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In 2019, the World Meteorological Organization (WMO) pointed out the following
based on the statistics from 2007 to 2019: in natural disasters, 90% of losses are related to
meteorology, of which heavy storms and floods account for more than 70%. Heavy precipi-
tation plays a very important role in the early warning of meteorological, hydrological, and
geological disasters. Therefore, accurate monitoring and early warning and forecasting
of heavy rainfall induced by strong convection are the basis for improving our ability to
prevent natural disasters, such as floods, landslides, and mudslides.

Currently, the most powerful technique for monitoring natural hazards induced by
heavy rainstorms is to use weather radars (e.g., ground-based radars, profiling radars, and
space-born radars) [1,2]. Dual-polarization or dual-frequency radar data are used to derive
water mixing ratios and number concentrations as well as to improve the capability of
the convection-permitting numerical weather prediction (NWP) models to forecast severe
storms at scales varying from a few hundred meters to kilometers. Advanced quantitative
precipitation forecast (QPF) products are of great assistance in short-term weather and
hydrological forecasting. Associated surface in situ observations, such as from rain gauges,
runoff gauges, and disdrometers, are also required for calibrating radar observational
variables and products [3,4].

In this Special Issue, studies covered several important topics, involving the devel-
opment of radar signal processing methods; characterization of errors/uncertainties in
remote sensing precipitation products and retrieval algorithm functions of different condi-
tions; new sensing techniques as well as attenuation correction and calibration techniques;
applications of radar data in data assimilation to improve the performance of NWP models;
development of new analysis methods (e.g., machine learning and data assimilation) to
maximize the benefits of using extensive datasets, multi-scale remote sensing data, and
in situ data fusion; and application of radar data in disastrous weather (e.g., heavy rain,
hail, and tornado) analysis and radar observations of hydrometeorological extremes. All of
which improve the skills of QPF, radar signal processing methods, etc.

Routinely, operational weather radars could suffer from many difficulties that limit
their data quality and applications. Efforts are made in proposing new bin-by-bin approxi-
mation methods employing the European Centre for Medium-Range Weather Forecasts
(ECMWF) re-analysis data trying to address the attenuation caused by atmospheric gases
and stratiform clouds [5], training the dilated and self-attentional UNet model to improve
the completion of weather radar missing data [6], developing novel optimization strategy
to mitigate the effects of sidelobes in strong convection weather process [7], and developing
techniques for noise cancelation and recovery of radial velocity to improve the quality of
three-dimensional radar wind fields [8].

Remote Sens. 2024, 16, 1967. https://doi.org/10.3390/rs16111967 https://www.mdpi.com/journal/remotesensing1
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Understanding the characteristics of the raindrop size distribution (DSD) is crucial to
improve our knowledge of the microphysical processes of precipitation and to improve
the accuracy of radar quantitative precipitation estimation (QPE). Topics in this Special
Issue presented the spatial variability of DSD in different geographic regions and its
influence on radar QPE [3], performance differences in the QPE relationship of dual-
polarization radars under different schemes, radar wavelengths, and rainfall rates R classes
in typical arid areas of China [9]. A new uniformity index for the axis ratios derived
from dual-polarization weather radar data was proposed for raindrop area identification
and analysis [10]. Microphysics schemes were also tested to depict the contrast between
convective and stratiform regions in terms of the DSD [11]. Aircraft observations were
analyzed to gain insights in the vertical distribution of cloud microphysical properties in
different parts of stratocumulus clouds [12].

Weather forecasting plays a pivotal role in modern society, aiding individuals and
decision makers in making informed choices and preparations. Recent advancements in
weather radar technology and Blending forecast have propelled meteorological research
and forecasting capabilities to new heights. For example, the prediction abilities of the
Radar Extrapolation Forecast (REF), Wuhan Rapid Update Cycle (WHRUC), GRAPES_3
km, and Blending are compared and analyzed. It is shown that Blending is obviously
better than the single forecast, especially in the heavy precipitation echo forecast, and
plays a positive role in the convective forecast [13]. Another notable area of progress
lies in the field of nowcasting and QPF. Traditionally, radar echo extrapolation methods
have been used for nowcasting, but they often suffer from spatial inaccuracies. However,
recent studies have showcased the efficacy of deep learning techniques in improving
nowcasting performance. Despite their success, current deep learning-based models face
challenges in accurately representing spatial variability, leading to a “blurry” effect in
forecasts. To address this issue, researchers have proposed novel approaches, such as the
Spatial Variability Representation Enhancement (SVRE) loss function and the Attentional
Generative Adversarial Network (AGAN) model [14]. These innovations offer promising
solutions for achieving high-precision radar nowcasting applications.

Moreover, the integration of multiscale representations (MSRs) of the atmosphere
holds immense potential for advancing model–data fusion techniques in weather forecast-
ing [15]. By reconstructing radar echoes from weather model simulations and satellite
products, researchers have unveiled stratified features within the atmosphere, providing
valuable insights into small-scale patterns and larger-scale information. This holistic under-
standing of atmospheric dynamics paves the way for more accurate and reliable forecasts,
transcending conventional limitations in nowcasting.

In parallel, advancements in precipitation forecasting have been significant, particu-
larly in addressing the challenges on sub-seasonal to seasonal scales. The development of
the Quantile Mapping of Matching Precipitation Threshold by Time Series (MPTT-QM)
method represents a breakthrough in precipitation bias correction, offering improved spa-
tial distribution and temporal consistency in forecasts [16]. Furthermore, innovations, such
as the nonlinear grid transformation (NGT) method, show promise in enhancing convec-
tive echo extrapolation prediction, thereby refining precipitation forecasts and mitigating
potential inaccuracies [17].

Beyond forecasting techniques, studies on weather systems, such as mesovortices
(MVs) during the rainy season, provide valuable insights into their spatiotemporal distri-
butions and environmental influence [18]. Additionally, the utilization of machine learning
algorithms for retrieving temperature and relative humidity profiles demonstrates the
interdisciplinary nature of meteorological research [19], offering new avenues for enhanc-
ing data accuracy and reliability. Despite the significant progress in radar technology,
challenges persist in radar processing and applications. Efforts are under way to improve
data quality and maximize the utility of operational weather radars.

In summary, the continuous advancements in weather radar technology hold immense
promise for revolutionizing meteorological forecasting and disaster preparedness. As we
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navigate an increasingly volatile climate, investing in these innovations is essential for
safeguarding lives and livelihoods. By harnessing the full potential of weather forecasting
technology, one can better anticipate and mitigate the impact of extreme weather events,
ensuring a safer and more resilient future for us all.
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Spatial Variability of Raindrop Size Distribution at Beijing City
Scale and Its Implications for Polarimetric Radar QPE
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Abstract: Understanding the characteristics of the raindrop size distribution (DSD) is crucial to
improve our knowledge of the microphysical processes of precipitation and to improve the accuracy
of radar quantitative precipitation estimation (QPE). In this study, the spatial variability of DSD
in different regions of Beijing and its influence on radar QPE are analyzed using 11 disdrometers.
The DSD data are categorized into three regions: Urban, suburban, and mountainous according to
their locations. The DSD exhibits evidently different characteristics in the urban, suburban, and
mountain regions of Beijing. The average raindrop diameter is smaller in the urban region compared
to the suburban region. The average rain rate and raindrop number concentration are lower in the
mountainous region compared to both urban and suburban regions. The difference in DSD between
urban and suburban regions is due to the difference in DSD for the same precipitation types, while the
difference in DSD between mountain and plains (i.e., urban and suburban regions) is the combined
effect of the convection/stratiform ratio and the difference of DSD for the same precipitation types.
Three DSD-based polarimetric radar QPE estimators were retrieved and estimated. Among these
three QPE estimators, R(ZH), R(Kdp), and R(Kdp, ZDR), R(Kdp, ZDR) performs best, followed by
R(Kdp), and R(ZH) performs worst. R(Kdp) is more sensitive to the representative parameters, while
R(ZH) and R(Kdp, ZDR) are more sensitive to observational error and systematic bias (i.e., calibration).

Keywords: raindrop size distribution (DSD); polarimetric radar; quantitative precipitation
estimation (QPE)

1. Introduction

Raindrop size distribution (DSD) represents the combined effect of dynamic, thermo-
dynamic, and microphysical processes in precipitation systems. Therefore, analyzing DSD
is crucial for the development or validation of microphysical parameterization schemes in
numerical weather prediction models [1–3], as well as for understanding the microphysical
characteristics in precipitation systems [4–7], which is of great help in improving weather
forecasts. DSD modeling and retrieval are also useful for improving the radar quantitative
precipitation estimation (QPE) [8–10], which is critical for meteorological and hydrolog-
ical applications. In addition, DSD is closely related to the kinetic energy of rain, which
is critical in understanding the erosive and runoff processes of soil and the subsequent
hydrological hazards [11,12].

DSD is affected by various factors, including environmental conditions (temperature,
pressure, humidity, wind, aerosol, etc.), evaporation, drop sorting, clustering and breakup,
and so on [5,13–15]. As a result, DSD exhibits significant variation across different climatic
regimes, seasons, and precipitation types. Numerous studies have extensively investigated
the characteristics of DSD worldwide, utilizing both in situ and remote sensing instruments
such as radars. Bringi et al. [16] (hereinafter BR03) analyzed the DSD of convection and

Remote Sens. 2023, 15, 3964. https://doi.org/10.3390/rs15163964 https://www.mdpi.com/journal/remotesensing5
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stratiform in different climate regimes and showed that the DSD of convection can be
classified as “maritime” and “continental”. Tang et al. [17] showed significant differences
in DSD between the northern and southern regions of China. Other studies revealed the
characteristics of DSD in different regions of China [6,18,19]. It is also found that the
convection exhibits a larger mass-weighted mean diameter (Dm) and normalized intercept
parameter (Nw) as compared to the stratiform [4,7,20,21]. Zeng et al. [22–24] found that
both the number concentration and the drop size are larger at the top of Mt. Tianshan than
at its foot.

Beijing, the capital of China with a population of over 21 million, has experienced rapid
infrastructure development in recent decades. Extreme precipitation events and subsequent
floods have caused great losses to the city every year. The impact of urbanization on
precipitation has been widely recognized, and several possible mechanisms have been
identified. These include the destabilization and perturbation of the boundary layer due
to the urban heat island effect [25–27], enhanced convergence due to the large roughness
in urban areas [28–30], and increased cloud condensation nuclei due to the high aerosol
concentration in urban areas [31–33]. The climatological and statistical characteristics of
precipitation and the mechanism of extreme precipitation systems in Beijing have been
studied using rain gauges, radars, and models [34–39]. However, only a few studies have
focused on the DSD characteristics in Beijing due to the lack of DSD measurements. Tang
et al. [17] compared the difference in DSD characteristics between Beijing and southern
China. Ji et al. [40] analyzed the DSD in Beijing based on 14-month DSD observations from
one disdrometer. Ma et al. [41] studied the statistical characteristics of DSD during the rainy
seasons in Beijing urban areas. These above works were only based on the observation of
a single disdrometer and cannot represent the spatial variation of DSD characteristics in
the whole Beijing region. As pointed out by Jaffrain et al. [42], DSD could vary even on
the kilometer scale. Is there any DSD variability in different areas (urban, suburban, and
mountains) of Beijing? What is the cause of the variability? These questions have not been
well answered yet.

In recent years, quite a few second-generation OTT Parsivel (hereafter Parsivel2) laser-
optical disdrometers have been deployed in different areas of Beijing, providing a good
opportunity to investigate the spatial variability of DSD. In this paper, we aim to reveal
the DSD variability in Beijing as well as its impact on radar QPE, which would enhance
our understanding of the microphysical characteristics of precipitation and improve the
accuracy of radar QPE. This paper is organized as follows: Section 2 describes the data used,
as well as the method for quality control, precipitation type classification, and analysis. The
spatial characteristics of DSD in Beijing and its implication for polarimetric radar QPE are
analyzed in Section 3. Sections 4 and 5 provide the discussion and conclusion, respectively.

2. Data and Methodology

2.1. Dataset

In this study, DSDs were collected using 11 Parsivel2 disdrometers. The locations of
these disdrometers are shown in Figure 1. In brief, Parsivel2 is a laser-optical disdrometer
that can simultaneously measure the size and falling velocity of particles. The sampling
area of the Parsivel2 is 54 cm2 (18 cm in length and 3 cm in width). The measured size and
falling velocity are divided into 32 bins. These bins are non-uniform, ranging from 0.062
to 24.5 mm for size and 0.05 to 20.8 m s−1 for falling velocity. Tokay et al. [43] evaluated
the performance of Parsivel2. Compared to its predecessor Parsivel, Parsivel2 performs
much better in measuring particle size, as Parsivel tends to underestimate the size of small
particles and overestimate the size of large particles.

6
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Figure 1. (a) Location of Beijing in China and (b) topography of Beijing and locations of the disdrom-
eters used in this study. The thin black lines in (b) denote the 6th Ring Road of Beijing.

All the disdrometers were configured to measure DSD with a 1 min temporal reso-
lution. The DSD data were collected from May to September 2017. Rainfall during these
months accounts for 90% of the annual rainfall in Beijing.

2.2. Quality Control of DSD Dataset

Various sources affect the observational quality of the disdrometer, such as splashing
of raindrops, wind effect, and margin fallers [5,13,43–46]. Therefore, quality control must
be applied before using the data for analysis. The quality control procedure used here is
similar to that proposed by Tokay et al. [46]. For the dataset of 1 min each, if the total drop
number is less than 10, or the rain rate is less than 0.1 mm h−1, this 1-min DSD is considered
as noise and discarded. Drops exceeding ± 50% of their theoretical terminal falling velocity
are also discarded from the DSD spectrum because such an observation may be due to
splashing or wind effects. The theoretical terminal falling speed used here is based on the
result of Brandes et al. [47]. The drop sizes that exceed 8 mm are also eliminated [17,41]
because the largest raindrop recorded in nature are around 8 mm [48], and drops larger
than 8 mm are unlikely to be raindrops.

A total number of 124,647 1-min DSD observations from 11 disdrometers passed the
quality control and were used for analysis.

2.3. Separation of Precipitation Types Based on DSD Data

Previous studies have demonstrated that the characteristic DSD parameters are re-
lated to precipitation types. Therefore, it is necessary to separate different precipitation
types when analyzing DSD characteristics. Numerous methods have been proposed to
separate the precipitation type into convection and stratiform based on disdrometer ob-
servation [16,20,49,50]. The criteria of these methods are different, but the principles are
similar: Convection usually exhibits heavier rainfall that may vary from time to time, while
stratiform generally has a weaker but steadier rainfall. Therefore, when the rain rate and
its variation are large, the precipitation can be classified as convection. Otherwise, it can be
classified as stratiform. In this study, the precipitation separation method is similar to that
of BR03. To be clear, for a 1-min DSD observation at time t, if its rain rate is greater than
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5 mm h−1 and the standard deviation from t− Δt to t+ Δt is larger than 1.5 mm h−1, the
DSD of this minute is classified as convection. Otherwise, it is stratiform. Δt is set to 5 min.

2.4. Raindrop Size Distribution

The direct measurement of the disdrometer provides the number of drops in each
bin (i.e., i size bins and j falling velocity bins). The mid-value of each bin is taken as
the representative size of the bin. The following parameters are calculated to represent
the characteristics of DSD, including the total number concentration Nt, mass-weighted
diameter Dm, normalized intercept parameter Nw, and rain rate R:

Nt =
∫ Dmax

D0

N(D)dD (1)

Dm =
∫ Dmax

D0

D4N(D)dD/
∫ Dmax

D0

D3N(D)dD (2)

Nw =
44

6
(
∫ Dmax

D0

D3N(D)dD)/D4
m (3)

R =
π

6

∫ Dmax

D0

D3V(D)N(D)dD (4)

where N(D) is the normalized number of drops in each size bin:

N(D) =
32

∑
j=1

nj

AΔtVjΔD
(5)

where Δt, Vj, and ΔD are the measuring time, the falling velocity at a given size bin, and
the size bin width, respectively. A is the effective sampling area [46]:

A = L(W − Di/2) (6)

where L and W are the length and width of the sampling area, respectively.

2.5. DSD-Based Polarimetric Radar QPE Estimators

To simulate the radar QPE of operational X-band polarimetric radars in Beijing, po-
larimetric radar variables are calculated from DSD data using the T-matrix method [51],
including horizontal (vertical) reflectivity ZH(V) (mm6m−3), differential reflectivity ZDR,
and specific differential phase Kdp (okm−1):

ZH,V =
4λ4

π4|Kw|2
32

∑
i=1

∣∣ fhh,vv(180, Di)
∣∣2N(Di)ΔDi (7)

ZDR = ZH/ZV (8)

Kdp =
180
π

32

∑
i=1

Re| fhh(0, Di)− fvv(0, Di)|N(Di)ΔDi (9)

where fhh,vv(180, Di) is the back scattering amplitude of horizontal and vertical polarization
for a drop; fhh(0, Di) and fvv(0, Di) are the forward scattering amplitudes of horizontal
and vertical polarization, respectively; Kw is the dielectric factor of water (0.9639) and λ is
radar wavelength (32 mm in this study).
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Three widely used radar estimators are applied for radar QPE:

R(ZH) = aZb
H (10)

R(Kdp) = aKb
dp (11)

R(Kdp, ZDR) = aKb
dpZc

DR (12)

where a, b, and c are parameters.
To quantitatively evaluate the performance of different QPE estimators, 3 statistical

scores are used, including the correlation coefficient (CC), root mean square error (RMSE),
and relative mean bias (RMB):

CC =

n
∑

i=1
(R(es)i − R(es))(R(d)i − R(d))√

n
∑

i=1
(R(es)i − R(es))

2 n
∑

i=1
(R(d)i − R(d))

2
(13)

RMSE = [
1
n

n

∑
i=1

(R(es)i − R(d)i)
2]

1/2

(14)

RMB =
n

∑
i=1

(R(es)i − R(d)i)/
n

∑
i=1

(R(d)i) (15)

where R(es)i is the rain rate using one of the radar estimators (i.e., Equations (10)–(12)) with
radar variables simulated using DSD data with the T-matrix method (i.e., Equations (7)–(9)),
and R(d)i is the rain rate calculated directly from the DSD data using Equation (4).

3. Results

3.1. DSD Variability in Different Areas of Beijing

The areas within the 6th Ring Road have dense infrastructure, heavy traffic, and
frequent human activities. Over 90% of Beijing’s population lives and works in the areas
inside the 6th Ring Road, while outside the 6th Ring Road, there are mostly farms, forests,
and wastelands. The topography of Beijing is characterized by plains in the center and
southeast and mountains in the west and north (Figure 1). Accordingly, the 11 disdrometers
used in this study were categorized into three groups based on their location: Urban stations
(stations located within the 6th Ring Road, i.e., stations 399, 511, 513, and 594); suburban
stations (stations located outside the 6th Ring Road with an elevation of less than 200 m
above sea level, i.e., stations 398, 419, 424, and 431), and mountain stations (stations above
200 m above sea level, i.e., stations 406, 412, and 421).

The average DSD characteristics derived with all these 11 disdrometers are shown
in Figure 2. Figure 2a shows the density scatter plot of Dm versus R, superimposed with
the power–law relationship obtained using the least-square fit method. Dm increases
with the increase in R (positive exponent in power–law relationship). As shown in the
figure, Dm increases rapidly when R is less than 50 mm h−1. This is because both the
raindrop size and number concentration effectively increase within this rain rate range [52].
The increase in Dm becomes much slower (around 2.2~2.5 mm) when R is greater than
50 mm h−1. Apparently, the increase in the rain rate mainly relies on the increase in raindrop
concentration rather than raindrop size. This fact implies that the accurate estimation of
particle number concentration in numerical models is crucial for better forecasting of
extreme precipitation events. In addition, the spread of Dm becomes narrower with the
increase in R. Such a fact suggests that when the rain rate is small, the breakup and
coalescence processes of raindrops may be unbalanced, resulting in a wide spread of
Dm. At a high rain rate, the breakup and coalescence are likely to reach a more balanced
state. This result also explains why retrieving the rain rate using Equation (10) (traditional

9



Remote Sens. 2023, 15, 3964

approach of QPE for single-polarimetric radar) is not accurate for small rain rate cases.
Since parameters a and b in Equation (10) depend on DSD and there is a wide spread of
DSD parameters with a small rain rate, if a fixed combination of a and b is used for QPE (the
common approach for operational QPE), large errors will appear. Figure 2b is the scatter
plot of Dm versus Nw for convection and stratiform in Beijing, superimposed with BR03′s
results. There is a clear boundary between convection and stratiform with some overlap
of samples. For convection, only 4.23% and 13.1% of the samples lie in “maritime” and
“continent” clusters in BR03, respectively. The mean value point of Dm-Nw lies between
these two clusters, suggesting that the characteristics of convection in Beijing be different
from those places recorded in BR03. As for the stratiform, the mean value point of Dm-Nw
and 90% of samples lie on the left side of the least square fitting line of stratiform in BR03,
indicating that the stratiform in Beijing has a smaller raindrop size and concentration. It is
notable that DSD studies in other locations of China (Nanjing, eastern China; Guangzhou
and Yangjiang, southern China; Naqu, Tibet Plateau) also suggest a lower raindrop size
and concentration in the stratiform as compared to BR03 [6,7,17,18].

 

Figure 2. (a) Scatter density plot for R versus Dm, superimposed with the power–law relationship
obtained using the least-square fit method and (b) scatter plot for Dm versus Nw. Red (blue) dots
represent convection (stratiform). The star and square symbols represent the mean values for
convection and stratiform, respectively. The black line is the log10(Nw)–Dm relationship for stratiform
in BR03. Two rectangles indicate the maritime and continental convective clusters in BR03.

Figure 3 shows the variations of mean number concentration versus raindrop size
in different areas of Beijing. The number concentration in mountain areas is lower than
in the plains (i.e., urban and suburban areas) from the smallest raindrop size to up to
5 mm in diameter. The differences are most pronounced at the smallest sizes and around
3 mm. The urban and suburban curves are similar, but urban areas have a higher number
concentration of raindrops less than 1 mm, and a lower number concentration of raindrops
greater than 1 mm, indicating a smaller mean raindrop size.
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Figure 3. Average raindrop spectra for different areas of Beijing.

Table 1 shows the mean values of DSD parameters in different areas of Beijing. Among
these three areas, the urban average drop size (Dm) is the smallest, and this value is
comparable with previous studies based on urban disdrometer data in Beijing [40,41]. The
average drop size in the suburban areas is the largest and between the two in the mountain
areas. In terms of the average rain rate, the mountain areas have the smallest average rain
rates, the suburban areas have the largest average rain rates, and the urban areas are in
the middle. The distribution of R is consistent with previous works on the precipitation
in Beijing based on rain gauge measurements [38,53,54], which found that the average
hourly precipitation intensity in the mountains is smaller than that in the plains, but the
total precipitation hours are larger in the mountains, mainly because light rain occurs more
frequently in the mountains of Beijing. This phenomenon might be related to the specific
geographical location of Beijing. The southeast flow coming from the sea is the main
moisture source for precipitation systems in Beijing. The mountain areas are located in the
northwest part of Beijing, which means that the mountain areas of Beijing generally receive
less moisture than the plain areas of Beijing. However, although the mountain areas receive
less moisture, light precipitation can easily occur when the southeast flow is elevated by
the mountains. In terms of the number concentration (Nt), the mountain areas have the
smallest average number concentration, the urban areas have the largest average number
concentration, and the suburban areas are in the middle. In the mountain areas of Beijing,
the smallest average number concentration may also be related to the frequent occurrence
of light rain, as light rain is usually associated with fewer drop numbers. The comparison of
these parameters in urban and suburban areas reveals that the urban environment modifies
the precipitation microphysics, such that the drop size is suppressed while a greater number
of drops are produced. This phenomenon may be related to the high aerosol emission in
urban areas of Beijing due to human activities such as traffic. A high aerosol concentration
tends to reduce the average drop size and increase the number concentration by providing
more cloud condensation nuclei (CCN) [15,31,55,56].

Table 1. Mean values of DSD parameters in different areas of Beijing.

Location Samples Dm(mm) R (mm h−1) Nt (m−3)

Urban 47325 1.17 2.69 328.6
Suburb 44429 1.26 2.83 306.2

Mountain 32893 1.20 2.15 233.1
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Figure 4 shows the probability distribution functions (PDF) of Dm, R, and Nt in
different areas. Dm in these areas all peak around 0.9 mm, with suburban areas having the
highest frequency around the peak and urban areas having the lowest (Figure 3a). The
distribution of Nt in the mountain areas is sharper and more symmetrical compared to those
in the plains (i.e., urban and suburban areas). Both the urban and suburban areas have a
broader distribution around the peak, and the frequency decreases faster toward the higher
Nt end than toward the lower Nt end. In addition, urban areas have a higher distribution
for Nt larger than 103 and a lower distribution for Nt from 102 to 102.5. As for the PDF for R,
R less than 100.5 mm h−1 is mainly responsible for the differences in different areas. There
is a sharper and higher peak in mountain areas at the lower end of R, indicating that light
rain occurs more frequently in mountain areas than in plains. There is a higher frequency
of rain rate from 100 to 100.5 and larger than 101.0 mm h−1 in plains than in mountain areas,
while the rain rate from 100.5–101.0 is quite close together. This result suggests that the
mountains in Beijing may play a role in modifying precipitation microphysics mainly for
precipitation with a rain rate less than 100.5 or larger than 101.0 mm h−1. Light rain occurs
more frequently in mountain areas because mountain areas receive less moisture than the
plains in Beijing as the southeast wet flow travels further to reach the mountain areas in the
western part of Beijing [38,53,54]. As for the differences between urban and suburban areas,
suburban areas have a high frequency of rain rate of less than 100.3 mm h−1 and more than
101.3 mm h−1, with a lower frequency in the middle.

 

Figure 4. The probability distribution functions (PDF) of (a) Dm, (b) Nt, and (c) R for different areas
of Beijing.

Numerous studies have shown that Dm, R, and Nt are larger in convection than in
stratiform [16,17,20], and other studies suggested that the terrain or urban environments
can modify the microphysics processes in precipitation systems and change the DSD char-
acteristics [24,57]. Consequently, there might be three causes responsible for the variation
in DSD characteristics in different regions of Beijing: (1) The ratio of convection/stratiform
might be different in different regions and the higher frequency of convection might lead
to larger Dm, R, and Nt; (2) for the same precipitation type, DSD characteristics in different
regions might be different due to the terrain or urban effect; or (3) the combination of (1)
and (2).

Accordingly, DSD observations were classified into convection and stratiform for
further analysis. The DSD parameters, number of samples, and percentage of convection
and stratiform in different areas of Beijing are shown in Table 2. First, the difference
between urban and suburban areas was analyzed. Although the average Dm is larger
in suburban areas than that in urban areas, it is surprising to see that the percentage
of convection in suburban areas is almost identical to that in urban areas (8.58% versus
8.60%). Consequently, the differences in Dm between urban and suburban areas are not
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likely due to differences in convection/stratiform ratios but rather are more likely due to
differences in DSD characteristics for the same precipitation type. For both convection and
stratiform, Dm is smaller in urban areas than in suburban areas, perhaps due to the high
aerosol concentration in urban areas of Beijing. High aerosol concentration usually causes
smaller raindrop sizes by providing high CCN [15]. A study on the spatial distribution
of PM2.5 (particulate matter with aerodynamic diameters of less than 2.5 μm) in Beijing
shows that the PM2.5 concentration is much higher in urban areas than in suburbs during
rainy seasons [58]. On the other hand, smaller raindrops tend to evaporate more quickly
after falling out of the cloud, which may further lead to smaller raindrops in urban areas.
Urban areas have smaller R and Nt for convection than suburban areas, but larger ones for
stratiform. The result suggests urbanization affects convection and stratiform differently,
whereby the urban environment tends to reduce the intensity of rain and the number
concentration of raindrops in convection while positively influencing them in stratiform.
It appears that the differences in DSD between urban areas and suburban areas are not
due to differences in convection/stratiform ratios, but rather due to differences in DSD
characteristics for the same precipitation types.

Table 2. Mean values of DSD parameters, number of samples, and percentage of convection and
stratiform in different areas of Beijing.

Location Precipitation Type Samples Percentage (%) Dm(mm) R (mm h−1) Nt (m−3)

Urban
convection 4070 8.60 1.85 18.25 863.4
stratiform 43,255 91.40 0.97 1.22 278.3

Suburb
convection 3810 8.58 1.92 20.29 949.8
stratiform 40,619 91.42 1.02 1.20 245.7

Mountain
convection 2149 6.53 1.85 16.93 681.3
stratiform 30,744 93.47 1.05 1.11 201.7

The convection/stratiform ratio in mountain areas is lower than that in the plains,
and only 6.53% of the total precipitation is convection. For convection, Dm in mountain
areas is almost the same as that in urban areas and smaller than that in suburban areas.
However, for stratiform, Dm in mountain areas is larger than that in the plains. R and
Nt for both convection and stratiform are smaller in mountain areas than in the plains.
Therefore, smaller R and Nt values in mountain areas are the combined result of a smaller
convection/stratiform ratio and smaller R and Nt values for the same precipitation types.
Such a result may be related to the moisture conditions in Beijing. Beijing typically receives
its moisture from the east (from the ocean), which travels hundreds of kilometers before
reaching Beijing (the nearest ocean is 160 km away). The mountain areas on the west side of
Beijing receive less moisture than the plain areas on the east, thereby reducing convection
frequency, rain intensity, and number concentration.

3.2. Implication for QPE of Polarimetric Radar

Several X-band polarimetric radars (λ = 3.2 cm) have been deployed in Beijing in
recent years, aiming at providing better QPE products to meet the needs of meteorological
and hydrological applications. These radars all operate in VCP 21 mode, which completes
a volume scan in 3 min with radial and azimuth resolutions of 75 m and 0.95◦, respectively.
To study the X-band radar QPE using DSD data, the polarimetric radar variables of ZH,
ZDR, and Kdp were calculated from 1 min DSD observations. The parameters of a, b, and
c in Equations (10)–(12) were then derived using the nonlinear least square fitting. The
fitted parameters using DSD data collected in all locations, namely, urban, suburban, and
mountain areas, are listed in Table 3. As Table 3 shows, these parameters vary in different
regions of Beijing due to the DSD variability.
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Table 3. The fitted parameters for QPE estimators.

Estimator Location a b c

R(ZH)

Entire 0.1232 0.4758 \
Urban 0.1243 0.4756 \
Suburb 0.107 0.4927 \

Mountain 0.1203 0.4646 \

R(Kdp)

Entire 15.83 0.7727 \
Urban 15.87 0.7721 \
Suburb 15.97 0.8078 \

Mountain 14.99 0.7277 \

R(Kdp, ZDR)

Entire 30.31 0.9676 −1.409
Urban 29.17 0.9554 −1.309
Suburb 29.78 0.9856 −1.38

Mountain 30.04 0.9324 −1.431

Figure 5 illustrates the scatter density plots of R estimated from four estimators
(Table 3) versus R calculated directly from the 1 min DSD data. The statistical values of CC,
RMSE and RMB are also shown. As shown in Figure 5, the estimator R(ZH) performs the
worst (Figure 5a) with the smallest CC and largest RMSE and RMB. The uncertainty of QPE
increases greatly with the intensity of R. The difference between R(es)i and R(d)i can be
up to approximately 4 times (e.g., 30 mm h−1 of R(es)i versus 120 mm h−1 of R(d)i). When
polarimetric variables of ZDR and Kdp are introduced, the accuracy of QPE is much better
(Figure 5b–c). Among these three estimators, R(Kdp, ZDR) performs the best, providing the
most accurate estimation for light rain to heavy rain.

 

Figure 5. Scatter density plots of R from all 11 disdrometer observations and R estimated using
estimators: (a) R(ZH), (b) R(Kdp), and (c) R(Kdp, ZDR). The black line in each panel is the perfect fit
line (i.e., y = x). Statistical scores of CC, RMSE, and RMB are superimposed.

The results shown in Figure 5 can be regarded as the theoretical upper limit of the
performances of the estimators. When performing QPE estimators into operational radar,
three aspects below affect the accuracy of the QPE result: Random observational errors of
the radar variables, the systematic bias of the radar variables due to miscalibration, and the
variability of the parameters of the QPE estimators due to DSD variability. It is well-known
that the DSD variability in different climate regions significantly affects QPE accuracy.
However, for city scales such as Beijing, it is unclear how much the DSD variability affects
the QPE accuracy compared to radar variables measurement errors and bias. What is
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the dominant source of error for QPE? To find the answer, a series of experiments were
performed using these DSD data.

The actual distribution of radar observational errors can be very complicated. How-
ever, for ideal experiments using DSD data, let us assume that the errors conform to the
most general type of error distribution, the normal distribution N(μ, σ2), where μ and σ are
the mean value and standard deviation. Approximately 68% and 95% of the total samples
lie between μ − σ to μ + σ and μ − 2σ to μ + 2σ, respectively. Assuming that the radar
observational variables follow the normal distribution, then the observational variables
can be perturbed by multiplying N(μ, σ2) to simulate measurement errors and systematic
bias. For example, Z′

h = Zh•N(1, 0.152) means measurement errors exist in Zh, while
approximately 95% of the measured Zh are between 0.7 and 1.3 times the theoretical Zh;
Z′

h = Zh•N(1.05, 0.152) means both measurement errors and systematic bias exist in Zh,
the mean observational Zh is stronger for 5% than the theoretical Zh, and approximately
95% of the measured Zh are between 0.75 to 1.35 time of the theoretical Zh.

Table 4 shows the experiment design of R(ZH). All the DSD data collected by these
11 disdrometers are used in these experiments. In the control experiment, the rain rate is
estimated using parameters obtained for the whole region of Beijing; it is the theoretical
upper limit capability of applying R(ZH) to perform QPE. In the DSD variability experiment,
the rain rate is estimated using parameters obtained for the mountain region of Beijing.
The purpose of this experiment is to find out how much the DSD variability can affect the
accuracy of QPE when the parameters for specific regions (e.g., mountains) are used to
estimate the rain rate for the whole region of Beijing. In the measurement error experiment,
the Zh is perturbed by multiplying N(1, 0.052). This experiment aims to find out if there
are measurement errors of Zh between operational radar and disdrometer and how much
the error can affect the accuracy of QPE. Furthermore, the systematic bias experiment
is designed to find out how much the error and systematic bias (i.e., calibration issues)
can affect the accuracy of QPE, and which of these above issues affect the accuracy of
QPE the most.

Table 4. Experiment design of R(ZH) estimator.

Name Description

Control experiment
Perform R(ZH) to estimate rain rate using all the DSD
data with parameters for the whole region of Beijing

(i.e., a = 0.1232 and b = 0.4758)

DSD variability experiment
Perform R(ZH) to estimate rain rate using all the DSD

data with parameters for the mountain region of
Beijing (i.e., a = 0.1202 and b = 0.4646)

Measurement error experiment Perturb Zh by multiplying N(1, 0.052)
Systematic bias experiment Perturb Zh by multiplying N(1.05, 0.052)

Figure 6 shows the results of the R(ZH) experiment. If inappropriate parameter values
(DSD variability experiment, Figure 6b) are used in QPE, such as using the parameters
obtained in the mountain area to estimate the rain rate for the entire region of Beijing, it
will lead to systematic bias in QPE. In this case, the rain rate is underestimated, as can
be seen in Figure 6b, where more dots appear in the lower right part. The RMSE does
not change much, with the RMSE increasing from 3.75 mm h−1 to 3.88 mm h−1, and an
even higher CC. The measurement errors affect the accuracy of QPE more significantly, as
shown in Figure 6c; even if 95% of the observational Zh are within 10% measurement errors,
the QPE accuracy drops significantly, especially for heavy precipitation. With a rain rate
larger than 50 mm h−1, the dots become much more scattered than in Figure 6a, and RMSE
rises to 4.23 mm h−1. When both measurement errors and systematic bias of Zh coexist, as
shown in Figure 6d, the QPE accuracy decreases even more. The QPE overestimates the
rain rate by 38.82%, with more dots appearing in the upper right part and becoming more
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scattered, and the RMSE increases significantly to 5.26 mm h−1. This result suggests that
for a city-scale region such as Beijing, when R(ZH) is used for QPE, the variability of DSD
certainly affects the QPE accuracy, but the main influencing factors on QPE accuracy are
the measurement errors and calibration of reflectivity, and they affect the QPE accuracy to
a greater extent than the influence of the variability of DSD. Therefore, we should focus
more on improving the quality of the reflectivity when utilizing R(ZH) in operation.

 

Figure 6. Scatter density plots of R in the whole region of Beijing from 11 disdrometer observations
and R estimated using estimator R(ZH): (a) Control experiment, (b) DSD variability experiment,
(c) measurement error experiment, and (d) systematic bias experiment as described in Table 4. The
black line in each panel is the perfect fit line (i.e., y = x). Statistical scores of CC, RMSE, and RMB
are superimposed.

Similarly, the experiment design of R(Kdp) is shown in Table 5. Since Kdp is immune to
calibration, the systematic bias experiment was discarded, and an additional measurement
error experiment was added. The results are shown in Figure 7. Some previous works
have suggested that the R(Kdp) estimator is relatively insensitive to the variability of DSD
compared to R(ZH) [47,59,60], but by comparing Figure 7a,b, it is clear that the variability
of DSD does affect the accuracy of QPE using R(Kdp), at least for heavy precipitation.
In this case, using parameters for the mountain region to estimate the rain rate for the
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entire region of Beijing results in the underestimation of heavy precipitation, as shown
in Figure 7b. More dots with a rain rate larger than 50 mm h−1 appear in the lower right
flank of the perfect line. The measurement errors, on the other hand, do not significantly
affect the accuracy of QPE. Perturbing Kdp by multiplying N(1, 0.052) does not degrade
the performance much (Figure 7c), with CC, RMSE, and RMB quite close to the control
experiment. Even when perturbing Kdp by multiplying N(1, 0.152), which means assuming
large measurement errors for Kdp (approximately 32% of the Kdp observation errors are
larger than 15%), the QPE accuracy does not deteriorate significantly (Figure 7d), and it is
comparable to the result of Figure 7b. This series of experiments on R(Kdp) suggest that the
variability of DSD even at the city scale could lead to systematic bias in QPE, especially for
heavy precipitation. The variability of DSD may affect the accuracy of QPE even more than
Kdp measurement errors. Therefore, when utilizing R(Kdp) to perform QPE in operational
usage, special attention should be paid to obtaining appropriate parameters.

 

Figure 7. Scatter density plots of R in the whole region of Beijing from 11 disdrometer observations
and R estimated using estimator R(Kdp): (a) Control experiment, (b) DSD variability experiment,
(c) measurement error experiment 1, and (d) measurement error experiment 2 as described in Table 5.
The black line in each panel is the perfect fit line (i.e., y = x). Statistical scores of CC, RMSE, and RMB
are superimposed.
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Table 5. Experiment design of R(Kdp) estimator.

Name Description

Control experiment
Perform R(Kdp) to estimate rain rate using all the DSD
data with parameters for the whole region of Beijing

(i.e., a = 15.83 and b = 0.7727)

DSD variability experiment
Perform R(Kdp) to estimate rain rate using all the DSD

data with parameters for the mountain region of
Beijing (i.e., a = 14.99 and b = 0.7727)

Measurement error experiment 1 Perturb Kdp by multiplying N(1, 0.052)

Measurement error experiment 2 Perturb Kdp by multiplying N(1, 0.152)

Experiments on R(Kdp, ZDR) are also performed using the design outlined in Table 6,
and the results are shown in Figure 8. Similar to the R(Kdp) experiment, although R(Kdp,
ZDR) is relatively insensitive to the variability of DSD, the variability of DSD does affect
the accuracy of R(Kdp, ZDR), at least for heavy precipitation above 50 mm h−1. As shown
in Figure 8b, R(Kdp, ZDR) underestimates heavy precipitation above 50 mm h−1 when
inappropriate parameters are used. When ZDR is assumed to have observational errors
(Figure 8c), the accuracy of QPE drops significantly, especially for heavy precipitation
above 50 mm h−1, resulting in more scattered dots. When both observational errors and
systematic bias coexist (Figure 8d), the accuracy of QPE becomes worse. In this case, the
QPE systematically overestimates the rain rate, with more dots appearing in the upper left
flank of the perfect line, and the dots become more scattered. These results suggest that
the accuracy of R(Kdp, ZDR) may be more sensitive to observational errors and systematic
bias rather than the representative parameters. It could be due to the negative parameter
c, which puts ZDR in the denominator. Given that ZDR is small in rain (generally less
than 3 dB), a small fluctuation or deviation of ZDR may lead to significant errors in QPE.
Therefore, accurate ZDR observation is crucial to the QPE accuracy for R(Kdp, ZDR) estimator.
Therefore, accurate and well-calibrated ZDR observations are crucial to ensure the accuracy
of QPE using the R(Kdp, ZDR) estimator. Introducing ZDR into QPE may not necessarily
have a positive impact, but rather a negative impact on QPE accuracy if ZDR is not measured
accurately and well-calibrated.

Table 6. Experiment design of R(Kdp, ZDR) estimator.

Name Description

Control experiment
Perform R(Kdp, ZDR) to estimate rain rate using all the

DSD data with parameters for the whole region of
Beijing(i.e., a = 30.31, b = 0.9676, and c = −1.409)

DSD variability experiment
Perform R(Kdp, ZDR) estimate rain rate using all the

DSD data with parameters for the mountain region of
Beijing(i.e., a = 30.04, b = 0.9324, and c = −1.431)

Measurement error experiment Perturb ZDR by multiplying N(1, 0.102)

Systematic bias experiment Perturb ZDR multiplying N(0.95, 0.12)
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Figure 8. Scatter density plots of R in the whole region of Beijing from 11 disdrometer observations
and R estimated using estimator R(Kdp,Zdr): (a) Control experiment, (b) DSD variability experiment,
(c) measurement error experiment, and (d) systematic bias experiment as described in Table 6. The
black line in each panel is the perfect fit line (i.e., y = x). Statistical scores of CC, RMSE, and RMB are
superimposed.

4. Discussion

In this study, disdrometer data collected from 11 sites in Beijing in 2017 are analyzed
to reveal the city-scale spatial variability of DSD, and to investigate its impact on radar
QPE. We found that the average precipitation intensity is smaller in the mountain areas of
Beijing and more light rain occurs. It should be pointed out that this phenomenon is only
specific to the mountain areas of Beijing, not worldwide. This phenomenon is possible due
to the specific location of Beijing, that is, the mountain areas are further away from the sea
and receive less moisture than the plains in Beijing. As for other places, some previous
studies suggested that the mountains tend to enhance the precipitation [24,61]. A series
of sensitivity experiments were conducted to investigate the effect of DSD variability on
radar QPE. However, it should be pointed out that these experiments are ideal experiments

19



Remote Sens. 2023, 15, 3964

based on DSD data and no real radar data are used yet. Utilizing real radar data to perform
QPE is more complicated, and the errors of radar observation may not simply conform
to a Gaussian distribution. In addition, the disdrometer measures DSD information at
ground level while the weather radar measures microwave electromagnetic scattering of
precipitation particles in the air. These two types of instruments do not measure precipita-
tion at the same location, and the sampling volumes of these two types of instruments are
also different, with the sampling volume of weather radar being much larger. This work
provides insights into the relative importance of the factors that affect the accuracy of QPE
with sensitivity experiments, and more work needs to be performed when applying these
results to the operational usage of weather radar.

5. Conclusions

In this study, disdrometer data collected from 11 sites in Beijing in 2017 are analyzed
to reveal the variability of DSD and to investigate its impact on radar QPE. The main
conclusions are summarized as follows:

DSD exhibits evidently different characteristics in urban, suburban, and mountain
areas of Beijing. Specifically, the average raindrop diameter is smaller in the urban area
compared to the suburban area. Additionally, the average rain rate and raindrop number
concentration are lower in mountain areas compared to both urban and suburban areas.

The convection/stratiform ratio is almost the same in urban and suburban areas,
indicating that the difference in DSD between urban and suburban areas is due to the
difference in DSD within the same precipitation types. In the urban area, both convection
and stratiform exhibit smaller average raindrop diameters compared to the suburban area.
This difference may be attributed to higher aerosol concentrations in the urban area.

The lower average rain rate and raindrop number concentration in mountain areas
is the combined effect of the convection/stratiform ratio and the DSD difference for the
same precipitation types. Convection occurs less frequently in mountain areas, and the
rain rate and raindrop number concentration are also smaller both for convection and
stratiform, resulting in the smaller average rain rate and raindrop number concentration in
mountain areas.

Among the three QPE estimators of R(ZH), R(Kdp), and R(Kdp, ZDR), R(Kdp, ZDR)
performs best, followed by R(Kdp), and R(ZH) performs worst. The R(Kdp) is more sensitive
to the representative parameters while R(ZH) and R(Kdp, ZDR) are more sensitive to the
observational error and systematic bias (i.e., calibration).

Our conclusions suggest that when performing QPE at the city scale using different
QPE estimators, special attention should be paid to different aspects to improve the accu-
racy of QPE. However, these results are based on DSD data and sensitivity experiments,
and it should be noted that this conclusion needs to be further confirmed by using po-
larimetric radar data in the future. In addition, there are also other factors that influence
the operational radar QPE, such as beam blockage by terrains, the undersampling of the
disdrometer, and the variation in DSD when raindrops are falling in the air (where the
radar samples them) and on the ground (where the disdrometer samples them). Moreover,
for other regions such as Southwest China where there are many mountains, how these
mountains affect the DSD variability is worth studying. All of these issues are crucial to
obtaining accurate QPE and will be further studied in future work.
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Abstract: In order to improve the understanding of the microphysical characteristics of raindrop size
distribution (DSD) under different rainfall rates (R) classes, and broaden the knowledge of the impact
of radar wavelengths and R classes on the QPE of dual-polarization radars in the Tianshan Mountains,
a typical arid area in China, we investigated the microphysical characteristics of DSD across R classes
and dual-polarimetric radar QPE relationships across radar wavelengths and R classes, based on the
DSD data from a PARSIVEL2 disdrometer at Zhaosu in the Tianshan Mountains during the summers
of 2020 and 2021. As the R class increased, the DSD became wider and flatter. The mean value of
the mass-weighted mean diameters (Dm) increased, while the mean value of logarithm normalized
intercept parameters (log10 Nw) decreased after increasing from C1 to C3, as the R class increased.
The largest contributions to R and the radar reflectivity factor from large raindrops (diameter > 3 mm)
accounted for approximately 50% and 97%, respectively, while 84% of the total raindrops were small
raindrops (diameter < 1 mm). Dual-polarization radars—horizontal polarization reflectivity (Zh),
differential reflectivity (Zdr), and specific differential phase (Kdp)—were retrieved based on the DSD
data using the T-matrix scattering method. The DSD-based polarimetric radar QPE relations of a
single-parameter (R(Zh), R(Kdp)), and double-parameters (R(Zh,Zdr), R(Kdp,Zdr)) on the S-, C-, and
X-bands were derived and evaluated. Overall, the performance of the R(Kdp) (R(Kdp,Zdr)) scheme
was better than that of R(Zh) (R(Zh,Zdr)) for the QPE in the three bands. Furthermore, we have
for the first time confirmed and quantified the performance differences in the QPE relationship of
dual-polarization radars under different schemes, radar wavelengths, and R classes in typical arid
areas of China. Therefore, selecting an appropriate dual-polarization radar band and QPE scheme for
different R classes is necessary to improve the QPE ability compared with an independent scheme
under all R classes.

Keywords: raindrop size distribution; dual-polarization radar; quantitative precipitation estimation;
rain rate class; Tianshan Mountains

1. Introduction

The microphysical characteristics of raindrop size distribution (DSD) are important
for understanding the dynamic processes of precipitation [1–3]. Furthermore, DSD has an
important application value in improving the parameterization scheme of microphysical
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processes in numerical weather prediction models [4–6] and in enhancing the ability to
estimate rainfall kinetic energy [7–9]. More importantly, DSD information is very helpful
for improving the ability of quantitative precipitation estimation (QPE), whether using
ground-based or spaceborne radars [10–12].

The microphysical characteristics of DSD vary with the climate region, terrain, rainfall
type, season, and weather system [13–20]. China is a vast country with significant differ-
ences in climatic characteristics among its different regions. Researchers have conducted
detailed surveys of DSD in the southern [21,22], eastern [23–26], northern [27–29], and
Tibetan Plateau [30,31] regions of China directly affected by the monsoon system and
obtained the characteristics of DSD in these regions. However, the research on Xinjiang,
which accounts for one-sixth of China’s total land area and is characterized by an arid
climate, is insufficient. Xinjiang is not directly affected by the monsoon system and has
an uneven distribution of precipitation [32]. Affected by the terrain, the Tianshan Moun-
tains in central Xinjiang, China, and their adjacent areas are rich in precipitation, while
the famous Taklimakan Desert and Gurbantunggut Desert form farther away from the
Tianshan Mountains [33,34]. In recent years, several studies have partially revealed the
characteristics of DSD on the Tianshan Mountains [35,36]. Several recent studies have
also shown significant differences in DSD in different seasons (spring, summer, and fall),
locations (western and central regions), and altitudes (foot and top stations) in the Tianshan
Mountains [37–39]. However, further in-depth research is needed on the microphysical
characteristics of DSD across the rainfall rate (R) classes in the Tianshan Mountains.

DSD information is of great significance for improving the accuracy of local ground-
based radar QPEs by providing accurate microphysical characteristics of raindrops [14,20,40].
The QPE of single-polarization radars has been revealed in many studies by establishing a
relationship between radar reflectivity factors and rain rates based on DSD data [41–48].
Single-polarization radar QPE relationships in the southern [22], eastern [25], northern [28],
and Tibetan Plateau [31] of China have been established based on local DSD information.
Similarly, based on the DSD data observed in the Tianshan Mountains, researchers have
established single-polarization radar QPE relationships for different seasons, rainfall types,
and altitudes [35–39]. However, the accuracy of the QPE for single-polarization radars
is lower than that for dual-polarization radars [49–52]. Therefore, in recent years, the
QPE relationships for dual-polarization radars have been established in different regions
of China and have shown significantly better QPE capabilities than single-polarization
radars [23,24,26–29,53,54]. More importantly, both the microphysical characteristics of
the DSD and the QPE of the dual-polarization radar are closely related to the rain rate
classes [17,18,28,55], and the QPE of the dual-polarization radar is very sensitive to the radar
wavelength [24,53]. However, the previous studies mentioned above have mostly focused
on the impact of one or two of the three factors, namely the R class, radar wavelength,
and QPE scheme, on the QPE of dual-polarization radars. There has been relatively little
comprehensive analysis of the impact of these three factors on the QPE of dual-polarization
radars, and similarly, there is still a gap in these knowledge in the Tianshan Mountains, a
typical arid area in China.

To reveal the microphysical characteristics of DSD under different rain rate classes
and to explore the effects of radar wavelengths and rain rate classes on the QPE of dual-
polarization radars in the Tianshan Mountains, we conducted this study using DSD data
from the Tianshan Mountains and dual-polarization radar variables based on the T-matrix
scattering method. The remainder of this paper is organized as follows: The data and
methodology are presented in Section 2. Section 3 presents the microphysical characteristics
of the DSD under different rain rate classes and the QPE of the dual-polarization radar
with different wavelengths in the Tianshan Mountains. Section 4 provides the summary
and conclusions of the study.

25



Remote Sens. 2023, 15, 2668

2. Data and Methodology

2.1. Study Area and Research Data

Tianshan Mountain is located in northwest China, as well as in Central Asia, and
is not directly affected by the monsoon system. Summer is the most important rainfall
period. In this study, the DSD measurements were collected at Zhaosu (1850.8 m ASL,
43.14◦N, 81.13◦E) over the Tianshan Mountains, China (Figure 1), during the 2020 and 2021
summer season, based on the second-generation OTT Particle Size Velocity (PARSIVEL2)
disdrometer [54]. The PARSIVEL2 disdrometer obtains DSD information by simultaneously
recording particle sizes (32 unequal intervals from 0.062 to 24.5 mm) and fall speeds
(32 unequal intervals from 0.05 to 20.8 m s−1) within a resolution of 1 min [56,57].

Figure 1. Location of Zhaosu (the black dot), with shading representing the topography (m) of the
Tianshan Mountains.

2.2. Data Quality Control

The DSD data collected by the PARSIVEL2 disdrometer were affected by many factors,
such as the measurement accuracy and environmental conditions. Therefore, it is necessary
to perform quality control before using DSD data for further analysis. In this study,
the first two particle size bins were not considered because of their low signal-to-noise
ratios [17,45]. Detected raindrops with very large diameters are likely to be generated
by overlapping raindrops rather than by actual independent raindrops [58]; therefore,
raindrops with a diameter of more than 8 mm were deleted. Furthermore, to reduce
marginal effects [57], strong wind, and splashing effects [59] when measuring raindrops
using a PARSIVEL2 disdrometer, the theoretical raindrop fall speed–diameter relation,
proposed by Atlas et al. [60] was used to constrain (within ±60%) the correlation between
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the raindrop fall speed and diameter during measurement, thereby eliminating unrealistic
raindrops [59,61]. In this process, the theoretical raindrop fall speed–diameter relation [60]
was adjusted by considering a correction factor (1.07) for air density adjustments related
to the terrain height of Zhaosu [54]. In addition, samples with raindrop numbers of
<10 or with rain rates of <0.1 mm h−1 were removed [14,62]. After data quality control,
14,609 DSD samples were used.

2.3. DSD and DSD-Based Polarimetric Radar QPE Relations

The DSD (N(Di), m−3 mm−1) for raindrop per unit volume per unit diameter interval
can be calculated according to Equation (1):

N(Di) =
32

∑
j=1

nij

Ae f f (Di) · Δt · V(Di) · ΔDi
(1)

where Di (mm) represents the equivalent spherical raindrop diameter of the ith size class;
nij is the number of drops within the ith size class and the ith velocity bin; Δt (s) represents
the sampling time resolution (60 s in this study); ΔDi (mm) is the diameter interval of
the ith size class; and Aeff (Di) (m2) is the effective sampling area calculated according to
Equation (2):

Ae f f (Di) = 180 × 10−6 · (30 − 0.5 · Di) (2)

V(Di) (m s−1) is the raindrop velocity at the ith size class [18,45,54,60], which can be
expressed as

V(Di) = (9.65 − 10.3 · exp(− 0.6 · Di)) · δ(h) (3)

where δ(h) represents the correction factor for air density adjustments (1.07), and h (m) is
the terrain height of Zhaosu.

The rain rate R (mm h−1), liquid water content LWC (g m−3), total number concentra-
tion of raindrops Nt (m−3), median volume diameter D0 (mm), radar reflectivity factor Z
(mm6 m−3), the normalized intercept parameter Nw (mm−1 m−3), and the mass-weighted
mean diameter Dm (mm) are expressed by Equations (4)–(10), respectively:

R =
6π

104 ·
32

∑
i=1

N(Di) · Di
3 · V(Di) · ΔDi (4)

LWC =
π

6000
·

32

∑
i=1

N(Di) · D3
i · ΔDi (5)

Nt =
32

∑
i=1

N(Di) · ΔDi (6)

D0

∑
i=1

N(D0) · D3
i · ΔDi =

32

∑
i=D0

N(D0) · D3
i · ΔDi (7)

Z =
32

∑
i=1

N(Di) · D6
i · ΔDi (8)

Nw =
44

π·ρw
·103·W

D4
m

(9)

Dm =
∑32

i=1 N(Di)·D4
i ·ΔDi

∑32
i=1 N(Di)·D3

i ·ΔDi
(10)

The gamma model describing DSD [13] is given by Equation (11).

N(D)= N0 · Dμ · exp(− Λ · D) (11)
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where N0 (mm−1-μ m−3), μ (−), and Λ (mm−1) represent the intercept parameter, the
shape factor, and the slope parameter of the gamma model, respectively [19]. These three
parameters were calculated using the truncated moment method [63,64] with the third–
fourth–sixth moments [13–15,18,45,54], where the nth order moment Mn (mmn m−3), N0,
μ, and Λ can be calculated according to the following Equation:

Mn =
∫ ∞

0
Dn · N(D) · dD (12)

G =
M3

4
M2

3 M6
(13)

N0 =
M3·∧μ+4

Γ(μ + 4)
(14)

μ =
11·G − 8 +

√
G·(G + 8)

2(1 − G)
(15)

Λ = (μ + 4) · M3

M4
(16)

DSD-based QPE relations of dual-polarization radars have been proven to be very
helpful in improving the accuracy of QPE [23,24,26–29,53,54], and these DSD-based QPE
relations are established by the dual-polarization radar variables: radar reflectivity at
horizontal or vertical polarization Zh,v (mm6 m−3), differential reflectivity Zdr (dB), and the
specific differential phase Kdp (◦ km−1), which can be calculated using the observed DSD
based on the method of T-matrix scattering [52,65–67] as follows:

Zh,v =

(
4 · λ4

π4 · |Kw|2
)
·
∫ Dmax

Dmin

∣∣ fhh,vv(D)
∣∣2 · N(D) · dD (17)

Zdr = 10 · log10

(
Zh
Zv

)
(18)

Kdp = 10−3 · 180
π

· λ · Re
{∫ Dmax

Dmin
[ fh(D)− fv(D)] · N(D) · dD

}
(19)

where λ (mm) and Kw (−) represent the radar wavelength (for the S-, C-, and X-band, the
values are 111.0 mm, 53.5 mm, and 33.3 mm, respectively), and the dielectric constant factor
of water (here is 0.9639), respectively; fhh,vv(D) and fh,v(D) represent the backscattering
amplitude and the forward scattering amplitude of a raindrop with horizontal and vertical
polarizations, respectively. In addition, the raindrops followed the axis–ratio relationship
proposed by Brandes [52].

The DSD-based QPE relationships, including R(Zh), R(Kdp), R(Zh,Zdr), and R(Kdp,Zdr) of
the dual-polarization radar, were derived for the S-, C-, and X-bands. The dual-polarization
radar QPE estimators are as follows:

R(Zh) = α · Zβ
h (20)

R(Kdp) = α · Kβ
dp (21)

R(Zh, Zdr) = α · Zβ
h · 10γ·Zdr (22)

R(Kdp, Zdr) = α · Kβ
dp · 10γ·Zdr (23)

where α, β, and γ are coefficients in the corresponding QPE estimator.
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2.4. Assessing the Accuracy of QPE Estimators

The R value calculated using Equation (4), containing DSD information, was used to
evaluate the performance of the QPE algorithms (Equations (20)–(23)) in the S-, C-, and
X-band dual-polarization radars at Zhaosu. The correlation coefficient (CC), root mean
square error (RMSE), and normalized mean absolute error (NMAE) were adopted for the
evaluation of the QPE algorithms in this study, and are defined as

CC =
∑n

i=1 (Ri − R) · (Re,i − Re)√
∑n

i=1 (Ri − R)
2 ·
√

∑n
i=1 (Re,i − Re)

2
(24)

RMSE =

√
1
n
· ∑n

i=1(Re,i − Ri)
2 (25)

NMAE =
1
n · ∑n

i=1|Re,i − Ri|
R

(26)

where n represents the number of samples; Ri and R are the individual and mean R
calculated from the DSD data, respectively; and Re,i and Re represent the individual and
mean R calculated from the QPE algorithms, respectively.

3. Results

3.1. DSD Characteristics under Different Rain Rate Classes

Many previous studies have revealed that the characteristics of DSD vary with rain
rates (R) [17,18,24,30,53]. To reveal the microphysical characteristics of DSD under different
rain rate classes, referring to previous classification standards [36,38], all the samples
were classified into six classes on the basis of R: C1: 0.1–0.5 mm h−1, C2: 0.5–1 mm h−1,
C3: 1–2 mm h−1, C4: 2–5 mm h−1, C5: 5–10 mm h−1, and C6: ≥10 mm h−1. The number of
samples for each class is listed in Table 1. The accumulated rain duration (red histogram)
and amount (blue line) for the six R classes in Zhaosu are shown in Figure 2. As the R
class increased, its contribution to the total rainfall duration decreased. Specifically, the
first two classes (C1 and C2) contributed the most to the total rain duration, accounting for
40.9% and 20.7%, respectively, whereas the last two classes (C5 and C6) contributed the
least to the total rain duration, contributing less than 7%. The largest contributor to the
total amount of rain was the fourth class (C4), followed by the last class (C6), accounting
for 27.4% and 23.2%, respectively.

Table 1. Several important DSD parameters for the six R classes.

Parameters
No. of

Samples
R

(mm h−1)
D0

(mm)
LWC

(g m−3)
Z

(dBZ)
Nt

(m−3)

C1 5970 0.26 0.90 0.02 14.67 188
C2 3030 0.72 1.00 0.05 20.66 222
C3 2563 1.43 1.13 0.09 25.04 237
C4 2109 3.07 1.34 0.17 30.25 249
C5 612 6.91 1.72 0.32 36.21 254
C6 325 16.85 2.30 0.66 43.03 260

The DSD variations for the different R classes in Zhaosu are shown in Figure 3. As the
R class increased, the raindrop spectrum widened, along with the increased concentrations
of large raindrops (diameter > 3 mm), medium-size raindrops (1 ≤ diameter ≤ 3 mm), and
small raindrops (diameter < 1 mm) [18,68], and reached the peak concentration at small
raindrops around 0.6 mm in diameter for all classes (color lines) and all samples (black
line). For small raindrops, the raindrop spectra of all the samples were between those
of C1 and C2, whereas the raindrop spectrum of medium-size raindrops for all samples
was similar to that of C3. For large raindrops, the raindrop spectra of all the samples
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were between C4 and C5. Box-and-whisker plots of the variations in the mass-weighted
mean diameter (Dm) and normalized intercept parameter (log10Nw) for the six R classes are
shown in Figure 4. The mean Dm value increased from 0.92 mm at C1 to 2.40 mm at C6
with an increasing R class, while the mean log10Nw value first increased and then decreased
with an increasing R class, reaching a maximum at C3 (3.63 mm−1 m−3) and a minimum at
C6 (3.27 mm−1 m−3). Furthermore, several other important DSD parameters, such as R,
median volume diameter (D0), liquid water content (LWC), radar reflectivity factor (Z), and
total number concentration of raindrops (Nt), for different R classes in Zhaosu are shown
in Table 1. Their mean values increased with an increasing R class.

Figure 2. Accumulated rain duration (red histogram) and rain amount (blue line) for the six R classes
in Zhaosu.

 
Figure 3. Mean DSD variations for different R classes (color lines) and all samples (black line) in Zhaosu.
The two vertical dashed lines on the left and right distinguish the raindrop spectrum of small and
medium-size raindrops, and the raindrop spectrum of medium-size and large raindrops, respectively.

The DSD was composed of raindrops of different sizes (large, medium, and small) and
their corresponding concentrations. Therefore, discussing the contribution of raindrops of
various sizes to the parameters is conducive to further understanding the DSD [37]. Figure 5
illustrates the contributions of small, medium-size, and large drops to R, Z, LWC, and Nt
in Zhaosu. Large raindrops contributed nearly half of R; small raindrops contributed less
than 14% to R; and medium-size raindrops contributed nearly 37% to R. The vast majority
of the contributions to Z were from large raindrops (over 96%), whereas the contribution of
small raindrops to Z was minimal (less than 0.2%). Most contributions to LWC came from
medium-size raindrops (>40%), followed by large raindrops (>33%). The majority of the
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contribution to Nt was from small raindrops (over 96%), whereas the contribution of large
raindrops to Nt was minimal (approximately 0.3%).

 
Figure 4. Variations of the Dm and the log10Nw in Zhaosu for the six R classes. The line and dot of
the box indicate the mean (black line) and median (black dot), respectively. The bottom (top) lines of
the box indicate the 25th (75th) percentiles. The bottom (top) lines of the vertical lines out of the box
indicate the 5th (95th) percentiles.

Figure 5. The contribution of small, medium, and large drops to R, Z, LWC, and Nt in Zhaosu.

3.2. Dual-Polarization Radar QPE Relations

Previous studies have revealed the advantages of using DSD information to
retrieve dual-polarization radar variables for QPE based on the T-matrix scattering
method [23,24,26–29,54]. The dual-polarization radar variables Zh, Zdr, and Kdp were
calculated using Equations (17)–(19). Figure 6 shows the scatterplots of Zdr versus Zh
and Kdp versus Zh and the power–law fitting algorithms derived for Zdr–Zh and Kdp–Zh
on the S-, C-, and X-bands. For these three-band Zdr–Zh relations, the coefficient values
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ranged from 3.975 × 10−5 to 9.237 × 10−5, and the exponent values varied between 2.595
and 2.842. Specifically, the Zdr–Zh relationship in the S-band (C-band) had the smallest
coefficient (index) value and the largest index (coefficient) value. For the Kdp–Zh relations
on the S-, C-, and X-bands, the coefficient values ranged from 3.466 × 10−13 (on the X-
band) to 9.261 × 10−13 (on the C-band), and the exponent values varied between 7.153
(on the C-band) and 7.541 (on the X-band). From the above results, it can be seen that the
Zdr–Zh relation corresponding to different radar bands had obvious differences, as did the
Kdp–Zh relation, which further illustrates the necessity of studying dual-polarization radar
variables and their relationships (including the QPE) at different radar bands.

Figure 6. Scatterplots of Zdr versus Zh, and the Zdr–Zh relations represented by black line and
equation on the (a) S-band, (c) C-band, and (e) X-band. Scatterplots of Kdp versus Zh, and the Kdp–Zh

relations represented by black line and equation on the (b) S-band, (d) C-band, and (f) X-band.
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The DSD-based dual-polarization radar QPE relationships (R(Zh), R(Kdp), R(Zh,Zdr),
and R(Kdp,Zdr)) for the S-, C-, and X-bands at Zhaosu were derived in this study and are
listed in Table 2. Differences were observed in the QPE estimators for the different bands.
Specifically, the two coefficients (α and β, as shown in Equation (20)) of the R(Zh) relation
on the S- and C-bands were very similar, with a small difference compared to them on
the X-band. For the R(Kdp) relations, the difference in the α coefficient was relatively large
(13.053 to 27.831), while the difference in the β coefficient (as shown in Equation (21))
was relatively small (0.639 to 0.668) on these three bands. For the R(Zh,Zdr) relations, the
differences in the α and γ coefficients were relatively large, while the difference in the β
coefficient (as shown in Equation (22)) was relatively small. The α coefficient (as shown
in Equation (23)) was 23.265 on the X-band, while the α coefficient on the C-band was
about twice that, and the α coefficient on the S-band was about three times that at the
R(Kdp,Zdr) relation.

Table 2. The DSD-based dual-polarization radar QPE relations for S-, C-, and X-band at Zhaosu.

Band R(Zh) R(Kdp) R(Zh,Zdr) R(Kdp,Zdr)

S R(Zh) = 0.096 Zh
0.468 R(Kdp) = 27.831 Kdp

0.639 R(Zh,Zdr) = 0.013
Zh

0.82410−0.352Zdr
R(Kdp,Zdr) = 75.719
Kdp

0.84510−0.172Zdr

C R(Zh) = 0.098 Zh
0.457 R(Kdp) = 16.914 Kdp

0.641 R(Zh,Zdr) = 0.010
Zh

0.90010−0.556Zdr
R(Kdp,Zdr) = 51.816
Kdp

0.89010−0.251Zdr

X R(Zh) = 0.070 Zh
0.497 R(Kdp) = 13.053 Kdp

0.668 R(Zh,Zdr) = 0.018
Zh

0.74410−0.294Zdr
R(Kdp,Zdr) = 23.265
Kdp

0.81610−0.147Zdr

It is important to evaluate the performance of various DSD-based dual-polarization
radar QPE relations in QPE applications. R calculated from DSD (Equation (4)) was used
to evaluate the QPE relations [27,28,53,54,69]. In this study, three evaluation indicators—
the correlation coefficient (CC), root mean square error (RMSE), and normalized mean
absolute error (NMAE)—were used to evaluate the different QPE relations for different
bands [27,53]. Figures 7–9 show the scatterplots of R computed from the QPE relations and
the DSD information on the S-, C-, and X-bands. The performances of the double-parameter
schemes (R(Zh, Zdr) and R(Kdp, Zdr)) were superior to those of the single-parameter schemes
(R(Zh) and R(Kdp)) for all bands, characterized by a larger CC and smaller RMSE and
NMAE. The performance of the R(Kdp) scheme is better than that of the R(Zh) scheme for
single-parameter schemes. Similarly, the R(Kdp, Zdr) scheme showed a relatively better
performance than the R(Zh, Zdr) scheme in the double-parameter schemes. Moreover,
both single-parameter schemes performed the best for the X-band, whereas both double-
parameter schemes performed the best for the C-band.

3.3. QPE Relations under Different Rain Rate Classes

R classes have an important impact on the performance of dual-polarization radar QPE
estimators [53,55,69] as well as radar bands [53,55,69]. To quantify the performance of QPE
estimators under different R classes and different radar bands, we used CC, RMSE, and
NMAE to evaluate the performance of these QPE estimators in detail. Before evaluating
the performance of the QPE estimators, we first provided the distribution and average
values of the dual-polarization radar variables required to establish these QPE estimators
in Table 2 for different R classes and different radar bands, as shown in Figure 10 and
Table 3. Zh increased with an increasing R class for all bands, and the mean Zh value in the
X-band was the largest for all R classes except C6, compared to that in the S- and X-bands.
The distribution of Zh was narrowest in C2 and widest in C6 for all the bands. Similar to
Zh, Zdr also increased with an increasing R class for all bands; however, in the first two R
classes (C1 and C2), Zdr was largest in the X-band, whereas in the middle two R classes
(C3 and C4), Zdr was largest in the C-band, and in the last two R classes (C5 and C6), Zdr
was largest in the S-band. The distribution of Zdr was narrower in the first three R classes
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and widened in the last three R classes, particularly in the last R class (C6), where Zdr had
the widest distribution. Interestingly, during the process of increasing Kdp as the R class
increased, the mean Kdp value of the next R class was about three times that of the previous
R class for all bands (for example, 11.3 × 10−3 ◦ km−1 in C3 and 32.8 × 10−3 ◦ km−1 in C4
for S-band). The mean Kdp value in the C-band was about twice that in the S-band, and
the mean Kdp value in the X-band was about three times that in the S-band for each R class
(for example, 11.3 × 10−3 ◦ km−1 in the S-band, 24.2 × 10−3 ◦ km−1 in the C-band, and
39.8 × 10−3 ◦ km−1 in the X-band for C3).

 

Figure 7. Scatterplot of R calculated from (a) R(Zh), (b) R(Kdp), (c) R(Zh,Zdr), and (d) R(Kdp,Zdr)
relations versus the R computed from DSD for S-band in Zhaosu.
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Figure 8. Scatterplot of R calculated from (a) R(Zh), (b) R(Kdp), (c) R(Zh,Zdr), and (d) R(Kdp,Zdr)
relations versus the R computed from DSD for C-band in Zhaosu.

Table 3. The mean of Zh, Zdr, and Kdp on the S-, C-, and X-bands for the six R classes. Red font
indicates the maximum value at the same R class.

Band
Zh (dBZ) Zdr (10−1 dB) Kdp (10−3 km−1)

C1 C2 C3 C4 C5 C6 C1 C2 C3 C4 C5 C6 C1 C2 C3 C4 C5 C6

S 15.82 21.73 26.08 31.27 37.47 44.69 10.47 10.71 11.05 11.71 12.93 15.17 1.4 4.5 11.3 32.8 110.1 426.7
C 15.93 21.89 26.31 31.64 38.03 45.51 10.48 10.72 11.09 11.79 12.90 14.71 2.9 9.5 24.2 71.5 241.7 933.6
X 16.09 22.10 26.58 31.94 38.18 45.22 10.49 10.73 11.07 11.70 12.75 14.69 4.7 15.5 39.8 116.2 379.9 1394.0
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Figure 9. Scatterplot of R calculated from (a) R(Zh), (b) R(Kdp), (c) R(Zh,Zdr), and (d) R(Kdp,Zdr)
relations versus the R computed from DSD for X-band in Zhaosu.

Figure 11 shows the CC, RMSE, and NMAE of R estimated from the dual-polarization
radar QPE estimators against R calculated from the DSD under different R classes (C1–C6)
and radar bands (the S-, C-, and X-bands). The performances of the four schemes for these
three bands differed under different R classes. For the S-band radar, the R(Zh) estimator
had the worst performance, characterized by a relatively lower CC and higher RMSE
and NMAE for all R classes, followed by the R(Kdp) estimator. The R(Kdp,Zdr) estimator
performed the best (highest CC and lowest RMSE and NMAE) for all R classes. The RMSE
of all the estimators increased with an increasing R class, whereas the CC and NMAE did
not monotonically increase or decrease during this process (Figure 11a–c). For the C-band
radar, similar to the S-band radar, the performance of the R(Zh) estimator remained the
worst, followed by that of the R(Kdp) estimator for all R classes. However, unlike in the
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S-band radar, the performance of the R(Kdp,Zdr) estimator was not always the best for all
the R classes in the C-band radar. Specifically, when the R class was between C1 and C4,
the R(Zh,Zdr) estimator was slightly superior to the R(Kdp,Zdr) estimator, with a higher
CC and lower RMSE and NMAE; however, the opposite was true when the R class was
C5 and C6 (Figure 11d–f). For the X-band radar, similar to the S-band radar, the R(Zh)
estimator exhibited the worst performance, whereas the R(Kdp,Zdr) estimator exhibited
the best performance for all the R classes. However, the gap in performance between the
R(Kdp) and R(Zh,Zdr) estimators for X-band radars narrowed compared to the S- and C-band
radars, as reflected in the narrowing of the gap between the three evaluation parameters
(CC, RMSE, and NMAE) (Figure 11d–f).

