim; (b) The tilt angle θ = θlim; (c) The tilt
angle θ > θlim. The red arrow represents the laser beam before the tilt of the measured surface, and
the blue arrow represents the laser beam after the tilt of the measured surface.

Step 2: Figure 2a illustrates a scenario where the measured surface tilts clockwise
around the y-axis. As shown in Figure 5, din of the reflected laser beam increases as the
surface moves away and decreases as the surface moves closer. This indicates a consistent
correlation between the motion direction of the laser spot on the PSD sensor and the motion
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direction of the measured surface. This is necessary to ensure that the laser beam reflected
by the measured surface does not exceed the effective diameter range of the objective.
The maximum acceptable tilt angle, A2, can be determined using Formula (6), where α

represents the aperture angle of the objective.

A2 =
α
2 − arctan Δx

WD1

2
(6)

Figure 5. The relative position for the incident and reflected laser beam when the measured surface
tilts clockwise around the y-axis. The red arrow represents the laser beam before the tilt of the
measured surface, and the blue arrow represents the laser beam after the tilt of the measured surface.

Step 3: Figure 2b illustrates a scenario where the measured surface tilts clockwise and
anti-clockwise around the x-axis. As shown in Figure 6, |din| of the reflected laser beam
increases as the surface moves away and decreases as it moves closer. This demonstrates a
distinct and fixed correlation between the motion direction of the laser spot on the PSD
sensor and the motion direction of the measured surface. It is important to ensure that
the laser beam reflected by the measured surface does not exceed the effective diameter
range of the objective. The maximum acceptable tilt angle, A3, can be calculated using
Formula (7). Here, D represents the effective diameter of the objective.

A3 =
arctan

√
( D

2 )
2−(Δx)2

WD1

2
(7)

Figure 6. The relative position for the incident and reflected laser beam when measured surface
tilts clockwise and anti-clockwise around the x-axis. The red arrow represents the laser beam before
the tilt of the measured surface, and the blue arrow represents the laser beam after the tilt of the
measured surface.
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3. Experimental Validation

3.1. Experimental Method

A maximum acceptable tilt angle is crucial in point autofocus microscopy, which
measures its accuracy on curved or inclined surfaces. A reference sphere is used in the
experiment (as shown in Figure 7) to simulate the displacement and tilt angle changes of
the workpiece.

Figure 7. Schematic of the experimental process. (a) The initial status; (b) The motion of the reference
sphere during measurement; (c) The motion process of the objective scanner during the measurement.
The green arrow indicates the direction of component movement.

Figure 7a shows the initial status, where the centre of the reference sphere is located
on the extension line of the optical axis of the objective. By adjusting the objective scanner,
the apex of the reference sphere is located on the focal plane of the objective. Figure 7b
shows the motion of the reference sphere during measurement. The reference sphere moves
in the positive direction of the x-axis in incremental steps by controlling the 2D motion
stage. This movement causes the measured point on the reference sphere to shift away
from the objective, resulting in the deviation of the laser beam by the reference sphere.
Consequently, it causes the spot on the PSD sensor to deviate from the centre. Figure 7c
shows the motion process of the objective scanner during the measurement. The PSD
sensor generates a deviation signal, processed and used to prompt the objective scanner to
move in the negative direction of the z-axis. The objective approaches the reference sphere
until the measured point on the sphere aligns with the focal plane of the objective. The
distance moved by the objective scanner indicates the coordinate difference zm (also known
as the measuring value) between the two points measured on the reference sphere along
the optical axis of the objective. Using the geometric parameters and horizontal motion
distance of the reference sphere, we can accurately calculate the coordinate difference zt
(also known as theoretical value) between the two points measured along the optical axis
of the objective (see (8)).

zt = R −
√

R2 − x2 (8)

Simultaneously, we can also calculate the tilt angle at each measurement position of
the reference sphere. R represents the radius of the reference sphere, and x signifies the
displacement of the reference sphere along the x-axis. In the experiment, the 2D motion
stage carries the reference sphere in 50 μm steps, moving in both the positive and negative
directions of the x-axis, as well as the positive direction of the y-axis. A high-precision
incremental-length gauge performs the precise displacement of the reference sphere. Given
the sub-micrometre measurement accuracy of the system, the measurement error of the
point autofocus microscopy is maintained within 1 μm. Ultimately, the tilt angles corre-
sponding to the extreme error position are obtained and defined as the measured value Am
of the maximum acceptable tilt angles (see (9)).
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Am = arcsin
x
R

(9)

3.2. Experimental System

This article presents an experimental method for quantifying the maximum acceptable
tilt angles of point autofocus microscopy and constructs an experimental system, as shown
in Figure 8. The accuracy of the entire experimental system relies on several crucial
components. These include the objective, reference sphere, objective scanner, PSD sensor
and high-precision incremental-length gauges. First, our objective is the LMPlanFL N 50
from Olympus, Tokyo, Japan, and its main technical parameters are listed in Table 1.

