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This editorial of the Special Issue “Prostate Cancer: Recent Advances in Diagnostics
and Treatment Planning” aims to draw more attention to the broad and diverse field
of prostate cancer (PCa) diagnosis and the utilization of different diagnostic means to
improve clinical decision-making and treatment strategy planning. PCa is the second
most frequent malignancy in men [1]. Tumor aggressiveness varies, ranging from non-
aggressive tumors that may be safely monitored to poor prognosis tumors only suited for
palliative treatment. Undoubtedly, new imaging modalities such as magnetic resonance
imaging (MRI) and positron emission tomography (PET) with targeted tracers are more
sensitive than conventional imaging [2] and may result in stage migration and a natural
inclination toward altering clinical management. In contrast to other cancers, the PCa
community acknowledges that precision medicine has developed more slowly [3]. Genetic
counseling and germline testing can aid in the early detection and management of PCa.
Biomarkers based on urine, serum, and tissue increase PCa patient detection and facilitate
risk stratification.

Indications for prostate biopsy can be determined with the aid of MRI, which is also
essential for local staging. When combined with clinicopathological information, MRI
results in a more accurate prognosis, which may help with tailored patient care [4]. In
the case of localized PCa, MRI findings are associated with clinically relevant long-term
oncologic outcomes. The diagnosis of clinically significant PCa is improved by targeted
biopsies, as routine transrectal ultrasonography is not always accurate. Additionally,
the evidence supporting the addition of MRI-targeted biopsies to systematic biopsies
necessitates a review of the active surveillance (AS) inclusion criteria and a shift in research
focus away from one-size-fits-all protocols and toward more flexible and personalized
risk-based AS approaches [5]. On the other hand, modern, less expensive ultrasound-based
techniques can deliver high-quality imaging in the absence of an MRI [6–8].

Prostate-specific membrane antigen (PSMA) PET has been adopted for staging ag-
gressive tumors. Compared with traditional imaging, PSMA PET offers a reasonably good
sensitivity for detecting regional and extrapelvic metastases. Additionally, it can play a sig-
nificant part in the early diagnosis of extraprostatic disease and help with surgical planning.
Furthermore, PSMA PET has been shown to be a valuable technique for planning definitive
radiation therapy in patients who have not yet received treatment [9]. Furthermore, even
at low PSA levels, PSMA PET is highly effective at detecting and localizing post-treatment
biochemical recurrence [10]. Molecular PET, in the post-radical prostatectomy setting, leads
to management modifications to prepare patients for salvage radiotherapy by detecting
lesions in anatomical locations not typically included in the usual postoperative radio-
therapy fields [11]. Finally, PSMA-PET provides more accurate staging for nonmetastatic
castrate-resistant PCa, among other applications. In particular, target expression evaluation
for PSMA radioligand therapy and target localization for metastasis-directed therapy show
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potential. Future trials must clarify the potential for this diagnostic tool to translate it into
an oncologic benefit [12].

Genetic alterations are associated with differential prognosis and clinical phenotypes
in metastatic PCa. Blood biomarkers could assist clinicians in managing patients with
localized disease and provide the most robust degree of evidence for predicting more
aggressive Pca [13]. Liquid biopsies are valuable as a source of prognostic, predictive,
and response biomarkers in PCa. Most clinical applications have been developed in the
advanced metastatic setting. These minimally invasive tests can guide diagnosis and
treatment selection [14]. However, before therapeutic adoption, newly discovered data on
these putative predictive biomarkers must be confirmed in biomarker-driven randomized
controlled trials [15].

Together, these methods produce risk calculators/nomograms that can predict the risk
of developing cancer, the likelihood that the disease will be aggressive, and the likelihood
that the patient will respond well to therapy [16,17]. However, we need to learn how
to appropriately interpret them and to treat patients while keeping in mind the clinical
objectives, such as overall survival, disease recurrence, and quality of life, that the treatment
intended to attain. This can only be achieved with sufficiently large studies of patients
who are followed up for a long time, even if they are observational studies. This can
reduce side effects, expenses, and resource usage while minimizing the danger of over- or
under-treating patients.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.
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Could 68Ga-PSMA PET/CT Evaluation Reduce the Number of
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massimo.ippolito@aoec.it (M.I.)

* Correspondence: piepepe@hotmail.com; Tel.: +39-9-5726-3285; Fax: +39-9-5726-3259

Abstract: Background: To evaluate the accuracy of 68Ga-prostate specific membrane antigen (PSMA)
PET/CT in the diagnosis of clinically significant prostate cancer (csPCa) (Grade Group > 2) in men
enrolled in Active Surveillance (AS) protocol. Methods: From May 2013 to May 2021, 173 men with
very low-risk PCa were enrolled in an AS protocol study. During the follow-up, 38/173 (22%) men
were upgraded and 8/173 (4.6%) decided to leave the AS protocol. After four years from confirmatory
biopsy (range: 48–52 months), 30/127 (23.6%) consecutive patients were submitted to mpMRI and
68Ga-PSMA PET/CT scan before scheduled repeated biopsy. All the mpMRI (PI-RADS > 3) and
68Ga-PET/TC standardised uptake value (SUVmax) > 5 g/mL index lesions underwent targeted
cores (mpMRI-TPBx and PSMA-TPBx) combined with transperineal saturation prostate biopsy
(SPBx: median 20 cores). Results: mpMRI and 68Ga-PSMA PET/CT showed 14/30 (46.6%) and
6/30 (20%) lesions suspicious for PCa. In 2/30 (6.6%) men, a csPCa was found; 68Ga-PSMA-TPBx vs.
mpMRI-TPBx vs. SPBx diagnosed 1/2 (50%) vs. 1/2 (50%) vs. 2/2 (100%) csPCa, respectively. In
detail, mpMRI and 68Ga-PSMA PET/TC demonstrated 13/30 (43.3%) vs. 5/30 (16.7%) false positive
and 1 (50%) vs. 1 (50%) false negative results. Conclusion: 68Ga-PSMA PET/CT did not improve the
detection for csPCa of SPBx but would have spared 24/30 (80%) scheduled biopsies showing a lower
false positive rate in comparison with mpMRI (20% vs. 43.3%) and a negative predictive value of
85.7% vs. 57.1%, respectively.

Keywords: prostate cancer; 68Ga-PSMA PET/CT; mpMRI; targeted prostate biopsy; active surveillance

1. Introduction

In the last decade, active surveillance (AS) has become an alternative to radical treat-
ment of low-/very low-risk prostate cancer (PCa), focusing on prevention of overtreatment
(50% of the cases in screening studies) [1–3]. Multiparametric magnetic resonance imaging
(mpMRI) has demonstrated good accuracy in diagnosing clinically significant PCa (csPCa),
particularly if the cancer is located in the anterior prostate [4]; therefore, mpMRI is now
strongly recommended in AS follow-up [5]. However, the time of confirmatory biopsy has
been established within one year from initial diagnosis [6], and there are no data regarding
the number of systematic needle cores and the best imaging procedure to use for omitting
or postponing scheduled repeated biopsies.

J. Clin. Med. 2022, 11, 3473. https://doi.org/10.3390/jcm11123473 https://www.mdpi.com/journal/jcm4
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Recently, prostate-specific membrane antigen (PSMA) inhibitors conjugated with the
radionuclides 68Ga and 18F-fluoride have been well-explored and successfully translated
for the clinical diagnosis of PCa [7,8]. Moreover, tumour uptake, which represents PSMA
expression, results were highly correlated with the Gleason score of the primary prostatic
tumour [9]. However, in a limited number of studies focused on the primary prostatic
lesion, 68Ga-PSMA positron emission tomography/computed tomography (PET/CT) has
been shown to be sensitive for the detection of primary prostatic lesions and regional
lymphadenopathy [10–12]. Recently, Raveethiran et al. suggested that the addition of a
diagnostic 68Ga-PSMA PET/CT to mpMRI can improve the detection of significant prostate
cancer and improve the ability to identify men suitable for active surveillance [13].

The aim of this study was to prospectively evaluate the diagnostic accuracy of
68Ga-PSMA PET/CT and mpMRI in the diagnosis of csPCa (Grade Group > 2) [14] in men
enrolled in AS protocol.

2. Materials and Methods

From May 2013 to May 2021, 173 men aged between 52 and 73 (median age 63) with
very low-risk PCa were enrolled in an AS protocol study. After institutional review board
and ethical committee approval were granted, informed consents were obtained from all
participants included in the study. Presence of the following criteria defined eligibility: life
expectancy greater than 10 years, clinical stage T1C, PSA below 10 ng/mL, PSA density
(PSA-D) < 0.20, <2 unilateral positive biopsy cores, Gleason score 6/International Society
of Urologic Pathology (ISUP) Grade Groups (GG) 1 [14] and maximum core percentage of
cancer (GPC) < 50% (3). All the patients underwent confirmatory biopsy six months after
the PCa diagnosis and mpMRI evaluation. During the follow-up, 38/173 (22%) men were
upgraded and 8/173 (4.6%) men autonomously decided to leave the AS protocol. After
four years from confirmatory biopsy (range: 48–52 months), also in the presence of stable
clinical parameters, the last 30/127 (23.6%) consecutive patients were submitted to mpMRI
and 68Ga-PET/CT imaging examinations before scheduled repeated biopsy.

All mpMRI examinations were performed using a 3.0 Tesla scanner (ACHIEVA 3T;
Philips Healthcare, Best, The Netherlands) equipped with 16 surface channel phased-array
coils placed around the pelvic area with the patient in the supine position; multi-planar
turbo spin-echo T2-weighted (T2W), axial diffusion weighted imaging (DWI) and axial
dynamic contrast enhanced (DCE) were performed for each patient. The mpMRI lesions
characterised by Prostate Imaging Reporting and Data System (PI-RADS) version 2 (4)
scores > 3 were considered suspicious for cancer; two radiologists blinded to pre-imaging
clinical parameters evaluated the mpMRI data separately and independently; moreover,
one urologist with more than 25 years of experience performed the biopsy procedure [6].
The data were collected following the Screening Tool to Alert to Right Treatment (START)
criteria [15].

PET/CT imaging was performed using a CT-integrated PET scanner (Biograph 6;
Siemens, Knoxville, TN, USA). 68Ga-PSMA was prepared with a fully automated radio-
pharmaceutical synthesis device based on a modular concept (Eckert & Ziegler Eurotope,
Berlin, Germany). 68Ga-PSMA-11 was given to patients via an intravenous bolus (mean,
144 ± 12 MBq; range, 122–188 MBq), and the PET acquisition was started at a mean of 58
± 12 min (range, 50–81 min) afterward. Scans were acquired in 3-dimensional mode with
an acquisition time of 3 min per bed position. Emission data were corrected for randoms,
dead time, scatter and attenuation and were reconstructed iteratively using ordered-subsets
expectation maximisation (4 iterations, 8 subsets) followed by a post-reconstruction smooth-
ing Gaussian filter (5 mm in full width at half maximum). For attenuation correction, a
low-dose unenhanced CT scan was performed from the skull base to the middle of the
thigh. Images were processed to obtain PET, CT, and PET-CT fusion sections in the axial,
coronal, and sagittal planes with a thickness of approximately 0.5 cm by two experienced
nuclear medicine specialists, who were blinded to the clinical data. The location of focal
uptake on 68Ga-PSMA PET/CT (Figure 1), three-dimensional size, and standardised up-
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take value (SUVmax) values were reported on a per-lesion basis with a sexstant scheme
(apex, midgland and base, each split into left and right) [7].
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Figure 1. 68Ga-prostate-specific membrane antigen (PSMA) PET/CT: presence of high suspicious
area of prostate cancer in the left lobe of prostate gland (axial valuation) with a standardised up-
take value (SUVmax) equal to 19.8 g/mL. Targeted biopsy demonstrated the presence of a Grade
Group 2 prostate cancer.

All the mpMRI (PI-RADS score > 3) and 68Ga-PET/TC index lesions (SUVmax > 5 g/mL) [15]
underwent targeted cores (mpMRI-TPBx and PSMA-TPBx: four cores) combined with
saturation prostate biopsy (SPBx: median 20 cores; range 18–22). The procedure was
performed transperineally using a tru-cut 18-gauge needle (Bard; Covington, GA, USA)
under sedation and antibiotic prophylaxis [16]. The prostate targeted cores were done
using an Hitachi 70 Arietta ecograph, Chiba, Japan) supplied by a bi-planar trans-rectal
probe [17] performing a free-hand cognitive approach.

3. Results

The clinical parameters of the 30 men enrolled in the active surveillance protocol are
listed in Table 1. No selection criteria were used for patients submitted to PET-PSMA
evaluation, and no significant differences in terms of clinical parameters were found
between these patients and the entire active surveillance group.

Multiparametric MRI and 68Ga-PSMA showed 14/30 (46.6%) and 6/30 (20%) lesions
suspicious for PCa those were submitted to targeted cores combined with SPBx. In detail,
mpMRI PI-RADS score resulted < 2 vs. 3 vs. 4 in 16 (53.3%) vs. 12 (40%) vs. 2 (6.7%) men.
The average intraprostatic SUVmax and tumor dimension was 4.8 g/mL (range: 3.2–19.8)
and 7.3 mm (range 4–12 mm), respectively; only 6/30 (20%) men had a SUVmax > 5 g/mL
(range: 5.1–19.8 g/mL), moreover, 68Ga-PSMA PET/TC showed two suspicious areas in
correspondence of iliac ala and spinal cord; were shown to be negative for metastases
in targeted MRI for bone evaluation. In 2/30 (6.6%) men, a csPCa (GG2) was found:
both patients had a GPC equal to 20% with a number of positive cores equal to 3 and 4,
respectively. PSA density was 0.15 and 0.11.

6



J. Clin. Med. 2022, 11, 3473

Table 1. Clinical parameters of 30 men with low-risk prostate cancer (PCa) submitted to scheduled biopsy.

Clinical and Biopsy
Findings

GG1
30 Patients

Median PSA
(range: 4.5–122 ng/mL) 4.6

Median PSA density
(range: 0.10–0.21) 0.15

Median GPC (range: 10–50%) 40%

Median number of positive cores
Percentage of positive cores

2
9%

mpMRI
PI-RADS score > 3

13
(43.3%)

68Ga-PSMA PET/CT
suspicious for PCa

6
(20%)

Legend: GG: International Society of Urological Pathology Grade Group; mpMRI: multiparametric magnetic
resonance imaging; PSA: prostate-specific antigen; GPC: greatest percentage of cancer; PSMA: Prostate spe-
cific membrane antigen; PI-RADS: prostate imaging reporting and data system; PET/TC: positron emission
tomography/computed tomography.

68Ga-PSMA-TPBx vs. mpMRI-TPBx vs. SPBx diagnosed 1/2 (50%) vs. 1/2 (50%) vs.
2/2 (100%) csPCa, respectively. In detail, PET/CT PSMA and mpMRI missed the diagnosis
of csPCa in two different patients: one patient had a PI-RADS score of 2 and SUVmax
of 6.8 g/mL; the man not detected by PSMA PET had a PI-RADS of score 3 at moMRI
and SUVmax equal to 4.5 g/mL at 68Ga-PET/TC. In detail, mpMRI and 68Ga-PSMA
PET/TC demonstrated 13/30 (43.3%) vs. 5/30 (16.7%) false positive and 1 (50%) vs. 1 (50%)
false negative results. In addition, mpMRI and 68Ga-PSMA PET/TC showed a negative
predictive value (NPV) in the diagnosis of csPCa equal to 57.1 and 85.7%, respectively.

4. Discussion

The estimated risk-free treatment at 5, 10 and 15 years in men enrolled in AS with
GG1 PCa is equal to 76, 64 and 58% [1]; in the last years, many studies have been reported
suggesting the best protocol of follow up to reduce the number on scheduled prostate
biopsies [1,2]. In this respect, although mpMRI is strongly recommended in the revaluation
of men in AS [2,5], scheduled systematic repeated prostate biopsies are still recommended
in addition to targeted mpMRI/TRUS fusion biopsy to reduce the false negative rate
for csPCa of mpMRI equal to 20% of the cases [17]. At the same time, the number of
cores performed at initial repeat evaluation is directly correlated with a lower risk of
reclassification [6] during the follow-up, allowing to postpone scheduled repeated prostate
biopsy in favour of clinical findings (i.e., PSA density, risk calculator) [18] and imaging
revaluation (mpMRI) [5,16,19].

Recently, 68Ga-PSMA-PET/CT has been suggested to improve the clinical stadiation
of high-risk PCa and disease recurrence [7]; at the same time, PSMA PET/CT has been
proposed for the diagnosis of primary intraprostatic cancer [15]. The presence of focal
uptake on PSMA-PET/CT, the standardised uptake value (SUVmax) and the maximal
dimensions of PET-avid lesions have been correlated with the presence of csPCa [20,21].
There is a range of proposed cutoffs to detect csPCa from SUVmax 3.15 to up SUVmax
9.1 [22,23]; the concordance between preoperative PSMA PET/TC evaluation (SUVmax,
dimension of the lesion), and definitive prostate specimen ranges from 81.2% (24) to
96% [24–28]. Moreover, PSMA PET/MRI seems to reduce the false positive rate of PET/CT
(about 8% of cases) [26].

To our knowledge, this is the first study that prospectively evaluated the role of
68Ga- PSMA PET/CT in men enrolled in prostate cancer AS protocols [29]. In our series,
68Ga-PSMA-TPBx vs. mpMRI-TPBx vs. SPBx diagnosed 1/2 (50%) vs. 1/2 (50%) vs.
2/2 (100%) csPCa, respectively. In detail, mpMRI and 68Ga-PSMA PET/TC demonstrated
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13/30 (43.3%) vs. 5/30 (16.7%) false positive and 1 (50%) vs. 1 (50%) false negative results.
In addition, mpMRI and 68Ga-PSMA PET/TC showed an NPV in in the diagnosis of csPCa
equal to 57.1 and 85.7%, respectively.

Diagnostic imaging should not replace scheduled prostate biopsy but is mandatory
to detect targeted lesions suspicious for csPCa. Several biochemical parameters, such as
thymidine kinase I, mindin or PHI, could be helpful in decrease the ratio of scheduled
biopsy. We have no data about these parameters; however, we evaluated our patients
according to PSA density, as suggested by latest EAU guidelines.

Among our results, some considerations should be made. First, the number of patients
evaluated was low; secondly, the results should be evaluated in the entire prostate specimen
and not in biopsy histology. A more detailed histological evaluation of patients who
underwent biopsy upstaging would be of interest, for example by adding supplementary
staining for PSMA on the biopsy samples. However, this type of staining is not routinely
performed at our institution. Third, the low rate of reclassification (6.6% of the cases) could
be explained because the patients previously underwent SPBx plus mpMRI evaluation
before confirmatory biopsy. Four, 68Ga-PSMA PET/TC evaluation could be proposed
in men with negative mpMRI or in the presence of claustrophobia or cardiac pacemaker.
Finally, a 68Ga-PSMA PET/TC fusion platform would have increased the accuracy of
targeted prostate biopsy.

In conclusion, 68PSMA PET/CT did not improve the detection for csPCa of SPBx
(1 false negative result equal to 50% of the cases); at the same time, 68Ga-PSMA PET/CT
would have spared 24/30 (80%) scheduled biopsies showing a lower false positive rate in
comparison with mpMRI (20% vs. 43.3%) and a better NPV (85.7 vs. 57.1%).
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SUVmax values of Ga-68-PSMA PET/CT scan predict the clinically significant prostate cancer? Nucl. Med. Commun. 2019, 40,
86–91. [CrossRef] [PubMed]

23. Rüschoff, J.H.; Ferraro, D.A.; Muehlematter, U.J.; Laudicella, R.; Hermanns, T.; Rodewald, A.K.; Moch, H.; Eberli, D.; Burger, I.A.;
Rupp, N.J. What’s behind 68Ga-PSMA-11 uptake in primary prostate cancer PET? Investigation of histopathological parameters
and immunohisto-chemical PSMA expression patterns. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 4042–4053. [CrossRef] [PubMed]

24. Franklin, A.; Yaxley, W.J.; Raveenthiran, S.; Coughlin, G.; Gianduzzo, T.; Kua, B.; McEwan, L.; Wong, D.; Delahunt, B.;
Egevad, L.; et al. Histological comparison between predictive value of preoperative 3-T multiparametric MRI and 68Ga-PSMA
PET/CT scan for pathological outcomes at radi-cal prostatectomy and pelvic lymph node dissection for prostate cancer. BJU Int.
2021, 127, 71–79. [CrossRef]

9



J. Clin. Med. 2022, 11, 3473

25. Liu, Y.; Yu, H.; Liu, J.; Zhang, X.; Lin, M.; Schmidt, H.; Gao, J.; Xu, B. A Pilot Study of 18F-DCFPyL PET/CT or PET/MRI and
Ultrasound Fusion Targeted Prostate Biopsy for Intra-Prostatic PET-Positive Lesions. Front. Oncol. 2021, 11, 612157. [CrossRef]

26. Kalapara, A.A.; Nzenza, T.; Pan, H.Y.C.; Ballok, Z.; Ramdave, S.; O’Sullivan, R.; Ryan, A.; Cherk, M.; Hofman, M.S.;
Konety, B.R.; et al. Detection and localisation of primary prostate cancer using 68 gallium prostate-specific membrane antigen
positron emission tomography/computed tomography com-pared with multiparametric magnetic resonance imaging and
radical prostatectomy specimen pathology. BJU Int. 2020, 126, 83–90.

27. Xue, A.L.; Kalapara, A.A.; Ballok, Z.E.; Levy, S.M.; Sivaratnam, D.; Ryan, A.; Ramdave, S.; O’Sullivan, R.; Moon, D.;
Grummet, J.P.; et al. 68Ga-Prostate-Specific Membrane Antigen Positron Emission Tomography Maximum Standardized Uptake
Value as a Predictor of Gleason Pattern 4 and Pathological Upgrading in Intermediate-Risk Prostate Cancer. J. Urol. 2021, 207,
341–349. [CrossRef]

28. Zhang, L.L.; Li, W.C.; Xu, Z.; Jiang, N.; Zang, S.M.; Xu, L.W.; Huang, W.B.; Wang, F.; Sun, H.B. 68Ga-PSMA PET/CT targeted biopsy
for the diagnosis of clinically significant prostate cancer compared with transrectal ultrasound guided biopsy: A prospective
randomized sin-gle-centre study. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 483–492. [CrossRef]

29. Bhanji, Y.; Rowe, S.P.; Pavlovich, C.P. New imaging modalities to consider for men with prostate cancer on active surveillance.
World J. Urol. 2021, 40, 51–59. [CrossRef]

10



Journal of

Clinical Medicine

Review

Role of Deep Learning in Prostate Cancer Management: Past,
Present and Future Based on a Comprehensive Literature Review
Nithesh Naik 1,2, Theodoros Tokas 3, Dasharathraj K. Shetty 4,*, B.M. Zeeshan Hameed 2,5,*, Sarthak Shastri 6,
Milap J. Shah 2,7, Sufyan Ibrahim 2,8, Bhavan Prasad Rai 2,9, Piotr Chłosta 10

and Bhaskar K. Somani 2,11

1 Department of Mechanical and Industrial Engineering, Manipal Institute of Technology,
Manipal Academy of Higher Education, Manipal 576104, Krnataka, India; nithesh.naik@manipal.edu

2 iTRUE (International Training and Research in Uro-Oncology and Endourology) Group,
Manipal 576104, Karnataka, India; drmilapshah@gmail.com (M.J.S.); sufyan.ibrahim2@gmail.com (S.I.);
urobhavan@gmail.com (B.P.R.); bhaskarsomani@yahoo.com (B.K.S.)

3 Department of Urology and Andrology, General Hospital Hall i.T., Milser Str. 10, 6060 Hall in Tirol, Austria;
ttokas@yahoo.com

4 Department of Humanities and Management, Manipal Institute of Technology, Manipal Academy of Higher
Education, Manipal 576104, Karnataka, India

5 Department of Urology, Father Muller Medical College, Mangalore 575002, Karnataka, India
6 Department of Information and Communication Technology, Manipal Institute of Technology, Manipal

Academy of Higher Education, Manipal 576104, Karnataka, India; sarthak.shastri@learner.manipal.edu
7 Robotics and Urooncology, Max Hospital and Max Institute of Cancer Care, New Delhi 110024, India
8 Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
9 Department of Urology, Freeman Hospital, Newcastle upon Tyne NE7 7DN, UK
10 Department of Urology, Jagiellonian University in Krakow, Gołębia 24, 31-007 Kraków, Poland;
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Abstract: This review aims to present the applications of deep learning (DL) in prostate cancer
diagnosis and treatment. Computer vision is becoming an increasingly large part of our daily lives
due to advancements in technology. These advancements in computational power have allowed
more extensive and more complex DL models to be trained on large datasets. Urologists have found
these technologies help them in their work, and many such models have been developed to aid in
the identification, treatment and surgical practices in prostate cancer. This review will present a
systematic outline and summary of these deep learning models and technologies used for prostate
cancer management. A literature search was carried out for English language articles over the last
two decades from 2000–2021, and present in Scopus, MEDLINE, Clinicaltrials.gov, Science Direct,
Web of Science and Google Scholar. A total of 224 articles were identified on the initial search. After
screening, 64 articles were identified as related to applications in urology, from which 24 articles
were identified to be solely related to the diagnosis and treatment of prostate cancer. The constant
improvement in DL models should drive more research focusing on deep learning applications. The
focus should be on improving models to the stage where they are ready to be implemented in clinical
practice. Future research should prioritize developing models that can train on encrypted images,
allowing increased data sharing and accessibility.

Keywords: artificial intelligence; deep learning; convolutional neural network; computer-aided
detection; medical imaging; Gleason grading

1. Introduction

Artificial intelligence (AI) is a broad term that incorporates machine learning (ML),
in which an algorithm analyzes features in a separate dataset, based on raw input data,
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without being explicitly programmed, and returns a specific classification [1]. Deep learn-
ing (DL) is a subset of ML which uses multilayer artificial neural networks (ANNs) to
learn hierarchical representations. Unlike classic ML algorithms such as support vector
networks (SVN) and random forest (RF), DL learns features from input data without relying
substantially on domain knowledge developed by engineers [2]. Deep learning uses neural
networks with many layers where the first layer is the input layer connected to multiple
hidden layers that are finally connected to the output layer. Neural networks use a series
of algorithms to recognize hidden relationships in a data set by a process similar to the
human brain. Each of the interconnected layers comprises numerous nodes, which are
called perceptrons. Model perceptrons are arranged to form an interconnected network in
a multi-layered perceptron. The input layer, upon receiving the input, transfers patterns
obtained to the hidden layers. The hidden layers are activated based on the input parame-
ters received. Hidden layers fine-tune the inputs received until the error is minimal, after
which the values of the neurons are passed to the output layer. The activation function
calculates the output value, and the neural network produces its result.

Deep learning models help in diagnosing and treating urological conditions and
have proved their ability to detect prostate cancer, bladder tumors, renal cell carcinoma,
along with ultrasound image analysis. A general schematic diagram of DL models can
be seen in Figure 1. Deep learning models have also displayed their ability to detect the
needle/trocar pressure during insertion, which is an essential aspect of laparoscopic and
robotic urological surgeries.
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Supervised learning and unsupervised learning are the two main approaches in AI and
machine learning. The primary distinction between the two approaches is the reliance on
labelled data in the first, as opposed to the latter. Though the two approaches share many
similarities, they also have distinct differences. Figure 2 shows the distinction between the
supervised learning and unsupervised learning approach.
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What is supervised learning?
The use of labelled datasets distinguishes supervised learning from other forms of

machine learning. Using these datasets, algorithms can be trained to better classify data
or predict results. The model’s accuracy can be measured and improved over time using
labelled inputs and outputs.

Based on data mining, supervised learning can be categorised into two types: classifi-
cation and regression: (a) classification tasks rely on an algorithm to reliably assign test
data to specified groups. For example: supervised learning algorithms can differentiate
spam from the rest of the incoming emails. Classification methods include linear classifiers,
support vector machines, decision trees, and random forests. (b) Regression is used to learn
about the relationship between dependent and independent variables. Predicting numerical
values based on various data points is possible with regression models. Linear regression,
logistic regression, and polynomial regression are all common regression algorithms.

What is unsupervised learning?
For the analysis and clustering of unlabeled data sets, unsupervised learning makes

use of machine learning methods. These algorithms, which are referred to as ‘unsupervised’,
find hidden patterns in data without the aid of human intervention. Three key tasks
are performed by unsupervised learning models: (a) clustering, (b) association, and (c)
dimensionality reduction.

Using data mining techniques such as clustering, it is possible to create groups of
unlabeled data that are similar or dissimilar. Similar data points are grouped together
according to the K value in K-means clustering algorithms. This method is useful for
a variety of things, including image segmentation and image compression. Another
unsupervised learning technique is association, which employs a separate set of criteria to
discover connections among the variables in a dataset.