Figure 10. Variations of (a) Zh, (b) Zdr, and (c) Kdp on the S- (red), C- (green), and X-bands (purple)
for the six R classes. The line of the box indicates the mean. The bottom (top) lines of the box indicate
the 25th (75th) percentiles. The bottom (top) lines of the vertical lines out of the box indicate the 5th
(95th) percentiles.

For the same type of QPE estimator and the same R class, the performances of the
estimators in the different bands were different. Taking the R(Zh,Zdr) estimator at C3 as
an example, for the R(Zh,Zdr) estimator at C3, the CC, RMSE, and NMAE were 0.669,
0.318 mm h−1, and 0.73 mm h−1 in the C-band, respectively, while the CC, RMSE, and
NMAE were 0.554 (0.471), 0.417 (0.501) mm h−1, and 0.227 (0.258) mm h−1 in the S-band
(X-band), respectively. Therefore, among the three bands, the C-band estimator performed
the best, whereas the X-band estimator performed the worst for the R(Zh,Zdr) estimator at
C3. Similarly, taking the R(Zh) estimator at C6 as an example again, for the R(Zh) estimator
at C6, the CC, RMSE, and NMAE were 0.689, 6.032 mm h−1, and 0.295 mm h−1 in the
X-band, respectively, while the CC, RMSE, and NMAE were 0.634 (0.646), 6.749 (6.651) mm
h−1, and 0.332 (0.329) mm h−1 in the S-band (X-band), respectively. Therefore, among the
three bands, the X-band estimator performed best, whereas the S-band estimator performed
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worst for the R(Zh) estimator at C6. Overall, the performances of the double-parameter
schemes were significantly better than those of the single-parameter schemes for all bands
and R classes. Furthermore, the performance of the dual-parameter estimators in the C-
band was better than that in the S- and X-bands for all R classes, and the performance of the
R(Zh,Zdr) estimator was better compared to the R(Kdp,Zdr) estimator at lower R classes (C1
to C4, R less than 5 mm h−1), while the performance of the R(Kdp,Zdr) estimator was better
compared to the R(Zh,Zdr) estimator at higher rainfall rates (C5 to C6, R greater than 5 mm
h−1) for the C-band. It is worth noting that previous studies have shown the importance
of selecting suitable estimators for actual dual-polarization radar QPEs, and suitable
estimators need to be provided for different regions and different band radars [55,69–71].
For a dual-polarization radar QPE estimator in the Tianshan Mountains, we plan to conduct
the relevant research based on dual-polarization radar observational data in the future.

Figure 11. The (a,d,g) CC, (b,e,h) RMSE, and (c,f,i) NMAE of R estimated from the dual-polarization
radar QPE estimators against R calculated from the DSD under different R classes and different radar
bands, (a–c) for S-band, (d–f) for C-band, and (g–i) for X-band, respectively.

4. Summary and Conclusions

To reveal the microphysical characteristics of the raindrop size distribution (DSD)
across rainfall rate (R) classes, and more importantly, to quantify the effects of radar wave-
lengths, QPE estimators, and R classes on the QPE of dual polarization radars in typical
arid areas of China, DSD data from a PARSIVEL2 disdrometer at Zhaosu in the Tianshan
Mountains during summer 2020 and 2021 were used to investigate the microphysical
characteristics of DSD for six rain rate (R) classes (C1: 0.1–0.5 mm h−1, C2: 0.5–1 mm
h−1, C3: 1–2 mm h−1, C4: 2–5 mm h−1, C5: 5–10 mm h−1, and C6: ≥10 mm h−1) and
DSD-based polarimetric radar quantitative precipitation estimation (QPE) relations on the
S-, C-, and X-bands for different R classes. The analysis revealed that the first two R classes
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(C1 and C2) contributed the most to the total rain duration, which accounted for 40.9% and
20.7%, respectively, and the largest contributors to the total rain amount were the fourth
class (C4) and the last class (C6), which accounted for 27.4% and 23.2%, respectively. The
raindrop spectrum widened, characterized by an increase in the concentrations of large
raindrops (diameter > 3 mm), medium-size raindrops (1 ≤ diameter ≤ 3 mm), and small
raindrops (diameter < 1 mm) with an increasing R class. The mean Dm value increased from
0.92 mm in C1 to 2.40 mm in C6, while the mean logarithm of log10Nw value decreased
after increasing from C1 to C3 with an increasing R class. In addition, the mean values of R,
D0, LWC, Z, and Nt increased with the R class. For the entire dataset, large raindrops had
the largest contribution to R and Z, accounting for 50% and 97% of the total contribution,
respectively, compared with small and medium-size raindrops, whereas small raindrops
had the largest contribution to Nt, accounting for more than 84% of the total contribution.

Dual-polarization radar parameters including Zh, Zdr, and Kdp were retrieved based
on the DSD data using the T-matrix scattering method. The Zdr-Zh and Kdp-Zh relations
were established in a power–law fitting form on the S-, C-, and X-bands. The Zdr-Zh relation
corresponding to different radar bands had obvious differences as well as the Kdp-Zh
relation. The DSD-based dual-polarization radar QPE estimators (R(Zh), R(Kdp), R(Zh,Zdr),
and R(Kdp,Zdr)) for the S-, C-, and X-bands were derived. For the R(Zh) relations, the two
coefficients (α and β) on the S- and C-bands were very similar, with a small difference
compared to them on the X-band. For the R(Kdp) relations, the difference in the α coefficient
was relatively large (13.053 to 27.831), while the difference in the β coefficient was relatively
small (0.639 to 0.668) on these three bands. For the R(Zh,Zdr) relations, the differences in
the α and γ coefficients were relatively large, while the difference in the β coefficient was
relatively small. For the R(Kdp,Zdr) relations, the α coefficient was 23.265 on the X-band,
while the α coefficient on the C-band was about twice that, and the α coefficient on the
S-band was about three times that. The CC, RMSE, and NMAE of R estimated from the
dual-polarization radar QPE estimators against R calculated from the DSD were used to
evaluate the performance of these dual-polarization radar QPE estimators. The result
revealed that the performance of double-parameter estimators (R(Zh,Zdr) and R(Kdp,Zdr))
was superior to that of single-parameter estimators (R(Zh) and R(Kdp)), and the performance
of the R(Kdp) (R(Kdp,Zdr)) estimator was superior to that of the R(Zh) (R(Zh,Zdr)) estimator
for all the bands. Overall, the single-parameter estimator performed the best for the X-band,
whereas the double-parameter estimator performed the best for the C-band.

Furthermore, the distribution and mean values of the dual-polarization radar vari-
ables establishing these QPE estimators across R classes and radar wavelengths were
determined, and the performance of these four types of estimators (R(Zh), R(Kdp), R(Zh,Zdr),
and R(Kdp,Zdr)) for the three bands (S-, C-, and X-bands) showed differences across the
R classes. Generally, for all the R classes, the dual-parameter estimators had better per-
formances in the C-band than the other two bands, and the performance of the R(Zh,Zdr)
(R(Kdp,Zdr)) estimator was better compared to the R(Kdp,Zdr) (R(Zh,Zdr)) estimator at lower
(higher) R classes for the C-band. Our conclusion emphasizes that when conducting dual-
polarization radar QPE applications, it is necessary to consider both the appropriate radar
wavelength and the type of estimator, as well as the impact of R classes on the accuracy of
QPE. It should be noted that although this study reported promising findings, they need to
be further confirmed using dual-polarization radar observations in the future.
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Abstract: A uniformity index for the axis ratios (Uar) derived from dual polarization weather radar
data is proposed for raindrop area identification and analysis. The derivation of this new parameter is
based on radar scattering simulations and assumptions. Uar is between 0 and 1 and can be calculated
from the differential reflectivity (ZDR) and the copolar correlation coefficient (ρhv), which reflects
the uniformity of the axis ratio (r) of the particle group. For raindrops, Uar is close to 1 under
ideal conditions, but is clearly different from that of ice particles whose value is close to 0. Studies
conducted during two convective weather events observed by X-band and S-band radar are presented
to show the Uar features. In convective areas, high Uar presents a U-shaped vertical structure. One
branch corresponds to the ZDR column, while the other branch is located at the rear of the convective
cloud zone and is lower in altitude, representing the process of ice particles melting into raindrops
and then being transported upward by a strong updraft. In stratiform cloud areas, a more than 95%
overall identification ratio is obtained when the threshold of Uar is set to 0.2~0.3 for discriminating
rain layers.

Keywords: dual polarization weather radar; axis ratio; rain area identification

1. Introduction

The distribution and variation characteristics of the phase state (liquid, ice, mixed
phase, etc.) of hydrometeors in clouds are extremely important issues in precipitation
physics. Dual polarization weather radar obtains polarimetric variables, such as the hori-
zontal/vertical reflectivity factor (ZH/ZV), differential reflectivity (ZDR), copolar correlation
coefficient (ρhv) and differential propagation phase shift (KDP), which are closely related to
the microphysical properties of hydrometeors in clouds [1–3]. For example, large raindrops
show a flat shape and a corresponding high ZDR value when under air resistance [4]. This
is clearly different from the various shapes of tumbling hail and graupel, which make it
possible to roughly distinguish liquid and solid particles in the high ZH region [5]. Fur-
thermore, lower ZH appears in snow and ice crystals due to the lower dielectric constant,
while lower ρhv appears in mixed phase particles and sometimes in ice phase particles
due to the variation of dielectric constant, shape and orientation [3,6]. Since different
kinds of particles are not easily and directly identified due to the overlapping of the range
of polarization parameters, a hydrometeor classification algorithm (HCA) based on the
fuzzy logic algorithm [6] is the most feasible solution to obtain a general qualitative result.
This kind of algorithm has been developed and improved over the past 20 years [7–16].
However, the HCA still has limitations in terms of subjectivity and experience [16]. Thus,
its results cannot be regarded as absolutely accurate or the only microphysical analysis
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results, nor can the HCA completely replace the analysis of the original observed variables
and other analysis methods. In particular, an additional input temperature profile is needed
in most of the methods above, which means that the original polarimetric observables still
cannot completely identify the hydrometeor phase independently.

Another principle algorithm that can distinguish the phase state of hydrometeor
particles in clouds involves identifying the melting layer (ML) so that the part below the
ML is identified as the rain area. In stratiform mixed phase clouds, the ML exhibits a ZH
peak in the vertical direction [17,18], known as the bright band (BB) in radar meteorology.
There is also a ZDR peak and a valley of ρhv in the ML. These dual polarization weather
radar signals are closely related to changes in the dielectric constant, particle density,
size and shape during the falling of ice phase particles [3]. Weather radar mostly adopts
the polar coordinate volume scanning mode, where automatic ML detection algorithms
are mainly built based on radar image features, including the gradient and extreme of
ZH in a vertical profile of reflectivity (VPR) [18–20], the boundary of high ρhv [21], the
thresholds or gradient of ZH, ZDR and ρhv [22–25], and the matching degree with the
ideal model [26]. Automatic ML detection results can reduce contamination in radar
quantitative precipitation estimation (QPE). Furthermore, ML is helpful for studying cloud
and precipitation physical processes such as the ML sinking due to the riming or coalescence
of snow [3,27,28]. However, such ML features mainly exist in large-scale stable stratiform
precipitation and are difficult to be identified in convective clouds with severe temporal and
spatial variability. Hence, the current algorithms above are not easily applied to the study
of the melting or freezing processes within convective clouds. In addition, the accuracy
of these algorithms mostly also depends on the additional input temperature profile, and
it is usually necessary to summarize the thresholds of multiple variables. Therefore, it is
still meaningful to find a more accurate and reliable method or some variables based on
weather radar data to identify the hydrometeor phase.

In this study, a new parameter involving the microphysical characteristics of hydrom-
eteor particles is proposed. The new parameter is derived from existing polarimetric radar
observables and is found to reflect the uniformity of precipitation particles’ axial ratio.
By this parameter alone, a simpler method for identifying raindrop areas is presented by
setting a threshold. The derivation and demonstration of the new parameter will aim at the
S-band (wavelength 10 cm) and X-band (wavelength 3.2 cm), which are commonly used in
weather radars. The S-band is the most common band of operational weather radar, which
has little rain attenuation and a long detection distance. X-band radar often has a smaller
antenna and is easy to deploy in mobile platforms, and it is sensitive to weak precipitation.

The process of establishing the new parameter is described in Section 2. Section 3
shows and discusses the typical vertical structure characteristics of the new parameter
in terms of radial height indicator (RHI) data from X-band radar and the performance
and simple application of the new parameter in S-band weather radar volume scan data.
The limitations of the new parameter are discussed in Section 4. A summary is given in
Section 5.

2. Axis Ratio Uniformity Index

2.1. Approximate Relationship between the Reflectivity Ratio, Dielectric Properties and Axial Ratio

In this section, an approximate relationship between the reflectivity ratio, dielectric
properties and axial ratio is proposed for the derivation of the new parameter presented in
Section 2.3. When the scattering amplitude of ellipsoidal particles is calculated using the
Rayleigh–Gans formula [1], both the axis ratio of the particle (r) and the dielectric constant
(ε) exist in a nonlinear form, and these two parameters are not easily separated to form
independent product terms. In previous studies, dielectric parameters were often regarded
as fixed values according to the phase state of the particles, and then the approximate
relationship of other parameters was discussed. For example, KDP can be approximated as
the product of the rain content, mass-weighted axial ratio of the raindrop, and a constant
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term containing the given ε [29]. However, for mixed phase clouds, the phase state of
particles needs to be considered as a variable since they are not fully known in advance.

The dielectric property parameters of particles are one of the key parameters that
determine the scattering ability of particles. These parameters are usually considered to be
related to the material of the object, incident wavelength and ambient temperature. There
are two equivalent descriptions of dielectric properties: the complex dielectric constant
ε = εr + iεi and the complex refractive index m = mr + imi, where εr and εi denote the real
and imaginary parts of ε, mr and mi denote the real and imaginary parts of m, respectively,
and i2 = −1. The conversion relationships between ε and m are as follows:

m2
r = 0.5

(√
ε2

r + ε2
i + εr

)
(1)

m2
i = 0.5

(√
ε2

r + ε2
i − εr

)
(2)

For different hydrometeor phase states, the Ray scheme [30] is used to calculate the
dielectric parameters ε of pure water and pure ice. For an ice water mixture and spongy ice
(mixture of ice and air), the overall dielectric constant is calculated according to the mass
fraction method, and the Debye scheme [31] is selected as follows:

ε(mix) − 1
ε(mix) + 2

= f ·
(

ε(1) − 1
ε(1) + 2

)
+ (1 − f )·

(
ε(2) − 1
ε(2) + 2

)
(3)

where ε(1) and ε(2) are the complex dielectric constants of the two components, ε(mix) is the
overall complex dielectric constant of the mixture, and f is the volume fraction of the first
component. The comparison of different schemes [31] shows that although the scheme of
Equation (3) is not the most accurate scheme, the difference is very small compared with
the best Maxwell–Garnett scheme, and the constraint conditions are the least accurate.

Some typical phases of hydrometeor particles in clouds and their corresponding di-
electric properties are listed to find a simplified representation. The dielectric properties of
pure water (clouds and raindrops) and pure ice (solid graupel and hail) are set according to
the corresponding material. Mixtures of ice and water with f = 0.5 are used to characterize
particles that are melting or freezing. Mixtures of ice and air (aggregated snow and ice
crystals) with f = 0.1 and 0.5 are used to characterize spongy ice particles. For pure water,
ambient temperatures of 0, 10, and 20 ◦C are selected to reflect the effect of temperature
change on the dielectric properties. Since the dielectric properties of ice vary little with tem-
perature, pure ice and other mixtures are set to 0 ◦C. Another problem is that εr and εi may
vary differently with temperature, which leads to two variables of comparable magnitudes
that need to be discussed. Note that mr is clearly larger than mi (Equations (1) and (2));
thus, only mr is taken as a dielectric characteristic parameter in the following attempts to
characterize different phases.

Figure 1a gives mr at different phases and temperatures. The mr of water increases
slightly with temperature in the X-band, while in the S-band, it decreases slightly or can be
considered as undergoing little change. However, when water transitions to an ice/water
mixture or ice, mr decreases, which generally has both nonlinear and nonmonotonic charac-
teristics that are not easily used to form a simple model. However, if the reciprocal of mr is
taken, it can be found that the mr

−1 of spongy ice, pure ice, an ice/water mixture and pure
water decrease somewhat linearly (Figure 1b). The different temperatures have little effect
on mr

−1 at this time. Therefore, mr
−1 can be used as an available parameter to characterize

the dielectric properties of the different phases.
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Figure 1. Dielectric property parameters: (a) mr and (b) mr
−1 of hydrometeors at different phases

and temperatures.

The reflectivity variables are calculated using the T-matrix method [32]. For raindrops,
the relevant theoretical calculation schemes of reflectivity variables [1] are as follows:

Zh,v =
4λ4

π4|Kw|2
Dmax∫

Dmin

∣∣Shh,vv(D)
∣∣2N(D)dD (4)

ZH,V = 10 log10 Zh,v (5)

Zdr =
Zh
Zv

(6)

ZDR = 10 log10 Zdr = ZH − ZV (7)

where Zh (or Zv), with lowercase subscripts, have linear units (mm6/m3), ZH (or ZV), with
uppercase subscripts, are in log units (dBZ), and H or V represent horizontal or vertical
polarization, respectively. ZDR is in log units (dB). Zdr is the dimensionless reflectivity
ratio. Kw is associated with the dielectric property (Kw = (ε − 1)/(ε + 2)). λ (unit: m) is the
wavelength of the radar. Shh,vv is the backscattering amplitude of a single hydrometeor
particle in a horizontal or vertical channel. D is the equivalent spherical diameter of a
particle, and N(D) is the particle number concentration density. Dmin and Dmax are the
lower and upper limits of the drop size distribution, respectively.

A common problem in the simulation of particle scattering properties is that there
are many dimensions that can be discussed, such as phase, shape, axis ratio and size
distribution. Here, an individual particle is first discussed, trying to find some available
laws that are less affected by particle size. To avoid confusion with the Zdr of the particle
group, the reflectivity ratio of a single particle is represented by the symbol ηdr. Taking an
ellipsoidal particle with r = 2 as an example, the effect of different phases on ηdr is analyzed
(Figure 2). Note that r here is defined as the ratio of the horizontal scale to the vertical scale
of the particle relative to the polarization direction of the radar beam, which is contrary to
the definition of the raindrop axis ratio used in previous studies [33–36]. Figure 2 shows that
ηdr increases as the phase of the particles becomes closer to pure water. For D greater than
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approximately 5 mm (in the S-band) and 2.5 mm (in the X-band), the ηdr of the pure water
particle shows large oscillations due to the effect of Mie scattering. For the mixed phase, ηdr
increases slightly with D. However, the general rule is still that the phase corresponding
to mr

−1 can amplify the value of ηdr. Therefore, we can use this relationship between the
phase and ηdr of a single particle as an available approximation and the Mie scattering
effect caused by the change in D as a potential error factor leading to the inaccuracy of this
approximation. For example, based on this approximation, raindrops with a particle size
greater than 6 mm in the S-band will introduce uncertainty, while particles of 3 to 4 mm
in the X-band will lead to overestimation of the axial ratio. Considering that the actual
radar detection variable is an integral of a group of particles, the above error factors will
not always dominate.

Figure 2. Variation of ηdr with the spherical equivalent diameter D for a single ellipsoid water particle
with an axial ratio r = 2 under different phase conditions. (a): S-band, (b): X-band. ηdr represents the
Zdr of a single particle.

Then, if there is an available relationship with ηdr, phase and r can be discussed by
ignoring the effect of D on ηdr, provided that the r is fixed, and D is fixed to 1 mm in the
simulations. Figure 3 shows that the contribution of r also amplifies ηdr. However, this
is not easily applied since ηdr changes along both r and phase. Hence, an approximate
significant linear relationship is proposed here, taking X = mr

−1 as an independent variable
and Y = (ηdr

0.5)/(r − 1) as a dependent variable to form the linear regression Y = a1X + a0
(Figure 4).

 

Figure 3. Variation of ηdr with mr
−1 for a single ellipsoidal water particle with different axial ratios

(colors of the lines) when D = 1 mm. (a) S-band, (b) X-band.
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Figure 4. Linear approximation between mr, ηdr and r of a single ellipsoidal particle. (R2 is the
goodness of fit, and P is the significance of the linear fit. (a) S-band, (b) X-band.

According to the slope a1 and intercept a0 obtained by the linear fit shown in Figure 4,
a new particle phase parameter E is defined instead of mr to characterize the phase state:

E = a1/mr + a0 (8)

Furthermore, for a single ellipsoidal particle, a simple relationship between ηdr, E and
r can be obtained, as shown in Equation (9):

√
ηdr = E·(r − 1) + r (9)

Three points also need to be noted:
(1) The approximate linear relationship in Figure 4 is not the most accurate approxima-

tion. If r is logarithmic, an approximation with less error can be constructed. However, the
approximate linear relationship shown in Figure 4 and Equation (9) is now more readily
available for deriving the new index presented below. Therefore, Equation (9) is still used.

(2) The process of eliminating E will be shown in Section 2.3; thus, the values of E, a1,
and a0 in Equation (8) are no longer discussed in the following sections.

(3) The effects of radar scanning elevation, particle orientation and nonellipsoidal
shape are not considered here. Therefore, r should be considered as the flattening or
narrowing of the particle in the horizontal and vertical polarization directions as detected
by the radar.

2.2. Approximate Relationship between ρhv and Reflectivity

In this section, an approximate relationship between ρhv and the reflectivity variables
is proposed for the derivation of the new parameter presented in Section 2.3. According to
the principles involved in dual polarization radar detection, ρhv itself reflects the uniformity
of the particle shape in the detection volume, but it is also affected by the radar observation
system and noise [37,38]. Referring to the basic definition of ρhv, the ideal ρhv formula [3] is
shown in Equation (10):

ρ
(Ideal)
hv =

〈S∗
hhSvv〉√

〈|Shh|2〉〈|Svv|2〉
(10)

where <...> represents the volumetric average. The Shh,vv values are complex, and the
molecular component included in Equation (10) requires conjugate multiplication, which
makes it difficult to establish numerical connections with known parameters. For this
reason, an approximate ρhv is proposed here as Equation (11):

ρ
(Approx)
hv =

∑
(√

bh·
√

bv
)

√
∑ bh·∑ bv

(11)
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where bh and bv reflect the contribution of a single particle to Zh and Zv, respectively, as
follows:

∑ bh = Zh, ∑ bv = Zv (12)

In this way, the relationship between ρhv and the reflectivity of a single particle is estab-
lished.

To verify the hypothetical approximation of Equation (11), a particle size distribution
is necessary since ρhv is based on a particle group and is calculated by an integral or
volumetric average. The range of the axial ratio and size distribution of ice particles may be
too large and random, which is not easily resolved in a representative enumeration study;
thus, a simpler raindrop size distribution (RSD) model is taken. By enumerating some
typical RSDs, the difference between the ideal and approximate ρhv in different cases can
be compared. A common RSD model can be expressed by a gamma distribution with three
parameters [1] as follows:

N(D) = NT
(3.67 + μ)μ+1

Γ(μ + 1)D0

(
D
D0

)μ

e[−(3.67+μ) D
D0

] (13)

where NT is the number concentration of particles, D0 is the spherical equivalent volume
median diameter, and μ is the shape parameter of the RSD. When considering the “shape
size” (D with r) model of raindrops, since the trends of D with r are not much different in
previous models using fixed parameters [33,35,36], the scheme presented in [36] is taken as
a typical case. Another key issue is the setting of Dmax. In common rainfall, raindrops larger
than 6 mm are rare, but in severe convective rainfall, large raindrops of approximately
10 mm are often observed. Choosing a different Dmax may result in a large difference in
the variables after integration according to RSD, thus Dmax values of 6 and 10 mm are both
taken to represent common and typical severe rainfall cases, respectively. D is from 0.1 to
Dmax with a 0.1 mm interval.

When enumerating different sets of RSD parameters, NT is not enumerated since ρhv
does not involve the absolute number of particles. D0 starts from 0.1 mm with a 0.1 interval,
and its upper limit is determined according to the constraint relation Dmax/D0 ≥ 2.5 [39] to
limit the truncation error. μ is from −0.8 to 16 with a 0.2 interval to represent exponential
shape (μ ≤ 0) and single peak shape (larger μ) distributions. By the combination of different
Dmax, D0 and μ, RSD parameters in wide value ranges are enumerated to cover possible
real conditions of raindrops.

The difference between the approximate ρhv and the ideal ρhv is evaluated by common
statistics, including the correlation coefficient (R), mean absolute error (MAE) and mean
relative error (MRE, see Appendix A for definitions). The results are shown in Figure 5.
For general rainfall in the S-band (Figure 5a), the approximate ρhv can be considered to be
consistent with the ideal ρhv. In other cases, the approximate ρh is larger than the ideal ρh,
but the deviation is generally limited. The largest deviation appears in the case of severe
rainfall in the X-band (Figure 5b), but the MRE is only 0.13%. Therefore, the approximate
ρhv in Equation (11) is considered basically consistent with the ideal ρhv for rainfall cases.
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Figure 5. Relationships between approximate ρhv in this study and ideal ρhv in raindrops. (The
values of D0 are from 0.1 mm to Dmax in 0.1 mm intervals. The values of μ range from −0.8 to 16 in
intervals of 0.2. R is the correlation coefficient between the approximate ρhv and ideal ρhv enumerated
samples, and P is the significance of R. MAE is the mean absolute error, and MRE is the mean relative
error. See Appendix A). (a) S-band and Dmax = 6 mm, (b) X-band and Dmax = 6 mm, (c) S-band and
Dmax = 10 mm, (d) X-band and Dmax = 10 mm.

2.3. Construction of the New Parameter

In this section, the derivation of the new parameter is proposed based on the approxi-
mations obtained in the previous two sections. First, according to the provisions of bh and
bv (Equation (12)), Equation (9) can be transformed into Equations (14) and (15):

√
bh√
bv

= E·(r − 1) + r (14)

√
bh = (E·(r − 1) + r)·

√
bv (15)

The above still applies to a single particle. When considering an integrated particle
group, a new weighted average axial ratio is defined as Equation (16):

r = ∑(bv·r)
∑ bv

(16)

The r here is actually the “vertical reflectivity weighted average axial ratio” and can be
considered to reflect the overall average axial ratio of the particle group. Then, combining
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Equations (9) and (14) and the definition mode of Equation (16), r2 is further defined as
follows:

r2 =
∑
(
bv·r2)

∑ bv
(17)

Then, the Zdr of a particle group can be written as a relation of E, r and r2 as Equation (18):

Zdr =
∑ bh

∑ bv
(18)

=
∑
[
bv·(E·r − E + r)2

]
∑ bv

(19)

≈ (E + 1)2·r2 − 2E·(E + 1)·r + E2 (20)

The E here is eventually moved outside the summation sign from Equations (19) to (20),
where it represents the general phase of a particle group (which may be a mixture) and
ignores the differences caused by the different phases of each particle. Furthermore, com-
bining Equations (11), (14) and (18), Zdr and ρhv can be written as the relation between E
and r, as shown in Equation (19):

ρhv

√
Zdr =

∑[bv·(E·r − E + r)]
∑ bv

(21)

≈ E·r − E + r (22)

Thus far, there are two radar variables (Zdr and ρhv) that are used, while there are
three unknowns: E, r and r2. Although absolute quantities such as total concentration
and water content are avoided, there is still no way to solve all unknowns. To this end, a
solution is proposed here that eliminates E by a combination of Zdr and ρhv to finally obtain
a relationship between r and r2:

(
ρhv

√
Zdr − 1

)2
Zdr − 2ρhv·

√
Zdr + 1

=
(E + 1)2·(r − 1)2

(E + 1)2·(r − 1)2
(23)

=
(r − 1)2

(r − 1)2
(24)

Note that Equation (24) can reflect the uniformity of r relative to 1 for a particle group.
For example, the shape and orientation of ice particles may differ greatly, resulting in a
large denominator and small molecule component in Equation (24), which eventually leads
to the value of Equation (24) being close to 0. However, for raindrops, r is greater than 1
for most particles. This results in a value of Equation (24) between 0 and 1 and close to
1. In addition, the elimination of E between Equations (23) and (24) is equivalent to the
elimination of the impact of phase on amplifying ηdr or Zdr. Finally, only one descriptive
quantity for the axial ratio distribution uniformity of the particle group is obtained, and it
is named the “axis ratio uniformity index” (Uar):

Uar =

(
ρhv

√
Zdr − 1

)2
Zdr − 2ρhv·

√
Zdr + 1

(25)

where the dimensionless Zdr can be transformed by Zdr = 10ZDR, and ZDR (in dB) is observed
by radar. Therefore, Uar is a variable that can be calculated from radar measurements ZDR
and ρhv.

The numerical distribution of Uar is shown in Figure 6, which is based on the same
enumerated ranges of RSD as in Section 2.2. In the S-band, Uar values are mostly con-
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centrated between 0.8 and 0.9, mostly above 0.7. In the X-band, the value distribution of
Uar is more dispersed, but most values are more than 0.6. Less than 10% of the data have
Uar values less than 0.1, and the relationship between Uar, D0, and μ is further examined
(Figure 7). Uar rapidly decreased to 0 when D0 was less than 0.5 mm, i.e., indicating that
Uar does not have the ability to distinguish particles in the ice phase from raindrop groups
with small particle diameters. However, since the case in which D0 is less than 0.5 mm
rarely appears in previous joint observation and retrieval studies based on weather radar
and RSD [29,40,41], it can be considered that Uar can show a value close to 1 for raindrops,
which is obviously different from the value close to 0 for most ice phase particles.

Figure 6. Distribution of Uar within the enumeration range of the RSD parameters. (The values of D0

and μ are the same as those in Figure 5).

Figure 7. Relationships of Uar versus D0 and μ when Dmax=10 mm. (Dmax = 10 mm. The values of D0

and μ are the same as those in Figure 5). (a) S-band, (b) X-band.

In summary, Uar has the potential to identify rain areas. However, the Uar probability
distribution shown in Figure 6 is not the probability distribution considered for actual
detection, and none of the above discussions include noise in ρhv. The practical application
effect of Uar will be discussed below.

3. Performance of Uar on Real Observations

3.1. Typical Features of Vertical Structures of Uar on X-Band RHI Radar Data
3.1.1. Overview of RHI Data during a Convective Event

In this section, the vertical distribution characteristics of Uar are discussed using
RHI data obtained by X-band dual polarization radar. The selected case is a convective
event in Beijing that occurred during 18:00–19:30 (Local Standard Time (LST), GMT+8)
on 7 September 2016. The radar is a 714XDP-A type X-band dual polarization mobile
radar belonging to the Key Laboratory of Cloud-Precipitation Physics and Severe Storms
(LACS), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS). That
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radar was deployed for field observations at the Beijing Olympic Water Park (116.68◦E,
40.18◦N) during the summer from 2015 to 2019. The main characteristics of this radar are
listed in Table 1. Other information, including quality control and attenuation correction
methods, can be seen in [42,43]. The vertical temperature profile used for the analysis
was derived from the neighboring sounding station at 08:00 LST (station number: 54511,
116.28◦E, 39.93◦N). For the observation mode, plan position indicator (PPI) and RHI scans
were switched manually in these observations. The PPI at 4◦ elevation was scanned first,
followed by an RHI scan that aimed at the strong convection center, forming a cycle to
track the evolution of the vertical structure of the severe convective cell. Figure 8 shows the
convective system to the southwest of the radar moving southeastward.

Table 1. Characteristics of the X-band dual polarization radar used in this paper.

Attribute Value Attribute Value

Antenna diameter 2.4 m Linear dynamic range >90 dB
Frequency 9.37 GHz Beam width 1◦

Antenna gain 41.6 dB Radial resolution 150 m
Peak power 80 kW Observation range 150 km
Polarization Horizontal/Vertical

Elevation resolution in RHI mode 0.17◦Pulse width 0.5/1/2 μs

 

Figure 8. Sample PPI observations of ZH. (The elevation of the PPI is 4◦. The azimuth of the dashed
line in Figure 8b is 212◦. The data collection time is 7 September 2016). (a) 18:26 LST, (b) 18:45 LST.

Figure 9a–d show radar data at the RHI of 212◦ azimuth. The KDP is not shown here
since it is not discussed in this paper. There is a stratiform cloud area from 0 to 25 km in
the horizontal direction, and the BB characteristics of the ML are found below the 0 ◦C
layer among ZH, ZDR and ρhv. The ML, at a horizontal distance of approximately 20 km,
has a sinking feature, which may be related to the rapid fall caused by the riming or
coalescence of snow [3,27,28]. In the convective cloud region, the convective core is located
at a horizontal distance of 35 km (Figure 9a), and there is a distinct ZDR column [44] feature
(Figure 9b). The value of ρhv in the lower layer and 40 km away is less than 0.4 (Figure 9c),
which should be attributed to invalid observations caused by attenuation and noise. The
corresponding ZH and ZDR values at such areas are automatically masked during the
quality control process, despite some of the ZDR values remaining abnormally low at the
rear of the radar beams. The Doppler radial velocity (VR, Figure 9d) shows convergence
below 6 km at the convective core, while divergence appears at a height of approximately
10 km, indicating a strong updraft. Figure 9e shows the Uar proposed in this paper. In
addition, a hydrometeor classification (HC) result is shown in Figure 9f as a reference for
the particle phase, using the scheme from the work of Feng et al. [45], which is an ensemble
and improved version from previous studies [9–12].
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Figure 9. Sample RHI observations and retrievals of the convective system from the X-band dual
polarization weather radar. (The time is 18:46:30 LST. The azimuth is the same as the dashed line in
Figure 8b. The maximum elevation is 44◦). (a) ZH, (b) ZDR, (c) ρhv, (d) VR, (f) HC, (e) Uar.

The following focuses on the three regions shown in Figure 9e, where region A is a
stratiform cloud area, region B is the lower area of the convective cloud, and region C is the
upper area of the convective cloud.

In region A, Uar suddenly appears as a whole layer with values larger than approximately
0.5 from a certain distance below the 0 ◦C layer to the ground (Figure 9e), while the HC result
shows wet snow corresponding to the ML, and then rain and drizzle below. These results
show that HC and Uar are basically consistent in terms of identifying rainy areas. Moreover,
the top of the high-value area of Uar exhibits a sinking feature consistent with ML.

In region B, there is an obvious difference between HC and Uar. The high value areas
of Uar show a clear ‘U’-shaped spatial distribution, while HC shows a very narrow range
of heavy rain, grauples and hail mixing with rain in other locations.

In region C, Uar has a high value area with the maximum value approaching 0.4 at the
divergence area of VR, corresponding to dry snow in the HC results. This phenomenon
may be explained by the fact that strong horizontal winds contributed to the formation of
high-level snow clustering and the maintenance of quasi-horizontal orientation. However,
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since the spatial scope of that feature is limited, the value of Uar is not so large, and ice
habits are not a focus of this study, there is no further discussion of it in the following
sections. In Sections 3.1.2 and 3.1.3 below, only areas A and B are discussed.

3.1.2. Analysis of the Stratiform Cloud Area

Average vertical profiles of polarimetric variables in region A are counted and shown
in Figure 10. There are notable ML features with extreme values and strong gradients, where
ZH has a peak and ρhv has a valley from the 0 ◦C level (3.48 km) down to approximately
9 ◦C (2.37 km). ZDR also shows a small peak in this ML. However, Uar is close to 0 in the
cold cloud area and changes in the ML, mutating into an average of more than 0.4 below the
ML. This result apparently shows that Uar is a step-like mutation signal in a three-layered
cold cloud, which is unlike conventional variables (such as ZH, ZDR and ρhv) that exhibit
extreme values in ML.

Figure 10. Mean vertical profile in area A. (Statistics by data points with ZH > 0 dBZ).

The threshold value of Uar used for determining the raindrop areas should be given
according to the Ua probability distribution statistics below the ML. If the data below the
ML where ZH is larger than 0 dBZ are counted (Figure 11a), Uar is concentrated between
0.4 and 0.5, but there is a certain distribution from 0 to 1 that makes it difficult to select a
threshold. If the statistics are performed in areas with a slightly stronger reflectivity, such
as 20 dBZ, which is generally considered to have obvious rainfall, Uar values range, at most,
from 0.6 to 0.7 (Figure 11b), and more than 90% are above 0.4. Therefore, it is possible to
identify raindrop areas easily only by setting a Uar threshold and without temperature
input instead of determining the boundaries of ML first. Further quantitative analysis of
the threshold is presented in Section 3.3.

 

Figure 11. Proportions of Uar values in the warm layer (below 2.37 km, warmer than 9 ◦C) of area A:
(a) points with ZH > 0 dBZ and (b) points with ZH > 20 dBZ. The bars are the proportions within
given ranges, and the black lines are the accumulated proportions.
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3.1.3. Analysis of a Convective Cloud Area in the Lower Levels

Figure 12 shows the enlarged vertical structure of variables in region B. The divergence
of VR is added (Figure 12c) to better diagnose the distribution of vertical airflow in the
cloud, which is defined as dVR/ds, where s is the radial distance of a radar beam. Strong
convergence (dVR/ds < 0) extends from the ground to a height of 5 km and reaches a
maximum above the 0 ◦C layer, which indicates a deep and strong updraft here that is
consistent with the position of the ZDR column shown in Figure 12b. The ZDR column is
a phenomenon in which the high ZDR region extends above the 0 ◦C height [45] and is
thought to be closely related to the transport of large raindrops and strong updrafts in
the supercooled layer [46–50]. The right branch of the U-shape of Uar corresponds to the
ZDR column and the strong convergence of VR, which indicates that the corresponding
raindrops are transported upward by the updraft. The upper bound of the right branch
of that U-shape crosses the 0 ◦C layer, indicating that the raindrops freeze after being
transported to the supercooled layer. The left branch of the U-shape is 500 m lower than
the right branch and is deflected away from the strong convergence area, which can be
inferred as raindrops formed by the falling and melting of high-level ice particles.

  

Figure 12. Variables in area B with the ZDR column. (a) ZH, (b) ZDR, (c) dVR/ds, (d) Uar.

In the analysis of the above features that change with time, due to the large amount
of low-level occlusion during the period preceding what is shown in Figures 9 and 12, a
later time is selected to track the change in the convective cell. Figure 13 shows PPI data
7 min later and RHI data 9 min later, where the RHI is obtained by tracking the horizontal
movement of the ZH core. Figure 14 shows an enlarged view of the convective core at a low
level, which is similar to Figure 12. The divergence of VR (dVR/ds > 0, Figure 14c) below
1 km indicates the dominating downdraft caused by rainfall. The ZDR column no longer
exists (Figure 14b), which may be the result of deep updrafts disappearing. At the same time,
Uar no longer displays a U-shape (Figure 14d). The upper bound of the large value of Uar is
approximately 1 km below the 0 ◦C layer, showing the characteristics of large-scale melting
of ice particles into raindrops. In summary, it can be inferred that the left and right branches
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of the U-shaped Uar in the lower troposphere correspond to rain formed by the melting of
ice particles and rain transported upward by the updraft, respectively. This set of processes
is very similar to Conway and Zrnic’s explanation of the formation mechanism of the ZDR
column [46]. Therefore, the study presented here can not only be used as evidence to support
previous studies but can also expand the means of future research on the ZDR column.

Figure 13. PPI and RHI of ZH at subsequent time intervals. (a) PPI at 18:53 LST, (b) RHI at 18:55.

  

 

Figure 14. Variables after the ZDR column disappeared. (a) ZH, (b) ZDR, (c) dVR/ds, (d) Uar.

3.2. Performance of Uar on S-Band Volume Scans Radar Data

In this section, S-band operational dual polarization radar volume scan data are used
to evaluate the application of Uar. The involved case is a severe convective event that
occurred in Shandong Province, China, during the evening on 17 May 2020. The radar is a
dual polarization radar upgraded from CINRAD-SA type radar (station number: Z9532,
120.23◦E, 35.99◦N). The main characteristics of this radar are listed in Table 2. This radar
performs a volume scan containing nine elevations from 0.5◦ to 19.5◦ (commonly called
VCP-21 mode) in approximately 6 min. The vertical temperature profile used for the
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analysis was derived from the neighboring sounding station at 20:00 LST (station number:
54857, 120.33◦E, 36.06◦N).

Table 2. Characteristics of the S-band dual polarization radar used in this paper.

Attribute Value Attribute Value

Antenna diameter 8.5 m Pulse width 1.57/4.57 μs
Frequency 2.88 GHz Linear dynamic range >85 dB

Antenna gain >45 dB Beam width 0.93◦
Peak power 650 kW Radial resolution 250 m
Polarization Horizontal/Vertical Observation range 460 km

The mid-late stage data regarding the convective system development are selected,
where there is a large range of stratiform cloud areas behind the convection line. PPI data
with obvious ML features are shown in Figure 15. The BB signal in ZH is not obvious
(Figure 15a), while ZDR and ρhv both have a ring area with extreme values and rough
texture, indicating that the ML is between 0 and 11 ◦C (Figure 15b,c). For the high ZH area,
which is approximately 50 dBZ in the ML, it is noted that there is a negative ZDR area on the
east side (higher), which is consistent with the characteristics of snow riming in previous
studies [27,28]. The Uar shows an appearance similar to that of the X-band in Section 3.1,
where a wide range of large values appears mostly just below the ML. This result indicates
that Uar also has the ability to identify raindrop areas in S-band volume scan data.

  

Figure 15. Sample PPI observations with BB from the S-band dual polarization weather radar. (The
data time is 17 May 2020 23:51 LST. The elevation is 2.4◦, which is the third level of a volume scan).
(a) ZH, (b) ZDR, (c) ρhv, (d) Uar.

To be further compared with the vertical structure in Section 3.1, a composite RHI is
derived by interpolation, which covers both convective and stratiform areas (Figure 16). In
the stratiform cloud area (distance from 0 to 60 km), the ML is visually estimated by the
BB in ZH, ZDR and ρhv, whose bottom is at the height of 11 ◦C, and the high Uar appears
below the ML. The ZDR column at a distance of 100 km also corresponds to a high value
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area of Uar. An approximate U-shaped vertical structure of Uar, whose two branches are
at 70 and 100 km distances (Figure 16d), is more difficult to identify compared with that
in X-band RHI data (Figure 12d). This may be due to the low elevation resolution of the
volume scans. However, the general performances in the X-band and S-band are similar,
regardless of the scanning mode.

  

  

Figure 16. Composite RHI at 130◦ azimuth from the S-band dual polarization weather radar. (The
data time is 17 May 2020 23:51 LST, the same as Figure 15. The radial data are smoothed by 10-point
median filtering, and triple linear interpolation is used to derive this composite result). (a) ZH,
(b) ZDR, (c) ρhv, (d) Uar.

3.3. Identification Ratio of Raindrops in Stratiform Cloud Areas

One inevitable question is how accurate it is to use Uar to identify raindrops. However,
the accurate phase state of particles in clouds is not easy to obtain, especially in convective
areas, which is also the key and difficult point in the study of weather radar remote sensing.
After all, there is not always a cloud-penetrating detection by aircraft to make a space–time
continuous observation. Therefore, a relatively reliable method is selected. Aiming at
stratiform areas with ML, the bottom height of the visual ML boundary is selected as the
dividing line. Parts below the ML bottom are divided into rain layers, while other parts are
divided into nonrain layers (mixed and ice phases), so that the identification results can be
examined quantitatively. The data in Figure 10 (Section 3.1) are selected as Case 1, with
the height of 9 ◦C as the dividing line; the data in Figure 16 (Section 3.2) are selected as
Case 2, with the height of 11 ◦C as the dividing line. Weak echoes with ZH less than 20 dBZ
are ignored in the statistics. The identification ratio of rain layers (Srain), nonrain layers
(Snonrain) and overall ratio (Stotal) are defined as follows:

Srain =
Tr

Nr
(26)

Snonrain =
Ti

Ni
(27)

Stotal =
Tr + Ti

Nr + Ni
(28)

where Nr is data count in rain layers; Ni is data count in nonrain layers; Tr is data count
of the correct identification of the rain layer, where a data point has a Uar larger than the
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given threshold and is located in rain layers; Ti is data count of correct identification of
nonrain layer, where a data point has a Uar equal to or less than the given threshold and is
located in nonrain layers.

The results (Table 3) show that Srain decreases as the Uar threshold increases, probably
because small raindrops have a smaller Uar and cannot be identified, while the trend in
Snonrain is the opposite. This results in a maximum value for Stotal, where Uar = 0.3 for
Case 1 and Uar = 0.2 for Case 2. In general, a more than 95% overall identification accuracy
can be obtained when Uar is set to 0.2~0.3.

Table 3. Identification ratio of rain and nonrain layers using different thresholds of Uar.

Threshold of Uar
Case 1 Case 2

Stotal Srain Snonrain Stotal Srain Snonrain

0.1 0.88 1.00 0.79 0.90 0.98 0.88
0.2 0.95 1.00 0.91 0.95 0.93 0.96
0.3 0.96 0.97 0.95 0.93 0.73 0.99
0.4 0.95 0.91 0.98 0.86 0.38 1.00
0.5 0.88 0.74 0.99 0.78 0.03 1.00

3.4. Using Uar as a Mask to Compute Composite Reflectivity

Composite reflectivity (CR) is a common data product of weather radar volume scan
data and is a two-dimensional image derived from the ZH maximum at the same horizontal
position in each PPI for different elevations. By using the CR, the horizontal spatial
distribution of the strong reflectivity population can be quickly observed, and a preliminary
judgment of precipitation can be made, where it can avoid missing information caused
by a partial occlusion in a single PPI or the uncertainty of the height of the reflectivity
core. Using the same case in Section 3.2, Figure 17a shows a CR, where there is a severe
convective line over 60 dBZ and a large-scale stratiform cloud area at the rear (northwest
side). However, due to the high value and uneven horizontal distribution of ZH in the
ML, some spots in the ML may be misjudged as convective clouds, which would lead to
misinterpretations of the precipitation situation. To avoid this, the CR must be recalculated
after removing the effects of ML signals.

First, there is an example in which ML signals are not successfully removed. Suppose
the lower bound temperature of the ML is 5 ◦C by assuming some experience that is not
applicable to this case. After masking data with temperatures below 5 ◦C, a new CR is
derived (Figure 17b), where the high ZH spots still exist in the stratiform area since the
ML signal is not completely removed from the original PPI. This problem can certainly
be solved if the lower bound of the ML in this example is accurately obtained at 11 ◦C.
However, inaccuracies in the temperature profile and ML boundary detection can make a
difference.

Next, Uar is taken as a mask template from ZH in each PPI. The ZH is masked where
the Uar is less than a certain value, and then, the CR is calculated, which is equivalent to
calculating the CR of raindrop areas. A loose threshold is applied first by taking Uar < 0.2 as
the mask template to form the new CR (Figure 17c). The intensity of the CR in the stratiform
cloud region to the northwest of the strong convective line is obviously smaller and more
uniform and is basically not more than 45 dBZ, which is consistent with the common
features of stratiform rainfall. If a stricter threshold is used, such as by taking Uar < 0.4 as
the mask template (Figure 17d), the entire convective system becomes fragmented, and only
part of the stratiform cloud region remains. The parts masked in Figure 17d may contain
both smaller raindrops and particles, such as graupel and hail, that are likely to exist in
the convective line. However, due to the need for other ground observation instruments
to verify the identification of graupel and hail, such content is not discussed in this paper.
In general, taking a loose Uar threshold as a mask (e.g., Uar < 0.2) to calculate CR can
preserve the horizontal spatial distribution characteristics of most precipitation systems
while masking ML signals. Furthermore, this approach is more convenient and efficient
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than traditional methods that require temperature input and multithreshold management
to first detect the ML.

 

Figure 17. CR with different reflectivity masks. (The points are with ZH > 20 dBZ. The time is the
same as Figure 15. (a) CR no mask, (b) CR masked by T < 5 ◦C, (c) CR masked by Uar < 0.2, (d) CR
masked by Uar < 0.4.

4. Discussion on Limitations of Uar

There are also some limitations of using Uar that were found in the course of this study.
Here are three points to consider.

(1) If the ZDR of the X-band does not undergo quality control (QC) and attenuation
correction, there may be a large area of small ZDR anomalies in the lower troposphere
away from the radar side due to attenuation (Figure 18a). In addition, in the area where
the signal-to-noise ratio is theoretically low at the end of the radar beam, there may be
an abnormally large or small ZDR value due to noise. These can result in a larger value
and overestimate Uar (Figure 18b), which inevitably affects the results of raindrop area
identification. One solution is to set Uar to 0 when ZDR is less than 0 dB. Thus, a rough
location of the raindrop areas can be obtained without waiting for a time-consuming quality
control and attenuation correction process when collecting data.

Figure 18. Sample of the impact on the Uar calculation without data quality control and attenuation
correction for ZDR in the X-band. (a) ZDR without QC, (b) Uar.
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(2) If there is a systematic bias in the ZDR detected by the radar, it may cause Uar to be
unavailable. A test in which a 0.3 dB systematic bias is artificially added to ZDR (Figure 19a)
shows that Uar in the stratiform area no longer exhibits mutation features as shown in
Figure 10, but rather displays a valley band feature (Figure 19b) similar to ρhv in the ML
and loses the capability to identify raindrop areas. This suggests that the premise of using
Uar is that the systematic deviation of ZDR needs to be controlled within 0.3 dB. For these
reasons, attention should be given to the calibration of dual polarization radars, especially
for mobile X-band radars, when conducting field observation experiments.

Figure 19. Sample of the impact on the Uar calculation when there is a +0.3 dB systematic deviation
in ZDR at the X-band. (a) ZDR with bias +0.3 dB, (b) Uar.

(3) The premise of using Uar is to eliminate or at least reduce the influence of the
phase state and only to retrieve and utilize the axial ratio distribution characteristics of the
particle group. However, there must be some extreme cases where the ice or snow particles
exhibit a pronounced horizontal orientation under the action of the dominant wind. This
could also lead to large values of Uar, which could be confused with the raindrop area.
However, there is no good example to illustrate this expected extreme situation, and this
work needs to be carried out in depth in the future. In addition, the cases presented in this
paper involve relatively low elevations, and observations at high elevations will result in
a smaller ZDR in the raindrop area and would need to be corrected. The impact of these
factors on Uar also needs to be explored in more cases.

5. Conclusions and Summary

A uniformity index for hydrometeor axis ratios (Uar) derived from dual polarization
weather radar data is proposed in this paper. Backscattering numerical simulations are
used to find available relationships to derive Uar and show its theoretical features for the
identification of raindrops. Then, observation data from X-band and S-band radar are used
to show and examine the performance of Uar under real conditions and carry out initial
applications. The main conclusions are as follows.

(1) Uar is close to 0 for ice particles with varying shapes and orientations and is close
to 1 for raindrops theoretically, which gives Uar the ability to identify raindrop areas.

(2) In the real observations, Uar is basically consistent with its theoretical feature above.
A more than 95% overall identification ratio can be obtained in stratiform cloud areas when
the threshold of Uar is set to 0.2~0.3. Thus, the raindrop area can be more easily identified
instead of identifying ML first by inputting a temperature profile and setting multiple
thresholds.

(3) In the demonstration using X-band radar RHI data, high Uar in the convective
areas presents a U-shaped vertical structure, which indicates the process of ice particles
melting into raindrops and then being transported upward by strong updraft and provides
evidence for the formation mechanism of the ZDR column.
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(4) In the CR calculation demonstration using S-band radar, the impact of the ML
signal on CR can be eliminated by setting Uar < 0.2 as a mask template to avoid misjudging
stratiform clouds at the rear of the convective line as convective clouds.

The application of Uar still requires more in-depth research in the future. Due to the
spatiotemporal limitations of RHI and volume scanning, the change process of the ZDR
column may not be fully captured. Thus, more studies are needed to better summarize the
evolution of Uar and other variables. Additionally, it is necessary to further evaluate and
expand the application of Uar methods in hydrometeor classification and in the quantitative
retrieval of microphysical features.
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Appendix A

In Section 2.2 (Figure 5), R, MAE and MRE are used to evaluate the difference between
ρ
(Ideal)
hv and ρ

(Aprrox)
hv , which are defined as follows:

R =
Cov(X, Y)√

Var(X)·Var(Y)
(A1)

MAE =
∑n

i=1|Yi − Xi|
n

(A2)

MRE = 100% ×
n

∑
i=1

∣∣∣∣ |Yi − Xi|
Yi

∣∣∣∣ (A3)

where X is ρ
(Aprrox)
hv , Y is ρ

(Aprrox)
hv , Cov(...) denotes the covariance and Var(...) indicates the

variance.
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Abstract: Recent upgrades to China’s radar network now allow for polarimetric measurements of
convective systems in central China, providing an effective data set with which to evaluate the
microphysics schemes employed in local squall line simulations. We compared polarimetric radar
variables derived by Weather Research and Forecasting (WRF) and radar forward models and the
corresponding hydrometeor species with radar observations and retrievals for a severe squall line
observed over central China on 16 March 2022. Two microphysics schemes were tested and were able
to accurately depict the contrast between convective and stratiform regions in terms of the drop size
distribution (DSD) and reproduce the classical polarimetric signatures of the observed differential
reflectivity (ZDR) and specific differential phase (KDP) columns. However, for the convective region,
the simulated DSDs in both schemes exhibited lower proportions of large drops and lower liquid
water content; by contrast, for the stratiform region, the proportion of large drops was found to be too
high in the Morrison (MORR) scheme. The underprediction of ice-phase processes in the convective
region, particularly the riming processes associated with graupel and hail, was likely responsible
for the bias toward large raindrops at low levels. In the stratiform region, raindrop evaporation in
the WRF Double-Moment 6-Class (WDM6) scheme, which partially offsets the overestimation of
ice-phase processes, produced ground DSDs that more closely matched the observational data, and
did not exhibit the overly strong warm-rain collisional growth processes of MORR.

Keywords: polarimetric radar signatures; microphysical schemes; model evaluation; polarimetric
radar forward operator

1. Introduction

The modeling of microphysical processes remains a major obstacle to achieving re-
liable numerical weather predictions and climate simulations, in part due to gaps in our
knowledge of cloud processes [1]. A vast amount of microphysical information can be
extracted using observational data from polarimetric weather radars. The dual-polarization
upgrades of the S-band Weather Surveillance Radar 1988 Doppler (WSR-88D) network in
the USA and the C-band network in Germany and other European countries have been
successively completed [2]. China has been enhancing its operational radar network to po-
larimetry in recent years [3], thus providing new opportunities for the extensive evaluation
of, and potential improvements to, existing microphysical parameterization schemes.

Polarimetric radar is capable of determining disparities in horizontal and vertical
backscatter, along with the phase shift of propagation, correlation, and depolarization [4].
The logarithm of the ratio of the power returned from horizontally and vertically polar-
ized backscatter, known as differential reflectivity (ZDR), depends mainly on the median
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shape and size of hydrometeors. The specific differential phase (KDP), defined as the range
derivative of the differential phase shift (ΦDP) between the horizontal and vertical pulse
phases, is dependent on the number concentration. The copolar correlation coefficient
(ρhv) is a normalized measure of the correlation of horizontal and vertical backscattered
power within a radar sample volume and can help distinguish meteorological from non-
meteorological targets and ice particles from rain. The polarimetric variables are susceptible
to alterations in hydrometeors’ shape, spatial orientation, and phase composition, which
can occur during a variety of microphysical processes. Hence, these multivariate polarimet-
ric “fingerprints” can provide insight into microphysical processes that include size sorting,
breakup, aggregation, riming, melting, and hail production [5–7]. For instance, a commonly
observed microphysical feature of mesoscale convective systems (MCSs) is that in convec-
tive regions ice growth is dominated by riming whereas in stratiform regions deposition
and aggregation are the primary mechanisms [8–10]. Warm-rain processes such as raindrop
growth from collision-coalescence and the gathering of cloud droplets are highly efficient in
MCS precipitation processes in a relatively moist stable environment [11,12]. Microphysical
characteristics also vary with terrain elevation and the life cycle stage of the convective
system involved [13–15]. Dual-polarization radar observations have also been used to
evaluate the microphysics schemes used in various numerical models using forward opera-
tors, e.g., [16–18]. The polarimetric radar forward operators, using the T-matrix algorithm,
generate synthetic polarimetric observations from the model output variables and compare
them with the actual observations. Studies have leveraged these radar forward operators
to validate raindrop size properties simulated by microphysics schemes and to reproduce
meaningful polarimetric signatures in convective storms, including a ZDR column in the
convective updraft region and a depressed ρhv ring in the storm-inflow region [19–21]. It
has also been found that the simulated polarimetric radar variables are highly affected
using different microphysics schemes with varying moments. The single-moment micro-
physics used in the modeling studies of Jung et al. [21] was barely able to reproduce certain
signatures, such as mid-level ZDR and ρhv rings; however, these features were reproduced
realistically in the same model using the corresponding three-moment scheme [22] by
Snyder et al. [23] and Fan et al. [5]. Likewise, different polarimetric signatures have been
exploited for quantifiable examinations and in-depth analyses of liquid- and ice-phase pro-
cesses [10,24–27]. For example, polarimetric fingerprints in warm clouds associated with
size sorting and collision–coalescence processes are reproduced to varying extents among
simulations with different microphysics schemes [26,27]. By contrast, it has been noted
that the simulated polarimetric variables above the melting layer lack explicit variability
and are explained in part by the limited diversity of particles in the model, as well as the
inability of the T-matrix approach to replicate the polarimetric fingerprints of ice processes
involving snow and graupel [20,27]. However, using retrievals of ice-water content profiles
and hydrometeor types, Chen et al. [24] quantitatively evaluated the ice processes of three
widely used microphysics schemes. They found that the total ice-water content values for
convective regions were overpredicted, where the overestimation of graupel and snow
by riming was possibly responsible for extremely large raindrops below freezing levels.
These quantitative retrievals of ice properties strongly depend on assumptions regarding
the habit and properties of particles that govern polarimetric scattering, and thus some
uncertainties exist. Morrison et al. [1] highlighted incorporating uncertainty concerning
ice density, habit, and size distribution into these retrievals. In the present study, we use
the same assumptions regarding ice density and size distribution from the microphysics
schemes for the polarimetric radar forward operators and uniformly adopt the assumptions
established by Ryzhkov et al. [17] regarding the shape and orientation angle of ice particles
to constrain uncertainty in the evaluation.

Squall lines are linearly organized MCSs that serve as useful test cases for microphysics
schemes since their convective strength and precipitation organization are sensitive to cloud
microphysical parameterization [5,28,29]. Previous studies have found that the simulations
vary depending on the varieties of ice species and certain ice process parameterizations
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used [30–33]. Compared with the use of a graupel category in the simulation, the use of
faster-falling hail commonly narrows the convection region [33] but limits the development
of bow echoes due to the weaker surface cold pools and rear inflow jets [32]. An approach
that uses one category of ice with adjustable properties to cover all types of ice species can
somewhat reduce the impact of the uncertainty associated with distinguishing graupel/hail
particles in MCS simulations [34–36]. The flexible characterization of ice properties, ac-
cording to Zhao et al. [29], has a substantial influence on whether a transition zone arises
in a simulated squall line. The impact of microphysical–dynamical feedbacks on squall
line simulations has also been considered in several studies [5,37,38]. For instance, latent
heating/cooling can influence vertical upward motion by directly dominating cloud-scale
buoyancy distributions, which can have large impacts on MCS structures and lifetimes [37].
In addition, it remains important to constrain particle size distributions in microphysics
schemes such as the popular two-moment bulk schemes, which were found to have issues
with correctly representing the size distribution of rain particles through the comparison of
polarimetric radar variables [20,38,39].

Previous studies have focused mainly on MCSs in mid-latitude North America and
Europe and East and South China, but microphysical characteristics within MCSs vary
according to the climate regime and synoptic environment. The successively upgraded dual-
polarization function of the operational radar network in China can provide observational
data that are maximally effective for evaluating and constraining microphysics schemes
in various background environments over the East Asian monsoon region and can help
to address the gaps in our understanding of the microphysics involved. In this study,
we are using the new data to gain insight into the microphysics of a spring squall line
over central China and to validate the microphysical process parameterization used for
squall line numerical simulations. To our knowledge, few studies have identified the
main microphysical processes that cause variations in polarimetric signatures in squall line
precipitation over central China. Our study aims to do this, using numerical models and a
forward operator. This method may inspire more analysis of cases in central China using
dual-polarization radar measurements.

On 16 March 2022, a heavy rainfall event of a squall line occurred in central China.
This study focuses on convective and stratiform precipitation processes during the mature
stage, specifically from 1200 UTC to 1500 UTC. Section 2 introduces the observational
data set and model simulation setup used in this study. It also describes the polarimetric
radar operator and the methodologies used for the classification of types of rainfall and the
identification of hydrometers. Section 3 describes the synoptic background and mesoscale
evolution of the squall line. Microphysical characteristics of squall lines from polarimetric
radar observations and numerical simulations are presented and discussed in Section 4. A
summary of the findings and future effort directions are given in Section 5.

2. Observational Data and Methods

2.1. Observational Data Sets

To examine the microphysical features, observational information from an S-band
polarimetric radar (S-POL) at the Huaihua site (the location of which is indicated by
an unfilled triangle in Figure 1) was used. S-band polarimetric radar is part of China’s
operational weather radar (hereafter referred to as CINRAD-SAD) network and operates
in the volume coverage pattern 21 volume-scan strategy. The volume scan consists of
nine elevation angles between 0.5◦ and 19.5◦ every 6 min, with an unambiguous range
(velocity) of 150 km (26.5 m/s). The S-POL data used in this study were subject to both
a quality control and calibration procedure to remove non-meteorological artifacts and
any systematic bias. Non-meteorological echoes for which ρhv < 0.85 were excluded [40].
Although some beneficial data may have been discarded due to this ρhv threshold, the
overall statistical findings should remain unaffected. While stringent internal calibration
procedures similar to WSR-88D are applied for CINRAD-SAD radars, small fluctuations
in the differential reflectivity are still known to occur. An external calibration procedure
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was performed for the S-POL radar used in the study to remove any unresolved systematic
bias in ZDR. Since the CINRAD-SAD radars, which have a fixed observation strategy,
cannot point vertically, the bias was estimated using light rain echoes at lower elevation
angles, beginning at 20 km from the radar to avoid ground clutter, based on the method
described by Cunningham et al. [41]. After thresholding based on ρhv and calibration, a
despeckling procedure was performed following Bell et al. [42], whereby valid data from
at least four contiguous range gates along the radar beam were required to remove isolated
radar echoes. The KDP was estimated by calculating the range derivative of ΦDP following
Lang et al. [43]. The ΦDP was filtered using a finite-impulse response filter (in the Colorado
State University (CSU) RadarTools; [44]) before computing KDP.

 

Figure 1. The model domains used. The outer region is the parent domain (9 km), and d02 is the
inner domain (3 km). The innermost box, shaded green, denotes the area of the squall line system
(approximately 27◦–31◦N, 107◦–113◦E), and the triangle at the bottom of the green area indicates the
location of the Huaihua station.

Polarimetric variables were then interpolated from polar to Cartesian coordinates at
1 km horizontal and 500 m vertical resolution using a Barnes scheme in an open-source
radar toolkit Py-ART [45]. The radius of influence of the interpolation grows with the
distance from the S-POL radar, based on a minimum radius of influence of 1 km and a
virtual beam width of 0.957◦ (equal to the S-POL beam width). The gridded data make it
simple to compare the polarimetric signatures to their modeled counterparts.

Radiosonde data at the S-POL site can provide temperature profiles for hydrometeor
classification and characterize environmental conditions for convective initiation. Addi-
tional observations used for evaluation were three-dimensional radar mosaic reflectivity,
surface precipitation, and temperature. The former combined all available radars in the
study region, with a grid spacing of 0.01◦ (∼1 km) horizontally and varying vertical resolu-
tions (0.5–19 km) updated every 6 min. Surface precipitation and temperature data were
gathered from thousands of weather stations.

2.2. Model Setup

Simulations of the selected squall line event were conducted employing the Weather
Research and Forecasting (WRF) Model version 4.2 [46] with a 9–3 km two-way nested
domain configuration (see Figure 1 for domain coverage and Table 1 for a summary of
configuration options). The ERA5 reanalysis data [47] with 3 h intervals and 0.25◦ grid
resolution were used to generate initial and lateral boundary conditions. Numerical
experiments were integrated from 0000 UTC to 1800 UTC on 16 March 2022 for 18 h, with
the model outputs saved at 15 min intervals. Spectral nudging [48] was applied to the
long-wave spectral regimes (wavelength > 1000 km) of temperature, geopotential height,
and wind fields at every integral time step above the planetary boundary layer (PBL)
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over the WRF outer domain to keep the simulated state close to the ERA5 data at large
scales [20].

In the present study, two widely used bulk microphysics schemes in WRF, double-
moment six-class scheme WDM6 [49] and Morrison scheme MORR [28], are tested, and
both simulations are compared with radar observational data. The WDM6 scheme is
not truly double moment and only prognoses both the mass and number mixing ratios
for cloud droplets and rain, and the mass mixing ratio of ice, snow, and graupel. As
opposed to WDM6, the MORR scheme predicts mass and number mixing ratios for rain,
cloud ice, snow, and graupel and the mass mixing ratio of cloud droplets. In WDM6,
the size distributions in rain and cloud droplets are represented by a generalized four-
parameter gamma function; ice microphysics are identical to those in the corresponding
single-moment scheme following Hong et al. [50]. In MORR, the size distribution of
cloud droplets is assumed to be in the form of a gamma function with a variable shape
parameter [51], while the other hydrometeors conform to the inverse-exponential size
distribution. Despite the variations in rain size distributions for the WDM6 and MORR
schemes, the rain evaporation scheme is kept consistent between different schemes. The
relationship between fall speed and size for graupel/hail varies between the two schemes,
but the melting scheme for graupel/hail remains the same.

Table 1. Summary of WRF configuration options.

Configuration Options

Domains parent domain d02

Grid points 541 × 493 583 × 457

Grid spacing 9 km 3 km

Vertical layers 51 layers

Cumulus scheme Kain–Fritsch [52] Turned off

PBL scheme Mellor–Yamada–Janjic [53]

Longwave radiation RRTMG [54]

Shortwave radiation Dudhia [55]

Surface layer Eta similarity [56]

Land surface Thermal diffusion scheme [57]

microphysics WDM6 scheme [49]
MORR scheme [28]

Other physics parameterizations are identical between two experiments when using
either the WDM6 or MORR scheme (Table 1).

It should be noted that, as an ongoing effort to improve operational forecast models in
central China, this study used the same horizontal grid spacings (3 km) for simulations.
We acknowledge the limitation in the comparison with 1 km-mesh radar observations and
thereby concentrate more on examining stratiform and convective scale features.

2.3. Dual-Polarization Forward Operator for WRF

The forward model of the Polarimetric Radar Retrieval and Instrument Simulator
(POLARRIS-f)—a radar forward operator that was developed by scientists at Colorado
State University and NASA (https://earth.gsfc.nasa.gov/meso/models/polarris (accessed
on 27 March 2021))—was used to simulate the S-POL variables [16].

The Polarimetric Radar Retrieval and Instrument Simulator incorporates the WRF
microphysics assumptions, such as particle sizes, densities, and liquid/ice phase from
different microphysics schemes. Additional uncertainties in the polarimetric estimates
arise due to characteristics of hydrometeors that are not usually included in the model,
such as aspect ratio, orientation angle distributions, and dielectric constant. For this study,
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particle aspect ratio and canting angles uniformly followed the assumptions described by
Ryzhkov et al. [17], and effective dielectric properties were estimated using the Garnett [58]
mixing formula for air–ice and air–ice–liquid mixtures. However, given the intricate nature
of ice shapes and spatial orientations, differences between modeled and observed data for
the above-freezing-level ZDR and KDP are not examined.

2.4. Rainfall Type Categorization and Hydrometeor Identification

For objective model–observation comparisons, the convective/stratiform partitioning
algorithm proposed by Powell et al. [59] was applied consistently to the 3 km-height
gridded reflectivity data. It is an update to the method described by Steiner et al. [60],
based on the horizontal radar reflectivity gradient (often referred to as a reflectivity texture
scheme). The new algorithm allows for echo objects in the immediate vicinity of convective
cores to be appropriately allocated to a new “mixed” category, while in the old algorithm
these echoes are considered convective. Furthermore, the new algorithm more often
correctly recognizes periods in which stratiform rain is absent. Hence, it is more appropriate
for the study of squall lines.

In addition, a fuzzy logic hydrometeor identification (HID) algorithm in CSU Radar-
Tools [43,61] was adopted to categorize hydrometeors present in the squall line. Apart
from polarimetric variables, the temperature is also applied to the algorithm to separate
liquid and ice regions. For model data, prognostic air temperatures were extracted from the
WRF model field. For radar observations, the radiosonde data from the Huaihua site were
interpolated to the S-POL analysis grids. Ten hydrometeor species were included in the
study: drizzle, rain, ice crystals, aggregates, wet snow, vertically aligned ice, low-density
graupel, high-density graupel, hail, and big drops.

3. Environmental Conditions and Case Description

Figure 2 shows the synoptic conditions before the squall line of interest formed. A
deep trough at 500 hPa (Figure 2a) was above southwest China, along with a downstream
weak ridge, which resulted in a strong southwesterly flow. In the low-level troposphere,
the paralleled 850-hPa jet (20 m/s), was advecting the warm, moist air toward central
China (Figure 2b). In the region in which the squall line occurred, total column water was
as high as 40 kg/m2, and the equivalent potential temperature was also high.

 

Figure 2. The ERA5 data for (a) 500 hPa geopotential height (solid black, contoured every 30 m) and
wind barbs (m/s) superimposed on total column water (kg/m2; grayscale shading) and (b) 850 hPa
equivalent potential temperature (K; color shading) and wind barbs (m/s) at 0000 UTC on 16 March
2022. The gray shading in (b) denotes terrain height > 1.5 km. The white rectangles in (a,b) represent
the area of the squall line system.
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Upper-air soundings (Figure 3; the location of which is represented by an unfilled
triangle in Figure 1) were also used to examine the environmental conditions associated
with the storm. The total precipitable water (TWP) of 45.1 mm could be considered
moderate considering the intense rainfall associated with squall line events. Compared
with the corresponding values from plum rain or typhoon events, this value is fairly
low and, in relative terms, is indicative of a drier environment ([11,62]. A convective
available potential energy (CAPE) value as high as 1097 J/kg was recorded in Huaihua,
with a lifting condensation level (Plcl) of 931.5 hPa ahead of the squall line, indicating
suitable environmental conditions for convective initiation, with only a minor degree of
lifting required.

Figure 3. Skew T-logP diagram for Huaihua (triangle in Figure 1) at 0000 UTC on 16 March 2022.
The red and blue lines show temperature and dewpoint temperature profiles, respectively. The gray
curve represents the ascending path of the most unstable parcel. The yellow background line, sloped
at a 45◦ angle, denotes temperature lines.

Horizontal distributions of composite reflectivity, from observations that were recorded
every 6 min, distinctly illustrate the evolution of the MCSs (Figure 4). The convection line
was initiated northwest of Huaihua (not shown), some distance from site, in the afternoon
at ~0630 UTC (LST = UTC + 8); it developed quickly into a leading convective line accom-
panied by stratiform structures 2 h later (Figure 4a) and moved gradually east-southeast
(Figure 4b–d). During the intensifying stage (0900–1200 UTC), the convective and stratiform
areas expanded rapidly (compare Figure 4a,b). During the mature stage (1200–1500 UTC),
the leading edge was marked by deep and intense convective cells, accompanied by heavy
rainfall (Figure 5). The other typical features are a cold pool defined by a temperature drop
of larger than 2 ◦C, and a transition zone with lower radar reflectivity, parallelly located
right behind the leading convective line (Figure 6a–c). The linear MCS began to weaken
at around 1530 UTC, and a gradual decrease in mesoscale organization was observed in
the radar reflectivity data (Figure 4d). In this study, we focused on the mature stage of the
squall line.
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Figure 4. Radar mosaic showing radar reflectivity (dBZ) at (a) 0900 UTC, (b) 1200 UTC, (c) 1400 UTC,
and (d) 1530 UTC on 16 March 2022. The triangle denotes the location of the S-POL radar.

Figure 5. Spatial distribution of hourly rainfall above 20 mm/h during the mature stage of the squall
line. The time values are given in the legend.
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Figure 6. Temporal evolution of observed and simulated radar reflectivities (dBZ) for the 16 March
2022 squall line case at 1200 UTC (left column), 1300 UTC (middle column), and 1400 UTC (right
column) at an elevation of 3 km. Black contours show the hourly temperature change, indicating the
location of the surface cold pool. The triangle in each panel indicates where S-POL is situated. The
dark gray circles in the first three panels indicate the 150 km range from the radar.

