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Preface

This reprint focuses on contemporary trends in the theory of stochastic processes and

mathematical statistics. Particular attention is paid to processes that allow us to study the evolution

of particle systems in which each particle that is born, dies, and can move in space in various

environments follows rules that take into account a random factor. Such processes are used

in various fields, from statistical physics to population dynamics. One of the key issues in

analyzing such systems is the limiting behavior of the set of characteristics describing their evolution.

Despite the rigor of the theoretical results, their practical interpretation is required for numerous

applications. The development of new methods for studying stochastic processes, combining

martingale techniques and spectral approaches to analyze the spectrum of high-dimensional random

matrices, is also a topic covered in this collection. At the same time, issues related to the modeling

and statistical analysis of such systems in various applications are considered. This Special Issue is

devoted to an important aspect of modern applied statistics, the identification of random process

parameters and the development of non-parametric statistical methods. This reprint consists of ten

articles—one review article and nine research papers—which are discussed below
An overview of various models of continuous-time branching random walks, which can be

described in terms of the birth, death, and transport of particles on multidimensional lattices, can

be found in the reprint of E. Yarovaya’s “Space Structure of Branching Random Walks”, Moscow:

MCCME (Moscow Center for Continuous Mathematical Education), 2024 (in Russian). Such models

have a wide class of applications in population dynamics—see, for example, the papers of S.

Molchanov and coauthors. In branching random walks, lattice points where particle births and deaths

can occur are known as sources of branching, and the motion of particles on lattices is described

by random walks. The behavior of the moments of the numbers of particles is largely determined

by the structure of the spectrum of the evolution operator of the mean number of particles. In

contrast to previous studies, in Contribution 1, the authors consider a branching random walk on

a one-dimensional lattice in a random non-homogeneous environment. The process starts with a

single particle. This particle can either walk on the lattice or disappear with a random intensity until it

reaches a certain point, which the authors call the reproduction source. At the source, the particle can

split into two offspring or jump out of the source. The offspring of the initial particle evolve according

to the same law, independently of each other and the entire prehistory. The aim of this paper is

to study the conditions required for the presence of exponential growth in the average number of

particles at every lattice point. For this purpose, the authors investigate the spectrum of the random

evolution operator of the average particle number and derive the condition under which exponential

growth has a probability of one. Moreover, the authors study the processes under the violation of this

condition and present the lower and upper estimates for the probability of exponential growth.

In Contribution 2, Alexander Bulinski investigates the forward selection of relevant factors by

means of an MDR-EFE method. Based on the MDR-EFE algorithm, the suboptimal procedure under

consideration provides a sequential selection of relevant factors affecting the studied, in general,

non-binary random response. The model is not assumed to be linear; the joint distribution of the

factor vector and response is unknown. A set of relevant factors has specified cardinality. It is proved

that, under certain conditions, the mentioned forward selection procedure asymptotically gives a

random set of factors (with the probability tending to one as the number of observations grows to

infinity) that coincides with the “oracle” set. This means that the random set obtained with this

algorithm approximates the feature collection that would be identified if the joint distribution of the

feature vector and response were known. For this purpose, the statistical estimators of the prediction

ix



error function of the studied response are proposed, which involve a new version of regularization.

This permits the author to guarantee not only the central limit theorem for normalized estimators,

but also to find the convergence rate of their first two moments to the corresponding moments of the

limiting Gaussian variable.

Contribution 3, authored by Kalanka P. Jayalath, makes Bayesian inferences for the

two-parameter Birnbaum–Saunders (BS) distribution in the presence of right-censored data. A

flexible Gibbs sampler handles the censored BS data in this Bayesian work that relies on Jeffrey’s

and Achcar’s reference priors. A comprehensive simulation study is conducted to compare

estimates under various parameter settings, sample sizes, and levels of censoring, and further

comparisons are drawn with real-world examples involving Type-II, progressively Type-II, and

randomly right-censored data. The study concludes that the suggested Gibbs sampler enhances the

accuracy of Bayesian inferences, and the amount of censoring and the sample size are identified as

influential factors in such analyses.

In Contribution 4, Yufeng Shi and Jinghan Wang consider general mean-field backward doubly

stochastic differential equations (mean-field BDSDEs), whose generator, f, can be discontinuous in

y. They prove the existence of solutions to the theorem under stochastic linear growth conditions,

obtaining the related comparison theorem. Naturally, they present these results under the linear

growth condition, a special case of the stochastic condition. Finally, a financial claim sale problem is

discussed, demonstrating the application of general mean-field BDSDEs in finance.

The Black–Scholes formula is essential for pricing a contingent claim in complete financial

markets. This formula can be obtained assuming that the investor’s strategy is carried out according

to a self-financing criterion. Hence, a set of self-financing portfolios arises, corresponding to

different contingent claims. In light of this, the following natural questions arise: If an investor

invests according to self-financing portfolios in the financial market, what are the maximal and

minimal distributions of the investor’s wealth on some specific interval at the terminal time?

Furthermore, how can the corresponding optimal portfolios be constructed if such distributions exist?

In Contribution 5, Shuhui Liu applies backward stochastic differential equations theory to obtain

affirmative answers to the above questions. The explicit formulations for the maximal and minimal

distributions of wealth when adopting self-financing strategies are derived, and the corresponding

optimal (self-financing) portfolios are constructed. Furthermore, this contribution verifies the benefits

of diversified portfolios in financial markets, issuing a clear conclusion: do not put all your eggs in

the same basket.

In Contribution 6, Huaijin Liang, Jin Ma, Wei Wang, and Xiaodong Yan demystify the

two-armed futurity bandit’s unfairness and apparent fairness—while a gambler may occasionally

win, continuous gambling inevitably results in a net loss to the casino. This study experimentally

demonstrates the profitability of a particularly deceptive casino game: a two-armed antique Mills

Futurity slot machine. The main findings clearly show that both non-random and random two-arm

strategies, predetermined by the player and repeated without interruption, are always profitable for

the casino, despite the gambler refunding two coins for every two consecutive losses. The paper

theoretically explores the cyclical nature of slot machine strategies and speculates on the impact of the

frequency of switching strategies on casino returns. The obtained results not only assist casino owners

in developing and improving casino designs, but also guide gamblers to participate in gambling more

cautiously.

The most read article in the Special Issue is Contribution 7, a review by Vladimir V. Ulyanov.

In 1733, de Moivre, investigating the limit distribution of the binomial distribution, was the first

to discover the existence of the normal distribution and the central limit theorem (CLT). In this
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review article, the author briefly recalls the history of classical CLT and martingale CLT before

introducing new directions for CLT, namely Peng’s nonlinear CLT and Chen–Epstein’s nonlinear

CLT, as well as Chen–Epstein’s nonlinear normal distribution function. The article first reviews

the nearly four-hundred-year history of the CLT, with particular emphasis on the CLT under the

axiomatic framework of nonlinear expectation and Shige Peng and Zengjing Chen’s work establishing

the CLT within this new axiomatic system. In particular, Chen’s work on the new nonlinear normal

distribution and the nonlinear CLT represents major discoveries in this field. The relationship

between the axiomatic framework of nonlinear expectation and Kolmogorov’s classical axiomatic

system can be compared to the relationship between Euclidean and non-Euclidean geometry.

Therefore, under this new framework, the review concludes, the CLT and normal distribution can

greatly enrich our understanding of the stochastic world.

Four major schools have emerged in the development of probability theory, stochastic processes,

and financial mathematics: the Soviet “School of Probability”, the Japanese “School of Stochastic

Integration”, the French “School of Martingale Theory”, and the American “School of Rational

Expectations”. The works of Peng and Chen gave rise to China’s “School of Nonlinear Expectations”.

In Contribution 8, Siyu Liu, Xiequan Fan, Haijuan Hu, and Paul Doukhan, with some

mild conditions, established sharp moderate deviations for a kernel density estimator, providing

equivalents for the tail probabilities of this estimator.

Contribution 9 is devoted to the investigation of the second Borel–Cantelli lemma for capacity

without assuming the independence of events, with the authors managing to obtain a sufficient

condition under which the second Borel–Cantelli lemma for capacity holds. These results are natural

extensions of the classical Borel–Cantelli lemma. However, the proof differs from that found in the

literature.

Yuping Song, Ruiqiu Chen, Chunchun Cai, Yuetong Zhang, and Min Zhu coauthored

Contribution 10: “Self-Weighted Quantile Estimation for Drift Coefficients of Ornstein–Uhlenbeck

Processes with Jumps and Its Application to Statistical Arbitrage.” The estimation of drift parameters

in the Ornstein–Uhlenbeck (O-U) process with jumps primarily employs methods such as maximum

likelihood estimation, least squares estimation, and least absolute deviation estimation. These

methods generally assume specific error distributions and finite variances. However, with the

increasing uncertainty in financial markets, asset prices exhibit characteristics such as skewness and

heavy tails, which lead to biases in traditional estimators. In this contribution the authors propose

a self-weighted quantile estimator for the drift parameters of the O-U process with jumps, and

verify its asymptotic normality in cases of large samples, given certain assumptions. Furthermore,

through Monte Carlo simulations, the proposed self-weighted quantile estimator is compared with

least squares, quantile, and power variation estimators, with estimation performance evaluated using

metrics such as mean, standard deviation, and mean squared error (MSE). The simulation results

show that the self-weighted quantile estimator proposed in the paper performs well across different

metrics. Finally, the proposed estimator is applied to the inter-period statistical arbitrage of the CSI

300 Index Futures. The backtesting results indicate that the self-weighted quantile method proposed

in the paper performs well in empirical applications.

In summary, this Special Issue proposes and develops new mathematical methods and

approaches, new algorithms and research frameworks, and examines their applications to solve

various nontrivial practical problems. We strongly believe that the selected topics and results will be

attractive and useful to the international scientific community and will contribute to further research

in the fields of probability theory and mathematical statistics.
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Branching Random Walks in a Random Killing Environment
with a Single Reproduction Source
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Abstract: We consider a continuous-time branching random walk onZ in a random non-homogeneous
environment. The process starts with a single particle at initial time t = 0. This particle can walk on
the lattice points or disappear with a random intensity until it reaches the certain point, which we
call the reproduction source. At the source, the particle can split into two offspring or jump out of
the source. The offspring of the initial particle evolves according to the same law, independently of
each other and the entire prehistory. The aim of this paper is to study the conditions for the presence
of exponential growth of the average number of particles at every lattice point. For this purpose,
we investigate the spectrum of the random evolution operator of the average particle numbers. We
derive the condition under which there is exponential growth with probability one. We also study
the process under the violation of this condition and present the lower and upper estimates for the
probability of exponential growth.

Keywords: branching processes; random walks; branching random walks; random environments

MSC: 60J27; 60J80; 05C81; 60J85

1. Introduction

In physical models with a random environment, phenomena can occur that differ
substantially from what is usually encountered in statistical physics. In particular, the
mean energy of the quantity under consideration can grow slower than the root of the
mean square of this quantity, and both of these growth rates, in turn, are larger than the
growth rate of a typical realization of the quantity under study. Such a phenomenon has
been called intermittency (see, e.g., [1,2]). An example of such behavior is considered,
in particular, in [3], where a model of particle population is considered. The intensity of
particles splitting was assumed to be stationary in time and random in the spatial variables,
with its mean value equal to zero. In addition, particle diffusion was included in the model.

The processes considered in papers [2,3] can be regarded as a special case of a branch-
ing random walk (BRW) in a random environment, which apparently was first presented
in [1]. The authors introduced basic concepts for BRWs in a random environment and
developed approaches to BRW analysis. The model studied in this work coincides with
the previously introduced the parabolic Anderson model [4], where paper [1] itself is rec-
ognized as fundamental and has sparked active research on applications of the Anderson
model in various fields [5].

Mathematics 2024, 12, 550. https://doi.org/10.3390/math12040550 https://www.mdpi.com/journal/mathematics1
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The phenomenon of intermittency in the case of BRWs in random environments
required the study of the asymptotic behavior of particle number moments averaged over
the environment. In particular, it was required to study the regularity of the growth of
such moments. The required asymptotics were obtained in [6] under the assumption of
an asymptotically Weibull distribution of the right tail of the random potential, i.e., the
difference between the splitting rate and the death rate. For the same potential but for a
non-homogeneous model, similar results were obtained in [7]. For the case of a random
subexponential potential results were obtained in [8,9]. The case of the Pareto potential
was studied in [10]. Thus, the general question of the existence of intermittency in the BRW
model has been practically fully investigated.

Further investigations focused on the non-averaged characteristics of BRWs, e.g.,
non-averaged moments in [11] or survival probability in [12]. These characteristics are
more difficult to study, but they provide an opportunity to describe not only the qualitative
but also the quantitative behavior of individual realizations of the process. One of the
main tools for studying such problems is the study of the spectrum of the corresponding
random operator.

The present paper extends the study of the spectrum of a random operator to a model
of the BRW in a non-homogeneous random environment. We investigate the simplest
characteristic of a random spectrum, the spectral bifurcation, consisting of the existence
and non-existence of a positive eigenvalue. We also investigate the conditions for the
occurrence of this bifurcation and estimate its probabilistic characteristics. Note that some
of the results for this model are announced in [13].

The BRW model is in demand in various natural sciences and humanities, at least in
demography, where branching processes are often considered to demonstrate a realistic
model for the distribution of people, despite its obvious simplicity, and in biology in similar
problems (see, e.g., [14–18]). The introduction of a random environment into the BRW
model expands the range of biological problems that can be modeled [19].

We consider a BRW as a model of a population process rather than a physical model.
A simple but extremely important characteristic of such a process is the criticality of the
growth rate of the particle population. It is known that in the case of a random environment
the particle population can be exponentially decreasing or exponentially increasing [20].
Exponential growth of the particle population entails the presence of a positive eigenvalue
in the spectrum of the evolution operator for the average number of the particles. Therefore,
we consider the spectral bifurcation study as a tool for qualitative assessment of changes in
process behavior rather than as the purpose of this paper.

We note separately that many authors have considered the branching process in a
random environment; see, e.g., [21–23]. In such processes there is no spatial structure, so
the developed research methods are not suitable for the study of our problem. We also note
the early work [24], where a BRW in a random medium in discrete time was considered.
However, this model has no connection with the parabolic Anderson model, and, thus, is
far from the BRW model under consideration.

2. Model Description

Let us consider a branching random walk (BRW) on a one-dimensional lattice Z with
continuous time. On the lattice we define a field of independent identically distributed
random variablesM = {µ(x, ·), x ∈ Z\{0}}, which are defined on some probability space
(Ω,F ,P). We assume that each random variable µ(x, ·) takes values from the closed
interval [0, c] with c > 0 and is a mixture of discrete and absolutely continuous random
variables (r.v.). Also, we assume that the continuous component of µ(x, ·) has a positive
density on [0, c]. The fieldM forms on Z a “random killing environment” that determines
the intensity of particle death in the BRW. In addition, we introduce the parameter Λ > 0,
which is responsible for the intensity of particle multiplication at zero, and parameter
κ > 0, which controls the intensity of particle walking on the lattice.
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Suppose that at time t = 0 there is a realization of theM field denoted byM(ω) =
{µ(x, ω), x ∈ Z\{0}, ω ∈ Ω}. Also, assume that the process at time t = 0 starts with a
single particle at some point x ∈ Z. The further evolution proceeds as follows. Suppose
the particle is at zero, then in time h → 0 it can split into two particles with probability
Λh + o(h), move equally likely to one of the neighboring points with probability κh + o(h),
and remain in place with probability 1−Λh− κh + o(h). Suppose the particle is at the
point x 6= 0, then in time h → 0 it can disappear with probability µ(x, ω)h + o(h), move
equally likely to one of the neighboring points with probability κh + o(h), and remain in
place with probability 1− µ(x, ω)h−κh + o(h). The new particles evolve according to the
same law independently of each other and of all prehistory.

The introduced process is Markovian, and can be described in terms of a set of
exponential and polynomial variables. This description may be more convenient for the
perception of the model. Let us introduce the average waiting time τ(x) at an arbitrary
point x ∈ Z:

τ(x) =

{
(κ + Λ)−1, if x = 0;
(κ + µ(x, ω))−1, if x 6= 0.

The evolution of a particle located at point x is as follows. If the particle is at zero,
it waits for an exponentially distributed time with parameter τ(0)−1, and then instantly
splits in two or moves equiprobably to one of the neighboring lattice points. The choice
between these two events is made with corresponding probabilities Λτ(0) and κτ(0) .
If the particle is at a point x outside zero, it also waits an exponentially distributed time
with parameter τ(x)−1 and then vanishes instantaneously or moves equiprobably to one
of the neighboring lattice points. The choice between these two events is made with
corresponding probabilities µ(x, ω)τ(x) and κτ(x) . The evolution of particles occurs
independently of each other and of all prehistory.

We will show later on that the branching process of particles at the point x ∈ Z can
be conveniently described by the potential V(x, ω), which reflects the criticality of the
branching process at each point:

V(x, ω) =

{
Λ, x = 0;
−µ(x, ω), x 6= 0

or
V(x, ω) = Λδ0(x)− µ(x, ω)(1− δ0(x)).

The BRW at time t due to the Markov property can be completely described by the set
of particle numbers at time t at the points y ∈ Z denoted by Nt(y, ω) . However, Nt(y, ω) is
a random variable and hence is difficult to investigate. Therefore, it is common to consider
the average particle number [1,6]:

m1(t, x, y, ω) = Ex Nt(y, ω),

where Ex is the mathematical expectation under the condition that at time t = 0 there is
one particle at point x.

By Fµ we further denote the distribution function of µ(x). In this paper, we are
interested in the probability P(Λ,κ, Fµ) of the realization of an environment in which there
is an exponential growth of m1(t, x, y, ω) for given parameters Λ, κ, and Fµ. We will refer
to such exponential growth as “supercriticality”. The formal definition is as follows:

P(Λ,κ, Fµ) = P
{

ω ∈ Ω : ∃λ, C(x, y) > 0 : lim
t→∞

m1(t, x, y, ω)

C(x, y)eλt = 1, ∀x, y ∈ Z
}

,

where C(x, y) = C(x, y, ω, Λ,κ, Fµ), λ = λ(ω, Λ,κ, Fµ). Note that we require exponential
growth of the average particle population simultaneously in all points of the lattice. How-
ever, further we will show that this condition is equivalent to exponential growth at least

3
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in one point. Intuitively speaking, the exponential growth at one point “is spread”over the
whole lattice with the help of random walk.

The purpose of this paper is to estimate P(Λ,κ, Fµ) as a function of Λ, κ, and Fµ. To
achieve this, we first use the standard approach described, e.g., in [6,7,25], and write the
Cauchy problem for m1(t, x, y, ω):

∂m1(t, x, y, ω)

∂t
= (κ∆m1)(t, x, y, ω) + V(x, ω)m1(t, x, y, ω),

m1(0, x, y) = δy(x),
(1)

where κ∆ f (x) = κ
2 ∑|x′−x|=1( f (x′)− f (x)) is the discrete Laplace operator on Z, and the

sign | · | denotes the lattice distance on the l1 norm. Here and below we assume that all
operators are defined on l2(Z).

Let us introduce a random self-adjoint operator H(ω) = κ∆ + V(x, ω) to rewrite the
problem (1) in a simpler form:

∂m1(t, x, y, ω)

∂t
= H(ω)m1(t, x, y, ω),

m1(0, x, y) = δy(x).
(2)

In problems of this kind, the behavior of m1(t, x, y, ω) depends on the spectrum
structure of the random operator H(ω). Therefore, the present work is mainly devoted to
the study of the spectrum of the H(ω). In Sections 3 and 4, it is shown that the spectrum of
σ(H(ω)) consists of a non-positive non-random part and can contain a positive random
eigenvalue; in Section 5 we derive the condition under which P(Λ,κ, Fµ) = 1; we address
violation of this condition in Sections 6 and 7, where we present the lower and upper
estimates for P(Λ,κ, Fµ). The main proofs are given in the text of the paper after the
corresponding statements, while the auxiliary proofs are placed in Section 9.

3. The Non-Random Part of the Spectrum of the Evolutionary Operator

We obtained the results of this and the next section using the technique described
in [20]. In these sections, we prove the results for the Cauchy problem in arbitrary dimen-
sion d ∈ N, although the case d = 1 is sufficient to study our model. Consider the following
Cauchy problem for m1(t, x, y, ω):

∂m1(t, x, y, ω)

∂t
= (κ∆m1)(t, x, y, ω) + V(x, ω)m1(t, x, y, ω),

m1(0, x, y) = δy(x),
(3)

where κ∆ f (x) = κ
2d ∑|x′−x|=1( f (x′)− f (x)) is the discrete Laplace operator on Zd, and the

sign | · | denotes the lattice distance on the l1 norm.
For convenience of reasoning, let us introduce the averaging operator:

(κ∆̄ f )(x) =
κ
2d ∑
|x′−x|=1

f (x′),

where κ∆̄ f (x) = κ
2d ∑|x′−x|=1 f (x′). The Laplace operator κ∆ can be represented as the

difference of the averaging operator and the multiplication operator:

(κ∆ f )(x) = κ∆̄ f (x)−κ f (x).

Consider an auxiliary operator Hµ(ω) for which the splitting intensity at zero is absent
and the death intensity at zero µ(0, ω) is defined in the same way as µ(x, ω) for x ∈ Z\{0}.

Hµ(ω) = κ∆− µ(x, ω) = κ∆̄−κ − µ(x, ω).

4
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The operator H(ω) can be viewed as a random one-point perturbation of the operator
Hµ(ω) at zero. Therefore, the essential spectra of these operators coincide [26]:

σess(H(ω)) = σess(Hµ(ω)).

Furthermore, a single-point perturbation can only produce at most one positive eigen-
value. Thus, the first problem is to investigate the essential spectrum of the operator
Hµ(ω).

For convenience, we give the formulations of the lemmas from the works of [26,27],
which will be needed to study the spectrum of the operator Hµ(ω).

Lemma 1 (see, e.g., [26]). The number λ belongs to the essential spectrum of the operator Hµ if
we can construct a sequence of “almost eigenfunctions”, i.e.,

∃
{

fn ∈ l2(Zd) : ‖ fn‖ = 1, ( fn, fm) = δ(n, m),
∥∥Hµ fn − λ fn

∥∥→ 0, n→ ∞
}

. (4)

Lemma 2 (see, e.g., [27]). The spectrum of the operator κ∆ is equal to [−2κ; 0]. For an eigenvalue
λ ∈ [−2κ; 0], there exists a representation

λ =
κ
d

d

∑
i=1

cos(φi)−κ,

for some
−→
φ = (φ1, . . . , φd), φi ∈ [−π, π]. The corresponding function ψλ(x) = exp{i(−→φ , x)}

is an eigenfunction for λ. As a consequence, the spectrum of the operator κ∆̄ is equal to [−κ;κ].

Using these lemmas and the proof scheme from [20], we obtain the following result.

Lemma 3. The spectrum of the operator Hµ(ω) almost surely consists of only the essential part,
which is equal to the interval [−2κ − c; 0].

Proof. The operator Hµ(ω) is the sum of the averaging operator κ∆̄ and the multiplication
by the function −µ(x, ω)−κ. Due to Lemma 2, the operator κ∆̄ has a spectrum equal to
[−κ;κ] and a norm equal to κ. In turn, the spectrum of the operator of the multiplication
by the −µ(x, ω) is equal to the closure of the set of values of this function. For almost sure
(a.s.) any ω, this closure is equal to the interval [−c; 0] by virtue of the definition of µ(x, ω).
Therefore, the spectrum of the combined operator −µ(x, ω)−κ is equal to [−κ − c;−κ].

The operator Hµ(ω) can be considered as a perturbation of the self-adjoint operator
−µ(x, ω)− κ by the self-adjoint operator κ∆̄. In such a case, according to perturbation
theory [28], the spectrum of the operator Hµ will differ from the interval [−κ − c,−κ] by
at most κ, leading to the following inclusion:

σ(Hµ) ⊆ [−2κ − c; 0]. (5)

To show the inverse inclusion, we use Lemma 1, and for each λ ∈ [−2κ − c; 0] we
will construct a sequence of “almost eigenfunctions” { fn(x)}, fi(x) ∈ l2(Zd). Note that we
construct a sequence function for each fixed ω, i.e., { fn(x)} = { fn(x, ω)}.

Let us represent λ as λ = a + b, a ∈ [−2κ; 0] b ∈ [−c; 0]. We need to construct fn
such that the approximations κ∆ fn ≈ a fn and −µ(x, ω) fn ≈ b fn are true in some sense
because then,

(κ∆− µ(x, ω)) fn ≈ (a + b) fn = λ fn.

The condition κ∆ fn ≈ a fn requires that the function be “almost everywhere”, similar
to exp{i(−→φ , x)} of Lemma 2 with a suitable

−→
φ . The condition −µ(x, ω) fn ≈ b fn requires

that the function be non-zero only on the region where −µ(x, ω) ≈ b.

5
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The functions satisfying both conditions are indicators of the balls on which−µ(x, ω) ∈
[b− ε; b + ε] for sufficiently small ε > 0. Therefore, −µ(x, ω) ≈ b and the multiplication
operator will act “almost eigen-like”. The diffusion operator κ∆ will act “almost eigen-like”
inside and outside such balls, but not at the boundary. Therefore, the radius of the balls
must increase to infinity so that the “non-eigen” action of κ∆ tends to zero. The exact
construction of the system of functions { fn} and the proof they are “almost eigenfunctions”
is given in Section 9.1.

In summary, for any λ ∈ [−2κ − c; 0] we can construct a sequence of “almost eigen-
functions” { fn}, and hence

σ(Hµ) ⊇ [−2κ − c; 0]. (6)

Inclusions (5) and (6) complete the proof of the lemma.

Let us summarize the result of this chapter. The auxiliary operator Hµ(ω) a.s. has an
non-random essential spectrum [−2κ − c; 0].

4. The Random Part of the Spectrum of the Evolutionary Operator

Let us return to the operator H(ω) = κ∆ + V(x, ω). As we have already mentioned,
it can be viewed as a random one-point perturbation of the previously described operator
Hµ with an essential spectrum σ(Hµ) = [−2κ − c; 0]. By the Weyl criterion [26], under
compact perturbation the essential spectrum of the operator does not change, while one
positive eigenvalue may appear, which we will denote by λ(ω):

σ(H(ω)) = [−2κ − c; 0] ∪ λ(ω).

As we mentioned, under Equation (2) the structure of the σ(H(ω)) defines the be-
havior of BRW. In particular, if λ(ω) > 0, an exponential growth of the average particle
number is observed; see, e.g., [27]. Thus, the study of the probability of exponential growth
is reduced to the study of the probability of the appearance of a positive eigenvalue:

P(Λ,κ, Fµ) = P{ω : ∃ λ(ω) ∈ σ(H(ω)) : λ(ω) > 0}.

Let us formulate the problem of finding the eigenvalue of λ(ω) with the corresponding
eigenfunction u(x). Note that from u(0) = 0 it follows that u(x) ≡ 0. Therefore, without
restricting generality, let u(0) = 1:

(κ∆ + V(x, ω))u(x) = λu(x),

u(0) = 1.
(7)

For convenience, Equation (7) can be decomposed into two equations. When x = 0 it
takes the following form:

(κ∆ + Λ− λ)u(0) = 0,

u(0) = 1.
(8)

When x 6= 0, it takes the following form:

(κ∆− µ(x, ω)− λ)u(x) = 0,

u(0) = 1.
(9)

For simplicity of the formulas, we introduce the following notations:

E = κ + λ.

Due to this notation, Equation (9) takes the following form:

(κ∆̄− (µ(x, ω) + E))u(x) = 0, x 6= 0,

u(0) = 1.
(10)

6
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Let us move on to finding the solution to this system of equations.

Lemma 4. The solution to Equation (10) is given by the following formula:

u(x) = ∑
γ:x 0

∏
z∈γ

(
κ/2d

µ(z, ω) + E

)
, (11)

where by γ : a b = {a = x1, . . . xn 6= b} we denote the path from point a to point b through the
neighboring points of the lattice and a) the path does not intersect 0 and b) point b is considered to
be excluded from the path γ. The solution given by Formula (11) makes sense for any λ > 0 in any
dimension d ∈ N.

The first part of the lemma is verified by directly substituting Formula (11) into the
problem (10). The correct definiteness of the expression (11) for any λ > 0 in dimension is
checked by combinatorial reasoning and asymptotic methods. The full proof of Lemma 4 is
given in Section 9.2.

Remark 1. Lemma 4 is a special case of the popular (especially in the physics literature) path
expansion of the resolvent, but it is usually applied to the λ from an essential Laplacian spectrum,
i.e., λ < 0 in our case. For such λ formula, (11) is incorrect due to the small denominators.
Therefore, one has to study complex λ and later pass to the limit Im λ → 0; see details, e.g., in
Lecture 6 of [20] or in [29].

Our goal is to understand under what conditions there exists an isolated positive eigenvalue
λ0 of the operator Hµ, perturbed by the reproduction potential (Λ− µ)δ0(x). In such a case (11) is
well defined and Lemma 4 is probably new. Let us stress that u(x) is the resolvent kernel of Hµ with

some normalization. In fact, u(x) = Rλ(0,x)
Rλ(0,0) for λ > 0.

Remark 2. The essential spectrum is the non-random support of the random spectral measure
of Hµ(ω). Under the condition that r.v. µ(x) has absolutely continuous distribution, it fol-
lows from the general theory of one-dimensional random Schrödinger operator on l2(Z) that the
spectral measure is pure point and eigenfunctions are almost surely exponentially decreasing
(exponential localization).

This result is very old (see details in [20,29–31]), and we will not discuss this topic. Our case
is the analysis of the spectral bifurcation: existence and non-existence of the positive eigenvalue.

5. Condition for Almost Certainly Supercritical BRW Behavior

Let us calculate the environment-independent interval in which the eigenvalue of the
problem (7) lies. For this purpose, let us consider the “best” and the “worst” realizations of
the environments. Namely, by setting µ = 0 at all points, then setting µ = c at all points,
we can obtain the following result.

Theorem 1. The value P(Λ,κ, Fµ) is equal to one if and only if the following condition is satisfied:

Λ >
√
(κ + c)2 −κ2 − c. (12)

If the condition (12) is satisfied, then for any realization of the environments ω, the eigenvalue
of λ(ω) lies in the interval

λ(ω) ∈
[√

(Λ + c)2 +κ2 − (κ + c);
√

Λ2 +κ2 −κ
]
.

Proof. Consider Equation (8):

(κ∆ + Λ− λ)u(0) = 0,

u(0) = 1.
(13)

7
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Given the notation E = κ + λ, it can be rewritten as follows:

(κ∆̄u)(0) + Λ− E = 0. (14)

In dimension d = 1, the expression (14) takes a simpler form:

κ
2
(u(1) + u(−1)) + Λ = E.

Moreover, if µ is equal to some constant at all points, then u(1) = u(−1) and the
expression is further simplified:

κu(1) + Λ = E. (15)

Note that for arbitrary environment ω, the solution u(1) is bounded above and below
by the solutions for the environments in which µ ≡ 0 and µ ≡ c. Let us find these estimates.

Let µ(x, ω) be equal to some constant c1 at all points. In this case, u(1) is defined using
Equation (11) as follows:

u(1) = ∑
γ:1→0

∏
z∈γ

(
κ/2

µ(z, ω) + E

)
= ∑

γ:1→0
∏
z∈γ

(
κ/2

E + c1

)
= ∑

γ:1→0
∏
z∈γ

(
κ/2
E1

)
, (16)

where E1 = E + c1.
Reasoning using the reflection principle as in the proof of Lemma 4 (see Section 9.2)

allows us to write out the series in the expression (16) exactly. First, let us compute L(1, 0, n),
that is, the number of paths that start at 1, end at 0, contain n points, and do not intersect
0. Note that L(1, 0, 1) = 1, and for the remaining odd n according to reasoning (37) in
Section 9.2 the following is true:

L(1, 0, n) = C
n−1

2
n−1 − C

n+1
2

n−1 =
2

n + 1
C

n−1
2

n−1, n = 3, 5, . . . .

Thus, let us write out u(1) from the expression (16):

u(1) = ∑
γ:1→0

∏
z∈γ

(
κ/2
E1

)
= ∑

n=1,3,...
L(1, 0, n) ·

(
κ/2
E1

)n

= ∑
n=1,3,...

2
n + 1

C
n−1

2
n−1 ·

(
κ/2
E1

)n
= ∑

m=0,2,...

2
m + 2

Cm/2
m ·

(
κ/2
E1

)m+1

=
κ/2
E1

∞

∑
k=0

(
Ck

2k
1 + k

)
·
(
κ/2
E1

)2k
. (17)

For convenience, we denote κ/2
E1

by a. The coefficient Ck
2k

1+k is the Catalan number, so
the series (17) can be calculated exactly; see, e.g., [32]:

u(1) = a
∞

∑
k=0

(
Ck

2k
1 + k

)
· a2k = a

1−
√

1− 4a2

2a2

=
1
2a
−
√

1
4a2 − 1 =

E1

κ −
√(

E1

κ

)2
− 1. (18)

After substituting (18), the expression (15) takes the following form:

E = Λ + E1 −
√

E1
2 −κ2.

8
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Since E1 = E + c1, the expression takes the form

E = Λ + (E + c1)−
√
(E + c1)2 −κ2.

From here, we can calculate that

Λ + c1 =
√
(E + c1)2 −κ2

or, finally,

λ =
√
(Λ + c1)2 +κ2 − (c1 +κ).

Substituting c1 = 0 and c1 = c completes the proof of the lemma.

6. Upper Estimate for P(Λ,κ, Fµ)

In the previous section, we found that under the condition Λ >
√
(κ + c)2 −κ2 − c

the BRW is a.s. supercritical, i.e., P(Λ,κ, Fµ) = 1. The goal of this and the next section is to
give estimates for P(Λ,κ, Fµ) when this condition is violated.

To obtain an estimate from above, let us fix a non-random “poor” environment and
find out when it does not generate a positive eigenvalue. The poorer environments also do
not generate an eigenvalue. If the probability of generating a family of poor environments is
P1, then P(Λ,κ, Fµ) < 1− P1. In this paper, we consider the simplest case: an environment
that takes some negative values at points neighboring zero.

Lemma 5. Consider an environment ω1 in which points neighboring from zero have killing
intensities equal to µ1 and µ−1. A positive eigenvalue in this environment exists if and only if the
following condition is met:

Λ >
µ1 + µ−1 + 2σµ1µ−1

(1 + σµ1)(1 + σµ−1)
, (19)

where σ = 1
κ/2 for z ∈ R.

Let us give the general idea of the proof. The eigenvalue problem for the considered
environment has the following form:

(κ∆ + V(x, ω))u(x) = λu(x),

u(0) = 1,
(20)

where

V(x, ω) =





Λ, x = 0;
−µ1, x = 1;
−µ−1, x = −1;
0, |x| > 2.

In the appendix, we show that u(x) must have the following form:

u(x) =





1, x = 0;
C1e−kx, x > 1;
C−1ekx, x 6 1,

(21)

where C±1 and k are some positive constants.
Then, we substitute (21) into (20) and derive the condition that is equivalent to the

existence of positive eigenvalue λ with corresponding eigenfunction ψλ. It turns out that
this is the condition (20), which completes the proof of the lemma. The proof is quite
technical and is given in Section 9.3.

9
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Now consider the general set of environments

Ω1 = {ω ∈ Ω : µ(1, ω) = µ1, µ(−1, ω) = µ−1}.

Note that the average number of particles in the non-random environment ω1 is a.s.
greater than the average number of particles in a population in any environment from
Ω1. Suppose that the condition (19) is satisfied for ω1. In such a case, nothing can be said
about the eigenvalues of the environments from Ω1. Suppose that the condition (19) is not
satisfied for ω1. Then, according to the previous Lemma 5, there is no positive eigenvalue
for ω1 and hence there is no positive eigenvalue for all environments from Ω1.

Let us denote the event “condition (19) is met” by A and write the previous reasoning
more formally:

P(Λ,κ, Fµ) = P{∃ λ(ω) > 0} = P{∃ λ(ω) > 0|A}P(A) + P{∃ λ(ω) > 0|Ā}P(Ā)

= P{∃ λ(ω) > 0|A}P(A) + 0 · P(Ā) 6 P(A). (22)

The event “condition (19) is met” for a random environment is written as follows:

P(A) = P
{

Λ >
ξ1 + ξ2 + 2σξ1ξ2

(1 + σξ1)(1 + σξ2)

}
,

where ξi are independent copies µ(x, ω). Thus, we obtain the following theorem.

Theorem 2. The following upper bound estimate is true:

P(Λ,κ, Fµ) 6 P
{

Λ >
ξ1 + ξ2 + 2σξ1ξ2

(1 + σξ1)(1 + σξ2)

}
,

where ξi are independent copies µ(x, ω).

7. Lower Estimate for P(Λ,κ, Fµ)

The first method for obtaining a lower estimate for P(Λ,κ, Fµ) is to consider some
convenient function ψ(x) and examine the quadratic form (H(ω)ψ, ψ). If for some a > 0
the quadratic form (H(ω)ψ, ψ) is positive with probability pa, then the operator H(ω) has
a positive eigenvalue with probability pa at least. We have chosen the simple function
ψ(x) = 2−a|x|, x ∈ Z and this reasoning leads to the following theorem.

Theorem 3. The following estimate from below is true:

P(Λ,κ, Fµ) > max
a∈(0;∞)

P


ω : Λ > κ (2a − 1)

(2a + 1)
+

∞

∑
x=−∞;

x 6=0

µ(x, ω)

4a|x|


.

In particular, for a = 1 :

P(Λ,κ, Fµ) > P


ω : Λ >

κ
3
+

∞

∑
x=−∞;

x 6=0

µ(x, ω)

4|x|


.

The proof of the theorem requires direct investigation of the quadratic form (H(ω)ψ, ψ)
for the function ψ(x) = 2−a|x|, x ∈ Z, which is a technical task, and so the proof is placed
in Section 9.4.

The second way to obtain an upper estimate of P(Λ,κ, Fµ) uses the idea of Lemma 5.
We consider a non-random killing environment of simplified form that can form “islands”
around zero without killing. For this environment, we study the eigenvalue problem

10
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and then generalize the conclusion to all environments that are “better” than the one
under consideration.

First, let us denote P(µ(x, ω)) = 0 by p. Random variables µ(x, ω) can form an
“island” around zero with probability p2l . Let us denote such a case by Ωl :

Ωl = {ω ∈ Ω : µ(i, ω) = 0, ∀i ∈ −l, . . . , l}.

Let us use an idea from Lemma 5 and consider a non-random environment ωl of the
following form:

µ(x, ωl) =

{
0 for x ∈ −l, . . . , l;
c for x /∈ −l, . . . , l.

The environment ωl admits a direct calculation of the condition on the positivity of
the eigenvalue of the corresponding operator, which is presented by the following lemma.
The proof of the lemma is technical and is therefore placed in Section 9.5.

Lemma 6. If a positive eigenvalue exists for all ω ∈ Ωl , then it is bounded from below by a solution
with respect to λ of the following equation:

2ακ
1 +
√

1− 4α2
+κα2l · R(α, β) + Λ−κ − λ = 0, (23)

where α = κ/2
κ+λ , β = κ/2

c+κ+λ , and the expression R is defined as

R(α, β) =
∞

∑
k=0

(
β2k+1 − α2k+1

)
Ck+l , (24)

where Cn denotes the n-th Catalan number. If the series in Equation (24) does not converge then
there exists a ω ∈ Ωl for which there is no positive eigenvalue.

Now, using Lemma 6 we find the smallest positive number l̂ such that Equation (23)
admits a positive solution. By the lemma, all environments of Ωl̂ will have positive
eigenvalues. Therefore the probability P(Λ,κ, Fµ) is at least equal to the probability of
generating an environment from Ωl̂ or, equivalently, the probability of generating a l̂-island.

Finally, the probability of generating a l̂-island is p2l̂ = (P{µ(x, ω) = 0})2l̂ , which leads to
the following theorem.

Theorem 4. There is the following estimation from below:

P(Λ,κ, Fµ) > (P{µ(x, ω) = 0})2l̂ ,

where l̂ ∈ N is the smallest number for which the expression described below admits a positive
solution. If there is no such l̂, then P(Λ,κ, Fµ) = 0.

2ακ
1 +
√

1− 4α2
+κα2l · R(α, β) + Λ−κ − λ = 0, (25)

where α = κ/2
κ+λ , β = κ/2

c+κ+λ , and the expression R is defined as follows:

R(α, β) =
∞

∑
k=0

(
β2k+1 − α2k+1

)
Ck+l , (26)

where Cn denotes the Catalan number.

11
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At first sight, Theorem 4 is useless due to its excessive complexity. However, un-
like Theorem 3, it offers a concrete numerical algorithm for estimating P(Λ,κ, Fµ) based
on a non-Monte Carlo method. Moreover, this algorithm will run fast because of the
exponentially fast convergence of the series used in the theorem.

8. Conclusions

We have studied a previously unconsidered model of branching random walk with a
single branching source and a killing random environment. The introduction of a random
environment into the BRW model expands the range of biological problems that can be
modeled using BRWs. In the present work, we investigated the probability of the presence
of supercritical BRW growth. The developed approaches made it possible to estimate the
spectrum of the corresponding random evolution operator.

The generalization of the obtained results can be carried out in several directions. For
example, in Theorem 2 one can consider not two but several points in the neighborhood
of zero, and in Theorem 3 one can consider a function of a more general form. A rather
interesting problem is the generalization of Theorem 4, in which instead of an “island”
with zero killing intensity, one can consider an “island” consisting of points with small
but non-zero positive killing intensity. Also, one of the directions of further research is the
numerical evaluation of the accuracy of the estimates obtained in this paper.

9. Proofs
9.1. Continuation of the Proof of Lemma 3

Let us recall that we need to prove the inclusion σ(Hµ) ⊇ [−2κ − c; 0].

Proof. Let us use Lemma 1, and for each λ ∈ [−2κ − c; 0] construct a sequence of “almost
eigenfunctions” { fn(x)}, fi(x) ∈ L2(Zd). Note that we construct a sequence function for
each fixed ω, i.e., { fn(x)} = { fn(x, ω)}. Let us represent λ as λ = a + b, a ∈ [−2κ; 0]
b ∈ [−c; 0]. Let us construct fn such that in some sense κ∆ fn ≈ a fn and simultaneously
−µ(x, ω) fn ≈ b fn. Then,

(κ∆− µ(x, ω)) fn ≈ (a + b) fn = λ fn.

The condition κ∆ fn ≈ a fn requires that the function be “almost everywhere”, similar
to exp{i(−→φ , x)} of Lemma 2 with a suitable

−→
φ . The condition −µ(x, ω) fn ≈ b fn requires

that the function be non-zero only on the region where −µ(x, ω) ≈ b.
A candidate function satisfying both conditions looks like this:

fn(x) = fn(x, ω) =
1√
|Bn(ω)|

exp
{

i(
−→
φ , x)

}
I{Bn(ω)},

where the random set Bn(ω) = Bn contains the points x ∈ Zd, such that −µ(x, ω) ∈[
b− 1

n , b + 1
n

]
, and the multiplier 1/

√
|Bn| is needed to normalize the function.

Lemma 1 additionally requires orthogonality of almost eigenfunctions. Hence, it
should be required that Bm ∩ Bn = 0 for n 6= m. Furthermore, it will turn out in the proof
that it should be required in advance that |Bn| → ∞.

Let us prove the existence of the required sets {Bn}. For this, we fix an arbitrary
number n and recall that the density of −µ(x.ω) is positive on the interval [−c; 0]. Accord-
ing to the Borel–Cantelli lemma, for an arbitrary realization of ω there exists a system of
non-intersecting balls {Ci(n)}∞

i=1 consisting of lattice points x ∈ Zd such that

x ∈ Ci(n)⇒ −µ(x, ω) ∈
[

b− 1
n

, b +
1
n

]
,

|Ci(n)| → ∞ for i→ ∞.
(27)

12
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Now, the system of sets {Bn} can be constructed by induction. Let the system {Bn} be
constructed up to the number k. Let us construct the system {Ci(k + 1)} described above.
As the set Bk+1, we take any set of ⊂ {Ci(k + 1)} that is farther from zero than all points
from B1, . . . , Bn. Thus, the induction is complete and the system {Bn} is constructed.

Let us verify that the functions { fn} are almost eigenfunctions. First, consider the
action of the operator κ∆ on the function fn:

κ∆ fn =
1√
|Bn|

κ∆ exp{i(−→φ , x)}I{Bn}.

If the points x − 1, x, x, x + 1 lie inside Bn, then the diffusion operator acts on its
eigenfunction:

κ∆ fn(x) = a
1√
|Bn|

exp{i(−→φ , x)} = a fn(x).

If all points x− 1, x, x + 1 lie outside Bn, then the diffusion operator acts on the null
function and also κ∆ fn(x) = 0 = a fn(x).

Let at least one of their points x− 1, x, x + 1 lie on the boundary of Bn. In this case,
there remains a non-zero function f res

n after applying the operator:

κ∆ fn(x) = a fn(x) + f res
n (x). (28)

The function f res
n reflects the “error” of the operator on the boundary of Bn with respect

to the operator multiplying by a. This function is non-zero only at a finite number of points
Cd, depending on the dimensionality but not on n. The norm f res

n is bounded from above
by Cd/

√
|Bn|, which tends to zero when n→ ∞.

Now consider the action of the operator −µ(x, ω) on the function fn. On the region
{Bn}, the function µ(x, ω) takes values in the interval

[
b− 1

n , b + 1
n

]
, so

− µ(x, ω) fn(x) = −µ(x, ω)
1√
|Bn|

exp{i(−→φ , x)}I{Bn}

= b
1√
|Bn|

exp{i(−→φ , x)}I{Bn}+ gres
n (x) = b fn(x) + gres

n (x). (29)

The function gres
n reflects the “error” of the operator on the area Bn with respect to

the multiplication operator on b. The norm gres
n is bounded from above by the value 1/n,

which tends to zero when n→ ∞.
Putting together the expressions (28) and (29), we obtain the following:

∥∥Hµ fn − λ fn
∥∥ = ‖(a + b) fn − (a + b) fn + f res

n + gres
n ‖ → 0, n→ ∞.

Thus, { fn} is the desired sequence of almost eigenfunctions, and λ ⊂ σ(H). The
number λ was taken arbitrarily from the interval [−2κ − c, 0], hence

σ(Hµ) ⊇ [−2κ − c; 0], (30)

which completes the proof of the lemma.

9.2. Proof of Lemma 4

Let us recall the formulation of Lemma 4:
The solution to Equation (10) when x 6= 0 is given by the following formula:

u(x) = ∑
γ:x 0

∏
z∈γ

(
κ/2d

µ(z, ω) + E

)
, (31)

13
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where γ : a b = {a = x1, . . . , xn 6= b} denotes the path from point a to point b through
the neighboring points of the lattice, and a) the path does not intersect 0 and b) point b is
considered to be excluded from the path γ. The solution given by formula (31) makes sense
for any λ > 0 in any dimension d ∈ N.

Proof. Note that, for a path γ : x  0, the symbol |γ| denotes the length of the path
in the sense of “number of points in γ excluding zero” or “number of steps from x to 0”
which are the same. For simplicity of notation, let us prove the lemma for the case of a
one-dimensional lattice d = 1. Let us study the action of the operator κ∆̄ on the function
u(x) when x 6= 0:

κ∆̄u(x) =
κ
2
(u(x + 1) + u(x− 1)), (32)

Note that the set of paths γ : x  0 included in u(x) decomposes into two subsets:
paths γ+ : x x + 1 0 and paths γ− : x x− 1 0. Thus,

u(x) = ∑
γ

(·) = κ/2
µ(x, ω) + E ∑

γ+

(·) + κ/2
µ(x, ω) + E ∑

γ−
(·)

=
κ/2

µ(x, ω) + E
(u(x + 1) + u(x− 1)). (33)

Or the following, which is the same thing:

u(x + 1) + u(x− 1) =
µ(x, ω) + E

κ/2
u(x). (34)

Combining (32) and (34) we obtain:

κ∆̄u(x) =
κ
2
(u(x + 1) + u(x− 1)) = (µ(x, ω) + E)u(x). (35)

By virtue of (35), the proof of the lemma in the one-dimensional case is complete:

(κ∆̄− (µ(x, ω) + E))u(x) = (µ(x, ω) + E)u(x)− (µ(x, ω) + E)u(x) = 0.

In the multidimensional case, the reasoning remains exactly the same, except that the
expression (33) will contain paths on all lattice points neighboring x.

Now let us show the correctness of (31) for any λ > 0. For simplicity, we first consider
the one-dimensional case d = 1. We investigate the convergence of the series (31). Note
that the following upper bound estimate is true and achievable:

u(x) = ∑
γ:x 0

∏
z∈γ

(
κ/2

µ(z, ω) + E

)
6 ∑

γ:x 0
∏
z∈γ

( κ
2E

)
= ∑

γ:x 0,
|γ|=n

( κ
2E

)n
L(x, 0, n), (36)

where L(x, 0, n) is the number of paths of the form x 0 that contain n points. Note that if
the parity of x and n does not coincide, then L(x, 0, n) converges to zero.

Without restricting generality, let us assume x > 0. Finding L(a, b, k) is a standard
problem for applying the reflection principle to discrete random walks; see, e.g., [33]. The
answer is as follows:

L(a, b, k) = C
k+b−a

2
k − C

k+b+a
2

k , a, b, n > 0.

Therefore,

L(x, 0, n) = L(x, 1, n− 1) = C
n−x

2
n−1 − C

n+x
2

n−1 = c1xc22n, n→ ∞, (37)

where c1 and c2 are positive constants.

14
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Thus, the series in the (36) inequalities are geometric series:

∑
γ:x 0,
|γ|=n

( κ
2E

)n
L(x, 0, n) < c3 + c4

n

∑
i=1

( κ
2E

)n
· 2n, (38)

where c3 and c4 are positive constants.
The series (38) converges when κ/E < 1. Which, given the notation E = κ + λ, can

be rewritten as follows:
λ > 0.

In the case d > 1, the estimation of (36) takes the following form:

u(x) = ∑
γ:x 0

∏
z∈γ

(
κ/2d

µ(z, ω) + E

)
6 ∑

γ:x 0
∏
z∈γ

( κ
2dE

)
= ∑

γ:x 0,
|γ|=n

( κ
2dE

)n
L(x, 0, n), (39)

where again Cn is the number of γ paths of length n, where the length is counted with
respect to zero and the conditions from Lemma 4 are imposed on the path.

Let us consider n� x, since the convergence of the series (39) depends on them alone.
Note that when n� x, the number of trajectories L(x, 0, n) ∼ L(0, 0, n), n→ ∞. We denote
by L0(0, 0, n) the number of trajectories starting and ending at zero without the condition
of non-intersection of zero. The event of a trajectory crossing the zero point in dimension
d > 1 is rare, so L(0, 0, n) ∼ L0(0, 0, n) , n→ ∞.

Let us fix d movements “up” along each of the coordinates. Each path in L0(0, 0, n) is
defined by only n/2 steps, each of which can have one of the coordinate movements, i.e.,

L0(0, 0, n) = dn/2Cn/2
n ∼

(
2
√

d
)n

, n→ ∞.

Proceeding as in the one-dimensional case, we obtain that the series in the estimaion
of (39) is a geometric series:

∑
γ:x 0,
|γ|=n

( κ
2dE

)n
L(x, 0, n) < c5 +

n

∑
i=1

( κ
2dE

)n
·
(

2
√

d
)n

, (40)

where c5 is a positive constant. The series (40) converges when κ/
√

dE < 1. Which, given
the notation E = κ + λ, can be rewritten as follows:

λ > κ
(

1√
d
− 1
)

.

Therefore, for λ > 0 the series converges, which completes the proof of the lemma.

9.3. Proof of Lemma 5

Let us recall the formulation of Lemma 5:
Consider an environment ω1 in which points neighboring from zero have killing intensities
equal to µ1 and µ−1. A positive eigenvalue in this environment exists if and only if

Λ >
µ1 + µ−1 + 2σµ1µ−1

(1 + σµ1)(1 + σµ−1)
,

where σ = 1
κ/2 for z ∈ R.
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Proof. The eigenvalue problem for the considered environment is as follows:

(κ∆ + V(x, ω))u(x) = λu(x),

u(0) = 1,
(41)

where

V(x, ω) =





Λ, x = 0;
−µ1, x = 1;
−µ−1, x = −1;
0, |x| > 2.

First, let us show how the eigenfunction for this problem looks in general form. We
will use the forward and inverse discrete Fourier transforms; see, e.g., [27]. The Fourier
transform of the function f is defined as follows:

f̃ (θ) = ∑
x∈Z

eiθx f (x).

The inverse Fourier transform is defined as follows:

f (x) =
1

2π

π∫

−π

f̃ (θ)e−iθxdθ.

Let us write for the operator H the eigenvalue problem λ with the corresponding
eigenfunction u:

κ∆u(x) + Λδ0(x)u(x)− µ−1δ−1(x)u(x)− µ1δ1(x)u(x) = λu(x). (42)

After applying the Fourier transform, the expression (42) takes the form

κ(cos(θ)− 1)ũ(x) + Λu(0)− µ−1u(−1)e−iθ − µ1u(1)eiθ − λũ(x).

The Fourier transform of the eigenfunction ũ(x) is as follows:

ũ(x) =
Λu(0)− µ−1u(−1)e−iθ − µ1u(1)eiθ

λ +κ −κ cos θ
,

and, finally, the solution u(x) can be represented as

u(x) =
1

2π

π∫

−π

Λu(0)− µ−1u(−1)e−iθ − µ1u(1)eiθ

λ +κ −κ cos θ
e−iθxdθ.

Calculating here the integral for x > 1, we obtain

u(x) = −µ−1u(−1)
wx−1

r
+ Λu(0)

wx

r
− µ1u(1)

wx+1

r
, (43)

where r =
√

λ(λ + 2κ) and w = λ+κ−r
κ .

The expression (43) can be rewritten in a more convenient form:

u(x) = wx
(
−µ−1u(−1)

1
wr

+ Λu(0)
1
r
− µ1u(1)

w
r

)
= B1 · e−kx, (44)

where B1 =
(
−µ−1u(−1) 1

wr + Λu(0) 1
r − µ1u(1)w

r

)
and e−k = w. Function wx decreases

as x tends to infinity, since u ∈ L2(Z), therefore k > 0.
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Let us do exactly the same for x 6 1 and put f (0) = 1 by normalization. We determine
that the eigenfunction must have the following form:

ψ(x) =





1, x = 0;
C1e−kx, x > 1;
C−1ekx, x 6 −1,

where C±1 and k are positive constants. Let us show that there is a positive eigenvalue for
this function if and only if the lemma condition is satisfied.

Let us write the problem (41) for the point x ∈ [2; ∞):

κ
2

ψ(x + 1) +
κ
2

ψ(x− 1)−κψ(x) = λψ(x);

from here we can calculate that

λ =
κ
2

(
e−k + ek − 2

)
= κ(cosh k− 1) = 2κ sinh2(k/2) = k2 + O(k4), k→ 0.

In particular, when λ→ 0+, it follows from the condition k > 0 that k→ 0+, that is

λ→ 0+ → ek → 1 + . (45)

Now let us write the problem (41) for the point x = 1:

κ
2

ψ(2) +
κ
2

ψ(0)−κψ(1)− µψ(1) = λψ(1).

From here, we can calculate that

C1 =
1

1 + e−k µ1
κ/2

.

For simplicity we denote 1
κ/2 by σ. Let us perform similar reasoning for x = −1,

obtaining

C±1 =
1

1 + σµ±1e−|k|
.

Finally, let us write the problem (41) for x = 0:

κ
2

ψ(1) +
κ
2

ψ(−1)−κψ(0) + λψ(0) = λψ(0).

From here, we can calculate that

(C1 + C−1 − 1)e−k + σΛ− ek = 0

or, finally,

e2k − σΛek −
(

1
1 + σµ1e−k +

1
1 + σµ−1e−k − 1

)
= 0.

First, for simplicity, let us make µ = µ−1 = µ1, also, denote ek by z and obtain the
following expression:

z2 − σΛz− 2
1 + σµ 1

z
+ 1 = 0

or
z3 − z2σ(Λ− µ)− z(σ2Λµ + 1) + σµ = 0. (46)
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The current problem is to write out conditions on Λ, µ, and σ that guarantee the
positivity of λ. Let us use the expression (45) and note that (46) is a smooth function with
respect to z, so we can make z = 1 to find the limit solution at z→ 1+:

1− σ(Λ− µ)− (σ2Λµ + 1) + σµ = 0⇔ Λ =
2µ

1 + σµ
.

The eigenvalue λ > 0 exists when this condition is violated to the “supercritical side”,
i.e.,

Λ >
2µ

1 + σµ
.

We obtain the conditions of the lemma under the assumption of µ1 = µ−1.
In the case of unequal µ1 and µ−1, the same solution method gives the condition of

the lemma:
Λ >

µ1 + µ−1 + 2σµ1µ−1

(1 + σµ1)(1 + σµ−1)
.

9.4. Proof of Theorem 3

Let us recall the formulation of Theorem 3:
The following estimate from below is true:

P(Λ,κ, Fµ) > max
a∈(0;∞)

P


ω : Λ > κ (2a − 1)

(2a + 1)
+

∞

∑
x=−∞;

x 6=0

µ(x, ω)

4a|x|


.

In particular, for a = 1 :

P(Λ,κ, Fµ) > P


ω : Λ >

κ
3
+

∞

∑
x=−∞;

x 6=0

µ(x, ω)

4|x|


.

Proof. Consider the function ψ(x) = 2−a|x|. Let us denote ϕ(x) = (H(ω)ψ)(x) and
directly calculate the quadratic form (ϕ, ψ) = (ϕ(x, ω), ψ(x)). First, let us calculate the
function ϕ(x) :

ϕ(x, ω) = κ∆ψ(x) + Λδ0(x)ψ(x)− (1− δ0(x))µ(x, ω)ψ(x)

=
κ
2
(ψ(x + 1) + ψ(x− 1) + 2ψ(x)) + Λδ0(x)ψ(0)− (1− δ0(x))µ(x, ω)ψ(x). (47)

Let us substitute into (47) the expression for ψ(x) and consider separately the points 0
and x > 0:

ϕ(0, ω) =
κ
2
(2−a + 2−a − 2) + Λ = κ(2−a − 1) + Λ; (48)

ϕ(x, ω) =
κ
2
(2−a · 2−ax + 2a · 2−ax − 2 · 2−ax)− µ(x, ω)2−ax

=
κ
2

2−ax(2−a + 2a − 2)− µ(x, ω)2−ax. (49)
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Using (48) and (49), we calculate the required quadratic form:

(ϕ(x, ω), ψ(x)) =
∞

∑
x=−∞;

x 6=0

ϕ(x)ψ(x) + ϕ(0)ψ(0)

=
∞

∑
x=−∞;

x 6=0

(κ
2

2−a|x|(2−a + 2a − 2)− µ(x, ω)2−a|x|
)
· 2−a|x| +κ(2−a − 1) + Λ

=
κ
2
(2−a + 2a − 2)

∞

∑
x=−∞;

x 6=0

2−2a|x| −
∞

∑
x=−∞;

x 6=0

µ(x, ω)

22a|x| +κ(2−a − 1) + Λ

= −κ 2−a − 1
(2−a + 1)2a +κ(2−a − 1) + Λ−

∞

∑
x=−∞;

x 6=0

µ(x, ω)

22a|x|

= −κ (2a − 1)
(2a + 1)

+ Λ−
∞

∑
x=−∞;

x 6=0

µ(x, ω)

22a|x| . (50)

If (ϕ(x, ω), ψ(x)) > 0, then by virtue of Section 4, the operator H(ω) has a positive
eigenvalue. Given the expression (50), the condition for the positivity of the quadratic form
can be rewritten in the following form:

Λ > κ (2a − 1)
(2a + 1)

+
∞

∑
x=−∞;

x 6=0

µ(x, ω)

22a|x| .

