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Preface to ”Short-Term Load Forecasting by Artificial

Intelligent Technologies”

In the last few decades, short-term load forecasting (STLF) has been one of the most important

research issues for achieving higher efficiency and reliability in power system operation, to facilitate

the minimization of its operation cost by providing accurate input to day-ahead scheduling,

contingency analysis, load flow analysis, planning, and maintenance of power system. There are lots

of forecasting models proposed for STLF, including traditional statistical models (such as ARIMA,

SARIMA, ARMAX, multi-variate regression, Kalman filter, exponential smoothing, and so on) and

artificial-intelligence-based models (such as artificial neural networks (ANNs), knowledge-based

expert systems, fuzzy theory and fuzzy inference systems, evolutionary computation models, support

vector regression, and so on). Recently, due to the great development of evolutionary algorithms (EA),

meta-heuristic algorithms (MTA), and novel computing concepts (e.g., quantum computing concepts,

chaotic mapping functions, and cloud mapping process, and so on), many advanced hybridizations

with those artificial-intelligence-based models are also proposed to achieve satisfactory forecasting

accuracy levels. In addition, combining some superior mechanisms with an existing model could

empower that model to solve problems it could not deal with before; for example, the seasonal

mechanism from ARIMA model is a good component to be combined with any forecasting models to

help them to deal with seasonal problems.

This book contains articles from the Special Issue titled “Short-Term Load Forecasting by

Artificial Intelligent Technologies”, which aims to attract researchers with an interest in the research

areas described above. As Fan et al. [1] highlighted, the research trends of forecasting models in

the energy sector in recent decades could be divided into three kinds of hybrid or combined models:

(1) hybridizing or combining the artificial intelligent approaches with each other; (2) hybridizing or

combining with traditional statistical approaches; and (3) hybridizing or combining with the novel

evolutionary (or meta-heuristic) algorithms. Thus, the Special Issue, in methodological applications,

was also based on these three categories, i.e., hybridizing or combining any advanced/novel

techniques in energy forecasting. The hybrid forecasting models should have superior capabilities

over the traditional forecasting approaches, and be able to overcome some inherent drawbacks, and,

eventually, to achieve significant improvements in forecasting accuracy.

The 22 articles in this compendium all display a broad range of cutting-edge topics of the hybrid

advanced technologies in STLF fields. The preface authors believe that the applications of hybrid

technologies will play a more important role in STLF accuracy improvements, such as hybrid different

evolutionary algorithms/models to overcome some critical shortcoming of a single evolutionary

algorithm/model or to directly improve the shortcomings by theoretical innovative arrangements.

Based on these collected articles, an interesting (future research area) issue is how to guide

researchers to employ proper hybrid technology for different datasets. This is because for any analysis

models (including classification models, forecasting models, and so on), the most important problem

is how to catch the data pattern, and to apply the learned patterns or rules to achieve satisfactory

performance, i.e., the key success factor is how to successfully look for data patterns. However, each

model excels in catching different specific data patterns. For example, exponential smoothing and

ARIMA models focus on strict increasing (or decreasing) time series data, i.e., linear pattern, though

they have a seasonal modification mechanism to analyze seasonal (cyclic) change; due to artificial

learning function to adjust the suitable training rules, the ANN model excels only if the historical data
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pattern has been learned, there is a lack of systematic explanation on how the accurate forecasting

results are obtained; support vector regression (SVR) model could acquire superior performance only

with the proper parameters determination search algorithms. Therefore, it is essential to construct an

inference system to collect the characteristic rules to determine the data pattern category.

Secondly, it should assign an appropriate approach to implement forecasting for (1) ARIMA

or exponential smoothing approaches, the only option is to adjust their differential or seasonal

parameters; (2) ANN or SVR models, the forthcoming problem is how to determine the best

parameter combination (e.g., numbers of hidden layer, units of each layer, learning rate; or

hyper-parameters) to acquire superior forecasting performance. Particularly, for the focus of this

discussion, in order to determine the best parameter combination, a series of evolutionary algorithms

should be employed to test which data pattern is most familiar. Based on experimental findings,

those evolutionary algorithms themselves also have merits and drawbacks, for example, GA and IA

are excellent for regular trend data patterns (real number) [2,3], SA excelled for fluctuation or noise

data patterns (real number) [4], TA is good for regular cyclic data patterns (real number) [5], and ACO

is good for integer number searching [6].

It is possible to build an intelligent support system to improve the efficiency of hybrid

evolutionary algorithms/models or to improve them by theoretical innovative arrangements

(chaotization and cloud theory) in all forecasting/prediction/classification applications. Firstly, filter

the original data by the database with a well-defined characteristic set of rules for the data pattern,

such as linear, logarithmic, inverse, quadratic, cubic, compound, power, growth, exponential, etc.,

to recognize the appropriate data pattern (fluctuation, regular, or noise). The recognition decision

rules should include two principles: (1) The change rate of two continuous data; and (2) the

decreasing or increasing trend of the change rate, i.e., the behavior of the approached curve. Secondly,

select adequate improvement tools (hybrid evolutionary algorithms, hybrid seasonal mechanism,

chaotization of decision variables, cloud theory, and any combination of all tolls) to avoid being

trapped in a local optimum, improvement tools could be employed into these optimization problems

to obtain an improved, satisfied solution.

This discussion of the work by the author of this preface highlights work in an emerging area of

hybrid advanced techniques that has come to the forefront over the past decade. These collected

articles in this text span a great deal more of cutting edge areas that are truly interdisciplinary

in nature.
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Abstract: Compared with a large power grid, a microgrid electric load (MEL) has the characteristics
of strong nonlinearity, multiple factors, and large fluctuation, which lead to it being difficult to receive
more accurate forecasting performances. To solve the abovementioned characteristics of a MEL time
series, the least squares support vector machine (LS-SVR) hybridizing with meta-heuristic algorithms
is applied to simulate the nonlinear system of a MEL time series. As it is known that the fruit fly
optimization algorithm (FOA) has several embedded drawbacks that lead to problems, this paper
applies a quantum computing mechanism (QCM) to empower each fruit fly to possess quantum
behavior during the searching processes, i.e., a QFOA algorithm. Eventually, the cat chaotic mapping
function is introduced into the QFOA algorithm, namely CQFOA, to implement the chaotic global
perturbation strategy to help fruit flies to escape from the local optima while the population’s diversity
is poor. Finally, a new MEL forecasting method, namely the LS-SVR-CQFOA model, is established
by hybridizing the LS-SVR model with CQFOA. The experimental results illustrate that, in three
datasets, the proposed LS-SVR-CQFOA model is superior to other alternative models, including
BPNN (back-propagation neural networks), LS-SVR-CQPSO (LS-SVR with chaotic quantum particle
swarm optimization algorithm), LS-SVR-CQTS (LS-SVR with chaotic quantum tabu search algorithm),
LS-SVR-CQGA (LS-SVR with chaotic quantum genetic algorithm), LS-SVR-CQBA (LS-SVR with
chaotic quantum bat algorithm), LS-SVR-FOA, and LS-SVR-QFOA models, in terms of forecasting
accuracy indexes. In addition, it passes the significance test at a 97.5% confidence level.

Keywords: least squares support vector regression (LS-SVR); chaos theory; quantum computing
mechanism (QCM); fruit fly optimization algorithm (FOA); microgrid electric load forecasting (MEL)

1. Introduction

1.1. Motivation

MEL forecasting is the basis of microgrid operation scheduling and energy management. It is
an important prerequisite for the intelligent management of distributed energy. The forecasting
performance would directly affect the microgrid system’s energy trading, power supply planning,
and power supply quality. However, the MEL forecasting accuracy is not only influenced by the
mathematical model, but also by the associated historical dataset. In addition, compared with the large
power grid, microgrid electric load (MEL) has the characteristics of strong nonlinearity, multiple factors,
and large fluctuation, which lead to it being difficult to achieve more accurate forecasting performances.
Along with the development of artificial intelligent technologies, load forecasting methods have

Energies 2018, 11, 2226; doi:10.3390/en11092226 www.mdpi.com/journal/energies1
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been continuously applied to load forecasting. Furthermore, the hybridization or combination of
the intelligent algorithms also provides new models to improve the load forecasting performances.
These hybrid or combined models either employ a novel intelligent algorithm or framework to
improve the embedded drawbacks or apply the advantages of two of the above models to achieve
more satisfactory results. The models apply a wide range of load forecasting approaches and are
mainly divided into two categories, traditional forecasting models and intelligent forecasting models.

1.2. Relevant Literature Reviews

Conventional load forecasting models include exponential smoothing models [1], time series
models [2], and regression analysis models [3]. An exponential smoothing model is a curve fitting
method that defines different coefficients for the historical load data. It can be understood that a series
with the forecasted load time has a large influence on the future load, while a series with the long time
from the forecasted load has a small influence on the future load [1]. The time series model is applied
to load forecasting, which is characterized by a fast forecasting speed and can reflect the continuity
of load forecasting, but requires the stability of the time series. The disadvantage is that it cannot
reflect the impact of external environmental factors on load forecasting [2]. The regression model
seeks a causal relationship between the independent variable and the dependent variables according
to the historical load change law, determining the regression equation, and the model parameters.
The disadvantage of this model is that there are too many factors affecting the forecasting accuracy. It is
not only affected by the parameters of the model itself, but also by the quality of the data. When the
external influence factors are too many or the relevant influent factor data are difficult to analyze,
the regression forecasting model will result in huge errors [3].

Intelligent forecasting models include the wavelet analysis method [4,5], grey forecasting
theory [6,7], the neural network model [8,9], and the support vector regression (SVR) model [10].
In load forecasting, the wavelet analysis method is combined with external factors to establish a
suitable load forecasting model by decomposing the load data into sequences on different scales [4,5].
The advantages of the grey model are easy to implement and there are fewer influencing factors
employed. However, the disadvantage is that the processed data sequence has more grayscale,
which results in large forecasting error [6,7]. Therefore, when this model is applied to load forecasting,
only a few recent data points would be accurately forecasted; more distant data could only be reflected
as trend values and planned values [7]. Due to the superior nonlinear performances, many models
based on artificial neural networks (ANNs) have been applied to improve the load forecasting
accuracy [8,9]. To achieve more accurate forecasting performance, these models and other new or novel
forecasting approaches have been hybridized or combined [9]. For example, an adaptive network-based
fuzzy inference system is combined with an RBF neural network [11], the Monte Carlo algorithm is
combined with the Bayesian neural network [12], fuzzy behavior is hybridized with a neural network
(WFNN) [13], a knowledge-based feedback tuning fuzzy system is hybridized with a multi-layer
perceptron artificial neural network (MLPANN) [14], and so on. However, these ANNs-based models
suffer from some serious problems, such as trapping into local optimum easily, it being time-consuming
to achieve a functional approximation, and the difficulty of selecting the structural parameters of a
network [15,16], which limits its application in load forecasting to a large extent.

The SVR model is based on statistical learning theory, as proposed by Vapnik [17]. It has a
solid mathematical foundation, a better generalization ability, a relatively faster convergence rate,
and can find global optimal solutions [18]. Because the basic theory of the SVR model is perfect
and the model is also easy to establish, it has attracted extensive attention from scholars in the load
forecasting fields. In recent years, some scholars have applied the SVR model to the research of
load forecasting [18] and achieved superior results. One study [19] proposes the EMD-PSO-GA-SVR
model to improve the forecasting accuracy, by hybridizing the empirical mode decomposition (EMD)
with two particle swarm optimization (PSO) and the genetic algorithm (GA). In addition, a modified
version of the SVR model, namely the LS-SVR model, only considers equality constraints instead of
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inequalities [20,21]. Focused on the advantages of the LS-SVR model to deal with such problems,
this paper tries to simulate the nonlinear system of the MEL time series to receive the forecasting values
and improve the forecasting accuracy. However, the disadvantages of the SVR-based models in load
forecasting are that when the sample size of the load is large, the time of system learning and training
is highly time-consuming, and the determination of parameters mainly depends on the experience of
the researchers. This has a certain degree of influence on the accuracy in load forecasting. Therefore,
exploring more suitable parameter determination methods has always been an effective way to improve
the forecasting accuracy of the SVR-based models. To determine more appropriate parameters of the
SVR-based models, Hong and his colleagues have conducted research using different evolutionary
algorithms hybridized with an SVR model [22–24]. In the meantime, Hong and his successors have also
applied different chaotic mapping functions (including the logistic function [22,23] and the cat mapping
function [10]) to diversify the population during modeling processes, and the cloud theory to make
sure the temperature continuously decreases during the annealing process, eventually determining the
most appropriate parameters to receive more satisfactory forecasting accuracy [10].

The fruit fly optimization algorithm (FOA) is a new swarm intelligent optimization algorithm
proposed in 2011, it searches for global optimization based on fruit fly foraging behavior [25,26].
The algorithm has only four control parameters [27]. Compared with other algorithms, FOA has
the advantages of being easy to program and having fewer parameters, less computation, and high
accuracy [28,29]. FOA belongs to the domain of evolutionary computation; it realizes the optimization
of complex problems by simulating fruit flies to search for food sources by using olfaction and vision.
It has been successfully applied to the predictive control fields [30,31]. However, similar to those
swarm intelligent optimization algorithms with iterative searching mechanisms, the standard FOA
also has drawbacks such as a premature convergent tendency, a slow convergent rate in the later
searching stage, and poor local search performance [32].

Quantum computing has become one of the leading branches of science in the modern era due to
its powerful computing ability. This not only prompted us to study new quantum algorithms, but also
inspired us to re-examine some traditional optimization algorithms from the quantum computing
mechanism. The quantum computing mechanism (QCM) makes full use of the superposition and
coherence of quantum states. Compared with other evolutionary algorithms, the QCM uses a
novel encoding method—quantum bit encoding. Through the encoding of qubits, an individual
can characterize any linear superposition state, whereas traditional encoding methods can only
represent one specific one. As a result, with QCM it is easier to maintain population diversity than
with other traditional evolutionary algorithms. Nowadays, it has become a hot topic of research
that QCM is able to hybridize with evolutionary algorithms to receive more satisfactory searching
results. The literature [33] introduced QCM into genetic algorithms and proposed quantum derived
genetic algorithm (QIGA). From the point of view of algorithmic mechanism, it is very similar to the
isolated niches genetic algorithm. Han and Kim [34] proposed a genetic quantum algorithm (GQA)
based on QCM. Compared with traditional evolutionary algorithms, its greatest advantage is its
better ability to maintain population diversity. Han and Kim [35] further introduced the population
migration mechanism based on ure [34], and renamed the algorithm a quantum evolution algorithm
(QEA). Huang [36], Lee and Lin [37,38], and Li et al. [39] hybridized the particle swam optimization
(PSO) algorithm, Tabu search (TS) algorithm, genetic algorithm (GA), and bat algorithm (BA) with the
QCM and the cat mapping function, and proposed the CQPSO, CQTS, CQGA, and CQBA algorithms,
which were employed to select the appropriate parameters of an SVR model. The results of the
application indicate that the improved algorithms obtain more appropriate parameters, and higher
forecasting accuracy is achieved. The above applications also reveal that the improved algorithm,
by hybridizing with QCM, could effectively avoid local optimal position and premature convergence.

1.3. Contributions

Considering the inherent drawback of the FOA, i.e., suffering from premature convergence,
this paper tries to hybridize the FOA with QCM and the cat chaotic mapping function to solve the

3
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premature problem of FOA. Eventually, determine more appropriate parameters of an LS-SVR model.
The major contributions are as follows:

(1) QCM is employed to empower the search ability of each fruit fly during the searching processes
of QFOA. The cat chaotic mapping function is introduced into QFOA and implements the chaotic
global perturbation strategy to help a fruit fly escape from the local optima when the population’s
diversity is poor.

(2) We propose a novel hybrid optimization algorithm, namely CQFOA, to be hybridized with an
LS-SVR model, namely the LS-SVR-CQFOA model, to conduct the MEL forecasting. Other similar
alternative hybrid algorithms (hybridizing chaotic mapping function, QCM, and evolutionary
algorithms) in existing papers, such as the CQPSO algorithm used by Huang [36], the CQTS and
CQGA algorithms used by Lee and Lin [37,38], and the CQBA algorithm used by Li et al. [39],
are selected as alternative models to test the superiority of the LS-SVR-CQFOA model in terms of
forecasting accuracy.

(3) The forecasting results illustrate that, in three datasets, the proposed LS-SVR-CQFOA model
is superior to other alternative models in terms of forecasting accuracy indexes; in addition,
it passes the significance test at a 97.5% confidence level.

1.4. The Organization of This Paper

The rest of this paper is organized as follows. The modeling details of an LS-SVR model,
the proposed CQFOA, and the proposed LS-SVR-CQFOA model are introduced in Section 2. Section 3
presents a numerical example and a comparison of the proposed LS-SVR-CQFOA model with other
alternative models. Some insight discussions are provided in Section 4. Finally, the conclusions are
given in Section 5.

2. Materials and Methods

2.1. Least Squares Support Vector Regression (LS-SVR)

The SVR model is an algorithm based on pattern recognition of statistical learning theory. It is
a novel machine learning approach proposed by Vapnik in the mid-1990s [17]. The LS-SVR model
was put forward by Suykens [20]. It is an improvement and an extension of the standard SVR
model, which replaces the inequality constraints of an SVR model with equality constraint [21].
The LS-SVR model converts quadratic programming problem into linear programming solving, reduces
the computational complexity, and improves the convergent speed. It can solve the load forecasting
problems due to its characteristics of nonlinearity, high dimension, and local minima.

2.1.1. Principle of the Standard SVR Model

Set a dataset as {(xi, yi)}N
i=1, xi ∈ Rn is the input vector of n-dimensional system, yi ∈ R is the

output (not a single real value, but a n-dimensional vector) of system. The basic idea of the SVR model
can be summarized as follows: n-dimensional input samples are mapped from the original space to the
high-dimensional feature space F by nonlinear transformation ϕ(·), and the optimal linear regression
function is constructed in this space, as shown in Equation (1) [17]:

f (x) = wT ϕ(x) + b, (1)

where f (x) represents the forecasting values; the weight, w, and the coefficient, b, would be determined
during the SVR modeling processes.

The standard SVR model takes the ε insensitive loss function as an estimation problem for risk
minimization, thus the optimization objective can be expressed as in Equation (2) [17]:

4
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min 1
2 wTw + c

N
∑

i=1

(
ξi + ξ∗i

)

s.t.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
yi − wT ϕ(xi)− b ≤ ε + ξi
wT(xi) + b − yi ≤ ε + ξ∗i

ξi ≥ 0, ξ∗i ≥ 0
i = 1, · · · , N

,
(2)

where c is the balance factor, usually set to 1, and ξi and ξ∗i are the error of introducing the training set,
which can represent the extent to which the sample point exceeds the fitting precision ε.

Equation (2) could be solved according to quadratic programming processes; the solution of the
weight, w, in Equation (2) is calculated as in Equation (3) [17]:

w∗ =
N

∑
i=1

(αi − α∗i )ϕ(x), (3)

where αi and α∗i are Lagrange multipliers.
The SVR function is eventually constructed as in Equation (4) [17]:

y(x) =
N

∑
i=1

(αi − α∗i )Ψ(xi, x) + b, (4)

where Ψ(xi, x), the so-called kernel function, is introduced to replace the nonlinear mapping function,
ϕ(·), as shown in Equation (5) [15]:

Ψ
(
xi, xj

)
= ϕ(xi)

T ϕ
(
xj
)
. (5)

2.1.2. Principle of the LS-SVR Model

The LS-SVR model is an extension of the standard SVR model. It selects the binomial of error ξt

as the loss function; then the optimization problem can be described as in Equation (6) [20]:

min 1
2 wTw + 1

2 γ
N
∑

i=1
ξ2

i

s.t. yi = wT ϕ(xi) + b + ξi, i = 1, 2, · · · , N
(6)

where the bigger the positive real number γ is, the smaller the regression error of the model is.
The LS-SVR model defines the loss function different from the standard SVR model, and changes

its inequality constraint into an equality constraint so that w can be obtained in the dual space.
After obtaining parameters α and b by quadratic programming processes, the LS-SVR model is
described as in Equation (7) [20]:

y(x) =
N

∑
i=1

αiΨ(xi, x) + b. (7)

It can be seen that an LS-SVR model contains two parameters, the regularization parameter γ

and the radial basis kernel function, σ2. The forecasting performance of an LS-SVR model is related
to the selection of γ and σ2. The role of γ is to balance the confidence range and experience risk of
learning machines. If γ is too large, the goal is only to minimize the experience risk. On the contrary,
when the value of γ is too small, the penalty for the experience error will be small, thus increasing
the value of experience risk σ controls the width of the Gaussian kernel function and the distribution
range of the training data. The smaller σ is, the greater the structural risk there is, which leads to
overfitting. Therefore, the parameter selection of an LS-SVR model has always been the key to improve
the forecasting accuracy.
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2.2. Chaotic Quantum Fruit Fly Algorithm (CQFOA)

FOA is a population intelligent evolutionary algorithm that simulates the foraging behavior of
fruit flies [26]. Fruit flies are superior to other species in smell and vision. In the process of foraging,
firstly, fruit flies rely on smell to find the food source. Secondly, they visually locate the specific
location of food and the current position of other fruit flies, and then fly to the location of food
through population interaction. At present, FOA has been applied to the forecasting of traffic accidents,
export trade, and other fields [40].

2.2.1. Fruit Fly Optimization Algorithm (FOA)

According to the characteristics of fruit flies searching for food, FOA includes the following
main steps.

Step 1. Initialize randomly the fruit flies’ location (X0 and Y0) of population.
Step 2. Give individual fruit flies the random direction and distance for searching for food by smell, as
in Equations (8) and (9) [26]:

Xi = X0 + Random Value (8)

Yi = Y0 + Random Value. (9)

Step 3. Due to the location of food being unknown, firstly, the distance from the origin (Dist) is
estimated as in Equation (10) [25], then the determination value of taste concentration (S) is calculated
as in Equation (11) [25], i.e., the value is the inverse of the distance.

Disti =
√

X2
i + Y2

i (10)

Si = 1/Disti (11)

Step 4. The determination value of taste concentration (S) is substituted into the determination function
of taste concentration (or Fitness function) to determine the individual position of the fruit fly (Smelli),
as shown in Equation (12) [26]:

Smelli = Function(Si). (12)

Step 5. Find the Drosophila species (Best index and Best Smell values) with the highest odor
concentrations in this population, as in Equation (13) [26]:

max(Smelli) → (Best_Smelli) and (Best_index). (13)

Step 6. The optimal flavor concentration value (Optimal_Smell) is retained along with the x and y
coordinates (with Best_index) as in Equations (14)–(16) [25], then the Drosophila population uses vision
to fly to this position.

Optimal_Smell = Best_Smelli=current (14)

X0 = XBest_index (15)

Y0 = YBest_index (16)

Step 7. Enter the iterative optimization, repeat Steps 2 to 5 and judge whether the flavor concentration
is better than that of the previous iteration; if so, go back to Step 6.

The FOA algorithm is highly adaptable, so it can efficiently search without calculating partial
derivatives of the target function. It overcomes the disadvantage of trapping into local optima easily.
However, as a swarm intelligence optimization algorithm, FOA still tends to fall into a local optimal
solution, due to the declining diversity in the late evolutionary population.

6



Energies 2018, 11, 2226

It is noticed that there are some significant differences between the FOA and PSO algorithms.
For FOA, the taste concentration (S) is used to determine the individual position of each fruit fly,
and the highest odor concentration in this population is retained along with the x and y coordinates;
eventually, the Drosophila population uses vision to fly to this position. Therefore, it is based on the
taste concentration to control the searching direction to find out the optimal solution. For the PSO
algorithm, the inertia weight controls the impact of the previous velocity of the particle on its current
one by using two positive constants called acceleration coefficients and two independent uniformly
distributed random variables. Therefore, it is based on the inertia weight to control the velocity to find
out the optimal solution.

Thus, aiming to deal with the inherent drawback of FOA, i.e., suffering from premature
convergence or trapping into local optima easily, this paper tries to use the QCM to empower each fruit
fly to possess quantum behavior (namely QFOA) during the modeling processes. At the same time,
the cat mapping function is introduced into QFOA (namely CQFOA) to implement the chaotic global
perturbation strategy to help a fruit fly escape from the local optima when the population’s diversity is
poor. Eventually, the proposed CQFOA is employed to determine the appropriate parameters of an
LS-SVR model and increase the forecasting accuracy.

2.2.2. Quantum Computing Mechanism for FOA

(1) Quantization of Fruit Flies

In the quantum computing process, a sequence consisting of quantum bits is replaced by a
traditional sequence. The quantum fruit fly is a linear combination of state |0〉 and state |1〉, which can
be expressed as in Equation (17) [34,35]:

|ϕ〉 = α|0〉+ β|1〉, (17)

where α2 and β2 are the probability of states, |0〉 and |1〉, respectively, satisfying α2 + β2 = 1, and (α, β)
are qubits composed of quantum bits.

A quantum sequence, i.e., a feasible solution, can be expressed as an arrangement of l qubits,
as shown in Equation (18) [34,35]:

qi =

{
α1 α2 · · · αl
β1 β2 · · · βl

}
, (18)

where the initial values of αj and β j are all set as 1/
√

2 to meet the equity principle, α2
j + β2

j = 1
(j = 1, 2, . . . , l), which is updated through the quantum revolving door during the iteration.

Conversion between quantum sequence and binary sequence is the key to convert FOA to QFOA.
Randomly generate a random number of [0,1], randj, if randj ≥ α2

j , the corresponding binary quantum
bit value is 1, otherwise, 0, as shown in Equation (19):

xj =

{
1 randj ≥ α2

j

0 else
. (19)

Using the above method, the quantum sequence, q, can be transformed into a binary sequence, x;
then the optimal parameter problem of an LS-SVR model can be determined using QFOA.