4. Results and Discussion

4.1. General Evaluation of the Simulated Squall Line

First, we examined the essential features of the model-simulated convective system
using the 3 km composite reflectivity data and the hourly temperature variation data from
1200 to 1400 UTC. Overall, the orientation and movement of the squall line produced
by both the MORR and WDM6 schemes resembled the radar observations, but modeled
radar reflectivity values were generally underestimated compared with observations on
the leading convective lines, especially for the MORR scheme (Figure 6d–i). Figure 6 also
shows that the simulated systems advanced southeast earlier than the observed system. In
terms of organizational morphology, both simulations produced a broken, less continuous,
and narrower stratiform area compared with the observed uniform, continuous, and
wide structure, and lacked a distinct low-reflectivity transition zone. The WDM6 scheme
exhibited an hourly temperature drop of about 3 ◦C (Figure 6g−i), which was consistent
with the cold pool intensity. However, the leading edge of the surface cold pool (the −2 ◦C
isotherm) was not trapped behind the maximum radar reflectivity line, as seen in the
observational data, but ahead of the leading convective line. The MORR scheme failed to
generate a substantial cold pool; temperatures decreased by less than 2 ◦C (Figure 6d−f).
This weak cold pool should be associated with inverse-exponential size distribution in the
MORR scheme (as mentioned in Section 2.2), which dominates the rain evaporation rates.

4.2. Evaluation of Polarimetric Signatures
4.2.1. Horizontal Distributions

For comparison of synthetic polarimetric variables (horizontal reflectivity Z, ZDR, and
KDP) with radar observations, we selected simulated samples from the Huaihua radar
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coverage area (dark gray circles in Figure 6a–c, 150 km radius). Figure 7 shows a snapshot
of the observed and simulated Z, ZDR, and KDP at 1300 UTC at an elevation of 3.0 km. The
area classified as a convective region is emphasized by black dots in Figure 7a,d,g. Overall,
the modeled squall line showed a similar spatial distribution for all three polarimetric
variables compared with the observed system, but with a narrower stratiform area and
wider leading convective line. The transition zone, which is characterized by a thin gap of
low Z and ZDR, was not well reproduced in MORR or WDM6. The peak Z value, which
exceeded 60 dBZ in the observations of the leading convective line, was underestimated
in both MORR and WDM6 (~50dBZ), consistent with the characteristics illustrated in
Figure 6. High ZDR values (>3 dB) occurred in the leading convective line; this is a common
polarimetric feature linked to size sorting [13,63], indicating the involvement of large
raindrops. Low ZDR (<1.5 dB) values were observed in the stratiform region (Figure 7b), in
the absence of the intense updraft. The simulated ZDR values for the WDM6 scheme were
in general agreement with the observations, with ZDR values being high near the leading
convective line, and lower in areas away from it, but the high values were distributed more
loosely (Figure 7b,h). In MORR, ZDR showed no discernible pattern of the convective line
(Figure 7e). There was considerable variation in the magnitude of the ZDR values within
the convective region: the simulated peak ZDR value was as high as 6.0 dB for a few grid
points along the leading edge, while the lowest value was only 0.2 dB for the surrounding
points. Nonetheless, the difference in ZDR that distinguishes the DSDs of the convective
and stratiform regions was still evident in MORR.

 

Figure 7. (a,d,g) Radar reflectivity (Z; dBZ), (b,e,h) differential reflectivity (ZDR; dB), and (c,f,i) spe-
cific differential phase (KDP; ◦/km) from (a−c) the S-POL radar observations and the POLARRIS-f
simulations converted from the WRF output using (d–f) MORR and (g–i) WDM6 microphysics
schemes, at 1300 UTC on 16 March 2022 at an elevation of 3 km. The convective region was divided
based on the criteria revised by Powell et al. [59] and is indicated by black dots. The triangle in each
panel indicates where S-POL is situated. Lines A-B in (a), (d), and (g) indicate cross-section lines
of Figure 9.
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The difference between observed and simulated values was less pronounced for KDP
than ZDR (Figure 7c,f,i). The high KDP values produced by MORR and WDM6 were roughly
the same, and the convective line was reproduced, yet the simulated values were generally
lower than the observed values (mostly < 1.5◦/km; Figure 7c,f,i). A few more intense
convective areas (Z > 55 dBZ) in the simulations had KDP values higher than 2.5◦/km
(Figure 7f,i), which agreed more closely with the observations (Figure 7c). Throughout
the stratiform region, both simulations exhibited low (but consistent) KDP compared with
the observations.

To statistically analyze and further evaluate the microphysics of the warm cloud layers,
joint probability density functions (PDFs) in Z-ZDR and Z-KDP space were constructed
and normalized by peaks in frequency. Each PDF encompassed 3 h of radar observations
or POLARRIS-f simulations, covering the Huaihua radar coverage (150 km radius), and
spanning from the surface to 3 km altitude to ensure only liquid drops. Peak frequencies of
the observed Z and ZDR are at 30 dBZ and 0.85 dB for stratiform samples (black contours
in Figure 8a) and 50 dBZ and 2.5 dB for convective samples (colored shading in Figure 8a).
For the radar observations of the convective samples, the modal distribution of Z and ZDR
values with frequencies higher than 30% extended from 43 dBZ to 55 dBZ, and from 1.5
to 3.2 dB, respectively, further supporting the conclusion drawn from Figure 7a,b that the
clouds of the convective region are composed of larger raindrops. For convective samples
in MORR, the simulated Z and ZDR values with frequencies higher than 30% were confined
to ~48 dBZ and ~2.2 dB (Figure 8b), indicating that the modal distributions occupy a
smaller phase space compared to the observations. Despite effectively reproducing the
peaks in frequency of moderate raindrops, MORR fails to capture the frequencies of over
30% of large raindrops in the top right side of the observational phase space. For observed
stratiform precipitation, the distribution of Z and ZDR values with frequencies over 30%
extended from 15 to 38 dBZ, and from 0.2 to 1.2 dB, respectively. The MORR scheme
exhibits high frequencies for large Z and ZDR values that are not observed in reality; values
with frequencies higher than 30% exceeded 40 dBZ and 2.0 dB, implying that the rain rate
and drop sizes in the stratiform region are both exaggerated [64]. By contrast, the modal
distributions of the WDM6 scheme match the radar observations more closely and exhibit
a similarly broad range of Z values for both convective and stratiform regions, despite
an apparent narrower distribution of ZDR for a given reflectivity than the observations.
The WDM6 simulations have a truncated ZDR, which is in agreement with the findings of
earlier studies [19], due to the use of a different shape parameter.

The specific differential phase is highly responsive to the amount of liquid water.
Consistent with the KDP below 0.5◦/km in Figure 7c,f,i, the PDFs obtained from both
observations and simulations for stratiform samples exhibit high frequencies of close to
zero KDP across a broad range of Z values (10 to 40 dBZ) (contours in Figure 8d−f). The
low KDP and similarly low ZDR in both WDM6 and the observational data are indicative
of a low concentration of small- to moderate-sized drops in the stratiform region. The
MORR scheme showed similar KDP but higher ZDR values compared with the observations
of the stratiform region, indicating DSDs with a small number of much larger raindrops
collocated with low water content overall (Figure 8b,e). For convective samples, the modal
distribution of KDP values with a frequency greater than 30% ranged from 0.2 to 2.2◦/km
in the observations; in both simulations, these values were lower than 1.5◦/km, consistent
with the findings shown in Figure 7 and similar to those reported by Putnam et al. [26].
Compared with the observations, the MORR scheme exhibited narrower KDP and ZDR
distributions for a given reflectivity and performed well for moderate convection, further
demonstrating the absence of an adequate quantity of large raindrops in the convective
region. Similarly, the low KDP values in WDM6 indicate that there is an overall bias toward
lower numbers of large raindrops and lower water contents in the two double-moment
model microphysics schemes.
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Figure 8. Joint radar reflectivity–differential reflectivity (Z-ZDR; top) and reflectivity– specific dif-
ferential phase (Z-KDP; bottom) frequency distributions, normalized by maximum frequency, for
1200–1500 UTC (percent, color shadings from 2% to 100% for the convective region; black contours
at 5, 30, 70, and 90% for the stratiform region). (a,d) The S-POL radar observations (below 3 km
elevation) and POLARRIS-f simulations converted from the WRF output using the (b,e) MORR
and (c,f) WDM6 microphysics schemes. The statistics from the simulations were limited to below
approximately 2.75 km. Z was binned from 0 to 60 dBZ every 1 dBZ and both ZDR and KDP were
binned from −0.5 to 4.5 dB (or ◦/km) every 0.05 dB (or ◦/km).

4.2.2. Vertical Cross Sections

Vertical cross sections oriented perpendicular to the squall line can be used to examine
the structure of the system in more detail (Figure 9). The dashed black line in Figure 9
indicates the freezing level, which was obtained from a 1200 UTC sounding at the same
site as S-POL and is located at ~4 km. In the cross sections of Z and ZDR from S-POL
(Figure 9a,b), the trailing stratiform region is split from the leading convective line by a
weak echo transition zone with lower Z and ZDR values. The melting layer in the strati-
form part is marked by a well-pronounced abrupt drop in ZDR with altitude (Figure 9b).
Another notable polarimetric signature is the ZDR column associated with the convective
updraft, which is located at the front of the squall line and extends up to a height of 5 km
(i.e., ~1 km higher than the freezing level). The maximum ZDR (~3.5–4 dB) was concen-
trated between the surface and a height of 2 km (Figure 9b), corresponding to slightly lower
KDP (~1.5–2◦/km) beneath an overhang structure in the KDP profile (Figure 9c), which
indicates a moderate concentration of large raindrops near the ground. This is supposed
to be the result of size sorting, since large raindrops enlarge by acquiring cloud droplets
when falling, whereas smaller drops are carried upwards by the rising air [65]. KDP values
in excess of 1◦/km were observed at the upper part of the ZDR column; this phenomenon,
known as the KDP Column, is attributed to the occurrence of supercooled raindrops or
water-coated hail adjacent to the updraft [66,67]. The overhang of KDP below the freezing
level is associated with high Z values (>60 dBZ), which is likely due to the melting of
graupel and hail into raindrops, thus resulting in increased KDP.
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Figure 9. Cross section of (a,d,g) radar reflectivity (Z; dBZ), (b,e,h) differential reflectivity (ZDR; dB),
and (c,f,i) KDP (◦/km) from the (a–c) S-POL radar and (d–f) MORR and (g–i) WDM6 microphysics
schemes. The dashed black line indicates the freezing level and the black arrows represent wind
(m/s). The black lines in Figure 7 a,d,g indicate the locations of the cross-section plots.

The simulated Z distributions and the coupling of updrafts to high Z values (Figure 9d,g)
are consistent with radar observations. Both schemes also reproduce a ZDR column-like
feature stretching up to the freezing level in the convective core (Figure 9e,h), though the
simulated ZDR columns are narrower and weaker (1.5–2.5 dB) than observed. The MORR
scheme additionally exhibits a ZDR peak (>3 dB; near 28.0◦N, 109.7◦E) near the surface ahead
of the ZDR column, along with a low Z value, suggesting the existence of large raindrops
within a region of weak convection, where this would be unexpected. Previous studies [26,38]
found similar ZDR spikes in MORR and attributed them to the fact that the parameterization
of the rain breakup rate in MORR depends on the value of the mixing ratio [28], so that the
low efficiency of rain breakup in low-precipitation regions with a small mixing ratio could
result in locally large drops. In the stratiform region, the melting layer that manifests as a
decrease in ZDR with height is better captured by MORR than WDM6, though its height is
slightly lower than observed. The KDP columns, which are co-located with the ZDR columns,
are located adjacent to the updraft region in MORR and WDM6 (Figure 9f,i), in agreement
with expectations. The KDP values for the KDP column in both schemes were close to the radar
observation values (0–3◦/km) as with, e.g., [68,69], but neither scheme captured the distinct
KDP overhang structure. As with the ZDR columns, the KDP column in the simulations is
clearly narrower than in the observations, especially in WDM6.
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4.2.3. Composite Vertical Structure

The accurate temporal and spatial modeling of an observed squall line system is
challenging; to further assess the effectiveness of the schemes under study, we produced a
statistical comparison of the simulated polarimetric variables and the radar measurements
for similar storm evolution phases (1200–1500 UTC) using contoured-frequency-with-
altitude diagrams (CFADs) and composite profiles.

The CFADs of Z generated from S-POL radar observations and the MORR and WDM6
schemes for the convective and stratiform regions are shown in Figure 10. Close to the
surface (i.e., below 3 km) in the convective region (Figure 10a–c), the maximum frequency
contours of the MORR and WDM6 schemes (Figure 10b,c) tilt slightly to the right, with
Z values increasing from ~42 dBZ at 3 km to 45–50 dBZ at the surface. Such a negative
slope is not visible in the radar data (Figure 10a). Nevertheless, these simulated Z values
(45–50 dBZ) near the surface are still slightly lower than the observed (50 dBZ). For the
middle-upper levels (above 4 km) of the convective region, the observed and simulated
Z values at the frequency maximum both decrease sharply with height. This fingerprint
is associated with ice growth processes, suggesting precipitable particles increase in size
by deposition, aggregation, or riming [24,70]. In the stratiform region (Figure 10d–f), the
simulated Z exhibits a broader distribution throughout the altitude layer compared with
observations, extending to around 45 dBZ (and >45 dBZ in WDM6) at a height of 6 km,
with values between 30 and 45 dBZ occurring frequently below the freezing level, which is
an overestimate of about 5 dBZ. Another distinct discrepancy between the model and radar
stratiform Z CFADs occurs below 2 km, with a significantly negative slope in the frequency
contours at reflectivity thresholds > 40 dBZ near the surface in simulations (Figure 10e,f).

 

Figure 10. Contoured frequency by altitude diagrams (CFADs) for reflectivity over (top panels)
convective and (bottom panels) stratiform regions, from (a,d) S-POL radar and the (b,e) MORR and
(c,f) WDM6 microphysics schemes. The time period of the analysis is 1200–1500 UTC.

Figure 11a,b show the vertical profiles of median Z values and the interquartile
range for each altitude layer. The median Z values for the convective region (Figure 11a)
at 12 km (~10 dBZ) are nearly 10 dBZ lower than the radar value (~20 dBZ) for both
MORR and WDM6, indicating the underprediction of convection by both schemes. For the
stratiform region (Figure 11b), the underestimation of median Z values above the −20 ◦C
levels is also evident, suggesting weaker deposition in MORR and WDM6 compared with
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observations, interpreted as a consequence of the weaker residual buoyancy [8] due to
the underprediction of previous convection. However, the median Z values between
the −20 ◦C level and the freezing level, and the increases in those values, were greater
in both schemes than in the radar observations (Figure 11b). These extreme Z values
within 3 km above the freezing level are consistent with the HID classification of snow
aggregates and graupel in the simulations (see Section 4.3 for a detailed discussion) and
indicate exaggerated aggregation and riming [8,20,68]. Also, below 2 km the median profile
increased more rapidly in MORR and WDM6 than in the S-POL radar data—except for
the final 1 km inversion in WDM6 (Figure 11b)—which is consistent with Figure 10e,f and
could be associated with the overestimated collision–coalescence of raindrops [71].

 
Figure 11. Comparison of (a,b) Z, (c,d) differential reflectivity (ZDR), and (e,f) specific differential
phase (KDP) median profiles over (top) convective and (bottom) stratiform regions for S-POL radar
and the MORR and WDM6 microphysics schemes in the sampling period 1200–1500 UTC. Error bars
denote the interquartile range for each altitude layer. The gray dashed lines indicate the 0 ◦C, −10 ◦C,
and −20 ◦C levels as recorded by soundings, with the lowest value at the bottom and the highest at
the top.

The vertical profiles of ZDR and KDP median values and interquartile ranges for radar
observations and the two schemes are compared in Figure 11c–f. The observed convective
ZDR median increases sharply from around 0.4 dB at 1 km above the freezing level to
2.2 dB at the 2 km level and then remains almost constant toward the surface (Figure 11c).
The positive ZDR values above the freezing level are primarily attributable to supercooled
raindrops that are transported by the strong updrafts [10,27]. This is also reflected in the
observed convective KDP (the black line with bars in Figure 11e), which is partially related
to the liquid water content, with an upper quartile value of approximately 0.4◦/km at
1 km above the freezing level. Focusing on the warm cloud layers, MORR and WDM6
reproduce the observed ZDR and KDP profile shapes in the convective region reasonably
well. It is clear that Z, ZDR, and KDP all markedly increase within the initial 1–2 km beneath
the freezing level as a result of melting and subsequent collision–coalescence processes.
Below 2 km, the increases diminish in the observations but are persistent for ZDR in the
two schemes and KDP in WDM6. These findings suggest that the raindrop evaporation
and/or breakup and coalescence processes are largely canceled out in the observational
data, whereas the coalescence process is dominant in both schemes, where the conversion
of cloud drops to raindrops is much more active in the WDM6 scheme, leading to an
increase in KDP [71,72]. However, the ZDR and KDP median values are consistently lower
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throughout the warm cloud layers in the convective region for the two schemes than in the
radar observations, suggesting a significant underestimation of raindrop size and liquid
water content in this region.

The most distinct features of ZDR in the stratiform regions (Figure 11d) are that the
ZDR values and the rates of increase in median ZDR (0.1–1.9 dB) within the warm cloud
layers are highest in the MORR scheme, such that the ZDR maximum is actually close to
the typical value for convection regions (Figure 11c). As mentioned earlier (Figure 8b), this
suggests that MORR exaggerates the size of raindrops in the stratiform region. Meanwhile,
such a dramatic increase in ZDR and a slight increase in KDP below 2 km further support
the conclusion evidenced by the plots shown in Figures 10d–f and 11b that the collision–
coalescence of raindrops in this region is overestimated in the MORR scheme. The rate of
ZDR increase in WDM6 is also higher than that of the radar observations, indicating more
efficient collision–coalescence processes; however, ZDR values are underestimated by about
0.3 dB for the initial 2 km beneath the freezing level in the former. The interquartile ranges
of KDP over stratiform regions in WDM6 exhibit a narrow distribution, peaking at around
0.1◦/km with a slight negative offset in the lowest 1 km, suggesting limited liquid water
content and slightly dominant evaporation processes.

4.3. Statistical Comparison of Hydrometeors

To gain further insight into the differences in microphysical characteristics, we created
stacked frequency by altitude diagrams (SFADs) of HID integrated over mature storm
stages for the radar and model data (Figure 12). The probability-based analysis aids in miti-
gating the ambiguities of the HID algorithm and ascertains the predominant hydrometeor
type in specific vertical layers [10,16].

The HID SFAD for the observed convective rain (Figure 12a) is marked by a large
percentage of heavily rimed particles (hail, low- and high-density graupel) above the
freezing level, with the highest proportion reaching almost 100% between the –20 ◦C
level and the freezing level and still accounting for ~15–65% above the –20 ◦C level.
Although both the MORR and WDM6 schemes tend to produce similar distributions of
rimed particles, MORR predicts negligible amounts of hail. Both MORR and WDM6
significantly underestimated the fractions of high-density graupel at the mid-levels (28%
and 39% vs. 63% on average) and low-density graupel at the upper levels (17% and 16%
vs. 29% on average; Figure 12a,c,e). These discrepancies suggest much more active ice-
phase processes in the observed convection, especially the riming processes of ice particles
collecting liquid/supercooled drops between the freezing and −10 ◦C levels. The more
efficient riming process and subsequent melting in the S-POL observations commonly
result in larger quantities of graupel and stronger raindrop growth within the melting layer,
which advances high proportions of big drops (40%) below the melting layer (Figure 12a).
By contrast, less than 20% of hydrometeors in the convective samples were determined to be
large drops in the two schemes (Figure 12c,e). According to Leinonen and von Lerber [73],
the number and size of the melted raindrops vary with the degree of riming. Rime can trap
a considerable quantity of meltwater due to its porous structure, whereas if the particles
are unrimed or lightly rimed the meltwater is instantly visible when the melting begins,
resulting in a lower melting rate.

For the stratiform samples, ice crystals and aggregates each account for almost 50% of
the hydrometeors above the freezing level in the S-POL radar observations (Figure 12b),
whereas aggregates dominate in the MORR and WDM6 schemes (Figure 12d,f) except at the
upper levels (above 11 km) where high fractions of ice crystals are observed. Additionally,
simulations from both MORR and WDM6 tend to overestimate the graupel fractions at
the mid-levels compared with the observed HID SFADs (Figure 12b,d,f; 36% and 43%
vs. 7% on average) as also reflected in the biases in Z at these altitudes (Figure 11b). In
stratiform regions, these rimed aggregates may be left over from collapsing convection [8].
In principle, there are three ways to induce a high bias in reflectivity if the particles are
overly dense, numerous, or oversize. Due to their large size, a large fraction of snow
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aggregates would be expected to dominate the radar signal in this layer, but their fractions
are similar among the three stratiform regions. It should be noted that the snow density
assumed by the MORR and WDM6 schemes (and correspondingly in the forward simulator)
is 100 kg/m3, which is much smaller than the assumed density of more rimed graupel
(400 and 500 kg/m3). It appears likely that the overestimation of Z values in simulations is
due to either the larger assumed graupel density or a larger graupel fraction. As expected,
a rain layer of drizzle and moderate-sized drops (indicated by RN in Figure 12) is also
observed in the stratiform region, as well as a melting layer largely composed of wet snow
rather than graupel (Figure 12b). However, wet snow, an indicator of a melting layer [8],
only accounts for around 10% in MORR and less than 5% in WDM6. Below the melting
layer in the MORR simulation, an appreciable increase in moderate-sized drop fraction
occurs at the lowest 2 km level, indicating enhancing warm rain growth processes in this
layer, which may explain the distinct increases in the polarimetric radar variables at this
altitude (Figure 11b,d,f).

 

Figure 12. Hydrometeor identification frequency by height for convective (left) and stratiform (right)
regions from (a,b) S-POL radar and the (c,d) MORR and (e,f) WDM6 microphysics schemes during
1200–1500 UTC. DZ = drizzle, RN = rain, CR = ice crystals, AG = aggregates, WS = wet snow,
VI = vertical ice, LDG = low-density graupel, HDG = high-density graupel, HA = hail, BD = big
drops/melting hail. The 0, −10, and −20 ◦C levels are indicated by gray dashed lines, as in Figure 11.
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Note that the depth and microphysical processes of warm cloud layers of the squall
line vary by region [5,38] and season [11] and can strongly influence the potential for
intense rainfall. The balanced warm-rain processes for the squall line from central China,
as outlined earlier, are consistent with the findings in East China [11]. However, the coales-
cence process is weaker because the depth of the warm cloud layer in spring is shallower
than in summer (~4 km vs. 5 km). Many problems still exist in the simulation, such as the
weaker intensity of the cold pool in MORR compared to WDM6. This result is different
from the findings of Qian et al. [31] for a squall line in southeast China under a weak-
forcing environment but is consistent with those of Zhou et al. [38] for a merger-formation
bow echo under the same conditions. The source of these scheme biases requires further
investigation. There are some uncertainties that could have an impact on the findings of
the present study. For instance, the radar forward operator, which converts model output
data into simulated polarimetric variables, contains uncertainties. Assumptions must be
made regarding the aspect ratio, orientation, and shape of the particles in order to calculate
scattering properties. This information is not usually included in the model and often limits
the simulation of polarization variables above the melting layer.

5. Conclusions

In this study, we compared polarimetric radar variables derived by the WRF and
POLARRIS-f models and the corresponding hydrometeor species with radar observations
and retrievals for a severe squall line observed over central China on 16 March 2022.
Two double-moment microphysics schemes, MORR and WDM6, were tested, and both
simulations were able to capture the major structure of the squall line, including the leading
convective line and the trailing stratiform structure and a cool pool, despite the absence of
the transition zone with low Z and low ZDR. However, the dominant polarimetric features
and microphysical variability simulated in both schemes differed considerably from the
polarimetric radar observations.

The model-simulated drop size distributions (DSDs) present realistic differences in
patterns between convective and stratiform regions, but for convective regions they produce
lower frequencies of large drops and lower liquid water content than observed. Conversely,
the high Z and ZDR values in stratiform regions indicate that drop size was overestimated
in the DSDs for stratiform rain within the MORR scheme.

Both simulations reproduce the classical polarimetric signatures of the observed ZDR
and KDP columns, which are colocated with convective updrafts, though the corresponding
widths are narrower than those in the radar observations due to underpredicted convection.
Weaker convective updrafts are incapable of lofting enough supercooled raindrops up
to the levels of subfreezing temperatures to produce the wider ZDR and KDP columns
as observed.

Ice-phase processes were underestimated in the convective region, particularly riming
processes. The highest median Z values were observed in the radar data at all vertical levels,
positive values of ZDR and KDP were evident above the freezing level, and the highest
fractions of graupel and hail were observed between the –20 ◦C level and the freezing
level, indicating active riming processes of ice particles collecting liquid/supercooled
drops. By contrast, Z values were lowest in MORR between the −20 ◦C and 0 ◦C levels,
followed by WDM6; this underestimation of Z is consistent with the results obtained from
the comparison of the degree of riming, where MORR predicts negligible amounts of
hail and underestimates the occurrence of high-density graupel at the mid-levels similar
to WDM6. The limited degree of riming can lead to reduced fall speeds and melting
rates and, consequently, sequentially lower frequencies of large drops and lower liquid
water content in WDM6 and MORR than the radar observations, even though warm-rain
collision–coalescence processes are overestimated in both schemes.

As for stratiform rain, both schemes underpredict deposition above the −20 ◦C levels,
producing a lower ice crystal fraction and lower Z values, and are unable to reproduce a
melting layer consisting mainly of wet snow as observed. We believe that the overprediction
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of Z values associated with graupel between the –20 ◦C level and the freezing level is a
consequence of higher assumed graupel densities in MORR and WDM6 or larger graupel
fractions. This is also an important determinant in the overprediction of raindrop size by
MORR below the melting layer. In addition, collisional growth in warm-rain processes is
slightly dominant in MORR, while the raindrop evaporation behavior in WDM6 partially
offsets the overestimation of ice-phase processes and produces ground DSDs that more
closely resemble the radar observations.
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Abstract: Weather radars commonly suffer from the data-missing problem that limits their data
quality and applications. Traditional methods for the completion of weather radar missing data,
which are based on radar physics and statistics, have shown defects in various aspects. Several deep
learning (DL) models have been designed and applied to weather radar completion tasks but have
been limited by low accuracy. This study proposes a dilated and self-attentional UNet (DSA-UNet)
model to improve the completion of weather radar missing data. The model is trained and evaluated
on a radar dataset built with random sector masking from the Yizhuang radar observations during
the warm seasons from 2017 to 2019, which is further analyzed with two cases from the dataset.
The performance of the DSA-UNet model is compared to two traditional statistical methods and a
DL model. The evaluation methods consist of three quantitative metrics and three diagrams. The
results show that the DL models can produce less biased and more accurate radar reflectivity values
for data-missing areas than traditional statistical methods. Compared to the other DL model, the
DSA-UNet model can not only produce a completion closer to the observation, especially for extreme
values, but also improve the detection and reconstruction of local-scale radar echo patterns. Our
study provides an effective solution for improving the completion of weather radar missing data,
which is indispensable in radar quantitative applications.

Keywords: weather radar; missing data; data completion; deep learning

1. Introduction

Modern weather radars are powerful tools in today’s real-time weather monitoring.
Thanks to their high spatial resolution and short scanning interval, radars can usually
obtain more comprehensive and finer-grained observations in regions than rain gauges
and satellites. Despite the advantages of radars, they suffer from the data-missing problem
that limits their data quality. A significant cause of radar missing data is beam blockage,
which occurs when radar beams are obstructed by terrain objects like mountains and
buildings, resulting in wedge-shaped blind zones behind the objects. Beam blockage is
more likely to arise at low elevations, which are most useful for precipitation estimation
because lower-elevation radar observations are nearer to the ground [1]. Therefore, this
problem directly limits the application of radars in regions with large elevation variations,
such as mountainous regions.

Plenty of methods have been explored to solve the data-missing problem mainly
caused by beam blockage. A direct solution is to install the radar on the mountaintop
and use negative elevation angles. This approach was proven to gain much higher detec-
tion of precipitation systems at all ranges [2,3] but was limited by the expensive cost of
transportation, installation, and maintenance [4]. Another solution is to refer to a nearby
unobstructed radar. However, the density of radar networks in mountainous areas is often
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not enough. Take the China Next Generation Weather Radar (CINRAD) network as an
example. It was reviewed that for low elevations (1 or 2 km), the effective detection ranges
of the CINRAD network can hardly cover each other in areas with complex terrains, such
as Qinghai–Tibet Plateau and Yunnan–Guizhou Plateau [5].

Other studies shift their perspectives to unobstructed vertical observations from the
same instrument. Researchers have established models to describe the change in radar
reflectivity with altitude, known as the vertical profile of radar reflectivity (VPR) [6–9]. The
VPR can be deduced and calibrated from various-elevation radar reflectivity and other
atmospheric observations and then applied to the extrapolation of low elevations or even
ground level. A limitation of VPR methods is the locality and temporal variability in VPR,
which increases the difficulty of their generalization in diverse combinations of regions and
seasons, especially for isolated convective storms [6,10].

The mechanism of radar beam propagation has also attracted researchers’ interest.
Radar beam propagation is highly influenced by the local topography, which can be
described by the high-resolution digital elevation model (DEM). The obstructed reflectivity
can be estimated by calculating the power loss because of beam shielding under certain
atmospheric conditions based on the geometrical relationship between radar beams and
topography [11–14]. DEMs can also be applied to radar beam blockage identification and,
therefore, can serve as a preprocessing of VPR methods [15,16]. The limitations of DEM-
based methods include the impact of anomalous propagation (such as super-refraction and
sub-refraction) and microscale terrain features (such as buildings and vegetation).

Besides the above methods based on weather radar physics, researchers have also
applied statistical methods to radar data interpolation and correction. Yoo et al. [17]
applied the multivariate linear regression method to correct the mean-field bias of radar
rain rate data. Kvasovet al. [18] proposed a bilinear interpolation method to enrich radar
imaging details for better real-time radar data visualization. Foehnet al. [19] compared and
evaluated several spatial interpolation methods in geostatistics for radar-based precipita-
tion field interpolation, including inverse distance weighting, regression inverse distance
weighting, regression kriging, and regression co-kriging. Although these studies have
promoted the progress of radar interpolation and correction, statistical methods that can
effectively improve radar data completion are still insufficient.

In recent years, deep learning (DL) has made rapid progress and has been success-
fully applied in various fields. Deep learning methods have shown prominent advan-
tages over traditional methods in hydrological and meteorological applications, includ-
ing runoff forecasting [20], precipitation nowcasting [21–23], quantitative precipitation
estimation [24,25], cloud-type classification [26], tropical cyclone tracking [27], etc. Several
researchers have made attempts to apply deep learning models in radar missing data
completion. Yinet al. [10] split an occlusion area into several sections and filled the radar
echoes in different sections using a multi-layer neural network with different parameters.
However, the method in this study is unsuitable for large-range data-missing situations.
Geiss and Hardin [28] proposed a deep generative model for solving the data-missing
problem caused by beam blockage, low-level blind zone, and instrument failure. However,
since the method in this study focuses more on image fidelity, it has a larger bias than
traditional data completion methods in terms of data completion accuracy.

This study proposes a dilated and self-attentional UNet (DSA-UNet) model to improve
the quality of radar missing data completion. The model is built based on the popular
U-Net [29] and adopts dilation convolution and self-attentional modules to improve per-
formance. Our DSA-UNet model is compared with several effective methods in relative
studies, including the multivariate linear regression (MLG) method, the bilinear inter-
polation (BI) method, and the UNet++ GAN model [28], based on several widely used
evaluation metrics. The rest of this article is organized as follows: Section 2 introduces
the data and the study area. Section 3 illustrates the architecture of the DSA-UNet model,
the baseline methods, the evaluation metrics, and the experimental settings. Section 4
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displays and analyzes the results of the experiments. Section 5 discusses the findings from
the results. The conclusions of this study are summarized in Section 6.

2. Data and Study Area

The radar observations in this study are collected from one of the S-band CINRAD
radars located in Yizhuang, Beijing, China. Figure 1 illustrates the details of the Yizhaung
radar. It has a maximum detection range of 460 km, a radial resolution of 1 km, and an
azimuthal resolution of 1°, covering the entire area of Beijing, Tianjin, and Hebei, as well
as parts of Liaoning, Shandong, Shanxi, Henan, and Inner Mongolia. It works with the
VP21 volume scan mode, with a scanning interval of 6 min and a total of nine elevation
angles (0.5°, 1.5°, 2.5°, 3.5°, 4.5°, 6.0°, 10.0°, 15.0°, and 19.5°). It was observed that the
beam blockage mainly occurs in the northwest direction of the detection area because of
the surrounding topography, from the azimuth of 255° to 5° in the elevation of 0.5°. The
radar observations on rainy days during warm seasons (from May to September) from
2017 to 2019 were selected, containing 86 rainy days and 17,666 plan position indicator
(PPI) scans in total.

Figure 1. Details of the Yizhuang S-band radar. (a) The location and the detection range of the
Yizhuang radar. (b) Beam blockage range at 0.5° of the Yizhaung radar. The radar observations at the
elevation angle of 0.5° are totally blocked in the black areas from the azimuth of 255° to 5°, while in
the white areas, the 0.5° observations are available.

To help understand the data-missing problem caused by beam blockage more intu-
itively, we plotted a rough zonal terrain profile along the latitude line passing through
the Yizhuang radar (the blue line in Figure 1a, marked with “A,B”), which depicts the
topography along the profile and the blockage of radar beams (Figure 2). For radar beams
of higher elevation angles, such as 1.5° and 2.5°, the radar beams will never be blocked by
the terrain, so the observations at these elevation angles are visible. However, radar beams
of 0.5° will be blocked by a mountain with the local maximum altitude point near the radar
site, which leads to a large blocked area behind the mountains and a short visible radial
distance in front of the mountains.
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Figure 2. A rough zonal terrain profile along the latitude line passing through the Yizhuang radar.
The location of the Yizhuang radar is marked with a red circle. The terrain along the profile is drawn
in black lines and filled in grey. The radar beams are represented by orange, blue, and green lines,
corresponding to the elevation angles of 0.5°, 1.5°, and 2.5°, respectively. The orange dashed line and
the orange-filled region illustrate that radar beams of 0.5° are blocked by the mountain peak near the
radar site, leading to a large data-missing area.

3. Methods

3.1. Model Architecture

The architecture of DSA-UNet is illustrated in Figure 3. The model follows the U-Net
structure, which can be divided into an encoder and a decoder. The encoder accepts the
multi-elevation reflectivity and the corresponding mask as its input (orange rectangle),
which are compressed into a tensor with the shape of C × H × W (channel, height, and
width). The input tensor is processed with a feature recombination block (1 × 1 convolution,
orange arrows) before being fed into four sequential downscaling blocks (red arrows). The
feature maps are halved in dimensions H and W and doubled in dimension C through
every downscaling block. The downscaling blocks are followed by four dilated convolution
blocks (violet arrows) to capture the multi-scale information aggregation of the encoding
feature maps [30]. The decoder consists of four upscaling blocks (green arrows) and a
1 × 1 convolution block (orange arrow), similar to the encoder. One difference is that the
decoding feature maps of the first two upscaling blocks are processed with two additional
self-attentional blocks (black arrows) to learn patterns using cues from all feature locations
for image generation or completion [31]. Each decoding feature map is concatenated by the
encoding feature map of an equal scale copied from the encoder through skip connections
(grey arrows). The sizes of encoding and decoding feature maps are also marked out next
to the rectangles, which will be explained in the following subsection. The DSA-UNet
model has about 18.17 million trainable parameters in total.

The structures of the downscaling blocks and upscaling blocks are shown in Figure 4.
The downscaling blocks consist of double convolutional blocks, each including a 3 × 3
convolution layer, a batch normalization (BN) layer, and a rectified linear unit (ReLU)
layer. The first 3 × 3 convolution layer serves as the downscaling operator, which
reshapes the input tensor from C × H × W to 2C × H

2 × W
2 . The feature maps keep the

same size in the following layers. The upscaling operation in the upscaling blocks is
implemented by a 3 × 3 transpose convolution layer instead of the 3 × 3 convolution
layer in downscaling blocks.
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Figure 3. The architecture of DSA-UNet. The intermediate feature maps, scaling blocks, and other
modules are represented with rectangles and arrows in corresponding colors. The legend can be
found in the lower right corner.

Figure 4. The structures of the downscaling blocks (a) and upscaling blocks (b). The light-blue and
yellow rectangles denote the input and output feature maps, and the dark-blue rectangles denote the
neural network layers.
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The structure of the self-attentional blocks is shown in Figure 5. The input tensor is
flattened and fed into three independent 1 × 1 convolution layers. The feature maps of the
first two convolution layers are combined through a dot product and a softmax layer to
generate an attention map that records a full relationship between all pixels in the spatial
dimensions. It is then multiplied by the feature map from the last 1 × 1 convolution and
transferred to the original size.

Figure 5. The structure of the self-attentional blocks. The yellow rectangles denote the input and
output feature maps, and the dark-blue rectangles denote the neural network layers.

3.2. Data Processing and Dataset Construction

The radar raw data were first processed with a quality control process, which is always
implemented in weather monitoring applications to eliminate systematic observation errors
of radars. The processed radar data had a minimum value of −33 dBZ, which indicates clear
air, and a maximum value of 69 dBZ, which indicates an extreme amount of precipitation
particles. The processed radar reflectivity values were clipped between 0 and 70 dBZ and
scaled to the range of 0–1 with the linear min–max normalization. The lower bound of the
min–max normalization was 0 dBZ because, according to several Z-R relations, when the
radar reflectivity is lower than 0 dBZ, the estimated precipitation is lower than 0.1 mm,
which can be regarded as none precipitation [32]. This clipping operation has also been
applied in some related studies [28,33]. As we introduced in Section 2, the original radar
data have a size of 360° × 460 km with a resolution of 1° × 1 km in the polar coordinate
system centered at the Yizhuang radar site. Considering that the radar beams broaden with
distance and altitude and the phase of precipitation particles changes above the melting
layer [10], the radar data are restricted to a maximum distance of 80 km and a maximum
elevation angle of 3.5°.

The dataset for training and evaluation is built based on radar data of 1.5°, 2.5°, and
3.5° because the data quality of 0.5° observations is limited by considerable beam blockage.
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Observations at these three elevation angles are inputted into the model, and the 1.5°
observations are set as the training target. To simulate varying degrees of data-missing
situations, a series of random sector masks are generated for the 1.5° observations, where
the values of each mask are filled with zero in data-missing regions and one elsewhere.
The location of the masked area is randomly determined for each 1.5° observation. The
azimuthal distance of the masked area is also randomly sampled from 10° to 40°. The radial
distance of the mask is fixed to 80 km. The random sector mask is also regarded as part of
the input to provide necessary information about the locations of missing pixels for the
neural network. The model’s output is split by the mask and merged with the input, which
can be described by

X̂ = M  X + (1 − M)F (X), (1)

where X and M represent the input radar image tensor and the mask; F represents the
neural network; F (X) and X̂ represent the raw output and the final output of the neural
network; and the symbol  represents the element-wise product operation. Besides the
mask of the 1.5° observation, two additional masks filled with one were also fed into
the neural network to let it understand that the 2.5° and 3.5° radar observations serve as
auxiliary information but not the training target. The channel sizes of the input and output
tensors are 6 and 1, respectively.

In deep learning tasks, structured data are usually converted into a tensor format
in a Cartesian coordinate system for convolutional neural networks. This is reasonable
for convolution operations in most image completion tasks because of the translation
invariance in convolution operators, while for the polar coordinate system, where the
elements are in sequential order along the azimuth direction, the head (0°) and the tail
(359°) elements are geographically adjacent but are far apart from each other in the tensor.
Therefore, an additional padding operation to both the head and the tail of the tensor is
necessary. For a tensor at a certain time step, the elements within 0°–20° are attached to the
tail of the tensor; meanwhile, those within 339°–359° are padded before the head, which
indicates that the azimuthal size of the tensor is expanded to 400. The radial size of the
tensor is 80 since its radial distance is 80 km and its radial resolution is 1 km. Therefore,
the full sizes of the input tensor and the output tensor are 6 × 400 × 80 and 1 × 400 × 80,
respectively, as shown in Figure 3.

The random sector masks were also used to augment the dataset for better training.
Each 1.5° observation is linked to four random sector masks with different locations and
ranges. In this way, the size of the dataset was expanded to 4 times the original size. The
augmented dataset with a total of 70,664 samples was sorted in chronological order and
was then split into the training set (45,225 samples), validation set (11,306 samples), and
test set (14,133 samples).

3.3. Baseline Methods

The multivariate linear regression (MLG) method, the bilinear interpolation (BI)
method, and the UNet++ GAN model were selected as the baseline methods. The MLG
method is one of the most basic statistical methods for multivariate correlation analysis.
The BI method is a non-parametric statistical interpolation method for multi-dimensional
variables, which is widely used in image processing. The UNet++ GAN model directly
aims at the radar data completion task, which was designed based on the conditional
generative adversarial network [34] and UNet++ [35].

For the MLG method, observations from all the elevation angles that are above
1.5° (including 2.5°, 3.5°, 4.5°, 6.0°, 10.0°, 15.0°, and 19.5°) were used to fit the 1.5°
observations. For the BI method, the unmasked values in the 1.5° observations served as
the source for interpolating masked values. The UNet++ GAN model shares the same
dataset and input–output settings as the DSA-UNet model. Its architectures and details
can be found in [28].
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3.4. Training

The original L1 loss function is a commonly used training goal for deep learning
models, which is defined as the average of the absolute difference between the prediction
and the observation. It usually works when the data follow a balanced or regular
distribution, for example, a Gaussian distribution. However, the dataset in this study was
not in this condition. According to the principle of Doppler weather radars, observations
with higher radar reflectivity are usually instructive to heavier precipitation or more
fierce storm events. Although the data were collected during rainy days in warm seasons,
the number of high-intensity values was significantly fewer than that of low-intensity
values, causing the dataset to be highly unbalanced. Figure 6 describes the distribution
of the raw radar reflectivity data. It can be observed that the density of radar reflectivity
values over 40 dBZ was significantly less than that of values below 10 dBZ. Since the
original L1 loss function was unsuitable for the highly unbalanced dataset, we designed
a weighted L1 loss function for training the DSA-UNet model to overcome this problem,
as shown in Equation (2). The weighted L1 loss of the prediction (X) and the observation
(X̂) is scaled by the weight (W) determined by the observation’s value. Larger weights
are set for intervals with higher intensity but lower distribution density based on the
characteristics of the data distribution. The correspondence between the radar reflectivity
values and the weights is exhibited in Figure 6.

L(X̂, X; W) = mean
ρ,θ

W  ∣∣X̂ − X
∣∣ (2)

Figure 6. The distribution histogram of the raw radar reflectivity data. The green bar indicates that
values below 0 dBZ were clipped, while the blue bar indicates that values between 0 and 70 dBZ
were retained. The weights of the L1 loss function for different intervals were placed above the bars.

The learnable parameters of each layer in the DSA-UNet model were initialized with
the default initialization scheme and then trained by an Adam optimizer [36] with a learning
rate of 0.0001 and a max iteration of 100,000. The parameters of the DSA-UNet were updated
via backpropagation after each iteration with the mini-batch training skill. The dataset was
segmented into mini-batches with a size of 32. The validation set with 11,306 samples was
employed for optimal parameter selection. The early stopping training skill and the L2
regularization were adopted to avoid the overfitting of the neural network. The generators
and discriminators of the UNet++ GAN model shared the optimizer, the learning rate, and
the mini-batch size. It was trained using a combination of the original GAN loss and the
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weighted L1 loss. The optimal parameters of the MLG method were also approximated
with an Adam optimizer because the dataset was too large for directly computing the
theoretical solution. All of the experiments in this study were implemented on an Nvidia
Tesla A100 graphic card based on the open-source machine learning framework PyTorch.
Other detailed settings are listed in Table 1.

Table 1. Training settings of the DSA-UNet model, the UNet++ GAN model, and the MLG method.
The non-parametric BI method is not included.

Model Learning Rate
Applying Sector

Masks
Applying

Azimuthal Padding
Loss Function

Regularization
Weight Decay

DSA-UNet 0.0001 Yes Yes Weighted L1 0.0001

UNet++ GAN 0.0001 Yes Yes BCE + weighted
L1 0.01

MLG 0.001 No No L2 0

3.5. Evaluation Metrics

Since the aim of this study is to better complete the missing regions of the radar obser-
vations, the evaluation metrics should be capable of measuring the differences between the
predicted values and the observed values in the masked areas. The mean bias error (MBE),
the mean absolute error (MAE), and the root mean squared error (RMSE) are popular
evaluation metrics for estimating the differences or bias. However, since the area of the
annular sector grows rapidly as the radial distance increases, the evaluation metrics must
take the variability of pixel area into consideration. The above metrics were weighted by
a tensor W determined by the areas of the annular sectors at different radial distances,
as defined in Equation (3). The weighted metrics (WMBE, WMAE, and WRMSE) were
selected as the evaluation metrics, which are defined in Equations (4)–(6).

Wρ,θ =
(ρ + 1)2 − ρ2

R2Θ
(ρ = 0, 1, · · · , R) (3)

WMBE(X̂, X; M, W) = ∑
ρ,θ

W  (M  X̂ − M  X
)

(4)

WMAE(X̂, X; M, W) = ∑
ρ,θ

W  ∣∣M  X̂ − M  X
∣∣ (5)

WRMSE(X̂, X; M, W) =

√
∑
ρ,θ

W  (M  X̂ − M  X
)2 (6)

In the above equations, X represents the observation and X̂ represents the prediction;
M represents the sector mask;  represents the Hadamard product; the operator ∑ρ,θ
represents the sum operation along the radial (ρ) and the azimuthal (θ) axis; and R and
Θ are the sizes of radial range (80) and azimuthal range (400 for DL models and 360 for
traditional methods). The weight tensor W meets the condition of ∑ρ,θ W = 1. Considering
the unbalance of the dataset, we selected 10, 20, 30, 40, and 50 dBZ as the thresholds for the
above metrics to better evaluate the bias in different radar reflectivity intervals.

In addition to the above metrics, we selected the PPI plots, the contrast scatter (CS)
plots, and the power spectral density (PSD) plots as evaluation methods for further analysis.
The PPI plot is a radar display that gives a conical section of radar observations at a certain
elevation angle. The CS plot describes the correlation between the predicted values and the
observed values. The PSD plot presents the relationship between the power and frequency
of a signal, which was used in radar nowcasting studies to evaluate the performance of
representing diverse-scale weather patterns [22,23]. The above metrics and plots were also
used for model evaluation in related studies [10,28,33].
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4. Results

4.1. Performance on the Test Set

The overall data completion performance of the DSA-UNet and its baseline models
was evaluated on the test set with a total of 14,133 samples. The WMAE, WRMSE, and
WMBE of the models in different radar reflectivity intervals were calculated and are
illustrated in Figure 7. It can be observed that the MLG method produced the highest
overall WMAE and WRMSE, as well as the lowest overall WMBE that was far below zero,
implying a severe systematic underestimation problem. The BI method’s systematic error
indicated by the WMBE was lower than the MLG method, and so did its absolute error
indicated by the WMAE and the WRMSE. DL models (UNet++ GAN and DSA-UNet)
performed better than the MLG method and the BI method when comparing the overall
metrics. Among all of the models, the DSA-UNet reached the lowest overall WMAE, the
lowest overall WRMSE, and the nearest overall WMBE to zero, which indicated that the
DSA-UNet could generate a lower error between its predictions and the observations than
the other baseline models.

Figure 7. The evaluation metrics of the models on the test set. The horizontal axis represents different
radar reflectivity intervals and the overall performance. The vertical axis represents the evaluation
metrics, including WMAE (a), WRMSE (b), and WMBE (c).
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The evaluation metrics for different radar reflectivity intervals were also illustrated
in Figure 7. Generally, the results show that the DL models and the traditional methods
performed the best for radar reflectivity in 0–10 dBZ, but the worst in 30–40 dBZ, where all
of them met a notable systematic underestimation. Their errors were close to each other
when the radar reflectivity was low (0–20 dBZ). Specifically, the MLG method and the BI
method had even lower errors than DL models for radar reflectivity in 0–10 dBZ. However,
when the radar reflectivity exceeded 20 dBZ, the errors of the baseline methods grew
rapidly as the radar reflectivity increased. Their performance became considerably worse
when the radar reflectivity was higher than 30 dBZ. Compared to the baseline methods, the
DSA-UNet model achieved significantly lower WMAE and WRMSE as well as the absolute
value of WMBE, especially for high radar reflectivity values, which suggests that it had a
lower systematic error and a lower absolute bias than its baseline methods.

4.2. Case Study

The data completion performance of the DSA-UNet and its baseline models was
also evaluated and further analyzed with two cases that were selected from the test set.
Case 1 was selected from a moderate-intensity widespread rainfall event at 13:00 UTC on
22 July 2019. Case 2 was selected from a high-intensity squall line event at 15:00 UTC on
6 August 2019. The evaluation was implemented only for the masked areas.

4.2.1. Case 1

The PPI images of the 1.5° radar reflectivity observation and the predictions generated
by the DSA-UNet and its baseline models for Case 1 are shown in Figure 8. The azimuthal
boundaries of the sector mask for Case 1 were set as 315° and 355°, which were marked with
dashed lines. The PPI image of the observation shows that the observed radar reflectivity
of the masked area was mostly between 20 and 40 dBZ. The azimuthal boundaries of the
sector mask for Case 1 were set as 270° and 310°, which were marked with dashed lines.
The PPI image of the observation (Figure 8a) shows that the observed radar reflectivity
of the masked area was mostly between 20 and 40 dBZ. It can be found that the radar
reflectivity values predicted by the MLG method (Figure 8b) were significantly lower than
the observed values, implying a severe systematic underestimation. The prediction of the
BI method (Figure 8c) in the masked area showed an abnormal striped feature that did not
exist in the observation. This was because when the beams in the radial direction were
completely blocked, the values were interpolated merely along the azimuthal direction
based on the visible values outside the mask boundaries. The predictions of the DL models
were closer to the observation compared to the MLG method and the BI method. However,
the predictions of the UNet++ GAN model (Figure 8d) had fewer local-scale patterns than
the observation, or to be more intuitive, its prediction was smoother and blurrier. The
prediction of the DSA-UNet model (Figure 8e) was the closest to the observation. It not only
had the most similar reflectivity shape to the observation but also had the richest local-scale
details. The merged PPI image of the DSA-UNet model’s prediction also appeared more
seamless, which indicates that the predicted values in the masked area and the observed
values in the unmasked area were intensely close.
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Figure 8. The PPI images of the 1.5° radar reflectivity observation and the predictions for Case 1.
(a) Observation; (b) prediction of MLG; (c) Prediction of BI; (d) prediction of UNet++ GAN;
(e) prediction of DSA-UNet. The boundaries of the sector mask are marked with dashed lines.

Figure 9 shows the evaluation metrics of the models for Case 1. The results show that
the BI method had the highest overall systematic error and absolute error, especially for
radar reflectivity over 30 dBZ. The MLG method produced the second-highest systematic
error absolute error. Its performance was limited by a systematic underestimation of high
radar reflectivity values that were over 30 dBZ. The overall error of the UNet++ GAN model
was lower than the traditional methods but was higher than the DSA-UNet model. The
UNet++ GAN model had the worst performance for radar reflectivity below 10 dBZ, but it
significantly exceeded the traditional methods for high radar reflectivity. The DSA-UNet
model achieved the best performance for most radar reflectivity intervals except 0–10 dBZ
where it was a bit inferior to the BI method.

99



Remote Sens. 2023, 15, 4568

Figure 9. The evaluation metrics of the models for Case 1. The horizontal axis represents different
radar reflectivity intervals and the total performance. The vertical axis represents the evaluation
metrics, including WMAE (a), WRMSE (b), and WMBE (c).

Figure 10 shows the CS plot of the observed and predicted values in the masked areas
for Case 1. In a CS plot, the horizontal axis and the vertical axis represent the observation
and the prediction, respectively. The points on the 45° line imply perfect predictions, yet
the points below or beyond this line signify underestimations or overestimations. The
colors of the points are determined with the probability density provided by the Gaussian
kernel density estimation. The results show that most of the observation values lay in
the range of 20–40 dBZ, which is consistent with Figure 8. The MLG method (Figure 10a)
and the BI method (Figure 10b) were limited by a significant underestimation and a high
prediction variance, respectively. The scatters of the UNet++ GAN model (Figure 10c) and
the DSA-UNet model (Figure 10d) were distributed closer to the 45° line, indicating their
better performance than traditional methods. The scatters of the DSA-UNet model were
more tightly concentrated on the 45° line than the UNet++ GAN model, which indicates
that the DSA-UNet model could achieve a lower prediction systematic error and variance
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for Case 1. It can also be found that the DL models tended to overestimate low radar
reflectivity values in 0–10 dBZ, which is consistent with Figure 9.

Figure 10. The CS plot of the observed and predicted values in the masked areas for Case 1. (a) MLG;
(b) BI; (c) UNet++ GAN; (d) DSA-UNet.

To further explain the above results, we plotted the PSDs of the observation and
predictions along the radial and azimuthal axes in the masked areas for Case 1, as shown in
Figure 11. In this study, the horizontal axis of the PSD plot represents the spatial wavelength,
which is positively correlated with the spatial scale. The vertical axis represents the PSD
at certain spatial wavelengths. A higher PSD generally indicates richer local details when
the spatial wavelength is short. Generally, both radial and azimuthal PSDs decrease as
the spatial wavelength reduces. When the spatial wavelength is long (over 16 km or 16°),
the radial and azimuthal PSDs of the DL models’ predictions were closer to the PSD of
the observation than those of the MLG method and the BI method. When the spatial
wavelength is shorter than 4 km or 4°, the PSDs of the MLG method exceeded the PSDs of
the DL models. The radial PSD of the BI method is significantly dissimilar to the azimuthal
PSD due to a lack of radial information. The DSA-UNet model reached a higher PSD
than the UNet++ GAN model, especially at short spatial wavelengths, indicating that
the DSA-UNet model had a better capability of reconstructing local-scale spatial patterns,
which is consistent with the results in the PPI plot and the CS plot.
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Figure 11. The PSD plot of the observation and predictions in the masked areas for Case 1. (a) Radial
PSD; (b) azimuthal PSD.

4.2.2. Case 2

The PPI images of the observation and the predictions for Case 2 are shown in
Figure 12. The sector mask covered an azimuthal range of 40°–80°. Figure 12a shows
that a local high-intensity radar echo region was located in the northeast of the masked
area, with a maximum reflectivity of over 50 dBZ, while in the remaining part of the masked
area, the radar reflectivity was much lower (below 10 dBZ). The MLG method (Figure 12b)
and the BI method (Figure 12c) met the systematic underestimation and striped pattern
problems, respectively, which were also found in Case 1. The DL models made better
predictions than the above two methods in the aspect of both general echo intensity and
shape. The DL models made better predictions than the above two methods in the aspect
of both general echo intensity and shape. The UNet++ GAN model (Figure 12d) fell behind
the DSA-UNet model (Figure 12e) in predicting the location of the peak value.
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Figure 12. The PPI images of the 1.5° radar reflectivity observation and the predictions for Case 2.
(a) Observation; (b) prediction of MLG; (c) prediction of BI; (d) prediction of UNet++ GAN;
(e) prediction of DSA-UNet. The boundaries of the sector mask are marked with dashed lines.

Figure 13 shows the evaluation metrics of the predictions of the models for Case 2.
Similar to Case 1, the BI method had the highest overall prediction error in all of the
metrics (WMAE, WRMSE, and WMBE), especially when the radar reflectivity was over
40 dBZ. The performance of the MLG method was also unacceptable due to its high bias
and underestimation of high radar reflectivity. In contrast to the traditional methods, both
DL models could produce better overall performance. However, the performance of the
UNet++ GAN model was inferior to the MLG method when the radar reflectivity was
below 20 dBZ. Instead, the DSA-UNet model achieved a lower systematic and absolute
error for both high and low radar reflectivity than all of the other baseline models.

103



Remote Sens. 2023, 15, 4568

Figure 13. The evaluation metrics of the models for Case 2. The horizontal axis represents different
radar reflectivity intervals and the total performance. The vertical axis represents the evaluation
metrics, including WMAE (a), WRMSE (b), and WMBE (c).

Figure 14 displays the CS plot of the observed and predicted values in the masked
areas for Case 2. Different from Case 1, the radar reflectivity values of the observation in
Case 2 were mainly clustered in the 0–10 dBZ. Meanwhile, the amount of observed values
over 50 dBZ in Case 2 was larger. The scatters of the MLG method (Figure 14a) deviated
from the 45° line, especially for observed values that were over 30 dBZ, indicating the
aforementioned underestimation problem for high-intensity radar data completion. The
scatters of the BI method (Figure 14b) were dispersed over the entire radar reflectivity value
ranges, which confirms its poor performance, as shown in Figures 12 and 13. The scatters
of the UNet++ GAN model (Figure 14c) were more centered around the 45° line, but this
model tended to overestimate the values. The DSA-UNet model (Figure 14d) produced
a better prediction than the other baseline models. The scatters of the DSA-UNet model
were the most concentrated in the 45° line and had the highest cluster density (dark-red
points). This model also had a systematic overestimation for low radar reflectivity values
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(below 10 dBZ), but this problem was remarkably alleviated for moderate and high radar
reflectivity (over 20 dBZ).

Figure 14. The CS plot of the observed and predicted values in the masked areas for Case 2. (a) MLG;
(b) BI; (c) UNet++ GAN; (d) DSA-UNet.

The radial and azimuthal PSDs of the predictions and the observation in the masked
area for Case 2 were calculated and exhibited in Figure 15. Similar to Case 1, the MLG
method achieved the highest radial and azimuthal PSD among all of the methods. The
azimuthal PSD of the BI method is significantly lower than the other models. Meanwhile,
the radial PSD of the BI method oscillates as the radial wavelength reduces due to a lack of
radial information. The UNet++ GAN model performed the worst, particularly for short
spatial wavelengths that imply local-scale patterns. The DSA-UNet model achieved higher
radial and azimuthal PSDs than the UNet++ GAN model, which indicates that this model
was more qualified for capturing and completing diverse-scale patterns in data-missing
areas. However, there is still a gap between the PSDs of the DSA-UNet model and the MLG
method for very short spatial wavelengths.
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Figure 15. The PSD plot of the observation and predictions in the masked areas for Case 2. (a) Radial
PSD; (b) azimuthal PSD.

5. Discussion

In Section 4, the data completion performance of our proposed DSA-UNet model was
evaluated on the entire test set and further analyzed with two cases, where the model was
also compared with the MLG method, the BI method, and the UNet++ GAN model. The
evaluation methods consisted of three quantitative metrics (WMBE, WMAE, and WRMSE)
and three diagrams (PPI plot, CS plot, and PSD plot) for further analysis of the case study.

Generally, the quantitative evaluation results revealed that the DL models performed
better than the traditional methods. The MLG method benefited from its simple principle
and strong interpretability, which was based on the assumption that the radar reflectivity
values at different elevation angles were linearly correlated. However, the MLG method ran
into a systematic underestimation problem, especially for areas with high radar reflectivity
values, which made it unsuitable for completing radar observations in heavy rainfall
scenarios. The non-parametric BI method was found to suffer from a striped pattern
problem that caused the method to fail in high-reflectivity data completion. Compared to
the traditional methods, the general errors between the DL models’ predictions and the
observations were significantly lower; the predicted intensity and position of high-value
areas were also more accurate.
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It was also revealed that the DSA-UNet model could bring improvements to radar
missing data completion over the current DL model proposed in previous research. Com-
pared to the UNet++ GAN model, the DSA-UNet model achieved better performance
on both the entire test and the case study. It provided the completion closer to the real
observation in almost all radar reflectivity intervals, especially for extreme values, which
play an important role in signifying severe storms. The PPI and PSD diagrams in the case
study illustrated that the DSA-UNet model could improve the modeling and reconstruction
of local-scale radar echo patterns over the UNet++ GAN model. These improvements were
possibly facilitated by the dilated convolutional modules and self-attentional modules in
the DSA-UNet model, which could strengthen the model’s ability to learn local and subtle
information from the data. The improvements of the DSA-UNet model over the baseline
models are beneficial for finer weather monitoring.

Although the DSA-UNet model has shown a surpassing performance over the baseline
models in weather radar data completion, it still meets several limitations. The quantitative
results and the CS diagrams revealed that the DSA-UNet model tended to slightly overesti-
mate low radar reflectivity values, especially for values below 10 dBZ, which was similar
to the UNet++ GAN model. Under this overestimation, the model has the potential to
involve abnormal clutters when completing missing data. Furthermore, the PSD diagrams
indicated that although the DSA-UNet was able to narrow the gap between the predicted
and observed radar reflectivity values in local-scale radar echo patterns, it still lagged
behind traditional statistical methods, suggesting that there is still room for improvement.
The above drawbacks were also noticed and summarized as the blurry effect of DL models
in studies on precipitation nowcasting [22,23,37]. The improving methods proposed in
these studies might be constructive for eliminating the drawbacks of the DSA-UNet model.
Moreover, the data in this study were collected only from warm seasons, which were
mainly composed of convective precipitation samples instead of stratiform precipitation
samples. Meanwhile, the lowest elevation angle of the radar data for the experiments was
selected as 1.5° instead of 0.5°, which was unavailable because of severe beam blockage
and noises. The generalization of the DSA-UNet model to different precipitation types and
lower elevation angles still needs further assessment.

6. Conclusions

The data-missing problem is one of the major factors that limit the quality of weather
radar data and subsequent applications. Traditional solutions based on radar physics and
statistics in previous studies have shown obvious defects in various aspects. Researchers
have applied deep learning (DL) techniques to the completion of weather radar missing
data, but their methods were limited by low accuracy. In this study, we proposed a dilated
and self-attentional UNet (DSA-UNet) model to improve the completion quality of weather
radar missing data. The model was trained and evaluated on a radar dataset built from the
Yizhuang radar observations during the warm seasons from 2017 to 2019. It was further
analyzed with two cases based on three quantitative metrics (WMBE, WMAE, and WRMSE)
and three diagrams (PPI plot, CS plot, and PSD plot). Several baseline methods and models
were selected and compared with our proposed DSA-UNet model, including the MLG
method, the BI method, and the UNet++ GAN model. The major findings of this study are
as follows:

• The DL models can outperform traditional statistical methods by reducing the general
errors between their predictions and the observation and by predicting the intensity
and position of high radar reflectivity values more accurately.

• Compared to the UNet++ GAN model, the DSA-UNet model can produce a better
completion that is closer to the real observation in almost all radar reflectivity intervals,
especially for extreme values.

• The DSA-UNet model can better capture and reconstruct local-scale radar echo pat-
terns over the UNet++ GAN model.
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• The limitations of the DSA-UNet model include the slight underestimation of low
values and the local-scale details.

This study provides an effective solution for improving the completion of weather
radar missing data and also reveals the great potential of deep learning in weather radar
applications. Future studies will improve the network architecture to eliminate the current
drawbacks and incorporate radar data that contain various precipitation types and lower
elevation angles to assess the generalization of our method.

Author Contributions: Conceptualization, A.G. and G.N.; methodology, A.G.; software, A.G.; vali-
dation, A.G.; formal analysis, A.G.; investigation, A.G.; resources, A.G.; data curation, A.G.; writ-
ing—original draft preparation, A.G.; writing—review and editing, H.C. and G.N.; visualization,
A.G.; supervision, G.N.; project administration, G.N.; funding acquisition, G.N. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Key Research and Development Program
of China (2022YFC3090604) and the Fund Program of State Key Laboratory of Hydroscience and
Engineering (61010101221).

Data Availability Statement: The data in this study is unavailable due to privacy restrictions. The
codes for the experiments are available at https://github.com/THUGAF/Radar-Completion (ac-
cessed on 14 September 2023).

Acknowledgments: The authors gratefully acknowledge the anonymous reviewers for providing
careful reviews and comments on this article.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

CINRAD China Next Generation Weather Radar
VPR Vertical profile of radar reflectivity
DEM Digital elevation model
DL Deep learning
DSA Dilated and self-attentional
MLG Multivariate linear regression
BI Bilinear interpolation
GAN Generative adversarial network
MBE Mean bias error
MAE Mean absolute error
RMSE Root mean squared error
WMBE Weighted mean bias error
WMAE Weighted mean absolute error
WRMSE Weighted root mean squared error
PPI Plan position indicator
CS Contrast scatter
PSD Power spectral density
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Abstract: The solid-state transmitters are widely adopted for weather radars, where pulse com-
pression is operated to provide the required sensitivity and range resolution. Therefore, effective
sidelobe suppression strategies must be employed, especially for weather observation. Currently,
many methods can suppress the sidelobe to a very low level in the case of point targets or uniformly
distributed targets. However, in strong convection weather process, the weather echo amplitude
lies in a wide dynamic range and the main lobe of weak target is prone to being contaminated by
the sidelobe of strong target, causing the degradation of weather fundamental data estimation, even
generating artifacts and affecting the quantitative precipitation evaluation. In this paper, we propose
a novel strategy which is the further processing of a general pulse compression radar to mitigate the
effects of sidelobes. The proposed method is called the predominant component extraction (PCE), in
which the re-weighting processing is operated after pulse compression, and then the echo of each bin
is optimized and its energy will approach the real targets in each bin. It can improve the estimation of
weak signals or even eliminate the artifact at the edge of the scene. Numerical simulation experiments
and real-data verifications are implemented to validate the feasibility and superiority. It is noted that
the proposed method has no requirement on the transmitted waveform and can be realized only by
adding a step after pulse compression in the actual system.

Keywords: weather radar; sidelobe suppression; pulse compression

1. Introduction

Pulse compression technology can meet the requirements of high-range resolution
and long-range detection at the same time, which has been widely used in weather radar
systems with the application of solid-state transmitter.

The commonly used pulse compression waveforms include linear frequency modula-
tion (LFM), nonlinear frequency modulation (NLFM), phase coded signal [1–3], etc. The
LFM waveform which is the most widely used has high-range sidelobe (−13.26 dB) after
matched filtering. A window function is often utilized to suppress range sidelobes, result-
ing in the expansion of the main lobe and the loss of the signal to noise ratio (SNR) [4,5].
However, the reflectivity of precipitations ranges from about −10 to 75 dBZ [6,7] and the
radar sensitivity is one of the most critical factors for distributed precipitations in weather
observations. Therefore, in order to reduce the SNR loss of LFM signal after windowing,
the NLFM waveform was developed decades ago. The concept of NLFM waveform was
put forward by Fowle and Brandon in 1959 [8,9]. The energy spectrum (i.e., the square
of the spectrum) of NLFM can be designed as a window function, namely, the effect of
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windowing can be transferred to signal modulation, and then the matching filter can be
performed directly to achieve low sidelobe performance, in order to avoid the SMR loss
caused by windowing processing [7]. The peak sidelobe ratio (PSLR) can be reduced to
below −40 dB after matched filtering, which can achieve the same results of window
function weighting processing [10]. At the same time, NLFM has better detection rate
characteristics and more accurate range detection performance than LFM [11].

However, some researches have shown that the adjacent reflectivity in extreme weather
targets varies dramatically and the gradient often ranges from 30 to 40 dBZ within 1 km, some-
times even reaching 55 dBZ/km [12–14]. In order to realize the detection of weather targets
with high gradient-reflectivity phenomenon, a very effective sidelobe suppression strategy
must be adopted to avoid the artifact caused by range sidelobes [15], while the sidelobe
performances of NLFM waveform are not enough to meet the accuracy of the quantitative
detection of distributed scatterers, and the sidelobe needs to be further suppressed.

To reach the ultra-low range sidelobes, a mismatch filter can be used at the cost of
losing SNR [5,16,17]. Argenti et al. [12] designed transmit waveforms and receive filters
using the quadratic nonlinear optimization method by minimizing both PSLR and inte-
grated sidelobe ratio (ISLR) of the waveform at the receiver output, and the PSLR and
ISLR can reach −80 dB and −70 dB, respectively with the loss of resolution degradation.
Beauchamp et al. [18] discussed the optimal design of pulse compression waveform/filter
pairs for use with near-nadir spaceborne radar in low Earth orbit for the observation of
clouds and precipitation. It was demonstrated that the LFM waveforms provide superior
performance over NLFM waveforms for the application subject to unmitigated Doppler
shifts and the PSLR and ISLR could reach −56 dB and −34 dB, respectively using the
minimum integrated sidelobe (ISL) mismatch filter. Kurdzo et al. [15] designed NLFM
waveform using a genetic algorithm that took into account individual system characteris-
tics and performance measures in order to design a low SNR loss (high power efficiency)
waveform for use with weather radar utilizing pulse compression. In addition, the wave-
form was implemented in the X-band transportable solid-state dual-polarized weather
radar system (PX-1000), and the PSLR and ISLR in the actual system can reach −52 dB
and −37 dB, respectively. For weather radar, the received signal of one radar resolution
volume (RRV) is the sum of scattered signals from the ensemble of particles in this RRV.
Therefore, the velocities of the particles in RVV continuously distribute in an interval and
the Doppler spectrum or power spectral density (PSD) generally has Gaussian shape [19].
The spectral moments, i.e., reflectivity, mean radial velocity, and spectrum width (ZVW) are
called fundamental weather parameters and are defined as the top three order moments of
PSD. Bharadwaj et al. [20] used frequency diversity waveform and minimum ISL mismatch
filter for pulse compression. The simulation results show that the estimation errors of fun-
damental weather parameters, i.e., reflectivity, mean radial velocity, and spectrum width
(ZVW) for weak targets will increase when the reflectivity changes greatly, which had
been verified using CASA (Center for Collaborative Adaptive Sensing of the Atmosphere)
X-band dual-polarized radar.

The sidelobe of the point target from the above-mentioned pulse compression filters
can be compressed to a very low level, while it can only be achieved for point or uniformly
distributed targets, such as layered precipitation. In the process of strong convection
weather phenomenon, the reflectivity will appear as a large gradient, and the sidelobe
energy in the strong target range bins will be superimposed into the weak target range bins.
When the reflectivity gradient reaches a certain range (such as 40 dBZ/km), the sidelobe
energy of the strong target is equal to the main lobe energy of the weak target which will
be contaminated, causing the unacceptable estimation errors of ZVW, even generating false
targets and affecting the estimation of precipitation [15,21].

Let us assume that the probing of the meteorological object is conducted with frequency
modulated waveform (such as LFM or NLFM) at a fixed antenna orientation. After pulse
compression of the return signal by the optimal filter (OF), such as matched filter or mis-
matched filter, some realization of a random echo-signal is received. This signal is a mixture
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of the amplitudes of the main and sidelobes of the response of the OF, resulting in the increase
in estimation error of ZVW. To isolate the reaction of the OF only by the main lobe, in this
paper, an artificial realization of the echo-signal is initially modeled. This realization consists
only of rectangular pulses with amplitudes obtained by smoothing the amplitudes of the real
realization of the echo-signal, which is called basic waveform transfer function (B-WTF) to
describe the main lobe signals. Then, considering the parameters of the waveform and OF,
the frequency-modulated pulse with amplitudes obtained by smoothing the amplitudes of
the real realization of the echo-signal is modeled to describe the sidelobe signals, which is
called pulse-compression waveform transfer function (PC-WTF) and is supplemented by the
main lobe signals. Thereafter, the cost function of each range bin can be constructed by B-WTF
and PC-WTF for the calculations of optimal extraction matrix (OEM) for re-weighting of
original real realization. The optimized echoes are used to calculate the relevant data quality
index according to some criterions. If the criterions are not satisfied, the iteration procedure is
repeated with slightly modified initial conditions until the matching criterion is met. Through
the above-mentioned procedure, the predominant signal in each range bin can be extracted
from the mixed signal and the sidelobes are cleared.

This method is called the predominant component extraction (PCE), which is operated
after pulse compression for a normal weather radar with LFM or NLFM waveform to
improve sidelobe suppression. After PCE processing, the energy of optimized echoes will
be close to the main lobe energy of the actual targets, achieving the sidelobe suppression of
the weather targets with large gradient reflectivity.

When the reflectivity gradient is large, the proposed method can obtain the weak target
signal and reduce the estimation errors of ZVW. This optimization effect is particularly
clear for the large gradient reflectivity scene in the typhoon or other strong convective
weather phenomenon. In addition, this method can significantly improve the data quality
and eliminate the artifact at the edge of the scene, which contributes to obtaining the
accurate estimation of precipitation and other parameters. It is worth mentioning that
the proposed method is operated after pulse compression, and it has no requirement
on the radar transmitting waveform, which can be realized by adding a step after pulse
compression in the actual radar system.

This article is organized as follows. The optimization model is presented in Section 2.
Section 3 describes the calculation of the OEM and the iterative optimization process of
the PCE. Some results of simulations and verifications based on the real measured data are
shown in Section 4. The discussion is drawn in Section 5. Finally, Section 6 provides the
conclusion and research perspectives.