Dimensionality reduction is a learning approach used when the number of features
(or dimensions) in a dataset is too large. It minimizes the quantity of data inputs while yet
maintaining the integrity of the data. To enhance image quality, auto encoders often utilize
this technique to remove noise from visual data before it is processed further.
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Over the last decade, imaging technology has significantly improved, which has made
it easier for us to apply computer vision technologies for the classification and detection
of diseases [3]. With the advancements in graphics processing units (GPUs) and their
computational power to perform parallel processing, computer vision processing is more
accessible today. Deep learning is also being used for data management, chatbots, and
other facilities that aid in medical practice. Natural language processing (NLP) practices
used in finding patterns in multimodal data have been shown to increase the learning
system’s accuracy of diagnosis, prediction, and performance [4]. However, identifying
essential clinical elements and establishing relations has been difficult as these records are
usually unordered and disorganized. Urology has been at the forefront of accepting newer
technologies to achieve better patient outcomes. This comprehensive review aims to give
an insight into the applications of deep learning in Urology.

2. Search Strategy

In October 2021, Pubmed/MEDLINE, Scopus, Clinicaltrials.gov, Science Direct, Web
of Science and Google Scholar were used to undertake a review of all English language
literature published in the previous two decades (2000–2021). The search technique was
based on PICO (Patient Intervention Comparison Outcome) criteria, in which patients
were treated with AI models (I) or classical biostatistical models (C), and the efficacy of AI
models was evaluated (O) [5].

Specifically, the search was conducted by using a combination of the following terms:
‘artificial intelligence’, ‘AI’, ‘machine learning’, ‘ML’, ‘convolutional networks’, ‘CNN’,
‘deep learning’, ‘DL’, ‘magnetic resonance imaging’, ‘prostate’, ‘prostate cancer’, ‘MRI’,
‘Sorensen–Dice coefficient’, ‘DSC’, ‘area under the ROC curve’, ‘AUC’, ‘Sorensen–Dice
index’, ‘SDI’ and ‘computed tomography’, ‘CT’ [6].

2.1. Inclusion Criteria

1. Articles on the application of deep learning in prostate cancer diagnosis and treatment.
2. Full-text articles, clinical trials and meta-Analysis on outcomes of analysis in Urology

using deep learning.

2.2. Exclusion Criteria

1. Animal, laboratory, or cadaveric studies
2. Reviews, editorials, commentaries or book chapters

The literature review was carried out using the inclusion and exclusion criteria men-
tioned. Articles were screened based on the titles and abstracts. Articles were then selected
and their entire text was analyzed. For further screening of other published literature, the
references list of the selected articles was individually and manually checked.

3. Results
Evidence Synthesis

A total of 224 distinct articles were discovered during the initial search. Following the
initial screening, 97 articles remained, with 64 left after a second screening as related to
applications of deep learning in Urology. Among these articles, 24 were identified to be
solely related to prostate cancer, these abstracts satisfied our inclusion criteria and were then
included in the final review. The summary of all the previous studies from the literature is
shown in Tables 1 and 2 on the diagnosis and treatment of prostate cancer, respectively.
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4. Discussion
4.1. Diagnosis of Prostate Cancer Using MRI Images

Eleven studies have evaluated the application of deep learning in diagnosing
prostate cancer.

Takeuchi et al. (2019) developed a DL model to predict prostate cancer using a multi-
layer ANN. The model was trained on images obtained from 232 patients and validated its
accuracy on images obtained from 102 patients. On a test dataset, the model achieved AUC
of 0.76, thereby, suggesting that neural network achieved better results as compared to a
logistic regression model. However, this accuracy needs to be improved to be implemented
in clinical practice [7].

Khosravi et al. (2021) used DL models to differentiate malignant and benign tumors
and high- and low-risk tumors which achieved an AUC of 0.89 and 0.78, respectively. The
study concluded that new images captured did not require manual segmentation and could
be implemented in clinical practice [14].

Hiremath et al. (2020) used diffusion-weighted imaging fitted with monoexponen-
tial function, ADCm, employing a deep learning architecture (U-Net) to investigate the
short-term test-retest repeatability of U-Net in slice- and lesion-level identification and
segmentation of clinically significant prostate cancer (csPCa: Gleason grade group > 1)
(U-Net). The training dataset included 112 PCa patients who had two prostate MRI exams
on the same day. Two U-Net-based CNNs were trained using this dataset. The study
performed three-fold cross-validation on the training set and evaluated its performance
and repeatability on testing data. The CNNs with U-Net-based architecture demonstrated
an intraclass correlation coefficient (ICC) between 0.80–0.83, agreement of 66–72%, and
DSC of 0.68–0.72 for a slice- and lesion-level detection. These findings lay the groundwork
for DL architecture’s test-retest and repeatability in identifying and segmenting clinically
relevant prostate cancer on apparent diffusion coefficient maps. [11].

To summarize, MR images are most commonly used to study the applications of DL
in image-based diagnosis of prostate cancer (PCa). Though the accuracy of the DL models
appears to be satisfactory, the generalizability of the results across varied demographics
still needs to be tested before implementing into general clinical practice.

4.2. Histopathological Diagnosis of Prostate Cancer Using DL Models

Three studies have evaluated the application of deep learning in the diagnosis of
prostate cancer.

Kott et al. (2019) developed a DL algorithm for histopathologic diagnosis. They also
performed Gleason grading of the prostate cancer biopsies. This histopathologic diagnosis
and Gleason grading process are considered lengthy and time-consuming. Using ML
models, this process can be made significantly faster and more efficient. The study was
performed using 85 prostate biopsies from 25 patients with further magnification of up to
20x performed. The study used a deep residual CNN model with fivefold cross-validation.
The DL model achieved 91.5 and 85.4% accuracy at coarse and fine-level classification,
respectively. The study concluded that the model achieved excellent performance for the
diagnosis as mentioned earlier; however, it needs to be tested on a larger sample size for
external validation [18].

Lucas et al. (2019) performed a study using DL models for automatic Gleason pattern
classification to identify grade groups from prostate biopsies. The study used a dataset
containing 96 prostate biopsies from 38 patients. The Inception-v3 convolutional neural
network was trained to generate probability maps. The model has a 92% accuracy in distin-
guishing between non-atypical and malignant regions, with a sensitivity and specificity of
90 and 93%, respectively. The study successfully demonstrates the feasibility of training
CNN models to differentiate between Gleason patterns in heterogeneous biopsies [19].
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The DL models have shown promising results in the histopathological diagnosis of
PCa. This can definitely be added as an adjunct tool for the histopathologists to reduce the
burden in terms of time and workload. However due to lack of external validation of these
models, their applicability cannot be generalized as of yet.

4.3. Diagnosis of Prostate Cancer Using MR Based Segmentation Techniques

Four studies have evaluated the application of DL in the diagnosis of prostate cancer.
Lai et al. (2021) developed a DL CNN model to segment prostate zones and cancer

regions from MRI images. The study was performed using the PROSTATEx dataset
containing MRI scans from 204 patients. A SegNet model was modified and fine-tuned
to perform adequately on the dataset. The study achieved a dice similarity coefficient of
90.45% for the transition zone, 70.04% for the peripheral zone, and 52.73% for the prostate
cancer region. The study concluded that automatic segmentation using a DCNN model
has the potential to assist in prostate cancer diagnosis [21].

Sloun et al. (2021) performed prostate segmentation of transrectal ultrasound using the
DL model on MRI images. The study used three datasets with MRI-transrectal ultrasound
images collected at different institutions. The study trained a U-Net model on the dataset of
436 images and achieved a median accuracy of 98%. While performing zonal segmentation,
the model achieved a pixel-wise accuracy of 97 and 98% for the peripheral and transition
images. The model can also self-assess its segmentation, allowing it to identify incorrect
segmentations swiftly. The process of performing manual segmentation of prostate MRI
images places a burden on clinicians. The authors concluded that using DL models can
allow for fast and accurate segmentation of MRI images from different scanners [22].

Schelb et al. (2020) produced a comparison of prostate MRI lesion segmentation
between a DL model and multiple radiologists. The study was performed using MRI
images collected from 165 patients suspected to have prostate cancer. The study used U-
Net models trained on the dataset of MRI images to perform segmentation. The mean Dice
coefficient for manual segmentation was between 0.48–0.52, while the U-Net segmentations
exhibited a Dice coefficient of 0.22. The authors concluded that smaller segmentation
sizes could explain the lower Dice coefficients of the U-Net model. They also discuss how
the overlapping lesions between multiple rates can be used as a secondary measure for
segmentation quality in future studies [23].

Soerensen et al. (2021) performed a study to determine if DL improves the speed
and accuracy of prostate gland segmentation from MRI images. The study used images
from 905 subjects who underwent prostate MRI scans at 29 institutions. The study trained
a ProGNet model on 805 cases and tested it on 100 independent and 56 external cases.
The study found that the ProGNet model outperformed the U-Net model. The study also
found that the ProGNet model achieved a Dice similarity coefficient of 0.93, outperforming
radiology technicians, producing results at 35 s/case. The study concluded that DL models
could be used for segmentation in targeted biopsy in routine urological clinical practice [24].

As proven, ProGNet model outperformed not only the U-Net model but also the
radiology technicians in terms of speed and accuracy. However, it should be noted that
authors have not compared the ProGNet model to trained and experienced urologists
and radiologists. Furthermore, the accuracy of the model has to be tested across different
MRI scanners.

4.4. Diagnosis of Prostate Cancer Using CT Images

Four studies have evaluated the application of DL in the diagnosis of prostate cancer
and prostatectomy. Polymeri et al. (2019) used a DL algorithm to automate prostate cancer
quantification on positron emission tomography–computed tomography (PET/CT) scans.
The study looked at the possibility of PET/CT measurements as prognostic biomarkers. The
training of the DL model was performed on CT scan images of 100 patients. In 45 patients
with biopsy-proven hormone-naive prostate cancer, the DL algorithm was validated. The
model was evaluated based on the Sørensen–Dice index (SDI) score. The SDI scores
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achieved were 0.78 and 0.79 for automatic and manual volume segmentation, respectively.
The study demonstrated DL applications in quantifying PET/CT prostate gland uptake
and its association with overall survival. The results obtained showed agreement between
automated and manual PET/CT measurements. The DL model demonstrated that PET/CT
indicators were strongly linked to overall survival [26].

Ma et al. (2017) performed automatic prostate segmentation using DL and multi-
atlas fusion. A dataset of 92 prostate CT scans was used to conduct and assess the study.
When compared to the radiologists’ manual segmentation, the model had a Dice similarity
coefficient of 86.80%. The study concluded that the DL-based method can provide a
valuable tool for automatic segmentation and aid clinical practice [28].

Not many studies have been performed to check the applications of DL models
using PET/CT images to highlight their advantages in the same aspect. However, the
nascent applications appear promising in terms of development of DL-based biomarker
and prognostic models.

4.5. Robot-Assisted Treatment Practices

The study by Hung et al. evaluated the application of DL in the treatment of PCa and
RARP. Hung et al. created a DL model to predict urinary continence recovery following
radical prostatectomy with robotic assistance. The study was performed on images ob-
tained from 79 patients. The study trained a DeepSurv model on the dataset and achieved
a concordance index (C-index) of 0.6 and a mean absolute error (MAE) of 85.9 in predict-
ing continence. The authors concluded that using automated performance metrics and
clinicopathological data, the DeepSurv model could predict continence after the prostate-
ctomy. According to the findings, experienced surgeons had greater continence rates at
3 and 6 months following the prostatectomy [29].

The application of automated performance metrics (APMs) and its impact on clinical
outcome variables was very well highlighted in this study, underlining the evidence that
surgical skills impact clinical outcomes. However, this was a single-institution study and
requires external validation for the same.

4.6. Strengths, limitations, and Areas of Future Research

A wide variety of DL models were used to diagnose and treat prostate cancer. The
review contains various implementations of DL which benefit the urologists. A summary
of the various models used can be viewed in the table as shown (Table 3). One of the major
drawbacks of the present study is the small dataset and lack of federated learning approach.
Federated learning models can be implemented to improve the data collection and sharing
process for research purposes. Increasing the sample size may improve the performance of
multilayer DL models as a result of more sufficient training. If the sample size is increased,
neural networks with more hidden layers and nodes can perform better, avoiding early
over-fitting. An increase in the variables used for prostate cancer detection can also augment
the performance of a neural network model. With advanced DL models such as the single
shot detector model, it is possible to make predictions on a live video feed during treatment.
The live feed DL models can also program robots to help during surgeries.

Table 3. Summary of common deep learning models used in PCa management.

Diagnosis Using
MRI Images

Diagnosis Using
CT Images

Treatment Using
MRI Images

Treatment Using
CT Images

DenseNet NiftyNet
SegNet

7-Hidden Layer CNN

U-Net InceptionV3 U-Net

AlexNet
Stepwise Neural

Network with five
hidden layers U-Net ProgNet

MatConvNet 18-layer CNN
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5. Conclusions

As per our review, the most common application of DL techniques has been in the
diagnosis of prostate cancer using MR image-based segmentation techniques. Although
the ProgNet model outperformed trained radiologists in prostate cancer detection, we
cannot generalize these results. In conclusion, for clinical application, the DL models’ per-
formance may still need improvement. As the performance of these models increases, they
will become much more implementable, with many models surpassing human accuracy
and efficiency.
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Abstract: PI-RADS 3 prostate lesions clinical management is still debated, with high variability among
different centers. Identifying clinically significant tumors among PI-RADS 3 is crucial. Radiomics
applied to multiparametric MR (mpMR) seems promising. Nevertheless, reproducibility assessment
by external validation is required. We retrospectively included all patients with at least one PI-RADS
3 lesion (PI-RADS v2.1) detected on a 3T prostate MRI scan at our Institution (June 2016–March 2021).
An MRI-targeted biopsy was used as ground truth. We assessed reproducible mpMRI radiomic
features found in the literature. Then, we proposed a new model combining PSA density and
two radiomic features (texture regularity (T2) and size zone heterogeneity (ADC)). All models were
trained/assessed through 100-repetitions 5-fold cross-validation. Eighty patients were included (26
with GS ≥ 7). In total, 9/20 T2 features (Hector’s model) and 1 T2 feature (Jin’s model) significantly
correlated to biopsy on our dataset. PSA density alone predicted clinically significant tumors
(sensitivity: 66%; specificity: 71%). Our model obtained a sensitivity of 80% and a specificity of
76%. Standard-compliant works with detailed methodologies achieve comparable radiomic feature
sets. Therefore, efforts to facilitate reproducibility are needed, while complex models and imaging
protocols seem not, since our model combining PSA density and two radiomic features from routinely
performed sequences appeared to differentiate clinically significant cancers.

Keywords: PI-RADS 3; prostate cancer; MRI; radiomics; texture analysis

1. Introduction

Prostate cancer (PC) is the second leading tumor in the male population worldwide [1].
Multiparametric magnetic resonance imaging (mpMRI) is the gold standard for prostate
cancer imaging nowadays, proven to be helpful in early diagnosis, being employed in the
evaluation of prostate gland lesions, local T-staging or recurrence, and in the assessment
of pelvic lymph nodes involvement [2] along with Prostate Imaging Reporting and Data
System version 2.1 (PI-RADS v2.1) guidelines [3]. Many studies have demonstrated a high
correlation between PI-RADS and the Gleason score (GS) of prostate lesions [4–7]. However,
while PI-RADS 4/5 are considered highly suspicious for neoplasia, the presence of clinically
significant cancer in PI-RADS 3 lesions is equivocal (16–21% reported prevalence) [8,9].
Consequently, there is no consensus on the clinical management of PI-RADS 3 lesions, with
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high variability in protocols used in different centers [10]. A prostate biopsy is mandatory
for diagnosis, but it is associated with possible complications (prostatitis, urinary tract
infections, and sepsis), which may lead to hospitalization and, in the worst cases, even
death. Therefore, it is crucial to timely identify clinically significant tumors (i.e., lesions
with a Gleason Score (GS) ≥ 7, according to current literature [11]) among PI-RADS
3 lesions [12,13].

Some single-center studies in the literature have tried to exploit mpMRI radiomic anal-
ysis to identify clinically significant prostate cancer (csPCa) with promising results [14–19].
However, each center found its own radiomic features pool, likely due to high variability in
center-specific population features, gold-standard definition rules, scanners, acquisition pa-
rameters, lesion contouring, image preprocessing, and machine learning techniques [20,21].
Furthermore, single-center datasets are almost always unavoidably small, increasing the
risk of scarcely robust internal validation. Two papers on PI-RADS 3–5 recently showed
that single-center models have a significant performance drop when applied to other
centers’ data [22,23]. Efforts must therefore be made to (1) standardize as much as possi-
ble (as in radiomic features computation) [24]; (2) build large and multi-center datasets;
(3) share developed models for external validation. This will allow us to understand
whether general models can work even with center-specific variabilities or if center-specific
models are needed instead.

On this basis, the aim of this work is manifold as follows: (a) to assess reproducible
csPCa identification models found in the literature on an independent 80-patient dataset
while providing details on their architectures; (b) to propose a new csPCa identification
model for external validation based on robustly selected and easily obtainable radiomic
and clinical features.

2. Materials and Methods
2.1. Study Population

We retrospectively retrieved medical and radiological data from our Institution’s
Electronic Medical Records. According to urological indication, the initial population
included 945 males who underwent prostate MRI (June 2016–March 2021) for suspected
malignancy or active surveillance. From the original cohort, 706 patients were excluded
for the following: (a) lack of one/more PI-RADS 3 lesion(s) as per PI-RADS v2.1 (n = 691);
(b) no histopathological data within twelve months from MRI scan (n = 11); (c) poor image
quality of diffusion-weighted (DWI) and/or in the T2-weighted sequences (n = 2) and
apparent diffusion coefficient (ADC) map (n = 1). Accordingly, the final cohort included
80 males.

We collected the following clinical and laboratoristic data (Table 1): age, the most recent
serological value of prostate-specific antigen (PSA; ng/mL), PSA density (total PSA/prostatic
volume ratio), final histopathological analysis, and mean ADC value (mm2/s) calculated in a
single 2D region of interest (ROI), i.e., the largest trackable circular area in the center of the
lesion without exceeding the lesion margins.

2.2. MR Protocol and PI-RADS 3 Lesion Selection

Prostate MRIs were performed on a 3T scanner (Discovery MR750w GEM, GE Health-
care, Chicago, IL, USA), using a 16-channels pelvic anterior-array coil (GE Healthcare,
Chicago, IL, USA), and with the patient supine. As per PI-RADS v2.1 criteria [3], MRIs
were performed at least six weeks after any prostatic biopsy to avoid a possible source
of diagnostic errors due to post-procedural bleeding foci. The standard MRI protocol is
summarized in Table 2.

Blinded to pathological data, two radiology residents (A.C., P.N.F.; 3 years of experi-
ence) reviewed all MRIs in consensus, based on the current standard of care, considering
the appearance of the lesions in the T2-w, DWI, ADC, and DCE sequences as per PI-RADS
v2.1 [3]. For each patient, we selected a single target lesion (the largest one in case of
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multiple lesions). A board-certified radiologist (P.A.B.; 10 years of experience) validated
the selection.

Table 1. Characteristics of the final study population.

Population Data

Total, n 80
Age (years), average ± SD (range) 65.2 ± 7.6 (45–81)
PSA (ng/mL), average ± SD (range) 6.8 ± 4.8 (0.5–29.6)
PSA Density, average ± SD (range) 0.15 ± 0.15 (0.01–1.09)

Mean ADC value within 2D ROI (mm2/s)
0.000825 ± 0.000253
(0.00026–0.00141)

PI-RADS 3 lesions histology, n/total (%)
GS ≥ 3 + 4 26/80 (32.5%)
GS ≤ 3 + 3 16/80 (20.0%)

Negative, BPH, atrophy 38/80 (47.5%)
Site of PI-RADS 3 lesions, n/total (%)

Transitional zone 14/80 (17.5%)
Peripheral zone 66/80 (82.5%)

PSA: prostate-specific antigen; PSA density is obtained by dividing PSA levels (ng/mL) by the volume of the
prostatic gland (mL); PI-RADS: Prostate Imaging-Reporting and Data System; BPH: benign prostatic hyperplasia.

Table 2. MRI acquisition parameters.

T1-w T2-w DWI

Acquisition
plane Axial Axial Axial, coronal,

sagittal Axial Axial

Sequence Fast spin-echo
(SSFSE)

Gradient-recalled echo (GRE);
before and after intravenous

contrast (DCE)

Fast relaxation fast
spin echo (FR-FSE)

Single-shot fast spin
echo (SS-FSE)

b values: 50, 1000,
2000 s/mm2

Slice thickness 4 mm 3 mm 3 mm 4 mm 3 mm

Covered area Pelvis Prostate lodge and
seminal vesicles

Prostate lodge and
seminal vesicles Pelvis Prostate lodge

DWI: diffusion-weighted imaging; GRE: gradient-recalled echo; DCE: dynamic contrast enhancement; FRFSE:
fast relaxation fast spin echo; SSFSE: single-shot fast spin echo.

2.3. Pathological Examination

Each patient underwent a targeted biopsy of PI-RADS 3 lesions (4 cores) at our In-
stitution. Biopsies were executed by a single operator with a total experience of more
than 500 target fusion biopsies. We used the trans-rectal access and fusion technique
with the reference MRI, a MyLabClassC ultrasound machine, and a virtual navigator fu-
sion system (Esaote S.p.A., Genova, Italy) equipped with an end-fire endorectal probe.
Additional systematic biopsies (12–16 cores, according to the following prostate volume:
≤60 mL vs. >60 mL) were performed (Figures 1 and 2) [25]. It was thus possible to choose
the prostate parenchymal tissue corresponding to the PI-RADS 3 target lesion as the refer-
ence standard. Gleason Score was assigned per 2005 ISUP recommendations (International
Society of Urological Pathology) [26]. Each PCa-positive biopsy was evaluated according
to the International Society of Urological Pathology 2014 consensus Gleason Grade Group
system [11].

2.4. Lesion Segmentation

Anonymized DICOM files of FRFSE-T2-weighted sequences, DWI 2000 s/mm2 se-
quences, and ADC maps were exported and loaded on dedicated segmentation software,
ITK-SNAP 3.8.0 (PICSL, University of Pennsylvania, Philadelphia, PA, USA) [27]. The 3D
ROIs were manually delineated on every target lesion (Figure 3), both on T2-weighted
sequences and DWI sequences/ADC maps in consensus by two radiology residents (A.C.
and P.N.F.; 3 years of experience), and then validated by a board-certified radiologist (P.A.B.;
10 years of experience). Peripheral zone lesions were visible on both T2-weighted and DWI
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sequences/ADC maps. When a transitional zone lesion was not readily discernible on
DWI/ADC maps, the segmentation area was delineated according to that traced on the
T2-weighted sequence. An additional 3D ROI for each patient was outlined in the periph-
eral prostate zone to normalize intensity, avoiding potential focal lesions. Images were all
corrected for magnetic field inhomogeneity (algorithm N4, 3D Slicer, http://www.slicer.org
(accessed on 17 September 2022)).
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Figure 2. Illustrations of MRI/TRUS fusion biopsy. (A,B) Peripheral zone target biopsy: (A) trans-rectal
ultrasound showing the location of the two lesions (orange and blue dots); (B) same lesions depicted
in a T2-w MR (orange and blue dots). (C–F) anterior zone target biopsy: (C) trans-rectal ultrasound
showing the location of the two lesions (orange and blue dots); (D) same lesions depicted in a T2-w MR
(orange and blue dots); (E) fusion image overlapping T2-w MR image on top of transrectal ultrasound
(lesions represented as orange and blue dots); (F) ADC map of the corresponding lesions.
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Figure 3. A 64-year-old patient with a PI-RADS 3 lesion in the left mid-gland peripheral zone.
(A) Lesion on T2-w sequence depicted as a low-signal 5-mm nodule (white arrowhead); (B) same
lesion highlighted on ADC map (grey arrowhead); (C) manual segmentation on ITK-SNAP (red
label). Target biopsy revealed fibrosis with focal atrophy without evidence of prostate cancer.

2.5. Reproducible Literature Models Search and Assessment

We searched papers in the literature applying mpMRI radiomics as a tool to identify
csPCa among PI-RADS 3 lesions. The following inclusion criteria were used: (1) PI-RADS
3 lesions identified according to PI-RADS v2.1 guidelines; (2) targeted biopsy as ground
truth; (3) usage of IBSI-compliant tools for radiomic features computation; (4) adequate
description of the methodological details (resampling grid, parameters in radiomic feature
computation, selected radiomic features list, and model hyperparameters). Selected works’
details are reported in Table 3.

Table 3. Selected models’ details.

Reference Hectors 2021 [16] Jin 2022 [19]

Number of subjects 240 103

Scanner 3T (GE Signa, Siemens Skyra) 3T (Siemens Skyra)

Endorectal coil No No

Radiomics MR sequences T2 T2, ADC, DWI (1500 mm/s2)

ROIs 3D (1 operator) 3D (2 operators) on T2
(ADC/DWI registered to T2)

Radiomics platform Pyradiomics FeAture Explorer
(Pyradiomics)

Intensity normalization [µ − 3σ:µ + 3σ] inside
the VOI (x − µ)/σ

Resampling 0.5 × 0.5 × 0.5 mm3 1 × 1 × 1 mm3

Quantization 64 bins Not specified

Model assessment Cross-validation +
independent test set Independent test set

Selected radiomic feature
details Yes (20 features) Yes (4 features)

Clinical parameters in the
model No Yes (PSA, age)

Model Random forest with SMOTE Logistic regression

Radiomics model
performances (test set)

AUC 0.76
Sensitivity 75.0%
Specificity 79.6%

AUC 0.88
Sensitivity 83%
Specificity 65%
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We extracted radiomic features from our 80-patient dataset using the work-specific
processing and parameters for each work. We assessed the correlation between selected
features and biopsy results through a univariate Mann–Whitney test applied to the entire
patient sample. Then, pending the trained model availability, we retrained a model with
the work-specific attributes and the work-specific input features on our 80-patient dataset,
employing 100 repetitions of 5-fold stratified cross-validation and providing results in
terms of sensitivity and specificity on the 500 validation sets. The following details are
provided.

2.5.1. T2-Based Hectors et al. Model

T2 images were normalized to range between mean ± 3σ (standard deviation) of the
intensity in the volume of interest (VOI), resampled on a 0.5 × 0.5 × 0.5 mm3 voxel grid,
and discretized to 64 bins. The selected 20 radiomic features were used as input in a scikit-
learn (https://scikit-learn.org/stable/ (accessed on 17 September 2022)) Random Forest
Classifier (maximum depth = 16; maximum number of features = none; minimum number
of samples per leaf = 2; minimum number of samples required to split = 2; maximum
number of leaf nodes = 16). A SMOTE oversampling of the minority class was adopted.

2.5.2. T2 and DWI-Based Jin et al. Model

T2 and DWI image intensities were standardized; images were then resampled on a
1 × 1 × 1 mm3 voxel grid. Since the paper did not specify image discretization details, we
used Pyradiomics default. The 4 selected radiomic features, along with patient age and
PSA, were normalized using Z normalization and given input to a scikit-learn Logistic
Regression classifier.

2.6. Proposal of a New Model to Be Validated by Other Centers

As clinical parameters, we assessed PSA, PSA density, age, and mean ADC value
within a 2D ROI. Regarding radiomic features, we normalized T2 and ADC images by
dividing voxel intensities by the average intensity computed within the corresponding
normalization ROI. T2-weighted and ADC volumes were respectively resampled on a
0.4 × 0.4 × 3.0 mm3 and a 0.8 × 0.8 × 3.0 mm3 voxel grid through b-spline interpolation.
In total, 958 radiomic features per patient were computed with Pyradiomics on original
volumes (32 bin quantization) and HHH, LLL, HHL, and LLH coif1 wavelet decompositions
(8 bin quantization for T2 and 16 bin quantization for ADC). Clinical and radiomic features
more robustly related to GS were selected randomly dividing the 80 patients into 5 groups
100 times (maintaining the csPCa balance). In each of the 500 feature selection trials
(4 groups at a time, 64 patients), the Mann–Whitney test assessed the univariate association
between clinical/radiomic features and biopsy results. At the same time, we investigated
the correlation between features using Spearman rank. The feature with the smallest
univariate p-value was firstly selected. Then, features with increasing p values (if ≤0.01)
were added only if characterized by an absolute value of the Spearman rank correlation
<0.5 vs. already selected features. The final selected features pool contains features picked
most times out of the 500 trials.

Univariate and multivariate models’ definitions and assessments were performed
through 100 repetitions of a 5-fold stratified cross-validation scheme. Univariate mod-
els were defined by selecting thresholds maximizing the Youden index on training sets
(4 groups, 64 patients) and assessed in terms of sensitivity and specificity on validation sets
(1 group, 16 patients). The mean and standard deviation of sensitivity and specificity over
the 500 validation trials were finally reported for each selected feature. For multivariate
analysis, the following six classification models were considered: linear discriminant, linear,
quadratic, and cubic support vector machine (SVM), classification tree, and K-nearest neigh-
bours (KNN). All the possible feature combinations from the selected feature pool were
assessed as classification model inputs. Models and optimal thresholds were identified on
training sets and evaluated in terms of sensitivity and specificity on the corresponding 500
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validation sets. Finally, a model to be shared for external validation was trained on the
entire dataset. All the analysis was implemented in scikit-learn.