Figure 8. The protype of the experimental system.

Table 1. The technical parameters of objectives.

Olympus LMPlanFL N 50 × Object Lens Units

NA 0.5
Working Distance 10.6 mm

Focal Length 3.6 mm
Resolution 0.67 μm

The reference sphere is an STL Precision Ball from Hexgon, Stockholm, Sweden, and
its main technical parameters are listed in Table 2.

Table 2. The technical parameters of reference sphere.

Precision Balls Units

Diameter 15.8756 mm
Roundness 0.06 μm

The objective scanner is P73.Z200S from COREMORROW, Harbin, China, and its main
technical parameters are listed in Table 3.
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Table 3. The technical parameters of objective scanner.

P73.Z200S Units

Travel 200 μm
Resolution 5.5 nm

Positioning Error ±0.6 μm
Repeatability ±0.5 μm

The PSD sensor is the PDP90A from Thorlabs, Newton, NJ, USA, and its main technical
parameters are listed in Table 4.

Table 4. The technical parameters of PSD sensor.

PDP90A Units

Saturation Power 100 μw
Minimum Power 20 μw

Resolution 0.75 μm
Sensor Size 9 × 9 mm

The high-precision incremental-length gauge is MT 2500 from Heidenhain, Traunreut,
Germany, and its main technical parameters are listed in Table 5.

Table 5. The technical parameters of high-precision incremental-length gauge.

MT 2500 Units

Measurement Range 25 mm
Position Error 0.2 μm
Repeatability 0.02 μm

The experimental protype is shown in Figure 8.

4. Results and Discussion

Owing to the restriction of the objective’s entrance pupil and the diameter of the laser
beam, the maximum offset of the laser beam is 4 mm. To verify the quantitative relation-
ship between the offset and the maximum acceptable tilt angles, an experiment has been
designed to measure the maximum acceptable tilt angles Am1, Am2 and Am3 at offsets of
1 mm, 2 mm, 3 mm and 4 mm, respectively. Each offset distance will undergo five repeated
measurements to ensure data accuracy. The standard deviation σ of the measurement data
and the expanded uncertainty u (k = 2) can be calculated using Formulas (10) and (11),
respectively. n represents the number of repeated measurements, and ei represents the
measurement error for the ith (1, 2, 3, 4, 5) group at each measurement position. In order to
achieve a sub-micrometre measurement accuracy, the expanded uncertainty u should be
less than 1 μm.

σ =

√√√√√
n
∑

i=1
(ei − e)2

n − 1
(10)

u = k · σ√
n

(11)

Figure 9 shows the measurement error when the measured surface tilts anti-clockwise
around the y-axis with the laser beam offset at 1 mm, 2 mm, 3 mm and 4 mm. In
Figures 9–11, T1, T2, T3, T4 and T5, respectively, represent the experimental data of the five
repeated measurements.
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Figure 9. The measurement error when the measured surface tilts anti-clockwise around the y-axis.
(a) The laser beam offset at 1 mm; (b) The laser beam offset at 2 mm; (c) The laser beam offset at 3 mm;
(d) The laser beam offset at 4 mm.

Figure 10. The measurement error when the measured surface tilts clockwise around the y-axis.
(a) The laser beam offset at 1 mm; (b) The laser beam offset at 2 mm; (c) The laser beam offset at 3 mm;
(d) The laser beam offset at 4 mm.
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Figure 11. The measurement error when the measured surface tilts clockwise and anti-clockwise
around the x-axis. (a) The laser beam offset at 1 mm; (b) The laser beam offset at 2 mm; (c) The laser
beam offset at 3 mm; (d) The laser beam offset at 4 mm.