(2) Quantum Fruit Fly Position Update Strategy

In the QFOA process, the position of quantum fruit flies represented by a quantum sequence is
updated to find more feasible solutions and the best parameters. This paper uses quantum rotation to
update the position of quantum fruit flies. The quantum position of individual i (there are in total N
quantum fruit flies) can be extended from Equation (18) and is expressed as in Equation (20):

7
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qi =

{
αi1 αi2 · · · αil
βi1 βi2 · · · βil

}
, (20)

where α2
ij + β2

ij = 1; i = 1, 2, . . . , N; j = 1, 2, . . . , l; and 0 ≤ αij ≤ 1, 0 ≤ βij ≤ 1.
Quantum rotation is a quantum revolving door determined by the quantum rotation angle,

which updates the quantum sequence and conducts a random search around the position of quantum
fruit flies to explore the local optimal solution. The θ

g
ij is the jth quantum rotation angle of the

population iterated to the ith fruit fly of generation, g, and the quantum bit qg
ij (due to the nonnegative

position constraint of qg
ij, the absolute function, abs() is used to take the absolute value of each element

in the calculation result) is updated according to the quantum revolving gate U
(

θ
g
ij

)
, as shown in

Equations (21) and (22) [34,35]:
qg+1

ij = abs
(

U
(

θ
g+1
ij

)
× qg

ij

)
(21)

U
(

θ
g
ij

)
=

[
cos θ

g
ij − sin θ

g
ij

sin θ
g
ij cos θ

g
ij

]
. (22)

In special cases, when the quantum rotation angle, θ
g+1
ij , is equal to 0, the quantum bit, qg+1

ij ,

uses quantum non-gate N to update with some small probability, as indicated in Equation (23) [35]:

qt+1
ij = N × qt

ij =

[
0 1
1 0

]
× qt

ij. (23)

2.2.3. Chaotic Quantum Global Perturbation

For a bionic evolutionary algorithm, it is a general phenomenon that the population’s diversity
would be poor, along with the increased iterations. This phenomenon would also lead to being trapped
into local optima during modeling processes. As mentioned, the chaotic mapping function can be
employed to maintain the population’s diversity to avoid trapping into local optima. Many studies
have applied chaotic theory to improve the performances of these bionic evolutionary algorithms,
such as the artificial bee colony (ABC) algorithm [41], and the particle swarm optimization (PSO)
algorithm [42]. The authors have also employed the cat chaotic mapping function to improve the
genetic algorithm (GA) [43], the PSO algorithm [44], and the bat algorithm [39], the results of which
demonstrate that the searching quality of GA, PSO, ABC, and BA algorithms could be improved
by employing chaotic mapping functions. Hence, the cat chaotic mapping function is once again
used as the global chaotic perturbation strategy (GCPS) in this paper, and is hybridized with QFOA,
namely CQFOA, which hybridizes GCPS with the QFOA while suffering from the problem of being
trapped into local optima during the iterative modeling processes.

The two-dimensional cat mapping function is shown as in Equation (24) [39]:{
yt+1 = f rac

(
yt + zt)

zt+1 = f rac
(
yt + 2zt) , (24)

where frac function is used to calculate the fractional parts of a real number, y, by subtracting an
approached integer.

The global chaotic perturbation strategy (GCPS) is illustrated as follows.

(1) Generate 2popsize chaotic disturbance fruit flies. For each Fruit f lyi (I = 1, 2, . . . , 2popsize),
Equation (24) is applied to generate d random numbers, zj, j = 1, 2, . . . , d. Then, the qubit (with
quantum state, |0〉) amplitude, cos θi

j, of Fruit f lyi is shown in Equation (25):

cos θi
j = yj = 2zj − 1. (25)

8



Energies 2018, 11, 2226

(2) Select 0.5 popsize better chaotic disturbance fruit flies. Compute the fitness value of each
Fruit f ly from 2 popsize chaotic disturbance fruit flies, and arrange these fruit flies to be a
sequence based on the order of fitness values. Then, select the fruit flies with 0.5 popsize ranking
ahead in the fitness values; as a result, the 0.5 popsize better chaotic disturbance fruit flies
are obtained.

(3) Determine 0.5 popsize current fruit flies with better fitness. Compute the fitness value of each
Fruit f ly from current QFOA, and arrange these fruit flies to be a sequence based on the order of
fitness values. Then, select the fruit flies with 0.5 popsize ranking ahead in the fitness values.

(4) Form the new CQFOA population. Mix the 0.5 popsize better chaotic disturbance fruit flies with
0.5 popsize current fruit flies with better fitness from current QFOA, and form a new population
that contains new 1popsize fruit flies, and name it the new CQFOA population.

(5) Complete global chaotic perturbation. After obtaining the new population of CQFOA, take it
as the new population of QFOA and continue to execute the QFOA process.

2.2.4. Implementation Steps of CQFOA

The steps of the proposed CQFOA for parameter optimization of an LS-SVR model are as follows
as shown in Figure 1.

Step 1. Initialization. The population size of quantum Drosophila is 1 popsize; the maximum number
of iterations is Gen-max; the random search radius is R; and the chaos disturbance control coefficient
is NGCP.
Step 2. Random searching. For quantum rotation angle, θij, of a random search, according to the
quantum rotation angle, fruit fly locations on each dimension are updated, and then, a quantum
revolving door is applied to update the quantum sequence, as shown in Equations (26) and (27) [34,35]:

θij = θ(j) + R × rand(1) (26)

qij = abs

([
cos θij − sin θij
sin θij cos θij

]
× Q(j)

)
, (27)

where i is an individual of quantum fruit flies, i = 1, 2, . . . , 1popsize; j is the position dimension
of quantum fruit flies, j = 1, 2, . . . , l. As mentioned above, the position of qij is non-negative
constrained, thus, the absolute function, abs() is used to take the absolute value of each element
in the calculation result.
Step 3. Calculating fitness. Mapping each Drosophila location, qi, to the feasible domain of an LS-SVR
model parameters to receive the parameters, (γi, σi). The training data are used to complete the
training processes of the LS − SVRi model and calculate the forecasting value in the training stage
corresponding to each set of parameters. Then, the forecasting error is calculated as in Equation (12) of
CQFOA by the mean absolute percentage error (MAPE), as shown in Equation (28):

MAPE =
1
N

N

∑
i=1

∣∣∣∣∣ fi(x)− f̂i(x)
fi(x)

∣∣∣∣∣× 100%, (28)

where N is the total number of data points; fi(x) is the actual load value at point i; and f̂i(x) is the
forecasted load value at point i.
Step 4. Choosing the current optimum. Calculate the taste concentration of fruit fly, Smelli, by using
Equation (12), and find the best flavor concentration of individual, Best_Smelli, by Equation (13), as the
optimal fitness value.
Step 5. Updating global optimization. Compare whether the contemporary odor concentration,
Best_Smelli=current, is better than the global optima, Best_Smelli. If so, update the global value by

9
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Equation (14), and enable the individual quantum fruit fly to fly to the optimal position with vision,
as in Equations (29) and (30), then go to Step 6. Otherwise, go to Step 6 directly.

θ0 = θBest_index (29)

q0 = qBest_index (30)

Step 6. Global chaos perturbation judgment. If the distance from the last disturbance is equal to
NGCP, go to Step 7; otherwise, go to Step 8.
Step 7. Global chaos perturbation operations. Based on the current population, conduct the global
chaos perturbation algorithm to obtain the new CQFOA population. Then, take the new CQFOA
population as the new population of QFOA, and continue to execute the QFOA process.
Step 8. Iterative refinements. Determine whether the current population satisfies the condition
of evolutionary termination. If so, stop the optimization process and output the optimal results.
Otherwise, repeat Steps 2 to 8.

Figure 1. Chaotic quantum FOA algorithm flowchart.
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3. Forecasting Results

3.1. Dataset of Experimental Examples

To test the performance of the proposed LS-SVR-CQFOA model, this paper employs the MEL data
from an island data acquisition system in 2014 (IDAS 2014) [45] and the data of GEFCom2014-E [46]
to carry out a numerical forecast. Taking the whole time of 24 h as the sampling interval, the load
data contains 168-hour load values in total, i.e., from 01:00 14 July 2014 to 24:00 20 July 2014 in IDAS
2014 (namely IDAS 2014), and another two load datasets with the same 168-hour load values, i.e.,
from 01:00 1 January 2014 to 24:00 7 January 2014 (namely GEFCom2014 (Jan.)) and from 01:00 1 July
2014 to 24:00 7 July 2014 (namely GEFCom2014 (July)) in GEFCom2014-E, respectively.

The preciseness and integrity of historical data directly impact the forecasting accuracy. The data
of the historical load are collected and obtained by electrical equipment. To some extent, the data
transmission and measurement will lead to some “bad data” in the data of historical load, which mainly
includes missing and abnormal data. If these data are used for modeling, the establishment of load
forecasting model and the forecasting will bring adverse effects. Thus, the preprocessing of historical
data is essential to load forecasting. In this paper, before the numerical test, the data of the MEL
are preprocessed, including: completing the missing data; identifying abnormal data; eliminating
and replacing unreasonable data; and normalizing data. When the input of an LS-SVR model is
multidimensional with a large data size (e.g., several orders of magnitude), it may lead to problems
when using the raw data to implement model training directly. Therefore, it is essential that the sample
data are normalized for processing, to keep all the sample data values in a certain interval (this topic
limits [0,1]), ensuring that all of the data have the same order of magnitude.

The normalization of load data is converted according to Equation (31), where i = 1, 2, . . . , N (N is
the number of samples); xi and yi represent the values of before and after the normalization of sample
data, respectively; and min(xi) and max(xi) represent the minimal and maximal values of sample
data, respectively.

yi =
xi − min(xi )

max(xi)− min(xi)
(31)

After the end of the forecasting, it is necessary to use the inverse normalization equation to
calculate the actual load value, as shown in Equation (32):

xi = (max(xi)− min(xi))yi + min(xi). (32)

The normalized data of the values in IDAS 2014, GEFCom2014 (Jan.) and GEFCom2014 (July) are
collected and shown in Tables 1–3, respectively.

During the modeling processes, the load data are divided into three parts: the training set with
the former 120 h, the validation set with the middle 24 h, and the testing set with the latter 24 h. Then,
the rolling-based modeling procedure, proposed by Hong [18,47], is applied to assist CQFOA to look
for appropriate parameters, (γ, σ), of an LS-SVR model during the training stage. Repeat this modeling
procedure until all forecasting loads are received. The training error and the validation error can be
calculated simultaneously. The adjusted parameters, (γ, σ), would be selected as the most suitable
parameters only with both the smallest validation and testing errors. The testing dataset is never used
during the training and validation stages; it will only be used to calculate the forecasting accuracy.
Eventually, the 24 h’s load data are forecasted by the proposed LS-SVR-CQFOA model.
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Table 1. Normalization values of load data for IDAS 2014.

Time 14 July 15 July 16 July 17 July 18 July 19 July 20 July

01:00 0.1617 0.1245 0.1526 0.2246 0.1870 0.3354 0.3669
02:00 0.0742 0.0000 0.0826 0.1590 0.1386 0.1924 0.1878
03:00 0.0000 0.0109 0.0000 0.0395 0.0381 0.1022 0.0919
04:00 0.0071 0.1278 0.0937 0.0000 0.0000 0.0000 0.0000
05:00 0.0531 0.1944 0.1419 0.1106 0.1218 0.1570 0.1770
06:00 0.0786 0.0611 0.0920 0.1428 0.1728 0.2558 0.2497
07:00 0.2636 0.1786 0.2724 0.3096 0.3788 0.4038 0.3943
08:00 0.3709 0.4417 0.3464 0.3586 0.4361 0.5129 0.4692
09:00 0.6872 0.5894 0.6549 0.7426 0.7970 0.6051 0.5829
10:00 0.9520 0.8746 0.9028 0.9055 0.9842 0.7632 0.7530
11:00 1.0000 0.9342 0.9650 0.9683 1.0000 0.8130 0.8332
12:00 0.9632 0.9730 0.9087 0.9217 0.9450 0.8935 0.8803
13:00 0.8552 1.0000 0.8135 0.8256 0.8821 0.8077 0.8122
14:00 0.8288 0.9152 0.9257 0.7377 0.8370 0.7185 0.7410
15:00 0.8224 0.8104 0.7663 0.7468 0.7961 0.6037 0.6882
16:00 0.8655 0.9448 0.8542 0.8099 0.8420 0.7347 0.7567
17:00 0.8552 0.7966 0.8340 0.8104 0.8323 0.7593 0.8439
18:00 0.9440 0.8809 0.9155 0.8976 0.9567 0.9286 0.9539
19:00 0.9574 0.8677 1.0000 0.9779 0.9694 0.9734 0.9741
20:00 0.9746 0.9693 0.9657 1.0000 0.9808 1.0000 1.0000
21:00 0.9372 0.8784 0.9236 0.9419 0.9546 0.9575 0.9664
22:00 0.8704 0.7697 0.7977 0.7889 0.8417 0.8634 0.8824
23:00 0.6328 0.5519 0.7193 0.6425 0.6655 0.5858 0.6035
24:00 0.3127 0.2114 0.2794 0.2559 0.3357 0.1080 0.0975

Table 2. Normalization values of load data for GEFCom2014 (Jan.).

Time 1 January 2 January 3 January 4 January 5 January 6 January 7 January

01:00 0.1769 0.0568 0.1127 0.1314 0.1648 0.0769 0.0532
02:00 0.0877 0.0206 0.0338 0.0480 0.0765 0.0222 0.0123
03:00 0.0234 0.0000 0.0000 0.0000 0.0087 0.0000 0.0000
04:00 0.0000 0.0084 0.0035 0.0044 0.0063 0.0076 0.0140
05:00 0.0175 0.0746 0.0634 0.0497 0.0268 0.0565 0.0862
06:00 0.0863 0.2155 0.2134 0.1368 0.0938 0.2122 0.2569
07:00 0.1835 0.4382 0.4345 0.3082 0.2090 0.4740 0.5389
08:00 0.2763 0.5802 0.5894 0.4813 0.3517 0.6277 0.6503
09:00 0.4028 0.6453 0.6972 0.6705 0.5039 0.6849 0.6581
10:00 0.5212 0.7110 0.7683 0.7860 0.6136 0.7300 0.6693
11:00 0.5819 0.7455 0.8106 0.8073 0.6333 0.7446 0.6861
12:00 0.6016 0.7751 0.8042 0.7726 0.6080 0.7573 0.6900
13:00 0.6089 0.7684 0.7592 0.6936 0.5623 0.7300 0.6788
14:00 0.5789 0.7712 0.7176 0.5950 0.5221 0.7078 0.6754
15:00 0.5563 0.7634 0.6887 0.5400 0.4937 0.6842 0.6676
16:00 0.5768 0.7556 0.6852 0.5560 0.5560 0.7109 0.6928
17:00 0.8165 0.8836 0.8479 0.7913 0.8060 0.8558 0.8411
18:00 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
19:00 0.9810 0.9605 0.9845 0.9423 0.9416 0.9778 0.9955
20:00 0.8984 0.8686 0.8859 0.8188 0.8036 0.8920 0.9379
21:00 0.7807 0.7723 0.7908 0.7087 0.6672 0.7903 0.8489
22:00 0.5885 0.6114 0.6289 0.4982 0.4219 0.6112 0.6933
23:00 0.3596 0.4399 0.4303 0.2860 0.1774 0.4180 0.4980
24:00 0.1923 0.2957 0.2542 0.0719 0.0000 0.2764 0.3553
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Table 3. Normalization values of load data for GEFCom2014 (July).

Time 1 July 2 July 3 July 4 July 5 July 6 July 7 July

01:00 0.1562 0.1612 0.1583 0.2747 0.2636 0.1699 0.1063
02:00 0.0728 0.0882 0.0763 0.1302 0.1266 0.0857 0.0394
03:00 0.0238 0.0348 0.0232 0.0456 0.0554 0.0302 0.0054
04:00 0.0000 0.0000 0.0000 0.0000 0.0063 0.0000 0.0000
05:00 0.0222 0.0186 0.0181 0.0190 0.0000 0.0021 0.0302
06:00 0.0945 0.0957 0.1040 0.0589 0.0554 0.0154 0.1187
07:00 0.2811 0.2781 0.3143 0.2091 0.1872 0.0955 0.2972
08:00 0.4692 0.4736 0.5172 0.4316 0.4153 0.2521 0.4903
09:00 0.6244 0.6212 0.6637 0.6873 0.7008 0.4459 0.6424
10:00 0.7396 0.7516 0.7733 0.8878 0.9017 0.6131 0.7476
11:00 0.8306 0.8479 0.8722 0.9734 0.9561 0.7163 0.8425
12:00 0.8979 0.9209 0.9389 1.0000 0.9561 0.7570 0.9051
13:00 0.9378 0.9673 0.9678 0.9876 0.9111 0.7809 0.9434
14:00 0.9737 1.0000 0.9938 0.9287 0.8515 0.7928 0.9865
15:00 0.9879 0.9829 1.0000 0.8546 0.8243 0.8111 0.9995
16:00 0.9970 0.9290 0.9881 0.8032 0.8462 0.8574 1.0000
17:00 1.0000 0.8564 0.9423 0.8004 0.9195 0.9199 0.9962
18:00 0.9960 0.8101 0.9005 0.8279 0.9937 0.9853 0.9833
19:00 0.9687 0.7567 0.8672 0.8203 1.0000 1.0000 0.9579
20:00 0.9176 0.6907 0.7756 0.7386 0.9435 0.9579 0.9213
21:00 0.9044 0.6489 0.7377 0.6787 0.9362 0.9417 0.8975
22:00 0.8291 0.5461 0.6354 0.5428 0.8692 0.8687 0.7875
23:00 0.6138 0.3572 0.4262 0.3279 0.6883 0.6426 0.5701
24:00 0.4095 0.1678 0.2272 0.0913 0.4341 0.4213 0.3927

3.2. Forecasting Accuracy Indexes and Performance Tests

3.2.1. Forecasting Accuracy Index

This study uses the MAPE (mentioned in Equation (28)), the root mean square error (RMSE), and
the mean absolute error (MAE) as forecasting accuracy indexes. The RMSE and MAE are defined as in
Equations (33) and (34), respectively:

RMSE =

√√√√∑N
i=1

(
fi(x)− f̂i(x)

)2

N
(33)

MAE =
1
N

N

∑
i=1

∣∣∣ fi(x)− f̂i(x)
∣∣∣, (34)

where N is the total number of data points; fi(x) is the actual value at point i; and f̂i(x) is the forecasting
value at point i.

3.2.2. Forecasting Performance Improvement Tests

To demonstrate the significant forecasting performances of the proposed model, Diebold and
Mariano [48] and Derrac et al. [49] suggest that, for a small data size (24-h load forecasting) test,
a Wilcoxon signed-rank test [50] is suitable. Thus, we decided to apply the Wilcoxon signed-rank test.
For the same data size, a Wilcoxon test detects the significance of the difference (i.e., the forecasting
errors from two forecasting models) in the central tendency. Therefore, let di be the absolute forecasting
errors from any two models on ith forecasting value: R+ be the sum of ranks that di > 0; R− the sum of
ranks that di < 0. If di = 0, then, remove this comparison and decrease the sample size. The statistics
of Wilcoxon test, W, is calculated as in Equation (37):

W = min
{

R+, R−}. (35)

13



Energies 2018, 11, 2226

If W is smaller than or equal to the critical value, based on the Wilcoxon distribution under
n degrees of freedom, then the null hypothesis (i.e., equal performance from the two compared
forecasting models) could not be accepted, i.e., the proposed model achieves significance.

3.3. The Forecasting Results of the LS-SVR-CQFOA Model

3.3.1. Parameter Setting of the CQFOA Algorithm

The parameters of the proposed CQFOA algorithm for the numerical example are set as follows:
the population size, popsize, is set to 200; the maximal iteration, gen-max, is set to 1000; and the control
coefficient of chaotic disturbance, NGCP, is set to 15. These two parameters of the LS-SVR model are set
as, γ ∈ [0, 1000], and σ ∈ [0, 500], respectively. The iterative time of each algorithm is set as the same
to ensure the reliability of the forecasting results.

3.3.2. Results and Analysis

Considering the CQPSO, CQTS, and CQGA algorithms have been used to determine the
parameters of an SVR-based load forecasting model in [36–39], those existing algorithms are also
hybridized with an LS-SVR model to provide forecasting values to compare with the proposed
model here. These alternative models include LS-SVR-FOA, LS-SVR-QFOA, LS-SVR-CQPSO (LS-SVR
hybridized with chaotic quantum particle swarm optimization algorithm [36]), LS-SVR-CQTS (LS-SVR
hybridized with chaotic quantum Tabu search algorithm [37]), LS-SVR-CQGA (LS-SVR hybridized
with chaotic quantum genetic algorithm [38]), and LS-SVR-CQBA (LS-SVR hybridized with chaotic
quantum bat algorithm [39]), in order to compare the forecasting performance of LS-SVR-based models
comprehensively, this article also selects BPNN method as a contrast model. The parameters of an
LS-SVR model are selected by the CQPSO, CQTS, CQGA, CQBA, FOA, QFOA, and CQFOA algorithms,
respectively. The details of the suitable parameters of all models for the IDAS 2014, the GEFCom2014
(Jan.) and the GEFCom2014 (July) data are shown in Tables 4–6, respectively.

Table 4. LS-SVR parameters, MAPE, and computing times of CQFOA and other algorithms for
IDAS 2014.

Optimization Algorithms
LS-SVR Parameters

MAPE of Validation (%) Computing Times (s)
γ σ

LS-SVR-CQPSO [36] 685 125 1.17 129
LS-SVR-CQTS [37] 357 118 1.13 113
LS-SVR-CQGA [38] 623 137 1.11 152
LS-SVR-CQBA [39] 469 116 1.07 227

LS-SVR-FOA 581 109 1.29 87
LS-SVR-QFOA 638 124 1.32 202

LS-SVR-CQFOA, 734 104 1.02 136

Table 5. Parameters combination of LS-SVR determined by CQFOA and other algorithms for
GEFCom2014 (Jan.).

Optimization Algorithms
Parameters

MAPE of Validation (%) Computation Times (s)
γ σ

LS-SVR-CQPSO [36] 574 87 0.98 134
LS-SVR-CQTS [37] 426 68 1.02 109
LS-SVR-CQGA [38] 653 98 0.95 155
LS-SVR-CQBA [39] 501 82 0.9 231

LS-SVR-FOA 482 94 1.54 82
LS-SVR-QFOA 387 79 1.13 205

LS-SVR-CQFOA, 688 88 0.86 132
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Table 6. Parameters combination of LS-SVR determined by CQFOA and other algorithms for
GEFCom2014 (July).

Optimization Algorithms
Parameters

MAPE of Validation (%) Computation Times (s)
γ σ

LS-SVR-CQPSO [36] 375 92 0.96 139
LS-SVR-CQTS [37] 543 59 1.04 107
LS-SVR-CQGA [38] 684 62 0.98 159
LS-SVR-CQBA [39] 498 90 0.95 239

LS-SVR-FOA 413 48 1.51 79
LS-SVR-QFOA 384 83 1.07 212

LS-SVR-CQFOA, 482 79 0.79 147

Based on the same training settings, another representative model, the back-propagation neural
network (BPNN) is compared with the proposed model. The forecasting results of these models
mentioned above and the actual values for IDAS 2014, GEFCom2014 (Jan.) and GEFCom2014 (July) are
given in Figures 2–4, respectively. This indicates that the proposed LS-SVR-CQFOA model achieves a
better performance than the other alternative models, i.e., closer to the actual load values.

Figure 2. Forecasting values of LS-SVR-CQFOA and other models for IDAS 2014.
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Figure 3. Forecasting values of LS-SVR-CQFOA and other models for GEFCom2014 (Jan.).

 Actualvalue    BPNN                LSSVRCQPSO
 LSSVRCQTS  LSSVRCQGA   LSSVRCQBA
 LSSVRFOA  LSSVRQFOA   LSSVRCQFOA

 

 

Figure 4. Forecasting values of LS-SVR-CQFOA and other models for GEFCom2014 (July).

Tables 7–9 indicate the evaluation results from different forecasting accuracy indexes for
IDAS 2014, GEFCom2014 (Jan.) and GEFCom2014 (July), respectively. For Table 7, the proposed
LS-SVR-CQFOA model achieves smaller values for all employed accuracy indexes than the seven
other models: RMSE (14.10), MAPE (2.21%), and MAE (13.88), respectively. For Table 8, similarly,
the proposed LS-SVR-CQFOA model also achieves smaller values for all employed accuracy indexes
compared to the seven other models: RMSE (40.62), MAPE (1.02%), and MAE (39.76), respectively.
Similarly in Table 9, the proposed LS-SVR-CQFOA model also achieves smaller values for all employed
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accuracy indexes than the other seven models: RMSE (38.70), MAPE (1.01%), and MAE (37.48),
respectively. The details of the analysis results are as follows.

Table 7. Forecasting indexes of LS-SVR-CQFOA and other models for IDAS 2014.

Compared Models RMSE MAPE (%) MAE

BPNN 24.89 3.92 24.55
LS-SVR-CQPSO [36] 14.40 2.27 14.21
LS-SVR-CQTS [37] 14.50 2.26 14.24
LS-SVR-CQGA [38] 14.41 2.24 14.13
LS-SVR-CQBA [39] 14.45 2.25 14.18

LS-SVR-FOA 15.90 2.48 15.62
LS-SVR-QFOA 15.03 2.32 14.69

LS-SVR-CQFOA 14.10 2.21 13.88

Table 8. Forecasting indexes of LS-SVR-CQFOA and other models for GEFCom2014 (Jan.).

Compared Models RMSE MAPE (%) MAE

BPNN 92.30 2.34 90.74
LS-SVR-CQPSO [36] 51.46 1.31 50.69
LS-SVR-CQTS [37] 50.85 1.27 49.70
LS-SVR-CQGA [38] 46.36 1.16 45.31
LS-SVR-CQBA [39] 42.76 1.07 41.80

LS-SVR-FOA 75.55 1.89 73.88
LS-SVR-QFOA 59.74 1.47 57.96

LS-SVR-CQFOA 40.62 1.02 39.76

Table 9. Forecasting indexes of LS-SVR-CQFOA and other models for GEFCom2014 (July).