3. Results

Clinical-pathological results are described in Table 1. The detection rate for csPCa
(Gleason score ≥ 3 + 4) at targeted and systematic biopsies in the case of PI-RADS 3, 4, and
5 was 32, 46, and 67%, respectively.

3.1. Assessment of Literature Features/Models

In Table 4, we reported the univariate association between radiomic features contained
in Hectors’ [16] and Jin’s [19] models and biopsy results in our 80-patient dataset.

Table 4. Univariate association between radiomic features contained in Hectors’s [16] and Jin’s [19]
models and biopsy results in our 80-patient dataset; features with p-value ≤ 0.05 are in bold.

Hector’s Features p-Value

T2-original_shape_Elongation 0.13
T2-original_shape_Flatness 0.14
T2-original_firstorder_10Percentile 0.94
T2-original_firstorder_InterquartileRange 0.40
T2-original_firstorder_Mean 0.43
T2-original_firstorder_Median 0.51
T2-original_firstorder_RootMeanSquared 0.38
T2-original_glcm_Autocorrelation 0.01
T2-original_glcm_DifferenceEntropy 0.06
T2-original_glcm_InverseVariance 0.02
T2-original_glcm_JointAverage 0.01
T2-original_glcm_JointEnergy 0.04
T2-original_gldm_LargeDependenceLowGrayLevelEmphasis 0.10
T2-original_glrlm_LongRunEmphasis 0.05
T2-original_glrlm_LongRunHighGrayLevelEmphasis 0.01
T2-original_glszm_GrayLevelVariance 0.12
T2-original_glszm_SizeZoneNonUniformity 0.03
T2-original_glszm_SmallAreaEmphasis 0.01
T2-original_ngtdm_Complexity 0.27
T2-original-ngtdm_Strength 0.05

Jin’s Features p-Value

T2-wavelet-HHL_glcm_ClusterTendency 0.005
DWI-original_glcm_ldmn 0.74
DWI-wavelet-LLL_glrlm_LongRunLowGrayLevelEmphasis 0.11
DWI-wavelet-LLL glszm_SizeZoneNonUniformityNormalized 0.75

Regarding the performance of the re-implemented multivariate models relying on
these features, Hector’s random forest model obtained a sensitivity of 40% ± 21% and a
specificity of 71% ± 15%. Jin’s logistic regression model, which combined radiomic features,
age, and PSA, obtained a sensitivity of 36% ± 20% and a specificity of 89% ± 10%.

3.2. Proposed Model

In the 500 feature selection trials, features more often selected and, therefore, more robustly
correlated with biopsy were the following: (a) PSA Density (selection rate 100%); (b) a ra-
diomic texture feature computed on the LLL wavelet band of T2-weighted images (T2-wavelet-
LLL_glcm_InverseVariance, selection rate 87%); (c) a radiomic texture feature computed on
the LLL wavelet band of ADC maps (ADC-wavelet-LLL_glszm_SizeZoneNonUniformity,
selection rate 83%).The results of the univariate models’ assessment of the 500 validation
trials are shown in Table 5. The correlation with histology was as follows: PSA density
66%± 21% sensitivity and 71%± 13% specificity; RF-T2 74%± 21% sensitivity and 55% ± 15%
specificity; RF-ADC 44% ± 19% sensitivity and 83% ± 13% specificity. In Table 5, the results
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obtained by the best multivariate model are also shown. The best multivariate model was a
linear discriminant with the three features in input, which obtained a sensitivity of 80% ± 18%
and a specificity of 76% ± 13% on the 500 test trials.

Table 5. Selected features and performance of univariate and best multivariate models.

Selection Rate Sensitivity Specificity

PSA Density 100% 66% ± 21% 71% ± 13%
T2-wavelet-LLL_glcm_InverseVariance 87% 74% ± 21% 55% ± 15%
ADC-wavelet-
LLL_glszm_SizeZoneNonUniformity 83% 44% ± 19% 83% ± 13%

Trivariate linear discriminant model - 80% ± 18% 76% ± 13%

4. Discussion

Two works on mpMRI radiomics in prostate cancer recently showed that single-center
models’ performance drops when models are applied to other center data [22,23]. This
may be due to the too-small size of the training sample and to differences among centers
in MR scanners, acquisition parameters, histological analysis, and segmentation. Protocol
standardization, data, and model sharing will hopefully improve models’ reproducibility
in the near future. Meanwhile, a step forward toward model generalizability assessment
can be made as follows: (1) trying to test radiomics models proposed by others on an
external dataset; (2) properly detailing radiomics works so that other groups can assess
them on their own data. Unfortunately, to date, few groups in the literature have tested
radiomic models developed by other centers. This is often due to the partial lack of details
in radiomic papers, which prevents model re-implementation.

In this work, first, we tried to apply reproducible and standard-compliant literature
research papers on mpMRI radiomics for PI-RADS 3 csPCa identification on our 80-patient
dataset. We reviewed and summarized parameters, methodological choices, and results to
simplify further validation by other groups. Then, we proposed a fully detailed and easily
implementable new model for assessment on an external dataset. The following two works
in literature satisfied our inclusion criteria: one from Hectors et al. [16], who proposed a
T2-based model, and one from Jin et al. [19], who proposed a model relying on T2, DWI,
age, and PSA. In total, 9 of the 20 radiomic features identified by Hectors et al. resulted
significantly correlated to biopsy in our dataset (p-value ranging from 0.01 to 0.05), and
1 of the 4 radiomic features identified by Jin et al. resulted very significantly related to
biopsy in our dataset (p-value 0.005). These features are all computed on T2 images, where
peripheral and transitional zone lesion contours are easier to delineate and, therefore, likely
less user-dependent.

In developing our radiomic model, we performed methodological choices that differed
from the two groups. Mainly, we normalized intensities through a peripheral zone normal-
ization ROI (as suggested by Bonekamp et al., 2018 [28]) and applied an FBN quantization
with 32 bins on original images, 16 bins on ADC wavelet sub-bands, and 8 bins on T2
wavelet sub-bands. Other normalization/quantization schemes provided worse results
and were not shown. The two radiomic features we found most robustly related to biopsy
are both computed on the LLL wavelet sub-band, i.e., on a spatially smoothed version of
T2 and ADC intensities inside the lesions.

The first feature, T2-wavelet-LLL_glcm_InverseVariance, reflects texture regularity.
It was lower than 0.47 on csPCa, thus indicating that clinically significant tumors are
characterized by a larger texture irregularity in the low-frequency sub-band of T2 images.
This feature alone has good sensitivity (74%) but low specificity (55%). The second fea-
ture, ADC-wavelet-LLL_glszm_SizeZoneNonUniformity, measures the variability in the
volumes of lesion zones (groups of connected voxels with similar intensity). It was larger
than 17 on csPCa, thus indicating their more extensive zone size heterogeneity. This feature
alone has a reasonable specificity (83%) but a low sensitivity (44%). It is worth noticing
that the normalized version of this feature, computed on DWI, correlated to biopsy in the
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work of Jin. The lack of significance of Jin’s DWI feature on our dataset may be due to
differences in the DWI acquisition protocol as follows: we used a b-value of 2000 mm/s2,
while Jin used a b-value of 1500 mm/s2. We can therefore observe the following: (1) there
is a coherence between our result and Jin’s; therefore, a greater zone size heterogeneity at
the microstructural level is more likely related to malignancy; (2) the computation of this
feature on ADC maps may be more robust and repeatable, being less dependent on DWI
acquisition b-value.

Similarly to Jin et al., we then developed a multivariate model relying on radiomic
and clinical features. However, we did not select clinical and radiomic features indepen-
dently but included both within a single pool, to which a feature selection strategy was
applied. Among clinical features, we selected PSA density, as alone might help tumor
discrimination [29] (sensitivity of 66%, specificity of 71% in our dataset). A tri-variate
model built on PSA density and the two readily available T2 and ADC radiomic features
appears to discriminate csPCa with good confidence (sensitivity of 80%, specificity of 76%).
We provided all the methodological details and are available to share trained models and
optimized thresholds for external validation.

The model we are proposing is based on bi-parametric MRI (T2 and ADC sequences
only, which are routinely acquired). It does not require time-consuming sequences, such as
DCE images, which also expose patients to contrast medium-related possible side effects in
an effort to build the simplest possible model able to identify csPCa, with the added benefit
of reducing segmentation times and guaranteeing better standardization, thereby reducing
the possible impact introduced by different DCE acquisition protocols and segmentation
methods. Additionally, our model is based only on the following three features: the PSA
density (routinely obtained in the standard workup of these patients) and the two radiomic
features obtained in two standard mpMRI studies. We are aware that, in machine learning,
wrapped and embedded feature selection methods that optimally combine a broader
number of features within model optimization or even deep learning models, as seen in
Bertelli et al. [30], are often used. However, we preferred to follow a different approach to
try to obtain an explainable radiomic model, i.e., one able to explain lesion characteristics
related to malignancy.

We think this approach has relevant implications in driving the adoption of radiomics
in the clinical management of PI-RADS 3 lesions. From a radiological standpoint, it might
complement the radiologist’s evaluation, increasing the overall diagnostic accuracy; on the
other hand, from a clinical perspective, it might allow us to rule out unnecessary biopsies,
avoiding the risk of procedure-related possible complications in selected patients.

This study has several limitations, mainly the small number of patients and the lack
of an independent testing dataset. However, we tried to provide results as robustly as
possible by performing both feature selection and model assessment in multiple subsamples.
Furthermore, it is necessary to recognize that the pathological standard of reference should
be the radical prostatectomy sample, not the histological result of the biopsy. In fact, our
recent experience has shown that the combination of target and systematic biopsies fails to
detect about 15% of the foci of csPCa at definitive pathology. However, only 4% turned
out to be the index lesion (data not yet published). It could also be argued that the method
used at our Institution for targeted biopsies is a rigid fusion, while there are elastic fusion
technologies that can allow more accurate targeting. However, in a recent systematic review
and meta-analysis, no significant difference in the detection of csPCa was identified when
comparing rigid and elastic registration for MRI-TRUS fusion-guided biopsy [31].

Moreover, the high PI-RADS 3 lesion prevalence in the peripheral zone (82.5%) did not
allow an investigation of any possible zone-related difference, and the overall sample size
did not allow us to evaluate sector-related differences. We think there is a need for future
research to assess not only regional differences between the transitional and peripheral
zones but also different sectors’ related variability. Not clinically significant prostate cancers
(Gleason score 3 + 3) were included in the negative group, as data in this last category were
not conspicuous. However, this choice does not imply a particularly significant clinical
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limitation. MRI follow-up, with or without biopsy mapping, is usually performed for
PI-RADS 3 lesions. Lastly, since the dataset was quite imbalanced (32.5% of tumors), we
decided to optimize thresholds instead of using SMOTE since optimal thresholds provided
better results.

5. Conclusions

Standard-compliant works with robust and detailed methodologies achieve compa-
rable radiomic feature sets. Therefore, efforts to facilitate external validation of csPCa
identification models with independent datasets are needed to help radiomics gain an
effective role in the clinical workflow. In contrast, complex imaging models and protocols
do not seem to be required. We showed indeed that PSA density, combined with two
radiomic features computed on two routinely performed sequences (T2 and ADC), may
potentially discriminate clinically significant prostate cancers (Gleason score ≥ 3 + 4).
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3 Nałęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences,

02-109 Warsaw, Poland
4 Department of Computational Oncology, Maria Skłodowska-Curie National Research Institute of Oncology,

02-781 Warsaw, Poland
5 Department of Urology, St. Anna Hospital, 05-500 Piaseczno, Poland
6 Department of Urogenital Cancer, Maria Skłodowska-Curie National Research Institute of Oncology,

02-781 Warsaw, Poland
* Correspondence: hubert.kamecki@ecz-otwock.pl

Abstract: Prostate biopsy is recommended in cases of positive magnetic resonance imaging (MRI),
defined as Prostate Imaging Reporting and Data System (PIRADS) category ≥ 3. However, most
men with positive MRIs will not be diagnosed with clinically significant prostate cancer (csPC). Our
goal was to evaluate pre-biopsy characteristics that influence the probability of a csPC diagnosis
in these patients. We retrospectively analyzed 740 consecutive men with a positive MRI and no
prior PC diagnosis who underwent MRI-ultrasound fusion biopsies of the prostate in three centers.
csPC detection rates (CDRs) for each PIRADS category were calculated. Patient, disease, and lesion
characteristics were studied for interdependencies with the csPC diagnosis. The CDR in patients
with PIRADS categories 3, 4, and 5 was 10.5%, 30.7%, and 54.6%, respectively. On both uni- and
multivariable regression models, older age, being biopsy-naïve, prostate specific antigen ≥ 10 ng/mL,
smaller prostate volume, PIRADS > 3, a larger maximum lesion size, a lesion in the peripheral zone,
and a positive digital rectal examination were associated with csPC. In this large, multicenter study,
we provide new data regarding CDRs in particular PIRADS categories. In addition, we present
several strong predictors that further alter the risk of csPC in MRI-positive patients. Our results could
help in refining individual risk assessment, especially in PIRADS 3 patients, in whom the risk of csPC
is substantially low.

Keywords: detection rate; multiparametric magnetic resonance imaging; positive predictive value;
prostate imaging reporting and data system version 2; prostate cancer; targeted biopsy

1. Introduction

Prostate cancer (PC) is the second most commonly diagnosed male malignancy [1],
with mortality reaching approximately 375,000 annual deaths worldwide [2]. The likelihood
of unfavorable outcomes strongly depends on individual cancer pathology, which has led
to the development of the concept of clinically significant PC (csPC), which, contrary
to low-risk PC, which is eligible for active surveillance, should be managed with active
treatment. Many strategies have been aimed at tailoring the overall PC diagnosis yield to
csPC cases only, with current data showing that the rates of men diagnosed with low-risk
PC are on a downtrend [3]. The core initial risk stratification tool is magnetic resonance
imaging (MRI) of the prostate and assessment with the Prostate Imaging Reporting and
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Data System (PIRADS) [4], with MRI-guided needle biopsies of the prostate allowing for
the most accurate assessment of tumor pathology [5]. As recommended by the European
Association of Urology, a prostate biopsy should be performed in cases of positive MRI,
defined as PIRADS category 3 or higher [6].

However, contemporary data shows that most patients with a positive MRI who
undergo prostate biopsy will not be diagnosed with csPC [7]. Thus, a positive MRI alone
cannot be considered a strong predictor of a csPC diagnosis, and other risk factors should
be pursued. In order to provide data that could help in refining individual risk assessment,
the aim of this study was to retrospectively analyze a large cohort of MRI-positive patients
who underwent MRI-ultrasound fusion biopsy of the prostate in order to provide csPC
detection rates (cancer detection rates, CDR) for PIRADS categories 3, 4, and 5, as well
as to study possible associations between specific patient or lesion characteristics and an
increase in the risk of csPC.

2. Materials and Methods

We retrospectively analyzed consecutive patients without a prior history of PC who
underwent MRI-ultrasound fusion biopsies of the prostate at three centers, including one
university hospital, between March 2018 and October 2021. Data were collected from
medical patient records and included: age, previous medical history, pre-biopsy prostate-
specific antigen (PSA) level, MRI report, biopsy procedure report, and pathology report.
The study included patients with PIRADS category 3 or higher. Patients with incomplete
data were excluded from the study.

2.1. MRI-Ultrasound Fusion Biopsy

An MRI was performed either at our institutions or externally, with external stud-
ies having been reviewed by an institutional radiologist in case of ambiguities. PIRADS
version 2.0 or 2.1 was used in all cases. All biopsies were performed with the KOELIS
Trinity MRI/US OBT Fusion® system, using either a transperineal or transrectal approach.
Two experienced urologists, without the assistance of another physician, performed all
the procedures at the three participating centers. A digital rectal examination (DRE) was
carried out and recorded just before the procedure. The selection of the biopsy approach
(transperineal or transrectal) was primarily indicated by individual urologist expertise,
with the transperineal approach being preferred in order to reduce the risk of infectious
complications. Transperineal biopsies were performed with the aid of the KOELIS Full
GridTM device. Every biopsy included cores targeted at all the PIRADS ≥ 3 lesions identi-
fied in the MRI report. The number of targeted cores was never less than 3 per lesion, as
defined by the policy the urologists adhered to. A greater number of targeted cores might
have been taken if deemed necessary by the urologist. Occasionally, the biopsy may have
also included additional cores targeted at lesions not identified in the report but considered
suspicious by the performing urologist or the reviewing radiologist. In all biopsy-naïve
patients, systematic cores were included. In patients with a previous negative biopsy, the
addition of systematic cores was at the discretion of the urologist. Systematic cores, if
included, did not cover the regions subject to targeted biopsy. The number of systematic
cores was at the discretion of the urologist, being dependent predominantly on the lesion
location and prostate volume. All the specimens were assessed by institutional pathologists.
All the pathologists were specialists in urogenital cancer and adhered to the International
Society of Urological Pathology (ISUP) guidelines.

2.2. Definitions

We defined a csPC diagnosis as the presence of grade group ≥ 2 cancer in either
targeted or systematic cores. To represent a typical clinical scenario, we defined the highest
PIRADS category as the highest category of a lesion as classified by the radiologist in the
original MRI report, regardless of the performing urologist’s or reviewing institutional
radiologist’s second opinion. The maximum lesion size was the size of the largest lesion in
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the highest PIRADS category in a patient. The number of cores was the total number of
cores taken during the biopsy procedure.

2.3. Outcome Measurements and Statistical Analysis

Categorical and quantitative variables were calculated as numbers with percentages
and medians (with interquartile ranges), respectively. The associations between categorical
and continuous variables and a dependent variable were investigated using univariable
and multivariable logistic regression models. The outcomes of logistic regression models
were expressed as odds ratios (OR) with 95% confidence intervals (95% CIs). Results were
considered statistically significant at a p-value < 0.05. Statistical analyses were performed
using MATLAB R2021a (MathWorks, Natick, MA, USA) and R version 4.0.3 (R Foundation
for Statistical Computing, Vienna, Austria).

3. Results

We identified 748 patients who met the inclusion criteria. Eight patients were excluded
due to incomplete data. Eventually, 740 men were enrolled into the analyses. Data,
including baseline patient and lesion characteristics, biopsy approach, median number of
cores, and csPC diagnosis rate, are presented in Table 1.

Table 1. Characteristics of patients.

Characteristic All Patients (n = 740) Center 1 (n = 298) Center 2 (n = 122) Center 3 (n = 320)

Median age, years (IQR) 65 (60, 69) 64 (58, 69) 66 (62, 69) 65 (61, 69)
Biopsy-naïve (%) 416 (56.2) 165 (55.4) 56 (45.9) 195 (60.9)

Median PSA, ng/mL (IQR) 6.9 (4.9, 9.7) 7.0 (5.1, 10.0) 7.5 (5.4, 10.0) 6.2 (4.7–9.1)
Median PV, mL (IQR) 42.7 (33.1, 59.7) 41.0 (32.8, 55.9) 48.9 (37.3, 63.0) 42.4 (33.0, 60.0)

Median max. lesion size, mm (IQR) 13 (10, 17) 13 (10, 16) 14 (10, 18) 13 (9, 16)
PIRADS category (%)

3 124 (16.8) 63 (21.1) 11 (9.0) 50 (15.6)
4 398 (53.8) 144 (48.3) 66 (54.1) 188 (58.8)
5 218 (29.5) 91 (30.5) 45 (36.9) 82 (25.6)

Lesion in the peripheral zone (%) 485 (69.6) a 158 (62.0) a 101 (82.8) 226 (70.1)
Positive DRE b 131 (18.5) b 56 (21.0) b 13 (10.7) 62 (19.4)

Biopsy approach, n
Transperineal 615 (83.1) 182 (61.1) 113 (92.4) 320 (100.0)

Transrectal 125 (16.9) 116 (38.9) 9 (7.6) 0 (0.0)
Median number of cores (IQR) 11 (9, 15) 17 (16, 19) 19 (18, 23) 11 (9, 14)

Diagnosis of csPC (%) 254 (34.3) 114 (38.3) 35 (28.7) 105 (32.8)

IQR, interquartile range; PSA, prostate-specific antigen; PV—prostate volume; PIRADS—prostate imaging
reporting and data system; DRE, digital rectal examination; csPC, or clinically significant prostate cancer. Center 1
was university-affiliated. a Data lacking for 43 patients, percentages calculated for known data. b Data lacking for
31 patients, percentages were calculated using known data.

The CDR in patients with PIRADS categories 3, 4, and 5 was 10.5% (95% CI: 5.1–15.9%),
30.7% (95% CI: 26.1–35.2), and 54.6% (95% CI: 48.0–61.2%), respectively (Figure 1).

The type of biopsy approach (transrectal or transperineal) was not associated with the
probability of a csPC diagnosis (CDRs: 37.6 vs. 33.7%, respectively, p = 0.75).

Concerning univariable analysis, older age, being biopsy-naïve, having a PSA
level ≥ 10 ng/mL, a smaller prostate volume, a PIRADS category > 3, a larger maxi-
mum lesion size, a lesion located in the peripheral zone (PZ), and a positive digital rectal
examination (DRE) were associated with an increased risk of csPC diagnosis (Table 2). All
these variables were then included in a multivariable model, demonstrating a significant
association with csPC (Table 2) as well.
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Figure 1. Detection rates of clinically significant prostate cancer (cs-PC) among patients with the
highest Prostate Imaging Reporting and Data System (PIRADS) categories 3, 4, and 5. The whiskers
represent 95% confidence intervals.

Table 2. Association between clinically significant prostate cancer (csPC) diagnosis and other factors,
DRE included.

UVA vs. csPC OR (95% CI),
p-Value

MVA vs. csPC OR (95% CI),
p-Value

Age, years 1.05 (1.03–1.07), <0.001 1.05 (1.03–1.08), <0.001
Biopsy-naïve 1.42 (1.04–1.93), 0.027 1.57 (1.08–2.29), 0.017

PSA > 10 ng/mL 2.57 (1.81–3.65), <0.001 2.36 (1.53–3.64), <0.001
PV, mL 0.98 (0.98–0.99), <0.001 0.98 (0.97–0.98), <0.001

Max. lesion size, mm 1.07 (1.05–1.10), <0.001 1.05 (1.02–1.08), 0.001
PIRADS > 3 5.49 (3.02–9.10), <0.001 3.14 (1.63–6.05), 0.001
Lesion in PZ 2.05 (1.43–2.95), <0.001 1.86 (1.24–2.79), 0.003
Positive DRE 3.14 (2.12–4.63), <0.001 1.74 (1.12–2.70), 0.014

UVA, univariable analysis; MVA, multivariable analysis (logistic regression model, n = 697); OR, odds ratio; CI,
confidence interval; PSA, prostate-specific antigen; PIRADS, prostate imaging reporting, and data system; PZ,
peripheral zone; DRE, digital rectal examination.

Considering the possibility of observer bias when interpreting the DRE result, we
developed another multivariable logistic regression model that did not include DRE;
the statistical significance of the associations between the remaining variables and the
dependent variable became even stronger (Table 3).

We performed a similar multivariable analysis limited to patients with the highest
PIRADS category 3. In both models (DRE included and DRE excluded), only a smaller
prostate volume demonstrated a statistically significant association with csPC (Table 4).
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Table 3. Association between clinically significant prostate cancer (csPC) diagnosis and other factors,
digital rectal examination (DRE) excluded.

MVA vs. csPC OR (95% CI), p-Value

Age, years 1.05 (1.03–1.08), <0.001
Biopsy-naïve 1.69 (1.17–2.44), 0.005

PSA > 10 ng/mL 2.43 (1.58–3.75), <0.001
PV, mL 0.98 (0.97–0.98), <0.001

Max. lesion size, mm 1.06 (1.03–1.09), <0.001
PIRADS > 3 3.27 (1.69–6.31), <0.001
Lesion in PZ 1.95 (1.30–2.92), 0.001

MVA, multivariable analysis (logistic regression model, n = 697); OR, odds ratio; CI, confidence interval; PSA,
prostate-specific antigen; PIRADS, prostate imaging reporting, and data system; PZ, peripheral zone; DRE, digital
rectal examination.

Table 4. Association between clinically significant prostate cancer (csPC) diagnosis and other factors
in patients with the highest PIRADS category 3.

MVA vs. csPC, DRE
Included OR (95% CI),

p-Value

MVA vs. csPC, DRE
Excluded OR (95% CI),

p-Value

Age, years 1.08 (0.98–1.19), NS 1.08 (0.98–1.19), NS
Biopsy-naïve 0.81 (0.20–3.39), NS 0.86 (0.21–3.43), NS

PSA > 10 ng/mL 1.69 (0.32–8.86), NS 1.46 (0.28–7.52), NS
PV, mL 0.94 (0.90–0.99), 0.019 0.94 (0.89–0.99), 0.017

Max. lesion size, mm 1.02 (0.88–1.19), NS 1.03 (0.88–1.19), NS
Lesion in PZ 3.17 (0.58–17.37), NS 3.09 (0.58–16.34), NS
Positive DRE 2.93 (0.42–20.31), NS N.A.

MVA, multivariable analysis (logistic regression model, n = 114); OR, odds ratio; CI, confidence interval; PSA,
prostate specific antigen; PIRADS, prostate imaging reporting and data system; PZ, peripheral zone; DRE, digital
rectal examination; NS—nonsignificant; N.A.—not-applicable.

4. Discussion

We present one of the largest series of MRI-positive patients who underwent biopsies
of the prostate. MRI-ultrasound fusion biopsy was performed in every case, and while any
possible superiority of this technique over cognitive biopsy remains controversial, with
trends toward improved CDRs remaining statistically insignificant in a meta-analysis [8],
fusion biopsy may serve as an acceptable reference standard in terms of evaluating MRI
diagnostic values. We consider this a strength of our study.

Interestingly, our cancer detection rates, especially for PIRADS categories 4 and 5,
were significantly lower than the available data would suggest. In a meta-analysis by
Mazzone et al., rates of csPC with PIRADS categories 4 and 5 were reported to be 40%
(95% CI: 34–46%) and 69% (65–73%), respectively [7], which barely overlaps with our 95%
CIs for these values. Oerther et al., in a meta-analysis limited to studies in which PIRADS v.
2.1 was adopted, demonstrated the CDRs to be even higher [9]. The large heterogeneity
between studies reporting CDRs in MRI-positive patients undergoing prostate biopsy is a
well-recognized issue [7]. We believe that the most probable explanation for the relatively
low rate of csPC in our patients is the significant (44%) proportion of men with a prior
biopsy history. As demonstrated in the results, these men were significantly less likely to
be diagnosed with csPC than biopsy-naïve patients, which is in accordance with available
evidence. A recent prospective study by Patel et al. [10] also demonstrated that being
biopsy-naïve was a significant factor for csPC diagnosis in MRI-positive patients, which
confirms the trends previously described in the literature [7].

Given the abovementioned discrepancies in reported CDRs between cohorts of MRI-
positive patients, the role of factors other than the PIRADS category in altering the probabil-
ity of a csPC diagnosis is unquestionable, and our aim was to provide evidence regarding
these associations. Being biopsy-naïve has already been discussed above. Age was another
predictor we evaluated. While Washino et al. demonstrated no significant association
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between age and csPC in their patients [11], most studies report older age to be a strong
predictor of csPC diagnosis, independently of the PIRADS category [10,12]. Whether this
finding represents the well-established association between older age and increased inci-
dence of csPC [13] or age-related features possibly altering MRI interpretation [14], remains
beyond the scope of these considerations.

Given that non-csPC may not lead to PSA level elevations independent of the con-
tribution of benign prostate tissue [15], high PSA levels should serve as predictors of
csPC. Several studies demonstrated that PSA density (PSAD) may increase the risk of
csPC independently of PIRADS category [10,11,16]. We decided to analyze PSA and PV as
separate predictors, considering the possible independent association between smaller PV
and csPC [17,18]. On multivariable analyses, we demonstrated significant associations with
csPC for both PSA > 10 ng/mL and smaller PV. Moreover, in PIRADS category 3 patients,
only the smaller PV was associated with higher csPC rates. To our knowledge, this is the
first study in which PV was considered an independent risk factor in a regression model.
Our results suggest that the relationship between those parameters and prostate cancer
biology may be much more complex than represented by a proportion (i.e., PSAD). Further
studies are needed to provide deeper insight into the predictive values of PSA and PV in
patients suspected of harboring csPC.

We demonstrated that a larger maximum lesion size was associated with a higher
CDR. In analyses performed on the overall group, this larger maximum lesion size might
have represented a higher PIRADS category, given that ≥15 mm in the maximal dimension
of a lesion is a criterion for assigning PIRADS category 5 instead of 4. Furthermore, in the
analysis limited to PIRADS category 3 patients, the association between maximum lesion
size and csPC was non-significant. Given the low CDR in this subgroup of patients, a small
sample size might have been a limitation. Nevertheless, Tan et al., in a study on men who
underwent in-bore MRI-guided transrectal targeted prostate biopsy, demonstrated no sig-
nificant difference in the median diameter of the lesion between patients with negative and
positive biopsy findings [19]. The role of maximum lesion size, other than differentiating
between PIRADS categories 4 and 5, in stratifying the risk of csPC in men with positive
MRIs should be subject to further studies.