By substituting a = 1 we obtain:

Λ >
κ
3
+

∞

∑
x=−∞;

x 6=0

µ(x, ω)

4|x|
.

9.5. Proof of Lemma 6

Recall the formulation of Lemma 6:
Consider a set of Ωl including environments that have l-islands around zero:

Ωl = {ω ∈ Ω : µ(i, ω) = 0, ∀i ∈ −l, . . . , l}.

If a positive eigenvalue exists for all ω ∈ Ωl , then it is bounded from below by a
solution with respect to λ of the following equation:

2ακ
1 +
√

1− 4α2
+κα2l · R(α, β) + Λ−κ − λ = 0,

where α = κ/2
κ+λ , β = κ/2

c+κ+λ , and the expression R is defined as follows:

R(α, β) =
∞

∑
k=0

(
β2k+1 − α2k+1

)
Ck+l , (51)

where Cn denotes the Catalan number. If the series in Equation (51) does not converge then
there exists a ω ∈ Ωl for which there is no positive eigenvalue.
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Proof. For convenience in the proof, let us rewrite Formula (4) for d = 1:

u(x) = ∑
γ:x 0

∏
z∈γ

(
κ/2

µ(z, ω) + E

)
. (52)

By virtue of Equation (15), we are interested in the quantity u(1), for which the paths
from 1 to 0 are important. By the lemma condition, for any ω ∈ Ωl there exists an l-island
around zero. Therefore, every trajectory from 1 to 0 of length less than 2l will not leave this
island, and every trajectory of length greater than 2l must spend at least 2l steps in this
island. We divide all trajectories into two families: trajectories of length less than or equal to
2l trajectories of length greater than 2l. The contribution of each of the smaller trajectories

to the sum (52) is exactly
(
κ/2
0+E

)|γ|
. The contribution of each of the large trajectories to the

sum (52) is at least
(
κ/2
0+E

)2l
·
(
κ/2
c+E

)|γ|−2l
. Thus,

u(1) = ∑
γ:1→0

∏
z∈γ

(
κ/2

µ(z, ωl) + E

)

> ∑
γ:1→0,
|γ|<2l

(
κ/2

0 + E

)|γ|
L(0, 1, |γ|) + ∑

γ:1→0,
|γ|>2l

(
κ/2

0 + E

)2l( κ/2
c + E

)|γ|−2l
L(0, 1, |γ|). (53)

Let us rewrite Equation (53) by introducing the notations α = κ/2
E , β = κ/2

c+E :

u(1) > ∑
γ:1→0,
|γ|<2l

α|γ|L(0, 1, |γ|) + ∑
γ:1→0,
|γ|>2l

α2l β|γ|−2l L(0, 1, |γ|). (54)

Let us simplify Equation (54) in the way (17) does, yielding the following:

u(1) >
l−1

∑
k=0

α2k+1Ck + α2l
∞

∑
k=l

β2k+1−2lCk

=
∞

∑
k=0

α2k+1Ck + α2l
∞

∑
k=l

(
β2k+1−2l − α2k+1−2l

)
Ck. (55)

Using (18) and (55) we obtain:

u(1) > 2α

1 +
√

1− 4α2
+ α2l

∞

∑
k=0

(
β2k+1 − α2k+1

)
Ck+l . (56)

Substituting (56) into (15) completes the proof of the lemma.
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Abbreviations

The following abbreviations are used in this manuscript:
BRW Branching random walk
r.v. Random variable
a.s. Almost sure
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8. Gün, O.; König, W.; Sekulović, O. Moment asymptotics for branching random walks in random environment. Electron. J. Probab.

2013, 18, 1–18. [CrossRef]
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1. Introduction

This paper is dedicated to the eminent scientist Professor A.S. Holevo, academician of
the Russian Academy of Sciences, on occasion of his remarkable birthday.

The classical problem of regression analysis consists in the search for deterministic
function f , which, in a certain sense, “well” approximates the observed random variable
(response) Y by the value f (X), where X = (X1, . . . , Xp) is a vector of factors influencing
the behavior of Y. This approach was initiated by the works of A.-M. Legendre and
K. Gauss. At that time it found application in the processing of astronomical observations.
Nowadays one widely uses the methods involving the appropriate choice of unknown
real coefficients β1, . . . , βp for a linear model of the form Y = ∑

p
i=1 βiXi + ε, where ε

describes a random error. Clearly, X0 = 1 can be included in the collection of factors, then
Y=β0 + ∑

p
i=1βiXi + ε. For example, books [1,2] are devoted to regression. The close tasks

also arise in observations classification, see, e.g., [3].
Since the end of the 20th century, stochastic models have been studied where the

random response Y depended only on some subset of the factors in the set of X1, . . . , Xp.
So, in article [4], the LASSO method (Least Absolute Shrinkage and Selection Operator) was
introduced, using the idea of regularization (going back to A.N.Tikhonov), which allowed
to find factors included with non-zero coefficients in a “sparse” linear model. Somewhat
earlier, this approach was used by several authors for the treatment of geophysical data.
Generalizations of the mentioned method are considered in monograph [5]. We emphasize
that the idea of identifying some of the factors having a principle (in a certain sense) impact
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on a response is also intensely developing within the framework of nonlinear models. Such
direction of modern mathematical statistics is called Feature Selection (FS), i.e., the choice
of features (variables, factors). In this regard, we refer, e.g., to monographs [6–9] and also
to reviews [10–14]. In [10] the authors consider filter, wrapper and embedded methods of
FS. They concentrate on feature elimination and also demonstrate the application of FS
technique on standard datasets. In [11] the modern mainstream dimensionality reduction
methods are analyzed including ones for small samples and those based on deep learning.
In [12] FS machinery is considered based on filtering methods for detecting the cyber attacks.
Survey [13] is devoted to FS methods in machine learning (the structured information is
contained in 20 tables). The authors of [14] concentrate on applications of FS to stock
market prediction and applications of FS in the analysis of credit risks are considered, e.g.,
in [15]. Beyond financial mathematics the choice of relevant factors is very important in
medicine and biology. For instance, in the field of genetic data analysis there is an extensive
research area called GWAS (Genome-Wide Association Studies) aimed at studying the
relationships between phenotypes and genotypes, see, e.g., [16,17]. The authors of [18]
provide the survey of starting methods used by genetic algorithms. Review [19] is devoted
to the FS methods for predicting the risk of diseases. Thus, research in the field of FS is not
only of theoretical interest, but also admits various applications.

Note that there are a number of complementary methods for identifying relevant
factors. Much attention is paid to those employing the basic concepts of information theory
such as entropy, mutual information, conditional mutual information, interaction infor-
mation, various divergences, etc. Here statistical estimation of information characteristics
plays an important role. One can mention, e.g., works [20,21]. In this article, the accent is
made on identifying a set of relevant factors in the framework of a certain stochastic model,
when the quality of the response approximation is evaluated by means of some metric.

Recall that J.B. Herrick in 1910 described the Sickle cell anemia (HbS). Later it was
discovered that all clinical manifestations of the presence of HbS are the consequences of
the single change in the B-globin gene. This famous example shows that even the search
of a single feature having impact on a disease is reasonable. Nowadays the researchers
concentrate on complex diseases provoked by several disorders of the human genome.
Even identification of two SNPs (single nucleotide polymorphisms) having impact on a
certain disease is of interest, see, e.g., [22].

Now we turn to the description of the studied mathematical model. All the considered
random variables are defined on a probability space (Ω,F ,P). Let a random variable Y
map Ω to some finite set Y. We assume that, for k ∈ T := {1, . . . , p}, a random variable
Xk : Ω→ Mk, where Mk is an arbitrary finite set. Then the vector X = (X1, . . . , Xp) takes
the values in X = M1× . . .×Mp. For a set S = {i1, . . . , ir}, where 1 ≤ i1 < . . . < ir ≤ p, we
put XS := (Xi1 , . . . , Xir ). Similarly, for x ∈ X, xS denotes a vector (xi1 , . . . , xir ). A collection
of indices S ⊂ T (the symbol⊂ is everywhere understood as a non-strict inclusion) is called
relevant if the following relation holds for any x ∈ X and y ∈ Y:

P(Y = y|X = x) = P(Y = y|XS = xS), (1)

whenever P(Y = y|X = x) 6= 0. In this case, the set of factors XS is called relevant as well.
If (1) takes place for some S = S0 then it will be obviously valid for any S containing S0.
Therefore, the natural desire is to identify a set S that satisfies (1) and has cardinality r < p
(if such a set other than T exists). Note that there are different definitions of the relevant
factors collection, see, e.g., [23,24] and the references therein.

It is assumed that a collection of relevant factors has r elements (1 ≤ r < p), however,
the set S itself, which appears in (1), is unknown and should be identified. We label this
assumption as (A). There is no restriction that S satisfying (1) and containing r elements
is unique. Usually the joint distribution of (X, Y) is also unknown. Therefore, a statistical
estimator of S is constructed based on the first N observations ξN := (ξ(1), . . . , ξ(N)) of
a sequence ξ(1), ξ(2), . . ., consisting of i.i.d. random vectors, where, for k ∈ N, ξ(k) :=
(X(k), Y(k)) has the same distribution as the vector (X, Y).
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In 2001, the authors of [25] proposed a method for identifying relevant factors, called
MDR (Multifactor Dimensionality Reduction). According to article [26], more than 800 pub-
lications were devoted to the development of this method and its applications in the period
from 2001 to 2014. Research in this direction has continued over the last decade, see,
e.g., [27–29]. In [30], for the binary response Y, a modification of the MDR method was
introduced, namely, MDR-EFE (Error Function Estimation), based on statistical estimates of
the error functional of the response prediction using the K-fold cross-validation procedure,
see also [31]. Later this method was extended in [32] to study the non-binary response.

Recall how the MDR-EFE method is employed. Let a non-random function f : X→ Y
be used to predict the response Y by the values of the factors vector X. Further we exclude
considering the trivial case when Y = y0 with probability one for some y0 ∈ Y (hence, X
and Y are independent). The prediction quality is determined by applying the following
error functional

Err( f ) := E|Y− f (X)|ψ(Y), (2)

where a penalty function ψ : Y→ R+. The functional Err takes finite values for the discrete
X and Y under consideration. The function ψ allows to take into account the importance of
approximating a particular value of Y using f (X).

In biomedical research, one often considers the binary response Y characterizing
the patient’s state of health, say, the value Y = 1 corresponds to illness, and Y = −1
means that the patient is healthy. In many situations it is more important to consider the
disease detection, so the value of 1 is attributed more weight. Of interest is the situation
when Y = {−1, 0, 1}. Then the value 0 describes some intermediate state of uncertainty
(“gray zone”). Following [32], we will consider a more general scheme when the set
Y := {−m, . . . , 0, . . . , m} for some m ∈ N. Lemma 1 in [32] describes for such model all
optimal functions fopt that deliver a minimum to the error functional (2). Note that we can
suppose that the set of values of Y is strictly contained in {−m, . . . , m}, i.e., some values are
accepted with zero probability. For such y, we assume that ψ(y) = 0. Thus, it is possible to
study Y taking values in an arbitrary finite subset of Z. In order to simplify the notation,
we further consider P(Y = y) > 0 for all y ∈ Y = {−m, . . . , m}.

It is proved that in the framework of model (1) the relation fopt = f S is valid, where,
for x ∈ X and U ⊂ T, f U(x) = f (xU) and a function f is constructed in a due way. At the
same time, for any U ⊂ T such that ]U = ]S (] denotes the cardinality of a finite set) and S
appearing in (1), the following inequality is true:

Err( f S) ≤ Err( f U). (3)

For U ⊂ T, the function f U is introduced further. It depends on the joint distribu-
tion of (X, Y) which is usually unknown. Thus we use observations ξN = {(X(j), Y(j)),
j = 1, . . . , N} for statistical estimates of the functional Err( f U), where U ⊂ T, and then
select as an estimator of S the set U on which the minimum of the corresponding statistical
estimate is attained. This approach is described in the next section of the article.

We underline that consideration of all subsets (of the set T) having the cardinality r in
the mentioned comparison procedure (involving regularized estimators, as explained in
Section 2) for statistical estimates of the error functional is practically unfeasible, when p is
large and r is moderately large. Therefore, a number of suboptimal methods of sequential
feature selection have emerged. Such methods are used in various approaches to identify
sets of relevant factors.

Mainly, one aims either to sequentially add indexes at each step of the algorithm for
constructing a statistical estimator of a set S appearing in (1), or to sequentially exclude
features from the general set T. In [33], algorithms of forward selection, i.e., sequential
addition of indexes to the initial set, based on information theory, are considered. The
authors of [33] show that the various algorithms employed can be interpreted as procedures
based on proper approximations of the certain objective function. In [34] the principle
attention is paid to simple models describing the phenomenon of epistasis observed in
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genetics, when individual factors do not affect the response, and some combinations
of them lead to essential effects (in statistics one says “synergy interaction” of factors).
Besides we also demonstrated that a number of well-known algorithms, for instance,
mRMR (Minimum Redundancy Maximum Relevance) using mutual information and/or
interaction information with a sequential procedure for selecting relevant factors can lead
to the identification of the desired set with probability which is negligibly small. In [35] a
variant is proposed for sequential (forward) application of the MDR-EFE method within
the binary response model involving the naive Bayesian classifier scheme. The latter means
that, for any y ∈ {−1, 1} and all x ∈ X, the following relation holds:

P(X = x|Y = y) =
p

∏
k=1

P(Xk = xk|Y = y). (4)

In other words, the factors X1, . . . , Xp are conditionally independent for a given
response Y. In [35] the joint distribution of X and Y was assumed known.

The principle goal of our work is to derive, for a non-binary, in general, random
response, the probability that a sequential selection of features based on the (forward) appli-
cation of the MDR-EFE method, without assuming the validity of (4), leads to identifying a
suboptimal set that would be constructed by means of the same method from observations
with a known joint distribution of the response and the vector of factors.

This result builds on the central limit theorem (CLT) for statistical estimates of the
prediction error functional for a possibly non-binary response, proved in [32], which
extends the CLT for the binary response model studied by the author previously. In
addition, for the purposes of this work, we found the convergence rate of the first two
moments of the considered statistics to the corresponding moments of the limiting Gaussian
variable as the number of observations tends to infinity.

The article has the following structure. Section 2 describes statistical estimates of
the error functional (for a response prediction) based on the MDR-EFE method. We also
introduce the regularized versions of these estimators. In Section 3, the convergence
rate of the first two moments of the regularized estimators of the error functional to the
corresponding moments of the limiting Gaussian variable is established. Section 4 contains
the main result related to the forward selection of relevant factors. The concluding remarks
are given in Section 5. The proof of elementary Lemma 2 is provided in Appendix A for
completeness of exposition.

2. Error Functional Estimators

Consider, in general, a non-binary response, i.e., let Y := {−m, . . . , 0, . . . , m} for some
m ∈ N. In the framework of the introduced discrete model, Lemma 1 of [32] gives a
complete description of the class of optimal functions fopt providing the minimum error
Err( f ), determined by (2), in the class of all functions f : X→ Y. To define such a function
(included in the optimal class) for x ∈ X, we deal with a vector w(x) having components

wy(x) := ψ(y)P(Y = y, X = x), y ∈ Y.

It can be easily seen that

Err( f ) = ∑
y,z∈Y

|y− z|ψ(y)P(Y = y, f (X) = z) = ∑
z∈Y

∑
x∈Az

w>(x)q(z), (5)

where Az := {x ∈ X : f (x) = z}, q(z) is a column of (2m + 1)× (2m + 1) matrix Q having
elements qy,z := |y− z| (the element q−m,−m is located in the upper left corner of the matrix
Q), > stands for the transposition of column vectors. In other words, one employs in (5)
the scalar product of the vectors w(x) and q(z). Thus, search for an optimal function fopt
means finding the partition of X into such sets Az, z ∈ Y, that provide the minimum value
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of the right-hand side of (5). Note also that, according to Formula (13) of [32], the error of
response prediction can be written as follows:

Err( f ) =
2m−1

∑
i=0

∑
i−m<|y|≤m

ψ(y)P(Y = y, | f (X)− y| > i). (6)

Let, for y ∈ Y, the vector ∆(y) have the first m + y components equal to 1, and the
remaining m− y + 1 components equal to (−1). For any x ∈ X, we introduce a vector L(x)
with 2m components having the form

Ly(x) := w>(x)∆(y), y ∈ Y, y > −m. (7)

According to formula (11) of [32] one infers that

fopt(x) = y⇐⇒





L−m+1(x) ≥ 0, y = −m,
Ly+1(x) ≥ 0, Ly(x) < 0, y 6= ±m,
Lm(x) < 0, y = m.

(8)

The joint distribution of (X, Y) is, in general, unknown. Therefore, the optimal function
fopt cannot be found in practice, so an algorithm is used to predict it, i.e., to approximate
by means of specified statistical estimators. The response prediction algorithm is defined
as a function f̂PA = f̂PA(x, ξ(W)) given for x ∈ X and a set of observations

ξ(W) := {ξ(j) = (X(j), Y(j)), j ∈W}, W ⊂ N, ]W < ∞. (9)

The function f̂PA takes values in the set Y. It is assumed that the value of f̂PA(x, ξ(W))
becomes close, in a certain sense, to f (x) for x in a specified subset of the set X when W is
sufficiently “massive”. More precisely, we consider a family of functions f̂PA that depend
on sets ξ(W) of different cardinalities, but we will not complicate the notation. Consider
M = {x ∈ X : P(X = x) > 0}. For x ∈ X, U ⊂ T and y ∈ Y, introduce a vector wU(x)
with components

wU
y (x) :=

{
ψ(y)P(Y = y, XU = xU), x ∈ M,
0, x /∈ M.

Set
LU

y (x) := (wU(x))>∆(y), y ∈ Y, y > −m. (10)

For U ⊂ T, let f U be defined by means of a counterpart of formula (8), where LU
y (x) is

now written instead of Ly(x). Then, according to Section 5 of [32] (the notation α is used
there instead of U), in the framework of model (1), the optimal function fopt = f S, where
S appears in (1) and ]S = r. Therefore relation (3) is valid for f U corresponding to any
U ⊂ T with ]U = r (the assumption (A) holds).

To introduce an algorithm for predicting the function f U , we employ statistical es-
timators of the penalty function ψ, as well as the values LU

y (x), where x ∈ X, y ∈ Y,
y > −m. Consider

ψ(y) := 1/P(Y = y), where P(Y = y) > 0, y ∈ Y. (11)

In the case of a binary response, such a choice of the penalty function was proposed
in [36], the justification for this choice is given in [31], see also Section 4 in [32]. For the
specified function ψ(y) and observations ξ(W), where the finite set W ⊂ N, we use

ψ̂(y, ξ(W)) :=

{
1

P̂(y,ξ(W))
, P̂(y, ξ(W)) 6= 0,

0, P̂(y, ξ(W)) = 0,
(12)
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where the frequency estimator of a probability P(Y = y) has the form

P̂(y, ξ(W)) :=
1
]W ∑

j∈W
I{Y(j) = y}, y ∈ N. (13)

It is not difficult to see that the strong law of large numbers for arrays of random
variables (see, e.g., [37]) entails for finite sets WN ⊂ N, such that ]WN → ∞, the relation

ψ̂(y, ξ(WN))→ ψ(y) a.s., N → ∞. (14)

Let the prediction algorithm f̂ U
PA (x, ξ(WN)) of a function f U(x) be constructed by

means of formula (8) analogue, where, for x ∈ X, y ∈ Y, y > −m, and WN ⊂ {1, . . . , N},
one uses now statistical estimators L̂U,WN

y (x) of functions LU
y (x) introduced in (10). Namely,

let us define the following random variables:

ŵU,WN
y (x) := ψ̂(y, ξ(WN))

1
]WN

∑
j∈WN

I{Y(j) = y, X(j)
U = xU}, y ∈ Y,

where ψ̂(y, ξ(WN)) is an estimator of ψ(y) appearing in (12). For x ∈ X, y ∈ Y, y > −m, set

L̂U,WN
y (x) := ŵU,WN

y (x)>∆(y).

Replace the value Ly(x) in (8) by L̂U,WN
y (x). Then one can claim that

f̂ U
PA (x, ξ(WN)) = y⇐⇒





L̂U,WN
y (x) ≥ 0, y = −m,

L̂U,WN
y+1 (x) ≥ 0, L̂U,WN

y (x) < 0, y 6= ±m,

L̂U,WN
y (x) < 0, y = m.

(15)

For K ∈ N, K > 1, we take a partition of a set {1, . . . , N} into subsets

Dk(N) := {(k− 1)[N/K] + 1, . . . , k[N/K]I{k < K}+ NI{K = N}}, (16)

here k = 1, . . . , K, [a] is an integer part of a number a ∈ R, I{A} is an indicator of a set A.
These sets are applied in the K-fold cross-validation procedure increasing the stability of
statistical inference (cross-validation procedure is studied, e.g., in [38]). Following [32],
the estimator of the functional Err( f U), i.e., a statistical estimator of the prediction error
functional for a function f U and observations ξN := ξ({1, . . . , N}), involving the K-fold
cross-validation procedure, is given by the formula:

ÊrrK,N( f U) :=
2m−1

∑
i=0

∑
i−m<|y|≤m

1
K

K

∑
k=1

ψ̂(y, ξ(Dk(N)))

× 1
]Dk(N) ∑

j∈Dk(N)

I{Y(j) = y, | f̂ U
PA(X(j), ξ(Dk(N)))− y| > i}, (17)

where Dk(N) := {1, . . . , N} \ Dk(N) and ψ̂(y, ξ(Dk(N))) are evaluated according to (12)
for WN = Dk(N), k = 1, . . . , K. The estimator (17) is a natural statistical analogue of
the error functional (2) written in the form (6) when one employs the K-cross-validation
procedure. Namely, instead of ψ(y) we apply its statistical estimator of the type (12) and
instead of f we use its approximation by means of prediction algorithm based on the part
Dk(N) of observations. To obtain the statistical estimators of the probability appearing in
Formula (6) we write the corresponding average of indicator functions. One employs also
the averaging over different parts of observations.
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By Theorem 2 of [32], if S = {i1, . . . , ir} is a set of relevant factors, i.e., (1) holds, then,
for each ε > 0 and any set U = {m1, . . . , mr} ⊂ T, the following inequality takes place
almost sure for all N large enough:

ÊrrK,N( f S) ≤ ÊrrK,N( f U) + ε. (18)

Thus, it is natural to consider all subsets U = {m1, . . . , mr} ⊂ T and choose as a
statistical estimator of a relevant collection of indices (i1, . . . , ir) a set U on which the
minimum of ÊrrK,N( f U) is attained. Here we also note that, for the study of asymptotic
properties of the error functional, the regularization of the prediction algorithm by means of
a sequence of positive numbers (εN)N∈N such that εN → 0, as N → ∞, plays an important
role. Namely, for WN ⊂ {1, . . . , N}, we define

f̂ U
PA,εN

(x, ξ(WN)) = y⇐⇒





L̂U,WN
y (x) + εN ≥ 0, y = −m,

L̂U,WN
y+1 (x) + εN ≥ 0, L̂U,WN

y (x) + εN < 0, y 6= ±m,

L̂U,WN
y (x) + εN < 0, y = m.

(19)

As in article [32], we assume that

εN → 0+,
√

NεN → ∞, N → ∞. (20)

Now we introduce a statistical estimator ÊrrK,N,εN ( f U) using an analogue of For-
mula (17), where one employs f̂ U

PA,εN
instead of f̂ U

PA. For the regularized statistical estima-

tors, as mentioned in [32], the analogue of Formula (18) holds. In [32], for estimators f̂ U
PA,εN

constructed when condition (20) is met, the CLT is established. In the next section we apply
a slightly different regularization for the error functional estimates, which will permit us to
specify the convergence rate of the first two moments of these estimators to corresponding
moments of the limiting Gaussian variable. This result is not only of independent interest,
but is also applied in Section 4.

3. Asymptotic Behavior of the First Two Moments of Statistical Estimators of the
Error Functional

As noted in Section 2, we will use the penalty function (11). Therefore, for WN = Dk(N),
as a strongly consistent estimator ψ̂(y, Dk(N)) of ψ(y) we will employ the variable ap-
pearing in (12), denoted below as ψ̂N,k(y), where y ∈ Y, k = 1, . . . , K, N ∈ N. Recall that
the estimator ÊrrK,N( f U) is defined by formula (2). If the regularized version f̂PA,εN is
substituted into this estimator instead of f̂ U

PA, where x ∈ X and N ∈ N, then the notation
ÊrrK,N,εN ( f U) is used. We will apply the following Corollary 3 of [32] established in the
framework of a model satisfying (1).

Theorem 1 ([32]). Let U be an arbitrary subset of T having the cardinality r, the function f U be
defined after formula (10), f̂ U

PA,εN
appear in (19) for observations ξN , and the sequence (εN)N∈N

satisfy condition (20). Then

√
N
(
ÊrrK,N,εN ( f U)− Err( f U)

) D→ Z ∼ N(0, σ2(U)), N → ∞, (21)

and in this case σ2(U) is the variance of a random variable

V(U) :=
2m−1

∑
i=0

∑
i−m<|y|≤m

I{Y = y}
P(Y = y)

(I{| f U(X)− y| > i} − P(| f U(X)− y| > i|Y = y)).

(22)

It is known that the convergence in distribution of random variables, in general, does
not ensure the convergence of their moments even when the moments exist. We will

29



Mathematics 2024, 12, 831

manage to establish the convergence rate of the first two moments of the error functional
statistical estimators to the corresponding moments of the limit random variable. For this
purpose we slightly strength the condition of estimates regularization. We require that a
sequence (εN)N∈N satisfies the following condition:

εN → 0+,
εN
√

N√
log 1

εN

→ ∞, N → ∞. (23)

Clearly, (23) implies the validity of (20). Relation (23) holds if one takes εN = N−δ,
N ∈ N, where δ ∈ (0, 1/2).

Lemma 1. Let condition (23) be met. Then, for every K ∈ N, K > 1, and any U ⊂ T, the
statistical estimators ÊrrK,N,εN ( f U) satisfy the following relation:

N E(ÊrrK,N,εN ( f U)− Err( f U))2 → σ2(U), N → ∞, (24)

where σ2(U) = varV(U) and V(U) is introduced in formula (22).

Proof of Lemma 1. Let us fix an arbitrary set U ⊂ T. For each N ∈ N one has

ZN :=
√

N
(
ÊrrK,N,εN ( f U)− Err( f U)

)
=
√

N(ÊrrK,N,εN ( f U)− T̂N( f U)) (25)

+
√

N(T̂N( f U)− TN( f U)) +
√

N(TN( f U)− Err( f U)),

where

TN( f U) :=
2m−1

∑
i=0

∑
i−m<|y|≤m

1
K

K

∑
k=1

ψ(y)
]Dk(N) ∑

j∈Dk(N)

I{Y(j) = y, | f U(X(j))− y| > i}, (26)

T̂N( f U) :=
2m−1

∑
i=0

∑
i−m<|y|≤m

1
K

K

∑
k=1

ψ̂N,k(y)
]Dk(N) ∑

j∈Dk(N)

I{Y(j) = y, | f U(X(j))− y| > i}, (27)

ψ̂N,k(y) are defined by means of (12) for WN = Dk(N), k = 1, . . . , K, N ∈ N. The proof is
divided into several steps.

Step 1 . At first we consider

RN :=
√

N(ÊrrK,N,εN ( f U)− T̂N( f U)), N ∈ N.

To simplify the notation, we do not write that RN also depends on K, ξN and εN . Our
aim is to show that if (23) holds then

ER2
N → 0 as N → ∞. (28)

In the light of formula (71) of [32], under condition (20) the following relation is valid:

RN
P→ 0, N → ∞. (29)

Taking into account (29), by Theorem 5.4 of [39], relation (28) holds if (and only if) the
sequence (R2

N)N∈N is uniformly integrable. Due to theorem by De La Vallé - Poussin (see,
e.g., Theorem 1.3.4 of [40]) it is sufficient to verify that

sup
N∈N

E(R4
N) < ∞.
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For x ∈ X, y ∈ Y, i ∈ Z+, k = 1, . . . , K and N ∈ N we introduce the following random
variables:

F(i)
N,k(x, y) = I{| f̂ U

PA,εN
(x, ξ(DN,k))− y| > i} − I{| f U(x)− y| > i}, (30)

Sk(i, y) :=
1

]Dk(N) ∑
j∈Dk(N)

I{Y(j) = y}F(i)
N,k(X(j), y), (31)

where, for W ⊂ N, ξ(W) is defined by Formula (9). Write RN = UN,1 + UN,2, here

UN,1 :=
√

N


 1

K

K

∑
k=1

2m−1

∑
i=0

∑
i−m<|y|≤m

ψ(y)Sk(i, y)


,

UN,2 :=
√

N


 1

K

K

∑
k=1

2m−1

∑
i=0

∑
i−m<|y|≤m

(ψ̂N,k(y)− ψ(y))Sk(i, y)


.

Now note that, for any real numbers a1, . . . , av, every v ∈ N and an arbitrary γ > 1,
the Hölder inequality implies that

(
v

∑
r=1
|ar|
)γ

≤ vγ−1
v

∑
r=1
|ar|γ. (32)

Evidently, (32) is true for γ = 1 as well. Consequently, we get

R4
N ≤ 8(U4

N,1 + U4
N,2), N ∈ N. (33)

Clearly, for all x ∈ X, y ∈ Y, WN ⊂ {1, . . . , N} and N ∈ N, one has

L̂U,WN
y,εN (x) := L̂U,WN

y (x) + εN = LU
y (x) + (ŵU,WN

y (x)− wy(x))>∆(y) + εN , (34)

where the functions appearing in (34) were introduced in Section 2. For any x ∈ X and
y ∈ Y, the inequalities LU

y (x) ≥ 0, LU
y+1(x) < 0 are satisfied if and only if, for arbitrary

δN(x, y; U) > 0 such that δN(x, y; U) → 0, as N → ∞, and all sufficiently large N ∈ N,
the following inequalities are valid: LU

y (x) + δN(x, y; U) > 0, LU
y+1(x) + δN(x, y; U) < 0

(the analogous statement is true for inequalities corresponding to coordinates y = m and
y = −m in Formula (19)). Obviously,

|(ŵU,WN
y (x)− wy(x))>∆(y)|

≤ |ψ̂(y, ξ(WN))− ψ(y)|+ ψ(y)

∣∣∣∣∣
1

]WN
∑

q∈WN

I{X(q)
U = xU , Y(q) = y} − P(XU = xU , Y = y)

∣∣∣∣∣,

where ψ̂(y, ξ(WN)) is defined in (12). One has

∑
xU

(
1

]WN
∑

q∈WN

I{X(q)
U = xU , Y(q) = y} − P(XU = xU , Y = y)

)

=
1

]WN
∑

q∈WN

I{Y(q) = y} − P(Y = y)

= P̂(y, ξ(WN))− P(Y = y). (35)
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For x ∈ X, y ∈ Y, WN ⊂ {1, . . . , N} and N ∈ N, consider the following event

AWN (x, y) =

{∣∣∣∣∣
1

]WN
∑

q∈WN

I{X(q)
U = xU , Y(q) = y} − P(XU = xU , Y = y)

∣∣∣∣∣ ≤
p2

0εN

8]X

}
,

(36)
where p0 = miny∈Y P(Y = y) (we assumed that P(Y = y) > 0 for y ∈ Y). More precisely
one can write AWN (x, y) = AWN (x, y, U; {(X(q), Y(q)), q ∈WN}). We will not include a set
U in the list of arguments since this set is fixed. Then, for ω ∈ AWN (x, y), in view of (35),
we get

∣∣∣P̂(y, ξ(WN))− P(Y = y)
∣∣∣ ≤ p2

0εN

8
. (37)

Then by virtue of (37), for any y ∈ Y and all N large enough, i.e., for N ≥ N0(Y, (εN)N∈N),
one has

P̂(y, ξ(WN)) ≥ P(Y = y)− p2
0εN

8
≥ P(Y = y)− εN

8
>

P(Y = y)
2

> 0,

and hence the following relation holds

|ψ̂(y, ξ(WN))− ψ(y)| = |P̂(y, ξ(WN))− P(Y = y)|
P̂(y, ξ(WN))P(Y = y)

≤
p2

0εN
8

P(Y=y)2

2

≤ εN
4

. (38)

Thus if ω ∈ AWN (x, y), where x ∈ X and y ∈ Y, then according to (36) and (38), for all
N large enough, we can write

|(ŵU,WN
y (x)− wy(x))>∆(y)| ≤ εN

4
+

(
1
p0

)
p2

0εN

8]X ≤
εN
2

.

Taking into account that the sets X and Y have finite cardinalities, we ascertain that,
for any x ∈ X, y ∈ Y and all N large enough, for ω ∈ AWN (x, y), one has

f̂ U,WN
PA,εN

(x) = f U(x). (39)

Consequently, for any x ∈ X, y ∈ Y, i = 0, 1, . . . , 2m − 1, ω ∈ AWN (x, y), where
WN = Dk(N), k = 1, . . . , K, for all N large enough (i.e., N ≥ N1), the following inequality
holds:

F(i)
N,k(x, y)I{ADk(N)(x, y)} = 0. (40)

Applying (32) we come to the inequality

|UN,1|4 ≤ N2 (2m)6

K

K

∑
k=1

2m−1

∑
i=0

∑
i−m<|y|≤m

ψ(y)4


 1
]Dk(N) ∑

j∈Dk(N)

I{Y(j) = y}F(i)
N,k(X(j), y)




4

.

Let Σ̃ denote the summation over all xj ∈ X for j ∈ Dk(N). For N ≥ N1 one has

E


 ∑

j∈Dk(N)

I{Y(j) = y}F(i)
N,k(X(j), y)




4

= E


Σ̃


 ∑

j∈Dk(N)

I{Y(j) = y}F(i)
N,k(xj, y)




4

I





⋂

j∈Dk(N)

{X(j) = xj}








32



Mathematics 2024, 12, 831

= E


Σ̃


 ∑

j∈Dk(N)

I{Y(j) = y}F(i)
N,k(xj, y)I{ADk(N)(xj, y)}




4

I





⋂

j∈Dk(N)

{X(j) = xj}








= E


 ∑

j∈Dk(N)

I{Y(j) = y}F(i)
N,k(X(j), y)I{ADk(N)(X(j), y)}




4

≤ E


 ∑

j∈Dk(N)

I{ADk(N)(X(j), y)}



4

,

here we employ (40) and take into account that |F(i)
N,k(x, y)| ≤ 1. We see that

|UN,1|4 ≤ N2 (2m)6

K

K

∑
k=1

2m−1

∑
i=0

∑
i−m<|y|≤m

ψ(y)4

(]Dk(N))4

(
∑

j∈Dk(N)

I{ADN(k)(X(j), y)}
)4

. (41)

For WN ⊂ {1, . . . , N}, y ∈ Y and j = 1, . . . , N, introduce the functions

gWN (X(j), y) = I{AWN (X(j), y)} = I{AWN (X(j), y; {(X(q), Y(q)), q ∈WN})}.

It is known (see, e.g., formula (15) in Chap. VI of [41]) that if a bounded Borel function
g : Rn ×Rm → R, ξ and ζ are independent random vectors taking values in Rn and Rm,
respectively, then

E(g(ξ, ζ)|ζ = z) = Eg(ξ, z), z ∈ Rn.

Due to independence of (X(j), Y(j)), j ∈ N, we can apply the lemma on grouping
random vectors (see, e.g., [42], p. 28) to get the relation

E
((

∑
j∈Dk(N)

gDk(N)(X(j), y; (X(q), Y(q)), q ∈ Dk(N)))
)4∣∣∣(X(q), Y(q)) = (xq, yq), q ∈ Dk(N))

)

= E
(

∑
j∈Dk(N)

gDk(N)(X(j), y; (xq, yq)), q ∈ DN(k)))
)4

.

By the Rosenthal inequality (see, e.g., Theorem 2.9 of [43]), for independent centered
random variables Z1, . . . , Zv, having E|Zj|t < ∞ for some t ∈ [2, ∞) and each j = 1, . . . , v,
one has

E
∣∣∣

v

∑
j=1

Zj

∣∣∣
t
≤ C(t)

( v

∑
j=1

E|Zj|t +
( v

∑
j=1

EZ2
j

) t
2
)

, (42)

where C(t) > 0 depends on t but does not depend on v and distributions of variables Zj,
j = 1, . . . , v.

Set η
(j)
N,k := gDk(N)(X(j), y; {(xq, yq)), q ∈ DN(k)}), j ∈ N. Note that 0 ≤ η

(j)
N,k ≤ 1 for

all j ∈ DN(k). Then according to (42) we come to the inequality

E


 ∑

j∈Dk(N)

(η
(j)
N,k − Eη

(j)
N,k)




4

≤ C(]Dk(N))2,

where k = 1, . . . , K and C = 2C(4). Hence, applying (32) for γ = 4 and v = 2, one has

E


 ∑

j∈Dk(N)

η
(j)
N,k




4

≤ 8


C(]Dk(N))2 +


 ∑

j∈Dk(N)

Eη
(j)
N,k




4
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≤ 8C(]Dk(N))2 + 8(]Dk(N))4 max
j∈Dk(N)

(Eη
(j)
N,k)

4.

Evidently, we can write

E(η
(j)
N,k) = P(ADk(N)(X(j), y; {(xq, yq)), q ∈ Dk(N)}).

Let Mk = ]Dk(N), where Mk = Mk(N), k = 1, . . . , K. Set ζq = I{X(q)
U = xU , Y(q) = y},

where q ∈ Dk(N), σ2
0 = var ζq. Clearly, ζq depends on xU , y and U. Random variables ζq

are identically distributed for q ∈ N. Therefore σ2
0 = σ2

0 (U, x, y), but does not depend on q.
If σ2

0 = 0, then the variables ζq are a.s. equal to some constant. According to (36), an event
ADk(N)(X(j), y; {(xq, yq)), q ∈ Dk(N)}) occurrence means that the variable which is equal
to zero a.s. turns greater than (p2

0εN)/(8]X). Therefore, in the degenerate case one has

P(ADk(N)(X(j), y; (xq, yq)), q ∈ Dk(N))) = 0

and Eη
(j)
N,k = 0 for all j = 1, . . . , N. Consider now the case when σ2

0 > 0. Then we get

P(ADk(N)(X(j), y; {(xq, yq), q ∈ Dk(N)}) = P

(
∑q∈Dk(N)(ζq − Eζq)

σ0
√

Mk
>

p2
0
√

MkεN

8]Xσ0

)
,

where p0 appeared in (36).
Now we employ the Berry-Esseen estimate of the convergence rate in CLT for i.i.d. random

variables. Let Z1, . . . , Zv be i.i.d. random variables such that EZ1 = 0, varZ1 = σ2 ∈ (0, ∞),
E|Z1|3 = ρ < ∞. We write F for the distribution function of Z1 and Fv stands for the
distribution function of (Z1 + . . . + Zv)/(σ

√
v). Then (see, e.g., Theorem 5.4 of [43]), for

any v ∈ N,

sup
u∈R
|Fv(u)−Φ(u)| ≤ C0ρ

σ3
√

v
,

where Φ(u) is the distribution function of a standard normal random variable, C0 is a
positive constant (C0 does not depend on distribution of Z1 and v). According to [44] one
has C0 ≤ 0, 4693. Consequently, taking Z ∼ N(0, 1), we have

P

(∣∣∣∣∣
∑q∈Dk(N)(ζq − Eζq)

σ0
√

Mk

∣∣∣∣∣ >
p2

0
√

MkεN

8]Xσ0

)
≤ P

(
|Z| > p2

0
√

MkεN

8]Xσ0

)
+

2C0

σ3
0
√

Mk
(43)

since E|ζq − Eζq|3 ≤ 1 for q ∈ Dk(N), where ζq = I{X(q)
U = xU , Y(q) = y}.

It is well-known (see, e.g., formula (29) of Chap. II of [41]), that, for u > 0, the
following inequality is true:

P(|Z| ≥ u) ≤
√

2/π

u
exp

{
−u2

2

}
.

Therefore, by virtue of an inequality σ2
0 ≤ 1/4 (which is valid for the indicator

variance) and as
(K− 1)[N/K] ≤ Mk ≤ N, (44)

we can write under condition (23) that

P

(
|Z| > p2

0
√

MkεN

8]Xσ0

)
≤ 8]X

√
2σ0

p2
0
√

πMkεN
exp



−

1
2

(
p2

0
√

MkεN

8]Xσ0

)2
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≤ 4
√

2]X
p2

0
√

πMkεN
exp



−

1
32

(
p2

0
√

MkεN

]X

)2




=
4
√

2]X
p2

0
√

πMk
exp



−

1
32

(
p2

0
√

MkεN

]X

)2

+ log
(

1
εN

)
 ≤

C1√
N

, N ∈ N,

and C1 does not depend on N.
Introduce

σ̃2 := min
U⊂T,x∈X,y∈Y

σ2
0 (U, x, y),

where one considers only strictly positive σ2
0 (U, x, y). Then obviously σ̃2 > 0, as there

exists only a finite collection of different variants. Thus in view of (44), for all x, y and U
under consideration, one has

2C0

σ̃3
√

Mk
≤ C2√

N
, N ∈ N,

where C0 appeared in (43) and C2 does not depend on N.
Therefore, if condition (23) is satisfied then, for all x ∈ X, y ∈ Y, k = 1, . . . , K and

j ∈ Dk(N), the following inequality holds:

Eη
(j)
N,k ≤

C3√
N

, N ∈ N, (45)

where C3 does not depend on x, y, k and N. Hence, in view of (44) we come to the relation

E


 ∑

j∈Dk(N)

gDk(N)(X(j), y; {(X(q), Y(q)), q ∈ Dk(N)})



4

≤
(

8C(]Dk(N))2 + 8(]Dk(N))4 C4
3

N2

)
∑

(xq ,yq)),q∈DN(k)

P((X(q), Y(q)) = (xq, yq)) ≤ C4N2,

where C4 does not depend on x, y, k and N. Thus according to (41), for all N large enough,
we have proved the inequality

EU4
N,1 ≤ C5, (46)

where C5 does not depend on N.
In a similar way (taking into account (42) and (45)), for i = 0, . . . , 2m − 1, y ∈ Y,

k = 1, . . . , K, and all N large enough, we get

ESk(i, y)8 ≤ C6(]DN(k))−4, (47)

where Sk(i, y) is introduced in (31), and C6 does not depend on N.
We will employ an elementary result for the Bernoulli scheme. Let U1, U2, . . . , be a

sequence of i.i.d. random variables such that P(U1 = 1) = p and P(U1 = 0) = 1− p, where
p ∈ (0, 1). Consider the following frequency estimator of a probability p:

p̂N :=
1
N

N

∑
j=1

I{Uj = 1}, N ∈ N.

Define

ψ̂N :=

{
1
p̂N

, p̂N 6= 0,

0, p̂N = 0.
(48)
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Lemma 2. For the Bernoulli scheme introduced above and the estimators ψ̂N provided by formula
(48), for each t ∈ N, the following relation holds:

E

(
ψ̂N −

1
p

)t
= O

(
1
N

)
, N → ∞. (49)

More precisely, the absolute value of the function in the left-hand side of (49), for all N ∈ N, admits
a bound c/N where c = c(p, t) for p ∈ (0, 1) and t ∈ N.

For the sake of completeness the proof of this result is given in Appendix A.
Now we continue the proof corresponding to Step 1. For all considered k, i, y and any

N ∈ N, the Cauchy - Bunyakovsky - Schwarz inequality yields

E
(
(ψ̂N,k(y)− ψ(y))Sk(i, y)

)4 ≤
(
E(ψ̂N,k(y)− ψ(y))8 ESk(i, y))8

)1
2 .

Due to Lemma 2 one has E(ψ̂N,k(y) − ψ(y))8 = O
(

1
N

)
, N → ∞. Employing the

Minkowski inequality (to take into account the summation over i, y, k), for all N ∈ N, we
come to the bound

EU4
N,2 ≤ N2C7

((
1
N

)(
1

N4

)) 1
2
=

C7√
N

, (50)

where C7 does not depend on N.
Consequently, by virtue of (33), (46) and (50) the uniform integrability of a sequence

(R2
N)N∈N is established. Thus (28) is verified.

Step 2. Now we study the asymptotic behavior of the variables
√

N(T̂N( f U) −
TN( f U)), as N → ∞, where T̂N( f U) and TN( f U) are given by Formulas (26) and (27), respec-
tively. For j ∈ N, i = 0, . . . , 2m− 1, y ∈ Y, we set Z(j)

i (y) = I{Y(j) = y, | f (X(j))− y| > i}.
One has √

N(T̂N( f U)− TN( f U)) = WN,1 +WN,2,

where

WN,1 =

√
N

K

K

∑
k=1

2m−1

∑
i=0

∑
i−m<|y|≤m

(ψ̂N,k(y)− ψ(y))
]Dk(N) ∑

j∈Dk(N)

(Z(j)
i (y)− EZ(j)

i (y)),

WN,2 =

√
N

K

K

∑
k=1

2m−1

∑
i=0

∑
i−m<|y|≤m

(ψ̂N,k(y)− ψ(y))
]Dk(N) ∑

j∈Dk(N)

P(Y(j) = y, | f U(X(j))− y| > i)

=

√
N

K

K

∑
k=1

2m−1

∑
i=0

∑
i−m<|y|≤m

(ψ̂N,k(y)− ψ(y))P(Y = y, | f U(X)− y| > i). (51)

The purpose of the second step is to prove that

EW2
N,1 → 0, N → ∞. (52)

For k = 1, . . . , K, i = 0, . . . , 2m− 1 and y ∈ Y introduce

Gk(i, y) =
1

]Dk(N) ∑
j∈Dk(N)

(Z(j)
i (y)− EZ(j)

i (y)).

The Cauchy-Bunyakovsky-Schwarz inequality yields

E
(
(ψ̂N,k(y)− ψ(y))Gk(i, y)

)2 ≤
(
E(ψ̂N,k(y)− ψ(y))4

) 1
2
(
E(Gk(i, y))4

)1
2 .
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For each considered N, y, i and k, the variables {Z(j)
i (y), j ∈ Dk(N)} are independent

and |Z(j)
i (y)− EZ(j)

i (y)| ≤ 1, so by virtue of the Rosenthal inequality (42) we obtain

E


 ∑

j∈Dk(N)

(Z(j)
i (y)− EZ(j)

i (y))




4

= O(]Dk(N)2).

Taking into account Lemma 2 for t = 4 and in view of (44), for each k = 1, . . . , K, we
get the relation

EW2
N,1 = O

(
N−

1
2

)
, N → ∞.

Therefore, the goal of the second step has been achieved.

Step 3. The implementation of steps 1 and 2 permits to reduce the study of the
asymptotic behavior (as N → ∞) of ZN given by Formula (25) to the study of variables

ηN :=
√

N(TN( f U)− Err( f U)) +WN,2, N ∈ N,

where WN,2 is defined by Formula (51).
The aim of the third step is to prove that E(ηN)

2 → σ2(U), as N → ∞, where σ2(U) is
the variance of the random variable V(U) appearing in Formula (22).

On this way, we will show that the sum of certain part of the terms in a specified
representation of the variables ηN does not affect (in the sense of L2(Ω,F ,P)) the limit
behavior of these variables for growing N. For y ∈ Y and WN ⊂ {1, . . . , N}, where N ∈ N,
we introduce the event

BWN (y) := {ω : P̂(y, ξ(WN)) 6= 0}, (53)

where P̂(y, ξ(WN)) is defined according to (13). Then, in view of the independence of
observations ξ(1), ξ(2), . . . we have

P(BWN (y)) = P


 ⋂

j∈WN

{Y(j) 6= y}

 = (1− P(Y = y))]WN .

If ω ∈ BWN (y) then |ψ̂(y, ξ(WN))− ψ(y)| = ψ(y). Set

HN :=

√
N

K

K

∑
k=1

2m−1

∑
i=0

∑
i−m<|y|≤m

(ψ̂N,k(y)−ψ(y))I{BN,k(y)}P(Y=y, | f (X)− y|> i),

where BN,k(y) := BDk(N)(y) and an event BWN (y) is introduced by Formula (53). Then

E(WN,2 − HN)
2 = E



√

N
K

K

∑
k=1

2m−1

∑
i=0

∑
i−m<|y|≤m

I{BN,k(y)}
P(Y = y)

P(Y = y, | f U(X)− y| > i)




2

≤ N(2m)4

p2
0

max
y∈Y

(1− P(Y = y))[N/K] → 0, N → ∞,

since ]Dk(N) ≥ [N/K] for N ∈ N, k = 1, . . . , K and because all P(Y = y) > 0 for each
y ∈ Y, [·] stands for an integer part of a number.

We verify that HN for large N is approximated in the space L2(Ω,F ,P) by the
random variable

H̃N :=

√
N

K

K

∑
k=1

2m−1

∑
i=0

∑
i−m<|y|≤m

I{BN,k(y)}
(
P(Y = y)− p̂N,k(y)

P(Y = y)2

)
P(Y = y, | f U(X)− y| > i),
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where p̂N,k(y) := P̂(y, ξ(Dk(N))) and P̂(y, ξ(WN)) was introduced by (13) for y ∈ Y and
WN ⊂ {1, . . . , N}. Evidently, 0 ≤ P(Y = y, | f U(X)− y| > i) ≤ 1 for all k, i, y and N under
consideration. Consequently, it follows that

∆N,k(i, y) :=
∣∣∣
√

NI{BN,k(y)}
(

1
p̂N,k(y)

− 1
P(Y = y)

)
P(Y = y, | f U(X)− y| > i)

−
√

NI{BN,k(y)}
(
P(Y = y)− p̂N,k(y)

P(Y = y)2

)
P(Y = y, | f U(X)− y| > i)

∣∣∣

≤
√

N
∣∣∣∣
P(Y = y)− p̂N,k(y)

P(Y = y)

∣∣∣∣
∣∣∣∣ψ̂N,k(y)−

1
P(Y = y)

∣∣∣∣

=

√
N

P(Y = y)
√
]Dk(N)

∣∣∣∣ψ̂N,k(y)−
1

P(Y = y)

∣∣∣∣JN ,

where
JN :=

1√
]Dk(N)

∑
j∈Dk(N)

(I{Y(j) = y} − P(Y(j) = y)).

For any considered k, i, y and N the Cauchy - Bunyakovsky - Schwarz inequality
implies that

E(∆N,k(i, y))2 ≤ N
(P(Y = y)2]Dk(N)

(
EJ4

NE

(
ψ̂N,k(y)−

1
P(Y = y)

)4
) 1

2

.

The Rosenthal inequality (42) yields that EJ4
N ≤ 2C(4). By means of Lemma 2 (for

t = 4 and multipliers c(p, t) with p = P(Y = y)), for all considered i, y, k and any N ∈ N
we come to the bound

E(∆N,k(i, y))2 ≤ N
(P(Y = y)2]Dk(N)

(2C(4)c(P(Y = y), 4))
1
2√

N
.

Therefore, E(HN − H̃N)
2 → 0 as N → ∞.

Let us define the variable GN by formula similar to H̃N but without the multiplier
I{BN,k(y)}. In view of (44) it is easily seen that

E(H̃N − GN)
2 ≤ N(2m)4

p4
0

max
y∈Y

(1− P(Y = y))[N/K]
(

1
4

)
max

k=1,...,K

1
]Dk(N)

→ 0, N → ∞.

Thus E(ηN −QN)
2 → 0 as N → ∞, where

QN :=
√

N(TN( f U)− Err( f U)) + GN , N ∈ N.

Taking into account Formula (6) for the function f = f U , we come to the relation

QN =

√
N

K

K

∑
k=1

2m−1

∑
i=0

∑
i−m<|y|≤m

1
]Dk(N) ∑

j∈Dk(N)

( I{Y(j) = y, | f U(X(j))− y| > i}
P(Y = y)

− P(Y = y, | f U(X)− y| > i)
P(Y = y)

+
(P(Y = y)− I{Y(j) = y})P(Y = y, | f U(X)− y| > i)

P(Y = y)2

)

=

√
N

K

K

∑
k=1

1
]Dk(N) ∑

j∈Dk(N)

V(j), (54)
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where, for j ∈ N,

V(j) :=
2m−1

∑
i=0

∑
i−m<|y|≤m

I{Y(j)=y}
P(Y=y)

(
I{| f U(X(j))− y| > i)−P(| f U(X)− y| > i|Y = y)

)
. (55)

The variables {V(j), j ∈ N} are centered, i.i.d. and uniformly bounded for all j (clearly,
V(j) = V(j)(U)). For each j ∈ N, the distributions of V(j) and V(U) coincide, where V(U)
is introduced in (22). Thus, one has

varV(j) = varV(U) = σ2(U), j ∈ N. (56)

According to the lemma on grouping independent random variables, for each N ∈ N,
the variables ∑j∈Dk(N) V(j), k = 1, . . . , K, are independent. Since N/]Dk(N) → K as
N → ∞, for k = 1, . . . , K, we come to the relation

E(Q2
N) = var QN =

N
K2

K

∑
k=1

1
(]Dk(N))2 ∑

j∈Dk(N)

varV(j) = σ2(U)
1

K2

K

∑
k=1

N
]Dk(N)

→ σ2(U),

as N → ∞. Hence Eη2
N → σ2(U), N → ∞. The goal of the third step has been achieved.

In view of the above approximations (in L2(Ω,F ,P)) of the initial random variables
ZN , introduced by (25), we conclude that EZ2

N → σ2(U), as N → ∞. Namely, we apply the
following elementary statement: if Eα2

N → 0 and Eβ2
N → σ2 then E(αN + βN)

2 → σ2, as
N → ∞. Therefore, (24) is established. The proof of Lemma 1 is complete.

Further we will also employ a result that immediately follows from Theorem 1.

Corollary 1. Let the conditions of Lemma 1 be satisfied. Then the following relations hold:

√
NE
(
ÊrrK,N,εN ( f U)− Err( f U)

)
→ 0, N → ∞, (57)

var (
√

NÊrrK,N,εN ( f U))→ σ2(U), N → ∞, (58)

where σ2(U) is a variance of the random variable V(U) introduced in (22).

Proof. Condition (23) implies (20). Thus, according to Theorem 1, we have

ZN
D→ Z ∼ N(0, σ2(U)), N → ∞, (59)

where ZN , N ∈ N, are defined in (25). Due to Lemma 1 one has the uniform integrability
of the sequence (Z)N∈N. Consequently, relation (59) implies (57), i.e., EZN → EZ = 0, as
N → ∞. Obviously,

var (
√

NÊrrK,N,εN ( f U))

= E
(√

N(ÊrrK,N,εN ( f U)− Err( f U)
)2
−
(√

NE(ÊrrK,N,εN ( f U)− Err( f U))
)2

.

Therefore, to obtain (58), it is sufficient to use Lemma 1 and take into account (57). The
proof is complete.

Note that (59) can be obtained directly under conditions of Lemma 1. For each N ∈ N
and any k = 1, . . . , K, according to Lindeberg’s theorem applied to arrays {V(j), j ∈ Dk(N)}
of centered i.i.d. uniformly bounded summands, where a sequence (V(j))j∈N is introduced
in (55), taking into account (56) one has

VN,k :=
1√

]Dk(N)
∑

j∈Dk(N)

V(j) D→ Zk ∼ N(0, σ2(U)), N → ∞. (60)
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For every N ∈ N, the random variables VN,k, k = 1, . . . , K, are independent and
varVN,k = σ2(U). Since N/]Dk(N) → K as N → ∞, for k = 1, . . . , K, by virtue of (60) we
come to relation

QN
D→ Z ∼ N(0, σ2(U)), N → ∞, (61)

where in view of (54) one has QN = 1
K ∑K

k=1

√
N

]Dk(N)
VN,k, N ∈ N. Applying (61) and

Slutsky’s lemma, we arrive at (59).
Also note that relation (29) can be easily derived from (36) and (39) without employ-

ment of [32].

4. Forward Selection of Relevant Factors

Now we can turn to the sequential selection of factors based on MDR-EFE method.
At the first step one searches for j1 ∈ T a point where the function ÊrrK,N,εN ( f {i}) attains
the minimum over all i ∈ T. If there are several such points, then we take, e.g., one with
the smallest index value. Recall that according to (17) (more precisely, after regularization),
the random variable ÊrrK,N,εN ( f {i}) is in fact a function of f̂ {i}PA , which is a forecast of
the function f {i}. Then this procedure is repeated, namely, if at (k − 1)-th step the set
Sk−1 := {j1, . . . , jk−1} is constructed, where k ∈ {2, . . . , r}, then jk ∈ T \ Sk−1 is selected
at step k in such a way that given j1, . . . , jk−1 the function ÊrrK,N,εN ( f {Sk−1,i}) takes the
minimum value over i ∈ T \ Sk−1 for i = jk. It is convenient to assume that an empty set is
taken at the zero step. Then at each next step one new element is added to the previously
constructed sets. If at some step there are several minimum points of the considered
function then we take only one of them, e.g., with the minimal index.

Thus, for each N ∈ N the random sets Sk(N) = Sk(N, ω) := {j1, . . . , jk} arise, where
k = 1, . . . , r and jm = jm(N, ω), m = 1, . . . , r. By construction one can write

jk(N, ω) ∈ Jk(N, ω) := arg min
i∈T\Sk−1(N,ω)

ÊrrK,N,εN ( f {Sk−1(N,ω),i}),

where S0 := ∅ and {∅, i} := {i}. In other words the choice jk(N, ω) at step k means that,
for i ∈ T \ Sk−1(N, ω),

ÊrrK,N,εN ( f Sk(N,ω)) ≤ ÊrrK,N,εN ( f {Sk−1(N,ω),i}), (62)

moreover, jk(N, ω) = min{i : i ∈ Jk(N, ω)}, k = 1, . . . , r. If the joint distribution of X and
Y is known, then instead of the described scheme for constructing random sets, Sk(N, ω)
we turn to considering the non-random “oracle” sets Tk = {i1, . . . , ik}, where k = 1, . . . , r,

ik ∈ arg min
i∈T\Tk−1

Err( f {Tk−1,i}), (63)

T0 := ∅, and the functional Err is introduced by formula (2). If there are several ik
satisfying (63) we take among them that one which has the minimal value.

For k ∈ {1, . . . , r} and i ∈ T \ Tk introduce

Ck,i := Err( f {Tk−1,i})− Err( f Tk ).

By construction of the sets Tk we have Ck,i ≥ 0, where k = 1, . . . , r and i ∈ T \ Tk. We
call a model, satisfying condition (1), regular whenever the following relation is true:

Ck,i > 0, k = 1, . . . , r, i ∈ T \ Tk. (64)
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In other words, for each k = 1, . . . , r, a point ik in (63) is determined uniquely. Further
we employ the penalty function introduced in (11). We also use its strongly consistent
estimate of type (48) with

p̂N :=
1

WN
∑

j∈WN

I{Y(j) = y}, (65)

WN ⊂ {1, . . . , N} and ]WN → ∞ as N → ∞.

Theorem 2. Let the considered model (1) with a collection of relevant factors having cardinality
r < p, be regular, i.e., let (64) take place. Then, for the random sets Sr(N) introduced above, the
following relation is valid

P(Sr(N) = Tr)→ 1, N → ∞, (66)

where Tr is defined by means of (63) for k = 1, . . . , r. In other words, with probability close to one,
the described procedure of forward selection based on statistical estimates of the error functional
leads to the “oracle” collection Tr, when N is large enough.