2. Problem Statement and Modeling

Considering one range-direction signal, the normalized echo matrix of unit amplitude
transmitted modulation waveform, such as LFM or NLFM after pulse compression is defined
as the pulse-compression waveform transfer function (PC-WTF) sMF, and the normalized
echo matrix with unit amplitude rectangular-pulse transmitted waveform is defined as the
basic waveform transfer function (B-WTF) sSP, which are expressed as follows:

sMF =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

sMF,1
sMF,2

...
sMF,k

...
sMF,K

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

sMF,1(1), sMF,1(2), · · · , sMF,1(p), · · · , sMF,1(P)
sMF,2(1), sMF,2(2), · · · , sMF,2(p), · · · , sMF,2(P)

...
sMF,k(1), sMF,k(2), · · · , sMF,k(p), · · · , sMF,k(P)

...
sMF,K(1), sMF,K(2), · · · , sMF,K(p), · · · , sMF,K(P)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)
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sSP =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

sSP,1
sSP,2

...
sSP,k

...
sSP,K

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

sSP,1(1), sSP,1(2), · · · , sSP,1(p), · · · , sSP,1(P)
sSP,2(1), sSP,2(2), · · · , sSP,2(p), · · · , sSP,2(P)

...
sSP,k(1), sSP,k(2), · · · , sSP,k(p), · · · , sSP,k(P)

...
sSP,K(1), sSP,K(2), · · · , sSP,K(p), · · · , sSP,K(P)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)

where each row of (1) and (2) represents the range direction sample sequence and P is the
number of range bins of echoes. Each column represents the normalized amplitude of each
target applied to the corresponding range bin, and K is the number of targets. In contrast to
point targets, the entire radar beam is usually filled with weather targets; therefore, the number
of range bins can be treated as equivalent to the number of targets, i.e., P = K. In addition,
sMF,k is the PC-WTF of the kth target and sSP,k is the B-WTF of the kth target as follows:

sMF,k = [sMF,k(1), sMF,k(2), · · · , sMF,k(p), · · · , sMF,k(P)] (3)

sSP,k = [sSP,k(1), sSP,k(2), · · · , sSP,k(p), · · · , sSP,k(P)] (4)

Due to the absence of sidelobes of rectangular-pulse waveform and the presence of
sidelobes of pulse compression waveform, sMF,k(p) and sSP,k(p) which are the members of
(3) and (4), respectively, can be expressed as follows:

sMF,k(p) =
{

a0 p = k
b(p) p �= k

(5)

sSP,k(p) =
{

a0 p = k
0 p �= k

(6)

where a0 is the main lobe value after pulse compression of kth target’s echo, k is the range
bin position where the main lobe is located, and b(p) is the sidelobe value at other range
bin locations of kth target’s echo.

Therefore, the values of a0 and b(p) are only related to the waveform parameters, the
radar system parameters, and the method of pulse compression, which are independent
of the target characteristics. In particular, as long as the waveform parameters, the radar
system parameters, and the method of pulse compression are determined, sMF and sSP will
be determined. Considering the PC-WTF as an example, its schematic diagram is shown in
Figure 1:

Figure 1. The schematic diagram of PC-WTF.

Let us assume that A =
[
A1 · · · Ak · · · AK

]
is the backscattering coefficient

matrix, and Ak is the complex backscattering coefficient of the kth target, where the ampli-
tude is related to the scattering intensity of the target and the phase includes the information
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of doppler velocity of the target. The received echo is the superposition from all targets as
shown in Figure 2, which can be expressed as (7):

P0 = AsMF

=

[
K
∑

k=1
AksMF,k(1),

K
∑

k=1
AksMF,k(2), · · · ,

K
∑

k=1
AksMF,k(P)

]
(7)

Figure 2. The schematic diagram of received echoes.

It can be seen from (7) that the energy of each range bin is the superposition of the
main lobe of this bin and the sidelobes from other bins. When the energy of the extra added
sidelobes is comparable to that of the original main lobe, it will affect the estimations of
ZVW. Therefore, it is considered to re-optimize the signal of each range bin and its energy
will approach that of the actual targets in each bin; therefore, we call it the predominant
component extraction (PCE) method.

Considering the operation of the weighting processing of the signals in each range
bin, we can obtain the weighted signal as follows:

Pest = A
(

Wopt  sMF

)
(8)

where Wopt is the OEM with K × P dimension as follows:

Wopt =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

wopt,1(1) wopt,2(1) · · · wopt,p(1) · · · wopt,P(1)
wopt,1(2) wopt,2(2) · · · wopt,p(2) · · · wopt,P(2)

...
... · · · ... · · · ...

wopt,1(k) wopt,2(k) · · · wopt,p(k) · · · wopt,P(k)
...

...
...

...
...

...
wopt,1(K) wopt,2(K) · · · wopt,p(K) · · · wopt,P(K)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9)

where wopt,p =
[
wopt,p(1) · · · wopt,p(K)

]T is the optimization coefficient of pth range bin
and  is Hadamard product. The signal is weighed using wopt,p in each range bin in order
that the energy will approach that of the actual targets. Next, an optimization problem is
established by B-WTF to obtain Wopt.

Since the echoes of rectangular pulse signal only have the main lobe and there is no
sidelobe to be superimposed in the other range bins, the calculated signal energies are
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optimal in theory. Therefore, we can use rectangular waveforms to model the expected
output echo:

Pexp = AsSP

=

[
K
∑

k=1
AksSP,k(1),

K
∑

k=1
AksSP,k(2), · · · ,

K
∑

k=1
AksSP,k(P)

]
= [A1sSP,1(1), A2sSP,2(2), · · · , APsSP,P(P)]

(10)

In order to obtain Pexp, Wopt needs to meet the following condition:

min
Wopt

p
(
Wopt

)
s.t. p

(
Wopt

)
= ‖Pest − Pexp‖2

2

(11)

To date, the optimization model has been established.
It should be noted that, in this paper, we assume that the echoes are entirely from

meteorological targets and the patterns of targets are determined by the backscattering
coefficient matrix and waveform transfer function. However, the PCE method can be
operated regardless of how the target is distributed. We do not need to know the value of
backscattering coefficient matrix in advance when modeling PC-WTF and B-WTF. As long
as the waveform and radar system parameters are determined, PC-WTF and B-WTF can be
modeled, which can be realized in the actual processing process. After modeling PC-WTF
and B-WTF, what we need to solve is how to optimize (7) to make it closer to (10), which
needs to be realized by the PCE method proposed in this paper. The block diagram of the
PCE algorithm is presented in Figure 3.

Figure 3. The block diagram of the PCE algorithm.
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3. Optimization Process

3.1. The Solution of OEM

After obtaining the above-mentioned optimization model, Wopt can be calculated by
the derivative of p

(
Wopt

)
and setting the derivative to zero. Next, we will introduce the

calculation process in detail.
Expanding (11), we can achieve:

min
Wopt

p
(
Wopt

)
s.t. p

(
Wopt

)
= ‖A

(
Wopt  sMF

)
− AsSP‖

2

2

(12)

For distributed meteorological targets, P = K can be assumed and A is a matrix that
does not change in one coherent processing interval (CPI). At this time, a unit matrix I

can be introduced to facilitate the derivative calculation of Hadamard product. Then, the
above-mentioned optimization problem can be written as:

min
Wopt

p
(
Wopt

)
s.t. p

(
Wopt

)
= ‖
(

WoptI  sMF

)
− sSP‖

2

2

(13)

Additionally, Wopt can be calculated from
d[p(Wopt)]

dWopt
= 0, as shown in (14), where the

detailed calculation process is in Appendix A.

Wopt =
(

I  sMF  sMFIT
)−1

(I  sMFsSP) (14)

3.2. Iteration Process

After obtaining Wopt, the echoes can be optimized through formula (8). However, the
initial matrix A needs to be known. Thereafter, the data quality can be improved through
iteration. If the actual received echo is Sr, we can express it as:

Sr = AsMF (15)

A can be calculated as:

A =

[(
sT

MF

)−1
ST

r

]T
(16)

Then, the estimated echo by the PCE method can be expressed as:

Sest = A
(

Wopt  sMF

)
(17)

Thereafter, the OEM of (17) is recalculated and optimized iteratively until the stop
criterion is met. Next, we set the appropriate stop criterion to make the data quality meet
the requirements.

Since the proposed method in this paper is not aimed at the point target sidelobe, the
performance of PSLR and ISLR cannot be compared. Therefore, other indicators that can
reflect the data quality need to be set as the stop criterion.

• Data error iteration condition:

The root mean square error (RMSE) reflects the degree of data deviation from the
ground truth. In the quantitative analysis of simulation, the ground truth is given; therefore,
the stop criterions can be set according to the RMSE. The RMSE of one range direction can
be calculated as:

RMSEE =

√√√√ 1
P

P

∑
p=1

∣∣Eest(p)− Egt(p)
∣∣2 (18)
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where Eest represents the ZVW (i.e., reflectivity Zest, radial velocity Vest, and spectral width
West) calculated from the optimized echoes and Egt is the ground truth of ZVW.

Since the energy optimization effect of each range bin is our concern in this paper, we
can set the RMSE of the reflectivity less than a certain threshold ε1 as the stop criterion,
as follows:

RMSEZest < ε1 (19)

• Data fluctuation iteration condition:

In real-data verification, the ground truth cannot be obtained, while the moving
average can be used as the ground truth to calculate SD. Therefore, the SD can reflect the
fluctuation of radar data and we call it data fluctuation, which can be used to set the stop
criterion. The standard deviation (SD) of ZVW in the pth range bin can be calculated by the
data on n range bins before and n range bins after, and the first n range bins and the last n
range bins do not participate in the calculation of SD [22]:

SDp =

√
1

2n+1

2n+1
∑

j=0

(
Ep+j−n − Ep

)2, 0 < n < P
2 , n < p < P − n

Ep = 1
2n+1

2n+1
∑

j=0
Ep+j−n,0 < n < P

2 , n < p < P − n
(20)

where E represents the ZVW (i.e., reflectivity Zest, radial velocity Vest, and spectral width
West) calculated from the optimized echoes. Ep is the moving average calculated from
2n + 1 range bins.

Setting the percentage of data with the SD less than 1 in the total data greater than
ε2 as the stop criterion, we can make the data fluctuation meet the requirements. This
percentage is defined as the data fluctuation qualification rate AR, as follows:

AR =
sum
(
SDp < 1

)
P

× 100% > ε2, 0 < ε2 < 100% (21)

In summary, Algorithm 1 can be summarized as follows.

Algorithm 1: The PCE algorithm

STEP 1: Model the PC-WTF and B-WTF according to the radar system and waveform
parameters.

STEP 2: Calculate Wopt according to (14).
STEP 3: Calculate the initial matrix A according to (16).
STEP 4: Calculate the first optimization echo Sest according to (17) and estimate the spectral

moments, i.e., Zest, Vest, and West.
STEP 5: In the quantitative analysis of simulation stage, calculate the RMSE and AR of Zest and

set the iteration thresholds ε1 and ε2 Judge whether the stop criterion of (19) and (21) are met. In
the real-data verification stage, calculate the AR of Zest and set the iteration threshold ε2 Judge
whether the stop criterion of (21) is met.

STEP 6: Repeat steps 3 to 5 until the stop criterion is satisfied.

4. Results

Before the distributed target simulation, first, the point target scene is simulated and
the performances of PSLR and ISLR of four different pulse compression methods are
compared, i.e., LFM waveform with windowing, LFM waveform with mismatch filtering,
NLFM waveform with windowing, and NLFM waveform with mismatch filtering, wherein
the NLFM signal is constructed according to [23] and the mismatch filter is constructed
according to the method in [24]. Then, the input ZVW is used to simulate one-dimensional
echoes of distributed targets in the range direction. The pulse compression method with the
best performance is used for processing. The pulse pair processing method (PPP) is used for
spectral moment estimation [21]. This processing set can explain the influence of sidelobe
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superposition of distributed meteorological targets. Thereafter, the PCE method is used
and the RMSE and AR are calculated through (18) and (21) to quantitatively analyze the
advantages of the proposed method. Finally, the real in-phase and quadrature-phase (I/Q)
data of an actual supercell from a ground-based weather radar and global precipitation
measurement (GPM) precipitation data are obtained, which are applied to the proposed
method for verification.

4.1. Verifications Based on Numerical Simulation Experiments
4.1.1. Sidelobe Superposition Effects

First, the echo of point target is simulated, and the parameters are shown in Table 1.
The processing results using different pulse compression methods are in Figure 4, where
the window function is Hamming window function.

Table 1. The simulation parameters of point target.

Parameters Values

Frequency (GHz) 13.6
Band width (MHz) 4

Pulse width (μs) 64
Sample frequency (MHz) 16

Target distance (km) 15

Figure 4. The pulse compression results of point target.

The performances of the four pulse compression methods are shown in Table 2, where
“W” refers to the windowing process. It can be indicated that the windowing process will
cause serious SNR loss and the loss of SNR can be mitigated by using NLFM waveform. In
addition, the performances of the combination of NLFM waveform and mismatch filter are
best, which can suppress PSLR and ISLR below −60 dB and −35 dB, respectively.
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Table 2. The performances of the four pulse compression methods.

LFM
(MF + W)

LFM
(WMMF)

NLFM
(MF + W)

NLFM
(WMMF)

PSLR (dB) −53.34 −55.31 −60.97 −67.89
ISLR (dB) −25.66 −27.84 −28.94 −37.23

SNR loss (dB) 6.12 1.84 3.16 0.14

Next, the one-dimensional echoes of distributed targets with different reflectivity
gradients are simulated. The simulation parameters are shown in Table 3, where the SNR
of the input signal is 60 dB. The target number is equal to 350, which is equivalent to
the total range bin number. The range revolution is 37.5 m and the detection distance is
13.125 km. In addition, the weak targets account for 7.5 km and the strong targets account
for 3.6 km. The transmit waveform is NLFM in [23] and the mismatch filter in [24] is
used for pulse compression. The input Z with different gradients is shown in Figure 5. In
addition, the reflectivity, mean velocity, and spectral width can be obtained by the PPP
method in Figures 6–8, respectively.

Table 3. The simulation parameters of one-dimensional echoes of distributed targets with different
reflectivity gradients.

Parameters Values Parameters Values

Frequency (GHz) 13.6 Pulse width (μs) 64
Band width (MHz) 4 Sample frequency (MHz) 16

Accumulation pulse number 64 PRF (Hz) 1860/1395
Target number 350 Gradient of Z (dBZ/km) 15/25/40

Target spectral width (m/s) Randi [1, 5] Target velocity (m/s) Int [−7, 7]

(a) (b) (c)

Figure 5. The input Z with different gradients. (a) Gradient of Z is 15 dBZ/km; (b) gradient of Z is
25 dBZ/km; (c) gradient of Z is 40 dBZ/km.

Although the performance of the pulse compression method is good enough, when
the reflectivity gradient is large (such as 40 dBZ/km), the energy of the sidelobe of the
strong target is equal to or even greater than the energy of the weak target, resulting in the
estimation errors of the ZVW in the weak target area.
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(a) (b) (c)

Figure 6. The reflectivity calculated from unoptimized echoes. (a) Gradient of Z is 15 dBZ/km;
(b) gradient of Z is 25 dBZ/km; (c) gradient of Z is 40 dBZ/km.

(a) (b) (c)

Figure 7. The mean velocity calculated from unoptimized echoes. (a) Gradient of Z is 15 dBZ/km;
(b) gradient of Z is 25 dBZ/km; (c) gradient of Z is 40 dBZ/km.

(a) (b) (c)

Figure 8. The spectral width calculated from unoptimized echoes. (a) Gradient of Z is 15 dBZ/km;
(b) gradient of Z is 25 dBZ/km; (c) gradient of Z is 40 dBZ/km.

4.1.2. Optimization Process

In order to solve the above-mentioned problems, the PCE algorithm is used for each
range bin. The comparison results are shown in Figures 9–11. The RMSE and AR of ZVW
before and after optimization can be calculated through (18) and (21), respectively. The
results are shown in Table 4.
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(a) (b) (c)

Figure 9. The comparison results of reflectivity. (a) Gradient of Z is 15 dBZ/km; (b) gradient of Z is
25 dBZ/km; (c) gradient of Z is 40 dBZ/km.

(a) (b) (c)

Figure 10. The comparison results of mean velocity. (a) Gradient of Z is 15 dBZ/km; (b) gradient of
Z is 25 dBZ/km; (c) gradient of Z is 40 dBZ/km.

(a) (b) (c)

Figure 11. The comparison results of spectral width. (a) Gradient of Z is 15 dBZ/km; (b) gradient of
Z is 25 dBZ/km; (c) gradient of Z is 40 dBZ/km.
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Table 4. The RMSE and AR of ZVW (not optimized/optimized).

Gradient of Z
(ΔZ, dBZ/km)

15 25 40

Z (dBZ)
RMSE (dBZ) 2.65/2.32 3.30/2.34 10.42/4.23

AR (%) 24.57/50.01 32.37/45.66 28.90/28.61

V (m/s)
RMSE (m/s) 2.02/1.14 2.93/1.20 4.13/1.61

AR (%) 39.02/85.84 28.61/82.95 36.99/49.42

W (m/s)
RMSE (m/s) 1.92/0.72 1.99/0.69 2.01/1.56

AR (%) 36.13/50.87 45.66/48.84 39.60/59.54

It can be indicated that the RMSE and AR can be improved by the proposed method.
Moreover, we calculate the RMSE and AR changing with the gradient of reflectivity in the
range of 10~40 dBZ/km. The results are shown in Figures 12 and 13. When the reflectivity
gradient is large (≥30 dBZ/km), the Z and V estimations are seriously deviated from the
ground truth due to the fact that the RMSEs are large. At this time, the data are invalid and
the calculated AR is not referential. The proposed method can greatly reduce the RMSE, in
order that the invalid data can become valid. When the reflectivity gradient is not large
(<30 dBZ/km), the RMSE is acceptable and the data are valid. At this time, we focus on
the results of AR. The ARs of optimized data are more acceptable and the data quality is
effectively improved.

(a) (b) (c)

Figure 12. The RMSE of ZVW changing with the gradient of reflectivity. (a) Reflectivity; (b) mean
velocity; (c) spectral width.

(a) (b) (c)

Figure 13. The AR of ZVW changing with the gradient of reflectivity. (a) Reflectivity; (b) mean
velocity; (c) spectral width.
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In addition, we compared the SNR loss caused by the proposed method. In contrast
to point targets, the distributed targets cannot directly compare the energy of the main
lobe. Therefore, the SNR loss is defined as the mean difference SNR before and after
optimization:

SNRloss =
1
P

P

∑
p=1

[
SNRbe f ore(p)− SNRa f ter(p)

]
(22)

The SNR loss changing with reflectivity gradient is shown in Figure 14. It can be
indicated that with the increase in reflectivity gradient, SNR loss will become serious.
Therefore, the proposed method is to improve the data quality at the cost of loss of SNR.

Figure 14. The SNR loss changing with reflectivity gradient.

4.2. Verifications Based on Real Data
4.2.1. Verifications by Ground-Based Weather Radar Data

The radar is located at WRCP station (32.75◦N, 119.35◦E) with an altitude of 32.3 m
and works in the conical scanning mode with the azimuth angle of 0 to 360 degrees. The
operating parameters are listed in Table 5.

Table 5. The operating parameters of ground-based weather radar.

Parameters Value Parameters Value

Frequency (GHz) 5.5 Peak Power (W) 1710
Antenna gain (dB, T/R) 34/38 Beam width (◦, AZ/EL) 1/3

Noise figure (dB) 3 Pulse number 32
Pulse width (μs) 100 Bandwidth (MHz) 1
Dual PRF (Hz) 900/1200 Elevation angle (◦) 2

Supercells, as one of the important mesoscale weather systems, can form severe
convective weather, such as heavy precipitation, thunderstorm wind, hail, and tornado.
In the radar map, the supercell appears as a tightly organized image of high reflectivity,
which may have a hook echo. The in-phase and quadrature(I/Q) data originated from
a supercell appearing in 22:52 UTC on 17 July 2020. The echo data contained 902 CPI,
32 pulses per CPI, and 652 range gates per pulse. The transmit waveform is LFM and the
matched filtering and Hamming window are used.

The ZVWs of the supercell are shown in Figure 15 and the results after optimization
by PCE are shown in Figure 16. Due to the large scale of the supercell, the contrast result
is not clear in the complete image. Since the proposed method improved the reflectivity
(i.e., echo power) significantly, we enlarged the local reflectivity for comparison as shown
in Figure 17. We can see that the artifacts at the scene edge are basically removed after
optimization and the target edge is clearer due to the fact that the sidelobe is suppressed.
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(a) (b) (c) 

Figure 15. The ZVW of the supercell. ((a) Reflectivity; (b) velocity; (c) spectral width).

     
(a) (b) (c) 

Figure 16. The results after optimization by PCE. ((a) Reflectivity; (b) velocity; (c) spectral width).

  
(a) (b) 

Figure 17. Local reflectivity before and after optimization. ((a) Not optimized; (b) optimized).

The ARs of the ZVW are calculated in Table 6. It can be indicated that the percentages
of ZVW with the SD less than 1 in total data are increased after optimization, which
indicated the effective improvement of the data quality.
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Table 6. The AR of the ZVW.

Z V W

The AR before optimization (%) 62.68 64.90 76.39

The AR after optimization (%) 70.66 70.20 84.54

4.2.2. Verifications by Quantitative Precipitation Estimation (QPE) Data

In order to verify the application value of the proposed method, we use the Z–I rela-
tionship to estimate the precipitation in positions A and B, in which Z is the reflectivity
calculated by the unoptimized data and optimized data, respectively, and I is the precipita-
tion intensity in mm/h. The same Z–I relationship is used for both, which is Z = 70I1.38

fitted from a supercell in [25].
The ground truth of precipitation is the global precipitation measurement (GPM) from

Goddard Earth Sciences Data and Information Services Center (GES) DISK) [26] with a
time resolution of 0.5 h and a spatial resolution of 0.1◦× 0.1◦.

In positions A and B, we select 3 × 3 pixels with an adjacent distance of 10 km. For
each pixel, the reflectivity of the range bins within the four surrounding spatial resolutions
(0.1◦ × 0.1◦) is extracted to calculate the precipitations which are averaged successively,
and the precipitation estimates at the pixel can be obtained. The selected region is shown
in Figure 18. The precipitations at nine pixel points in the two scenes are calculated using
the optimized and unoptimized reflectivity and the results are compared as shown in
Figure 19. Then, the differences between the estimation and ground truth for optimized
and unoptimized data are calculated to obtain the estimation errors as shown in Figure 20.

Figure 18. Selected region for QPE.

(a) (b)

Figure 19. The comparison results of precipitations. (a) Position A; (b) position B.
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(a) (b)

Figure 20. The estimation errors of precipitations. (a) Position A; (b) position B.

It is indicated that the precipitations calculated by the optimized reflectivity are more
accurate and the RMSE is effectively decreased for the convective region (Position A) that
has large gradient reflectivity, which indicates that the proposed method can improve
the quality of precipitation estimation. For the stratified precipitation with low rainfall
(Position B), the improvement effect is not clear. Therefore, the proposed method is more
suitable for strong convection weather targets.

To date, the application value of the proposed method in this paper is illustrated by
the real data of ground-based weather radar and QPE data. This method can eliminate
artifacts at the edge of the scene and improve the data quality of ZVW and precipitation.

5. Discussion

In the numerical simulation experiments, the performances of the combination of NLFM
waveform and mismatch filter are best, which can suppress PSLR and ISLR below −60 dB and
−35 dB, respectively. Then, this pulse compression method is used in the distributed targets
with different reflectivity gradients, while the energy of the sidelobe of the strong target is
equal to or even greater than the energy of the weak target when the reflectivity gradient
is large, resulting in the estimation errors of the ZVW in the weak target area, as shown in
Figures 6–8. It is indicated that the point target performance (such as PSLR and ISLR) of
the pulse compression method is good enough, while it cannot meet the requirement of the
high-gradient reflectivity distributed targets. At this time, if we operate the PCE algorithm
after pulse compression, the weak targets can be reconstructed and the ZVW can be calculated
more accurately, as shown in Figures 12 and 13. In addition, the RMSE and AR results in
Figures 12 and 13 can verify the better performance of the PCE algorithm.

Furthermore, in real-data verification, the ground-based weather radar data and QPE
data are used to validate the feasibility and superiority of the proposed method. First, the
PCE algorithm can eliminate the artifact in the scene and the contour edge of reflectivity
is smoother, as shown in Figure 16. In addition, the percentages of ZVW with the SD less
than 1 in total data are increased after optimization, as shown in Table 6. These results
indicated the effective improvement of the data quality after PCE algorithm. Finally, the
precipitations calculated by the optimized reflectivity are more accurate, especially for
the convective region as shown in Figures 19 and 20, indicating the advancement of the
proposed method in the precipitation estimation.

6. Conclusions

In this paper, a novel sidelobe suppression strategy based on the extraction and
iteration of weather radar called PCE is proposed. The cost function is constructed by
modeling the transfer function of each range bin for the calculations of OPE. Through PCE
processing, the energy of optimized echoes will be close to the main lobe energy of the
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actual targets in this range bin, achieving the sidelobe suppression of the weather targets
with large gradient reflectivity. The proposed method is operated after pulse compression
and it has no requirement on the radar transmitting waveform, which can be realized by
adding a step after pulse compression in the actual radar system.

It is indicated from numerical simulation experiments that when the reflectivity gra-
dient is large, the proposed method can greatly reduce the estimation errors for weak
target, which is at the cost of loss of SNR. When the reflectivity gradient is not large, the
data qualities are also effectively improved. The real-data verifications indicate that the
proposed method can eliminate artifacts at the edge of the scene and improve the data
quality of ZVW and precipitation.

Furthermore, although we only used the measured radar data of supercells to verify
the proposed method in this paper, the method can also be applied to other strong convec-
tive weather phenomenon such as eyewall of a hurricane and a convective cell. These will
be studied in the follow-up work.
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Appendix A

The optimal extraction matrix can be calculated as follows.
According to (13) p

(
Wopt

)
can be expanded as:

p
(
Wopt

)
= ‖
(

WoptI  sMF

)
− sSP‖

2

2

=
[(

WoptI  sMF

)
− sSP

][(
WoptI  sMF

)
− sSP

]T

= ‖
(

WoptI  sMF

)
‖2

2
− 2
(

WoptI  sMF

)
sSP − ‖sSP‖2

2

(A1)

Considering the derivative and setting it to zero, the optimal Wopt can be obtained.
Next, we consider the derivative of each term in:

S = WoptI  sMF

f = ‖WoptI  sMF‖2
2
= S : S

g = 2
(

WoptI  sMF

)
sSP = 2SsSP

(A2)

where “:” represents the matrix inner product.

• Calculation of dS:
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According to the property of the derivative of Hadamard product, dS can be calculated as:

dS =
(

dWoptI
)
 sMF + WoptI  dsMF (A3)

Since sMF is independent of Wopt, we can achieve:

dS =
(

dWopt

)
I  sMF (A4)

• Calculation of df
dWopt

:

According to the properties of matrix inner product and matrix differential [27]:

A : B = tr
(

ATB
)

(A5)

df = tr

[(
df

dX

)T
dX

]
(A6)

Then, df can be calculated from (A4) and (A5):

df = dS : S + S : dS

= 2
(

WoptI  sMF

)
:
[(

dWopt

)
I  sMF

]
= 2
(

WoptI  sMF  sMFIT
)

:
(

dWopt

)
= tr

[
2
(

WoptI  sMF  sMFIT
)T(

dWopt

)] (A7)

Comparing (A7) with (A6), we can achieve:

df

dWopt
= 2WoptI  sMF  sMFIT (A8)

• Calculation of dg
dWopt

:

Similarly, dg
dWopt

can be calculated as:

dg

dWopt
= 2

(
dS

dWopt

)
sSP + 2S

dsSP
dWopt

(A9)

Since sSP is independent of Wopt, we can achieve:

dg
dWopt

= 2
(

d(WoptIsMF)
dWopt

)
sSP

= 2
(

d(WoptI)
dWopt

 sMF + WoptI  dsMF
dWopt

)
sSP

= 2I  sMFsSP

(A10)

In addition, since sSP is independent of Wopt, the derivative of ‖sSP‖2
2 is zero. There-

fore, in combination with (A8) and (A10), the derivative of (A1) can be calculated as:

d[p(Wopt)]
dWopt

= df
dWopt

− dg
dWopt

= 2WoptI  sMF  sMFI − 2I  sMFsSP

(A11)
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Additionally, Wopt can be calculated from
d[p(Wopt)]

dWopt
= 0 and can be expressed as:

Wopt =
(

I  sMF  sMFIT
)−1

(I  sMFsSP) (A12)
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Abstract: The Weather Radar Center (WRC) of the Korea Meteorological Administration (KMA) has
been providing three-dimensional radar wind fields based on the “WInd Synthesis System using
Doppler Measurements (WISSDOM)” in real time since February 2019. Its accuracy is significantly
affected by the quality of the Doppler velocity, such as velocity aliasing. For the de-aliasing of
Doppler velocity, the dual-pulse repetition frequency (dual-PRF) technique is commonly utilized
for commercial Doppler weather radar. The Doppler weather radars of the KMA have extended
their Nyquist velocity up to 132 m s−1 using a dual PRF of 5:4. However, the dual-PRF technique
produces significant noise and loss of radial velocity. Therefore, we developed a technique for noise
cancelation and recovery of radial velocity to improve the quality of WISSDOM wind fields. The
proposed approach identifies and removes speckles of abnormal radial velocity by comparing the
sign of the median radial velocity with the surrounding radar bins. We then recovered the eliminated
radial velocity using median interpolation. To recover the losses of radial velocity over a wide area
using the dual-PRF technique, we used the Velocity Azimuth Display curve-fitting technique. These
techniques are straightforward, preserve spatial gradients, and suppress local extrema. We tested this
technique, verified its performance, and applied it to the operational radar quality control system of
the WRC from August 2021. We concluded that the process helps improve the quality of the radial
velocity and the accuracy of the WISSDOM wind fields.

Keywords: quality control; Doppler weather radar; dual-PRF; radial velocity; noise elimination

1. Introduction

Three-dimensional precipitation and wind information with high spatiotemporal reso-
lution based on nationwide weather radar networks is essential for real-time monitoring
and dynamic analysis of mesoscale severe weather. For a more detailed analysis and
routine weather forecasts, the Weather Radar Center (WRC) of the Korea Meteorologi-
cal Administration (KMA) has provided three-dimensional wind fields, including wind
vectors, convergence/divergence, vorticity, and storm relative helicity, at a horizontal reso-
lution of 1 km over the entire Korean Peninsula since February 2019. The 3D wind fields are
produced every 5 min by real-time implementation of the “WInd Synthesis System using
Doppler Measurements (WISSDOM),” which is developed by National Central University
(NCU) in Taiwan, on a supercomputer system [1,2]. In producing radar wind fields, radial
velocity data are an important factor affecting the quality of wind data as input data for
wind calculations.

Aliasing (or velocity folding) is one of the quality problems with radar radial velocity
for the use of radial winds from Doppler weather radars. Previous studies have corrected
aliased Doppler radar velocity data [3–10]. For the de-aliasing of Doppler velocity, the
dual-pulse repetition frequency (dual-PRF) technique is commonly utilized for commercial
Doppler Weather radar [11,12]. The Doppler weather radars operated by KMA also use a
dual PRF of 5:4, which were all upgraded to dual-polarization radar from 2014 to 2019. In
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addition, the observational variables (such as reflectivity and radial velocity) are generated
by applying signal processing algorithms using raw signal data before passing through
the signal processor, thresholds, and signal quality filters optimized by the observation
strategy. Thus, the Nyquist velocity has been extended up to 132 m s−1, which provides
stable information without velocity folding in the event of severe weather phenomena,
such as typhoons. However, the dual-PRF technique produces significant noise and widely
spaced gates that have no radial velocity data but still contain valid radar reflectivity data,
owing to the limited number of pulse samples used. Therefore, the Doppler weather radars
of the KMA require a quality control process of radial velocity to improve the accuracy of
radar wind.

Holleman and Beekhuis [13] developed a post-processing algorithm for dual-PRF
velocity data, which included comparing each velocity data point of the azimuth scan
with the median velocity calculated from the data point itself and the surrounding data
point to eliminate noise. Joe and May [14] proposed the Laplacian technique to handle
dual-PRF errors and compared it with the median filtering technique. Median filtering is
straightforward and preserves gradients, whereas the Laplacian technique is a detection-
correction scheme that attempts to detect and correct errors. The Laplacian filter is preferred
because it preserves local peaks, whereas the median filter may have problems when the
velocity data straddle the extended Nyquist velocity. Both techniques are robust to missing
and sparse data. Hengstebeck et al. [15] used a Laplacian filter based on Joe and May [14]
within the quality assurance module for the mesocyclone detection algorithm of the German
weather radar network. Park and Lee [16] compared the radial velocity of a given gate with
the mean value of the radial velocity of a 15 × 7 area of neighboring gates to reduce speckles
due to dual PRF velocity errors as pre-processing for radar wind retrieval. Altube et al. [17]
proposed a novel method that uses circular statistics in the phase space rather than the
velocity space to identify and correct dual-PRF errors. This method improves the past
dual-PRF correction method that has been used to improve the accuracy of radial velocity,
and it is able to accurately detect and correct dual-RPF errors even in the presence of severe
aliasing. It relies on the continuity of the local field but uses circular statistics and does
not require prior global dealiasing. However, this technique is limited to dealing with
outliers caused by aliasing. It is not suitable for other causes of outliers, such as errors in the
range or velocity measurements. Additionally, the technique is limited to dual-frequency
pulse-Doppler radar and is not suitable for other types of radar, such as single-frequency
pulse-Doppler or chirp radar.

In this study, we propose techniques for noise correction of the observed radial velocity
field and restoration of the lost radial velocity to improve the quality of WISSDOM wind
fields. These techniques are straightforward, preserve spatial gradients, and suppress
local extrema. The remainder of the paper is structured as follows: Section 2 describes the
KMA operational radar network; Section 3 introduces the radial velocity quality control
technique; Section 4 describes the results of the application of this technique are described
and validated the quality-controlled radial velocity using wind profiler data; and finally,
Section 5 presents the summary and conclusions.

2. Data

We utilized KMA’s ten S-band Doppler weather radar data. Figure 1 shows the S-band
dual-polarization weather radar network and domain for WISSDOM. WISSDOM was
used to compare the wind fields calculated with radial velocity before and after quality
control. KMA established a homogeneous S-band dual-polarization network with the same
specifications. Table 1 presents a list of radar observation characteristics. All strategies
consisted of nine elevation angles for volume scanning and were performed every 5 min.
The radar transmits a long pulse width of 2 μs at low elevation angles (less than 3◦) to
enhance the detectability of weak low-level echoes, such as winter snowstorms, whereas
a short pulse of 1 μs pulse width is used at higher elevation angles (>3◦) to increase the
Nyquist velocity using a high PRF. In addition, the WRC developed CLEANER [18] for the
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quality control algorithm of radar observation data, which classifies precipitation and non-
precipitation echoes using dual polarization parameters, and removes non-precipitation
(such as ground clutter, Anomalous Propagation, second trip, and chaff echoes). CLEANER
also removes non-precipitation areas from the radial velocity field.

Figure 1. Operational S-band Doppler weather radar network of the KMA. The blue marks and gray
circles represent the locations of individual radars and their observational ranges, respectively. The
blue box stands for the domain of WISSDOM.

Table 1. Characteristics of the KMA’s S-band radar.

Parameters Values

Dual polarization Simultaneous H and V
Frequency (MHz) 2718
Wave length (cm) 11.02

Range resolution (m) 250
Beam width (◦) 0.95

Elevation angles (◦) Nine elevation angles (minimum: −0.8◦, maximum: 15.0◦)
Elevation number 1 2 3 4 5 6 7 8 9
Pulse width (μs) 2.0 2.0 2.0 2.0 2.0 2.0 1.0 1.0 1.0

Observation range (km) 240 240 240 240 240 240 180 120 60
High PRF (Hz) 620 620 620 620 620 620 830 1200 1200
Dual-PRF ratio 5:4 5:4 5:4 5:4 5:4 5:4 5:4 5:4 5:4

Nyquist Velocity (m s−1) 68.4 68.4 68.4 68.4 68.4 68.4 91.5 132.4 132.4
Sampling Number 45 45 45 45 45 45 45 45 45

All elevation angles used the 5:4 dual-PRF mode to increase the Nyquist velocity to
mitigate velocity aliasing. However, this technique not only generates noise in the process
of receiving data but also loses radial velocity observations compared to reflectivity obser-
vations. Figure 2 shows the ratio of radial velocity observations to reflectivity observations
for one month (August 2020) on 10 weather radars operated by the KMA. Here, it was
possible to determine the lost radial velocity for each radar site. The radial velocity relative
to the reflectivity was observed to be at least 50–80%, on average, at all elevation angles,
indicating that the radial velocity observations relative to the reflectivity observations were
lost from at least 20% to up to 50%. In particular, even though strong reflectivity values
were observed owing to the influx of a strong precipitation system, the wind calculated
from the radial velocity could be underestimated or a discontinuous wind distribution
could appear in the area where the observed radial velocity is lost.
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Figure 2. Ratio of radar bins with radial velocity (VR) observation to radar reflectivity (DZ) observa-
tion as a function of elevation angles for August 2020 from KMA’s ten weather radars (BRI, GDK,
GNG, GSN, JNI, KSN, KWK, MYN, PSN, and SSP). The red dots and bars represent the average ratio
and standard deviations, respectively. The blue and green dotted lines indicate the maximum and
minimum ratios at each elevation angle, respectively.

3. Quality Control of Radial Velocity

The entire process for quality control of the radar radial velocity is shown in Figure 3.
The proposed approach identifies and removes speckles of abnormal radial velocity by
comparing the sign of the median radial velocity with the surrounding radar bins. We
then recovered the eliminated radial velocity using the median interpolation technique. To
recover the losses of radial velocity over a wide area using the dual-PRF technique, we
used the Velocity Azimuth Display (VAD) [19] curve-fitting technique for radial velocity.

3.1. Noise Elimination and Correction

We developed a noise filter that utilizes the sign and median values of radial velocity
observations to detect and correct radial velocity noise. For an easier understanding, an
example of the noise detection conditions and restoration process concepts is presented in
Figure 4, along with a flowchart. An example of this concept assumes that the window size
is three gates × three rays. Preferentially, in step 1, it is examined regardless of whether the
radial velocity at the center of the window is valid (a value other than NaN). If it is NaN,
it moves to the following azimuth scan. Otherwise, the noise is determined according to
the following three steps: step 2) if the ratio of the valid radial velocity in the window is
less than the threshold, it would be replaced by the NaN. Conversely, when the ratio is
larger than the threshold, the median value is calculated using the radial velocity in the
window, excluding the value at the centroid of the window. If the sign of the median value
is not identical to the sign of the center radial velocity in the window. In that case, the
center radial velocity is identified as noise, and the median value replaces it in step 3. If the
sign of the center radial velocity is equal to the median sign, the noise is identified by the
difference between the radial velocity and the median value in step 4. The median value
replaces the radial velocity if its difference is larger than the threshold (e.g., 20 m s−1).
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Figure 3. Flowchart for a quality control algorithm for radial velocity.

We conducted a sensitivity experiment to optimize the thresholds for each step. The
thresholds for each condition were determined empirically based on noise cancelation
performance and computational times for real-time implementation. The calculation
time was mainly proportional to the window size. As the window size increased, the
misidentification of normal echoes increased; however, the noise was not eliminated for
a small window. The window size was set to seven gates × seven rays in consideration
of the calculation time and noise correction rate. The ratio of the valid radial velocity in
the window was set to 20% or less. The larger the threshold of the ratio, the higher the
probability that a reasonable radial velocity, not a noise, will be removed. The absolute
value of the difference between the median value and the center radial velocity in the
window was set to 20 m s−1. We found that the number of eliminated noises was reduced
dramatically if the threshold of the absolute value was set to a value larger than 20 m s−1.

3.2. Restoration Lost Radial Velocity

In this study, to restore the lost radial velocity, we utilized the VAD curve fitting
function, which is the mean Doppler velocity of precipitation particles observed along
the radar antenna rotated through a 360◦ azimuth scan as a function of the azimuth angle
at a constant elevation angle of the Doppler radar. A flowchart of the restoration of the
lost radial velocity is shown in Figure 5. First, we combined several adjacent azimuth
scans to obtain a more reasonably fitted VAD curve and calculated the average radial
velocity of radar bins within a given range along the radial direction across the azimuth
scans. Based on the empirical experiments, ten azimuth scans were selected around the
corresponding azimuth scan. Thus, the average for twenty-one azimuth scans, including
the corresponding azimuth, was calculated. The number of azimuth scans used may be set
differently depending on radar scan strategies, weather phenomena, etc.

The VAD restoration function of the averaged values was then calculated based on
a Fourier series. Next, to determine the lost radial velocity area (VLA), it was compared
with the radar reflectivity observation field. If the radial velocity observation value did
not exist in the area where the reflectivity observation value exists, it was replaced by the
value of the restoration function. Then, among the observed radial velocities, a value with
a large difference from the restoration function was determined as an outlier. Outliers
were discriminated using the multiples (Error) of the standard deviation and the average
(Meandi f f ) of the difference between the radial velocity value and the restoration function
value. The outlier value was converted into the value of the restoration function. The
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threshold values of each condition for restoring the loss region of the radial velocity were
empirically optimized through sensitivity experiments.

Figure 4. Flowchart for noise correction and conceptual diagram for noise correction based on the
sign of median radial velocity.

Figure 5. Flowchart of a retrieval algorithm for lost radial velocity.
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Figure 6 shows why the average value of the radial velocity of several adjacent azimuth
scans is used when calculating the VAD fitting function. Figure 6a shows an example of
the lost radial velocity region of KWK at 0400 LST on 24 July 2020. In particular, when
restoring by calculating each VAD fitting function from all azimuth scans, the texture of
the entire radial velocity field appeared to be unnaturally restored, as shown in Figure 6b.
To prevent discontinuous restoration of the radial velocity in this manner, the VAD fitting
function calculated from the average value of the peripheral radial velocities was used to
restore the radial velocity with continuity, as shown in Figure 6c.

Figure 6. Example of restoring the radial velocity of the KWK radar site at 0400 local standard time
(LST) on 24 July 2020. (a) Before restoring radial velocity. (b) Restoration using each VAD fitting
function calculated from all azimuth scans. (c) Restoration using a VAD fitting function calculated
from the mean of several neighboring azimuth scans. The two black lines indicate range lines at the
radius of 150 km and 200 km from the radar, respectively.

To express the radial velocity as a Fourier series, the radial velocity Vr in the spherical
coordinate system is expressed by Equation (1) [19]. Here, θ represents the azimuth angle;
φ represents the elevation angle; and u, v, and w represent the east-west, north-south,
and vertical components of the particle, respectively. In addition, if the radial velocity at
the center of the radar at a given altitude is expressed as a component of the linear wind
field, Equation (2) can be obtained, where r is the distance from the center and u0 and v0
are the velocity components in the east-west and north-south directions from the center,
respectively.

Vr = u sin θ cos∅+ v cos θ sin∅+ w sin∅ (1)
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1
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The radial velocity, expressed as a linear wind field component, can be expressed
as a quadratic Fourier series, as shown in Equation (3). Compared to the right side
of Equation (2) and the right side of Equation (3), each Fourier coefficient is equal to
Equations (4)–(8).
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Equation (2) can be re-expressed as Equation (9) according to the coefficients, and the
coefficients a0 to b2 are calculated by solving the Fourier series using numerical analysis.
According to Equation (9), the radial velocity obtained by fitting each azimuth (VAD fitting)
can be calculated.

Vr = a0 + a1 cos θ + b1 sin θ + a2 cos 2θ + b2 sin 2θ (9)

It cannot be considered an outlier in all cases where a positive(negative) area is
observed in the negative (positive) area of the radial velocity. Thus, we considered the effect
on the observed value of the radial velocity due to small-scale meteorological phenomena,
such as downbursts and tornadoes. As shown in Equation (10), if the observed radial
velocity (+VR) is within the range of the error threshold (Meandi f f + Error ∗ σ) from the
VAD fitting curve, VR is not an outlier value. Otherwise, the negative value of the observed
radial velocity (−VR) is checked within the range of the error threshold from the VAD
fitting curve. Meandi f f represents the average difference between the radial velocity and
the restoration function value in an azimuth scan, σ denotes the standard deviation for each
azimuth scan, and the Error value is 3, which is a value determined through optimization.
Figure 7 shows an example of determining outliers in the azimuth scans. The observed
radial velocity (+VR) shown by the blue circle in Figure 7a remains the same because the
negative values (−VR) are within the range of determining the outliers. Figure 7b shows
that the observed and negative values were determined as outliers because they were all
outside the range.

VAD −
(

Meandi f f + Error ∗ σ
)
< ±VR < VAD +

(
Meandi f f + Error ∗ σ

)
, Error = 3 (10)

Figure 7. Examples of identifying outliers of radial velocity using VAD fits. (a) A case for not
an outlier (in the orange circle). (b) A case for an outlier (in the blue circle). The red dots indicate
individual radial velocities. The black and gray lines represent the VAD and error curves, respectively.

4. Results and Verification

4.1. Quality Control Results
4.1.1. Noise Elimination and Correction

Figures 8 and 9 show the results of the noise-removed and corrected radial velocity
fields using the noise filter, with the sign and median of the observed radial velocity values
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developed in this study. Figure 8 shows the radial velocity fields observed by the KWK
radar at 1200 LST on 28 February 2020. The noise correction technique was applied to all
elevation angles of the radar observations, and the results are shown for elevation angles
of −0.2◦, 1.5◦, and 4.4◦. In this case, a precipitation echo was observed in most of the radar
observation areas, and noise was spread in all directions. As a result of applying the noise
filter, the noise was removed, and the radial velocity was corrected to the median value.
Figure 9 shows the radial velocity fields observed using the MYN radar at 1610 LST on
6 June 2020. In this case, it can be confirmed that the radial velocity was corrected after
removing only the noise of the radial velocity while maintaining the precipitation echo,
even in the radial velocity of the small cell area. After removing and correcting the noise,
spatially continuous radial velocity fields are obtained.

Figure 8. PPIs of radial velocity (a–c) before and (d–f) after quality control at elevation angles of
−0.2◦, 1.5◦, and 4.4◦ for KWK at 1200 LST on 28 February 2020.
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Figure 9. PPIs of radial velocity (a) before and (b) after noise correction at an elevation angle of −0.8◦

for MYN at 1610 LST on 6 June 2020.

4.1.2. Restoration of Lost Radial Velocity

In this study, the VAD restoration function based on the Fourier series was calculated
to restore the lost radial velocity compared to reflectivity. Figure 10 shows the results
of applying the quality control technique step-by-step in the case of the radial velocity
observed by the KWK radar at 0400 LST on 24 July 2020. Figure 10a shows the reflectivity
field, showing strong reflectivity in the western region of the radar. Figure 10b, which
presents the radial velocity field before quality control, shows that the radial velocity is
lost over a wide area, including the strong reflectivity area. Figure 10c shows the result
of applying the noise filter, and Figure 10d shows the result of restoring the lost radial
velocity compared with the reflectivity observation using the VAD restoration function
after applying the noise filter. By applying the restoration method based on the VAD, it was
possible to obtain a spatially continuous radial velocity because it was completely restored
even in areas where the radial velocity was widely lost.

Figure 10. PPIs at the elevation angle of −0.2◦ of KWK at 0400 LST on 24 July 2020; (a) radar
reflectivity, (b) raw radial velocity, (c) radial velocity field after noise correction, and (d) radial
velocity after noise correction and restoration of lost radial velocity.
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Figure 11 shows a case in which a positive area was observed in the negative area of
the radial velocity of the KWK radar site at 0400 LST on 24 July 2020. Figure 11a shows
that a wide positive area of the radial velocity was observed, with outliers in the negative
area of the radial velocity. Then, the positive radial velocity area shown in Figure 11b was
preserved, as is, and only outliers were determined and corrected to the value of the VAD
fitting function.

Figure 11. Examples of (a) before and (b) after outlier correction and retrieval of radial velocity using
VAD fits at an elevation angle of −0.2◦ for KWK at 0400 LST on 24 July 2020.

4.1.3. Utilization of Quality-Controlled Radial Velocity

To confirm the effect of the quality control technique on the radar radial velocity
developed in this study, we compared the results of the WISSDOM wind calculated using
the radial velocity before quality control and the radial velocity after quality control as
input data. Figure 12 shows the reflectivity fields, raw radial velocity fields, and quality-
controlled radial velocity fields on the BRI and GDK radar at 2100 LST on 3 July 2021. In
the region where the echo of the reflectivity fields was observed, the loss of radial velocity
in the radial velocity fields was seen, as marked by the blue dotted line. As for the quality-
controlled radial velocity, the noise was clearly removed, and the lost area was restored, as
shown in Figure 12c,f. When the BRI and GDK radars were synthesized to calculate the
WISSDOM wind, the area where the radial velocity was lost in the BRI and GDK radars
overlapped, as shown in Figure 12g. Figure 13 shows the wind speed and wind direction
calculated using the BRI radar data and the GDK radar data as input data for WISSDOM,
depending on whether the radial velocity quality is managed. Figure 13a,c show the wind
speed and direction of WISSDOM calculated using the radial velocity before quality control
as input data, and Figure 13b,d show the wind speed and direction of WISSDOM calculated
using the radial velocity after quality control as input data. The wind field before quality
control, as shown in Figure 13a,c, showed a spatially discontinuous distribution owing to
the influence of noise and irregularly lost radial velocity. After quality control, the wind
field showed a spatially continuous distribution, as shown in Figure 13b,d, and the wind
speed in the lost radial velocity area was stronger in areas with strong reflectivity. The
WISSDOM wind fields mainly changed depending on the presence or absence of restoration
in the radial velocity loss area, and more spatially continuous WISSDOM wind fields could
be calculated through the quality control technique of the radar radial velocity developed
in this study.
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Figure 12. PPIs at the lowest elevation angles of (top) BRI and (bottom) GDK at 2100 LST on July
2021; (a,d) radar reflectivity, (b,e) raw radial velocity, (c,f) radial velocity after quality control, and
(g) the simultaneously lost area of the radial velocities at both BRI and GDK.

Figure 13. Comparison of (top) wind speed and (bottom) wind direction at an altitude of 2 km
derived from WISSDOM at 2100 LST on 3 July 2021; (a,c) using raw radial velocity and (b,d) using
quality-controlled radial velocity.
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4.2. Verification
4.2.1. Data and Method

The quality-controlled radial velocity was quantitatively verified using observational
data from a wind profiler. To compare the wind elements (u, v, w) observed by the wind
profiler with the radar radial velocity, they were converted to the radial velocity in the
direction observed by the radar [20]. The left side of Figure 14 shows the method for
comparing the radial velocity of the radar and wind profiler data, where d represents
the distance between the radar and wind profiler, r is the range from the radar to the
point of interest [11], φ is the elevation angle of the radar beam measured upward from
the horizontal plane through the radar, and θ is the azimuth angle of the radar beam
measured clockwise from north. Five radars at KWK, GDK, KSN, MYN, and PSN and
seven wind profilers at 47099, 47095, 47114, 47229, 47135, 47130, and 47155 points were used
for verification, and their locations are shown on the right side of Figure 14. Considering
the distance between the radar and the wind profilers and the radar observation radius,
a comparative verification was performed with ten pairs of radars and wind profilers, as
shown in Table 2.

Figure 14. (left) Conceptual diagram of geometrical matching for radial velocity comparison between
radar and wind profilers and (right) deployment of weather radars and wind profilers in Korea.

Table 2. Distance and azimuth of the wind profilers from the radars used for verification.

No. Radar Wind Profiler Distance (km) Azimuth (◦)

1 GDK 47099 63.85 246
2 GDK 47114 97.83 152
3 KWK 47099 52.08 341
4 KWK 47114 87.65 97
5 KWK 47095 83.77 21
6 KSN 47229 129.12 302
7 KSN 47135 111.18 78
8 MYN 47130 97.63 22
9 MYN 47135 90.12 273

10 PSN 47155 39.25 278
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To investigate the validity of the quality-controlled radar radial velocity, the radar
radial velocity at each stage of quality control was compared with the observed value of
the wind profilers. The CLEANER QC radial velocity, which is a step before radial velocity
quality control (RAW), radial velocity after noise removal and correction (NOS), and radial
velocity restored in the disappearance area (ALL), were calculated from the radial velocity
and compared. During the verification period, only the corrected or restored radial velocity
(QCD) was extracted through quality control, excluding the actual observation data, and
compared with the radial velocity calculated by the wind profilers. The verification period
was five months, from 0000 LST on 1 June 2021 to 2350 LST on 31 October 2021. The data
were compared every 10 min, considering the time resolution of the wind profiler. The
Root Mean Square Error (RMSE) and Correlation Coefficient (CC) were used as verification
indicators to compare the radar radial velocity with the observed value of the wind profiler.
The RMSE and CC were calculated using Equations (11) and (12), where R is the radial
velocity of the radar at the point of the wind profiler and W is the radial velocity data
calculated from the wind profiler.

RMSE =

√
1
N
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∑
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2 (11)
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√
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(
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4.2.2. Verification Results

Figure 15 shows the correlation distribution between the radial velocities of all radars
and all wind profilers during the verification period at each quality control stage. The
verification results of the RAW, NOS, ALL, and QCD stages are shown in Figure 15a–d.
The raw radial velocity values (RAW), excluding non-precipitation echo, were distributed
with a lot of noise, as shown in Figure 15a, and the RMSE was 7.99 m s−1 and CC was 0.75.
Through the NOS step, it can be seen in Figure 15b that a significant amount of noise was
eliminated and corrected, and the error was significantly reduced compared to the previous
step. The RMSE was 4.78 m s−1, which was less than that of the previous step of quality
control, and the CC was 0.89, which was highly correlated with the radial velocity of the
wind profilers. Even after restoring the lost radial velocity region, the RMSE was 4.71 m s−1,
which was less than the error in the previous step, even after restoring the lost radial velocity
region. The CC was 0.89, which shows a high correlation with the radial velocity of the
wind profilers, as shown in Figure 15c. In addition, only the quality-controlled radial
velocity was extracted, excluding the actual observed value. The correlation distribution
compared with the radial velocity of the wind profilers is shown in Figure 15d. The RMSE
was 5.34 m s−1 and the CC was 0.85, which slightly increased the error compared to the
values, including the actual observation data of the ALL stage. Although the correlation
decreased, the results of the quality control technique were significant when compared to
the radial velocity of the wind profilers.

Figure 16 shows the quantitative verification results for each stage of the quality
control techniques for the 10 pairs of radar and wind profilers used in the verification.
Comparing the verification values of RAW and NOS, the RMSE decreased in all pairs, and
CC increased in all pairs. In ALL and QCD, the values of RMSE and CC were similar
to those in the NOS step. For most of the verification pairs, the trend in the verification
values is shown as KSN-47229 in Figure 17a–d. In the case of GDK-47114, the RMSE value
was reduced during the quality control stage. Although the CC value after quality control
increased, the CC value in RAW was 0.42, which means that the correlation was low. This
is presumed to be due to the mountainous terrain between the GDK radar and the wind
profiler at 47114 points and errors in the wind profiler. Nevertheless, the QCD distribution
in Figure 17h and the distribution of the actual observation data in Figure 17e are similar,
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so it is considered effective to use the quality-controlled radial velocity. In the case of
PSN-47155, the RMSE value in QCD was 7.60 m s−1, which was larger than that of RAW,
and the CC value in QCD was 0.68, which was lower than that of RAW. This is because
the amount of data was small, and a few error values influenced the calculation of the
verification values. Most of the QCD values in PNS-47155 were valid, as shown in Figure 17.
Table 3 lists the values of the RMSE and CC for each stage of the quality control technique
for the 10 pairs of radar and wind profilers used for verification.

Figure 15. Two-dimensional normalized frequency distributions (NFDs) of radial velocity between
the radars and the wind profilers (a) before noise correction (RAW), (b) after noise correction (NOS),
(c) after quality control (ALL), and (d) only quality controlled radial velocity (QCD).

Figure 16. Cont.
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Figure 16. (top) RMSE and (bottom) CC for each QC stage and QCD of ten pairs. RAW is actual
radial velocity, excluding non-precipitation echoes from raw data. NOS is noise-corrected radial
velocity in RAW. ALL is the radial velocity after quality control. QCD is only quality-controlled radial
velocity excluding actual observations.

Figure 17. Same as Figure 15. (a–d) KSN-47229, (e–h) GDK-47114, (i–l) PSN-47155.

Table 3. Quantitative verification results for each stage of the radial velocity quality control technique.

RDR-WPF
RMSE CC

RAW NOS ALL QCD RAW NOS ALL QCD

GDK-47099 6.63 3.87 3.77 3.73 0.79 0.94 0.94 0.93
GDK-47114 8.37 6.31 6.18 5.64 0.42 0.59 0.59 0.57
KWK-47099 7.54 5.44 5.40 5.24 0.65 0.80 0.78 0.75
KWK-47114 8.07 5.26 5.23 4.57 0.59 0.76 0.77 0.83
KWK-47095 8.01 4.18 4.06 3.90 0.58 0.84 0.85 0.89
KSN-47229 7.19 3.30 3.52 4.33 0.71 0.92 0.91 0.86
KSN-47135 8.64 5.79 5.96 6.84 0.62 0.82 0.81 0.79
MYN-47130 8.35 3.29 3.21 4.42 0.71 0.94 0.94 0.86
MYN-47135 9.63 5.62 5.27 5.91 0.60 0.81 0.83 0.76
PSN-47155 6.25 5.09 4.49 7.60 0.83 0.87 0.90 0.68
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5. Conclusions

A technique for quality control of radar radial velocity was developed based on
WISSDOM to improve the accuracy of wind information, such as a three-dimensional
radar wind field. This technique removes only the noise of radial velocity using a noise
filter developed using the sign and median value of radial velocity observation, and then
re-stores it to the median value while maintaining the precipitation echo. By spatiotemporal
comparison of radial velocity between radar and adjacent wind profiler, the original RMSE
of 6~10 m s−1 was dramatically reduced to 3~7 m s−1 after noise correction. The radial
velocity was restored using the VAD restoration function to fill the blank (loss) area of the
radial velocity. In particular, the distribution of radial velocity showed a more realistic and
continuous spatial structure after the restoration procedure.

The quality-controlled radial velocity was used as input data to produce wind based
on WISSDOM. After applying quality-controlled radial velocity to WISSDOM, it was
confirmed that a more spatially continuous and accurate wind could be secured. This
technique reflects the surrounding observations to some extent in the loss region because
the VAD restoration function is calculated using several azimuth curves. However, wind
analysis can be simplified by linearly restoring the lost radial velocity region due to the
limitation of the VAD method, but it can be easier to predict and analyze meso-scale
precipitation systems. This technique not only eliminates outliers by setting out an outlier
range on the VAD curve but also considers that small-scale meteorological phenomena are
not blurred in the area where the radial velocity is observed. In addition, each condition
and threshold for the quality control algorithm can be flexibly changed in consideration of
the user environment, such as radar type and observation strategy.

We operated on this technique as a test, verified its performance, and applied it
to the operational radar quality control system of the WRC from August 2021. In the
future, it is expected to be used for more accurate analysis and forecast support for various
meteorological phenomena, such as precipitation development factor analysis, typhoon
tracking, and local vortices.

6. Patents

Korean patent (Patent Number: 10-2212524) and United States patent (Patent Number:
US 11,474,237 B2) “Method for retrieval of lost radial velocity in weather radar, recording
medium and device for performing the method”.
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Abstract: Weather radar plays an important role in accurate weather monitoring and modern weather
forecasting, as it can provide timely and refined weather forecasts for the public and for decision
makers. Deep learning has been applied in radar nowcasting tasks and has exhibited a better perfor-
mance than traditional radar echo extrapolation methods. However, current deep learning-based
radar nowcasting models are found to suffer from a spatial “blurry” effect that can be attributed to a
deficiency in spatial variability representation. This study proposes a Spatial Variability Representa-
tion Enhancement (SVRE) loss function and an effective nowcasting model, named the Attentional
Generative Adversarial Network (AGAN), to alleviate this blurry effect by enhancing the spatial
variability representation of radar nowcasting. An ablation experiment and a comparison experiment
were implemented to assess the effect of the generative adversarial (GA) training strategy and the
SVRE loss, as well as to compare the performance of the AGAN and SVRE loss function with the
current advanced radar nowcasting models. The performances of the models were validated on the
whole test set and inspected in two storm cases. The results showed that both the GA strategy and
SVRE loss function could alleviate the blurry effect by enhancing the spatial variability representation,
which helps the AGAN to achieve better nowcasting performance than the other competitor models.
Our study provides a feasible solution for high-precision radar nowcasting applications.

Keywords: nowcasting; radar; generative adversarial network; spatial variability

1. Introduction

Detailed weather forecasting over a very short period that lasts from the present to
the next few hours, which is also known as nowcasting, has significant benefits related
to weather-related human activities, including public traffic, flood alarms, disaster warn-
ings, emergency management, and risk prevention [1]. Based on current meteorological
observations, accurate nowcasting can provide timely (up to the minute level) and refined
(mesoscale or even microscale) weather forecasts for the public and decision makers [2].

Thanks to the rapid progress in meteorological observation technology, Doppler
weather radars have become one of the most valuable tools for observing clouds, precipi-
tation, and wind [3,4]. Since radars can detect larger areas than rain gauges and scan at
a higher resolution in shorter intervals than satellites, they can better reflect the spatial
and temporal variability of the above meteorological elements than rain gauges and satel-
lites, which are also powerful tools for weather forecasting [5–8]. Traditional radar echo
extrapolation methods are widely utilized as the basis of nowcasting systems, such as the
following: Thunderstorm Identification, Tracking, And Nowcasting (TITAN) [9]; Storm
Cell Identification and Tracking (SCIT) [10]; Tracking Reflectivity Echoes by Correlation
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(TREC) [11]; the McGill Algorithm for Precipitation Nowcasting by Lagrangian Extrap-
olation (MAPLE) [12]; Dynamic and Adaptive Radar Tracking of Storms (DARTS) [13];
optical flow-based methods [14,15]; and methods for nowcasting the growth and decay
of storms [16]. These traditional methods have exposed shortcomings due to the limits
of their underlying assumptions and constraints, including the motion–field constancy
of TREC-based methods and the spatial smoothness constraints of optical flow-based
methods [17–19].

In recent years, deep learning (DL), which has seen remarkable advancements in
diverse domains, such as computer vision [20], natural language processing [21], and geo-
science [22], has also been applied in radar nowcasting by meteorological researchers [23].
In these studies, radar nowcasting was formulated as a spatiotemporal sequence extrap-
olation problem. Compared to conventional extrapolation models, DL models usually
perform better because of their strong non-linear modeling capacity driven by large-scale
historical radar echo datasets [24]. Generally, DL nowcasting models consist of two main
types: the convolutional neural network (CNN) and the recurrent neural network (RNN).
CNNs are widely adopted in image processing because of their translation invariance
property, while RNNs feature in time series analysis because of their recurrent structure.
Present CNN-based nowcasting models focus more on the spatial correlation of meteo-
rological fields, while RNNs pay more attention to the sequential correlation [25]. For
CNNs, several researchers have made progress in developing three-dimensional CNNs
and their variants [26–28]. Klein, et al. [29] proposed a dynamic convolutional layer, but
revealed the limits of predicting one echo frame in one step. Ayzel, et al. [30] designed an
All Convolutional Neural Network and introduced a more effective model called “Rain-
Net” with the U-Net [31] structure in their later work [32]. Trebing, et al. [33] designed
the SmaAt-UNet with attentional modules and depthwise separable convolutions, which
produced higher performance with fewer parameters than the original U-Net. For RNNs,
the authors in [34] proposed the Convolutional Long Short-Term Memory (ConvLSTM),
which replaced the full connection in the gates of the vanilla LSTM [35] with a convo-
lutional operator. This work is regarded as the pioneer study of DL-based precipitation
nowcasting. An encoding–forecasting network structure was built, based on the same
authors’ newly proposed Trajectory Gated Recurrent Unit (TrajGRU) in their following
study [36]. Wang, et al. [37] proposed the PredRNN by expanding the original ConvLSTM
with spatiotemporal memory flow and developed an enhanced model, “PredRNN++”, in
their following study [38]. Wu, et al. [39] proposed the MotionRNN, which significantly
improves the ability to predict changeable motions and avoid motion vanishing for stacked
multiple-layer nowcasting models.

Although DL models have shown advantages in radar nowcasting tasks, several
researchers have noted a systematic deviation from current DL models and summarized
them as “blurry” effects [32,36,40,41]. DL models were found to neglect high-intensity
features and small-scale patterns of the weather system, causing the generated images to
lose spatial variability and look blurry. This effect was attributed to the impact of convo-
lutional operators contained in DL models, in that their inductive bias of the translation
invariance would lead to a loss of spatiotemporal features for precipitation [42,43]. Under
this deviation, although DL models can outperform traditional models in regard to most
precision scores, they are weak when it comes to learning the spatial variability of the radar
echo sequences. Since radar parameters have a strong relationship with precipitation, the
deviation in the spatial variability representation of radar echoes causes an expanded error
in the downstream applications, such as in urban flood simulation [44,45].

Researchers have adopted generative adversarial networks (GANs) [46] to allevi-
ate the blurry effect. Jing, et al. [40] developed an Adversarial Extrapolation Neural
Network (AENN), based on the ConvLSTM and CNN, for nowcasting at an interval of
30 min to generate accurate and realistic extrapolation echoes. Tian, et al. [41] proposed a
Generative Adversarial Convolutional Gated Recurrent Unit (GA-ConvGRU) model that
outperformed the original ConvGRU, but their model suffered due to training instability.
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Xie, et al. [47] developed a more robust Energy-Based Generative Adversarial Forecaster
and demonstrated the stability and accuracy of their model. Ravuri, et al. [48] compared
their novel Deep Generative Model of Rainfall (DGMR) with ensemble optical flow and
evaluated its effectiveness with both quantitative verification measures and qualitative
cognitive assessments. However, few studies have paid attention to enhancing the local
spatial variability representation ability of DL nowcasting models.

This study aimed to solve the above drawbacks of DL models for radar nowcasting. A
Spatial Variability Representation Enhancement (SVRE) loss function and an Attentional
Generative Adversarial Network (AGAN) are proposed to enhance the spatial variability
representation of radar nowcasting. The SVRE loss implements regularization in the
adversarial training process with representative spatial variability features. The SVRE loss
function and the AGAN model are evaluated on a three-year radar observation dataset
through an ablation experiment and a comparison experiment. Several state-of-the-art DL
nowcasting models are selected as the baseline models, including the MotionRNN [49], the
SmaAt-UNet [33], and a traditional ensemble nowcasting model, PySTEPS [50]. The rest
of this article is organized as follows. Section 2 illustrates the principle of the SVRE loss
function and the architecture of the AGAN. Details of the experiments are explained in
Section 3, and the results of these experiments are presented and discussed in Section 4.
The last section concludes this study and points out the direction of future work.

2. Methods

2.1. Problem Statement

As previous studies [34] summarized, the radar nowcasting problem can be abstracted
as a spatiotemporal sequence extrapolation problem which aims to predict the next length-n
sequence given a previous length-m observation. Let tensor X ∈ R

N×H×W denote radar
observations over a previous period (with length N, height H, and width W) and θ denote
the parameters of a DL-based nowcasting model; then, the problem can be described by

X̂1:n = argmax
X1:n

p(X1:n|X1−m:0; θ), (1)

where the subscript index of X denotes the tensor’s slice at the corresponding time step (0
represents the current time).

The perspective of generative models in machine learning can change to a proba-
bilistic problem instead of a deterministic problem, which means that the prediction is no
longer estimated by the maximum likelihood estimation of the conditional probabilistic
distribution, but is, rather, sampled from the conditional probabilistic distribution given
the prior distribution of a latent code Z , used to describe the latent states of the system,
and described as

X̂1:n ∼ p(X1:n|X1−m:0; θ)

=
∫
Z

p(X1:n,Z|X1−m:0; θ)dZ

=
∫
Z

p(X1:n|X1−m:0,Z ; θ)p(Z|X1−m:0)dZ
= EZ [p(X1:n|X1−m:0,Z ; θ)].

(2)

2.2. The Principle of GAN

Machine learning models generally consist of two paradigms: discriminative models
and generative models. Fundamentally, discriminative models aim to draw the decision
boundaries from the data space, while generative models learn a joint probability pattern
based on Bayesian rules, thus learning and applying the mapping of the low-dimensional
manifold to the high-dimensional data space [51,52]. Since generative models calculate the
joint distribution of the input and the target variables before the derivation of the posterior
distribution, they can learn more information and, thus, describe more indicative features of
the data. A generative model can extract more information about the relationship between
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the input and the target variables than a discriminative model can, especially when latent
variables exist. Classic generative models, including Gaussian mixture models, hidden
Markov models, Boltzmann machines, and variational autoencoders, calculate the joint
distribution by explicitly specifying the probabilistic density function and optimizing it
with suitable optimization algorithms, such as gradient descent or variational inference [51].

The GAN was one of the generative models proposed by Goodfellow, et al. [53], which
was designed to identify the joint distribution based on the adversarial learning theory. A
GAN is composed of a generator that captures the data distribution and a discriminator
that estimates the probability of where a sample came from. During adversarial learning,
the generator is optimized with the guidance of the discriminator. The optimization goal of
a GAN is to achieve a Nash equilibrium between the generator and the discriminator. The
optimization of a GAN is equivalent to a min–max two-player game between the generator
and the discriminator, expressed by

min
G

max
D

V(D, G) = Ex∼pdata(x)
[log D(x)] +Ez∼pz(z)[log(1 − D(G(z)))], (3)

where D and G represent discriminator and generator, respectively. x represents the sample
and z denotes the latent random vector of the generator. The authors proved that the
generator and the discriminator reach Nash equilibrium if, and only if, the estimated
distribution equals the data distribution by simultaneously training the generator and the
discriminator, given there are enough data (in practice, they have to be trained alternately
instead). As a result of the outstanding performance of the GAN, this generative model
has been applied as one of the mainstream tools for generative learning.

2.3. The SVRE Loss Function

As its name suggests, the SVRE loss function focuses on the direct enhancement of a
model’s spatial variability representation. The optimization of the original GAN proved
to be equivalent to a sigmoid cross-entropy function [53], while Mao, et al. [54] pointed
out that this function had a gradient vanishing problem, leading to quality loss in the
generated images. Therefore, we adopted the least-squares loss (proposed by the above
authors) as the basic adversarial loss. Beyond generative adversarial training, we added two
additional regularization terms to the adversarial loss to improve the sharpness and spatial
variability of the generated images. The first regularization term is L1-normalization, which
has been used for encouraging less blurring in image translation tasks [55]. The second
term is the L1-norm distance between the coefficient of variation (Cv) of the prediction
and the index of the target sequence, which has never been used for regularization in
previous related studies. In statistics, Cv is defined as the quotient of the standard deviation
divided by the mean value of a group of samples. This metric has also been used in
hydrological research to describe the precipitation variability and to compare the variability
of different precipitation fields [56]. In our study, the standard deviation and the mean
value were calculated along the spatial axis (H and W), instead of the temporal axis
(N), to represent spatial variability, as is shown in Equation (4). This L1-norm term of
Cv gives a quantification of the gap between the prediction’s spatial variability and the
observation’s spatial variability. Both regularization terms were scaled by a corresponding
hyperparameter λ. The loss functions for the adversarial training of the discriminator and
the generator are illustrated in Equations (5) and (6).

Cv(Xt) =
σh,w(Xt)

meanh,w(Xt)
(4)

LD(φ) = EX [D(X1:n|X1−m:0; φ)− 1]2 +EX ,Z
[

D(G(Z|X1−m:0; θ)|X1−m:0; φ)2
]

(5)
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LG(θ) = EX ,Z [D(G(Z|X1−m:0; θ)|X1−m:0; φ)− 1]2 + λrEX ,Z‖G(Z|X1−m:0; θ)−X1:n‖1

+ λvEX ,Z‖Cv(G(Z|X1−m:0; θ))− Cv(X1:n)‖1
(6)

Here, D and G represent discriminator and generator, respectively. The operator
mean denotes the mean value across axis h and w of an image at time t and σ denotes its
standard deviation. The discriminator loss is meant to minimize the sum of the averaged
squared distance between a sample and its corresponding label (0 for fake and 1 for real)
to distinguish the predicted sequence from the target. Meanwhile, the generator loss is
meant to minimize the averaged squared distance between the fake sample and the real
label, since it ultimately needs to confuse the discriminator.

2.4. The Architecture of the AGAN

We now present the details of the AGAN (Figure 1). Like other GANs, it consists
of a generator and a discriminator. The generator (Figure 1a) follows a U-Net structure,
which has been effective in related nowcasting applications. It accepts a 1-h (10 steps with a
6 min interval) historical radar observation sequence (orange rectangles) as the input and
predicts the radar sequence for the next hour. The encoding part of the U-Net contains
four downscaling blocks (red arrows), which are preceded by a 1 × 1 convolution (orange
arrows) for temporal feature combination. The decoding part applies the same structure,
containing four upscaling blocks and an additional 1 × 1 convolution. The multi-scale
encoding feature maps (blue rectangles) are copied through skip connections (gray arrows)
and concatenated with the corresponding decoding feature maps (yellow rectangles) in
upscaling blocks (green arrows). The discriminator (Figure 1b) is a fully convolutional
network composed of two convolutional blocks and six downscaling blocks, which accepts
the concatenated sequences from historical and future data (orange rectangles) as input and
returns a probability between 0 and 1 as output to guide the optimization of the generator
through adversarial training.

The downscaling and the upscaling blocks of the AGAN are displayed in Figure 2a,b,
respectively. For the downscaling blocks, the input feature maps are first reshaped by a
2 × 2 max-pooling layer (the red rectangle) and then fed into two 3 × 3 convolutional layers,
each followed by a batch normalization layer (BN) and a rectified linear unit (ReLU) layer.
For the upscaling blocks, the input features are reshaped by a 2 × 2 bilinear interpolation
layer (the green rectangle) and concatenated with the corresponding encoding feature
map copied from the encoder. A convolutional block attention module (CBAM) [57],
which was developed for self-adaptive feature combination, is integrated at the end of
the scaling block (the orange rectangle) to strengthen the model’s attention-based feature
refinement ability. This differentiates our model from the original U-Net, and that is why it
is called “attentional”.