Available data suggests that the prostate zone may serve as an additional factor pre-
dictive of csPS in patients with a positive MRI [20]. In the overall group, we demonstrated
that a lesion located in the PZ was strongly associated with a higher CDR. In the PIRADS
category three subgroup, despite a high OR, the association was non-significant, possibly
due to an insufficient sample size. However, Kim et al., in a study on PIRADS category
three patients who underwent MRI-ultrasound fusion targeted biopsy, did demonstrate
that PZ location was an independent predictor of csPC [21]. Felker et al. suggested that
many men with PIRADS category 3 lesions in the transition zone (TZ) might not be con-
sidered candidates for biopsy due to low csPC probability [22]. Our results may serve as
additional evidence helpful in the decision-making process for these patients.

Despite multiple limitations, DRE remains a simple and cost-effective tool in the initial
assessment of patients suspected of PC. While offering a biopsy of the prostate based
solely on a positive DRE may be considered controversial in many cases, the available
evidence proves that a positive DRE is a very strong predictor of csPC in MRI-positive
patients. Chang et al. demonstrated that positive DRE had 91% specificity for csPC in men
with positive MRI and elevated PSA who underwent MRI-ultrasound fusion biopsy [23].
Omri et al. also reported higher CDR in men with positive DRE [24]. In our study group,
based on the results of multivariable analysis, patients with a positive DRE had almost
double the odds of being diagnosed with csPC. The association in the PIRADS category
3 subgroup was non-significant. Nevertheless, both the literature data and our results
demonstrate that a biopsy of the prostate should be offered to every man with an MRI and
DRE suggestive of a malignant tumor.

We decided to perform separate analyses in the subgroup of PIRADS category 3 patients,
as the low CDR in these men encourages the identification of risk factors, allowing for
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the offering of a prostate biopsy only to patients with a significant probability of a csPC
diagnosis. In the study by Kim et al., older age, PZ location, and higher PSAD were
associated with csPC on multivariable analysis [21]. Sheridan et al. demonstrated older
age, smaller PV, and positive DRE as risk factors for csPC in patients with PIRADS category
3 lesions [25]. Felker et al. suggested PSAD ≥ 0.15 ng/mL2 and an apparent diffusion
coefficient (ADC) < 1000 mm2/s as criteria that would lead to a much higher yield for
csPC in men with PIRADS category 3 TZ lesions [22]. Recently, Schoots et al., based on the
results of a meta-analysis that included data from 3006 biopsy-naïve patients, suggested
that a prostate biopsy should be performed in a patient with a PIRADS category 3 lesion
in the case of a PSAD ≥ 0.1 [26]. In our study, we managed to demonstrate a significant
association only for smaller PV. The non-significance of other factors may be explained
both by a lack of association and by the small sample size discussed above. Further studies
on large populations or meta-analyses of available data are paramount to establishing the
best evidence-based strategies for men with PIRADS category 3 lesions.

While we are aware that the discussed risk factors for detection of csPC have already
been evaluated in the literature, this is the first large-volume study using MRI-ultrasound
fusion biopsy results as a reference in which this particular set of clinically relevant and
easily assessed factors was incorporated into a regression model. Hence, our results may
possibly serve as evidence useful for weighted clinical judgment in patients in whom
the individual low probability of harboring csPC is considered against the risk of biopsy
complications. In our study, we adopted a per-patient, not per-lesion strategy for data
analysis. The meta-analysis by Mazzone et al. demonstrated that per-lesion-level analysis
may lead to lower rates of csPC [7]. Even with the use of a reference MRI-ultrasound fusion
technique, cores still may miss the malignant lesion due to technical targeting mistakes or
MRI limitations in detecting multifocal disease, and the identification of men who would
benefit from omitting systematic cores is currently infeasible [27]. The per-patient study
design was aimed to represent a typical clinical scenario.

While the multicenter design of the study may be considered a strength, some possible
limitations must be addressed. All the biopsies were performed using the same software
and materials. Hence, we deemed the quality of the cores to be similar between the centers.
While the significantly lower median number of cores taken at Center 3 (Table 1) may
raise concerns, this did not translate into decreased CDR in this institution. Although
all the specimens were assessed according to the ISUP guidelines, possible interobserver
variability between institutional pathologists might have been a source of bias. No uniform
review of specimens may be considered a limitation of the study. Additionally, the results
of DRE might have varied largely between the clinicians performing a biopsy. However, in
order to exclude a possible bias caused by heterogeneity with regard to DRE interpretation,
we performed a sub-analysis of the data without including DRE results.

Combining patients who underwent transrectal and transperineal biopsy into one
cohort may be considered a possible cause of bias, as the non-inferiority of the transrectal
approach in terms of csPC detection is not well-established [28]. However, in our patients,
the difference in CDRs between transrectal and transperineal cases was non-significant. The
main limitation of our study is its retrospective design, which implies several drawbacks.
The study is prone to selection bias, as we were unable to verify uniform criteria for patients
being referred to biopsy, which might have been at the discretion of various external
urologists, and depending on the individual clinical judgment of each external urologist,
some patients at the same risk might have been offered different diagnostic strategies. There
was no standardized biopsy protocol used for our patients, which could have significantly
influenced the pathologic outcomes. We lack data in regard to the number of targeted
versus systematic cores, which could be valuable in the analyses. Considering the possibly
important role of a second opinion [29], no uniform review of MRI scans poses the study at
risk of bias due to potential initial misinterpretations. Some data gaps might have been
a source of bias. Nevertheless, patients without sufficient data were not included in the
regression models. Including follow-up data in the study, especially in regard to possible
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re-biopsy or radical prostatectomy specimens, could also have influenced the diagnostic
performance of the pre-biopsy MRI. In addition, analysis of several other factors, like family
history, multifocality, or anatomic lesion location (base vs. mid-prostate vs. apex), could
have provided deeper insight into the heterogeneity of CDR in MRI-positive patients.

5. Conclusions

Our large, multicenter, retrospective study exploring the csPC detection rates in MRI-
positive patients undergoing MRI-ultrasound fusion biopsy of the prostate provides new
data regarding the predictive values of particular PIRADS categories, with our values being
slightly lower than the current literature would suggest. This study serves as another piece
of evidence that the probability of a csPC diagnosis in patients with the PIRADS 3 category
is substantially low, warranting further risk stratification prior to offering a biopsy.

We managed to investigate several factors that further increase the probability of a
csPC diagnosis in patients with a positive MRI. Apart from a higher PIRADS category
or lesion size, patients were more likely to be diagnosed with csPC in cases of older age,
lower PV, positive DRE, a lesion located in the PZ, and being biopsy-naïve. The role of
lower PV was especially significant in PIRADS category 3 patients. The results of this study
may be helpful in the decision-making process for patients considered for prostate biopsy.
Moreover, they point to important future research directions.
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Abstract: (1) Background: The study aimed to construct nomograms to improve the detection rates
of prostate cancer (PCa) and clinically significant prostate cancer (CSPCa) in the Asian population.
(2) Methods: This multicenter prospective study included a group of 293 patients from three hospitals.
Univariable and multivariable logistic regression analysis was performed to identify potential risk
factors and construct nomograms. Discrimination, calibration, and clinical utility were used to assess
the performance of the nomogram. The web-based dynamic nomograms were subsequently built
based on multivariable logistic analysis. (3) Results: A total of 293 patients were included in our
study with 201 negative and 92 positive results in PCa. Four independent predictive factors (age,
prostate health index (PHI), prostate volume, and prostate imaging reporting and data system score
(PI-RADS)) for PCa were included, and four factors (age, PHI, PI-RADS, and Log PSA Density) for
CSPCa were included. The area under the ROC curve (AUC) for PCa was 0.902 in the training cohort
and 0.869 in the validation cohort. The AUC for CSPCa was 0.896 in the training cohort and 0.890 in
the validation cohort. (4) Conclusions: The combined diagnosis of PHI and PI-RADS can avoid more
unnecessary biopsies and improve the detection rate of PCa and CSPCa. The nomogram with the
combination of age, PHI, PV, and PI-RADS could improve the detection of PCa, and the nomogram
with the combination of age, PHI, PI-RADS, and Log PSAD could improve the detection of CSPCa.

Keywords: multiparametric magnetic resonance imaging; prostate health index; prostate cancer;
nomogram; diagnosis

1. Introduction

Globally, prostate cancer (PCa) is the second leading cause of death among men,
with approximately 268,490 new cases and 34,500 deaths projected to occur in America by
2022. [1]. With the widespread use of prostate-specific antigen (PSA), the early diagnosis
and treatment of PCa are gradually increasing [2]. However, the low specificity of PSA
has led to lots of unnecessary and excessive prostate biopsies, resulting in a significant
financial burden as well as many post-biopsy complications. In recent years, scholars have
used different biomarkers, such as the 4Kscore, PCA3, and the prostate health index (PHI),
and different predictive models to improve the detection rate of prostate cancer [3–5]. The
clinical application of prostate multiparametric magnetic resonance imaging (mpMRI) and
the prostate imaging reporting and data system (PI-RADS) has also improved the diagnosis
of PCa and clinically significant prostate cancer (CSPCa) in terms of imaging [6]. With
the combination of the above biomarkers with mpMRI, cancer detection rates have been
improved and unnecessary biopsies have been reduced [7].
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The discovery and clinical application of (-2) proPSA (P2PSA) have made PHI an
important indicator for low-risk and intermediate-risk PCa screening, especially in PSA
2–20 ng/mL, in clinical practice [8,9]. A large cohort study showed that a cutoff value of
35 for PHI in Asian populations reached good sensitivity and specificity [8]. However,
in actual clinical work, it is insufficient to use the PHI value of 35 as a cutoff value for
diagnosing prostate cancer. Therefore, the role of the combined diagnosis of PCa appears
to be important.

The purpose of this study is to construct clinically useful nomograms using PHI and
PI-RADS indicators, along with other clinical indicators, which are based on data from a
multicenter database, in order to improve the diagnostic accuracy of PCa and CSPCa in the
Asian population.

2. Materials and Methods
2.1. Study Population

This multicenter prospective study included a group of 293 patients from three hospi-
tals in the Asian population, 29 patients from hospital 1, 42 patients from hospital 2, and
222 patients from hospital 3. This study is a prospective multicenter observational cohort
study and the clinical trial registration number is NCT05179707. It has been approved
by the Ethics Committee of Qilu Hospital of Shandong University and endorsed by the
Ethics Committees of the other institutions participating in the study. All patients signed
a written informed consent form. Patients with PSA in 4–20 ng/mL and a normal digital
rectal examination were enrolled. If a patient’s mpMRI showed a low probability of cancer
and a PSA level of around 4 ng/mL, we elaborated on different treatment options for the
patient, including active surveillance and other treatment modalities. If the patient had a
very strong desire for a biopsy, we performed a biopsy after that patient signed an informed
consent form.

The exclusion criteria were as follows: (I) abnormal blood clotting function; (II) infec-
tion of the urinary tract or prostatitis; (III) prostate surgery (such as transurethral resection
of the prostate) performed prior to biopsy. The patients in this cohort were all biopsy-naive.

2.2. Data Collection and Clinical Variables

Before prostate biopsy, blood samples were collected prospectively to determine total
prostate-specific antigen (TPSA), free prostate-specific antigen (fPSA), and P2PSA levels. A
blood clotting process was performed at room temperature for one hour, followed by cen-
trifugation for fifteen minutes. A serum sample was aliquoted, frozen at −80 ◦C, and sub-
jected to immunoassay using dedicated Access TPSA, fPSA, and P2PSA reagents (Beckman
Coulter, Brea, CA, USA). Calculation of the f/T indicator was completed by dividing the
fPSA by the TPSA, and calculation of the PSAD was performed by dividing the TPSA by the
PV. These data were calculated using the prostate ellipsoid formulation: PV = ([maximum
anteroposterior diameter] × [maximum transverse diameter] × [maximum longitudinal
diameter] × 0.52], measured using an MRI scan [10]. Based on Beckman and Coulter’s PHI
formula, the PHI was calculated as follows: ((-2) proPSA/free PSA) /

√
PSA, and %P2PSA

was calculated using the formula [(P2PSA pg/mL)/ (fPSA ng/mL × 1000)] × 100 [9,11].
A mpMRI was performed on all patients prior to prostate biopsy using a 3.0 T ma-

chine without an endorectal coil. The scanning protocol of mpMRI included T1-weighted
imaging (T1WI), T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI), and
dynamic contrast-enhanced imaging (DCE). DWI was acquired with b values of 0 and
1500 s/mm2, and an apparent diffusion coefficient (ADC) map was generated. The mpMRI
was interpreted by two urogenital radiologists with at least three years of experience in
prostate MRI and recorded by using the PI-RADS v2.1 score. There is a very low probability
that CSPCa will be present in PI-RADS 1 (CSPCa is highly unlikely to occur); PI-RADS 2
(CSPCa is highly unlikely to occur); PI-RADS 3 (equivocal presence of CSPCa); PI-RADS
4—High (CSPCa is highly likely to occur); PI-RADS 5—Very high (CSPCa is highly likely
to occur) [12,13].
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All patients underwent ultrasound-guided transperineal prostate biopsy or transrectal
prostate biopsy in antibiotic prophylaxis. The patients underwent 12-core systematic
prostate biopsy and an additional 4-core biopsy was performed in suspicious lesions. MRI-
transrectal/transperineal cognitive fusion biopsy was performed for the suspicious lesions.
When using transperineal prostate biopsy, physicians use a free-hand approach biopsy.
Biopsies were performed at each center by physicians with at least five years of experience
in biopsy procedures. According to the guidelines of the International Society of Urological
Pathology Consensus Conference, biopsy specimens were interpreted and graded [14]. PCa
was defined as Gleason score (GS) ≥ 3 + 3 and CSPCa was defined as GS ≥ 3 + 4 [15].

2.3. Construction of the PCa and CSPCa Nomograms

The entire cohort was randomly divided into a training cohort and a validation
cohort in a 3:1 ratio, and we used the training cohort to build the nomogram and the
validation cohort for verification. The potential risk factors for PCa and CSPCa were
identified using a univariable logistic regression analysis. The factors with a P value less
than 0.1 in univariable logistic regression analysis were included in the multivariable
logistic regression analysis. The final predictive models using the independent risk factors
(p < 0.05 in multivariable stepwise forward logistic regression) were constructed. Following
the multivariable logistic regression analysis, nomograms were constructed using the R
packages “rms” and “DynNom” (version 4.1.1; http://www.r-project.org/, 3 August 2022).
Using the regression model, scores were calculated for each variable, and the predicted
probability of PCa and CSPCa was determined by averaging the scores.

2.4. Nomogram Performance

In order to evaluate the performance of the nomogram, discrimination, calibration,
and clinical utility were taken into account. Discrimination consists of evaluating a model
for its ability to distinguish between events and non-events. An evaluation of the predictive
nomogram’s discrimination efficiency was conducted using a receiver operating character-
istic (ROC) curve [16]. A calibration process was used to determine the degree to which
predicted probabilities correspond to actual results. The calibration power was assessed
using the Hosmer–Lemeshow test, and a P value greater than 0.05 was considered satisfac-
tory. A bootstrapping method with 1000 replications was used for internal validation [17].
Evaluation of clinical utility was conducted using decision curve analysis (DCA).

2.5. Statistical Analysis

For the comparison of the continuous variables of groups, the normality test was
first performed, and the Student t-test was used for continuous variables that met the
normality test; otherwise, the Mann–Whitney U test was applied for continuous variables.
Normally distributed continuous variables were described as mean ± standard deviation
(SD); otherwise, the form of the median (interquartile range (IQR)) was described. Ranked
data were analyzed by using the Wilcoxon rank sum test. The Kruskall Wallis test was used
to analyze the variables between multiple groups. Some indicators with over-inflated odds
ratio (OR) values were balanced using Log transformation. The optimal cut-off value of the
nomogram was obtained from the maximum Youden index. p value < 0.05 was considered
statistically significant. Data analysis was conducted using R Project software (version
4.1.1; http://www.R-project.org, 3 August 2022) and SPSS software (version 25.0; SPSS
Inc., Chicago, IL, USA).

3. Results

A total of 293 patients were included in our study with 201 negative and 92 positive
results in PCa between September 2020 to June 2022. A comparison of the baseline demo-
graphic characteristics from the three hospitals is shown in Table S1. In the cohort, patients
were randomly assigned to the training cohort (n = 220) or the validation cohort (n = 73).
No significant differences were observed in any of the variables between the two cohorts
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(Table 1). The characteristics of patients in the training and validation cohorts are shown in
Tables 2 and 3.

Table 1. Patients’ characteristics of the training cohort and validation cohort in total and significant
prostate cancer.

Characteristics All Cohort
PCa CSPCa

Training Cohort Validation
Cohort p Value Training Cohort Validation

Cohort p Value

N (%) 293 (100) 220 (75.09) 73 (24.91) - 220 (75.09) 73 (24.91) -
Age (years),

median (IQR)
66.00

(60.00–72.00)
66.00

(59.25–72.75)
66.00

(61.00–72.00) 0.787 66.00
(60.00–72.00)

66.00
(60.00–74.00) 0.355

TPSA (ng/mL),
median (IQR)

8.51
(5.97–12.11) 8.59 (5.96–12.13) 8.31 (5.95–11.93) 0.956 8.51 (5.88–11.96) 8.84 (6.11–12.99) 0.478

fPSA (ng/mL),
median (IQR) 1.13 (0.79–1.61) 1.12 (0.79–1.60) 1.14 (0.76–1.73) 0.697 1.13 (0.75–1.60) 1.21 (0.91–1.67) 0.396

P2PSA
(ng/mL),

median (IQR)

17.89
(12.01–28.90)

17.97
(12.95–22.35)

17.89
(10.98–29.76) 0.783 17.83

(11.80–28.62)
20.54

(14.25–29.87) 0.226

PHI, median
(IQR)

47.15
(35.36–67.90)

47.65
(35.18–67.91)

46.28
(35.16–68.51) 0.842 46.51

(25.09–69.60)
48.80

(37.42–63.95) 0.574

f/T, median
(IQR) 0.14 (0.10–0.19) 0.14 (0.09–0.19) 0.13 (0.11–0.19) 0.690 0.14 (0.09–0.20) 0.14 (0.10–0.19) 0.679

%P2PSA,
median (IQR) 1.70 (1.27–2.27) 1.71 (1.30–2.23) 1.70 (1.15–2.28) 0.955 1.69 (1.26–2.27) 1.73 (1.33–2.28) 0.582

PV (mL),
median (IQR)

44.13
(28.84–65.54)

44.45
(28.84–66.23)

43.68
(28.53–63.86) 0.820 42.46

(28.22–63.10)
45.45

(31.43–67.27) 0.381

PI-RADS, n (%) 0.963 0.359
≤2 117 (39.9) 85 (38.6) 32 (43.8) 91 (41.4) 26 (35.6)
3 92 (31.4) 76 (34.5) 16 (21.9) 69 (31.4) 23 (31.5)
≥4 84 (28.7) 59 (26.8) 25 (34.2) 60 (27.3) 24 (32.9)

PSAD
(ng/mL2),

median (IQR)
0.19 (0.13–0.31) 0.18 (0.12–0.31) 0.21 (0.13–0.33) 0.589 0.18 (0.12–0.31) 0.21 0.871

IQR: interquartile range; TPSA: total prostate-specific antigen; fPSA: free prostate-specific antigen; P2PSA: (-2)pro-
prostate-specific antigen; PHI: prostate health index; f/T: free/total prostate-specific antigen; %P2PSA: defined
as [(P2PSA/fPSA) × 100]; PV: prostate volume; PI-RADS: Prostate Imaging-Reporting and Data System; PSAD:
prostate-specific antigen density; CSPCa: clinically significant prostate cancer, defined as Gleason Grade ≥ 2. The
P value is for comparing the training cohort with the validation cohort.

Table 2. Patient characteristics in training and validation cohorts with and without PCa.

Characteristics
Training Cohort Validation Cohort

Non-PCa PCa p Value Non-PCa PCa p Value

Age (years), median
(IQR) 66.00 (59.00–71.50) 67.00 (64.00–74.00) 0.094 63.50 (58.00–69.75) 71.00 (66.00–77.00) 0.001

TPSA (ng/mL),
median (IQR) 8.38 (5.57–11.59) 8.97 (6.38–13.58) 0.106 7.98 (5.65–10.48) 11.03 (7.14–13.69) 0.023

fPSA (ng/mL),
median (IQR) 1.23 (0.81–1.70) 1.06 (0.79–1.39) 0.196 1.11 (0.85–1.69) 1.40 (0.74–1.78) 0.622

P2PSA (ng/mL),
median (IQR) 16.57 (10.93–23.62) 25.57 (31.58–52.10) 0.000 15.20 (9.65–24.64) 30.44 (15.45–49.74) 0.001

PHI, median (IQR) 42.07 (31.58–52.10) 72.57 (51.67–110.15) 0.000 40.74 (28.62–53.92) 73.11 (59.45–98.91) 0.000
f/T, median (IQR) 0.15 (0.10–0.21) 0.12 (0.09–0.15) 0.001 0.14 (0.11–0.20) 0.13 (0.08–0.17) 0.338
%P2PSA, median

(IQR) 1.47 (1.03–1.85) 2.44 (1.87–3.20) 0.000 1.58 (1.05–2.03) 2.30 (1.76–3.23) 0.000

PV (mL), median
(IQR) 50.39 (35.03–73.81) 32.85 (23.06–47.67) 0.000 50.16 (32.90–66.55) 30.40 (20.14–48.64) 0.010
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Table 2. Cont.

Characteristics
Training Cohort Validation Cohort

Non-PCa PCa p Value Non-PCa PCa p Value

PI-RADS, n (%) 0.000 0.002
≤2 77 (51.7) 8 (11.3) 29 (55.8) 3 (14.3)
3 51 (34.2) 25 (35.2) 11 (21.2) 5 (23.8)
≥4 21 (14.1) 38 (53.5) 12 (23.1) 13 (61.9)

PSAD (ng/mL2),
median (IQR)

0.16 (0.11–0.24) 0.25 (0.18–0.47) 0.000 0.17 (0.11–0.25) 0.36 (0.23–0.43) 0.000

IQR: interquartile range; TPSA: total prostate-specific antigen; fPSA: free prostate-specific antigen; P2PSA: (-2)pro-
prostate-specific antigen; PHI: prostate health index; f/T: free/total prostate-specific antigen; %P2PSA: defined
as [(P2PSA/fPSA) × 100]; PV: prostate volume; PI-RADS: Prostate Imaging-Reporting and Data System; PSAD:
prostate-specific antigen density; PCa: prostate cancer. P value is for the comparison between non-PCa and PCa
in the training cohort and validation cohort, respectively.

Table 3. Patient characteristics in training and validation cohorts with and without CSPCa.

Characteristics
Training Cohort Validation Cohort

Non-PCa PCa p Value Non-PCa PCa p Value

Age (years), median
(IQR) 66.00 (59.00–71.50) 67.00 (64.00–74.00) 0.094 63.50 (58.00–69.75) 71.00 (66.00–77.00) 0.001

TPSA (ng/mL),
median (IQR) 8.38 (5.57–11.59) 8.97 (6.38–13.58) 0.106 7.98 (5.65–10.48) 11.03 (7.14–13.69) 0.023

fPSA (ng/mL),
median (IQR) 1.23 (0.81–1.70) 1.06 (0.79–1.39) 0.196 1.11 (0.85–1.69) 1.40 (0.74–1.78) 0.622

P2PSA (ng/mL),
median (IQR) 16.57 (10.93–23.62) 25.57 (31.58–52.10) 0.000 15.20 (9.65–24.64) 30.44 (15.45–49.74) 0.001

PHI, median (IQR) 42.07 (31.58–52.10) 72.57 (51.67–110.15) 0.000 40.74 (28.62–53.92) 73.11 (59.45–98.91) 0.000
f/T, median (IQR) 0.15 (0.10–0.21) 0.12 (0.09–0.15) 0.001 0.14 (0.11–0.20) 0.13 (0.08–0.17) 0.338
%P2PSA, median

(IQR) 1.47 (1.03–1.85) 2.44 (1.87–3.20) 0.000 1.58 (1.05–2.03) 2.30 (1.76–3.23) 0.000

PV (mL), median
(IQR) 50.39 (35.03–73.81) 32.85 (23.06–47.67) 0.000 50.16 (32.90–66.55) 30.40 (20.14–48.64) 0.010

PI-RADS, n (%) 0.000 0.002
≤2 77 (51.7) 8 (11.3) 29 (55.8) 3 (14.3)
3 51 (34.2) 25 (35.2) 11 (21.2) 5 (23.8)
≥4 21 (14.1) 38 (53.5) 12 (23.1) 13 (61.9)

PSAD (ng/mL2),
median (IQR)

0.16 (0.11–0.24) 0.25 (0.18–0.47) 0.000 0.17 (0.11–0.25) 0.36 (0.23–0.43) 0.000

IQR: interquartile range; TPSA: total prostate-specific antigen; fPSA: free prostate-specific antigen; P2PSA: (-
2)pro-prostate-specific antigen; PHI: prostate health index; f/T: free/total prostate-specific antigen; %P2PSA:
defined as [(P2PSA/fPSA) × 100]; PV: prostate volume; PI-RADS: Prostate Imaging-Reporting and Data Sys-
tem; PSAD: prostate-specific antigen density; CSPCa: clinically significant prostate cancer, defined as Gleason
Grade ≥ 2. P value is for the comparison between non-CSPCa and CSPCa in the training cohort and validation
cohort, respectively.

3.1. Univariable and Multivariable Regression Analyses in Predicting PCa and CSPCa

An evaluation of the risk factors for PCa and CSPCa in the training cohort was
conducted using both univariable and multivariable stepwise forward regression analyses
(Table 4). Univariable logistic regression analyses showed that age, TPSA, P2PSA, PHI,
f/T, %P2PSA, PV, PI-RADS, and Log (PSAD) were risk factors in predicting PCa and
CSPCa. After analysis of the clinical value of the predictors and the collinearity, age,
TPSA, PHI, f/T, PV, and PI-RADS were included into the multivariable regression analysis.
Multivariable stepwise forward regression analysis revealed that age (OR = 0.970; 95%
confidence interval (CI): 0.952–0.988; p = 0.014), PHI (OR = 1.037; 95% CI: 1.022–1.052;
p = 0.000), PV (OR = 0.970; 95% CI: 0.952–0.988; p = 0.002), and PI-RADS (OR = 2.936;
95% CI: 1.873–4.601; p = 0.000) were predictive factors in detecting PCa. The risk factors
for detecting CSPCa in multivariable regression analysis were PHI (OR = 1.033; 95% CI:
1.020–1.045; p = 0.000), Log (PSAD) (OR = 9.758; 95% CI: 2.458–39.220; p = 0.001), and
PI-RADS (OR = 2.458; 95% CI: 1.709–3.535; p = 0.000).
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Table 4. Univariable and multivariable logistic regression analysis of risk factors for total and
significant prostate cancer in the training cohort.

Variable

PCa CSPCa

Univariable Analysis Multivariable Analysis Univariable Analysis Multivariable Analysis

OR 95% CI p
Value OR 95% CI p

Value OR 95% CI p
Value OR 95% CI p

Value

Age 1.028 0.996–1.061 0.084 0.970 0.952–0.988 0.014 1.038 1.002–1.076 0.040
TPSA 1.057 0.993–1.124 0.081 1.097 1.024–1.176 0.008
fPSA 0.736 0.499–1.085 0.122 0.794 0.527–1.196 0.269

P2PSA 1.045 1.025–1.066 0.000 1.047 1.026–1.068 0.000
PHI 1.044 1.030–1.059 0.000 1.037 1.022–1.052 0.000 1.046 1.032–1.061 0.000 1.033 1.020–1.045 0.000
f/T 0.002 0.000–0.196 0.007 0.001 0.000–0.078 0.003

%P2PSA 3.652 2.389–5.583 0.000 3.004 2.058–4.383 0.000
PV 0.970 0.956–0.984 0.000 0.970 0.952–0.988 0.002 0.964 0.947–0.981 0.000
PI-

RADS 3.385 2.319–4.941 0.000 2.936 1.873–4.601 0.000 2.805 1.970–3.994 0.000 2.458 1.709–3.535 0.000

Log
(PSAD) 22.300 6.809–

73.042 0.000 72.227 16.817–
310.206 0.000 9.758 2.458–

39.220 0.001

TPSA: total prostate-specific antigen; fPSA: free prostate-specific antigen; P2PSA: (-2)pro-prostate-specific antigen;
PHI: prostate health index; f/T: free/total prostate-specific antigen; %P2PSA: defined as [(P2PSA/fPSA) × 100];
PV: prostate volume; PI-RADS: Prostate Imaging-Reporting and Data System; PSAD: prostate-specific antigen
density; PCa: prostate cancer; OR: odds ratio; CI: confidence interval. CSPCa: clinically significant prostate cancer,
defined as Gleason Grade ≥ 2.