Proof. For a random set Sr(N, ω) = {j1(N, ω), . . . , jr(N, ω)}, where jk(N, ω) is an element
taken at k-th step, one has

P(ω : Sr(N, ω) = Tr) ≥ P(ω : j1(N, ω) = i1, . . . , jr(N, ω) = ir).

Note that

P(ω : j1(N, ω) = i1, . . . , jr(N, ω) = ir) ≥ P

(
r⋂

k=1

Ak(N)

)
,

where
Ak(N) :=

⋂

i∈T\Tk−1

{
ÊrrK,N,εN ( f Tk ) < ÊrrK,N,εN ( f {Tk−1,i})

}
,

k = 1, . . . , r. Thus, we obtain:

P

(
r⋂

k=1

Ak(N)

)
= 1− P

(
r⋃

k=1

Ak(N)

)
≥ 1−

r

∑
k=1

P
(

Ak(N)
)

≥ 1−
r

∑
k=1

∑
i∈T\Tk−1

P
(

ÊrrK,N,εN ( f Tk ) ≥ ÊrrK,N,εN ( f {Tk−1,i})
)

, (67)

where, as usual, A := Ω \ A for A ⊂ Ω. Then, for k = 1, . . . , r, i ∈ T \ Tk−1 and N ∈ N,
we get

∆k,i(N) := ÊrrK,N,εN ( f Tk )− ÊrrK,N,εN ( f {Tk−1,i}) (68)

= (ÊrrK,N,εN ( f Tk )− EÊrrK,N,εN ( f Tk )) + (EÊrrK,N,εN ( f Tk )− Err( f Tk ))

+ (Err( f Tk )− Err( f {Tk−1,i})) + (Err( f {Tk−1,i})− EÊrrK,N,εN ( f {Tk−1,i}))

+ (EÊrrK,N,εN ( f {Tk−1,i})− ÊrrK,N,εN ( f {Tk−1,i})).

For U ⊂ T, set

ZN(U) := ÊrrK,N,εN ( f U)− EÊrrK,N,εN ( f U).

For any k = 1, . . . , K, i ∈ T \ Tk−1 and each δ ∈ (0, 1) in light of formula (57) of
Corollary 1, for all N large enough (N ≥ N2(δ, k, i)) it holds

P(∆k,i(N) ≥ 0) ≤ P(
√

N|ZN(Tk(N))|+
√

N|ZN({Tk−1(N), i})| ≥
√

NCk,i − δ)

41



Mathematics 2024, 12, 831

≤ P

(√
N|ZN(Tk(N))| ≥ (1−δ)

√
NCk,i

2

)
+ P

(
|ZN({Tk−1(N), i})| ≥ (1−δ)

√
NCk,i

2

)
,

where Ck,i are introduced in (66), ∆k,i(N) is defined by (68).
Applying the Bienaymé - Chebyshev inequality and taking into account Formula (58)

of Corollary 1, for each U ⊂ T and any c > 0, we come, for a centered random variable
ZN(U), to the relation

P(
√

N|ZN(U)| ≥ c
√

N) ≤ Nvar ZN(U)

Nc2 ∼ varV(U)

Nc2 , N → ∞, (69)

where V(U) is determined by Formula (22). According to (64), for k ∈ {1, . . . , r} and
i ∈ T \ Tk, one has Ck,i > 0. Therefore, for all N large enough (N ≥ N3(δ, k, i)), the
following inequality takes place:

P(∆k,i(N) ≥ 0) ≤ 4(varV(Tk) + varV({Tk−1, i})
N(1− δ)2C2

k,i
. (70)

For a fixed m ∈ N, one can change the summation order over i and y to write
Formula (22) as follows:

V(U) =
m

∑
y=−m

I{Y = y}
P(Y = y)

W(y, U),

where

W(y, U) = ∑
0≤i<|y|+m

(
I{| f U(X)− y| > i} − P(| f U(X)− y| > i|Y = y)

)
. (71)

Thus, for any U ⊂ T, one has

|V(U)| ≤ 2m
m

∑
y=−m

I{Y = y}
P(Y = y)

.

Consequently, we come to the inequality

varV(U) ≤ EV2(U) ≤ 4m2
m

∑
y=−m

1
P(Y = y)

=: a,

where a = a(m, (P(Y = y))y∈Y). We see that varV(Tk) + varV({Tk−1, i}) ≤ 2a for all
k ∈ {1, . . . , r}, i ∈ T \ Tk−1 and N ∈ N. For each δ ∈ (0, 1), any k ∈ {1, . . . , r}, i ∈ T \ Tk−1
and all N large enough, we get the following bound:

P(∆k,i(N) ≥ 0) ≤ 8a
N(1− δ)2C2

k,i
.

Hence, for each δ ∈ (0, 1) and all N large enough, by virtue of (67) the following
inequality holds:

P(Sr(N) = Tr) ≥ 1− 8ar
N(1− δ)2C2

0

(
p + 1− r + 1

2

)
, (72)

where C2
0 := mink=1,...,r, i∈T\Tk−1

C2
k,i > 0 according to (64). Thus relation (72) implies the

validity of (66).
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Now note that according to (69) the following relation is true:

P(
√

N|ZN(U)| ≥ c
√

N) = O
(

1
N

)
, N → ∞. (73)

The question arises whether this probability decreases like C/N where C is a positive
constant or more rapidly. The answer depends on the variance of the random variable
V(U) given by Formula (22). In view of (70) we will determine when the variable V(U)
is degenerate, i.e., equal to a constant a.s. This is also of independent interest for the CLT
established in Section 6 of [32] and given above as Theorem 1. The following result provides
a simple characterization of the V(U) degeneracy.

Lemma 3. For an arbitrary set U ⊂ T, the variance of the random variable V(U), appearing in
Formula (22), is zero if and only if, for every y ∈ Y, there is k0(y) ∈ {0, . . . , m + |y|} such that

P(| f U(X)− y| = k0(y), Y = y) = P(Y = y). (74)

Thus, for each y ∈ Y, on the set {Y = y} the random variable f U(X) does not necessarily take a
constant value. Moreover, the values of k0(y) need not coincide for different y.

Proof. For y = 0, . . . , m and a random variable W(y, U), introduced by Formula (71), one
can write

W(y, U) = ∑
0≤i<y+m

(
I{| f U(X)− y| > i} − P(| f U(X)− y| > i|Y = y)

)

= ∑
0≤i<y+m

∑
i<k≤m+y

(
I{| f U(X)− y| = k} − P(| f U(X)− y| = k|Y = y)

)

=
m+y

∑
k=1

k−1

∑
i=0

(
I{| f U(X)− y| = k} − P(| f U(X)− y| = k|Y = y)

)

=
m+y

∑
k=1

k(I{| f U(X)− y| = k} − P(| f U(X)− y| = k|Y = y))

=
m+y

∑
k=1

kI{| f U(X)− y| = k} − E(| f U(X)− y||Y = y).

In a similar way we consider y = −m, . . . ,−1. Thus, for all y ∈ Y, one gets

W(y, U) =
m+|y|
∑
k=1

kI{| f U(X)− y| = k} − E(| f U(X)− y||Y = y).

Recall that P(Y = y) > 0 for all y ∈ Y. If, for some y, k, j ∈ Y, k 6= j, we have

P(| f U(X)− y| = k, Y = y) > 0, P(| f U(X)− y| = j, Y = y) > 0,

then on the events {| f U(X)− y| = k, Y = y} and {| f U(X)− y| = j, Y = y} the variable
W(y, U) takes different values. Therefore, V(U) takes different values on these events.
Hence varV(U) > 0, if (74) is not valid. Thus (74) is a necessary condition to guarantee
that varV(U) = 0. Suppose now that, (74) holds. In this case we get

E(| f U(X)− y||Y = y) = k0(y), y ∈ Y.

Clearly, k0(y) depends on U as well. We see that V(U) on each set {Y = y} takes
(up to the set of measure zero) the value 1

P(Y=y) (k0(y) − k0(y)) = 0, y ∈ Y. Therefore,
varV(U) = 0. Note that k0(y) need not coincide for different y ∈ Y. The proof is com-
plete.
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5. Concluding Remarks

The established asymptotical result (Theorem 2) is rather qualitative in nature, since
relation (66) assumes increasing values of N. Relation (72) is more precise. However, (72)
demonstrates that, loosely speaking, one has to employ N >> rp. As previously, we assume
that assumption (A), introduced on page 2, is valid. Evidently, the sequential choice of
relevant variables based on statistical estimators of the error functional (of response approx-
imation), is attractive for implementation, although suboptimal. In this regard Theorem 2
shows that under certain conditions, forward (random) selection with a high probability
leads to the same collection of factors, which is provided by the sequential procedure with
known joint distribution of the vector of factors X and the response Y. In the future work,
it would be reasonable to supplement the theoretical results by computer simulations (see,
e.g., [45]).

Consideration of the proximity of the results of optimal and suboptimal procedures
requires a separate study. In addition, we note that within the framework of linear models,
estimates of the probability of correct identification of relevant factors are considered, e.g.,
in [46,47]. Theorem 2 does not assume the linearity of stochastic model. Presumably for
the first time, in our work a forward selection of relevant factors affecting the non-binary
random response is treated on the base of MDR-EFE method. It would be interesting to
extend the conditions allowing to establish relation (66). Moreover, stability problems of FS
deserve special attention, see, e.g., [48–50]. Algorithms stability for classification problems
in the framework of random trees is treated in [51].

Finally, we emphasize that the problem of statistical estimation of the cardinality of a
set of relevant factors appearing in definition (1) is very important and complex. Along
with dealing with the deterministic number of selected factors, there is a research approach
based on developing the rules for stopping the procedures used to identify the relevant set.
In this regard, we indicate, e.g., article [52], dedicated to information methods for selecting
relevant factors. The study of non-discrete stochastic models is also of undoubted interest,
see, e.g., [53].

Further it would be interesting to study other functionals than (2) to measure the
quality of a response approximation by means of functions defined on various collections
of factors. One can also consider a random number of observations. In this regard we refer,
e.g., to [27,54].
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Appendix A. Proof of Lemma 2

Proof. For any t ∈ N and p ∈ (0, 1), one has

E(ψ̂N)
t = Nt

N

∑
j=1

1
jt

(
N
j

)
pj(1− p)N−j

=
Nt

pt(N + 1) . . . (N + t)

N

∑
j=1

(j + 1) . . . (j + t)
jt

(
N + t
j + t

)
pj+t(1− p)(N+t)−(j+t)

=
1
pt (1 + ht(N))

N+t

∑
i=t+1

(
1 +

a1

i− t
+ . . . +

at

(i− t)t

)(
N + t

i

)
pi(1− p)N+t−i,
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where ht(N) = O(1/N), as N → ∞, and a1, . . . , at ∈ N. We do not use the explicit formulas
a1 = t(t + 1)/2, . . . , at = t!. Note that

N+t

∑
i=t+1

(
N + t

i

)
pi(1− p)N+t−i = 1−

t

∑
i=0

(
N + t

i

)
pi(1− p)N+t−i = 1− gt(N),

where gt(N) := ∑t
i=0 gt,i(N) and, for i = t + 1, . . . , N + t, one has

0 ≤ gt,i(N) :=
(

N + t
i

)
pi(1− p)N+t−i ≤ (N + t)t(1− p)N = O(1/N), N → ∞.

For each k = 1, . . . , t, introduce

qt,k(N) :=
N+t

∑
i=t+1

1
(i− t)k

(
N + t

i

)
pi(1− p)N+t−i

=
1

pk(N + t + 1) . . . (N + t + k)

N+t

∑
i=t+1

(i + 1) . . . (i + k)
(i− t)k

(
N+t+k

i + k

)
pi+k(1− p)(N+t+k)−(i+k).

Obviously, one can write qt,k(N) = O
(

1/Nk
)

, as

(i + 1) . . . (i + k)(i− t)−k ≤ (1 + t + k)k ≤ (1 + 2t)t

for all i ≥ t + 1, k = 1, . . . , t, and since

N+t

∑
i=t+1

(
N+t+k

i + k

)
pi+k(1− p)(N+t+k)−(i+k) ≤ 1.

Consequently, for any t ∈ N, we get

E(ψ̂N)
t =

1
pt (1 + ht(N))

(
1− gt(N) +

t

∑
k=1

qt,k(N)

)
=

1
pt + Rt(N),

where Rt(N) = O(1/N), as N → ∞. Evidently, E(ψ̂N)
0 = 1 for N ∈ N. For each N ∈ N,

set R0(N) = 0. Thus, for t ∈ N, one has

E

(
ψ̂N −

1
p

)t
=

t

∑
v=0

(
t
v

)
E(ψ̂N)

v
(
−1
p

)t−v
=

t

∑
v=0

(
t
v

)(
1
pv + Rv(N))

)(
−1
p

)t−v
=O

(
1
N

)
,

because

t

∑
v=0

(
t
v

)(
1
p

)v(
−1
p

)t−v
=

(
1
p
− 1

p

)t
= 0,

t

∑
v=0

(
t
v

)(
1
p

)t−v
=

(
1 +

1
p

)t

and
max

v=0,...,t
|Rv(N)| = O(1/N), N → ∞.

The proof of Lemma 2 is complete.
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Abstract: This work focuses on making Bayesian inferences for the two-parameter Birnbaum–
Saunders (BS) distribution in the presence of right-censored data. A flexible Gibbs sampler is
employed to handle the censored BS data in this Bayesian work that relies on Jeffrey’s and Achcar’s
reference priors. A comprehensive simulation study is conducted to compare estimates under various
parameter settings, sample sizes, and levels of censoring. Further comparisons are drawn with
real-world examples involving Type-II, progressively Type-II, and randomly right-censored data.
The study concludes that the suggested Gibbs sampler enhances the accuracy of Bayesian inferences,
and both the amount of censoring and the sample size are identified as influential factors in such
analyses.
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1. Introduction

The Birnbaum–Saunders (BS) distribution is a two-parameter lifetime distribution that
was originally introduced by [1] to model the failure time due to the growth of a dominant
crack that is subjected to cyclic stress, which causes a failure upon reaching the threshold
level. The BS distribution has gone through various developments and generalizations and
is found to be suitable for life testing applications. The distribution was originally derived to
model the fatigue life of metals that are subject to periodic stress; this is sometimes referred
to as the fatigue life distribution. Interestingly, it can also be obtained by using a monotone
transformation on the standard normal distribution [2]. Moreover, as [3] indicated, the BS
distribution can be viewed as an equal mixture of an inverse Gaussian (IG) distribution
and its reciprocal. These relations are useful in deriving important properties of the BS
distribution based on well-known properties of the normal and IG distributions. Ref. [4]
showed that the BS distribution can be used as an approximation of the IG distribution. In
practice, both the BS and IG distributions are often considered very competitive lifetime
models for right-skewed data [5,6].

The distribution function of the BS failure time T with parameters α and β, denoted
by T ∼ BS(α, β), is given by

FT(t) = Φ

[
1
α

(√
t
β
−
√

β

t

)]
, (1)

where 0 < t < ∞, and α > 0, β > 0 are the shape and scale parameters, respectively.
Here, Φ(·) represents the distribution function of the standard normal distribution. Since
FT(β) = Φ(0) = 0.5, the scale parameter β is the median of the BS distribution. The
probability density function (pdf) of the BS(α, β) is given by
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fT(t) =
1

2
√

2παβ

[(
β

t

)1/2
+

(
β

t

)3/2
]

exp
[
− 1

2α2

(
t
β
+

β

t
− 2
)]

(2)

It can be easily shown that E(T) = β(1 + α2/2) and Var(T) = (αβ)2(1 + 5α2/4).
Interestingly, Ref. [7] indicates that T−1 ∼ BS(α, β−1), and therefore the reciprocal variable
T−1 also belongs to the same family.

The parameter estimation for the BS distribution, including the maximum likelihood
estimation (MLE), is largely discussed in its literature. For complete data, Ref. [8] derived
the MLE’s of the BS parameters. Ref. [9] introduced modified moment estimators (MMEs),
a bias reduction method and a Jackknife technique to reduce the bias of both MMEs and
MLEs. Ref. [10] introduced alternative estimators with a smaller bias compared to that
for Ref. [9]. Point and interval estimations of the BS parameters under Type-II censoring
are discussed in [11]. Ref. [12] suggested a modified censored moment estimation method
to estimate its parameters under random censoring. Ref. [13] suggested using a fiducial
inference on BS parameters for right-censored data.

Bayesian approaches have also been used to make inferences on the BS parameters.
Ref. [14] used both Jeffrey’s prior and a reference prior to derive marginal posteriors using
Laplace’s approximation; while [15] employed only the reference priors and considered an
approximate Bayesian approach using Lindley’s method. Ref. [16] justified that Jeffrey’s
reference prior results in an improper posterior for the scale parameter and suggested
employing the reference priors that incorporate some partial information. In this situation,
they suggested applying the slice sampling method to obtain a proper posterior for the case
of censored data. A work by [17] adopted inverse-gamma priors for the shape and scale
parameters and proposed an efficient sampling algorithm using the generalized ratio-of-
uniforms method to compute Bayesian estimates. Ref. [18] also adapted the inverse-gamma
priors for both the BS parameters and applied Markov Chain Monte Carlo (MCMC)-based
conditional and joint sampling methods to handle censored data.

The censored data appear in life-time experiments due to various reasons; the nature
of censoring plays a vital role in its analysis. In this study, we focus on the right-censored
data that occurs when the test start time of each unit is known, but the test end time is
unknown. This includes the random right, Type-II, and progressively Type-II censoring
schemes. The progressively Type-II censoring scheme allows one to remove a pre-specified
number of uncensored units from the remaining experimental units at the observed failure
times [19]. As such, it is a more general form of Type-II censoring, where censoring takes
place progressively in r stages. In this scheme, a total of n units are placed on a life-test,
only r are completely observed until failure and the rest of n− r units are rightly censored.
However, at the time of the first failure, say t(1), R1 of the n− 1 surviving units are randomly
withdrawn from the experiment; at the time of the next failure, say t(2), R2 of the n− 2− R1
surviving units are censored, and so on. At the time of the last (rth) failure, say t(r), all the
remaining Rr = n− r−∑r−1

j=1 Rj surviving units are censored. Therefore, in progressively
Type-II censoring experiments with pre-specified r and {R1, R2, ..., Rr}, the data will take
the form {(t(1), R1), (t(2), R2), ..., (t(r), Rr)}.

In this work, we focus on estimating both BS parameters in the presence of right-
censored units as well as the average remaining test time T̄ of the censored units. For
instance, let us consider n non-repairable units and assume we observe failures in r pro-
gressively censored stages with censored times y′ = (t(1), t(2), ..., t(r)). If the experiment
were to continue so that all (n − r) -censored values could be observed, then we let
ỹ′i = (t(i:1), t(i:2), ..., t(i:Ri)

) be the set of true observed values of the censored values at the
ith progressive stage. Then, the remaining total test time for these Ri censored elements
is ỹ′i1− t(i)1

′1, where 1 is a column vector of 1’s of length Ri. As such, the estimated and
average remaining test time for all the censored units from all r progressive stages is

T̄ =
1

n− r

r

∑
i=1

(
ỹ′i1− t(i)1

′1
)

. (3)
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The rest of the article is organized as follows: In Section 2, we discuss the parameter
estimation of the BS distribution using both the maximum likelihood method and the
Bayesian method. Section 3 covers the Gibbs sampling procedure for handling censored
data. In Section 4, we conduct a Monte–Carlo simulation study to compare the performance
of the aforementioned methods. Illustrative examples are included in Section 5, and we
conclude with remarks and recommendations in Section 6.

2. BS Parameter Estimation

In this section, we focus on the Bayesian parameter estimation with two different
prior specifications: Jeffrey’s and Achcar’s priors for the BS parameters α and β. We
discuss some of the practical challenges of these procedures while summarizing their
methodological foundations.

On the other hand, the MLE of BS parameters, α and β, were heavily discussed in
the literature; see [2,8] for details. Consider an experiment with n random failure times
T = {t1, t2, ..., tn} that follow the BS distribution. Then, its log-likelihood function, without
the additive constant, becomes

l(α, β|T) = −n ln(αβ) +
n

∑
i=1

ln

[(
β

ti

)1/2
+

(
β

ti

)3/2
]
− 1

2α2

n

∑
i=1

(
ti
β
+

β

ti
− 2
)

. (4)

By differentiating Equation (4) with respect to α and solving it for zero, one can obtain

α2 =

[
s
β
+

β

q
− 2
]

, (5)

where s = ∑n
i=1 ti/n and q =

[
∑n

i=1 t−1
i /n

]−1
are the sample arithmetic and harmonic

means of the observed data. Next, when differentiating Equation (4) with respect to β and
substituting α2 from Equation (5), the following can be obtained to determine the MLE of β.

β2 − β(2q + K(β)) + q(s + K(β)) = 0, (6)

where K(β) =
[
∑n

i=1(β + ti)
−1/n

]−1. The MLE β̂ of β is the unique positive root of
Equation (6), in which q < β̂ < s. With this estimate, the MLE of α becomes

α̂ =
[

s
β̂
+ β̂

q − 2
]1/2

.

2.1. Bayesian Inference

Here, we consider the Bayesian work that was originally suggested by [14] by employ-
ing non-informative priors that include Jeffrey’s and Achcar’s reference priors. Jeffrey’s
prior density for α and β is given by

π(α, β) ∝
√

det I(α, β),

where I(α, β) =

( 2n
α2 0

0 n[1+αg(α)/
√

2π]
α2β2

)
is the Fisher information matrix of the BS dis-

tribution, g(α) = α
√

π/2 − π exp{2/α2}[1 − Φ(2/α)], and Φ is the standard normal
distribution function.

Using the Laplace approximation, it can be shown that Jeffrey’s prior takes the follow-
ing form

π(α, β) ∝
1

αβ
H(α2), α > 0, β > 0,

where H(α2) =
(

1
α2 +

1
4

)
.
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Assuming independence between α and β, [14] suggested a reference prior that takes
the following form

π(α, β) ∝
1

αβ
, α > 0, β > 0.

In our discussion, we called this Achcar’s reference prior.

2.2. Posterior Inference

For Jeffrey’s prior, the joint posterior distribution of α and β becomes [14]

π(α, β|T) ∝
∏n

i=1(β + ti) exp{−Q(β)/α2}
αn+1β(n/2)+1H(α2)

, (7)

where Q(β) = ns
2β + nβ

2q − n.
Then, using the Laplace approximation (see Appendix A), the approximate marginal

posterior distributions of α and β for Jeffrey’s prior can be written as

π(α|T) ∝ α−(n+1)(4 + α2)1/2 exp
{
− n

α2 (
√

s/q− 1)
}

, α > 0, (8)

and

π(β|T) ∝
∏n

i=1(β + ti){4 + [2n/(n + 2)][s/(2β) + β/(2q)− 1]}1/2

β(n/2)+1{s/(2β) + β/(2q)− 1}(n+1)/2
, β > 0, (9)

respectively.
Then, for Achcar’s reference prior, the joint posterior becomes the same as

Equation (7) except where H(α2) = 1 and the approximate marginal posterior distributions
of α and β become

π(α|T) ∝ α−n exp
{
− n

α2 (
√

s/q− 1)
}

, α > 0, (10)

and

π(β|T) ∝
∏n

i=1(β + ti)

β(n/2)+1{s/(2β) + β/(2q)− 1}n/2 , β > 0, (11)

respectively.
As both Jeffrey- and Achcar-based posteriors do not have closed-form distributions,

the Bayes estimates of α and β cannot be obtained in an explicit form. However, [14]
proposed that the mode of the corresponding posteriors may be used as the Bayes estimates for
α and β.

The work by [16] has shown that the above Achcar’s reference prior based posterior
given in Equation (11) becomes improper when β→ ∞. In practice, both posteriors given
in Equations (9) and (11) are numerically intractable for larger β and n values due to the
increments of the products in their numerators. However, as FT(t, α, β) = FT(t/β, α, 1),
the parameter β in the BS distribution is solely a scale parameter which represents the
median. Therefore, we suggest a simple and computationally efficient scaler transformation
tnew = t/β̂ to reduce this inflation and to avoid the situation that β→ ∞. As a result, the
median of the transformed data and the posteriors of β will be centered around one.

3. Application of Gibbs Sampler

In this section, we introduce a Gibbs sampling procedure that can be used to estimate
the parameters of the BS distribution in the presence of censored data. The procedure uses
Markov Chain Monte Carlo (MCMC) techniques to generate data samples that replace the
censored portion of the data set.
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Here, we propose using Bayesian inference for BS parameters α and β, employing
marginal posteriors obtained using both Jeffrey’s and Achcar’s priors via the Gibbs sampler.
Moreover, upon sampling from a BS distribution for unknown realizations of censored
units, the remaining average lifetime is also estimated.

The Gibbs sampler requires suitable initial values for α and β to achieve its convergence.
Often the MLE’s from the observed data given censoring are preferred for this purpose.
Ignoring the additive constant, the BS log-likelihood function for the progressively Type-II-
censored data of the form {(t(1), R1), (t(2), R2), ..., (t(r), Rr)} can be written as

l(α, β|T) =
r

∑
i=1

{
ln f (t(i); α, β) + Ri ln (Φ(−g(t(i); α, β)))

}
, (12)

where f (·) is the pdf of the BS distribution given in Equation (2), and g(t; α, β) = 1
α

(√
t
β −

√
β
t

)
.

The MLEs of the BS parameters cannot be obtained in the closed form for this censoring
scheme. Using the property that the BS distribution can be written as an equal mixture of
an IG distribution and its reciprocal [20] outlined an EM algorithm to obtained its MLEs.
In this work, we use a computational tool introduced in [21] that is freely available in [22],
which can be used to obtain MLEs of the BS parameters with all major censoring schemes.

Below, we outline the major steps of the Gibbs sampler, which employs progressively
Type-II-censored BS data.

1. Calculate the MLE α̂MLE and β̂MLE from the available right-censored data. Set

α̂MLE = α
(0)
1 and β̂MLE = β

(0)
1 .

2. Generate Ri random variates from a uniform distribution bounded by the BS CDF
(FT) value of the respective censored observation and one. Then, use the inverse CDF
(F−1

T ) value of the newly sampled random variate to replace the censored value. For
instance, for the jth censored observation in (t(i), Ri),

• Generate: u(j:i) ∼ U
[

FT

(
t(i)
)

, 1
]
, where FT

(
t(i)
)
= Φ

[
1

α
(0)
1

(√
t(i)
β
(0)
1

−
√

β
(0)
1

t(i)

)]
.

• Then, set: t(0)
(j:i) = F−1

T

(
u(j:i); α

(0)
1 , β

(0)
1

)
.

3. Repeat Step 2 for all censored units in all r censored stages. The censored data will

be replaced by the the newly simulated data t(0)
(j:i) (> t(i)), ∀j = 1, 2, ..., Ri for each

i = 1, 2, ..., r and will be combined with the observed failure times t(1), t(2), ..., t(r) to
form an updated and complete sample of size n.

4. Using the updated sample in Step 3, sample α
(1)
1 and β

(1)
1 from their respective

posterior distributions.
5. Repeat Steps 2–4 starting with the newly sampled parameters, α

(1)
1 and β

(1)
1 . This

procedure will continue for k total iterations and conclude with the results for α
(k)
1 and

β
(k)
1 . A new set of simulated BS observations should be picked in the same manner as

in Step 3 using the α
(k)
1 and β

(k)
1 as newly updated parameters.

6. At the conclusion of Step 5, the average remaining life of censored units defined in

Equation (3) shall be calculated using the newly sampled data and is designated as T̄(k)
1 .

7. Repeat the above process in Step 2–6 a large number of times, say m total replications.
This will result:

(α
(k)
1 , α

(k)
2 , ..., α

(k)
m ), (β

(k)
1 , β

(k)
2 , ..., β

(k)
m ), (T̄(k)

1 , T̄(k)
2 , ..., T̄(k)

m ).

In the Gibbs sampler, we guarantee the convergence of the sampled data using both
numerical and graphical summaries. This includes monitoring the scalar summary ψ and
the scale reduction statistic R̂ defined in [23]. As suggested in [24], we confirm that this
scale reduction statistic is well below 1.1 and the trace plots behave appropriately to ensure
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the convergence of the Gibbs samples in all situations considered. After confirming the
convergence, we report both point and interval estimates. This includes mean and its stand
error estimates as well as the 95% equal-tailed credible intervals for all the parameters
including T̄. Moreover, we use the Kernel density estimation procedure to make visual
comparisons between estimation methods. A sample R code to exhibit this algorithm is
included in the Supplementary Materials.

4. Monte–Carlo Simulation

We conduct a simulation study to compare the performance of the discussed Bayesian
estimates. The data are generated from the BS(α, β) distribution with four different sample
sizes n = 10, 20, 30, 50 and four different Type-II right-censoring percentages (CEP) at
10%(10%)40%. Without a loss of generality, we kept the scale parameter β fixed at 1.0 while
varying the shape parameter α = 0.10, 0.30, 0.50, 1.00, 2.00. In each experimental condition,
we repeatedly generated 2000 BS data sets and applied the proposed Gibbs sampler.

We noticed that the Gibbs sampler converges in k = 3000 iterations for both Bayesian
priors, and the scale reduction factor R̂ for both parameters is less than 1.1. After assessing
the convergence, we replicate the Gibbs sampler m = 1000 times to obtain the point and
95% equal-tailed credible intervals for α, β, and T̄ for each generated data set. Then for each
parameter, the overall average of the posterior mean estimates (PE), its standard error (SE),
and the coverage probability (CP) for 1000 randomly generated BS samples are acquired. To
compare posterior point estimates, we refer to an observed bias as the difference between
the true BS parameter and its PE. These results are shown in Tables 1–4.

Table 1. Mean and standard error of the point estimates and probability coverages of 95% credible
intervals based on Monte–Carlo simulation (n = 10).

α̂ β̂ ˆ̄T

Param CEP% Jeffrey’s Achcar’s Jeffrey’s Achcar’s Jeffrey’s Achcar’s

α PE SE CP PE SE CP PE SE CP PE SE CP PE SE CP PE SE CP

0.1 10 0.100 0.025 0.939 0.108 0.027 0.957 1.003 0.034 0.927 1.001 0.031 0.952 0.063 0.019 0.940 0.071 0.021 0.942
20 0.101 0.029 0.942 0.110 0.030 0.949 1.002 0.033 0.932 1.001 0.032 0.955 0.072 0.024 0.936 0.080 0.027 0.940
30 0.101 0.031 0.934 0.113 0.035 0.956 1.002 0.033 0.916 1.006 0.034 0.951 0.078 0.028 0.925 0.091 0.033 0.954
40 0.099 0.035 0.922 0.112 0.036 0.965 1.002 0.037 0.920 1.007 0.038 0.945 0.085 0.034 0.921 0.101 0.039 0.951

0.3 10 0.299 0.074 0.933 0.316 0.075 0.953 1.013 0.099 0.933 1.008 0.097 0.949 0.256 0.091 0.946 0.280 0.096 0.941
20 0.293 0.079 0.932 0.319 0.082 0.960 1.008 0.099 0.931 1.014 0.100 0.947 0.265 0.102 0.928 0.301 0.108 0.943
30 0.289 0.083 0.933 0.317 0.088 0.959 1.007 0.101 0.928 1.020 0.104 0.944 0.277 0.110 0.944 0.319 0.122 0.948
40 0.289 0.091 0.918 0.320 0.094 0.952 1.013 0.110 0.922 1.026 0.117 0.938 0.297 0.125 0.923 0.346 0.137 0.944

0.5 10 0.489 0.115 0.938 0.517 0.123 0.945 1.032 0.159 0.941 1.026 0.166 0.936 0.543 0.218 0.940 0.592 0.244 0.951
20 0.487 0.124 0.937 0.523 0.121 0.962 1.033 0.162 0.938 1.038 0.171 0.949 0.559 0.236 0.938 0.617 0.234 0.960
30 0.475 0.125 0.949 0.515 0.128 0.960 1.025 0.172 0.927 1.046 0.168 0.950 0.552 0.235 0.942 0.629 0.247 0.945
40 0.466 0.141 0.930 0.509 0.132 0.973 1.018 0.175 0.920 1.039 0.187 0.951 0.562 0.266 0.934 0.638 0.266 0.961

1 10 1.002 0.261 0.939 1.056 0.260 0.953 1.088 0.306 0.936 1.085 0.297 0.959 1.849 1.058 0.938 1.929 1.021 0.946
20 1.002 0.289 0.924 1.073 0.291 0.947 1.085 0.307 0.943 1.104 0.304 0.961 1.899 1.188 0.948 2.072 1.180 0.940
30 1.000 0.315 0.929 1.062 0.314 0.953 1.089 0.319 0.931 1.108 0.320 0.951 1.917 1.235 0.928 2.053 1.238 0.939
40 0.983 0.337 0.930 1.079 0.344 0.957 1.067 0.318 0.922 1.116 0.328 0.956 1.873 1.246 0.929 2.141 1.339 0.961

2 10 1.961 0.465 0.946 2.013 0.473 0.948 1.111 0.416 0.954 1.109 0.420 0.965 6.634 4.577 0.918 6.923 4.658 0.917
20 1.944 0.519 0.924 2.014 0.512 0.938 1.098 0.420 0.945 1.103 0.419 0.962 6.186 4.583 0.904 6.172 4.344 0.923
30 1.868 0.545 0.927 1.943 0.541 0.938 1.065 0.425 0.949 1.103 0.433 0.957 5.193 3.955 0.921 5.529 4.439 0.922
40 1.755 0.588 0.904 1.898 0.522 0.957 1.022 0.434 0.912 1.059 0.437 0.954 4.437 3.616 0.876 4.833 3.530 0.934

As shown in Table 1, for n = 10, Jeffrey’s method slightly underestimates the true α
value, and the size of the bias increases with the amount of the censoring percentage. The
difference is more apparent for higher α values. Achcar’s method slightly overestimates
the true value of the α regardless of the censoring percentage, except for high censoring
α = 2 cases. The standard errors of the α estimates are somewhat similar for both methods.
Interestingly, Achcar’s prior maintains the coverage probability at the nominal 95% level
while Jeffrey’s prior becomes slightly liberal, as its coverage probability is around 93%. The
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β estimates for both the methods are somewhat consistent for all α values. The coverage
probability comparison for the β estimates is quite similar to that of the α.

For the average remaining time, Achcar’s estimates provide somewhat higher esti-
mates than Jeffrey’s estimates. Again, the differences are greater for larger α values than for
the smaller αs. As far as the standard error is concerned, both methods are equally good
and proportional to the true α value. The coverage probability comparison is quite similar
to that of the α and β comparisons.

Based on the estimates shown in Table 2, when n = 20, the comparisons we made
earlier are still valid for all estimates, but the differences between estimates and the effects
of high censoring are not as pronounced as in n = 10 cases, and their standard errors are
also now lower. When the sample size increases to n = 30 and 50 (see Tables 3 and 4), both
the methods provide better results with increasing precision. The differences between the
point estimates for lower α values are further narrowing and the coverage probabilities of
all estimates approach the nominal 95% level, showing greater precision in the interval
estimations for large samples.

Table 2. Mean and standard error of the point estimates and probability coverages of 95% credible
intervals based on Monte–Carlo simulation (n = 20).

α̂ β̂ ˆ̄T

Param CEP% Jeffrey’s Achcar’s Jeffrey’s Achcar’s Jeffrey’s Achcar’s

α PE SE CP PE SE CP PE SE CP PE SE CP PE SE CP PE SE CP

0.1 10 0.099 0.018 0.939 0.103 0.018 0.943 0.999 0.022 0.943 1.002 0.023 0.944 0.059 0.013 0.947 0.062 0.013 0.938
20 0.100 0.019 0.936 0.104 0.020 0.951 1.000 0.023 0.940 1.002 0.024 0.944 0.066 0.015 0.937 0.071 0.016 0.951
30 0.099 0.022 0.933 0.104 0.022 0.963 0.999 0.024 0.945 1.001 0.024 0.937 0.073 0.018 0.929 0.078 0.019 0.950
40 0.100 0.024 0.936 0.105 0.025 0.957 1.000 0.025 0.934 1.003 0.026 0.945 0.081 0.022 0.929 0.087 0.023 0.946

0.3 10 0.302 0.054 0.944 0.310 0.054 0.950 1.004 0.066 0.939 1.007 0.068 0.949 0.245 0.066 0.954 0.257 0.068 0.954
20 0.303 0.059 0.937 0.313 0.060 0.954 1.006 0.070 0.938 1.005 0.069 0.948 0.263 0.075 0.944 0.277 0.078 0.953
30 0.299 0.062 0.946 0.308 0.064 0.948 1.006 0.071 0.938 1.010 0.076 0.934 0.274 0.081 0.944 0.288 0.086 0.949
40 0.299 0.069 0.945 0.322 0.070 0.953 1.002 0.076 0.935 1.015 0.080 0.949 0.291 0.093 0.935 0.325 0.099 0.957

0.5 10 0.504 0.089 0.938 0.522 0.088 0.959 1.016 0.116 0.935 1.018 0.113 0.948 0.540 0.170 0.961 0.571 0.170 0.959
20 0.499 0.096 0.937 0.513 0.093 0.953 1.019 0.114 0.954 1.020 0.115 0.939 0.548 0.179 0.945 0.573 0.179 0.959
30 0.494 0.100 0.940 0.509 0.096 0.961 1.019 0.122 0.937 1.020 0.124 0.939 0.556 0.192 0.937 0.582 0.189 0.952
40 0.501 0.110 0.941 0.519 0.111 0.951 1.017 0.125 0.952 1.029 0.136 0.945 0.586 0.212 0.945 0.625 0.222 0.962

1 10 0.998 0.177 0.947 1.029 0.182 0.947 1.049 0.218 0.942 1.050 0.220 0.951 1.841 0.745 0.948 1.956 0.798 0.954
20 1.003 0.200 0.939 1.038 0.208 0.939 1.052 0.220 0.950 1.073 0.236 0.955 1.847 0.844 0.938 2.002 0.963 0.948
30 1.004 0.218 0.942 1.051 0.234 0.943 1.051 0.230 0.945 1.070 0.255 0.951 1.843 0.917 0.945 2.054 1.129 0.957
40 1.008 0.248 0.952 1.063 0.265 0.941 1.070 0.259 0.953 1.093 0.264 0.958 1.933 1.138 0.951 2.155 1.236 0.946

2 10 2.021 0.364 0.935 2.055 0.361 0.942 1.103 0.328 0.952 1.106 0.329 0.957 7.592 3.552 0.945 7.841 3.705 0.955
20 1.988 0.395 0.928 2.025 0.374 0.951 1.103 0.360 0.934 1.118 0.365 0.943 7.070 3.777 0.944 7.367 3.807 0.951
30 1.972 0.425 0.953 2.032 0.412 0.957 1.101 0.358 0.955 1.122 0.369 0.959 6.813 3.815 0.949 7.250 3.888 0.946
40 1.997 0.458 0.950 2.046 0.443 0.966 1.106 0.381 0.953 1.136 0.376 0.963 6.844 4.108 0.957 7.219 3.982 0.963

Table 3. Mean and standard error of the point estimates and probability coverages of 95% credible
intervals based on Monte–Carlo simulation (n = 30).

α̂ β̂ ˆ̄T

Param CEP% Jeffrey’s Achcar’s Jeffrey’s Achcar’s Jeffrey’s Achcar’s

α PE SE CP PE SE CP PE SE CP PE SE CP PE SE CP PE SE CP

0.1 10 0.099 0.014 0.943 0.101 0.014 0.956 1.000 0.018 0.946 0.999 0.019 0.938 0.058 0.010 0.949 0.060 0.010 0.954
20 0.101 0.015 0.952 0.102 0.015 0.948 1.000 0.019 0.947 1.001 0.019 0.936 0.066 0.012 0.950 0.068 0.012 0.951
30 0.100 0.017 0.937 0.103 0.018 0.939 1.001 0.020 0.938 1.000 0.020 0.955 0.073 0.015 0.953 0.076 0.015 0.949
40 0.100 0.020 0.933 0.103 0.019 0.955 1.000 0.021 0.932 1.001 0.020 0.958 0.080 0.018 0.925 0.083 0.017 0.963

0.3 10 0.301 0.043 0.948 0.306 0.042 0.956 1.006 0.056 0.940 1.003 0.055 0.943 0.239 0.052 0.943 0.245 0.052 0.940
20 0.298 0.046 0.941 0.308 0.047 0.957 1.001 0.056 0.940 1.005 0.057 0.957 0.251 0.057 0.940 0.265 0.059 0.956
30 0.300 0.051 0.926 0.309 0.053 0.952 1.003 0.060 0.944 1.004 0.060 0.948 0.269 0.066 0.945 0.282 0.068 0.960
40 0.295 0.057 0.933 0.311 0.058 0.949 1.002 0.061 0.938 1.006 0.062 0.959 0.281 0.075 0.934 0.302 0.081 0.947
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Table 3. Cont.

α̂ β̂ ˆ̄T

Param CEP% Jeffrey’s Achcar’s Jeffrey’s Achcar’s Jeffrey’s Achcar’s

α PE SE CP PE SE CP PE SE CP PE SE CP PE SE CP PE SE CP

0.5 10 0.502 0.069 0.956 0.506 0.075 0.938 1.013 0.093 0.946 1.010 0.096 0.934 0.526 0.128 0.948 0.533 0.142 0.935
20 0.502 0.075 0.952 0.513 0.084 0.932 1.010 0.093 0.951 1.013 0.095 0.948 0.537 0.140 0.952 0.560 0.159 0.932
30 0.500 0.086 0.935 0.518 0.086 0.947 1.012 0.098 0.938 1.017 0.098 0.956 0.552 0.162 0.948 0.583 0.165 0.954
40 0.502 0.094 0.946 0.517 0.092 0.962 1.015 0.106 0.937 1.015 0.104 0.955 0.574 0.177 0.925 0.599 0.179 0.962

1 10 0.994 0.145 0.945 1.024 0.149 0.956 1.038 0.175 0.952 1.042 0.180 0.937 1.785 0.593 0.942 1.895 0.660 0.936
20 1.004 0.162 0.935 1.030 0.161 0.948 1.028 0.181 0.943 1.037 0.181 0.954 1.755 0.650 0.951 1.850 0.668 0.946
30 1.002 0.179 0.946 1.024 0.186 0.938 1.040 0.205 0.937 1.053 0.200 0.945 1.755 0.763 0.945 1.840 0.781 0.953
40 1.005 0.210 0.938 1.043 0.211 0.951 1.049 0.216 0.945 1.075 0.232 0.944 1.799 0.921 0.940 1.954 0.973 0.949

2 10 2.010 0.301 0.933 2.027 0.295 0.941 1.074 0.286 0.939 1.075 0.267 0.958 7.219 2.993 0.946 7.284 2.882 0.949
20 2.008 0.324 0.945 2.024 0.336 0.929 1.078 0.299 0.937 1.066 0.295 0.943 6.914 3.202 0.948 6.970 3.344 0.937
30 2.028 0.373 0.947 2.052 0.374 0.946 1.114 0.339 0.934 1.117 0.325 0.953 7.069 3.779 0.951 7.232 3.739 0.936
40 1.996 0.411 0.943 2.053 0.409 0.953 1.101 0.347 0.959 1.148 0.355 0.962 6.656 3.848 0.941 7.221 4.098 0.955

Table 4. Mean and standard error of the point estimates and probability coverages of 95% credible
intervals based on Monte–Carlo simulation (n = 50).

α̂ β̂ ˆ̄T

Param CEP% Jeffrey’s Achcar’s Jeffrey’s Achcar’s Jeffrey’s Achcar’s

α PE SE CP PE SE CP PE SE CP PE SE CP PE SE CP PE SE CP

0.1 10 0.100 0.011 0.950 0.101 0.011 0.949 1.000 0.014 0.945 0.999 0.014 0.958 0.057 0.007 0.950 0.058 0.008 0.944
20 0.100 0.012 0.935 0.101 0.012 0.941 0.999 0.014 0.942 1.000 0.015 0.943 0.065 0.009 0.947 0.066 0.009 0.945
30 0.100 0.013 0.934 0.102 0.013 0.953 1.000 0.015 0.940 1.000 0.016 0.936 0.072 0.011 0.935 0.073 0.011 0.932
40 0.099 0.014 0.945 0.102 0.015 0.945 1.000 0.016 0.939 1.000 0.016 0.952 0.078 0.013 0.944 0.081 0.013 0.938

0.3 10 0.302 0.033 0.946 0.304 0.033 0.948 1.003 0.042 0.945 1.003 0.042 0.949 0.236 0.039 0.950 0.239 0.039 0.935
20 0.299 0.035 0.952 0.306 0.034 0.954 1.003 0.045 0.928 1.000 0.042 0.949 0.249 0.043 0.945 0.256 0.042 0.952
30 0.298 0.039 0.942 0.305 0.041 0.949 1.002 0.046 0.941 1.002 0.044 0.951 0.263 0.049 0.946 0.272 0.051 0.942
40 0.301 0.045 0.930 0.306 0.045 0.945 1.004 0.049 0.944 1.002 0.049 0.947 0.282 0.059 0.946 0.289 0.060 0.939

0.5 10 0.500 0.056 0.943 0.506 0.055 0.946 1.004 0.071 0.937 1.007 0.069 0.959 0.511 0.103 0.954 0.522 0.103 0.933
20 0.502 0.057 0.967 0.504 0.059 0.950 1.004 0.072 0.939 1.007 0.074 0.942 0.527 0.107 0.949 0.532 0.111 0.944
30 0.500 0.067 0.944 0.507 0.067 0.942 1.007 0.076 0.945 1.014 0.075 0.946 0.540 0.125 0.963 0.554 0.126 0.947
40 0.502 0.076 0.942 0.511 0.071 0.959 1.011 0.082 0.948 1.009 0.085 0.942 0.561 0.143 0.951 0.574 0.139 0.947

1 10 0.994 0.106 0.955 1.011 0.109 0.954 1.021 0.130 0.952 1.020 0.129 0.960 1.730 0.422 0.943 1.780 0.439 0.947
20 1.006 0.118 0.963 1.016 0.120 0.953 1.013 0.137 0.946 1.022 0.144 0.939 1.699 0.460 0.934 1.744 0.484 0.934
30 1.003 0.138 0.940 1.018 0.141 0.942 1.023 0.148 0.952 1.030 0.158 0.941 1.669 0.533 0.950 1.729 0.580 0.947
40 1.008 0.169 0.919 1.017 0.159 0.944 1.035 0.169 0.941 1.043 0.171 0.942 1.694 0.684 0.941 1.724 0.644 0.957

2 10 1.992 0.227 0.936 2.017 0.231 0.945 1.033 0.207 0.948 1.050 0.218 0.949 6.746 2.200 0.943 7.021 2.326 0.947
20 2.005 0.251 0.945 2.030 0.252 0.956 1.054 0.227 0.954 1.069 0.237 0.953 6.582 2.434 0.939 6.816 2.534 0.962
30 2.008 0.299 0.939 2.031 0.301 0.937 1.070 0.262 0.953 1.074 0.286 0.938 6.447 3.002 0.953 6.594 3.095 0.938
40 2.016 0.337 0.945 2.079 0.359 0.927 1.087 0.311 0.936 1.121 0.312 0.937 6.377 3.361 0.936 6.976 3.685 0.941

5. Illustrative Examples

In this section, we consider three examples to illustrate the Gibbs sampler procedure
described in Section 3. These examples exhibit the parameter estimation in randomly right,
Type-II, and progressively Type-II-censored data.

Example 01 (Cancer Patients Data): This data set was originally presented in [25] and
consists of lifetimes (in months) of 20 cancer patients who received a new treatment. The
complete lifetime of only 17 cancer patients was recorded and the rest of the three patients
were right-censored and denoted by “+” in the following data set.

3 5 6 7 8 9 10 10+ 12 15
15+ 18 19 20 22 25 28 30 40 45+

The Kolmogorov–Smirnov goodness-of-fit test indicates that these data adequately
follow a BS distribution, and its MLEs are α̂MLE = 0.805 and β̂MLE = 14.899. For these
data, T̄ represents the average remaining lifetime for each of three patients censored during
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the experiment until they die. With only three observations out of 20 being censored, the
number of iteration k = 2000 was found to be sufficient to ensure the convergence, and
m = 10,000 Gibbs sample chains were used for the parameter estimation. The resulting
estimates are shown in Table 5.

In addition, in the lower portion of Table 5, we report both point and interval estimates
obtained in [25] Bayesian work (A-M 2010) and also the [18]’s Bayesian and MLE results
(S-N MLE and S-N Bayesian), where they applied a generalized Birnbaum–Saunders
distribution for the same data.

Table 5. Parameter estimates on cancer data.

Parameter α β T̄

PE 95% CI Width PE 95% CI Width PE 95% CI

Jeffrey’s 0.849 (0.603, 1.211) 0.608 15.335 (10.481, 22.127) 11.646 18.560 (3.113, 53.284)
Achcar’s 0.874 (0.614, 1.284) 0.670 15.393 (10.376, 22.648) 12.272 19.393 (3.076, 59.307)

S-N MLE (2017) 0.974 (0.127, 1.821) 1.693 15.629 (9.614, 21.644) 12.030
S-N Bayesian (2017) 0.962 (0.604, 1.510) 0.907 15.411 (10.489, 21.696) 11.207

A-M (2010) 0.885 (0.610, 1.295) 0.685 16.030 (10.930, 24.360) 13.430

We note that both the initial MLEs, α̂MLE = 0.805 and β̂MLE = 14.899, fall well within
all the corresponding 95% credible interval bounds (see Table 5). Both Jeffre’s and Achcar’s
estimates compare favorably to one another. Lengths of the credible intervals are somewhat
narrower for α when compared to the [18,25] results. The estimated average remaining
lifetime for the censored patients ranges from 18 to 20 months after their observation period
was completed.

Example 02 (Fatigue Life): This example consists of the fatigue life of 6061-T6 aluminum
coupons cut parallel to the direction of rolling and oscillated at 18 cycles per second, with
a maximum stress per cycle of 31,000 psi reported in [8]. We reconfirmed that these data
can be adequately modeled using the BS distribution, and the MLEs for complete data are
α̂ = 0.170 and β̂ = 131.819.

70 90 96 97 99 100 103 104 104 105 107 108 108 108 109
109 112 112 113 114 114 114 116 119 120 120 120 121 121 123
124 124 124 124 124 128 128 129 129 130 130 130 131 131 131
131 131 132 132 132 133 134 134 134 134 134 136 136 137 138
138 138 139 139 141 141 142 142 142 142 142 142 144 144 145
146 148 148 149 151 151 152 155 156 157 157 157 157 158 159
162 163 163 164 166 166 168 170 174 196 212

We applied the Type-II right-censoring scheme with censoring percentages (CEP) at
10%(10%)60% for these data, and the estimated MLEs at different censoring levels are
shown in Table 6. Due to the relatively larger β and sample size, first, we transform
these data using the scale transformation t/β̂ suggested in Section 2.2 and adjust the
MLEs accordingly to be used in the Gibbs sampler. We observed that the Gibbs sampler
adequately converged with k = 2000 iterations and obtained m = 10,000 Gibbs sample
chains to obtain estimates.

Also, Figure 1 shows the kernel density estimates of the parameters for Jeffrey’s and
Achcar’s priors at 10%, 30%, and 60% censoring levels. The plots seem adequate and both
methods seem to provide very similar estimates. However, as [26] indicated, the Gibbs
output may not detect improper posteriors; the scale transformation we suggested should
have scaled-down β to prevent such possible divergences.

The resulting point estimates along with the widths of the 95% credible intervals for
both the priors are reported in Table 7. Interestingly, both α̂ and β̂ estimates for both the
methods for lower to mid-censoring percentages 10%, 20%, and 30% are very close to
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their uncensored MLEs for complete data (α̂ = 0.170 and β̂ = 131.819). However, when
censoring percentage increases, both α̂ and β̂ overestimate the true values. As expected,
the average remaining time T̄ is also increased with respect to the censoring percentages. It
is also noted that all six T̄ estimates overestimated the true average remaining time; the
increments are proportional to the true values for increasing the censoring percentages
reported in Table 6.

Table 6. Initial Parameter estimates on Type-II-censored fatigue life data.

CEP 0.1 0.2 0.3 0.4 0.5 0.6

α̂
(0)
MLE

0.169 0.174 0.172 0.182 0.184 0.210

β̂
(0)
MLE

131.489 131.900 131.804 132.940 133.225 137.270
True T̄ 10.20 11.55 15.00 14.85 17.28 16.25
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Figure 1. Kernel density estimates of Achcar’s and Jeffrey’s priors for censored fatigue life data. Top
panel, middle, and bottom panels are for 10%, 30%, and 60% censoring schemes, respectively.
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Table 7. Point estimates (α̂, β̂, and T̄) and widths of the corresponding credible intervals for different
censoring percentages.

Jeffrey’s Achcar’s

DOC% Param PE Width PE Width

10 α 0.169 0.051 0.170 0.051
β 131.582 8.926 131.501 8.796
T̄ 14.348 17.628 14.519 18.105

20 α 0.174 0.058 0.175 0.058
β 131.900 9.386 131.994 9.356
T̄ 16.318 15.297 16.421 15.277

30 α 0.172 0.063 0.174 0.063
β 131.830 9.601 131.883 9.876
T̄ 17.759 14.654 17.951 14.705

40 α 0.182 0.072 0.184 0.074
β 132.993 10.921 133.101 11.091
T̄ 20.405 16.228 20.691 16.533

50 α 0.185 0.082 0.187 0.082
β 133.276 12.267 133.469 12.271
T̄ 22.541 17.959 22.881 18.037

60 α 0.211 0.106 0.214 0.108
β 137.281 15.897 137.569 16.052
T̄ 28.768 23.985 29.227 24.213

Example 03 (Ball Bearings’ Data): This data set was originally presented in [27] and
provides the fatigue life in hours of ten ball bearings of a certain type:

152.7 172.0 172.5 173.3 193.0 204.7 216.5 234.9 262.6 422.6

Ref. [9] used the full data set and fitted BS distribution and reported that unbiased
MLEs of α and β are 0.314 and 211.528, respectively. Ref. [20] used these data to generate
three different progressively Type-II-censored samples and estimated BS parameters. We
use somewhat similar progressively Type-II-censored samples, as shown below.

• Scheme I: n = 10, m = 6, R1 = 4, R2 = · · · = R6 = 0;
• Scheme II: n = 10, m = 6, R1 = 0, R2 = 2, R3 = R4 = R5 = 0, R6 = 2.

The resulting parameter estimates, along with their 95% credible intervals, are reported
in Table 8. Due to censoring in this small dataset, both Bayesian priors underestimate the
unbiased MLEs. However, the credible intervals adequately capture these values. Achcar’s
estimates become slightly better, as they are closer to the unbiased MLEs obtained from the
complete data. This example indicates that the suggested method can be used effectively
even for small datasets, yielding decent results.

Table 8. Parameter estimates on Type-II progressively censored ball bearings’ data.

Parameter α β T̄

PE 95% CI PE 95% CI PE 95% CI

Scheme–I
Jeffrey’s 0.182 (0.107, 0.327) 201.939 (175.660, 236.367) 57.921 (21.599, 116.568)
Achcar’s 0.199 (0.113, 0.368) 201.993 (174.342, 236.251) 60.627 (21.944, 126.152)

Scheme–II

Jeffrey’s 0.173 (0.095, 0.337) 201.058 (178.361, 233.527) 36.467 (9.779, 94.211)
Achcar’s 0.195 (0.102, 0.400) 201.686 (177.561, 235.060) 41.159 (10.182, 109.039)
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6. Conclusions

This study reveals that the suggested Gibbs sampler performs reasonably well with
both Bayesian priors. Achcar’s priors appear to provide better coverage probability than
Jeffrey’s prior in the considered cases of this simulation study. Additionally, Achcar’s priors
tend to slightly overestimate the true parameter value, while Jeffrey’s tends to underesti-
mate it. The amount of censoring and sample size has an impact on the performance of both
methods, and therefore, one should be aware of this limitation in practice. With an increase
in sample size, all methods perform better, although the amount of censoring seems to
slightly affect the estimates. Care must be taken regarding the size of the β parameter and
the sample size when applying non-informative priors. The suggested scale transformation
may need to be adopted to guarantee proper posteriors when using Achcar’s reference
prior. Also, because the marginal posterior distributions relied on the Laplace approxima-
tion, there may be limitations on estimating the average lifetime because the BS density
T ∼ BS(α̂, β̂) is an approximation to its true underlying distribution. However, this study
reveals that the Gibbs sampler is capable enough to provide accurate remaining average
lifetime estimates.

The simulation results indicate that the method considered shows some improvements
with regards to point estimates and coverage probabilities when compared to [15] Bayesian
results. In particular, our algorithm shows no substantial effect on the coverage probability
by the amount of censoring. Also, the posterior distributions discussed here have tractable
closed forms that require no partial or hyper-prior information. Also, our results are
consistent with regards to the bias and coverage probability for all parameter combinations
we considered; this shows a clear improvement when compared to the simulation results
shown in [18].

With the Gibbs sampler, there is less restriction on the type of prior distribution
that can be chosen. However, caution must be exercised in programming to ensure the
well-behaved nature of both prior and posterior distributions. If posterior distributions,
whether conditional or otherwise, cannot be precisely determined, asymptotic distributions
may be employed. The Gibbs sampler procedures offer a high degree of flexibility in
implementation, allowing the adjustment of the number of iterations based on the trade-off
between the speed and desired accuracy. Undoubtedly, the Gibbs sampler finds its place in
developing complex models, particularly when dealing with censored data. Its computation
involves a series of calculations that are easy to understand, and its implementation is
relatively straightforward.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/math12060874/s1. Supplementary File: “R code for Fatigue Life data
Analysis.R”.
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Appendix A

The Laplace’s method for integrals provides an approximate to the integral of the form

I =
∫

f (θ) exp{−nh(θ)}dθ,

where −h is a smooth function of θ, having its maximum at θ̂. Then, the Laplace’s approxi-
mate for integral I becomes

Î ≈
√

2π

n
σ f (θ̂) exp{−nh(θ̂)},
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where σ = 1/
√

h′′(θ̂).
Now, as outlined in [14], assuming Jeffrey’s prior, the joint posterior distribution of α

and β becomes

π(α, β|T) ∝
∏n

i=1(β + ti) exp{−Q(β)/α2}
αn+1β(n/2)+1H(α2)

, (A1)

where Q(β) = ns
2β + nβ

2q − n and H(α2) =
(

1
α2 +

1
4

)
.

For Achcar’s prior π(α, β), H(α2) = 1 and the marginal posterior of α can be written
as

π(α|T) ∝
exp{n/α2}

αn+1

∫ ∞

0
f (β) exp{−nh(β)}dβ, (A2)

where f (β) = ∏n
i=1(β+ti)

β(n/2)+1 and h(β) = s
2βα2 + β

2qα2 . The maximum of the −h(β) occurs at

β̂ =
√

sq and therefore, h(β̂) =

√
s/q

α2 and h′′(β̂) = 1
α2q
√

sq .

Then, using the Laplace approximation, the integral I(α) =
∫ ∞

0 f (β) exp{−nh(β)}dβ
can be approximated by

Î(α) ≈
√

2π

n
α
√

q
√

sq
[

∏n
i=1(
√

sq + ti)

(sq)n/4+1/2

]
exp

{
−n
√

s/q
α2

}

By neglecting all but α terms in Î(α), the approximate marginal posterior distribution
of α becomes

π(α|T) ∝ α−n exp
{
− n

α2 (
√

s/q− 1)
}

, α > 0, (A3)

To obtain the marginal posterior of the β, we integrate α in the joint posterior in
Equation (A1).