The number of convolutional kernels doubles after downscaling and is reduced by half
after upscaling in the generator (32, 64, 128, and 256 kernels in the corresponding blocks),
which references the original U-Net. The AGAN contains, in total, about 6.40 million
trainable parameters, among which 3.66 million are for the generator and 2.74 million are
for the discriminator.
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Figure 1. Architecture of AGAN. (a) AGAN’s generator. (b) AGAN’s discriminator.

Figure 2. Scaling blocks in AGAN. (a) Downscaling blocks. (b) Upscaling blocks.
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3. Experiments

3.1. Data and Study Area

To validate the effectiveness of the AGAN, we selected a radar composite reflectivity
dataset from the Beijing Auto-Nowcast (BJ-ANC) System that was developed by the
Institute of Urban Meteorology, China Meteorological Administration, Beijing [58]. The
system collects observations from S-band and C-band Doppler weather radars that are
part of the China Next Generation Weather Radar (CINRAD) network and produces radar
mosaic images with quality control and mosaic generation algorithms. The radar composite
reflectivity mosaic product covers a total area of 800 × 800 km2, with a spatial resolution of
1 km and a temporal resolution of 6 min. Since we were concerned about the weather in
Beijing and its surroundings, we defined the study area as a square region of 256 × 256 km2

that had the Yizhuang Radar (one of the CINRAD radars) located at the exact center
(39.81°N, 116.47°E) of the square (Yizhuang is near the center of Beijing City), as shown in
Figure 3.

Figure 3. The study area (the whole square) and the location of Yizhuang Radar (red circle). The
figure is plotted using UTM 50N coordination.

For dataset construction and processing, observations from three S-band radars on
86 rainy days that occurred during the warm seasons (from June to September) from 2017
to 2019 were selected, according to ground precipitation observations. The mosaic images
were clipped between 0 and 70 dBZ and scaled with a min–max normalization which
converted the values to a range from 0 to 1. According to the input and output settings, we
packed observations that covered 20 consecutive time steps into 1 sequence and extracted
a total of 18,892 sequences from the dataset. The sequences were sorted in chronological
order and temporal overlapping sequences were dropped. Then, they were split into the
training set, validation set, and test set with a ratio of approximately 7:1:2. To avoid data
leakage, the sequences in the training and validation sets were only selected from the warm
seasons in 2017 and 2018, yet all the sequences in the test set came from the warm season
in 2019, as shown in Table 1.
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Table 1. Split settings of the dataset.

Items Training Validation Test Removed Total

Sequences 13,200 1888 3760 44 18,892
Rainy days 60 9 17 / 86
Proportion 0.699 0.1 0.199 0.003 1

Year 2017, 2018 2018 2019 / 2017–2019

3.2. Evaluation Metrics

The nowcasting performances of different models were evaluated from two aspects.
The first one was forecasting accuracy, which has been focused on by most previous studies.
The commonly used weather forecast metrics were adopted, including the probability of
detection (POD), the false alarm ratio (FAR), and the critical success index (CSI) [59]. These
metrics were calculated with a contingency table to count the frequency of hits (h), false
alarms ( f ), and misses (m), as defined in Equations (7)–(9). For a certain threshold, a hit
occurs when both the prediction and the target value exceed the threshold within the same
grid. A false alarm occurs when the threshold is beyond the target value but under the
prediction value, and a miss occurs in the opposite case. In this study, the threshold of these
contingency metrics was set to 30 dBZ because this has been commonly used to distinguish
heavy rainfall from light rainfall in related studies [60,61]. The mean bias error (MBE), the
mean absolute error (MAE), and the root mean squared error (RMSE) were used to roughly
estimate the forecasting bias, as defined in Equations (10)–(12).

POD =
h

h + m
(7)

FAR =
f

h + f
(8)

CSI =
h

h + m + f
(9)

MBE(X̂t,Xt) = meanh,w
(X̂t −Xt

)
(10)

MAE(X̂t,Xt) = meanh,w
∣∣X̂t −Xt

∣∣ (11)

RMSE(X̂t,Xt) =

√
meanh,w

(X̂t −Xt
)2

(12)

The second aspect was spatial variability representation. Three metrics were adopted
to evaluate the spatial variability similarity between the observed precipitation field and the
prediction of a certain model: (1) The Jensen–Shannon divergence (JSD), which measures the
statistical difference between one probability distribution p and a second reference probability
distribution p̂. It can be proved that the JSD is symmetric to p and p̂, and ranges from 0 to 1;
(2) The structural similarity index, which measures (SSIM) [62] and is used to measure the
similarity between two images from the three aspects of luminance, contrast, and structure;
(3) The power spectral density (PSD), which presents the relationship between the power and
frequency of a signal. It has been used in radar nowcasting tasks to evaluate a model’s ability
to represent diverse-scale weather patterns [32,48]. In this study, the PSD was calculated both
with the height axis and the width axis of the radar images, defined in Equations (13) and (14).
The other two metrics are defined in Equations (15) and (16).

PSDh(Xt) = 10 log10 meanw|Fh(Xt)|2 (13)

PSDw(Xt) = 10 log10 meanh|Fw(Xt)|2 (14)

JSD(pt‖ p̂t) =
1
2 ∑

h,w
pt log

2pt

pt + p̂t
+

1
2 ∑

h,w
p̂t log

2p̂t

pt + p̂t
(15)
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SSIM(X̂t,Xt) =

[
2meanh,w(X̂t) · meanh,w(Xt) + C1

][
2covh,w(X̂t,Xt) + C2

]
[
meanh,w(X̂t)2 + meanh,w(Xt)2 + C1

][
stdh,w(X̂t)2 + stdh,w(Xt)2 + C2

] (16)

In the above equations, Xt represents the observation radar map at time t and X̂t
represents the prediction, pt and p̂t are the probability distributions of Xt and X̂t. std
represents the standard deviation operator. The value cov is the covariance between the
observation and the prediction. The constants C1 and C2 were set to 1 × 10−4 and 9 × 10−4

in this research, which was the same as in [62]). Then, Fh(·) and Fw(·) denote the Fourier
transform operation along the height and width axis, respectively.

3.3. Experiment Settings

The performances of the AGAN and the SVRE loss function were evaluated through
an ablation experiment and a comparison experiment. In the ablation experiment, the two
components, the GA strategy and SVRE, were tested by training the AGAN or the AGAN’s
generator with or without SVRE loss, respectively. The generator of the AGAN trained
with the purely L1-norm loss function served as the control group, denoted by AGAN(g).
The names of the models and their meanings are explained in Table 2.

Table 2. The names of the models and their meanings in the ablation experiment. The �represents
“with” and the × represents “without”.

Model Trained with GA Strategy Trained with SVRE Loss

AGAN(g) × ×
AGAN(g) + SVRE × �

AGAN � ×
AGAN + SVRE � �

For the AGAN, the generator and the discriminator were trained alternately with
an Adam optimizer regularized by a decoupled weight decay of 0.01, where β1 = 0.9
and β2 = 0.999. The maximum training step was set to 100,000. The Two Time-Scale
Update Rule (TTUR) [63] was adopted as one of the adversarial training strategies for
better convergence. However, in a way that differed from the original TTUR skill, the
learning rate was set to 1 × 10−4 for the generator and 5 × 10−5 for the discriminator
to avoid the early convergence of the discriminator, based on preliminary experiments.
The coefficients of the two regularization terms in the loss function were set to 10 and 1
(10 for the reconstruction term and 1 for the SVRE term) according to the performance
on the validation set. The early stopping strategy was applied to prevent the model from
overfitting. The integration over latent variables in Equation (2) was approximated with
six latent random vectors at one training step, which was the same as in another related
study [48]. Other settings included a batch size of 8 and the early stopping patience of
10 epochs. The AGAN(g) shared the same settings as the AGAN.

In the comparison experiment, the AGAN with SVRE were compared with three
baseline models: the RNN-based MotionRNN [39], the CNN-based SmaAt-UNet [33], and
the optical flow-based ensemble forecast system PySTEPS [50]. We kept the architecures
of the deep learning baseline models (SmaAt-UNet and MotionRNN) unchanged and
implemented the same training strategies on them as on the AGAN. For PySTEPS, the
Lucas–Kanade motion tracking method and the semi-Lagrangian extrapolation method
were selected.

All the experiments in this study were implemented on a computing platform with
an Intel Xeon Gold 6226R CPU and an Nvidia Tesla A100 GPU, based on the open-source
machine learning framework PyTorch (https://pytorch.org/ (accessed on 6 August 2022)).
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4. Results and Discussion

4.1. Overall Performance

The overall performances of the models in the ablation experiment and the comparison
experiment were evaluated on the whole test set. For each sample in the test set, we first
extracted the last frames of the forecast sequence and the observed sequence. Since the
time step of the last frame was 60 min ahead of the reference time, we determined the last
frame to have a lead time of 60 min. The evaluation metrics of the observation and the
prediction at the lead time of 60 min (+60 min observation and prediction) were calculated
to reflect the models’ performances for the sample. These metrics were averaged over all
samples in the test set. The results of the experiments are listed in Table 3.

Table 3. Overall, +60 min nowcasting performances on the test set. The up and down arrows in the
heading indicate whether the highest or the lowest was the best for different metrics. A bold number
indicates that the model in its row had the best performance, evaluated with the metric in its column.

Model POD ↑ FAR ↓ CSI ↑ MBE ↓ MAE ↓ RMSE ↓ SSIM ↑ JSD ↓
PySTEPS 0.299 0.470 0.204 0.0 6.1 9.6 0.292 0.601

SmaAt-UNet 0.631 0.521 0.351 13.8 14.6 18.8 0.365 0.516
MotionRNN 0.572 0.477 0.310 14.0 15.0 19.2 0.337 0.521

AGAN(g) 0.749 0.568 0.373 13.7 14.6 18.8 0.360 0.437
AGAN(g) + SVRE 0.643 0.484 0.377 13.2 14.4 18.6 0.377 0.477

AGAN 0.721 0.565 0.374 13.4 14.4 18.5 0.376 0.427
AGAN + SVRE 0.745 0.578 0.380 13.4 14.5 18.6 0.387 0.421

In Table 3, three baseline models (PySTEPS, SmaAt-UNet, and MotionRNN), the
AGAN’s generator trained with the ordinary adversarial loss function (AGAN(g)), the
AGAN’s generator trained with the SVRE loss function (AGAN(g) + SVRE), the AGAN
trained with the ordinary adversarial loss function (AGAN), and the AGAN trained with
the SVRE loss function (AGAN + SVRE) are included. For forecasting accuracy, it was
found that, although the AGAN, AGAN(g)+SVRE, and AGAN + SVRE did not reach the
highest POD or the lowest FAR, when considering hits and false alarms together, both
the GA strategy and the SVRE loss function could increase the CSI. Compared with the
AGAN(g), the AGAN + SVRE increased the CSI from 0.373 to 0.380, indicating that the
combination of the GA strategy and SVRE could improve the general forecasting accuracy.
It was also observed that SVRE slightly narrowed the MBE, MAE, and RMSE between
the prediction and observation. For spatial variability representation, SVRE improved
the performances of both the AGAN and AGAN(g) by concurrently increasing the image
similarity (increasing the SSIM by 0.073 and 0.050) and reducing the distribution difference
(reducing the JSD by 0.085 and 0.100) between the observation and the prediction. The
effect of the GA strategy was less significant than for SVRE. Among all the models, the
AGAN + SVRE reached the highest CSI, the highest SSIM, and the lowest JSD, indicating
that the combination of the GA strategy and the SVRE loss function could help improve
both forecast accuracy and spatial variability representation. The traditional optical flow
method, PySTEPS, showed the least FAR and forecasting bias, while in other metrics it fell
far behind our proposed model. The DL-based models (SmaAt-UNet and MotionRNN)
performed worse in most metrics than the AGAN + SVRE.

4.2. Case Study

In this subsection, we selected two cases from the test set and further analyzed the
nowcasting performances of different models for these cases.

4.2.1. Case 1

The first case was selected from a mesoscale squall line from the midsummer of 2019
on 6 August UTC. A 2-h (20-step) sequence from 15:00 to 16:54 was selected. The first
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half (from 15:00 to 15:54) of the sequence was fed into the model as the input, while the
second half (from 16:00 to 16:54) served as the ground truth for evaluation. The +60 min
radar images forecast by different models were visualized together with the observation
in Figure 4. The top left subfigure indicates that the weather system evolved into a
squall line trending from southwest to northwest at the lead time of 60 min. It can be
easily observed that all DL models suffered from the blurry effect. The prediction of
PySTEPS was closer to the observation in terms of peak reflectivity intensity, but it had
significant errors in peak positions and echo shapes. The predictions of the SmaAt-UNet
and MotionRNN had opposite systematic deviations compared to those of PySTEPS. The
AGAN(g) performed better than the baseline models, but it exaggerated the extent of the
storm center, particularly in areas where the reflectivity was over 35 dBZ. The AGAN +
SVRE provided the closest prediction to the observation in both peak intensity and center
location. Compared to the AGAN(g), the blurry effect could be alleviated when the GA
strategy and the SVRE loss function were simultaneously implemented.

Figure 4. Visualization of the +60 min prediction and the observation in case 1.

A contrast scatter plot is presented in Figure 5 to evaluate the pixelwise similarity
between the +60 min prediction and observation in case 1 for each model. The horizontal
axis of each subfigure represents the observed value, and the vertical axis represents the
predicted value. Points on the 45° line are regarded as perfect predictions, while points
below or beyond this line correspond to underestimations or overestimations, respectively.
The points are colored with their probability density provided by the Gaussian kernel
density estimation. The results show that DL models tended to overestimate low-intensity
pixels but underestimated high-intensity pixels, which coincided with the blurry effect in
Figure 4. The positions of the peak probability density of the SmaAt-UNet and MotionRNN
were beyond the 45° line, reflecting their systematic overestimations of mid-intensity pixels
(between 20 and 30 dBZ). The AGAN(g), AGAN(g) + SVRE, AGAN, and AGAN + SVRE
had lower forecast biases than the DL models. Their positions of peak probability density
were more concentrated around the 45° line. PySTEPS had the most balanced prediction
with the least general forecast bias, but its performance was significantly limited in pixels
over 35 dBZ, which might cause a failure in extreme precipitation scenarios.

Table 4 enumerates the models’ nowcasting performances for case 1. It was found
that both the AGAN and AGAN(g) offered better comprehensive forecasting accuracy
(higher CSI) than the baseline models. They also achieved a smaller forecasting bias (lower
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MBE, MAE, and RMSE) and a closer spatial variability to the observation (higher SSIM and
lower JSD). When trained with the SVRE loss function, the AGAN and AGAN’s generator
obtained a higher SSIM and lower JSD than the SmaAt-UNet and MotionRNN, as well as
a slightly reduced CSI and increased FAR. The AGAN + SVRE reached the highest SSIM
(0.358) and the lowest JSD (0.616) among all the models. Although PySTEPS reached the
lowest bias for the MBE, MAE, and RMSE, it was limited in regard to the POD, CSI, SSIM,
and JSD because of the misplacement of the peak intensity location, mentioned above.

Figure 5. Contrast scatter plot of +60 min prediction and observation in case 1.

Table 4. The +60 min nowcasting performances in case 1. The up and down arrows in the heading
indicate whether the highest or the lowest was the best for different metrics. A bold number indicates
that the model in its row had the best performance, evaluated with the metric in its column.

Model POD ↑ FAR ↓ CSI ↑ MBE ↓ MAE ↓ RMSE ↓ SSIM ↑ JSD ↓
PySTEPS 0.483 0.455 0.344 −0.2 8.3 11.8 0.231 0.672

SmaAt-UNet 0.936 0.556 0.431 10.4 11.1 15.1 0.304 0.664
MotionRNN 0.914 0.601 0.384 11.0 11.7 15.5 0.264 0.619

AGAN(g) 0.899 0.510 0.464 10.1 10.8 14.9 0.354 0.661
AGAN(g) + SVRE 0.881 0.554 0.421 9.1 10.5 14.4 0.317 0.650

AGAN 0.819 0.482 0.464 8.3 9.7 13.7 0.358 0.621
AGAN + SVRE 0.927 0.536 0.448 9.1 10.2 14.0 0.368 0.616

To further understand the results in Table 4, we plotted a Taylor diagram for the two
experiments, which is shown in Figure 6. Taylor diagrams are widely used for the perfor-
mance evaluation of meteorological models, since they can provide a concise statistical
summary of the correlation coefficient (CC), the centered root mean squared error (RMSE′),
and the variance ratio (σŷ/σy) in a single diagram, based on the decomposition law proved
by Taylor [64], which is explained in the following equation.

RMSE′2

σ2
y

=
RMSE2 − MBE2

σ2
y

=

(
σŷ

σy

)2
+ 1 − 2

σŷ

σy
· CC (17)
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In a Taylor diagram, the overall bias of a model can be attributed to the variability part
measured by σŷ/σy and the correlation part measured by CC, which are denoted by the
radial axis and the circumferential axis, respectively. The overall bias can be described by
the RMSE’, which is depicted by an arc with the center lying on the horizontal radial axis.
From Figure 6, it can be observed that the correlation coefficients of all the DL models were
concentrated around 0.7. PySTEPS had the lowest CC of around 0.6 but the highest variance
ratio of over 0.9, which coincided with the visualization results. It was also observed that
σŷ/σy of the AGAN + SVRE was considerably higher than σŷ/σy of the AGAN(g), implying
that the introduction of the GA strategy and the SVRE loss function could narrow the spatial
variability distance between the prediction and the observation. It was also demonstrated
that the AGAN + SVRE worked better in regard to the spatial variability representation
than the DL-based models.

Figure 6. Taylor diagram of the +60 min prediction and the observation in case 1.

We also calculated the power spectral density (PSD) of both the X-axis and Y-axis of
the radar maps to evaluate the models’ abilities to capture local-scale weather patterns,
and present the results in Figure 7. The horizontal axis of the PSD line plot was set
to the logarithmic wavelength, instead of the frequency in the original concept of PSD,
to more intuitively reflect the model’s ability to capture weather patterns of different
spatial scales [32]. If the prediction’s PSD and the observation’s PSD were close in a short-
wavelength interval, we could say that the prediction had a similar local spatial pattern
as that of the observation. The figure shows that, compared to the optical-flow-based
PySTEPS method, all the DL models underestimated the PSD of the radar reflectivity
along both the X-axis and Y-axis, especially for small-scale patterns (wavelength below
16 km), corresponding to the aforementioned blurry effect. It can be observed that the
PSD of models trained with the GA strategy or the SVRE loss function was higher than
the AGAN(g)’s PSD, indicating that the combination of the GA strategy and the SVRE loss
function alleviated the systematic underestimation of spatial variability. Meanwhile, the
AGAN + SVRE was ahead of the CNN-based SmaAt-UNet at all scales. The performance
of the MotionRNN was the worst in small-scale local patterns with a spatial scale of fewer
than 4 km, especially along the Y-axis. The results suggest that the AGAN + SVRE is more
qualified for capturing local-scale patterns, which also verifies its ability to perform spatial
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variability representation from the side. Although the prediction of PySTEPS was the
closest to the observation, the model’s prediction was limited by its low correlation (CC)
and forecasting accuracy (CSI).

Figure 7. Power spectral density (PSD) of the +60 min prediction and observation in case 1. (a,b) are
PSD of the X- and Y-axis, respectively.

4.2.2. Case 2

The second case was snipped from a growing local storm cell on 9 August 2019 UTC,
lasting from 6:00 to 7:54. The +60 min predictions are visualized with the observations in
Figure 8. The pixelwise nowcasting performances of case 2 were also evaluated with a
contrast scatter plot, presented in Figure 9 The results show that the intensity predicted by
PySTEPS at the storm center was very close to that of the observation, but the location of
the storm center deviated from the observation. In contrast, DL models could successfully
forecast the correct location of the storm center, whereas the underestimation of the peak
reflectivity intensity and the exaggeration of the storm extent still existed, which could
also be confirmed in the scatter plot. The last subfigures in Figure 8 show that the GA
strategy could slightly alleviate this exaggeration effect and SVRE could increase the peak
reflectivity intensity, pushing it closer to that of the observation. With the combination of
the GA strategy and the SVRE loss function, the AGAN + SVRE gave the best prediction
compared to the other baseline models.

Figure 8. Visualization of the +60 min prediction and the observation in case 2.
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Figure 9. Contrast scatter plot of +60 min prediction and observation in case 2.

Table 5 enumerates the +60 min nowcasting performances of case 2. The GA strategy
and the SVRE loss function improved the performance of the AGAN’s generator in regard to
the POD, MAE, RMSE, SSIM, and JSD, which was similar to case 1. However, the CSI of the
model trained with the GA strategy and the SVRE loss function was reduced in both cases,
which was different from the findings of the overall performances on the whole test set.

Table 5. The +60 min nowcasting performances in case 2. The up and down arrows in the heading
indicate whether the highest or the lowest was the best for different metrics. A bold number indicates
that the model in its row had the best performance, evaluated with the metric in its column.

Model POD ↑ FAR ↓ CSI ↑ MBE ↓ MAE ↓ RMSE ↓ SSIM ↑ JSD ↓
PySTEPS 0.696 0.476 0.426 0.8 7.5 10.6 0.228 0.642

SmaAt-UNet 0.981 0.647 0.351 9.8 10.2 13.9 0.284 0.442
MotionRNN 0.936 0.659 0.333 10.7 11.3 15.3 0.249 0.298

AGAN(g) 0.933 0.519 0.465 8.3 8.8 13.2 0.306 0.331
AGAN(g) + SVRE 0.873 0.524 0.445 7.0 8.2 12.0 0.305 0.409

AGAN 0.951 0.604 0.388 8.5 9.1 12.8 0.327 0.341
AGAN + SVRE 0.960 0.617 0.378 8.3 9.1 12.8 0.332 0.271

We also plotted the Taylor diagram (Figure 10) and the PSD line chart (Figure 11) for
case 2. In the Taylor diagram, it was found that both the GA strategy and the SVRE loss
function could promote σŷ/σy of the model, and SVRE had an even bigger promotional
effect than GA. The RMSE’, related to the overall bias, was consequently reduced. For
the comparison experiment, the advantage of AGAN + SVRE over other baseline models
was similar to case 1. It achieved the highest CC, the lowest RMSE’, and the second-
highest variance ratio below PySTEPS. For the PSD of the predictions in Figure 11), the
similarities and differences of the nowcasting performances between the models in case 2
were homogeneous to those in case 1. The PSD of radar images predicted by the AGAN +
SVRE were the closest to that of the observation among all of the DL models.

163



Remote Sens. 2023, 15, 3306

Figure 10. Taylor diagram of the +60 min prediction and the observation in case 2.

Figure 11. Power spectral density (PSD) of the +60 min prediction and observation in case 2. (a,b)
are PSD of the X- and Y-axis, respectively.

4.3. Discussion

Thus far, we have evaluated the overall performances of different models and further
analyzed their strengths and shortcomings with two storm cases. Generally, the results
proved that the GA strategy and the SVRE loss function could alleviate the blurry effect
of DL nowcasting models. The SVRE loss function and the GA strategy could boost DL
nowcasting models by bridging the gaps between the predictions and the observations,
particularly regarding spatial variability differences. As expected, the spatial variability-
related metrics (SSIM, JSD, and PSD) of the test set and the two selected cases demonstrated
that the GA strategy and the SVRE loss function could enhance the spatial variability
representation of DL nowcasting models. More specifically, the enhancement of spatial
variability representation derived from SVRE instead of GA. This might have been influ-
enced by the hyperparameter selection in generative adversarial training. Since GANs
are difficult to train, a larger weight has to be attached to the SVRE loss term and the
reconstruction term to ensure convergence, leading to enhanced difference between the
two components.
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However, our methods also had several limitations. The first was that the forecasting
accuracy of models trained with the SVRE loss function slightly reduced in heavy-rainfall
cases. The AGAN(g)+SVRE and AGAN + SVRE could improve the CSI of the AGAN(g)
and AGAN on the whole test set, but they failed in the two storm cases. This was probably
because the goal of better spatial variability representation of extreme storm events can lead
to more overestimated pixels or false alarms, which have a negative impact on forecasting
accuracy. Another limitation came from the computational cost. The generative adversarial
training process and the approximated integration over latent variables can significantly
increase the convergence time for the training and inference processes of our model, making
it difficult to apply to scenarios that require an extremely rapid response.

5. Conclusions

Previous deep learning models for radar nowcasting suffer from the systematic
“blurry” problem and do not accurately represent the spatial variability of radar echo
images. This study presented a Spatial Variability Representation Enhancement (SVRE)
loss function and an Attentional Generative Adversarial Network (AGAN) to solve the
problem, and evaluated them with a regional CINRAD dataset. An ablation experiment
and a comparison experiment were implemented to verify the effects of the generative
adversarial (GA) training strategy and SVRE loss and to compare the proposed model
to current advanced radar nowcasting models. The performances of the models were
validated on the whole test set and then inspected in two typical cases. Several metrics
were selected to evaluate the forecasting accuracy and spatial variability representation.
The results showed that both the GA strategy and the SVRE loss function could improve
nowcasting performance by enhancing the spatial variability representation of the radar
reflectivity. The GA strategy and SVRE also helped our model outperform other advanced
baseline nowcasting models. The main contributions of this study are the following:

• We propose the SVRE loss function and the AGAN to alleviate the blurry effect of
DL nowcasting models. Both of them can reduce this effect by enhancing the spatial
variability of radar reflectivity.

• We attribute the blurry effect of DL nowcasting models to the deficiency in spatial
variability representation of radar reflectivity or the precipitation field, which provides
a new perspective for improving radar nowcasting.

Consequently, this study provides a feasible solution based on dense radar observa-
tions for high-resolution radar nowcasting applications. The limitations of our methods
include reduced forecasting accuracy in high-intensity storm events and heavy computa-
tion costs. Future studies will focus on overcoming these limitations for high-intensity and
small-scale storm events.
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Abbreviations

The following abbreviations are used in this manuscript:

SVRE Spatial varibility representation enhancement
AGAN Attentional generative adversarial network
DL Deep learning
GA Generative adversarial
CNN Convolutional neural network
RNN Recurrent neural network
POD Probability of detection
FAR False alarm ratio
CSI Critical sucess index
MBE Mean bias error
MAE Mean absolute error
RMSE Root mean squared error
JSD Jensen-Shannon divergence
SSIM Structural similarity index measure
PSD Power spectral density
CC Correlation coefficient
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Abstract: A nonlinear grid transformation (NGT) method is proposed for weather radar convective
echo extrapolation prediction. The change in continuous echo images is regarded as a nonlinear
transformation process of the grid. This process can be reproduced by defining and solving a 2 × 6
transformation matrix, and this approach can be applied to image prediction. In ideal experiments
with numerical and path changes of the target, NGT produces a prediction result closer to the target
than does a conventional optical flow (OF) method. In the presence of convection lines in real cases,
NGT is superior to OF: the critical success index (CSI) for 40 dBZ of the echo prediction at 60 min is
approximately 0.2 higher. This is due to the better estimation of the movement of the whole cloud
system in the NGT results since it reflects the continuous change in the historical images. For the
case with a mesoscale convective complex, the NGT results are better than the OF results, and a deep
learning result is cited from a previous study for the same case for 20 and 30 dBZ. However, the result
is the opposite for 40 dBZ, where the deep learning method may produce an overestimation of the
stronger echo.

Keywords: weather radar nowcasting; echo image prediction; grid transformation

1. Introduction

A weather radar is an important means to monitor and warn of severe convective
weather [1–3]. Although data assimilation of weather radar helps to improve numerical
forecasting [4,5], extrapolation prediction based on weather radar echoes remains the most
direct method for nowcasting a convective event, especially for mesoscale convective
weather [6,7] with rapid development and dramatic changes. By means of the current
observed radar data, the movement and variation of the echo are obtained, and the position
and intensity of the echo in the next few minutes or longer period are estimated.

The methods of extracting radar echo moving features from horizontal two-dimensional
radar images can be divided into two categories according to the target. One focuses on
identifying and tracking a whole cloud, such as the Thunderstorm Identification, Track-
ing, Analysis, and Nowcasting algorithm (TITAN) [8]. The cloud is determined by the
maximum circumscribed ellipse under a given reflectivity threshold to obtain its trajectory
and variation characteristics. Another category of methods focuses on obtaining the vector
field of echo movement under a uniform grid. The Tracking Radar Echo by Correlation
algorithm (TREC) [9], a common algorithm in the past, determines the echo moving vector
on the specified grid point based on the cross-correlation between the subunits around ad-
jacent time points. Both TITAN and TREC contribute to a classical auto-nowcast system [3].
The Optical Flow (OF) method can also produce a vector field based on images around
adjacent time points. By assuming the target gray level is constant and introducing the
global smoothing condition (known as Horn-Schunk OF, [10]) or the local consistency con-
dition (known as Lucas-Kanade OF, [11]), moving vectors can be solved based on the local
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change and spatial gradient of the images. A recent study shows that different nowcasting
schemes based on OF can both produce better results than TREC to some extent [12]. In
addition, an improved prediction method combines OF with an assimilation system and
considers water content and principal component analysis [13].

However, some challenges remain in the feature extraction and extrapolation of
convective clouds in the above methods. The alternating development of convective cells
often occurs in convective systems. The moving direction of the whole cloud system
typically depends on the combination of individual cell movement and the direction of
new cell emergence, which may not be correctly reproduced by a method based on a few
images at adjacent times, such as TREC and OF. Although TITAN can provide the echo
movement trajectory based on longer historical echo image samples, each convective cell
in a cloud system may not only move in different directions but also merge, resulting
in complex topological relationships that are difficult to extrapolate. In addition, the
shape and intensity of convective echoes can vary locally and rapidly, which makes it
difficult to capture classical local image features such as Scale-Invariant Feature Transform
(SIFT) [14] and Harris corner detectors [15]. Therefore, other image recognition and analysis
algorithms based on those features cannot be effectively applied to the extrapolation of
weather radar echoes. In general, there is a lack of algorithms that consider multiple
historical times and do not rely on identifying individual targets.

There are also some learning methods that have been applied to radar echo and
precipitation nowcasting [16–23] in recent years. These methods allow multiple observed
image inputs and predict the image in the future, which appears to address the limitations
mentioned above. However, since the model parameters and modeling process are implicit
and there is a requirement for a large number of samples for training, the reliability of these
methods requires further verification in application.

In this paper, a new method is proposed for the extrapolation and prediction of
weather radar echo images. The change in continuous echo images is regarded as a
nonlinear transformation process of the grid by a transformation matrix. By defining and
solving this matrix, the extrapolation and prediction of the echo image can be realized.
The process of establishing the new method is described in Section 2. The echo prediction
experiments are shown in Section 3, including a set of ideal cases and three real cases. A
summary and discussion are provided in Section 4.

2. Nonlinear Grid Transformation Method

2.1. Matrix for Grid Transformation

The concept of the transformation matrix is first introduced in this section, including
the conventional transformation matrix and the extended transformation matrix used
in this paper. The connection between the transformation matrix and the echo image
prediction is introduced in Sections 2.2 and 2.3.

The general form of the transformation matrix used in this paper is a matrix Mp×p, as
shown in Equation (1):

Mp×p =

⎡
⎢⎢⎢⎢⎣

m1,1 m1,2 . . . m1,p−1 m1,p
m2,1 m2,2 . . . m2,p−1 m2,p

. . .
mp−1,1 mp−1,2 . . . mp−1,p−1 mp−1,p

0 0 . . . 0 1

⎤
⎥⎥⎥⎥⎦ (1)

where the first p − 1 rows are independent elements, the value in row p and column p is 1,
and the other values in row p are 0. When p is 3, a two-dimensional point set [X1, Y1] can
be transformed to [X2, Y2] as follows:

[X2, Y2, 1]T = M3×3[X1, Y1, 1]T (2)
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where the “1” at the third location in the square bracket provides a nonhomogeneous
term when performing linear transformation of the point coordinates. Equation (2) is
known as “affine transformation” [24], which is a common algorithm of image geometric
transformation. With this matrix, the original point set can be translated, rotated, scaled,
and deformed (sheared, stretched, etc.). For the convenience of observation, [X1, Y1] is set to
an orthogonal grid, and Figure 1a shows a comprehensive example, which includes changes
such as moving to the right, magnification, counterclockwise rotation, and stretching the
upper right corner. This transformation is repeatable. After N-1 times left multiplication by
M3×3, the transformation result [XN, YN] is obtained in the same way:

[XN, YN, 1]T = (M3×3)
N−1[X1, Y1, 1]T (3)

Figure 1. Example of grid transformation from [X1, Y1] (blue grids) to [X2, Y2] (red grids) using
(a) M3×3, (b) M4×4, and (c) M6×6. The black arrows represent the transformation direction of a grid.

Related principles and examples of such common 2D image transformation are seen
in [24]. Note that only the first two rows of M3×3 can actually be taken if only one
transformation is needed. In addition, the inverse matrix of M3×3 represents the opposite
transformation. Usually, when at least three groups of X and Y before and after the
transformation are known, the six parameters in M3×3 can be solved to achieve a similar
transformation for other point sets, or the expected transformation can be achieved by
directly specifying the 6 parameters.

However, this conventional affine transformation has a limited ability to characterize
image deformation. Note that in Figure 1a, although the shape has changed to some extent,
the opposite edges are still parallel, so it is obviously not suitable for characterizing the
changes in weather echo images. The transformation could be expanded by adding more
parameters. It is easy to extend M in the form of Equation (1). When expanding the formula
with coordinates multiplied by M, the newly added variables must be known or knowable
and cannot be completely linearly related to the point sequence of the original X1 and Y1.
A nonlinear XY term is proposed to be added, and the transformation matrix M is 4 × 4
as follows:

[X2, Y2, X2Y2, 1]T = M4×4[X1, Y1, X1Y1, 1]T (4)

An example of the transformation of Equation (4) is given in Figure 1b, which shows
that it can already characterize the case where the contrast is not parallel. However, every
edge of the orthogonal grid after transformation is still a straight line. To further improve
the deformation ability of the transformation, the nonlinear terms X2 and Y2 are added,
and a 6 × 6 transformation matrix is used:

[
X2, Y2, X2Y2, X2

2, Y2
2 , 1
]T

= M6×6

[
X1, Y1, X1Y1, X2

1, Y2
1 , 1
]T

(5)

Now, the transformation can characterize not only the translation of the grid points
but also the flexible bending deformation of the original orthogonal grid (Figure 1c), which
has the potential to characterize the movement and shape change of the weather echo.
Therefore, Equation (5) is used as the form of nonlinear grid transformation discussed in
the following sections.
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2.2. Estimation of the Nonlinear Grid Transformation Matrix

As mentioned in Section 1, it is difficult to extract the target feature points that do
not change with time in the weather echo image, so a pair of known and corresponding
[X1, Y1] and [X2, Y2] is hard to find. Thus, a major challenge is how to solve Equation (5)
to obtain the transformation matrix M6×6 when given two or more echo images.

Assuming the original image values (reflectivity values) at two adjacent times are Q1
and Q2, [X1, Y1] is the original orthogonal grid of the image, and [X2, Y2] is the point set
after transformation by M6×6. Since [X2, Y2] probably does not coincide with the original
orthogonal grid, let Q2* be the estimated value on [X2, Y2] of Q2. Here, Figure 1c can be
taken as a simple schematic diagram, where the blue grids are [X1, Y1] and the red grids
are [X2, Y2]. The pixels of Q1 and Q2 are 2D fields corresponding to the blue grids, while
the pixels of Q2* correspond to the red grids. The goal of the expected transformation is
to make Q1 look like Q2, where the difference between Q1 and Q2* is as small as possible
after moving the image values of Q1 from [X1, Y1] to [X2, Y2]. The above objective can be
expressed as minimizing Equation (6):

J = ∑(Q1 − Q2∗)2 (6)

where the summation is for all grids of the image. However, Q2* cannot be obtained by
interpolation since the transformation and [X2, Y2] are unknown in advance. Thus, an
estimate of Q2* is proposed using a Taylor first-order expansion as follows:

Q2∗ ≈ Q2 +
∂Q2

∂x
(X2 − X1) +

∂Q2

∂y
(Y2 − Y1) (7)

The approximation of Equation (7) is clearly rough and does not always hold, so
some additional conditions are needed. First, the grid spacing should be larger than the
displacement of the object in the images. Considering that the jet velocity in convective
weather is often larger than 20 m s−1, as is the outflow formed by convective precipitation,
clouds may move 4.8~7.2 km or more with the wind within the interval of an operational
weather radar, whose volume scan often takes 4~6 min. Therefore, the grid spacing selected
for echo extrapolation should be greater than this order of magnitude, for example, at least
10 km × 10 km. Then, the echo image should be smoothed to some extent, such as via
small-scale two-dimensional Gaussian filtering, to smooth the local jagged texture that
may exist in the image so that the first-order partial derivative of the space in Equation (7)
is representative.

After substituting Equation (7) into Equation (6), the problem of minimizing (6) can be
transformed into solving a system of equations on the original orthogonal grid, where each
equation is:

ΔQ2−1 +
∂Q2

∂x
(X2 − X1) +

∂Q2

∂y
(Y2 − Y1) = 0 (ΔQ2−1 �= 0) (8)

where ΔQ2−1 is the difference of Q2 minus Q1 on each grid. The expressions of X2 and Y2
can be obtained by expanding Equation (5) as follows:

X2 = m1,1X1 + m1,2Y1 + m1,3X1Y1 + m1,4X2
1 + m1,5Y2

1 + m1,6 (9)

Y2 = m2,1X1 + m2,2Y1 + m2,3X1Y1 + m2,4X2
1 + m2,5Y2

1 + m2,6 (10)

After substituting Equations (9) and (10) into Equation (8), the nonhomogeneous linear
equations of the parameters to be solved can be obtained:

B M∗ = ∂Q2

∂x
X1 +

∂Q2

∂y
Y1 − ΔQ2−1 (11)
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where the known quantity B and the parameter M* to be solved are shown in Equations (12) and (13)
as follows:

B =

[
∂Q2

∂x
X1,

∂Q2

∂x
Y1,

∂Q2

∂x
X1Y1,

∂Q2

∂x
X2

1,
∂Q2

∂x
Y2

1 ,
∂Q2

∂x
,

∂Q2

∂y
X1,

∂Q2

∂y
Y1,

∂Q2

∂y
X1Y1,

∂Q2

∂y
X2

1,
∂Q2

∂y
Y2

1 ,
∂Q2

∂y

]
(12)

M∗ = [m1,1, m1,2, m1,3, m1,4, m1,5, m1,6, m2,1, m2,2, m2,3, m2,4, m2,5, m2,6]
T (13)

As long as more than 6 grids are satisfied, the system of equations consisting of
Equation (11) can be solved by Least Squares Estimation (LSE). The obtained M* contains the
elements of the first two rows of M6×6, and [X2, Y2] can then be obtained by Equation (14):

[X2, Y2]
T =

[
m1,1, m1,2, m1,3, m1,4, m1,5, m1,6
m2,1, m2,2, m2,3, m2,4, m2,5, m2,6

][
X1, Y1, X1Y1, X2

1, Y2
1 , 1
]T

(14)

For a single transformation, the 2 × 6 transformation matrix in Equation (14) is suf-
ficient. For the remaining 3~5 rows in M6×6, each row can be obtained by LSE after
substituting [X2, Y2] into Equation (5). Thus, a method for solving the nonlinear transfor-
mation matrix is obtained when two images are given. This approach is also applicable
to multiple images. For example, for the case of three images, Equation (11) on each grid
using the first and second images is first listed in the system of equations, then that of the
second and third images are appended to the system of equations, and finally, they are
solved together via LSE. This process enables the final transformation matrix to reflect the
continuous movement and deformation characteristics of multiple images.

There are four more points to note:

(1) Quadratic coordinates and distance derivatives are involved in the operation of
Equation (11), which makes it possible for the value of the coefficient to span many
orders of magnitude. Therefore, all the variables involved in the actual calculation
should be at least double-precision floating-point numbers.

(2) An underestimation of image change will occur if points of ΔQ2−1 = 0 are considered
when preparing Equation (11) because when only points of ΔQ2−1 = 0 are used, the
final obtained M6×6 will be a unit matrix, that is, the image is unchanged.

(3) Although the time complexity for solving Equation (11) appears to increase quadrat-
ically with the number of grids, the size of the original image does not become a
problem because the method is not based on detailed texture and rather requires a
certain degree of coarse grid spacing. A current personal computer can complete the
calculation in 1–10 s when the historical sequence length is approximately 10, and the
number of grid points is less than 100 × 100.

(4) After obtaining the transformation matrix and before extrapolating using Equation (14),
the image and coordinates are replaceable. For example, the filtered coarse-resolution
image can be replaced by the original fine-resolution image. However, the unit of
coordinates cannot be replaced because the transformation matrix is based on the
coordinates used. For example, the coordinates cannot be changed from rectangu-
lar coordinate distance to latitude and longitude once the transformation matrix is
obtained or from the latitude and longitude of a region to another different region.

2.3. Practical Steps for Extrapolation Prediction

An ideal extrapolation prediction scheme is to first find M6×6 and obtain the transfor-
mation matrix after multiplication according to the time N that needs to be extrapolated,
which is similar to Equation (3). Then, the inverse matrix is produced, and the discrete
point set of reverse extrapolation is obtained and used for backward interpolation. Finally,
the predicted image is obtained directly by linear interpolation. However, during the
experiment for constructing the new method in this paper, some anomalies caused by
nonlinear effects when N was large (such as greater than 10) were found. For example,
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the image does not further deform or move as expected but rolls back. Therefore, a more
reliable extrapolation method is proposed.

First, only M2×6 is obtained using Equation (11). Then, [X2, Y2] are obtained using
Equation (14), and [X1, Y1] are subtracted from [X2, Y2] to find a vector field u and v to
represent the one-time grid transformation. According to the time N to be extrapolated,
the original grid points are moved in the opposite direction of u and v in N steps, and
u and v on the new discrete points are interpolated in each step, which is known as
backward interpolation. The values of the final backward positions are obtained by linear
interpolation and are deemed to appear on the orthogonal grid point after N steps; thus,
the predicted image is obtained. Although this process is somewhat different from a direct
transformation similar to Equation (3), it can reflect the grid movement and deformation
characteristics generated by the solved transformation matrix, and there is no abnormality
caused by nonlinear effects.

The above introduces the image extrapolation method proposed in this paper, called
the Nonlinear Grid Transformation (NGT) method. The main steps of echo extrapolation
prediction are supplemented and summarized as follows:

(1) Prepare a set of time-continuous historical echo images prior to the start time of the
prediction. Perform resolution reduction and two-dimensional Gaussian filtering
if necessary.

(2) For each pair of adjacent images, each Equation (11) from a grid in which ΔQ2−1 �= 0
is selected continuously to form a system of linear equations.

(3) Solve the system of linear equations in the last step to obtain the transformation matrix
M2×6. Obtain [X2, Y2] according to Equation (14), and subtract the origin orthogonal
grid [X1, Y1] to obtain grid transformation vector fields u and v. Here, the u and v are
generated one-time.

(4) If a resolution reduction is applied in the first step, u and v are linearly interpolated to
the original resolution.

(5) Based on the original image at the start time of the prediction, u and v are used to
conduct backward interpolation, and the extrapolation image at N steps is obtained.

3. Weather Radar Echo Prediction Experiments

3.1. Experimental Setting
3.1.1. Case Setting and Statistics

To examine the proposed NGT method, a set of ideal cases and three real cases are
used. In the ideal experiment, a simple two-dimensional normal distribution image with
an extreme value region is used to simulate the echo of a precipitation cloud. Some simple
changes, such as moving or numerically changing, are added to the images to test whether
NGT can achieve the expected results. The three experiments using real radar observations
are based on different radars and convective weather events. The original input echo
images have a range of 600 km × 600 km and a resolution of 1 km × 1 km. The data form of
these images is Constant Altitude Plan Position Indicator (CAPPI) or composite reflectivity,
whose details are provided in Sections 3.3–3.5.

For real cases, three commonly used skill scores, namely, the critical success index
(CSI, also known as the threat score), the probability of detection (POD), and the false alarm
ratio (FAR), are used to examine the prediction results [25]. These skill scores are calculated
as follows:

CSI =
NA

NA + NB + NC
(15)

POD =
NA

NA + NC
(16)

FAR =
NB

NA + NB
(17)
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where NA is the number of grid points with successful predictions (the hit number) for
which both the observation and prediction are greater than a given threshold; NB is the
number of grid points with false alarms for which the observation is less than the given
threshold, and the prediction is greater than the given threshold; and NC is the number
of grid points with unsuccessful predictions, for which the condition is opposite to NB.
Referring to previous studies [18,19], the thresholds of radar reflectivity (Z) on the echo
image are set to 20, 30, and 40 dBZ. A perfect prediction result has a CSI and POD close to 1
and a FAR close to 0. CSI is the overall statistic, while POD and FAR help to further explain,
for example, whether a lower CSI is due mainly to a low hit rate or a high false alarm rate.

When comparing the CSI of different methods, a static reference value is additionally
calculated, where the CSI of this static reference is obtained without processing the image
at the starting time of the prediction. The purpose of doing so is to test the effectiveness of
the CSI in the prediction results. Specifically, for clouds with a large range or inconspicuous
movement, higher CSI may be obtained even without any echo extrapolation. Therefore,
an effective prediction result should have a CSI larger than the static reference at the same
time; otherwise, it should be regarded as a quantitative result with a negative effect.

3.1.2. The Method for Comparison

A method that can also output the image moving vector field is to be selected for
comparison to examine whether the image prediction is improved by the newly proposed
NGT method. Note that TREC and OF can both fulfill that. However, OF has lower compu-
tational complexity than TREC at the same resolution, and some recent studies indicate that
OF makes better predictions [12]. Therefore, a simple and feasible OF scheme is adopted.
A global smoothing constraint condition of Horn-Schunk OF [10,26] is implemented, and
the minimizing function is Equation (18):

J =
∫
Ω

[(
Ixu + Iyv + It

)2
+ α2
(
|∇u|2 + |∇v|2

)]
dΩ (18)

where Ω is the area domain of grid points, It, Ix, and Iy are the temporal and spatial partial
derivatives that synthesize two adjacent times, and α2 is a smoothing parameter. The
iterative scheme to solve the optical flow vector fields u and v is as follows:

un+1 = un − Ix
Ixun + Iyvn + It

α2 + I2
x + I2

y
(19)

vn+1 = vn − Iy
Ixun + Iyvn + It

α2 + I2
x + I2

y
(20)

where u and v are the regional average values of u and v, respectively, and the superscripts
n and n + 1 represent the order of iterations. Here, α2 is set to the global average of Ix

2 + Iy
2.

The number of iterations is 1000 to ensure the solution instead of setting a breakdown
condition. More details about the calculation scheme of It, Ix, Iy, u, v and the boundary are
provided in [26].

The OF adopts a similar method as the NGT, where the vector fields u and v for
extrapolation are obtained first, and then backward interpolation is used on the image at
the predicted time. For real cases, the solving of u and v is performed under an average
grid of 10 km × 10 km. An additional two-dimensional Gaussian filter with a standard
deviation of 1 grid and a radius of 10 grid is applied to NGT. The prediction is under the
resolution of the original 1 km × 1 km grid. Images of the prediction start time and the
previous time are used as historical samples in OF, while NGT uses historical samples one
hour ahead of the prediction start time. The impact of historical sample selection on OF
is briefly discussed in Section 3.2, and the impact of historical sample length on NGT is
briefly discussed at the end of Section 3.3.
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3.2. Ideal Cases

As shown in Figure 2a, both NGT and OF can make basically accurate predictions
when only a simple translation exists. This also shows that the OF extrapolation scheme
used for comparison in this paper is reliable for simple prediction.

Figure 2. Example of extrapolation results in ideal experiments based on simple images: (a) only
translation, (b) add increment, and (c) direction change. Samples are two-dimensional normal
distribution images with an initial value range of 0~1, and contour lines for 0.5 are shown. The
translation speed in (a) and (b) is 0.5 grids per time in both the X and Y directions. A 0.01 increment
over time is added in (b). The rotation speed of the extreme center in (c) is 3 degrees per time. The
historical samples shown are t = 1~10, the predictions start from t = 10, and the object is at t = 20.
NGT is modeled using all ten historical samples, while OF uses only t = 9~10. The X and Y axes are
distances with arbitrary units.

When the image value has a time increment (Figure 2b), although the results of the
two methods are both biased, the result of NGT is closer to the target object, while OF has
almost more than twice the deviation, possibly due to the time increment, which does not
conform to the basic assumption of the OF method itself.

When the moving path of the target object has an arc with rotation characteristics
(Figure 2c), the result of NGT is closer to the target, while the result of OF seems to be only a
linear extrapolation of the historical sample trajectory, resulting in an obvious deviation. In
addition, it can be expected that the change in the historical sample selection will produce
different OF results, where the predicted red circle will appear at the extension lines of the
central positions of the two historical samples, which is still farther from the target. That
is, the OF method is weak at extrapolating this path turning, regardless of how historical
samples are selected. Note that the use of more than two historical samples for OF in [12]
is expected also not helpful under this condition since it does not change the algorithm
feature. In summary, compared with the conventional OF method, NGT can perceive
more image changes from historical samples and can obtain more accurate extrapolation
prediction results when the target value and path change.

The deviation of the NGT should also be noted. It is seen from Section 2.2 that only
the spatial derivatives and coordinates of the image are involved in NGT, while the simple
target used in Figure 2 has similar spatial derivatives in all directions, which might bring
confusion and cause deviation. However, since this defect does not exist in real cases, it is
no longer discussed below.

3.3. Real Case 1: A Convective Line with Shape Evolution

A convective weather event with obvious movement and shape change in radar echo
images is selected first. A squall line event occurred in the U.S. on 20 May 2011, which
was analyzed in a previous study [27]. The stage is selected in which a convective line
is detected by a NEXRAD S-band radar (the station code is KTLX, located at 97.28◦W,
35.33◦N) when this convective line with shape-shifting moves to the radar. This radar
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performs a volume scan consisting of 15 elevations in 255 s. The CAPPI at a height of 3 km
is obtained by triple linear interpolation from the volume scan data, which can not only
reflect the main movement of the echo but also automatically shield most of the clutter in
the boundary layer.

As shown in Figure 3, the convection line and its strong echo front are first in an
inverted L-shape. As the cloud system moves northeastward, the convection line gradually
evolves into a bow shape. Due to the north side of the cloud body moving out of the
radar detection range, the original inverted L-shaped east–west echo band also gradually
disappears. The visual moving directions of cells, new cells emerging and the whole cloud
system are marked in Figure 3a. The horizontal wind U and V from ERA5 reanalysis data
(Figure 4) are cited as a physical wind field for comparison with NGT and OF to analyze
their features. The direction of new cell emergence is toward the southeast side, which is
the windward direction of the relatively low level (e.g., 950 hPa), while the direction of the
cell movement at a height of 3 km is along the north and slightly eastward, basically the
same as that of the wind field at a similar height (from 850 hPa to 700 hPa). The combination
of the above two directions eventually makes the whole cloud system move northeast.

Figure 3. CAPPI at a height of 3 km observed by KTLX radar on 20 May 2011. X and Y represent
west–east and south–north distances relative to the radar site. (a) 08:06; (b) 09:05; (c) 10:05; (d) 10:56.
The time is in UTC. The black arrows in (a) represent the visual directions of cell movement, new cell
emergence, and total movement of the whole system.

Figure 4. Wind field from ERA5 reanalysis data at 09:00 UTC.
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Taking a 60 min prediction as an example, the data in Figure 3b are taken as the
starting time, and Figure 3c is taken as the prediction target where the convection line
moves and deforms. The results of NGT are basically consistent with the observed front
edge of the convective line (Figure 5a). The grid transformation vectors mainly point to the
northeast, which is consistent with the overall movement direction of the cloud system. In
addition, these vectors point to the west at the northernmost point, which is also consistent
with the image change characteristics of the weakening and disappearance of the east–west
echo band on the north side in Figure 3. On the other hand, the OF results obviously
underestimate the movement of the convection line (Figure 5b). The vector value of OF on
the southeast side is small, which may be related to the interference of small-scale scattered
clouds in the clear sky region at the front. More importantly, although the vector field
of OF is similar to the wind field at the front of the convective line, pointing north and
similar to the direction of monomer movement, this is not the direction of the overall cloud
movement, which may be the main reason for the underestimation of movement.

Figure 5. Sixty-minute prediction results. The target time is 10:05 UTC on 20 May 2011. The shading
is the predicted CAPPI at a height of 3 km. The black solid lines are the 30 dBZ leading edge of the
convective echo observed at the target time (Figure 3c). The vector fields are obtained by NGT and
OF for backward interpolation. (a) NGT; (b) OF.

Although the prediction effect decreases with time, there are differences between the
two methods (Figure 6). The CSI of NGT is lower than that of OF only in the first 1–3 times
of prediction and is better than that of OF in other prediction periods. For the higher 40 dBZ
echo, NGT has the most obvious advantage over OF, and the CSI can be 0.2 higher than
that of OF in the 40~60 min prediction period. The CSI of OF for 30 and 40 dBZ is lower
than the static references within 60 min, which means that the prediction accuracy loses its
value, while the CSI of NGT decreases more smoothly, indicating that it has the capability
to perform echo prediction over a longer prediction period. In addition, due to the overall
deviation of the position of the convective line predicted by OF, its prediction skill scores
are all lower than those of NGT (Table 1).

Figure 7 briefly shows the effect of historical sample length on NGT. The CSI is lower
when only two historical samples (less than 5 min in this case) are taken. With an increase
in the length of the historical sample, the CSI rises in oscillation first and then rises slowly
when the sample is longer than 20~30 min, indicating that a longer sample length leads
to a better NGT prediction effect. However, since the duration of convective weather is
usually only a few hours or less, it is not practical to use historical samples longer than
60 min. Therefore, only 60 min of the historical sample for NGT is used and discussed in
most parts of this paper.
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Figure 6. CSI of the prediction by NGT and OF for (a) Z > 20 dBZ, (b) Z > 30 dBZ, (c) Z > 40 dBZ,
and (d) NGT—OF. The prediction starts at 9:05 UTC on 20 May 2011. The “static ref.” lines mean a
reference without any extrapolation on the data of the starting time.

Table 1. Skill scores of the two methods for 60 min prediction. The target time is 10:05 UTC on 20
May 2011.

Threshold (dBZ)
POD FAR CSI

NGT OF NGT OF NGT OF

20 0.84 0.75 0.23 0.26 0.68 0.60
30 0.41 0.29 0.38 0.44 0.33 0.23
40 0.42 0.08 0.61 0.90 0.25 0.04

Figure 7. The CSI of 60 min prediction by NGT using different time lengths of historical samples for
(a) Z > 20 dBZ, (b) Z > 30 dBZ, and (c) Z > 40 dBZ. The prediction starts at 9:05 UTC on 20 May 2011.
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3.4. Real Case 2: A Convective Event with Convective Line Formation

To examine whether the NGT is always better than OF in different stages of a con-
vective event, it is necessary to select a case that has been detected by radar for a more
complete life cycle. The selected case is a convective event that occurred in Shandong
Province, China, on 17 May 2020. The radar data are from a CINRAD-SA type S-band radar
(the station number is Z9532, located at 120.23◦E, 35.99◦N). This radar performs a volume
scan consisting of 9 elevations within 342 s. Other information is provided in [28]. The
CAPPI at 3 km height is used for analysis, similar to the last case in Section 3.3.

As shown in Figure 8, scattered convective clouds appear at the northwest side of
the radar first, develop into a severe convective cell group, and then form a convective
line, passing over the radar origin and moving southeastward. In the following time, the
stratiform cloud area at the back of the convection line gradually expands, and the strong
echo at the front gradually weakens, which is no longer displayed together here.

Figure 8. CAPPI at 3 km height observed by Z9532 radar on 17 May 2020. X and Y represent west–east
and south–north distances relative to the radar site. (a) 10:26; (b) 12:25; (c) 14:25; (d) 16:59. The time
is in UTC.

Figure 9 shows the 60 min prediction skill scores of almost the entire weather process.
Clearly, NGT is not always superior to OF in echo prediction for 20 and 30 dBZ. However,
the CSI of NGT for 40 dBZ is higher than that of OF at the target time of 14~16 UTC, which
is the stage where the convective line exists.

A one-hour prediction is taken as an example for analysis similar to Section 3.3,
where the data in Figure 8c are taken as the starting time, and Figure 8d is taken as the
prediction target when the convection line persists. Note that 57 min is used here to
represent a one-hour period since there is no data point exactly at the next 60 min. The
NGT results show that the predicted convective lines are basically consistent with the
observations (Figure 10a). Note that there is a large grid transformation vector over the
normal wind speed in the clear sky area on the southeast side of the convective line pointing
to the southeast, which indicates that the image is greatly stretched southeastward in the
prediction. However, in the OF results (Figure 10b), an underestimation of the movement
of the convective line remains. This underestimation is similar to that in Section 3.3 and is
thus also due to the deviation of the moving direction of the whole cloud system and cells.
In this 60 min prediction example, the CSI of NGT is better than that of OF (Figure 11), and
the advantage is most obvious for 40 dBZ. Regarding the other skill scores, only the FAR of
NGT is inferior to that of OF for 20 and 30 dBZ (Table 2). This may be due to the increase in
the false alarm rate of NGT caused by a displacement greater than the expected echo at
X = 0~100 km and Y = −200~−100 km in Figure 10a, but this does not affect the overall
advantage of NGT.
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Figure 9. CSI of the 60 min extrapolating prediction by NGT and OF for (a) Z > 20 dBZ, (b) Z > 30 dBZ,
(c) Z > 40 dBZ, and (d) NGT—OF on 17 May 2020. The prediction starts at 9:05 UTC on 20 May 2011.

Figure 10. Fifty-seven-minute prediction results. The target time is 15:22 UTC on 17 May 2020. The
shading is the predicted CAPPI at a height of 3 km. The black solid lines are the 30 dBZ contours of
the convective echo observed at the target time (Figure 8c). The vector fields are obtained by NGT
and OF for backward interpolation. (a) NGT; (b) OF.
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Figure 11. CSI of the prediction by NGT and OF for (a) Z > 20 dBZ, (b) Z > 30 dBZ, (c) Z > 40 dBZ,
and (d) NGT—OF. The prediction starts at 14:25 UTC on 17 May 2020.

Table 2. Skill scores of the two methods for 60 min prediction. The target time is 15:22 UTC on 17
May 2020.

Threshold (dBZ)
POD FAR CSI

NGT OF NGT OF NGT OF

20 0.61 0.47 0.15 0.08 0.55 0.45
30 0.47 0.34 0.27 0.25 0.40 0.31
40 0.33 0.08 0.55 0.83 0.24 0.06

3.5. Real Case 3: A Mesoscale Convective Complex and Comparison with Previous Deep
Learning Results

As a newly proposed method, NGT must be tested in different types of convective
weather, and it is best to compare it with other newer popular methods. We have identified
a case that can approximately meet this goal. A convective weather process dominated
by a Mesoscale Convective Complex (MCC) occurred in Hebei Province, China, on 21
June 2017. A 30 min prediction result was presented in previous deep learning studies by
Liang et al. [18] and Han et al. [19], where 8 years of data were used for training and 30 min
of historical data were inputted to generate predictions. They mainly used a U-Net model,
which is a convolutional neural network and is constructed by stacking downsampling and
upsampling convolutional modules yielding a unique U-shape network architecture. The
table of skill scores was given in [18] for this prediction example. Therefore, it is possible
to compare NGT with the previous deep learning method by collecting the same radar
data and repeating only the 30-min predictions during the same prediction period instead
of collecting a large number of training datasets to reproduce the deep learning result or
directly citing the resulting images, which is not applicable. The radar echo image used
in [18] is composite reflectivity, which is a combination of six operational radars. The
station numbers are Z9010, Z9220, Z9311, Z9313, Z9314, and Z9335, where Z9313 and Z9314
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are CINRAD-CB type, and others are CINRAD-SA type. The time interval of the image is
6 min.

The observation at the target time and the prediction results of NGT and OF are shown
in Figure 12, while the results of the deep learning method under the same prediction
conditions are seen in [18]. The differences between the observation and the prediction
results from both NGT and OF seem no longer as obvious as shown in the above two
sections. For the CSI (Figure 13), the results of NGT and OF are very close, where NGT is
slightly higher for 20 and 30 dBZ. In addition, the CSIs of NGT and OF are only slightly
higher than the static reference, indicating that the prediction of echo movement is limited.
Considering that the OF method is sensitive to the instantaneous movement of the cloud,
these results indicate that the movement itself of MCC is not as obvious as the squall lines
referred to in the last sections. More importantly, the deep learning method appears to be a
more advanced method with results better than those of NGT and OF for 40 dBZ; however,
its CSI for 20 and 30 dBZ is not only worse than that of NGT and OF but also worse than the
static reference, which indicates that it may not correctly reflect the movement of the echo.

Figure 12. (a) Composite reflectivity obtained by multiple radars at 11:30 UTC (target time) on 21
June 2017 and 30 min prediction results by (b) NGT and (c) OF.

Figure 13. CSI of the prediction by NGT and OF for (a) Z > 20 dBZ, (b) Z > 30 dBZ, (c) Z > 40 dBZ,
and (d) NGT—OF. The prediction starts at 11:00 UTC on 21 June 2017. Liang 2021 is cited from [18]
as a deep learning method for comparison.
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As shown in the skill scores (Table 3), although the POD of this deep learning method at
20 and 30 dBZ is the highest, the FAR is also higher than that of the other two methods. That
is, both the hit rate and false rate are high, indicating an overestimation of the reflectivity of
the echo images. This overestimation is seen in the image in Liang et al. (2021) and might
be one of the reasons that the deep learning method obtains a better skill score for a larger
echo threshold.

Table 3. Skill scores of two methods for 30 min prediction and the comparison with results from a
previous deep learning study. The target time is 11:30 UTC on 21 June 2017.

Threshold
(dBZ)

POD FAR CSI
NGT OF Liang 2021 * NGT OF Liang 2021 * NGT OF Liang 2021 *

20 0.75 0.77 0.84 0.13 0.18 0.33 0.67 0.66 0.54
30 0.61 0.63 0.67 0.27 0.32 0.49 0.49 0.49 0.39
40 0.28 0.31 0.51 0.62 0.62 0.57 0.19 0.21 0.30

* The results of “Liang 2021” are cited and reorganized from a previous study [18] as a deep learning method for
comparison based on the best scores derived from the U-Net model and TrajGRU model.

4. Conclusions

The NGT method is proposed for weather radar convective echo extrapolation pre-
diction. A set of ideal experiments and three real echo extrapolation experiments were
performed to demonstrate the performance of the new method. The results are compared
with those from an optical flow (OF) method, and a brief comparison with a previous study
based on a deep learning method is conducted in a real case. The main conclusions are
as follows.

(1) In the ideal experiments for simple targets, NGT can achieve better prediction results
than OF when there are changes in the value and path of the image target.

(2) For cases with a convective line, NGT is superior to OF, where the CSI for 40 dBZ of
the echo prediction at 60 min is approximately 0.2 higher.

(3) For the case of MCC, NGT is better than OF and a deep learning method for 20 and
30 dBZ, while the deep learning method produces the best skill score for 40 dBZ.
However, the good performance of the deep learning method may be due to the
overestimation of the stronger echo.

The conventional OF method is based on a few historical data samples, tending to
present the instantaneous movement direction of convective cells. Therefore, although the
results of OF are closer to the physical motion of a cloud, there is a deviation compared
with the movement of the overall cloud system. On the other hand, NGT can be modeled
based on historical 60 min data. Although the grid transformation vector of the NGT is
generally different from the physical wind field, the results are closer to the continuous
variation characteristics of the echo image. Therefore, the movement and variation pattern
of the whole convection line can be predicted more approximately.

In general, NGT, as a new method, improves the prediction effect of at least one type
of convective system. This improvement in nowcasting capability can help to respond to
severe convective weather, such as making corresponding changes to outdoor activities
and transportation plans and better arranging artificial hail suppression operations.

However, many studies must be conducted in the future. The sensitivity of the
prediction effect to the parameters in the prediction method needs to be further studied.
More importantly, the CSIs of NGT and OF for stronger echo are still low and are markedly
less than those for weaker echoes, which may be caused by the spatial nonuniformity and
the strength variation of convective echoes. Therefore, an extrapolation of the echo strength
may be needed to improve the result. Moreover, since deep learning methods have the
potential to better predict the increase in echo strength, more operational observation cases
are needed for further study to take full advantage of different prediction methods.
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Abstract: For triple-frequency radar, the attenuation attributed to atmospheric gases and stratiform
clouds is diverse due to different snowfall microphysical properties, particularly in regions far from
the radar. When using triple-frequency ground-based radar measurements, evaluating the attenuation
of the three radars at different heights is common to derive attenuation-corrected effective reflectivity.
Therefore, this study proposes a novel quality-controlled approach to identify radar attenuation
due to gases and stratiform clouds that can be neglected due to varying snowfall microphysical
properties and assess attenuation along the radar observation path. The key issue lies in the lack
of information about vertical hydrometeor and cloud distribution. Therefore, European Centre
for Medium-Range Weather Forecasts (ECMWF) reanalysis data are employed. The Self-Similar-
Rayleigh-Gans Approximation (SSRGA) for the nonspherical scattering model in the Passive and
Active Microwave TRAnsfer model 2 (PAMTRA2) is compared and analyzed against other scattering
models to obtain the optimal triple-frequency radar attenuation correction strategies for stratiform
cloud meteorological conditions with varying snowfall microphysical properties. This methodology
paves the way for understanding differential attenuation attributed to gas and stratiform clouds
with snowfall microphysical properties. Simultaneously, the bin-by-bin approximation method is
used to perform the attenuation correction. The two-way attenuation correction increased up to
4.71 dB for heights above 6 km, remaining minimal for regions with heights below 6 km. These
values, attributable to gases and stratiform clouds’ two-way attenuation, are nonnegligible, especially
at distances far from the W-band radar at heights above 6 km. Both values are relatively small for the
X- and Ka-band radars and can be neglected for the varying snowfall microphysical properties. The
attenuation correction of triple-frequency radar reflectivity is validated using the cross-calibration
and dual-frequency reflectivity ratios. The results show that the method is valid and feasible.

Keywords: triple-frequency radar; gas and stratiform clouds attenuation; attenuation correction;
SSRGA; snowfall microphysical properties

1. Introduction

Real-time measurement of the three-dimensional (3D) structure of clouds and precipi-
tation remains challenging in atmospheric-sounding technology. Radar remains a vital tool
for obtaining macro and microstructural characteristics of clouds. Ground-based triple-
frequency (X, Ka, and W bands) cloud and precipitation radars are critical components of
observational systems designed for detailed cloud structure characterization. These radars
provide deeper insights into microphysical processes and retrieve more cloud and precipita-
tion parameters than single-frequency radar, thanks to measurements at multiple frequency
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bands. However, the triple-frequency method, a powerful technique in microphysical
research, demands precise radar calibration and reliable attenuation correction [1,2].

Within the radar reflectivity range, frequency-dependent hydrometeor scattering
and absorption properties are governed by microphysical characteristics. Numerical and
observational results have indicated that the triple-frequency radar signature has the
potential for retrieving morphological parameters constrained by triple-frequency radar
measurements [3,4]. Furthermore, when combined with other remote sensors, triple-
frequency radar has significantly improved retrievals for ice [3,5,6] and rain [7–9]. Due
to frequency-dependent properties, different hydrometeors exhibit varying attenuation
or backscattering at each band of a triple-frequency radar. For instance, snowflakes tend
to produce noticeable attenuation at and above the W band [5], although attenuation
corrections at higher frequencies have been elusive in previous studies.

Distinct reflectivity signals result from differential scattering or attenuation, which
are influenced by particle microphysical properties, including particle size distribution
(PSD), type, density, and phase state. Numerous studies have investigated triple-frequency
radar measurements with other ground-based equipment for actual snowfall observa-
tions [3,5,10–17]. While most of these studies rely on Rayleigh and non-Rayleigh scattering
methodologies, the irregular and complex nature of most ice crystals and snowflakes can
introduce errors when calculating backscattering and attenuation using the Mie or T-Matrix
scattering models. Hogan proposed the SSRGA scattering model [18,19], providing a faster
method for computing the scattering properties of aggregated ice particles and snowflakes
than the Discrete Dipole Approximation (DDA). Furthermore, it offers more accurate
backscattering calculations for irregular snowflakes at higher frequencies compared to the
Mie solution or Rayleigh approximation.

Moreover, due to the lack of information about hydrometeor vertical distribution, it
is essential to derive hydrometeor vertical profiles. In this study, we utilize ECMWF’s
ERA5 hourly reanalysis data to obtain atmospheric microphysics information, focusing
on continuous and relatively homogeneous stratiform clouds to calculate attenuation
contributions using the SSRGA approach. This approach appears promising in representing
snowflakes more accurately according to their actual habits when combined with ERA5
hourly reanalysis profile data interpolated vertically.

In reality, various attenuations caused by gas and stratiform clouds are non-negligible,
especially when at least one of the frequencies is affected by attenuation [20]. Therefore,
this study utilizes triple-frequency radar observations (X, Ka, and W bands) with vertical
pointing to quantify differential attenuation due to specific gases (e.g., oxygen and water
vapor) and stratiform clouds using the SSRGA model in PAMTRA2 [21]. This study
aims to develop an attenuation correction method for triple-frequency radar based on the
first triple-frequency (X, Ka, and W bands) radar observations collected during winter in
Zhangshanying, Yanqing, Beijing.

In past attenuation studies, there was no information about vertical hydrometeor
and cloud distribution; the only information was path-integrated attenuation in snow-
storms from actual observations. This technique provides bin-by-bin vertical distribution
information to calculate the attenuation due to gases and stratiform clouds with snowfall
microphysical properties. The influence of neglecting the effect of attenuation produced by
different stratiform layers is vital for triple-frequency radar and needs to be assessed. The
methodology combines PAMTRA2 with the SSRGA model and ECMWF reanalysis data for
vertical profiles of gases and hydrometeor layers to calculate attenuation under different
layer conditions. The ECMWF reanalysis data grid has a 0.25-degree hourly resolution,
and vertical interpolation is performed for the calculation to match radar range bins. This
approach provides more information than 12 h of sounding data.

The paper is organized as follows: Section 2 provides an overview of the triple-
frequency radar instruments and ground-based auxiliary observation equipment, specif-
ically the micro-rain radar deployed during the Zhangshanying Experiment. Section 3
details the attenuation correction method used, focusing on the SSRGA scattering model for
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extinction calculation, followed by the bin-by-bin approximation method for attenuation
correction. In the first part of Section 4, we compare atmospheric gases and hydrometeors
attenuation at X, Ka, and W band radars and calculate attenuation attributed to stratiform
clouds using different scattering models. Section 5 presents the vertical effective reflectivity
profile of the attenuation correction effect of the triple-frequency radar using different scat-
tering models. We validated the attenuation correction of triple-frequency radar reflectivity
using X- and W-band reflectivity and their dual-frequency reflectivity ratios (DFR). We
also evaluate scattering models suitable for triple-frequency radar with varying snowfall
microphysical properties. Then, Section 6 compares results with a micro-rain radar to
further validate W-band radar attenuation correction. The final part of this section presents
the W-band radar attenuation correction results. Section 7 presents the results of the at-
tenuation correction comparison. Finally, Section 8 summarizes the main discussions of
this study.

2. The Triple-Frequency Radar Field Measurement Campaign Site and Observational
System and the Micro-Rain Radar

This study focuses on stratiform clouds with snowfall microphysical properties, and
all the data used in this work were obtained from China’s first triple-frequency radar and
the ERA5 ECMWF reanalysis data. This triple-frequency radar experiment for winter
precipitation was conducted by the Key Laboratory of Middle Atmosphere and Global En-
vironment Observation at the Institute of Atmospheric Physics of the Chinese Academy of
Sciences. The experimental site was located in Zhangshanying, Yanqing, Beijing (40.4898◦N,
115.8596◦E, 494 m above mean sea level) during two periods, from 11 November 2020, to
30 March 2021, and 11 November 2021, to 30 March 2022.

The triple-frequency cloud and precipitation radar system comprises X, Ka, and
W band radars with multi-antenna coaxial scanning and Doppler signal observational
capabilities. These radars were vertically pointed, providing a comprehensive view of
hydrometeors at three frequencies during the experiment.

Before and during the field campaign, these three radars underwent meticulous metal
sphere calibration. The reflectivity factor measurements of the Ka and W band radars
were independently adjusted. The corrected values for the Ka-band radar reflectivity
were 11.3 dB, and for the W-band radar reflectivity, it was 13.5 dB. Additionally, the
range bin data of the W-band radar were shifted forward by two range bins. Figure 1
illustrates the schematic diagram of the triple-frequency cloud and precipitation radar
system, showcasing its flexibility and mobility, including the main radar components,
shelters, comprehensive data processing, and observation software.

The Ka-band (millimeter wave) and the X-band (centimeter wave) are dual-transmitting
and dual-receiving all-solid-state frequency-modulated continuous-wave radars. In con-
trast, the W-band (millimeter wave) is a single-transmitting and dual-receiving combined
pulsed Doppler radar. In the dual-transmitting and dual-receiving mode, two transmit-
ters transmit horizontal and vertical polarization waves simultaneously, while the two
receivers collect data returned by these two polarization waves simultaneously. Because
a dual-polarization operation mode is in trial operation, spectrum accumulation cannot
be performed in this mode, and the observation data of the dual-polarization mode is not
yet available. The hardware employs dual-frequency coplanar antennas and integrated
coaxial design techniques to synchronize devices with different frequencies for coordinated
real-time observations with multiple frequency radars targeting the same hydrometeor.