The maximum offset distance of the reference sphere within sub-micrometre measure-
ment accuracy is circled with a red ellipse. Applying Formula (5), we can determine the
theoretical maximum acceptable tilt angles A1 for the four offset distances, which are 5.3◦,
10.7◦, 15.5◦ and 20.3◦. Similarly, Formula (9) allows us to calculate the measured maximum
acceptable tilt angles Am1 with for these four offset distances, yielding values of 5.3◦, 10.5◦,
15.3◦ and 20.7◦. The analysis in step 1 of Section 2.2 shows that the maximum acceptable
tilt angles are not directly affected by the objective lens when the measured surface tilts
anti-clockwise around the y-axis, but are determined by the laser incident angle. Under
this tilt direction, the maximum acceptable tilt angles can reach 20.3◦.

Figure 10 shows the measurement error when the measured surface tilts clockwise
around the y-axis for the same offset distances.

Applying Formula (6), we calculate the theoretical maximum acceptable tilt angles A2
for the four offset distances. The results are 12.3◦, 9.7◦, 7.1◦ and 4.7◦. Using Formula (9),
we determine the measured maximum acceptable tilt angles Am2 for these offsets as 12.4◦,
9.4◦, 6.9◦ and 5.0◦. Due to the laser offset, the reflected laser is closer to the tilt direction
when the measured surface tilts clockwise around the y-axis. The reflected laser deviates
from the objective lens more easily, resulting in a smaller maximum acceptable tilt angle.
Under this tilt direction, the maximum acceptable tilt angles can reach 12.3◦.

Figure 11 shows the measurement error when the measured surface tilts both clockwise
and anti-clockwise around the x-axis for the same offset distances. Furthermore, the laser
beam offset remains at 1 mm, 2 mm, 3 mm and 4 mm.

According to Formula (7), the theoretical maximum acceptable tilt angles A3 with
the four offset distances are 14.6◦, 13.9◦, 13.0◦ and 11.4◦. Using Formula (9), we find the
measured maximum acceptable tilt angles Am3 to be 14.5◦, 13.8◦, 13.1◦ and 11.7◦ for these
distances. There is no offset in the projection of the incident laser and reflected laser on the
yoz plane, so the maximum acceptable tilt angles are the same when the measured surface
tilts clockwise and anti-clockwise around the x-axis. In this tilt direction, the maximum
acceptable tilt angles can reach 14.5◦.
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The experimental findings reveal that the maximum acceptable tilt angle Am1 increases
as the offset distance increases. Conversely, Am2 and Am3 decrease with a growing offset
distance. Interestingly, there is minimal difference between the theoretical and measured
values of the maximum acceptable tilt angles. In practical applications of point autofocus
microscopy, the maximum acceptable tilt angles should be the lesser of the theoretical and
measured values. Moreover, the surface being measured is recommended to move in the
direction of the laser beam offset when it has a large inclination.

5. Conclusions

This article constructs a point autofocus microscope, for which a ray-tracing model is
established. The functional relationship between the laser beam offset and the maximum
acceptable tilt angles with different inclined directions of the measured surface is provided
theoretically. To verify the accuracy of theoretical analysis, a novel experimental scheme
was proposed. This scheme utilises the geometric features of a precision reference sphere to
simulate the deflection angle and displacement of the measured surface. By maintaining the
measurement accuracy of point autofocus microscopy within a maximum error of 1 μm, we
were able to find the measurement values of the maximum acceptable tilt angles in different
directions. The difference between the experiment results and the theoretical results is
less than 0.5◦. Therefore, the functional relationship formula proposed in this paper can
effectively describe the relationship between the maximum acceptable tilt angles and the
beam offset accepted when using point autofocus microscopy. This research demonstrates
that the laser beam offset affects the maximum acceptable tilt angles differently in various
directions for point autofocus microscopy. The microscope’s maximum acceptable tilt angle
reaches a peak of 20.3◦ at a laser beam offset of 4mm, when the tilt direction of the surface
measured aligns with the direction of beam offset. Conversely, the microscope’s maximum
acceptable tilt angle reaches a maximum value of 12.3◦ or 14.5◦ at a laser beam offset 1mm
when the tilt direction of the surface measured is opposite or perpendicular to the direction
of beam offset. The device demonstrates its strongest ability to measure an inclined surface
when measuring in the offset direction of the laser beam.
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