π(β|T) ∝
∏n

i=1(β + ti)

β(n/2)+1

∫ ∞

0

exp{−Q(β)/α2}
αn+1 dα, (A4)

∝
∏n

i=1(β + ti)

β(n/2)+1
Γ(n/2)

2[(Q(β)]n/2 , (A5)

∝
∏n

i=1(β + ti)

β(n/2)+1{s/(2β) + β/(2q)− 1}n/2 , β > 0 (A6)

Using similar arguments, Jeffrey’s prior-based marginal posteriors given in
Equations (8) and (9) can be obtained.
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Abstract: In this paper, we consider the general mean-field backward doubly stochastic differential
equations (mean-field BDSDEs) whose generator f can be discontinuous in y. We prove the existence
theorem of solutions under stochastic linear growth conditions and also obtain the related comparison
theorem. Naturally, we present those results under the linear growth condition, which is a special case
of the stochastic condition. Finally, a financial claim sale problem is discussed, which demonstrates
the application of the general mean-field BDSDEs in finance.
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1. Introduction

It is well known that backward stochastic differential equations (BSDEs) can be re-
garded as a class of stochastic differential equations (SDEs) with a given terminal condition
(not an initial condition). In 1990, Pardoux and Peng [1] published a famous article and
studied nonlinear BSDEs for the first time,

Yt = ξ +
∫ T

t
f (s, Ys, Zs)ds−

∫ T

t
ZsdWs. (1)

In the past 30 years, research on nonlinear BSDEs has developed rapidly. Many schol-
ars have discovered that this theory has important applications in many fields, such as
mathematical finance, stochastic control, partial differential equations (PDEs), and so
on. Afterward, Pardoux and Peng [2] proposed backward doubly stochastic differential
equations (BDSDEs),

Yt = ξ +
∫ T

t
f (s, Ys, Zs)ds +

∫ T

t
g(s, Ys, Zs)d

←−
B s −

∫ T

t
ZsdWs, (2)

which contain two random integrals in opposite directions, leading to two opposite in-
formation flows, and thus have more complex measurability. Then. Shi, Gu, and Liu [3]
proved the comparison theorem of BDSDEs. Recently, Owo [4–6] generalized these results
under a series of stochastic conditions, including the existence and uniqueness theorem of
solution for BDSDEs with stochastic Lipschitz generator, the existence theorem of solutions
under stochastic linear growth and continuous or discontinuous conditions, and he also
proved the associated comparison theorems. Inspired by this literature, in this paper, we
study a new class of BDSDEs called general mean-field BDSDEs to obtain the corresponding
results, and the equation’s form is as follows:

Yt = ξ +
∫ T

t
f (s, PYs , Ys, Zs)ds +

∫ T

t
g(s, Ys, Zs)d

←−
B s −

∫ T

t
ZsdWs, (3)
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where the coefficients of BDSDEs depend not only on the solution processes but also on the
law of the solution processes, which acts as the mean-field term.

Mean-field theory is also a hot research topic that has infiltrated various fields, such
as statistical mechanics, physics, economics, finance, and so on. In 2007, Lasry and Li-
ons [7] formally proposed the concept of mean-field games, which studied the problem of
stochastic differential games with N particles and the limit behavior of random moving
particles when N goes to infinity. Inspired by this idea, Buckdahn, Djehiche, Li, Peng [8]
and Buckdahn, Li, Peng [9] used purely random methods to investigate a special class
of mean-field problems, and proposed a new type of BSDEs, called mean-field BSDEs.
Since then, more and more scholars have devoted their energies to the study of mean-field
problems (see [10,11], etc.). Li, Liang and Zhang [12] studied mean-field BSDEs under
continuous conditions and proposed a technical lemma by which the existence of solutions
was obtained. Wang, Zhao and Shi [13] extended this result to discontinuous conditions. In
recent years, Li and Xing [14] combined the results of BDSDEs and mean-field theory, and
investigated the existence of a solution for general mean-field BDSDEs with continuous
coefficients. Furthermore, Shi, Wang and Zhao [15] obtained the related results of the
general mean-field BDSDEs under stochastic linear growth and continuous conditions.

It is worth emphasizing that the theory of mean-field is new, and there are still many
conclusions to explore. On the one hand, the ordinary continuous condition or linear
growth condition cannot be satisfied in many applications, which the example in Section 4
can reflect: Consider a financial claim with a contingent ξ and there is an investor who
has additional information not detected in the financial market and wants to sell the claim.
Moreover, suppose that the interest rate is applied only to portfolios whose value remains
above a nominal value at any time. This problem is equivalent to solving the following
mean-field BDSDE:

Yt = ξ +
∫ T

t

(
θ(s)e−

βA(s)
2 E[Ys] + µ(s)Ys I{Ys>1} + γ(s)Zs

)
ds +

∫ T

t
c(s)Zsd

←−
B s −

∫ T

t
ZsdWs. (4)

Since f (t, p, y, z) = θ(t)e−
βA(t)

2 E[y] + r(t)yI{y>1} + γ(t)z is not continuous in y, we cannot
apply the existence result in [15]. Therefore, we relax the restriction on the generator
f (t, p, y, z) that f is discontinuous in y, continuous in p and z, and we solve the above
problem, shown in Section 4. On the other hand, mean field theory is a useful tool when we
study problems related to large numbers of particles. Because when the number of particles
N tends to infinity, it is impractical to deal with the behavior of each particle, but through
the mean-field term, we only need to pay attention to the limited behavior of randomly
moving particles when N tends to infinity. In conclusion, it is meaningful to study the
general mean-field BDSDE (3) with discontinuous and stochastic linear growth coefficients,
which can solve some problems in physics, finance and so on.

Our paper is organized as follows: In Section 2, we give some preliminary results
of general mean-field BDSDEs which are needed in what follows, and we also list some
existing results related to our paper. Section 3 is devoted to giving the main results,
including the existence theorem of solutions and the related comparison theorem under
stochastic linear growth and discontinuous conditions. Then, we naturally introduce the
existence theorem of solutions under linear growth conditions, which is a special case of
stochastic conditions, and we also propose the associated comparison theorem. In Section 4,
we study the application of the general mean-field BDSDEs to the financial claim sales
problem. Finally, we conclude in Section 5.

2. Preliminaries

Now, we begin with introducing some necessary notations and concepts.
Let (Ω,F , P) be a complete probability space, that is, all subsets of zero probability

sets belong to F , and let T > 0 be an arbitrarily fixed time horizon throughout this paper.
Let {Wt; 0 ≤ t ≤ T} and {Bt; 0 ≤ t ≤ T} be two mutually independent standard Brownian
Motions with values respectively in Rd and R`, defined on (Ω,F , P). Let N denote the
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class of P-null sets of F , and P2(Rk) denotes the set of the probability measures p over
(Rk,B(Rk)) with a finite second moment, that is,

∫
Rk |x|2 p(dx) < ∞. Here, B(Rk) denotes

the Borel σ-field over Rk, and the probability space (Ω,F , P) needs to be rich, so we assume
that there is a sub-σ-field F 0, N ⊂ F 0 ⊂ F , such that

(i) Brownian motion (B, W) is independent of F 0;
(ii) F 0 is ‘rich enough’, that is, for every p ∈ P2(Rk) there is a random variable ξ ∈

L2(Ω,F 0, P;Rk) such that Pξ = p.

Besides, {a(t)}t∈[0,T] is a jointly measurable process with positive values and square-
integrable in [0, T], and we define an increasing process {A(t)}t∈[0,T] by setting A(t) =∫ t

0 a2(s)ds. Every β that appears throughout this paper must satisfy β > 0 and be big
enough. Here, are the following spaces:

• L2,β(Ω,Ft, P;Rk) :=
{
Rk-value Ft-measurable random variables

ξ : ‖ξ‖2
L2,β := E[eβA(t)|ξ|2] < +∞

}
;

• H2,β(0, T;Rk) :=
{
Rk-value processes ζ : for any t ∈ [0, T], ζ(t) is Ft-measurable

with ‖ζ‖2
H2,β := E[

∫ T
0 eβA(t)|ζ(t)|2dt] < +∞

}
;

• H2,β,a(0, T;Rk) :=
{
Rk-value processes ζ : for any t ∈ [0, T], ζ(t) is Ft-measurable

with ‖aζ‖2
H2,β := E[

∫ T
0 eβA(t)a2(t)|ζ(t)|2dt] < +∞

}
;

• S2,β(0, T;Rk) :=
{
Rk-value continuous processes ζ : for any t ∈ [0, T], ζ(t) is

Ft-measurable with ‖ζ‖2
S2,β := E[sup0≤t≤T eβA(t)|ζ(t)|2] < +∞

}
.

Note, that the space H2,β(0, T;Rk) with the norm ‖ · ‖H2,β is a Banach space, so is
the space

M2,β(0, T) :=
(
H2,β,a(0, T;Rk) ∩ S2,β(0, T;Rk)

)
×H2,β(0, T;Rk×d),

with the norm ‖(Y, Z)‖2
M2,β = ‖aY‖2

H2,β + ‖Y‖S2,β + ‖Z‖2
H2,β .

Now, let us consider the following general mean-field BDSDEs: for all t ∈ [0, T], given
ξ ∈ L2,β(Ω,FT , P;Rk),

Yt = ξ +
∫ T

t
f (s, PYs , Ys, Zs)ds +

∫ T

t
g(s, Ys, Zs)d

←−
B s −

∫ T

t
ZsdWs. (5)

Without loss of generality, in this paper, we consider the case of k = 1. Before
discussing the main results of this paper, we will introduce some previous results of general
mean-field BDSDEs under some stochastic conditions. Let, coefficients f : [0, T]×Ω×
P2(R)×R×Rd → R, g : [0, T]×Ω×R×Rd → R` be jointly measurable and satisfy the
following assumptions:

(A1) g is stochastic Lipschitz in (y, z) ∈ R×Rd : There exists a non-negativeFW
t -measurable

process {ν(t)}t∈[0,T] and a constant α, 0 < α < 1, such that for all y1, y2 ∈ R, z1, z2 ∈
Rd,

|g(t, y1, z1)− g(t, y2, z2)|2 ≤ ν(t)|y1 − y2|2 + α|z1 − z2|2;

(A2) f is stochastic Lipschitz in (p, y, z) ∈ P2(R) × R× Rd : There exist non-negative
FW

t -measurable processes {θ(t)}t∈[0,T], {µ(t)}t∈[0,T] and {γ(t)}t∈[0,T] such that for
all p1, p2 ∈ P2(R), y1, y2 ∈ R, z1, z2 ∈ Rd,

| f (t, p1, y1, z1)− f (t, p2, y2, z2)| ≤ θ(t)e−
βA(t)

2 W2(p1, p2) + µ(t)|y1 − y2|+ γ(t)|z1 − z2|;
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(A3) For all t ∈ [0, T], there exists a positive process {a(t)}t∈[0,T], which satisfies a(t)2 =

θ(t)2 + µ(t) + γ(t)2 + ν(t) ≥ ι > 0 and the definitions of θ(t), µ(t), γ(t) and ν(t) are
same as those in assumptions (A1) and (A2). A(t) =

∫ t
0 a(s)2ds < ∞;

(A4) For any (t, µ, y, z) ∈ [0, T]×P2(R)×R×Rd, there is

E[
∫ T

0
eβA(t) | f (t, δ0, 0, 0)|2

a(t)2 dt +
∫ T

0
eβA(t)|g(t, 0, 0)|2dt] < +∞,

where δ0 denotes throughout the paper, the Dirac measure with mass at 0 ∈ R;

(A5) For any θ1, θ2 ∈ L2(Ω,Ft, P;R) and (t, y, z) ∈ [0, T] × R× Rd, there exists a non-
negative FW

t -measurable process {L(t)}t∈[0,T] such that

f (t, Pθ1 , y, z)− f (t, Pθ2 , y, z) ≤ L(t)e−
βA(t)

2 (E[|(θ1 − θ2)
+|2]) 1

2 ,

where L(t)2 ≤ a(t)2, for all t ∈ [0, T];

(A6) For almost every (t, ω) ∈ [0, T] ×Ω, f (t, ω, ·, ·, ·) is continuous, especially, with a
continuity modulus ρ : R+ → R+ with respect to p, for all p1, p2 ∈ P2(R),(y, z) ∈
R×Rd,

| f (t, ω, p1, y, z)− f (t, ω, p2, y, z)| ≤ ρ(W2(p1, p2));

(A7) There exist non-negative FW
t -measurable processes {θ(t)}t∈[0,T], {µ(t)}t∈[0,T],

{γ(t)}t∈[0,T] and a non-negative Ft-measurable process {φ(t)}t∈[0,T] satisfying

E[
∫ T

t eβA(s)φ(s)2ds] < ∞, such that for all p ∈ P2(R), y ∈ R, z ∈ Rd,

| f (t, p, y, z)| ≤ φ(t) + θ(t)e−
βA(t)

2 W2(p, δ0) + µ(t)|y|+ γ(t)|z|;

(A8) Monotonicity in p : For all θ1, θ2 ∈ L2(Ω,Ft, P;R), and all (y, z) ∈ R× Rd, when
θ1 ≤ θ2, P-a.s., we have

f (t, Pθ1 , y, z) ≤ f (t, Pθ2 , y, z), dtdP-a.e.

Lemma 1 (Existence and Uniqueness). Under the assumptions (A1)–(A4), the general mean-
field BDSDE (5) has a unique solution (Y, Z) ∈ M2,β(0, T).

Lemma 2 (Comparison theorem). Let g = g(t, ω, y, z) satisfy the assumptions (A1) and (A4),
and f (i) = f (i)(t, ω, p, y, z), i = 1, 2 be two generators satisfying (A4). Moreover, we assume that
(i) One of f (i) satisfies the assumption (A2);
(ii) One of f (i) satisfies the assumption (A5).

Denote by (Y(1), Z(1)) and (Y(2), Z(2)) the solutions of the general mean-field BDSDE (5)
with data (ξ(1), f (1), g) and (ξ(2), f (2), g), respectively. Then, if for all (p, y, z) ∈ P2(R)×R×
Rd, ξ(1) ≤ ξ(2), P-a.s., f (1)(t, p, y, z) ≤ f (2)(t, p, y, z), dtdP-a.e., it holds that also Y(1)

t ≤ Y(2)
t ,

for all t ∈ [0, T], P-a.s.

Lemma 3 (Existence). Under the assumptions (A1), (A3), (A4) and (A6)–(A8), the general mean-
field BDSDE (5) at least has one solution (Y, Z) ∈ M2,β(0, T). Moreover, there is a minimal
solution (Y, Z) ∈ M2,β(0, T) of the general mean-field BDSDE (5).

Lemma 4 (Comparison theorem). Let g = g(t, ω, y, z) satisfy the assumptions (A1) and
(A4), f (1) = f (1)(t, ω, p, y, z) satisfy the assumptions (A3), (A4) and (A6)-(A8), and f (2) =
f (2)(t, ω, p, y, z) satisfy the assumption (A4). Denote by (Y(1), Z(1)) and (Y(2), Z(2)) the solu-
tions of general mean-field BDSDE (5) with data (ξ(1), f (1), g) and (ξ(2), f (2), g), respectively.
Then, if for all (p, y, z) ∈ P2(R)× R× Rd, there are ξ(1) ≤ ξ(2) P-a.s. and f (1)(t, p, y, z) ≤
f (2)(t, p, y, z), dtdP-a.e., it holds that also Y(1)

t ≤ Y(2)
t , for all t ∈ [0, T], P-a.s.
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For the detailed proofs of Lemmas 1–4, readers can refer to [15].

3. General Mean-Field BDSDEs with Stochastic Linear Growth and
Discontinuous Generator

In this section, we focus on general mean-field BDSDEs (5) with stochastic linear
growth and a discontinuous generator. We need to add some assumptions for the generator
f as follows:

(B1) For a.e. (t, ω) ∈ [0, T], f (t, p, y, z) is left-continuous in y, continuous in p and z, espe-
cially, with a continuity modulus ρ : R+ → R+ for p: for all p1, p2 ∈ P2(R), (t, y, z) ∈
[0, T]×R×Rd, there is

| f (t, p1, y, z)− f (t, p2, y, z)| ≤ ρ(W2(p1, p2)).

Here, ρ is supposed to be non-decreasing, such that ρ(0+) = 0;

(B2) There exists a continuous function K(t, p, y, z) defined on [0, T]× P2(R)×R×Rd,
which is non-decreasing with respect to p, and there exist three non-negative FW

t -
measurable processes {θ(t)}t∈[0,T], {µ(t)}t∈[0,T], {γ(t)}t∈[0,T] such that for all
t ∈ [0, T], p ∈ P2(R), y ∈ R, z ∈ Rd, there is

|K(t, p, y, z)| ≤ θ(t)e−
βA(t)

2 W2(p, δ0) + µ(t)|y|+ γ(t)|z|,

and for all y1 ≥ y2 ∈ R, p1, p2 ∈ P2(R), z1, z2 ∈ Rd, we have

f (t, p1, y1, z1)− f (t, p2, y2, z2) ≥ K(t, ∆(p1, p2), y1 − y2, z1 − z2),

where ∆(p1, p2) ∈ P2(R) and satisfies W2
(
∆(p1, p2), δ0

)
= W2(p1, p2).

3.1. The Existence of Solutions

Next, we will give the first important conclusion of this paper, the existence of solutions
for the general mean-field BDSDEs (5) under discontinuous and stochastic linear growth
conditions. In order to facilitate readers to understand the logic of proof, we refer to the
idea of proof in [16]. We first introduce the following technical lemma:

Lemma 5. for n ≥ 1, let us define

Kn(t, p, y, z) = inf
(ν,r,h)∈P2(R)×R×Rd

{
K(t, ν, r, h) + n

(
θ(t)e−

βA(t)
2 W2,+(µ, ν)

+ µ(t)|y− r|+ γ(t)|z− h|
)}

,
(6)

where K(t, ν, r, h) is similar to that in assumption (B2). From Lemma 3.1 in [12], we know these
equations are well-defined and satisfy the following properties:

(i) Linear growth: for all (t, p, y, z) ∈ [0, T]×P2(R)×R×Rd, P-a.s., we have

|Kn(t, p, y, z)| ≤ θ(t)e−
βA(t)

2 W2(p, δ0) + µ(t)|y|+ γ(t)|z|;

(ii) Monotonicity in p: for all θ1, θ2 ∈ L2,β(Ω,FT , P;R) with θ1 ≤ θ2, P-a.s., we have

Kn
(
t, Pθ1 , y, z

)
≤ Kn

(
t, Pθ2 , y, z

)
, dtdP-a.s.;

(iii) Monotonicity in n: for all (t, p, y, z) ∈ [0, T]× P2(R)×R×Rd, P-a.s., n < m, we
have

Kn(t, p, y, z) ≤ Km(t, p, y, z), dtdP-a.s.;
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(iv) Stochastic Lipschitz continuous: for all (t, p1, y1, z1), (t, p2, y2, z2) ∈ [0, T]×P2(R)×
R×Rd, P-a.s., we have

|Kn(t, p1, y1, z1)− Kn(t, p2, y2, z2)|

≤n
(
θ(t)e−

βA(t)
2 W2(p1, p2) + µ(t)|y1 − y2|+ γ(t)|z1 − z2|

)
;

(v) Strong convergence: if (pn, yn, zn)→ (p, y, z) as n→ ∞ in P2(R)×R×Rd, then

lim
n→∞

Kn(t, pn, yn, zn) = K(t, p, y, z).

Proposition 1. Let ξ ∈ L2,β(Ω,FT , P;R), ϕt ∈ H2,β(0, T;R), K(t, p, u, v) and G(t, u, v) sat-
isfy the assumptions (A1), (A3), (A4) and (B2), and G(t, 0, 0) = 0. We consider the following
general mean-field BDSDE: for all t ∈ [0, T],

Ut = ξ +
∫ T

t
(K(s, PUs , Us, Vs) + ϕs)ds +

∫ T

t
G(s, Us, Vs)d

←−
B s −

∫ T

t
Vs dWs, (7)

then, we have:
(i) The Equation (7) has at least one solution (U, V) ∈ M2,β(0, T);
(ii) For any solution (U, V) of (7), if ϕt ≥ 0, ξ ≥ 0, we can obtain Ut ≥ 0, P-a.s., t ∈ [0, T].

Proof. Since K is continuous and |K(t, p, y, z)| ≤ θ(t)e−
βA(t)

2 W2(p, δ0) + µ(t)|y|+ γ(t)|z|,
we note that (7) has at least one solution. For each n, because of Lemma 5, the following
general mean-field BDSDEs are as follows: for all t ∈ [0, T],

Un
t = ξ +

∫ T

t

(
Kn
(
s, PUn

s , Un
s , Vn

s
)
+ ϕs

)
ds +

∫ T

t
G(s, Un

s , Vn
s )d
←−
B s −

∫ T

t
Vn

s dWs, n ≥ 1 (8)

has a unique adapted solution, and the solution {(Un, Vn)}∞
n=1 of Equation (8) converge to

the minimal solution (U, V) of Equation (7).
Next, we consider the following general mean-field BDSDEs: for all t ∈ [0, T],

Ũn
t =

∫ T

t
Kn

(
s, PŨn

s
, Ũn

s , Ṽn
s

)
ds +

∫ T

t
G(s, Ũn

s , Ṽn
s )d
←−
B s −

∫ T

t
Ṽn

s dWs, n ≥ 1. (9)

For each n, there exists a unique solution to Equation (9). Since Kn(s, δ0, 0, 0) = 0,
G(s, 0, 0) = 0, then (Ũn, Ṽn) = (0, 0) is the unique solution to Equation (9). From the
Lemma 2 and ϕt ≥ 0, it follows that Un

t ≥ Ũn
t = 0. Therefore, Ut ≥ 0.

Before proving the existence of solutions of (5), we first construct a sequence of general
mean-field BDSDEs as follows: given ξ ∈ L2,β(Ω,FT , P;R), t ∈ [0, T], n ≥ 1,

Y0
t =ξ +

∫ T

t

[
− θ(s)e−

βA(s)
2 W2(PY0

s
, δ0)− µ(s)|Y0

s | − γ(s)|Z0
s | − φ(s)

]
ds

+
∫ T

t
g(s, Y0

s , Z0
s )d
←−
B s −

∫ T

t
Z0

s dWs, (10)

Yn
t =ξ +

∫ T

t

[
f
(
s, PYn−1

s
, Yn−1

s , Zn−1
s
)
+ K

(
s, ∆(PYn

s
, PYn−1

s
), Yn

s −Yn−1
s , Zn

s − Zn−1
s
)]

ds

+
∫ T

t
g(s, Yn

s , Zn
s )d
←−
B s −

∫ T

t
Zn

s dWs, (11)

Y0
t =ξ +

∫ T

t

[
θ(s)e−

βA(s)
2 W2,+(P

Y0
s
, δ0) + µ(s)|Y0

s |+ γ(s)|Z0
s |+ φ(s)

]
ds

+
∫ T

t
g(s, Y0

s , Z0
s )d
←−
B s −

∫ T

t
Z0

s dWs. (12)
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By Lemma 3, there exists at least one solution of (11). Here, we only consider the minimal
solution, denoted as (Yn, Zn). By Lemma 1 we know that (10) and (12) have unique
solutions and are denoted as (Y0, Z0) and (Y0, Z0

), respectively.

Proposition 2. Under assumptions (A1), (A3), (A4), (A7), (B1) and (B2), then:
(i) For any n ≥ 0, Yn+1

t ≥ Yn
t , t ≤ T, P-a.s.

(ii) For any n ≥ 0, Y0
t ≥ Yn

t , t ≤ T, P-a.s.

Proof. Before the proof of this proposition, we first define

G(s, Yn+1
s −Yn

s , Zn+1
s − Zn

s )

:= g(s, Yn+1
s −Yn

s + Yn
s , Zn+1

s − Zn
s + Zn

s )− g(s, Yn
s , Zn

s )

= g(s, Yn+1
s , Zn+1

s )− g(s, Yn
s , Zn

s ),

(13)

thus, we know G(s, 0, 0) = 0.
(i) The conclusion can be proved by the induction method. First, prove that Y1

t ≥ Y0
t .

From the Equations (10), (11) and (13) we have

Y1
t −Y0

t =
∫ T

t

[
K
(

s, ∆(PY1
s
, PY0

s
), Y1

s −Y0
s , Z1

s − Z0
s

)
+ ψ0

s

]
ds

+
∫ T

t
G(s, Y1

s −Y0
s , Z1

s − Z0
s )d
←−
B s

∫ T

t

(
Z1

s − Z0
s

)
dWs,

where ψ0
s = f

(
s, PY0

s
, Y0

s , Z0
s
)
+ θ(s)e−

βA(s)
2 W2(PY0

s
, δ0) + µ(s)|Y0

s |+ γ(s)|Z0
s |+ φ(s). From

(A7), we know ψ0
s ≥ 0. Because

(
Y0

t , Z0
t

)
is the solution of Equation (10), so

ψ0
s ∈ H2,β(0, T,R). Therefore, from Proposition 1, we can obtain Y1

t −Y0
t ≥ 0, i.e., Y1

t ≥ Y0
t ,

for all t ∈ [0, T], P-a.s.
Next, suppose Yn

t ≥ Yn−1
t , then we prove Yn+1

t ≥ Yn
t .

From Equations (11) and (13), we can obtain

Yn+1
t −Yn

t =
∫ T

t

[
K
(

s, ∆(PYn+1
s

, PYn
s
), Yn+1

s −Yn
s , Zn+1

s − Zn
s

)
+ ψn

s

]
ds

+
∫ T

t
G(s, Yn+1

s −Yn
s , Zn+1

s − Zn
s )d
←−
B s −

∫ T

t

(
Zn+1

s − Zn
s

)
dWs,

where ψn
s = f (s, PYn

s
, Yn

s , Zn
s )− f (s, PYn−1

s
, Yn−1

s , Zn−1
s )− K

(
∆(PYn

s
, PYn−1

s
), Yn

s −Yn−1
s , Zn

s −
Zn−1

s
)
. From (B2), we know ψn

s ≥ 0. Similarly, we can also obtain that Yn+1
t ≥ Yn

t , for all
t ∈ [0, T], P-a.s.

(ii) We still use the induction method to prove Y0
t ≥ Yn

t , n ≥ 0.
Before proving Y0

t ≥ Y0
t , we first consider the following general mean-field BDSDEs:

I′t =
∫ T

t
θ(s)e−

βA(s)
2 W2

(
PI′s , δ0

)
ds +

∫ T

t
G(s, I′s, J′s)d

←−
B s −

∫ T

t
J′sdWs,

It =
∫ T

t

(
−θ(s)e−

βA(s)
2 W2(PIs , δ0)− µ(s)Is − γ(s)J(s)

)
ds

+
∫ T

t
G(s, Is, Js)d

←−
B s −

∫ T

t
JsdWs,

where G(s, 0, 0) = 0. Under assumptions (A1), (A3) and (A4), each of these two equations
has a unique solution (I′, J′) = (0, 0) and (I, J) = (0, 0).
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From (10) and (12), we can obtain

Y0
t −Y0

t =
∫ T

t

(
θ(s)e−

βA(s)
2 W2

(
P

Y0
s
, PY0

t

)
+ Φ0

s

)
ds

+
∫ T

t
G(s, Y0

s −Y0
s , Z0

s − Z0
s )d
←−
B s −

∫ T

t

(
Z0

s − Z0
s

)
dWs,

where

Φ0
s =θ(s)e−

βA(s)
2
(
W2,+(P

Y0
s
, δ0) + W2(PY0

s
, δ0)−W2(P

Y0
s
, PY0

s
)
)
+ µ(s)(|Y0

s |+ |Y0
s |)

+ γ(s)(|Z0
s |+ |Z0

s |) + 2φ(s) ≥ 0.

From Lemma 2, it follows
Y0

t −Y0
t ≥ I′t = 0.

Therefore, Y0
t ≥ Y0

t , for all t ∈ [0, T], P-a.s.
Next, for n = 1, we have

Y0
t −Y1

t =
∫ T

t

(
− θ(s)e−

βA(s)
2 W2(P

Y0
s
, PY1

s
)− µ(s)|Y0

s −Y1
s | − γ(s)|Z0

s − Z1
s |+ Φ1

s

)
ds

+
∫ T

t
G(s, Y0

s −Y1
s , Z0

s − Z1
s )d
←−
B s −

∫ T

t
(Z0

s − Z1
s )dWs,

where

Φ1
s =θ(s)e−

βA(s)
2 W2(P

Y0
s
, PY1

s
) + µ(s)|Y0

s −Y1
s |+ γ(s)|Z0

s − Z1
s |+ θ(s)e−

βA(s)
2 W2,+(P

Y0
s
, δ0)

+ µ(s)|Y0
s |+ γ(s)|Z0

s |+ φ(s)− f
(

s, PY0
s
, Y0

s , Z0
s

)
− K

(
s, ∆(PY1

s
, PY0

s
), Y1

s −Y0
s , Z1

s − Z0
s

)

≥ f
(

s, PY1
s
, Y1

s , Z1
s

)
− f

(
s, PY0

s
, Y0

s , Z0
s

)
− K

(
s, ∆(PY1

s
, PY0

s
), Y1

s −Y0
s , Z1

s − Z0
s

)

≥0.

From Lemma 2, it follows
Y0

t −Y1
t ≥ It = 0.

Therefore, Y0
t ≥ Y1

t , for all t ∈ [0, T], P-a.s.
Next, suppose Y0

t ≥ Yn−1
t , then we prove Y0

t ≥ Yn
t .

Y0
t −Yn

t =
∫ T

t

(
−θ(s)e−

βA(s)
2 W2(P

Y0
s
, PYn

s
)− µ(s)|Y0

s −Yn
s | − γ(s)|Z0

s − Zn
s |+ Φn

s

)
ds

+
∫ T

t
G(s, Y0

s −Yn
s , Z0

s − Zn
s )d
←−
B s −

∫ T

t

(
Z0

s − Zn
s

)
dWs,

where

Φn
s =θ(s)e−

βA(s)
2
(
W2(P

Y0
s
, PYn

s
) + W2,+(P

Y0
s
, δ0)

)
+ µ(s)

(
|Y0

s −Yn
s |+ |Y

0
s |
)
+ γ(s)

(
|Z0

s − Zn
s |

+ |Z0
s |
)
+ φ(s)− f

(
s, PYn−1

s
, Yn−1

s , Zn−1
s

)
− K

(
s, ∆(PYn

s
, PYn−1

s
), Yn

s −Yn−1
s , Zn

s − Zn−1
s

)

≥ f
(

s, PYn
s
, Yn

s , Zn
s

)
− f

(
s, PYn

s
, Yn

s , Zn
s

)
− K

(
s, ∆(PYn

s
, PYn−1

s
), Yn

s −Yn−1
s , Zn

s − Zn−1
s

)

≥0.

Similarly, Y0
t ≥ Yn

t , for all t ∈ [0, T], P-a.s.
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Remark 1. Proposition 2 implies that the minimal solution sequence of general mean-field BDSDEs (11)
is increasing and has an upper bound, i.e.,

Y0
t ≥ Yn+1

t ≥ Yn
t ≥ Y0

t , t ≤ T, P-a.s., n ≥ 1. (14)

Furthermore, we obtain our main theorem:

Theorem 1. Under the assumptions (A1), (A3), (A4), (A7), (B1) and (B2), the sequence of solutions
of the family of Equation (11) {(Yn, Zn)}∞

n=1 ∈ M2,β(0, T) converges to (Y, Z), which is the
minimal solution of Equation (5).

Proof. From Equation (14), we know that (Yn)∞
n=1 is increasing and bounded inH2,β(0, T;R).

By the monotone convergence theorem, we can deduce that (Yn)∞
n=1 converges inH2,β(0, T;R),

and denote Y as the limit of {Yn}∞
n=1. Notice that

sup
n

E
[

sup
0≤t≤T

eβA(t)∣∣Yn
t
∣∣2] ≤ E

[
sup

0≤t≤T
eβA(t)∣∣Y0

t
∣∣2]+ E

[
sup

0≤t≤T
eβA(t)∣∣Y0

t
∣∣2] < ∞.

Using the Itô formula to eβA(t)
∣∣∣Yn+1

t

∣∣∣
2
, then we have

∣∣∣Yn+1
0

∣∣∣
2
+ β

∫ T

0
eβA(t)a2(t)

∣∣∣Yn+1
t

∣∣∣
2
dt +

∫ T

0
eβA(t)

∣∣∣Zn+1
t

∣∣∣
2
dt

=eβA(T)|ξ|2 + 2
∫ T

0
eβA(t)Yn+1

t
(

f
(

t, PYn
t
, Yn

t , Zn
t

)
+ K(t, ∆(PYn+1

t
, PYn

t
), Yn+1

t −Yn
t ,

Zn+1
t − Zn

t )
)
dt +

∫ T

0
eβA(t)|g(t, Yn+1

t , Zn+1
t )|2dt + 2

∫ T

0
eβA(t)Yn+1

t g(t, Yn+1
t , Zn+1

t )d
←−
B t

− 2
∫ T

0
eβA(t)Yn+1

t Zn+1
t dWt.

Noticing that
∫ T

0 eβA(t)Yn+1
t Zn+1

t dWt and
∫ T

0 eβA(t)Yn+1
t g(t, Yn+1

t , Zn+1
t )d

←−
B t are martin-

gales. Next, we take the expectation of the above equation. From 2ab ≤ 1
δ a2 + δb2, δ > 0,

we know that there exist constants δ1, δ2 > 0 such that

E[|Yn+1
0 |2] + βE[

∫ T

0
eβA(t)a2(t)|Yn+1

t |2dt] + E[
∫ T

0
eβA(t)|Zn+1

t |2dt]

=E[eβA(T)|ξ|2] + 2E[
∫ T

0
eβA(t)Yn+1

t
(

f (t, PYn
t
, Yn

t , Zn
t ) + K(t, ∆(PYn+1

t
, PYn

t
), Yn+1

t −Yn
t ,

Zn+1
t − Zn

t )
)
dt] + E[

∫ T

0
eβA(t)|g(t, Yn+1

t , Zn+1
t )|2dt]

≤E[eβA(T)|ξ|2] + 2E[
∫ T

0
eβA(t)Yn+1

t f (t, PYn+1
t

, Yn+1
t , Zn+1

t )dt] + E[
∫ T

0
eβA(t)|g(t, Yn+1

t , Zn+1
t )|2dt]

≤E[eβA(T)|ξ|2] + 2E[
∫ T

0
eβA(t)|Yn+1

t |
(
φ(t) + θ(t)e−

βA(t)
2 W2(PYn+1

t
, δ0) + µ(t)|Yn+1

t |+ γ(t)

|Zn+1
t |

)
dt] + E[

∫ T

0
eβA(t)((1 + δ1)|g(t, Yn+1

t , Zn+1
t )− g(t, 0, 0)|2 + (1 +

1
δ1
)|g(t, 0, 0)|2

)
dt]

≤E[eβA(T)|ξ|2] + E[
∫ T

0
eβA(t)|Yn+1

t |2dt] + E[
∫ T

0
eβA(t)φ(t)2dt] + E[

∫ T

0
eβA(t)θ(t)2|Yn+1

t |2dt]

+ E[
∫ T

0
E[|Yn+1

t |2]dt] + 2E[
∫ T

0
eβA(t)µ(t)|Yn+1

t |2dt] + δ2E[
∫ T

0
eβA(t)γ(t)2|Yn+1

t |2dt]
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+
1
δ2

E[
∫ T

0
eβA(t)|Zn+1

t |2dt] + (1 + δ1)E[
∫ T

t
eβA(t)ν(t)|Yn+1(t)|2dt]

+ (1 + δ1)αE[
∫ T

0
eβA(t)|Zn+1

s |2dt] + (1 +
1
δ1
)E[
∫ T

0
eβA(t)|g(t, 0, 0)|2dt]

≤E[eβA(T)|ξ|2] + 2E[
∫ T

0
eβA(t)|Yn+1

t |2dt] + E[
∫ T

0
eβA(t)(θ(t)2 + 2µ(t) + δ2γ(t)2 + (1 + δ1)ν(t)

)

|Yn+1
t |2dt] +

( 1
δ2

+ (1 + δ1)α
)
E[
∫ T

0
eβA(t)|Zn+1

t |2dt] + E[
∫ T

0
eβA(t)(φ(t)2 + (1 +

1
δ1
)|g(t, 0, 0)|2

)
dt].

As we mentioned earlier, β is big enough, so let β > 4 + δ1 + δ2. Taking δ1 = 1−α
4α and

δ2 = 4
1−α , then the above inequality can be simplified as follows

E[|Yn+1
0 |2] + (β− 4− 1− α

4α
− 4

1− α
)E[
∫ T

0
eβA(t)a2(t)|Yn+1

t |2dt] +
1− α

2
E[
∫ T

0
eβA(t)|Zn+1

t |2dt]

≤E[eβA(T)|ξ|2] + 2TE
[

sup
0≤t≤T

eβA(t)∣∣Yn+1
t
∣∣2]+ E[

∫ T

0
eβA(t)(φ(t)2 +

1 + 3α

1− α
|g(t, 0, 0)|2

)
dt] < ∞,

which implies that supn E[
∫ T

0 eβA(t)
∣∣∣Zn+1

t

∣∣∣
2
dt] < ∞, and ηn+1

t = f
(
t, PYn

t
, Yn

t , Zn
t
)
+ K

(
t,

∆(PYn+1
t

, PYn
t
), Yn+1

t − Yn
t , Zn+1

t − Zn
t
)

is uniformly bounded in H2,β(0, T;R). Let C0 =

supn E[
∫ T

0 eβA(t)|ηn
t |2dt]. For any m, n > 0, using Itô formula to eβA(t)|Ym

t −Yn
t |2, we

can obtain

E[
∫ T

0
eβA(t)|Zm

t − Zn
t |2dt]

≤2E[
∫ T

0
eβA(t)(Ym

t −Yn
t )(η

m
t − ηn

t )dt] + E[
∫ T

0
eβA(t)|g(t, Ym

t , Zm
t )− g(t, Yn

t , Zn
t )|2dt]

≤2
(

E[
∫ T

0
eβA(t)|Ym

t −Yn
t |2dt]

) 1
2
(

E[
∫ T

t
eβA(t)(|ηm

t |+ |ηn
t |
)2dt]

) 1
2

+ E[
∫ T

0
eβA(t)ν(t)|Ym

t −Yn
t |2dt] + E[

∫ T

0
eβA(t)α|Zm

t − Zn
t |2dt]

≤4
√

C0

1− α

(
E[
∫ T

0
eβA(t)|Ym

t −Yn
t |2dt]

) 1
2
+

1
1− α

E[
∫ T

0
eβA(t)ν(t)|Ym

t −Yn
t |2dt].

Because {Yn}∞
n=1 is a Cauchy sequence inH2,β(0, T;R), {Zn}∞

n=1 is also a Cauchy sequence
in H2,β(0, T;R). Therefore, {Zn}∞

n=1 converges in H2,β(0, T;R), we denote it by Z. Now,
we pass to the limit, as n→ ∞ on both sides of (11), it follows that

Yt = ξ +
∫ T

t
f
(
s, PYs

, Ys, Zs
)
ds +

∫ T

t
g(s, Ys, Zs)d

←−
B s −

∫ T

t
ZsdWs.

Obviously, (Y, Z) solves the general mean-field BDSDEs (5).
Let, (Y, Z) ∈ M2,β(0, T) be any solution of (5) and consider (11) with its minimal

solution (Yn, Zn) ∈ M2,β(0, T) for every n ≥ 0.

For n = 0, we first denote f
0
(s, PYs , Ys, Zs) := −θ(s)e−

βA(s)
2 W2(PYs , δ0) − µ(s)|Ys| −

γ(s)|Zs| − φ(s). From assumption (A7), there is

f (s, PYs , Ys, Zs) ≥ f
0
(s, PYs , Ys, Zs), for all s ∈ [0, T].

Since f
0

satisfies assumptions (A2), (A4) and (A5), we obtain from Lemma 2 that Y0
s ≤ Ys,

P-a.s., for all s ∈ [0, T].
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Now, suppose that there exists n > 1 such that Yn
s ≤ Ys and prove that Yn+1

s ≤ Ys, P-
a.s., for all s ∈ [0, T]. Denote f

n+1
(s, PYs , Ys, Zs) := f (s, PYn

s
, Yn

s , Zn
s ) + K

(
s, ∆(PYs , PYn

s
), Ys −

Yn
s , Zs − Zn

s
)
, from assumption (B2) and Ys ≥ Yn

s , it follows that

f (s, PYs , Ys, Zs) ≥ f
n+1

(s, PYs , Ys, Zs), for all s ∈ [0, T].

Since, f
n+1

satisfies assumptions (A2), (A4) and (A5), we obtain from Lemma 2 that,

Yn+1
s ≤ Ys, a.s., for all s ∈ [0, T]. Consequently, for all n ≥ 0, we have Yn

s ≤ Ys, P-a.s., for
all s ∈ [0, T].

Since (Yn, Zn) converges to (Y, Z), we can obtain Ys ≤ Ys, P-a.s., for all s ∈ [0, T],
which proves that (Y, Z) is the minimal solution of (5).

Remark 2. Similar to the proof of Theorem 1, we can obtain another existence result that Equation (5)
has a maximal solution. Replace (B1) with (B1)′:

(B1)′: For a.e. (s, ω) ∈ [0, T], f (s, p, y, z) is right-continuous in y, and continuous in p and
z, especially with a continuity modulus ρ : R+ → R+ for p: for all p1, p2 ∈ P2(R), (s, y, z) ∈
[0, T]×R×Rd, there is | f (s, p1, y, z)− f (s, p2, y, z)| ≤ ρ(W2(p1, p2)). Here ρ is supposed to
be non-decreasing and such that ρ(0+) = 0.

Consider the Equation (12) and the following equation: Given ξ ∈ L2,β(Ω,FT , P;R), t ∈ [0, T],

Yn
t =ξ +

∫ T

t

[
f
(
s, P

Yn−1
s

, Yn−1
s , Zn−1

s
)
+ K

(
s, ∆(P

Yn−1
s

, PYn
s
), Yn−1

s −Yn
s , Zn−1

s − Zn
s
)]

ds

+
∫ T

t
g(s, Yn

s , Zn
s )d
←−
B s −

∫ T

t
Zn

s dWs, n ≥ 1.
(15)

For all n ≥ 1, there exists at least one solution to the general mean-field BDSDEs (15), and here we
give the sequence of maximal solutions denoted by {(Yn, Zn

)}∞
n=1, which will limit to the maximal

solution of Equation (5).

Working similarly to Lemma 5 and Theorem 1, we conclude the following:

Corollary 1. Under the assumptions (A1), (A3), (A4), (A7), (B1)′ and (B2), if {(Yn, Zn
)}∞

n=1 is
the maximal solution of the Equation (15), then

(i) For n ≥ 0, Y0
t ≥ Yn

t ≥ Yn+1
t ≥ Y0

t , t ∈ [0, T], P-a.s.;
(ii) {(Yn, Zn

)}∞
n=1 ∈ M2,β(0, T) converges to (Y, Z), which is the maximal solution of

Equation (5).

3.2. Comparison Theorem

The comparison theorem is also an important result in the theory of general mean-field
BDSDEs; therefore, we will prove the comparison theorem to the case where the generator
f is discontinuous.

Theorem 2. Assume that ξ(1), ξ(2) ∈ L2,β(Ω,FT , P;R), g and f (i), i = 1, 2 satisfy the assump-
tions (A1), (A3), (A4), (A7), (B1) and (B2). Let (Y(1), Z(1)) be the minimal solution of the general
mean-field BDSDEs (5) with the data

(
ξ(1), f (1), g

)
; (Y(2), Z(2)) be a solution of the general mean-

field BDSDEs (5) with the data
(

ξ(2), f (2), g
)

. Then, if ξ(1) ≤ ξ(2), P-a.s. and f (1)(t, p, y, z) ≤
f (2)(t, p, y, z), dtdP-a.e., it holds that Y(1)

t ≤ Y(2)
t , for all t ∈ [0, T], P-a.s..

Proof. Let (Yn
t , Zn

t )t∈[0,T](n = 0, 1, · · · ) be the minimal solutions of the following general
mean-field BDSDEs:
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Y0
t = ξ(1) +

∫ T

t

[
− θ(s)e−

βA(s)
2 W2(PY0

s
, δ0)− µ(s)|Y0

s | − γ(s)|Z0
s | − φ(s)

]
ds

+
∫ T

t
g(s, Y0

s , Z0
s )d
←−
B s −

∫ T

t
Z0

s dWs, (16)

Yn
t = ξ(1) +

∫ T

t

[
f (1)
(
s, PYn−1

s
, Yn−1

s , Zn−1
s
)
+ K

(
s, ∆(PYn

s
, PYn−1

s
), Yn

s −Yn−1
s , Zn

s − Zn−1
s
)]

ds

+
∫ T

t
g(s, Yn

s , Zn
s )d
←−
B s −

∫ T

t
Zn

s dWs. (17)

For any (s, p, y, z) ∈ [0, T]×P(R)×R×Rd, we denote

F(1)
0 (s, p, y, z) = −θ(s)e−

βA(s)
2 W2(p, δ0)− µ(s)|y| − γ(s)|z| − φ(s),

F(1)
n (s, p, y, z) = f (1)(s, PYn−1

s
, Yn−1

s , Zn−1
s ) + K(s, ∆(p, PYn−1

s
), y−Yn−1

s , z− Zn−1
t ), n ≥ 1.

First, we prove Y(2)
s ≥ Y0

s . From the assumption (A7), we have

f (2)(s, P
Y(2)

s
, Y(2)

s , Z(2)
s )

≥ −θ(s)e−
βA(s)

2 W2(P
Y(2)

s
, δ0)− µ(s)|Y(2)

s | − γ(s)|Z(2)
s | − φ(s)

= F(1)
0 (s, P

Y(2)
s

, Y(2)
s , Z(2)

s ).

Since F(1)
0 satisfies the assumptions (A6)–(A8), we obtain from Lemma 4 that Y(2)

s ≥ Y0
s , for

all s ∈ [0, T], P-a.s.
Next, we prove Y(2)

s ≥ Y1
s . From the assumption (B2), it follows that

f (2)(s, P
Y(2)

s
, Y(2)

s , Z(2)
s )

≥ f (2)(s, PY0
s
, Y0

s , Z0
s ) + K(s, ∆(Y(2)

s , Y0
s ), Y(2)

s −Y0
s , Z(2)

s − Z0
s )

≥ f (1)(s, PY0
s
, Y0

s , Z0
s ) + K(s, ∆(Y(2)

s , Y0
s ), Y(2)

s −Y0
s , Z(2)

s − Z0
s )

= F(1)
1 (s, PY2

s
, Y2

s , Z2
s ).

(18)

Since F(1)
1 satisfies the assumptions (A6)–(A8), we obtain from Lemma 4 that Y(2)

s ≥ Y1
s , for

all s ∈ [0, T], P-a.s.
Then, we assume that there exists n ≥ 1 such that Y(2)

s ≥ Yn
s , P-a.s., following the

same procedure as (18), we can prove that Y(2)
s ≥ Yn+1

s , for all s ∈ [0, T], P-a.s.
Finally, from Theorem 1 we know {(Yn, Zn)}n≥0 converges inM2,β(0, T) to the mini-

mal solution (Y(1), Z(1)) of general mean-field BDSDEs (ξ(1), f (1), g), so there is Y(1)
s ≤ Y(2)

s ,
for all s ∈ [0, T], P-a.s.

3.3. A Special Case: General Mean-Field BDSDEs with Linear Growth and
Discontinuous Generator

Next, we will discuss the general mean-field BDSDEs under non-stochastic conditions,
which is a special case of that under the above stochastic conditions. Let β = 0, and for all
t ∈ [0, T], let processes θ(t), µ(t), γ(t), φ(t), ν(t) equal to the constant A, then the results
under stochastic conditions will degenerate into some classical results, which are shown in
Theorems 3 and 4.

At first, when β = 0, θ(t), µ(t), γ(t), φ(t), ν(t) ≡ A, for all t ∈ [0, T], the corresponding
assumptions will be modified as follows:
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(C1) g(t, ω, 0, 0) ∈ H2,0(0, T,R`);

(C2) g is Lipschitz in (y, z) : There are constants α1 > 0 and 0 < α2 < 1, such that for all
y1, y2 ∈ R, z1, z2 ∈ Rd,

|g(t, y1, z1)− g(t, y2, z2)|2 ≤ α1|y1 − y2|2 + α2|z1 − z2|2;

(C3) Linear growth: There exists A ≥ 0, such that for all (p, y, z) ∈ P(R)×R×Rd, there
is

| f (t, p, y, z)| ≤ A(1 + W2(p, δ0) + |y|+ |z|), dtdP-a.e.;

(C4) Monotonicity in p : For all θ1, θ2 ∈ L2(Ω,F , P;R), and all (y, z) ∈ R× Rd, when
θ1 ≤ θ2, P-a.s., we have

f (t, Pθ1 , y, z) ≤ f (t, Pθ2 , y, z), dsdP-a.e.;

(C5) There exists a continuous function K(t, p, y, z) defined on [0, T]× P2(R)×R×Rd,
which is non-decreasing with respect to p and for all A ≥ 0 satisfying

|K(t, p, y, z)| ≤ A(W2(p, δ0) + |y|+ |z|),

such that for all y1 ≥ y2 ∈ R, p1, p2 ∈ P2(R), z1, z2 ∈ Rd, we have

f (t, p1, y1, z1)− f (t, p2, y2, z2) ≥ K(t, ∆(p1, p2), y1 − y2, z1 − z2),

where ∆(p1, p2) ∈ P2(R) and satisfies W2
(
∆(p1, p2), δ0

)
= W2(p1, p2).

Theorem 3. Under the assumptions (C1)-(C5) and (B1), the general mean-field BDSDE (5) at least
has one solution (Y, Z) ∈ M2,0(0, T). Moreover, there is a minimal solution (Y, Z) ∈ M2,0(0, T)
of the general mean-field BDSDE (5).

Here, we give an example to show the rationality of those mentioned assumptions.

Example 1. Let ξ ∈ L2,0(Ω,FT , P;R), consider the following mean-field BDSDE: for t ∈ [0, T],

Yt = ξ +
∫ T

t

(
1 + E[Ys] + Ys I{Ys>1} + Zs

)
ds +

∫ T

t

(
1
2

Ys +
1
2

Zs

)
d
←−
B s −

∫ T

t
ZsdWs. (19)

Taking A = 1, α1 = 1
2 and α2 = 1

2 , the above equation satisfies assumptions (C1)–(C4) and (B1). Given
the continuous function K(t, p, y, z) = z, the assumptions (C5) will also be satisfied. Therefore, from
Theorem 3 we know that the Equation (19) at least has one solution (Y, Z) ∈ M2,0(0, T).

Theorem 4 (Comparison theorem). Assume that ξ(1), ξ(2) ∈ L2,0(Ω,FT , P;R), g and f (i),
i = 1, 2 satisfy the assumptions (C1)–(C5) and (B1). Let (Y(1), Z(1)) be the minimal solution of
the general mean-field BDSDEs (5) with the data (ξ(1), f (1), g); (Y(2), Z(2)) ∈ M2,0(0, T) be a
solution of the general mean-field BDSDEs (5) with the data (ξ(2), f (2), g). If ξ(1) ≤ ξ(2), P-a.s.
and f (1)(t, p, y, z) ≤ f (2)(t, p, y, z), dtdP-a.e., it holds that Y(1)

t ≤ Y(2)
t , for all t ∈ [0, T], P-a.s.

Proof. The proof of Theorems 3 and 4 is similar to that of Theorems 1 and 2, so it is omitted
here.

4. Application in Finance: Selling a Financial Claim

Considering a financial claim with a contingent ξ and there an investor who wants
to sell the claim and hedge it. Suppose that the investor has additional information not
detected in the financial market, and his decision is also affected by the distribution of all
investors’ decisions in the market. Moreover, suppose that the interest rate is applied only
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to portfolios whose value remains above a nominal value at any time. This problem is
equivalent to solving the following mean-field BDSDE: ξ ∈ L2,β(Ω,FT , P;R), for t ∈ [0, T],

Yt = ξ +
∫ T

t

(
θ(s)e−

βA(s)
2 E[Ys] + µ(s)Ys I{Ys>1} + γ(s)Zs

)
ds +

∫ T

t
c(s)Zsd

←−
B s −

∫ T

t
ZsdWs, (20)

where the mean-field term E[y] reflects that the investor relies on the distribution of all
investors’ decisions in the market to make a decision, µ(t) is the interest rate, γ(t) is the
risk premium vector and c(t) is the volatility caused by the systemic risks.

We have f (t, p, y, z) = θ(t)e−
βA(t)

2 E[y] + µ(t)yI{y>1} + γ(t)z and g(t, y, z) = c(t)z.
Obviously, it follows that the assumptions (A7), (B1) and (B2) are satisfied with φ(t) ≡ 0 and
K(t, p, y, z) = γ(t)z. If we let c(t) = α1{BT−Bt>0} and ν(t) ≡ 0, 0 < α < 1, then assumption
(A1) is also satisfied. For any t ∈ [0, T], let Xt =

√
2t (X ∧ 1), where X ∼ N (0, 1). Now, for

any ε > 0, we put

θ(t) =

√
1
2

X2
t 1{Wt≥0}, µ(t) =

1
2

X2
t 1{Wt≥0}, and γ(t) =

√
X2

t 1{Wt<0} + ε.

Then, θ(t), µ(t), γ(t) and ν(t) are positive FW
t -adapted processes. Indeed, for any t ∈ [0, T],

we have
a2(t) = θ(t)2 + µ(t) + γ2(t) + ν(t) = X2

t + ε > 0, and

A(t) =
∫ t

0

(
X2

s + ε
)

ds ≤ (X ∧ 1)2T2 + εT < +∞,

thus, the assumptions (A3) and (A4) are satisfied. Therefore, from Theorem 1 we know, the
Equation (20) at least has one solution (Y, Z) ∈ M2,β(0, T), that is, the investor can sell the
financial claim at a certain price Y.

5. Conclusions

This paper studies a class of general mean-field BDSDEs whose generator f depends
not only on the solution processes but also on their distribution.

We present the main result in Section 3, that is, the existence of the solutions for
the general mean-field BDSDEs and the comparison theorem under discontinuous and
stochastic linear growth conditions.

It is worth emphasizing that the general mean-field BDSDEs with discontinuous
generators can help to deal with some financial problems, for example, we discuss a
financial claim sale problem in Section 4, which can be solved by a class of general mean-
field BDSDE.
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Abstract: The Black–Scholes formula is an important formula for pricing a contingent claim in complete
financial markets. This formula can be obtained under the assumption that the investor’s strategy is
carried out according to a self-financing criterion; hence, there arise a set of self-financing portfolios
corresponding to different contingent claims. The natural questions are: If an investor invests according
to self-financing portfolios in the financial market, what are the maximal and minimal distributions of the
investor’s wealth on some specific interval at the terminal time? Furthermore, if such distributions exist,
how can the corresponding optimal portfolios be constructed? The present study applies the theory of
backward stochastic differential equations in order to obtain an affirmative answer to the above questions.
That is, the explicit formulations for the maximal and minimal distributions of wealth when adopting
self-financing strategies would be derived, and the corresponding optimal (self-financing) portfolios
would be constructed. Furthermore, this would verify the benefits of diversified portfolios in financial
markets: that is, do not put all your eggs in the same basket.

Keywords: self-financing portfolio; optimal investment; maximal distribution; backward stochastic
differential equation; diversified portfolio
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1. Introduction

In the realm of financial markets, the continuous trading of securities such as stocks
forms the backbone of economic dynamics. This paper delves into a market comprising N
securities operating within a fixed time horizon. The price trajectories of these securities
are modeled by geometric Brownian motion: each is characterized by distinct drifts and
volatilities. We explore the scenario of an investor investing his/her initial endowment
into these N securities. The investor’s portfolio, Π(t) := (π1(t), · · · , πN(t)), represents
the proportion of wealth invested in each stock. The notation VΠ

t represents the investor’s
wealth trajectory under the self-financing portfolio strategy Π(t). In the context of modern
portfolio theory, investors aim to balance risk and reward, with risk-averse individuals
prioritizing predictability and lower risk over potentially higher but uncertain returns; see,
for example, [1–4]. This preference underscores the importance of understanding the risk
associated with a portfolio, particularly through the probability of the wealth process Vπ

T
falling within a specific interval.

Therefore, a natural question is: Can we obtain the maximal and minimal distributions
of the wealth process VΠ

T on any specific interval over the portfolio set Θ. If this is possible,
how can these two optimal portfolios, Π∗ and Π∗, be constructed to achieve the maximal
and minimal distributions, respectively? This is, for any given positive numbers a < b and
0 ≤ T < ∞,

P(VΠ∗
T ∈ [a, b]) = sup

Π∈Θ
P(VΠ

T ∈ [a, b]), (1)
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and
P(VΠ∗

T ∈ [a, b]) = inf
Π∈Θ

P(VΠ
T ∈ [a, b]). (2)

In the above proposed financial market model, the drift terms of the securities’ price
processes are not precisely known, introducing ambiguity into the market dynamics. This
ambiguity reflects the real-world uncertainty that investors face when the true probabilities
of future events are unclear or indeterminate. Unlike risk, which can be quantified and
managed through probabilistic models, ambiguity challenges traditional decision-making
frameworks and necessitates novel approaches to portfolio optimization.

The current study addresses this ambiguity by considering the range of possible drift
values within known bounds [µ, µ]. By doing so, we aim to characterize the maximal
and minimal distributions of the wealth process VΠ

T , which represent the best- and worst-
case scenarios for an investor’s wealth at time T given the uncertain drift terms. These
distributions provide valuable insights for investors, particularly those who are risk-averse,
as they offer a way to gauge the potential outcomes of their investment strategies in the
face of ambiguous market conditions.

The study on ambiguity models dates back to Frank [5], who explains how uncertainty
can create imperfect market structures. The portfolio optimization problem is studied
by Hansen and Sargent [6], who model the volatility of stocks as a stochastic process
such that the volatility of stocks is uncertain. Chen and Epstein [2] conceptualize the
theoretical framework of ambiguity, risk and asset return with respect to a set of ‘objective’
probability measures. Cvitanic, Ma and Zhang [7] study the problem of computing
hedging portfolios for options that may have discontinuous payoffs. Schied [8] uses risk
assessment operators to solve the portfolio maximization problem. A robust mean-variance
maximization problem is studied by Maccheroni, Marinacci and Ruffino [9]. Bielecki,
Jin, Pliska and Zhou [10] study continuous-time mean-variance portfolio selection with
bankruptcy prohibition. Jin and Zhou [11] study continuous-time portfolio selection under
ambiguity, in which the appreciation rates are only known to be in a certain convex closed
set, and the portfolios are allowed to be only based on historical stock prices. Bai, Ma and
Xing [12] study a class of optimal dividend and investment problems with the assumption
that the underlying reserve process follows the Sparre Andersen model. Hu, Jin and
Zhou [13] study portfolio selection in a complete, continuous time market, in which the
preference is dictated by the rank-dependent utility. Chen, Feng and Zhang [14] study
sampling-strategy-driven limit theorems that generate the maximum or minimum average
reward in the two-armed bandit problem.