189



Remote Sens. 2023, 15, 4843

            (a)                                (b) 

Figure 1. The schematic diagram of the triple-frequency radar system of the Institute of Atmospheric
Physics (square cabin system (a), Triple-frequency multiantenna coaxial scanning dual-polarization
Doppler radar equipment (b)).

The technical specifications and settings of the three vertically pointing radars at the
Zhangshanying site in Yanqing are detailed in Table 1. All three radars share a temporal
resolution of 1.5 s. The range resolution of the W-band radar was set at 120 m to enhance
the sensitivity of the W-band radar, while the X- and Ka-band radars were set at 30 m.
Only zenith observation datasets are considered for the attenuation correction, although
scanning data were collected during the campaign. It is important to note that we assume
continuous and homogeneous stratiform clouds within observation volumes at the same
layers are relatively homogeneous, and we interpolate the data for the W-band radar
to match the triple-frequency radar’s scattering properties in the attenuation correction
process.

Table 1. Technical specifications and settings of the three vertically pointing radars operated at
Zhangshanying of Yanqing site.

Specifications X Ka W

Frequency/GHz 9.375 35.015 94.5
Pulse repetition period/μs 833–1667 833–1667 100–500
Detection capability/dBz −21@5 km −34@5 km −22@5 km

Antenna gain/dB 43.6 54.57 56.4
3 dB beam width/◦ 1 0.33 0.24

Average transmit power/W 118 55.5 16.3
Noise figure/dB 2.9 3.8 5.1

Range resolution/m 10, 30 10, 30 30, 120
Pulse repetition frequency/Hz 2500 2500 5000

Wavelength/mm 32.017 8.566 3.171

The ground-based auxiliary equipment micro-rain radar (METEK MRR-2) was de-
ployed 10 m from the triple-frequency radar. The micro-rain radar operates at a frequency
of 24.23 GHz. It provides height detection capabilities within a range from 0 to 6 km. The
radar system offers a height resolution of 300 m. The rainfall rates, droplet size distribution,
radar reflectivity, falling velocity of precipitation particles, and the reflectivity factor attenu-
ation are provided. The METEK MRR-2 micro-rain radar yields valuable data related to
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rainfall rates, droplet size distribution, radar reflectivity, falling velocity of precipitation
particles, and the attenuation of the reflectivity factor.

3. Attenuation Correction Method Based on the SSRGA Scattering Model in
PAMTRA2

3.1. The SSRGA Scattering Model in PAMTRA2

PAMTRA2 offers SSRGA for radar applications, which is crucial for researching frozen
hydrometeors [21]. Tyynelä [22] proposed that SSRGA can accurately calculate the scatter-
ing properties of realistic snowflakes, aligning with other uncertainties inherent in radar
measurements. Leinonen [23] further demonstrated a direct relationship between the back-
ward scattering properties of snowflakes and the mass distribution within the snowflake,
confirming the applicability of this approach. Hogan [18] introduced a simple analytical
solution based on the self-similarity of snowflakes and validated the SSRGA approach’s
efficiency. SSRGA scales effectively to particles larger than the radar wavelength, offering
faster calculations compared to Discrete Dipole Approximation (DDA). Additionally, SS-
RGA accommodates in-situ measurements of hydrometeor properties and provides more
precise scattering calculations for snowflakes compared to the Mie solution or Rayleigh
approximation, especially at higher frequencies.

In this study, we focus on the SSRGA scattering model in PAMTRA2 to compute
attenuation along the triple-frequency radar path, accounting for hydrometeor vertical
distribution and utilizing ECMWF reanalysis data for stratiform clouds with varying
snowfall microphysical properties. Simultaneously, different hydrometeor properties are
applied in various layers.

3.2. Calculation of Attenuation Coefficients of Different Cloud Layers for Triple-Frequency Radar
Based on PAMTRA2

Ice water content (IWC) is a crucial cloud microphysical parameter for precipitation
formation, defined as the cloud mass of ice per unit volume of atmospheric air. It is
expressed as

IWC =
∫ ∞

0
m (D)N (D)d D, (1)

where m(D) represents the mass of ice crystal diameter D. Due to the irregular characteristics
of frozen snowflakes and ice crystals, in nature, the definition of D has no standard form.
Moreover, it is significant as it constitutes the bulk cloud properties. N(D) follows the
exponential distribution given by

N(D) = N0 exp(−ΛD), (2)

with the mass of various ice snowflakes represented by a power law

m =
π

6
ρe D3, (3)

Hence, the equation for IWC can be simplified to

IWC =
π

6

∫
ρs ( D ) D3 N ( D ) d D, (4)

where the unit of IWC is g m−3 and D is in mm.
With the extinction cross section σe(D), the attenuation can be expressed as

K = 4.34 × 103
∫ ∞

0
N (D)σe (D) d D, (5)

where K is in dB km−1. PAMTRA2 is used to calculate the attenuation coefficient.
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The attenuation due to atmospheric propagation in different radar range bins is at-
tributed to atmospheric gases and frozen particles during snowfall. This two-way extinction
thickness is defined as

τ ( R ) = exp ( −2
∫ R

0
K ( R ) d R ), (6)

where K = Ka+Kc, Ka represent the absorption and scattering coefficients (i.e., extinction
or attenuation) due to atmospheric gas (primarily oxygen and water vapor) and clouds,
respectively. Kc represents the absorption and scattering coefficient due to clouds. R (km)
represents the distance or range from the radar. The attenuation correction equation can be
expressed as

Zr ( R ) =
Zm( R )

τ ( R )
, (7)

where Zm (mm6 m−3) is the measured radar effective reflectivity and Zr represents the
attenuated correction value of the radar effective reflectivity.

3.3. Attenuation Correction Method with Bin-by-Bin Approximation

The attenuation correction method with bin-by-bin approximation [24] is defined as

Z ( i ) =
Zm( i )

τ ( i − 1 )
exp { K ( R ) × Δ R }, (8)

where τ ( i ) =
{

1 i = 0
exp {− 2 ∑i

i=1 K ( i ) × Δ R } i > 1
is the extinction thickness at each

range bin. Z(i) is determined from the measured value of the Zm( i ) radar echo. This
method calculates the attenuation correction for each range bin individually along the
radial direction. It leverages the actual vertical stratification information of gases and
hydrometeors, enhancing the stability and accuracy of the attenuation correction process.

4. Analysis of the Triple-Frequency Radar Attenuation

The attenuation experienced by each particular radar band used in triple-frequency
radars varies due to atmospheric gases and frozen snowflakes during snowfall. Thus,
it is crucial to estimate attenuation values for all three radars. Attenuation from water
vapor and oxygen has been computed to correct radar-effective reflectivity measurements.
This correction utilizes the Rosenkranz98 [25] and Liebe93 [26] models integrated into
PAMTRA2 and atmospheric profiles obtained from the ECMWF reanalyzed data during
the triple-frequency radar measurements. It is worth noting that the triple-frequency radars
were meticulously calibrated using a metal sphere before and during the field campaign.

4.1. Attenuation Due to Atmospheric Gases and Hydrometeors of Triple-Frequency Radar

Hydrometeors and atmospheric gases contribute differently to attenuation in triple-
frequency radars. In this study, we calculate the attenuation caused by atmospheric gases,
mainly oxygen, and water vapor, using the gas absorption models Rosenkranz98 and
Liebe93 via PAMTRA2. We adapted the oxygen model to the US standard atmospheric
profiles. Given the lack of real-time vertical atmospheric profiles, we rely on ECMWF
reanalysis data, which provide temperature, pressure, and relative humidity information.

Figure 2 presents the attenuation contributions of hydrometeors and gases at the
triple-frequency radar for the ECMWF profile data of 21 January 2022 within the
0~10 km range bins. The results from the two algorithms, Rosenkranz98 (black) and
Liebe93 (blue), demonstrate good agreement. The two-way attenuation values vary for
the three radars, ranging from 0.001 to 0.01 dB km−1 for the X-band, 0.01 to 0.05 dB km−1

for the Ka-band, and 0.01 to 3 dB km−1 for the W-band. The maximum attenuation occurs
at the W-band radar, consistent with the gas attenuation (2.675 dB km−1) calculated by
Neto [27]. Therefore, atmospheric gas and hydrometeor attenuation at the X- and Ka-band
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radars are negligible compared to their observed values, while attenuation at the W-band
radar is non-negligible and requires correction.

Figure 2. The gas and hydrometeor attenuation coefficient at the triple-frequency radar at 06:00
UTC on 21 January 2022. (Black represents the Rosenkranz98 method, blue represents the Liebe93
method).

4.2. The Attenuation Coefficient for Snowflake Particles of Triple-Frequency Radar

To achieve more accurate attenuation correction, we simulate and compare different
scattering models before correction, including Rayleigh (Ray), Mie, T-Matrix (TMM), and
SSRGA, offering more realistic scattering properties compared to sphere/spheroid models.
Our simulations assume a temperature of −10 ◦C and a particle diameter range from
0.01 to 10 mm. Figure 3 illustrates the two-way attenuation coefficient signatures for
the triple-frequency radars. When the particle size is less than 0.2 mm, the two-way
attenuation for the triple-frequency radar can be neglected. However, as particle size
increases, different scattering models yield significantly varying results. For the Rayleigh
and SSRGA scattering models (Figure 3a,d), the maximum attenuation value at the W-
band radar reaches up to 0.05 and 1.5 dB, while the attenuation values at the X- and
Ka-band radars remain minimal and can be considered negligible. The Mie and TMM
scattering models (Figure 3b,c) produce nearly identical attenuation values at the X-band
radar and the Ka and W-band radars, which is inconsistent with actual measurements.
Therefore, due to the nonspherical and complex nature of ice crystals and snowflake-like
particles, the SSRGA scattering model, which closely approximates the realistic shape of
snowflakes and offers high computational efficiency, is selected for this study. It implies
that attenuation caused by snowfall with varying microphysical properties increases with
frequency, constraining the maximum range of measurement for the W-band radar.
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Figure 3. The attenuation coefficient for the triple-frequency radar at different snowflake diameters at
a temperature −10 ◦C: (a) Rayleigh scattering, (b) Mie scattering, (c) T matrix scattering, (d) SSRGA
scattering.

5. Comparison of the Attenuation Correction of Gas and Stratiform Clouds for
Triple-Frequency Radar Effective Reflectivity Profiles

In the following sections, we utilize the different scattering models to perform the
gas and hydrometeors attenuation corrections for the triple-frequency radar. The ECMWF
reanalysis data are used in this study for the atmospheric vertical profile information. For
calculating the attenuation, we assume that the snowflake particle size ranges from 0.001 to
10 mm and that the ice density is 0.9167 g cm−3.

5.1. Case Study of the Triple-Frequency Radar Profile

The two-way gas and stratiform cloud attenuation correction at the X-band radar is
performed with the Rayleigh, Mie, TMM, and SSRGA scattering models in PAMTRA2. The
attenuation correction with different scattering models and the non-correction reflectivity
profile at the X-band radar are shown in Figure 4 at 8:35 UTC on 21 January 2022. The
attenuation correction and the non-correction are nearly coincidental. The signature indi-
cates that the attenuation due to the gas and stratiform clouds with snowfall microphysical
properties is relatively tiny compared to their X-band radar measurements. Therefore, the
attenuation owing to gas and stratiform clouds with snowfall microphysical properties is
negligible for the X-band radar.
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Figure 4. Comparison of gas and stratiform clouds with snowfall microphysical properties attenua-
tion correction using Rayleigh, Mie, T matrix and SSRGA models for the effective reflectivity profile
of the X-band radar at 8:35 UTC of 21 January 2022.

In the same way, we performed attenuation correction of gas and stratiform clouds
with snowfall microphysical properties at the Ka-band radar. The attenuation correction
and non-corrected effective reflectivity results are displayed in Figure 5. Only the Mie
scattering model slightly increases after attenuation correction for the regions with heights
above 6 km. The maximum value reaches 1.45 dB, while the attenuation correction values
using the other models are minimal. Consequently, the attenuation corrections for the
Ka-band radar are not needed, which are produced by gas and stratiform clouds with
snowfall microphysical properties.

Figure 5. Cont.
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Figure 5. Comparison of gas and stratiform clouds with snowfall microphysical properties attenua-
tion correction using Rayleigh, Mie, T matrix and SSRGA models for the effective reflectivity profile
of the Ka-band radar at 8:35 UTC of 21 January 2022.

However, due to gas and stratiform clouds with snowfall microphysical properties,
the attenuation correction for the W-band radar indicated in Figure 6 with the different
scattering models is significant at 8:35 UTC on 21 January 2022. The Mie and TMM
scattering models coincided. Nevertheless, these models and the Rayleigh scattering
model are far from the range of the measured reflectivity for regions above 3 km, so these
scattering models are considered unsuitable. Only the gas and stratiform clouds with
snowfall microphysical properties attenuation correction of the SSRGA scattering model
are more appropriate than other models. The maximum attenuation correction value
reaches 4.38 dB for regions above 6 km, and the values are small for regions below 6
km. Therefore, the SSRGA model was adopted to make the attenuation correction for the
W-band radar in this study.

Figure 6. Comparison of gas and stratiform clouds with snowfall microphysical properties attenua-
tion correction using Rayleigh, Mie, T matrix and SSRGA model for the effective reflectivity profile of
the W-band radar at 8:35 UTC of 21 January 2022.
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5.2. Case Study of the Attenuation Correction for the W Band Radar Effective Reflectivity

In these case studies, all observational data were obtained from the triple-frequency
radar at Zhangshanying, the Yanqing site in Beijing. For the snowfall period from 8:04
to 9:25 UTC on 21 January 2022 and from 19:54 to 5:43 UTC on 17–18 March 2022, the
attenuation due to gas was estimated and utilized to correct the radar reflectivity mea-
surements via the Rosenkranz98 model and the atmospheric profiles collected from the
ECMWF reanalysis data. The SSRGA scattering model is applied to calculate the W-band
radar attenuation caused by stratiform clouds with snowfall microphysical properties in
PAMTRA2. The reflectivities of the triple-frequency radar, the W-band radar reflectivity
after the attenuation correction, and their dual-frequency reflectivity ratios are presented in
Figures 7 and 8. It must be noted that these correction values were minimal for the regions
with heights below 6 km; as expected, they increased obviously for the regions with heights
above 6 km.

The comparison of the results before and after the W-band effective reflectivity atten-
uation correction and the effective reflectivities of Ka-band and X-band radar from 16:04
to 17:25 UTC on 21 January 2022 is illustrated in Figure 7. The −15 ◦C isotherm (dashed
line in the time–height plots) is 4.4 km, and the −10 ◦C isotherm (continuous line in the
time–height plots) is approximately 1.0 km. The attenuation correction of the W band radar
effective reflectivity for the regions with heights above 6 km is increased to some degree
in Figure 7b compared with Figure 7a. The maximum correction value reaches 4.42 dB,
and the minimum correction value is around zero during the observational period. In the
regions above 6 km, the effective reflectivity improved to some extent. Attenuation is found
to be negligible on average for the regions with heights below 6 km.
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Figure 7. Comparison of attenuations due to gas and stratiform clouds with snowfall microphysical
properties before (a) and after (b) the correction of effective reflectivity for W-band radar; the effective
reflectivity of Ka-band (c), and X-band radar (d); the dual-frequency ratio of X-Ka (e), Ka-W (f), and
Ka-W (the W-band radar reflectivity is after attenuation correction) (g) band radar of 21 January
2022 between 8:04 and 9:25 (UTC). The continuous line and dashed line are the −10 ◦C and −15 ◦C
isotherms (provided by the ECMWF reanalysis data), respectively.

Figure 7c,d show the features of the effective reflectivities of Ka-band and X-band
radar during the snowfall period from 8:04 to 9:25 UTC on 21 January 2022 and from
19:54 to 5:43 UTC on 17–18 March 2022. The Ka-band and X-band radar undergo minimal
attenuations relative to the W-band radar. We found that the attenuations of the W-band
radar increase with heights in the regions above 5 km. The signatures of the effective
reflectivity of the triple-frequency radar indicate that it has the effect of cross-calibration
to use triple-frequency radar measurements and help correct for the attenuation of the
W-band radar measurements. The features also demonstrate that most attenuation results
from the upper-lever clouds, far from the radar.

Figure 7e–g show the dual-frequency reflectivity ratios of X-Ka band radar, Ka-W
band radar, and Ka-W_ac (the W-band radar reflectivity is after attenuation correction). In
Figure 7e, the dual-frequency reflectivity ratios of X-Ka are divided into two regions with
heights below and above 2 km, but they are both close to a constant value. The features
indicate the consistency of X- and Ka-band radar reflectivity measurements during snowfall.
In Figure 7f, the dual-frequency reflectivity ratios of Ka-W are significant for the regions
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with heights above 5 km, though they are at the same altitude. However, the W-band
radar reflectivity is after attenuation correction, and the dual-frequency reflectivity ratios
of Ka-W_ac remain consistent for the regions with heights above 5 km. It is confirmed that
the attenuation correction for the W-band radar used in this study is rational.

The other case is illustrated in Figure 8 with before and after the W-band effective
reflectivity attenuation correction, the effective reflectivity of the Ka-band, and the X-band
radar of 17 March 2022 between 19:54 and 18 March 2022 5:25 UTC, and it is used to
validate the effect of attenuation correction. The −15 ◦C isotherm (dashed line in the time–
height plots) is around 4.4 km, and the −5 ◦C isotherm (continuous line in the time–height
plots) is about 0.7 km due to the high ground temperature. As expected, the comparison
between Figure 8a,b show that the attenuation corrections of the W-band radar effective
reflectivity for regions with heights above 5.5 km were also observed to be distinctly
improved. The maximum correction value is up to 4.71 dB, and the minimum is zero
during the observational period. For regions with heights above 5.5 km, the effective
reflectivity is optimized to a certain degree. Based on this feature, the attenuation from
gas and stratiform clouds with snowfall microphysical properties can be negligible on
average below 5.5 km. In this case, the maximum attenuation value exceeds the above
case. The reason for this difference is that the snowfall intensity in the second case is more
significant than in the first. The snow particle sizes are different in the two cases, as well.
In sum, the attenuation systematically increases along the radar path. These signatures in
Figures 7 and 8 indicate that using the SSRGA scattering model in PAMTRA2 is practical
and feasible to calculate the attenuation of the W-band radar simulation.
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Figure 8. Comparison of attenuations due to gas and stratiform clouds with snowfall microphysical
properties before (a) and after (b) the correction of effective reflectivity for W-band radar, the effective
reflectivity of Ka-band (c) and X-band radar (d); the dual-frequency ratio of X-Ka (e), Ka-W (f) and
Ka-W (the W-band radar reflectivity is after attenuation correction) (g) band radar of 17 March 2022
between 19:54 and 18 March 2022 5:25 (UTC). The continuous line and dashed line are the −5 ◦C and
−15 ◦C isotherms (provided by the ECMWF reanalysis data), respectively.

Figure 8c,d show the features of the effective reflectivity of Ka-band and X-band radar
during the snowfall period from 9:54 to 5:43 UTC of 17~18 March 2022. Same as in the
first case, the Ka-band and X-band radar have tiny attenuations compared to the W-band
radar. The attenuations of the W-band radar increase with heights in the regions above
5 Km, especially in the regions above 8 Km. The characteristics of the effective reflectivity
of the triple-frequency radar suggest that it has the effect of cross-calibration to use triple-
frequency radar measurements. We can better analyze the features of the triple-frequency
radar. There are bigger attenuations far from the radar and from the upper-lever clouds.

Figure 8e–g show the dual-frequency reflectivity ratios of X-Ka band radar, Ka-W
band radar, and Ka-W_ac (the W-band radar reflectivity is after attenuation correction).
In Figure 8e, the dual-frequency reflectivity ratios of X-Ka are divided into two regions
with heights below and above 2 km. However, each has a proximate constant value
except for the regions below 500 m. The features suggest that the X- and Ka-band radar
reflectivity measurements are consistent during snowfall and attenuate less. In Figure 8f,
the dual-frequency reflectivity ratios of Ka-W are significant differences for the regions with
heights above 5 km, while the differences are relatively small. However, the W-band radar
reflectivity is after attenuation correction, and the dual-frequency reflectivity ratios of Ka-

202



Remote Sens. 2023, 15, 4843

W_ac have a significant improvement for the regions with heights above 5 km. Therefore,
the method of attenuation correction for the W-band radar works here. In addition, the
clouds are inhomogeneous in this case, resulting in biases after the attenuation correction
of the W-band radar.

6. Comparison Analysis with Micro-Rain Radar Attenuation

To test the effectiveness of the W-band radar’s attenuation correction, we compare it
with the attenuation observed by the ground-based micro-rain radar of 20 January 2022. It
is important to note that the micro-rain radar operates at a wavelength of 12.5 mm, distinct
from the W-band radar’s wavelength of 3.171 mm. Although the attenuations caused by
atmospheric gases and stratiform clouds with snowfall microphysical properties differ for
the two radars, we can assess the strength of their attenuations vertically.

Figure 9 displays the attenuated radar reflectivity of the micro-rain radar. It is worth
mentioning that the maximum measurable distance of the micro-rain radar is only 6.0 km.
As seen in the figure, the attenuation of the MRR-2 during the snowfall period is negligible
below 5 km, which aligns with the results of the attenuation correction for the W-band
radar using PAMTRA2. However, around 9:00, there is a notable attenuation at a height of
approximately 2 km. It likely indicates that attenuation increases with snowfall intensity
during this period.

Figure 9. The attenuated radar reflectivity at the MRR-2 of 20 January 2022.

7. Discussion

In this study, we proposed a two-way gas and cloud attenuation correction for the
W-band radar method based on the SSRGA scattering model in PAMTRA2. It is challenging
to do it due to the need for more information about hydrometeor vertical distribution. This
approach utilizes the SSRGA scattering model, which closely approximates the realistic
snowflake structure and atmospheric vertical profiles from ECMWF reanalysis data. Com-
pared to traditional methods like DDA, the method offers high computational efficiency
for attenuation correction in triple-frequency radar. It is worth noting that the information
about hydrometeor vertical distribution varies with the spatial and temporal conditions
during the snowfall. Thus, it can introduce errors in the attenuation correction. In or-
der to improve the accuracy of the attenuation correction, we should make more vertical
observations of meteorological parameters in future experiments.
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In future work, we plan to systematically apply this methodology to expand the dataset
for triple-frequency radar observations, helping us better understand snow attenuation
at W-band and improve data quality for identifying triple-frequency radar characteristics
during snowfall. Additionally, we intend to explore the application of this attenuation
correction strategy in scanning modes based on profile information at various levels.
Optimizing the observation scheme for the triple-frequency radar and collecting more data
will allow us to gain insights into the relationship between attenuation in triple-frequency
radar and clouds with snowfall microphysical properties. When dual-polarization data
become available, we will explore polarization parameter attenuation correction to enhance
attenuation correction effectiveness further when combined with this method.

8. Conclusions

By analyzing the results from the triple-frequency radar reflectivity case studies, we
found that the two-way attenuation correction of the W-band radar increased by up to
4.71 dB for regions with heights above 6 km. At the same time, it remained minimal for
regions with heights below 6 km. The attenuation values, attributed to gases and stratiform
clouds with snowfall microphysical properties, resulted in non-negligible attenuation far
from the W-band radar for regions with heights above 6 km. Based on the results shown
in Figures 7–9, we validated this attenuation by comparing it to the attenuation observed
by the ground-based micro-rain radar, the cross-calibrating among the triple-frequency
radar, and their dual-frequency reflectivity ratios. It proved that the attenuation correction
for the W-band radar is effective. We can obtain better attenuation correction when more
information about vertical hydrometeor distribution is available in the future.

Unlike previous attenuation studies that relied only on path-integrated attenuation
observations during snowstorms [28,29], this technique provides bin-by-bin vertical dis-
tribution information to calculate attenuation due to gases and stratiform clouds with
varying snowfall microphysical properties. Assessing the impact of neglecting attenuation
effects from different stratiform layers is crucial for triple-frequency radar. The quality
of the W-band radar data was improved to help further analyze the characteristics of
triple-frequency radar during snowfall.
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Abstract: Based on Doppler radar observation and reanalysis data, the statistical characteristics of
mesovortices (MVs) during the first rainy season (April–June) in Guangdong, South China, from 2017
to 2019 are studied, including their spatiotemporal distributions, structural features and favorable
environmental conditions. The results show that the MVs usually exhibit short lifetimes; about 70%
last for less than 30 min. The intensity and horizontal scale of the MVs are proportional to their
lifetime. Long-lived MVs have larger horizontal scales and stronger intensities than short-lived ones.
The MVs are mainly observed over the Pearl River Delta region, followed by western Guangdong
Province, but relatively fewer in both eastern and northern Guangdong Province. The uneven spatial
distribution of the MVs is closely related to the differences in the topographical features and the
environment conditions over South China. MVs are prone to form over flat regions. The Pearl River
Delta and eastern Guangdong regions are relatively flat compared to the more mountainous western
and northern Guangdong regions. Moreover, the monsoonal south-westerlies, water vapor flux,
atmospheric instability and vertical wind shear over southwest Guangdong are significantly larger
than those in other regions and are favorable for the formation of MVs. The occurrence frequencies of
MVs in central and southern parts of Guangdong display similar diurnal variations, reaching the peak
during the late afternoon and early evening while dropping to the minimum overnight. However,
the situation is opposite in northern Guangdong, with the peak overnight and the minimum during
the late afternoon and early evening. The regional differences in diurnal variation are likely related
to the moving direction of mesoscale convective systems (MCSs) in Guangdong.

Keywords: mesovortices; Doppler radar; first rainy season; Pearl River Delta region

1. Introduction

South China is an area with high frequency of severe convective weather where
disastrous weather events such as short-term heavy rainfall, tornadoes and gales frequently
occur [1,2]. Severe convective weather often causes serious casualties and property losses.
For example, on 13 April 2016, a strong squall line caused gusts in most of Guangdong
Province, with the wind speed in most areas reaching 13.9 m s−1 (even up to 41.5–46.1 m s−1

in some areas). Meanwhile, it was also accompanied by short-term heavy rainfall, causing
great economic losses [3]. On 4 March 2018, a rarely seen strong squall line occurred over the
northern and central parts of Jiangxi Province. During this process, high winds exceeding
17.2 m s−1 were found at 521 observational stations, and the wind speeds at 172 stations
were above 24.5 m s−1. This severe squall line affected more than 267,000 people and
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caused great damages to a large number of houses and crops, resulting in a direct economic
loss of CNY 410 million [4].

The genesis of severe convective weather and parent mesoscale convective systems
(MCSs) in South China has been studied extensively in the past. For example, Du et al. [5]
investigated the effects of topography, land–sea contrast and cold pool on convection
initiation in the coastal area of South China through a series of sensitivity experiments. The
moving direction of cold pool outflow changed due to terrain blocking, thereby affecting the
development and movement of the MCS. Based on Doppler radar observation, Liu et al. [6]
analyzed an extreme precipitation event caused by two MCSs in South China on 11 May
2014. Results showed that the rapid splitting and reconstructing of bow echoes within
the MCSs are conducive to the occurrence of extreme rainfall. By using an objective
identification algorithm of convection initiation, Bai et al. [7] conducted a statistical study
on the radar climatology of convections in the coastal area of South China. Convection
initiation exhibited three peaks, i.e., a late-night-to-morning peak on the windward coast
and offshore, a noon-to-late-afternoon peak on the coastal land, and an evening-to-early-
morning peak over the northwestern highland, respectively.

Past studies have revealed the relationship between severe convective weather and
meso-β-scale convective systems (with horizontal scales ranging from 20 to 200 km). How-
ever, the forecasting of severe convective weather is still one of the key challenging tasks
in current weather forecasts due to its small horizontal scale and abruptness [8]. With
the progress of observation techniques, especially the widespread application of Doppler
weather radar, and the continuous development of numerical models, increasing attention
has been paid to the meso-γ-scale (with horizontal scales from 2–20 km) or even smaller-
scale processes. In particular, severe convective weather (e.g., tornadoes and straight-line
winds) can be directly caused by meso-γ-scale vortices. For example, Trapp et al. [9] found
that ~26% of meso-γ-scale vortices can develop into tornadoes, in accordance with the
radar analysis of tornadic mesocyclones. Based upon single Doppler radar analysis, Waki-
moto et al. [10] examined the formation of derechos (i.e., high straight-line winds) produced
by bow echoes. They found that the near-surface high winds were due to the superposition
of the ambient flow with the rotational flow of low-level meso-γ-scale vortices formed at
the bow echo leading convective line. This was also confirmed by Atkins and Laurent [11]
and Xu et al. [12] by virtue of the Weather Research and Forecasting Model simulations.

In general, meso-γ-scale vortices can be classified into two types according to their
parent convective systems. One is mesocyclones caused by isolated cells [13], and the other
is the so-called mesovortices (MVs) generated in the low level of organized MCSs [14]. Pre-
vious studies of meso-γ-scale vortices in China focused on mesocyclones [15–17]. Taking a
squall line that occurred in Guangdong on 20 March 2013 for example [18], there were many
supercells within this squall line. Most of the gales were generated by the supercellular
mesocyclones. However, there is still a lack of thorough studies of MVs in China. Recently,
Tang et al. [19] (hereafter T20) conducted a statistical analysis of MVs that occurred in the
warm season of the Yangtze–Huai River Basin (YHRB) using 3-year radar observations.
Their results showed that most of the MVs were short-lived, with an average lifetime of
26 min. Long-lived MVs were prone to having a larger size and stronger intensity than
those of short-lived MVs. In this work, the characteristics of MVs that occurred in the
first rainy season of South China (i.e., April to June) are studied by using 3-year radar
observations during 2017–2019, and these characteristics are then compared to those in
the YHRB.

The rest of this paper is organized as follows: Data and methods are introduced in
Section 2. The main results are presented in Section 3. Finally, a discussion and conclusions
are provided in Section 4.
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2. Data and Methods

2.1. Data

In this study, observations from nine Doppler weather radars in Guangdong from
April to June in 2017–2019 were used. The distribution of these radar stations is shown
in Figure 1, covering almost the whole Guangdong Province. As in T20, the 88D2ARPS
program of the Advanced Regional Prediction System (ARPS) from the Center for Analysis
and Prediction of Storms (CAPS) at the University of Oklahoma [20] was used for the raw
radar data quality control, which removes non-meteorological echoes and performs the
radial velocity de-aliasing [21]. The processed radar data were further used to identify and
statistically analyze the MVs. Finally, the ERA5 reanalysis data [22] with a high horizontal
resolution of 0.25◦ × 0.25◦ from the European Centre for Medium-Range Weather Forecasts
(ECMWF) were utilized to study the environmental conditions for MVs in Guangdong
from April to June.

Figure 1. Distribution of nine Doppler weather radars in Guangdong: Guangzhou (9200), Yangjiang
(9662), Shaoguan (9751), Meizhou (9753), Shantou (9754), Shenzhen (9755), Zhaoqing (9758), Zhan-
jiang (9759) and Lianzhou (9763) radar stations. Red dots represent radars used to identify MVs.

2.2. Identification of MVs

Since MVs are mainly generated in organized MCSs, it was necessary to identify the
MCSs in advance. Firstly, the composite reflectivity from the nine Doppler radars (Figure 1)
was used to identify convective zones (CZs) of >35 dBZ. Then, the area of each CZ was
calculated, and a CZ with an area greater than 1000 km2 was considered as an MCS. More
details about the detection of MCSs can be found in T20.

In the past, the identification of meso-γ-scale vortices (e.g., mesocyclones) or even smaller-
scale circulations (e.g., tornadoes) mainly depended on the appearance of a positive–negative
velocity pair in the Doppler radar radial velocity field [23]. The rotational strength of a vortex
is measured by the difference between the maximum inbound and outbound radial velocities;
however, this measurement is susceptible to velocity noises. When the environmental
wind speed is strong, the positive–negative velocity cannot be identified because it is easily
submerged in the background wind field. Moreover, when the vortex is far from the radar
station, the azimuthal resolution becomes too low to well resolve the velocity pair. In this
study, a more advanced linear least square derivative method [24] was used to calculate the
azimuthal shear of an MV. This method considers the contribution of all radial velocities
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in a given range to the azimuthal shear at the center point, thus reducing the noise errors
caused by the radial velocities.

In this study, we only calculated the azimuthal shear at the 0.5◦ elevation within
150 km of the radar because the MVs are mainly generated in the lower troposphere below
3 km. As in T20, a lower limit of 10−3 s−1 was adopted for the azimuthal shear of MVs,
which is one order greater than the Coriolis parameter in mid-latitudes. The duration of
the MV must exceed 18 min, i.e., three volume scans of the radar. On this basis, a storm cell
identification technology similar to WSR-88D was adopted for the forward and backward
tracking of MVs to obtain their life cycles [25].

Because the radar radial velocity cannot be composed, the identification of MVs can
only be performed for each individual radar. Despite the dense distribution of Doppler
radars in Guangdong Province, only four radars covering almost the whole province were
selected to identify the MVs. These four radars are the Shaoguan (9751), Shantou (9754),
Yangjiang (9662) and Guangzhou (9200) radar stations, representing the northern, eastern
and western Guangdong Province and the Pearl River Delta region, respectively.

3. Characteristics of MVs during the First Rainy Season in Guangdong, South China

3.1. Spatiotemporal Distribution

During the first rainy season (April–June) in Guangdong, South China, from 2017 to
2019, a total of 7965 MVs were identified using the four radars in Guangdong Province
(Table 1). Figure 2 shows the uneven spatial distribution of MVs in Guangdong Province.
The MVs are most concentrated in the Pearl River Delta region, accounting for about 41% of
the total, followed by western Guangdong where the MVs account for about 27%. There are
far fewer MVs generated in eastern and northern Guangdong, which together account for
less than half of the total. In particular, the MVs are sparsely distributed near the Nanling
mountains in northern Guangdong. The uneven spatial distribution of the MVs can be
attributed to the following two reasons: The first is the different topographical features of
Guangdong. Laing and Fritsch [26] have pointed out that MVs are prone to form over flat
regions, such as the America Great Plains. Purpura et al. [27] documented supercell activity
(i.e., meso-γ-scale mesovortex activity) across the Appalachian Mountains in America and
also found that there are fewer supercells in the more mountainous areas. The formation
of MVs is therefore affected by the topography of the Nanling mountains in northern
Guangdong and the Lianhua, Luofu and Jiulian Mountains in eastern Guangdong. In
contrast, the relatively flat terrain in western Guangdong and Pearl River Delta region is
conducive to the formation of the MVs. Secondly, the uneven spatial distribution of MVs
is intimately related to the differences in environmental conditions in different regions
of Guangdong, which will be discussed in Section 3.3. In terms of lifetime, most of the
MVs (about 67%) last less than 30 min, and about 30% last more than half an hour, while
the ones lasting more than one hour only account for about 5% (Table 1). The statistical
characteristics of MV lifetime in Guangdong are similar to those in the YHRB [19].

Table 1. Statistics for the number and lifetime of the MVs identified by four radars in Guangdong
from April to June during 2017–2019. Percentages of the total MVs with different lifetimes are shown
in parentheses.

Guangzhou
(9200)

Shaoguan
(9751)

Yangjiang
(9662)

Shantou
(9754)

Total

Number of MVs 3267 794 2182 1722 7965
18–30 min 2153 (66%) 551 (69%) 1466 (67%) 1172 (68%) 5342 (67%)
30–60 min 992 (30%) 223 (28%) 626 (29%) 479 (28%) 2320 (29%)
>60 min 122 (4%) 20 (3%) 90 (4%) 71 (4%) 303 (4%)
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Figure 2. Spatial distribution of occurrence frequency of MVs during the first rainy season in
Guangdong, South China, from 2017 to 2019.

Figure 3 shows the monthly and diurnal variations of the MVs in Guangdong. The
number of MVs generated in June is significantly larger than that in April and May,
accounting for about half of the total (Figure 3a). In addition, the MVs display notable
diurnal variations (Figure 3b). MV occurrence is most frequent from the late morning to
the afternoon (0900 BJT to 1800 BJT, i.e., Beijing time) but drops to the minimum overnight
(2100 BJT to 0300 BJT). This diurnal variation is just opposite to that in the warm season in
the YHRB [19]. Specifically, the MVs in the YHRB present slight diurnal variations (figures
omitted), with two weak peaks at night (1800 BJT to 2100 BJT) and in the morning (0600 BJT
to 0900 BJT), respectively. In addition, there is a minimum at night (0300 BJT to 0600 BJT).

 
Figure 3. (a) Monthly and (b) diurnal variations of the MVs in Guangdong from April to June during
2017–2019.

Figure 4 shows the distributions of the diameters and intensities (in terms of azimuthal
shear) of the MVs. It can be seen that the MV diameters are mostly between 4 km and
12 km (about 80%), while only a few are larger than 12 km or smaller than 4 km (Figure 4a).
Most of the MVs (about 94%) are weak, with intensities between 0.001 s−1 and 0.004 s−1,
while only about 6% are stronger than 0.004 s−1 (Figure 4b). It is indicated that the diameter
of the MV is proportional to its lifetime (Table 2). The MVs presenting a short lifetime of
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18–30 min have a mean diameter of 6.96 km, the MVs lasting for 30–60 min have a mean
diameter of 8.35 km, and the MVs lasting for more than one hour have a mean diameter
of 10.3 km. Similarly, the azimuthal shear of the MVs is also proportional to their lifetime.
The MVs with a short lifetime of 18–30 min have an average intensity of 0.002 s−1, while
the MVs with a long lifetime of exceeding 60 min have an average intensity of 0.003 s−1.
Thus, a longer lifetime is accompanied by greater diameter and stronger intensity, which is
similar to the characteristics of the MVs in the YHRB [19].

Figure 4. Distributions of the (a) diameter (km) and (b) intensity (10−3·s−1) of the MVs in Guangdong
from April to June during 2017–2019.

Table 2. Average diameter, azimuthal shear intensity and lifetime of the MVs in Guangdong from
April to June during 2017–2019.

Diameter (km) Azimuthal Shear (10−3·s−1) Lifetime (Minutes)

All MVs 7.49 2.15 26
Short-lived MVs 6.96 2.03 20

Medium-lived MVs 8.35 2.33 36
Long-lived MVs 10.30 2.88 75

3.2. Comparison of MVs in Different Regions of Guangdong

As mentioned above, most MVs during the first rainy season in Guangdong appear
in the Pearl River Delta region and western Guangdong. In this subsection, the temporal
variations of MVs in different regions of Guangdong are compared. About half of the
MVs in the Pearl River Delta region occur in June, which is significantly more than that
in April and May. Similar monthly variations of MVs are found in eastern Guangdong.
However, there are less significant monthly variations in northern and western Guangdong.
The percentages of MVs generated in each month (April to June) are almost the same
(Figure 5a).

Figure 5. (a) Monthly variations and (b) diurnal variations of MVs in the four different regions of
Guangdong. Red bar (solid line) represents the Pearl River Delta region, with blue bar (solid line)
for western Guangdong, green bar (solid line) for northern Guangdong and black bar (solid line) for
eastern Guangdong.
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The diurnal variations are quite similar for the MVs in the River Delta region and
eastern Guangdong (Figure 5b), which show an afternoon-to-night peak and night-to-
early-morning minimum. However, the MVs in northern and western Guangdong present
a different diurnal variation. The MVs in northern Guangdong show a night-to-early-
morning peak and afternoon-to-evening minimum. The MVs in western Guangdong
have a midday peak and night-to-early-morning minimum. This may be explained by the
moving direction of MCSs in Guangdong. On the one hand, during April and May in South
China, there is still weak cold air frequently affecting Guangdong from the north. Under
the combined influence of dry and cold air from the north and warm and moist air from
the sea, there is usually an MCS accompanied by a cold front, affecting Guangdong from
the north to the south. The MCS tends to be triggered in northern Guangdong during the
night-to-morning period and then moves eastward and southward to southern Guangdong
from the afternoon to evening [28]. Strong urban heat island effects over the River Delta
region could also play some role in the development of MCSs. The afternoon peak of MCSs
is partially attributed to the solar heating-induced increase in CAPE. Therefore, the MVs
generated in the MCS present diurnal variations consistent with those of the MCSs.

Moreover, the statistical characteristics of MV lifetime in the Pearl River Delta region
are similar to those in the other three regions, with an average lifetime of 25–30 min. The
azimuthal shear intensity and horizontal scale of the MVs are also similar in the Pearl River
Delta region and northwest Guangdong, with an average diameter of about 7 km and an
average intensity of about 0.002 s−1. The MVs in eastern Guangdong are slightly weaker
and smaller than those in the other three regions (Table 3).

Table 3. Average diameter, azimuthal shear intensity and lifetime of the MVs in different regions of
Guangdong from April to June during 2017–2019.

Diameter (km) Azimuthal Shear (10−3·s−1) Lifetime (Minutes)

Pearl River Delta 7.64 2.16 27
Western Guangdong 7.54 2.23 26

Northern Guangdong 7.34 2.28 25
Eastern Guangdong 7.22 1.98 26

3.3. Environmental Conditions

As noted above, the spatial distribution of the MVs during the first rainy season in
South China is affected by environmental conditions. During this period, the South Asia
high center is located in the upper troposphere (200 hPa) over the Indochina Peninsula and
adjacent areas (Figure 6a). South China is on the southern side of the upper-level jet axis at
its entrance region. In the middle troposphere (500 hPa), the subtropical high lies between
10◦N and 20◦N, and South China lies on the northern side of the subtropical high and in
the westerlies at the bottom of the East Asia trough (Figure 6b). In the lower troposphere
(850 hPa), with the onset of the southwest monsoon, the equatorial westerlies from the
Indian Ocean and the cross-equatorial flow from near Kalimantan Island entering the South
China Sea converge and blow over South China (Figure 6c,d). Meanwhile, the low-level
southwesterly jets transport abundant warm and moist air to South China, especially to
the west of the Pearl River Estuary (the Pearl River Delta region and western Guangdong),
resulting in the higher potential pseudo-equivalent temperature and water vapor flux in
this region than in northern and eastern Guangdong.
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Figure 6. Wind fields (arrows and shaded, unit: m·s−1) and geopotential height fields (black contours,
unit: m) during April–June in (a) East Asia at 200 hPa and (b) Pan-South China at 500 hPa; (c) wind
field (arrows, unit: m·s−1) and potential pseudo-equivalent temperature (shaded, unit: K) in Pan-
South China at 850 hPa; (d) water vapor flux (arrows and shaded, unit: g·cm−1·hPa−1·s−1) in
Pan-South China at 850 hPa. Both the red and black boxes represent Guangdong Province.

Due to the warm and moist airflow transported by the southwest monsoon, the mean
low-level instability during April–June is relatively higher across the whole Guangdong
Province (Figure 7a). The potential pseudo-equivalent temperature in southwest Guang-
dong (30–32 ◦C) is significantly higher than that in other regions (28–30 ◦C). In addition,
the existence of the low-level jet causes stronger low-level wind shear over southwest
Guangdong than in other regions (Figure 7b). In short, the relatively higher instability
and stronger low-level vertical wind shear are conducive to the formation of MVs and are
similar to the environmental conditions for the formation of MVs in the YHRB. Weisman
and Trapp [29] studied the effects of vertical wind shear and CAPE on the genesis of MVs
using idealized simulations. The results show that the stronger the vertical wind shear
is, especially for the low-level wind shear, the stronger the MVs will be. High CAPE is
favorable for the formation of MVs. Atkins and Laurent [11] obtained a similar result by
using the Advanced Research Weather Research and Forecasting (ARW-WRF) model to
study the relationship between the development of MVs and these two parameters.
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Figure 7. (a) Potential pseudo-equivalent temperature (shaded and black contours, unit: ◦C) and
(b) vertical wind shear (shaded and arrows, unit: m·s−1) at 1000–700 hPa in Guangdong from April
to June.

4. Conclusions

In this paper, the mesovortices (MVs) that occurred during the first rainy season (April
to June) in South China during 2017–2019 were analyzed using Doppler radar observations
as well as ERA5 reanalysis. The spatiotemporal distributions and structural features of MVs
were examined, as were their favorable environmental conditions. The main conclusions
are as follows:

The MVs are mainly observed in the Pearl River Delta region, followed by western
Guangdong, and relatively fewer in both eastern and northern Guangdong. Similar to the
Yangtze–Huaihe River Basin (YHRB), the MVs in South China present a very short lifetime,
with about 70% lasting less than 30 min. The intensity and horizontal scale of the MVs
are proportional to their lifetime; i.e., long-lived MVs have larger horizontal scales and
stronger intensities than short-lived ones. Different from the MVs in the YHRB, the MVs in
South China display more significant diurnal variations, which occur most frequently from
late morning toward evening (1100 BJT to 1700 BJT) but drop to the minimum overnight
(2000 BJT to 0200 BJT on the next day). In contrast, the MVs in the YRHB present slight
diurnal variations, with two weak peaks at night (1800 BJT to 2100 BJT) and in the morning
(0600 BJC to 0900 BJT) as well as a minimum in the early morning (0300 BJT to 0600 BJT).

The diurnal variations are quite similar for the MVs in the Pearl River Delta region,
western and eastern Guangdong, with an afternoon-to-evening peak and a night-to-early-
morning minimum. On the contrary, the diurnal variation of MVs in northern Guangdong
is opposite to that mentioned above. This is because during the first rainy season in South
China, under the combined influence of dry and cold air from the north and the warm
and moist air from the sea, there is usually an MCS accompanied by a cold front, which
thereby affects South China from north to south. The MCS tends to be triggered in northern
Guangdong from night to morning and then moves to the southern coastal areas from
afternoon to evening. As a result, MVs generated within MCSs have a similar diurnal
variation to their parent systems.

The uneven spatial distribution of MVs is closely related to the environmental differ-
ences in South China. Affected by the southwest monsoon, the water vapor flux, low-level
instability and vertical wind shear in southwest Guangdong are significantly greater than
those in other regions during the first rainy season and are favorable to the formation
of MVs.

This study contributes to the understanding of MVs in South China and thus has
a great significance for the operational nowcasting and warning of MVs. However, the
relationship between the MVs and severe weather (such as gales and heavy rainfall [30,31])
in South China is still unclear and will be studied in the future.
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Abstract: Accurate precipitation forecasting is challenging, especially on the sub-seasonal to seasonal
scale (14–90 days) which mandates the bias correction. Quantile mapping (QM) has been employed
as a universal method of precipitation bias correction as it is effective in correcting the distribution
attributes of mean and variance, but neglects the correlation between the model and observation
data and has computing inefficiency in large-scale applications. In this study, a quantile mapping of
matching precipitation threshold by time series (MPTT-QM) method was proposed to tackle these
problems. The MPTT-QM method was applied to correct the FGOALS precipitation forecasts on
the 14-day to 90-day lead times for the Pearl River Basin (PRB), taking the IMERG-final product as
the observation. MPTT-QM was justified by comparing it with the original QM method in terms
of precipitation accumulation and hydrological simulations. The results show that MPTT-QM not
only improves the spatial distribution of precipitation but also effectively preserves the temporal
change, with a better precipitation detection ability. Moreover, the MPTT-QM-corrected hydrological
modeling has better performance in runoff simulations than the QM-corrected modeling, with
significantly increased KGE metrics ranging from 0.050 to 0.693. MPTT-QM shows promising values
in improving the hydrological utilities of various lead time precipitation forecasts.

Keywords: precipitation; bias correction; Quantile Mapping; sub-seasonal to seasonal forecast

1. Introduction

Meteorological disasters represent one of the most serious types of natural disaster in
the world. Among the different kinds of meteorological disasters, a flood disaster induced
by heavy precipitation has a wide range of influence, a long duration, and causes significant
property loss and casualties [1]. In light of the global warming environment, it is expected
that the frequency and intensity of flood disasters will continue to increase [2]. Therefore,
there is an urgent need to detect and monitor flood events. Precipitation forecasting is one
of the most important and effective tools for obtaining information in flood monitoring [3].
Therefore, if more accurate precipitation forecast information were to be provided before the
occurrence of heavy precipitation, this would mark a great contribution to flood forecasting
and monitoring and disaster prevention [4,5].

Numerical weather forecast technology has undergone unprecedented development,
and the quality of precipitation forecasting has also significantly improved [6], particularly
on the short-and-medium-term scale (0–10 days). The effective lead time for a disastrous
weather forecast needs to be extended to 14 days through the development of certain skills
so as to ensure the significant value of forecasting for decision making [7,8]. However, as
the atmosphere is a nonlinear system with inherent randomness [9], there are deviations
between the numerical models and the observed data. At the same time, the predictable
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lead time of a model has a certain range [10]. For example, the predictable lead time of a
daily weather forecast is generally around two weeks [11]. In recent years, a series of new
random physical process experiments [12] and an updated parameterization scheme [13,14]
were designed to improve the model ensemble predictions. However, weather forecasting
on the sub-seasonal to seasonal scale is still challenging [15].

Therefore, to obtain accurate and reliable precipitation forecast information and pro-
vide a solid foundation for flood forecasting and monitoring, the bias correction of the
model precipitation forecast is a significant step. Bias correction is an essential link in the
process for obtaining a medium-and-long-term forecast, especially for lead times beyond
14 days. In recent decades, scholars have proved that statistical post-processing methods
can effectively reduce or eliminate the systematic errors in the original model data. A
variety of bias correction models have been developed based on statistical methods, such
as analogs [16–19], QM, and other non-parametric methods [20–25] that are easy to im-
plement and fast to calculate. There are various parametric methods based on complex
mathematical and physical models, such as the non-homogeneous Gaussian regression
model [26], logistic regression model [27], Bayesian model averaging model (BMA) [28,29],
Bayesian joint probability (BJP) [30–32], Kalman filtering [33], etc. In recent years, with the
development of machine learning technology, this kind of method has been widely used for
the bias correction of model data. For example, random forest [34], artificial neural network
(ANN) [35,36], convolutional neural network (CNN) [37], and other neural-network-based
composite methods [38] have been employed.

QM, as the most efficient method, has been widely used to correct satellite precipitation
products and ensemble numerical forecast and general circulation model (GCM) climate
forecast data. At the same time, QM can directly calibrate runoff simulations using the
hydrological model [39–41]. In addition, studies show that assimilating transformed
precipitation into the NWP model using QM can also improve the typhoon forecast [42,43].
In the procedure of the QM method, the cumulative distribution function (CDF) of the
model data and the observation data are established, respectively. Then, the transfer
function (TF) between the two types of data is established for correction, or the model
data are directly mapped to the CDF of the observation data [44] to correct the model
data. The QM correction method can capture the average evolution of, and variability in,
precipitation while adjusting all statistical moments. Many different test schemes based
on QM have been successfully applied for bias correction. For example, Terink et al. [45]
adjusted the daily RCM simulation precipitation and temperature data of the Rhine River
Basin and found that the QM method operated relatively well under normal and extreme
conditions. Bennett et al. [20] used QM to correct the annual and seasonal RCM rainfall
bias in Australia, and they highlighted that the spatial distribution was improved after bias
correction. Similarly, Themeßl et al. [25] found that the QM method effectively corrected
the modeled daily precipitation in Alpine areas by analyzing seven bias correction methods.
Huang et al. [22] established a five-parameter gamma Gaussian model on the basis of QM,
which was successfully used to calibrate the monthly and seasonal precipitation forecasts
of GCMS. Although the QM method is effective in correcting distribution attributes such
as the mean and variance, the performance of the QM method in optimizing the spatial
distribution of forecasting precipitation and detecting the occurrence of precipitation events
is not satisfactory. Moreover, the QM method ignores the correlation between prediction
data and observation data [41].

Therefore, if the QM method is directly used to correct the forecast precipitation on
the sub-seasonal to seasonal scale (14–90 days) with a high temporal resolution (e.g., 3 h),
the detailed temporal and spatial characteristics of precipitation will be blurred. In this
study, a new bias correction method based on the QM was proposed to calibrate forecasting
precipitation on the sub-seasonal to seasonal scale with a high temporal resolution. The new
method firstly matches the precipitation threshold according to the time series and then
corrects the model precipitation data by QM. The performance of the new bias correction
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method was analyzed against the observation data and the original QM method in terms
of both precipitation accumulation and hydrological simulations.

The remainder of the paper is structured as follows. The datasets and study areas
used in this study are described in Section 2. A detailed description of the proposed bias
correction scheme is provided in Section 3. The results are presented in Section 4. Section 5
is the discussion and Section 6 is the conclusion.

2. Study Area and Data

2.1. Datasets

The problem of an insufficient spatial distribution of precipitation observed by surface
rainfall stations is overcome by satellite remote sensing. Satellite remote sensing precip-
itation is an important source of precipitation data in many remote areas, particularly
in the case of ungauged basins. In 2014, the Global Precipitation Measurement (GPM)
was jointly developed by the National Aeronautics and Space Administration (NASA)
and the Japan Aerospace Exploration Agency (JAXA) in order to provide high-resolution
precipitation data globally. GPM is the inheritance and improvement of the Tropical Rain-
fall Measuring Mission (TRMM) satellites. On the one hand, the spatial resolution of the
precipitation products ranges from 0.25 degree to 0.1 degrees, and the time resolution is
increased from 3 h to 30 min. On the other hand, GPM’s dual-band (Ku, Ka) radar system
and high-performance microwave radiometer significantly enhance the detection ability
for weak rainfall (<0.5 mm/h) and solid precipitation. The core observation platform of
GPM is composed of dual-frequency precipitation radar (DPR) and the 13-channel GPM
microwave imager (GMI) carried by GPM. DPR is the first type of active spaceborne remote-
sensing and dual-frequency rain radar in the world, which is composed of Ku-band radar
(13.6 GHz) and Ka-band radar (35.5 GHz). Ku-band radar has a better detection effect for
medium-intensive precipitation, and Ka-band radar is more sensitive to small precipitation
particles due to its shorter detection band. The GPM IMERG-final product is used as the
reference data for analysis in this study. The original temporal resolution of IMERG-final
is half-hourly, and the spatial resolution is 0.1 degrees [46]. In this study, IMERG-final
was resampled to 0.125 degrees using the arithmetic mean method and accumulated to a
three-hourly resolution.

The Flexible Global Ocean–Atmosphere–Land System model (FGOALS) was devel-
oped by The Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS),
and the Laboratory of Numerical Modelling for Atmospheric Sciences and Geophysical
Fluid Dynamics (LASG) [47]. FGOALS is also one of the coupled models for China’s
participation in the 6th International Coupled Model Comparison Program (CMIP6). The
output data from the historical climate simulation experiment (2001–2020), based on the
updated version of the FGOALS model [48], i.e., FGOALS-f3-L, was used as the model
prediction data to be corrected using the new bias correction method on the sub-seasonal to
seasonal scale in this study. The FGOALS-f3-L data were interpolated using the first-order
conservation interpolation method into 0.125 degrees, consistent with the IMERG-final.
The research period of this study was between 2001 and 2020, of which 2001–2015 was
the historical period for the experimental data, and the period of 2016–2020 was set as the
verification period.

2.2. Study Area

The Pearl River is one of the seven major rivers in China. The Pearl River flows
through Yunnan, Guizhou, Guangxi, Guangdong, Hunan, Jiangxi, and other provinces
(autonomous regions) and the northeast of Vietnam, with a total length of 2214 km and
a total drainage area of 453,690 square kilometers. Of this, the PRB in China covers an
area of 442,100 square kilometers, and the basin in Vietnam covers an area of 11,590 square
kilometers. The PRB is composed of four water systems, including Xijiang River, Beijiang
River, Dongjiang River, and the rivers in the Pearl River Delta. The PRB is located in the
inland and subtropical climate zone. The average precipitation from April to September is
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between 600 and 1900 mm, and the runoff of the PRB from April to September accounts for
approximately 80% of the annual runoff [49]. The PRB was the main research area of this
study, extending eastward to eastern Guangdong and southward to the coastal areas of
western Guangdong and southern Guangxi (Figure 1).

Figure 1. Research area of PRB in China.

The runoff data of eight hydrological stations in the PRB were selected for this study
(Table 1). The time series of the observed runoff data is 2016–2020, and the source of the
data is the Pearl River Administration of Navigational Affairs, https://zjhy.mot.gov.cn/
zhuhangsj/shuiqingxx/, accessed on 9 May 2021.

Table 1. Information of main hydrological stations in the PRB.

Num. Name Longitude Latitude Drainage Area (Km2)

1 Boluo 114.3 23.167 25,325
2 Feilaixia 113.236 23.786 34,000
3 Shijiao 112.963 23.554 38,363
4 Liuzhou 109.397 24.329 45,413
5 Nanning 108.236 22.833 72,656
6 Guigang 109.613 23.089 85,148
7 Dahuangjiangkou 110.204 23.582 288,544
8 Wuzhou 111.329 23.465 327,006

3. Method

The QM method uses a single transfer function to map the model simulation data
to the CDF distribution of the observed data. When the simulated and observed values
are relatively close, the revision is better; however, when the difference between the two
values is large, the QM method can-not improve the model data significantly and may even
introduce new biases. The QM method tends to reproduce the average precipitation from
the observation, but the reproducing is not based on the one-by-one mapping between
the observation and the model, let alone the correction of the modeled number of wet
days [50,51]. In general, the QM method maps all the same precipitation amounts simulated
by the model at different times to the same percentile value of observed precipitation,
causing exactly the same revised precipitation values.

Manolis et al. [52] used different instances of gamma function that are fitted on
multiple discrete segments of the precipitation CDF, instead of the common quantile–
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quantile approach that uses one theoretical distribution to fit the entire CDF. This allows to
better transfer the observed precipitation statistics to the raw model data. However, new
uncertainties may be introduced in the CDF fitting using the Gamma-theoretic distribution.

The bias correction methods proposed in this study are described in this section,
and the technical workflow is shown in Figure 2a. First, the new bias correction method,
which is called the quantile mapping of matching precipitation threshold by time series
(MPTT-QM) method, was proposed in this study. A threshold segmentation was performed
using different percentiles of historical observed precipitation data [52]. The CDF dis-
tribution function of the observed and model data for each interval was then calculated
using the nonparametric method of empirical distribution. Four discrimination factors
were established according to the threshold distribution characteristics of the observed
precipitation in historical periods and the error relationship between the observed and
model precipitation. The weighted results of the four discrimination factors were used to
determine the threshold intervals of the forecast precipitation, and then the CDF matching
method (Figure 2b) was used for further correction within the determined interval.

Figure 2. (a) The workflow of the MPTT-QM method; and (b) the schematic diagram of the QM
method. MODfore represents the forecast model data, OBShis represents the mapped observation data
by CDF.

3.1. Quantile Mapping of the Matching Precipitation Threshold by Time

The QM method is effective in correcting distribution attributes such as the mean and
variance but neglects the correlation between the model and observation data. In this study,
the MPTT-QM bias correction model was proposed to solve this problem while retaining
the advantages of QM. The percentile method, which is commonly used in precipitation
research, was used to determine the threshold interval for this study [53,54]. Specifically, a
set of 12 percentile threshold values (i.e., the 10th, 20th, . . . , 80th, 85th, 90th, 95th, and 98th
percentiles) was used to classify all the observed 3-h precipitation data into 13 intervals,
similar to those proposed in previous studies [55,56]. For each interval, a list of date–time
stamps (referred to as TOBShis(i)

) for all the observed values was derived as follows:

TOBShis(i)
= (time1, time2, time3 · · · , timek) (1)

where i (i = 1, 2, · · · n, n = 13) indicates each of the intervals, and timek indicates the
occurrence time when the precipitation intensity falls within the ith interval. The CDF
distribution of the observation data in each interval, hereafter referred to as CDFOBShis(i)

, is
calculated. According to TOBShis(i)

, the corresponding model precipitation values (referred
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to as MODhis(i)) are derived to calculate the model CDF (referred to as CDFMODhis(i)
). An

initial bias correction is performed using the QM method (Figure 2b):

MODBCk = CDF−1
OBShis(i)

(
CDFMODhis(i)

(
MOD f orek

))
(2)

where MOD f orek
represents the forecast model data at a certain time k to be corrected on

the sub-seasonal to seasonal scale, and MODBCk is the corrected results. The problem with
the original QM method is that the same precipitation value modeled at different times is
mapped onto the same value by the original QM method. To overcome this issue, instead
of using the identical CDF function for the bias correction, we propose four discriminant
factors in MPTT-QM to adjust the forecast value so as to determine which interval’s CDF
matching function should be chosen for the correction. The details of the discriminant
factors are described below.

3.2. Discrimination Factors
3.2.1. Discrimination Factor One

The threshold distribution of the observation data (i.e., IMERG-final) is an important
reference for estimating the distribution interval of the forecasting threshold. Ftimet repre-
sents the threshold interval with the maximum probability of precipitation distribution at
the tth time of a year according to long-term observation. Specifically,

Ftimet = Max
(

k(i,t)/Sumi

)
(3)

where k(i,t) denotes the number of times when the precipitation values fall in each threshold
interval at the same time of the year (i.e., the same month, day, and hour), i denotes the
threshold intervals ( i = 1, 2 · · · n, n = 13), and t denotes the 3-h interval time in a year
(t = 1, 2 · · ·m; m = 366 × 8). Sumi is the total number of OBShis values falling in the ith
interval for all the observation times.

3.2.2. Discrimination Factor Two

The error relationship between historical observation and historical model data can be
used as an important reference for estimating the distribution interval of the forecasting
threshold [23]. The historical precipitation data are extracted at the same time (the same
month, day, and hour) as the forecasting precipitation, so that there are fifteen groups in
total. The average precipitation in the historical period is defined as the sixteenth group of
data. The series of data are written as MODj(j = 1, 2, · · · , n, n + 1, n = 15). The correlation
coefficient between the MOD f ore and MODj(j = 1, 2, · · · , n, n + 1, n = 15) is calculated,
respectively, and the j-group with the largest correlation coefficient is recorded as MODMax.
One extracts the observation data of the corresponding year of MODMax, which is written
as OBSMax. The linear fitting method is used to simulate the error relationship between
MODMax and OBSMax [24]:

OBSMax = a + b × MODMax (4)

where a and b are the linear fitting parameters calculated by the ordinary least squares
method. It is assumed that the same error relationship is also followed for future forecast data:

MOD f ore−BC = a + b × MOD f ore (5)

where MOD f ore−BC is the forecast data corrected using the error relationship. The distribu-
tion interval of MOD f ore−BC is taken as F2.
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3.2.3. Discrimination Factors Three and Four

The removal of multiplicative errors is a convenient method for bias correction on
sub-seasonal to seasonal scales [57]. FMOD f oret

(t = 1, 2 · · ·m; m = 366 × 8) represents the
forecast threshold interval, with multiplicative error being adjusted as follows:

FMOD f oret
= MOD f oret

× OBShist /MODhist (6)

where MOD f oret
is the forecast value to be corrected, OBShist is the average value of the

observation in the historical period for the same time as the forecast time, and MODhist is
the average value of the forecast period. The distribution interval of FMOD f oret

is taken as

F3. The distribution interval of OBShist is taken as F4.

3.2.4. Random Forest

Random forest is a classification algorithm based on a tree classifier, which was first
proposed by Breiman [58]. There are many advantages to random forest, for example,
it relieves the overfitting problem that often occurs in machine learning. At the same
time, the selection of characteristic genes can be carried out. A large number of theoretical
and applied studies have proved the accuracy of the random forest model from different
angles [59,60]. At present, random forest is considered as one of the best machine learning
models due to its tolerance of outliers and noise in the dataset. The contribution weights
of different factors to a group of data can be obtained through the random forest model,
which is also one of the characteristics of random forest.

In this study, four discriminant factors of each time step in the historical period were
used as input data, and the true threshold interval of the historical observation data was
used as the target data. Then, the contribution weight of each factor to the true threshold
interval of the observed data was calculated through the random forest model.

F = ∑t(Ft × Weightt) (7)

Above, Ft is the tth factor, and the weight coefficient of Ft is Weightt(t = 1, 2, . . . , 4).
The weighted result F is the estimated distribution interval of the forecasting threshold.
This means that the forecasting data should be matched with the distribution interval F,
and the CDF function of the history observation and history model in interval F should be
adopted for further correction.

It is critical issue to address the 0 value in the forecast. The method proposed by Tian
et al. [61] is adopted in this study. When the forecast precipitation is 0, the OBShis and
MODhis of the first eight timesteps (one day) of MOD f ore are extracted to calculate the
number of missed (m) and false alarms ( f ) of MODhis according to OBShis. If m <= f , it is
determined that the forecast precipitation is 0. If m > f , the mean value of the first eight
timesteps is used to replace the forecast.

3.3. Additional Spatial Correction

In order to maintain better smoothness and continuity of the spatial distribution of the
corrected model precipitation data, the outliers need to be removed from the data. Dixon
and Dean [62] proposed a simplified outlier test method for smaller sample sizes (n < 10),
namely the Q-test (or Dixon’s Q-test). This method has been widely used in many scientific
research fields, such as international analytical chemistry and materials, for a long time.
The calculation of the statistic Q value is very simple; the difference between the suspicious
value and its nearest value is divided by the range. The calculation formula is written
as follows:

Q1 =
x2 − x1

xn − x1
or Qn =

xn − xn−1

xn − x1
(8)

According to the measured sample number and the given confidence, one can check
the critical value table to obtain the value Qp(n). If Q1 (or Qn) > Qp(n), there are outliers
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in the sample data. Otherwise, the data are without any outlier. In this study, we select
the spatial window of 3 × 3 grid cells (the number of samples n = 9) and gradually slide
it to identify outliers. We replace the outlier with the arithmetic mean of the data of the
nearest eight non-outlier and non-missing grid cells. That is, a simple interpolation and
replacement calculation is performed on the outlier. The outliers among the corrected data
are removed by the additional spatial correction. The spatial continuity distribution of the
corrected data is better maintained.

3.4. The DRIVE Model

The hydrologic model has been demonstrated to be an effective and efficient tool for
monitoring, simulating, and forecasting floods [63,64]. The hydrological simulations were
conducted using the Dominant river Routing Integrated with VIC Environment (DRIVE)
model, which was developed by Wu [65] through coupling the DRTR (Dominant River
Tracing, DRT-based runoff-Routing) model with the VIC (Variable Infiltration Capacity)
land surface model. To be applied for spatially distributed and real-time runoff prediction,
the VIC model has further been significantly modified (in particular, from its original point-
based model structure to a grid-based model structure) so that the modified VIC as a runoff
generation component of the DRIVE model is capable of simulating spatially distributed
runoff at each time step (i.e., computing all the grid boxes at each time step) [65]. The
DRTR model includes a package of hydrographic upscaling (from fine spatial resolution to
coarse resolution) algorithms and resulting global datasets (flow direction, river network,
drainage area, flow distance, slope, etc.) especially designed for large-scale hydrologic
modeling. The DRTR model is grid based and very convenient for simulating spatially
distributed streamflow by coupling with the modified VIC model. More details about the
DRIVE model can be found in Wu et al. [66]. The DRIVE model has been used routinely
for global flood forecasting and monitoring [66], implementing TRMM global satellite
precipitation products [67].

3.5. Evaluation Methods

Six precipitation products were used in this study to evaluate precipitation and hydro-
logical performance. They are IMERG-final (IMERG, observation) and FGOALS (model).
The FGOALS model precipitation data are corrected by QM and MPTT-QM for 14-day and
90-day lead time forecasts, respectively, which are called QM-14day, QM-90day, MPTT-QM-
14day, and MPTT-90day. This also means that the revised calculation is repeated every 14
(90) days. After the completion of each correction process, the observations for these 14 (90)
days were summarized into the historical phase dataset, and the initial conditions were
recalculated for the next revision.

Firstly, the 3-hourly precipitation products of 2016–2020 were accumulated to daily,
5 days, 15 days, and monthly. Then, the precipitation accuracy was evaluated for each
time scale. The model data were assessed through three widely used statistical evaluation
metrics: the correlation coefficient (R), root mean square error (RMSE), and mean bias
(MB). A higher R, lower RMSE, and absolute MB indicate better agreement between the
estimations and observations. The formulas are provided in Table 2. In addition, three
indicators were selected in this study to evaluate the precipitation detection capabilities,
including the probability of detection (POD), critical success index (CSI), and false alarm
ratio (FAR). POD represents the ratio of correct estimates to the number of precipitation
occurrences based on observations. FAR denotes the proportion of precipitation occurrences
that were erroneously detected. CSI indicates the overall performance in terms of detection
capability by integrating POD and FAR. The values of these indicators range from 0 to 1,
and a higher POD and CSI and lower FAR indicate a better performance.

Therefore, six different types of precipitation data were used in this study to run the
DRIVE model on the 3-hourly time scale and the 0.125-degree spatial scale. The simulated
runoff was compared with the runoff observed at eight hydrological stations in the PRB.
The Kling–Gupta efficiency coefficient (KGE) was selected as the hydrological assessment
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indicator. The KGE coefficient is a comprehensive evaluation index integrating the cor-
relation coefficient (R), bias ratio (β), and variability ratio (γ). KGE can comprehensively
evaluate the performance of simulation data, and the optimum score is 1.

Table 2. Statistical metrics used for evaluating precipitation and runoff estimates. P is precipitation
estimate; Pobs is observation data; Q is runoff estimate; Qobs is observation runoff from the gauge;
Cov is the covariance; σ is the standard deviation and μ is the mean value; n is the number of data
pairs; H is the number of observed precipitation events detected correctly by the products; F is the
number of precipitation events detected by the products but not observed; and M is the number of
precipitation events that the products cannot detect.

Statistical Metrics Formulas Optimal Score

Correlation coefficient (R) R = Cov(P,Pobs)√
σ(P)σ(Pobs)

1

Root mean square error (RMSE) RMSE =
√

1
n ∑(P − Pobs)

2 0

Mean bias (MB) MB = 1
n ∑(P − Pobs) 0

Probability of detection (POD) POD = H
H+M 1

Critical success index (CSI) CSI = H
H+M+F 1

False alarm ratio (FAR) CSI = F
H+F 0

Bias ratio (β) β = μP
μPobs

1

Variability ratio (γ) γ = σP/μP
σPobs

/μPobs
1

Kling–Gupta efficiency (KGE) KGE = 1 −
√
(R − 1)2 + (β− 1)2 + (γ − 1)2 1

4. Results

4.1. Precipitation Assessment Results

Figure 3 illustrates the spatial patterns of daily average precipitation from 2016 to
2020, derived from the IMERG, FGOALS, QM, and MPTT-QM precipitation products. It
can be seen that the IMERG precipitation in the PRB shows a decreasing trend from east to
west. The maximum precipitation area is concentrated in the east of the PRB. The FGOALS
model data show a higher value in the eastern area and lower value in the western area.
However, the overall precipitation value is smaller than that of IMERG, and there are
also great differences in the spatial details. The precipitation products corrected by QM
effectively improve the precipitation in the eastern and central areas of the PRB, and QM is
more similar to IMERG in terms of spatial distribution. However, the figure shows that the
maximum daily rainfall area of IMERG precipitation reaches more than 5 mm/day in the
east of the PRB, and there are certain differences between QM-14day and QM-90day, on
the one hand, and IMERG, on the other. The precipitation corrected by MPTT-QM is more
consistent with the overall spatial distribution of IMERG. It clearly shows four rainbands
with decreasing precipitation from east to west. The distribution of MPTT-QM-14day is
better than that of MPTT-QM-90day. MPTT-QM-90day has an overestimation trend in the
central part of the Pearl River Basin relative to MPTT-QM-14day.

To further evaluate the spatial distribution consistency between the corrected precipita-
tion and IMERG precipitation, Figure 4 shows a density scatter diagram of the daily average
precipitation distribution of each grid cell in the study area. It can be seen from Figure 4a
that the FGOALS data show an overall small trend for IMERG. In particular, when the
daily average precipitation of IMERG is distributed in the range of 4–5 mm, the FGOALS
is as small as 50%. However, for some precipitation maxima, FGOALS shows a higher
estimation. The QM-corrected data can effectively solve the problem of the serious under-
estimation of FGOALS. However, when IMERG precipitation is in the range of 4–6 mm,
QM-14day and QM-90day are still slightly low. No matter how high or low the precipitation
value is, the scattered points marking the spatial distribution of MPTT-QM and IMERG are
basically situated around the y = x baseline, and the performance is clearly better than that
of the QM method. As can be seen in Figure 4, there is a more pronounced overestimation
trend in MPTT-QM-90day than MPTT-QM-14day when the precipitation level is in the
5 mm interval, which is consistent with Figure 3. In terms of spatial correlation coefficient
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values and root mean square error values, MPTT-QM-90day and MPTT-QM-14day are very
similar, but the spatial mean bias is smaller for MPTT-QM-14day.

Figure 3. Spatial patterns of daily average precipitation from 2016 to 2020 in the PRB: (a–f) represent
the IMERG, FGOALS, QM-14day, QM-90day, MPTT-QM-14day, and MPTT-QM-90day, respectively.

To verify the time series trend of precipitation on the basin scale, the basin mean values
of different precipitation products in the PRB were calculated on the 15-day scale and the
monthly scale in this study (Figure 5). The figure shows that the basin mean precipitation
of IMERG at 15 days (red line in Figure 5a–e) has changed steadily over the past five years,
and the maximum precipitation period is mainly from May to September each year. The
three wet years are 2016, 2019, and 2020. Among these, the wet years of 2016 and 2020
were caused by short-term heavy precipitation events, and that of 2019 was caused by
continuous precipitation events.