Compared Models RMSE MAPE (%) MAE

BPNN 88.24 2.31 85.51
LS-SVR-CQPSO [36] 51.03 1.33 49.35
LS-SVR-CQTS [37] 45.73 1.22 44.68
LS-SVR-CQGA [38] 46.18 1.19 44.46
LS-SVR-CQBA [39] 40.75 1.09 39.85

LS-SVR-FOA 72.00 1.88 69.69
LS-SVR-QFOA 56.33 1.49 54.81

LS-SVR-CQFOA 38.70 1.01 37.48

Finally, to test the significance in terms of forecasting accuracy improvements from the proposed
LS-SVR-CQFOA model, the Wilcoxon signed-rank test is conducted under two significant levels,
α = 0.025 and α = 0.05, by one-tail test. The test results for the IDAS 2014, the GEFCom2014 (Jan.),
and the GEFCom2014 (July) datasets are described in Tables 10–12, respectively. In these three
tables, the results demonstrate that the proposed LS-SVR-CQFOA model achieved significantly better
forecasting performance than the other alternative models. For example, in the IDAS 2014 dataset,
for LS-SVR-CQFOA vs. LS-SVR-CQPSO, the statistic of Wilcoxon test, W = 72, is smaller than the
critical statistics, W** = 81 (under α = 0.025) and W* = 91 (under α = 0.05), thus we could conclude
that the proposed LS-SVR-CQFOA model is significantly outperform the LS-SVR-CQPSO model.
In addition, the p-value = 0.022 is also smaller than the critical α = 0.025 and α = 0.05, which support
the conclusion.
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Table 10. Results of Wilcoxon signed-rank test for IDAS 2014.

Compared Models
Wilcoxon Signed-Rank Test

T0.025 = 81 T0.05 = 91 p-Value

LS-SVR-CQFOA vs. BPNN 0 T 0 T 0.000 **
LS-SVR-CQFOA vs. LS-SVR-CQPSO 72 T 72 T 0.022 **
LS-SVR-CQFOA vs. LS-SVR-CQTS 64 T 64 T 0.017 **
LS-SVR-CQFOA vs. LS-SVR-CQGA 67 T 67 T 0.018 **
LS-SVR-CQFOA vs. LS-SVR-CQBA 60 T 60 T 0.012 **
LS-SVR-CQFOA vs. LS-SVR-FOA 50 T 50 T 0.009 **

LS-SVR-CQFOA vs. LS-SVR-QFOA 68 T 68 T 0.019 **
T Denotes that the LS-SVR-CQGA model significantly outperforms the other models. ** implies the p-value is lower
than α = 0.025; * implies the p-value is lower than α = 0.05.

Table 11. Results of Wilcoxon signed-rank test for GEFCom2014 (Jan.).

Compared Models
Wilcoxon Signed-Rank Test

T0.025 = 81 T0.05 = 91 p-Value

LS-SVR-CQFOA vs. BPNN 0 T 0 T 0.000 **
LS-SVR-CQFOA vs. LS-SVR-CQPSO 74 T 74 T 0.023 **
LS-SVR-CQFOA vs. LS-SVR-CQTS 75 T 75 T 0.024 **
LS-SVR-CQFOA vs. LS-SVR-CQGA 78 T 78 T 0.026 **
LS-SVR-CQFOA vs. LS-SVR-CQBA 80 T 80 T 0.027 **
LS-SVR-CQFOA vs. LS-SVR-FOA 65 T 65 T 0.018 **

LS-SVR-CQFOA vs. LS-SVR-QFOA 72 T 72 T 0.022 **
T Denotes that the LS-SVR-CQGA model significantly outperforms the other models. ** implies the p-value is lower
than α = 0.025; * implies the p-value is lower than α = 0.05.

Table 12. Results of Wilcoxon signed-rank test for GEFCom2014 (July).

Compared Models
Wilcoxon Signed-Rank Test

T0.025 = 81 T0.05 = 91 p-Value

LS-SVR-CQFOA vs. BPNN 0 T 0 T 0.000 **
LS-SVR-CQFOA vs. LS-SVR-CQPSO 73 T 73 T 0.023 **
LS-SVR-CQFOA vs. LS-SVR-CQTS 76 T 76 T 0.024 **
LS-SVR-CQFOA vs. LS-SVR-CQGA 77 T 77 T 0.026 **
LS-SVR-CQFOA vs. LS-SVR-CQBA 79 T 79 T 0.027 **
LS-SVR-CQFOA vs. LS-SVR-FOA 65 T 65 T 0.018 **

LS-SVR-CQFOA vs. LS-SVR-QFOA 71 T 71 T 0.022 **
T Denotes that the LS-SVR-CQGA model significantly outperforms the other models. ** implies the p-value is lower
than α = 0.025; * implies the p-value is lower than α = 0.05.

4. Discussion

Taking the IDAS 2014 dataset as an example, firstly, the forecasting results of these LS-SVR-based
models are all closer to the actual load values than the BPNN model. This shows that LS-SVR-based
models can simulate nonlinear systems of microgrid load more accurately than the BPNN model,
due to its advantages in dealing with nonlinear problems.

Secondly, in Table 4, the selected FOA and QFOA algorithms could achieve the best solution,
(γ, σ) = (581, 109) and (γ, σ) = (638, 124), with forecasting error, (RMSE = 15.93, MAPE = 2.48%,
MAE = 15.63) and (RMSE = 14.87, MAPE = 2.32%, MAE = 14.61), respectively. However, the solution
can be further improved by the proposed CQFOA algorithm to (γ, σ) = (734, 104) with more accurate
forecasting performance, (RMSE = 14.10, MAPE = 2.21%, MAE = 13.88). Similar results could also
be learned in the GEFCom2014 (Jan.) and the GEFCom2014 (July) from Tables 5 and 6, respectively.
This illustrates that the proposed approach is feasible, i.e., hybridizing the FOA with QCM and chaotic

18



Energies 2018, 11, 2226

mapping function to determine more appropriate parameters of an LS-SVR model to improve the
forecasting accuracy.

Comparing the LS-SVR-QFOA model with the LS-SVR-FOA model, the forecasting accuracy
of the LS-SVR-QFOA model is superior to that of the LS-SVR-FOA model. This demonstrates that
the QCM empowers the fruit fly to have quantum behaviors, i.e., the QFOA find more appropriate
parameters of an LS-SVR model, which improves the forecasting accuracy of the LS-SVR-FOA model
in which the FOA is hybridized with an LS-SVR model. For example, in Table 4, the usage of the QCM
in FOA changes the forecasting performances (RMSE = 15.93, MAPE = 2.48%, MAE = 15.63) of the
LS-SVR-FOA model to the much better performance (RMSE = 14.87, MAPE = 2.32%, MAE = 14.61)
of the LS-SVR-QFOA model. Similar results are demonstrated in the GEFCom2014 (Jan.) and the
GEFCom2014 (July) from Tables 5 and 6, respectively.

For forecasting performance comparison between the LS-SVR-CQFOA and LS-SVR-QFOA models,
the values of RMSE, MAPE, and MAE for the LS-SVR-CQFOA model are smaller than those of the
LS-SVR-QFOA model. This reveals that the introduction of cat chaotic mapping function into QFOA
plays a positive role in searching appropriate parameters when the population of QFOA algorithm is
trapped into local optima. Then, the CQFOA finds more appropriate parameters. As a result, as shown
in Table 4, employing CQFOA to select the parameters for an LS-SVR model markedly improves the
performance (RMSE = 14.87, MAPE = 2.32%, MAE = 14.61) of the LS-SVR-QFOA model to the much
better one (RMSE = 14.10, MAPE = 2.21%, MAE = 13.88) of the LS-SVR-CQFOA model. Similar results
are illustrated in the GEFCom2014 (Jan.) and the GEFCom2014 (July) from Tables 5 and 6, respectively.

Comparing the time-consuming problem during the parameter searching processes in all the
IDAS 2014, the GEFCom2014 (Jan.), and the GEFCom2014 (July) datasets, the proposed CQFOA is less
than that of the CQGA and CQBA algorithms, but more than that of the CQPSO and CQTS algorithms.
However, considering the time requirements of the actual application, the increase in time compared
with CQPSO (more than 7 s) and CQTS (more than 23 s) is acceptable.

Finally, some limitations should be noticed. This paper only employs an existing dataset to
establish the proposed model; thus, for different seasons, months, weeks, and dates, the electricity load
patterns should be changed season by season, month by month, and week by week. For real-world
applications, this paper should be a good beginning to guide planners and decision-makers to establish
electricity load forecasting models overlapping the seasons, months, and weeks to achieve more
comprehensive results. Thus, our planned future research direction is to explore the feasibility
of hybridizing more powerful novel optimization frameworks (e.g., chaotic mapping functions,
quantum computing mechanism, and hourly, daily, weekly, monthly adjusted mechanism) and
novel meta-heuristic algorithms with an LS-SVR model to overcome the drawbacks of evolutionary
algorithms to achieve excellent forecasting accuracy.

5. Conclusions

This paper proposes a novel hybrid forecasting model by hybridizing an LS-SVR model with
the QCM, the cat chaotic mapping function, and the FOA. The forecasting results show that the
proposed model achieves better performance than the alternative forecasting models, by hybridizing
chaotic mapping function, QCM, and other evolutionary algorithms with an LS-SVR-based model.
Employing the cat chaotic mapping function to enrich the diversity of searching scope and enhance the
ergodicity of the population could successfully avoid trapping into local optima, and, also proves that
applying QCM to overcome the limitations of the fruit fly’s searching behaviors empowers the fruit
fly to undertake quantum searching behaviors, thereby achieving more satisfactory results for MEL
forecasting. The global chaotic perturbation strategy based on the cat mapping function is employed to
jump out of local minima while the population of QFOA suffers from premature convergence, and also
helps to improve the forecasting performance.
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Abstract: Providing accurate electric load forecasting results plays a crucial role in daily energy
management of the power supply system. Due to superior forecasting performance, the hybridizing
support vector regression (SVR) model with evolutionary algorithms has received attention and
deserves to continue being explored widely. The cuckoo search (CS) algorithm has the potential to
contribute more satisfactory electric load forecasting results. However, the original CS algorithm
suffers from its inherent drawbacks, such as parameters that require accurate setting, loss of
population diversity, and easy trapping in local optima (i.e., premature convergence). Therefore,
proposing some critical improvement mechanisms and employing an improved CS algorithm to
determine suitable parameter combinations for an SVR model is essential. This paper proposes the
SVR with chaotic cuckoo search (SVRCCS) model based on using a tent chaotic mapping function
to enrich the cuckoo search space and diversify the population to avoid trapping in local optima.
In addition, to deal with the cyclic nature of electric loads, a seasonal mechanism is combined
with the SVRCCS model, namely giving a seasonal SVR with chaotic cuckoo search (SSVRCCS)
model, to produce more accurate forecasting performances. The numerical results, tested by
using the datasets from the National Electricity Market (NEM, Queensland, Australia) and the
New York Independent System Operator (NYISO, NY, USA), show that the proposed SSVRCCS
model outperforms other alternative models.

Keywords: support vector regression; tent chaotic mapping function; cuckoo search algorithm;
seasonal mechanism; load forecasting

1. Introduction

Accurate electric load forecasting is important to facilitate the decision-making process for
power unit commitment, economic load dispatch, power system operation and security, contingency
scheduling, and so on [1,2]. As indicated in existing papers, a 1% electric load forecasting error increase
would lead to a £10 million additional operational cost [3], on the contrary, decreasing forecasting
errors by 1% would produce appreciable operation benefits [2]. Therefore, looking for more accurate
forecasting models or applying novel intelligent algorithms to achieve satisfactory load forecasting
results, to optimize the decisions of electricity supplies and load plans, to improve the efficiency of
the power system operations, eventually, reduces the system risks to within a controllable range.
However, due to lots of factors, such as energy policy, urban population, socio-economical activities,
weather conditions, holidays, and so on [4], the electric load data display seasonality, non-linearity,
and a chaotic nature, which complicates electric load forecasting work [5].
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Lots of electric load forecasting models have been proposed to continue improving forecasting
performances. These forecasting models can be of two types, the first one is based on the statistical
methodology, and the other one involves applications of artificial intelligence technology. The statistical
models, which include the ARIMA models [6,7], regression models [8,9], exponential smoothing
models [10], Kalman filtering models [11,12], Bayesian estimation models [13,14], and so on use
historical data to find out the linear relationships among time periods. However, due to their theoretical
definitions, these statistical models can only deal well with linear relationships among electric loads
and the other factors mentioned above. Therefore, these models could only produce unsatisfactory
forecasting performances [15].

Due to its superior nonlinear processing capability, artificial intelligence technology methods
such as artificial neural networks (ANNs) [16,17], expert system models [18,19], and fuzzy inference
systems [20,21] have been widely applied to improve the performance of electric load forecasting.
To overcome the inherent shortcomings of these artificial intelligent models, hybrid models
(hybridizing two artificial intelligent models with each other) and combined models (combining
two models with each other) have been the research hotspots recently. For example, hybridized or
combined with each other models [22] and with evolutionary algorithms [23]. However, these artificial
intelligence models (including hybrid or combined models) also have shortcomings themselves, such
as being time consuming, difficult to determine structural parameters, and trapping into local minima.
Readers may refer to [24] for more discussions regarding load forecasting.

With outstanding nonlinear processing capability, composed of high dimensional mapping
ability and kernel computing technology, the support vector regression (SVR) model [25–27] has
already produced superior abundant application results in many fields. The application experience
demonstrates that an SVR model with well-computed parameters by any evolutionary algorithm
could provide significant satisfactory forecasting performance, and overcome the shortcomings
of evolutionary algorithms to compute appropriate parameters. For applications in electric load
forecasting, Hong and his successors [28,29] have used two types of chaotic mapping functions
(i.e., logistic function and cat mapping function) to keep the diversity of population during the search
process to avoid trapping into local optima, to significantly improve the forecasting accuracy level.

The cuckoo search (CS) algorithm [30] is a novel meta-heuristic optimization algorithm inspired
by the brood reproductive strategy of cuckoo birds via an interesting brood parasitic mechanism,
i.e., mimicking the pattern and color of the host’s eggs, throwing the eggs out or not, or building a new
nest, etc. In [31], the authors demonstrate that, by applying various test functions, it is superior to
other algorithms, such as genetic algorithm (GA), differential evolution (DE), simulated annealing
(SA) algorithm, and particle swarm optimization (PSO) algorithm in searching for a global optimum.
Nowadays, the CS algorithm is widely applied in engineering applications, such as unit maintenance
scheduling [32], data clustering optimization [33], medical image recognition [34], manufacturing
engineering optimization [35], and software cost estimation [36], etc. However, as mentioned in [37],
the original CS algorithm has some inherent limitations, such as its initialization settings of the
host nest location, Lévy flight parameter, and boundary handling problem. In addition, because
it is a population-based optimization algorithm, the original CS algorithm also suffers from slow
convergence rate in the later searching period, homogeneous searching behaviors (low diversity of
population), and a premature convergence tendency [33,38,39].

Due to its easy implementation and ability to enrich the cuckoo search space and diversify the
population to avoid trapping into local optima, this paper would like to apply a chaotic mapping
function to overcome the core shortcomings of the original CS algorithm, to produce more accurate
electric load forecasting results. Thus, a tent chaotic mapping function, demonstrating a range of
dynamical behavior ranging from predictable to chaos, is hybridized with a CS algorithm to determine
three parameters of an SVR model. A new electric load forecasting model, obtained by hybridizing
a tent chaotic mapping function and CS algorithm with an SVR model, namely the SVR with chaotic
cuckoo search (SVRCCS) model, is thus proposed. In the meanwhile, as mentioned in existing
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papers [5,28,29], electric load data, particularly short term load data, illustrate an obvious cyclic
tendency, thus, the seasonal mechanism proposed in the authors’ previous papers [5,28,29] would
be further improved and combined with the SVRCCS model. Finally, the proposed seasonal SVR
with CCS, namely the SVR with chaotic cuckoo search (SSVRCCS) model, is employed to improve
the forecasting accuracy level by sufficiently capturing the non-linear and cyclic tendency of electric
load changes. Furthermore, the forecasting results of the SSVRCCS model are used to compare them
with other alternative models, such as the SARIMA, GRNN, SVRCCS, and SVRCS models, to test the
forecasting accuracy improvements achieved. The principal contribution of this paper is in continuing
to hybridize the SVR model with a tent chaotic computing mechanism, CS algorithm, and eventually,
combine a seasonal mechanism, to widely explore the electric load forecasting model to produce higher
accuracy performances.

The remainder of this article is organized as follows: the basic formulation of an SVR model,
the proposed CCS algorithm, seasonal mechanism, and the modeling details of the proposed SSVRCCS
model are described in Section 2. A numerical example and forecasting accuracy comparisons among
the proposed model and other alternative models are presented in Section 3. Finally, conclusions are
given in Section 4.

2. The Proposed SVR with Chaotic Cuckoo Search (SSVRCCS) Model

2.1. Support Vector Regression (SVR) Model

The modeling details of an SVR model are presented briefly as follows. The training data set,
{(xi, yi)}N

i=1, is mapped into a high dimensional feature space by a non-linear mapping function,
ϕ(x). Then, in the high dimensional feature space, the SVR function, f, is theoretically used to formulate
the nonlinear relationships between the input training data (xi) and the output data (yi). This can be
shown as Equation (1):

f (x) = wT ϕ(x) + b (1)

where f (x) represents the forecasted values; the weight, w, and the coefficient, b, are computed along
with minimizing the empirical risk, as shown in Equation (2):

R( f ) = C
1
N

N

∑
i=1

Θε(yi, f (xi)) +
1
2

wTw (2)

Θε(y, f (x)) =
{

0, i f | f (x)− y| ≤ ε

| f (x)− y| − ε, otherwise
(3)

where Θε(y, f (x)) is so-called ε-insensitive loss function, as shown in Equation (3). It is used to
determine the optimal hyperplane to separate the training data into two subsets with maximal distance,
i.e., minimizing the training errors between these two separated training data subsets and Θε(y, f (x)),
respectively. C is a parameter to penalize the training errors. The second term, 1

2 wTw, is then used to
represent the maximal distance between mentioned two separated data subsets, meanwhile, it also
determines the steepness and the flatness of f (x).

Then, the SVR modeling problem could be demonstrated as minimizing the total training errors.
It is a quadratic programming problem with two slack variables, ξ and ξ∗, to measure the distance
between the training data values and the edge values of ε-tube. Training errors under ε are denoted as
ξ∗, whereas training errors above ε are denoted as ξ, as shown in Equation (4):

Min
w,ξ,ξ∗

R(w, ξ, ξ∗) =
1
2
‖w‖2 + C

N

∑
i=1

(ξi + ξ∗i ) (4)

with the constraints:
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yi − f (xi) ≤ ε + ξ∗i ,
−yi − f (xi) ≤ ε + ξi,

ξ∗i ≥ 0
ξi ≥ 0

i = 1, 2, . . . , N

The solution of Equation (4) is optimized by using Lagrange multipliers, β∗
i , and βi, the weight

vector, w, in Equation (1) is computed as Equation (5):

w∗ =
N

∑
i=1

(β∗
i − βi)ϕ(xi) (5)

Eventually, the SVR forecasting function is calculated as Equation (6):

f (x) =
N

∑
i=1

(β∗
i − βi)K

(
xi, xj

)
+ b (6)

where K
(
xi, xj

)
is the so-called kernel function, and its value could be computed by the inner product

of ϕ(xi) and ϕ
(
xj
)
, i.e., K

(
xi, xj

)
= ϕ(xi)× ϕ

(
xj
)
. The are several kinds of kernel function, such as

Gaussian function (Equation (7)) and the polynomial kernel function. Due to its superior ability to
map nonlinear data into high dimensional space, a Gaussian function is used in this paper:

K
(
xi, xj

)
= exp

(
−‖xi − xj‖2

2σ2

)
(7)

Therefore, determining the three parameters, σ, C, and ε of an SVR model would play the critical
role to achieve more accurate forecasting performances [5,28,29]. The parameter ε decides the number
of support vectors. If ε is large enough, it implies few support vectors with low forecasting accuracy;
if ε has a value that is too small, it would increase the forecasting accuracy but be too complex to adopt.
Parameter C, as mentioned, penalizes the training errors. If C is large enough, it would increase the
forecasting accuracy but suffer from being difficult to adopt; if C has a too small value, the model
would suffer from large training errors. Parameter σ represents the relationships among data and the
correlations among support vectors. If σ is large enough, the correlations among support vectors are
strong and we can obtain accurate forecasting results, but if the value of σ is small, the correlations
among support vectors are weak, and adoption is difficult.

However, structural methods to determine the SVR parameters are lacking. Hong and his
colleagues have pointed out the advanced exploration way by hybridizing chaotic mapping functions
with evolutionary algorithms to overcome the embedded premature convergence problem, to select
suitable parameter combination, to achieve highly accurate forecasting performances. To continue
this valuable exploration, the chaotic cuckoo search algorithm, the CCS algorithm, is proposed to be
hybridized with an SVR model to determine an appropriate parameter combination.

2.2. Chaotic Cuckoo Search (CCS) Algorithm

2.2.1. Tent Chaotic Mapping Function

The chaotic mapping function is an optimization technique to map the original data series to
show sensitive dependence on the initial conditions and infinite different periodic responses (chaotic
ergodicity), to maintain the diversity of population in the whole optimization procedures, to enrich
the search behavior, and to avoid premature convergence. The most popular chaotic mapping function
is the logistic function, however, based on the analysis on the chaotic characteristics of the different
mapping functions, a tent chaotic mapping function [39] demonstrates a range of dynamical behavior
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ranging from predictable to chaos, i.e., with good ergodic uniformity [40]. This paper thus applies
the tent chaotic mapping function to be hybridized with the CS algorithm to determine the three
parameters of an SVR model.

The tent chaotic mapping function is shown as Equation (8):

xn+1 =

{
2xn x ∈ [0, 0.5]

2(1 − xn) x ∈ (0.5, 1]
(8)

where xn is the iterative value of the variable x in the nth step, and n is the number of iteration steps.

2.2.2. Cuckoo Search (CS) Algorithm

The CS algorithm is a novel meta-heuristic optimization algorithm, inspired by cuckoo birds’
obligate brood parasitic behavior of laying their eggs in the nests of other host birds. Meanwhile,
by applying Lévy flight behaviors, the search speed is much faster than that of the normal random
walk. Therefore, cuckoo birds can reduce the number of iterations and thus speed up the local
search efficiency. For CS algorithm implementation, each egg in a nest represents a potential solution.
The cuckoo birds could choose, by Lévy flight behaviors, recently-spawned nests to lay their eggs in
the host nests to ensure their eggs could hatch first due to the natural phenomenon that cuckoo eggs
usually hatch before the host birds’ eggs. It takes times for the host birds to discover that the eggs
in their nests do not belong to them, based on the probability, pa. When these “stranger” eggs are
discovered, they either throw out those eggs or abandon the whole nest to build a new nest in a new
location. The cuckoo birds would continuously lay new eggs (solutions), and they would choose the
nest, by Lévy flight behaviors, around the current best solutions.

The CS algorithm contains three famous idealized rules [31]: (1) each cuckoo lays one egg at
a time in a randomly selected host; (2) high-quality eggs and their host nests would survive to the next
generation; (3) the number of available host nests is fixed, and the host bird detects the “stranger” egg
with a probability pa ∈ [0, 1]. In this case, the host bird can either throw away the egg or abandon the
nest, and build a completely new nest. The last rule can be approximated by a fraction (pa) of the n
host nests that are replaced by new nests (with new random solutions). The value of pa is often set
as 0.25 [37].

The CS algorithm could maintain the balance between two kinds of search (random walks),
the local search and the global search, by a switching parameter, pa. The switching parameter pa

determines the cuckoo birds to abandon a fraction of the worst nests and build new ones for discovering
new and more promising regions in the search space. These two random walks are defined by
Equations (9) and (10), respectively:

xt+1
i = xt

i + αs ⊗ H(pa − δ)⊗
(

xt
j − xt

k

)
s (9)

xt+1
i = xt

i + αL(s, λ) (10)

where xt
j and xt

k are current positions randomly selected; α is the positive Lévy flight step size
scaling factor; s is the step size; H(·) is the Heavy-side function; δ is a random number from uniform
distribution; ⊗ represents the entry-wise product of two vectors; L(s, λ) is the Lévy distribution and is
used to define the step size of random walk, it is defined as Equation (11):

L(s, λ) =
λΓ(λ) sin(πλ/2)

π

1
s1+λ

(11)

where λ is the standard deviation of step size; the gamma function, Γ(λ), is defined as
Γ(λ) =

∫ ∞
0 tλ−1e−tdt, and represents an extension of factorial function, if λ is a positive integer,

then, Γ(λ) = (λ − 1)!. Lévy flight distribution enables a series of straight jumps chosen from any flight
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movements, it is also capable to find out the global optimum, i.e., it could ensure that the system will
not be trapped in a local optimum [41].

2.2.3. Implementation Steps of CCS Algorithm

The procedure of the hybrid CCS algorithm with an SVR model is illustrated as followings.
The relevant flowchart is shown in Figure 1.

Figure 1. Chaotic cuckoo search algorithm flowchart.

Step 1: Initialization.

The locations of random n nests for the three parameters of an SVR model as

x(i)k,j =
[

x(i)k,1, x(i)k,2, . . . , x(i)k,n

]T
, k = C, σ, ε; i represents the iteration number; j represents the number of
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nests. Let i = 0, and normalize the parameters as chaotic variables, cx(i)k,j , within the interval [0, 1] by
Equation (12):

cx(i)k,j =
x(i)k,j − Mink

Maxk − Mink
(12)

where Mink and Maxk are the minima and the maxima of the three parameters, respectively.

Step 2: Chaotic Mapping and Transferring.

Apply the tent chaotic mapping function, defined as Equation (8), to obtain the next iteration of
chaotic variables, cx(i+1)

k,j , as shown in Equation (13):

cx(i+1)
k,j =

{ 2cx(i)k,j cx(i)k,j ∈ [0, 0.5]

2
(

1 − cx(i)k,j

)
cx(i)k,j ∈ (0.5, 1]

(13)

Then, transform cx(i+1)
k,j to obtain three parameters for the next iteration, x(i+1)

k,j , by the following
Equation (14):

x(i+1)
k,j = Mink + cx(i+1)

k,j (Maxk − Mink) (14)

Step 3: Fitness Evaluation.

Evaluate the fitness value with x(i+1)
k,j for all nests to find out the best nest position, x(i+1)

k,best , in terms
of smaller forecasting accuracy index value. In this paper, the forecasting error is calculated as the
fitness value by the mean absolute percentage error (MAPE), as shown in Equation (15):

MAPE =
1
N

N

∑
i=1

∣∣∣∣ ai − fi
ai

∣∣∣∣× 100% (15)

where N is the total number of data; ai is the actual electric load value at point i; fi is the forecasted
electric load value at point i.