To date, the above model has been widely studied. However, the explicit formulations
of the maximal and minimal distributions remain unknown. The present study introduces
a new method to investigate the above model. Specifically, based on the theory of backward
stochastic differential equations (BSDEs), a confirmed answer can be obtained for the above
question. That is, the explicit expression of Π∗ and Π∗ would be established, and the
closed form of P(VΠ∗

T ∈ [a, b]) and P(VΠ∗
T ∈ [a, b]) would be obtained. Actually, we shall

show that the maximal and minimal distributions are closely related to a BSDE that is
nonlinear in zt. Nonlinear BSDEs were initially studied by Pardoux and Peng [15]. It has
been widely recognized that BSDEs provide a useful framework for formulating problems
in various fields, such as financial mathematics, stochastic optimal control, and partial
differential equations (PDEs). For example, El Karoui, Peng and Quenez [16] study different
properties of BSDEs and their applications in finance, especially contingent claim valuation
and recursive utility (independently introduced by Duffie and Epstein [17]). Pardoux and
Peng [18] establish some estimates and regularity results for the solution of BSDEs and
provide a Feynman–Kac representation for solutions to some nonlinear parabolic PDEs.
Peng [19] obtain the general stochastic maximum principle through the theory of BSDEs.
Yong [20] discusses the solvability of BSDEs with possibly unbounded coefficients and
their applications in a Black–Scholes type security market with unbounded risk premium
processes and/or interest rates. Chen and Epstein [21] study a central limit theorem for a
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sequence of random variables with a mean uncertainty, and it was revealed that the limit is
defined by a BSDE, which can be interpreted as modeling an ambiguous continuous-time
random walk.

Although BSDEs have been used in various problems, this method still has some
limitations since the properties of zt and the explicit solution of general nonlinear BSDEs
cannot be easily established. For the zt part, Chen, Kupperger and Wei [22] obtain an
interesting comonotonic theorem of zt for a nonlinear but special generator. Although it is
difficult to obtain the explicit formulations for the solution of a general nonlinear BSDE,
Chen, Liu, Qian and Xu [23] obtain explicit solutions to an interesting class of nonlinear
BSDEs, which is the k-ignorance model that arose from modeling the ambiguity of asset
pricing (e.g., Chen and Epstein [2]).

Motivated by these above results, the present paper uses BSDEs to study the optimal
investment problem. The main ideas are as follows: First, the correlation between the
maximal distribution sup

Π∈Θ
P(VΠ

T ∈ [a, b]) and the solution for a special kind of nonlinear

BSDE (Theorem 1) is established. Second, through the formulation of the BSDE, the
corresponding optimal portfolio is constructed (Theorem 2). Third, after obtaining the
explicit solution for the derived BSDE, the maximal distribution is explicitly computed
(Theorem 4). Similarly, the minimal distribution inf

Π∈Θ
P(VΠ

T ∈ [a, b]) and the corresponding

optimal portfolio are similarly studied. For wider applications, a general utility function
ϕ including the indicator function 1[a,b] is considered (Theorem 3). From the explicit
formulations of the optimal strategy and the optimal distribution, it can easily be observed
that diversified portfolios with two stocks would be better than portfolios with only
one stock.

The present study is organized as follows. Section 2 presents the definition of maximal
and minimal distributions and some basic results for the BSDEs used for the study. Section 3
presents the explicit representations of optimal portfolios Π∗ and Π∗, which correspond
to the maximal and minimal distributions, respectively. The explicit expressions for the
maximal and minimal distributions and a general utility function case are presented
in Section 4. The maximal distribution is applied to explain the benefits of diversified
portfolios in Section 5.

2. Preliminaries

In this section, some notations and lemmas are provided. Let (Ω,F ,P) refer to the
probability space, (Bt)t≥0 refer to the standard Brownian motion on this probability space,
and (Ft)t≥0 refer to the σ-filtration generated by the Brownian motion, which is augmented
by all P-null setsN (P). That is, Ft = σ{Bs; 0 ≤ s ≤ t} ∨N (P). Let L2(Ω,FT ,P) refer to the
set of all FT-measurable and square-integrable random variables, S(0, T;R) refer to the set
of all real-valuedFt-adapted processes with E

[
supt∈[0,T] |yt|2

]
< +∞, andM(0, T;R) refer

to the set of all Ft-progressively measurable real-valued processes with E
[∫ T

0 |zt|2dt
]
< ∞.

Throughout the study, 1A represents the indicator function on set A, EP[·] denotes the
expectation under probability measure P, and the sign function sgn(x) is given by

sgn(x) =

{
1, x > 0,
−1, x ≤ 0.

The definition of a maximal distribution is initially given. The minimal distribution is
similarly defined.

Definition 1 (Maximal distribution). Let Xθ refer to the family of random variables over a given
index set Θ. The maximal distribution of Xθ over the set Θ is denoted by the following:

sup
θ∈Θ

P
(

Xθ ∈ [a, b]
)

, for all a, b ∈ R+.
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We now introduce the model of our study, which is set within a finite time horizon
0 ≤ T < ∞. The price dynamics of the securities are governed by the following system of
stochastic differential equations (SDEs):

{
dSi(t) = µi Si(t)dt + σi Si(t)dBt,
Si(0) = xi, i = 1, 2, · · · , N,

(3)

where µi represents the drift, σi > 0 is the volatility, xi is the initial price, and Bt is a
Brownian motion within the probability space (Ω,F ,P). A feature of our model is the
ambiguity of the exact values of µi, with only their maximum and minimum known. For
simplicity, we only consider the case N = 2 and xi = 1 for i = 1, 2. This simplification
does not detract from the generality of our results, which can be extended to scenarios with
N > 2.

We explore the scenario of an investor investing his/her initial endowment into two
stocks. The investor’s portfolio, Π(t) := (π(t), 1− π(t)), represents the proportion of
wealth invested in each stock. The evolution of the investor’s wealth, Vπ

t , is governed by
the stochastic differential equation:
{

dVΠ
t = VΠ

t [π(t)µ1 + (1− π(t))µ2]dt + VΠ
t [π(t)σ1 + (1− π(t))σ2]dBt, t ∈ [0, T],

VΠ
0 = 1.

(4)

The set of all possible self-financing portfolios, Θ, is defined as:

Θ :=
{

Π(t) = (π(t), 1− π(t)) : π(t) ∈ [ρ, ρ] is a predictable process
}

,

where ρ, ρ ∈ [0, 1] refer to two fixed numbers that represent the constraints on the
investment proportion of these two stocks.

At the end of this section, nonlinear BSDEs are briefly introduced, which were initially
investigated in [15]:

yt = ξ +
∫ T

t
g(ys, zs)ds−

∫ T

t
zsdBs. (5)

Lemma 1 ([15]). Assume that g : R2 → R is uniformly Lipschitz continuous. Hence, for any
ξ ∈ L2(Ω,FT ,P) and T > 0, the BSDE (5) has a unique pair of solution (y, z) ∈ S(0, T;R)×
M(0, T;R).

Usually, it is difficult to obtain the closed form for the solution of the BSDE (5) when
g is nonlinear. Interestingly, as shown in the following lemma, for cases g(z) = k|z| and
ξ = ϕ(BT), the following BSDE has a pair of explicit solutions:

Yt = ϕ(BT) +
∫ T

t
k|Zs|ds−

∫ T

t
ZsdBs, (6)

where ϕ satisfies the following assumption:

Hypothesis 1. There exists some c ∈ R such that ϕ is symmetric on c. That is, ϕ(c − x) =
ϕ(c + x) for all x ∈ R.

Lemma 2 ([23]). Assume that ϕ ∈ C3(R) satisfies (H.1) for some c ∈ R, and ϕ(i) (where
i = 0, 1, 2, 3) have, at most, polynomial growth. Then BSDE (6) has a pair of explicit solutions

Yt = H(Bt), Zt = ∂h H(Bt),

with H defined as follows:
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(i) If ϕ′ ≥ 0 and ϕ′ 6≡ 0 on (c, ∞), then

H(h) = e−
1
2 k2(T−t)

∫

R

∫

y≥0
ϕ(x + h)ek|x−c+h|−k|c−h|−kyP(BT−t ∈ dx, Lc−h

T−t ∈ dy);

(ii) If ϕ′ ≤ 0 and ϕ′ 6≡ 0 on (c, ∞), then

H(h) = e−
1
2 k2(T−t)

∫

R

∫

y≥0
ϕ(x + h)e−k|x−c+h|+k|c−h|+kyP(BT−t ∈ dx, Lc−h

T−t ∈ dy),

where P(Bt ∈ dx, L`
t ∈ dy) is the joint distribution of Bt and its local time L`

t with respect to ` and
is given by

P(Bt ∈ dx, L`
t ∈ dy)

=
1√

2πt3
(y + |x− `|+ |`|) exp

{−(y + |x− `|+ |`|)2

2t

}
· 1{y>0}dxdy

+
1√
2πt

[
exp

{
− x2

2t

}
− exp

{
− (|x− `|+ |`|)2

2t

}]
· 1{y=0}dxdy. (7)

3. Explicit Representation of Optimal Portfolios

For simplicity, in the following, we will suppress the time variable t in π(t) when
there is no confusion. This section provides the optimal portfolios Π∗ = (π∗, 1− π∗) and
Π∗ = (π∗, 1− π∗) such that

P(VΠ∗
T ∈ [a, b]) = sup

Π∈Θ
P(VΠ

T ∈ [a, b]) = sup
Π∈Θ

P(log VΠ
T ∈ [log a, log b]),

and
P(VΠ∗

T ∈ [a, b]) = inf
Π∈Θ

P(VΠ
T ∈ [a, b]) = inf

Π∈Θ
P(log VΠ

T ∈ [log a, log b]).

Moreover, in the following it is assumed that σ1 = σ2 = σ and x = 1. Then, the wealth
process takes the following form:

{
dVΠ

t = VΠ
t [Π(t)µ1 + (1−Π(t))µ2]dt + σVΠ

t dBt,
VΠ

0 = 1, t ∈ (0, T].
(8)

Denote
µ(t) := π(t)

(
µ1 −

1
2

σ2
)
+ (1− π(t))

(
µ2 −

1
2

σ2
)

.

Similarly, µ∗(t) and µ∗(t) are denoted corresponding to Π∗ and Π∗, respectively. In order
to study the optimal portfolios, the following result needs to be initially obtained.

Theorem 1. Suppose that VΠ
t is the wealth process defined in (8) with σ1 = σ2 = σ, and

Π(t) = (π(t), 1− π(t)) is the related portfolio. Assume that ϕ(σBT) ∈ L2(Ω,FT ,P). Then

(1) sup
Π∈Θ

E
[
ϕ
(
log VΠ

T
)]

is the value of the solution Yt of the following BSDE at t = 0:

Yt = ϕ(σBT) +
∫ T

t

(µ

σ
Z+

s −
µ

σ
Z−s
)

ds−
∫ T

t
ZsdBs, (9)

(2) inf
Π∈Θ

E
[
ϕ
(
log VΠ

T
)]

is the value of the solution yt of the following BSDE at t = 0:

yt = ϕ(σBT) +
∫ T

t

(µ

σ
z+s −

µ

σ
z−s
)

ds−
∫ T

t
zsdBs, (10)
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where

µ =
[ρ− ρ

2
sgn(µ1 − µ2) +

ρ + ρ

2

]
(µ1 − µ2) + µ2 −

1
2

σ2,

µ =
[ρ− ρ

2
sgn(µ1 − µ2) +

ρ + ρ

2

]
(µ1 − µ2) + µ2 −

1
2

σ2,

and ρ̄, ρ ∈ [0, 1] are the upper bound and lower bound, respectively, of π(t).

Proof. Note that
d log VΠ

t = µ(t)dt + σdBt, log VΠ
0 = 0.

LetH be the set of {Ft}-progressively measurable processes θs, 0 ≤ s ≤ T taking values in
[µ, µ]. Then, from

µ(t) = π(t)
(

µ1 −
1
2

σ2
)
+ (1− π(t))

(
µ2 −

1
2

σ2
)

,

we have
Π(t) ∈ Θ⇐⇒ µ(t) ∈ H.

Therefore,

sup
Π∈Θ

E
[

ϕ
(

log VΠ
T

)]
= sup

Π∈Θ
E
[

ϕ
(

σBT +
∫ T

0
π(s)

(
µ1 −

1
2

σ2
)
+ (1− π(s))

(
µ2 −

1
2

σ2
)

ds
)]

= sup
µ∈H

E
[

ϕ
(

σBT +
∫ T

0
µ(s)ds

)]
.

(11)
Let (Yt, Zt) be the solution of BSDE (9). Define

as =
µ

σ
1Zs>0 +

µ

σ
1Zs≤0, and B̃s = Bs −

∫ s

0
ardr. (12)

By Girsanov’s theorem (see for example [24]), we know B̃s is a Brownian motion under Q, where

dQ
dP

∣∣∣
Ft

= exp
( ∫ t

0
ardBr −

1
2

∫ t

0
a2

r dr
)

. (13)

Therefore,

Yt =ϕ(σBT) +
∫ T

t

(µ

σ
Z+

s −
µ

σ
Z−s
)

ds−
∫ T

t
ZsdBs

=ϕ(σBT)−
∫ T

t
ZsdB̃s

=ϕ
(

σB̃T + σ
∫ T

0
ardr

)
−
∫ T

t
ZsdB̃s.

Hence,

Y0 = EQ
[

ϕ
(

σB̃T + σ
∫ T

0
ardr

)]
≤ sup

µ∈H
EQ
[

ϕ
(

σB̃T +
∫ T

0
µ(r)dr

)]
. (14)

For any σθs ∈ H, consider the following BSDE:

Yθ
t = ϕ(σBT) +

∫ T

t
θsZθ

s ds−
∫ T

t
Zθ

s dBs. (15)
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Define Bθ
s = Bs −

∫ s
0 θrdr. Then Bθ

s is a Brownian motion under Pθ , where

dPθ

dP

∣∣∣
Ft

= exp
( ∫ t

0
θrdBr −

1
2

∫ t

0
θ2

r dr
)

.

Thus,

Yθ
t = ϕ(σBT) +

∫ T

t
θsZθ

s ds−
∫ T

t
Zθ

s dBs = ϕ
(

σBθ
T + σ

∫ T

0
θrdr

)
−
∫ T

t
Zθ

s dBθ
s .

Hence,

Yθ
0 = EPθ

[
ϕ
(

σBθ
T + σ

∫ T

0
θrdr

)]
.

It follows from the comparison theorem of BSDE (e.g., [16]) that

Yθ
0 ≤ Y0.

Consequently,

sup
θ∈H

EPθ

[
ϕ
(

σBθ
T +

∫ T

0
θrdr

)]
≤ Y0. (16)

Note

sup
θ∈H

EPθ

[
ϕ
(

σBθ
T +

∫ T

0
θrdr

)]
= sup

θ∈H
EP
[

ϕ
(

σBT +
∫ T

0
θrdr

)]
= sup

µ∈H
EQ
[

ϕ
(

σB̃T +
∫ T

0
µ(r)dr

)]
.

Combining (11), (14) and (16), we have

Y0 = sup
Π∈Θ

E[ϕ(log Vπ
T )].

Similarly, part (2) of Theorem 1 can be proved.

Now, we can give the main result of this section, which is about the optimal portfolios.

Theorem 2. The optimal portfolios Π∗ = (π∗, 1− π∗) and Π∗ = (π∗, 1− π∗) defined by (1)
and (2) are given as follows: For t ∈ [0, T],

π∗(t) =
ρ + ρ

2
+

(ρ− ρ)sgn(µ1 − µ2)

2
sgn
(
− Rt +

log(ab)
2σ

−
µ + µ

2σ
(T − t)

)

=





ρ + ρ

2
+

ρ− ρ

2
sgn
(
− Rt +

log(ab)
2σ

−
µ + µ

2σ
(T − t)

)
, µ1 > µ2,

ρ + ρ

2
−

ρ− ρ

2
sgn
(
− Rt +

log(ab)
2σ

−
µ + µ

2σ
(T − t)

)
, µ1 ≤ µ2.

(17)

and

π∗(t) =
ρ + ρ

2
+

(ρ− ρ)sgn(µ1 − µ2)

2
sgn
(
− Rt +

log(ab)
2σ

−
µ + µ

2σ
(T − t)

)

=





ρ + ρ

2
+

ρ− ρ

2
sgn
(
− Rt +

log(ab)
2σ

−
µ + µ

2σ
(T − t)

)
, µ1 > µ2,

ρ + ρ

2
−

ρ− ρ

2
sgn
(
− Rt +

log(ab)
2σ

−
µ + µ

2σ
(T − t)

)
, µ1 ≤ µ2.

(18)
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where

dRt =
[µ− µ

2σ
sgn
(
− Rt +

log(ab)
2σ

−
µ + µ

2σ
(T − t)

)
+

µ + µ

2σ

]
dt + dBt, R0 = 0,

and

dRt =
[µ− µ

2σ
sgn
(
− Rt +

log(ab)
2σ

−
µ + µ

2σ
(T − t)

)
+

µ + µ

2σ

]
dt + dBt, R0 = 0.

In this case,




d
( log VΠ∗

t
σ

)
=
[
π∗(t)

(
µ1 −

1
2

σ2
)
+ (1− π∗(t))

(
µ2 −

1
2

σ2
)]

dt + dBt

=
[µ− µ

2σ
sgn
(
− Rt +

log ab
2σ

−
µ + µ

2σ
(T − t)

)
+

µ + µ

2σ

]
dt + dBt,

log VΠ∗
0 = 0,

and




d
( log VΠ∗

t
σ

)
=
[
π∗(t)

(
µ1 −

1
2

σ2
)
+ (1− π∗(t))

(
µ2 −

1
2

σ2
)]

dt + dBt

=
[µ− µ

2σ
sgn
(
− Rt +

log ab
2σ

−
µ + µ

2σ
(T − t)

)
+

µ + µ

2σ

]
dt + dBt,

log VΠ∗
0 = 0.

That is, eσRt is the wealth at time t with respect to Π∗ = (π∗, 1− π∗), and eσRt is the wealth at
time t with respect to Π∗ = (π∗, 1− π∗)

Proof. By Theorem 1, we have

sup
Π∈Θ

P(VΠ
T ∈ [a, b]) = sup

Π∈Θ
P(log VΠ

T ∈ [log a, log b]) = Y0,

where

Yt = 1[log a,log b](σBT) +
∫ T

t

(µ

σ
Z+

s −
µ

σ
Z−s
)

ds−
∫ T

t
ZsdBs,

and 1[log a,log b](·) is the indicator function on [log a, log b]. Moreover,

Y0 = EQ
[
1[log a,log b]

(
σB̃T + σ

∫ T

0
asds

)]
,

where as and Q are given by (12) and (13), respectively. Define B̂t = Bt −
µ+µ

2σ t. We know
from Girsanov’s theorem that B̂t is a Brownian motion under P̂ with

dP̂
dP

∣∣∣
Ft

= exp
{

µ + µ

2σ
Bt −

1
2

∣∣∣
µ + µ

2σ

∣∣∣
2
t
}

,

and

Yt =1[log a,log b](σBT) +
∫ T

t

(µ

σ
Z+

s −
µ

σ
Z−s
)

ds−
∫ T

t
ZsdBs

=1
[

log a
σ −

µ+µ

2σ T, log b
σ −

µ+µ

2σ T]
(B̂T) +

∫ T

t

µ− µ

2σ
|Zs|ds−

∫ T

t
ZsdB̂s.
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It follows from ([23] Corollary 6) that

sgn(−Zs) = sgn
(

B̂s −
log(ab)

2σ
+

µ + µ

2σ
T
)
= sgn

(
Bs −

log(ab)
2σ

+
µ + µ

2σ
(T − s)

)
.

Therefore,

Y0 = EP̃

[
1[log a,log b]

(
σB̃T +

∫ T

0

[µ− µ

2
sgn
(
− Bs +

log(ab)
2σ

−
µ + µ

2σ
(T − s)

)
+

µ + µ

2

]
ds
)]

.

Define

dRt =
[µ− µ

2σ
sgn
(
− Rt +

log(ab)
2σ

−
µ + µ

2σ
(T − t)

)
+

µ + µ

2σ

]
dt + dBt, R0 = 0.

We have

Y0 = EP
[
1[log a,log b]

(
σBT +

∫ T

0

[µ− µ

2
sgn
(
− Rs +

log(ab)
2σ

−
µ + µ

2σ
(T − s)

)
+

µ + µ

2

]
ds
)]

.

Since

sup
Π∈Θ

EP[1[log a,log b](log Vπ
T )]

= sup
µ∈H

EP
[
1[log a,log b]

(
σBT +

∫ T

0
µ(t)dt

)]

=EP
[
1[log a,log b]

(
σBT +

∫ T

0

[µ− µ

2
sgn
(
− Rt +

log(ab)
2σ

−
µ + µ

2σ
(T − t)

)
+

µ + µ

2

]
dt
)]

,

and sup
Π∈Θ

E
[
ϕ
(
log VΠ

T
)]

= sup
µ∈H

E
[

ϕ
(

σBT +
∫ T

0 µ(s)ds
)]

, from (11), we obtain that

µ∗(t) =
µ− µ

2
sgn
(
− Rt +

log(ab)
2σ

−
µ + µ

2σ
(T − t)

)
+

µ + µ

2
.

Moreover, we know

µ∗(t) = π∗(t)(µ1 −
1
2

σ2) + (1− π∗(t))(µ2 −
1
2

σ2).

Thus,

π∗(t) =
ρ + ρ

2
+

µ− µ

2(µ1 − µ2)
sgn
(
− Rt +

log(ab)
2σ

−
µ + µ

2σ
(T − t)

)

=
ρ + ρ

2
+

(ρ− ρ)sgn(µ1 − µ2)

2
sgn
(
− Rt +

log(ab)
2σ

−
µ + µ

2σ
(T − t)

)

=





ρ + ρ

2
+

ρ− ρ

2
sgn
(
− Rt +

log(ab)
2σ

−
µ + µ

2σ
(T − t)

)
, µ1 > µ2,

ρ + ρ

2
−

ρ− ρ

2
sgn
(
− Rt +

log(ab)
2σ

−
µ + µ

2σ
(T − t)

)
, µ1 ≤ µ2.

(19)

Similarly, by Theorem 1, we have

inf
Π∈Θ

P(VΠ
T ∈ [a, b]) = inf

Π∈Θ
P(log VΠ

T ∈ [log a, log b]) = y0,

where

yt = 1[log a,log b](σBT) +
∫ T

t

(µ

σ
z+s −

µ

σ
z−s
)

ds−
∫ T

t
zsdBs,
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and

y0 = EP̌

[
1[log a,log b]

(
σB̌T + σ

∫ T

0
βsds

)]
,

B̌t = Bt −
∫ t

0 βsds is a Brownian motion under P̌ with

dP̌
dP

∣∣∣
Ft

= exp
( ∫ t

0
βsdBs −

1
2

∫ t

0
β2

s ds
)

,

and

βs =
µ

σ
1zs>0 +

µ

σ
1zs≤0 =

µ− µ

2σ
sgn(zs) +

µ + µ

2σ
.

It follows from ([23] Corollary 6) that

sgn(−zs) = sgn
(

Bs −
log(ab)

2σ
+

µ + µ

2σ
(T − s)

)
.

Therefore,

y0 =EP̌

[
1[log a,log b]

(
σB̌T +

∫ T

0

[µ− µ

2
sgn
(
− Bs +

log(ab)
2σ

−
µ + µ

2σ
(T − s)

)
+

µ + µ

2

]
ds
)]

=EP
[
1[log a,log b]

(
σBT +

∫ T

0

[µ− µ

2
sgn
(
− Rs +

log(ab)
2σ

−
µ + µ

2σ
(T − s)

)
+

µ + µ

2

]
ds
)]

.

Then we have

µ∗(t) =
µ− µ

2
sgn
(
− Rt +

log(ab)
2σ

−
µ + µ

2σ
(T − t)

)
+

µ + µ

2
.

From
µ∗(t) = π∗(t)(µ1 −

1
2

σ2) + (1− π∗(t))(µ2 −
1
2

σ2),

we have

π∗(t) =
ρ + ρ

2
+

µ− µ

2(µ1 − µ2)
sgn
(
− Rt +

log(ab)
2σ

−
µ + µ

2σ
(T − t)

)

=
ρ + ρ

2
+

(ρ− ρ)sgn(µ1 − µ2)

2
sgn
(
− Rt +

log(ab)
2σ

−
µ + µ

2σ
(T − t)

)

=





ρ + ρ

2
+

ρ− ρ

2
sgn
(
− Rt +

log(ab)
2σ

−
µ + µ

2σ
(T − t)

)
, µ1 > µ2,

ρ + ρ

2
−

ρ− ρ

2
sgn
(
− Rt +

log(ab)
2σ

−
µ + µ

2σ
(T − t)

)
, µ1 ≤ µ2.

This completes the proof.

Remark 1. If the drifts µ1 and µ2 of the prices are known, based on (17) and (18), the optimal portfolios
can be obtained with reference to the processes/wealth Rt and Rt, respectively. For the case that µ1 and
µ2 are unknown, the optimal portfolios cannot be applied directly. However, if µ1 ∨ µ2 and µ1 ∧ µ2
are known while µ1 and µ2 are unknown, under the criterion of exploration and exploitation, the
reinforcement learning technique (e.g., the ε-greedy method, ([25] Chapter 2) and [26]) and the above
optimal portfolios can be combined together to construct the desired portfolios. With the estimated drifts
(based on the historic data), a portfolio can be constructed to achieve the largest coverage probability
on any interval [a, b], for which the stock deduced by the optimal portfolios (17) and (18) with the
estimated drifts is selected most of the time. However, every once in a while, such as with a small
probability ε, the two stocks are chosen randomly (i.e., chosen with equal probabilities) independent
of the estimated drifts for portfolios (17) and (18). Specifically, when the sign function in (17) is
positive, the stock with the larger estimated drift is chosen with probability 1− ε, and the two stocks
are chosen randomly with the probability ε. Otherwise, the stock with the smaller estimated drift
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is chosen with probability 1− ε, and the two stocks are chosen randomly with the probability ε.
Similarly, when the sign function in (18) is positive, the stock with smaller estimated drift is chosen
with probability 1− ε, and the two stocks are chosen randomly with the probability ε. Otherwise,
the stock with the larger estimated drift is chosen with probability 1− ε, and the two stocks are
chosen randomly with the probability ε. The algorithm with ε = 0.1 is presented in Appendix A.

4. Maximal and Minimal Distributions

Next, the explicit distributions of the ambiguity portfolio model will be provided: that
is, the explicit expressions of sup

Π∈Θ
P(VΠ

T ∈ [a, b]) and inf
Π∈Θ

P(VΠ
T ∈ [a, b]). In particular, the

representations of sup
Π∈Θ

E[ϕ(log VΠ
T )] and inf

Π∈Θ
E[ϕ(log VΠ

T )] for general utility function ϕ

are initially given. Then, the maximal and minimal distributions are obtained.

Theorem 3. Assume that ϕ ∈ C3(R) satisfies (H.1) for some c ∈ R, and ϕ(i) (i = 0, 1, 2, 3) have,

at most, polynomial growth. Set k =
µ−µ

2σ . Then the representations of sup
Π∈Θ

E[ϕ(log VΠ
T )] and

inf
Π∈Θ

E[ϕ(log VΠ
T )] are given as follows:

(1) If ϕ′ ≥ 0 and ϕ′ 6≡ 0 on (c, ∞), then

sup
Π∈Θ

E[ϕ(log VΠ
T )] = e−

1
2 k2T ×

{ ∫

R

∫

y≥0
ϕ
(

σx +
µ + µ

2
T
)

· exp{k|x− c| − k|c| − ky}P(BT ∈ dx, Lc
T ∈ dy)

}
,

inf
π∈Θ

E[ϕ(log Vπ
T )] = e−

1
2 k2T ×

{ ∫

R

∫

y≥0
ϕ
(

σx +
µ + µ

2
T
)

· exp{−k|x− c|+ k|c|+ ky}P(BT ∈ dx, Lc
T ∈ dy)

}
,

where P(BT ∈ dx, Lc
T ∈ dy) is given by (7).

(2) If ϕ′ ≤ 0 and ϕ′ 6≡ 0 on (c, ∞), then

sup
Π∈Θ

E[ϕ(log VΠ
T )] = e−

1
2 k2T ×

{ ∫

R

∫

y≥0
ϕ
(

σx +
µ + µ

2
T
)

· exp{−k|x− c|+ k|c|+ ky}P(BT ∈ dx, Lc
T ∈ dy)

}
,

inf
Π∈Θ

E[ϕ(log VΠ
T )] = e−

1
2 k2T ×

{ ∫

R

∫

y≥0
ϕ
(

σx +
µ + µ

2
T
)

· exp{k|x− c| − k|c| − ky}P(BT ∈ dx, Lc
T ∈ dy)

}
.

Proof. Let ϕ̃(x) = ϕ(σx). Then E[ϕ(log Vπ
T )] = E

[
ϕ̃
(

log Vπ
T

σ

)]
. We will only give the proof

of sup
Π∈Θ

E[ϕ(log VΠ
T )] when ϕ′ ≥ 0 and ϕ′ 6≡ 0 on (c, ∞) since the other case can be treated

similarly. Using Theorem 1, we have

sup
Π∈Θ

E
[

ϕ̃
( log VΠ

T
σ

)]
= Y0,
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where Y0 is the solution Yt of the following BSDE at t = 0:

Yt = ϕ̃(BT) +
∫ T

t

(µ

σ
Z+

s −
µ

σ
Z−s
)

ds−
∫ T

t
ZsdBs. (20)

Set B̂s = Bs −
µ+µ

2σ s and ϕ̂(x) = ϕ̃(x +
µ+µ

2σ T). Then BSDE (20) is equivalent to the
following equation:

Yt = ϕ̂(B̂T) +
∫ T

t

µ− µ

2σ
|Zs|ds−

∫ T

t
ZsdB̂s, (21)

where B̂t is a Brownian motion under measure Q̂ defined by

dQ̂
dP

∣∣∣
Ft

= exp

{∫ t

0

µ + µ

2σ
dBs −

1
2

∫ t

0

(
µ + µ

2σ

)2

ds

}
.

Thus, it suffices to solve BSDE (21) on (Ω,F , Q̂). By Lemma 2, we have

sup
Π∈Θ

E[ϕ(log VΠ
T )] = Y0 = e−

1
2 k2T ×

{∫

R

∫

y≥0
ϕ̂(x)ek|x−c|−k|c|−kyQ̂(B̂T ∈ dx, L̂c

T ∈ dy)
}

,

where

Q̂(B̂T ∈ dx, L̂c
T ∈ dy) = P(BT ∈ dx, Lc

T ∈ dy)

=
1√

2πT3
(y + |x− c|+ |c|) exp

{−(y + |x− c|+ |c|)2

2T

}
· I{y>0}dxdy

+
1√

2πT

[
exp

{
− x2

2T

}
− exp

{
− (|x− c|+ |c|)2

2T

}]
· I{y=0}dxdy.

So we obtain the expression of sup
Π∈Θ

E[ϕ(log VΠ
T )].

Similarly, applying Theorem 1, we have

inf
Π∈Θ

E
[

ϕ(log VΠ
T )
]
= y0,

where y0 is the solution yt of the following BSDE when t = 0:

yt = ϕ̃(BT) +
∫ T

t

(µ

σ
z+s −

µ

σ
z−s
)

ds−
∫ T

t
zsdBs = ϕ̂(B̂T)−

∫ T

t

µ− µ

2σ
|zs|ds−

∫ T

t
zsdB̂s.

It then follows from Lemma 2 that

inf
Π∈Θ

E
[

ϕ(log VΠ
T )
]
= y0 = e−

1
2 k2T ×

{∫

R

∫

y≥0
ϕ̂(x)e−k|x−c|+k|c|+kyQ̂(B̂T ∈ dx, L̂c

T ∈ dy)
}

;

thus, the expression of inf
Π∈Θ

E[ϕ(log VΠ
T )] is obtained.

Applying Theorem 3, the explicit formulations of the maximal and minimal distributions
when ϕ(x) = 1[a,b](x) with 0 < a < b < +∞ can be obtained.

Theorem 4. Let k =
µ−µ

2σ and c =
log(ab)

2σ − µ+µ

2σ T with 0 < a < b < +∞; then the maximal
and minimal distributions are given by

sup
Π∈Θ

P(VΠ
T ∈ [a, b]) = Φ

(
−|c| − kT − log(b/a)

2σ√
T

)
− e−

k
σ log(b/a)Φ

(
−|c| − kT +

log(b/a)
2σ√

T

)
,
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and

inf
Π∈Θ

P(VΠ
T ∈ [a, b]) = Φ

(
−|c|+ kT − log(b/a)

2σ√
T

)
− e

k
σ log(b/a)Φ

(
−|c|+ kT +

log(b/a)
2σ√

T

)
, (22)

where Φ(·) is the distribution function of the standard normal distribution.

Proof. First, recall that sup
Π∈Θ

E
[
ϕ
(
log VΠ

T
)]

is the value of the solution Yt of the following

BSDE at t = 0:

Yt =1[a,b](σBT) +
∫ T

t

(µ

σ
Z+

s −
µ

σ
Z−s
)

ds−
∫ T

t
ZsdBs

=1
[

log a
σ −

µ+µ

2σ T, log b
σ −

µ+µ

2σ T]
(B̂T) +

∫ T

t

µ− µ

2σ
|Zs|ds−

∫ T

t
ZsdB̂s,

(23)

where B̂t = Bt −
µ+µ

2σ t is a Brownian motion under P̂ with

dP̂
dP

∣∣∣
Ft

= exp
{

µ + µ

2σ
Bt −

1
2

∣∣∣
µ + µ

2σ

∣∣∣
2
t
}

.

For simplicity, let

â =
log a

σ
−

µ + µ

2σ
T, b̂ =

log b
σ
−

µ + µ

2σ
T.

For any ε > 0, define

ϕε(x) := EP̂

[
1[â,b̂](x +

√
εξ)
]
=
∫ ∞

−∞
1[â,b̂](v)

1√
2πε

exp
[
− (v− x)2

2ε

]
dv,

where ξ is a standard normal distribution under probability measure P̂. Then ϕε ∈ C∞(R)
and ϕε(x)→ I[â,b̂](x) as ε→ 0. Consider the following BSDE:

Yε
t = ϕε(B̂T) +

∫ T

t
k|Zε

s |ds−
∫ T

t
Zε

sdB̂s.

By Theorem 3, we have
Yε

t = Hε(B̂t),

where

Hε(h) = e−
1
2 k2(T−t)

{ ∫

R

∫

y≥0
ϕε(x + h)e−k|x−c+h|+k|c−h|+kyP̂

(
B̂T−t ∈ dx, L̂c−h

T−t ∈ dy
)}

= e−
1
2 k2(T−t)

∫

R

∫

y>0

ϕε(x + h)√
2π(T − t)3

e−k|x−c+h|+k|c−h|+ky(y + |x− (c− h)|+ |c− h|)

exp
{−(y + |x− (c− h)|+ |c− h|)2

2(T − t)

}
dxdy

+ e−
1
2 k2(T−t)

∫

R

ϕε(x + h)√
2π(T − t)

e−k|x−c+h|+k|c−h|

[
exp

{
− x2

2(T − t)

}
− exp

{
− (|x− (c− h)|+ |c− h|)2

2(T − t)

}]
dxdy.
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Define

H(h) := e−
1
2 k2(T−t)

{∫

R

∫

y≥0
1[â,b̂](x + h)ek|x−c+h|−k|c−h|−kyP̂

(
B̂T−t ∈ dx, L̂c−h

T−t ∈ dy
)}

= e−
1
2 k2(T−t)

∫

R

∫

y>0

1[â,b̂](x + h)
√

2π(T − t)3
e−k|x−c+h|+k|c−h|+ky(y + |x− (c− h)|+ |c− h|)

exp
{−(y + |x− (c− h)|+ |c− h|)2

2(T − t)

}
dxdy

+ e−
1
2 k2(T−t)

∫

R

1[â,b̂](x + h)
√

2π(T − t)
e−k|x−c+h|+k|c−h|

[
exp

{
− x2

2(T − t)

}
− exp

{
− (|x− (c− h)|+ |c− h|)2

2(T − t)

}]
dxdy.

After some computations, we have

H(h) = Φ
(
− |h− c| − k(T − t)− b̂−â

2√
T − t

)
− e−k(b̂−â)Φ

(
− |h− c| − k(T − t) + b̂−â

2√
T − t

)
.

By Lebesgue’s dominated convergence theorem, we have that Hε(h) converges to H(h) as
ε→ 0, which means Hε(B̂t) converges to H(B̂t) almost surely. Therefore, Yt of (23) is given by

Yt = H(B̂t) = Φ
(
− |B̂t − c| − k(T − t)− b̂−â

2√
T − t

)
− e−k(b̂−â)Φ

(
− |B̂t − c| − k(T − t) + b̂−â

2√
T − t

)
.

Finally,
sup
Π∈Θ

E[1[a,b](V
Π
t )] = sup

Π∈Θ
E[1[log a,log b](log VΠ

t )] = Y0

=Φ
(
− |c| − kT − b̂−â

2√
T

)
− e−k(b̂−â)Φ

(
− |c| − kT + b̂−â

2√
T

)
.

Similarly, we have (22).

Remark 2. It can be observed from Theorem 4 that the maximal and minimal distributions of wealth
Vπ

T are no longer log-normal when µ 6= µ. That is, if a random disturbance µ(t) is given to the
Brownian motion (or the price process of the stocks), then its distribution will no longer be normal.
That is, it would be a mixture of normal distributions. This is explained in the following example: If
the process (log Vt)t∈[0,T] follows the following SDE with some random disturbance µ(t),

d log Vt = µ(t)dt + dBt, log V0 = 0,

where |µ(t)| ≤ ε. Take T = 1, ε = 1/2, a = −b and set

FB1(b) := P(B1 ∈ [e−b, eb]), F̄log V1(b) := sup
|µ(t)|≤ε

P(log V1 ∈ [−b, b]),Flog V1
(b) := inf

|µ(t)|≤ε
P(log V1 ∈ [−b, b]).

Let f1(z) refer to the density function of B1, and let f̄ (z) and f (z) refer to the density functions of
F̄log V1(·) and Flog V1

(·), respectively. Based on Theorem 4, it is not difficult to obtain

{
F̄log V1(b) = Φ(1/2 + b)− e−b ·Φ(1/2− b),
Flog V1

(b) = Φ(−1/2 + b)− eb ·Φ(−1/2− b),
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and consequently,




f̄ (z) = 1√
2π

e−
z2+|z|+1/4

2 + 1/2 · e−|z| ·Φ(−|z|+ 1/2),

f (z) = 1√
2π

e−
z2−|z|+1/4

2 − 1/2 · e|z| ·Φ(−|z| − 1/2).

The differences in FB1 , F̄log V1 and Flog V1
and the differences in f1, f̄ and f can be intuitively

observed from Figure 1. This shows that the maximal and minimal distributions of V1 are no longer
log-normal.

Figure 1. Differences among FB1 , F̄log V1
and F̄log V1

and differences in f , f̄ and f when a = −b,
ε = 0.5, T = 1.

5. Do Not Put All the Eggs in One Basket

‘Do not put all your eggs in the same basket’ is a widespread proverb that means that
diversified investment is necessary in order to avoid great losses due to a single investment.
On the one hand, this advice can be partly formalized by considering the volatility of
the portfolio. For example, by constructing portfolios with assets that are imperfectly
correlated with one another, the risk inherent in the portfolio would decline as more assets
are added to the portfolio until, eventually, the volatility of the portfolio would converge to
the average covariance of assets that comprise the portfolio. Therefore, diversified risks
can be reduced when compared to undiversified risks. On the other hand, after obtaining
the explicit formulation for the maximal distribution and the corresponding portfolio, the
benefits of the diversified portfolios can be explained and the proverb from the probability
framework can be formalized, as shown in the following results.

Let ρ = 1 and ρ = 0. Then, Π1(·) ≡ (1, 0) and Π2(·) ≡ (0, 1) refer to two self-financing
portfolios. By applying Theorem 4, the following result can be obtained.

Proposition 1. For 0 < a < b < +∞,

P(VΠ∗
T ∈ [a, b]) = sup

Π∈Θ
P(Vπ

T ∈ [a, b]) ≥ P(V1
T ∈ [a, b]) ∨ P(V2

T ∈ [a, b]), (24)

where Π∗ = (π∗, 1−π∗), π∗(·) is defined in (19), V1· and V2· are the wealth processes corresponding
to portfolios Π1(·) and Π2(·), respectively: that is, investing only in the first stock and only in the
second stock respectively. Furthermore, let σ = T = 1, log b = µ + δ and log a = µ− δ for some
δ > 0; we have

P(VΠ∗
1 ∈ [a, b])− P(V1

1 ∈ [a, b]) ∨ P(V2
1 ∈ [a, b]) = (1− e−(µ+µ)δ)Φ(−δ) > 0. (25)

The two portfolios, Π1(·) ≡ (1, 0) and Π2(·) ≡ (0, 1), correspond to the cases for
which all wealth is invested solely in the first and second stock, respectively. From (25), it
can be observed that neither of the above portfolios is optimal in the probability framework.
Instead, investing in both stocks according to π∗(·) would deduce a larger probability on
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any interval around the larger drift/return, thereby achieving a greater coverage probability
to win a larger drift/return and reducing the risk. Therefore, a diversified portfolio with
two stocks is better than a portfolio with only one stock (even when the stock has a larger
drift/return). That is, the existence of a stock with a smaller drift/return does not always
cause bad influences on the market. Interestingly, the combination of these two stocks
would induce a larger coverage probability of wealth on any specific interval, consequently
reducing the risk of the investment. Therefore, this verifies the benefits of diversified
portfolios and implies the mathematical explanations for the proverb.

Remark 3. The results for the maximal and minimal distributions can be extended to a case with
more than two stocks. For example, consider that there are N (N > 2) stocks in the financial market;
the wealth process would follow the following SDE:

{
dVΠ

t = VΠ
t [∑N

i=1 µiπi(t)]dt + σVπ
t dBt,

VΠ
0 = 1, t ∈ (0, T],

(26)

in which ∑N
i=1 πi(t) = 1, and the set of self-financing portfolios is

ΘN := {Π(t) = (π1(t), · · · , πN(t)) : πi(t) ∈ [0, 1] is a predictable processes}.

Let

µ := sup{µ1 −
1
2

σ2, · · · , µN −
1
2

σ2} and µ := inf{µ1 −
1
2

σ2, · · · , µN −
1
2

σ2}. (27)

Then, similar to Theorem 1, it can be proved that sup
Π∈Θ

E
[
ϕ
(
log VΠ

T
)]

is equal to Y0 of BSDE (9),

with µ and µ given by (27). Thus, through solving BSDE (9), the maximal distributions of
this case can be obtained based on Theorem 4. Furthermore, the minimal distribution can be
similarly obtained.
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Appendix A

The algorithm is as follows:

Algorithm A1: ε-greedy algorithm
Input: time partition K; returns µ1, µ2; reward interval [a, b];
Output: Wealth log Vπ∗

1 .
1: terminal time T = 1, tk =

k
K , k = 0, 1, · · · , K, initial condition log Vπ∗

0 = 0,
maximal drift coefficient µ = µ1 ∨ µ2, minimal drift coefficient µ = µ1 ∧ µ2.

2: for i = 1, 2 do
3: sample means µi(0) = 0;
4: the number of times each state has been observed Ti = 1;
5: end for
6: for each k ∈ [0, K] do
7: if k mod 10 == 0, then
8: j = randperm(2, 1);
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Algorithm A1: Cont.

9: ∆ = 1
K µj + σB( 1

K );

10: µj(tk+1) =
Tj−1

Tj
µj(tk) +

∆
Tj

;

11: µi(tk+1) = µi(tk), i 6= j;
12: log Vπ∗

tk+1
= log Vπ∗

tk
+ ∆;

13: Tj = Tj + 1;
14: else
15: if log Vπ∗

tk
≤ log(ab)

2σ − µ+µ

2σ (1− tk), then
16: find j such that µj(tk) = µ1(tk) ∨ µ2(tk);

17: ∆ = 1
K µj + σB( 1

K );

18: µj(tk+1) =
Tj−1

Tj
µj(tk) +

∆
Tj

;

19: µi(tk+1) = µi(tk), i 6= j;
20: log Vπ∗

tk+1
= log Vπ∗

tk
+ ∆;

21 Tj = Tj + 1;
22: else
23: find j such that µj(tk) = µ1(tk) ∧ µ2(tk);

24: ∆ = 1
K µj + σB( 1

K );

25: µj(tk+1) =
Tj−1

Tj
µj(tk) +

∆
Tj

;

26: µi(tk+1) = µi(tk), i 6= j;
27: log Vπ∗

tk+1
= log Vπ∗

tk
+ ∆;

28: Tj = Tj + 1;
29: end if
30: end if
31: end for
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Abstract: While a gambler may occasionally win, continuous gambling inevitably results in a net loss
to the casino. This study experimentally demonstrates the profitability of a particularly deceptive
casino game: a two-armed antique Mills Futurity slot machine. The main findings clearly show
that both non-random and random two-arm strategies, predetermined by the player and repeated
without interruption, are always profitable for the casino, despite two coins being refunded for every
two consecutive losses by the gambler. We theoretically explore the cyclical nature of slot machine
strategies and speculate on the impact of the frequency of switching strategies on casino returns. Our
results not only assist casino owners in developing and improving casino designs, but also guide
gamblers to participate more cautiously in gambling.

Keywords: fairness; multi-armed bandit; futurity slot machine

MSC: 60J10; 60F05

1. Introduction

The origin of human gambling is estimated to coincide with the emergence of human
civilization. Evidence suggests that people engaged in “taking chances” as early as the late
Paleolithic Age. For example, divination was widely practiced to discern good and bad
outcomes in prehistoric China. More recently, the establishment of casinos has significantly
boosted the longstanding prosperity of the gambling industry. Over the centuries, various
forms of gambling have been developed, including horse racing, lotteries, dice, baccarat,
slot machines, roulette, and blackjack.

Today, some governments support and encourage the development of the gambling
industry because it stimulates domestic economic growth, even during global economic
downturns. This highlights not only the profitability of the gambling industry but also
an implicit truth: casino games reliably generate revenue, at least partly due to their
inherent design.

Gambling attracts players through the illusion of fairness, including the misconcep-
tion that casinos are unprofitable. When gambler enthusiasm is heightened by ostensibly
honest advertisements of fairness, gamblers indulge in fantasies of winning vast sums of
money. Casinos are particularly captivating to individuals with gambling-related patholo-
gies [1] who become deeply immersed in gambling, subsequently experiencing depressive
symptoms, heightened gambling expectancy, and increased dark flow ratings [2].

Such ostensibly honest advertisements of fairness are often promoted through casino
loyalty programs, which offer equal rewards to gamblers who wager equal amounts [3].
The aim of these loyalty programs is to enhance both attitudinal and behavioral loyalty.
Attitudinal loyalty refers to the extent to which individuals trust and are satisfied with the
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casino, including a sense of identification with the casino brand. Behavioral loyalty, on
the other hand, refers to the actual behaviors that demonstrate loyalty, such as repeatedly
visiting the casino to gamble. However, despite the appearance of fairness, all casino games
are inherently unfair. Indeed, casinos have consistently reported profits from players, with
the notable exception of the Kelly formula [4], which determines the optimal proportion
to wager in each period in a series of blackjack (“21”) hands or repeated investments,
ensuring a win rate greater than 50%. Nonetheless, attitudinal loyalty remains high among
casino players.

This article uses a multi-armed Futurity bandit to mathematically explore the profound
mystery of attitudinal and behavioral loyalty in the face of casino profitability. The multi-
armed bandit (MAB) [5], a popular entertainment tool, is selected because it has been
meticulously designed by casinos to appear fair and attract gamblers [6]. The MAB has also
been extensively studied theoretically to analyze various complex decision problems [7–9]
in fields such as science, society, economy, and management. It also plays a central role
in research on reinforcement learning [10–12]. Specifically, this study introduces a two-
armed Futurity bandit to elucidate the pervasive absorption of gamblers at casinos. The
two-armed slot machine contrasts with the seemingly fair one-armed slot machine, which
can be unprofitable for the casino depending on the Futurity award design. For example, a
Futurity slot machine may offer a truly fair reward: when the current number of consecutive
gambler losses reaches a value of J, all coins invested by the gambler in these losses
are refunded. However, two-armed slot machines disrupt this fairness and exhibit the
phenomenon of Parrondo’s paradox [13,14]: the game becomes profitable for the casino
when a player alternates between arms in any random or non-random manner, despite the
true advertisement that each of the two arms is fair individually.

In the rest of this paper, Section 2 reviews the related researches. Section 3 describes
the model and results. Section 4 conduct experiments to show the result. Section 5 offers
the method of this paper and the related lemma. Section 6 concludes this paper.

2. Recent Work

Parrondo’s Paradox is a counterintuitive phenomenon where the combination of two
losing strategies can lead to a winning outcome. This paradox was first proposed in 1996
by physicist Juan Parrondo of the Complutense University of Madrid. Several studies [15]
have examined this paradox from perspectives including game theory, quantum game
theory, and information theory. Pyke [16] introduced a fairness assumption applicable to
our model suggesting that the two fair arms of the slot machine may lead to long-term
profits for the casino through random or non-random strategy combinations.

Many people learn from their experiences in casinos, but the underlying inevitability
of their outcomes is dictated by the “law of large numbers” in probability theory. Conse-
quently, the mystery behind casino profitability and inherent unfairness remains elusive to
those without a background in probability theory. This article employs probabilistic tools
to examine the law of large numbers as it applies to a two-armed antique Mills Futurity slot
machine designed by the Chicago Mills Novelty Company in 1936 [6,17,18]. The Futurity
slot machine offers a reward whereby when the current number of consecutive gambler
losses reaches a of value J, all coins invested by the gambler in these losses are refunded.
The long-term profitability of such a machine exposes the deception of the apparent fairness
of this game—the “fairness illusion”. According to the game’s compensation rule, two
coins are returned to the gambler each time their consecutive losses reach two. In this con-
text, the deception can be articulated as follows: casinos honestly but shrewdly advertise
that the one-armed Futurity bandit is unprofitable due to its fairness, implying long-term
unprofitability. This portrayal of fairness for the one-armed Futurity bandit enhances
the casino’s reputation among gamblers. However, statistical artifacts emerge with the
two-armed Futurity bandit when its left and right arms are alternately played, resulting
in consistent profitability for the casino under the rule of returning two coins after two
consecutive losses by the same gambler. This outcome aligns with the conjecture proposed
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by Ethier and Lee [6], who suggested that such a two-armed Futurity bandit adheres to
Parrondo’s paradox when executing any non-random mixed strategy after proving this
rule for any random mixed strategy. The present article employs experiments to validate
these theoretical results.

Therefore, our results, along with the conclusions of Ethier and Lee [6], demonstrate
that a non-random or random two-arm strategy decided by the player before playing
and then repeated without interruption is always profitable for the casino, even though
two coins are refunded for every two consecutive gambler losses. This phenomenon is
theoretically exemplified. This model was ingeniously proven by Chen and Liang [19],
who provided an expression for the casino’s asymptotic profit expectation.

The main contributions of this article include the following:

• This study experimentally demonstrates the profitability of a deceptively unfair game
for gamblers under a mixed strategy. The Kelly formula not only aids blackjack
owners in better developing and improving the design of the game, but also helps
gamblers participate cautiously in gambling. Furthermore, the formula is widely used
in financial risk management as a component of modern financial technology.

• This paper provides a preliminary theoretical proof of the traditional two-arm Futurity
slot machine (J = 10) model. It also presents our conjecture on the underlying
mechanisms of slot machine profitability and offers inspiring ideas for the further
exploration of Parrondo’s paradox.

In Section 3, this paper provides a detailed introduction to the model of the Futurity
two-armed slot machine and presents the theoretical results of both random and non-
random strategies under the condition of J = 2. Section 4 employs the Monte Carlo method
to simulate four different strategic scenarios to verify the theoretical results from Section 3,
and then compares the theoretical gains with the benefits obtained from the simulation
results. In the latter part of Section 4, we conduct experimental simulations of the traditional
J = 10 Futurity two-armed slot machine model and compare the casino’s empirical average
profits for each of the four strategies. This comparison aims to demonstrate, from an
experimental perspective, that the casino can achieve long-term profits. In Section 5, we
prospectively prove the periodic impact of non-random strategies on casino returns and
speculate that the frequency of player strategy exchanges is positively related to the casino’s
asymptotic return expectations. This provides a theoretical direction for further research
on the Futurity two-armed slot machine and Parrondo’s paradox.

3. Model and Results

The antique Futurity slot machine, designed by the Chicago Mills Novelty Company [6,17,18],
was in production from 1936 to 1941. After 7 December 1941, Mills Novelty ceased slot
machine production and became a defense contractor for the duration of the war. When
slot machine production resumed in 1945, it did so with new designs. In this article, we
use the antique Futurity slot machine designed by the Chicago Mills Novelty in 1936 as an
example to explore the scientific mystery of why “long bets will lose”.

In the antique Futurity slot machine, a player spends one coin per play. There are two
screens on the machine: one screen’s pointer records the current number of consecutive
gambler losses. When this number reaches 10 (which can be set to another value by the
casino), all 10 coins are refunded to the gambler. This refund is called the futurity award.
The other screen displays the current mode. The machine’s internal structure features
a periodic cam with several fixed modes, each having different winning conditions and
rewards. With each play, the cam rotates to the next mode. Each arm has its own mode
cam, different from the others, resulting in independent payoff distributions for each arm.
The gambler pulls one arm to play. For the futurity award, the number of consecutive
losses is recorded regardless of the order in which the player plays the arms. When the
pointer reaches value J (where J ≥ 2) set by the casino, J coins are refunded to the gambler.
The casino advertises that each arm on its multiple-armed machine is “fair,” meaning each
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arm has a 50% chance of profit for the gambler. The gambler can play either arm in a
deterministic order or at random.

For simplicity, we consider a simple two-armed Futurity bandit, with two arms
denoted as A and B, each arm with a different i.i.d payoff sequence. For the convenience
of analysis, we can regard each arm’s distribution of wins as a Bernoulli distribution, that
is, the probability of winning a game is pA (resp. pB), with 0 < pA < 1 and 0 < pB < 1.
The gambler must pay one coin to the casino for each coup and alternates between arms
according to a pre-determined repeating sequence called a strategy. The casino also offers a
futurity award each time a gambler suffers consecutive losses in gambling, as described
above. Casinos usually advertise the design of J = 2, which is the considered case in this
work and the most attractive to gamblers. We consider the case in which the gambler
chooses a pre-formulated non-random mixed strategy D before the game starts, where D
contains at least 1 A and 1 B. For instance, for strategy D = ABB, the gambler pulls arm
A, then arm B, then arm B, repeating that sequence indefinitely. This work considers a
“fairness” design for the one-armed Futurity bandit by adjusting the payoff distribution
of each arm, where the reward is assumed to be (3− 2p)/(2− p) under win probabilities
p = pA and pB for arms A and B, respectively. If the game is played according to the above
rules, it seems that the gambler is playing a fair game with no long-term loss, but in fact,
the casino definitely makes a profit in the long run, as demystified in Theorem 1 [19] below.

Subtle mathematical induction shows that any non-random repeating mixed strategy
D can be arranged in the following asymptotic form D(a(h, r, s)):

D(a(h, r, s)) = A · · · A︸ ︷︷ ︸
r1

B · · · B︸ ︷︷ ︸
s1

· · · A · · · A︸ ︷︷ ︸
rk

B · · · B︸ ︷︷ ︸
sk

· · · A · · · A︸ ︷︷ ︸
rh

B · · · B︸ ︷︷ ︸
sh

:= Ar1 Bs1 · · · Arh Bsh .

Here, rk > 0, sk > 0,
h
∑

k=1
rk = r,

h
∑

k=1
sk = s and vector a(h, r, s) = (a1, a2, · · · , a2h) =

(r1, s1, · · · , rk, sk, · · · , rh, sh). In order to make our results more concise, we define function
bi of vector a for −2h + 1 ≤ i ≤ 4h as follows:

• b2j−1 = (−1)a2j−1(1− pA)
a2j−1 , b2j = (−1)a2j(1− pB)

a2j for 1 ≤ j ≤ h,

• bi = bi−2h for 2h + 1 ≤ i ≤ 4h, bi = bi+2h for −2h + 1 ≤ i ≤ 0.

Theorem 1 (Chen and Liang [19] (2023)). The casino’s asymptotic profit expectation R is 2QS,
where

Q := Q(D(a(h, r, s))) = h +
2h

∑
m=1

2h−1

∑
j=1

(−1)j
m+j−1

∏
i=m

bi + h
2h

∏
i=1

bi,

S := S(r, s, pA, pB) =
(pA − pB)

2(1 + (−1)r+s(1− pA)
r(1− pB)

s)

(r + s)(2− pA)2(2− pB)2(1− (1− pA)2r(1− pB)2s)
.

This theoretical result demonstrates that the game is always profitable for the casino in the
long term for all pA 6= pB. The asymptotic profit expectation R = 0 applies if and only if
pA = pB. These results make clear that the win probability discrepancy between the two
arms favors the casino. In detail, the expression of the casino’s asymptotic profit expectation
R consists of three parts. The first part is the number two, representing settlement rule
J = 2 of the futurity bandit award. The second part, function Q, denotes the gambler’s
playing rule across the two arms as laid out in the internal structure of strategy D. The
last part, function S, characterizes the changes in profitability to the casino accompanying
changes in the values of the considered parameters pA, pB and the considered playing
number r, s. Figure 1 show the casino’s payoff of a single arm across different probabilities.
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Figure 1. Payoff of a single arm across the full range of win probabilities.

Figure 2 shows three-dimensional surfaces for the casino’s payoff as functions of
win probabilities pA and pB for arms A and B, respectively, under four different but
representative non-random strategies. The four panels, each with a different vertical scale,
show that each non-random strategy generates distinct profit modes, but each is dominated
by a region of casino profitability. Figure 2a implies that playing the two arms in direct
alternation generates the greatest profits for the casino. Playing the two arms in equal
numbers of pulls guarantees the symmetric form of the payoffs (see Figure 2a,b).

(a) D = AB (b) D = AABB

(c) D = AAABB (d) D = A4B4 A6B3

Figure 2. Casino payoffs (theoretical values) for the full range of win probabilities for arms A and B
under four different non-random strategies D. Note that the vertical scale differs among panels.
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Now, suppose a gambler plays the two-armed Futurity bandit according to a strategy
of randomness C with probability pγ of pulling arm A and correspondingly probability
1− pγ of pulling arm B. Previous research has shown that the asymptotic profit expectation
RC of the casino [6] is

RC = f (pγ(1− pA) + (1− pγ)(1− pB))− pγ f (1− pA)− (1− pγ) f (1− pB),

where f (z) = 2z2

1+z . Since f (z) is a convex function, the casino is profitable in the long run
for all pA 6= pB. RC = 0 if and only if pA = pB. Figure 3 shows the payoff performance
under a strategy of randomness with probabilities pγ of 0.1, 0.3, 0.5, 0.7, and 0.9 of selecting
arm A. Each panel displays non-negative payoffs under all combinations of pA and pB. For
pγ = 0.5, meaning equal numbers of pulls of the two arms, the payoff surface is symmetric,
in line with the symmetry of the results shown in Figure 2a,b.

(a) pγ = 0.1 (b) pγ = 0.3

(c) pγ = 0.5 (d) pγ = 0.7

(e) pγ = 0.9

Figure 3. True mean casino payoff under a strategy of randomness with probability pγ of selecting
arm A.
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4. Experiments
4.1. Simulation Verifying Theoretical Results

This section implements Monte Carlo simulations to verify the theoretical results above for
four cases corresponding to the non-random mixed strategies D = AB, D = AABB := A2B2,
D = A3B2, and D = A4B4A6B3. The number of coups is M = 100, 000, and the true mean
profit for the casino equals (M−W − J ∗ C)/M, where W represents the total number of
wins for the gambler and C denotes the count of futurity awards for J consecutive gambler
losses, where J = 2. Ten thousand replicates are conducted in each simulation.