3.2. The Construction and Performance of Nomogram

Four independent predictive factors (age, PHI, PV, and PI-RADS) for PCa were in-
cluded and four factors (age, PHI, PI-RADS, and Log PSAD) for CSPCa were included.
Detailed information on the predictive model is shown in Table 5. The predictive models
of PCa and CSPCa were constructed based on coefficients of the multivariable logistic
regression model and are shown in Figure 1. There were totals of 7 axes in this nomogram,
and 4 axes represented predictive factors. In order to calculate the estimated score for each
risk factor, a perpendicular line can be drawn along the axis of the top points, and an addi-
tional sum can be computed to determine the total score. Additionally, we developed two
web-based operation interfaces (https://zhouyonghengql.shinyapps.io/PCa_DynNom/)
(https://zhouyonghengql.shinyapps.io/CSPCa_DynNomapp/) using the “Dynnom” pack-
age for urology surgeons in order to facilitate the widespread use of our predictive nomo-
grams on 20 August 2022.

Table 5. Detailed information about the predictive model used to calculate the probability of PCa.

Risk Factors Coefficient SE OR (95% CI) p

PCa
Intercept −8.508 1.754 0.000 0.000

Age 0.058 0.024 0.970 (0.952–0.988) 0.014
PHI 0.036 0.008 1.037 (1.022–1.052) 0.000
PV −0.030 0.010 0.970 (0.952–0.988) 0.002

PI-RADS 1.077 0.229 2.936 (1.873–4.601) 0.000
CSPCa

Intercept −5.341 1.717 0.005 0.002
Age 0.020 0.023 1.020 (0.975–1.067) 0.383
PHI 0.032 0.007 1.032 (1.018–1.047) 0.000

PI-RADS 0.850 0.217 2.340 (1.529–3.580) 0.000
Log (PASD) 2.515 0.835 12.370 (2.406–63.583) 0.003

PCa: prostate cancer; CSPCa: clinically significant prostate cancer, defined as Gleason Grade ≥ 2; SE: standard
error; OR: odds ratio; CI: confidence interval. Probability of PCa in PSA 4–20 ng/mL can be calculated by using
the following formula: ln (p/1-p) = 0.058 × Age + 0.036 × PHI-0.030 × PV + 1.077 × PI-RADS-8.508. Probability
of CSPCa in PSA 4–20 ng/mL can be calculated by using the following formula: ln (p/1-p) = 0.020 × Age + 0.032
× PHI + 0.850 × PI-RADS + 2.515 × Log (PSAD)-5.341.
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Figure 1. Nomograms for PCa (A) and CSPCa (B). In order to determine the point of each variable,
draw a vertical line from the corresponding axis of the variable to the points axis. To estimate the
probability of PCa/CSPCa, the total score can be projected to the lower total point axis by summing
the points for each variable. PIRADS: Prostate Imaging-Reporting and Data System; PHI: prostate
health index; PV: prostate volume; PSAD: prostate-specific antigen density; PCa: prostate cancer;
CSPCa: clinically significant prostate cancer, defined as Gleason Grade ≥ 2.

The ROC curve was used to evaluate the accuracy of the predictive models and
nomograms in discrimination capacity (Figure 2). The area under the ROC curve (AUC)
for PCa was 0.9023 (95% CI: 0.8578–0.9467) in the training cohort and 0.8690 (95% CI:
0.7673–0.9707) in the validation cohort, which indicated that the nomogram had relatively
high predictive accuracy. The optimal cut-off of the nomogram was 0.304, and the specificity
and sensitivity were 0.841 and 0.859, respectively. In addition, the nomogram could avoid
57.68% of biopsies, and only 4.44% of patients with PCa were missed in this cut-off value.
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Figure 2. The receiver operating characteristic (ROC) curve of training cohort and validation cohort
for PCa (A) and CSPCa (B). PCa: prostate cancer; CSPCa: clinically significant prostate cancer, defined
as Gleason Grade ≥ 2; AUCs, areas under the ROC curve.

The Hosmer–Lemeshow test and calibration plot were used to assess calibration
power. According to the Hosmer–Lemeshow test, the P value in the training cohort was
0.084 and, in the validation cohort, it was 0.397, indicating that the difference between the
predicted probabilities and the actual probabilities was not significant. Both the training
and validation cohort calibration plots (Figure 3) demonstrate that the predictive nomogram
was well-calibrated. The DCA curve is shown in Figure S1.

The different cut-off values of PHI and the optimal cut-off values of nomograms are
shown in Table 6. When the PHI value was greater than or equal to 35, the sensitivity
and the specificity were 95.77% and 34.90%, respectively, and 23.64% of biopsies could
be saved. When applying the nomogram for predicting PCa, 55.91% of biopsies could be
saved, accompanied by 3.67% of PCa as well as 1.82% of CSPCa being missed.

Table 6. Predictive performance of different cut-off values of PHI and optimal cut-off values of nomo-
grams.

Sensitivity Specificity PPV NPV % Biopsy
Avoided

% PCa
Missed

%CSPCa
Missed

PHI ≥ 35 95.77 34.90 41.21 94.55 23.64 1.36 1.36
PHI ≥ 40 90.14 45.64 44.14 90.67 30.91 3.18 1.82
PHI ≥ 45 81.69 59.73 49.15 87.25 40.45 5.91 3.18
PHI ≥ 50 76.06 71.81 56.25 86.29 48.64 7.73 4.09
PHI ≥ 55 74.65 79.87 63.86 86.86 54.09 8.18 4.55

a NP ≥ 27% 88.73 82.55 70.79 93.89 55.91 3.67 1.82
b NP ≥ 31% 83.64 89.09 71.88 94.23 63.64 7.27 4.09

NP: nomogram predictive; a: nomogram for predicting PCa; b: nomogram for predicting CSPCa; PPV: positive
predictive value; NPV: negative predictive value; PCa: prostate cancer; CSPCa: clinically significant prostate
cancer, defined as Gleason Grade ≥ 2.

52



J. Clin. Med. 2023, 12, 339
J. Clin. Med. 2022, 11, x FOR PEER REVIEW 9 of 13 
 

J. Clin. Med. 2022, 11, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/jcm 

 

Figure 3. Prediction nomogram calibration curves for PCa in the training cohort (A) and validation 

cohort (B). The calibration curves for the CSPCa prediction nomogram in the training cohort (C) and 

validation cohort (D). On the x-axis, the nomogram-predicted probability is displayed, while on the 

y-axis, the actual probability of PCa or CSPCa is displayed. An ideal curve with a black point is 

represented by the black pointed line, an apparent curve with a red solid line represents the appar-

ent curve that has not been corrected, and a bias-correction curve derived from bootstrapping (B = 

1000 repetitions) is represented by the blue solid line. PCa: prostate cancer; CSPCa: clinically signif-

icant prostate cancer, defined as Gleason Grade ≥ 2. 

The different cut-off values of PHI and the optimal cut-off values of nomograms are 

shown in Table 6. When the PHI value was greater than or equal to 35, the sensitivity and 

the specificity were 95.77% and 34.90%, respectively, and 23.64% of biopsies could be 

saved. When applying the nomogram for predicting PCa, 55.91% of biopsies could be 

saved, accompanied by 3.67% of PCa as well as 1.82% of CSPCa being missed. 

Table 6. Predictive performance of different cut-off values of PHI and optimal cut-off values of 

nomograms. 

 Sensitivity Specificity PPV NPV 
% biopsy 

avoided 

% PCa 

missed 

%CSPCa 

missed 

PHI≥35 95.77 34.90 41.21 94.55 23.64 1.36 1.36 

PHI≥40 90.14 45.64 44.14 90.67 30.91 3.18 1.82 

PHI≥45 81.69 59.73 49.15 87.25 40.45 5.91 3.18 

PHI≥50 76.06 71.81 56.25 86.29 48.64 7.73 4.09 

PHI≥55 74.65 79.87 63.86 86.86 54.09 8.18 4.55 
aNP≥27% 88.73 82.55 70.79 93.89 55.91 3.67 1.82 

Figure 3. Prediction nomogram calibration curves for PCa in the training cohort (A) and validation
cohort (B). The calibration curves for the CSPCa prediction nomogram in the training cohort (C) and
validation cohort (D). On the x-axis, the nomogram-predicted probability is displayed, while on
the y-axis, the actual probability of PCa or CSPCa is displayed. An ideal curve with a black point
is represented by the black pointed line, an apparent curve with a red solid line represents the
apparent curve that has not been corrected, and a bias-correction curve derived from bootstrapping
(B = 1000 repetitions) is represented by the blue solid line. PCa: prostate cancer; CSPCa: clinically
significant prostate cancer, defined as Gleason Grade ≥ 2.

4. Discussion

PCa is one of the common malignant tumors in men and prostate biopsy remains the
gold standard for confirming PCa [18]. However, many patients experience unnecessary
biopsies and suffer from the complications of biopsies. Therefore, the combined diagnosis
of PCa has become quite important. Hsieh et al. found that the AUC of the combination of
PHI and mpMRI (0.873 (95% CI 0.8050–0.9407)) was higher than the AUC of the PHI (0.735
(95% CI 0.6194–0.8497)) and the AUC of the mpMRI (0.830 (95% CI 0.7598–0.9004)) [19].
Other scholars also explored and constructed many different combined models to improve
the diagnostic accuracy of PCa [7,19–22].

It is well known that mpMRI is gradually spreading in the diagnostic application
of PCa [23]. There are a lot of authors that have studied it and have offered interesting
results in this regard. Grey et al. derived the negative predictive value of 97.7% for the
PI-RADS score in the diagnosis of CSPCa [24]. They thought the PI-RADS scoring could
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be used in the decision-making process for detecting CSPCa. A systematic review from
the Cochrane Database illustrated the benefit of detecting more CSPCa in mpMRI-targeted
biopsies with a sensitivity of 0.80 (95% CI: 0.69–0.87) and a specificity of 0.94 (95% CI:
0.90–0.97) [25]. Mendhiratta et al. reported that targeted biopsy based on the mpMRI could
detect more CSPCa than systematic biopsy (88.6% vs. 77.3%, p=0.037), which reflected the
strong predictive efficiency of mpMRI in CSPCa [6]. The clinical application of mpMRI
and the criteria for PI-RADS scoring are described in the ESUR prostate MR guidelines,
providing clinicians with further improvements in the learning of mpMRI as well [26].

In this study, we developed clinical prediction models and devised nomograms using
the combination of PHI, PI-RADS scores, and other important clinical predictors and
developed a website that promotes our nomograms. For patients with elevated PSA but
low predictive probability, measures such as active monitoring can be used.

Prostate biopsy is already a routine procedure and can be performed in many hos-
pital outpatient operating rooms. With the widespread of transperineal prostate biopsy
techniques, complications such as sepsis have decreased [27]. However, in some elderly
patients with other diseases or poor coagulation function, prostate biopsy under local
anesthesia still carries a high risk of bleeding. Therefore, a clinical predictive tool should
be used to determine whether to perform active monitoring or to perform biopsy under
close supervision.

Prior studies have constructed a number of nomograms that incorporate PHI and other
clinical risk factors or PI-RADS and other clinical risk factors for PCa or CSPCa [20–22]. The
superiority of the combined diagnosis of PHI and PI-RADS has also been demonstrated in
several studies [19,28]. However, no studies constructed nomograms with the combination
of PHI, PI-RADS scores, and other clinically significant predictive factors. Considering
previous studies and the usefulness as well as the convenience of a clinical predictive model,
we included four independent predictive factors in detecting PCa: age, PHI, PI-RADS, and
PV. In predicting the positive rate of CSPCa, four predictive factors were included: age, PHI,
PI-RADS, and Log PSAD. Although age had a P value of 0.084 for PCa in the univariable
regression analysis, we still decided to include age in the model because age has been
clinically identified as a risk factor in the development of PCa [29]. According to several
observational studies, the diagnosis of patients with older age for PCa is associated with a
poor prognosis [30,31]. As the (-2) proPSA was found in 1997, PHI is gradually becoming
an effective means of screening for PCa [32] and has shown good AUC in detecting PCa and
CSPCa [9,33]. As mentioned above, the nomogram studied in this study is more applicable
to patients with TPSA between 4 and 20 ng/mL who are able to undergo the PHI test as
well as the mpMRI examination. Although the applicability conditions are more stringent,
it is beneficial to increase the detection rate of patients in this TPSA interval.

There are many previous nomograms for predicting PCa and studies combining PHI
and PI-RADS score for detecting PCa [19,22]. Although the benefits of combining PHI
with mpMRI are well recognized, the nomogram combining PHI with mpMRI has not
been studied. As compared to previously published PCa and CSPCa predictive models,
our study offers the following advantages. First, we visualized the prediction model
as nomograms and developed a website with an operation interface for our nomogram
on 20 August 2022, (https://zhouyonghengql.shinyapps.io/PCa_DynNom/), (https://
zhouyonghengql.shinyapps.io/CSPCa_DynNomapp/), which greatly improved in terms
of efficiency, accuracy, and clinical usability as a result of this optimization. Secondly, the
combination of serum-specific biomarkers PHI and mpMRI also enables the combined
diagnosis of physiological and anatomical functions, which can reduce the number of
unnecessary biopsies by more than half.

It is worth mentioning that in our study, we analyzed the sensitivity and specificity of
different cutoff values of PHI, and we found that as the cutoff value of PHI increased, the
missed PCa and CSPCa also increased gradually. However, for the cut-off value of PHI of
35 [8], which is commonly used in clinical practice, our study found that its specificity is
low, and it is necessary to appropriately increase the threshold of PHI for the detection of
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cancer. When the prediction rate for PCa by the nomogram is greater than 27%, our study
suggests that prostate biopsy should be performed in this population with a low risk of
missing CSPCa.

The following limitations were also included in our study. First, although this study
is a prospective multicenter cohort study, the population sample size of our study was
small, which may have some limitations. Secondly, there are many clinical studies that are
still controversial and have not reached a consensus on the definition of CSPCa, and the
GS ≥ 3 + 4 seems to be prevalent in most recent criteria [15,34]. We, therefore, used the
definition in our study. In addition, maximum core length was used in the definition of
CSPCa; however, we did not incorporate it into the final analysis, as it was not available for
all patients. The use of a nomogram in this study can predict the probability of developing
CSPCa before biopsy and can provide good treatment advice to patients. However, this
study did not correlate the predictive results of the nomogram with the risk of CSPCa at
the time of radical prostatectomy or the risk of adverse pathological features of radical
prostatectomy, which remains a direction for future research and has considerable clinical
implications. Finally, a larger sample and external validation are still needed to prove our
conclusions and update our nomograms.

5. Conclusions

The combined diagnosis of PHI and PI-RADS can avoid more unnecessary biopsies.
The nomogram with the combination of age, PHI, PV, and PI-RADS could improve the
detection of PCa, and the nomogram with the combination of age, PHI, PI-RADS, and Log
PSAD could improve the detection of CSPCa.
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Abstract: Introduction: To evaluate the predictive value of the pan-immune-inflammation value
(PIV) and other systemic inflammatory markers, including the neutrophil-to-lymphocyte ratio (NLR),
derived neutrophil-to-lymphocyte ratio (dNLR), monocyte-to-lymphocyte ratio (MLR), platelet-
to-lymphocyte ratio (PLR), and systemic immune-inflammation index (SII), for prostate cancer
(PCa) and clinically significant prostate cancer (CSPCa) in patients with a prostate-specific antigen
(PSA) value between 4 and 20 ng/mL. Patients and Methods: The clinical data of 319 eligible
patients who underwent prostate biopsies in our hospital from August 2019 to June 2022 were
retrospectively analyzed. CSPCa was defined as a “Gleason grade group of ≥2”. A univariable
logistic regression analysis and multivariable logistic regression analysis were conducted to analyze
the association between the PIV, SII, MLR, and PCa/CSPCa. For the inflammatory indicators included
in the multivariable logistic regression analysis, we constructed models by combining the separate
inflammatory indicator and other significant predictors and compared the area under the curve
(AUC). A nomogram based on the PIV for PCa was developed. Results: We included 148 PCa patients
(including 127 CSPCa patients) and 171 non-PCa patients in total. The patients with PCa were older,
had higher MLR, SII, PIV, and total PSA (TPSA) values, consumed more alcohol, and had lower
free/total PSA (f/T) values than the other patients. Compared with the non-CSPCa group, the CSPCa
group had higher BMI, MLR, PIV, TPSA values, consumed more alcohol, and had lower f/T values.
The univariable regression analysis showed that drinking history, higher MLR, PIV, and TPSA values,
and lower f/T values were independent predictors of PCa and CSPCa. The AUC of the PIV in the
multivariable logistic regression model was higher than those of the MLR and SII. In addition, the
diagnostic value of the PIV + PSA for PCa was better than the PSA value. However, the diagnostic
value for CSPCa was not significantly different from that of using PSA alone, while the AUC of
the PIV + PSA was higher than the individual indicator of the PSA value. Conclusions: Our study
suggests that for the patients who were diagnosed with PSA values between 4 and 20 ng/mL, the
PIV and MLR are potential indicators for predicting PCa and CSPCa. In addition, our study indicates
that the new inflammatory index PIV has clinical value in the diagnosis of PCa and CSPCa.

Keywords: PIV; systemic inflammatory markers; prostate biopsy; diagnosis; prostate cancer

1. Introduction

Prostate cancer (PCa) is a common malignant tumor worldwide and is the second cause
of cancer-related death in men [1]. Prostate-specific antigen (PSA) is a major biomarker
for PCa diagnosis. Currently, PCa is usually determined by systematic ultrasound-guided
biopsies prompted by elevated levels of PSA in serum [2]. However, only 25% of men with
elevated PSA levels are diagnosed with PCa because of the poor specificity of PSA, which
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means that 75% of patients undergo unnecessary and potentially harmful follow-up tests,
such as biopsies, especially for men with PSA values between 4.0 and 20.0 ng/mL (low and
medium clinical risk category) [3]. In order to make up for this defect, many biomarkers
of PCa have been developed successively, such as the prostate health index, 4K score,
SelectMDx, and ExoDx Prostate IntelliScoreTM [4]. However, these experimental methods
have some disadvantages, such as high costs, which means they cannot be routinely used
for the detection of PCa [5].

In recent years, it has become increasingly accepted that certain systemic inflammatory
reactions may play a significant role in tumor promotion and progression. Tumor-related
systemic inflammatory markers, including the neutrophil-to-lymphocyte ratio (NLR),
derived neutrophil-to-lymphocyte ratio (dNLR), monocyte-to-lymphocyte ratio (MLR),
platelet-to-lymphocyte ratio (PLR), and systemic immune-inflammation index (SII), have
gained attention as diagnostic tools for tumors [6,7].

The pan-immune-inflammation value (PIV), a novel equation that includes the neu-
trophil count, platelet count, monocyte count, and lymphocyte count from peripheral blood,
has been reported as a potential prognostic biomarker in several cancers [8]. There have
been no studies of the diagnostic value of the PIV in PCa.

In the present study, our primary goal was to investigate whether the PIV could be
used to predict PCa in patients with PSA levels between 4.0 and 20.0 ng/mL. We also
verified the diagnostic efficacy of the NLR, dNLR, MLR, PLR and SII in PCa.

2. Materials and Methods
2.1. Patient Selection Information Collection

This is a retrospective study that was approved by the Institutional Ethics Review
Board of QILU Hospital of Shandong University (KYLL-202111-107). We obtained the in-
formation of all patients who received prostate biopsies with PSA levels of 4.0–20.0 ng/mL
in our hospital from August 2019 to June 2022 from the electronic medical record sys-
tem at our hospital. All patients underwent routine blood tests with serum PSA deriva-
tive (including total PSA [TPSA] and free PSA [fPSA]) within 2 weeks before their biop-
sies. Patients with one or more of the following conditions were excluded from this
study: (I) Patients with other malignancies, known infections, and hematological diseases;
(II) Patients who had had prostate surgery (such as transurethral resection of the prostate)
before their biopsies; (III) Patients with pathological diagnoses of atypical small acinar
proliferation and prostatic intraepithelial neoplasia; and (IV) Patients with incomplete
clinical data. Then, we collected the following data of eligible patients from the medical
records: age, body mass index (BMI), history of tobacco and alcohol use, medical history,
blood test results with serum PSA, histopathologic findings, and Gleason score.

2.2. Biopsy Method and Pathological Examination

All patients had received prostate mpMRI before biopsies, which were performed by
two uroradiologists with a minimum of three years of experience using a 3.0 T scanner.
Experienced members of the surgical team retrospectively performed imaging assessments
to reach a consensus on the imaging findings to determine the biopsy methods. Finally, all
patients underwent transrectal biopsies or transperineal biopsies under local anesthesia.
The prostate biopsies were performed with 12 + 3 cores (on the basis of 12 systematic
cores, with the remaining core at the suspicious area shown on the MRI by cognitive fusion
biopsies). Then, pathological tissues from the biopsy specimens were analyzed by two
experienced uropathologists according to International Society of Urological Pathology
consensus guidelines within one week post-surgery.

2.3. Data Management

The patients were classified into non-PCa group and PCa group based on the histopatho-
logic results. In addition, we divided the patients into CSPCa group and non-CSPCa
group. The definition of clinically significant prostate cancer (CSPCa) was “Gleason
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grade group of ≥2” [9]. The PIV, NLR, dNLR, MLR, PLR and SII were defined as
“neutrophil count × platelet count × monocyte count/lymphocyte count”, “neutrophil
count/lymphocyte count”, “neutrophil count/(leukocyte count–neutrophil count)”, “mono-
cyte count/lymphocyte count”, “platelet count/lymphocyte count” and “neutrophil count
× platelet count/lymphocyte count”, respectively. All the above blood cell counts were
obtained within two weeks before biopsies.

2.4. Statistical Analysis

All continuous variables were tested for normality. The continuous variables that met
the normality test used the Student’s t-test and the variables with skewed distribution used
the Mann–Whitney U-test. Continuous variables with normal distribution were reported
with mean ± SD and continuous variables with skewed distribution were reported as
median (IQR). Categorical variables were analyzed using Chi-square tests and reported as
numbers (percentages). Univariable and multivariable logistic regression analyses were
conducted to identify the independently predictive factors for PCa and CSPCa. The pre-
dictors with p values less than 0.05 in univariable logistic regression were included in
multivariable logistic regression. We constructed different models using different inflam-
matory factors and other clinical variables and compared the performance of different
models. A p value less than 0.05 was considered statistically significant. We developed a
PCa risk nomogram, including PIV for prostate biopsy. The calibration was examined by
the calibration curves. Decision curve analysis (DCA) was performed to assess the clinical
usefulness of the nomogram by calculating the net benefits. The DeLong test was used
to compare the differences in AUC. SPSS V.25.0 (IBM Corp, Armonk, NY, USA) and R
statistical software (Version 4.1.0) were used to perform statistical analysis.

3. Results
3.1. Clinical Demographics of the Eligible Patients

A total of 319 individual patients met the study’s entry criteria and were included
in the study. The mean age, PIV, TPSA levels were 66 years, 197.04, and 9.23ng/mL,
respectively. PCa was detected in 148 patients (including 127 patients with CSPCa). The
characteristics and laboratory values of the patients are shown in Table 1.

Table 1. Characteristic baseline.

Variable Overall (n = 319) Non-PCa (n = 171) PCa (n = 148) p Value Non-CSPCa (n = 192) CSPCa (n = 127) p Value

Age, year 66.00 (61.00–72.00) 65.00 (59.00–71.00) 67.00
(62.00–73.00) 0.011 66 (60–72) 66 (62–73) 0.285

BMI,
kg/m2 24.80 (22.99–26.57) 24.57 (22.78–26.12) 25.02

(23.54–27.03) 0.064 24.57 (22.78–26.12) 25.10 (23.56–27.06) 0.025

SH (%) 0.191 0.189
Y 90 (28.2) 43 (25.1) 47 (31.8) 49 (25.5) 41 (32.3)
N 229 (71.8) 128 (74.9) 101 (68.2) 143 (74.5) 86 (67.7)

AH (%) 0.015 0.016
Y 87 (27.3) 37 (21.6) 50 (33.8) 43 (22.4) 44 (34.6)
N 232 (72.7) 134 (78.4) 98 (66.2) 149 (77.6) 83 (65.4)

NLR 1.90 (1.52–2.48) 1.88 (1.44–2.58) 1.93 (1.59–2.47) 0.171 1.89 (1.44–2.51) 1.93 (1.58–2.48) 0.244
dNLR 1.37 (1.10–1.76) 1.40 (1.09–1.86) 1.36 (1.12–1.72) 0.679 1.40 (1.09–1.78) 1.35 (1.11–1.73) 0.720
MLR 0.27 (0.22–0.34) 0.25 (0.20–0.30) 0.30 (0.23–0.39) <0.001 0.26 (0.20–0.31) 0.30 (0.23–0.39) <0.001

PLR 122.98
(98.58–150.50) 120 (96.11–143.86) 132.30

(101.16–153.20) 0.053 121.10 (96.34–144.56) 132.54
(100.00–153.21) 0.099

SII, 109 411.79
(316.84–531.05)

393.89
(293.30–501.92)

427.26
(339.28–544.45) 0.030 402.14 (305.01–521.53) 423.77

(328.05–531.39) 0.145

PIV, 1018 197.04
(134.56–289.76)

171.54
(123.48–244.10)

229.62
(152.47–329.29) <0.001 181.04 (125.45–251.83) 228.49

(151.17–325.61) 0.001

Hb, g/L 147 (138–154) 148 (139–155) 147 (137–154) 0.448 148 (139–155) 147 (137–154) 0.484
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Table 1. Cont.

Variable Overall (n = 319) Non-PCa (n = 171) PCa (n = 148) p Value Non-CSPCa (n = 192) CSPCa (n = 127) p Value

TPSA,
ng/mL 9.23 (6.71–12.53) 8.40 (6.07–10.93) 10.76

(7.65–14.27) <0.001 8.40 (6.10–11.07) 11.05 (8.01–14.52) <0.001

fPSA,
ng/mL 1.20 (0.82–1.74) 1.22 (0.86–1.76) 1.14 (0.79–1.66) 0.792 1.23 (0.85–1.78) 1.14 (0.80–1.60) 0.609

f/T 0.14 (0.10–0.18) 0.15 (0.11–0.19) 0.12 (0.79–1.66) <0.001 0.15 (0.11–0.19) 0.11 (0.09–0.16) <0.001

BMI: body mass index; SH: smoking history; AH: alcohol history; NLR: neutrophil-to-lymphocyte ratio; dNLR:
derived neutrophil-to-lymphocyte ratio; MLR: monocyte-to-lymphocyte ratio; PLR: platelet-to-lymphocyte ratio;
SII: systemic immune-inflammation index; PIV: pan-immune-inflammation value; HB: hemoglobin; TPSA: total
prostatic specific antigen; fPSA: free prostatic specific antigen; f/T: free/ total prostatic specific antigen ratio; PCa:
prostate cancer; CSPCa: clinically significant prostate cancer, which was defined as Gleason grade ≥ 2.

The mean age (67.00 vs 65.00, p = 0.011), MLR (0.30 vs 0.25, p < 0.001), SII (427.26 vs
393.89, p = 0.03), PIV (229.62 vs 171.54, p < 0.001), and TPSA (10.76 vs 8.40, p < 0.001) of
the PCa group were significantly higher than those of the non-PCa group. In addition, the
proportion of patients with a history of alcohol use in the PCa group was also higher than
that in the non-PCa group (Table 1).

The CSPCa group had higher BMI, MLR, PIV and TPSA levels than the non-CSPCa
group. However, there was no significant difference in the age or SII between the two
groups. Moreover, there was no statistically significant difference in the NLR, dNLR, and
PLR between the PCa group vs non-PCa group as well as the CSPCa group vs non-CSPCa
group (Table 1).

3.2. Univariable and Multivariable Analyses of Clinical Indicators

We conducted univariable and multivariable logistic regression analyses to determine
the predictive factors of the clinical indicators. Age, history of alcohol use, MLR, SII, PIV,
TPSA and f/T values were significant predictors of PCa according to the results of the
univariable regression analysis (Table 2). Then we chose all the significant variables in the
univariable regression analysis and subjected them to the multivariable regression analysis.
The results showed that history of alcohol use, higher age, higher MLR and TPSA values,
and lower f/T values had a greater probability for the detection of PCa (Table 2).

Table 2. Univariable and multivariable analyses of clinical indicators.