Step 4: Cuckoo Global Search.

Implement a cuckoo global search, i.e., Equation (10), by using the best nest position, x(i+1)
k,best , and

update other nest positions by Lévy flight distribution (Equation (11)) to obtain a new set of nest
positions, then, compute the fitness value.

Step 5: Determine New Nest Position.

Compare the fitness value of the new nest positions with the fitness value of the previous
iteration, and update the nest position with a better one. Then determine the new nest position as

x(t)k,j =
[

x(t)k,1, x(t)k,2, . . . , x(t)k,n

]T
.

Step 6: Cuckoo Local Search.

If pa is lower than to a random number r, then turn to discover the nests in x(t)k,j with lower
probability instead of the higher one. Then, compute the fitting value of the new nests and
continue updating the nest position x(t)k,j with smaller MAPE value by comparing it with the previous
fitness value.

Step 7: Determine The Best Nest Position.

Compare the fitness value of the new nest position, x(t)k,j , in Step 6, with the fitness value of the

best nest position, x(i+1)
k,best . If the fitness value of x(t)k,j is lower than the one of x(i+1)

k,best , then, update x(t)k,j as

the best nest position, x(t)k,best.
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Step 8: Stop Criteria.

If the number of search iterations are greater than a given maximum search iterations, then, the best
nest position, x(t)k,best, among the current population is determined as parameters (C, σ, ε) of an SVR
model; otherwise, go back to Step 2 and continue searching the next iteration.

2.3. Seasonal Mechanism

As indicated in existing papers [5,28,29] the short term electric load data often display cyclic
tendencies due to the cyclic nature of economic activities (production, transportation, operation, etc.)
or the seasonal climate in Nature (air conditioners and heaters in summer and winter, respectively).
It is useful to increase the forecasting accuracy by calculating these seasonal effects (or seasonal indexes)
to adjust the seasonal biases. Several researchers have proposed seasonal adjustment approaches to
determine the seasonal effects, such as Koc and Altinay [42], Goh and Law [43], and Wang et al. [44],
who all apply regression models to decompose the seasonal component. Martens et al. [45] apply
a flexible Fourier transform to estimate the daily variation of the stock exchange, and compute
a seasonal estimator. Deo et al. [46] composed two Fourier transforms in a cyclic period to further
identify the seasonal estimator. Comparing these seasonal adjustment models, Deo’s model extends
Martens’s model for application to general cycle-length data, particularly for hour-based or other
shorter cycle-length data. Considering that this paper deals with half-hour based short term electric
load data, this paper would like to employ the seasonal mechanism proposed by Hong and his
colleagues in [5,28,29]. That is, firstly apply the ARIMA model to identify the seasonal length of the
target time series data set; secondly, calculate these seasonal indexes to adjust cyclic effects to receive
more satisfied forecasting performances, as shown in Equation (16):

Seasonratioq = ln
(

aq

fq

)2
= 2

(
ln aq − ln fq

)
(16)

where q = j, l + j, 2l + j, . . . , (m − 1)l + j with m seasonal (cyclic) periods and l seasonal length in
each period. Thirdly, the seasonal index (SI) for each seasonal point j in each period is calculated as
Equation (17):

SIj = exp

(
1
m

(m−1)l+j

∑
q=j

Seasonratioq

)
/2 (17)

where j = 1,2, . . . l. The seasonal mechanism is demonstrated in Figure 2.
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Figure 2. Seasonal mechanism.
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3. Numerical Examples of the Proposed SSVRCCS Model

3.1. Data Set of Numerical Examples

To demonstrate the superiorities of the tent chaotic mapping function and seasonal mechanism of
the proposed SSVRCCS model, this paper uses the half-hour electric load data from the Queensland
regional market of the National Electricity Market (NEM, Queensland, Australia) [47], named Example
1, and the New York Independent System Operator (NYISO, New York, NY, USA) [48], named Example
2. The employed electric load data contains a total of 768 half-hour electric load values in Example 1,
i.e., from 00:30 01 October 2017 to 00:00 17 October 2017. Based on Schalkoff’s [49] recommendation
that the ratio of validation data set to training data set should be approximately one to four, therefore,
the electric load data set is divided into three sub-sets. The training set has 432 half-hour electric
load values (i.e., from 00:30 01 October 2017 to 00:00 09 October 2017). The validation set contains
144 half-hour electric load values (i.e., from 00:30 09 October 2017 to 00:00 13 October 2017). The testing
set has 192 half-hour electric load values (i.e., from 00:30 13 October 2017 to 00:00 17 October 2017).
Similarly, in Example 2, the used electric load data also contains a total of 768 hourly electric load
values, i.e., from 00:00 01 January 2018 to 23:00 1 February 2018. The electric load data set is also
divided into three sub-sets. The training set has 432 hourly electric load values (i.e., from 00:00 01
January 2018 2017 to 23:00 18 January 2018). The validation set has 144 hourly electric load values
(i.e., from 00:00 19 January 2018 to 23:00 24 January 2018). The testing set has 192 hourly electric load
values (i.e., from 00:00 25 January 2018 to 23:00 1 February 2018). To be based on the same comparison
conditions, all compared models thus have the same data division sets.

During the modeling processes, in the training stage, the rolling-based procedure, proposed by
Hong [28], is also applied to assist CCS algorithm to implement well searching for an appropriate
parameter combination (σ, C, ε) of an SVR model. Specifically, the CCS algorithm minimizes the
empirical risk, as shown in Equation (4), to obtain the potential parameter combination by employing
the first n electric load data in the training set; then, it receives the first forecasted electric load by
the SVR model with these potential parameter combination, i.e., the (n + 1)th forecasting electric
load. For the second round, the next n electric load data, from 2nd to (n + 1)th electric load values,
are then used by the SVR model to obtain new potential parameter combination, then, similarly,
the (n + 2)th forecasting electric load is receive. This procedure would never be stopped till the
totally 432 forecasting electric load are computed. The training error and the validation error are also
calculated in each iteration.

Only with the smallest validation and testing errors, a potential parameter combination could
be finalized as the determined parameter combination of an SVR model. Then, the never used
testing data set would be employed to demonstrate the forecasting performances, i.e., eventually,
the 192 half-hour/hourly electric load would be forecasted by the proposed SSVRCCS model.

3.2. The SVR with Chaotic Cuckoo Search (SSVRCCS) Electric Load Forecasting Model

3.2.1. Embedded Parameter Settings of the CCS Algorithm

The embedded parameters of CCS algorithm for modeling are set as follows: the number of host
nests is set to be 50; the maximum number of iterations is set as 500; the initial probability parameter
pa is set as 0.25. During the parameter optimizing process of an SVR model, the searching feasible
ranges of the three parameters are set as following, σ ∈ [0.01, 5], ε ∈ [0.01, 1], and C ∈ [0.01, 60,000].
In addition, considering that the iteration time would affect the performance of each model, the given
optimization time for each model with an evolutionary algorithm is set at the same inasmuch
as possible.
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3.2.2. Forecasting Accuracy Indexes

Three forecasting accuracy evaluation indexes are used to compare the forecasting performances
for each model: (1) the MAPE mentioned in Equation (5); (2) the root mean square error (RMSE); and
(3) the mean absolute error (MAE). The latter two indexes could be calculated by Equations (18) and
(19), respectively:

RMSE =

√
∑N

i=1(ai − fi)
2

N
s (18)

MAE =
1
N

N

∑
i=1

|ai − fi| (19)

where N is the total number of data; ai is the actual electric load value at point i; fi is the forecasted
electric load value at point i.

3.2.3. Forecasting Accuracy Significance Tests

To demonstrate the significant superiority of the proposed SSVRCCS model in terms of forecasting
accuracy, some famous statistical tests are implemented. Based on Diebold and Mariano’s [50] and
Derrac et al. [51] research suggestions, the Wilcoxon signed-rank test [52] and Friedman test [53] are
simultaneously applied in this paper.

The Wilcoxon signed-rank test is used to compare the significant differences in terms of central
tendency between two data set with the same size. Let di represent the i-th pair difference of the
i-th forecasting errors from any two forecasting models, the differences are ranked according to their
absolute values. Let r+ represent the sum of ranks that the first model larger than the second one;
r− represent the sum of ranks that the second model larger than the first one. In case of dj = 0,
then, exclude the j-th pair and reduce sample size. The statistic W of the Wilcoxon signed-rank test is
shown as Equation (20):

W = min
{

r+, r−
}

(20)

If W meets the criterion of the Wilcoxon distribution under N degrees of freedom, then, the null
hypothesis of equal performance of these two compared models cannot be accepted. It also implies
that the proposed model is significantly superior to the other model. Of course, if the comparison
size is larger than the critical size, the sampling distribution of W would approximate to the normal
distribution instead of Wilcoxon distribution, and the associated p-value would also be provided.

On the other hand, due to the non-parametric statistical test in the ANOVA analysis procedure,
the Friedman test is devoted to compare the significant differences among two or more models.
The statistic F of the Friedman test is shown as Equation (21):

F =
12N

k(k + 1)

[
k

∑
j=1

R2
j −

k(k + 1)2

4

]
(21)

where N is the total number of forecasting results; k is the number of compared models; Rj is the average
rank sum obtained in each forecasting value for each compared model as shown in Equation (22),

Rj =
1
N

N

∑
i=1

rj
i (22)

where rj
i is the rank sum from 1 (the smallest forecasting error) to k (the worst forecasting error) for ith

forecasting result, for jth compared model.
Similarly, if the associated p-value of F meets the criterion of not acceptance, the null hypothesis,

equal performance among all compared models, could also not be held.
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3.2.4. Forecasting Results and Analysis for Example 1

To compare the improved forecasting performance of the tent chaotic mapping function,
a SVR with the original CS algorithm (without the tent chaotic mapping function), namely the SVRCS
model, will also be taken into comparison. Therefore, according to the rolling-based procedure
mentioned above, by using the training data set from Example 1 (mentioned in Section 3.1) to conduct
the training work, and the parameters for SVRCS and SVRCCS models are eventually determined.
These trained models are further used to forecast the electric load. Then, the forecasting results and the
suitable parameters of SVRCS and SVRCCS models are listed in Table 1. It is clearly indicated that the
proposed SVRCCS model has achieved smaller forecasting performances in terms of the forecasting
accuracy indexes, MAPE, RMSE, and MAE.

Table 1. Three parameters of SVRCS and SVR with chaotic cuckoo search (SVRCCS) models for
Example 1.

Evolutionary Algorithms
Parameters

MAPE of Testing (%) RMSE of Testing MAE of Testing
σ C ε

SVRCS 1.4744 17,877.54 0.3231 2.63 217.19 151.72
SVRCCS 0.5254 5,885.65 0.7358 1.51 126.92 87.94

As shown in Figure 3, the employed electric load data demonstrates seasonal/cyclic changing
tendency in Example 1. In addition, the data recording frequency is on a half-hour basis, therefore,
to comprehensively reveal the electric load changing tendency, the seasonal length is set as 48.
Therefore, there are 48 seasonal indexes for the proposed SVRCCS and SVRCS models. The seasonal
indexes for each half-hour are computed based on the 576 forecasting values of the SVRCCS and
SVRCS models in the training (432 forecasting values) and validation (144 forecasting values) processes.
The 48 seasonal indexes for the SVRCCS and SVRCS models are listed in Table 2, respectively.

Table 2. The 48 seasonal indexes for SVRCCS and SVRCS models for Example 1.

Time
Points

Seasonal Index (SI) Time
Points

Seasonal Index (SI) Time
Points

Seasonal Index (SI) Time
Points

Seasonal Index (SI)

SVRCCS SVRCS SVRCCS SVRCS SVRCCS SVRCS SVRCCS SVRCS

00:00 0.9615 0.9201 06:00 1.0360 1.0536 12:00 1.0025 1.0076 18:00 1.0071 1.0176
00:30 0.9881 0.9241 06:30 1.0518 1.0729 12:30 0.9960 1.0032 18:30 1.0034 1.0109
01:00 0.9893 0.9401 07:00 1.0671 1.0924 13:00 0.9935 0.9992 19:00 0.9694 0.9767
01:30 0.9922 0.9729 07:30 1.0394 1.0810 13:30 0.9975 1.0022 19:30 0.9913 0.9875
02:00 0.9919 0.9955 08:00 1.0088 1.0575 14:00 1.0026 1.0083 20:00 0.9820 0.9812
02:30 0.9948 0.9980 08:30 1.0076 1.0322 14:30 1.0015 1.0088 20:30 0.9789 0.9700
03:00 0.9950 0.9998 09:00 1.0004 1.0148 15:00 1.0000 1.0070 21:00 0.9830 0.9641
03:30 0.9915 0.9961 09:30 0.9903 0.9982 15:30 1.0022 1.0089 21:30 0.9780 0.9547
04:00 1.0082 1.0129 10:00 1.0031 1.0067 16:00 1.0033 1.0115 22:00 0.9906 0.9622
04:30 1.0075 1.0176 10:30 0.9912 0.9981 16:30 1.0097 1.0173 22:30 0.9932 0.9778
05:00 1.0124 1.0245 11:00 0.9928 0.9973 17:00 1.0098 1.0188 23:00 0.9659 0.9645
05:30 1.0139 1.0253 11:30 0.9967 1.0025 17:30 1.0053 1.0164 23:00 0.9601 0.9348

The forecasting comparison curves of six models, including the SARIMA(9,1,8)×(4,1,4),
GRNN (σ = 0.04), SSVRCCS, SSVRCS, SVRCCS, and SVRCS models mentioned above and actual
values are shown in Figure 4. It illustrates that the proposed SSVRCCS model is closer to the actual
electric load values than other compared models. To further illustrate the tendency capturing capability
of the proposed SSVRCCS model during the electric peak loads, Figures 5–8 are enlargements from four
peaks in Figure 4 to clearly demonstrate how closer the SSVRCCS model matches to the actual electric
load values than other alternative models. For example, for each peak, the red real line (SSVRCCS
model) always follows closely with the black real line (actual electric load), whether climbing up the
peak or climbing down the hill.
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Figure 3. The seasonal tendency of actual half-hour electric load in Example 1.

Figure 4. Forecasting values of SSVRCCS model and other alternative models for Example 1.

Figure 5. The enlargement comparison of Peak 1 from the compared models for Example 1.
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Figure 6. The enlargement comparison of Peak 2 from the compared models for Example 1.

Figure 7. The enlargement comparison of Peak 3 from the compared models for Example 1.

Figure 8. The enlargement comparison of Peak 4 from the compared models for Example 1.
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Table 3 illustrates the forecasting accuracy indexes for the proposed SSVRCCS model and other
alternative compared models. It is clearly to see that the MAPE, RMSE, and MAE of the proposed
SSVRCCS model are 0.70%, 56.90, and 40.79, respectively, which are superior to the other five alternative
models. It also implies that the proposed SSVRCCS model contributes great improvements in terms of
load forecasting accuracy.

Table 3. Forecasting accuracy indexes of the compared models for Example 1.

Forecasting Accuracy Indexes SARIMA(9,1,8)×(4,1,4) GRNN(œ = 0.04) SSVRCCS SSVRCS SVRCCS SVRCS

MAPE (%) 3.62 1.53 0.70 0.99 1.51 2.63
RMSE 280.05 114.30 56.90 80.42 126.92 217.19
MAE 217.67 88.63 40.79 57.69 87.94 151.72

Finally, to ensure the significant contribution in terms of forecasting accuracy improvement for
the proposed SSVRCCS model, the Wilcoxon signed-rank test and the Friedman test are conducted.
Where Wilcoxon signed-rank test is implemented under two significance levels, α = 0.025 and α = 0.05,
by two-tail test; the Friedman test is then implemented under only one significance level, α = 0.05.
The test results in Table 4 show that the proposed SSVRCCS model almost reaches a significance level
in terms of forecasting performance than other alternative compared models.

Table 4. Results of Wilcoxon signed-rank test and Friedman test for Example 1.

Compared Models

Wilcoxon Signed-Rank Test Friedman Test

α = 0.025;
W = 9264

p-Value
α = 0.05;

W = 9264
p-Value α = 0.05;

SSVRCCS vs.
SARIMA(9,1,8)×(4,1,4)

842 a 0.00000 ** 842 a 0.00000 **
H0 : e1 = e2 = e3 = e4 = e5 = e6

F = 23.49107
p = 0.000272 (Reject H0)

SSVRCCS vs. GRNN(σ = 0.04) 3025 a 0.00000 ** 3025 a 0.00000 **
SSVRCCS vs. SSVRCS 2159 a 0.00000 ** 2159 a 0.00000 **
SSVRCCS vs. SVRCCS 3539 a 0.00000 ** 3539 a 0.00000 **
SSVRCCS vs. SVRCS 4288 a 0.00000 ** 4288 a 0.00000 **

a Denotes that the SSVRCCS model significantly outperforms the other alternative compared models; * represents
that the test indicates not to accept the null hypothesis under α = 0.05. ** represents that the test indicates not to
accept the null hypothesis under α = 0.025.

3.2.5. Forecasting Results and Analysis for Example 2

Similar to Example 1, SVRCS and SVRCCS models are also trained based on the rolling-based
procedure by using the training data set from Example 2 (mentioned in Section 3.1). The forecasting
results and the suitable parameters of SVRCS and SVRCCS models are shown in Table 5. It is also
obviously that the proposed SVRCCS model has achieved a smaller forecasting performance in terms
of forecasting accuracy indexes, MAPE, RMSE, and MAE.

Table 5. Three parameters of SVRCS and SVRCCS models for Example 2.

Evolutionary Algorithms
Parameters

MAPE of Testing (%) RMSE of Testing MAE of Testing
σ C ε

SVRCS 0.6628 36,844.57 0.2785 3.42 886.67 631.40
SVRCCS 0.3952 42,418.21 0.7546 2.30 515.10 426.42

Figure 9 also demonstrates the seasonal/cyclic changing tendency from the used electric load data
in Example 2. Based on the hourly recording frequency, to completely address the changing tendency
of the employed data, the seasonal length is set as 24. Therefore, there are 24 seasonal indexes for the
proposed SVRCCS and SVRCS models. The seasonal indexes for each hour are computed based on the
576 forecasting values of the SVRCCS and SVRCS models in the training (432 forecasting values) and
validation (144 forecasting values) processes. The 24 seasonal indexes for the SVRCCS and SVRCS
models are listed in Table 6, respectively.
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Figure 9. The seasonal tendency of actual hourly electric load in Example 2.

Table 6. The 24 seasonal indexes for SVRCCS and SVRCS models for Example 2.

Time
Points

Seasonal Index (SI) Time
Points

Seasonal Index (SI) Time
Points

Seasonal Index (SI) Time
Points

Seasonal Index (SI)

SVRCCS SVRCS SVRCCS SVRCS SVRCCS SVRCS SVRCCS SVRCS

00:00 0.9718 0.9317 06:00 1.0545 1.1043 12:00 0.9848 0.9911 18:00 0.9753 1.0242
01:00 0.9848 0.9670 07:00 1.0383 1.1133 13:00 0.9896 0.9959 19:00 0.9707 0.9743
02:00 0.9894 0.9960 08:00 0.9854 1.0833 14:00 0.9898 0.9960 20:00 0.9711 0.9754
03:00 0.9937 1.0001 09:00 0.9913 1.0259 15:00 0.9994 1.0058 21:00 0.9610 0.9674
04:00 1.0076 1.0140 10:00 0.9860 0.9951 16:00 1.0144 1.0208 22:00 0.9519 0.9435
05:00 1.0343 1.0407 11:00 0.9841 0.9903 17:00 1.0252 1.0441 23:00 0.9567 0.9245

The forecasting comparison curves of six models in Example 2, including SARIMA(9,1,10)×(4,1,4),
GRNN (σ = 0.07), SSVRCCS, SSVRCS, SVRCCS, and SVRCS models and actual values are shown
as in Figure 10. It indicates that the proposed SSVRCCS model is closer to the actual electric load
values than the other compared models. Similarly, the enlarged figures, Figures 11–14, from eight
peaks in Figure 10 are provided to demonstrate the tendency capturing capability of the proposed
SSVRCCS model and how closer the SSVRCCS model matches the actual electric load values than
other alternative models. It is clear that for each peak, the red real line (SSVRCCS model) always
follows closely with the black real line (actual electric load), whether climbing up the peak or climbing
down the hill.
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Figure 10. Forecasting values of SVR with chaotic cuckoo search (SSVRCCS) model and other
alternative models for Example 2.

Figure 11. The enlargement comparison of Peaks 1 and 2 from the compared models for Example 2.

Figure 12. The enlargement comparison of Peaks 3 and 4 from the compared models for Example 2.
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Figure 13. The enlargement comparison of Peaks 5 and 6 from the compared models for Example 2.

Figure 14. The enlargement comparison of Peaks 7 and 8 from the compared models for Example 2.

For comparison with other alternative models, Table 7 demonstrates the forecasting accuracy
indexes for each compared model. Obviously, the proposed SSVRCCS model almost achieves the
smallest index values in terms of the MAPE (0.46%), RMSE (126.10), and MAE (80.85), respectively.
It is superior to the other five compared models. Once again, it indicates that the proposed SSVRCCS
model could produce more accurate forecasting performances.

Table 7. Forecasting accuracy indexes of compared models for Example 2.

Forecasting Accuracy Indexes SARIMA(9,1,10)×(4,1,4) GRNN(œ = 0.07) SSVRCCS SSVRCS SVRCCS SVRCS

MAPE (%) 5.16 3.19 0.46 0.86 2.30 3.42
RMSE 1233.09 753.97 126.10 262.02 515.10 886.67
MAE 956.14 577.48 80.85 152.02 426.42 631.40

Finally, two statistical tests are also conducted to ensure the significant contribution in terms of
forecasting accuracy improvement for the proposed SSVRCCS model. The test results are illustrated in
Table 8 that the proposed SSVRCCS model almost reaches significance level in terms of forecasting
performance than other alternative compared models.
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Table 8. Results of Wilcoxon signed-rank test and Friedman test for Example 2.

Compared Models

Wilcoxon Signed-Rank Test Friedman Test

α = 0.025;
W = 9264

p-Value
α = 0.05;

W = 9264
p-Value α = 0.05;

SSVRCCS vs.
SARIMA(9,1,10)×(4,1,4)

152 a 0.00000 ** 152 a 0.00000 **
H0 : e1 = e2 = e3 = e4 = e5 = e6

F = 149.8006
p = 0.0000 (Reject H0)

SSVRCCS vs. GRNN(σ = 0.07) 396 a 0.00000 ** 396 a 0.00000 **
SSVRCCS vs. SSVRCS 482 a 0.00000 ** 482 a 0.00000 **
SSVRCCS vs. SVRCCS 745 a 0.00000 ** 745 a 0.00000 **
SSVRCCS vs. SVRCS 5207 a 0.00000 ** 5207 a 0.00000 **

a Denotes that the SSVRCCS model significantly outperforms the other alternative compared models; * represents
that the test indicates not to accept the null hypothesis under α = 0.05. ** represents that the test indicates not to
accept the null hypothesis under α = 0.025.

3.2.6. Discussions

To learn about the effects of the tent chaotic mapping function in both Examples 1 and 2, comparing
the forecasting performances (the values of MAPE, RMSE, and MAE in Tables 3 and 7) between SVRCS
and SVRCCS models, the forecasting accuracy of SVRCCS model is superior to that of SVRCS model.
It reveals that the CCS algorithm could determine more appropriate parameter combinations for an
SVR model by introducing the tent chaotic mapping function to enrich the cuckoo search space and
the diversity of the population when the CS algorithm is going to be trapped in the local optima.
In Example 1, as shown in Table 1, the parameter searching of an SVR model by CCS algorithm could
be moved to a much better solution, (σ, C, ε) = (0.5254, 5885.65, 0.7358) with forecasting accuracy,
(MAPE, RMSE, MAE) = (1.51%, 126.92, 87.94) from the local solution, (σ, C, ε) = (1.4744, 17877.54,
0.3231) with forecasting accuracy, (MAPE, RMSE, MAE) = (2.63%, 217.19, 151.72). It almost improves
1.12% (=2.63% − 1.51%) forecasting accuracy in terms of MAPE by employing Tent chaotic mapping
function. The same in Example 2, as shown in Table 5, the CCS algorithm also helps to improve
the result by 1.12% (=3.42% − 2.30%). These two examples both reveal the great contributions from
the tent chaotic mapping function. In future research, it would be worth applying another chaotic
mapping function to help to avoid trapping into local optima.

Furthermore, the seasonal mechanism can successfully help to deal with the seasonal/cyclic
tendency changes of the electric load data to improve the forecasting accuracy, by determining
seasonal length and calculating associate seasonal indexes (per half-hour for Example 1, and
per hour for Example 2) from training and validation stages for each seasonal point. In this paper,
authors hybridize the seasonal mechanism with SVRCS and SVRCCS models, namely SSVRCS and
SSVRCCS models, respectively, by using their associate seasonal indexes, as shown in Tables 2 and 6,
respectively. Based on these seasonal indexes, the forecasting results (in terms of MAPE) of the
SVRCS and SVRCCS models for Example 1 are further revised from 2.63% and 1.51%, respectively,
to achieve more acceptable forecasting accuracy, 0.99% and 0.70%, respectively. They almost improve
1.64% (=2.63% − 0.99%) and 0.81% (=1.51% − 0.70%) forecasting accuracy by applying seasonal
mechanism. The same in Example 2, as shown in Table 7, the seasonal mechanism also improves
2.56% (=3.42% − 0.86%) and 1.84% (=2.30% − 0.46%) for SVRCS and SVRCCS models, respectively.
In the meanwhile, based on Wilcoxon signed-rank test and Friedman test, as shown in Tables 4 and 8 for
Examples 1 and 2, respectively, the SSVRCCS models also achieve statistical significance among other
alternative models. Based on above discussions, this seasonal mechanism is also a considerable
contribution, and it is worth the time cost to deal with the seasonal/cyclic information during
modeling processes.