As stated above, the casino can adjust the win probability distribution of each of the
two arms so as to adjust its own profit while ensuring the fairness of each arm. In an initial
simulation of a single arm, Figure 1 shows that the long-term payoff to the gambler or the
casino always lies close to zero for any given win probability on interval [0, 1] for the single
arm. This result represents the fairness of each individual arm. In particular, the long-term
payoff to the gambler is zero without uncertainty when the win probability is zero, while
the long-term payoff to the casino is zero without uncertainty when the win probability
is one.

Since the value of Q in Theorem 1 is also related to the win probability distributions
of the two arms, the impact of Q on profits should also be considered by the casino when
adjusting the win probability distributions of the arms. Figure 2 shows three-dimensional
surfaces of the payoff to the casino for all combinations of win probabilities of the two arms.
These graphs vividly illustrate that the casino can select the win probabilities for A and B
that maximize its profit.

Next, we aim to compare the theoretical payoff with that obtained from the simulation
results by examining four vertical cross-sections of the three-dimensional surfaces in
Figure 2. Without loss of generality, we fix the win probability of arm B at pB = 0.5.
Figure 4 shows the theoretical and simulated curves for those four non-random strategies.
This agreement demonstrates that the theoretical conclusions are highly consistent with the
simulated results, thus verifying Theorem 1 for these four cases.

Last, we simulate the results of mixed random and non-random strategy, some non-
random strategy followed by random strategy. Figure 5a examines vertical cross-sections of
the three-dimensional surfaces, showing the sample mean casino payoffs for the full range
of win probabilities for arms A and B under mixed strategy. Without loss of generality,
we fix the win probability of arm B at pB = 0.5 in Figure 5b under the mixed strategy. It
obviously shows that the casino loss could inspire gamblers to choose mixed strategy to
win if they could choose their own strategy for the gambling machines.

(a) D = AB (b) D = AABB

Figure 4. Cont.
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(c) D = AAABB (d) D = A4B4 A6B3

Figure 4. Sample mean casino payoff for the full range of win probabilities for an arm A pull under
the fixed probability pB = 0.5 of an arm B pull, for various non-random strategies D.

(a) Mixed Strategy (b) Mixed Strategy

Figure 5. (a): Sample mean casino payoffs for the full range of win probabilities for arms A and
B under mixed strategy. (b): Sample mean casino payoff for the full range of win probabilities for
an arm A pull under fixed probability pB = 0.5 of an arm B pull, for mixed strategy. Note that the
vertical scale differs among panels.

4.2. Empirical Study with a Real Two-Armed Futurity Slot Machine

This section considers a real antique Mills Futurity slot machine designed in 1936 by
the Chicago Mills Novelty Company. There are two screens on the slot machine, one screen
recording the current number of consecutive gambler losses and the other displaying the
current mode. In detail, a player consumes 1 coin per coup, and when the number of
consecutive gambler losses reaches J = 10, all 10 coins are refunded. The machine’s J
value of 10 in this machine is replaced by the case of J = 2 because the latter is even more
attractive to gamblers. The machine’s internal structure includes a periodic cam switching
between Modes E and O, corresponding to arm A and arm B. Both closely follow the
multi-point distribution shown in Table 1. The win probabilities and rewards are distinct
for the two modes, and the two-armed machines are “fair” in the sense that each arm has a
50% chance of profiting the gambler, as honestly advertised by the casino. However, the
casino does not allow for a gambler to play solely on one arm, since such an experiment
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would reveal that it is the alternation between the two “fair” arms that makes money for
the casino.

Table 1. Multi-point distribution of reward values in Modes E and O for the actual two-armed
antique Mills Futurity slot machine.

Reward\Probability 0 3 5 10 14 18 150

Mode E 0.968 0.003 0.007 0.018 0.004 0 0

Mode O 0.357 0.576 0.064 0 0 0.002 0.001

In this application, we transform the multi-point distribution of each mode into a
two-point distribution. For each mode, we split the distribution into gain and loss, allowing
the obtention of reward of each model, thereby revealing that each individual mode is
indeed fair. In particular, we show the casino’s empirical mean profit for each of the four
strategies in Figure 6, revealing that the sample mean casino profit converges long-term to
a positive value in each case. This finding again confirms the conclusion that the casino can
earn money, in the long run, using a two-armed Futurity bandit under a compensation rule
equivalent to that for J = 10 certified by Ethier and Lee [6].

(a) D = AB (b) D = AABB

(c) D = AAABB (d) D = A4B4 A6B3

Figure 6. Casino’s cumulative payoff vs. the number of coups for four strategies D applied to an
actual two-armed antique Mills Futurity slot machine [6].
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5. Method

Chen and Liang [19] demonstrated the long-term profitability of this slot machine,
and their theoretical proof provides enlightening ideas for proving the profitability of the
classic two-arm slot machine (J = 10). The gambler’s motivation to gamble is presumably
tied to the casino’s claim that each arm is fair. Although a given strategy D implemented
by the player may yield a range of results, gamblers often believe they can formulate
profitable strategies in advance. Therefore, we must examine the relationship among the
various strategies. When a casino is confronted with strategy D, it must determine how
this strategy is expected to affect its profitability. This slot machine can also be regarded
as a confrontation game between the casino and the player. In this context, how is the
asymptotic profit expectation difference between the casino and the player calculated?
Based on the casino’s calculation of the asymptotic profit expectation, we can ingeniously
determine that the value of this profit is strictly positive, thus explaining why the casino is
profitable in the long run.

Below, we conduct a preliminary theoretical analysis of the characteristics of the model
based on the assumptions of the classic two-arm bandit machine. We explain why a casino
can claim that slot machines are fair and how certain player strategies can have a cyclical
impact on the casino’s asymptotic returns. Finally, we elaborate on future work on this
model and propose our conjectures.

5.1. Why Can Casinos Claim Each Arm of the Slot Machine Is Fair?

The source of the casino’s profit is every single coin paid by the gambler before each
coup. The player’s profit from the slot machine is divided into two parts: one part is
payoff u obtained by winning a single coup, and the other part is the refund obtained
by losing two consecutive coups. We can choose either arm for initial analysis. If the
gambler plays only the A arm, then p◦A represents the asymptotic probability, per coup,
of the player obtaining the futurity award. The player’s expected asymptotic revenue
per coup is then µ∗A = pAuA + 10p◦A, where uA is the payoff obtained by the gambler by
winning a single coup. The casino can set µ∗A = 1 by tuning parameters pA and uA. In such
a case, the player’s asymptotic payoff expectation per coup is equal to the 1-coin payoff
received by the casino before each coup. Ethier and Lee [6] calculated the value of p◦A as

p◦A =
pAq10

A
1−q10

A
, where qA = 1− pA. Then, to maintain fairness, the casino must ensure that

uA = 10pA(1−pA)
10+(1−pA)

10−1
pA((1−pA)10−1) while modifying the arm’s payoff distribution to maintain or

maximize profitability. In the same way, the casino can also make the B arm fair, but the set
parameters need to be pA 6= pB, 0 < pA < 1, 0 < pB < 1.

5.2. What Is the Relationship among Various Non-Random Mixing Strategies?

By implementing a general fixing of values r, s > 0, the casino can ignore everything
about a gambler’s strategy D other than how the strategy affects the casino’s asymptotic
profit expectation. We let p◦D denote the asymptotic probability, per coup, of the gambler
obtaining the futurity award under strategy D, and we let pD

i denote the win probability of
the ith game under strategy D. Ethier and Lee [6] preliminarily provided the form of p◦D.
On this basis, we preliminarily calculated the casino’s asymptotic profit expectation and
the value of p◦D.

Lemma 1. The casino’s asymptotic profit expectation R is

R = 10
(

p◦D −
r

r + s
p◦A −

s
r + s

p◦B

)
,

where

p◦D =
1

r + s

r+s

∑
k=1

(
r+s

∑
j=1

pD
j

j+10k

∏
i=j+1

qD
i

)
1

1− (qr
Aqs

B)
10 ,
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where qD
i = 1− pD

i .

Proof. Based on the casino’s claim that each arm is fair and the discussion above, we have

R = 1− µ∗D = 1− µD − 10p◦D,

where µD is the asymptotic payoff expectation for the player per coup, disregarding the
Futurity award. From the law of large numbers, we know that

µD =
r

r + s
pAuA +

s
r + s

pBuB.

Ethier and Lee [6] showed that p◦D has the following form:

p◦D =
1

r + s

r+s

∑
k=1

(
r+s

∑
j=1

pj

j+10k−(r+s)d10k/(r+s)e
∏

i=j+1
qi

)
(qr

Aqs
B)
d10k/(r+s)e

1− (qr
Aqs

B)
10 . (1)

For any nonrandom-pattern strategy D, we have

qr
Aqs

B =
r+s

∏
i=1

qi =
m

∏
i=1

qi

r+s

∏
i=m+1

qi =
m

∏
i=1

qi+r+s

r+s

∏
i=m+1

qi =
m+r+s

∏
i=m+1

qi

for any m = 1, 2, · · · , r + s, and similarly for m = r + s + 1, r + s + 2, · · · , 10r + 10s, we also

have qr
Aqs

B =
r+s
∏
i=1

qi+r+s =
m+r+s

∏
i=m+1

qi. Then, by Equation (1), we note that 1 ≤ j ≤ j + 10k−
(r+ s)d10k/(r+ s)e < j+ r+ s ≤ 10r+ 10s. We let m = j+ 10k− (r+ s)d10k/(r+ s)e, and

then we have (qr
Aqs

B)
d10k/(r+s)e =

j+10k
∏

i=m+1
qi. Then, Equation (1) can be rewritten as follows:

p◦D =
1

r + s

r+s

∑
k=1

(
r+s

∑
j=1

pD
j

j+10k

∏
i=j+1

qD
i

)
1

1− (qr
Aqs

B)
10 ,

and

R =
r

r + s
µ∗A +

s
r + s

µ∗B − µD − 10p◦D = 10
(

p◦D −
r

r + s
p◦A −

s
r + s

p◦B

)
.

From the above lemma, we can observe that (1) the value of p◦D summarizes all relevant
effects of a given strategy D and that (2) the value of p◦D affects the casino’s asymptotic profit
expectation R. From the expression for p◦D, we observe that the value of p◦D is relatively
insensitive to the choice of strategy.

Lemma 2. For any set of fixed values of r, s, and l, where l = 1, 2, · · · , r + s, and non-random-
pattern strategies D1 and D2, pD1

i = pD2
i+l for all i = 1, 2, · · · , r + s. Then, the casino asymptotic

profit expectations of the two strategies are equal, that is, RD1 = RD2 .

Proof. We consider strategies D1 and D2 where pD1
i = pD2

i+l for any i = 1, 2, · · · , r + s. Then,
it also holds for i = r + s + 1, r + s + 2, · · · , 11r + 11s by the periodic, and by Lemma 1,
we have
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r+s

∑
j=1

pD1
j

j+10k

∏
i=j+1

qD1
i =

r+s

∑
j=1

pD2
j+l

j+10k

∏
i=j+1

qD2
i+l

=
r+s−l

∑
j=1

pD2
j+l

j+10k

∏
i=j+1

qD2
i+l +

r+s

∑
j=r+s−l+1

pD2
j+l

j+10k

∏
i=j+1

qD2
i+l

=
r+s

∑
j=l+1

pD2
j

j+10k−l

∏
i=j+1−l

qD2
i+l +

l

∑
j=1

pD2
j+r+s

j+10k−l

∏
i=j+1−l

qD2
i+r+s+l

=
r+s

∑
j=l+1

pD2
j

j+10k

∏
i=j+1

qD2
i +

l

∑
j=1

pD2
j

j+10k

∏
i=j+1

qD2
i =

r+s

∑
j=1

pD2
j

j+10k

∏
i=j+1

qD2
i .

That is, p◦D1
= p◦D2

, and by Lemma 1,

RD1 = 10(p◦D1
− r

r + s
p◦A −

s
r + s

p◦B) = 10(p◦D2
− r

r + s
p◦A −

s
r + s

p◦B) = RD2 .

Then, we complete the proof.

To understand the above lemma more intuitively, we can consider Steps A and B in
the strategy as number r of “A” balls and number s of “B” balls. If these balls are placed
in a cycle, then the values of p◦D for different starting points in the same arrangement are
equal. For example, for r = 4, s = 2, the following two arrangements yield the same p◦

value, that is, p◦AABABA = p◦ABABAA. Hence, RAABABA = RABABAA.

A −→ A
↗ ↘

A B
↖ ↙

B ←− A

A −→ B
↗ ↘

A A
↖ ↙

A ←− B

In this way, any non-random pattern strategy provided by the player can be regarded
by the casino as a strategy starting from arm A in the process of calculating profitability.
Vector a(h, r, s) can be used to represent the structure of this strategy, that is, Equation (1),
where 2h is the number of times the arm is switched during a single cycle of the strategy. We
conjecture that in any non-random pattern strategy provided by the player for fixed values
of r and s, the more frequent the switching of arms, the higher the casino’s profitability;
that is, R and h are positively correlated.

Conjecture 1. We consider non-random pattern strategy D1 = a(h, r, s), where h < min{r, s};
then, there is strategy D2 = a(h + 1, r, s) such that RD1 > RD2 . In particular, player strategy
D = AB is most beneficial to the casino, and strategy D = ArBs is most beneficial to the player.

Ethier and Lee [6] showed that if no restrictions are provided to the player strategy,
the casino may not be profitable in the long term. They pointed out that the player
strategy must include A or B only once, or the casino sets the winning rate of the arm
pA + pB > 1/3, or the player strategy r + s ≤ J can ensure the long-term profitability
of the casino, and these are still a open question. We relate simple and easy-to-calculate
strategies to complex strategies provided by players based on the heuristic conjectures
we provide, exploiting the periodicity of the impact of player strategies on casino returns,
and calculating the difference in expected house asymptotic returns between different
similar strategies. Then, we may obtain theoretical proofs of other conjectures of Ethier and
Lee, which also reveals the principle of the Parrondo’s paradox and provides a theoretical
explanation for casino profits.
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6. Conclusions

This article suggests that the root cause of gamblers’ losses lies in the intricate math-
ematical logic of gambling equipment and the sophisticated program design based on
probability modelling and random calculation. This work rigorously demystifies the so-
called casino loyalty programs that advertise fair returns with one-armed Futurity bandits
to attract gamblers but then continuously profit from them using two-armed Futurity
bandits. We thus expose the fraud of the seemingly fair two-armed Futurity bandit. The
explicit mathematical expression of expected casino profits, as found in the Results and
illustrated in the corresponding figures, vividly elucidates how expected profit changes
accompany variations in the considered parameters, again implying that the game can
always be profitable for the casino in the long run. The experiments conducted were de-
signed to validate the theoretical results through simulation, and a real two-armed Futurity
slot machine with a more complex output was also tested to verify this conclusion.

We anticipate that this study will benefit gamblers by helping them recognize the
fundamental unfairness within the gambling industry, particularly regarding so-called
loyalty programs that are typically advertised with claims of fairness. On the other hand,
we do not intend for our theoretical findings to be used in the further design of slot
machines, nor by other businesses such as those engaging in discount marketing, bundled
sales, or other induced consumption tactics. This article may serve as a starting point for
further study of the mathematically inherent profitability of casino games, including more
sophisticated multi-armed Futurity bandits, based on the probabilistic tools presented
herein. We also hope this study will assist casino owners in better designing their casinos
and helping gamblers participate in gambling more cautiously.
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1. Introduction

The central limit theorem (CLT) is one of the gems of probability theory. Its importance
can hardly be overestimated both from the theoretical point of view and from the point of
view of its applications in various fields. The CLT is usually associated with the normal
distribution, or Gaussian distribution, which acts as the limiting distribution in the theorem.
In this review article, we recall the history of the CLT, briefly focusing on classical and
martingale CLTs and discussing the newer directions of CLT, namely Peng’s nonlinear CLT
and Chen–Epstein’s nonlinear CLT, in more detail, as well as the Chen–Epstein nonlinear
normal distribution.

Speaking of the classical and martingale CLTs, we only touch upon the basic results
involving the de Moivre–Laplace theorem, the Lindeberg–Feller theorem, the Lévy theorem
and Hall’s theorem. We point out that the classical CLT is related to sums of indepen-
dent random variables. In the martingale CLT, the summands are already dependent.
But, in both cases, we consider a linear expectation and a probability space with one
probability measure. This part of the review is rather short, since there are numerous publi-
cations on classical and martingale CLTs. A detailed and extensive review of the classical
and martingale CLTs can be found in Rootzén [1], Hall and Heyde [2], Adams [3], and
Fischer [4]. Further research was carried out in several directions, including the rates of con-
vergance, see, e.g., Petrov [5], Götze et al. [6], Shevtsova [7], Fujikoshi and Ulyanov [8], and
Dedecker et al. [9]; generalization of CLT to the multivariate case, see, e.g., Bhattacharya
and Ranga Rao [10] and Sazonov [11], and to infinite dimensional case, see, e.g., Bentkus
and Götze [12], Götze and Zaitsev [13], and Prokhorov and Ulyanov [14].

The main part of the paper is devoted to the nonlinear CLT. The motivation for its
emergence comes from real life, where we often face decision-making problems under
uncertainty. In most cases, classical CLT and normal distribution are not suitable. For
example, we cannot directly construct a confidence interval using the martingale CLT.
Nonlinear probability and expectation theory has developed rapidly over the last thirty
years and has become an important tool for investigating model uncertainty or ambiguity.
Nonlinear CLT is an important research area that describes the asymptotic behavior of a
sequence of random variables with distribution uncertainty. Its limiting distribution is no
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longer represented by the classical normal distribution, but by a number of “new nonlinear
normal distributions”, such as the g-expectation distribution and the G-normal distribution.
Nonlinear CLT can fill the huge gaps between martingale CLT and real life.

Nonlinear CLT can be applied in many areas. For example, two-sample tests analyze
whether the difference between two population parameters is more significant than a
given positive equivalence margin. Chen et al. [15] developed a strategy-specific test
statistic using nonlinear CLT and the law of large numbers. Furthermore, inspired by the
nonlinear CLT and sublinear expectation theory, Peng et al. [16] introduced G-VaR, which
is a new methodology for financial risk management. The inherent volatility of financial
returns is not restricted to a single distribution; instead, it is reflected by an infinite set
of distributions. By carefully assessing the most unfavorable scenario in this spectrum of
possibilities, the G-VaR predictor can be accurately determined; see also Hölzermann [?
] on pricing interest rate derivatives under volatility uncertainty and Ji et al. [18] on
imbalanced binary classification under distribution uncertainty.

This paper is organised as follows: in Section 2, we consider the classical CLT. Section 3
presents the CLT for martingales. Section 4 introduces the theory of nonlinear expectations
and nonlinear CLT. In Section 5, we discuss the differences between classical CLT and
nonlinear CLT. Section 6 presents some future research problems of nonlinear CLT.

2. The Classical Central Limit Theorems

The first version of the CLT appeared as the de Moivre–Laplace theorem. De Moivre’s
investigation was motivated by a need to compute the probabilities of winning in vari-
ous games of chance. In the proof, de Moivre [19] used Stirling’s formula to obtain the
following theorem.

Theorem 1 (de Moivre (1733) [19]). Let {Xn}n≥1 be a sequence of independent Bernoulli random
variables, each with a success probability p ∈ (0, 1); that is, for each i,

P(Xi = 1) = p = 1− P(Xi = 0).

Let Sn = ∑n
i=1 Xi denote the total number of successes in the first n Bernoulli trials. Then, for any

a < b ∈ R,

P

(
a <

Sn − np√
np(1− p)

≤ b

)
→ Φ(b)−Φ(a),

where
Φ(x) =

1√
2π

∫ x

−∞
e−y2/2dy

is the standard normal distribution function.

Thus, de Moivre discovered the probability distribution, which, in the late 19th century,
came to be called the normal distribution. Another name—Gaussian distribution—is used
in honor of Gauss, who arrived at this distribution as “the law of error” in his famous work,
Gauss [20], on the problems of measurement in astronomy and the least squares method.

Laplace [21] proved the Moivre–Laplace theorem anew using the Euler– McLaurin
summation formula.

Theorem 2 (Laplace (1781) [21]). In the notation of Theorem 1, for any a ∈ R, we have

P(|Sn − np− z| ≤ a) = 2
(

Φ
(

a
√

n√
x x′

)
−Φ(0)

)
+

√
n√

2πx′x
exp

(
− a2n

2x′x

)
,

where z ∈ R, |z| < 1, and x = np + z, x′ = n(1− p)− z.
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This theorem, besides convergence to the normal law, also provides a good estimate
of the accuracy of the normal approximation.

After the first CLT appeared, many famous mathematicians studied the CLT, such as
Possion, Dirichlet, and Cauchy. The first significant generalization of the Moivre–Laplace
theorem was the Lyapunov theorem [22,23]:

Theorem 3 (Lyapunov(1900, 1901) [22,23]). Let {Xn}n≥1 be a sequence of independent ran-
dom variables with mean E[Xn] = µn, variance Var[Xn] = σ2

n and finite moment E[|Xn −
EXn|2+δ], δ > 0. Let Sn = ∑n

i=1 Xi, Bn = ∑n
i=1 σ2

i . If, for some δ > 0,

lim
n→∞

1

B1+δ/2
n

n

∑
i=1

E[|Xi − E[Xi]|2+δ] = 0,

then, for any a < b ∈ R,

P

(
a <

Sn − E[Sn]√
Bn

≤ b
)
→ Φ(b)−Φ(a),

uniformly with respect to a and b.

This theorem was proved by a new method: the method of characteristic functions. The
formulation of the problem and a possible solution were proposed in 1887 by Chebyshev,
who suggested using the method of moments by comparing the moments of sums of
independent random variables with the moments of the Gaussian distribution. The method
of moments is still helpful in some cases.

In the 1920s, the study of CLT introduced modern probability theory. The most crucial
CLT in the early years of the century belongs to Lévy. In 1922, Lévy’s fundamental theorems
on characteristic functions were proved; see [24].

At the same time, Lindeberg also used characteristic functions to study CLT, and a
fundamental CLT, called the Lindeberg–Feller CLT, was formulated:

Theorem 4. In the notation of Theorem 3, for

lim
n→∞

max1≤i≤n σ2
i

Bn
= 0

and for any b, the limit

P

(
Sn − E[Sn]√

Bn
≤ b

)
→ Φ(b), n→ ∞,

holds; it is necessary and sufficient that the condition (the Lindeberg condition) for any ε > 0:

lim
n→∞

1
Bn

n

∑
i=1

E[(Xi − E[Xi])
21{|Xi−E[Xi ]|>ε

√
Bn}] = 0

is met.

Sufficiency was proved by Lindeberg [25] and necessity by Feller [26].

3. The Martingale Central Limit Theorems

The classical result is that independent and identically distributed variables lead to
a normal distribution under the proper moment condition. Counterexamples show that
violation of the independence or identity of the distributions may lead to a non-normal limit
distribution. However, numerous examples also show that the violation of independence or
identity of distribution can still lead to a normal distribution. Bernstein [27] and Lévy [28]
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independently put forward a new direction of study: how to prove the CLT for sums of
dependent random variables. In 1935, Lévy [28] established a CLT under some conditions,
which can be regarded as the first version of the martingale CLT.

In the classical CLT, Sn = ∑n
i=1 Xi, where {Xn}n≥1 is a sequence of independent

random variables. In the contents of the martingale CLT, Sn = ∑n
i=1 Xi is a martingale and

{Xn}n≥1 is assumed to be a martingale difference sequence, i.e., E[Xn|Fn−1] = 0, where
{Fn}n≥0 is a sequence of a given σ-algebras filtration.

Theorem 5 (Lévy (1935) [28]). Let {Xn}n≥1 be a sequence of random variables defined on
(Ω,F , {Fn}n≥0,P), with E[Xn|Fn−1] = 0. Denote Sn = ∑n

i=1 Xi, σ2
n = E[X2

n|Fn−1] and
b2

n = ∑n
i=1 σ2

i . Let
∞

∑
n=1

σ2
n = ∞, P-a.s.,

and for any ε > 0, the relations

lim
n→∞

n

∑
i=1

P(|Xi| > εbn|Fi−1) = 0, P-a.s.,

lim
n→∞

1
bn

n

∑
i=1

E
[

Xi1{|Xi |>εbn}|Fi−1

]
= 0, P-a.s.,

lim
n→∞

1
b2

n

n

∑
i=1

E
[

X2
i 1{|Xi |>εbn}|Fi−1

]
= 0, P-a.s.,

lim
n→∞

1
b2

n

n

∑
i=1

(
E
[

Xi1{|Xi |>εbn}|Fi−1

])2
= 0, P-a.s.

hold. Then,
Sn√

n
d−→ N(0, c2),

where c is a constant.

Lévy’s result depends on the conditions for σ2
n , which are random variables. The

assumptions of Lévy’s theorem are too strict. Many authors tried to relax the assumptions,
including Doob [29], Billingsley [30], Ibragimov [31], and Csörgö [? ]. Their works led to
the CLT being used under some other conditions, including the following:

b2
n

E[S2
n]

P−→ C,

where C is a constant.
Brown [33] improved the previous martingale CLT:

Theorem 6 (Brown (1971) [33]). Let {Xn}n≥1 be a sequence of random variables defined on (Ω,
F , {Fn}n≥0,P), with E[Xn|Fn−1] = 0. Denote Sn = ∑n

i=1 Xi, σ2
n = E[X2

n|Fn−1], ϕn(t) =
E[eitXn |Fn−1], b2

n = ∑n
i=1 σ2

i , and s2
n = E[S2

n]. If

b2
n

s2
n

P−→ 1,

n

∏
j=1

ϕj

(
t√
s2

n

)
P−→ e−

t2
2 , (1)

and
max1≤i≤n σ2

i
s2

n

P−→ 0,
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then
Sn√

s2
n

d−→ N(0, 1).

The condition (1) is a critical condition. In 1974, McLeish [34] introduced an elegant method
and proved a new martingale CLT.

Theorem 7 (McLeish (1974) [34]). Let {Xn,i, n ≥ 1, 1 ≤ i ≤ kn} be an array of random
variables defined on (Ω,F ,P), with E[Xn,i|Fn,i−1] = 0, where Fn,i = σ(Xn,j, 1 ≤ j ≤ i). Denote
Sn = ∑kn

i=1 Xn,i, Tn = ∏kn
i=1(1 + itXn,i). If for all real t, {Tn} is uniformly integrable, and

lim
n→∞

E[Tn] = 1,
kn

∑
i=1

X2
n,i

P−→ 1,

max
1≤i≤kn

|Xn,i| P−→ 0,

then
Sn

d−→ N(0, 1).

The elegant MacLeish’s method proves that condition (1) holds. It follows from condi-
tion (1) that the limiting distribution of martingales Sn is Gaussian. However, condition (1)
means that the conditional characteristic function converges to a non-random function
of t. This is an unnatural condition. The limiting distribution will be different if the con-
ditional characteristic function or conditional variance converges to a random variable.
Hall [35] obtained the following result, which is an essential step in the development of
martingale CLT.

Theorem 8 (Hall (1977) [35]). Let {Xn,i, n ≥ 1, 1 ≤ i ≤ kn} be an array of random variables
defined on (Ω,F ,P), with E[Xn,i|Fn,i−1] = 0, where Fn,i = σ(Xj,kn , 1 ≤ j ≤ i) and for n ≥ 1,
1 ≤ i ≤ kn, Fn,i ⊂ Fn+1,i. Denote Sn = ∑kn

i=1 Xn,i. If

lim
n→∞

E[ max
1≤i≤kn

X2
n,i] = 0,

kn

∑
i=1

X2
n,i

P−→ T, (2)

then
Sn

d−→ T′N(0, 1),

where T′ is an independent copy of T.

It follows from Hall’s result that the limiting distribution of the martingale may not
be Gaussian. It may be a conditional Gaussian. In the study of economics and finance,
the condition (2) usually corresponds to the real-life situation. More often than not, final
decisions can only be made in an ambiguous context.

4. Nonlinear Central Limit Theorems

There are two main frameworks for studying nonlinear CLT. The nonlinear expectation
framework (Ω,H,E) proposed by Peng is one approach to characterizing distributional
uncertainty. Another approach involves using a set of probability measures P on (Ω,F ) to
study nonlinear CLT, as was achieved by Chen, Epstein and their co-authors.
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4.1. Nonlinear CLT under Nonlinear Expectations

Peng [36] constructed a large class of dynamically consistent nonlinear expectations
through backward stochastic differential equations, known as the g-expectation, with the
corresponding dynamic risk measure referred to as the g-risk measure. The g-expectation
can handle uncertain probability sets {Pθ , θ ∈ Θ} controlled by a given probability measure
P. However, for singular cases (i.e., P(A) = 0 while Pθ(A) > 0), the g-expectation is no
longer applicable. Peng, breaking free from the framework of the original probability space,
created the theory of nonlinear expectation spaces and introduced a more general nonlinear
expectation G-expectation; see Peng [37].

Definition 1. Given a set Ω, letH be a linear space of real-valued functions defined on Ω. Let the
functional E: H → R satisfy the following four conditions:

(1) Monotonicity: If X > Y, then E[X] > E[Y];
(2) Preserving constants: E[c] = c, for all c ∈ R;
(3) Subadditivity: E[X + Y] 6 E[X] +E[Y], for all X, Y ∈ H;
(4) Positive homogeneity: E[λX] = λE[X], for all λ > 0.

Then, the functional E is called a sublinear expectation. The triple (Ω,H,E) is referred to as a
sublinear expectation space. If only conditions (1) and (2) are satisfied, E is termed a nonlinear
expectation, and (Ω,H,E) is called a nonlinear expectation space.

Within the framework of nonlinear expectations, based on fundamental assumptions,
one can also derive such concepts as the distribution of random variables, independence,
correlation, stationarity, Markov processes, etc. At the same time, nonlinear Brownian
motion and the corresponding stochastic analysis represent a significant extension of the
classical stochastic analysis. Moreover, the limit theorems are still valid under nonlinear
expectations. Peng [38] developed an elegant partial differential equation method and
obtained the first nonlinear CLT under sublinear expectations.

Theorem 9 (Peng (2008) [38]). Let {Xi}i≥1 be a sequence of independent and identically dis-
tributed random variables in a sublinear expectation space (Ω,H,E). Assume that

E[X1] = E[−X1] = 0, lim
c→∞

E
[(
|X1|2 − c

)+]
= 0.

Let Sn := ∑n
i=1 Xi. Then, for any ϕ ∈ C(R) with linear growth, one has

lim
n→∞

E
[

ϕ

(
Sn√

n

)]
= E[ϕ(ξ)], (3)

where ξ ∼ N (0, [σ2, σ2]) is a G-normally distributed random variable and the corresponding
sublinear function G : R 7→ R is defined by

G(a) := E
[ a

2
X2

1

]
, a ∈ R.

4.2. Nonlinear CLT under a Set of Probability Measures

Peng’s nonlinear CLT opens a new way to replace martingale CLT in the study of
economics and finance. In economic markets, random variables objectively exist, but the
uncertain probability measure P may not be deterministic. The well-known Ellsberg para-
dox illustrates that random variables exist, but finding a probabilistic measure P to quantify
a given random variable is not always possible. This example shows that, in practical
applications of probability theory, there can be ambiguity in people’s understanding of
probability measures, and it is necessary to clarify which measure should be used to better
quantify uncertainty. The economic community often refers to this as ambiguity, pointing
to the uncertainty arising from the market and people’s limited cognitive abilities. In terms
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of the development of economic markets, economists have concluded that the probabil-
ity axioms established by Kolmogorov can quantify the internal laws of development of
economic markets. However, they cannot accurately characterize the external effects of
human behavior on the laws of market development. Thus, classical and martingale CLTs
do not work. Therefore, a new discipline called behavioral economics has emerged, which
studies the laws of economic markets using different perspectives (probability measures).
One of the fundamental problems of the new discipline is the presence of non-IID data.
Establishing universal asymptotic results for non-IID random variables is an important
and challenging issue in this situation.

Inspired by this, Chen, Epstein, and their co-authors, in contrast to Peng, who started
with nonlinear expectations, investigated nonlinear CLT for a set of probability measures
(i.e., in the context of ambiguity). They use a set of probability measures P , which is
assumed to be “rectangular” (or closed with respect to the pasting of alien marginals and
conditionals), to describe the distribution uncertainty of the random variables {Xn} defined
on (Ω,F ). Given the history information {Gn−1}, the conditional mean and variance of
{Xn} will vary under different probability measures Q ∈ P , which leads to the concepts of
upper and lower conditional means and variances; see (4) and (17). Thus, they focused on
two characteristics, mean uncertainty and variance uncertainty, respectively, to obtain the
nonlinear CLT. The restriction of the uniqueness of the probability measure in Kolmogorov’s
axiom is overcome.

Chen, Epstein and their co-authors established two types of nonlinear normal distri-
butions, which have explicit probability densities, given by (15) and (24), to characterize
the limit distribution in the nonlinear CLT. These explicit expressions are the first explicit
formulae for nonlinear CLT since de Moivre (1733), Laplace (1781) and Gauss (1809) [19–21]
discovered and proved the classical (linear) CLT and the normal distribution for a single
probability measure more than two hundred years ago. It is worth noting that these two
types of nonlinear normal distributions also play a crucial role in the study of multi-armed
bandits and quantum computing, as well as nonlinear statistics (see, e.g., Chen et al. [39]).

Case I: CLT with mean uncertainty

Chen and Epstein [40] established a family of CLT with mean uncertainty under a set
of probability measures. Under the assumptions of the constant conditional variance of the
random variable sequence and conditional mean constrained to a fixed interval [µ, µ̄], they
proved that the limiting distribution can be described by the g-expectation or a solution of
a backward stochastic differential equation (BSDE). Moreover, for a class of symmetric test
functions, they showed that the limiting distribution has an explicit density function, given
by (15), see, e.g., [41].

Theorem 10 (Chen and Epstein (2022) [40]). Let (Ω,F ) be a measurable space, P be a family of
probability measures on (Ω,F ), and {Xi} be a sequence of real-valued random variables defined on
this space. The history information is represented by the filtration {Gi}i≥1, (G0 = {∅, Ω}), such
that {Xi} is adapted to {Gi}.

Assume that the upper and lower conditional means of {Xi} satisfy the following:

ess supQ∈PEQ[Xi|Gi−1] = µ and ess infQ∈PEQ[Xi|Gi−1] = µ, for all i ≥ 1. (4)

Assume that {Xi} has an unambiguous conditional variance σ2; that is,

EQ

[
(Xi − EQ[Xi|Gi−1])

2|Gi−1

]
= σ2 > 0 for all Q ∈ P and all i. (5)

Furthermore, assume that P is rectangular and {Xi} satisfies the Lindeberg condition:

lim
n→∞

1
n

n

∑
i=1

sup
Q∈P

EQ

[
|Xi|2 I{|Xi |>

√
nε}
]
= 0, ∀ε > 0. (6)
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Then, for all ϕ ∈ C([−∞, ∞]),

lim
n→∞

sup
Q∈P

EQ

[
ϕ

(
1
n

n

∑
i=1

Xi +
1√
n

n

∑
i=1

1
σ
(Xi − EQ[Xi|Gi−1])

)]
= E[µ,µ][ϕ(B1)], (7)

or equivalently,

lim
n→∞

inf
Q∈P

EQ

[
ϕ

(
1
n

n

∑
i=1

Xi +
1√
n

n

∑
i=1

1
σ
(Xi − EQ[Xi|Gi−1])

)]
= E[µ,µ][ϕ(B1)], (8)

where E[µ,µ][ϕ(B1)] ≡ Y0 is called g-expectation by Peng (1997) [36], given that (Yt, Zt) is the
solution of the BSDE

Yt = ϕ(B1) +
∫ 1

t
max

µ≤µ≤µ
(µZs)ds−

∫ 1

t
ZsdBs, 0 ≤ t ≤ 1, (9)

and E[µ,µ][ϕ(B1)] ≡ y0, given that (yt, zt) is the solution of the BSDE

yt = ϕ(B1) +
∫ 1

t
min

µ≤µ≤µ
(µzs)ds−

∫ 1

t
zsdBs, 0 ≤ t ≤ 1. (10)

Here, (Bt) is a standard Brownian motion
Particularly, when ϕ is symmetric with the center c ∈ R, that is, ϕ(c + x) = ϕ(c− x), and

is monotonic on (c, ∞), the limits in (7) and (8) can be expressed explicitly.

(1) If ϕ is increasing on (c, ∞), then

lim
n→∞

sup
Q∈P

EQ

[
ϕ

(
1
n

n

∑
i=1

Xi +
1√
n

n

∑
i=1

1
σ
(Xi − EQ[Xi|Gi−1])

)]
=
∫

R
ϕ(y) f

µ−µ

2 ,
µ+µ

2 ,c(y)dy (11)

lim
n→∞

inf
Q∈P

EQ

[
ϕ

(
1
n

n

∑
i=1

Xi +
1√
n

n

∑
i=1

1
σ
(Xi − EQ[Xi|Gi−1])

)]
=
∫

R
ϕ(y) f

µ−µ

2 ,
µ+µ

2 ,c(y)dy (12)

(2) If ϕ is decreasing on (c, ∞), then

lim
n→∞

sup
Q∈P

EQ

[
ϕ

(
1
n

n

∑
i=1

Xi +
1√
n

n

∑
i=1

1
σ
(Xi − EQ[Xi|Gi−1])

)]
=
∫

R
ϕ(y) f

µ−µ

2 ,
µ+µ

2 ,c(y)dy (13)

lim
n→∞

inf
Q∈P

EQ

[
ϕ

(
1
n

n

∑
i=1

Xi +
1√
n

n

∑
i=1

1
σ
(Xi − EQ[Xi|Gi−1])

)]
=
∫

R
ϕ(y) f

µ−µ

2 ,
µ+µ

2 ,c(y)dy (14)

where the density function f α,β,c is given as follows:

f α,β,c(y) =
1√
2π

e−
(y−β)2−2α(|y−c|−|c−β|)+α2

2 − αe2α|y−c|Φ(−|c− β| − |y− c| − α), (15)

The above density function of the Chen–Epstein distribution degenerates into the density
function of the classical normal (Gaussian) distribution only when α = 0.

Remark 1. Let β = 0 and c = 0. Then, the density function f α,β,c has the following properties:

• If α < 0, the curve of f α,β,c has more spike than the normal distribution, referred to as the
spike distribution. When we use f α,β,c to denote maximum probability density in (13) and the
minimum probability density in (12), the corresponding α < 0.

• If α > 0, the curve of f α,β,c is similar to two linked normal distributions, referred to as the
binormal distribution. When we use f α,β,c to denote maximum probability density in (11) and
the minimum probability density in (14), the corresponding α > 0.
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• If α = 0, the curve of f α,β,c is degenerated to a standard normal distribution. It follows from
(11)–(14) that when µ = µ, the corresponding α = 0.

The density function of the Chen–Epstein distribution is shown in the figures below.

The curves of the density function f α,β,c, for the cases where β = 0, c = 0 and α take
different values, are shown in the following Figures 1 and 2.

Figure 1. Plots of f α,β,c for β = 0, c = 0 and α ≤ 0. and α ≤ 0.

Figure 2. Plots of f α,β,c for β = 0, c = 0 and α ≥ 0. and α ≥ 0.

Case II: CLT with variance uncertainty

Chen et al. [39] investigated the CLT with variance uncertainty under a set of probabil-
ity measures. The considered random variables sequence has an unambiguous conditional
mean and its conditional variance is constrained to vary within the interval

[
σ2, σ̄2]. First

of all, the limiting distribution can still be described by the G-normal distribution. More
significantly, for a class of “S-Shaped” test functions, which are important indexes for
characterizing loss aversion in behavioral economics, they demonstrated that the limiting
distribution also has an explicit probability density function, given by (24).

Theorem 11 (Chen, Epstein and Zhang (2023) [39]). Let (Ω,F ) be a measurable space, P
be a family of probability measures on (Ω,F ), and {Xi} be a sequence of real-valued random
variables defined on this space. The history information is represented by the filtration {Gi}i≥1,
(G0 = {∅, Ω}), such that {Xi} is adapted to {Gi}.

Assume that {Xi} has an unambiguous conditional mean 0, that is,

EQ[Xi|Gi−1] = µ = 0 for all Q ∈ P and all i, (16)
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Assume that the upper and lower conditional variances of {Xi} satisfy the following:

ess supQ∈PEQ[X2
i |Gi−1] = σ2 and ess inf

Q∈P
EQ[X2

i |Gi−1] = σ2, for all i ≥ 1. (17)

Assume also that the Lindeberg condition (6) is met and that P is rectangular. Put Sn = ∑n
i=1 Xi.

For any ϕ ∈ C([−∞, ∞]), we have

lim
n→∞

sup
Q∈P

EQ

[
ϕ

(
Sn√

n

)]
= E[ϕ(ξ)]

where ξ ∼ N (0, [σ2, σ2]) is a G-Normal distribution under the sublinear expectation space
(Ω,H,E).

Particularly, for any c ∈ R and ϕ1 ∈ C3
b(R), set θ = σ/σ and define functions

φ(x) =

{
ϕ1(x) x ≥ c,
ϕ2(x) = −θϕ1

(
− 1

θ (x− c) + c
)
+ (1 + θ)ϕ1(c) x < c,

(18)

φ(x) =

{
ϕ1(x) x ≥ c,
ϕ2(x) = − 1

θ ϕ1(−θ(x− c) + c) +
(

1 + 1
θ

)
ϕ1(c) x < c.

(19)

(1) If ϕ′′1 (x) ≤ 0 for x ≥ c, then

lim
n→∞

sup
Q∈P

EQ

[
φ

(
Sn√

n

)]
=
∫

R
φ(y)qσ,σ,c(y)dy, (20)

lim
n→∞

inf
Q∈P

EQ

[
φ

(
Sn√

n

)]
=
∫

R
φ(y)qσ,σ,c(y)dy. (21)

(2) If ϕ′′1 (x) > 0 for x ≥ c, then

lim
n→∞

sup
Q∈P

EQ

[
φ

(
Sn√

n

)]
=
∫

R
φ(y)qσ,σ,c(y)dy, (22)

lim
n→∞

inf
Q∈P

EQ

[
φ

(
Sn√

n

)]
=
∫

R
φ(y)qσ,σ,c(y)dy. (23)

The density function of qα,β,c is given as follows:

qα,β,c(y) =
1√

2πσ(y)
e−

(
c

σ(0) +
y−c
σ(y)

)2

2 + β−α
β+α

sgn(y−c)√
2πσ(y)

e−

(∣∣∣∣ c
σ(0)

∣∣∣∣+
∣∣∣∣

y−c
σ(y)

∣∣∣∣
)2

2 , (24)

and σ(y) = αI[c,∞)(y) + βI(−∞,c)(y), ∀y ∈ R.
The above density function of the Chen–Epstein–Zhang distribution degenerates into the

density function of the normal distribution N(0, σ2) only when α = β = σ.

Remark 2. The assumptions and results of Theorem 11 are slightly different from those in the
publication of Chen, Epstein and Zhang (2023). The frameworks and assumptions in the publication
are slightly more complicated due to the consideration of the bandit problem and the construction of
the optimal strategies in the Bayesian framework.

The following figure shows the curves of the density function qα,β,c of the Chen–
Epstein–Zhang distribution.

The curve of the density function qα,β,c for α = 1, β = 2, c = 0 is shown as follows
(Figure 3).
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Figure 3. Plot of qα,β,c for α = 1, β = 2, c = 0.

The curve of the density function qα,β,c for α = 2, β = 1, c = 0 is shown as follows
(Figure 4).

Figure 4. Plot of qα,β,c for α = 2, β = 1, c = 0.

When comparing the curves of classical normal distribution with the minimum–
maximum probability density functions, one can clearly see that the minimum–maximum
probability density functions are no longer continuous.

5. Differences between Classical CLT and Nonlinear CLT

For convenience, we used C-CLT to denote the classical CLT , NE-CLT to denote the
nonlinear Peng’s CLT on the nonlinear expectations given by Peng, and NP-CLT to denote
the nonlinear Chen–Epstein CLT under a set of probability measures given by Chen and
Epstein as well as Zhang.

5.1. Frameworks

• C-CLT: The classical CLT is mainly considered on a probability space (Ω,F ,P) with a
single probability measure P. And {Xi} is a sequence of random variables defined on
(Ω,F ,P). The distribution of each Xi is fixed under the probability measure P.

• NE-CLT: The NE-CLT is considered on the sublinear expectation space (Ω,H,E),
and the random variables sequence {Xi} is defined on (Ω,H,E). One can use the
sublinear expectation E to describe the distribution uncertainty of {Xi}. When E
becomes a linear expectation, the nonlinear CLT degenerates into a classical one.

• NP-CLT: The NP-CLT is considered under a set of probability measures P on (Ω,F ),
and the random variables sequence {Xi} is defined on (Ω,F ). One can use P to
describe the distribution uncertainty of {Xi}. When P equals the singlton {P}, the
nonlinear CLT degenerates into a classical one.
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5.2. Assumptions
5.2.1. Independence

• C-CLT: Usually, {Xi} are independent or {Xi} is a sequence of martingale differences.
• NE-CLT: Peng provided the concept of independence on sublinear expectation space.

That is, {Xi} are independent on (Ω,H,E), if

E[ f (X1, · · · , Xn)] = E
[
E[ f (x, Xn)]x=(X1,··· ,Xn−1)

]
.

• NP-CLT: When the CLT is considered on (Ω,F ,P), there is no concept of indepen-
dence. However, one should assume that P and {Xi} satisfy a property similar to
independence, which can be described as follows

sup
Q∈P

EQ[ f (X1, · · · , Xn)] = sup
Q∈P

EQ

[
ess supQ∈PEQ[ f (X1, · · · , Xn)|Gn−1]

]

In fact, this holds naturally when P is rectangular; see Lemma 2.2 from [40].

5.2.2. Mean and Variance

• C-CLT: Usually {Xi} are identically distributed; notably, {Xi} have the same mean
and variance.

• NE-CLT: Peng defined the upper and lower means as follows

µ = E[X1] and µ = −E[−X1]

when E[X1] = E[−X1] = 0, he stated that {Xi} has no mean uncertainty, and defined
the upper and lower variances as follows:

σ2 = E[X2
1 ] and σ2 = −E[−X2

1 ]

• NP-CLT: There are two main assumptions for the conditional means and variances of
{Xi}. Since there is no independence here, and the conditional means and variances
of {Xi}, given the information Gi−1, will vary for different measures in P , Chen and
co-authors focused on the conditional means and variances of {Xi}.
When investigating CLT with an uncertain mean, it is assumed that {Xi} have uncer-
tain conditional means but common conditional variance, i.e., we have (4) and (5).
When investigating CLT with variance uncertainty, it is assumed that {Xi} have
uncertain conditional variances but a common conditional mean, i.e., we have (17)
and (16).

5.3. Results
5.3.1. Expression Form

• C-CLT: One usually investigates the limit behavior of

∑n
i=1(Xi − µ)√

nσ
with µ = E[X1], σ2 = Var(X1),

which is the standardization of Sn = ∑n
i=1 Xi.

One has
∑n

i=1(Xi − µ)√
nσ

d−→ N(0, 1),
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which has many equivalent expressions:

P

(
∑n

i=1(Xi − µ)√
nσ

≤ x
)
→ P(Z ≤ x), Z ∼ N(0, 1),

E

[
f
(

∑n
i=1(Xi − µ)√

nσ

)]
→ E[ f (Z)].

• NE-CLT: Usually, {Xi} has no mean uncertainty, and the limit behavior of Sn/
√

n is
investigated. Peng also introduced the corresponding notion of convergence in distri-
bution in sublinear expectation space: we say that Sn/

√
n converges in distribution to

G-normal distribution ξ, if

E
[

ϕ

(
Sn√

n

)]
→ E[ϕ(ξ)], ∀ϕ ∈ Cb,Lip(R).

• NP-CLT: Considering CLT with variance uncertainty, Chen and co-authors similarly
investigated the limiting behavior of Sn/

√
n, assuming that {Xi} has a common

conditional mean of 0.
Considering CLT with mean uncertainty, they investigated the limiting behavior of

TQ
n :=

1
n

n

∑
i=1

Xi +
1√
n

n

∑
i=1

1
σ
(Xi − EQ[Xi|Gi−1])

The second part is the Sn standardization, which is similar in form to the classical CLT.
Since they wanted to consider the mean uncertainty, and the standardization in the
second part does not actually reflect the mean uncertainty, they added a sample mean
to reflect the mean uncertainty.
On the other hand, they investigated the limit behavior of the upper (or lower) expec-
tation of the statistics for given test function, that is:

lim
n→∞

sup
Q∈P

EQ

[
ϕ

(
Sn√

n

)]
=? and lim

n→∞
sup
Q∈P

EQ

[
ϕ
(

TQ
n

)]
=?

Since, for a set of measuresP , the upper expectation or probability, that is supQ∈P EQ[·]
or supQ∈P Q(·) resp., do not have the additivity property, the above limit behavior is
not equivalent to the problems (but contains them)

lim
n→∞

sup
Q∈P

Q
(

Sn√
n
≤ x

)
=? and lim

n→∞
sup
Q∈P

Q
(

TQ
n ≤ x

)
=?

5.3.2. Limit Distribution

• C-CLT: The normal distribution is mostly used to describe the limit distribution.
• NE-CLT: Peng introduced the notion of G-normal distribution N (0, [σ2, σ2]) to char-

acterize the limit distribution. When σ2 = σ2, it degenerated to the classical normal
distribution.

• NP-CLT:

(1) For the CLT with mean uncertainty, Chen and Epstein use the g-expectation
E[µ,µ][ϕ(B1)] or E[µ,µ][ϕ(B1)], which corresponds to the solution of BSDE (9) or
(10), to describe the limit distribution. We know that the BSDE usually does
not have an explicit solution, i.e., it does not have an explicit expression like
the density of normal distribution. However, for some classes of symmetric test
functions ϕ, Chen and coauthors found the explicit density f α,β,c to describe the
limit distribution.
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(2) For the CLT with variance uncertainty, similar to the NE-CLT, one can still use
the G-normal distribution to describe the limit distribution. It is also known
that the G-normal distribution usually does not have an explicit expression
like the density of the normal distribution. Therefore, similar to CLT with mean
uncertainty, Chen and coauthors tried to find some class of functions that provides
an explicit expression for the limit distribution. Then, they considered two classes
of functions, φ and φ, given by (18) and (19), which are two kinds of “S-Shaped”
function. For these test functions, they found the explicit expression for the
density function qα,β,c of the limit distribution.

5.4. Proofs
5.4.1. Methods to Prove C-CLT

There are four common methods of proving the CLT:

• Method of characteristic functions;
• Method of moments;
• Stein’s method;
• The Lindeberg exchange method.

5.4.2. Methods to Prove NE-CLT

Peng first established the connection between G-normal distribution and the following
nonlinear parabolic PDE, which he called G-heat equation:

{
∂tu(t, x) + σ2

2
(
∂2

xxu(t, x)
)+ − σ2

2
(
∂2

xxu(t, x)
)−

= 0, (t, x) ∈ [0, 1)×R,
u(1, x) = ϕ(x).

He found that v(0, 0) = E[ϕ(ξ)], where ξ ∼ N (0, [σ2, σ2]) is the G-normal distribution.
Then, he represented the difference between E[ϕ(Sn/

√
n)] and E[ϕ(ξ)] in terms of

u(t, x), and split it into n terms:

E
[

ϕ

(
Sn√

n

)]
−E[ϕ(ξ)] =u

(
1,

Sn√
n

)
− u(0, 0)

=
n

∑
m=1

{
u
(

m
n

,
Sm√

n

)
− u

(
m− 1

n
,

Sm−1√
n

)}
.

Finally, he applied the Taylor expansion and the G-heat equation to prove that the above
sums converge to 0.

5.4.3. Methods to Prove NP-CLT

The idea of the proof is similar to the idea of the Lindeberg exchange method, as well
as Peng’s method. It can be described in the following steps:

• Step 1: Guess the form of the limiting distribution, for example, the solution of BSDE
or the G-Normal distribution. Use it to construct a family of basic functions {Ht(x)},
such that

Ht(x) = E[µ,µ][ϕ(x + B1 − Bt)] (25)

Ht(x) = E[ϕ(x +
√

1− tξ)] (26)

where E[µ,µ] is the g-expectation corresponding to the BSDE (9).
The key to constructing the function Ht(x) is to ensure that H1(x) = ϕ(x) and H0(0)
equals the limit distribution.
Note: In fact, the above definition is not rigorous; this is just to make it easier to
understand. In the formal proof, the actual definition of Ht differs slightly from
the above definition to facilitate the proof of properties such as the smoothness and

122



Mathematics 2024, 12, 2276

boundedness of Ht. For example, the terminal time should not be 1 but 1 + h for a
sufficiently small h, and the generators of the g-expectation should be modified. See
(6.3) in [40] and (A.3) in [39].

• Step 2: Prove that {Ht} has some nice properties, such as smoothness, boundedness,
and the dynamic consistency (something like the Dynamic Programming Principles).
This step is in preparation for the Taylor’s expansion, which will be used later; see
[40] (Lemma 6.1) and [39] (Lemma A.1).

• Step 3: We use the function Ht to connect the left- and right-hand sides of the equation
in the limit theorem. Therefore, to prove the CLT, it suffices to prove that

sup
Q∈P

EQ[H1(T
Q
n )]− H0(0)→ 0, Ht is defined by (25)

sup
Q∈P

EQ

[
H1

(
Sn√

n

)]
− H0(0)→ 0, Ht is defined by (26).

Similar to Lindeberg’s exchange method, as well as Peng’s method, we can divide the
above differences into n parts, e.g., for CLT with variance uncertainty, we have the
following:

sup
Q∈P

EQ

[
H1

(
Sn√

n

)]
− H0(0)

=
n

∑
m=1

{
sup
Q∈P

EQ

[
H m

n

(
Sm√

n

)]
− sup

Q∈P
EQ

[
H m−1

n

(
Sm−1√

n

)]}

=
n

∑
m=1

{
sup
Q∈P

EQ

[
H m

n

(
Sm√

n

)]
− sup

Q∈P
EQ

[
Lm,n

(
Sm−1√

n

)]}

+
n

∑
m=1

{
sup
Q∈P

EQ

[
Lm,n

(
Sm−1√

n

)]
− sup

Q∈P
EQ

[
H m−1

n

(
Sm−1√

n

)]}

=:∆1
n + ∆2

n,

where Lm,n(x) = H m
n
(x) + σ2

2n

(
H′′m

n
(x)
)+
− σ2

2n

(
H′′m

n
(x)
)−

.
For the CLT with mean uncertianty, the corresponding Lm,n is defined as follows

Lm,n(x) = H m
n
(x) +

µ

n

(
H′m

n
(x)
)+
−

µ

n

(
H′m

n
(x)
)−

+
1

2n
H′′m

n
(x).

• Step 4: Using Taylor’s expansion for H m
n

(
Sm√

n

)
at Sm−1√

n , prove that the sum of the
residuals converges to 0; that is,

n

∑
m=1

∣∣∣∣∣sup
Q∈P

EQ

[
H m

n

(
Sm√

n

)]
− sup

Q∈P
EQ

[
H m

n

(
Sm−1√

n

)
+ H′m

n

(
Sm−1√

n

)
Xm√

n
+ H′′m

n

(
Sm−1√

n

)
X2

m
2n

]∣∣∣∣∣→ 0

Further, using the dynamic consistency of {Xi} under P , one can prove that

sup
Q∈P

EQ

[
H m

n

(
Sm−1√

n

)
+ H′m

n

(
Sm−1√

n

)
Xm√

n
+ H′′m

n

(
Sm−1√

n

)
X2

m
2n

]

= sup
Q∈P

EQ

[
Lm,n

(
Sm−1√

n

)]
.

This leads to relation ∆1
n → 0.
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On the other hand, using the dynamic consistency of Ht, one has, for example

H m−1
n
(x) = E

[
H m

n

(
x +

√
1
n

ξ

)]
.

Then, combining this with Taylor’s expansion, one can prove that ∆2
n → 0.

See [40] (Lemma 6.4) and [39] (Lemma A.2).

6. Conclusions

Based on the axiomatic definition of probability theory, modern probability theory
has made a number of achievements. After Kolmogorov, such scientists as the French
mathematician Lévy, the Soviet mathematicians Khinchin and Prokhorov, the American
mathematician Doob, the Japanese mathematician Itô, and many others made great con-
tributions to the development of probability theory. The CLTs for random variables laid
the foundation for the creation and development of stochastic analysis. This paper first
provides a brief overview of the classical CLT and CLT for martingales, and then presents
recent advances in CLT in the framework of nonlinear expectations. In particular, recent
significant results on nonlinear CLT from the Chinese school of nonlinear expectations,
including Peng, Chen, and Zhang, as well as their co-authors, are highlighted.

Among the future directions of research on nonlinear CPT, two important questions
should be emphasized:

• How should the nonlinear CLT be interpreted in the case of multidimensional or
high-dimensional situations?

• The convergence rate in the classical CLT has been studied quite well and has been
successfully used in many applications. However, the rate of convergence in the
nonlinear central limit theorem is much less investigated. How should it be treated?

The above directions are also relevant due to the active work on the mathematical
justification of models and methods used in machine learning, where we often have to deal
with data analysis under uncertainty.
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Abstract: Let fn be the non-parametric kernel density estimator based on a kernel function K and a
sequence of independent and identically distributed random vectors taking values in Rd. With some
mild conditions, we establish sharp moderate deviations for the kernel density estimator. This means
that we provide an equivalent for the tail probabilities of this estimator.
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1. Introduction

Let {Xi; i > 1} be a sequence of independent and identically distributed (i.i.d.) random
vectors taking values in Rd on probability space (Ω,F , P) with density function f . Let
K : Rd 7→ R be a kernel function. The kernel density estimator of f is defined by

fn(x) =
1

nad
n

n

∑
i=1

K
( x− Xi

an

)
, x = (x1, x2, ..., xd)

T ∈ Rd,

where {an, n > 1} is a bandwidth sequence, that is, a sequence of positive numbers
satisfying

an → 0, nad
n → +∞ as n→ +∞.

A great and synthetic reference for such estimates is [1]. Among the huge number of
applications of kernel density estimation, let us cite the elegant paper in [2] which makes
use of this estimator for an important problem related with green algae: using our results
may be used to derive a decision rule for this important ecological question.

In this paper, we are interested in the pointwise sharp moderate deviations for { fn, n >
1} by the empirical process approach; the volume in [3] is a perfect overview for such
questions. In order to present our main result, let us first introduce some notations and
assumptions. Let g : Rd 7→ R be a real function. As usual, denote by

‖g‖p =
( ∫

x∈Rd
|g(x)|pdx

) 1
p
, 1 ≤ p < ∞ and ‖g‖∞ = sup

x∈Rd
|g(x)|

the Lp-norm of g and the supermum norm, respectively.
The consistency for the kernel density estimator has been studied widely. Let f be

continuously differentiable on R such that ‖ f ‖∞ < ∞ and ‖ f ′‖∞ < ∞ ( f ′ is the derivative
of f ). In addition, suppose that limN→∞ nan = ∞ and limN→∞ na2

n = c ≥ 0, where c is a
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constant. With some mild conditions, Joutard [4] proved the following pointwise sharp
large deviation: for any α > 0 and n→ ∞,

P
(

fn(x)− f (x) > α
)
=

exp{−nanΛ∗(α) + cH(τ)}
τ(2πnan f (x)I′′(τ))

1
2

(
1 + O(1)

)
,

where Λ∗(α) = τ(α + f (x)) − f (x)I(τ), τ ∈ [0, α], is such that α + f (x) = f (x)I′(τ)
and H(τ) = −( f 2(x)I2(τ)/2 + f ′(x)J(τ)), with J(t) =

∫
R z exp{tK(z)}dz. For uniform

consistency, with some mild conditions, Gao [5] proved the following moderate deviation
principle (MDP) result. Let {bn, n ≥ 1} be a sequence of positive real numbers satisfying

nad
n

bn
→ +∞,

nad
n log a−1

n
b2

n
→ +∞ as n→ +∞.