PCa
Univariable Regression

Analysis
Multivariable Regression

Analysis CSPCa
Univariable Regression

Analysis
Multivariable Regression

Analysis

OR (95% CI) p Value OR (95% CI) p Value OR (95% CI) p Value OR (95% CI) p Value

Age 1.035
(1.008–1.064) 0.012 1.046

(1.014–1.079) 0.005 Age 1.015
(0.988–1.042) 0.284

BMI 1.075
(0.995–1.160) 0.066 BMI 1.090

(1.007–1.179) 0.032 1.114
(1.021–1.217) 0.016

SH SH

Y 1.385
(0.849–2.259) 0.192 Y 1.391

(0.849–2.279) 0.190

N 1 N 1
AH AH

Y 1.848
(1.122–3.042) 0.016 1.975

(1.141–3.416) 0.015 Y 1.837
(1.116–3.025) 0.017 1.706

(0.989–2.940) 0.055

N 1 1 N 1 1

NLR 1.234
(0.936–1.629) 0.136 NLR 1.192

(0.903–1.574) 0.216

dNLR 0.849
(0.636–1.134) 0.268 dNLR 0.862

(0.642–1.158) 0.324

MLR 52.028
(7.377–366.922) <0.001 16.513

(1.091–249.847) 0.043 MLR 27.469
(4.298–175.552) <0.001 19.473

(1.557–243.616) 0.021

PLR 1.003
(0.998–1.008) 0.188 PLR 1.003

(0.998–1.007) 0.299

SII 1.001
(1.000–1.002) 0.028 1.000

(0.998–1.002) 0.731 SII 1.001
(1.000–1.002) 0.053
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Table 2. Cont.

PCa
Univariable Regression

Analysis
Multivariable Regression

Analysis CSPCa
Univariable Regression

Analysis
Multivariable Regression

Analysis

OR (95% CI) p Value OR (95% CI) p Value OR (95% CI) p Value OR (95% CI) p Value

PIV 1.003
(1.001–1.004) 0.001 1.002

(0.998–1.005) 0.324 PIV 1.002
(1.001–1.003) 0.002 1.001

(0.999–1.003) 0.406

Hb 0.997
(0.983–1.011) 0.684 Hb 0.998

(0.984–1.013) 0.814

TPSA 1.163
(1.094–1.236) <0.001 1.138

(1.063–1.217) <0.001 TPSA 1.158
(1.090–1.231) <0.001 1.140

(1.067–1.218) <0.001

fPSA 1.076
(0.794–1.459) 0.635 fPSA 0.941

(0.689–1.286) 0.704

f/T 0.003
(0.000–0.096) 0.001 0.006

(0.000–0.413) 0.018 f/T 0.001
(0.000–0.028) <0.001 0.004

(0.000–0.278) 0.010

BMI: body mass index; SH: smoking history; AH: alcohol history; NLR: neutrophil-to-lymphocyte ratio; dNLR:
derived neutrophil-to-lymphocyte ratio; MLR: monocyte-to-lymphocyte ratio; PLR: platelet-to-lymphocyte ratio;
SII: systemic immune-inflammation index; PIV: pan-immune-inflammation value; HB: hemoglobin; TPSA: total
prostatic specific antigen; fPSA: free prostatic specific antigen; f/T: free/total prostatic specific antigen ratio; PCa:
prostate cancer; CSPCa: clinically significant prostate cancer, which was defined as Gleason grade ≥ 2; OR: odds
ratio; CI: CI: confidence interval.

In the univariable regression analysis between the CSPCa group and non-CSPCa
group, we found that patients with higher BMIs, a greater history of alcohol use, higher
MLR, PIV, and TPSA values, and lower f/T values were more likely to be diagnosed with
CSPCa (Table 2). The independent variables with p < 0.05 in the univariable analysis
were selected for the multivariable regression analysis. According to the result of the
multivariable logistic regression analysis, higher BMI, MLR, and TPSA values and lower
f/T values were the independent predictors of CSPCa (Table 2).

3.3. Multivariable Logistic Regression Analysis of Different Models of Inflammatory Markers

As mentioned above, we found that age, BMI, history of alchohol use, TPSA, f/T values
were independent predictors of PCa or CSPCa. Therefore, we performed multivariable
logistic regression analyses with MLR, SII, PIV, and other risk factors and constructed
different models (Model A, Model B, Model C) (Table 3), respectively, to predict the
outcomes of the biopsies. The AUC values (Figure 1) from high to low were Model C
(AUC = 0.754, 95% CI: 0.701–0.808, p = 0.001), Model A (AUC = 0.750, 95% CI: 0.701–0.808,
p < 0.001), and Model B (AUC = 0.745, 95% CI: 0.701–0.808, p = 0.008). This meant that
among the three models, Model C had the highest diagnostic value for the detection of
PCa, although the difference between them is not obvious. The specificity and sensitivity
of Model C for the PCa values were 0.703 and 0.719 (Table 4), respectively. Similar results
appeared in the group of CSPCa patients, which showed that Model C (AUC = 0.751, 95% CI:
0.696–0.806, p = 0.003) had the highest diagnostic value followed by Model A (AUC = 0.750,
95% CI: 0.696–0.804, p = 0.001) and Model B (AUC = 0.742, 95% CI: 0.686–0.798, p = 0.021)
with a sensitivity and specificity of 0.669 and 0.750 (Table 4).

62



J. Clin. Med. 2023, 12, 820

Table 3. Multivariable logistic regression analysis of different models of inflammatory markers.

PCa
Model A Model B Model C

OR (95% CI) p Value OR (95% CI) p Value OR (95% CI) p Value

Age 1.048 (1.016–1.081) 0.003 1.056 (1.023–1.089) 0.001 1.055 (1.023–1.089) 0.001
BMI 1.106 (1.014–1.207) 0.023 1.111 (1.019–1.212) 0.017 1.110 (1.017–1.211) 0.019
AH 0.031 0.029 0.032
Y 1.841 (1.059–3.200) 1.841 (1.063–3.188) 1.832 (1.054–3.186)
N 1 1 1

MLR 59.057
(7.385–472.306) <0.001 / /

SII / 1.001 (1.000–1.003) 0.008 /
PIV / / 1.003 (1.001–1.004) 0.001

TPSA 1.143 (1.068–1.223) <0.001 1.138 (1.064–1.217) <0.001 1.134 (1.061–1.213) <0.001
f/T 0.004 (0.000–0.260) 0.009 0.003 (0.000–0.215) 0.007 0.004 (0.000–0.238) 0.008

AUC (95% CI) 0.750 (0.697–0.804) 0.745 (0.701–0.808) 0.754 (0.701–0.808)

CSPCa

Age 1.025 (0.994–1.058) 0.111 1.033 (1.002–1.065) 0.040 1.032 (1.001–1.064) 0.045
BMI 1.119 (1.024–1.222) 0.013 1.123 (1.028–1.226) 0.010 1.122 (1.027–1.226) 0.011
AH 0.049 0.050 0.055
Y 1.732 (1.002–2.996) 1.721 (1.000–1.226) 1.706 (0.988–2.945)
N 1 1 1

MLR 34.010
(4.624–250.170) 0.001 / /

SII / 1.001 (1.000–1.002) 0.021 /
PIV / / 1.002 (1.001–1.004) 0.003

TPSA 1.135 (1.062–1.213) <0.001 1.131 (1.059–1.208) <0.001 1.126 (1.054–1.203) <0.001
f/T 0.002 (0.000–0.122) 0.004 0.001 (0.000–0.100) 0.003 0.001 (0.000–0.104) 0.003

AUC (95% CI) 0.750 (0.696–0.804) 0.742 (0.686–0.798) 0.751 (0.696–0.806)

AH: alcohol history; MLR: monocyte-to-lymphocyte ratio; SII: systemic immune-inflammation index; PIV: pan-
immune-inflammation value; TPSA: total prostatic specific antigen; f/T: free/total prostatic specific antigen ratio;
AUC: the area under curve; CI: Confidence interval; OR: odds ratio; PCa: prostate cancer; CSPCa: clinically
significant prostate cancer, which was defined as Gleason grade ≥ 2.
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cancer (A) and clinically significant prostate cancer (B).
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Table 4. ROC curve analysis of variables.

Variables AUC (95% CI) Cut-Off Sensitivity Specificity PPV NPV Youden Index

PCa

MLR 0.636 (0.576–0.697) 0.302 0.493 0.754 0.635 0.632 0.248
SII 0.570 (0.508–0.633) 374.674 0.703 0.444 0.523 0.633 0.147
PIV 0.639 (0.578–0.700) 219.616 0.547 0.708 0.618 0.644 0.255

TPSA 0.657 (0.596–0.717) 11.577 0.453 0.819 0.684 0.633 0.271
Model A 0.750 (0.697–0.804) 0.382 0.709 0.684 0.660 0.731 0.394
Model B 0.745 (0.690–0.800) 0.425 0.649 0.772 0.711 0.717 0.421
Model C 0.754 (0.701–0.808) 0.402 0.703 0.719 0.684 0.737 0.422

CSPCa

MLR 0.625 (0.563–0.688) 0.302 0.504 0.734 0.557 0.691 0.238
SII 0.548 (0.484–0.612) 365.367 0.717 0.401 0.442 0.681 0.118
PIV 0.615 (0.552–0.678) 210.291 0.567 0.656 0.522 0.696 0.223

TPSA 0.661 (0.599–0.724) 11.577 0.480 0.807 0.622 0.701 0.288
Model A 0.750 (0.696–0.804) 0.362 0.772 0.625 0.576 0.805 0.397
Model B 0.742 (0.685–0.798) 0.399 0.724 0.693 0.609 0.792 0.417
Model C 0.751 (0.696–0.806) 0.428 0.669 0.750 0.639 0.774 0.419

MLR: monocyte-to-lymphocyte ratio; SII: systemic immune-inflammation index; PIV: pan-immune-inflammation
value; AUC: the area under curve; ROC: receiver operating characteristic; PCa: prostate cancer; CSPCa: clinically
significant prostate cancer, which was defined as Gleason grade ≥ 2; PPV: positive predictive value; NPV: negative
predictive value; Model A: multivariable logistic regression analysis based on the MLR; Model B: multivariable
logistic regression analysis based on the SII; Model C: multivariable logistic regression analysis based on the PIV.

3.4. ROC Curve Analysis of Variables

In order to evaluate the diagnostic value of a single variable for PCa and CSPCa, we
performed the ROC-AUC analysis of the MLR, SII, PIV and TPSA. The detailed results
of the analysis are presented in Table 4, Figures 2 and 3. TPSA (AUC = 0.657, 95% CI:
0.596–0.717) had the highest predictive value for PCa values according to the parameters of
the analysis. The AUC values for the MLR, SII, and PIV were 0.636 (95% CI: 0.576–0.697),
0.570 (95% CI: 0.508–0.633), and 0.639 (95% CI: 0.578–0.700), respectively. In the group of
CSPCa, the ROC curve analysis showed that the AUCs of MLR, SII, PIV, and TPSA were
0.625 (95% CI: 0.563–0.688), 0.548 (95% CI: 0.484–0.612), 0.615 (95% CI: 0.552–0.678), and
0.661 (95% CI: 0.599–0.724), respectively. In summary, TPSA has the highest diagnostic
value for both PCA and CSPCa. At the same time, the PIV and MLR are also the powerful
predictors, although not as good as TPSA. The predictive value of the SII for PCA and
CSPCa is not excellent.

In addition, we also used the Delong test to compare the diagnostic efficacy of TPSA
+PIV compared with using TPSA alone for PCa/CSPCa. The diagnostic efficacy of TPSA +
PIV (AUC = 0.700, 95% CI: 0.642–0.757) for PCa is higher than that of TPSA (AUC = 0.657,
95% CI: 0.596–0.717) with a statistical difference (p = 0.02).
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Figure 2. The AUC curves of TPSA and inflammatory markers in prostate cancer. (A): The AUC
curves of TPSA; (B): The AUC curves of SII; (C): The AUC curves of MLR; (D): The AUC curves
of PIV.
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Figure 3. The AUC curves of TPSA and inflammatory markers in clinically significant prostate cancer.
(A): The AUC curves of TPSA; (B): The AUC curves of SII; (C): The AUC curves of MLR; (D): The
AUC curves of PIV.
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3.5. Development of a Nomogram for PCa Prediction

In order to intuitively show the predictive value of the PIV for PCa, we developed
a nomogram (Figure 4) for positive biopsy prediction in prostate biopsy patients based
on Model C; patients in this study were randomly divided into a training group and
validation group according to the random number table in a 3:1 ratio. The calibration curve
of the nomogram demonstrated good agreement between prediction and observation in the
training group (Supplementary Figure S1A) and validation group (Supplementary Figure
S1B). The decision curve analysis (Supplementary Figure S2) illustrated that the nomogram
model has excellent clinical application.
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body mass index; AH: alcohol history; PIV: pan-immune-inflammation value; TPSA: total prostatic
specific antigen; f/T: free/total prostatic specific antigen ratio.

4. Discussion

In this retrospective study of patients undergoing prostate biopsies with PSA values
of 4.0–20.0ng/mL, we found that compared with non-PCa patients, the PIV and MLR of
the patients with PCa were significantly higher. In addition, the PIV and MLR showed
high predictive values in both the univariable prediction models and the multivariable
prediction models of PCa and CSPCa. The SII was also significantly elevated in the PCa
patients, but there was no significant difference between the CSPCa and Non-CSPCa
groups, and its predictive value for PCa and CSPCa was not as good as the MLR and PIV.
Meanwhile, other systemic inflammatory markers, such as the NLR, dNLR, and PLR, had
limited diagnostic value for PCa and CSPCa.

Inflammation within the tumor microenvironment has effects that promote malignant
transformations in cells, as well as carcinogenesis and its progression [10]. Inflammation
not only works as a promoter during carcinogenesis (inflammation-induced cancer), but
growing tumors that escape immunosurveillance also induce an inflammatory response
that can support cancer progression (cancer-related inflammation) [11]. More and more
studies show that with the occurrence and progression of cancer, a series of changes will
occur in inflammatory-related cells and inflammatory-related substances in patients, which
are closely related to the diagnosis and prognosis of tumors, such as the systemic increase
in neutrophils [12], elevated levels of circulating monocytes [13], thrombocytosis [14],
and lymphopenia [15]. The PIV incorporates the above inflammatory indicators into one
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equation, and several studies have confirmed that the PIV has a good predictive effect
on the prognosis of some tumor patients. Our study explored the diagnostic value of the
PIV in PCa for the first time and proved that the PIV is a significant predictor for PCa and
CSPCa [8].

A growing number of studies have explored the potential diagnostic value of different
kinds of systemic inflammatory indicators in PCa. However, contradictory results were
reported from these studies. A retrospective study by Pawel et al. [16] found that the MLR
was not helpful for the diagnosis of PCa. Another four studies, including a large retrospective
analysis [17–20], showed that the MLR is an important predictor in PCa diagnosis, which is
consistent with our findings. In conclusion, we believe that a higher MLR level is significantly
related to the detection of PCa/CSPCa. The diagnostic value of the NLR, PLR, and SII for
PCa has been controversial. The research of Durvesh [21] and Hiroshi [22] showed that the
NLR is a good predictor of PCa, while the research of Du [23] showed that the NLR has a
limited diagnostic value for PCa. The conclusions of other studies [16,18,19] are the same
as the outcomes of Du’s study. Our study showed that the NLR may not be a valuable
predictor of PCA/CSPCa. The results of two studies [24,25] pointed out that a higher PLR
is related to the detection of PCa, while other studies [16,18,19,26,27] showed that there
is no obvious relationship between the PLR and PCa. A similar situation has been found
in studies of the SII [16,24,27]. In our study, the PLR has no significance in the diagnosis
of PCa; although the SII had a certain diagnostic value for PCa, it is not as good as the
PIV and MLR. We believe that the reasons for the above contradictory conclusions may be
mainly related to the inconsistent clinical risk stratification of the patients participating in
the study. Some studies included low-risk patients with PSA values of 4–10 ng/mL before
their biopsies, which means that the changes in the systemic inflammation indicators in
these patients may not be obvious, and patients were not grouped according to PSA levels
in other studies. In addition, the date of blood sample collection before the biopsies and
the method of the biopsies also have a certain impact on the results of the study.

To our knowledge, this study is the first report on the predictive effect of the PIV on
PCa. In our study, we compared the superiority of the PIV with that of other systemic
inflammatory indices, such as the MLR and SII. Compared with PIV, MLR and SII did
not include the neutrophil count×platelet count and monocyte count, respectively. The
PIV showed good diagnostic value, both for PCa and CSPCa. After a comprehensive
consideration of the patients’ age, BMI, history of alcohol use, and TPSA and f/T values, the
diagnostic value of the PIV (model C) for PCA/CSPCa is better than that of the MLR (model
A) and the SII (model B). The ROC analysis and the result of the prognostic model showed
that the PIV was better than the MLR and SII in its comprehensive value regarding the
prediction of PCa. It should be noted that the interaction among inflammation, immunity,
and cancers is complex and interlocking. The PIV was created to involve more mediators in
the immune-inflammatory markers to more accurately model and reflect the inflammatory
environment in patients with PCa so that it has better predictive power than incomplete
systemic inflammatory indices. In addition, in the comparison of the diagnostic value
of TPSA and TPSA + PIV for PCa, the combination of PIV + TPSA (AUC = 0.700, 95CI:
0.642–0.757) was proven to be more significant than TPSA (AUC = 0.657, 95CI: 0.596–0.717)
(p = 0.02). These findings of this study may have significant clinical implications. This is
because, although PSA screening has been widely implemented in decision making for
prostate biopsies in clinical practice [28], its low specificity for PCa generally leads to many
unnecessary biopsies [29]. According to the results of our study, the PIV, which can be
measured easily, was shown to be a feasible index that can be used in any clinical setting.
Most importantly, the combination of the PIV and TPSA likely improves the accuracy of
prostate biopsies in patients with PSA values of 4.0–20.0 ng/mL, and it may be useful for
making better preoperative assessments and individualized treatment decisions. These
findings suggest that it is necessary to perform the routine blood tests as a routine test in
such patients. In the current study, we chose the PIV, together with age, BMI, history of
alcohol use, and TPSA and f/T values to develop a new nomogram to predict PCa risk. Our
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nomogram had a good potential for discrimination and calibration, which was confirmed
by the internal validation. Unfortunately, we did not conduct an independent external
validation due to the research conditions.

In addition, we found that higher age, BMI, and alcohol consumption were directly
related to the diagnosis of PCa, which was consistent with previous reported results [30–32].
This knowledge could contribute to more efficient risk factor management in populations,
which can aid in the prevention of PCa, significantly reducing the impact of this disease on
public health.

This study is a single-institution retrospective analysis and therefore has some inherent
limitations. Moreover, we did not distinguish between the biopsy strategies because of the
limited sample size. Large-scale, multicenter studies are warranted to confirm our findings
in the future.

5. Conclusions

Our study shows that the PIV and MLR are significant predictors of PCa and CSPCa
diagnoses in patients with PSA levels from 4.0 to 20.0 ng/mL, and they may be useful to
avoid unnecessary biopsies or biopsy-related morbidities in real clinical practice. The NLR,
dNLR, PLR and SII may have a limited role in predicting PCa or CSPCa.
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Abstract: The development of prostate cancer imaging is rapidly evolving, with many changes to
the way patients are diagnosed, staged, and monitored for recurrence following treatment. New
developments, including the potential role of imaging in screening and the combined diagnostic and
therapeutic applications in the field of theranostics, are underway. In this paper, we aim to outline
the current landscape in prostate cancer imaging and look to the future at the potential modalities
and applications to come.
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positron-emission tomography

1. Introduction

Imaging for prostate cancer has developed significantly over the last two decades.
There has been a range of modalities utilized, including the recent application of functional
imaging. Additionally, indications for imaging have expanded beyond diagnostics to
biopsy guidance, staging and risk stratification, active surveillance, and the detection of
recurrence. Furthermore, there are developing roles for imaging in population screening
and theranostic applications. We aim to provide an up-to-date narrative looking at the role
of prostate cancer imaging in these key areas.

2. Imaging in Prostate Cancer Diagnostics

Historically, prostate cancer has been difficult to detect and biopsy. Digital rectal
examination (DRE) was the mainstay of diagnosis, with transrectal biopsies targeting
palpable lesions [1]. This blind approach was superseded by the development of transrectal
ultrasound (TRUS). TRUS utilizes a rectal ultrasound probe to directly visualize the prostate.
However, whilst prostate cancer can appear hypoechoic on an ultrasound, it is not an
accurate detection method, and as a diagnostic or staging modality, it performs poorly [2,3].
As a result, systematic prostate biopsies in patients with suspected prostate cancer using
TRUS to guide the needle became the diagnostic standard. These were initially performed
using a sextant biopsy protocol that involved taking three biopsy cores from each side of the
prostate. Due to high false negative rates, this was refined to what is termed an extended
protocol involving 10–12 total cores, which was found to have an increased sensitivity for
prostate cancer detection [4]. However, systematic biopsies that are performed based on
DRE findings or prostate specific antigen (PSA) levels do not discriminate well between
clinically significant and clinically insignificant cancers. One tool that has been subsequently
introduced to improve diagnostic accuracy is multiparametric MRI (mpMRI).

mpMRI has been shown to be highly sensitive in the diagnosis of prostate cancer. The
PROMIS trial found mpMRI to have a sensitivity of 93%, estimating that its introduction
into the diagnostic pathway would avoid up to 27% of patients undergoing an initial
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prostate biopsy and result in fewer clinically insignificant cancer diagnoses [5]. It has sub-
sequently become the first line imaging used in the diagnosis of localized prostate cancer,
with patients found to have a raised PSA level or abnormal DRE routinely undergoing
mpMRI prior to prostate biopsy [6]. mpMRI consists of a combination of MRI sequences;
anatomical sequences providing detail of the prostate, in particular T2-weighted (T2W)
images, and functional sequences including diffusion weighted imaging (DWI) and dy-
namic contrast enhancement (DCE), to assess for features suspicious for potential prostate
cancer [7]. The interpretation is standardized, using either the Prostate Imaging-Reporting
and Data System (PI-RADS) or Likert scoring systems that aim to quantify the likelihood
of clinically significant prostate cancer being present on a scale of 1 to 5 [7,8].

There is ongoing debate in the relation to mpMRI for prostate cancer diagnostics
regarding the use of DCE, and to whether T2W and DWI alone, termed biparametric MRI
(bpMRI), is sufficient. bpMRI has been shown to be non-inferior to mpMRI and has the
advantage of being less time-consuming while removing the risk associated with contrast
media, though at present there remains no clear consensus [9–12].

2.1. Screening

Prostate cancer screening itself is a contentious issue. Screening using PSA has been
examined by several large trials. The CAP trial in the United Kingdom (UK) examined
prostate cancer screening in over 400,000 men who underwent a single PSA test ± biopsy
when raised and found no significant difference in prostate cancer mortality between those
who underwent PSA screening and the control arm at 10 years [13]. The European Random-
ized Study of Screening for Prostate Cancer (ERSPC) followed up with over 180,000 men
undergoing regular PSA screening (between two and seven yearly intervals) with biopsies if
raised and found that prostate cancer mortality was reduced in the screened arm. However,
this was associated with a high number needed to diagnose of 1 in 48 to avert one prostate
cancer death at a follow-up of 9 years, though this was reduced to 1 in 18 at 16 years
showing an increased benefit with a longer follow-up [14]. Despite this improvement in
mortality that is seen with PSA screening, it comes at the cost of considerable overdiagnosis,
and potential overtreatment, of clinically insignificant prostate cancer.

As discussed previously, mpMRI has been shown to reduce the number of clinically
insignificant cancers diagnosed, and on this basis, screening using an MRI has been investi-
gated. In the IP1-PROSTAGRAM trial, 408 men underwent a PSA, MRI, and TRUS (B-mode
and shear wave elastography); men who were deemed to be positive in any of the three
tests (reporters of imaging were blinded to PSA) underwent a systematic transperineal (TP)
biopsy + targeted cores if they were found to be positive at MRI or TRUS. In this trial, MRI
was found to detect more clinically significant and less clinically insignificant cancers than
PSA alone [15]. Other trials are in progress further examining this. ReIMAGINE is a study
assessing screening for prostate cancer within a UK population, randomly inviting around
300 eligible men aged 50–75 for an MRI to assess the feasibility of screening and prevalence
of MRI-detected suspicious lesions in the general population, for which recruitment was
completed in December 2020 [16]. Additionally, MRI vs. PSA (MVP) is a Canadian ran-
domized controlled trial awaiting publication that compares men undergoing screening
via PSA with a subsequent biopsy if raised vs. those screened with an MRI and followed
up by US-MRI fusion biopsy if abnormal lesions are detected [17]. Of note, all three of the
above trials used bpMRI.

2.2. Biopsies

Prostate biopsies are used to further assess patients with suspicious mpMRI results in
the context of other factors, such as PSA and DRE findings. Biopsies were predominately
undertaken by a transrectal (TR) approach, though more recently, there has been a shift
toward TP biopsies. This has been driven by an increasing body of evidence showing
lower infectious complications and a reduced antibiotic prophylaxis requirement for TP
biopsies, with some studies suggesting that, in select patients, no antibiotic prophylaxis
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is required at all [18–22]. As a result, this is reflected in international guidance with the
European Association of Urology (EAU) guidance, which strongly recommends using a TP
approach [6]. Additionally, TRANSLATE is a randomized control trial (RCT) looking to
definitively address which approach is better, directly comparing local anaesthetic (LA)
TP prostate biopsy with LA TR prostate biopsy. The primary outcome evaluated will be
the detection of clinically significant prostate cancer, with secondary outcomes including
infection rates, tolerability, complications, cost effectiveness, and the need for repeated
biopsies [23].

Prostate biopsies can be used to target suspicious MRI lesions or systematically sample
the prostate. The PRECISION trial showed that when men with a clinical suspicion for
prostate cancer underwent mpMRI followed by targeted biopsies, there was a higher
detection rate for clinically significant prostate cancer and less clinically insignificant
prostate cancers detected than those who underwent indiscriminate systematic biopsies [24].
Further studies, including 4M, MRI-FIRST, and PAIREDCAP, have shown that the best
detection rates are achieved by combining systematic and targeted biopsies with the
omission of either set shown to miss a proportion of clinically significant cancers. For
example, in patients undergoing MR-targeted biopsies, the addition of systematic biopsies
yielded the detection of 7% extra clinically significant cancers in the 4M trial and 5.2%
in MRI-First. As a result, a combined approach is recommended [6,25–27]. Key trials
examining mpMRI- and MR-targeted biopsies (TB) that were compared with systematic
biopsies (SB) are summarized in Table 1.

Transrectal ultrasound allow for the visualization of the prostate anatomy and the
biopsy needle, usually in both the axial and sagittal planes. Targeted biopsies can be
performed using a cognitive approach whereby the operator reviews the MRI imaging
and estimates the corresponding area on TRUS imaging. Alternatively, fusion software
can be used to directly superimpose the suspicious areas seen on the MRI over the TRUS
images. Novel robotic solutions have been developed in conjunction with fusion software
to increase targeting accuracy. These include systems that use a robotic needle guide to
target the suspicious lesion, defining the position and depth with the operating surgeon
only required to insert the biopsy gun and fire [28].

The limitations of fusion-guided biopsies are primarily related to the process of
accurately overlaying the MRI targets onto the live TRUS images, thereby methods have
been developed to cut out the TRUS middleman in the form of in-bore MRI biopsies [29].
An in-bore MRI biopsy involves a rectal needle guide and sequential MRI imaging with
the patient removed from the scanner and the needle guide adjusted, with further MRI
sequences performed until it is adequately aligned with the area of interest. At this point,
the patient can be removed from the scanner and a biopsy can be taken, with the option
for confirmatory re-imaging if required [30]. Again, novel robotic solutions have been
developed to streamline this process; these include systems that utilize pneumatic stepper
motors powered by compressed air (in order to remain MRI compatible) to adjust a needle
guide from within the control room, thereby removing the need for the patient to be
removed from the scanner and the needle guide manually adjusted between each set of
images [31,32].
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The FUTURE trial compared cognitive, fusion, and in-bore MRI biopsy techniques
in men with prior negative systematic biopsies and an ongoing suspicion of prostate
cancer and found no difference in detection rates, though it was underpowered [33]. Other
evidence is differing with no clear consensus on the best modality. Therefore, in-bore MRI
biopsies do not currently seem to sufficiently justify the cost implications of the associated
additional MRI time [34–36]. Though limited, initial evidence suggests that robot-assisted
MRI-US fusion transperineal-targeted biopsies may have higher cancer detection rates and
lower complications than cognitive-guided transperineal biopsies [28].

2.3. PET Imaging in Diagnosis

Molecular imaging in the form of positron emission tomography (PET) scanning has
been used in the field of prostate cancer for some time. PET uses different radiolabelled trac-
ers to identify and target specific biological pathways with a wide range and an increasing
number of applications [37]. Radiolabels are positron-emitters; the emission of a positron
leads to a positron-electron annihilation and subsequent production of two annihilation
photons travelling in opposite directions. The annihilation photons can then be captured by
the ring of detectors within the PET scanner. Conventional PET images have a resolution of
around 4–5 mm and, as such, are usually performed in combination with a higher resolution
modality to provide more detailed anatomical information, typically computed tomography
(CT) [38].