Therefore, it could be remarked that by hybridizing novel intelligent technologies, such as chaotic
mapping functions, advanced searching mechanism, seasonal mechanism, and so on, to overcome some
inherent drawbacks of the existing evolutionary algorithms could significantly improve forecasting
accuracy. This kind of research paradigm also inspires some interesting future research.
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4. Conclusions

This paper proposes a novel SVR-based hybrid electric load forecasting model, by hybridizing
the seasonal mechanism, the tent chaotic mapping function, and the CS algorithm with an SVR model,
namely the SSVRCCS model. The experimental results indicate that the proposed SSVRCCS model
significantly outperforms other alternative compared forecasting models. This paper continues to
overcome some inherent shortcomings of the CS algorithm, by actions such as enriching the search
space and the diversity of the population by using the tent chaotic mapping function to avoid premature
convergence problems and applying seasonal mechanism to provide useful adjustments caused from
seasonal/cyclic effects of the employed data set. Eventually, the proposed SSVRCCS model achieves
significant accurate forecasting performances.

This paper concludes some important findings. Firstly, by applying appropriate chaotic mapping
functions it could help empower the search variables to possess ergodicity characteristics, to enrich
the searching space, then, determine well appropriate parameter combinations of an SVR model,
to eventually improve the forecasting accuracy. Therefore, any novel hybridizations of existed
evolutionary algorithms with other optimization methods or mechanisms which could consider
those actions mentioned above during modeling process are all deserving to take a trial to achieve
more interesting results. Secondly, only hybridizing different single evolutionary algorithm with
an SVR model could contribute minor forecasting accuracy improvements. It is more worthwhile
to hybridize different novel intelligent technologies with single evolutionary algorithms to achieve
more high forecasting accurate levels. This could be an interesting future research tendency in the
SVR-based electric load forecasting field.
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Abstract: Daily operations and planning in a smart grid require a day-ahead load forecasting of its
customers. The accuracy of day-ahead load-forecasting models has a significant impact on many
decisions such as scheduling of fuel purchases, system security assessment, economic scheduling of
generating capacity, and planning for energy transactions. However, day-ahead load forecasting is a
challenging task due to its dependence on external factors such as meteorological and exogenous
variables. Furthermore, the existing day-ahead load-forecasting models enhance forecast accuracy
by paying the cost of increased execution time. Aiming at improving the forecast accuracy while
not paying the increased executions time cost, a hybrid artificial neural network-based day-ahead
load-forecasting model for smart grids is proposed in this paper. The proposed forecasting model
comprises three modules: (i) a pre-processing module; (ii) a forecast module; and (iii) an optimization
module. In the first module, correlated lagged load data along with influential meteorological and
exogenous variables are fed as inputs to a feature selection technique which removes irrelevant
and/or redundant samples from the inputs. In the second module, a sigmoid function (activation)
and a multivariate auto regressive algorithm (training) in the artificial neural network are used.
The third module uses a heuristics-based optimization technique to minimize the forecast error. In
the third module, our modified version of an enhanced differential evolution algorithm is used.
The proposed method is validated via simulations where it is tested on the datasets of DAYTOWN
(Ohio, USA) and EKPC (Kentucky, USA). In comparison to two existing day-ahead load-forecasting
models, results show improved performance of the proposed model in terms of accuracy, execution
time, and scalability.

Keywords: artificial neural network; load prediction; smart grid; heuristic optimization; energy trade;
accuracy

1. Introduction

An existing/traditional grid system needs renovation to bridge the ever-increasing gap between
demand and supply and also to meet essential challenges such as grid reliability, grid robustness,
customer electricity cost minimization, etc. [1]. In this regard, recent integration of advanced
communication technologies and infrastructures into traditional grids have led to the formation
of so called smart grids (SGs) [2]. The national national institute of standards and technology (NIST) [3]
conceptual diagram of smart grid (SG) is shown in Figure 1. This conceptual diagram can be used as a
reference model for standardization works in seven SG domains: generation, transmission, distribution,
end users, markets, operations, and service providers. Each domain involves one or more SG actors
(e.g., devices, systems, programs, etc.) to make decisions for realizing an application based on exchange
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of information. Further details on each domain, its involved actors, and respective applications can be
found in [3]. One of the advantages of this integration is customer engagement, which plays a key role
in the economies of energy trade. In other words, the old concept of uni-directional energy flow is
replaced by the new and smart concept of bi-directional energy flow—transformation from traditional
consumer to a smart prosumer [4].

Figure 1. Conceptual diagram of SG.

The resulting/new grid, integrated with advanced metering infrastructure, faces many challenges
such as [5]: (i) designing new techniques to meet the load while not increasing the generation capacity;
and (ii) devising new ways/policies to ensure customer engagement with utility. When installing
new technologies, utilities aim for a maximum possible return on an investment. However, this
maximization would require that the daily operations of an SG utility (such as strategic decisions
to bridge the gap between demand and supply, and fuel resource planning) are properly conveyed.
All these decisions are highly influenced by load forecast strategy(ies) [6]. Accurate load forecast
means that both utility and prosumer can maximize their electricity price savings due to spot
price establishment—one of the major reasons that utilities show growing interest towards SG
implementation. The concerned utility forecasts the future price/load signal which is based on
the past activities of users’ energy consumption patterns. In response to the forecast price/load signal,
the users adjust their energy consumption schedules subject to minimization of electricity cost and/or
their comfort level [7]. In reference [8], Hippert et al. classify load forecast based on time to be predicted
(Figure 2): short-term, medium-term and long-term. Short-term load forecasting is further categorized
into two types: (i) very short-term; and (ii) short-term forecasting. The first one has a prediction
duration from seconds/minutes to hours and model applications in flow control. The second one has
prediction horizon from hours to weeks and model applications in adjusting generation and demand,
therefore, used to launch offers to the electrical market. The short-term forecasting models are vital
in day-to-day operations, evaluation of net interchange, unit commitment and scheduling functions,
and system security analysis. In medium term forecasting, the prediction horizon is typically between
months. These models are used by utilities for fuel scheduling, maintenance planning, and hydro
reservoir management. In long-term forecasting, the prediction horizon is for years. Utilities use these
types of models for planning capacity of the grid and maintenance scheduling. Since accurate load
forecast is needed by utilities to properly plan the ongoing grid operations for efficient management
of their resources, this paper aims at an accurate load-forecasting model. However, the scope of
this paper is limited to short-term load forecasting with a day-ahead prediction horizon only. In
the literature, two types of day-ahead load forecasting (DALF) models have been presented: linear
and non-linear [9]. Also, [10] has highlighted the relative limitation(s) of linear models as compared
to non-linear models. In reference [9], the non-linear models are investigated in five classes: (i)
support vector machine-based models; (ii) Markov chain-based models; (iii) artificial neural network
(ANN)-based models; (iv) fuzzy ANN-based models; and (v) stochastic distribution-based models.
The support vector machine-based models [11–13] achieve relatively moderate accuracy, but at the
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cost of high execution time (slow convergence rate) due to high complexity. Whereas, the Markov
chain-based models [14–16] have low execution time, but at the cost of reduced forecast accuracy.
Furthermore, the stochastic distribution-based models [17–20] need improvement in terms of both
accuracy and execution time. The fuzzy ANN-based models [21–26] achieve moderate accuracy,
but at the cost of high execution time. Finally, hybrid ANN-based models improve the accuracy of
ANN-based models to an extent, but at the cost of high execution time. Among the hybrid ANN-based
models, reference [27] selects features via MI technique and ANN-based prediction to forecast the
day-ahead load (DAL) of SGs. To improve the accuracy of [27], the authors in [28] add a heuristic
optimization-based technique with [27]. Similarly, another hybrid strategy is presented in [29] subject
to DALF of SGs. However, reference [27,29] achieve relatively high forecast accuracy while taking high
time to execute the algorithm. Furthermore, the forecast error of the existing works [28,29] significantly
increases due to meteorological variables (such as dew point temperature, dry bulb temperature, etc.),
and exogenous variables (such as cultural and social events, human impact, etc.). Thus, we aim at
improving the forecast accuracy of DALF models without increasing their execution time, and in the
presence of meteorological and exogenous variables.

In our proposed work, a hybrid ANN-based DALF model for SGs is presented which is a
multi-model forecasting ANN with a supervised architecture and MARA for training. The proposed
model follows a modular structure (it has three functional modules): a pre-processor, a forecaster,
and an optimizer. Given the correlated lagged load data along with influential meteorological and
exogenous variables as inputs, the first module removes two types of features from it: (i) redundant;
and (ii) irrelevant. Given the selected features, the second module employs ANN to predict future
values of load. The AN is activated by sigmoid function and the ANN is trained by MARA. We further
minimize the forecast/prediction error by using an optimization module in which a a heuristics-based
optimization technique is implemented. The proposed DALF strategy for SGs is validated via
simulations which show that our proposed strategy forecasts the future load of SGs with approximately
98.76% accuracy. To sum up, this paper has the following contributions/advantages:

• The proposed model takes into account external DALF influencing factors such as meteorological
and exogenous variables.

• Due to better accuracy and less execution time, we have used MARA for training which none of
the existing forecast models has used for training.

• To improve the forecast accuracy and minimize the execution of the forecast model, we have
performed local training which none of the existing forecast models has used.

• We have used our modified version of the EDE in the error minimization module. The existing
Bi-level strategy [28] has used EDE algorithm in the error minimization module.

• We have tested our proposed model on the datasets of two USA grids: DAYTOWN and
EKPC. For evaluation and validation purposes, we have compared our proposed model with
two existing forecast models (bi-level forecast and MI+ANN forecast) and provided extensive
simulation results.

Please note that this work is continuation of our previous work in [30,31], where in both [30,31]
we have not considered exogenous and meteorological variables. The rest of the paper is organized
as follows. Section 2 discusses recent/relevant DALF works, Section 3 briefly describes the newly
proposed ANN and modified evolutionary algorithm-based DALF model for SGs, simulation results
are discussed in Section 4, and Section 5 states the concluding points drawn from this work along with
future work.

2. Related Work

For the sake of better understanding, the existing techniques are discussed in two classes (linear
and non-linear) according to the type of model used [9]. The model to be used is totally the choice of
researcher due to specific design considerations.
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2.1. Linear Models

Linear models give continuous response which is a function or linear combination of one or more
prediction variables. These models depend on the synthesis of all features of a problem that is more or
less solved by complex equations. Examples of these models include spectral decomposition-based
models, ordinary least square-based models, ARMA, etc. Since the prediction of demand is complex
due non-linearities, the linear forecast models predict with high relative errors due to their inability to
map the complex relationship between input and output. Thus, development of linear models is highly
challenging. Furthermore, Hagan et al. [10] highlighted the relative limitation(s) of linear models as
compared to non-linear models. Therefore, this research work is focused towards the discussion of
non-linear models only.

2.2. Non-Linear Models

When the observational data is modeled by non-linear combination of one or more prediction
variables, the model is said to be non-linear. To describe the relation between residual and periodical
components, Bunn and Farmer [32] realize/conclude the ability of non-linear models to overcome the
limitation(s) of linear models. In reference [9], the non-linear models are further categorized into five
classes: (i) support vector machine-based models; (ii) Markov chain-based models; (iii) ANN-based
models; (iv) fuzzy neural network-based models; and (v) stochastic distribution-based models. These
models are discussed as follows.

(i) Support vector machine-based models: In reference [11], Niu et al. propose support vector machine
and ant colony optimization-based load-forecasting technique for an SG. The authors use ant colony
optimization technique for preprocessing of the input data. In this paper, system mining technique is
used for feature selection. The selected features are fed into the forecaster which is a support vector
machine-based predictor. Another important work has been presented by Li et al. in [12]. This varied
version of the authors is least squares-based support vector machine. Similarly, reference [13] models
the cyclic nature of demand by support vector machine-based linear regression. In conclusion, the
support vector machine-based works are better in terms of accuracy; however, development of these
models is highly challenging due to high complexity.

(ii) Markov chain-based models: Subject to robustness of DALF forecast strategy, authors in [14]
propose a Markov chain-based strategy. This stochastic strategy aims to tackle load-time series
fluctuations associated with energy consumption of users in a heterogeneous environment. The Markov
chains are used to predict the future duty cycles of appliances. The technique is robust due to
their memoryless nature (predicted pattern only depends on the current states; past states are not
considered). In reference [15], Markov chain Monte Carlo method is used to model the switching
pattern of household appliances. In simulations, they consider 100 households for one weak. However,
this model limited in scope as it applies to situations in the Netherlands only. Another work in [16]
proposes explicit duration hidden Markov model along with differential observation-based model to
predict individual load of appliances. The authors collect the aggregated power signals by ordinary
smart meters. The memoryless nature of Markov chains not only makes the DALF strategy robust but
also relatively less complex in comparison to the aforementioned techniques. However, the memory
less nature of Markov chains also has a drawback; less accuracy.

(iii) ANN-based models: ANNs learn from experience/training to predict future values while
being fed with relevant input information. The advantages of these networks include but are not
limited to self-organization, adaptive learning, fault tolerance, ease of integration with existing
network/technology, and real time operation. The abilities to generalize and to capture non-linearity
in complex environments make ANNs very attractive in problems of load forecasting. There are two
basic architectures of ANN; feed forward and feedback. The former one carries information from input to
output via hidden layer in forward direction only, i.e., the information of each layer is independent
from that of the others. Feed forward ANNs are widely used for pattern recognition and forecasting
problems. The later one carries information in both directions, forward and feedback, such that the
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information of each layer is dependent on that of the others. Feedback ANNs are appropriate for
complex and time varying problems [33–35]. On the other hand, the learning modes of ANNs fall under
three categories: supervised [36], unsupervised [37], and re-enforced [38]. In the first category, the ANN
attempts to minimize minimum square error (MSE) for known target vector (i.e., the input/output
vectors are specified). For a given input/output, error is calculated between output and the target
values. This error is used to update the weights and biases of the ANN to minimize the MSE to a certain
threshold. In the second category, the ANN does not need explicit target data. The system adjusts
its output based on self-learning from different input patterns. In the third category, the connections
between ANs are reinforced every time these are activated. Since this research work is limited in scope
to supervised learning only, we discuss some of these latest/relevant works as follows.

In reference [27], authors present a hybrid technique subject to short-term price forecasting of
SGs. This hybrid technique comprises two steps; feature selection and prediction. In the first step,
a mutual information-based technique is implemented to remove redundancy and irrelevancy from
the input load-time series. In the second step, ANN along with evolutionary algorithm is used to
forecast the time series of the future load. In this process, the authors assume sigmoid activation
function for artificial neurons (ANs) , and Levenburg-Marquardt algorithm for training. In addition,
the authors fine-tune some adjustable parameters during the first and second steps via an iterative
search procedure which is part of their work. Subject to forecast accuracy, this technique is efficient
as it embeds various techniques; however, the cost paid is high execution time. In reference [28],
the authors investigate stochastic characteristics of SG’s load. More importantly, the authors present
a bi-level DALF technique for SGs. In the first/lower level, ANN and evolutionary algorithm are
implemented to forecast the future load/price curve. In the second/upper level, an EDE algorithm
is implemented to further minimize the prediction errors. Effectiveness of this work is reflected via
MATLAB simulations which demonstrate that the proposed strategy performs DALF in SGs with
a reasonable accuracy by paying the cost of high execution time. The hybrid methodology in [39]
completes the DALF task in four steps: (i) data selection; (ii) transformation; (iii) forecast; and (iv) error
correction. In step one, some well-known techniques of data selection are used to minimize the high
dimensionality curse of input load-time series characteristics. Step two deals wavelet transformation
of the selected characteristics of input load-time series to enable redundancy and irrelevancy filter
implementation. Followed by step three, which uses ANN and a training algorithm subject to DALF in
SGs. More importantly, they choose sigmoid activation function for ANs due non-linear capturability.
Finally, error correcting functions are used in step four to improve the proposed DALF methodology
in terms of accuracy. In simulations, this methodology is tested against practical household load which
demonstrates that this methodology is very good for improving the accuracy by paying the cost of
high complexity. Another novel strategy is presented in [40] to predict the occurrence of price spikes
in SGs. The proposed strategy uses wavelet transformation for input feature selection. An ANN is
then used to predict future price spikes based on the training of the selected inputs.

(iv) Fuzzy neural network-based models: Doveh et al. [21] present fuzzy ANN-based model for load
forecasting. In their work, the input variables are heterogeneous. They also model the seasonal effect
via a fuzzy indicator. In reference [22], the authors present a self-adaptive load-forecasting model
for SGs. To correlate demand profile information and the operational conditions, a knowledge-based
feedback fuzzy system is proposed. For optimization of error, a multilayered perceptron ANN structure
is used where training is done via back propagation method. Some other hybrid strategies such
as [23,24] focus on fuzzy ANN as well. Wang [23] presents electric demand forecasting model using
fuzzy ANN model, whereas, Che et al. [24] present an adaptive fuzzy combination model. Che et al.
iteratively combine different subgroups while calculating fuzzy functions for all the subgroups. A
few more works combining fuzzy ANN with other schemes are presented in [25,26]. Subject to fuzzy
neural network controller design for improving prediction accuracy, membership functions to express
the inference rules by linguistic terms need proper definitions. As fuzzy systems lack such formal
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definitions, optimization of these functions is thus a potential research area. However, the integration
of optimization technique further complicates the overall methodology.

(v) Stochastic distribution-based models: The model in [17] predicts the power usage time series by
using a probability-based approach. The model also configures household appliances between holidays
and working days. A major assumption in this work is the gaussian distribution-based on-off cycles of
household appliances, number of appliances, and power consumption pattern of appliances. In this
work, not only a wide range of appliances is considered but also high flexibility degree of appliances is
considered. However, absence of closed form solution makes the gaussian-based forecast strategy very
complex. Moreover, these assumptions cannot be always true, thus, accuracy of the predicted load-time
series is highly questionable. An improvement over [17] is presented in [18]. This research work uses
1
2 regulizer to overcome the computational complexity of gaussian distribution-based DALF strategy
in [17]. Moreover, the proposed DALF strategy can capture heteroscedasticity of load in a more efficient
way as compared [17]. Simulations are conducted to prove that the proposed DALF strategy performs
better than the existing one. To sum up, we conclude that [18] has overcome the complexity of [17] to
some extent; however, the basic assumptions (gaussian distribution-based on-off cycles of household
appliances, number of appliances, and power consumption pattern of appliances) still hold the bases
and thus make the proposal highly questionable in terms of accuracy. A semi-parametric additive
forecast model is presented in [19]. This work is based on point forecast and calculates the prediction
intervals via a modified bootstrap algorithm. Similarly, another semi-parametric generalized additive
load forecast model is presented in [20]. In terms of forecast horizon, the generalized additive forecast
model is better than the non-generalized one due to its dual forecast capability; short-term and middle
term. However, both the forecast models are not sufficient in terms of accuracy when compared to the
ANN-based models. The overall classification hierarchy of forecast techniques is shown in Figure 2,
and their summary is given in Table 1.

Figure 2. Classification of existing forecast techniques.
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3. The Proposed Forecast Strategy

ANNs are widely used as forecasters because these networks can predict the non-linearities
of SGs’ load with low convergence time. However, sometimes the achieved prediction accuracy is
not up to the mark. Thus, leading to the adoption of optimization techniques that can significantly
enhance the prediction accuracy of ANNs. However, the cost paid to achieve high accuracy is increased
convergence time. Therefore, we aim towards the development of a new DALF strategy using the
concept of hybrid integration subject to: (i) improvement of prediction accuracy; and (ii) reduction of
convergence time.

Our proposed DALF strategy is implemented in three interconnected modules: (i) a pre-processing
module; (ii) a forecast module; and (iii) an optimization module. Given the input data, the
pre-processing module removes redundant and irrelevant samples from the input data. Using sigmoid
activation function and MARA, the hybrid ANN-based forecast module predicts the DAL of an SG.
Finally, the optimization module minimizes prediction errors to improve accuracy of the overall DALF
strategy. Block diagram of the proposed model is shown in Figure 3. Detailed description of each
module is as follows.

Figure 3. Block diagram of the proposed modular approach for an hour.

3.1. Pre-Processing Module

Since the ANN-based forecaster predicts load of the next day, the input data must be pre-processed
subject to removal of redundant and irrelevant samples due to two reasons: (i) redundant features do
not provide more information and thus unnecessarily increase the execution time during the training
process (will be later discussed in the forecast module); and (ii) irrelevant features do not provide
useful information and act as outliers. Detailed description of the pre-processor module is as follows.

As mentioned earlier, the data preparation module receives the input load-time series (historical).
Suppose, following is the input load data:

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p(h1, d1) p(h2, d1) p(h3, d1) . . . p(hm, d1)

p(h1, d2) p(h2, d2) p(h3, d2) . . . p(hm, d2)

p(h1, d3) p(h2, d3) p(h3, d3) . . . p(hm, d3)

p(h1, d4) p(h2, d4) p(h3, d4) . . . p(hm, d4)

p(h1, d5) p(h2, d5) p(h3, d5) . . . p(hm, d5)
...

...
...

. . .
...

p(h1, dn) p(h2, dn) p(h3, dn) . . . p(hm, dn)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(1)

where, dn is the nth day, hm is the mth hour of the day, and p(hm, dn) is power usage value of the of the
nth day at the mth hour. Similarly, we have input dew point temperature data in a matrix TDP, input
dry bulb temperature data in a matrix TDB, and the input type of day (working day or holiday) data
in a matrix DT . Choosing n is totally dependent on the choice of designer. Greater value of n means
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that more historical lagged samples are available (fine tuning). This fine tuning however results in
greater time during execution of the algorithm. Thus, there is a trade-off between convergence rate
and accuracy. Before feeding the forecast/prediction module with P, the values of P are normalized.
In this process, a local maximum value ‘pci

max’ is computed in each column of P:

pci
max = max(p(hi, d1), p(hi, d2), p(hi, d3), . . .

, p(hi, dn)), ∀ i ∈ {1, 2, 3, . . . , m} (2)

By local normalization we mean normalization of each P’s column by local maxima (one maximum
in each column); results are saved in Pnrm (range of Pnrm ∈ [0, . . . , 1]). Similarly, the matrices TDP,nrm,
TDB,nrm and DT,nrm are normalized forms of TDP, TDB and DT , respectively.

These input matrices Pnrm, TDP,nrm, TDB,nrm and DT,nrm not only contain irrelevant features but
also contain redundant features. To remove these two types of features, we use mutual information
technique that is proposed in [27] and later used in [28] as well. According to this technique, the
relative amount of mutual information between two quantities; input K and target G, is as follows:

MI(K, G) = ∑
i

∑
j

p(Ki, Gj)log2

( p(Ki, Gj)

p(Ki)p(Ki)

)
(3)

In reference (3), MI(K, G) = 0 reflects that the input and target variables and independent, high
value of MI(K, G) reflects that there is a strong relation between K and G two and low value of
MI(K, G) reflects that there is loose relation between K and G.

By using (3), we calculate MI(K, G) with the help of which two types of samples (redundant
plus irrelevant) are discarded from the given input data matrices Pnrm, TDP,nrm, TDB,nrm and DT,nrm.
According to [27,28], this MI technique achieves acceptable accuracy while not taking high time for
execution.

Remark 1. The data set used for training is historical, i.e., for tomorrow’s load forecast we need measured load
values of previous days. Yes! The historical data was time dependent however with respect to the current day
these values do not undergo any change. In other words, we deal with previously recorded data which means that
the stationary assumption is not violated. Thus, the computation of MI is applicable here.

Remark 2. The power consumption/demand of a user is different for days such as holidays or working days. It
even shows variation for different hours such as on-peak and off-peak hours. To better explain our choice, let us
consider the following example:

Considering matrix P in Equation (1), let p(h1, d1) be the prediction variable. Then there are two possible
cases for training:

(a) The ANN is trained by all elements of the matrix P except the first row.
(b) The ANN is trained only by the 1st column of the matrix P except p(h1, d1).

The training samples in case (a) lead to greater prediction error due to the presence of outliers. Whereas, the
training samples in case (b) lead to smaller prediction error because the outliers are removed.

Remark 3. To improve accuracy of a forecast/prediction model, the samples used for training must be a-priori
made relevant. Also, minimized number of samples will decrease algorithm’s execution time. Due to these two
reasons, we prefer/chose local training for each hour. In our approach, the historical load values are locally
normalized by local maxima. Then the normalized values are binary encoded with respect to local median.
This encoding represents two classes of values: high and low. The classes are used for selecting features only,
i.e., the mutual information is easily calculated for binary variables. This selection reduces the computational
complexity of the mutual information-based feature selection strategy. Once we get rid of redundant and
irrelevant samples are removed from the data set, the actual values against the binary encoded values are used
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for training and optimization in the rest of the modules to prevent information loss. Thus, we have used a
compromising approach between computational complexity and information loss.

Remark 4. Feature selection is done at beginning, and the selected features are then used for training during
the operational life of the technique. From simulations, we conclude the following:

(i) If the data set size is small (≤1 month), feature selection has no significant impact on the computational
complexity of the overall strategy.

(ii) If the data set size is moderate (≥1 month and ≤3 months), feature selection somehow affects the
computational complexity of the overall strategy.

(iii) If the data set size is large (≥3 months), feature selection has a significant impact on the computational
complexity of the overall strategy.

3.2. Forecast Module

From the works discussed in Section 2, it is concluded that any DALF strategy must ensure
non-linear prediction capability. Therefore, we choose ANNs because these can capture the highly
volatile characteristics of load-time series with reasonable accuracy.

For DALF, two strategies are used; direct forecasting and iterative forecasting [28]. However, it
is discussed in [41] that the first strategy may introduce significant round off errors and the second
one introduces large forecast errors. To overcome these imperfections, reference [28] has introduced
the idea of cascaded strategy. Thus, our proposed forecast module implements the cascaded strategy.
Our forecast module consists of an ANN; 24 consecutive cascaded forecasters such that each one of the
24 forecasters has an output for forecasting an hour’s load of the upcoming day. It is worth mentioning
that the 24 h’ forecasters/predictors are modeled explicitly instead of a single implicit/complex one.
These 24 one hour ahead forecasters allow improvement in terms of accuracy [28]. The cascaded ANN
forecast structure is a combination of direct and iterative structures such that load of each hour of the
next day is directly predicted and each forecaster yields exactly one output.