Gao [5] proved that for any λ > 0,

lim
n→∞

nad
n

bn
ln P

(
nad

n
bn
‖ fn − E fn‖∞ > λ

)
= −I(λ),

where

I(λ) =
λ2

2‖ f ‖∞‖K‖2
2

.

A pointwise MDP is also established in Gao [5]. A class of refinements of pointwise
MDP is called sharp moderate deviations. Sharp moderate deviations are also known as
Cramér moderate deviations, and have attracted a lot of interest. We refer to Cramér [6],
Petrov [7], Beknazaryan et al. [8] and Fan et al. [9] for such type results. In this paper, we
are interested in establishing sharp moderate deviations for the kernel density estimator.

The paper is organized as follows. Our main result is stated and discussed in Section 2.
The proof of our theorem is given in Section 3.

2. Main Results

The following assumptions will be used in this paper.

(A) Assume that the kernel function K satisfies
∫

x∈Rd
K(x) dx = 1 and ‖K‖∞ < +∞.

(B) There exist a constant β ∈ (0, 1] and a non-negative integer s such that for any
x, y, z ∈ Rd,

|(z · ∇)s f (x)− (z · ∇)s f (y)| 6 A ‖x− y‖β
2 ||z||s2,

where A is a positive constant, ‖ · ‖2 is the Euclidean distance and

z · ∇ = z1
∂

∂x1
+ z2

∂

∂x2
+ · · ·+ zd

∂

∂xd
.

(C) Assume

∫

x∈Rd
K2(x)‖x‖s+β

2 dx < +∞ and
∫

x∈Rd
K(x)

d

∏
i=1

xji
i dx = 0, 0 <

d

∑
i=1

ji ≤ s.

Remark 1. After [1], we recall that the previous assumptions are pretty standard and we restate
them in the current multivariate setting:

1. The first condition in Assumption (A) is necessary to ensure that the estimate remains a
function with integral 1;
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the second one is not necessary but no striking or useful unbounded kernel was used in
the frame of density estimation. Moreover, this condition makes it useless to assume that∫

x∈Rd K2(x) dx < ∞, for example.
2. Assumption (B) is a regularity condition on f with order s + β, with β > 0 and s ∈ N as

considered before.
3. The first condition in Assumption (C) is useful to prove that the involved expressions are

square-integrable. The second part of this condition is more tricky and ensures that the Taylor
expansion up to order s provides the relation

∫

z∈Rd
K(z) f (x + z) dz = f (x) +O(‖x‖s+β), (1)

since all the intermediate terms simply vanish. It is important to also quote that such kernels
K exist. A very simple and usual case is s = β = 1 (second-order regularity), which holds
in case K is symmetric with respect to each of its coordinates; it this case, it is possible to
obtain K(z) ≥ 0 and then the estimator fn is still a density (since it is non-negative). For the
general case s ∈ N, a standard procedure to prove the existence of such kernels is to define
K(z) = P(z)δ(z) for a fixed bounded density function and d◦P = s, where d◦P is the degree
of the polynomial P. Then, it is easy to prove that the system of equations in (C) together with
the first part of (A) is invertible and linear because the matrix with coefficients

aj,k =
∫

z∈Rd
K(x)

d

∏
i=1

xji+ki
i dx, 0 <

d

∑
i=1

ji ≤ s, 0 <
d

∑
i=1

ki ≤ s,

is symmetric non-negative definite; this point is a straightforward extension of Lemma 3.3.1
in [10] to our multidimensional setting.

Assume that f (x) > 0 for some x ∈ Rd. Denote

Dn(x) =

√
nad

n
(

fn(x)− E fn(x)
)

√
f (x)‖K‖2

2 + ∑s
t=1 at

n
1
t!
∫

z∈Rd(z · ∇)t f (x)K2(z) dz
.

We have the following pointwise sharp moderate deviations for the kernel density estimator.

Theorem 1. Assume that Conditions (A)–(C) are satisfied. Assume f (x) > 0 for some x ∈ Rd.
Then, it holds that

ln
P
(

Dn(x) ≥ t
)

1−Φ(t)
= O

(
1 + t3
√

nad
n

+ t2a(s+β)∧d
n

)
(2)

uniformly for 0 ≤ t = o(
√

nad
n ) as n → ∞. Moreover, the same equality remains valid when

ln
P(Dn(x) ≥ t)

1−Φ(t)
is replaced by ln

P(Dn(x) ≤ −t)
1−Φ(t)

.

For the non-centered case, we have the following pointwise sharp moderate deviations
for the kernel density estimator. Denote

D̂n(x) =

√
nad

n

‖K‖2
√

f (x)

(
fn(x)− f (x)−

s

∑
t=1

1
t!

∫

x∈Rd
K(z)(z · ∇)t f (x) dz at

n

)
.

Theorem 2. Assume that conditions (A)–(C) are satisfied. Assume f (x) > 0 for some x ∈ Rd.
Then, it holds that

ln
P
(

D̂n(x) ≥ t
)

1−Φ(t)
= O

( 1 + t3
√

nad
n

+ t2a(s+β)∧d
n + (1 + t)

√
nas+β+d/2

n

)
(3)
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uniformly for 0 ≤ t = o(
√

nad
n ) as n → ∞. Moreover, the same equality remains valid when

ln
P(D̂n(x) ≥ t)

1−Φ(t)
is replaced by ln

P(D̂n(x) ≤ −t)
1−Φ(t)

.

Remark 2. Let us comment on Theorem 2.

1. In the expression of Dn, recall that (1) in Remark 1 entails that E fn(x)− f (x) = O(as+β
n ).

2. This result makes it possible to provide a practitioner with precise confidence intervals that are
easy to compute in the case of hypothesis testing. Explicit asymptotic p-values can thus be
straightforwardly obtained. For instance, consider the following hypothesis testing:

H0 : f (x0) = t0 versus H1 : f (x0) 6= t0,

with t0 > 0. Denote

z0 =

√
nad

n

‖K‖2
√

f (x0)

(
fn(x0)− t0

)
.

Then, by Theorem 2, the p-value is asymptotically equal to 2(1 − Φ(z0)), provided that
z0 satisfies

1 + z3
0√

nad
n

+ z2
0a(s+β)∧d

n + (1 + z0)
√

nas+β+d/2
n → 0.

as n→ ∞.
3. Cases of other non parametric estimators, such as the Nadaraya–Watson kernel regression esti-

mator (cf. El Machkouri et al. [11] for instance), non-linear regression estimates or conditional
expectations, for predictions issues or estimates of derivatives or even quantile regression
estimators, see Rosenblatt [1], will be derived in further subsequent papers.

4. Even if a non-independent version of this result is accessible, we prefer to give a simple result
in the current i.i.d. case.

By Theorem 2, we have the following Berry–Esseen bound for D̂n(x), that is,

sup
t∈R

∣∣∣P
(

D̂n(x) ≤ t
)
−Φ(t)

∣∣∣ = O
(

1√
nad

n
+ a(s+β)∧d

n +
√

nas+β+d/2
n

)
. (4)

In particular, by taking an = n−1/(s+β+d), we obtain

sup
t∈R

∣∣∣P
(

D̂n(x) ≤ t
)
−Φ(t)

∣∣∣ = O
(

n−(s+β)/(2s+2β+d)
)

.

Moreover, if s = 0 and β = d = 1, i.e., f is 1-Hölder-continuous, then it holds that

sup
t∈R

∣∣∣∣∣P
(

n
1
4

‖K‖2
√

f (x)

(
fn(x)− f (x)

)
≤ t
)
−Φ(t)

∣∣∣∣∣ = O
(

n−1/3
)

.

Conclusions. When f ∈ C1(Rd) and K(z) is symmetric with respect to 0, which implies
that

∫
z∈Rd ziK2(z) dz = 0 for all 1 ≤ i ≤ d, by taking s = 1 in Assumptions (C), then

we have ∫

x∈Rd
K(z)z · ∇ f (x) dz = 0,

which implies

Dn(x) =

√
nad

n

‖K‖2
√

f (x)

(
fn(x)− E fn(x)

)
and D̂n(x) =

√
nad

n

‖K‖2
√

f (x)

(
fn(x)− f (x)

)
.
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Then, Theorems 1 and 2 hold with s = 1. Theorems 1 and 2 provide moderate deviations
for the expressions Dn and D̂n, which are related through the expression of fn’s bias; see
Remark 2. Remarks 1 and 2 provide a detailed description of the calculation of the bias
essential here.

3. Proof of Theorem 1

For n ≥ 1, let {Yi, 1 ≤ i ≤ n} be i.i.d. and centered random variables. Denote σ2 = EY2
1

and Tn = ∑n
i=1 Yi. Assume that σ > 0. Fan et al. [12] (see also Cramér [6]) established the

following asymptotic expansion on the tail probabilities of moderate deviations for Tn.

Lemma 1. Assume that there exists a constant αn such that for all 1 ≤ i ≤ n,

E|Yi|k ≤
1
2

k!
( 1

αn

)k−2
EY2

i , k ≥ 2. (5)

Then,

ln
P(Tn ≥ tσ

√
n)

1−Φ(t)
= O

(
1 + t3
√

nαn

)
as n→ ∞ (6)

holds uniformly for 0 ≤ t = o
(√

nαn
)
.

Proof. Lemma 1 is a simple consequence of Fan et al. [12].

With the preliminary lemma above, we are in the position to begin the proof of
Theorem 1. It is easy to see that

√
nad

n

(
fn(x)− E fn(x)

)
=

1√
nad

n

n

∑
k=1

[
K
(

x− Xi
an

)
− EK

(
x− Xi

an

)]
. (7)

In the sequel, we give an estimate for the right-hand side of the last equality. Notice that

1√
nad

n

n

∑
k=1

[
K
(

x− Xi
an

)
− EK

(
x− Xi

an

)]

=
1√
n

n

∑
k=1

1√
ad

n

[
K
(

x− Xi
an

)
− EK

(
x− Xi

an

)]
. (8)

Denote

Yi =
1√
ad

n

[
K
(

x− Xi
an

)
− EK

(
x− Xi

an

)]
, 1 ≤ i ≤ n.

We can prove that Yi satisfies the Bernstein condition Equation (5). Indeed, we can deduce
that for all k ≥ 2,

E|Yi|k 6
(

1√
ad

n

)k

E
∣∣∣∣K
(

x− Xi
an

)
− EK

(
x− Xi

an

)∣∣∣∣
k

6
(

1√
ad

n

)k

‖K‖k−2
∞ E

∣∣∣∣K
(

x− Xi
an

)
− EK

(
x− Xi

an

)∣∣∣∣
2

6
(‖K‖∞√

ad
n

)k−2

E|Yi|2

6 1
2

k!
(‖K‖∞√

ad
n

)k−2

E|Yi|2.
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For the variance of Yi, we have the following estimation:

Var(Yi) =
1
ad

n
Var
(

K
( x− Xi

an

))

=
1
ad

n

(
EK2

(
x− Xi

an

)
−
[

EK
(

x− Xi
an

)]2)
.

It is easy to see that

EK2
(

x− Xi
an

)
= ad

n

[ ∫

z∈Rd
K2(z) f (x− zan) dz

]

= ad
n

[ ∫

z∈Rd
K2(z) f (x) dz +

∫

z∈Rd
K2(z)( f (x− zan)− f (x)) dz

]
.

By Assumption (B), it is easy to see that
∣∣∣∣∣ f (x− zan)− f (x)−

s

∑
t=1

1
t!
(z · ∇)t f (x)at

n

∣∣∣∣∣

=

∣∣∣∣∣
1
s!

(
(z · ∇)s f (x + θzan)− (z · ∇)s f (x)

)
as

n

∣∣∣∣∣

≤ Cd Aas+β
n ‖z‖s+β

2 , (9)

where |θ| ≤ 1 and A is given by Assumption (B). Again by Condition (C), we can deduce
that

EK2
(

x− Xi
an

)
= ad

n

[ ∫

z∈Rd
K2(z) f (x) dz +

∫

z∈Rd
K2(z)( f (x− zan)− f (x)) dz

]

= ad
n f (x)

∫

z∈Rd
K2(z) dz +

s

∑
t=1

1
t!

∫

z∈Rd
(z · ∇)t f (x)K2(z) dz ad+t

n

+ O(1)ad+s+β
n

∫

z∈Rd
K2(z)‖z‖s+β

2 dz

= ad
n f (x)

∫

z∈Rd
K2(z) dz +

s

∑
t=1

ad+t
n

1
t!

∫

z∈Rd
(z · ∇)t f (x)K2(z) dz

+ O(ad+s+β
n ). (10)

By Condition (B), it is easy to see that

EK
(

x− Xi
an

)
= ad

n

[ ∫

z∈Rd
K(z) f (x) dz +

∫

z∈Rd
K(z)[ f (x− zan)− f (x)] dz

]

= ad
n f (x)

∫

z∈Rd
K(z) dz + o(ad

n)

= ad
n f (x) + o(ad

n). (11)

From Equations (10) and (11), we have

Var(Yi) =
1
ad

n

(
ad

n f (x)
∫

z∈Rd
K2(z) dz +

s

∑
t=1

ad+t
n

1
t!

∫

z∈Rd
(z · ∇)t f (x)K2(z) dz

+O(ad+s+β
n )−

(
ad

n f (x) + o(ad
n)
)2
)

= f (x)
∫

z∈Rd
K2(z) dz +

s

∑
t=1

at
n

1
t!

∫

z∈Rd
(z · ∇)t f (x)K2(z) dz + O

(
a(s+β)∧d

n ).
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When f (x) > 0, we obtain

γn :=
‖K‖∞/

√
ad

n√
nVar(Y1)

= O
(

1√
nad

n

)

and

Var(Yi)

f (x)‖K‖2
2 +

s

∑
t=1

at
n

1
t!

∫

z∈Rd
(z · ∇)t f (x)K2(z) dz

= 1 + O(a(s+β)∧d
n ). (12)

Therefore, by Lemma 1, we can deduce that for all 0 ≤ t = o(
√

nad
n )

P
(√

nad
n

(
fn(x)− E fn(x)

)
> t
√

Var(Y1)

)
= P

(
1√

nVar(Y1)

n

∑
k=1

Yi > t
)

=
(

1−Φ(t)
)

exp
{

O(1)
1 + t3
√

nad
n

}
.

Applying inequality Equation (12) to the last inequality, we deduce that for all
0 ≤ t = o(

√
nad

n )

P
(

Dn(x) ≥ t
)

= P

(√
nad

n

(
fn(x)− E fn(x)

)
> t

√
f (x)‖K‖2

2 +
s

∑
t=1

at
n

1
t!

∫

z∈Rd
(z · ∇)t f (x)K2(z) dz

)

= P

(√
nad

n

(
fn(x)− E fn(x)

)
> t
√

Var(Y1)

√
1 + O(a(s+β)∧d

n )

)

=
(

1−Φ
(
t(1 + O(a(s+β)∧d

n ))
))

exp
{

O(1)
1 + t3
√

nad
n

}
.

Because of
1

1 + λ
e−λ2/2 ≤

√
2π
(
1−Φ(λ)

)
, λ ≥ 0,

it is easy to see that for all 0 ≤ λ ≤ x,

1 ≤

∫ ∞

λ
exp{−t2/2}dt

∫ ∞

x
exp{−t2/2}dt

≤ 1 +

∫ x

λ
exp{−t2/2}dt

∫ ∞

x
exp{−t2/2}dt

≤ 1 + c1x(x− λ) exp
{
(x2 − λ2)/2

}

≤ exp
{

c2 x|x− λ|
}

.

Hence, we obtain for any λ, x ≥ 0,

1−Φ(λ) = (1−Φ(x)) exp
{

O(1)(x + λ)|x− λ|
}

.

By the last equality, it follows that

1−Φ
(
x(1 + O(a(s+β)∧d

n ))
)

=
(
1−Φ(x)

)
exp

{
O(1)x2a(s+β)∧d

n

}
.
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Therefore, we have, for all 0 ≤ t = o(
√

nad
n ),

P
(

Dn(x) ≥ t
)
=
(

1−Φ(t)
)

exp
{

O(1)
( 1 + t3
√

nad
n

+ t2a(s+β)∧d
n

)}
. (13)

This completes the proof of Theorem 1.

4. Proof of Theorem 2

It is easy to see that

E fn(x)− f (x) =
1

nad
n

n

∑
k=1

∫

x∈Rd
K
( x− t

an

)
f (t) dt− f (x)

=
∫

x∈Rd
K(z) f (x− anz) dz− f (x)

=
∫

x∈Rd
K(z)[ f (x− anz)− f (x)] dz.

By inequality Equation (9), we deduce that

E fn(x)− f (x) =
s

∑
t=1

1
t!

∫

x∈Rd
K(z)(z · ∇)t f (x) dz at

n

+Cd A
∫

x∈Rd
K(z)‖z‖s+β

2 dz as+β
n

=
s

∑
t=1

1
t!

∫

x∈Rd
K(z)(z · ∇)t f (x) dz at

n + O(as+β
n ).

Applying the last line to Equation (13), we obtain, for all 0 ≤ t = o(
√

nad
n ),

P
(

D̂n(x) ≥ t
)

= P

(
Dn(x) ≥ t−

√
nad

n O(as+β
n )

‖K‖2
√

f (x)

)

=
(

1−Φ(t)
)

exp
{

O(1)
( 1 + t3
√

nad
n

+ t2a(s+β)∧d
n + (1 + t)

√
nas+β+d/2

n

)}
.

This completes the proof of Theorem 2.
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1. Introduction
In probability theory, the Borel–Cantelli lemma, which was first obtained by Borel

(1909, 1912) [1,2] and Cantelli (1917) [3], is an important theorem about sequences of events,
such a lemma consists of two parts, which are called the first and second Borel–Cantelli
lemma. The lemma states that, under certain conditions, an event will occur with either
probability zero or probability one. The second Borel–Cantelli lemma is a partial converse of
the first Borel–Cantelli lemma since the second Borel–Cantelli lemma needs the additional
assumption of independence.

Since then, there has been a large amount of literature to extend the Borel–Cantelli
lemma (see, for example, Chandra (2012) [4] in detail). For the first Borel–Cantelli lemma,
we refer the reader to Barndorff-Nielsen (1961) [5], Martikainen and Petrov (1990) [6],
and Balakrishnan and Stepanov (2010) [7]. For the second Borel–Cantelli lemma, we
refer the reader to Erdös and Rényi (1959) [8], Kochen and Stone (1964) [9], Petrov (2002,
2004) [10,11], Yan (2006) [12], (which provides a new and simple proof about Kochen and
Stone (1964) [9]), and Xie (2009) [13] and Zong et al. (2016) [14], in which many attempts
can be founded to weaken the independence condition.

Recently, motivated by mathematical finance and robust statistics, non-additive mea-
sures or non-linear expectations have already caught many scholars’ attention; see Huber
(1973) [15], Denneberg (1994) [16], Wang and Klir (2009) [17], Peng (2006, 2009, 2019)
[18–20], Torra et al. (2014) [21], and Zong et al. (2016) [14]. A natural question is whether
or not such a Borel–Cantelli lemma could be extended to the case where the probability
measure is non-additive.

According to the property of the first Borel–Cantelli lemma, we can easily extend the
lemma to the case where the probability is no longer additive. In fact, the first Borel–Cantelli
lemma holds for all set functions that are of countable subadditivity and monotonicity;
see Billingsley (1995) [22]. However, for the second Borel–Cantelli lemma, it is not easy

Mathematics 2025, 13, 728 https://doi.org/10.3390/math13050728
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to do so because this lemma depends on the assumption of independence. Therefore,
many concepts of independence under nonadditive probability/expectation have been
introduced, for example, Peng’s independence in Peng (2006, 2009, 2019) [18–20], Mari-
nacci pre-independence in Maccheroni and Marinacci (2005) [23], and Puhalskii indepen-
dence (2001) [24], as well as the Fubini-Like Theorem for Choquet Integrals, in Zong et al.
(2016) [14]. A natural question is whether we could investigate the second Borel–Cantelli
lemma for capacities without the assumption of independence. In this paper, we obtain
a sufficient condition under which the second Borel–Cantelli lemma for capacity holds.
It turns out that our results are natural extensions of the classical Borel–Cantelli lemma.
However, the proofs are different from the existing literature.

This paper is organized as follows: In Section 2, we show some basic definitions and
propositions with respect to capacity and present some preparatory lemmas. In Section 3,
we provide a sufficient condition under which the second Borel–Cantelli lemma for capac-
ities holds. In Section 4, we consider the case where random variables are independent
under non-additive expectations or non-additive probabilities.

2. Preliminaries
Assume that (Ω,F ) is a measurable space; we define capacity, V, as follows.

Definition 1. A set-function, V, on F is called a capacity if it satisfies

(i) V(∅) = 0, V(Ω) = 1.
(ii) V(A) ≤ V(B), A ⊂ B, A, B ∈ F .
(iii) V(A

⋃
B) ≤ V(A) + V(B), A, B ∈ F .

Given a capacity, V, let the F -measurable function X : Ω→ R be a random variable
defined on (Ω,F ). We focus on Choquet expectation, E, denoted as

Definition 2. Given a capacity, V, a Choquet (integral) expectation is denoted as

E[X] :=
∫ ∞

0
V(X ≥ t)dt +

∫ 0

−∞

[
V(X > t)− 1

]
dt.

We assume thatH is the set of all random variables, X, with E[|X|] < ∞.

Definition 3. Two random variables, ξ, η ∈ H, are comonotone if, almost surely,

(ξ(ω)− ξ(ω′))(η(ω)− η(ω′)) ≥ 0.

For more knowledge about comonotonicity, see, for instance, Dhaene et al. (2002) [25].
The basic properties of Choquet expectations are given in the following proposition

(see, e.g., Denneberg (1992) [16]).

Lemma 1.

(a) Monotonicity: X, Y ∈ H, if X ≥ Y, then E[X] ≥ E[Y].
(b) Constant preserving: E[c] = c, ∀c ∈ R.
(c) Translation invariance: E[c + X] = c +E[X], ∀c ∈ R.
(d) Positive homogeneity: E[λX] = λE[X], ∀λ ≥ 0.
(e) Lower–upper Choquet expectations: −E[−X] ≤ E[X].
(f) Comonotonic additivity: if X, Y are comonotonic random variables, then

E[X + Y] = E[X] +E[Y].
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Remark 1. Usually, a Choquet expectation does not satisfy the following sub-linearity:

E[X + Y] ≤ E[X] +E[Y].

However, it has been proven that a Choquet expectation satisfies sub-linearity if and only if the
corresponding capacity, V, is 2−alternating in the sense of

V(A ∪ B) ≤ V(A) + V(B)−V(A ∩ B), A, B ∈ F .

Proposition 1. Let ϕ on R be a positively convex function. Then, the Jensen inequality under
Choquet expectation holds:

ϕ(E[X]) ≤ E[ϕ(X)].

Proof. First, it is easy to check that a Choquet expectation has the following property:

λE[X] ≤ E[λX], λ ∈ R.

In fact, obviously, the above inequality becomes equality if λ ≥ 0, by the definition of
Choquet expectation. We now prove the case where λ ≤ 0. In fact,

λE[X] = −|λ|E[X] = −E[|λ|X] = −E[−λX] ≤ E[λX].

The last inequality is due to Lemma 1(e).
Using the above inequality, we can easily prove this lemma. Indeed, because the

function ϕ : R → R is convex, there exists a countable set, D, in R2, such that ϕ(x) =

sup
(a,b)∈D

(ax + b). Via the translation invariance of the Choquet expectation in Lemma 1(c),

we have

ϕ(E[X]) = sup
(a,b)∈D

(aE[X] + b)

≤ sup
(a,b)∈D

(E[aX + b])

≤ E[ sup
(a,b)∈D

(aX + b)]

= E[ϕ(X)].

The proof is complete.

Because the probability measure in probability theory is assumed to be continuous
in the sense that P(An) → P(A) whenever An → A, n → ∞, Fatou’s lemma is naturally
true. However, for capacities, Fatou’s lemma is usually not true because the capacity in the
nonlinear case is no longer continuous. Thus, we need the following concept.

Definition 4. A capacity, V, is called a Fatou-like capacity if

V
(

lim sup
n→∞

An

)
≥ lim sup

n→∞
V(An), An ∈ F . (1)

It is easy to show that the following capacities are Fatou-like capacities:

Example 1. Let Bn, B ∈ F and lim
n→∞

V(Bn) = V(B) whenever Bn ↓ B, and then V is a
Fatou-like capacity.
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Example 2. Let P be a weakly compact set of probability measures defined on (Ω,F ); then, the
upper probability, V, defined by

V(A) = sup
Q∈P

Q(A),

is a Fatou-like capacity.

The following lemma is an important lemma that we use in this paper. The main idea
is from Yan (2006) [12].

Lemma 2. Let X be a random variable, such that E[eX ] > eα for a constant, α, and then

V(X > α) ≥
(
E
[
eX]− eα

)2

E
[
(eX − eα)

2
] .

Proof. It is easy to check that, for any x, α ∈ R,

(ex − eα)I{x>α} ≥ ex − eα,

here and in the sequel, IA represents the indicator function of set A.
Therefore,

E
[
(eX − eα)I{X>α}

]
≥ E

[
eX
]
− eα ≥ 0. (2)

For convenience, we denote

ξ := (eX − eα)I{X>α} and η := I{X>α}.

It then follows the elementary inequality |ab| ≤ 1
2 a2 + 1

2 b2 that

|ξη|
(E[|ξ|2])

1
2 (E[|η|2])

1
2
≤ 1

2
|ξ|2

E[|ξ|2] +
1
2
|η|2

E[|η|2] , (3)

Taking the Choquet integration E[·] on both sides in inequality (3), according to the mono-
tonicity of Choquet integration in Lemma 1(a), we have

E
[

|ξη|
(E[|ξ|2])

1
2 (E[|η|2])

1
2

]
≤ E

[
1
2
|ξ|2

E[|ξ|2] +
1
2
|η|2

E[|η|2]

]
. (4)

Furthermore, it is easy to check that both |ξ|2 = (eX − eα)2 I{X>α} and |η|2 = I{X>α} are
co-monotonic; hence, via the comonotonic additivity of the Choquet expectation, we get

E
[

1
2
|ξ|2

E[|ξ|2] +
1
2
|η|2

E[|η|2]

]
= E

[
1
2
|ξ|2

E[|ξ|2]

]
+E

[
1
2
|η|2

E[|η|2]

]
= 1

This, with (4), implies that
(E[|ξη|])2 ≤ E[|ξ|2]E[|η|2].

That is
(
E
[∣∣∣(eX − eα)I{X>α}

∣∣∣
])2

≤ E[|(eX − eα)I{X>α}|2]E[|I{X>α}|2]
≤ E[|(eX − eα)|2]V(X > α),

which, with (2), implies the desired result.
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Lemma 3. Suppose that {Ai}∞
i=1 is a sequence of events; set Xi := IAi . Assume that

an :=
n

∑
i=1

V(Ai)→ ∞, n→ ∞,

and for any sequence of real numbers, {kn} with kn > 0,

lim sup
n→∞

E
[
ekn ∑n

i=1 Xi
]

∏n
i=1 E

[
eknXi

] < ∞.

Then,

(I) For any constant, α > 0, and any sequence, {bn} with bn ≥
√

an,

sup
n≥1

E
[
e

α
bn ∑n

i=1(Xi−E[Xi ])
]
< ∞. (5)

(II) For any ε > 0,

lim
n→∞

V

(
1
an

n

∑
i=1

Xi > 1 + ε

)
= 0. (6)

(III) For any constant α > 0,

lim
n→∞

E
[
e

α
an ∑n

i=1 Xi I{ 1
an ∑n

i=1 Xi≥1+ε}
]
= 0. (7)

Proof. The proof of (I):
A trite calculation of a double integral, the following elementary equality can be

obtained easily:

ex = 1 + x + x2
∫ 1

0
rdr

∫ 1

0
erxydy, x ∈ (−∞,+∞).

Immediately, we get

ex ≤ 1 + x +
x2

2
e|x|, x ∈ (−∞,+∞). (8)

Choosing x = α
bn
(Xi −E[Xi]) in (8).

Since |Xi − E[Xi]| = |IAi − V(Ai)| ≤ 2 and bn ≥
√

an → ∞ as n → ∞, thus, for a
sufficiently large n, we have bn ≥ 1

α

bn
|Xi −E[Xi]| ≤

2α

bn
≤ 2α.

Note the fact that X2
i = Xi. Thus,

e
α

bn
(Xi−E[Xi ]) ≤ 1 +

α

bn
(Xi −E[Xi]) +

α2|Xi −E[Xi]|2
2b2

n
e

α
bn
|Xi−E[Xi ]|

≤ 1 +
α

bn
(Xi −E[Xi]) +

α2|Xi −E[Xi]|2
2an

e2α

≤ 1 +
α

bn
(Xi −E[Xi]) +

α2e2α

2an

(
(1 + 2E[Xi]) +E[Xi]

2
)

Xi

= 1 +
( α

bn
+

α2e2α

2an
(1 + 2E[Xi])

)
Xi −

α

bn
E[Xi] +

α2e2α

2an
E[Xi]

2
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Set expectation E[·] on both sides of the inequality above; given the translation invariance
in Lemma 1 and E[Xi] = V(Ai) ≤ 1, immediately,

E
[
e

α
bn

(Xi−E[Xi ])
]
≤ 1 +

(α2e2α

2an
(1 + 2E[Xi])

)
E[Xi] +

α2e2α

2an
(E[Xi])

2

≤ 1 +
4α2e2α

2an
V(Ai)

≤ e
(

2α2e2α

an V(Ai)
)

,

The last inequality follows from the fact that, for x ≥ 0, 1 + x ≤ ex.
Therefore, for a sufficiently large n, we have

E
[
e

α
bn ∑n

i=1(Xi−E[Xi ])
]

=
E
[
e

α
bn ∑n

i=1 Xi
]

∏n
i=1 E

[
e

α
bn

Xi
]

n

∏
i=1

E
[
e

α
bn

(Xi−E[Xi ])
]

≤
E
[
e

α
bn ∑n

i=1 Xi
]

∏n
i=1 E

[
e

α
bn

Xi
] e
(

4α2e2α

an ∑n
i=1 V(Ai)

)

= e4α2e2α
sup
n≥1

E
[
e

α
bn ∑n

i=1 Xi
]

∏n
i=1 E

[
e

α
bn

Xi
] < ∞.

The proof of (I) is complete.
The proof of (II): For any ε > 0, via Markov’s inequality, we get

V
(

1
an

n
∑

i=1
Xi ≥ 1 + ε

)

= V
(

1
an

n
∑

i=1
(Xi −E[Xi]) ≥ ε

)

= V
(

1√
an

n
∑

i=1
(Xi −E[Xi]) ≥ ε

√
an

)

≤ e−ε
√

anE
[

exp
(

1√
an

n
∑

i=1
(Xi −E[Xi])

)]
→ 0, n→ ∞

due to (I) and an → ∞, n→ ∞.
The proof of (III): Let ξ := e

α
an ∑n

i=1 Xi and η := I{ 1
an ∑n

i=1 Xi≥1+ε}. It is easy to obtain

confirmation that ξ and η are comonotonic. Similarly to (3), we have

E
[

|ξη|
(E[|ξ|2])

1
2 (E[|η|2])

1
2

]
≤ E

[
1
2
|ξ|2

E[|ξ|2] +
1
2
|η|2

E[|η|2]

]
= 1,

due to the comonotonic additivity of Choquet integration. Thereby, we obtain

(
E
[
e

α
an ∑n

i=1 Xi I{ 1
an ∑n

i=1 Xi≥1+ε}
])2

≤ E
[
e

2α
an ∑n

i=1 Xi
]
V
( 1

an

n

∑
i=1

Xi ≥ 1 + ε
)

= e2αE
[
e

2α
an ∑n

i=1(Xi−E[Xi ])
]
V
( 1

an

n

∑
i=1

Xi ≥ 1 + ε
)
→ 0

due to (I) and (II).
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3. The Second Borel–Cantelli Lemma for Capacities
We now begin to prove the second Borel–Cantelli lemma for capacities:

Theorem 1. Let V be a Fatou-like capacity, and let {An}∞
n=1 be a sequence of events, such that

∞

∑
i=1

V(Ai) = ∞.

If, for any sequence kn > 0,

1 ≤ lim inf
n→∞

E
[
ekn ∑n

i=1 IAi

]

∏n
i=1 E

[
ekn IAi

] ≤ lim sup
n→∞

E
[
ekn ∑n

i=1 IAi

]

∏n
i=1 E

[
ekn IAi

] < ∞, (9)

then
V(An i.o.) = 1.

Proof. Set Xi = IAi and an :=
n
∑

i=1
E[Xi]. Immediately, E[Xi] = V(Ai), and

an =
n

∑
i=1

E[Xi] =
n

∑
i=1

V(Ai)→ ∞.

Now, we consider the following two events:

{ω : lim sup
n→∞

An} and {ω : lim sup
n→∞

1
an

n

∑
i=1

Xi > ε},

and here, ε ∈ (0, 1).
If ω /∈ {lim sup

n→∞
An} holds, then lim

n→∞
∑n

i=1 Xi = lim
n→∞

∑n
i=1 IAi is a finite number.

Hence,
1
an

n

∑
i=1

Xi → 0 as n→ ∞

because of an → ∞. This implies ω /∈ {lim sup
n→∞

1
an

∑n
i=1 Xi > ε}. Therefore, we have the

following inclusion relation:

{ω : lim sup
n→∞

An} ⊇ {ω : lim sup
n→∞

1
an

n

∑
i=1

Xi > ε}.

The monotonicity of the capacity V and the definition of Fatou-like capacity (1) imply that

V(lim sup
n→∞

An) ≥ V
(

lim sup
n→∞

1
an

n

∑
i=1

Xi > ε
)
≥ lim sup

n→∞
V
( 1

an

n

∑
i=1

Xi > ε
)

. (10)

In order to apply Lemma 2, we need to check the conditions of Lemma 2.
Given the assumption of Theorem that

lim inf
n→∞

E
[
e

1
an ∑n

i=1 Xi
]

∏n
i=1 E

[
e

1
an Xi

] ≥ 1

and Jensen’s inequality, we have, for ε ∈ (0, 1),
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E
[
e

1
an ∑n

i=1 Xi
]
− eε =

E
[
e

1
an ∑n

i=1 Xi
]

∏n
i=1 E

[
e

1
an Xi

]
n

∏
i=1

E
[
e

1
an Xi

]
− eε

≥
n

∏
i=1

e
1

an E[Xi ] − eε = e− eε > 0.

Thanks to Lemma 2, we thus have

V
( 1

an

n

∑
i=1

Xi > ε
)
≥

(
E
[
e

1
an ∑n

i=1 Xi
]
− eε

)2

E
[(

e
1

an ∑n
i=1 Xi − eε

)2] . (11)

For the numerator in fraction (11), we see that

(
E
[
e

1
an ∑n

i=1 Xi
]
− eε

)2
≥ (e− eε)2. (12)

On the other hand, for the denominator in fraction (11), note that Xi ≥ 0, and we have

E
[(

e
1

an ∑n
i=1 Xi − eε

)2]

= E
[(

e
1

an ∑n
i=1 Xi − eε

)2
I{ 1

an ∑n
i=1 Xi≤1+ε

} +
(

e
1

an ∑n
i=1 Xi − eε

)2
I{ 1

an ∑n
i=1 Xi>1+ε

}
]

≤
(

e1+ε − eε
)2

+E
[(

e
1

an ∑n
i=1 Xi − eε

)2
I{ 1

an ∑n
i=1 Xi>1+ε

}
]
.

For the second term, for simplicity, we write Bn :=
{ 1

an
∑n

i=1 Xi > 1 + ε
}

; via the comono-
tonic additivity of Choquet expectation, we have

E
[(

e
1

an ∑n
i=1 Xi − eε

)2
IBn

]

≤ E
[
e

2
an ∑n

i=1 Xi IBn + 2eεe
1

an ∑n
i=1 Xi IBn + e2ε IBn

]

= E
[
e

2
an ∑n

i=1 Xi IBn

]
+ 2eεE

[
e

1
an ∑n

i=1 Xi IBn

]
+ e2εV

(
1
an

n

∑
i=1

Xi > 1 + ε

)
.

According to (III) in Lemma 3, the first term and the second term on the right-hand side
go to zero as n → ∞. The last term on the right-hand side also goes to zero as n → ∞,
according to (II) in Lemma 3.

This, with (11) and (12), implies that

lim sup
n→∞

V

(
1
an

n

∑
i=1

Xi > 0

)
≥ lim sup

n→∞
V
( 1

an

n

∑
i=1

Xi > ε
)
≥ (e− eε)2

(
e1+ε − eε

)2 . (13)

Letting ε→ 0, we arrive at

lim sup
n→∞

V

(
1
an

n

∑
i=1

Xi > 0

)
= 1. (14)

According to (10) and (14), we have
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V
(

lim sup
n→∞

An

)
= 1.

Therefore, we complete the proof of this theorem.

By this theorem, immediately, we have

Corollary 1. Assume that a sequence of events, {Ai}, is exponentially independent under a
Choquet expectation, E, in the sense that

E
[
ekn ∑n

i=1 IAi

]
=

n

∏
i=1

E
[
ekn IAi

]
, ∀n ≥ 1, ∀kn ∈ R+.

Then, Condition 9 in Theorem 1 holds.

4. Independence Cases
The notion of independence for random variables under non-additive expectation

or non-additive probability is important. Motivated by mathematical finance and robust
statistics, various different notions of independence have been investigated, for example,
Peng’s independence, Marinacci pre-independence, and Puhalskii independence. It can be
proven that all notions mentioned above satisfy Condition 9 in Theorem 1.

We now check that Condition 9 in Theorem 1 holds if event {Ai} is Puhalskii-
independent. The remaining cases can be verified in a similar manner. As defined below,
Puhalskii independence implies the following:

Definition 5. A sequence, {Ai}, of events is said to be Puhalskii -independent if

V
( n⋂

i=1

Ai

)
=

n

∏
i=1

V(Ai).

This leads to the following lemma.

Lemma 4. Let {Ai} be a sequence of Puhalskii-independent events. Then, for any an ∈ R+,

E
[
ean ∑n

i=1 IAi

]
=

n

∏
i=1

E
[
ean IAi

]
.

Proof. Let ϕi(x) = eaix, i = 1, · · · , n

E
[

n

∏
i=1

ϕi(Xi)

]
= E

[ ∫ ∞

0
· · ·

∫ ∞

0

n

∏
i=1

I{ϕi(Xi)>xi}
n

∏
i=1

dxi

]

=
∫ ∞

0
· · ·

∫ ∞

0
E
[ n

∏
i=1

I{ϕi(Xi)>xi}
] n

∏
i=1

dxi

=
∫ ∞

0
· · ·

∫ ∞

0
V
( n⋂

i=1

{ϕi(Xi) > xi}
) n

∏
i=1

dxi

=
∫ ∞

0
· · ·

∫ ∞

0

n

∏
i=1

V({ϕi(Xi) > xi})dxi

=
n

∏
i=1

E[ϕi(Xi)],
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Here, we have used Fubini’s theorem for Choquet expectation (see Ghirardato (1997) [26]
or Chateauneuf and Lefort (2008) [27]).
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Abstract: The estimation of drift parameters in the Ornstein–Uhlenbeck (O-U) process with
jumps primarily employs methods such as maximum likelihood estimation, least squares
estimation, and least absolute deviation estimation. These methods generally assume
specific error distributions and finite variances. However, with the increasing uncertainty
in financial markets, asset prices exhibit characteristics such as skewness and heavy tails,
which lead to biases in traditional estimators. This paper proposes a self-weighted quantile
estimator for the drift parameters of the O-U process with jumps and verifies its asymptotic
normality under large samples, given certain assumptions. Furthermore, through Monte
Carlo simulations, the proposed self-weighted quantile estimator is compared with least
squares, quantile, and power variation estimators. The estimation performance is evaluated
using metrics such as mean, standard deviation, and mean squared error (MSE). The
simulation results show that the self-weighted quantile estimator proposed in this paper
performs well across different metrics, such as 8.21% and 8.15% reduction of MSE at the
0.9 quantile for drift parameter γ and κ compared with the traditional quantile estimator.
Finally, the proposed estimator is applied to inter-period statistical arbitrage of the CSI
300 Index Futures. The backtesting results indicate that the self-weighted quantile method
proposed in this paper performs well in empirical applications.

Keywords: self-weighted quantile estimation; drift coefficients; O-U process with jumps;
heavy-tailed distributions; statistical arbitrage; asymptotic normality; Monte Carlo simulations

MSC: 62M05; 60J75; 62P20

1. Introduction
The Ornstein–Uhlenbeck (O-U) process is a stochastic process that exhibits mean-

reverting characteristics, and its parameter estimation problem is an important research
area in the statistical inference of stochastic processes. In the 21st century, the parameter
estimation problem of the O-U process has been widely developed, with the main research
achievements including the following:

1. MCMC methods (Griffin, Steel [1], Roberts, Papaspiliopoulos [2]) that use Markov
chain Monte Carlo simulation to estimate parameters;

2. Nonparametric methods (Jongbloed [3]);

Mathematics 2025, 13, 1399 https://doi.org/10.3390/math13091399
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3. Parametric methods (Valdivieso [4], Valdivieso [5]). The main estimation methods fo-
cus on the maximum likelihood estimation (MLE) and least squares estimation (LSE).

As the driving process of the O-U process evolves from continuous to discrete, from
Wiener process to Lévy-driven, and from Gaussian to non-Gaussian, the O-U-type process
gradually becomes more precise in describing actual market data. However, the early
statistical inference methods and conclusions face certain difficulties and resistance when
extended to these new O-U processes, and are less effective in the statistical inference of
new O-U processes. Therefore, there are relatively few theories and methods that can
be directly applied to these new O-U processes. The Lévy-driven O-U process was first
proposed by Barndorff-Nielsen and Shephard [6] and has been widely used in the modeling
of financial asset return volatility. In the parameter estimation problem of the Lévy-driven
O-U process, most previous work has focused on special types of Lévy processes driving
the O-U process, such as non-negative Lévy processes (Jongbloed et al. [3], Jongbloed
and Van Der Meulen [7], Zhang et al. [8], Brockwell et al. [9], Leonenko et al. [10]), com-
pound Poisson processes (Zhang [11], Wu et al. [12]), α-stable Lévy processes (Hu and
Long [13], Zhang [14]), Lévy processes composed of Wiener process and α-stable Lévy pro-
cess (Long [15]), heavy-tailed symmetric Lévy processes (Masuda [16]), and Lévy processes
without Brownian motion component (Taufer and Leonenko [17], Valdivieso et al. [17]).
For the parameter estimation methods of these special types of Lévy–O-U processes, they
mainly still focus on least squares and maximum likelihood methods. Hu and Long [18]
used a combination of trajectory fitting method and weighted least squares method to
discuss the consistency and asymptotic distribution of the estimators of the O-U equation
driven by α-stable Lévy motion in both ergodic and non-ergodic cases. Subsequently, Hu
and Long [13] studied the parameter estimation problem of the generalized O-U equation
driven by α-stable noise at discrete time points. Masuda [16] introduced LAD estimation
into the drift parameter estimation of general Lévy–O-U processes, and then found that
the SLAD estimator has a limit distribution, satisfies asymptotic properties, and is robust
to large “jumps” in the driving process. Mai [19] developed an estimator based on the
maximum likelihood estimation method for the drift parameter. Spiliopoulos [20] derived
the estimators of the drift parameter and other parameters related to the Lévy process for
the O-U process driven by a general Lévy process based on the moment estimation method.
Wu and Hu [21] proposed a moment estimator for the drift parameter of the O-U process
driven by a general Lévy process, derived the asymptotic variance, and proved the central
limit theorem. Shu [22] et al. proposed a trajectory fitting estimator for the drift parameter
of the O-U process driven by small Lévy noise and proved its consistency and asymptotic
distribution. Wang [23] et al. constructed a fractional Ornstein–Uhlenbeck model driven
by tempered fractional Brownian motion. They derived the least squares estimator for the
drift parameter based on discrete observations and proved its consistency and asymptotic
distribution. Han [24] proposed a modified least squares estimator for estimating the drift
parameter of the Ornstein–Uhlenbeck process from low-frequency observations and proved
the strong consistency and joint asymptotic normality. Fares [25] investigated the strong
consistency and asymptotic normality of the least squares estimator for the drift coefficient
of complex-valued Ornstein–Uhlenbeck processes driven by fractional Brownian motion.
Zhang [26] proposed the modified least squares estimators (MLSEs) for the drift param-
eters and a modified quadratic variation estimator (MQVE) for the diffusion parameter.
The study leverages the ergodic properties of the O-U process to prove the asymptotic
unbiasedness and normality of these estimators, and validates their effectiveness through
Monte Carlo simulations.

Statistical arbitrage is a strategy that uses statistical methods and mathematical mod-
els to find inconsistencies in market price fluctuations, identify pricing errors or price

146



Mathematics 2025, 13, 1399

deviations from normal levels in the market, and thus implement arbitrage operations
in investment portfolios. Board [27] used cointegration techniques to arbitrage the price
spread of the Nikkei 225 Index Futures across markets such as Singapore and Osaka, Japan,
and found that there was indeed arbitrage space. Bondarenko [28] was the first to propose
the concept of statistical arbitrage, and subsequently Hogan [29] summarized the definition
of statistical arbitrage based on the definition of risk-free arbitrage, which has been widely
used. Alexander [30] applied the statistical arbitrage strategy based on cointegration meth-
ods to the study of index tracking portfolios, and their empirical results showed that the
arbitrage strategy based on cointegration methods had low volatility, low correlation with
the market, and nearly normally distributed characteristics. Elliot [31] et al. proposed that
due to the mean-reverting characteristics of the O-U process, it can be used to describe the
mean-reverting nature of the spread sequence in statistical arbitrage. Bertram [32] gave
the optimal solution of the trading signal when the stock price follows the O-U process.
Rudy et al. [33] used high-frequency minute data for statistical arbitrage and found that the
cointegration degree of the paired assets was positively correlated with arbitrage opportu-
nities and returns. Wale conducted statistical arbitrage research on the US Treasury futures
market and obtained significant excess returns, indicating that the US Treasury market
had phenomena such as incomplete market efficiency and information asymmetry. Fang
Hao [34] simulated and tested with Chinese closed-end funds, and discussed the possible
situations of statistical arbitrage in practice according to the steps of selecting arbitrage
objects, establishing arbitrage signal mechanisms, and establishing trading portfolios, prov-
ing that statistical arbitrage strategies are effective in the Chinese closed-end fund market.
Calderia [35] constructed a cross-period arbitrage model combining cointegration theory
for futures contracts with different maturities, and found that the price spread sequence of
the same futures had a cointegration relationship and there was a large arbitrage space. Zhu
Lirong et al. [36] designed a statistical arbitrage strategy for the domestic futures market,
and the empirical results showed that stable returns could be obtained during the trading
test period. Fan [37] found that the error obtained by the traditional cointegration model
was non-stationary when looking for arbitrage opportunities between soybean oil and palm
oil futures, so the Bayesian method was added to estimate the error, making the estimated
parameters more sensitive and thus obtaining a larger expected return. Wang Jianhua,
Cui Wenjing et al. [38] used the time-varying coefficient cointegration regression model to
detect the structural breakpoints of financial time series, and established a cointegration
statistical arbitrage model based on high-frequency data for IF1707 and IF1706 futures
contracts. The results showed that the model was significantly better than the arbitrage
performance of the ordinary cointegration model. Liu Yang, Lu Yi [39] selected the daily
closing prices of the financial stock index futures of the Shanghai Stock Index 50 and the
50ETF to establish a dynamic statistical arbitrage model based on the O-U process, and
determined the optimal trading signal and arbitrage interval under the goal of maximizing
the expected return function. According to the performance of the arbitrage strategy, the
O-U process is suitable for describing financial time series. Zhang Long [40] introduced the
O-U process into the cross-commodity arbitrage of futures, taking palm oil and soybean oil
as the modeling targets. Wu et al. [41] and Piergiacomo [42] showed that the simple O-U
process has certain limitations in fitting the stock market spread sequence data, and cannot
accurately fit the jump phenomena in the data sequence. The use of double exponential
discrete jumps in the O-U process can significantly improve this deficiency. Zhao Hua,
Luo Pan et al. [43] studied the high-frequency paired trading strategy in the Chinese stock
market based on the Lévy–O-U process, and screened out stock pairs by estimating the
mean reversion rate and realized volatility.
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This paper systematically combs and reviews the literature on jump behavior, param-
eter estimation of jump O-U process, and statistical arbitrage. This literature has great
inspirational significance for the development of this paper, but it cannot be denied that
there are still some shortcomings in these studies.

1. In the research on parameter estimation of jump O-U process, the least squares estima-
tion method based on the square loss function and maximum likelihood estimation
method have good estimation performance under the assumption of specific error
distribution and finite variance. Under the finite variance scenario, the LSE based on
the assumption of normal distribution of errors has asymptotic normality and optimal
convergence rate but is sensitive to outliers. The maximum likelihood estimation
also possesses large-sample asymptotic properties under the assumptions of distri-
bution and finite variance. However, when the assumption conditions are relaxed
to infinite variance, these estimators have problems that the asymptotic properties
cannot be proved and the estimation is not robust. Under the premise of infinite
variance, some scholars have proposed the self-weighted least absolute deviation
estimator of the drift parameter and proved its good properties. It is found that the
weighted least absolute deviation estimator is more robust to outliers. As a special
case of the self-weighted quantile estimation 0.5 quantile, it can be further extended to
various quantiles of self-weighted quantile, which can further improve the estimation
accuracy and has large room for improvement.

2. In the research on statistical arbitrage, many scholars have designed arbitrage strate-
gies based on cointegration theory, GARCH, and O-U process, and the estimation
methods used are mainly OLS and MLE. With the development of high-frequency
trading, the data used gradually turns to high-frequency. However, existing research
lacks consideration of the possible jumps and heavy tails in the price spread sequence
of paired assets, and still uses traditional estimation methods to estimate and con-
struct trading signals, which will cause the trading signals to deviate greatly, miss
potential arbitrage opportunities, and weaken the overall performance of the strat-
egy. Therefore, considering jumps and corresponding robust estimation methods to
establish statistical arbitrage models, so that the models are closer to the real situa-
tion, is an issue worth paying attention to and improving in the design of statistical
arbitrage strategies.

Based on these considerations, this paper proposes a self-weighted quantile estimation
method for the O-U process with jumps under both finite and infinite variance scenarios,
estimating the drift parameters for the pure jump structure O-U process. On one hand, the
self-weighted quantile estimator does not rely on assumptions about the data distribution
and provides a more comprehensive description of the distribution characteristics by
offering confidence intervals and probability distributions at different quantiles, thus
providing more complete uncertainty information. On the other hand, it further reduces the
impact of outliers through weighting while being insensitive to them. Finally, by proving
its asymptotic normality under the infinite variance scenario, the excellent properties of the
self-weighted quantile estimator are demonstrated.

The structure of the paper is organized as follows. Section 2 proposes a self-weighted
quantile estimator for the drift parameters, laying the groundwork for the proof of the con-
clusion. Section 3 proves its asymptotic normality and conducts Monte Carlo simulations
to evaluate the performance of the proposed estimator. Section 4 applies the method to
statistical arbitrage on the CSI 300 Index Futures and presents backtesting results. Section 5
concludes the paper.
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2. Preliminaries
2.1. The O-U Process with Jump and Estimation Methods

The Ornstein–Uhlenbeck process is a type of diffusion process in physics, which is
an odd-order Markov process with mean-reverting characteristics, suitable for capturing
typical features of financial data, including mean reversion, volatility clustering, drift,
and jumps.

The O-U process is defined by the following stochastic differential equation:

dXt = (γ− κXt)dt + σdZt, (1)

where γ represents the instantaneous drift parameter, κ represents the mean reversion
strength, σ is the diffusion parameter, dZt = dWt + dJt, Wt is a standard Brownian motion,
and Jt is a jump component. The jump structure is diverse, mainly including Gaussian
and Poisson structures, etc. It is commonly represented by a compound Poisson process
with a jump intensity λ, where the jump size follows a normal distribution

(
µξ , σ2

ξ

)
and is

independent of Wt. dZt is a Lévy process. Typically, we estimate the unknown parameters
θ := (γ, κ) based on discrete-time samples (Xti )

n
i=0, where ti is the time interval between

adjacent samples, also denoted as ti = ih, with h being the fixed sampling grid. Parameters
γ and κ are both drift parameters, describing the overall trend of the random variables in
the stochastic process, representing the average growth rate or average drift speed of the
stochastic process.

For the estimation of unknown parameters θ := (γ, κ), the simplest and most common
method is to use the approximate least squares estimator (LSE), by minimizing the following
squared loss function:

θ 7→
n

∑
i=1

{
Xti − Xti−1 − h(γ− κXti−1)

}2 (2)

The LSE estimator is obtained. Under the squared loss function, the difference between
normal values and abnormal values will be amplified, making the model more sensitive to
abnormal values, and abnormal values will receive more attention. The estimator satisfies
asymptotic normality when Z has finite variance and its convergence rate is

√
nh, which

is the optimal convergence rate in the estimation of diffusion drift with Poisson jumps.
However, when Z has infinite variance, the premise assumption that the error obeys a
normal distribution is broken, and the situation is no longer the case.

In addition, the least absolute deviation estimator (LAD) can be used, by minimizing
the following absolute value loss function:

θ 7→
n

∑
i=1

∣∣Xti − Xti−1 − h(γ− κXti−1)
∣∣ (3)

The LAD estimator is obtained. Compared with the squared loss function, the absolute
value loss function does not amplify the difference between normal values and outliers, so
the impact of outliers on the model is smaller, and the model is more robust. The estimator
converges to the normal distribution at a rate of

√
n when the error term has sufficiently

high-order finite moments, but it is difficult to derive the specific form of its asymptotic
normal distribution in the case of infinite variance. In addition to estimating parameters by
minimizing the loss function, the maximum likelihood estimation method based on the
probability distribution of data can also be used, which is usually maximized by numerical
optimization algorithms to maximize the likelihood function of the observed data. Usually,
the above common estimators can estimate the unknown parameters under the asymptotic

149



Mathematics 2025, 13, 1399

properties of large samples, but their estimation effects are limited by the structure of the
jump term. When it is a pure jump, its estimation effect is proved to be not as good as the
case of simple distribution jumps, especially the appearance of large jumps, which makes
the robustness of simple estimators impacted.

2.2. Optimal Trading Trigger Points

First, let us clarify that the trading objective of this paper is to maximize the expected
return per unit time. Let the time interval of a trading cycle be T, which is a random
variable. a and m (assuming a < m) are the trading signal trigger points. When the spread
is equal to a, enter the trade; when it is equal to m, reverse the trade. The spread sequence
is equal to a again, then the process from a to m and back to a constitutes a trading cycle τ.
Assume the profit function within a trading cycle is r(a, m, c) = m− a− c, where c is the
transaction cost, then the objective function is expressed as

max
a,m

r(a, m, c)
E(T)

. (4)

Assume that the spread sequence of the paired assets follows the following O-U process:

dXt = −θXtdt + σdWt. (5)

At this time, according to the state of the transaction, it is divided into T1 and T2,
where T1 represents the holding time from a to m, and T2 represents the time from m to
a. Since Xt is a Markov process, T1 and T2 are independent of each other, therefore, in a
complete trading process, we have

E(T) = E(T1) + E(T2). (6)

According to Itô’s lemma, after variable substitution for Xt, the mean time interval of
a trading cycle can be expressed as

E(T) =
π

θ

(
Er f i

(
m
√

θ

σ

)
− Er f i

(
a
√

θ

σ

))
, (7)

where Er f i(x) = −i · Er f i(i · x) is the imaginary error function, and its derivative is
d

dx Er f i(x) = 2√
π

ex2
.The target function for the unit time return within a trading cycle is

µ(a, m, c) =
θ(m− a− c)

π
(

Er f i
(

m
√

θ
σ

)
− Er f i

(
a
√

θ
σ

)) . (8)

To find the maximum value of Equation (8), we take partial derivatives with respect to
a and m, respectively:

√
4π

θσ2 e
θa2

σ2 (m− a− c)− π

θ

(
Er f i

(
m
√

θ

σ

)
− Er f i

(
a
√

θ

σ

))
= 0, (9)

√
4π

θσ2 e
θm2

σ2 (m− a− c)− π

θ

(
Er f i

(
m
√

θ

σ

)
− Er f i

(
a
√

θ

σ

))
= 0. (10)

Solving the above equations yields

a =− c
4
− c2θ

4
(

c3θ3 + 24cθ2σ2 − 4
√

3c4θ5σ2 + 36c2θ4σ4
)1/3 (11)
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−

(
c3θ3 + 24cθ2σ2 − 4

√
3c4θ5σ2 + 36c2θ4σ4

)1/3

4θ
(12)

m = −a (13)

2.3. Construction of the Self-Weighted Quantile Estimator of Drift Parameters for the O-U Process
with Jumps

Assume X = (Xt)t∈R+
is a univariate O-U process with jumps given by the following

stochastic differential equation:

dXt = (γ− κXt)dt + dZt, (14)

where γ is the instantaneous drift parameter, κ is the mean reversion strength, and Zt is a
Lévy process independent of Xt. We denote the Lévy measure and Gaussian variance of Zt

by ν and σ2, respectively, and assume ν(R) > 0, σ2 > 0 to exclude trivial cases. Referring
to Sato [44] for a systematic description of Lévy processes, we define the activity index β to
measure the degree of small jump fluctuations:

β :=





2, i f σ2 > 0

inf
{

r > 0 :
∫
|z|≤1 |z|rv(dz) < ∞

}
, i f σ2 = 0.

(15)

Compared to specific distribution structures such as Gaussian or Poisson structures,
this structure is more general, and its specific characteristics are seen in Assumption 6. Let
P0 represent the true distribution of X related to θ0 := (γ0, κ0), and E0 be the corresponding
expectation. Under the distribution P0, Equation (14) has the following autoregressive
representation:

Xti =
γ0

κ0

(
1− e−κ0h

)
+ e−κ0hXti−1 +

∫ ti

ti−1

e−κ0(ti−s)dZs. (16)

For convenience, let

εni = h−1/β
∫ ti

ti−1

e−κ0(ti−s)dZs, (17)

ε′n,i−1 = h−1/β

(
Xti−1 −

γ0

κ0

)(
e−κ0h − 1 + κ0h

)
, (18)

xi−1 =
(
−Xti−1 , 1

)T . (19)

To derive the conditional quantile function, assume that for any n ∈ N and i < n, εni

has a positive smooth Lebesgue density Ph on R, is independent of i, and is symmetric
about 0. Then, the distribution of εni is Fh(dz) = ph(z)dz. For any 0 < τ < 1, given εn,i−1,
we require that the τ conditional quantile function Q(τ) of εni satisfies P(εni < Q(τ)) = τ.
Then for any 0 < τ < 1, we define the quantile loss function for the O-U process with
jumps as

Mn(θ) =
n

∑
i=1

w(Xti−1)ρτ

(
Xti − Xti−1 − h(γ− κXti−1)− h1/βQεni (τ)

)
, (20)
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where ρτ(x) = x(τ − I(x < 0)) is the quantile loss function, and w(·) is the weight function,
whose specific form is seen in Assumption 7. Based on the goal of minimizing the loss
function, the τ quantile estimator for the drift parameter θ0 := (γ0, κ0) is

θ̂n(τ) = arg min
γ,κ

n

∑
i=1

w(Xti−1)ρτ

(
Xti − Xti−1 − h(γ− κXti−1)− h1/βQεni (τ)

)
. (21)

Self-weighted quantile estimation is an advanced statistical technique that adjusts the
traditional quantile estimation process by incorporating observation-specific weights. These
weights are typically derived from the data itself, often reflecting the relative importance,
reliability, or inverse variance of each observation. The method is particularly useful in
contexts where data points are heteroskedastic (exhibit non-constant variance) or when
certain observations should influence the quantile estimates more than others due to
domain-specific considerations.