Diagnostic accuracy in PET is dependent on the radiotracer used, with different tracers
appropriate in different applications. In prostate cancer, several radiotracers have been
trialled, including Choline, Fluciclovine, and prostate-specific membrane antigen (PSMA) [37].
Choline PET/CT, for example, has been studied in the primary diagnosis of prostate cancer,
though it was seen to produce high rates of false negative and false positive results due to
poor uptake in some tumours and excessive uptake in benign prostate tissue, with sensitivity
and specificity in one study found to be 66% and 81%, respectively [39,40]. However, PSMA
is a membrane-bound glycoprotein expressed predominately on prostate epithelial cells and
shows increased expression in prostate cancer [41,42].

Whilst PSMA is primarily found within the prostate gland, its expression elsewhere
has become increasingly recognized with the potential for false positives. It can be found
in the vascular endothelium (and to a lesser extent, the tumour cells) of a number of other
primary malignancies, which include other adenocarcinomas (breast, colorectal, pancreatic,
and gastric), renal cell carcinoma, non-small cell lung cancer, glioblastoma multiforme,
and transitional cell carcinoma [43]. Its presence can also be found in a range of normal
tissue, such as the salivary glands, kidneys, bowel, spleen, and liver. Additionally, benign
conditions, such as sarcoidosis or Paget’s disease and benign lesions, including meningiomas
or haemangiomas, have been shown to cause false positive results [44,45]. In contrast, PSMA
is not expressed in the same way in neuroendocrine prostate cancer, an aggressive variant
of the disease, which can lead to false negatives [44].

Another consideration is the effect of androgen deprivation therapy (ADT) on PSMA
expression. The effect of ADT appears to be dependent on the type of disease and scan
timing, though there are some mixed results. Studies have shown a positive association
between ADT use and tumour detection in the setting of recurrent disease [46]. In patients
with castrate resistance metastatic disease, an increase in PSMA uptake following ADT
commencement has been reported in multiple studies as variable but more pronounced
within bony metastases [47,48]. Other studies looking at the treatment of hormone naïve
patients with PSMA imaging at longer intervals of around 3 months post ADT have shown
a reduction in tracer uptake, presumably corresponding with treatment effect [49,50].

PSMA is commonly targeted using PSMA-11 ligand in combination with the radionu-
cleotide gallium-68 (Ga68-PSMA-11), which has a half-life of 67.7 min [37]. Along with the
11C-Choline and 18F-Fluciclovine radiotracers, it has an established role in the re-staging of
patients with a biochemical relapse as part of a PET/CT. However, more recently, PSMA
has been investigated in combination with mpMRI as a means of diagnostic imaging. The
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use of mpMRI over CT has the advantage of the improved anatomical differentiation and
the ability to correlate radiotracer uptake with functional MRI sequences, such as DWI. The
evidence comparing imaging results and pathology has shown that PSMA PET/MRI has
superior diagnostic performance and tumour localization over mpMRI or PSMA PET alone,
suggesting that its use as an additional diagnostic parameter is justified [51–56]. When
used to target prostatic biopsies, a recent systematic review has shown that PSMA-PET
(in combination with either CT or MRI) had a comparable diagnostic accuracy to mpMRI-
targeted biopsies with a trend toward increased accuracy when mpMRI and PSMA-PET
was used in combination, though it was limited by the lack of available evidence [57].

PRIMARY, a prospective Phase II trial, enrolled 291 biopsy naïve men with suspected
prostate cancer. Participants underwent pelvic PSMA PET/CT and mpMRI, followed by
systematic and targeted TP biopsy. It found that PSMA PET/CT combined with mpMRI
had a higher negative predictive value and sensitivity than mpMRI alone, 91% vs. 72% and
97% vs. 83%, respectively [58]. A follow-up on the Phase III trial, PRIMARY2, is currently
recruiting and aims to look at the men with a negative or equivocal MRI. In PRIMARY2,
men will be randomized to either pelvic PSMA PET/CT with targeted biopsies if positive,
or no biopsies if negative. This will be compared to the current standard of care of no
additional imaging and template biopsy [59].

In renal cell carcinoma, it is commonplace for suspicious lesions on imaging to be
treated with radical surgery without pathological confirmation. This is in part due to the
high level of diagnostic accuracy of CT and a less acceptable non-diagnostic rate/negative
predictive value associated with biopsy [60]. With increasing accuracy in diagnostic prostate
imaging, it seems we may be nearing an era where proceeding directly to prostatectomy
could be considered in select patients.

3. Role of Imaging in Active Surveillance

Low/intermediate-risk prostate cancer can be managed with active surveillance (AS) [6,61].
AS is a monitoring strategy whereby patients undergo a combination of regular physical
examination, biochemical monitoring, and, when indicated, repeated mpMRI imaging
and/or biopsies, with a view to definitive treatment should the disease progress. This allows
patients to avoid or defer the associated morbidity definitive treatment brings, maintaining
their quality of life, and it is associated with excellent long-term cancer-specific survival
rates [62,63]. Active surveillance follow-up protocols vary. In the UK, the National Institute
for Clinical Excellence (NICE) recommend PSA to be checked every 3–4 months in the
first year and six monthly thereafter, with annual digital rectal examinations and a repeat
MRI at 12–18 months with further MRIs and/or repeated biopsies indicated by concerning
examination features or PSA kinetics [61].

mpMRI is used in active surveillance to assess for the progression of the disease in
comparison with the baseline diagnostic MRI. This can be assessed formally using the
Prostate Cancer Radiological Estimation of Change in Sequential Evaluation (PRECISE)
criteria [64]. The PRECISE criteria aims to score the likelihood of disease progression on a
scale of 1–5, where 1 or 2 represent disease regression, 3 is a stable disease, and 4 or 5 are
varying degrees of radiological progression, with evidence showing that it performs well
with a high specificity and positive predictive value (PPV) [64,65].

Previously, AS relied heavily on clinical examination and serial PSA to determine the
need for re-biopsy. The relatively recent introduction of mpMRI potentially offers a less
invasive alternative if it allows for biopsies to be omitted. However, two recent systematic
reviews suggest that omitting biopsies and relying on mpMRI alone has insufficient diag-
nostic accuracy to exclude disease progression even when studies utilized the PRECISE
criteria with a sensitivity and NPV for disease progression of 59–61% and 81–88%, respec-
tively. Although, in one review, the use of the PRECISE criteria showed a non-significant
trend toward improved performance [66,67]. That being said, when a reassuring mpMRI is
combined with other contextualizing factors such as stable PSA kinetics and, in particular, a
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low PSA density (<0.15 ng/mL/cm3), there is evidence to suggest it may allow for repeated
biopsies to be safely omitted [68].

Emerging methods to safely reduce repeated biopsies during active surveillance
include the use of PSMA PET/CT. Current data on this application is limited, but one study
has shown potential to reduce false positives and improve negative predictive value (NPV)
compared with mpMRI [69].

4. Radiological Staging in Prostate Cancer

Prostate cancer is staged using the Tumour, Node, Metastasis (TNM) system, which
assesses disease across each of its three criteria. It is used alongside PSA levels and histological
grade to risk stratify disease and determine appropriate treatments.

Tumour (T) is assessed based on DRE findings, where T1 is impalpable, T2 is confined
within the prostate, T3 extends beyond the prostate capsule, and T4 is an invasion into adja-
cent structures [6]. Whilst the T stage assessment is primarily clinical, it can also be assessed
using mpMRI, which has been shown to be highly specific but only moderately sensitive for
extraprostatic extension (T3a) and seminal vesicle invasion (T3b) [70,71]. Though MRI has
limited sensitivity for picking up these adverse features, where found they have useful im-
plications in their association with an increased risk of biochemical recurrence post-radical
prostatectomy [72–74]. Traditionally, the risk of recurrence following definitive treatment
was calculated using tools such as Partin’s tables. These allow for a risk assessment based
on PSA, the clinical stage, and the Gleason score, and the evidence suggests the addition
of the MRI into this assessment increases its accuracy [73,75]. An accurate assessment of
risk preoperatively is important as it can lead to changes in surgical approach, such as
the appropriate avoidance of nerve-sparing techniques to maximize oncological outcomes.
However, whether the routine use of pre-operative staging mpMRI improves oncological
outcomes in practice is unclear with conflicting evidence at present [76–78].

Nodal staging is assessed based on whether regional lymph node (LN) metastasis is
present (N1) or not (N0), with non-regional lymph nodes upstaging to M1a [6]. Metastases
are classified by the absence (M0) or presence (M1) of distant metastases, further strati-
fied based on location with M1a assigned for non-regional lymph nodes, M1b for bony
metastases, and M1c for metastases for other sites.

Patients at high risk of advanced disease are traditionally assessed with a combination
of contrast CT of the abdomen and pelvis, primarily to identify nodal metastasis and tech-
netium 99 (Tc99) bone scan, which examines for bone metastases by way of the increased
radiotracer uptake in areas of high bone turnover. However, an accurate assessment of
regional lymph nodes using conventional imaging is poor, with both CT and MRI having
a low sensitivity of LN metastasis of 42% and 39%, respectively [79]. Additionally, whilst
Tc99 bone scans are sensitive for bone turnover, this can lead to false positives and has
the potential to miss early metastasis [80]. Although specificity can be increased with the
addition of Single Photo Emission Computed Tomography (SPECT), alternative methods,
such as whole-body MRI and PET/CT, have been shown to be superior in the detection of
bony metastasis [81–83]. In a systematic review by Zhou et al., PSMA-PET/CT was found
to have the highest sensitivity and specificity (97% & 100%) compared with whole-body
MRIs (91% & 96%) or bone scintigraphy (86% & 95%) for detecting bone metastases on a
per-patient basis [84]. More recently, a large RCT, proPSMA compared conventional imaging
(CT and bone scan) with Ga68-PSMA-11 PET/CT and found the latter to have a higher
sensitivity (85% vs. 38%) and specificity (98% vs. 91%) for the detection of a pelvic nodal or
distant metastases [85]. Furthermore, a more recent Phase 2/3 trial OSPREY evaluated the
diagnostic accuracy of 18F-DCFPyL-PSMA positron emission tomography/computerized
tomography for pelvic lymph node involvement in 252 men undergoing a radical prosta-
tectomy with extended pelvic lymph node dissection. They reported a sensitivity and
specificity of 40% and 98%, respectively, though this improved to 60% and 97.9% for nodes
>5 mm [86].
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Accurate nodal staging is important as patients with N1M0 disease have a high risk of
recurrence and, therefore, should be considered for adjuvant therapies dependent on nodal
volume [6,87]. Despite the advances in imaging described above, extended pelvic lymph
node dissection (ePLND) during radical prostatectomy remains the gold standard of local
nodal staging, though this comes at the cost of a higher morbidity compared with a limited
dissection [88]. ePLND and PSMA PET/CT have been directly compared with the former
found to be significantly more sensitive [89]. Whilst it may not obviate the need for ePLND,
predictive models using MRI, along with other factors, have been used to help select out
which patients require ePLND [90]. Similar studies using PSMA PET/CT have shown that,
combined with low-risk features, it can help avoid ePLND. However, a negative PSMA
PET/CT in the high-risk group still necessitates the procedure [91].

Potential novel applications of PSMA imaging include radioguided surgery utilizing
preoperative PSMA PET/MRI and intraoperative gamma probe to target avid lesions directly
during robot-assisted radical prostatectomy [92]. Whilst extended lymph node dissections
have been shown to have little oncological benefit, this technology presents a way to poten-
tially increase accuracy whilst minimizing morbidity [88,92].

PSMA PET/CT’s routine use in the staging pathway is likely to increase the cohort of
patients who have pelvic nodal and/or low volume metastasis (often termed oligometastatic
disease), owing to its increased sensitivity in these patients. The treatment pathway for
these patients is unclear, particularly regarding the role of localized treatment i.e., prostate
radiotherapy or radical prostatectomy—often termed cytoreductive prostatectomy in this
context. Current available evidence includes subgroup analyses from arms of the STAM-
PEDE trial, which examined the benefit of local prostate radiotherapy for patients with
metastatic prostate cancer. Whilst no difference in overall survival was observed with the
addition of radiotherapy, in a subgroup analyses looking only at patients with low-volume
disease (low metastatic burden defined as less than four bones and no visceral metastases) a
significant survival benefit was observed: 81% vs. 73% at 3 years [93]. There are a number
of smaller retrospective studies examining the role of cytoreductive prostatectomy or radi-
cal radiotherapy in metastatic prostate cancer, and a recent systematic review examining
these found that cytoreductive prostatectomy was associated with a significantly higher
overall survival than systematic therapy (OR 2.54 at 5 years) and which was comparable to
radiation therapy [94]. The other evidence includes a large population study using Surveil-
lance Epidemiology and End Results (SEER) data from 2004–2010, examining the role of
brachytherapy or radical prostatectomy in metastatic disease, which showed an increased
survival in patients undergoing these treatments compared with those receiving no surgery
or radiotherapy [95].

Further high-quality evidence is required to help further define the role of PSMA
PET/CT in staging and the appropriate treatment for the low-volume metastatic prostate
cancer cohort. The TROMBONE prospective randomized feasibility trial assessed radical
prostatectomy for patients with oligometastatic disease and found that an RCT in this
context is feasible. A number of trials are being conducted in this area at present. IP2-
ATLANTA is one such RCT in progress, comparing the standard of care to a minimally
invasive ablative therapy, cytoreductive prostatectomy, or radiotherapy [96,97].

5. Detection of Recurrent Disease

Recurrence following definitive treatment is typically monitored using PSA. In in-
stances where recurrence has been noted, biochemically treatment options vary based on
the original treatment received and whether the recurrence is visible radiologically. The lat-
ter has become increasingly important, with early evidence suggesting a survival benefit in
those patients with oligometastatic disease who receive metastasis-directed therapy (MDT),
which can include surgery or stereotactic body radiotherapy (SBRT) [98,99]. Early detection
is also important with higher rates of curative salvage therapy seen when treatment is
undertaken at low PSA levels.
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This setting is perhaps the best established for PET/CT imaging. Studies have shown
PSMA PET/CT to have a high level of accuracy, as it is able to detect recurrence at lower
PSA levels than conventional imaging [86,100,101]. Among these, CONDOR, a Phase III trial,
enrolled over 200 men with suspected recurrent prostate cancer and negative or equivocal con-
ventional imaging. It found that PSMA-PET was able to detect a lesion in over 60% of these
patients and that almost two-thirds of these patients underwent a change in management as
a result [101]. Likewise, the OSPREY trial reported additional presumed metastatic disease in
around 58% of patients with 18F-DCFPyL-PSMA PET/CT that conventional imaging was un-
able to detect in the recurrent setting. Additionally, they reported a sensitivity and specificity
of 96% and 82%, respectively, for recurrent disease with 18F-DCFPyL-PSMA PET/CT [86].
There have been a number of recent systematic reviews performed to assess diagnostic per-
formances of PET/CT in the recurrent disease setting. Wang et al. compared detection rates
of 18F labelled fluciclovine, choline, and PSMA radiotracers and found PSMA to be better
than fluciclovine and choline. This was most pronounced at low PSA levels with detection
rates of 58% for PSMA vs. 35% and 23% for choline and fluciclovine, respectively [102]. Other
systematic reviews have similarly concluded that PSMA is the superior choice of radiotracer.
However, there are several different radiolabels that can be utilized [103–107].

The two most commonly used radiolabels for PSMA are gallium-68 [68Ga] or fluoride-
18 [18F] [108,109]. A recent systematic review by Evangelista et al. found limited head-
to-head evidence between the two radiolabels but noted a number of factors to take into
account. For example, whilst 68Ga has the largest evidence base, it has a short half-life of 68
minutes, which can make distribution difficult unless on site or nearby 68Ga generators are
available [110]. Furthermore, it has a high positron energy that may limit resolution, and it is
primarily excreted via urine, which can limit the detection of small-volume disease adjacent
to the urinary tract. In contrast, 18F has a half-life of 110 min, a low positron energy, and is
primarily excreted by the liver, which can improve the detection of locoregional recurrence
but may reduce sensitivity for the detection of visceral metastases [110]. Although limited
by significant heterogeneity, Ma et al. found in their systematic review looking at detection
rates for different radiotracers in recurrent prostate cancer that 18F labelled PSMA had a
significantly higher detection rate than 68Ga [103].

The majority of studies focus on the use of PET combined with CT. However, with its
role expanding in primary diagnosis, PET/MRI has also been described in the recurrent
disease setting where, like PET/CT, it has been shown to have high detection rates and
performs well at low levels of PSA [111,112]. However, at present, PET/MRI has not been
shown to have superiority over PET/CT in this setting [111,112].

Metastasis Directed Therapy (MDT)

A large proportion of patients who are diagnosed with recurrent prostate cancer after
primary treatment do so with a small number of metastases. Whilst they would previously
have been treated with surveillance and androgen deprivation therapy, MDT was developed
in an effort to treat this cohort more effectively.

Two early randomized trials assessed MDT in men with recurrent prostate cancer
with oligometastases. The STOMP trial randomized 62 men to MDT or surveillance. The
majority of those receiving MDT underwent SBRT (n = 25), though a small portion un-
derwent salvage lymph node dissection (n = 5), and one patient underwent a visceral
metastectomy [98]. A similar study, ORIOLE, randomized 54 men to SBRT (n = 36) or
surveillance (n = 18) [113]. Both trials allowed for up to three metastases and measured
outcomes as disease progression, though STOMP defined this as time to ADT and ORIOLE
as progression based on PSA increase, radiological progression, initiation of ADT, symp-
tomatic progression, or death [98,113]. ORIOLE utilized PSMA PET/CT scans to detect
recurrence, whereas a limitation of STOMP is that they used choline PET/CT, which, as
previously discussed, is less sensitive at detecting recurrent disease [98,113]. Both studies
showed benefit of MDT with pooled long-term outcomes reported showing progression
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free survival of 11.9 months for the MDT cohort compared with 5.9 for those undergoing
surveillance [114].

Further studies examining the role of MDT are underway, and results are awaited to
further define the treatment pathway in these patients. These include ADOPT, which a ran-
domized Phase III trial comparing MDT with or without 6 months of concurrent ADT in men
with recurrent oligometastatic prostate cancer [115]. In a similar cohort, PEACE V-STORM
is a multicentre randomized trial comparing MDT + ADT with or without whole pelvic
radiotherapy [116]. Another trial examining an alternative systemic therapy is POSTCARD,
which aims to compare SBRT to SBRT in combination with Durvalumab, an immunotherapy
that aims to enhance the immune response generated by radiotherapy [117].

6. Theranostics in Prostate Cancer

Theranostics is a relatively new term, the definition of which is varied throughout the
literature, with some authors even questioning its use entirely [118]. Nonetheless, its use
has become commonplace, and in this context we would define it broadly as a combina-
tion of diagnostic and therapeutic interventions, one example of which is PSMA-Targeted
radioligand therapy. PET imaging uses radioisotopes that emit positrons and, by virtue
of immediate annihilation via interaction with an electron, emits two gamma photons that
travel through tissue and are detected by the PET scanner detectors. In contrast, potential
therapeutic applications can utilize the absorption of radiation into localized tissue as a form
of treatment, therefore requiring short penetration distances, such as those seen with beta
particles. An example of this is PSMA-targeted radionuclide therapy with radioisotopes such
as lutetium-177 (177Lu), among those commonly used.

Early trials utilizing PSMA-targeted therapies have shown promising results. The
TheraP trial compared PSMA-targeted therapy using 117Lu-PSMA-617 to Cabazitaxel in
men with metastatic castrate resistance prostate cancer (mCRPC) as a second-line treatment
following docetaxel. It found an improved PSA response (66% vs. 37%) and reduced
adverse effects in the 117Lu-PSMA-617 arm [119]. The VISION trial also studied PSMA-
targeted therapy using 117Lu-PSMA-617 in men with mCRPC. Specifically, it looked at those
who had ongoing disease progression despite treatment with both ADT and chemotherapy.
Of note, patients who had only received one taxane therapy were ineligible if they were a
candidate to receive a second. It compared patients receiving standard care alone (limited
by the trial protocol to not include chemotherapy, radium-223, or immunotherapy), and
those receiving PSMA-targeted therapy with 117Lu-PSMA-617 in addition to standard care.
It found that PSMA-targeted therapy delayed progression and improved overall survival
(15.3 vs. 11.3 months) when used in addition to standard care, and that it was safe and
well-tolerated [120]. At present, based on the current evidence, the EAU consensus is that
its use outside of clinical trials should be limited to patients with mCRPC [121]. Where
exactly it fits within the pathway of treatment for these patients remains unclear at present.
However, several trials are in progress, including those examining its use prior to taxane
therapy, alongside a variety of other therapies and in metastatic hormone sensitive prostate
cancer (mHSPC).

The recognized limitations of this approach include the reliance on PSMA expression to
effectively target. This can be quantified on diagnostic PSMA PET/CT using standardized
update values (SUV) with an increased response to treatment seen in those with a higher
SUV and no response in low levels [122]. As a result, PSMA lesion positivity has been
used as inclusion criteria for some clinical trials, though the definition used has varied.
The TheraP trial restricted inclusion to PSMA positivity with an SUVmax (the maximum
standardised uptake value) of at least 20 at a site of disease and SUVmax > 10 at all
other measurable metastatic disease [119]. The VISION trial required at least one PSMA-
positive metastatic lesion where PSMA positivity was defined as an uptake greater than
that within the liver [120]. Additionally steps were taken to exclude PSMA negative disease;
TheraP patients also underwent 18F-FDG PET/CT, and those with FDG positive and PSMA
negative disease were excluded, whereas VISION excluded patients with PSMA uptake
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equal/lower than within liver in metastasis above a predefined size (>2.5 cm in lymph
nodes or >1 cm in solid organs or bone lesions) [119,120]. Within VISION, 95.1% had a
positive lesion, with 8.7% of patients excluded for PSMA negative lesions [120]. In TheraP,
10% of those screened were excluded for not meeting PSMA uptake criteria, and a further
18% due to discordant FDG uptake [119]. Though a standardized criteria does not exist for
eligibility for PSMA targeted therapy, these are important considerations with prognostic
implications, as patients who exhibit low PSMA uptake or FDG discordant lesions have
been shown to have poor outcomes [123].

Alternative PSMA-targeting therapies being developed include immunotherapy. One
example of this is pasotuxizumab, which binds to PSMA and to T cells resulting in the T-
cell-mediated destruction of PSMA expressing cells [124]. This, and other similar therapies,
are still early in their stages of development [124,125].

7. Conclusions

The field of prostate cancer imaging is an exciting one. There is ongoing development
in areas of existing well-established applications, such as diagnosis and biopsy targeting.
Perhaps more exciting still is the new areas of development, in particular, the future role
of theranostics in the treatment pathway. The types of imaging modality and their role in
diagnosis and treatment of prostate cancer discussed within this review are summarized in
Table 2.

Table 2. Summary of Imaging modalities and their role in Prostate Cancer.

Modality
Setting

Diagnosis Active
Surveillance Staging Detection of

Recurrent Disease Theranostics

CT a - - Current Standard - -

MRI b Current Standard
(mpMRI c)

Current Standard
(mpMRI)

Current Standard
(mp/whole body MRI) - -

Tc99 d Bone scan - - Current Standard - -
SPECT e - - Current Standard - -

PSMA PET f/CT Evolving Role Evolving Role Evolving Role Current Standard
Evolving role

(Lu177 targeted
therapy)

PSMA PET/MRI Evolving Role - - Evolving Role -

Current standard indicated in Green. Evolving Role indicated in Yellow. a Computed Tomography, b Magnetic
Resonance Imaging, c Multiparametric MRI, d Technetium 99, e Single Photo Emission computed tomography, f

Prostate Specific Membrane Antigen Position Emission Tomography.
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Abstract: Objective: Previous studies have demonstrated that prostate-specific antigen density
(PSAD) may aid in predicting Gleason grade group (GG) upgrading and pathological upstaging in
patients with prostate cancer (PCa). However, the differences and associations between patients with
apex prostate cancer (APCa) and non-apex prostate cancer (NAPCa) have not been described. The aim
of this study was to explore the different roles of PSAD in predicting GG upgrading and pathological
upstaging between APCa and NAPCa. Patients and Methods: Five hundred and thirty-five patients
who underwent prostate biopsy followed by radical prostatectomy (RP) were enrolled. All patients
were diagnosed with PCa and classified as either APCa or NAPCa. Clinical and pathological variables
were collected. Univariate, multivariate, and receiver operating characteristic (ROC) analyses were
performed. Results: Of the entire cohort, 245 patients (45.8%) had GG upgrading. Multivariate
analysis revealed that only PSAD (odds ratio [OR]: 4.149, p < 0.001) was an independent, significant
predictor of upgrading. A total of 262 patients (49.0%) had pathological upstaging. Both PSAD (OR:
4.750, p < 0.001) and percentage of positive cores (OR: 5.108, p = 0.002) were independently significant
predictors of upstaging. Of the 374 patients with NAPCa, 168 (44.9%) displayed GG upgrading.
Multivariate analysis also showed PSAD (OR: 8.176, p < 0.001) was an independent predictor of
upgrading. Upstaging occurred in 159 (42.5%) patients with NAPCa, and PSAD (OR: 4.973, p < 0.001)
and percentage of positive cores (OR: 3.994, p = 0.034) were independently predictive of pathological
upstaging. Conversely, of the 161 patients with APCa, 77 (47.8%) were identified with GG upgrading,
and 103 (64.0%) patients with pathological upstaging. Multivariate analysis demonstrated that
there were no significant predictors, including PSAD, for predicting GG upgrading (p = 0.462) and
pathological upstaging (p = 0.100). Conclusions: PSAD may aid in the prediction of GG upgrading
and pathological upstaging in patients with PCa. However, this may only be practical in patients
with NAPCa but not with APCa. Additional biopsy cores taken from the prostatic apex region may
help improve the accuracy of PSAD in predicting GG upgrading and pathological upstaging after RP.

Keywords: prostate cancer; prostate-specific antigen density; apex tumor; Gleason grade group;
upgrading; upstaging

1. Introduction

Prostate cancer (PCa) is one of the mostly frequently diagnosed solid malignant tu-
mors in men worldwide [1–3]. The treatment options for PCa are generally based upon risk
stratification derived from biopsy Gleason score (GS), prostate-specific antigen (PSA), and
clinical stage [4]. Thus, biopsy GS and clinical stage are principal factors in the initial assess-
ment of patients with PCa and can inform different therapeutic strategies. Unfortunately,
preoperative GS and clinical stage are often inconsistent with final pathological results
after radical prostatectomy (RP). Indeed, approximately 30% to 50% of patients experience
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either GS upgrading or pathological upstaging after analysis of RP specimens [5]. Recently,
Epstein et al. proposed an alternative, simplified PCa grading system which is based on
the 2005 International Society of Urologic Pathology (ISUP) modified Gleason grading
system [6]. This new Gleason grade group (GG) system, which uses the biochemical recur-
rence of PCa after treatment as a surrogate endpoint to define aggressive disease, appears
to improve risk stratification and, consequently, clinical decision making. This grading
group system was accepted by the World Health Organization (WHO) for the 2016 edition
and has been validated in previous studies [7,8].

Currently, transrectal ultrasound (TRUS)-guided prostate biopsy for clinically sus-
pected PCa detection is the standard of care. However, TRUS-guided biopsy schemes
predominantly target the posterior and lateral peripheral regions of the prostate, and there-
fore it is difficult to sample tumors located in the prostatic anterior apex. Additionally,
previous studies found that tumors primarily occurred in the anterior half of the gland at
the apex to mid prostate. Both may lead to a higher false-negative rate of transrectal biopsy
and increase the risk of GG upgrading and pathological upstaging [9].

The prostate-specific antigen density (PSAD) has been demonstrated to be associated
with adverse pathological characteristics and poor prognosis [10,11]. Nonetheless, conflict-
ing results were reported when assessing its ability to predict pathological upgrading and
upstaging [12,13]. The controversial results may be due to various confounding factors
such as biopsy scheme, tumor volume, or tumor location. To our knowledge, no study
has yet compared the accuracy of PSAD in predicting upgrading and upstaging between
patients with or without anteriorly apical prostate cancer (APCa).

Thus, the aim of this study was to evaluate the different performance of PSAD as
a predictor of prognostic GG upgrading and pathological upstaging between APCa and
non-apical prostate cancer (NAPCa).

2. Patients and Methods
2.1. Patient Selection

The institutional review board approved this retrospective study, and the requirement
for informed consent was waived. Between January 2001 and April 2018, the medical
records of patients who had received TRUS-guided biopsy resulting in a diagnosis of
organ localized PCa (≤T2c) and underwent open, laparoscopic, or robot-assisted RP in
our institution within 3 months of diagnosis were retrospectively evaluated. All patients
underwent TRUS-guided systematic 12- or 13-core prostate biopsies, with the addition of at
least two targeted biopsies at any area suspected of malignancy by ultrasonography. Those
who received neoadjuvant androgen deprivation therapy or drugs to alter PSA values were
excluded from the study. Patients with incomplete data were also excluded. Ultimately, a
total of 535 patients were enrolled in the study.