In the forecast module, each forecaster is an AN that implements sigmoid function for activation.
We have chosen sigmoid activation function because for enabling ANs in terms of capturing
the highly volatile (non-linear) SG’s time variant load characteristics. To update the weights
during training process of the ANN, different algorithms have been used previously. For example,
reference [42] include Gradient Descent Back Propagation algorithm. Similarly, references [27,28]
suggest Levenberg-Marquardt algorithm as it can train the ANN 1–100 times faster than the Gradient
Descent Back Propagation algorithm. We use multivariate auto regressive algorithm (MARA) [43]
because it can train the ANN faster than Levenberg-Marquardt algorithm and Gradient Descent Back
Propagation algorithm [42]. According to Kolmogrov theorem, if the ANN is provided with proper
number of ANs then it can solve a problem by adopting one hidden layer. Thus, we have considered
one hidden layer in the cascaded ANN structure of all 24 ANs. From the selected features S f (.) of the
pre-processing module, the forecast module constructs training and validation samples, ST = S f (i, j)
and SV = S f (1, j), respectively (where i ∈ [2, m] and j ∈ [1, n]). These samples illustrate that the
training of ANN by all the candidate inputs except the last/final one. The set of last samples of
historical load-time series is used for validation purpose. In fact, the validation set is a part of the
training load set constructed from it the training. Thus, the validation set becomes unseen for ANN.
To make the validation error as a true representative of the forecast error, validation set needs to be
as close to the forecast horizon as possible. While forecasting tomorrow’s load we choose one day
backward samples due to two reasons: (i) daily periodicity; and (ii) short-run trend [44]. Thus, each of
the 24 ANs is trained as per multi-variate MARA using the aforementioned training and validation
sets. Further details of the training process to update the weights can be found in [43] and pictorial
view of the learning process is shown in Figure 4.
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Figure 4. Supervised learning of the ANN.

For a set of finite input-target pairs, once the weights are adaptively adjusted as per MARA [43],
the forecast module returns the forecast error signal; mean absolute percentage error‘MAPE(i) =
1
m ∑m

j=1
|pa(i,j)−p f (i,j)|

pa(i,j) ’, to the optimization module. Where pa(i, j) is the actual load value and p f (i, j) is
the forecasted load value. Stepwise operations of the proposed forecast module are shown in Figure 5a.

(a) Forecast module (b) Optimization module

Figure 5. Flow charts of our modular approach.

3.3. Optimization Module

Based on the nature of the overall forecast strategy, the basic objective of optimization module is
to minimize the forecast error, EF(.),

minimize
Ith ,Rth

MAPE(i) (4)

where i ∈ [1, m], Ith and Rth represent thresholds for irrelevancy and redundancy, respectively.
Optimization module gives Ith’s and Rth’s optimized values to the MI-based feature selection module
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which uses these threshold values for feature selection. For this purpose, various choices are available
such as linear programming, non-linear programming, quadratic programming, convex optimization,
heuristic optimization, etc. However, the first one is not applicable here because the problem is
highly non-linear. The non-linear problem can be converted into a linear one; however, the overall
process would become very complex. The second one is applicable here and gives accurate results
by paying execution time’s cost. Similarly, the third and fourth ones suffer from slow convergence
time. It is worth mentioning here that optimization does not imply exact reachability to optimum
set of solutions, rather, near optimal solution(s) is(are) obtained. To sum up, heuristic optimization
techniques are preferred in these situations because these provide near optimal solution(s) in relatively
less execution time.

DE is one of the heuristic optimization techniques proposed in [45] and its enhanced version is
used for forecast error minimization in [28]. In this paper, we modify the EDE algorithm for the sake
accuracy improvement. Thus, in the upcoming paragraphs, detailed discussion is presented.

According to [28], in generation t, the jth trial vector y for ith individual is given as:

y
′t
i,j =

{
ut

i,j if rnd(j) ≤ FFN(Ut
i )

xt
i,j if rnd(j) > FFN(Ut

i )
(5)

where, xt
i,j and ut

i,j are the corresponding parent and mutant vectors, respectively. In (5), FFN(.)
denotes the fitness function (0 < FFN(.) < 1) and Rand(j) ∈ [0, 1] is a random number complying to
uniform distribution. Between Xt

i and Yt
i , the corresponding offspring of the next generation X(t+1)

i is
selected as follows:

yt
i,j =

{
y
′t
i,j if MAPE(y

′t
i ) ≤ EF(xt

i )

xt
i,j otherwise

(6)

where, MAPE(.) is the objective function. From (5) and (6), it is clear that offspring selection depends
on the trial vector which in turn depends on the random number and the fitness function. From this
discussion, we conclude that the selected offspring is not the fittest. To make the fittest one, our
approach eliminates the chances of offspring selection under the influence of random number, i.e., we
modify (5) as follows:

y
′t
i,j =

⎧⎪⎨⎪⎩
ut

i,j if Xt
i

Xt
imax

< FFN(Ut
i )

xt
i,j if Xt

i
Xt

imax
≥ FFN(Ut

i )
(7)

From (7), it is clear that the trial vector no longer depends on the random number instead its
dependence in now totally on the mutant vector which in turn depends on the parent vector. Offspring
selection by this method will ensure selection of the fittest ones subject to accuracy improvement.
Stepwise operations of the optimization module are shown in Figure 5b.

4. Simulation Results

For evaluation of our proposed model, we conduct simulations. For simulations, we have used
MATLAB installed on Intel(R) Core(TM) i3-2370M CPU @ 2.4GHz and 2GB RAM with Windows 7.
The proposed MI+ANN+mEDE-based forecast model is compared with two existing DALF models:
MI+ANN forecast [27], and bi-level forecast [28]. For simulation purpose, traces of real time data
for DAYTOWN and EKPC (the two USA grids) are taken from PJM electricity market. This data is
freely available at [46]. We have used January–December 2014 load values for training the ANN, and
January–December 2015 data for testing the ANN. Following are the simulation parameters that are
used in our experiments (refer to Table 2). Justification of these parameters can be found in [27,28,42,43].
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The newly proposed MI+ANN+mEDE model is tested against the two existing models in terms of
three performance metrics: (i) accuracy; and (ii) execution time or convergence rate.

• Accuracy: Accuracy(.) = 100 − MAPE(.). We have measured this metric in %.
• Variance: Var(i) = 1

m ∑m
j=1 |p f (i, j)− pa(i, j)|. Where pa(i, j) is the mean value of pa(i, j).

Monthly variance is calculated by using the same formula while considering the calculated
daily variances.

• Execution time: During simulations, the time taken by the system to completely execute a given
forecast strategy. The strategy for which execution time is small converges more quickly and vice
versa. In simulations, we have measured execution time in seconds.

Table 2. Parameters used in simulations.

Parameter Value

Forecasters 24
Hidden layers 1

Maximum iterations 100
Neurons (in the hidden layer) 5

Bias 0
Initial weights 0.1

Momentum 0
Load data (historical) 1 year

Maximum generations 100

Referring to Figure 6a–f and Tables 3–6, which are graphical/tabular illustrations/representations
of the proposed MI+ANN+mEDE-based forecast model versus the two existing DALF models:
MI+ANN and bi-level. From Figure 6a,b, it is clear that the proposed MI+ANN+mEDE model
effectively predicts/forecasts the future load of the two selected SGs. The ANN-based forecaster
captures the non-linearities in the history load-time series. This non-linear prediction capability is
not only due to sigmoid activation function but also due to the selected training algorithm; MARA.
When we look at the hourly forecast results in Figure 6c,d, the % error of the MI+ANN-based forecast
model is 3.8% and 3.81% for DAYTOWN and EKPC, respectively. The % error of the bi-level forecast
model is 2.2% and 2.23% for DAYTOWN and EKPC, respectively. The % error of the proposed
MI+ANN+mEDE-based forecast model is 1.24% for both DAYTOWN and EKPC, respectively. Similarly,
the daily forecast results of the two simulated models for January 2015 are shown in Tables 3 and 5 for
the two selected USA grids, respectively. From these results, it is clear that the existing MI+ANN-based
forecast model predicts the future load with the highest % error and the highest variance. Also, the
monthly forecast results of the three simulated models for January–December 2015 are shown in
Tables 4 and 6 for EKPC and DAYTOWN, respectively. From Tables 4 and 6, it is evident that the
proposed MI+ANN+mEDE model forecasts the future load with the least prediction error and the
least variance as compared to the other two existing models. This result is obvious due to absence of
optimization module in MI+ANN-based forecast model. To minimize this forecast error, the bi-level
forecast model uses EDE algorithm. Subject to further minimization of the forecast error, we have
integrated an mEDE optimization technique. Please note that mEDE is our modified version of existing
EDE algorithm for down scaling forecast error. Results show that integration of mEDE algorithm
yields fruitful results; the MI+ANN+mEDE-based DALF model is relatively more accurate than the
other two existing DALF models. These figures show the positive impact of optimization module on
the forecast error minimization between target curve and the forecast curve. It is obvious that the error
curve decreases as the number of generations of the mEDE algorithm are increased. As the proposed
MI+ANN+mEDE forecast model compares the forecast curve’s error (next generation) with the existing
one (existing generation) and updates the weights if the forecast curve’s error is less than the existing
one (survival of the fittest). Thus, as expected, the forecast error is significantly minimized as the
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forecast strategy is subjected to step ahead generations. However, during simulations, we observed that
from 89th to 100th generation, the forecast error does not exhibit significant improvement. Therefore,
the proposed and the existing forecast models are not subjected to further generations. There exists a
possible trade-off between accuracy of a forecast strategy and its convergence rate (refer to Sections 1–3).
This trade-off is shown in Figure 6c–f. From these figures, it is clear that the bi-level forecast model
improves the accuracy of MI+ANN forecast model while paying cost in terms of relatively slow
convergence rate. On the other hand, the newly proposed MI+ANN+mEDE model modifies the
EDE algorithm to further improve the accuracy of the bi-level forecast model. More importantly, the
MI+ANN+mEDE model improves the prediction accuracy by not paying surplus cost in terms of
execution time. However, the execution time of our proposed forecast model is still greater than the
MI+ANN forecast model due to integration of optimization module.

Figure 7 shows the impact of dataset size (number of training data samples) on error performance
(see Figure 7a) and execution time (see Figure 7b) of the three selected models. By observing Figure 7a,
an improvement of error performance for all the compared STLF models is evident when the number
of lagged input samples increase from 30 to 120. This result follows Equation (1), i.e., the ANN is more
finely tuned by increasing the value of n (30 to 120) which improves the forecast error performance.
However, this improvement is not significant at much higher tuning when the number of training
samples are increased from 60 to 120 (stability can be seen in the curves). On the other hand, Figure 7b
shows the cost of high execution time paid by the fine tuning to achieve relative improvement in
forecast accuracy. This is obvious because training of the ANN takes additional time when the number
of training samples are increase. From Figure 7a,b, it is clear that the proposed modular model is more
scalable (relatively higher degree of stability can be seen for MI+ANN+mEDE forecast) as compared
to the other two models. The reasons for this higher scalability are: usage of selected features for
training of the ANN, training the ANN via MARA algorithm with local normalization, and usage
mEDE algorithm for error minimization.

Table 7 shows the relationship between MAPE and the number of iterations of the three compared
STLF models when tested on DAYTOWN and EKPC datasets. The convergence characteristics (i.e.,
the number of iterations) indicate that the proposed MI+ANN+mEDE model and the bi-level model
converge at an optimal value in almost the same number of iterations. On the other hand, the MI+ANN
model takes only 20–23 iterations for converging into an optimal target value. This result is obvious
due to the added computational burden in the bi-level and the MI+ANN+mEDE models (i.e., these
models use the optimization module) which is not the case in MI+ANN model (i.e., this model does not
use the optimization model). In other words, the MI+ANN model achieves its target of the required
training, testing, and validation with the least number of iterations. However, this least computational
burden is achieved by paying the high cost of forecast accuracy. In this regard, a regression analysis
of the network was performed to evaluate confidence interval of the training, testing and validation
performance of the compared forecast models, and the results are shown in Table 7. Clearly, the
proposed MI+ANN+mEDE model achieves the highest confidence interval (i.e., 98%) as compared
to bi-level (i.e., 97%) and MI+ANN (i.e., 96%) models. This means that only 2% of the estimated
data is not statistically significant for the network in case of the proposed MI+ANN+mEDE model.
As a result, the forecasted load demand of the proposed MI+ANN+mEDE model is rather closer to its
actual value as compared to the other two models (see Figure 6a,b).

57



Energies 2019, 12, 164

(a) DAYTOWN grid: actual vs. forecast load curves (b) EKPC grid: actual vs. forecast load curves

(c) DAYTOWN grid: forecast error (d) EKPC grid: forecast error

(e) DAYTOWN grid: convergence rate or execution time
behavior

(f) EKPC grid: Convergence rate or execution time behavior

Figure 6. Relative performance of the proposed intelligent modular approach tested on historical data
of DAYTOWN and EKPC grid: STLF results for 27 January 2015.
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Figure 7. Relative scalability analysis of the proposed intelligent modular approach.

Table 3. EKPC: Results for January 2015.

Day

Forecast Model

MI+ANN Bi-Level MI+ANN+mEDE

MAPE Variance MAPE Variance MAPE Variance

1 3.99 1.89 2.40 1.50 1.04 1.12
2 3.42 1.78 1.97 1.46 1.32 0.97
3 4.10 2.08 2.61 1.26 1.15 1.09
4 3.67 1.91 2.13 1.41 1.44 0.96
5 3.79 1.70 1.97 1.37 1.16 1.05
6 3.62 1.88 2.43 1.48 1.29 0.97
7 3.93 1.73 2.62 1.39 1.40 1.11
8 3.97 1.94 1.92 1.28 1.19 1.03
9 3.54 2.04 2.18 1.42 1.39 0.90

10 3.46 1.79 2.21 1.36 1.10 1.03
11 4.05 1.72 1.85 1.39 1.25 1.05
12 4.21 1.84 1.97 1.29 1.29 0.90
13 3.89 2.00 1.94 1.33 1.07 1.03
14 3.62 1.75 1.84 1.46 1.36 1.10
15 3.79 1.99 2.11 1.26 1.14 0.93
16 3.47 1.81 2.44 1.38 1.36 1.07
17 4.24 2.10 2.26 1.26 1.20 1.04
18 4.20 1.74 2.61 1.41 1.23 1.08
19 3.86 1.97 2.44 1.46 1.07 0.96
20 3.61 1.80 2.52 1.42 1.18 0.98
21 3.82 1.95 2.29 1.48 1.36 1.12
22 3.77 2.03 2.62 1.45 1.42 0.99
23 4.23 1.86 2.53 1.51 1.34 1.01
24 3.94 1.77 2.38 1.29 1.11 0.92
25 3.44 1.73 2.20 1.47 1.32 1.14
26 3.56 1.94 2.23 1.34 1.10 0.97
27 3.81 1.78 2.29 1.40 1.24 1.11
28 3.39 1.82 1.94 1.29 1.39 1.03
29 4.19 2.05 2.43 1.32 1.08 0.98
30 3.52 1.77 1.98 1.42 1.12 1.06
31 4.01 1.99 1.82 1.42 1.33 0.99

Average 3.81 1.84 2.23 1.38 1.24 1.03
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Table 4. EKPC: Results for 2015.

Month

Forecast Model

MI+ANN Bi-Level MI+ANN+mEDE

MAPE Variance MAPE Variance MAPE Variance

January 3.81 1.84 2.23 1.38 1.24 1.03
February 3.85 1.75 2.15 1.44 1.20 0.99

March 4.76 1.90 2.26 1.39 1.26 1.05
April 3.84 1.76 2.19 1.41 1.29 1.00
May 3.80 1.71 1.20 1.47 1.23 1.02
June 3.73 1.73 2.16 1.35 1.21 1.01
July 3.72 1.81 2.29 1.40 1.24 1.07

August 3.84 1.70 1.28 1.40 1.25 1.03
September 3.82 2.90 2.22 1.33 1.20 0.99

October 3.82 1.88 2.15 1.36 1.30 1.01
November 4.77 1.75 1.17 1.48 1.22 1.06
December 4.80 1.82 1.27 1.32 1.27 1.02

Average 3.79 1.80 2.13 1.39 1.24 1.01

Table 5. DAYTOWN: Results for January 2015.

Day

Forecast Model

MI+ANN Bi-Level MI+ANN+mEDE

MAPE Variance MAPE Variance MAPE Variance

1 3.72 1.70 2.59 1.36 1.20 1.02
2 3.60 1.86 2.38 1.30 1.31 1.10
3 3.54 1.90 2.20 1.51 1.35 0.97
4 3.81 1.88 1.77 1.27 1.25 0.95
5 3.78 1.92 2.57 1.41 1.32 1.07
6 4.07 1.83 2.65 1.33 1.21 0.96
7 3.88 1.79 2.58 1.43 1.35 1.11
8 3.62 1.81 2.25 1.28 1.22 1.01
9 4.30 1.88 2.25 1.50 1.15 0.90

10 3.71 1.93 2.43 1.44 1.27 1.03
11 3.59 1.77 2.27 1.30 1.34 1.12
12 3.82 1.74 2.34 1.37 1.24 0.95
13 3.77 1.84 2.50 1.25 1.29 1.06
14 4.15 1.83 2.64 1.31 1.16 1.13
15 3.69 1.91 1.88 1.40 1.28 0.93
16 3.87 1.89 2.47 1.52 1.30 1.12
17 4.27 2.76 2.60 1.33 1.29 1.10
18 3.64 1.78 2.15 1.42 1.31 1.00
19 4.18 1.84 1.86 1.40 1.21 1.12
20 3.75 1.99 2.31 1.28 1.19 0.99
21 3.58 1.97 2.05 1.39 1.18 1.05
22 3.83 2.72 2.70 1.30 1.32 0.98
23 4.88 1.99 2.60 1.38 1.37 1.09
24 3.73 1.88 2.44 1.29 1.18 1.12
25 4.21 2.01 1.91 1.47 1.33 0.92
26 3.59 1.76 1.79 1.32 1.21 1.04
27 3.80 1.96 2.20 1.37 1.24 1.10
28 3.66 1.89 1.97 1.27 1.22 1.03
29 4.25 1.81 2.33 1.49 1.15 0.98
30 3.51 1.92 1.90 1.24 1.36 1.03
31 4.03 1.95 1.88 1.43 1.20 1.06

Average 3.86 1.92 2.27 1.36 1.25 1.03
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Table 6. DAYTOWN: Results for 2015.

Month

Forecast Model

MI+ANN Bi-Level MI+ANN+mEDE

MAPE Variance MAPE Variance MAPE Variance

January 3.86 1.92 3.27 1.36 1.25 1.03
February 3.85 1.71 2.30 1.47 1.20 0.99

March 3.80 1.75 2.20 1.44 1.22 1.05
April 3.71 1.79 2.24 1.38 1.27 1.06
May 3.79 1.87 2.28 1.40 1.22 1.02
June 3.72 1.85 2.13 1.30 1.24 1.07
July 3.76 1.76 2.22 1.36 1.28 0.99

August 3.87 1.76 2.18 1.43 1.26 1.08
September 3.70 2.70 2.29 1.38 1.23 1.02

October 3.77 1.88 2.17 1.36 1.21 1.09
November 3.83 1.83 2.27 1.50 1.27 1.00
December 3.80 1.81 2.25 1.33 1.21 1.01

Average 3.78 1.88 2.31 1.39 1.23 1.03

Table 7. Comparison of training iterations (convergence) and regression analysis (accuracy).

Dataset Forecast Model Iterations Training Testing Validation

MI+ANN 20 0.9626 0.9619 0.9556
DAYTOWN Bi-Level 94 0.9787 0.9799 0.9776

MI+ANN+mEDE 95 0.9876 0.9890 0.9872

MI+ANN 23 0.9622 0.9617 0.9551
EKPC Bi-Level 95 0.9769 0.9783 0.9766

MI+ANN+mEDE 96 0.9877 0.9892 0.9878

5. Conclusions and Future Work

In SGs, DALF is an essential task because its accuracy has a direct impact on the planning
schedules of utilities that strongly affects the energy trade market. Moreover, high volatility in the
history load curves makes DALF in SGs relatively more challenging when compared to load forecast
for longer duration. Taking into account DALF influencing factors such as exogenous variables and
meteorological variables, we have presented a hybrid ANN-based DALF model for SGs which is a
multi-model forecasting ANN with a supervised architecture and MARA for training. The proposed
model significantly reduced the execution time and enhanced the forecast accuracy by distinctly
carrying local normalization and local training. Moreover, sigmoid activation function and MARA
enable the forecast strategy to capture non-linearities in load-time series. Integration of optimization
module (based on our proposed modifications) with the forecast strategy also improved the forecast
accuracy. Tests are conducted on three USA grids: DAYTOWN, EKPC and FE. Results show that the
proposed model achieves relatively better forecast accuracy (98.76%) in comparison to an existing
bi-level technique and an MI+ANN technique. Moreover, improvement in forecast accuracy is achieved
while not paying the cost of slow convergence rate. Thus, the trade-off between convergence rate
and forecast is not created. Finally, from application perspective, the proposed model can be used by
utilities to launch better offers in the electricity market. This means that the utilities can save significant
amount of money due to better adjustment of their generation and demand schedules simply because
of high accuracy of the proposed model.

In future, we are interested in advanced signal processing techniques for feature selection and
extraction purposes. Moreover, exploration of particle swarm optimization-based techniques and a
complete forecast plus scheduling-based technique is also under consideration.
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Nomenclature

SG Smart grid
DAL Day-ahead load
DALF Day-ahead load forecast(ing)
AN Artificial neuron
ANN Artificial neural network
MARA Multivariate auto regressive algorithm
ARMA Auto regressive and moving average
EDE Enhanced differential evolution algorithm
mEDE Modified version of EDE algorithm
NIST National institute of standards and technology
MSE Minimum square error
P Historical load data matrix
TDP Historical dew point temperature data matrix
TDB Historical boiling point temperature data matrix
DTYP Historical dew point temperature data matrix
phm ,dn Load value at mth hour of the nth day
pci

max Local maxima for each column of P
Pnrm Locally normalized P
TDP,nrm Locally normalized TDP
TDB,nrm Locally normalized TDB
MI(K, G) Relative mutual information between input K and target G
pr(K, G) Joint probability between K and G
pr(K) Individual probability of K
S f Selected features
ST Training samples
SV Validation samples
MAPE Mean absolute percentage error
pa Actual load
p f Forecasted load
Ith Irrelevancy threshold value
Rth Redundancy threshold value
y
′t
i,j jth trial vector y

′
for ith individual in generation t

xt
i,j jth parent vector x for ith individual in generation t

ut
i,j jth mutant vector u for ith individual in generation t

yt
i,j jth offspring vector y for ith individual in generation t

rnd Random number
FFN(.) Fitness function
EF Forecast error

References

1. Gelazanskas, L.; Gamage, K.A. Demand side management in smart grid: A review and proposals for future
direction. Sustain. Cities Soc. 2014, 11, 22–30. [CrossRef]

2. Yan, Y.; Qian, Y.; Sharif, H.; Tipper, D. A Survey on Smart Grid Communication Infrastructures: Motivations,
Requirements and Challenges. IEEE Commun. Surv. Tutor. 2013, 15, 5–20. [CrossRef]

62



Energies 2019, 12, 164

3. National Institute of Standards and Technology. NIST Framework and Roadmap for Smart Grid
Interoperability Standards. Release 1.0. 2010. Available online: http://www.nist.gov/publicaffairs/releases/
upload/smartgridinteroperabilityfinal.pdf (accessed on 10 November 2018 ).

4. Leiva, J.; Palacios, A.; Aguado, J.A. Smart metering trends, implications and necessities: A policy review.
Renew. Sustain. Energy Rev. 2016, 55, 227–233. [CrossRef]

5. How Does Forecasting Enhance Smart Grid Benefits? SAS Institute Inc.: Cary, NC, USA, 2015; pp. 1–9.
6. Hernandez, L.; Baladron, C.; Aguiar, J.M.; Carro, B.; Sanchez-Esguevillas, A.J.; Lloret, J.; Massana, J. A survey

on electric power demand forecasting: Future trends in smart grids, microgrids and smart buildings.
IEEE Commun. Surv. Tutor. 2014, 16, 1460–1495. [CrossRef]

7. Vardakas, J.S.; Zorba, N.; Verikoukis, C.V. A Survey on Demand Response Programs in Smart Grids:
Pricing Methods and Optimization Algorithms. IEEE Commun. Surv. Tutor. 2015, 17, 152–178. [CrossRef]

8. Hippert, H.S.; Pedreira, C.E.; Souza, C.R. Neural Networks for Short-Term Load Forecasting: A review and
Evaluation. IEEE Trans. Power Syst. 2001, 16, 44–51. [CrossRef]

9. Raza, M.Q.; Khosravi, A. A review on artificial intelligence based load demand forecasting techniques for
smart grid and buildings. Renew. Sustain. Energy Rev. 2015, 50, 1352–1372. [CrossRef]

10. Hagan, M.T.; Behr, S.M. The Time Series Approach to Short Term Load Forecasting. IEEE Trans. Power Syst.
1987, 2, 785–791. [CrossRef]

11. Niu, D.; Wang, Y.; Wu, D. Power load forecasting using support vector machine and ant colony optimization.
Exp. Syst. Appl. 2010, 37, 2531–2539. [CrossRef]

12. Li, H.; Guo, S.; Zhao, H.; Su, C.; Wang, B. Annual Electric Load Forecasting by a Least Squares Support
Vector Machine with a Fruit Fly Optimization Algorithm. Energies 2012, 5, 4430–4445. [CrossRef]

13. Aung, Z.; Toukhy, M.; Williams, J.R.; S’anchez, A.; Herrero, S. Towards Accurate Electricity Load Forecasting
in Smart Grids. In Proceedings of the Fourth International Conference on Advances in Databases, Knowledge,
and Data Applications, Athens, Greece, 2–6 June 2012; pp. 51–57.

14. Meidani, H.; Ghanem, R. Multiscale Markov models with random transitions for energy demand
management. Energy Build. 2013, 61, 267–274. [CrossRef]

15. Nijhuis, M.; Gibescu, M.; Cobben, J.F. Bottom-up Markov Chain Monte Carlo approach for scenario based
residential load modelling with publicly available data. Energy Build. 2016, 112, 121–129. [CrossRef]

16. Guo, Z.; Wang, Z.J.; Kashani, A. Home appliance load modeling from aggregated smart meter data.
IEEE Trans. Power Syst. 2015, 30, 254–262. [CrossRef]

17. Gruber, J.K.; Prodanovic, M. Residential energy load profile generation using a probabilistic approach.
In Proceedings of the IEEE UKSim-AMSS 6th European Modelling Symposium, Valetta, Malta, 14–16
November 2012; pp. 317–322.