Traditional quantile estimation assumes homoskedasticity (constant variance). In
financial or risk modeling, volatility clustering is common, and self-weighted methods
adapt by down-weighting high-volatility periods. Self-weighting can reduce the influence
of outliers by assigning them lower weights (e.g., based on Mahalanobis distance or
residual analysis). Weights can evolve over time (e.g., time-decaying weights for older
data), enabling the estimator to prioritize recent observations without discarding older data
entirely. Moreover, the weights can incorporate domain knowledge (e.g., higher weights for
liquid assets in portfolio risk models) or model confidence (e.g., inverse prediction error).

2.4. Assumptions

Let X be given by Equation (14), and let η represent the initial distribution of X.
Assume the following:

1. There exists a constant q > 0 such that
∫
|x|qη(dx) < ∞;

2. Assume Θ is a bounded convex set, whose closure Θ− ⊂ (0, ∞)×R;
3. As n→ ∞, the time interval hn → 0 and nhn → ∞;

4. nh4−2/β
n → 0, given Assumption 3 that β > 2/3;

5. π0 is the unique invariant distribution of X independent of θ0, which is ex-
ponentially absolutely regular under P0, and satisfies

∫
|x|qπ0(dx) < ∞ and

supt∈R+
E0
[
|Xt|q

]
< ∞. The characteristic function of π0 is

u 7→ exp
{

i
(

γ0

κ0

)
u− 1

2

(
σ2

2κ0

)
u2 +

∫
(cos(uz)− 1)

∫ ∞

0
ν(eκ0sdz)ds

}
;

6. The structure of Zt is the following:

(a) v is symmetric about the origin, and there exists a constant q > 0 such that∫
|z|>1 |z|qν(dz) < ∞. The characteristic function of Zt is

ϕZt(u) := exp
{

t
(
−σ2

2
u2 +

∫
(cos(uz)− 1)ν(dz)

)}
, u ∈ R

(b) If σ2 = 0, then v = v′ + v′′ can be represented by two Lévy measures v′ and
v′′, which satisfy the following conditions:

i. v′ has a symmetric density function g(z) = c|z|−1−β{1 + g̃(z)} on
U/{0}, where β ∈ (0, 2), c > 0, and as |z| → 0, g̃(z) = O(|z|δ), δ > 0

ii. β′′ := inf
{

r ≥ 0 :
∫
|z|≤1 |z|rν′′(dz)

}
∈ [0, β);

7. The structure of the weight w is described as follows:
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(a) w is a bounded and uniformly continuous function;
(b) lim sup|x|→∞ w(x)|x|4−q < ∞, in particular, if for any q′ > 2

∫
|z|>1 |z|q

′
ν(dz) =

∞, then the weight function x 7→ w(x)x2 is uniformly continuous.

Remark 1. Assumptions 1 and 2 are the same assumptions for X be given by Equation (14) used
in Masuda [16]. Assumptions 3 and 4 on sample size and bandwidth are sufficient. Note that it
suffices that nh3

n → 0 when σ2 > 0, while a faster decay of hn, i.e., nh2
n → 0, is required when

σ2 = 0. Assumption 5 is some facts concerning the O-U processes; see Masuda [45] for more details.
Assumption 6 entails that small fluctuations of Z should be like that of a β-stable Lévy process. In
the self-weighting method, Assumption 7 is usually a necessary condition, which can reduce the
impact of outliers by selecting appropriate weights. Inspired by Ling [46], we consider the following
weight function:

wi =





1, if ai = 0
C3

0.95
a3

i
, if ai 6= 0,

(22)

where ai =
∣∣∣Xtn

i−1

∣∣∣1
(∣∣∣Xtn

i−1

∣∣∣ ≥ C0.95

)
, C0.95 is the 0.95 quantile of Xtn

i−1
. This weight satisfies

the requirements of Assumption 7, with a value range from 0 to 1, which can reduce the weight of
estimators with outliers and has no effect on estimators without outliers. It implies that this weight
can down-weight covariance matrices with outliers, and at the same time, it has no effect on the
estimation results when there is no outlier.

2.5. Lemmas and Theorems

Let Nr(µ, U) denote the r-dimensional normal distribution with mean vector µ and
covariance matrix U, and let φβ denote the symmetric β-stable density function correspond-
ing to N1(0, σ2) when β = 2, and the Lévy density z 7→ c|z|−1−β when β < 2. This implies

φβ(0) =





1√
2πσ2 , if β = 2

1
π Γ
(

1 + 1
β

){
2c
β Γ(1− β) cos

(
βπ
2

)}
, if β < 2.

(23)

Lemma 1 (Hjørt and Pollard [47]). Let An be a real-valued convex random function defined on
a convex domain S ⊂ Rp, and assume An can be expressed as An(s) = sTUn +

1
2 sTVns + rn(s),

where Un converges weakly to a random variable U ⊂ Rp, Vn converges in probability to a positive
definite matrix V ⊂ Rp ⊗Rp, and for any s ∈ S, rn(s) converges in probability to 0. Then the
minimum value αn of s 7→ An(s) converges weakly to −V−1U.

Lemma 2 (Masuda [16]). Under Assumption 6, we have a uniform estimate supz∈R |ph(z)−
φβ(z)| ≤ hd, where φβ is the symmetric stable density of β, d is a positive constant, and the values
of d are as follows:

1. When σ2 > 0, ν(R) < ∞ or σ2 = 0, g̃ ≡ 0, ν′′(R) < ∞, d = 1;
2. For any β′+ > β′, if σ2 > 0, ν(R) = ∞, then d = 1− β′+/2;
3. For any β′′+ > β′′, if σ2 = 0, g̃ ≡ 0, ν′′(R) = ∞, then d = 1− β′′+/β;
4. For any δ′ ∈ (0, β) ∩ (0, δ], if σ2 = 0, δ > 0, ν′′(R) < ∞, then d = δ′/β;
5. For any δ′ ∈ (0, β) ∩ (0, δ] and β′′+ > β′′, if σ2 = 0, δ > 0, ν′′(R) = ∞, then d =

(δ′/β) ∨ (1− β′′+/β).

Lemma 3 (Masuda [16]). If Assumption 7 holds, and for some q > 0,
∫
|z|>1 |z|qν(dz) < ∞, then

for k ∈ {0, 1, 2} and l ∈ {1, 2}, let

gk,l(x) := xkw(x)l ,

153



Mathematics 2025, 13, 1399

δn(gk,l) :=

∣∣∣∣∣
1

nh

∫ nh

0
gk,l(Xs)ds− 1

n

n

∑
i=1

gk,l(Xti−1)

∣∣∣∣∣,

then δn(gk,l)
p−→ 0.

Theorem 1. Under the Assumption 2.4, for any 0 < τ < 1, as hn → 0, nhn → ∞,

√
nh1−1/β

n (θ̂n − θ0)
d−→ N2

(
0,

τ(1− τ)

φ2
β(Qεni (τ))

V0

)
, (24)

where V0 := Γ−1
0 Σ0Γ−1

0 , Γ0 and Σ0 are positive definite symmetric matrices, defined as follows:

Σ0 :=
∫

w(x)2

(
x2 −x
−x 1

)
π0(dx),

Γ0 :=
∫

w(x)

(
x2 −x
−x 1

)
π0(dx).

Remark 2. To make Theorem 1 applicable in practice, we must estimate Σ0, Γ0, and φβ(Qεni (τ)).
Since Σ0 and Γ0 are represented by

∫
xkw(x)lπ0(dx), according to Lemma 3, it is easy to obtain

the uniform estimators for Σ0 and Γ0 as 1
n ∑n

i=1 wk
i−1Xl

ti−1
. For φβ(Qεni (τ)), since the density

function ph of εni is symmetric, we can shift the τ quantile of εni to 0 such that P
(
ε′′ni < 0

)
= τ,

where ε′′ni = εni −Qεni (τ). According to Lemma 2, the estimation of φβ(Qεni (τ)) is transformed
into the estimation of φβ(0). According to Equation (23), φβ(0) depends only on the two parameters
β and c. Using the uniform estimator of φβ(0) demonstrated in Theorem 1 of Masuda [16], we can
use this uniform estimator without directly estimating β and c, thus obtaining all the estimators
needed for the normal distribution.

Corollary 1. Under the Assumption 2.4, for any 0 < τ < 1, as n → ∞, γ̂n(τ)
p−→ γ0,

κ̂n(τ)
p−→ κ0.

3. Main Results
3.1. Theoretical Proofs

For the drift parameter self-weighted quantile estimator, this paper considers the proof
of its asymptotic normality.

Proof of Theorem 1. Let ûn =
√

nh1−1/β
n (θ̂n − θ0), according to Lemma 1, we construct a

function f (u) about u. According to Equations (16)–(19), we have

h−1/β
{

∆iX− h
(
γ− κXti−1

)
− h1/βQεni (τ)

}
=
(
ε′n,i−1 + εni

)
− (θ − θ0)

Txi−1h1−1/β −Qεni (τ). (25)

According to the definition of the loss function, for any θ ∈ Θ, we have

h−1/β{Mn(θ)−Mn(θ0)}

=
n

∑
i=1

wi−1

{
ρτ

((
ε′n,i−1 + εni

)
− (θ − θ0)

Txi−1h1−1/β −Qεni (τ)
)
− ρτ

((
ε′n,i−1 + εni

)
−Qεni (τ)

)}
.

(26)

Let Un(θ0) :=
{

u ∈ R2 : θ0 + anu ∈ Θ
}

, where an = an(β) :=
(√

nh1−1/β
n

)−1
. Define

the function Zn(u; θ0) : Un(θ0)×Ω→ (0, ∞):

logZn(u; θ0) = −h−1/β{Mn(θ0 + anu)−Mn(θ0)}. (27)
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Then f (u) = − logZn(u; θ0), and we will prove that its minimum value is ûn =

a−1
n (θ̂n − θ0).

First, we provide the asymptotic local quadratic structure of logZn(u; θ0). For any
u ∈ Un(θ0), we have

logZn(u; θ0) = uT∆n −
1
2

uTΓnuT + op(1). (28)

According to Lemma 1, we need to prove that ∆n
d−→ N(0, τ(1− τ)Σ0) and Γn

p−→
φβ(Qεni (τ))Γ0.

Next, we infer the specific local quadratic structure of Equation (28). For any K-
function of the form K(x) =

∫ x
0 k(y)dy, we have K(x− y)− K(x) = −yk(x) +

∫ y
0 {k(x)−

k(x − s)}ds. Referring to Knight [48], taking k(y) = I(y ≥ 0) − I(y ≤ 0), we have
the formula

ρτ(x− y)− ρτ(x) = −y{τ − I(x < 0)}+
∫ y

0
[I(x ≤ s)− I(x ≤ 0)]ds. (29)

By Lemma 2, for any n ∈ N and i ≤ n, P[εni 6= 0] = 1. Combining Equations (26), (27)
and (29), we get logZn(u; θ0) = Ln(u) + Qn(u), where

Ln(u) := uT
n

∑
i=1

1√
n

wi−1xi−1

{
τ − I(ε′n,i−1+εni−Qεni (τ)<0)

}
, (30)

Qn(u) := −
n

∑
i=1

wi−1

∫ uT xi−1/
√

n

0

{
I(ε′n,i−1+εni−Qεni (τ)≤s) − I(ε′n,i−1+εni−Qεni (τ)≤0)

}
ds. (31)

Let Ln(u) := uT ∑n
i=1 lni, Qn(u) := ∑n

i=1 qni(u), then we examine the asymptotic
behavior of Ln(u). Decompose Ln(u) as follows:

Ln(u) := uT
n

∑
i=1

(
lni − Ei−1

0 [lni]
)
+ uT

n

∑
i=1

Ei−1
0 [lni] =: uT

n

∑
i=1

∆ni + R1
n(u). (32)

Denote A⊗2 = AAT for any matrix A, then

Ei−1
0

[
∆⊗2

ni

]

=Ei−1
0 l2

ni −
(

Ei−1
0 [lni]

)2

=
1
n

w2
i−1x⊗2

i−1

{
Ei−1

0

(
τ − I(ε′n,i−1+εni−Qεni (τ)<0)

)2
−
(

Ei−1
0

(
τ − I(ε′n,i−1+εni−Qεni (τ)<0)

))2
}

=
1
n

w2
i−1x⊗2

i−1

{
Ei−1

0

(
I(ε′n,i−1+εni−Qεni (τ)<0)

)
−
(

Ei−1
0

(
I(ε′n,i−1+εni−Qεni (τ)<0)

))2
}

=
1
n

w2
i−1x⊗2

i−1

{
Pi−1

0
(
εni < Qεni (τ)− ε′n,i−1

)
−
(

Pi−1
0
(
εni < Qεni (τ)− ε′n,i−1

))2
}

.

(33)

Since ph is bounded, and

∣∣ε′n,i−1
∣∣ . h2−1/β

(
1 +

∣∣Xti−1

∣∣), (34)
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we have

1
n

w2
i−1x⊗2

i−1Pi−1
0
(
εni < Qεni (τ)− ε′n,i−1

)

=τ
1
n

w2
i−1x⊗2

i−1 +
1
n

w2
i−1x⊗2

i−1

[
Pi−1

0
(
εni < Qεni (τ)− ε′n,i−1

)
− τ

]

=τ
1
n

w2
i−1x⊗2

i−1 +
1
n

w2
i−1x⊗2

i−1

[
Pi−1

0
(
εni < Qεni (τ)− ε′n,i−1

)
− Pi−1

0 (εni < Qεni (τ))
]

=τ
1
n

w2
i−1x⊗2

i−1 +
1
n

w2
i−1x⊗2

i−1

∫ Qεni (τ)

Qεni (τ)−ε′n,i−1

ph(z) dz

≤τ
1
n

w2
i−1x⊗2

i−1 +
1
n

w2
i−1x⊗2

i−1

∣∣ε′n,i−1
∣∣

=τ
1
n

w2
i−1x⊗2

i−1 + op(1).

(35)

Then, Equation (33) can be written as

Ei−1
0

[
∆⊗2

ni

]
= τ(1− τ)

1
n

w2
i−1x⊗2

i−1 + op(1), (36)

therefore, ∣∣∣∣∣
n

∑
i=1

Ei−1
0

[
∆⊗2

ni

]
− τ(1− τ)

1
n

n

∑
i=1

w2
i−1x⊗2

i−1

∣∣∣∣∣ = op(1). (37)

Now we note that the mixing property of X under the distribution P0 leads to

the ergodic theorem, that is, for each π0 integrable function F, (nh)−1
∫ nh

0 F(Xs) ds
p−→

∫
F(x)π0(dx). Combining Lemma 3, we get 1

n ∑n
i=1 w2

i−1x⊗2
i−1

p−→ τ(1− τ)Σ0, therefore,

n

∑
i=1

Ei−1
0

[
∆⊗2

n,i

] p−→ τ(1− τ)Σ0. (38)

Similarly, under these assumptions, it is easy to see that for any a ∈ (0, 2],

n

∑
i=1

E0

[
|∆n,i|2+a

]
.n−a/2 sup

t
E0

[
{w(Xt)(1 + |Xt|)}2+a

]

.n−a/2 sup
t

E0

[
w(Xt)(1 + |Xt|)4

]

=O
(

n−a/2
)

=o(1).

(39)

From Equations (38) and (39), applying the Martingale central limit theorem to

∆n := ∑n
i=1 ∆ni, we get ∆n

d−→ N1(0, τ(1− τ)Σ0). According to Equation (35), it is clear

that |R1
n(u)| =

∣∣∣uT ∑n
i=1 Ei−1

0 [lni]
∣∣∣ = op(1). Therefore, Ln(u) = uT∆n + op(1), and for any

u, ∆n
d−→ N1(0, τ(1− τ)Σ0).

Next, we examine the asymptotic behavior of Qn(u). We separate the Martingale term
of Qn(u) to get

Qn(u) =
n

∑
i=1

Ei−1
0 [qni(u)] +

n

∑
i=1

{
qni(u)− Ei−1

0 [qni(u)]
}

. (40)

For the first term on the right-hand side, according to Taylor’s formula, we have
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n

∑
i=1

Ei−1
0 [qni(u)]

=−
n

∑
i=1

wi−1

∫ uT xi−1/
√

n

0

{
Fh
(
s + Qεni (τ)− ε′n,i−1

)
− Fh

(
Qεni (τ)− ε′n,i−1

)}
ds

=−
n

∑
i=1

wi−1

∫ uT xi−1/
√

n

0

{
s · ph

(
Qεni (τ)− ε′n,i−1

)
+

1
2

s2 p′h
(
Qεni (τ)− ε′n,i−1

)}
ds

=−
n

∑
i=1

wi−1 ph
(
Qεni (τ)− ε′n,i−1

) (uTxi−1
)2

2n
− 1

2

n

∑
i=1

wi−1

∫ uT xi−1/
√

n

0
s2 p′h

(
Qεni (τ)− ε′n,i−1

)
ds

=− 1
2

uT

{
ph(Qεni (τ))

1
n

n

∑
i=1

wi−1x⊗2
i−1

}
u +

[
− 1

2n

n

∑
i=1

wi−1

(
uTxi−1

)2{
ph
(
Qεni (τ)− ε′n,i−1

)
− ph(Qεni (τ))

}

−1
2

n

∑
i=1

wi−1

∫ uT xi−1/
√

n

0
s2 p′h

(
Qεni (τ)− ε′n,i−1

)
ds

]

=:− 1
2

uTΓnu + R2
n(u).

(41)

Therefore, with the help of Lemmas 2 and 3, we have Γn
P−→ φβ(Qεni (τ))Γ0. For the

term R2
n(u), first, according to Lemma 2, we have |∂ph(z)| = |∂ph(z)− ∂ph(0)| . |z|.

Second, for any x ∈ R and g : R → R,
∣∣∫ x

0 g(y) dy
∣∣ ≤

∫ |x|
0 {|g(y)| ∨ |g(−y)|} dy, we can

obtain the following estimate:

∣∣∣R2
n(u)

∣∣∣

=

∣∣∣∣∣
1

2n

n

∑
i=1

wi−1

(
uTxi−1

)2{
ph
(
Qεni (τ)− ε′n,i−1

)
− ph(Qεni (τ))

}
+

1
2

n

∑
i=1

wi−1

∫ uT xi−1/
√

n

0
s2 p′h

(
Qεni (τ)− ε′n,i−1

)
ds

∣∣∣∣∣

.|u|2 1
2n

n

∑
i=1

wi−1|xi−1|2
∣∣∣∣Qεni (τ)ε

′
n,i−1 −

1
2
(
ε′n,i−1

)2
∣∣∣∣+

1
2

n

∑
i=1

wi−1

∫ uT xi−1/
√

n

0
s2∣∣Qεni (τ)− ε′n,i−1

∣∣ds

.h2−1/βQεni (τ)|u|2
1
n

n

∑
i=1

wi−1
(
1 +

∣∣Xti−1

∣∣)3
+ h2(2−1/β)|u|2 1

n

n

∑
i=1

wi−1
(
1 +

∣∣Xti−1

∣∣)4

+
|u|3√

n
Qεni (τ)

1
n

n

∑
i=1

wi−1
(
1 +

∣∣Xti−1

∣∣)3
+

h2−1/β|u|3√
n

1
n

n

∑
i=1

wi−1
(
1 +

∣∣Xti−1

∣∣)4

.
(

h2−1/βQεni (τ)|u|2 + h2(2−1/β)|u|2 + |u|
3

√
n

Qεni (τ) +
h2−1/β|u|3√

n

)
1
n

n

∑
i=1

wi−1
(
1 +

∣∣Xti−1

∣∣)4

=Op

(
h2−1/βQεni (τ)|u|2 + h2(2−1/β)|u|2 + |u|

3
√

n
Qεni (τ) +

h2−1/β|u|3√
n

)
= op(1).

(42)

Therefore, for any u, ∑n
i=1 Ei−1

0 [qni(u)]
p−→ −uTφβ(Qεni (τ))Γ0u/2. For the second term

of Qn(u), let

R3
n(u) =

n

∑
i=1

{
qni(u)− Ei−1

0 [qni(u)]
}

. (43)
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Using Burkholder’s inequality and Schwarz’s inequality, we have

E0

[{
R3

n(u)
}2
]

=
n

∑
i=1

E0

[{
qni(u)− Ei−1

0 [qni(u)]
}2
]

.
n

∑
i=1

E0


w2

i−1

{∫ uT xi−1/
√

n

0

(
I(ε′n,i−1+εni−Qεni (τ)≤s) − I(ε′n,i−1+εni−Qεni (τ)≤0)

)
ds

}2



≤
n

∑
i=1

E0


w2

i−1

{∫ |uT xi−1|/√n

0

(
I(|ε′n,i−1+εni−Qεni (τ)|≤s)

)
ds

}2



≤
n

∑
i=1

E0

[
w2

i−1
|uTxi−1|√

n

∫ |uT xi−1|/
√

n

0

(
I(|ε′n,i−1+εni−Qεni (τ)|≤s)

)
ds

]

=
n

∑
i=1

E0

[
w2

i−1

∣∣uTxi−1
∣∣

√
n

∫ |uT xi−1|/√n

0

(∫ s+Qεni (τ)−ε′n,i−1

−s+Qεni (τ)−ε′n,i−1

ph(z)dz

)
ds

]

. |u|
3

√
n

sup
t∈R+

E0

[
w(Xt)

2(1 + |Xt|)3
]
. |u|

3
√

n
→ 0.

(44)

Therefore, for any u, Qn(u) = −uTΓnu/2 + op(1) and Γn
p−→ φβ(Qεni (τ))Γ0.

In summary, combining the asymptotic behaviors of Ln(u) and Qn(u), we obtain
Equation (28), and Theorem 1 is proved.

Proof of Corollary 1. Based on Theorem 1 and continuous mapping theorem, it is known
that when n→ ∞, we have

√
nh1−1/β

n (κ̂n − κ0)
d−→ N(0, σ2(θ))

That is, for every real number x, it holds that

lim
n→∞

P
(√

nh1−1/β
n (κ̂n − κ0) ≤ x

)
= Ψ(x). (45)

Here, Ψ(·) represents the distribution function of the normal distribution N(0, σ2(θ)):

Ψ(x) =
∫ x

−∞

1√
2πσ(θ)

e
− t2

2σ2(θ) dt. (46)

It is known that for any positive number ε > 0, it holds that

lim
n→∞

P(|κ̂n − κ0| > ε) = 0. (47)

Consider

P(|κ̂n − κ0| > ε)

=P(κ̂n − κ0 > ε) + P(κ̂n − κ0 < −ε)

=P
(√

nh1−1/β
n (κ̂n − κ0) >

√
nh1−1/β

n ε
)
+ P

(√
nh1−1/β

n (κ̂n − κ0) < −
√

nh1−1/β
n ε

)
,

(48)

thus,
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lim
n→∞

P(|κ̂n − κ0| > ε)

≤ lim
n→∞

P
(√

nh1−1/β
n (κ̂n − κ0) >

√
nh1−1/β

n ε
)
+ lim

n→∞
P
(√

nh1−1/β
n (κ̂n − κ0) < −

√
nh1−1/β

n ε
) (49)

It can be seen that it is only necessary to prove

lim
n→∞

P
(√

nh1−1/β
n (κ̂n − κ0) >

√
nh1−1/β

n ε
)
= 0, (50)

and
lim

n→∞
P
(√

nh1−1/β
n (κ̂n − κ0) < −

√
nh1−1/β

n ε
)
= 0. (51)

For any positive number τ > 0, since

lim
x→∞

Ψ(x) = 1, (52)

take a sufficiently large real number M > 0 such that

Ψ(M) > 1− τ, (53)

obviously such M exists, the larger the better. For the chosen M > 0, there naturally exists
a positive integer n0, such that when n > n0, it holds that

√
nh1−1/β

n ε > M. Thus, when
n > n0,

P
(√

nh1−1/β
n (κ̂n − κ0) >

√
nh1−1/β

n ε
)
≤ P

(√
nh1−1/β

n (κ̂n − κ0) > M
)

. (54)

Furthermore,

lim
n→∞

P
(√

nh1−1/β
n (κ̂n − κ0) >

√
nh1−1/β

n ε
)
≤ lim

n→∞
P
(√

nh1−1/β
n (κ̂n − κ0) > M
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[
1− P

(√
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n (κ̂n − κ0) ≤ M
)]

= 1−Ψ(M) < τ.
(55)

Additionally, due to the arbitrariness of τ > 0, it is known that

lim
n→∞

P
(√

nh1−1/β
n (κ̂n − κ0) >

√
nh1−1/β

n ε
)
= 0. (56)

By the same reasoning,

lim
n→∞

P
(√

nh1−1/β
n (κ̂n − κ0) < −

√
nh1−1/β

n ε
)
= 0. (57)

Similarly, it can be proven that γ̂n(τ)
p−→ γ0.

3.2. Monte Carlo Numerical Simulation

Based on the proof of the self-weighted quantile estimation method for the O-U
process with jumps in the previous chapter, this chapter discusses the simulation and
implementation of the fitting estimation algorithm for the O-U process with jumps. The
simulation results are an important tool for subsequent evaluation of the quality of the
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estimators. We use Monte Carlo numerical simulations to study the properties of the
weighted quantile estimators for the O-U process with jumps and compare them with
the estimators obtained from quantile estimation methods, power variation estimation
methods, and least squares estimation. In the simulation process, the O-U process with
jumps is first discretized using the Euler method to generate a discrete O-U process with
known parameters. Based on the simulated data, the drift parameters are estimated, and
then the differences between the estimated values and the true values are compared. The
accuracy and efficiency of the algorithm are evaluated using indicators such as mean,
standard deviation, and mean squared error.

3.2.1. Sample Path Simulation

The sample path simulation equation for the O-U process with jumps is defined
as follows:

dXt = (γ− κXt)dt + σdZt. (58)

When estimating the drift parameter, according to the assumption of the jump term
Zt structure in Section 2.3, take this distribution as NIG(1, 0, 1, 0), whose density is x 7→
e
π K1

(√
1 + x2

)
/
√

1 + x2, x ∈ R. Set the true parameter values as (γ, κ) = (10, 4), the time

interval hn = 1
48 , perform N = 500 Monte Carlo simulations of sample paths, and each path

contains n = 10, 000 observations. According to the Euler iteration, the simulated path of
the random array Xt following the above NIG jump structure O-U process is shown below:

As shown in Figure 1, the random array generated by model (58) exhibits certain
fluctuation characteristics and obvious jump phenomena. In the actual financial market,
when encountering information shocks or policy impacts, there are indeed significant jumps
in intra-day high-frequency data, so our simulated paths can reflect the true characteristics
of financial market data.

Figure 1. Simulated path of O-U process with NIG jumps.

3.2.2. Method Comparison and Result Evaluation

Unlike other estimators, quantile estimation divides the data into several parts,
each containing a certain proportion of data points, and focuses on describing the lo-
cation and distribution of the data by estimating the quantiles. Therefore, we select
τ = 0.1, 0.25, 0.45, 0.55, 0.78, 0.9 as six quantile points to observe the data distribution.
Based on the assumption of the weight structure, we choose an appropriate weight function
to reduce the impact of abnormal observations on the estimation results, and it has no effect
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on the estimation of normal observations. Referring to Ling [46], consider the following
weight function:

wi =





1 if ai = 0
C3

0.95
a3

i
if ai 6= 0,

(59)

where ai =
∣∣∣Xtn

i−1

∣∣∣1
(∣∣∣Xtn

i−1

∣∣∣ ≥ C0.95

)
, C0.95 is the 0.95 quantile of Xtn

i−1
. Combining settings

of the path parameter and the estimator, perform self-weighted quantile estimation for
each simulated path, and calculate the mean, standard deviation, and MSE of the estimated
values for evaluation.

3.2.3. Comparison of Estimation Results for Drift Parameters

For the finite sample estimation effect of the drift parameters, consider the quantile
estimation and least squares estimation as comparative estimation methods. Compared
with the quantile and least squares estimators, the self-weighted quantile estimator can
better estimate the drift parameters of the O-U process with specific jump structures. The
Monte Carlo simulation results for the two drift parameters to be estimated are given in
Tables 1–4, and visualized by drawing box plots, as shown in Figures 2 and 3.

Table 1. Monte Carlo simulation results for drift parameter γ.

τ Method Mean Std MSE

0.9
SQR 9.8661 0.8492 0.7391
QR 9.8551 0.8855 0.8052
LSE 68.6390 23.9942 4048.1622

0.75
SQR 10.0000 0.0005 2.48259× 10−7

QR 9.9994 0.0102 0.0001
LSE 68.6390 23.9942 4048.1622

0.25
SQR 9.9672 0.4224 0.1795
QR 9.9670 0.4248 0.1816
LSE 68.6390 23.9942 4048.1622

0.1
SQR 10.0109 0.4037 0.1631
QR 9.9897 0.2151 0.0464
LSE 68.6390 23.9942 4048.1622

Table 2. Monte Carlo simulation results for drift parameter κ.

τ Method Mean Std MSE

0.9
SQR 3.9464 0.3397 0.1183
QR 3.9420 0.3542 0.1288
LSE 26.5142 9.2131 596.7796

0.75
SQR 4.0000 0.0002 3.97185× 10−8

QR 3.9998 0.0041 1.6868
LSE 26.5142 9.2131 596.7796

0.25
SQR 3.9869 0.1690 0.0287
QR 3.9868 0.1699 0.0291
LSE 26.5142 9.2131 596.7796

0.1
SQR 4.0045 0.1621 0.0263
QR 3.9965 0.0829 0.0069
LSE 26.5142 9.2131 596.7796
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Table 3. Monte Carlo simulation results for drift parameter γ via SQR method across various quantiles
of weight function (59).

τ Quantile Mean Std MSE

0.9
0.99 9.8735 0.9867 0.9685
0.95 9.8661 0.8492 0.7391
0.9 9.9999 0.8584 0.9768

0.75
0.99 9.9998 0.0018 3.3657× 10−6

0.95 10.0000 0.0005 2.48259× 10−7

0.9 9.9998 0.0059 4.9852× 10−6

0.25
0.99 10.0789 0.5916 0.6987
0.95 9.9672 0.4224 0.1795
0.9 10.0123 0.4792 0.2967

0.1
0.99 9.9789 0.4817 0.2457
0.95 10.0109 0.4037 0.1631
0.9 10.0234 0.6489 0.1967

Table 4. Monte Carlo simulation results for drift parameter κ via SQR method across various quantiles
of weight function (59).

τ Quantile Mean Std MSE

0.9
0.99 4.0345 1.3658 0.9897
0.95 3.9464 0.3397 0.1183
0.9 4.0997 1.8894 1.1547

0.75
0.99 3.9123 0.0015 7.254× 10−7

0.95 4.0000 0.0002 3.97185× 10−8

0.9 4.0789 0.0024 9.9451× 10−7

0.25
0.99 3.9654 0.2647 0.1645
0.95 3.9869 0.1690 0.0287
0.9 3.9876 0.3489 0.2654

0.1
0.99 4.0515 0.2545 0.1564
0.95 4.0045 0.1621 0.0263
0.9 3.9124 0.4287 0.1147

From the overall estimation of the drift parameters in Tables 1 and 2, it can be seen
that regardless of the quantile, the self-weighted quantile estimator and the quantile
estimator significantly outperform the least squares estimator in terms of mean, standard
deviation, and mean squared error. Under the premise that the true parameter values are
θ0 = (γ0, κ0) = (10, 4), it can be seen from the mean indicator that the estimated values
of the self-weighted quantile estimator and the quantile estimator are very close to the
true values, with the best performance at the 0.75 quantile and the self-weighted quantile
estimation effect being better than the quantile estimation. The estimated values of the two
parameters to be estimated for the sample path are shown below, and box plots are drawn
for visualization, as shown in Figures 2 and 3. It can be seen that the median of the LSE
estimated values is significantly different from the estimated results of SQR and QR at the
0.75 quantile. The median of the SQR and QR estimated values is very close, but the right
box plot shows that the QR estimated values have more outliers.

Monte Carlo simulation results for drift parameters γ and κ via SQR method across
various quantiles of weight Function (59) are displayed in Tables 3 and 4, which show how
the different choices of wi can influence the properties of the estimator. It is found the 0.95
quantile of weight Function (59) possesses the smaller bias and MSE.
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Figure 2. Boxplot comparison of the estimated values of drift parameter κ.

Figure 3. Boxplot comparison of the estimated values of drift parameter γ.

4. Statistical Arbitrage Strategy Based on Self-Weighted Quantile
Estimation of Jump O-U Process

In cross-period arbitrage trading, considering that the futures market has night trading,
and for the same trading rules, overnight strategies may lead to large fluctuations in the
price spread of different futures contracts at the opening of the next day when facing major
policy changes or large fluctuations in the external market at night, thereby increasing
the risk. Therefore, in order to avoid the adverse impact of such fluctuations on the
performance of cross-period arbitrage, it is more reasonable to choose intra-day trading
for cross-period arbitrage strategies, and at the same time, in order to increase potential
arbitrage opportunities, high-frequency data is chosen for modeling, pursuing higher
returns under low risk.

4.1. Data Sources and Descriptive Statistics

This paper selects the CSI 300 stock index futures contract of the China Financial
Futures Exchange as the research object for empirical analysis, and the main terms of the
contract are listed in the following Table 5.

Table 5. China Financial Futures Exchange CSI 300 stock index futures contract.

Element Clause

Contract underlying CSI 300 Index
Contract multiplier 300 CNY/point
Pricing unit Index point
Minimum price fluctuation 0.2 points
Contract months Current month, next month, and the following two quarterly months
Trading hours Morning: 9:30–11:30, Afternoon: 13:00–15:00
Trading direction Buy open, sell close, sell open, buy close
Daily price limit ±10% of the previous trading day’s settlement price
Minimum trading margin 8% of the contract value
Last trading day The third Friday of the contract month, extended for national holidays
Delivery date Same as the last trading day
Delivery method Cash settlement
Trading code IF
Trading type Real-time transaction and order transaction
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Select the 5 min closing prices of the current month and next month contracts of the
CSI 300 stock index futures as the samples for this trading strategy, with contract codes IF00
and IF01, respectively. The time span is from 12 April 2021 to 5 December 2023, with a total
of 30,905 data points. Among them, the data from 12 April 2021 to 31 December 2022 is used
as the in-sample data for fitting the jump O-U process and parameter estimation, and the
data from 1 January 2023 to 5 December 2023 is used as the out-of-sample backtesting data
to evaluate the strategy performance. The data is sourced from the Wind Financial Data
Platform, and data processing is carried out using Python version 3.8 and R version 4.1.

The descriptive statistics of the 5 min high-frequency closing prices of the two contracts
are as follows Table 6.

Table 6. Descriptive statistics of CSI 300 stock index futures current month and next month contracts.

Contract Code Mean Std Min Max Kurt Skew

IF00 4284.12 505.9124 3412.2 5366 −1.1684 0.4495
IF01 4277.24 498.7956 3413.6 5334.6 −1.1869 0.4456

Sliced data from April 2021 is extracted to show the local trend chart of the current
month and next month contracts as follows.

As shown in Figure 4, the current month and next month contracts of the CSI 300 stock
index futures have a trend of rising and falling together, and there is a close correlation
between the contracts. Since the variety is the same, the price trend is highly correlated and
affected by similar factors. However, the simultaneous rise and fall does not necessarily
mean that there is a stable correlation. It is still necessary to calculate the correlation coeffi-
cient and conduct sufficient market analysis to choose this pair of contracts for arbitrage,
ensuring the stability of the statistical arbitrage strategy and reducing the strategy risk.

Figure 4. The local trend of the CSI 300 stock index futures contracts for the current and next month.

4.2. Data Processing and Sample Testing
4.2.1. Correlation Test

The Pearson correlation coefficient between the two contract asset prices and the
t-statistic of the Fisher correlation coefficient significance test can be calculated to determine
whether they have correlation. The Pearson correlation coefficient is a statistical measure
of the degree of linear correlation between two variables, with a range of −1 to 1. When
the correlation coefficient is close to 1, it indicates that the two variables are positively
correlated; when it is close to−1, it indicates that the two variables are negatively correlated;
when it is close to 0, it indicates that there is no linear correlation between the two variables.
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The Fisher significance statistic is used to test whether the Pearson correlation coefficient
is significantly different from 0, thereby determining whether there is a significant linear
correlation between the two variables. Statistically, if the p-value of the Fisher significance
statistic is less than the set significance level (usually 0.05), the original hypothesis can be
rejected, that is, it is considered that there is a significant linear correlation between the two
variables. The test results are as follows.

From the Table 7, it can be seen that at the 5% significance level, the original hypothesis
is rejected, that is, it can be considered that there is a significant correlation between the
current month and next month contracts of the CSI 300 stock index futures.

Table 7. Correlation coefficient and significance test between IF00 and IF01.

Variety IF01

IF00 Pearson correlation coefficient 0.999695
Significance test 0.000000

4.2.2. Stationarity Test

Before conducting the cointegration test on the 5 min quotation time series of the
current month and next month contracts of the CSI 300 stock index futures, it is first
necessary to determine that these two time series have the same order of integration, so it
is necessary to conduct the unit root test on the series first. In order to ensure that there
is no spurious regression between the paired two contract price sequences, this paper
uses Python software to conduct the ADF test on them, respectively, and judges whether
the p-value is less than 0.01 at the 99% confidence level to reject the original hypothesis
(that is, when the p-value is less than 0.01, the original hypothesis is rejected). If the
original hypothesis is not rejected, the corresponding sequence is differenced and the above
process is repeated until a stationary sequence is tested. The test results are shown in the
following Table 8.

Table 8. ADF unit root test results.

Series Test Form ADF Value Critical Values
(c, t, k) 1% 5% 10%

IF00 (c, t, 0) −0.8815 −3.4306 −2.8616 −2.5668IF01 (c, t, 0) −0.8656
∆IF00 (0, 0, 0) −124.1978 −3.4306 −2.8616 −2.5668∆IF01 (0, 0, 0) −124.0170

In Table 8, the test form c indicates that the test equation has an intercept term, t
indicates the existence of a trend term, and k indicates the lag order. The ADF values of
the price sequences and their first differences of CSI 300 IF00 futures contract and CSI 300
IF01 futures contract per hand are calculated, respectively. The test results show that at
the 1%, 5%, and 10% significance levels, the absolute values of the ADF values of IF00 and
IF01 are less than the absolute values of the critical values, so the original hypothesis is
accepted, and it is considered that they are non-stationary sequences. Therefore, further
test the stationarity of the difference sequences ∆IF00, ∆IF01. The test results show that
at the 1%, 5%, and 10% significance levels, the absolute values of the ADF values of the
difference sequences are greater than the absolute values of the critical values, and the
original hypothesis is rejected, and it is considered that the price difference sequences of
CSI 300 IF00 futures contract and CSI 300 IF01 futures contract per hand are stationary
sequences. Therefore, the price time sequences of CSI 300 IF00 futures contract and CSI 300
IF01 futures contract per hand are all first-order integrated, that is, they are I(1) processes.
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4.3. Cointegration Test

Futures price sequences are generally non-stationary time series, but there may be a
long-term equilibrium relationship between futures with high correlation. In order to effec-
tively measure this relationship, Engle and Granger proposed the concept of cointegration.
If the price sequences of two futures themselves are not stationary, but become stationary
after differencing, then it is very necessary to determine the long-term equilibrium rela-
tionship between futures through cointegration test. Through the ADF unit root test, we
concluded that the price sequences of the current month and next month contracts of the
CSI 300 stock index futures are all first-order integrated, so the Engle–Granger two-step
method can be used for testing. First, estimate the cointegration regression equation with
the least squares method to obtain the following cointegration relationship:

IF00t = 1.0140× IF01t + et, (60)

where the coefficient 1.0140 is the weight for buying and selling contracts during backtest-
ing, that is the β, indicating that for every 1 hand of IF00 contract bought, the corresponding
1.0140 hands of IF01 contract are sold. The goodness of fit R2 is 0.99939.

Secondly, test whether the residual term et is stationary. Based on the ADF test, the
ADF value is −3.85414, its absolute value is greater than the absolute values of each critical
value; the p-value is 0.00239, less than 0.05, rejecting the original hypothesis, it can be
considered that there is a long-term equilibrium relationship between IF00 and IF01, and
the next step of verification and testing can be carried out.

4.3.1. Descriptive Statistics of Spread Sequence

After the above tests, we define the spread of the paired futures contracts. Assuming
that the price sequences of the current month contract A and the next month contract B of
the CSI 300 stock index futures are SA(t) and SB(t), respectively, then the spread sequence
Pricet is expressed as

Pricet = ln
(

SA(t)
SA(0)

)
− ln

(
SB(t)
SB(0)

)
, t ≥ 0. (61)

Its overall trend is shown in Figure 5.

Figure 5. Overall trend of spread sequence.

Descriptive statistics were performed on the spread sequence, and the results are
as follows.
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From Table 9, it can be seen that the standard deviation of the data is large, indicating
a high degree of dispersion. The skewness and kurtosis indicate that the data distribution is
roughly symmetrical, slightly skewed to the left, and slightly flatter relative to the normal
distribution. The p-value is the p-value of the ADF stationarity test, less than 0.05, indicating
that the spread sequence has stationarity.

Table 9. Descriptive statistics of spread sequence.

Spread Sequence Mean Std Min Max Kurt Skew p-Value

Price 6.88 14.29 −34.40 76.00 −0.5189 0.6886 0.011825

4.3.2. Jump Test

Since this paper uses the jump O-U process to fit and estimate the spread sequence,
compared with the ordinary O-U process, this process adds a jump term to describe
the phenomenon of large fluctuations in prices in a short time, better capturing extreme
fluctuations or non-mean properties in the market. Therefore, we use the LM test proposed
by Lee and Mykland [49] to test the data for jumps point-by-point and calculate the
amplitude of the jumps. The jump amplitude is visualized and plotted as shown in Figure 6.

Figure 6. Jump detection of spread sequence.

4.4. Design of Statistical Arbitrage Strategy Scheme
4.4.1. Trading Rule Settings

In a statistical arbitrage strategy, screening targets and strategy timing are both very
important key factors, which have a decisive effect on whether the strategy has good
performance. In the strategy scheme design of this paper, we do not screen targets through
a target pool, but test the targets that have been seen well, and use the self-weighted
quantile estimation results of this paper to conduct technical analysis for strategy timing,
determine when to make buying and selling decisions, and reasonably set the trigger levels
of trading signals.

In the traditional cointegration timing strategy, the standard deviation multiple
method is usually used for timing, that is, for the spread sequence of paired targets,
calculate its historical equilibrium level and standard deviation, and determine whether to
open or close positions according to the multiple of the spread sequence exceeding or less
than the historical equilibrium level. However, such a threshold set relying on a simple
multiple for timing may miss many potential profitable trading opportunities. For example,
a high threshold leads to too few trades, reducing the total statistical arbitrage profit, while
a low threshold may lead to frequent trading, and the high transaction costs will erode
a lot of profit and may even lead to losses, and cannot obtain the statistical arbitrage
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returns brought by deviations. Therefore, this paper uses the target of maximizing the
expected return per unit time, calculates the probability distribution and density function
of the average duration of a trading cycle, and uses the opening and closing trading points
obtained for trading.

The opening and closing trading rules are shown in Table 10. When the spread
sequence crosses down through the lower trigger point a, buy 1 contract of the current
month and sell β times the next month’s contract, where β is the cointegration coefficient of
the two contracts. If β is not an integer, round it to the nearest whole number. When the
spread sequence crosses up through the mean line, close the position. When the spread
sequence crosses up through the upper trigger point m, open a position to sell 1 contract of
the current month and buy β times the next month’s contract. When the spread sequence
crosses down through the mean line, reverse close the position. This trading rule aims to
ensure the market neutrality of the investment portfolio, enabling the portfolio to achieve
the expected return regardless of whether the future market trend is upward or downward.

Table 10. Trading rules for opening and closing positions.

Process Condition for Positioning Operation

o → a Crossing down the lower trigger point Buy current month contract, sell β times the next
month contract

a→ o Crossing up the mean line Close position

o → m Crossing up the upper trigger point Sell current month contract, buy β times the next
month contract

m→ o Crossing down the mean line Close position

During the arbitrage process, the next opening position can only be triggered after
the spread sequence is closed; otherwise, the original position is held until it is closed.
Secondly, rolling over positions from one contract month to the next is a common operation
in futures trading. As the contract expiration date approaches, investors close their futures
positions and open new futures positions in the next expiration month to avoid the risks
and costs associated with actual delivery, while extending the holding period of their
positions. However, this paper does not perform rolling operations, i.e., it closes positions
on the contract expiration date and does not open positions for the next month of the
same contract after delivery. Finally, the cost settings for strategic simulated trading are as
follows: the opening and closing fees are six ten-thousandths, without calculating the costs
of price impact and slippage. The initial capital is set at one unit, and the returns for each
time point are calculated using the rate of return. The weight ratio for buying and selling
contracts is set through the cointegration coefficient.

4.4.2. Parameter Estimation and Trading Signal Determination

Within the backtesting framework, the dataset is initially segmented with 2023 as
the pivot point. The dataset from 2021 to 2022 is primarily used for fitting and parameter
estimation, while the 2023 dataset is used for out-of-sample simulation trading and back-
testing to calculate strategy returns and other metrics. Subsequently, during the backtesting
period, we dynamically estimate and adjust the calculations for parameter estimation and
trading signals. By promptly incorporating the sample data from the previous time point
into the historical spread sequence, we obtain the historical spread sequence closest to the
point to be estimated. Parameter estimation is conducted based on this spread sequence,
and the different parameter estimates at each time point are used to calculate the trading
signal thresholds by substituting into Equations (11) and (13). As out-of-sample data is
continuously updated and added, our strategy can better adapt to price changes.
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To achieve the optimal result, we employed a grid search approach to determine the
optimal quantile levels for calculating the lower and upper thresholds, a and m, using the
self-weighted method. Specifically, we evaluated quantile levels in increments of 0.25 and
computed the corresponding threshold values. An arbitrage strategy was then executed
based on trading signals generated when the spread exceeded these thresholds.

After establishing the trading rules, fitting estimation, and trading signal calculations,
we select the self-weighted quantile estimation results at the 0.25, 0.75, and 0.9 quantiles to
observe whether there are any patterns in the trading trigger threshold lines obtained based
on different quantile estimates, whether they have a significant impact on strategy returns,
and whether layered investment strategies based on different quantiles can be developed.
The parameter estimation results and thresholds for the 0.75 quantile are shown in Table
11, and the trading thresholds for each quantile are visualized in Figures 7–11.

Figure 7. Trading threshold at 0.25 quantile.

Figure 8. Trading threshold at 0.5 quantile.
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Figure 9. Trading threshold at 0.75 quantile.

Figure 10. Trading threshold at 0.9 quantile.

Table 11. Time series data example.

Date γ (×10−2) κ σ (×10−3) m (×10−3) a (×10−3)

3-Jan-2023 09:35 4.7696 1.2712 4.3102 2.0810 −2.0810
3-Jan-2023 09:40 4.7688 1.2700 4.3067 2.0811 −2.0811
3-Jan-2023 09:45 4.7680 1.2690 4.3102 2.0811 −2.0811
3-Jan-2023 09:50 4.7680 1.2688 4.3067 2.0813 −2.0813
3-Jan-2023 09:55 4.7694 1.2717 4.3076 2.0815 −2.0815
3-Jan-2023 10:00 4.7695 1.2711 4.3067 2.0818 −2.0818
3-Jan-2023 10:05 4.7689 1.2703 4.3102 2.0822 −2.0822
3-Jan-2023 10:10 4.7681 1.2688 4.3067 2.0827 −2.0827
3-Jan-2023 10:15 4.7679 1.2685 4.3076 2.0834 −2.0834
3-Jan-2023 10:20 4.7674 1.2677 4.3084 2.0843 −2.0843
3-Jan-2023 10:25 4.7666 1.2666 4.3102 2.0854 −2.0854
3-Jan-2023 10:30 4.7666 1.2666 4.3067 2.0867 −2.0867
3-Jan-2023 10:35 4.7680 1.2687 4.3102 2.0883 −2.0883
3-Jan-2023 10:40 4.7678 1.2685 4.3067 2.0900 −2.0900
3-Jan-2023 10:45 4.7665 1.2669 4.3102 2.0919 −2.0919
3-Jan-2023 10:50 4.7679 1.2693 4.3067 2.0939 −2.0939
3-Jan-2023 10:55 4.7679 1.2686 4.3076 2.0959 −2.0959
3-Jan-2023 11:00 4.7676 1.2681 4.3084 2.0980 −2.0980
3-Jan-2023 11:05 4.7687 1.2697 4.3102 2.1001 −2.1001
3-Jan-2023 11:10 4.7679 1.2690 4.3067 2.1020 −2.1020
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Table 11. Cont.

Date γ (×10−2) κ σ (×10−3) m (×10−3) a (×10−3)

3-Jan-2023 11:15 4.7680 1.2687 4.3076 2.1038 −2.1038
3-Jan-2023 11:20 4.7692 1.2706 4.3084 2.1054 −2.1054
3-Jan-2023 11:25 4.7679 1.2693 4.3084 2.1068 −2.1068
3-Jan-2023 11:30 4.7680 1.2688 4.3076 2.1078 −2.1078
3-Jan-2023 13:05 4.7680 1.2690 4.3076 2.1086 −2.1086
3-Jan-2023 13:10 4.7675 1.2679 4.3084 2.1089 −2.1089
3-Jan-2023 13:15 4.7666 1.2667 4.3102 2.1089 −2.1089
3-Jan-2023 13:20 4.7666 1.2666 4.3067 2.1086 −2.1086
3-Jan-2023 13:25 4.7666 1.2665 4.3076 2.1079 −2.1079
3-Jan-2023 13:30 4.7666 1.2665 4.3067 2.1069 −2.1069
3-Jan-2023 09:35 4.7666 1.2665 4.3102 2.1058 −2.1058
3-Jan-2023 09:40 4.7666 1.2665 4.3067 2.1046 −2.1046
3-Jan-2023 09:45 4.7666 1.2665 4.3102 2.1033 −2.1033
3-Jan-2023 09:50 4.7665 1.2664 4.3067 2.1021 −2.1021
3-Jan-2023 09:55 4.7665 1.2664 4.3076 2.1010 −2.1010
3-Jan-2023 10:00 4.7663 1.2660 4.3067 2.1000 −2.1000
3-Jan-2023 10:05 4.7660 1.2655 4.3102 2.0992 −2.0992
3-Jan-2023 10:10 4.7660 1.2655 4.3067 2.0986 −2.0986
3-Jan-2023 10:15 4.7660 1.2655 4.3076 2.0981 −2.0981
3-Jan-2023 10:20 4.7655 1.2647 4.3084 2.0977 −2.0977
3-Jan-2023 10:25 4.7654 1.2647 4.3102 2.0975 −2.0975
3-Jan-2023 10:30 4.7654 1.2646 4.3067 2.0975 −2.0975
3-Jan-2023 10:35 4.7650 1.2640 4.3102 2.0975 −2.0975
3-Jan-2023 10:40 4.7648 1.2630 4.3067 2.0976 −2.0976
3-Jan-2023 10:45 4.7655 1.2647 4.3102 2.0977 −2.0977
3-Jan-2023 10:50 4.7651 1.2641 4.3067 2.0976 −2.0976
3-Jan-2023 10:55 4.7649 1.2637 4.3076 2.0975 −2.0975
3-Jan-2023 11:00 4.7647 1.2633 4.3084 2.0971 −2.0971
3-Jan-2023 11:05 4.7656 1.2649 4.3102 2.0966 −2.0966
3-Jan-2023 11:10 4.7655 1.2647 4.3067 2.0960 −2.0960

After centering the spread sequence, the mean is 0, the upper trigger threshold line
is m, and the lower trigger threshold line is a. Observing and analyzing in combination
with Table 11 and Figure 11, first of all, it can be found in Table 11 and Figure 11 that with
the continuous addition of the latest out-of-sample data in the backtesting process, the
parameter estimation values and trading thresholds change accordingly. Secondly, at low
quantiles such as 0.25 quantile and 0.5 quantile, the changes in the threshold lines are small,
while with the increase of the quantile, it may be affected by the sudden change of the
spread from April to June in 2023. The sudden increase of the spread in this period leads to
an increase in the amount of high quantile data, changing the data structure of the high
quantile, causing the corresponding changes in the volatility and drift parameters, and thus
the fluctuation of the threshold line increases. Finally, from the overall spread sequence, the
threshold lines of each quantile have little impact on the triggering of trading time points,
which may be attributed to the data structure distribution of the target.
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Figure 11. Trading thresholds at various quantiles.

4.4.3. Arbitrage Strategy Return Statistics and Indicator Assessment

Based on the trading rules outlined in Section 4.4.1, we perform a backtesting analysis
of the pair trading strategy. To evaluate profitability, we use metrics total return rate and
annualized return, while annualized volatility and the Sharpe ratio are employed to assess
the associated risk. The results of the strategy implemented at each quantile are shown in
the following Table 12.

Table 12. Strategy return statistics at different quantiles.

Indicator 0.25 Quantile 0.5 Quantile 0.75 Quantile 0.9 Quantile

Total Return Rate (%) 1.147 1.310 1.056 1.177
Annualized Return Rate (%) 0.027 0.031 0.025 0.028
Annualized Volatility (%) 0.228 0.184 0.223 0.215
Sharpe Ratio 0.118 0.167 0.111 0.129

As the simulation trading progresses, by the end of the strategy, there are a total of
5 trading cycles and 20 buy/sell transactions. During 2023, the strategy returns are positive
at all quantiles, but the return rate and Sharpe ratio are not high. On one hand, this is due
to the limited number of transactions, and on the other hand, we did not set a stop-loss
line, which led to the consumption of previous gains during the long holding period. The
strategy’s net value curve is shown in Figure 12. It can be observed that the strategy at the
0.5 quantile has the highest net value, and regardless of the quantile, the overall net value
of the strategy shows a step-like upward trend, with some drawdowns at a few points and
intervals. This is partly because the trading decisions triggered are not 100% correct, and
partly due to the long-term holding without a stop-loss line, which consumes the gains.

As shown in Table 12, the annualized volatility is relatively high, but the drawdowns
in the net value curve of Figure 12 are not significant. It can be judged that the strategy
has a relatively high risk compared to the return, but the drawdown risk is controllable.
This indicates that by increasing the number of transactions or setting a stop-loss line,
the strategy’s returns can be increased, thereby improving the overall Sharpe ratio of the
strategy to a more desirable level.

Next, we compare the performance of pair trading strategies triggered by thresholds
derived from self-weighted quantile estimation and the variance multiplier method. The
variance multiplier approach serves as a benchmark due to its widespread use in practice.
Given that the residuals from the regression between the prices of two paired equities
follow a normal distribution, the variance multiplier is commonly used to determine
trading thresholds. To adapt to changing market conditions, we implement a rolling
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window approach, re-estimating the variance at each window and dynamically adjusting
the thresholds for the pair trading strategy. The rolling window length is set to match that
of the self-weighted quantile estimation to ensure consistency in threshold updates. The
performance of the variance multiplier-based strategy is reported in Table 13.

Table 13. Strategy return statistics at different variance multipliers.

Variance Multipliers 4.8 5.0 5.2 5.4

Total Return Rate (%) 0.002 0.002 0.003 0.001
Annualized Return Rate (×10−5%) 3.874 5.508 6.085 3.108
Annualized Volatility (%) 0.001 0.001 0.001 0.001
Sharpe Ratio 0.032 0.046 0.052 0.027

In terms of return performance, the self-weighted quantile estimation method sig-
nificantly outperforms the variance multiplier-based strategy. The former achieves total
return rates between 1.056% and 1.310%, whereas the latter yields a maximum of only
0.003%. Similarly, the annualized return rate for the self-weighted quantile approach re-
mains consistently higher (0.025% to 0.031%) compared to the variance-based strategy,
which produces returns on the order of 10−5%. These results indicate that self-weighted
quantile estimation is far more effective in generating cumulative and annualized returns,
making it a superior choice for return maximization.

On the risk side, the self-weighted quantile estimation strategy exhibits an annualized
volatility range of 0.184% to 0.228%, significantly higher than the near-zero volatility
observed in the variance multiplier-based approach. While the lower volatility in the latter
suggests greater stability, it may also indicate overly conservative risk constraints, which
limit return potential. The Sharpe ratio comparison further highlights this contrast: the
self-weighted quantile estimation method achieves Sharpe ratios between 0.111 and 0.167,
whereas the variance-based strategy reaches a maximum of just 0.052. Given that a higher
Sharpe ratio signifies better risk-adjusted returns, the self-weighted quantile estimation
method emerges as the more attractive option, offering a better balance between risk
and return.

Figure 12. Net value of statistical arbitrage strategy in backtesting period.

5. Conclusions
On the theoretical front, this paper introduces self-weighted quantile estimation into

the estimation of the drift parameters of the jump Ornstein–Uhlenbeck process, and proves
the asymptotic normality of the estimator under large sample properties in a statistical
sense. At the same time, through Monte Carlo simulation experiments, it verifies that
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compared to other estimators under this stochastic process, the self-weighted quantile
estimator has better stability and accuracy in estimation performance.

In the empirical part, this paper first verifies the existence of jumps in asset prices
(spreads) in the financial market, detects the direction and magnitude of asset price jumps
through the LM test, and then matches them with the jump Ornstein–Uhlenbeck process,
proving that the stochastic process with a jump term can better fit the jumps and other
phenomena existing in the actual financial market. Secondly, under the premise of being as
close as possible to the real market rules, this paper studies the statistical arbitrage strategy
under the high-frequency data of CSI 300 stock index futures, conducts multiple tests on
the related asset price sequences, sets reasonable trading trigger thresholds based on the
goal of maximizing the expected return per unit time of the trading cycle, and conducts
strategy backtesting at multiple quantiles. The backtesting results prove that the jump
Ornstein–Uhlenbeck process and self-weighted quantile method adopted in this paper
perform well in empirical tests. In the out-of-sample backtesting period of 2023, the number
of trading cycles for each strategy is 5, and all quantiles have achieved positive returns, with
an average total return rate of 1.17%. Thirdly, the net value curves of the strategies at each
quantile are similar, all showing a step-like upward trend, with no obvious drawdowns,
and the highest net value at the 0.5 quantile. Finally, due to the limited number of trading
times and the absence of a stop-loss line, the annualized return rate of the strategy is
relatively low compared to the annualized volatility, resulting in a lower Sharpe ratio, but
the drawdown risk is controllable. This indicates that by adjusting the number of trades
and setting a stop-loss line, the returns can be increased to some extent, thereby improving
the Sharpe ratio and achieving a more desirable level.

However, due to the focus and depth of our research, this paper has certain limitations
and potential directions for future study. As this paper focuses on methodology rather than
practical implementation, our empirical study does not take into account factors such as
capital constraints and liquidity issues in high-frequency pair trading, even though they are
crucial to trading performance. We plan to explore these aspects further in future research.
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