All RP surgical specimens were fixed in formalin buffer (4%) after the outer surface.
Specimens were sliced with standardized multiple transverse cuts, using a modified han-
dling technique described previously by the ISUP Consensus Conference [14]. Notably, the
prostatic apex (PA) of RP specimens underwent parasagittal separation and was split into
two distal apical 5 mm sections. The patients were classified as either APCa or NAPCa
according to the histological examination. APCa was defined as any malignant findings in
the PA section, without regard to other locations.

2.2. Data Collection

Clinical and pathological data were collected from all the patients. The clinical data
included age, body mass index (BMI), serum prostate-specific antigen (PSA), digital rec-
tal examination (DRE), prostate volume (PV) evaluation via TRUS, and clinical T stage
(assessed by the 2017 American Joint Committee on Cancer staging system). PSAD was
calculated by dividing serum PSA by PV. The pathological data included biopsy and RP
specimen GG, number of biopsy cores, number of positive cores, percentage of tumor
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involvement of each biopsy core, pathological T stage, extracapsular extension, seminal
vesicle invasion, positive surgical margin, and lymph node invasion.

Analyses of all needle biopsies and RP specimens were centralized and performed by
two dedicated genitourinary pathologists. The overall biopsy GS was based on the core
with the highest GS. The overall GS of RP specimens with multifocal lesions was similarly
based on the nodule with the highest GS. Gleason grading of prostatic carcinoma followed
the 2005 ISUP consensus conference and was adapted to the new Gleason GG system [6].
Upgrading was regarded as an increase from one prognosis GG to another. Upstaging
was defined as the pathological diagnosis of non-organ localized disease which was not
clinically suspected before RP.

2.3. Statistical Analysis

Quantitative variables were described as means ± standard deviation (SD) or medians
with their respective interquartile range (IQR), and differences between groups were
analyzed using Student’s t test or the Mann–Whitney U test, as appropriate. Qualitative
variables were presented as frequencies and percentages, and differences were compared
using chi-square tests. Univariate and multivariate logistic regression analyses were
performed to evaluate the independent, significant variables in the prediction of GG
upgrading and pathological upstaging. Receiver operating characteristic curves (ROC)
were generated to assess the predictive accuracy. Statistical analyses were performed
using SPSS version 20.0 (IBM Corporation, Armonk, NY, USA and MedCalc version 18.11
(MedCalc Software, Mariakerke, Belgium). All tests were two-sided and a p < 0.05 was
considered statistically significant.

3. Results
3.1. Baseline Characteristics

The baseline clinical and pathological characteristics of the study cohort are shown in
Table 1. The median age was 67 years (IQR: 62–71); the median PSA value was 10.93 ng/mL
(IQR: 7.49–17.16); the median PV was 39.1 mL (IQR: 30.0–57.0); and the median PSAD was
0.26 ng/mL2 (IQR: 0.16–0.44). In addition, the median number of biopsy cores was 13 (IQR:
12–14).

Overall, 161 patients (30.1%) were identified as having APCa. Patients presenting
with APCa showed higher preoperative PSA (p < 0.001), lower BMI (p = 0.005), and higher
PSAD (p = 0.022). Notably, patients with APCa were more likely to harbor unfavorable
clinicopathological features such as a higher percentage of positive cores (p < 0.001), higher
max core involvement (p < 0.001), higher post-RP GG (p < 0.001), higher pathological T stage
(p < 0.001), positive surgical margin (p < 0.001), and extracapsular extension (p < 0.001).
However, there were no significant differences in age (p = 0.590), DRE (p = 0.228), PV
(p = 0.175), number of biopsy cores (p = 0.360), seminal vesical invasion (p = 0.136), and
lymph node metastasis (p = 0.346).

3.2. The Entire Cohort

Of the entire cohort, 245 patients (45.8%) presented with GG upgrading after RP.
Patients with GG upgrading had higher serum PSA value (p < 0.001) and higher PSAD
(p < 0.001) compared with those who did not display GG upgrading. No significant differ-
ences were found in age (p = 0.205), BMI (p = 0.418), PV (p = 0.119), number of biopsy cores
(p = 0.430), percentage of positive cores (p = 0.599), and max core involvement (p = 0.393)
(Table S1). After univariate and multivariate analysis, only PSAD (odds ratio [OR]: 4.149,
p < 0.001) was found to be an independent, significant predictor of GG upgrading (Table 2).
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Table 1. Baseline characteristics of the study cohort.

Overall
(n = 535, 100%)

NAPCa
(n = 374, 69.91%)

APCa
(n = 161, 30.09%) p Value

Age, years 0.590
Median (IQR) 67 (62–71) 67 (62–71) 67 (61–72)
Mean ± SD 66.13 ± 6.64 66.15 ± 6.35 66.07 ± 7.29
BMI, kg/m2 0.005 *

Median (IQR) 24.34 (22.68–26.22) 24.22 (22.31–26.09) 24.78 (23.31–26.78)
Mean ± SD 24.50 ± 2.87 24.27 ± 2.88 25.04 ± 2.78

Serum PSA, ng/mL <0.001 *
Median (IQR) 10.93 (7.49–17.16) 10.20 (7.07–16.28) 12.17 (8.55–20.98)
Mean ± SD 14.47 ± 12.15 13.20 ± 10.69 17.48 ± 14.64
DRE, n (%) 0.228

Normal 429 (80.2) 305 (81.6) 124 (77.0)
Abnormal 106 (19.8) 69 (18.4) 37 (23.0)

Biopsy GG, n (%) 0.057
1 159 (29.7) 124 (33.2) 35 (21.7)
2 238 (44.5) 161 (43.0) 77 (47.8)
3 78 (14.6) 51 (13.6) 27 (16.8)
4 60 (11.2) 38 (10.2) 22 (13.7)

Post-RP GG, n (%) <0.001 *
1 58 (10.8) 50 (13.4) 8 (5.0)
2 239 (44.7) 176 (47.1) 63 (39.1)
3 163 (30.5) 94 (25.1) 69 (42.9)
4 41 (7.7) 32 (8.6) 9 (5.6)
5 34 (6.3) 22 (5.9) 12 (7.5)

Prostate volume, mL 0.175
Median (IQR) 39.10 (30.00–57.00) 39.00 (29.35–56.10) 42.00 (31.00–57.50)
Mean ± SD 46.78 ± 25.33 46.51 ± 26.62 47.40 ± 22.10

PSAD, ng/mL2 0.022 *
Median (IQR) 0.26 (0.16–0.44) 0.25 (0.15–0.42) 0.29 (0.18–0.50)
Mean ± SD 0.36 ± 0.32 0.35 ± 0.32 0.40 ± 0.33

Number of biopsy cores 0.360
Median (IQR) 13 (12–14) 13 (12–14) 13 (12–13)
Mean ± SD 13.24 ± 2.41 13.33 ± 2.53 13.04 ± 2.11

Number of positive cores <0.001 *
Median (IQR) 4 (2–6) 3 (2–6) 5 (3–7)
Mean ± SD 4.46 ± 3.06 4.10 ± 2.91 5.27 ± 3.26

Percent positive biopsy cores, % <0.001 *
Median (IQR) 30.77 (15.38–50.00) 25.00 (11.76–46.15) 38.46 (20.00–53.85)
Mean ± SD 34.13 ± 23.65 31.25 ± 22.44 40.81 ± 25.06

Max core involvement, %
Median (IQR) 70.0 (30.0–85.0) 60.0 (30.0–85.0) 85.0 (50.0–85.0)
Mean ± SD 58.68 ± 30.19 55.66 ± 30.48 65.71 ± 28.37

Clinical T stage, n (%) <0.001 *
T1 58 (10.8) 28 (7.5) 30 (18.6)
T2 477 (89.2) 346 (92.5) 131 (81.4)

Pathological T stage, n (%) <0.001 *
T2 273 (51.0) 215 (57.5) 58 (36.0)
T3 262 (49.0) 159 (42.5) 103 (64.0)

Postoperative pathology, n (%)
Positive surgical margin 161 (30.1) 61 (16.3) 100 (62.1) <0.001 *
Extracapsular extension 274 (51.2) 159 (42.5) 115 (71.4) <0.001 *
Seminal vesicle invasion 90 (17.0) 57 (15.2) 33 (20.5) 0.136
Lymph nodal metastasis 10 (1.9) 7 (1.9) 3 (1.9) 0.346

NAPCa—non-apex prostate cancer; APCa—apex prostate cancer; IQR—interquartile range; SD—standard devia-
tion; BMI—body mass index; PSA—prostate-specific antigen; DRE—digital rectal examination; GG—grading
group; RP—radical prostatectomy; PSAD; prostate-specific antigen density. * statistically significant.
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Table 2. Univariate and multivariate analysis for predicting GG upgrading.

Univariate Multivariate

OR (95% CI) p Value OR (95% CI) p Value

(a) All patients (n = 535)
Age, years 1.018 (0.992–1.045) 0.165 1.022 (0.996–1.050) 0.103

BMI, kg/m2 0.971 (0.915–1.031) 0.333 0.992 (0.933–1.055) 0.794
Serum PSA, ng/mL 1.018 (1.003–1.033) 0.018 * - -
Prostate volume, mL 0.987 (0.989–1.000) 0.066 - -

PSAD, ng/mL2 3.164 (1.743–5.744) <0.001 * 4.149 (2.151–8.001) <0.001 *
Number of biopsy cores 0.978 (0.925–1.034) 0.432 -

Percent positive biopsy cores, % 0.734 (0.356–1.513) 0.403 0.488 (0.185–1.285) 0.146
Max core involvement, % 0.997 (0.991–1.003) 0.307 0.997 (0.989–1.004) 0.346

(b) Non-apex prostate cancer
(n = 374)

Age, years 1.015 (0.982–1.048) 0.383 1.016 (0.982–1.051) 0.365
BMI, kg/m2 0.968 (0.902–1.040) 0.377 0.999 (0.928–1.077) 0.988

Serum PSA, ng/mL 1.021 (1.000–1.043) 0.046 * - -
Prostate volume, mL 0.991 (0.983–0.999) 0.035 * - -

PSAD, ng/mL2 5.429 (2.378–12.397) <0.001 * 8.176 (3.288–20.331) <0.001 *
Number of biopsy cores 0.970 (0.904–1.041) 0.401 -

Percent positive biopsy cores, % 0.639 (0.255–1.597) 0.338 0.371 (0.105–1.305) 0.122
Max core involvement, % 0.996 (0.989–1.003) 0.229 0.995 (0.986–1.003) 0.228

(c) Apex prostate cancer (n = 161)
Age, years 1.026 (0.982–1.071) 0.250 1.031 (0.987–1.078) 0.171

BMI, kg/m2 0.969 (0.866–1.084) 0.578 0.970 (0.866–1.088) 0.606
Serum PSA, ng/mL 1.014 (0.992–1.036) 0.230 - -
Prostate volume, mL 1.000 (0.986–1.014) 0.970 - -

PSAD, ng/mL2 1.332 (0.516–3.436) 0.554 1.468 (0.528–4.079) 0.462
Number of biopsy cores 0.981 (0.892–1.079) 0.697 -

Percent positive biopsy cores, % 0.811 (0.235–2.802) 0.741 0.699 (0.143–3.421) 0.658
Max core involvement, % 0.999 (0.988–1.010) 0.843 0.999 (0.986–1.013) 0.910

OR—odds ratio; BMI—body mass index; PSAD—prostate-specific antigen. * statistically significant.

There were 262 patients (49.0%) who had pathological upstaging after RP. However,
no significant differences in age (p = 0.359), BMI (p = 0.110), or number of biopsy cores
(p = 0.809) were observed (Table S1). The univariate analysis showed that higher PSA (OR:
1.035, p < 0.001), smaller PV (OR: 0.980, p < 0.001), higher PSAD (OR: 7.244, p < 0.001),
higher number of positive cores (OR: 1.232, p < 0.001), higher percentage of positive
cores (OR: 15.821, p < 0.001), and higher max core involvement (OR: 1.018, p < 0.001)
were predictive of pathological upstaging. The multivariable analysis revealed that both
PSAD (OR: 4.750, p < 0.001) and percentage of positive cores (OR: 5.108, p = 0.002) were
independent, significant predictors of upstaging (Table 3).

3.3. The Patients with NAPCa

Of the 374 patients with NAPCa, 168 (44.9%) had GG upgrading after RP. Serum
PSA (p = 0.001) and PSAD (p < 0.001) were significantly higher in upgraded patients than
in non-upgraded patients. There were no significant differences in age (p = 0.506), BMI
(p = 0.423), PV (p = 0.068), number of biopsy cores (p = 0.416), number of positive cores
(p = 0.414), percentage of positive cores (p = 0.610), and max core involvement (p = 0.324)
(Table S2). The univariate analysis showed that serum PSA (OR: 1.021, p = 0.046), PV
(OR: 0.991, p = 0.035), and PSAD (OR: 5.429, p < 0.001) were significant predictors of GG
upgrading. The multivariate analysis showed that PSAD (OR: 8.176, p < 0.001) was an
independent predictor of GG upgrading (Table 2).
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Table 3. Univariate and multivariate analysis for predicting pathological upstaging.

Univariate Multivariate

OR (95% CI) p Value OR (95% CI) p Value

(a) All patients (n = 535)
Age, years 1.013 (0.987–1.039) 0.334 1.014 (0.986–1.043) 0.329

BMI, kg/m2 1.049 (0.988–1.113) 0.118 1.063 (0.996–1.134) 0.064
Serum PSA, ng/ml 1.035 (1.017–1.053) <0.001 * - -
Prostate volume, ml 0.980 (0.972–0.988) <0.001 * - -

PSAD, ng/mL2 7.244 (3.556–14.755) <0.001 * 4.750 (2.259–9.984) <0.001 *
Number of biopsy cores 1.232 (1.158–1.311) <0.001 * -

Percent positive biopsy cores, % 15.821 (7.011–35.700) <0.001 * 5.108 (1.854–14.074) 0.002 *
Max core involvement, % 1.018 (1.012–1.024) <0.001 * 1.007 (1.000–1.015) 0.051

(b) Non-apex prostate cancer
(n = 374)

Age, years 1.009 (0.977–1.043) 0.568 1.009 (0.972–1.046) 0.645
BMI, kg/m2 1.040 (0.968–1.117) 0.287 1.056 (0.977–1.142) 0.171

Serum PSA, ng/mL 1.034 (1.009–1.059) 0.007 * - -
Prostate volume, mL 0.973 (0.962–0.984) <0.001 * - -

PSAD, ng/mL2 7.142 (3.031–16.830) <0.001 * 4.973 (1.996–12.391) 0.001 *
Number of biopsy cores 1.238 (1.146–1.336) <0.001 * -

Percent positive biopsy cores, % 15.651 (5.733–42.727) <0.001 * 3.994 (1.108–14.399) 0.034 *
Max core involvement, % 1.017 (1.009–1.024) <0.001 * 1.006 (0.997–1.015) 0.199

(c) Apex prostate cancer (n = 161)
Age, years 1.021 (0.977–1.067) 0.352 1.022 (0.976–1.070) 0.361

BMI, kg/m2 1.015 (0.904–1.141) 0.800 1.038 (0.918–1.175) 0.551
Serum PSA, ng/mL 1.044 (1.005–1.085) 0.027 * - -
Prostate volume, mL 0.989 (0.975–1.004) 0.142 - -
PSAD, ng/mL/cm3 4.063 (1.169–14.120) 0.027 * 2.906 (0.816–10.342) 0.100

Number of biopsy cores 1.171 (1.048–1.307) 0.005 * -
Percent positive biopsy cores, % 8.920 (2.105–37.807) 0.003 * 3.489 (0.576–21.142) 0.174

Max core involvement, % 1.016 (1.004–1.028) 0.007 * 1.009 (0.994–1.023) 0.236

OR—odds ratio; BMI—body mass index; PSAD—prostate-specific antigen. * statistically significant.

Pathological upstaging occurred in 159 (42.5%) patients with NAPCa. Upstaged
patients had higher PSA (p < 0.001), smaller PV (p < 0.001), higher PSAD (p < 0.001), a
higher percentage of positive cores (p < 0.001), and higher max core involvement (p = 0.007).
No statistically significant differences were found in age (p = 0.694), BMI (p = 0.293), or
number of biopsy cores (p = 0.574) (Table S2). Univariate analysis revealed that higher
PSA (OR: 1.034, p = 0.007), lower PV (OR: 0.973, p < 0.001), higher PSAD (OR: 7.142,
p < 0.001), higher number of positive cores (OR: 1.238, p < 0.001), higher percentage of
positive cores (OR: 15.651, p < 0.001), and higher max core involvement (OR: 1.017, p < 0.001)
were predictive of upstaging. In the multivariate analysis, PSAD (OR: 4.973, p = 0.001)
and percentage of positive cores (OR: 3.994, p = 0.034) were independently predictive of
pathological upstaging (Table 3).

3.4. The Patients with APCa

Of the 161 patients with APCa, 77 (47.8%) were identified as having GG upgrading
after RP. Serum PSA (p = 0.024) was significantly higher in patients with GG upgrading
than those who did not present GG upgrading. No statistically significant differences were
found in age (p = 0.215), BMI (p = 0.647), PV (p = 0.929), PSAD (p = 0.182), number of
biopsy cores (p = 0.633), percentage of positive cores (p = 0.764) and max core involvement
(p = 0.642) (Table S3). The univariate and multivariate analysis revealed that age (p = 0.171),
BMI (p = 0.606), PSAD (p = 0.462), percentage of positive cores (p = 0.658), and max core
involvement (p = 0.910) were not independently associated with GG upgrading (Table 2).

There were 103 (64.0%) patients with pathological upstaging. Upstaged patients
had higher PSA (p < 0.001), higher PSAD (p = 0.002), higher percentage positive cores
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(p = 0.005), and higher max core involvement (p = 0.005) compared with those who did
not display upstaging. There were no statistically significant differences in age (p = 0.384),
BMI (p = 0.665), PV (p = 0.146) or number of biopsy cores (p = 0.237) (Table S3). Univariate
analysis revealed that higher PSA (OR: 1.044, p = 0.027), higher PSAD (OR: 4.063, p = 0.027),
higher number of positive cores (OR: 1.171, p = 0.005), higher percentage of positive
cores (OR: 8.920, p = 0.003), and higher max core involvement (OR: 1.016, p = 0.007) were
predictors of upstaging. However, there were no independent, significant predictors,
including PSAD (p = 0.100), for predicting pathological upstaging in multivariate analysis
(Table 3).

3.5. Predictive Characteristics of PSAD

Of the entire cohort, the AUC value of PSAD for predicting GG upgrading was 0.637
(95% CI: 0.595–0.678, p < 0.001). The cut-off value of 0.23 ng/mL2 showed a sensitivity of
68.98%, specificity of 53.45%, a positive predictive value (PPV) of 55.59%, and a negative
predictive value (NPV) of 67.10%. The AUC value of PSAD for predicting upstaging in
all patients was 0.737 (95% CI: 0.698–0.774, p < 0.001). A cut-off value of 0.23 ng/mL2

showed a sensitivity of 77.86%, specificity of 62.27%, a PPV of 66.45%, and a NPV of 74.56%
(Table 4).

Table 4. The predictive characteristics of PSAD for predicting upgrading and upstaging.

AUC (95% CI) Cutoff, ng/mL2 Sensitivity (%) Specificity (%) PPV (%) NPV (%)

(a) All patients (n = 535)
Upgrading 0.637 (0.595–0.678) 0.23 68.98 53.45 55.59 67.10
Upstaging 0.737 (0.698–0.774) 0.23 77.86 62.27 66.45 74.56

(b) Non-apex prostate cancer
(n = 374)

Upgrading 0.670 (0.620−0.718) 0.17 85.71 41.75 54.53 78.19
Upstaging 0.775 (0.729−0.816) 0.23 79.25 66.98 63.95 81.37

PSAD—prostate-specific antigen; AUC—area under the curve; CI—confidence interval; PPV—positive predictive
value; NPV—negative predictive value.

Of the 374 patients with NAPCa, the AUC value of PSAD for predicting GG upgrading
was 0.670 (95% CI: 0.620–0.718, p < 0.001). A cut-off value of 0.17 ng/mL2 showed a
sensitivity of 85.71%, a specificity of 41.75%, a PPV of 54.53%, and a NPV of 78.19%. The
AUC value of PSAD for predicting upstaging in patients with NAPCa was 0.775 (95% CI:
0.729–0.816, p < 0.001). A cut-off value of 0.23 ng/mL2 showed a sensitivity of 79.25%,
specificity of 66.98%, a PPV of 63.95%, and a NPV of 81.37% (Table 4).

4. Discussion

It is well established that biopsy GG and clinical T stage contribute the most to
estimating the prognosis of PCa [15]. However, pathological GG upgrading and upstaging
from biopsy to RP specimens is quite common. According to prior studies, the rate of GG
upgrading at RP varies from 30% to 50%, meaning that nearly half of all biopsy sampling
does not reflect the overall pathological characteristics of prostate specimens [5,16,17].
Furthermore, Gleason GG upgrading and pathological upstaging have been associated
with adverse outcomes, including unfavorable pathological features and biochemical
recurrence [10]. In the current study, GG upgrading and pathological upstaging after RP
were recorded in 45.8% and 49.0% of patients, respectively. Although the definition of
upgrading and upstaging may be different between studies, the current results showed a
relatively higher rate than those of other reports. This may be because more than one-third
of the patients (34.2%, 183/535) in our study were in intermediate or high-risk groups
according to D’Amico classification, and the median PSA value was 10.93 ng/mL. Thus, the
patients’ characteristics in this cohort were relatively more aggressive than those in other
studies. Furthermore, the lack of multi-parametric magnetic resonance imaging (mpMRI)
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findings, especially in multifocal tumors, may explain the relatively high proportion of
patients with GG upgrading at post-RP, as well as the poor performance of biopsy.

Systematic TRUS-guided prostate biopsy has been widely accepted as a mainstay in
the diagnosis of PCa, whether it occurs via the transrectal or transperineal approach [15].
Despite the use of appropriate techniques, this method has been shown to underestimate
the presence of malignant disease, with false-negative rates ranging from 20% to 40% [18].
The reasons for this occurrence may differ based on tumor location. Particularly in the apex,
the occupied volume is very small, and the angle attained by the transrectal approach might
be quite limited. It should be noted that the transrectal approach more easily misses tumors
located at the apex region. In the current study, all patients underwent TRUS-guided
prostate biopsy through the transrectal route. After analysis of the RP specimens, APCa
was found in 30.1% (161/535) of patients. In addition, patients with APCa were associated
with adverse pathological characteristics. Ishii et al. reported a 36% rate of PCa located
predominantly in the apex, and the frequency increased over time [19]. The current results
confirmed this previous finding. However, Sazuka et al. demonstrated that in Japanese
patients, the apex was the area of cancer most frequently identified (85%), and the section
false-negative rate was 45% for transrectal biopsy [20]. These findings suggested that there
may be geographic and racial differences in PCa localization.

It is well known that PSAD was initially introduced to improve the accuracy of the
PSA test for PCa screening. Several studies have observed that PSAD is significantly
better than PSA alone at predicting adverse pathology and biochemical recurrence after
RP [12]. The current results also indicate that PSAD may be an effective predictor of adverse
pathological features in the entire study cohort (data not shown). Nonetheless, Jones et al.
were unable to demonstrate that PSAD outperformed PSA in assessing early biochemical
recurrence [21]. Other studies have reported that PSA is more accurate than PSAD in
predicting total tumor volume and biochemical recurrence [22]. The discrepancy between
those results and the current study may be due to various factors, including differences in
tumor location and biopsy schemes between different studies.

Recently, the National Comprehensive Cancer Network guideline has adopted PSAD
as an inclusion criterion for active surveillance (AS) in patients with PCa [23]. Ha et al.
also demonstrated that removing PSAD from the AS criterion would significantly increase
the rate of pathological upgrading and upstaging [24]. However, the association between
PSAD and pathological GG upgrading in patients with PCa still remains elusive. In one
study, Brassetti et al. recently proved that PSAD is a valuable predictor of upgrading and
upstaging in candidates for surgery or AS [25]. Furthermore, Sim et al. also reported that
magnetic resonance imaging-based PSAD > 0.26 ng/mL2 could aid in the prediction of
postoperative upgrading in patients with low-risk PCa [26]. In addition, the specificity and
PPV were both relatively high (84.9% and 83.3%, respectively). Nonetheless, Keefe et al.
demonstrated that in PCa with a biopsy-proven GS 3 + 4 = 7, clinicopathological features
including PSAD were not significantly related to upgrading or upstaging [27]. Ning et al.
did not find a significant correlation between PSAD and upgrading using multivariate
analysis [28].

Recently, mpMRI of the prostate has increasingly utilized to diagnosis, staging, and
risk stratification of PCa [29]. Several systematic reviews have reported that pooled NPVs
in the detection of clinically significant PCa for mpMRI ranged from 88% to 93%, with a con-
sequent optimization of the reduction of unnecessary biopsy or overtreatment [30,31]. It is
well documented that including mpMRI in an AS cohort may improve the ability to predict
GG upgrading. Mamawala et al. showed that mpMRI was an independent predictive factor
for GG upgrading in follow-up AS biopsy [32]. However, Chu et al. demonstrated that
mpMRI alone was insufficient to detect GG upgrading on AS, especially among patients
with PSAD ≥ 0.15 ng/mL2 [33]. Meanwhile, Christiansen et al. reported that PSAD was of
clinical importance for predicting GG upgrading in patients with PI-RADS 4–5, whereas
for men with PI-RADS 4–5, the probability of upgrading was high, regardless of PSAD [34].
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Thus, incorporating mpMRI and other clinicopathological parameters including PSAD
may overcome the limitations and improve diagnostic accuracy for prediction upgrading.

In the present study, PSAD was an independent, significant predictor of GG upgrading
and pathological upstaging when all patients in the cohort were analyzed. The cut-off value
proposed for the prediction of GG upgrading was 0.23 ng/mL2, but the performance accu-
racy of PSAD was unsatisfactory, with an AUC value of 63.7%. The sensitivity, specificity,
PPV, and NPV were 68.98%, 53.45%, 55.59%, and 67.10%, respectively, which is inferior
compared to other studies. Potential confounders include the disadvantages of the biopsy
scheme and tumor location in the prostate, which were likely related to limited efficiency
in predicting upgrading. Interestingly, after classifying the cohort into APCa and NAPCa
groups based on whether the tumor existed in the apex, PSAD only remained significantly
associated with Gleason GG upgrading and pathological upstaging in NAPCa patients
and was not significant in patients with APCa. In addition, the AUC value of PSAD for
predicting GG upgrading in NAPCa patients was 67.0%, with no significant difference
before and after classification. However, the sensitivity, specificity, PPV and NPV increased
remarkably after grouping, with values of 85.71%, 41.75%, 54.53%, and 78.19%, respectively.

These results suggest that more attention should be paid to the tumor location, espe-
cially with regard to the apex region, which might lead to inaccurate biopsy GG evaluation
and incorrect analysis. Men with APCa might not benefit from the use of PSAD to predict
GG upgrading and pathological upstaging after RP. One possible reason is that all patients
in the cohort did not receive an apex-targeted biopsy in the systematic prostate biopsy,
and thus small, aggressive PCa with a higher GG at the apex region might be missed.
Several studies have demonstrated that adding apex cores improved the detection rate of
clinically significant PCa (GS ≥ 7), particularly in early stage disease [35,36]. Therefore, it is
especially important in patients with low-risk PCa who seek less invasive therapy, such as
watchful waiting and AS, to additionally target the apex region during systematic biopsy.
This may help to precisely select patients for AS protocols. Furthermore, comprehensive
consideration of PSAD and cancer location may be more reasonable for patient counseling
and clinical decision making. Additional sampling of biopsy cores from the apex region
may help improve the accuracy of PSAD in predicting GG upgrading and pathological
upstaging after RP.

There are several limitations of this study, including its retrospective design and
relatively small number of patients. First, there was no systematic, pathological review of
all specimens, although the interobserver variability is well known. Second, all patients
analyzed in this study underwent TRUS-guided core biopsies without multi-parameter
MRI. Multi-parameter MRI focusing on the prostatic apex was superior to systematic biopsy
for identifying adverse APCa [37]. In addition, several studies have demonstrated that
MRI targeted fusion biopsy could enhance the diagnostic accuracy of PCa detection in final
histopathology, with a lower rate of upgrading than TRUS-guided biopsy [3,28]. In this
regard, the rate of PCa detection in the current study could have been underestimated,
while the rate of upgraded GG could have been overestimated. Third, our study also has a
lack of genomic classifiers such as the Oncotype DX Genomic Prostate Score test, which
has been reported to be associated with biopsy upgrading [38,39]. Furthermore, the study
focus was primarily on the pathological findings. Biochemical recurrence and PCa-specific
mortality were not evaluated; these may be more crucial issues than adverse pathological
features for better defining tumor progression.

5. Conclusions

PSAD may aid in the prediction of GG upgrading and pathological upstaging in
patients with PCa. However, this advantage may only be practical in patients with NAPCa
identified after RP. Additional biopsy cores taken from the prostatic apex region may help
improve the accuracy of PSAD in predicting pathological GG upgrading and upstaging
after RP.
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