18. Kou, P.; Gao, F. A sparse heteroscedastic model for the probabilistic load forecasting in energy-intensive
enterprises. Electr. Power Energy Syst. 2014, 55, 144–154. [CrossRef]

19. Fan, S.; Hyndman, R.J. Short-Term Load Forecasting Based on a Semi-Parametric Additive Model. IEEE Trans.
Power Syst. 2012, 27, 134–141. [CrossRef]

20. Goude, Y.; Nedellec, R.; Kong, N. Local Short and Middle Term Electricity Load Forecasting with
Semi-Parametric Additive Models. IEEE Trans. Power Syst. 2014, 5, 440–446. [CrossRef]

21. Doveh, E.; Feigin, P.; Greig, D.; Hyams, L. Experience with FNN Models for Medium Term Power Demand
Predictions. IEEE Trans. Power Syst. 1999, 14, 538–546. [CrossRef]

22. Mahmoud, T.S.; Habibi, D.; Hassan, M.Y.; Bass, O. Modelling self-optimised short term load forecasting for
medium voltage loads using tunning fuzzy systems and Artificial Neural Networks. Energy Convers. Manag.
2015, 106, 1396–1408. [CrossRef]

23. Wang, Z.Y. Development Case-based Reasoning System for Shortterm Load Forecasting. In Proceedings
of the IEEE Russia Power Engineering Society General Meeting, Montreal, QC, Canada, 18–22 June 2006;
pp. 1–6.

24. Che, J.; Wang, J.; Wang, G. An adaptive fuzzy combination model based on self-organizing map and support
vector regression for electric load forecasting. Energy 2012, 37, 657–664. [CrossRef]

63



Energies 2019, 12, 164

25. Nadimi, V.; Azadeh, A.; Pazhoheshfar, P.; Saberi, M. An Adaptive-Network-Based Fuzzy Inference System
for Long-Term Electric Consumption Forecasting (2008–2015): A Case Study of the Group of Seven (G7)
Industrialized Nations: USA, Canada, Germany, United Kingdom, Japan, France and Italy. In Proceedings
of the Fourth UKSim European Symposium on Computer Modeling and Simulation, Pisa, Italy, 17–19
November 2010; pp. 301–305.

26. Lou, C.W.; Dong, M.C. Modeling data uncertainty on electric load forecasting based on Type-2 fuzzy logic
set theory. Eng. Appl. Artif. Intell. 2012, 25, 1567–1576. [CrossRef]

27. Amjaday, N.; Keynia, F. Day-Ahead Price Forecasting of Electricity Markets by Mutual Information Technique
and Cascaded Neuro-Evolutionary Algorithm. IEEE Trans. Power Syst. 2009, 24, 306–318. [CrossRef]

28. Amjady, N.; Keynia, F.; Zareipour, H. Short-Term Load Forecast of Microgrids by a New Bilevel Prediction
Strategy. IEEE Trans. Smart Grid 2014, 1, 286–294. [CrossRef]

29. Liu, N.; Tang, Q.; Zhang, J.; Fan, W.; Liu, J. A Hybrid Forecasting Model with Parameter Optimization for
Short-term Load Forecasting of Micro-grids. Appl. Energy 2014, 129, 336–345. [CrossRef]

30. Ahmad, A.; Javaid, N.; Alrajeh, N.; Khan, Z.A.; Qasim, U.; Khan, A. A modified feature selection and artificial
neural network-based day-ahead load forecasting model for a smart grid. Appl. Sci. 2015, 5, 1756–1772.
[CrossRef]

31. Ahmad, A.; Javaid, N.; Guizani, M.; Alrajeh, N.; Khan, Z.A. An accurate and fast converging short-term load
forecasting model for industrial applications in a smart grid. IEEE Trans. Ind. Inform. 2017, 13, 2587–2596.
[CrossRef]

32. Bunn, D.W.; Farmer, E.D. Comparative Models for Electrical Load Forecasting; Wiley: New York, NY, USA, 1985;
pp. 13–30.

33. Ahmad, I.; Abdullah, A.B.; Alghamdi, A.S. Application of artificial neural network in detection of probing
attacks. IEEE Sympos. Ind. Electron. Appl. 2009, 57–62.

34. Malki, H.A.; Karayiannis, N.B.; Balasubramanian, M. Short term electric power load forecasting using
feedforward neural networks. Exp. Syst. 2004, 21, 157–167. [CrossRef]

35. Hahn, H.; Meyer-Nieberg, S.; Pickl, S. Electric load forecasting methods: Tools for decision making. Eur. J.
Oper. Res. 2009, 199, 902–907. [CrossRef]

36. Amakali, S. Development of Models for Short-Term Load Forecasting Using Artficial Neural Networks.
Master’s Thesis, Cape Peninsula University of Technology, Cape Town, South Africa, 2008.

37. Valova, I.; Szer, D.; Gueorguieva, N.; Buer, A. A parallel growing architecture for self-organizing maps with
unsupervised learning. Neurocomputing 2005, 68, 177–195. [CrossRef]

38. Anderson, J.; Silverstein, J.; Ritz, S.; Jones, R. Distinctive features, categorical perception and probability
learning: Some applications on a neural model. Psychol. Rev. 1977, 84, 413–451. [CrossRef]

39. Yang, H.T.; Liao, J.T.; Lin, C.I. A Load Forecasting Method for HEMS Applications. In Proceedings of the
2013 IEEE Grenoble Conference, Grenoble, France, 16–20 June 2013; pp. 1–6.

40. Amjady, N.; Keynia, F. Electricity market price spike analysis by a hybrid data model and feature selection
technique. Electr. Power Syst. Res. 2010, 80, 318–327. [CrossRef]

41. Amjady, N.; Keynia, F. Short-term load forecasting of power systems by combination of wavelet transform
and neuro-evolutionary algorithm. J. Energy 2009, 34, 46–57. [CrossRef]

42. Engelbrecht, A.P. Computational Intelligence: An Introduction, 2nd ed.; John Wiley & Sons: New York, NY,
USA, 2007.

43. Anderson, C.W.; Stolz, E.A.; Shamsunder, S. Multivariate autoregressive models for classification of
spontaneous electroencephalographic signals during mental tasks. IEEE Trans. Biomed. Eng. 1998, 45,
277–286. [CrossRef] [PubMed]

44. Lasseter, R.H.; Piagi, P. Microgrid: A conceptual solution. In Proceedings of the IEEE International
Conference on Power Electronics Specialists, Aachen, Germany, 20–25 June 2004; pp. 4285–4290.

45. Storn, R.; Price, K. Differential evolution—A simple and efficient heuristic for global optimization over
continuous spaces. J. Glob. Optim. 2009, 11, 341–359. [CrossRef]

46. PJM Electricity Market. Available online: www.pjm.com (accessed on 1 February 2015).

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

64



energies

Article

Deep Learning Based on Multi-Decomposition for
Short-Term Load Forecasting

Seon Hyeog Kim , Gyul Lee , Gu-Young Kwon , Do-In Kim and Yong-June Shin *

Department of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Korea;
goodguy7@yonsei.ac.kr (S.H.K.); thyecho@yonsei.ac.kr (G.L.); kgy926@yonsei.ac.kr (G.-Y.K.);
penpony109@yonsei.ac.kr (D.-I.K.)
* Correspondence: yongjune@yonsei.ac.kr; Tel.: +82-2-2123-4625

Received: 31 October 2018; Accepted: 3 December 2018; Published: 7 December 2018

Abstract: Load forecasting is a key issue for efficient real-time energy management in smart grids.
To control the load using demand side management accurately, load forecasting should be predicted
in the short term. With the advent of advanced measuring infrastructure, it is possible to measure
energy consumption at sampling rates up to every 5 min and analyze the load profile of small-scale
energy groups, such as individual buildings. This paper presents applications of deep learning using
feature decomposition for improving the accuracy of load forecasting. The load profile is decomposed
into a weekly load profile and then decomposed into intrinsic mode functions by variational mode
decomposition to capture periodic features. Then, a long short-term memory network model is
trained by three-dimensional input data with three-step regularization. Finally, the prediction results
of all intrinsic mode functions are combined with advanced measuring infrastructure measured
in the previous steps to determine an aggregated output for load forecasting. The results are
validated by applications to real-world data from smart buildings, and the performance of the
proposed approach is assessed by comparing the predicted results with those of conventional
methods, nonlinear autoregressive networks with exogenous inputs, and long short-term memory
network-based feature decomposition.

Keywords: deep learning; empirical mode decomposition (EMD); long short-term memory (LSTM);
load forecasting; neural networks; variational mode decomposition (VMD); weekly decomposition

1. Introduction

Accurate load forecasting optimizes power loads, reducing costs and stabilizing electric power
distribution. Load forecasting accuracy depends on the time series data of non-stationary and
non-linearity characteristics. These characteristics are influenced by the prediction time scale and
energy consumption scale. Depending on the prediction time scale, load forecasting is classified into
four types.

Long-term load forecasting (LTLF) has a time scale of more than a year, medium-term load
forecasting (MTLF) a time scale from one week to one year, and short-term load forecasting (STLF) a
time scale from one hour to one week. System operators typically estimate demand by referring to
load profiles from several hours ago. Ultra-short-term load forecasting (USTLF) is a key issue for smart
grids, real-time demand side management (DSM), and energy transactions because energy trading in
DSM requires precise load forecasting in the order of minutes, and profit is strongly related to forecast
accuracy. Therefore, the USTLF time scale is from several minutes to one hour [1].

Conventional load forecasting methods use statistical models based on inherent characteristics
of historical data. Previous STLF studies have proposed auto-regressive integrated moving average
(ARIMA), Gaussian processing regression (GPR), support vector regression (SVR), and neural network
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models [2]. ARIMA is a common method for linear time series-based methods. GPR and SVR provide
alternative methods to model time series loads, using external data such as weather data to consider
non-linearity and non-stationarity. GPR is a supervised machine learning model based on statistical
regression and a kernel function that refines variance and step length [3].

To reduce the nonlinearity of the time series data and to analyze their statistical characteristics, a
seasonal analysis combined prediction method is used [4,5]. Recent research activities divide profiles
into sub-profiles according to the load patterns of customers based on human factor, contract type,
and region. After dividing the profiles into sub-profiles, a clustering algorithm is used for hierarchical
classification [6–9].

To improve the accuracy of load forecasting using external data such as temperature, humidity,
weather information, and electricity prices, a method has been proposed [10–13]. However, measuring
such data is a challenging task for low-level distribution and small-scale loads. Furthermore,
data processing and data storage of each piece of the dataset are required because the resolution
of time-series data is different. Therefore, recent research trends use the technique of feature
selection [14,15] or decomposing the load profile to extract the characteristics of the load using signal
processing theory [16–24].

Wavelet decomposition with neural networks [1,16–18] has been employed to increase prediction
accuracy. In [1], a wavelet algorithm dealt with the noise of the actual electrical load data, and load
forecasting based on artificial neural networks (ANN) was proposed. Empirical mode decomposition
(EMD) with machine learning has also been proposed for load forecasting, wind speed, or energy
prices [19–22]. However, EMD lacks a mathematical definition and has weaknesses that diverge
at end-points when decomposing the signal. To overcome the weakness of EMD, load forecasting
studies using variational mode decomposition (VMD) have been proposed [22–25]. Existing regression
methods with various decompositions, clustering algorithms, and probabilistic analyses have been
investigated, as they can be used to identify load characteristics; however, they increase the dimension
of the input [26–28]. Clustering and decomposition methods are applied in the pre-processing stage
to improve the accuracy of the load prediction, and current state-of-art load forecasting studies have
improved the performance of the prediction model through deep learning [29–33].

A recurrent neural network (RNN) has a memory structure and a hidden layer suitable for
processing big data using deep learning techniques. However, an RNN has vanishing gradient
problems caused by an increase in the number of layers. Nonlinear autoregressive exogenous (NARX)
RNNs offer an orthogonal mechanism for dealing with the vanishing gradient problem by allowing
direct connections or delays from the distant past data [34,35]. However, NARX RNNs have a limited
impact on vanishing gradients, and the delay structure increases the computation time. Most successful
RNN architectures have long short-term memory (LSTM), which uses nearly additive connections
between states, to alleviate the vanishing gradient problem [36–41]. In [42], gated recurrent unit
(GRU) neural networks with K-mean clustering were proposed. A GRU is a variant LSTM with
a simpler structure, but it has similar performance, and convolutional neural networks (CNNs)
are also widely used in deep learning for image classification [43,44]. As the load prediction model
becomes more sophisticated, shorter prediction time scales [1,5] and lower level feeders of distributions,
such as behind-the-meter individual load, business buildings, and household electric usage, are being
studied [6,26–28].

This paper proposes a deep learning method whereby features are extracted through
multi-decomposition for short-term load forecasting. The scale of the predicted load is a feeder-level
business building. Feeder-level load forecasting is more complicated than that of an aggregated
load because the statistical characteristics are greatly changed even with a slight change in power
consumption. The proposed decomposition method significantly captures intrinsic load pattern
components and periodic features.

A load forecasting method based on LSTM with VMD is designed and implemented in this paper.
The proposed two-stage decomposition analysis identifies the characteristics of the load profile with
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AMI only, i.e., without external data. In addition, the three-step regularization process removes the
problem of data processing in deep running and improves LSTM. The proposed method simulates
load forecasting within a few minutes (USTLF) to several days (STLF) using real-world building data
and shows the advantages that LSTM has over the traditional models.

The rest of the paper is organized as follows. Section 2 introduces the proposed feature extraction
method and provides background information. Section 3 presents deep learning. Section 4 introduces
the experiments, and Section 5 presents the analysis results using the proposed multi-decomposition.
In Section 6, the prediction results with different models are compared, and Section 7 summarizes and
concludes the paper.

2. The Proposed Multi-Decomposition for Feature Extraction

2.1. Enhanced AMI for Small-Scale Load and Real Time

Load forecasting aims to determine the future power plan based on a series of given historical
datasets. For efficient power planning, a minimum weekly load must be predicted according to the
time scale of the task, e.g., demand side management, economic dispatch, and energy scheduling [2].
As the prediction time scale and load scale become smaller, the non-linearity problem must be solved
through a more sophisticated prediction method. State-of-the-art AMI with 5-min sampling provides
more samples per hour than conventional 15-min AMI. As a result, power consumption measurements
that are close to real-time measurements are achieved. However, as the amount of data increases,
conventional machine learning causes problems such as overfitting, the vanishing gradient problem,
the long-term dependency problem, and increased calculation times.

2.2. Empirical Mode Decomposition

Decomposition methods are widely used to analyze similar signals and extract features. The EMD
decomposition method uses extreme signal values, and the VMD method decomposes the signal
by reflecting frequency characteristics to compensate for the weaknesses EMD. Both methods were
employed to analyze time series data in [22]. The EMD method preprocesses data by recursively
detecting local minima and maxima in a signal and estimating lower and upper envelopes by spline
interpolation of the extreme values, then removing lower and upper envelope averages. To decompose
a signal into a sum of intrinsic mode functions (IMFs), the following two conditions must be
satisfied [18–22]:

• In the entire dataset, the number of zero crossings must either be equal to or differ from the
number of extrema by no more than one;

• The lower and upper envelope means, defined by interpolating the local signal minima and
maxima, respectively, must equal zero.

2.3. Variational Mode Decomposition

The goal of VMD is to decompose a signal into a discrete number of sub-signals (modes)
that have specific sparsity properties while reproducing the signal. VMD replaces the most recent
definition of IMFs; for example, an EMD mode is defined as a signal whose number of local extrema
and zero-crossings differ at most by one or as AM-FMsignals by the corresponding narrow band
property [23].

Variational mode decomposition provides an analytical expression that relates AM-FM parameter
descriptors to the estimated signal bandwidth, i.e., each mode k is required to be mostly compact
around a center pulsation, wk, that is determined along with the decomposition. This IMF definition
complements the weakness of EMD of lacking a mathematical definition. VMD also reduces EMD
end-point effects because it decomposes the signal into k discrete IMFs, whereas each IMF is band
limited in the spectral domain [23–25].
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VMD Algorithm

1. For each mode, vk, compute the associated analytic signal using the Hilbert transform to obtain
the unilateral frequency spectrum;

2. For each mode, vk, shift the mode frequency spectrum to the baseband (narrow frequency) by
mixing it with an exponential tuned to the corresponding estimated center frequency;

3. Estimate the bandwidth using the Gaussian smoothed demodulated signal.

The resulting constrained variational problem is expressed as:

min
vk ,wk

{
K

∑
k

∥∥∥∥∂t

[(
δ(t) +

j
πt

)
∗ vk(t)

]
e−jwkt

∥∥∥∥2

2

}
(1)

subject to
K

∑
k

vk = Wp(t). (2)

where Wp(t) is the p weekly load profile with mode v and frequency w, δ is the Dirac distribution,
k is the mode index, K is the total number of modes and the decomposition level, and ∗ denotes
convolution. Mode v with high order k represents low frequency components. In contrast to that of
EMD, the decomposition level of VMD, k, must be pre-determined [22–25].

2.4. Decomposition for Feature Selection

Figure 1 shows the proposed load profile decomposition method. The building load profile has
similar weekday patterns, and the load is measured at 5-min intervals by AMI. To classify seasonal
patterns, the typical load profile (xt) of the building is decomposed on a weekly basis for weekly
seasonality features (xp

t ). The typical load profile is decomposed into two dimensions. The load
variations can be extracted if they are periodic because the VMD decomposes the load profile in terms
of the frequency (xp

k,t). Thus, all the IMFs exhibit periodic characteristics. As each IMF has a specific
frequency, the VMD identifies periods that cannot be identified in the typical load profile and the
weekly load profile. As a result, the typical load profile is decomposed into three-dimensional data
according to time, weekly seasonality, and IMF-level. The feature decomposition process of the load
profile contributes to the load characteristics without external data, such as the calendar information
about holidays, temperature, and humidity.

Figure 1. Load profile feature decomposition process.
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2.5. Three-Step Regularization Process

The sampling of AMI used in this study is three-times larger than that of conventional AMI,
which collects data at 15-min intervals. In addition, as the load profile is decomposed into sub-profiles,
the sub-profiles that have detailed frequency characteristics can be learned as the input variables,
but the number of input variables increases. As the number of input variables increases, the curse
of dimensionality degrades the learning ability because the number of hidden nodes increases. As a
result, the number of hidden layers is increased to solve the curse of dimensionality, but this causes
the vanishing gradient problem. Moreover, without feature selection, overfitting occurs. The learned
hypothesis may fit the training set very well, but it cannot be extended to new samples. In addition,
without the normalization process, the covariate shift problem degrades performance. The covariate
shift, which refers to the change in the distribution of the input variables present in the training and
test data, should be prevented. Therefore, the proposed method includes a three-step regularization
to solve each of the above-mentioned problems. First, the delay factor of weekly data is estimated.
Although a large amount of data can be beneficial for deep learning, the distant past data can result in
overfitting problems and increase the computation time. A similar problem was addressed in [36] to
solve the dependence on distant historical data. In [36], a decay factor was used to solve the long-term
dependency problem of NARX-RNN.

In this paper, the weekly decay’s exponent by a factor is proposed as Equation (3):

Dp = 2−(p−1) (3)

where p is the number of weeks, which gives high weights to nearby weekly data in time and lower
weights to distant weekly past data.

Secondly, the separated IMF signals (xp
k,t) are normalized against the original signal size (xp

t ). This
is because these signals correspond to residual noise such as frequencies that are too high or too low
to be identified in a certain pattern. The IMF normalization process is performed to identify features
that degrade learning. The IMF normalization factor given by Equation (4) and T′ is the number of
samples of the weekly data.

Nk =
∑T′

t=1 xp
k,t/T′

∑T′
t=1 xp

t /T′ (4)

Finally, as the number of hidden layers increases, the internal covariance can be shifted.
The internal covariate shift causes the distribution of the training set and test set to differ, which can
lead to local points. Batch normalization (BN) is used to address internal covariate shift. BN normalizes
the output of a previous activation layer by subtracting the batch mean and dividing by the batch
standard deviation. The advantages of BN are (1) fast learning, (2) less careful initialization, and (3) a
regularization effect. BN is one of the regularization techniques used in the deep learning field [41,42].
The regularization process contributes to the accuracy of the load forecasting and the optimization
of the model by applying a high weight to the input data having the most definite period, reducing
dependency on the past distant data and avoiding the covariate shift of the data group. The three-step
regularization process increases the accuracy of the load forecasting by minimizing problems that can
occur when several inputs are learned.

3. Deep Learning

Deep learning is one of the machine learning techniques that proposes to model high-level
abstractions in data by using ANN architectures composed of multiple non-linear transformations.
Deep learning refers to stacking multiple layers of neural networks and relying on stochastic
optimization to perform efficient machine learning tasks. To take advantage of deep learning, three
technical constraints must be solved. The three technical constraints are (1) the lack of sufficient data,
(2) the lack of computing resources for a large network size, and (3) the lack of an efficient training
algorithm. Recently, these constraints were solved by the development of big data applications, the
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Internet-of-Things, and high performance smart computing [37–39]. One of the most efficient deep
learning processes is RNN.

RNNs are fundamentally different from traditional feed-forward neural networks; RNNs have
a tendency to retain information acquired through subsequent time-stamps. This characteristic of
RNNs is useful for load forecasting. Even though RNNs have good approximation capabilities, they
are not fit to handle long-term dependencies of data. Learning long-range dependencies with RNNs
is challenging because of the vanishing gradient problem. The increase in the number of layers and
the longer paths to the past cause the vanishing gradient problem because of the back-propagation
algorithm, which has the very desirable characteristic of being very flexible, although causes the
vanishing gradient problem [30,32–34].

3.1. Long Short-Term Memory Neural Networks

The long-short term memory network has been employed to approach the best performance of
state-of-the-art RNNs. The problem of the vanishing gradient is solved by replacing nodes in the RNN
with memory cells and a gating mechanism. Figure 2 shows the LSTM block structure. The overall
support in a cell is provided by three gates. The memory cell state st−1 interacts with the intermediate
output ht−1. The sub-sequent input xt determines whether to remember or forget the cell state.
The forget gate ft determines the input for the cell state st−1 using the sigmoid function. The input
gate it, input node gt, and output node ot determine the values to be updated by each weight matrix,
where σ represents the sigmoid activation function, while φ represents the tanh function. The weight
matrices in the LSTM network model are determined by the back-propagation algorithm [37–42].

The LSTM has become the state-of-the-art RNN model for a variety of deep learning techniques.
Several variants of the LSTM model for recurrent neural networks have been proposed. Variant LSTM
models have been proposed to improve performance by solving issues such as computation time
and the model complexity of the standard LSTM structure. Among the variants, the GRU maintains
performance by simplifying the structure with an update gate that is coupled with an input gate and
forget gate. The structure of the GRU is advantageous for forecasting in a large-scale grid to reduce
calculation time [42]. In [45], variants of the LSTM architecture were designed and their performances
were compared through implementation. The results revealed that none of the variants of LSTM could
improve upon the standard LSTM. In other words, a clear winner could not be declared. Therefore,
the popular LSTM networks are used in this study [45,46].

Figure 2. The structure of the LSTM.

3.2. Nonlinear Autoregressive Network with Exogenous Inputs

NARX RNNs and LSTM solve the vanishing gradient problem with different mechanisms. NARX
RNNs allow delays from the distant past layer, but this structure increases computation time and has a
small effect on long-term dependencies. The LSTM solves the vanishing gradient problem by replacing
nodes in the RNN with memory cells and a gating mechanism [36].
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4. Experiments

This section describes the process used to obtain time series models for load forecasting. Figure 3
shows the proposed load forecasting model using LSTM with multi-decomposition for feature
extraction. We will discuss each step in detail.

Figure 3. Deep-learning load forecasting based on the multi-decomposition method.

4.1. Prediction of the Time Scale

Reference load profiles reflect the load profiles that are close to real-time load profiles before h
steps ago, where h determines the prediction time scales, which depend on the purpose of the load
forecasting. STLF techniques can be used for a variety of purposes by enabling smaller scales and
faster prediction. USTLF, which predicts the load within a few minutes to one hour, can be used for
electricity theft detection or can provide information for emergency power supply [47]. STLF, which
predicts the load from one hour to a day, can be used for electricity transactions or economic dispatch
of renewable energy resources [2].

4.2. Extract Feature Layer

Through the multi-decomposition method, the features of time-series data are extracted.
The number of decomposition levels (K) is 10, which is the value obtained when the decomposition
loss rate is 0.1% or less. The weight of the weekly load profile (Dp) considers the trend of load patterns
according to seasonal changes. Each IMF decomposed through the VMD has a frequency characteristic
and is normalized to make the feature stand out (Nk).
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4.3. Long Short-Term Memory Layer

The LSTM can capture long-term dependencies in time-stamps; therefore, it can address the
vanishing gradient problems. In the proposed method, the number of hidden layers increases due to
the decomposition of input data, but the vanishing gradient problem is solved through the memory
cell structure with three-step regularization. In addition, to minimize the covariate shift problem, batch
normalization is performed prior to the activation phase of the input. IMFs and reference load profiles
are trained at each LSTM layer and have predictive values, all of which are summed to predict the
load profile.

4.4. Model Construction

4.4.1. Hyperparameter Tuning and Training Options

The LSTM model has several hyperparameters such as the number of input neurons, hidden
layers, input window size, number of epochs, regularization weight, batch size, and learning rate.
The window size of input and output parameters depends on the time scale of load forecasting.
The input neuron parameter is determined by the dimensions of the input data. The input dimension
of the proposed method is 11, which is the sum of the reference profile and 10 IMF signals. We selected
the hyperparameters and used ADAM optimization, one of the optimization techniques used in deep
learning [30–40].

4.4.2. Training and Testing

The overall AMI dataset of each day is divided into a ratio of 70:15:15 for the purposes of model
training, validation, and testing, respectively.