Regarding the IMERG data, the basin mean precipitation values in the first half
of June and August in 2016 and the first half of June and September in 2020 reached
200 mm. The basin mean precipitation in the first half of June 2020 reached 242.24 mm,
which is the highest value within the past five years. In Figure 5a, the precipitation of
the FGOALS model (blue line) shows a time lag trend and lower precipitation relative to
IMERG. Figure 5b,c illustrates that the QM does not have the ability to change the trend of
model precipitation. It can only adjust the precipitation value at each time step to make
it larger and, therefore, closer to the distribution of IMERG. Moreover, the MPTT-QM
model can change the trend of precipitation in the time series (Figure 5d,e). Comparing
the MPTT-QM with the QM and FGOALS data, it can be found that MPTT-QM has better
consistency with IMERG, especially for 2017, 2018, and 2019. However, for the extreme
precipitation events in 2016 and 2020, although MPTT-QM can effectively improve the
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original data, the correction performance of MPTT-QM for extreme precipitation events
still needs to be further improved.

Figure 4. Density scatter diagram of daily average precipitation of each grid cell relative to IMERG
in the PRB from 2016 to 2020. Each scatter point represents the daily average precipitation value of
each grid cell in the study area, the color bar represents the density of precipitation values. and (a–e)
represent the FGOALS, QM-14day, QM-90day, MPTT-QM-14day, and MPTT-QM-90day, respectively
(unit: mm/day).
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Figure 5. Time series distribution of average precipitation in the PRB on a half-month scale from 2016
to 2020. The red line represents the IMEGR, and the blue line in figure (a–e) represents the FGOALS,
QM-14day, QM-90day, MPTT-QM-14day, and MPTT-QM-90day, respectively (unit: mm).

Figure 6 demonstrates the boxplots of R, RMSE, and MB for the MPTT-QM model
and other precipitation products over four different time scales. The MPTT-QM model
performs better than the other products, with a higher R, lower RMSE, and lower MB. With
the increase in the time scale from days to months, the R value becomes higher. However,
the daily scale is enhanced to a stronger degree than the monthly scale. For example, for
the correlation coefficient R, the median value of FGOALS on the daily scale is 0.02, and
the values of MPTT-QM-14day and MPTT-QM-90day are 0.15 and 0.13, which are 650%
and 550% higher than the original model data. The monthly FGOALS median value is 0.33,
and the MPTT-QM-14day and MPTT-QM-90day are 0.78 and 0.76, respectively, which are
136% and 130% higher than the value for FGOALS. For the QM precipitation products, the
performance of R and RMSE is equivalent to that of FGOALS, and there is no significant
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improvement. On the daily scale, the performance of R and RMSE are slightly decreased.
MB is effectively improved using the QM method. The median value of MB is increased
from −2.19 to −0.66 (QM-14day) and −0.66 (QM-90day), respectively, on the daily scale.
Meanwhile, the median of MB of the MPTT-QM model performed better, with values of 0.07
(MPTT-QM-14day) and 0.13 (MPTT-QM-90day) on the daily scale, respectively. Overall, in
terms of time distribution, MPTT-QM-14day outperform MPTT-QM-90day significantly.

Figure 6. Boxplots of correlation coefficient (R), root mean square error (RMSE), and mean bias (MB)
for five precipitation products over four different time scales: daily, 5-day, 15-day, and monthly.
(a–d) represent the boxplot of R, (e–h) represent the boxplot of RMSE, and (i–l) represent the MB.

Table 3 summarizes the statistical metrics of the five precipitation products. The values
in the table are the basin average values of the statistical metrics for the PRB on a daily scale.
Although the FAR values of MPTT-QM-14day and MPTT-QM-90day are slightly higher,
other indicators should be comprehensively considered. Combining the results of several
assessment indicators in Figures 4 and 6 in terms of temporal and spatial distribution, the
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performance of the revised product decreases significantly as the prediction time increases.
Overall, the MPTT-QM-14day shows the best performance among the five precipitation
products, with POD of 0.950. The second-best-performing product is MPTT-QM-90day,
which has the highest CSI value.

Table 3. Summary of performance statistical metrics for the FGOALS, QM-14day, QM-90day, MPTT-
QM-14day, and MPTT-QM-90day precipitation products. The precipitation threshold is set to
0.1 mm/day.

Names CSI POD FAR

FGOALS 0.302 0.412 0.461
QM-14day 0.322 0.444 0.462
QM-90day 0.322 0.443 0.462

MPTT-QM-14day 0.486 0.950 0.501
MPTT-QM-90day 0.488 0.946 0.498

It is worth mentioning that the POD values of MPTT-QM-14day and MPTT-QM-90day
are greater than 90% for all grid cells in the PRB. For MPTT-QM-14day, 49.6% of the total
grid cells in the PRB have POD values greater than 0.95, and 40% have POD values greater
than 0.95 for MPTT-QM-90day. The MPTT-QM-14day and MPTT-QM-90day methods
effectively improve the value of CSI by more than 0.4, increasing from 3.6% to 95.3% and
95.1%, respectively.

4.2. Hydrological Assessment Results

First, six precipitation products were used to run the DRIVE model. The KGE co-
efficient results obtained by comparing the runoff observation data of the hydrological
stations on the monthly scale are shown in Figure 7. The runoff simulation results show
that the calibrated DRIVE model is efficient. The runoff results of IMERG-DRIVE show that
the KGE coefficients of the eight hydrological stations in the PRB are more than 0.48, and
there are five stations with monthly KGE values greater than 0.60 (Figure 7). The average
of the monthly KGE coefficient is 0.59. Among the stations, the Nanning station data are
simulated best, and the monthly KGE coefficient reaches 0.66. The simulation effect of
FGOALS-DRIVE on the PRB is unsatisfactory. The average of the monthly KGE coefficient
is 0.01. These unsatisfactory results are related to the poor self-quality of the FGOALS
precipitation. After QM bias correction, the effect of the runoff simulation was slightly
improved. The monthly KGE average increased to 0.16 (QM-14day) and 0.15 (QM-90day),
respectively. However, the runoff simulation results of QM still fall short of the credible
standard. According to the results of the MPTT-QM-14day runoff simulation, there are
five hydrological stations with monthly KGE values greater than 0.4 in the PRB, and the
average value reaches 0.45. The performance of MPTT-QM-90day is slightly worse, the
average value reaches 0.40. The performance of the MPTT-QM method in hydrology is
more related to the self-quality of the observed precipitation.

On the daily scale, the average correlation between the output runoff data of IMERG-
DRIVE and the observed runoff data is 0.74, indicating that the data are highly correlated
(Figure 8a). The average correlation coefficient of FGOALS-DRIVE is 0.19, and Nanning
station has the highest correlation, which is 0.23. The average correlation coefficients
of both QM-14day and QM-90day are 0.16 on the daily scale, a value which is slightly
lower than that of FGOALS. The runoff correlation was significantly improved by the
MPTT-QM method. After MPTT-QM-14day correction, the correlation coefficients of seven
hydrological stations were greater than 0.4. Wuzhou station, located in the middle of the
PRB, has the highest correlation coefficient, which reaches 0.60. On the monthly scale,
MPTT-QM-14day performed better, raising the average correlation coefficient of FGOALS
on the monthly scale from 0.37 to 0.71. Therefore, by comprehensively comparing the KGE
coefficient and correlation coefficient of QM and MPTT-QM relative to the observed runoff,
it can be seen that the MPTT-QM method is more effective than the QM method.
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Figure 7. Spatial distribution of the monthly KGE coefficients of hydrological stations in the PRB:
(a–f) represent the IMERG, FGOALS, QM-14day, QM-90day, MPTT-QM-14day, and MPTT-QM-
90day, respectively.

The KGE coefficients of area rainfall of the upstream basin and simulated runoff for
the five precipitation products, compared with IMERG, are shown in Table 4. In general,
the performance of MPTT-QM in estimating precipitation and runoff of the eight stations
in the PRB is significantly better than that of QM method. The MPTT-QM-14day is the
best-performing model. For the MPTT-QM-14day model, the average KGE coefficient of
the area rainfall compared with FGOALS is increased by nearly 3.82 times, and the average
KGE coefficient of the runoff is increased by more than 12.94 times for the eight hydrological
stations in the PRB. For the MPTT-QM-90day model, the average KGE coefficients of area
rainfall of the upstream basin and runoff are increased by 3.78 times and nearly 12.60 times,
respectively. The same conclusion is obtained using the QM method. According to the
KGE coefficient of QM-14days, the average rainfall value of the eight stations is doubled,
and the average runoff value is increased by nearly 5.03 times. The KGE coefficient of
QM-90day is nearly doubled and increased by 4.98 times. It can be seen that both QM and
MPTT-QM perform better for the 14-day lead time forecast than 90-day one. Although the
KGE coefficient of the area rainfall is higher, both the MPTT-QM and QM bias correction
methods are clearly more efficient in improving the runoff simulation.
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Figure 8. Spatial distribution of daily correlation coefficients (R) of hydrological stations in the
PRB: (a–f) represent the IMERG, FGOALS, QM-14day, QM-90day, MPTT-QM-14day, and MPTT-
QM-90day, respectively.

Table 4. Summary of performance based on the monthly KGE coefficients of hydrological stations
in the PRB for the FGOALS, QM-14day, QM-90day, MPTT-QM-14day, and MPTT-QM-90day. For a
hydrological station, P represents the KGE coefficient of model-simulated area rainfall of the upstream
basin compared with IMERG. Q. represents the KGE coefficient of model-simulated runoff compared
with the IMERG-DRIVE-simulated runoff.

Names Boluo Feilaixia Shijiao Liuzhou Nanning Guigang Dahuangjiangkou Wuzhou

FGOAlS
P 0.291 0.006 0.018 0.053 0.220 0.201 0.300 0.293
Q 0.428 0.012 −0.014 −0.033 −0.085 −0.107 0.103 0.093

QM-14day P 0.365 0.188 0.204 0.352 0.383 0.369 0.478 0.480
Q 0.439 0.194 0.186 0.242 0.364 0.313 0.344 0.318

QM-90day P 0.364 0.186 0.202 0.348 0.381 0.366 0.475 0.476
Q 0.437 0.191 0.184 0.240 0.360 0.309 0.342 0.316

MPTT-QM-14day P 0.761 0.798 0.804 0.793 0.892 0.886 0.876 0.863
Q 0.701 0.573 0.617 0.550 0.793 0.768 0.777 0.766

MPTT-QM-90day P 0.731 0.780 0.788 0.774 0.882 0.881 0.890 0.883
Q 0.701 0.573 0.594 0.524 0.802 0.769 0.724 0.720

Figure 9 shows the monthly runoff intensity–time curve after the removal of the
missing values of the Guigang, Nanning, Wuzhou, and Liuzhou stations in the PRB from
2016 to 2020. The figure shows that the runoff curve (red) simulated by IMERG-DRIVE
is closely matched with the distribution of the observation data for most time periods.
The runoff value of FGOALS-DRIVE is very small for all the hydrological stations. The
QM-DRIVE-simulated runoff data are similar to the precipitation, which is corrected by
QM. Only the numerical value can be changed, and it is difficult to change the trend
of the runoff. The runoff data simulated by MPTT-QM-DRIVE at four stations show a

232



Remote Sens. 2023, 15, 1743

good performance, which is basically consistent with the runoff intensity–time curve of
IMERG-DRIVE.

Figure 10 illustrates the intensity–time curve of the monthly area rainfall of the up-
stream basin for the Guigang, Nanning, Wuzhou, and Liuzhou stations. The figure demon-
strates that the variation in area rainfall is more complex relative to the runoff. The area
rainfall of the upstream basin for the four stations obtained by the MPTT-QM method also
indicates a good performance.

Figure 9. Runoff intensity–time curve of the PRB on the monthly scale from 2016 to 2020:
(a–d) represent the Guigang, Nanning, Wuzhou, and Liuzhou stations, respectively.

Figure 10. Area rainfall of the upstream basin intensity–time curve of the PRB on the monthly scale
from 2016 to 2020: (a–d) represent the Guigang, Nanning, Wuzhou, and Liuzhou stations, respectively
(unit: mm).
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5. Discussion

In general, the MPTT-QM-corrected precipitation data indicate a significantly better
performance than that of the original QM method in terms of the consistency of the
temporal and spatial distribution on the sub-seasonal to seasonal scale. This is because
MPTT-QM overcomes the problem that the same precipitation value modeled at different
times is mapped onto the same value using the original QM method by correction at the
precipitation threshold intervals. In order to more accurately identify the threshold intervals
of the forecast precipitation, the four discrimination factors are selected to comprehensively
consider the threshold distribution characteristics of the observed precipitation in the
historical period and the error relationship between the observed precipitation and the
model precipitation.

At the same time, due to the fact that precipitation errors can be transmitted using the
hydrological model, more accurate precipitation data will also lead to an improvement of
the hydrological simulation performance. Therefore, the MPTT-QM method also has an
excellent performance in hydrological simulations.

When the MPTT-QM model is applied in practice, it will provide a solid foundation
for the prediction and early warning of flood disasters. At the same time, the MPTT-QM
model also requires further improvement. For example, the performance of the MPTT-QM
model will decrease slightly with the lead time increase in the bias correction. Moreover,
the question of how to predict and correct the occurrence of extreme precipitation events
using the MPTT-QM model is the primary problem to be solved in the next stage of model
research and development.

6. Conclusions

In this paper, we proposed a new precipitation bias correction method based on QM
to match precipitation thresholds by time series, which is called the MPTT-QM model.
FGOALS model data were used to estimate 3-h precipitation in the PRB at a spatial res-
olution of 0.125 degrees. The model performance and retrieval results are summarized
as follows:

1. The MPTT-QM model has better consistency with IMERG than the original QM model
in terms of spatial distribution. The MPTT-QM model excelled in terms of the RMSE
and MB;

2. MPTT-QM can effectively optimize the change in the precipitation series and improve
the correlation coefficient between the model and observation data, which the QM
method cannot achieve to any meaningful extent. For a 14-day lead time forecast,
MPTT-QM increases the average correlation coefficient of the PRB by nearly six times
compared to the original FGOALS model on the daily scale;

3. MPTT-QM also shows a stable performance in terms of the POD and CSI. MPTT-
QM shows a good precipitation detection ability for the 14-day to 90-day lead
time forecasts;

4. Based on the hydrological performance evaluation, the KGE coefficients of the eight
hydrological stations are improved significantly using the MPTT-QM-DRIVE model
compared to the QM-DRIVE model.
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Abstract: The accuracy of temperature and relative humidity (RH) profiles retrieved by the ground-
based microwave radiometer (MWR) is crucial for meteorological research. In this study, the four-year
measurements of brightness temperature measured by the microwave radiometer from Huangpu me-
teorological station in Guangzhou, China, and the radiosonde data from the Qingyuan meteorological
station (70 km northwest of Huangpu station) during the years from 2018 to 2021 are compared with
the sonde data. To make a detailed comparison on the performance of machine learning models in
retrieving the temperature and RH profiles, four machine learning algorithms, namely Deep Learn-
ing (DL), Gradient Boosting Machine (GBM), Extreme Gradient Boosting (XGBoost) and Random
Forest (RF), are employed and verified. The results show that the DL model performs the best in
temperature retrieval (with the root-mean-square error and the correlation coefficient of 2.36 and
0.98, respectively), while the RH of the four machine learning methods shows different excellence
at different altitude levels. The integrated machine learning (ML) RH method is proposed here, in
which a certain method with the minimum RMSE is selected from the four methods of DL, GBM,
XGBoost and RF for a certain altitude level. Two cases on 29 January 2021 and on 10 February 2021
are used for illustration. The case on 29 January 2021 illustrates that the DL model is suitable for
temperature retrieval and the ML model is suitable for RH retrieval in Guangzhou. The case on
10 February 2021 shows that the ML RH method reaches over 85% before precipitation, implying the
application of the ML RH method in pre-precipitation warnings.

Keywords: microwave radiometer; radiosonde; temperature and humidity profiles; machine learning

1. Introduction

Atmospheric temperature and relative humidity (RH) are important parameters of
the atmosphere and environment. Temperature and RH profiles with refined vertical
resolution play an important role in urban meteorological forecasting [1–5]. The coastal
city of Guangzhou is frequently hit by medium- and small-scale short-term weather events
(such as torrential rains, typhoons and thunderstorms), which are extremely destructive
and catastrophic despite the short activity time [6]. Accurate observation of the atmospheric
vertical profile is fundamental for meteorological studies.

Although the traditional radiosonde data have high representativeness and relia-
bility, the traditional observations are expensive and lack spatiotemporal resolution [7].
Ground-based microwave radiometers (MWRs) with passive remote sensing technology
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can overcome these shortcomings [8]. Since an MWR has the advantages of reliable calibra-
tion method, high resolution, unmanned continuous observation and simple operation, it
is becoming an important instrument for remote sensing of atmospheric vertical profiles [9].
The MWR can continuously observe temperature, relative humidity and liquid water con-
tent within 0–10 km. In recent years, these data, combined with wind profile data, have
gradually become an important reference for short-impending weather forecasting [9]. It
is of high scientific importance and potential value to study the inversion of atmospheric
temperature and humidity profile using microwave radiometer data [10]. However, the
brightness temperature (BT) data from different channels of the MWR are disturbed by
precipitation and cloud factors, resulting in abnormal values [11–13]. Meanwhile, when the
sun is in the observation direction of the MWR, the BT data will be abnormally increased
due to the influence of solar radiation, especially those used in low latitudes [14]. Therefore,
it is essential to control the quality of the MWR observation data for a better forecast [15–17].

With the development of the ground-based MWR network, it has been widely applied
to the detection of atmospheric vertical profiles in the boundary layer. Improving the
reliability and accuracy of MWR observations is the priority for a refined atmospheric
vertical profile. Meteorologists have proposed various methods to improve the accuracy
of retrieval data, such as the linear statistical method [18], the best estimate method [19],
neural networks [20,21] and machine learning [22,23]. Among these methods, the neural
network performs well in solving the nonlinear relationship in the model. For example,
Bao et al. [24,25] used the back-propagation neural network to retrieve the atmospheric
temperature and RH profiles after the quality control of the first-level data. However,
the traditional back-propagation neural network is time-consuming and requires a huge
amount of data [26].

With the continuous development of artificial intelligence technology, the machine
learning model has been increasingly applied in the field of microwave remote sensing,
especially in atmospheric profile inversion. Gregori et al. [27] used the Gradient Boosting
Machine (GBM) regression tree in a machine learning algorithm to estimate the boundary
layer height using the MWR data and confirmed the excellent performance of machine
learning in terms of training speed and retrieval accuracy. Jia [28] used the Extreme
Gradient Boosting (XGBoost) machine learning model to predict the non-monsoonal winter
precipitation over Eurasia. The results show that the XGBoost model performs significantly
better than the traditional linear regression model. Liu [29] used the XGBoost model to
correct the daily land surface temperature, where the rapidly increasing trend after the
correction indicates an effective correction of the inhomogeneous land surface temperature
in China. Recent studies have shown that the XGBoost model has great potential to improve
climate prediction. The Random Forest (RF) algorithm has been applied to atmospheric
environmental research in recent years [30,31]. Jiang et al. [32] used the RF machine learning
model to establish an aerosol optical depth (AOD) dataset in the cloudy Sichuan Basin.
GBM, XGBoost and RF all use boosting learning. The disadvantage of boosting learning
is that there is a serial relationship between its base learners, and it is difficult to train
data in parallel. The Deep Learning (DL) model is a machine learning algorithm that
uses multi-layer artificial neural networks to achieve state-of-the-art accuracy in many
tasks [33,34]. Similar to traditional machine learning algorithms, the DL model can model
complex nonlinear systems. Moreover, it performs better in extracting the advantageous
features with deeper network layers [35]. Recently, the performance of the DL model has
been proven to be comparable to that of human experts [34].

In this study, four machine learning algorithms, namely the GBM, XGBoost algorithm,
RF algorithm and DL algorithm, are used to compare with the MWR-derived first-level BT
data. Based on this, the best machine learning method to improve the retrieval accuracy
of profiles from the MWR data will be found. We try to give the evolution of RH profile
transfer information, such as in which layer the water content could surge to a certain
level, as an indicator of the coming precipitation. The techniques are only tested over a
small region in Guangzhou, China. The rest of this paper is organized as follows. Section 2
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describes the four machine learning algorithms, the datasets, the study region and the
data preprocessing procedures. The comparison between the results of the four machine
learning algorithms and the radiosonde data are presented in Section 3, where typical cases
are also analyzed. Finally, the conclusion and discussion are presented in Section 4.

2. Data and Methods

The microwave radiometer BT data and the sonde data are observed from 2018 to 2021
in Huangpu and Qingyuan, respectively. Machine learning-based models are applied to
retrieve temperature and relative humidity using the brightness temperature measured by
the microwave radiometer based on the channel from 22.24 GHz to 31.4 GHz, 51.0 GHz to
58.0 GHz. The 2018–2020 dataset is used as the training sample, while the 2021 dataset is
used as the validation sample.

2.1. Location of Observation Stations

The location of the observation stations is shown in Figure 1. The MWR data are ob-
served from Huangpu station, while the radiosonde data are observed from the Qingyuan
station. The distance between Huangpu station (113.29◦N, 23.13◦E) and Qingyuan station
(113.05◦N, 23.43◦E) is about 70 km. The altitudes of Qingyuan station and Huangpu station
are 79.2 m and 70.7 m, respectively. The two stations have similar underlying surface
conditions, and there is no mountain barrier between them. The radiosonde data observed
at Qingyuan station are well matched with the MWR BT data, which can be applied to
train the machine learning algorithms in this study.

Figure 1. The location of observation stations. (The microwave radiometer data are observed from
Huangpu station, while the radiosonde data are observed from the Qingyuan station).

2.2. Datasets

Two datasets, namely the MWR BT dataset and radiosonde dataset are used in this
paper. The BT data are measured by an MWR located at the Huangpu station. The MWR
uses the RPG-HATRPO-G3 from the Radiometer Physics GmbH in Germany, which is
a 14-channel ground-based passive MWR with seven water vapor absorption channels
(K-band) from 22.24 GHz to 31.40 GHz and seven oxygen absorption channels (V-band)
from 51.00 GHz to 58.00 GHz [21,36]. The radiosonde data of temperature and RH are
measured by an L-land GTS1 digital radiosonde at the Qingyuan station, which is launched
twice daily at 11:00 and 23:00 UTC, respectively.
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2.3. Data Preprocessing

The quality control of the BT data is performed before the training of four ma-
chine learning methods, in order to obtain better prediction results. The datasets during
2018–2021 are matched according to the principle of time consistency. There is a certain law
of the time series variation in brightness temperature [20], and the transformation observed
by each frequency channel of the MWR within 3 min should be continuous. First, the MWR
BT samples are excluded if they do not meet the above conditions. Second, the MWR BT
samples are further excluded if they are with large fluctuations, which may be errors of the
instrument. After these two sample screening steps, the radiosonde data, temperature and
RH are averaged by altitude. The interval altitude for a given level is set to be in the range
of every 25 hPa and 50 hPa for below and above 700 hPa, respectively. In this way, the BT
data are matched to the radiosonde level values. The matched samples are then classified
into three categories based on RH values: clear sky, cloudy sky and rainy conditions. The
inversion effect for MWR data is generally better under clear-sky conditions than under
cloudy and rainy weather conditions [37–39]. The radiosonde data are processed according
to the approach of Yan et al. [21] to determine the weather conditions and estimate cloud
parameters. Theoretically, when a cloud forms, the RH at the corresponding height reaches
100%. However, due to factors such as condensation nuclei, the RH in the cloud layer is
slightly lower than the theoretical value [40,41]. Therefore, 85% RH is used as the threshold
value in the radiosonde data to determine the altitude level. The specific determination
criteria are as follows:

(1) The measured data are classified as rainy-day data if the RH is greater than 85% from
the ground to the height of 600 m.

(2) The data are classified as cloudy-sky data if the RH is less than 85% near the surface
but greater than 85% in the upper atmosphere [20].

(3) The data are classified as clear-sky data if the RH is always less than 85% from the
ground to any altitude level.

Thereafter, a total of 2461 quality-assured MWR data samples matched to the radiosonde
sounding data from January 2018 to July 2020 are used for training, and 1321 quality-assured
test samples during 2021 are used for validation. Due to the cloudy condition, 52% of the
three years of data cannot be used.

2.4. Methods
2.4.1. Deep Learning (DL)

DL is an advanced machine learning architecture based on neural networks [42]. It
aims to bridge the gap between machine learning and artificial intelligence by incorporating
powerful learning capabilities and a wide range of applications. Compared to RF, GBM and
XGBoost, DL shows superior adaptability. However, DL’s performance is highly dependent
on the available data, and it tends to excel when provided with a larger volume of data [42].
Recent research indicates that DL exhibits promising results in temperature retrieval [43,44].
The DL model in the study consists of two hidden layers, each containing 200 neurons. The
activation function employed in the first hidden layer is relu, as it has been observed to
provide superior results compared to other functions [45]. The second hidden layer and
the output layer default to using linear activation functions by default. The entire model is
trained using the Adam optimizer with the mean square error serving as the loss function.

2.4.2. Gradient Boosting Machine (GBM)

GBM is a boosting algorithm that uses different weights to linearly combine the
base learners to reuse the learner with excellent performance [46]. The GBM algorithm
calculates the pseudo-residuals according to the initial model. Then, it builds a base learner
to interpret the pseudo-residuals, which can reduce the residuals in the gradient direction.
Then, the base learner is multiplied by the weight coefficient and linearly combined with
the original model to form a new model. The learning rate of the base learner is set to
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0.1. The goal of the GBM is to find a model that minimizes the expectation of the loss
function [47].

2.4.3. Extreme Gradient Boosting (XGBoost)

XGBoost is a gradient boosting-based integrated learning algorithm proposed by
Chen and Guestrin [48]. The XGBoost [48] has been gradually applied in the atmospheric
environment prediction. A second-order Taylor expansion is introduced in XGBoost, which
increases the accuracy and enables loss functions to be customized via gradient descent.
It adds the complexity of the tree model to the regularization term in order to prevent
overfitting and, as a result, performs better in generalization [49]. However, the applications
of the XGBoost machine learning method for the retrieval of meteorological profiles using
MWRs are still few [21]. In this study, each tree is constructed using a learning rate of
0.3, a maximum tree depth of 6, a regularization weight of 10 and a total of 50 weak
learners (trees).

2.4.4. Random Forest (RF)

RF is an integrated machine learning method that uses the random resampling tech-
nique bootstrap and the random node splitting technique to build multiple decision trees
by Breiman [50]. A splitting technique with 50 random nodes is used to build the model.
RF can be used for classification, clustering and regression data applications [51]. The RF
model can analyze the classification features of complex interactions and has good robust-
ness to data with noise and missing values. Meanwhile, it has a fast learning speed. The
variable importance measure can be used as a feature selection tool for high-dimensional
data [52]. Random forests are generally more effective at solving classification problems
than regression problems. This is because random forests produce discrete outputs for
classification tasks, rather than continuous outputs for regression tasks. In regression,
the Random Forest model is limited in its ability to predict values beyond the range of
the training set data. Therefore, when performing regression with a Random Forest, it is
important to be aware that predictions may be limited within the range of the training data.

2.4.5. A 10-Fold Cross-Validation Method

Cross-validation is a common approach to model building and model parameter
verification in machine learning, which is used to estimate the skill of a machine learning
model [53]. In k-fold cross-validation [54,55], it is first randomly divided into k mutually
exclusive subsets of similar size, i.e., k − 1 is randomly selected as the training set each
time, and the remaining 1 is used as the test set. When this round is completed, k copies
are again randomly selected to train the data. After several rounds (less than k), the loss
function is selected to evaluate the optimal model and parameters. In this study, k is set
to 10. The four machine learning models are trained using 70% of the training samples,
following standard training procedures, while the remaining 30% of the samples are used
for validation. In addition, 10-fold cross-validation [32] is used for all four models.

3. Results and Case Illustration

The study first performs a 10-fold cross-verification analysis of training samples to
verify the feasibility of the models. Second, the most appropriate methods of temperature
and RH are found by analyzing the total scatter density, errors and RMSEs of different
height layers of four machine learning methods with sonde data verification. Third, two
cases are used to illustrate the results.

3.1. A 10-Fold Cross-Validation with Training Samples

In order to evaluate the performances of the four methods on the training dataset
for temperature and RH, we use the 10-fold cross-validation method for verification, and
the results are shown in Table 1. For temperature, the root-mean-square errors (RMSEs)
of the DL, GBM, XGBoost and RF models are 2.32, 2.33, 2.49 and 3.07, respectively. The
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temperatures of the 10-fold cross-validation correlation coefficient (CV-R2) of four methods
is above 0.97. For RH, the RMSEs of the RF, XGBoost, GBM and DL models are 13.70, 13.72,
14.96 and 17.96, respectively. RH by the RF model shows the highest accuracy, with the
sample-based 10-fold cross-validation CV-R2 being 0.72. The results show the performance
evaluation of the four machine methods, where the temperature performs better than RH.
Compared with other methods, DL is suitable for MWR temperature and RF is better for
RH retrieval. In general, the performance of the training result for RH is not so good.

Table 1. The 10-fold cross-validation results for four methods in terms of temperature and relative
humidity (RH).

Method RMSE CV-R2 MAE

DL 2.32 0.98 1.73
Temperature (◦C) GBM 2.33 0.98 1.80

XGBoost 2.49 0.98 1.81
RF 3.07 0.97 2.17

DL 17.96 0.53 14.04
RH (%) GBM 14.96 0.67 11.09

XGBoost 13.72 0.72 9.49
RF 13.70 0.72 9.92

RMSE: root-mean-square error; CV-R2: cross-validation correlation coefficient; and MAE: mean average error.

3.2. Validation of Four Models with the Radiosonde Data
3.2.1. Scatter Density Variation

Radiosonde data are also used for comparison with the four model retrievals. The
temperatures of the four models as a function of the radiosonde measurements from
all 22 atmospheric vertical layers from 250 hPa to 1000 hPa are shown in Figure 2. The
regression equations and coefficients of determination (R2) are given, as well as the number
of data points (N = 1321) and the RMSEs. Figure 2a shows that the linear regression
relationship between the DL temperature and radiosonde temperature has a slope of 1.0, a
y-intercept of 0.17 and minimal fluctuation around the regression line, with an R2 of 0.98
and the lowest RMSE of 2.36 among the four models. As shown in Figure 2b, the linear
regression relationship between the GBM temperature and the radiosonde temperature
exhibits a slope of 0.99. The R2 is 0.98, and the RMSE is 2.53. Figure 2c shows that the
XGBoost model has a slope of 1.0, an R2 of 0.97 and an RMSE of 3.07. The RF model has a
slope of 0.95, an R2 of 0.97 and an RMSE of 3.04, as shown in Figure 2d. The results show
that the DL model has a high retrieval capability for temperature with an RMSE of 2.36 ◦C
and an R2 of 0.98.

Similarly, the RH of the four models as a function of the radiosonde measurements
from all 22 atmospheric vertical layers is shown in Figure 3. The RMSEs of the DL,
GBM, XGBoost and RF models are 20.08, 19.45, 19.72 and 19.07, respectively. The lack of
independent cloud-related information may contribute to the deviations. The conditions
with an RH less than 85% are considered clear-sky conditions in the study. However, in real
atmospheric conditions, clouds may form due to the presence of cloud condensation nuclei
when RH reaches around 85% [40]. In general, the RMSEs of RH are relatively greater
compared with that of temperature.
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Figure 2. Retrievals for temperature as a function of radiosonde data by the (a) DL, (b) GBM,
(c) XGBoost and (d) RF models. The red solid line is the line of best fit in linear regression.

 

Figure 3. Retrievals for RH as a function of radiosonde data by the (a) DL, (b) GBM, (c) XGBoost and
(d) RF models. The red solid line is the line of best fit in linear regression.
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3.2.2. Bias and RMSEs Variation with Altitude

The temperature profile retrieval biases of the four models are shown in Figure 4. The
red dotted lines represent the mean value of the biases, and the blue lines inside the box
represent the median values. The blue shading indicates ±1 ◦C temperature biases. The left
and right borders of the box contain the values from the first quartile to the third quartile.
The blue dotted lines extend from each quartile to the minimum or maximum bias. In
Figure 4a, the DL temperature bias is within ±1 ◦C for most of the pressure levels from
700 hPa to 1000 hPa, indicating high accuracy in retrieving temperature profiles in lower
levels. From 250 hPa to 650 hPa, the box length for the DL model is shorter than that of the
GBM, XGBoost and RF models, indicating that the temperature biases of the DL model are
more concentrated around the mean and median values. Furthermore, most of the mean
and median values of the temperature biases by the DL model are very close, indicating
that the temperature biases of the DL model are more uniform and concentrated. The
temperature bias from 250 hPa to 1000 hPa shows that the mean temperature bias measured
by the DL model is negative near the surface and then becomes positive at 850 hPa with
the increasing altitude. However, it turns negative again at 350 hPa with the increasing
altitude. That is, the temperature bias from the DL model shows a distribution of “low at
both ends and high in the middle”. In contrast, the temperature biases by the RF model
show a large fluctuation from left to right and are not stable enough at all levels (Figure 4d),
which is similar to the trend of Yan et al. [21].

Figure 4. Temperature retrieval biases (the retrieval minus radiosonde) by the (a) DL, (b) GBM,
(c) XGBoost and (d) RF models, respectively. Red dotted lines and blue lines within the boxes indicate
the means and medians, respectively. The blue shadow means ±1 ◦C temperature biases.
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The RH profile retrieval biases of the four models are shown in Figure 5. The red dotted
lines and the blue lines are the same as in Figure 4, but the blue shadows show the biases
ranging from −10% to +10%. In the four methods, the mean bias is usually close to the
median in the lower-altitude layer, but deviates significantly from the median from 600 hPa
to 800 hPa. The reason for the large deviation is the loss of the cloud information [18].
Figure 5d shows that the bias of the RF machine learning method remains within ±10%
from the surface to 800 hPa, and its box length is almost the smallest among the four models
from 800 hPa to 1000 hPa. As for GBM and XGBoost (Figure 5b,c), their bias also remains
in the range of ±10% near the surface, but the interquartile range is much larger than the
interquartile range of RF and the maximum bias exceeds 40%. Thus, the RF RH shows
better retrieval near the surface than the other three methods.

Figure 5. RH retrieval biases (the retrieval minus radiosonde) by the (a) DL, (b) GBM, (c) XGBoost
and (d) RF models, respectively. Red dotted lines and blue lines within the boxes indicate the means
and medians, respectively. The blue shadow means a bias of ±10%.

At the same time, we also compare and analyze the RMSEs of the four methods in
different altitude layers in order to find the differences in the performance of the four
methods on temperature and RH in different altitude layers. The RMSEs of the temperature
and RH profiles of DL, GMB, XGBoost and RF at 22 height layers are shown in Figure 6.
For temperature, the DL model shows a smaller RMSE than XGBoost, GBM and RF in
the layers from 250 hPa to 1000 hPa. In particular, the DL RMSE is less than 1.5 ◦C in the
layers from 775 hPa to 1000 hPa. For the RH, the RMSE of RH is larger than the RMSE
of the temperature, and the RMSEs of the four machine learning methods from 600 hPa
to 750 hPa are 20% to 30%; moreover, the RMSEs for all four methods generally increase

246



Remote Sens. 2023, 15, 3838

with the altitude within this range, and the maximum deviation appears above the level
of 700 hPa. This variation characteristic is similar to [20,21]. However, as we can see in
the low-level RMSEs performance, the RMSEs of RF are between 10% and 15%. Therefore,
from the overall characteristics of the RMSE of the two variables, the temperature RMSE is
mainly concentrated in the upper layer, and the high RMSE of RH mainly occurs in the
middle layer, which is in accordance with the situation found by Cimini et al. [8]. The
results show that the DL temperature from 250 hPa to 1000 hPa performs better than the
temperature of the other three methods, and the RF RH performs better in the low layers.
In general, the performance of the training result for four machine learning methods is not
so good.

 

Figure 6. RMSEs for retrieval of temperature (a), and RH (b) profiles relative to the radiosonde data
using the DL, RF, GBM and XGBoost methods.

The performance of the four models for RH retrieval at different levels is shown in
Table 2. From 900 hPa to 1000 hPa, DL and RF demonstrate better accuracies in terms of
R2 (0.62 and 0.60), and the RF model performs better in terms of the RMSE (11.14) and the
mean average error (8.83) compared with the DL model (12.93 and 8.84), indicating that
the RF RH performs best from 900 hPa to 1000 hPa. From 775 hPa to 875 hPa, the XGBoost
model shows better accuracies in terms of an RMSE of 14.97. From 600 hPa to 750 hPa, the
RMSEs of the four methods are large. Above 550 hPa, RF performs well for RH retrieval,

247



Remote Sens. 2023, 15, 3838

with an RMSE of 19.50. According to Table 2, the RF model achieves better retrieval ability
from 900 hPa to 1000 hPa and above 550 hPa. From 775 hPa to 875 hPa, the XGBoost model
achieves better retrieval ability. The DL model performs well for RH retrieval from 600 hPa
to 750 hPa.

Table 2. Comparisons among different methods in terms of their performance at different levels.

Height Method RMSE R2 MAE

250–550 hPa

DL 19.69 0.34 15.09
GBM 20.09 0.34 15.91

XGBoost 20.71 0.29 16.20
RF 19.50 0.36 15.44

700–750 hPa

DL 24.79 0.27 20.65
GBM 26.07 0.18 21.48

XGBoost 26.80 0.21 21.62
RF 26.22 0.18 21.48

775–875 hPa

DL 20.99 0.18 17.73
GBM 16.27 0.44 12.50

XGBoost 14.97 0.53 11.38
RF 15.55 0.47 11.99

900–1000 hPa

DL 12.93 0.62 8.84
GBM 11.67 0.59 9.00

XGBoost 12.19 0.56 9.43
RF 11.14 0.60 8.83

Since the RHs of the four machine learning methods show different excellence at
different height levels, a new integrated machine learning (ML) RH method is proposed
here. The machine learning RH is to select the RH profiles by integrating the four methods
of DL, GBM, XGBoost and RF, where the result of the method with the minimum RMSE for
a certain level is adopted. The RMSE is 15.00 and R2 is 0.64 by comparison of radiosonde
RH and ML RH from all 22 atmospheric vertical levels.

3.3. Case Illustration

Based on the analysis in Section 3.2, DL (RMSE = 2.36, R2 = 0.98) is the most suitable
for temperature retrieval and ML (RMSE = 15.00, R2 = 0.64) is the most suitable for RH
retrieval. A case on 29 January 2021 is used for illustration. Another case with precipitation
on 10 February 2021 is used to explain the changes in RH before the entire precipitation.

3.3.1. Case Analysis for DL Temperature and Machine Learning RH

Figure 7a shows the temperature profiles from the DL and radiosonde data. At
7:15 a.m. on 29 January 2021 (Beijing time, same below), the DL retrieval shows only a
small difference with the radiosonde data from 775 hPa to 1000 hPa. In particular, the DL
model agrees well with the radiosonde data at levels from 850 hPa to 900 hPa. However,
the difference increases from 250 hPa to 700 hPa. Figure 7b shows the RH profiles by ML.
Overall, the difference between the retrieved RH profile and the radiosonde data is greater
than that of the temperature profile. The RH obtained from ML and radiosonde data show
some agreement with the changing altitude. The integrated ML method performs better
for RH from the layers 700 hPa to 875 hPa, with an RH bias lower than 10% compared with
other altitudes.
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Figure 7. Comparison of (a) temperature profiles generated using the DL model and radiosonde data,
and (b) RH profiles generated by integrating machine learning and the radiosonde data at 07:15 on
29 January 2021.

3.3.2. ML RH for Application before Precipitation

Another case on 10 February 2021 is used to explain the changes in ML RH before the
entire precipitation process. The vertical profiles of RH predicted from 600 hPa to 1000 hPa
levels and the observed data being the liquid water path (LWP) and the hourly surface
precipitation histogram before and during a precipitation event are all shown in Figure 8.
The precipitation started at 16:00 on 9 February 2021 and ended at 00:00 on 11 February 2021
(Figure 8a). The surface hourly precipitation reached the maximum value (6.9 mm) at 04:00
on 10 February 2021. Two phases of RH changes that occurred before 16:00 on 9 February
2021 are shown in Figure 8. In the first stage, Figure 8a shows the initial peak in the liquid
water path (LWP) with a maximum value of 1319.60 g/m2, while Figure 8b shows a gradual
increase in RH at the lower levels. In the second stage, three consecutive peaks in the LWP
(352.60 g/m2, 1157.20 g/m2 and 885.90 g/m2) were observed, accompanied by an overall
increase in RH at all levels. Notably, RH exceeded 85% from 750 hPa to 900 hPa prior to
the onset of precipitation. The LWP has four peaks, indicating the continuous moisture
transport and humidification process prior to precipitation. It also consists of the RH
increase in Figure 8b. The RH increase obtained by the integrated ML method shows good
agreement with the pre-precipitation LWP variation curve, indicating that the machine
learning-based RH profiles successfully captured the significant increase in humidity before
precipitation, which may provide some indication for precipitation forecasting.

249



Remote Sens. 2023, 15, 3838

Figure 8. (a) Observed data of the liquid water path by MWR and the surface hourly precipitation
histogram by Huangpu National Basic Meteorological Observation Station from 7 February 2021 to
11 February 2021, and (b) vertical profiles of ML RH from 600 hPa to 1000 hPa.

4. Discussion and Conclusions

The microwave radiometer (MWR) is widely used in meteorological observations,
and the accuracy of temperature and relative humidity (RH) measurements can be affected
by retrieval methods, weather conditions and environmental factors. In this study, we
compared the Deep Learning (DL), Gradient Boosting Machine (GBM), Extreme Gradient
Boosting (XGBoost) and Random Forest (RF) methods in retrieving temperature and RH
profiles from 1000 hPa to 250 hPa using the MWR data and radiosonde data from 2018 to
2021, with the aim of improving the profile retrieval accuracy of the MWR.

Validation with radiosonde measurements shows that the DL model has better re-
trieval capability for temperature with a root-mean-square error (RMSE) of 2.07 ◦C and a
correlation coefficient (R2) of 0.98. Most of the temperature biases in the DL and XGBoost
model are within ±1 ◦C from 700 hPa to 1000 hPa, and the RMSEs of the temperature
profile using the DL model are less than 2.5 ◦C from 750 hPa to 1000 hPa. The RF model
performs the best in retrieving the RH with the least bias near the surface, an RMSE around
12.5% and an interquartile range nearly the smallest among the four models.

A new integrated machine learning (ML) RH method is used to select the RH profiles
by integrating the four models of DL, GBM, XGBoost and RF, where the result of the model
with the minimum RMSE for a certain level is adopted. The RMSE is 15.00 and R2 is 0.64 by
comparison of radiosonde RH and ML RH from all 22 atmospheric vertical levels. We use
the DL temperature and the ML RH to analyze two cases. A case on 29 January 2021 shows
that DL is suitable for temperature retrieval and ML is suitable for RH retrieval. We apply
the ML data to a precipitation case on 10 February 2021, and the results show that the change
in ML RH shows a close correlation with the liquid water path before 16:00 on 9 February
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2021. The ML RH reaches over 85% before 16:00 on February 9, indicating that the machine
learning-based RH profiles successfully captured the significant increase in humidity prior
to precipitation, which may provide some guidance for precipitation forecasting.

In conclusion, our study provides new insights into the performance of DL, GBM,
XGBoost and RF in temperature and RH retrieval using MWR data. DL (RMSE = 2.36,
R2 = 0.98) shows superiority in temperature retrieval because the deep neural network
architecture allows it to capture complex temperature patterns effectively [33,34]. Similar
to traditional machine learning algorithms, DL can model complex nonlinear systems [35].
For the R2 of the temperature, DL and GBM are both 0.98, which is 0.01 higher than that of
the RF and XGBoost models. When comparing DL with GBM, the RMSE of temperature
decreases from 2.53 to 2.36. The performance of the four models for RH retrieval at different
levels is shown in Table 2. The RF model achieves better retrieval ability from 900 hPa to
1000 hPa and above 550 hPa. From 775 hPa to 875 hPa, the XGBoost model achieves better
performance. The DL model performs well for RH retrieval from 600 hPa to 750 hPa. An
integrated ML (RMSE = 15.00, R2 = 0.64) approach improves RH retrieval because the ML
method integrates the advantages of multiple methods.

It is important to note that our training datasets were obtained under clear-sky condi-
tions without considering the data from cloudy conditions, which has certain limitations.
Due to cloudy conditions, 52% of the three years of data cannot be used. A total of
2461 quality-assured MWR data samples matched to the radiosonde sounding data from
January 2018 to July 2020 are used for training, and 1321 quality-assured test samples
during 2021 are used for validation. Although 52% of the data cannot be used, the amount
of available data based on observations is enough to represent the Guangzhou area. When
applying these machine learning models in another region, it is critical to consider the
region-specific characteristics and climatic conditions. The performance of the models
may vary due to the differences in atmospheric dynamics, topographies and local weather
patterns. Therefore, further investigation and validation specific to the target region would
be necessary to assess the suitability and performance of the models. Our stations are
only representative of the Guangzhou region. However, the models can be applied in
other regions upon the observation available. Yan et al. [21] used microwave radiometer
bright temperature data combined with DL, RF and XGBoost to invert the temperature
and humidity profile under clear-sky conditions in Beijing. Bao et al. [24] used MWR BT
data with a neural network to invert the temperature and humidity profile under clear-sky
conditions in Nanjing. The lack of cloud information led to larger errors in RH in the
middle layer from 700 hPa to 750 hPa. As shown in Li et al. [17] and Bao et al. [24], the
correlation between the RH derived from the MWR and radiosonde data is much smaller
than the correlation of temperature. This also proves our conclusion that the temperature
inversion results are better than the RH inversion results. In addition, the distribution
of the RMSE for all four models from 1000 hPa to 250 hPa is similar to the results of
Che et al. [20], which showed that the RH RMSE tends to increase with height and the
maximum deviation occurs in the middle atmosphere. Therefore, in this study, the ML
method after the fusion of four models is proposed to reduce the influence of nonlinear
relations on RH inversion. When the predicted hourly RH reaches the threshold of 85%,
the warning information is provided to the forecasters. Consideration of region-specific
characteristics is essential, and future research should explore cloud-related analysis. The
suitability of DL for temperature retrieval and the effectiveness of ML for RH retrieval can
be attributed to their respective model architectures and approaches. Future research will
explore more in-depth cloud-associated analyses to address these limitations.
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Abstract: The understanding of the macro- and micro-structure, particle spectrum parameters, and
their evolutions in different parts of stratocumulus clouds based on aircraft observation data, is
important basic data for the development of cloud microphysical parameterization schemes and
the quantitative retrieval of cloud-precipitation by radar and satellite detections. In this study, a
total of ten vertical measurements during three aircraft observations were selected to analyze the
vertical distribution of cloud microphysical properties in different parts of stratocumulus clouds
in Hebei, North China. It was found that the downdraft in the cumulus cloud area was stronger
than that in the stratiform cloud area, with the temperature at the same height higher than that in
the stratiform cloud area, and the height of the 0 ◦C layers was correspondingly higher. In terms of
particle spectrum parameters, the intercept and slope parameters of particle spectrum below melting
levels in the cumulus part were higher than those in stratiform clouds area in the same weather
process. In different vertical detection, it was found that the ice particles have begun to melt in the
negative temperature layer near 0 ◦C level, and there might be sublimation, fragmentation, and
aggregation in the melting process of ice phase particles. In addition, the melting process changed
the spectral parameters greatly and also changed the correlation between the intercept and slope
of the particle spectrum. The slope below the 0 ◦C level increased with the increase of intercept,
which was greater than that above the 0 ◦C level. The relationship obtained between the intercept
parameter of the particle’s spectrum and temperature, and the correlation between the maximum
diameter and slope parameter of the particle spectrum, have certain reference significance for cloud
physical parameterization and the quantitative retrieval of cloud precipitation by radar and satellite
in North China and similar climate background areas.

Keywords: aircraft observation; stratocumulus cloud; microphysical property; particle size
distribution

1. Introduction

Under large-scale weather conditions, stratiform clouds associated with frontal sys-
tems are frequently seen in northern China. These clouds are usually multilayered mixed-
phase clouds with durations ranging from a few hours to two days [1]. It was found that
the microphysical properties of ice-phase particles and precipitation formation mechanisms
vary widely among different cloud top temperatures, different locations in the cloud [2],
and embedded convective cells in stratiform clouds [1]. Qi et al. found that in the convec-
tive cell with high supercooled water content, the growth of ice particles was mainly due
to the aggregation and riming growth processes, while in the cloud area with low super-
cooled water content, the aggregation was the main growth process, and the formation of
precipitation in the convective cell with high supercooled water content conforms to the
“seeder—feeder” mechanism [3]. Kang et al. found that the occurrence and strengthen of
convection could improve the growth rate of ice crystals. The low layer of cold cloud in
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the weak convective area had an explosive growth area of ice crystal concentration, while
the middle and upper layers of cold cloud in the strong convective area had rapid growth
areas of ice crystal concentration [4]. Yang et al. found that in stable stratus clouds, the
content of supercooled water in the mixed phase layers was very low, ice particles grew
mainly through the process of deposition and aggregation, and the ice crystallization of the
cloud was relatively high. However, the content of supercooled water was higher in the
stratus cloud area with more vigorous development, and the presence of a large number of
liquid droplets also indicated that the conversion between the ice and liquid phase in the
mixed layer was not sufficient [5]. Gao et al. showed that there were obvious differences in
the shape and formation processes of ice particles in stratocumulus clouds. The shapes of
ice particles in stratus cloud areas were complex, including needle, columnar, and dendritic
particles, while cumulus cloud areas mainly consisted of dendritic particles, with obvious
coalescence and riming processes [6].

Hu et al. found that ZH increased and ZDR decreased, as the height decreased above
the melting layer. This predicts that the aggregation process has transformed the ice crystals
from ellipsoidal to more nearly spherical aggregates [7]. Wei et al. found that small particles
were more predominant both above and below the melt layer, with two peaks between −5
and 2 ◦C for ice-phase particles (50–300 μm) and snowflakes (>300 μm) [8]. In the early
stage of precipitation development, the ice phase particles in clouds were dominated by
graupels and line shapes, and in the mature stage of precipitation, the ice phase particles
were dominated by graupels and aggregates [9]. The exponential distribution could better
fit the ice phase particle spectral distribution pattern, and the power function could better
fit the relationship between the two spectrum parameters [10,11].

The rate of melting of ice and snow crystals was an important factor in determining
the thickness of the melting layer and the associated bright bands. It played an important
role in weather forecasting and hydrological applications, and had important implications
for snowfall under climate change [12–16]. Kain et al. found that the melting of snow cools
the atmosphere. At sufficiently high precipitation rates, rain in clouds could convert into
snow, which would allow the melt layer to disappear. Therefore, high precipitation rates
may lead to an increase in snowfall intensity [17]. In addition to the properties of the ice
crystals themselves [18], meteorological conditions such as air temperature and relative
humidity also affected the melting rate of ice particles [19,20]. Heymsfield et al. found that
the slope of the particle spectral distribution tends to decrease with melting at high relative
humidity, and the maximum particle size of ice particles continues to increase during the
melting process [21,22]. Heymsfield et al. defined the shape-sensitive parameter area ratio
(Ar) of ice-phase particles and found that it was related to the position in the cloud and
microphysical processes within the cloud, while there was a negative correlation between
the area ratio and the particle size. The power function could fit the relationship between
the two, well [21].

Generally speaking, aircraft observation data are important basic data for under-
standing the characteristics of cloud particle distribution and evolution, establishing cloud
microphysical parameterization schemes, and inversion of cloud precipitation microphysi-
cal characteristics based on radar and satellite data. Although the distribution of particles,
the morphology of ice particles, and water content in stratocumulus clouds have been
well understood in previous studies, the evolution of microstructure and the vertical distri-
bution of the precipitation particle spectrum in stratocumulus clouds based on the data
of multiple flights observation, especially the spectrum evolutions of ice particles after
they fall below the 0 ◦C layer, still lack inevitable discovery. In this paper, we explored
the macro and microscopic characteristics of clouds by analyzing the aircraft observations
of stratocumulus clouds in Hebei Province on 22 May 2017, 21 May 2018, and 24 August
2019, and analyzed the ice particle number concentrations, two-dimensional images, and
the height distributions of the particle spectrum distribution. The relationships between
spectrum parameters, temperature, and the maximum diameter of particles, were also
studied. Our hope in undertaking this study was to further enrich the scientific understand-
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ing of stratocumulus cloud microstructure, and provide references for radar and satellite
cloud property reversion and cloud microphysical parameterization in different parts of a
stratocumulus cloud, so as to improve the cloud microphysical parameterization scheme in
cloud simulations and improve the accuracy of stratocumulus cloud precipitation forecasts.

2. Data

2.1. Introduction of the Observation Data

The data in this paper were taken from the “13th Five-Year Plan” meteorological
key project in Hebei Province’s, “Experiment on artificial rainfall and hail prevention
technology in the eastern foothills of Taihang Mountains” scientific field experiment. The
data were taken from 3 observations, made on 22 May 2017, 21 May 2018, and 24 August
2019 (Figure 1). The measurements went through the negative temperature layer, the 0 ◦C
layer, the melting layer, and the convective and stratiform cloud areas. The aircraft took off
from Zhengding Airport, and the flight times were concentrated in the afternoon and night.
The longest duration was 209 min and the shortest duration was 185 min. The aircraft
carried out horizontal detection at different altitudes and carried out vertical detection in
circling ascent and descent within the safe flight altitude limit. Based on the flight area and
the abundance of ice-phase particle data, 10 vertical detections were selected for the study
(Table 1).

Figure 1. Flight track of the 3 aircraft (from left to right is 22 May 2017, 21 May 2018, and 24 August
2019).

Table 1. Details of the observation flights.

Flight
Detection Time
(Beijing Time)

Range of
Height (m)

Range of
Temperature (◦C)

Rate of
Descent (m/s)

Width of
Detection (km)

22 May 2017 V1 15:37:11–15:53:06 7263–1998 −15.4–8.1 5.51 10.72
V2 16:08:32–16:23:38 7263–2121 −15.7–8.2 5.68 9.99
V3 16:31:10–16:48:59 7267–2107 −15.6–8.6 4.83 9.40
V4 17:27:07–17:39:54 7247–2009 −16.1–5.5 6.83 11.51
V5 17:48:59–18:04:27 7256–2011 −15.9–4.9 5.65 7.90

21 May 2018 V1 13:17:43–13:54:07 4971–784 −1.2–12.4 1.92 16.18
V2 14:04:17–14:30:00 4975–810 −1.8–10.3 2.70 13.39
V3 14:32:32–14:49:50 4958–590 −1.6–11.3 4.21 7.35

24 August 2019 V4 12:46:39–13:04:59 5297–2463 −3–7.3 2.58 11.10
V8 14:07:30–14:24:38 5328–2502 −2.3–7.3 2.75 10.47
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2.2. Introduction of the Instrumentation

This paper adopted the observation data of King-air 350ER (No. 3523) of Hebei Artifi-
cial Weather Office, and the cloud physical detection system consisting of several probes
on board the aircraft, which mainly includes the FCDP (The Fast Cloud Droplet Probe),
the CDP (Cloud Droplet Probe), the CIP (Cloud Imaging Probe), the HVPS (The High
Volume Precipitation Spectrometer), 2D-S combined probes, and the Airborne Integrated
Meteorological Measurement System AIMMS-20 [23], which could measure in real-time
0.055–9075 μm of the spectral distribution of various particles; give 25–19,200 μm parti-
cle 2D images; give real-time measurements to obtain macroscopic information such as
temperature, pressure, humidity, wind speed, wind direction, and vertical velocity of the
atmosphere; and liquid water content, total water content, etc. in clouds and aircraft flight
trajectory could also be detected in real time (Table 2).

Table 2. Particle probe and its parameters. (Reprinted/adapted with permission from Ref. [5]. 2023,
Jiefan Yang).

Instrument Name
Equipment

Manufacturer
Measuring Range Resolution Use

Passive Cavity Aerosol
Spectrometer Probe DMT 30 channels, 0.1~3 μm 0.1 μm Used for the detection of an

aerosol particle spectrum
Fast Cloud Droplet

Probe SPEC 21 channels, 2~50 μm 3 μm Cloud particle spectrum

Cloud Droplet Probe
(CDP) DMT 30 channels, 2~50 μm Cloud particle spectrum

Cloud Imaging Probe
(CIP) DMT 62 channels, 25~1500 μm 25 μm

Used to obtain a high-definition
crystal grain spectrum and

2-dimensional particle image of
ice, snow, cloud

Precipitation Imaging
Probe (PIP) DMT 62 channels,

100~6200 μm 100 μm Used to obtain precipitation
particle spectrum and image

Cloud Imaging Probe SPEC 10~2000 μm 2.3 μm
Used for cloud droplets, snow

and ice crystals,
raindrop images

2D-S Optical SPEC 10~1280 μm 100 μm
Used for cloud droplets, snow

and ice crystals,
raindrop images

High Volume
Precipitation

Spectrometer (HVPS)
SPEC 150~19,200 μm 150 μm

Used to obtain a clear
precipitation particle spectrum

and particle
2-dimensional image

LWC DMT 0~3 g m−3 Liquid water content

TWC Nevzorov 0.005~3 g m−3 Liquid water content, ice, and
snow crystal water content

AIMMS-20 Aventech

Temperature: −50~50 ◦C
Vertical velocity:

0~50 m s−1

Altitude: 0~13.7 km

Temperature: 0.3 ◦C
Velocity: 0.75 m s−1

Altitude: 18.3 m

Used for measuring high
temperature, pressure,

humidity, wind, and aircraft
motion parameters

The hourly observation data from the Chinese ground-based weather stations were
used to calculate the cumulative precipitation over the detection period for the three
aircraft observation areas. The detection area of 2017 was located in the northern part of
the precipitation center, and the maximum intensity of precipitation was over 40 mm. In
2018, the detection area was located in the southern part of the precipitation center, and the
maximum intensity of precipitation was 30 mm. The detection area of 2019 was located in
the eastern part of the precipitation center, and the overall precipitation intensity was low,
and the maximum intensity of precipitation was 5 mm (Figure 2).
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Figure 2. Cumulative precipitation: (a) is for 22 May 2017, (b) is for 21 May 2018, and (c) is for
24 August 2019.

2.3. Precipitation and Radar Data

In this paper, SA-band Doppler weather radar (38◦21′7′ ′N, 114◦42′43′ ′E) in Shiji-
azhuang and SA-band Doppler weather radar (36◦36′11′ ′N, 114◦28′59′ ′E) in Handan were
mainly used. The radar wavelength was 10 cm, and the volume scan was completed every
6 min. As could be seen from the radar reflectivity of the 2.4◦ and 3.4◦ elevation angles,
there was melting bright band in each stage. The observations in 2017 were in the southern
parts of the cloud system, and the observations in 2018 and 2019 were in the northern part
of the cloud system (Figures 3–5). From the vertical structure of radar echo, it could be
observed that the V1, V2, and V3 detections on 22 May 2017 were in the strong echo region,
while the rest were in the typical stratiform cloud region (Figure 6). From the radar echo
image on 21 May 2018, it could be observed that there is a convective cell in the cloud in
the vertical detection area of the V1 segment, and the other processes are layered echo area.
The radar reflectivity of the V3 section weakens obviously at the height of 3 km (Figure 7).
From the vertical radar reflectivity, it could be seen that on 24 August 2019, the detection in
section V8 was located outside the convective cell. There were melting signatures based on
the strengthening of the radar reflectivity below the 0 ◦C layer in both vertical detection
areas, and the bottom of the melting layers were relatively low (Figure 8).

Figure 3. 22 May 2017 (a) 17:30, 2.4◦ elevation angle PPI, (b) 17:54, 3.4◦ elevation angle PPI. The red
rectangle box is the aircraft detection area.
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Figure 4. 21 May 2018 (a) 13:18, 2.4◦ elevation angle PPI, (b) 14:18, 2.4◦ elevation angle PPI, (c) 14:36,
3.4◦ elevation angle PPI. The red rectangle box is the aircraft detection area.

Figure 5. 24 August 2019, (a) 12:48, 3.4◦ elevation angle PPI, (b) 14:18, 2.4◦ elevation angle PPI. The
red rectangle box is the aircraft detection area.

Figure 6. 22 May 2017, (a) 15:42 of V1, (b) 16:12 of V2, (c) 16:36 of V3, (d) 17:30 of V4, (e) 17:54 of V5.
The red rectangle box is the aircraft detection area.
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Figure 7. 21 May 2018, (a) 13:18 of V1, (b) 14:18 of V2, (c) 14:42 of V3. The red rectangle box is the
aircraft detection area.

Figure 8. 24 August 2019, (a) 12:48 of V4, (b) 14:18 of V8. The red rectangle box is the aircraft detection
area.

In the observation periods of 2017 and 2018, the cloud systems were in the stratocu-
mulus development stage, there were strong convective echoes embedded in the stratiform
cloud area at both of the two stages, and the precipitation in these two stages was strong.
In 2019, the echo of the detected cloud system was weak and the precipitation was also
weak, so the detected cloud system was stratocumulus in a mature stage.

3. Result

3.1. Vertical Distribution of Microphysical Characteristics in Clouds

On 22 May 2017, the detection of the V1 (Figure 9) and V2 (Figure S1 in Supplementary
Materials) segments were in the convective cell region embedded in the stratiform cloud, the
detection of the V3 segment (Figure S2 in Supplementary Materials) was in the convective
cell edge, and the detections of the V4 (Figure 10) and V5 (Figure S3 in Supplementary
Materials) segments were in the stratiform cloud regions. It was shown in Figure 9 that
the peak concentrations of the HVPS particles are concentrated in small to medium sized
particles. In the stratiform cloud region, the number concentration of particles was low, but
with the decrease of height, the peak number concentration gradually tended toward the
particles with medium diameter. The CDP particles presented a dominantly multi-modal
distribution, and the HVPS particles presented a bimodal distribution (6700 m) in the
convective cell, which was higher than that in the stratiform cloud area (3800–4000 m). The
convective cell has higher liquid water content, the ice particles have better riming growth
conditions. In the convective cell, the particle number concentrations detected by the CDP,
the CIP and the HVPS were higher than that in the stratiform cloud area, and the particle
spectrum was also wider. There were more larger particles in the convective cell, and the
strong gravity drag of large particles made the downdraft in the convective cell stronger
than that in the stratiform cloud area. It was found that the 0 ◦C in the convective cell area
was higher than that in the stratiform cloud area (Table 3), and at the end of the detection
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stage, the temperatures of the same altitude level of V1 and V2 were higher than other
stages (Figures 9 and 10).

Figure 9. The aircraft observation data set of V1 on 22 May 2017 in the convective cell, (a) vertical
velocity (the red line is 0, units: m s−1, ◦C); (b) temperature (units: ◦C, the red line is 0); (c) calculated
liquid water content (calculated LWC), probe detected liquid water content (New0LWC), probe
detected total water content (New0TWC) (units: g m−3); (d) particle number concentration of
the CDP, the CIP, and the HVPS (units: cm−3); (e) particle spectrum of CDP (units: cm−3μm−1);
(f) particle spectrum of the CIP (100–400 μm) and the HVPS (400–8700 μm) (units: L−1μm−1). The
red dotted line is the 0 ◦C layer.

 
Figure 10. The aircraft observation data set of V4 on 22 May 2017 in the stratiform cloud area,
(a) vertical velocity (the red line is 0, units: m s−1, ◦C); (b) temperature (units: ◦C, the red line is 0);
(c) calculated liquid water content (calculated LWC), probe detected liquid water content (New0LWC),
probe detected total water content (New0TWC) (units: g m−3); (d) particle number concentration
of the CDP, the CIP, and the HVPS (units: cm−3); (e) particle spectrum of CDP (units: cm−3μm−1);
(f) particle spectrum of the CIP (100–400 μm) and the HVPS (400–8700 μm) (units: L−1μm−1). The
red dotted line is the 0 ◦C layer.
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Table 3. Comparison of microphysical quantities at different stages.

Detection
Height of 0 ◦C

Layer (m)
CDP (cm−3)

(Max/Average)
CIP (cm−3)

(Max/Average)
HVPS (cm−3)

(Max/Average)

w (m/s)

Updraft
(Max/Average)

Downdraft
(Max/Average)

2017 V1 3764 725/55 19.17/0.54 3.12 × 10−2/7.87 × 10−3 4.2/1.3 −5.1/−1.0
V2 3612 980/106 26.7/0.87 4.44 × 10−2/9.79× 10−3 7/2.3 −4.2/−0.6
V3 3706 948/49 2.67/0.66 6.01 × 10−2/1.17 × 10−2 6.2/2.3 −2.2/−0.4
V4 3346 261/19 0.39/0.09 1.06 × 10−2/4.10× 10−3 10/2.7 −1.9/−0.4
V5 3451 360/17 0.79/0.14 1.68 × 10−2/4.61× 10−3 4.3/0.9 −8.4/−1.1

2018 V1 4737 1419/14 17/0.56 7.63 × 10−3/4.84× 10−4 14.4/2.9 −4.6/−1.5
V2 4201 299/8.99 5.92/0.23 1.27 × 10−2/1.28 × 10−3 9.6/2.4 −2.1/−0.4
V3 4265 114/5.76 3.43/0.28 3.36 × 10−3/8.58 × 10−4 9.1/3.1 −0.6/−0.2

2019 V4 4496 1190/217 3.44/0.17 7.3 × 10−3/1.4 × 10−3 3.7/1.4 −3.9/−0.9
V8 4708 693/139 0.08/9.2 0.01/1.2 × 10−3 3.3/1.4 −5.7/−1.1

On 21 May 2018, there existed some areas with high super-cooled liquid water content
but low ice particle number concentration, which had strong precipitation enhancement
potentiality. The CDP was generally unimodal, but bimodal at the height of 1750 m. The
HVPS showed a bimodal distribution at the heights of 4800 m and 3300 m, and the peak
particle diameter increases with the decrease of height. According to the vertical radar
reflectivity, the convective cell embedded in stratiform clouds was detected in the V1
section, and the downdraft in the V1 section was stronger than that in other stages. In
the precipitation particle spectrum of the V1 segment, it is observed that the peak particle
diameter increases in the isothermal layer, and there is collision of unmelted particles at this
time. The temperature of the V1 section was higher than those of the V2 and V3 sections,
and the 0 ◦C layer of the V1 section was higher than those of the V2 and V3 sections (Table 3,
Figures S4–S6 in Supplementary Materials).

Two vertical detections on 24 August 2019 also showed that the spectrum width
of precipitation particles below the 0 ◦C layer was significantly smaller than that in the
negative temperature layer. In the melting process of ice precipitation particles, the particle
spectrum was mainly unimodal, with bimodal distribution in the V4 section (Figure S7 in
Supplementary Materials) at 4300 m, 3400 m, and 2850 m, and in the V8 section (Figure S8
in Supplementary Materials) at 4300 m, 3900 m, and 3550 m. The region with larger peak
diameter corresponded to wider particle spectrum. This indicated that the melting rates of
ice particles with different particle sizes are different, and the melting rates of ice particles
with larger particle sizes were relatively faster.

3.2. The Image of Ice Particles

On 22 May 2017, the temperature of the detection process was low. It could be seen
that plate crystals existed in the high negative temperature layer (−13 ◦C), column crystals
existed in the negative temperature layer near zero (−3 ◦C), and rime-attached ice phase
particles appeared in other areas (Figure 11). Close to the 0 ◦C layer, there still existed
the riming growth of ice particles. Below the 0 ◦C layer, some large drops existed. At
the temperature of −3.4 ◦C, it could be seen that the particles have smooth edges, which
indicated that the ice particles have begun to melt in the negative temperature layer above
the 0 ◦C layer.
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Figure 11. Particles image of the flight on 22 May 2017.

On 21 May 2018, aggregates formed by collision and riming of ice particles were
observed in the negative temperature layer close to the 0 ◦C layer. There were large
drops below the 0 ◦C layer. At the V2 detection stage, it was found that the ice phase
particles at the same temperature had different shapes, while at different heights. At the
same temperature (−1.6 ◦C), the particles at the height of 4975 m were dominated with
aggregates of columns, co-exited with riming process, while most of the particles at 4583 m
were already melted based on their regular edge. In the negative temperature layer close to
the 0 ◦C layer, as the particles began to melt, absorbing latent heat, so an isothermal layer
was formed near the 0 ◦C layer (Figure 12).

Figure 12. Particles image of the flight on 21 May 2018, (a) V1 stage, (b) V2 stage.

On 24 August 2019, the riming of particles in the negative temperature layer was
strong. Large droplets were observed near the 0 ◦C layer. When the temperature reached
6.5 ◦C, particles with irregular edges were still observed (Figure 13).
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Figure 13. Particles image of the flight V4 on 24 August 2019.

3.3. Particle Size Distribution (PSD)

According to Gunn and Marshall (1958), based on ground observation, the size spec-
trum distribution of ice particles conformed to the form of negative exponential:

n(D) = N0·e−λD (1)

In which D is the diameter of the ice phase particle; and N0 and λ are the intercept and
slope.

In terms of vertical distribution (Figures 14–16), N0 above the 0 ◦C layer was larger
than that below the 0 ◦C layer in each stage, and N0 above the 0 ◦C layer showed a
decreasing trend with the increasing temperature. At each stage, λ above the 0 ◦C layer
was less than that below the 0 ◦C layer. In the negative temperature layer close to the 0 ◦C
layer, λ showed an increasing trend with increasing temperature. The maximum particle
size (Dmax) observed by the HVPS was greater above the 0 ◦C layer than that below the
0 ◦C layer. In general, Nt above the 0 ◦C layer was greater than that below the 0 ◦C layer.
In the negative temperature layer close to the 0 ◦C layer, Nt decreased with increasing
temperature.
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Figure 14. The parameters of 22 May 2017, (a) intercept (N0), (b) slope (λ), (c) the maximum particle
size (Dmax), (d) the total particle concentration (Nt). The red line is the 0 ◦C layer.

Figure 15. The parameters of 21 May 2018, (a) intercept (N0), (b) slope (λ), (c) the maximum particle
size (Dmax), (d) the total particle concentration (Nt) The red line is the 0 ◦C layer.

Figure 16. The parameters of 24 August 2019, (a) intercept (N0), (b) slope (λ), (c) the maximum
particle size (Dmax), (d) the total particle concentration (Nt) The red line is the 0 ◦C layer.
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On 22 May 2017, the N0, λ, and Nt of the V1 and V2 sections in the convective cell,
were larger than other areas. In the convective cell between −13.5 ◦C and −11 ◦C, Nt, N0,
and λ decreased with the increase of temperature, and Dmax increased with the increase of
temperature or had no obvious change, which was caused by aggregation. In the negative
temperature layer from −10 ◦C to −5 ◦C, Nt, N0, and λ in the convective cell are smaller
than those in the stratiform cloud region, and Dmax are larger than those in the stratiform
cloud region. The observed data indicate that there are more small-sized particles in the
upper stratiform cloud region at this height. In the cloud, Nt reaches its maximum value in
the range of −5 ◦C to −4 ◦C, and the Hallett-Mossop ice crystal multiplication mechanism
exists in this stage, which further proves that the riming process in the convective cell
is more active. From −3.5 ◦C to the 0 ◦C layer, Nt and N0 decreased with temperature
increasing, and Dmax decreased and λ increased with increasing temperature starting from
−1 ◦C, so it could be judged that ice phase particles have started to melt above the 0 ◦C
layer (Figure 14).

In the three detection processes on 21 May 2018, from the negative temperature layer
near the 0 ◦C layer to the 0 ◦C layer of the V1 and V2 sections, Nt increased and Dmax
decreased with the increase of temperature. From the negative temperature layer near the
0 ◦C layer to the 0 ◦C layer, the Nt of V1 section decreased with the increase of temperature,
and Dmax increased, which was caused by aggregation. In the two processes, there may be
ice phase particle sublimation in the negative temperature layer near the zero layer. The
large particles were broken into small particles, resulting in the increase of the total particle
concentration and decrease of the maximum particle size. The V1 segment experienced
the convection cell during the measurement, and its N0, λ, and Nt were larger than other
detection areas in the negative temperature layer. From 1 ◦C to 4 ◦C, N0 and λ of the V1
segment was larger than other detections, and Dmax was less than other detections above
and below the 0 ◦C layer. Below the 4 ◦C level, Nt was less than other detections (Figure 15).

On 24 August 2019, in V4 section from −2 ◦C to 0 ◦C, N0, λ, and Dmax decreased,
and Nt did not change significantly. In this phase, particles melted and sublimated at the
same time. In V8 section, Nt increased from 0.5 ◦C to 0 ◦C layer, Dmax increases, with N0
and λ decreased, sublimation and aggregation appeared at the same time in this stage.
The relative humidity of V8 segment is smaller than that of V4 section. In V4 section, the
particles melted in the negative temperature layer close to 0 ◦C layer, and the total particle
concentration and maximum particle diameter decreased accordingly. In V8 section, the
sublimation process led to the increase of the total particle concentration, and the decrease
of the maximum particle diameter. (Figure 16).

It was found that the particle spectrum parameters were significantly related to
temperature and maximum particle size. On the whole, the intercept (N0) was positively
correlated with temperature (T), except that the relationship of the V3 section in 2018 is
not obvious. The exponential function based on e could better fit the relationship between
the two (Table 4, Figure 17). Data from each detection have shown that the slope (λ)
and intercept (N0) are positively correlated, and the overall fitting found that logarithmic
function could well fit the relationship between them. The variation rules of data above
and below the 0 ◦C layer were different. The particles below the 0 ◦C layer changed faster
than those above the 0 ◦C layer. The fitting coefficients of the two were different, and
the coefficient above the 0 ◦C layer was lower than that below the 0 ◦C layer (Table 4,
Figure 18). It could be found that the slope (λ) was positively correlated with the largest
diameter (Dmax). The power function could well fit the relationship between them (Table 4,
Figure 19).
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Table 4. The fitting of relationships between spectral parameters.

Relation a b c R2

N0 = ea·T2+b·T+c 8.6×10−4 −0.16129 −5.50 0.60

λ = a·ln(N0) + b Above the 0 ◦C Layer 5.61 44.59 0.47
Below the 0 ◦C Layer 12.11 107.82 0.32

Dmax = a·λb 5.02×104 −0.80 0.77

Figure 17. The relationship of N0 and T.

Figure 18. The relationship of N0 and λ.
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Figure 19. The relationship of λ and Dmax.

4. Discussion

Generally, there are differences in cloud macro, micro, and precipitation characteristics
in different parts of stratocumulus clouds. In this paper, based on the analysis of ten flights’
cloud physical observation data, it was also found that the temperature of the cumulus
cloud area at the same height was higher than that of the stratus cloud area, and the height
of the 0 ◦C layer was also higher than that of the stratus cloud area. This was supposed to be
due to stronger updrafts in the embedded cumulus leading to more condensation, releasing
more latent heat. Along with stronger updrafts, ice particles grew to larger particle sizes
and fell to form precipitation, which made the spectrum intercept and slope parameters
in the melting level of the cumulus area higher than those of the same stratiform cloud
area. At the same time, the stronger gravitational dragging at the cumulus cloud, induced
stronger downdrafts.

The analysis of the detection data of different flights showed that the particle spectrum
parameters and their evolution in the melting layer may be different from those in the
negative temperature layer. With the beginning of melting, the spectral width and number
concentration of particles decreased. However, the melting process of ice particles might
be accompanied by a variety of physical processes, including sublimation, fragment, and
aggregation, resulting in inconsistent evolution of particle spectrum parameters in different
flights. The latent heat absorption in the melting process might lead to a decrease in the rate
of temperature change with height, and an approximate isothermal layer appears around
the 0 ◦C layer.

With the melting of ice particles, the intercept and slope of the particle spectrum below
the 0 ◦C layers and the correlation between them have changed significantly compared
with the negative temperature layer, which means that in conducting cloud microphysical
parameterization and inversion research of cloud microstructure through radar and satellite
observation data, it is better to adopt a parameter relationship and parameters different
from the negative temperature layer below the 0 ◦C layers or the melting layer.

The differences in cloud microphysical characteristics in different regions require us
to carry out cloud characteristics research in regions with different climatic backgrounds
and underlying surface characteristics, which is very important for weather and climate
prediction. The parameters and their relationships obtained in this paper have certain
reference significance for North China and similar climate regions.
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At present, most studies focus on the differences in precipitation mechanisms in
different parts of stratocumulus clouds [24], but little attention is paid to the differences
in updraft and temperature in different parts of the clouds. Compared with the studies
in China, the studies on the North China stratocumulus clouds are mostly concentrated
in the negative temperature layer [1], while the particle spectrum distribution under the
0 ◦C layer is lacking study. As shown in Table 5, the spectrum parameters of particles
in different temperature ranges in stratocumulus clouds are different. The analysis of a
particle spectrum parameters relationship usually focuses on temperature (T)-intercept
(N0) and intercept (N0)-slope (λ) [22], but in China the research mostly focuses on the
relationship between N0 and λ [11]. In this paper, there is a new study on the relationships
between T-N0, N0-λ, and λ-Dmax, which can provide a reference for using temperature
prediction particle spectrum distribution for China. The particle spectrum parameters of
stratocumulus clouds found in this paper are different from other studies abroad and in
China, which proves that the study of stratocumulus cloud observation in different regions
is very necessary.

Table 5. Comparison of spectral parameters of different detection processes.

Detection
Temperature (◦C)

The Maximum Particle
Number Concentration (cm−3)

N0(cm−4) λ (cm−1)

Hou et al. (2021) [1] −12~0 10−1 10−6~10−2 10−1~101

Heymsfiled et al. (2015) [22] −4~4 10−1 0.01~100 10~25
Feng et al. (2021) [11] −20~0 102 0~104 10~104

Xiong et al. (2023) −15.9~8.6 10−2 10−5~100 10−2~102

Xiong et al. (2023) −1.8~12.4 10−2 10−6~100 10−2~102

Xiong et al. (2023) −2.3~7.3 10−2 10−5~100 10−1~102

5. Conclusions

From the observation data of ten flights of three precipitation processes, there were
differences in the macro- and micro-characteristics of cumulus and stratiform areas of
stratocumulus clouds. The particle spectrum parameters and their evolutions below the
melting level were also different from those in the negative temperature layer. Based
on the analysis, it can be found that study on the distribution and evolution of cloud
vertical structure and particle spectrum parameters in different parts of the stratocumulus
cloud, especially the evolution of the particle spectrum in the ice particle melting layer and
below, may have great significance for the prediction of precipitation intensity. The specific
conclusions of this paper are as follows:

(1) The downdraft in the cumulus cloud area was stronger, and the temperature at
the same height was higher than that in the stratus cloud area, and the 0 ◦C layer height
was correspondingly higher. In terms of particle spectrum parameters, the intercept and
slope parameters of the particle spectrum of the cumulus area below the melting layer
were higher than those of the stratus cloud area, for the same weather process. There were
significant differences in the characteristics of vertical evolution and parameter evolution
of the particle spectra in different parts of stratocumulus clouds, which showed that the
microphysical characteristics of stratus clouds and cumulus clouds area were different.

(2) In different vertical detections, it was found that the ice phase particles have
narrowed the particle spectrum, decreased the total concentration, and smoothed the edges
of the ice particle images in the negative temperature layer near the 0 ◦C level, indicating
that the ice particles have begun to melt in the negative temperature layer near the 0 ◦C
level. As the ice particles began to melt, the Dmax of the particle spectrum decreased
rapidly, indicating that the larger particles might melt earlier than the middle-sized ones.
In different flights, the variation trends of intercept, slope, maximum particle size, and total
concentration of particle spectrum with the increase of temperature, were not consistent.
The analysis of the evolution of the spectrum parameters showed that there might be
sublimation, fragmentation, and aggregation in the melting process of ice phase particles.
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In addition, with the latent heat released by the melting process of ice particles, it was
possible to have an approximate isothermal layer with a small temperature change rate
around the 0 ◦C level.

(3) The melting process changed the spectral parameters greatly and also changed
the correlation between the intercept and slope of the particle spectrum. The slope below
the 0 ◦C level increased with the increase of intercept, which was greater than that above
the 0 ◦C level. Through the fitting calculation of the data of ten flights, the expression
relation of N0 increasing with temperature for North China was obtained. It was also found
that, with the increase of the slope parameter of the precipitation particle spectrum, the
maximum particle size of the particle spectrum shows an exponential decrease trend.
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Abstract: The Fourier–Merlin transform method, multi-scale optical flow method, and Weibull
distribution are used to integrate the GRAPES_3 km model and Radar Extrapolation Forecast (REF)
both developed independently by China. Taking GRAPES_3 km, Wuhan Rapid Update Cycle
(WHRUC), and the REF as examples, the prediction performance of the Blending forecast is evaluated
comprehensively by the traditional point-to-point method. A new spatial test method is introduced
to evaluate the applicability and difference of high-resolution model evaluation. The area, position,
shape, and intensity of the precipitation area are matched through the target object test method. The
potential forecast information of the spatial field is obtained and the related results are compared and
analyzed. The results show that: (1) the comprehensive application of various evaluation methods
can evaluate the convective storm forecast more comprehensively. The Blending forecast effect is
obviously better than those of other models by using the point-to-point scoring method, especially in
the heavy precipitation forecast. The shorter the prediction time is, the better the effect is. (2) The
new spatial test method can evaluate the prediction effect of convective storm characteristics, and
the target recognition hit rate of the Blending forecast is highest. The scores of target area, position,
shape, and median intensity of precipitation are better than those of other forecasts. The variation in
the east–west direction is less than that in the north–south direction, which is basically consistent
with the actual observation. The variation range of the forecast grid before and after translation is the
closest to the reality. (3) The Blending forecast method combines the advantages and disadvantages
of the numerical model and REF, which can not only grasp the precipitation area but also improve
the prediction ability of rainfall intensity. The traditional point-to-point scoring method and the new
spatial test method have the same conclusion as the convective storm forecast of the high-resolution
model, which has a certain reference value, and the new spatial test method can provide more
detailed evaluation information.

Keywords: mesoscale numerical prediction; radar extrapolation; blending technology; short-term
and impending forecast of precipitation echo; MODE

1. Introduction

The flood and geological disasters caused by severe convective weather cause great
harm to people’s life and property. It is of great significance to forecast them and provide
early warnings [1,2]. The Radar Extrapolation Forecast (REF) and Meso-scale Numerical
Weather Prediction (NWP) have become the key technical support for the short-term
Quantitative Precipitation Forecast (QPF) at present [3–5]. The problem of “spin-up”
always exists in the model forecast in the first few hours, which leads to poor prediction
results in the first few hours and cannot be directly applied to the short-term approaching
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forecast. REF and NWP have their own advantages, and their combination can improve
the prediction ability of 0~6 h. Therefore, the integrated precipitation forecast based on the
numerical model and radar extrapolation is developing rapidly [6–9].

The spatial inspection methods of the precipitation field can be divided into the
following two categories: traditional point-to-point-based inspection technology and object-
oriented inspection technology [10]. Brownlee classified weather events through a two-
variable forecast test contingency table [11]. He calculated a series of scoring indexes, such
as hit rate and false alarm rate. Doswell found that the real skill score TSS often tended
to the hit rate when calculating the forecast score of small-probability events [12]. So,
he revised the HSS score. Since then, a series of scoring indicators have been developed
and the deterministic prediction of binary events mainly includes: forecast deviation,
probability ratio, accuracy, etc. For the deterministic prediction of classified events, the 2*K
contingency table can be used to classify the probabilities of different levels to calculate
the scoring criteria. In recent years, meteorologists have conducted a lot of work around
the precipitation forecast test. Wang analyzed the predictability of the radar echo by the
decorrelation time method and quantitatively analyzed the error of the extrapolated forecast
by means of the forecasting skill score and relative absolute error [13]. In addition, the
relationship between REF error and scale, and the relative importance of the echo intensity
change and echo motion field change in the prediction error were also analyzed. Although
the traditional lattice comparison method can reflect certain forecasting characteristics, the
test results cannot give specific reasons for the deviation. It still cannot comprehensively test
the prediction ability of NWP and objective methods. On the other hand, the object-oriented
test technology divides the precipitation field into discrete targets and comprehensively
measures the forecasting effect according to the characteristic attributes, which can provide
users with more abundant information [14,15]. Xue studied the objective performance of
precipitation objects and the prediction ability of the Japanese fine grid model to cases based
on the MODE of object-oriented model diagnosis and analysis [16]. The methods adopted
involved more advanced spatial testing [17,18], which reflect the spatial structure and scale
changes of the precipitation forecast and play a leading role in the inspection industry.

Since 2016, the national self-developed GRAPES_3 km high-resolution numerical
model has been widely used in severe convective weather forecast and early warning. More
scientific and technical personnel have carried out a variety of inspection and evaluation
work for the GRAPES_3 km model. The test results show that the GRAPES_3 km model has
a good ability to predict high-threshold and small-scale convective events. Xu evaluated the
precipitation forecast of the model and pointed out that the variation in the daily frequency
in summer was similar to the observation [19]. The heavy-precipitation frequency and
regional distribution are in good agreement with the observation and can reflect the diurnal
variation characteristics of the precipitation process. Tang compared and evaluated the
prediction ability of GRAPES_3 km in several typical severe convective weather processes in
North China by using the fractional technique score (FSS) and discussed the good prediction
performance of this model in severe convective weather [20]. The test results show that
the GRAPES_3 km model has a good ability to predict high-threshold and small-scale
convective events, which are difficult to forecast. However, it has not been comprehensively
evaluated by a variety of test methods [21]. Therefore, this paper combines GRAPES_3
km and REF, and compares and analyzes the prediction ability of mesoscale models with
different resolutions in severe convective weather by taking the Blending results as the
evaluation object, to provide a reference basis for the further development of intelligent
grid forecasting technology and products of severe convective weather.

2. Materials and Methods

2.1. Materials

The observation data are based on the national radar combination reflectivity data,
with a spatial resolution of 0.01◦ and a time resolution of 6 min. The regional range
is 12.2◦~54.2◦N and 70◦~135◦E. The NWP data are based on the GRAPES_3 km model
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prediction and Fast Update Cyclic Assimilation model (WHRUC) in Table 1. The Blending
data are based on GRAPES_3 km and REF, and the bilinear interpolation method is adopted.
Due to the difference in temporal and spatial resolution between GRAPES_3 km and actual
observation data, which are sparse when the spatial resolution is unified, it was necessary to
take the maximum value of the area around the sparse mesh so the strong echo information
of convective weather could be preserved.

Table 1. NWP model systems.

WHRUC GRAPES_3 km

Forecast area 28◦~34◦N, 108◦~116.5◦E 20◦~50◦N, 73◦~139◦E
Spatial resolution 0.01◦ 0.03◦
Time resolution 08/20:00 1 h 08/20:00 1 h

Forecast time limit 12 h 36 h
Background field WHRAP/NCEP GFS T639

Initial value of model 3D-VAR Downscaling cloud analysis

2.2. Methods

The REF aimed to calculate the moving speed and direction of precipitation based
on the images observed by the radar at the previous time and the current time, and to
speculate the position of the future time [22–24]. In view of the severe convective weather,
the improved variational optical flow method was used to retrieve the wind field from
the radar data and the change in the echo optical flow field was used to obtain the motion
vector field. The improved variational optical flow method organically combined the
local optical flow method with the global optical flow method through an energy function
and added a high-order smoothing operator to solve the equation to obtain the flow field
structure. Additionally, the 9-point moving average was then used to obtain the motion
vector field. Finally, the semi-Lagrange method was used for extrapolation prediction.

In order to improve the ability of the short-term forecast of disastrous weather, the
Institute of Heavy Rain, China Meteorological Administration established a kilometer-scale
high-resolution fast updating cyclic assimilation forecast system WHRUC in 2019 [25]. The
horizontal resolution of the system is 1.5 km. The update frequency of analysis is 15 min.
The update frequency of prediction is 1 h and the time effectiveness of prediction is 12 h.
The center of the simulation area is 113.0◦E, 30.5◦N. The number of horizontal grid points
is 801 × 701. The vertical direction is 51 layers and the integration time step is 10 s.

GRAPES_3 km is a high-resolution numerical model developed and operated by
the numerical Forecast Center of the China Meteorological Administration. In order to
improve the prediction accuracy and stability of the numerical model throughout the
country, the numerical Forecast Center integrates national weather radar data, formulates a
quality control scheme, and assimilates SC/CD radar data. The prediction accuracy and
stability of the model are improved by introducing the monotone high-order horizontal
diffusion scheme, adopting the automatic modulation time step scheme, and optimizing
the initial reference profile. The stability of the model is evaluated to solve the problem
of instability. The physical process parameterization scheme and the prediction ability
are improved under weak dynamic forcing by using in-depth analysis of the sources of
prediction deviation. The spatial resolution of the model is 3 km and the current coverage
is 10◦~60◦N. It runs four times a day. The reporting time is 02, 08, 14, and 20:00 (BT).

3. Key Technologies of Blending Forecast

The radar extrapolation prediction and intensity correction method are developed
based on the RAPIDS technology of the Hong Kong Observatory, Fourier–Merlin trans-
form, and Weibull distribution. Combined with the radar extrapolation prediction of the
multi-scale optical flow variational method (multi-scale optical flow by variational analysis,
MOVA), the hyperbolic tangent function is used to integrate the radar extrapolation predic-
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tion and the corrected model prediction. The Blending method is preliminarily realized
and the technical flow is shown in Figure 1.
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Figure 1. The Blending technology process of numerical prediction into short-term and impending
extrapolation prediction of radar echo.

3.1. Phase Correction of Precipitation Forecast by Model

The Fourier–Merlin transform is the global phase correlation between the fast Fourier
transform and logarithmic polar transformation. Suppose f 1(x, y) is the template image and
f 2(x, y) is the image to be matched. There are rotations, translations, and scaling between
them, which are set to Δθ, (Δx, Δy), and λ, respectively, that is:

f2(x, y) = f1[λ(xcosΔθ + ysinΔθ)− Δx, λ(−xsinΔθ + ycosΔθ)− Δy] (1)

By the Fourier transform, the following results can be obtained:

F2(u, v) =
1

λ2 e−2πi(uΔx+vΔy)F1[
1
λ
(u cos Δθ + v sin Δθ),

1
λ
(−u sin Δθ + v cos Δθ)] (2)

In the formula: f 1(u, v) and f 2(u, v) are the Fourier transform results of f 1(x, y) and
f 2(x, y), respectively. It can be seen from Formula (2) that the relative translation between
them is only in the phase spectrum. The amplitude spectra on both sides of Formula (2) are
calculated, respectively, and the following results are obtained:

M2(u, v) =
1

λ2 M1[
1
λ
(u cos Δθ + v sin Δθ),

1
λ
(−u sin Δθ + v cos Δθ)] (3)

In the formula: M1(u, v) and M2(u, v) are the amplitude spectra of F1(u, v) and F2(u, v),
respectively. By converting the amplitude spectrum to the logarithmic–polar coordinate
space, we can obtain:

M2(lgρ, θ) =
1

λ2 M1(lgρ − lgλ, θ − Δθ) (4)

In the formula: M1(lgρ, θ) and M2(lgρ, θ) are logarithmic polar transformations of
M1(u, v) and M2(u, v), respectively. Because 1/λ2 only affects the value, it has no effect
on the calculation results of rotation, translation, and scaling parameters. So, it can be
ignored. It can be seen from Formula (4) that the rotation and scaling between f 1(x, y) and
f 2(x, y) are converted into translation in logarithmic polar coordinates, namely (lgλ, θ). By
using the phase correlation algorithm for the amplitude spectrum in logarithmic–polar
coordinates, the translation can be calculated and then the rotation and scaling parameters
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can be obtained. The rotation and scaling parameters are applied to the template image
f 1(x, y) to obtain the image with only translation. Then, the translation can be obtained by
using the phase correlation algorithm. Formula (4) is called the Fourier–Merlin transform.
Figure 2 shows the flow chart of the algorithm.

 

Figure 2. Flow chart of the algorithm.

3.2. Correction of Precipitation Intensity Forecast by Model

The difference between the precipitation intensity predicted by the numerical model
and the actual precipitation may be caused by the physical processes such as model res-
olution, convective parameterization, and cloud microphysical schemes. The intensity
adjustment is adjusted by gradually moving the model forecast precipitation field toward
the quantitative estimation precipitation field. Statistics show that both the model fore-
cast precipitation and the actual precipitation satisfy the Weibull distribution, and their
probability density distribution functions are the same. The model forecast precipitation
intensity correction If-mod model is as follows:

I f−mod = F−1
e (x0)Ff (x0) (5)

In the formula: Ff(x0) and Fe(x0) are the cumulative distribution functions of model
forecast precipitation and radar extrapolation forecast precipitation at the initial time,
respectively.

3.3. Blending of Radar Extrapolation Prediction and Model Correction Prediction

Both kinds of forecast results are fused by combining with the optimization of the
radar extrapolation forecast method after the precipitation forecast by the numerical model
is corrected and adjusted according to the time series. The weight change of the model
prediction is expressed by the hyperbolic tangent function and its empirical equation is
as follows:

W(t) = a +
1
2
(b − a)× {1 + tanh[k(t − 3)]} (1 ≤ t ≤ 6) (6)

In the formula: t is time; a and b are the Blending weights of 1 h and 6 h model
forecasts, respectively. The weights can be determined according to the historical statistical
results of precipitation types and precipitation evolution characteristics or dynamically
specified in combination with the position error and intensity error. k is the slope of W(t) in
the middle part of the Blending period and its value can be determined according to the
weather type. The spectral spatial correlation of radar reflectivity and the change speed of
the weight curve are determined by adjusting the k value. The calculation formula of the
Blending forecast is as follows:

Rblending(t) = W(t)× RGRAPES_3km(t) + [1 − W(t)]× RRFST(t) (1 ≤ t ≤ 6) (7)

In the formula: RGRAPES_3km(t), RRFST(t), and Rblenging(t) represent t time GRAPES_3
km, REF, and Blending forecast, respectively.
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4. Test Methods

4.1. Point-to-Point Comprehensive Test

The evaluation process aims to compare the regional average value of each grid point
of the precipitation forecast field (resolution is 0.01◦ × 0.01◦, about 1 km × 1 km) and
the adjacent 3 × 3 grid point with the observed precipitation of this grid point. The TS
(equitable threat score) and bias forecasting skills scoring methods commonly used in the
world are used to test the forecasting effect of the above four precipitation cases. The
prediction accuracy cannot be directly given by the prediction skill score, so the average
absolute error (mean absolute error, MAE) and hit rate (probability of detection, POD) are
selected to describe the prediction accuracy.

In order to quantitatively describe the correlation between forecast precipitation and
the radar quantitative estimation of precipitation, the correlation coefficient between the
observed area forecast precipitation and radar quantitative precipitation estimation at the
same time is calculated as follows:

r = ∑N
i=1 (Fi − F)(Oi − O)√

∑N
i=1 (Fi − F)2

√
∑N

i=1 (Oi − O)
2

(8)

where Fi is the predicted value, F is the average value of the predicted value, Oi is the
observed value, and O is the average value of the observed value.

4.2. Spatial Comprehensive Test

Although the above lattice-based analysis can reflect certain forecast characteristics—it
can deal with all the causes of forecast errors in the same way—it cannot distinguish the
sources of forecast errors nor can it give the overall properties of the precipitation field. For
this reason, the spatial diagnosis evaluation method is used to further test the results of the
precipitation forecast.

4.2.1. MODE Test

MODE is a test technique based on “object”. The weight coefficients of different
attributes are set on the basis of defining and calculating different attributes of the pre-
cipitation object. The characteristics of the target are calculated and compared once the
“target area” is correctly identified. The fuzzy logic algorithm is used to calculate the total
return function of the forecast performance to judge the overall performance of the forecast.
Finally, the spatial position, strength, and shape of the prediction field and the observation
field are given to provide more detailed inspection information. The target-based precipi-
tation detection method includes three basic steps: target recognition, target pairing, and
target detection. First, the Unicom targets are identified according to the input observation
and forecast grid data. The multiple Unicom regions are merged according to the proximity
degree and these Unicom targets are marked with serial numbers in turn. Then, the target
in the forecast field is matched to the observed target. The number of forecast targets in the
matching will be the same as the number of observation targets. There is a many-to-many
situation between the observation field and the forecast field target. In the process of
matching, the forecast targets will be further merged according to the position distribution
to improve the coincidence between the observation targets and the observation targets.
Finally, the axis attribute, face attribute and area, center of gravity position, and shape and
strength parameters of each target object are calculated. Through the target attributes of
the observation field and forecast field, the similarity matrix of observation and prediction
is calculated.

(1) Area score:

SA= (2 ·
∣∣∣∣Amod − Aobs

Aobs

∣∣∣∣+1)−1 (9)

where SA is the area score, Amod is the forecast target area, and Aobs is the actual target area.
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(2) The score of the center of gravity:

SGC =

⎧⎪⎨
⎪⎩

0 L ≥ Lmax

1 − L − Lmin
Lmax − Lmin

Lmin < L < Lmax

1 L ≤ Lmin

(10)

where SGC is the center of gravity, Lmax is the maximum tolerance distance, Lmin is the
best distance, the range of the east–west direction is about 940 km, and the range of the
north–south direction is about 660 km. For short-term prediction, the tolerance maximum
deviation Lmax is 470 km, the corresponding minimum deviation Lmin is 47 km, the corre-
sponding minimum deviation Lmax is 330 km, and the corresponding minimum deviation
Lmin is 33 km.

(3) Shape score:

SAxial =

⎧⎨
⎩

0 DAxA ≥ 90◦
90 − DAxA

90 − 10 10◦ ≤ DAxA < 90◦
1 DAxA < 10◦

(11)

where SAxial is the axial angle score and DAxA is the axial angle difference between the
predicted and the real object.

SEllip =

⎧⎪⎨
⎪⎩

0 DEllip ≥ 0.5
0.5 − DEllip

0.5 − 0.1 0.1 ≤ DEllip < 0.5
1 DEllip < 0.1

(12)

where SEllip is the ellipticity difference score and DEliip is the difference between the elliptic-
ity of the predicted object and the actual object.

(4) Intensity score of precipitation center:
The intensity score of the precipitation center is defined as follows: based on the

actual precipitation level, the grade of the model is consistent with that of the real heavy
precipitation center, or the absolute value of the difference between the model and the real
heavy precipitation center is less than 10 mm. The score of the above two cases is 1; when
the difference between the model and the actual heavy precipitation center is one grade,
the score is 0.5; if the difference is more than one grade, the score is 0.

4.2.2. SAL Test

The SAL (structure, intensity, scale) method is based on the MODE algorithm, which
counts the uniformity, average intensity, and centroid distribution of precipitation from the
marked grid. It verifies the deviation attributes such as uniformity, average intensity, and
distance between prediction and observation. During the calculation, the mesh points that
are not marked as targets are first set to 0, and then the intensity error (A), distance error
(L), and structure error (S) are calculated.

5. A Case of Inspection and Evaluation

5.1. Case Introductions

Since 8 August 2021, heavy rainfall occurred in the north, east, and southwest of Hubei
Province, in which torrential rainfall occurred at 16 stations in Xiangyang from 20:00 on
11 August to 20:00 on 12 August 2021. The maximum daily rainfall was 519 mm in the
willow forest, followed by 495 mm in Yinghe. From 8 August to 12 August 2021, there were
7 stations with an accumulated rainfall exceeding 400 mm and those with a heavier hourly
rainfall had 118 mm, 105 mm, and 104 mm. From 3:00 a.m. on 12 August 2021, there was
a sudden heavy rainfall at night in Liulin Town. From 11 to 12 August, the accumulated
rainfall was 503 mm, the rainfall reached 373.7 mm from 4:00 to 7:00 on 12 August 2021,
and the rainfall exceeded 100 mm for two consecutive hours from 5:00 to 6:00, all of which
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were the historical extremes since meteorological records began. The average depth of
stagnant water in the rainfall center was 3.5 m and the deepest depth was 5 m.

Figure 3 shows the comparison between the extrapolation forecast, WHRUC model
forecast, GRAPES_3 km forecast, and Blending forecast of 0~3 h precipitation from 04:00
(BT) on 12 August 2021. On the whole, the main areas of precipitation are basically concen-
trated in Jingzhou, Xianning, and Wuhan, and the location remains relatively unchanged,
indicating that the predicted precipitation location is consistent with the actual situation. It
is found that the Blending forecast results improve the deviation in the heavy precipitation
area and precipitation intensity predicted by radar extrapolation, and the overall effect is
better than that of the single numerical model forecast and radar extrapolation forecast.

 
(a) (b) (c) 

 
(d) (e) (f) 

 
(g) (h) (i) 

 
(j) (k) (l) 

 
(m) (n) (o) 

Figure 3. Comparison of 0~3 h radar-extrapolated precipitation forecast (d–f), WHRUC model
forecast (g–i), GRAPES_3 km model forecast (j–l), and Blending forecast (m–o) with real time
(a–c) from 04:00 (BT) on 12 August 2021.
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5.2. Forecast Effect Test
5.2.1. Point-to-Point Comprehensive Test

Zawadzki defined the “de-correlation time” L when studying the predictability of
11 precipitation cases [26], that is L =

∫ ∞
0 C(t)dt. It is no longer predictable when the corre-

lation value between prediction and observation is less than 0.5. It is found that L is equal
to the time constant in the index if C(t) conforms to the exponential law and corresponds to
the time when the correlation coefficient decreases to 1/e = 0.37. The decorrelation time
defined in the formula can be used to measure the predictability of precipitation.

The correlation coefficients calculated by the formula for each precipitation process
are averaged in order to better evaluate the prediction results of 0~3 h (Figure 4). Figure 5
shows the variation in the correlation coefficients of the four methods with the prediction
time. For the four methods with the forecast precipitation process, the variation in the
correlation coefficient with the forecast time effect is basically decreasing exponentially. It
can be seen from the straight line of stroke 1/e in Figure 5 that the decorrelation time of the
QPF and Blending forecast precipitation process is much more than 3 h. The decorrelation
time of the GRAPES_3 km forecast precipitation process is about 3 h and the decorrelation
time of the WHRUC forecast precipitation process is less than 3 h. It can also be seen from
Figure 5 that large-scale precipitation systems correspond to longer persistence, while for
storms with a faster evolution and smaller scale, their persistence is shorter.

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

(i) (j) (k) (l) 

Figure 4. Comparison of 0–3 h radar-extrapolated precipitation forecast (a,e,i), WHRUC model
forecast (b,f,j), GRAPES_3 km model forecast (c,g,k), and Blending forecast (d,h,l) with real time
from 04:00 (BT) on 12 August 2021.
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Figure 5. The variation in the correlation coefficient of the four methods with the prediction time.

Figure 6a,c,e show the comprehensive performance of the threshold values of 1 mm,
5 mm, 10 mm, 20 mm, and 50 mm for the four prediction methods. The abscissa is the
success rate and the ordinate is the hit rate. The auxiliary lines of equal bias and equal
TS curves are drawn. The test results are displayed in the chart in the form of dots so
that you can directly browse the test indexes such as success rate, HIT rate, BIAS, and TS.
It can be seen that the accuracy of WHRUC prediction is obviously lower than those of
other forecasts and the overall BIAS value is smaller. The prediction effect of QPF and
Blending is the best. The BIAS value of the 1 mm precipitation threshold is too large.
Additionally, the prediction accuracy is close to 0.6, which is slightly lower than that of QPF.
With the increase in threshold, the prediction accuracy of the Blending forecast is obviously
improved. The prediction deviation is similar to that of QPF. There is little difference
between the prediction deviation of 10 mm and 20 mm and that of 5 mm. The prediction
accuracy is obviously improved. As can be seen from the chart, when the threshold of
WHRUC and GRAPES_3 km exceeds 50 mm, the sample of the heavy precipitation forecast
is almost zero. BIAS and TS scores are the lowest. While the TS score of the QPF and
Blending forecast is close to 0.3, the BIAS value is close to 1. The accuracy of each forecast
shows a downward trend with the increase in time. The WHRUC forecast BIAS value
gradually increases and the overall predicted value is close to the actual value. The other
predicted BIAS value gradually decreases and the overall forecast value shows a trend
from high to low. It can be seen from the chart that the effect of the Blending forecast with
different thresholds in 1~2 h is better than those of other forecasts. The effect of the 2~3 h
forecast is similar to that of QPF, which is better than those of the other forecasts especially
in the heavy precipitation forecast.

Figure 6b,d,f show Taylor diagrams. They show the standard deviation, rmse, and
correlation coefficient of both observed and predicted data, respectively. The graph is
a polar coordinate system where the radius r represents the standard deviation of the
observation or forecast data itself. The value of the correlation between prediction and
observation can be determined according to the blue ray (dotted line) in the graph and the
scale value on the outermost circle arc. The green arc (dashed line) represents the concentric
circle around the observation data and its radius represents the rmse of the forecast data.
The standard deviation reflects the discrete degree of the precipitation data set and rmse
indicates the degree to which the predicted precipitation deviates from the observed value.
It can be seen that the standard deviation of the Blending forecast is closest to the actual
situation in the forecast of 0~1 h. With the increase in the forecast time, the standard
deviation of the Blending forecast increases at first and then decreases. The discretization
degree of the precipitation data set is closer to reality than those of other models. The
correlation coefficient of the Blending forecast decreases with the increase in prediction
time, which is higher than those of other models. The rmse value of the Blending forecast
in 0~1 h is smallest compared to those of other models and the deviation in the predicted
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precipitation from the observed value is smallest. With the increase in failure, the rmse
value is basically the same.

 
 

(a) (b) 

 
 

(c) (d) 

 
 

(e) (f) 

Figure 6. Comparative Analysis of Comprehensive performance (0~1 h (a), 1~2 h (c), 2~3 h (e)) and
Taylor Chart (0~1 h (b), 1~2 h (d), 2~3 h (f)) of different prescription modes.
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The statistical observation and forecast represent the number of samples of various
categories. The frequency statistics in Figure 7a–c are drawn in the form of a histogram.
The abscissa is the value category of the precipitation sample and the ordinate is the sample
proportion. The observed and predicted values are sorted from small to large, respectively,
and the two groups of data after sorting are drawn into a frequency matching relation in
Figure 7d–f, with the abscissa as the predicted value and the ordinate as the observed value.
From the frequency matching mapping diagram, it can be seen that the prediction results
of WHRUC and GRAPES_3 km are smaller than the actual observations. The observed
values of 0~1 h prediction results are lower than 100 mm. GRAPES_3 km is closer to the
reality than WHRUC is. The QPF and Blending forecast 0–1 h are larger than the actual
observation, the Blending forecast result is closer to reality, 1~2 h and 2~3 h are smaller
than the actual observation, and the QPF prediction effect is closer to reality. Generally, the
prediction effect of the QPF and Blending is better than that of WHRUC and GRAPES_3 km.

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 7. Comparison of frequency statistics (a–c) and matching mapping (d–f) of different time-effect
prediction methods.

5.2.2. Spatial Contrast Test

Figure 8 shows the spatial distribution of errors of the four forecasting methods. The
point-to-point errors between the predicted results and the actual results of all grid points
are calculated. For a grid point, the samples with different starting times and prediction
times are tested together. The size of the error on the site is represented by the color of the
site and the absolute value of the error is represented by the area of scattered dots. The
larger the area, the greater the error. The site with large errors is highlighted by setting the
site size. It can be seen that the precipitation intensity predicted by WHRUC is obviously
smaller than those of other methods and the precipitation error is obviously larger.

Grid data are used for target recognition and the recognition steps include the fol-
lowing: (1) select a disk convolution kernel with a radius of smooth = 5, and convolution-
smooth the observation field and the prediction field; (2) set threshold to 5 and set the
grid value of the smoothed value to less than threshold, 0; (3) identify the targets in the
observation and prediction field by the connected domain extraction algorithm; (4) set
minsize = 100 and delete targets whose area (number of grid points) in the forecast or
observation field is less than minsize; (5) judge the closeness between two targets and take
the maximum value of multiple closeness. Merge the corresponding two targets if it is
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greater than near_rate; (6) repeat step 5 until the closeness between all pairwise targets is
less than the termination of the near_rate algorithm.

 
(a) (b) (c) 

 
(d) (e) (f) 

 
(g) (h) (i) 

 
(j) (k) (l) 

Figure 8. From 04:00 (Beijing time) on 12 August 2021, the error spatial distribution maps of the 0–3 h
radar-extrapolated precipitation forecast (a–c), WHRUC model forecast (d–f), GRAPES_3 km model
forecast (g–i), and Blending forecast (j–l).

Figure 9 shows the hourly target recognition results of different prediction methods for
0~3 h. It can be seen that the ellipses identified and matched by MODE can basically reflect
the scale and shape of convective storms. It can be used as a basis for model evaluation.
Three target objects, which are completely consistent with the actual precipitation area, are
identified by the target object method. Table 2 shows the number of targets matched (hit),
missed, and empty.
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(a) (b) (c) (d) 

  
(e) (f) (g) (h) 

  
(i) (j) (k) (l) 

  
(m) (n) (o) (p) 

  
(q) (r) (s) (t) 

  
(u) (v) (w) (x) 

Figure 9. From 04:00 (BT) on 12 August 2021, the live observation (a,c,e,g,i,k,m,o,q,s,u,w), the
0~3 h radar-extrapolated precipitation forecast (b,j,r), the WHRUC model forecast (f,n,v), the
GRAPES_3 km model forecast (d,l,t), and the Blending forecast (h,p,x) target recognition results.
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Table 2. Statistics of target matching results.

Hits Misses Fales Correct Negatives

0–1 h
WHRUC 2 3 2 96

GRAPES_3 km 3 2 2 90
BLEND 3 1 1 52

1–2 h
WHRUC 1 3 3 98

GRAPES_3 km 2 3 2 91
BLEND 3 1 2 70

2–3 h
WHRUC 2 3 3 105

GRAPES_3 km 2 4 2 109
BLEND 5 1 1 89

Two classification test indexes are calculated for inspection, scoring, and evaluation
(Figure 10a) based on the attribute information of the identified target, and the specific
prediction of the model is obtained. Figure 10b shows the intensity error (A), distance
error (L), and structure error (S) of the SAL test. It can be seen that the prediction ability of
GRAPES_3 km for the intensity of the 0~1 h rain areas is better than those of location and
shape. The prediction ability of rainfall intensity is larger with the passage of time. The
prediction ability of the WHRUC model is worse compared to those of other models and the
prediction of precipitation intensity is obviously smaller. The rain area and rainfall intensity
forecast of the Blending forecast are close to the actual situation. The rain intensity error also
fluctuates due to the influence of the GRAPES_3 km model. On the whole, the Blending
forecast integrates the advantages and disadvantages of the model and extrapolation
forecast. It can grasp the precipitation area forecast of the system and the forecast ability of
rainfall intensity improves.
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Figure 10. Target matching evaluation (a) and SAL test of different forecasting methods (b).

According to the scoring results in Table 3, the Blending forecast has the highest score
for the actual goal of 1 and the area scores of 0~3 h are 0.88, 0.79, and 0.88, respectively,
which are higher than those of the GRAPES_3 km model. The Blending forecast is obviously
superior in the area score of identifying targets in terms of area ratio and overlap area ratio.
The position score of the two models in 0~3 h is 1 and there is basically no deviation from
the predicted center of gravity of target 1. The centroid distance of the 1~2 h Blending
forecast is 0.1, which is less than the centroid distance predicted by GRAPES_3 km at the
same time. The hourly axial angle differences of the two prediction methods are 1.2, 7.5, and
0, respectively, while those of the Blending forecasts are 3.1, 6.9, and 1.6, respectively, which
are all less than 10◦. The score of ellipticity is 1, except that predicted by GRAPES_3 km
for 2~3 h and the difference between the ellipticity and real object is less than 0.1. The
intensity score is calculated based on the precipitation intensity of the 50% quantile and the
values are both 1. The precipitation intensity predicted by the two methods is consistent
with the actual precipitation grade. From the intensity difference, it can be seen that
GRAPES_3 km is small and the Blending forecast is larger. However, the deviation is
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obviously less than that of GRAPES_3 km. Generally, the score of the Blending forecast is
significantly higher than that of GRAPES_3 km for the forecast of goal 1. The target object
test method not only gives the evaluation of area, location, shape, and the extreme value of
the precipitation center, but also analyzes the forecast performance of heavy precipitation
in terms of precipitation area and precipitation intensity, which provides the scientific
calculation and test results for forecasters and can mine more valuable information from
failed forecast cases.

Table 3. Comprehensive test of target attributes.

0–1 h 1–2 h 2–3 h

GRAPES
_3 km

BLEND
GRAPES

_3 km
BLEND

GRAPES
_3 km

BLEND

Obs Pre Obs Pre Obs Pre Obs Pre Obs Pre Obs Pre

Spindle length 2.8 2.6 2.6 2.8 2.4 2.4 3.0 3.1 1.9 2.7 1.9 2.1
Spindle inclination angle 1.6 1.3 2.0 2.0 1.6 1.5 1.6 1.6 1.4 1.3 1.4 1.4
Rectangular window(x0) 17.8 18.9 9.9 6.9 17.7 25.2 19.6 12.7 16.1 16.1 16.1 17.7
Rectangular window(y0) 111.1 111.4 110.1 109.4 111.5 112.0 111.1 111.0 111.8 111.8 111.8 112.0
Rectangular window(x1) 29.9 29.8 30.1 30.0 30.0 29.8 29.0 29.9 29.9 30.0 30.0 30.0
Rectangular window(y1) 114.4 114.5 115.6 117.2 114.3 114.5 109.9 114.2 115.2 115.1 114.7 114.6

Centroid(x) 30.9 30.9 31.0 30.9 30.9 31.0 30.9 30.8 30.9 30.9 30.9 30.8
Centroid(y) 112.9 112.9 112.7 112.8 112.9 113.1 112.9 113.0 113.1 113.2 113.1 113.2

Area 30.2 30.3 30.2 30.2 30.3 30.4 30.3 30.3 30.4 30.3 30.4 30.4
Median intensity 1.5 1.3 1.4 1.5 1.4 1.0 1.5 1.7 1.4 1.2 1.4 1.5

Strength difference 28.2 23.1 24.7 26.1 28.8 20.2 28.0 29.8 26.9 25.0 26.9 28.3
Centroid distance −5.1 1.4 −8.6 1.8 −1.9 1.4
Angle difference 0.1 0.1 0.2 0.1 0.1 0.1

Area ratio 1.2 3.1 7.5 6.9 0 1.6
Overlap area ratio 0.9 0.9 0.7 0.9 0.9 1.0

Area score 0.7 0.8 0.4 0.8 0.7 0.8
Location score 0.79 0.88 0.64 0.79 0.78 0.88

Median intensity 1 1 1 1 1 1
Axial Angle score 1 1 1 1 1 1
Ellipticity score 1 1 1 1 0.61 1
Intensity score 1 1 1 1 1 1
Total goal score 0.94 0.96 0.89 0.94 0.90 0.96

In a plane field, the values of two points in different positions are different and the
difference between them usually increases with the increase in distance. The variogram is
used to detect whether the above increasing trend in the prediction field is consistent with
that in the observation field. Figure 11 shows the variation chart with a grid number of
10 in east–west and south–north trends. It can be seen from the above variation diagram
that the larger the number of translation grids, the lower the coincidence of grid field before
and after translation. The variation predicted by QPF and BLEND is smaller than that in
the south–north direction, which is basically consistent with the actual observation. This is
consistent with the fact that the north–south gradient of the temperature field is greater
than that of the east–west gradient. WHRUC and GRAPES_3 km predict that the variation
in the east–west direction is similar to that in the north–south direction. In addition, it
is impossible to directly identify the slight deviation between the forecast and the actual
situation when the observation and prediction are close. It is necessary to further test the
variation range of the variation with distance.

Figure 12 shows the amplitude of change before and after the grid translation of
different prediction methods. The maximum number of grid points of horizontal and
vertical translation is the upper half of the graph, which is the average value (thick real
line) of the variation value of elements in a certain interval. Further statistics are made of
the standard deviation of the variation value in the same distance interval and the average
value is added (minus) to the standard deviation in two dotted lines on the top (bottom) of
the graph, which is used to represent the approximate range of the variation value. The
lower part is the statistics sample number, which is used to calculate the variation. The
result corresponding to a moving mode is recorded as one. In the above example, the
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maximum distance of the horizontal and vertical translation is set to 100. The translation
step is set to 5 and the types of horizontal and vertical movement are both 41. The total
movement mode is 41 × 41 = 1681. It can be seen from the figure that the change range of
the BLEND forecast grid before and after translation is closer to reality.

 
(a) 

 
(b) (c) 

 
(d) (e) 

Figure 11. Comparative analysis of precipitation variation maps predicted by live product (a), radar-
extrapolated precipitation forecast (b), WHRUC model forecast (c), GRAPES_3 km model forecast
(d), and Blending forecast (e).
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Figure 12. Comparative analysis of the variation range of precipitation variation with distance
predicted by different forecasting methods.

6. Conclusions and Prospects

In this paper, the prediction abilities of the Radar Extrapolation Forecast (REF),
WHRUC, GRAPES_3 km, and Blending are compared and analyzed by using traditional
point-to-point evaluation and the new spatial test method. The conclusions are as follows:

(1) The comprehensive application of various evaluation methods can evaluate the
convective storm forecast more comprehensively. By using the point-to-point scoring
method, for the forecasts with different time limits, the shorter the time effect is, the better
the prediction effect is. The Blending forecast effect of 1~2 h is obviously better than that of
other models, and that of 2~3 h is similar to that of QPF and better than those of the others,
especially in the heavy precipitation forecast.

(2) The new spatial test method can evaluate the prediction effect of convective storm
features. The precipitation intensity of Blending is larger than those of other models. The error
is smallest and the target recognition hit rate is highest. The scores of target area, position,
shape, and median intensity of precipitation are better than those of other forecasts.

(3) The variation in the Blending-identified target in the east–west direction is less than
that in the north–south direction, which is basically consistent with the actual observation, and
the variation range of the forecast grid before and after translation is the closest to the reality.

It can be seen that Blending is obviously better than the single forecast, especially in
the heavy precipitation echo forecast, and plays a positive role in the convective forecast.
Blending technically has an important operational reference value for the 0~3 h quantitative
precipitation forecast. The Blending method combines the advantages and disadvantages
of NWP and EP, which can not only grasp the precipitation area forecast of the system
but also improve the prediction ability of rainfall intensity. The traditional point-to-point
scoring method and the new spatial test method have the same conclusion to the convective
storm forecast of the high-resolution model, which has a certain reference value, and the
new spatial test method can provide more detailed evaluation information.
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Abstract: Radar reflectivity data snapshot fine-grained atmospheric variations that cannot be repre-
sented well by numerical weather prediction models or satellites, which poses a limit for nowcasts
based on model–data fusion techniques. Here, we reveal a multiscale representation (MSR) of the
atmosphere by reconstructing the radar echoes from the Weather Research and Forecasting (WRF)
model simulations and the Himawari-8 satellite products using U-Net deep networks. Our recon-
structions generated the echoes well in terms of patterns, locations, and intensities with a root mean
square error (RMSE) of 5.38 dBZ. We find stratified features in this MSR, with small-scale patterns
such as echo intensities sensitive to the WRF-simulated dynamic and thermodynamic variables and
with larger-scale information about shapes and locations mainly captured from satellite images. Such
MSRs with physical interpretations may inspire innovative model–data fusion methods that could
overcome the conventional limits of nowcasting.

Keywords: deep learning; multiscale representation; model–data fusion

1. Introduction

Meteorological forecasts at the convective scale are crucial to mitigate environmental
hazards such as storms and floods that cause huge socioeconomic damages, but face fun-
damental challenges in representing the convective weather regime in numerical weather
prediction (NWP) models, which is a less-known “gray zone” compared to the relatively
well-resolved synoptic-scale systems [1,2]. Radar is an invaluable instrument to scan the
convective atmosphere in nearly real time. The extrapolations of these sequential radar
echo data can provide state-of-the-art nowcasts of precipitation patterns and severe weather
events within a few hours based on the persistence principle [3–5]. However, these radar
echo data are snapshots of the complex atmosphere with fine-grained details but not read-
ily related to the dynamics of the atmosphere and the information from remote sensing
satellites. This lack of representation of the dynamical and global atmospheric information
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poses a limit for convective nowcasting. For instance, when combining extrapolation-based
methods with the dynamical information from NWP model simulations [6,7], the forecast
skill in general decreases rapidly in the first forecast hour and remains low beyond a few
forecast hours [8,9], despite advances in convective-permitting modeling [10], radar and
satellite data assimilation [9,11,12] and high-resolution observations [13].

The representation gap, particularly when model–data fusion is to be conducted, is
difficult to bridge [14,15]. Representing processes related to turbulence, convection, and
topography is challenging for numerical models in gray zones [16]. Parameterizing and
resolving the atmospheric motions in grid spacing for deep convection (1–10 km) and turbu-
lence (0.1–1 km) requires ponderation and in-depth explorations [17–19]. The precipitation
and storms observed using radar and satellites are among the most difficult to simulate,
which is a consequence of the intertwined consecutive physical processes of NWPs with
multiplicative error propagations [20]. Convective-scale NWPs also have fundamental
theoretical challenges such as the mathematical characteristics of the underlying partial
differential equations as well as the predictability and probability issues related to the
nonlinear dynamics of the convective systems with effective dimensions much higher than
those of the balanced synoptic systems [1]. It has long been recognized that the convective
atmospheric motions are of multiscale interactions [19,21–23]. Currently, the first-principle
multiscale formulation is beyond the traditional NWP modeling paradigm. In addition, a
representation gap exists between satellite images and radar data. Geostationary satellites
observe cloud evolution from a global perspective [24], but they are limited to detecting
cloud tops and hardly probe the internal structure of clouds.

Deep learning (DL) has recently emerged as a general data-driven technology to rep-
resent the spatiotemporal features that cross multiple scales and are not captured well by
geophysical models [25]. DL techniques can explore the rich patterns in radar data with
deep networks of neurons and improve the precipitation nowcasting skill [26]. Numerous
DL applications for the convective atmosphere have been proposed, ranging from radar- or
satellite-based nowcasting [27–30] to reconstructions of radar data from satellites [31–33].
However, there are few applications aiming at bridging the representation gap for the fusion
between radar data, satellite images, and NWP simulations. Accordingly, it remains largely
unexplored how the deep networks represent the convective atmosphere. In addition, these
deep networks are usually considered black boxes with limited physical interpretations.
Here, we attempt to retrieve the deep network representations by reconstructing the radar
reflectivity data from NWP simulations and satellite observations and then probe the struc-
ture of the obtained representations by diagnosing their relations with physical quantities
such as NWP variables and satellite images. This attempt aims to reveal the potential of
data-driven DL models to bridge the representation gaps between multiscale multi-source
data. Hopefully, this potential of multiscale representation with investigations of phys-
ical interpretations could make the DL models more transparent and inspire innovative
model–data fusion methods that could overcome the conventional limits of nowcasting.

2. Data and Methods

The study area is the Beijing–Tianjin–Hebei (BTH) region ([36◦N, 113◦E] × [43◦N,
120◦E]), which is vulnerable to floods caused by heavy summer precipitation. The study
period is from June to September for the years 2015 and 2016, when precipitation is more
frequent over this region.

2.1. Radar Echo Data

Radar reflectivity data are collected from six Doppler radars that sufficiently cover
the BTH region from the Chinese new generation weather radar network (ChIna New
generation doppler weather RADar, CINRAD), with four radars of type CINRAD/SA lo-
cated in Beijing, Tanggu, Shijiazhuang, Qinhuangdao, and two radars of type CINRAD/CB
located in Zhangjiakou and Chengde, respectively (Figure S1a). The SA and CB Doppler
radars are S-band radars and C-band radars, respectively. The collected radar echo data are
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interpolated from plan position indicators (PPIs) to constant altitude PPIs (CAPPIs) with a
vertical linear interpolation method [34,35]. Then, the radar data in the polar coordinate
are mapped onto 0.01◦ × 0.01◦ Cartesian grids using the nearest neighbor interpolation
method. After that, the data from different radars around the same time (e.g., within 3 min)
are combined, and maximum values are preserved for overlapped grid cells. The resulting
radar echo data have a temporal resolution of 6 min. The combined radar data are then
smoothed and filtered using a convolution threshold method [36,37]. We calculate the
maximum radar data based on CAPPIs at 1500 m, 2000 m, 2500 m, 3000 m, and 3500 m
above sea level, a typical range of elevations around the level of free convection where
convection develops actively.

2.2. Numerical Model Simulations

The Weather Research and Forecasting (WRF) model [38] is used as a convection-
permitting modeling system over the BTH region with three nested domains at horizontal
resolutions of 9, 3, and 1 km, respectively (Figure S1b). By switching off the cumulus
parameterization of the inner two nested domains, convections are explicitly resolved
in this setting. Detailed configuration is listed in Table 1. We run a 36 h simulation at
a temporal resolution of 30 min, beginning at 12:00 UTC each day with the first 12 h of
simulations as spin-ups. The remaining 24 h of simulations of the innermost domain are
used to provide the meteorological input for deep networks. The initial and boundary
conditions for the simulations are provided by the NCAR/NCEP 1◦ × 1◦ reanalysis data.
We compare the simulations with weather station observations (Table S1) and verify that
the performance on most selected meteorological factors is close to those in other state-
of-the-art WRF studies [39,40]. We select 14 daily simulated variables commonly used
in convective nowcasting from three categories (i.e., dynamic variables, thermodynamic
variables, and moisture-related variables) to build the dataset for learning, such as the three
components of wind velocity (U, V, W), K index (K), water vapor mixing ratio (WVMR), and
relative humidity (RH). Five of the fourteen variables are three-dimensional and extracted
from the pressure levels of 850 hPa, 700 hPa, and 500 hPa, generally around the elevations
of the radar echo data. The other nine variables are two-dimensional. Therefore, the input
data from WRF simulations have 24 channels (5 × 3 + 9 = 24). Detailed information about
all the selected variables can be found in Table S2. These variables are mapped onto the
same grid of radar data using a linear interpolation method.

Table 1. Parameterization schemes used in WRF simulations.

Process Parameterization Scheme

Microphysics WSM3 [41]
Longwave radiation RRTM [42]
Shortwave radiation Dudhia [43]

Surface layer Revised MM5 Monin–Obukhov [44]
Surface physics Unified Noah land surface [45]

Planetary boundary layer YSU [46]
Cumulus Modified Tiedtke [47] (only for the outermost domain)

2.3. Geostationary Satellite Images

Five infrared bands (5th, 8th, 13th, 15th, and 16th) of data are collected from the
Himawari-8 geostationary satellite products. These satellite images can provide global
information on cloud properties such as phases and heights (Table 2) with high spa-
tiotemporal resolution (2 km and 10 min) [48]. We also extract the deep convective cloud
classification (CCC) data from the Himawari-8 cloud type products by assigning 1 to the
grids of the deep convective cloud and 0 to the grids of other cloud types. Therefore,
we obtain 6-channel input data from the Himawari-8 satellite products. All the satellite
products are remapped in a way similar to the mapping of the WRF variables.
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Table 2. Descriptions of the selected Himawari-8 satellite images.

Band Number Central Wavelength (μm) Concerned Physical Properties

5 1.6 Cloud phases

8 6.2 Middle and upper tropospheric
humidity

13 10.4 Clouds and cloud top
15 12.4 Clouds and total water
16 13.3 Cloud heights

Note. Himawari-8 satellite images listed above were supplied by the P-Tree System, Japan Aerospace Exploration
Agency (JAXA).

2.4. Data Preprocessing

We have obtained 30-channel input data from the WRF simulations and the Himawari-
8 satellite products, and 1-channel labels from the radar echo data on the common grid of
0.01◦ × 0.01◦ over the BTH region (i.e., 700 × 700 horizontally). We first match the input
data with labels for the same time and form a dataset of 2647 samples. We then use the
min–max normalization to scale each channel of data in the dataset to be in the range of [0,
1], where the maximum value for the radar echo data is set at 70 dBZ, so that the effect of
outliers can be suppressed. Moreover, we fill in missing or invalid values with 0 for the
normalized dataset.

2.5. Deep Network Model

We adopt a U-Net for the representation learning of the radar echo data (Figure 1).
The U-Net deep network is a convolutional neural network (CNN) variant originating
from biomedical image segmentation [49] and is here repurposed for a regression task as in
many previous studies [31,33,50,51]. It preserves the hierarchical convolutional structure
of a CNN in its left contracting path, and uses upsampling operations in successive layers
to form a right expansive path. Consequently, the network has a ‘U’ shape, hence its name.
The U-Net is an encoder–decoder network architecture that allows the end-to-end learning
of multiscale features and outputs with desired dimensions (i.e., 700 × 700 in this study).
In general, early layers in the contrasting path learn small-scale features such as textures
and edges, whereas deep layers learn large-scale features such as semantic information.
The U-Net is equipped with so-called skip connections that perform identity mappings
of low-level features from the contrasting path (encoder) to the expansive path (decoder)
at corresponding levels. The U-Net combines large-scale information with small-scale
information brought by the skip connections for reconstructing the data from the learnt
multiscale features. Such a network architecture and reconstruction process are appealing
for our study on how radar data are represented by deep networks.

Concretely, the U-Net depicted in Figure 1 has eight blocks (Block-As in gray) in the
encoder and eight blocks (Block-Bs in blue) in the decoder, followed by an individual
convolutional block (Block-C in orange). Each Block-A consists of a convolutional layer
followed by a batch normalization layer [52] and a LeakyReLU activation layer. The 1st,
2nd, 4th, 6th, and 7th Block-As convolve the data with 4 × 4 convolution filters with
2 × 2 strides to reduce resolutions, enabling the subsequent layers to detect patterns in
expanded areas. The 3rd Block-A employs 3 × 3 convolution filters with 2 × 2 strides
to produce the output of a certain dimension (i.e., 88 × 88 horizontally). The remaining
Block-As contain 3 × 3 convolution filters with 1 × 1 strides. All convolutional operations
are carried out with a zero padding of size 1. The respective numbers of convolution
filters in the eight Block-As are 36, 72, 144, 288, 288, 288, 288, and 288. Each Block-B in the
decoder section consists of a bilinear upsampling layer, a 3 × 3 convolutional layer, a batch
normalization layer, and a LeakyReLU activation layer, except for the 8th Block-B, which
does not have the LeakyReLU activation layer. The respective numbers of convolution
filters in eight Block-Bs are 288, 288, 288, 288, 144, 72, 36, and 1. Finally, an individual
Block-C is added, which is composed of a 1 × 1 convolutional layer, a 3 × 3 convolutional
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layer, a 1 × 1 convolutional layer, and a ReLU-6 activation layer, which is considered to
facilitate the learning of sparse features [53]. Therefore, the 30-channel input data are
mapped into one-channel radar echo data reconstructions.

 

Figure 1. The U-Net model architecture.

2.6. Training

Since we do not optimize the hyperparameters of the U-Net, we divide the dataset
(2647 samples) in time order only into a training set (the first ~90%, 2387 samples) and a test
set (the remaining 260 samples). We employ two types of loss functions for training (that
is, the objective function penalizing the discrepancy between the radar echo observations
and the reconstructions generated by the U-Net). The first type is the mean square error
(MSE), and we denote the resulting network of this type as UNet-MSE. The second type
of loss function is the echo-weighted mean square error (EWMSE), with larger weights
assigned to grid cells of higher echo intensity [28]. The resulting network of this type is
denoted as UNet-EW. The calculations of the MSE and the EWMSE can be found in Text
S1. The U-Net models are trained using the stochastic gradient descent (SGD) with the
momentum algorithm [54] (momentum = 0.9) with batch size 8. The initial learning rate
is set as 1 × 10−5. The U-Net model is trained until the loss function shows no reduction
on the test set for 100 subsequent epochs. We stop the trainings of the UNet-MSE and
the UNet-EW at the 96th and the 92nd epoch, respectively. Since we obtain satisfactory
trained models and the reconstruction accuracy is not our ultimate goal, we do not use
data augmentation for potential improvement.

2.7. Evaluations and Interpretations

The performance of the U-Net reconstructions is evaluated by five indices, namely the
root mean square error (RMSE), the mean error (ME), the critical success index (CSI), the
probability of detection (POD), and the false alarm rate (FAR). RMSE and ME account for
the difference between the reconstructed and observed echo data. CSI and POD measure
the precision of reconstructions, whereas FAR measures the degree of overestimation. All
indices range from 0% to 100%. Ideal CSI and POD values are supposed to approach
100%, whereas ideal FAR values are the opposite. Moreover, structural similarity (SSIM)
is calculated in the following analysis, which quantifies the similarity between the visible
structures of two images. SSIM is a value between −1 (perfect anti-correlation) and +1
(perfect similarity) and a value of 0 indicates no similarity. The calculations of these indices
are detailed in Text S2.

To investigate the physical interpretations of the learnt deep network models, we
propose a sensitivity analysis method inspired by Ankenbrand et al. [55]. We intentionally
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perturb the input data and then diagnose the relationships between the multiscale features
and the input physical quantities by checking the consequences of perturbations on the
reconstructions. Two types of perturbations are considered. First, we flip the input data
from left to right and scale them by multiplying a coefficient. We denote this sensitivity
analysis experiment as SA-a. Second, we evaluate the role of each input quantity by
nullifying it while keeping other input quantities unchanged. This sensitivity analysis
experiment is denoted as SA-b.

3. Results

3.1. Echo Reconstructions

Figure 2 shows the performance of reflectivity data reconstructions with the deep
networks. The UNet-MSE and UNet-EW networks reconstruct the echoes well, with
RMSEs of 4.76 and 5.38 dBZ, respectively. Because most radar echoes are of low intensity,
training with unweighted MSE loss functions will bias towards echoes of low intensity.
The UNet-MSE networks systematically underestimate the echoes, especially those with
high intensity. However, echoes of higher intensity are the most valuable radar signals
that directly observe the precipitation and convective processes. Adding more weights
on intense echoes for training is beneficial for reconstructing richer sparse high intensity
patterns. The reconstructions in this case thus either overestimate or underestimate the
intense echoes, which explains the slight increases in the RMSE and FAR values of the
UNet-EW networks over the UNet-MSE networks. The richer patterns reconstructed by
the UNet-EW networks have better CSI and POD scores, and we will further diagnose their
network structures.

Figure 2. Performance of reflectivity data reconstructions with the (a) UNet-MSE and (b) UNet-EW
networks. The observed and reconstructed echoes are averaged on a 700 × 700 grid over the BTH
region for the test set.

Figure 3 details a case of reconstruction at 09:30 UTC on 10 September 2016 from the test
set. The spatial distribution of clouds from satellite images (Figure 3a) outlines the overall
shape and location of echoes (Figure 3e). By contrast, the WRF-simulated reflectivity data
(Figure 3b) miss a majority of the observed echo distribution. Indeed, the precipitation and
convective processes are among the most difficult to simulate with NWPs. Nevertheless, our
simulations are qualified to represent the general atmospheric conditions (Table S1), so they
can provide dynamic and thermodynamic information for echo reconstruction. Note that
we do not include the WRF-simulated reflectivity data in the input data of the U-Net deep
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networks. Based on the multi-source information, the reconstructions by deep networks
well produce echo patterns, locations, and intensities (Figure 3c,d). Compared with the
UNet-MSE network, the UNet-EW network (Figure 3d) exhibits more precise details such as
clearer edges and high values. Data-driven deep learning techniques effectively reduce the
gap of representation from the NWP simulations and satellite images to the radar echoes and
tend to encode the missing physics in their network weights. Other cases of reconstructions
show similar performances (Figures S3–S9).

Figure 3. A case of reconstruction at 09:30 UTC on 10 September 2016 from the test set. (a) The
satellite image of the 5th band. (b) The WRF-simulated reflectivity data calculated according to [56].
(c) The echo reconstruction by the UNet-MSE network. (d) The echo reconstruction by the UNet-EW
network. (e) The observed radar reflectivity data. The rest of the input data can be found in Figure S2.

3.2. Multiscale Representation

The multiple layers of features encoded in the contracting path of U-Net are visualized
in a naïve way [57]. In this way, a multiscale representation (MSR) of the radar data can be
revealed and analyzed. Figure 4 exemplifies such an MSR for the reconstruction case in
Figure 3. The multiscale features of the radar echo data appear to be automatically stratified
in the multi-layer hierarchical structure of the U-Net, and are especially manifested in the
deeper part, indicating the greater capacity of deep networks than shallow networks to
represent multiscale high-dimensional relationships among multi-source data (e.g., [58,59]).
Apart from the first layer with mostly texture-like information, the locations of echo
signals (upper left triangles in Figure 4) are recognized in all subsequent layers and largely
correspond to the cloud locations from satellite images. The location-aware ability of U-Net
is one of the key factors for its success in image segmentation. The small-scale features in
the shallow layers (first–third) still demonstrate no clear echo patterns. These small-scale
features such as the echo intensities (hexagons in Figure 4) as well as larger-scale features
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like the echo shapes (ellipses in Figure 4) emerge in the middle layers (fourth–sixth). The
shapes are more visibly related to the satellite images, whereas the sources of intensities
need further investigation (see Section 3.3). The features in the deepest layers (seventh and
eighth) are rather global descriptions of echoes and may have some semantic meanings.
MSRs for other reconstruction cases manifest similar stratifications (see Figures S10–S16 for
more examples).

Figure 4. A multiscale representation of the radar echo data at 09:30 UTC on 10 September 2016. The
UNet-EW deep network is used for the reconstruction of echo data. Only parts of the input data
for this reconstruction are presented. Hidden features at each hidden layer are averaged along the
channel dimension.

3.3. Physical Interpretations of the MSR

We further investigate the physical interpretations of the MSR through sensitivity analy-
sis. The SA-a experiments assess the overall contributions of the WRF simulations and satellite
images to reconstructions by flipping or attenuating these different sets of input data. Figure 5
shows the resulting diverse reconstructions, where the CSI and SSIM of reconstructions of
this case and over the test set are calculated. When all input data are flipped, the recon-
struction flips accordingly (Figure 5a), but does not yield a perfect flipping of the original
reconstruction (Figure 5i). This indicates that factors other than the input data (e.g., the
topographic conditions) may also play a role in the spatial distribution of the reconstructions.
The echo shapes and locations are much more influenced by the satellite images (Figure 5b,
SSIM = −0.07) than by the WRF simulations (Figure 5c,g,h with higher SSIM). Moreover,
this influence is mainly related to the spatial distribution of the satellite images rather than
changes in magnitude (Figure 5e,f). Concerning the echo intensities, the representation is
much more sensitive to the WRF simulations (Figure 5g,h, especially in Figure 5h CSI =
0.26 and CSI-Test = 0.17) than to the satellite images (Figure 5e,f). This sensitivity appears
to depend more on the value than on the spatial distribution of the simulations (Figure 5c).
Other cases of reconstructions have similar interpretations (Figures S17–S23).
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Figure 5. Reconstructions of the radar echo data at 09:30 UTC on 10 September 2016 by the UNet-EW
deep network for the SA-a experiments. The perturbations are conducted by (a) flipping all the input
data, (b) flipping only the satellite images, (c) flipping only the WRF simulations, (d) multiplying
all the input data (except for the binary CCC data) by 0.9, (e) multiplying only the satellite images
(except for the binary CCC data) by 0.9 and (f) 0.8, and (g) multiplying only the WRF simulations
by 0.9 and (h) 0.8. Also shown is the (i) original reconstruction without perturbation. CSI/SSIM
and CSI-/SSIM-Test are CSI/SSIM of reconstructions of this case and over the test set, respectively,
compared with radar echo observations.

Figure 6 shows the reconstructions with CSI for the SA-b experiment (see Figures
S24–S30 for more examples). The MSR here is predominantly sensitive to the satellite
images from the 8th and 13th bands of Himawari-8 as well as the WRF-simulated W,
K, and RH. These bands of satellite images provide information on middle and upper
tropospheric humidity and cloud-top properties, respectively. The three dominant WRF
variables describe the vertical motion of the air, the atmospheric instability, and the water
vapor content in the atmosphere. They correspond well with the three key ingredients
for deep convection initiation and evolution, namely lift, instability, and moisture [60].
Therefore, for the current study, the MSR may encapsulate these complex atmospheric
physics in their learnt multiscale features.
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Figure 6. Reconstructions of the radar echo data at 09:30 UTC on 10 September 2016 by the UNet-
EW deep network for the SA-b experiments. Each reconstruction is obtained by setting the listed
physical quantity to zero while keeping other quantities unchanged. CSI and CSI-Test are CSI of
reconstructions of this case and over the test set, respectively, compared with radar echo observations.

4. Summary and Discussions

We have addressed the difficulty of model–data fusion for convective nowcasting with
a representation problem. Deep learning techniques were applied to represent the fine-
grained radar reflectivity data by reconstructing them from the WRF model simulations and
the Himawari-8 satellite products. We learnt a multiscale representation (MSR) of the radar
data using the U-Net deep networks. The MSR manifested a stratification, and the richest
features were in the middle layers. Sensitivity analyses on the retrieved representation
showed that small-scale patterns like echo intensities were more sensitive to the magnitude
of numerical model simulations, whereas larger-scale information about the shapes and
locations was mainly from the spatial distribution of satellite images.

The retrieved multiscale representation takes advantage of the ability of deep learning
techniques [61] to find complex relationships in data, which are otherwise difficult to model
or formulate in traditional approaches, especially when the underlying physics is complex
and multiscale or even unknown. The deep network representation can organize the learnt
features at increasing levels of abstraction from local fine-grained details to global semantic
information [62–64]. Such multiscale representation could inspire innovative methods that
make use of the features in the mapping from numerical model simulations to radar data as
well as in convective nowcasting, where machine learning has been demonstrated to be a
useful tool [65]. Note that multiscale representations can also be obtained using traditional
methods such as wavelets in a more compact manner [64,66]. However, in general, these
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traditional methods require domain expertise for feature extraction and should be combined
with deep learning techniques for automatic end-to-end feature extractions [67,68].

This study has a number of limitations. First, although radar data provide routine
verifications for convection-permitting models [10,69], they are not perfect and can suffer
from various errors [70,71]. Hence, the retrieved multiscale representation may occasionally
fit noise rather than signals. Second, our WRF simulations were configured at a convection-
permitting resolution, but we did not tailor and optimize the WRF configurations and
examine in-depth model–radar comparisons (e.g., [69]), which is not the main objective of
this representation study. Third, we did not test other deep learning techniques such as
CNN variants other than U-Nets or generative deep networks. These deep networks, once
successfully trained, are known to have similar performances [72]. Finally, convective pro-
cesses can vary by regions, so the learnt multiscale representation needs evaluation across
regions, such as considering the role of terrain during training or applying the obtained
representation to different regions. Hence, there is still room for qualitative and quanti-
tative improvement in the accuracy of the reconstructed echo reflectivity. Despite these
limitations, our finding on the functioning and potential of the deep network representation
for convective atmosphere should not be affected.

For now, the proposed representation of radar echo data may not meet the require-
ments of practical convective nowcasting. We consider our attempt as a step towards a deep
network framework of multiscale representation with physical interpretations that relate
the features in hidden network layers with the convective atmosphere. Our sensitivity anal-
yses for physical interpretations have been experimental. It is possible to apply more formal
methods—notably explainable artificial intelligence techniques [62,73–75]—to analyze the
cause-and-effect relationships among radar data, satellite images, and convective dynamics.
The multiscale features with physical interpretations are seldom investigated in radar
data assimilation practices [9,12]. Data assimilation based on multiscale features should
merge with artificial intelligence techniques [76,77] and should be inevitably “deep” in
some sense, either in models [78,79], in data (this study), or in assimilation algorithms [80].
Such deep assimilating techniques may be essential to overcome the conventional limits of
convective nowcasting.
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reconstruction at 00:30 UTC on 4 September 2016 from the test set; Figure S4: A case of reconstruction
at 05:30 UTC on 4 September 2016 from the test set; Figure S5: A case of reconstruction at 08:30
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the test set; Figure S9: A case of reconstruction at 07:30 UTC on 23 September 2016 from the test
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2016; Figure S11: A multiscale representation of the radar echo data at 05:30 UTC on 4 September
2016; Figure S12: A multiscale representation of the radar echo data at 08:30 UTC on 4 September
2016; Figure S13: A multiscale representation of the radar echo data at 08:00 UTC on 10 September
2016; Figure S14: A multiscale representation of the radar echo data at 03:30 UTC on 11 September
2016; Figure S15: A multiscale representation of the radar echo data at 06:30 UTC on 13 September
2016; Figure S16: A multiscale representation of the radar echo data at 07:30 UTC on 23 September
2016; Figure S17: Reconstructions of the radar echo data at 00:30 UTC on 4 September 2016 by the
UNet-EW deep network for the SA-a experiments; Figure S18: Reconstructions of the radar echo
data at 05:30 UTC on 4 September 2016 by the UNet-EW deep network for the SA-a experiments;
Figure S19: Reconstructions of the radar echo data at 08:30 UTC on 4 September 2016 by the UNet-EW
deep network for the SA-a experiments; Figure S20: Reconstructions of the radar echo data at 08:00
UTC on 10 September 2016 by the UNet-EW deep network for the SA-a experiments; Figure S21:
Reconstructions of the radar echo data at 03:30 UTC on 11 September 2016 by the UNet-EW deep
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network for the SA-a experiments; Figure S22: Reconstructions of the radar echo data at 03:30
UTC on 11 September 2016 by the UNet-EW deep network for the SA-a experiments; Figure S23:
Reconstructions of the radar echo data at 07:30 UTC on 23 September 2016 by the UNet-EW deep
network for the SA-a experiments; Figure S24: Reconstructions of the radar echo data at 00:30
UTC on 4 September 2016 by the UNet-EW deep network for the SA-b experiments; Figure S25:
Reconstructions of the radar echo data at 05:30 UTC on 4 September 2016 by the UNet-EW deep
network for the SA-b experiments; Figure S26: Reconstructions of the radar echo data at 08:30
UTC on 4 September 2016 by the UNet-EW deep network for the SA-b experiments; Figure S27:
Reconstructions of the radar echo data at 08:00 UTC on 10 September 2016 by the UNet-EW deep
network for the SA-b experiments; Figure S28: Reconstructions of the radar echo data at 03:30
UTC on 11 September 2016 by the UNet-EW deep network for the SA-b experiments; Figure S29:
Reconstructions of the radar echo data at 06:30 UTC on 13 September 2016 by the UNet-EW deep
network for the SA-b experiments; Figure S30: Reconstructions of the radar echo data at 07:30 UTC
on 23 September 2016 by the UNet-EW deep network for the SA-b experiments; Table S1: Average
evaluation indices comparing hourly WRF simulations and observations; Table S2: Descriptions of
the selected and computed physical quantities from WRF simulations; Text S1: The calculations of
the MSE and the EWMSE; Text S2: The calculations of the evaluation indices.
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