4.4.3. Performance Measures

The root mean squared error (RMSE) is used to compare differences between the predicted value
ŷt and measured value yt and is computed for T (which is the number of samples of the weekly load
profile) different predictions as the square root of the mean of the squares of the deviations:

RMSE =

√
∑T

t=1(ŷt − yt)2

T
. (5)

The mean absolute error (MAE) is one of a number of ways of comparing forecasts with their
eventual outcomes.

MAE =
1
T

T

∑
t=1

|yt − ŷt| . (6)

The mean absolute percent error (MAPE) is also widely used to evaluate accuracy. Accuracy can
be compared via MAPE using percentages when the scale of the loads is different [37–40].

MAPE =
100
T

T

∑
t=1

∣∣∣∣yt − ŷt

yt

∣∣∣∣ . (7)

5. Load Profile Analysis by Multi-Decomposition Methods

5.1. Weekly Seasonality

This study used real-world load profile data from the R&D business building that utilized
enhanced AMI for demand side management. Figure 4 shows the real-world load profile of the business
building. The building generates 288 samples per day, 2016 samples per week, and 8640 samples per
month. The load profile is measured and stored in data storage.
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The electrical load profile of the office building is usually light on weekends compared to
weekdays because energy is consumed according to the business schedule. In contrast to those
of residential load profile patterns, energy the increase and decrease times of office building load
profiles are related to commute time and have similar daily characteristics. Figure 4 shows a typical
profile for building electricity load over one week, from which a clear weekly seasonality pattern
can be observed. The weekly load pattern is quite similar over four weeks, with a weekly average
correlation of 0.93. Therefore, many studies have proposed load forecasting methods using weekly
statistical methods or dividing the time series data into holidays, weekends, and weekdays [4,5].

However, the process of dividing the time series data in a database into weekdays, weekends,
and holidays is inefficient because the calendar information may not be provided in advance, and
each consumer group may have different days off. Moreover, the simple method of dividing the data
into weekdays and holidays cannot capture the periodicity of the load profile such as the commute
time and periodic power system on/off states. In Figure 4, the fourth week load pattern deviates
somewhat from the previous pattern, with significant peak load shift in the afternoon, particularly on
Wednesday and Friday (average correlations for Wednesday and Friday are 0.82 & 0.84, respectively).
As the patterns deviated greatly on weekends (the weekend average correlation is 0.71), it is difficult to
predict accurately energy consumption using daily statistical data alone. Therefore, feature extraction
from the load profile is required to capture periodic components caused by commuting time, meal
times, thermal control change, elevator system operation, etc.

Figure 4. The typical load profile of the business building.

5.2. Comparison of Decomposition Performance

Figures 5 and 6 show the load profiles of Figure 4 decomposed by EMD and VMD, respectively,
where each IMF of each load profile covers four weeks. To analyze various frequency components and
preserve the signal energy, in EMD, the standard deviation as the stop criterion is determined as 0.1%;
hence, the weekly load profiles are decomposed into 10 IMFs.

As EMD decomposes the signal using extrema envelopes (Figure 5), the results are similar to
those obtained with a low pass filter. However, VMD is similar to a high pass filter, as it decomposes
the load profile from low frequency components. VMD IMFs (VMFs) are band limited; hence, they
are similar to harmonic components. Therefore, VMD efficiently identifies periodic characteristics in
non-linear and non-stationary signals compared to EMD IMFs (EMFs).
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Figure 5. Weekly load profile decomposition using EMD (k = 10). EMF, EMD IMF.

Figure 6. Weekly load profile decomposition using VMD (k = 10). VMF, VMD IMF.

The first VMF (VMF-1) is effectively the DC bias (Figure 6), i.e., the average daily load
consumption. VMF-2 and VMF-3 show high correlation signal periodicities. Office buildings typically
exhibit a commute period, and this appears in VMF-2. This R&D building has two peaks around
the commute time, and this pattern appears in VMF-3. On the other hand, EMF-10 and EMF-9
show high correlation trends, whereas the other EMFs show low correlations. High frequency
EMFs (EMF-5–EMF-10) also include end-point problems, whereas VMD decomposes the signal into
band-limited signals; hence, VMFs have no end-point issues.

Table 1 shows the correlations for each IMF. The VMFs capture similar frequency signals better
than the EMFs and decompose high frequency signals well. As VMD is done mathematically,
the correlation between VMFs is gradually reduced, whereas EMD IMFs are irregular. Therefore, in the
case of high sampling or short prediction time scales, VMD shows better performance than EMD
because VMD can reflect the high frequency characteristics of the dataset.
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Table 1. Correlation index comparison of EMD and VMD.

Decomposition
IMF

1 2 3 4 5 6 7 8 9 10

EMD 0.58 0.42 0.40 0.28 0.46 0.35 0.02 0.43 0.82 0.96
VMD 0.98 0.83 0.80 0.63 0.53 0.26 0.15 0.01 −0.02 −0.02

In addition, VMD can remove the inherent noise. Actual AMI data have noise owing to the interference
due to peripheral electronic devices. VMD can improve the accuracy of the load forecasting through
the deep learning training and regularization process by reducing the weight of high frequencies that
are susceptible to noise, such as VMF-8, VMF-9, and VMF-10, which have low correlation indices of less
than 1%. The AMI used in this study has a three-times higher sampling than conventional AMI and can
reduce the model uncertainty as more samples are measured. The proposed method reduces the prediction
uncertainty by training the decomposed signal with the high sampling AMI.

6. Case Studies

The time series forecasting models were simulated on real-world datasets of business buildings.
We conducted the case studies with different prediction models and prediction time scales. The weekly
prediction results for one hour ahead load forecasting are shown in Figure 7.
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Figure 7. Actual and different load forecasting for a week. (a) Weekly load forecasting; (b) Monday
load forecasting.

6.1. Comparative Conventional Load Forecasting Models

To validate the efficacy of the proposed VMD-LSTM RNN, eight load forecasting models,
including ARIMA, SVR, GPR, NARX, NARX with EMD, NARX with VMD, LSTM, LSTM with
EMD, and LSTM with VMD, were compared under the same benchmarks (RMSE, MAE, and MAPE).

The ARIMA model has been used for time-series prediction. However, with the rise of machine
learning, the GPR and SVR models are being utilized. To account for seasonality in an ARIMA model,
three hyperparameters were used: autoregression, stationarity, and moving average. The GPR model
uses statistical hyperparameters, including variance and length, whereas the SVR model depends on
kernel parameters, a penalty factor, and insensitive zone thickness. The ARIMA, GPR, and SVR models
are trained through cross-validation and ADAM optimization or particle swarm optimization [2,26–29].
To compare the performance of the RNNs, we compared the results of applying two decomposition
methods to the NARX and LSTM models The prediction results of all models are shown in Figure 7,

75



Energies 2018, 11, 3433

and the prediction accuracy by day of the week is shown in Figure 8. Table 2 also summarizes the
performance at different time scales.

6.2. Weekly Load Forecasting

Figure 7 illustrates the STLF for building load with one hour ago (12 steps ahead). To check the
performance of the proposed method based on VMD and LSTM, the prediction results of different
methods were compared. A closer look at the prediction results reveals the Monday load forecasting in
Figure 7b. The proposed model showed robust performance under abrupt load increases and decreases
in 400 samples and 500 samples, respectively. Conventional models exhibited conservative changes to
sudden load changes, and EMD-LSTM exhibited excessive weight changes.

Figure 8 shows the average predictive error of the different methods. The result of load forecasting
with one-month AMI data is shown in Figure 8a, and Figure 8b is the prediction result with three
months of AMI data. There are distinct load characteristics for each day of the week. EMD-LSTM
had large errors with an RMSE of 32.68 kWh, MAE of 28.61 kWh, and MAPE of 12.24% on Sunday in
Figure 8a. However, if the size of the dataset is sufficiently large or the prediction time scale is long
enough, the initial error can be corrected. When the data are insufficient with a short time scale, the
input of the reference load profile (which is measurement data at the maximum observable time before
load forecasting) can be a dominant feature of machine learning, which causes a large error. Figure 8
shows that, if the LSTM correctly decomposed periodic features, it had high accuracy even with small
amounts of data, but if there was an error in the feature, the prediction error also increased because of
the memory cell structure of LSTM.

VMD can reflect more dominant patterns than EMD with distinct periodicity. The performance
difference of decomposition between EMD and VMD is shown in Figures 4 and 5. The RNNs
using VMD showed performance improvements. However, there was a difference in performance
improvement between NARX and LSTM because the vanishing gradient problem was solved
differently, where NARX used the delay factor and LSTM had the memory cell structure. As LSTM
preserved characteristics of dominant features through the memory cell, LSTM showed higher accuracy
than NARX in STLF.
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Figure 8. Benchmarks of different models. (a) One-month AMI data; (b) Three-month AMI data.
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The MAPE of VMD-LSTM was around 2%. In the weekly comparison, the least error occurred on
Tuesday: RMSE of 6.49 kWh, MAE of 3.98 kWh, and MAPE of 1.48%. This was because the correlation
between days of the week was the highest on Tuesday. On the other hand, there was a large error on
Wednesday and Friday because the correlation was relatively lower than on other days of the week.

The proposed VMD-LSTM reflecting the mixed periodic pattern of the load profile based on
multi-decomposition with deep learning had the lowest error.

6.3. Benchmark for Different Prediction Time Scales

Finally, in this section, we analyze the accuracy of the load forecasting methods for the case study
considering different prediction time scales (5 m, 1 h, 3 h, 24 h, 48 h, 72 h). The accuracy results are
summarized in Table 2. The best accuracies were obtained for the shortest prediction time scale (5 m)
for all models. The proposed model, VMD-LSTM, showed the best accuracy with an MAE of 1.95 kWh,
RMSE of 4.28 kWh, and MAPE of 0.71%.

In addition, EMD-LSTM and VMD-LSTM showed better accuracy on the previous day when
compared to the 36 steps ahead (3 h) and one day to three days ahead (24 h, 48 h, 72 h) time scales.
The 24 h, 48 h, and 72 h cases show that RNN-based models had higher accuracies than ARIMA or
GPR, but eventually showed similar errors, and their performances were saturated. This result was
obtained because the reference load profile was learned as a dominant input according to the prediction
time scale to reflect the power consumption trend, so the 288 steps ahead case and 576 steps ahead
case, which had similar patterns, were slightly more accurate than the 36 steps ahead case (3 h).

Table 2. Load forecasting errors of different models.

Prediction
Horizon

Index ARIMA GPR SVR NARX
EMD

NARX
VMD
NARX

LSTM
EMD
LSTM

VMD
LSTM

1 step
ahead

(5 min)

MAE 7.45 6.03 3.43 7.52 7.33 3.25 2.92 5.53 1.95
RMSE 11.77 10.21 6.89 11.89 11.21 6.62 4.98 8.72 4.28
MAPE (%) 3.46 2.67 1.96 3.61 3.39 1.84 1.12 2.21 0.71

12 steps
ahead
(1 h)

MAE 17.28 16.11 14.76 17.71 17.02 15.12 9.01 11.69 4.81
RMSE 22.12 20.94 20.12 24.12 22.49 19.31 12.87 15.08 7.53
MAPE (%) 6.20 6.06 5.70 6.35 6.27 5.43 3.54 4.27 1.90

36 steps
ahead
(3 h)

MAE 57.14 53.96 48.72 58.85 56.54 50.69 30.25 38.52 16.27
RMSE 64.50 61.35 59.31 70.64 66.80 56.38 38.05 43.66 22.40
MAPE (%) 20.62 19.91 18.17 21.79 20.97 20.03 11.63 14.26 6.01

288 steps
ahead
(24 h)

MAE 51.22 48.55 43.25 52.68 51.50 45.12 28.19 32.65 15.60
RMSE 59.38 58.81 56.88 58.12 57.24 56.85 35.98 37.38 21.80
MAPE (%) 18.90 17.91 16.13 19.16 19.06 16.71 10.62 11.78 5.75

576 steps
ahead
(48 h)

MAE 57.24 52.87 46.57 57.48 55.65 48.23 28.60 32.48 15.85
RMSE 63.28 60.31 59.72 62.51 61.49 57.53 36.24 42.27 22.11
MAPE (%) 22.08 19.72 17.76 21.49 20.99 17.18 10.92 12.18 5.89

864 steps
ahead
(72 h)

MAE 60.45 58.55 51.92 59.75 59.01 53.44 29.12 34.37 16.09
RMSE 68.24 62.42 58.35 67.38 66.26 58.72 36.85 43.52 22.18
MAPE (%) 24.14 21.76 18.72 22.43 21.19 19.05 11.05 12.86 5.96

7. Conclusions

This paper proposes short-term load forecasting using deep learning based on
multi-decomposition. The results of the proposed approach were validated by applications
to real-world data from a business building, and the performance of the proposed approach was
assessed by comparing the predicted results with those of other models.

To monitor small-scale load and demand side management, an enhanced AMI that provides
three-times more sample data points per hour than conventional AMI was used, increasing the
accuracy of the load forecasting using deep learning. In this study, to detect the features of the load
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profile, the load profile was decomposed by a weekly seasonality and variational mode decomposition.
Two decomposition methods can identify features such as seasonality, load increase/decrease pattern,
and periodicity without any external data, such as temperature.

The three-step regularization process reduced the long-term dependency, overfitting, and covariate
shift problem caused by feature decomposition, which increases the data samples and dimensions.
The results also reveal the effectiveness of the long short-term memory neural networks based on
variational mode decomposition with different prediction time scales. We expect the proposed method
to be a key technique for demand side management, electrical power theft detection, energy storage
system scheduling, and energy trading platforms in future smart grids.
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Nomenclature

AMI advanced measuring infrastructure
ANN artificial neural network
LSTM long short-term memory
EMD empirical mode decomposition
VMD variational mode decomposition
LTLF long-term load forecasting
MTLF medium-term load forecasting
STLF short-term load forecasting
USTLF ultra-short-term load forecasting
DSM demand side management
ARIMA auto-regressive integrated moving average
GPR Gaussian processing regression
GRU gated recurrent unit
SVR support vector regression
RNN recurrent neural network
NARX nonlinear autoregressive exogenous
CNN convolutional neural network
IMFs intrinsic mode functions
k the mode index
vk kth intrinsic mode
Wp(t) pth weekly load profile
w frequency of mode
K the total number of modes
xt the typical load profile
xp

t the load pth weekly seasonality feature
xp

k,t kth IMF of the load pth weekly seasonality feature
δ the Dirac distribution
Dp the weekly decay’s exponent factor
Nk the IMF normalization factor
BN batch normalization
st the memory cell state of LSTM
ft the forget gate of LSTM
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it the input gate of LSTM
gt the input node of LSTM
ot the output gate of LSTM
ht the output value of LSTM
RMSE root mean squared error
MAE mean absolute error
MAPE mean absolute percent error
VMF variational mode function
EMF empirical mode function
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Abstract: This paper discusses the performance improvement of a green building by optimization
procedures and the influences of load characteristics on optimization. The green building is equipped
with a self-sustained hybrid power system consisting of solar cells, wind turbines, batteries, proton
exchange membrane fuel cell (PEMFC), electrolyzer, and power electronic devices. We develop a
simulation model using the Matlab/SimPowerSystemTM and tune the model parameters based on
experimental responses, so that we can predict and analyze system responses without conducting
extensive experiments. Three performance indexes are then defined to optimize the design of the
hybrid system for three typical load profiles: the household, the laboratory, and the office loads.
The results indicate that the total system cost was reduced by 38.9%, 40% and 28.6% for the household,
laboratory and office loads, respectively, while the system reliability was improved by 4.89%, 24.42%
and 5.08%. That is, the component sizes and power management strategies could greatly improve
system cost and reliability, while the performance improvement can be greatly influenced by the
characteristics of the load profiles. A safety index is applied to evaluate the sustainability of the hybrid
power system under extreme weather conditions. We further discuss two methods for improving the
system safety: the use of sub-optimal settings or the additional chemical hydride. Adding 20 kg of
NaBH4 can provide 63 kWh and increase system safety by 3.33, 2.10, and 2.90 days for the household,
laboratory and office loads, respectively. In future, the proposed method can be applied to explore
the potential benefits when constructing customized hybrid power systems.

Keywords: hybrid power system; fuel cell; solar; wind; fuel cell; optimization; cost; reliability

1. Introduction

Today’s energy crises and pollution problems have increased the current interest in fuel cell
research. One of the most popular fuel cells is the proton exchange membrane fuel cell (PEMFC),
which can transform chemical energy into electrical energy with high energy conversion efficiency
by electrochemical reactions. At the anode, the hydrogen molecule ionizes, releasing electrons and
H+ protons. At the cathode, oxygen reacts with electrons and H+ protons through the membrane to
form water. The electrons pass through an electrical circuit to create current output of the PEMFC.
The PEMFC has several advantageous properties, including a low operating temperature and high
efficiency. However, it also has very complex electrochemical reactions, so attempts to develop dynamic
models for PEMFC systems have become an active research focus. For example, Ceraolo et al. [1]
developed a PEMFC model that contained the Nernst equation, the cathodic kinetics equation, and the
cathodic gas diffusion equation. Similarly, Gorgun [2] presented a dynamic PEMFC model that
included water phenomena, electro-osmotic drag and diffusion, and a voltage ancillary. These models
have served as the basis of many advanced control techniques aimed at improving the performance
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of PEMFC systems. For instance, Woo and Benziger [3] tried to improve PEMFC efficiency using a
proportional-integral-derivative (PID) controller to regulate the hydrogen flow rate. Vega-Leal et al. [4]
controlled the air and hydrogen flow rates to optimize the PEMFC output power. Park et al. [5]
considered load perturbations and applied a sliding mode control to maintain the pressures of
hydrogen and oxygen regardless of current changes. Wang et al. [6] designed a robust controller
to regulate the air flow rate to ensure that the PEMFC provided a steady output voltage. This idea
was further extended to a multi-input multi-output (MIMO) PEMFC model to reduce hydrogen
consumption while providing a steady voltage [7]. Reduced-order robust control [8] and robust PID
control [9] were also proposed for hardware simplification and industrial applications.

A PEMFC can supply sustainable power as long as the hydrogen supply is continuous;
therefore, the PEMFC has been widely applied in transportation [10–19] and stationary power
systems [20–29]. A PEMFC can also supply sustainable energy regardless of weather conditions,
making it a reliable power source when solar and wind energy are unavailable. However, the price
of hydrogen energy is generally high when compared to other green (e.g., solar) energy, so the
PEMFC is typically integrated with other energy sources and storage systems to form hybrid power
systems. For example, Zervas et al. [30] presented a hybrid system that contained photovoltaics (PV),
a PEMFC, and an electrolyzer with metal hydride tanks. Rekioua et al. [31] considered a hybrid
photovoltaic-electrolyzer-fuel cell system and discussed its optimization by selection of different
topologies. Nizetic et al. [29] proposed a system for household application that used a high-temperature
PEMFC to drive a modified heat pump system, with a cost of less than 0.16 euro/kWh.

The role of the PEMFC in hybrid power systems is unique, because it can act as both an energy
source and an energy storage system. It serves as an energy source to provide backup power when
the load requirement is greater than the energy supply from other energy sources and as an energy
storage system to store hydrogen electrolyzed by redundant energy when the energy supply is greater
than the consumption [32]. Some hybrid power systems have recently been implemented in practice.
For instance, Singh et al. [22] presented a PEMFC/PV hybrid system for stand-alone applications
in India. Das et al. [23] introduced the PV/battery/PEMFC and PV/battery systems installed in
Malaysia. Al-Sharafi et al. [24] considered six different systems in the Kingdom of Saudi Arabia.
Martinez-Lucas et al. [25] demonstrated a system based on wind turbine (WT) and pump storage
hydropower on the Canary Island of El Hierro, Spain. Kazem et al. [27] evaluated four different hybrid
power systems on Masirah Island, Oman.

Because of the influence of weather conditions and loads, the costs of these hybrid systems
can be optimized by changing the system configurations. For example, Ettihir et al. [26] applied
the adaptive recursive least square method to find the best efficiency and power operating points.
Singh et al. [22] applied a fuzzy logic program to calculate system costs and concluded that the PEMFC
and battery are the most significant modules for meeting load demands late at night and in the early
morning. Kazem et al. [27] showed that that a PV/WT/battery/diesel hybrid system had the lowest
cost for energy production. Cozzolino et al. [28] analyzed the Tunisia and Italy (TUNeIT) Project and
showed that this almost self-sustaining renewable power plant, consisting of a WT, PV, battery, PEMFC,
and diesel engine, ran at a cost of 0.522 €/kWh. Wang et al. [33] studied a hybrid system that consisted
of a WT, PV, battery, and an electrolyzer and concluded that the costs and reliability of hybrid power
systems can be greatly improved by adjusting the component sizes. They also showed that power
management can help to reduce system costs [32]. The present paper extends these ideas by discussing
the impacts of load profiles on the optimization of system costs. We applied three typical load profiles
to a hybrid system and discussed the cost and energy distribution. We also evaluated the guaranteed
operation durations (called system safety) of hybrid systems and discussed the applications of two
methods to extend system safety.

The remainder of this paper is arranged as follows: Section 2 introduces the green building and
its hybrid power system. Based on the system characteristics, we build a general hybrid power model
consisting of solar cells, WTs, batteries, a PEMFC, hydrogen electrolysis, and chemical hydrogen
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generation. The model parameters were tuned based on experimental data to allow the prediction
of system responses under different operation conditions. Historical irradiation and wind data were
applied to estimate the power supplied by the PV and WT, while three typical load profiles were
considered to understand their impacts on system optimization. Section 3 defines three performance
indexes for evaluating hybrid power systems equipped with different components and management
strategies. We applied three typical loads to optimize system design by tuning the component sizes
and power management. The results showed that the optimization processes can effectively reduce
the energy costs by 38.9%, 40.0%, and 28.6% and greatly improve system reliability by 4.89%, 26.42%,
and 5.08% for household, laboratory, and office loads, respectively. The guaranteed sustainable
operation periods under extreme weather conditions were also estimated. The results revealed that
system sustainability can be improved by the use of a sub-optimal design or chemical hydrides. We also
discuss the critical prices of implementing a chemical hydrogen generation system. Conclusions are
then drawn in Section 4.

2. System Description and Modelling

The green building, as shown in Figure 1 [34], is located in Miao-Li County in Taiwan. It was
constructed by China Engineering Consultants Inc. (CECI) and was equipped with a hybrid power
system that consisted of 10 kW PV arrays, 6 kW WTs, 800Ah lead-acid batteries, a 3 kW PEMFC, and a
2.5 kW electrolyzer with a hydrogen production rate of 500 L/h. The building was autonomous and
did not connect to the main grid, i.e., its electricity was supplied completely by green energy, such as
solar and wind. The energy can be stored for use when the green energy is less than the load demands.
These components were originally selected to provide a daily energy supply of about 20 kWh based
on the National Aeronautics and Space Administration (NASA) data [34], as illustrated in Table 1.
Solar energy was abundant in the summer but poor in the winter, so wind energy was expected to
compensate for solar energy in the winter. However, Chen and Wang [32] applied the Vantage Pro2
Plus Stations [35] to measure the real weather data on the building site and found that the wind
energy was not sufficient to compensate for the reduced solar energy in the winter. Further analyses of
the energy costs also revealed that the wind energy was not economically efficient for this building,
as illustrated in Table 2. Therefore, the following component selection principles were suggested to
improve system performance [32]:

(1) Energy sources: the use of PV and PEMFC in the green building was suggested, because
solar energy was the most economical energy source and the PEMFC could guarantee energy
sustainability. The PEMFC can be regarded as an energy source that provides steady energy
and as an energy storage system when coupled with a hydrogen electrolyzer. Considering the
transportation, storage, and efficiency of energy conversion, the PEMFC with chemical hydrogen
generation by NaBH4 [36] was suggested for the system.

(2) Energy storage: the lead-acid battery was suggested because of its greater than 90% efficiency [37].
Though the PEMFC with a hydrogen electrolyzer can also store energy, the conversion efficiency
from electricity into hydrogen was only about 60% [33]. Therefore, the total energy storage
efficiency was about 36%, because the PEMFC converted hydrogen into electricity with an
efficiency of about 60% [38]. Note that the LiFe battery has a higher efficiency (more than 95%)
but is much more expensive than a lead-acid battery. Therefore, the lead-acid battery was
preferred for the green building.

That is, the selection of multiple energy sources and storages depended on the local conditions
and load requirements.

84



Energies 2019, 12, 57

Figure 1. The green building.

Table 1. The daily average weather data on the building site [32,34].

Data Source
Irradiance (W/m2) Wind Speed (m/s)

Summer Winter Summer Winter

NASA [34] 267 109 4.95 8.70
Measured 239 115 2.42 3.96

Table 2. Energy cost analyses ($/kWh) [32].

Energy Sources Summer Winter

Photovoltaic (PV) arrays 0.11 0.23
Wind turbine (WT) 7.76 0.69

Proton exchange membrane fuel cell (PEMFC) with chemical H2 generation � 1.76 �1.76

2.1. The Hybrid Power Model

A general hybrid power model, as shown in Figure 2, was developed to evaluate system
performance at different operating conditions (e.g., varying the component sizes and power
management strategies) [32,33,39]. The model consisted of a PV module, a WT module, a battery
module, a PEMFC module, an electrolyzer module, a chemical hydrogen generation module, and a
load module. The power management strategies were applied to operate these modules based on
battery state-of-charge (SOC). The module parameters were adjusted by the component characteristics
and experimental responses to allow prediction and analysis of the system dynamics without the need
for extensive experiments [39,40].

First, the 1 kW PV module was developed based on the following equation [32,41]:

PPV = 0.69(E − 1.52) (1)

where PPV (Watt) and E (Watt per meter square) represent solar power and irradiance, respectively.
Second, the WT module was presented as a look-up table, according to the relation between wind
power and wind speed [33,42]. Third, the PEMFC acted as a back-up power source to guarantee
system sustainability based on the following management strategies (see Figure 3a) [39]:

(1) When the battery SOC dropped to the lower bound, SOClow, the PEMFC was switched on to
provide a default current of 20 A at the highest energy efficiency [41].
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(2) When the SOC continuously dropped to SOClow − 5%, the PEMFC current was increased
according to the required load until the SOC was raised to SOClow + 5%, where the PEMFC
provided a default current of 20 A.

(3) When the battery SOC reached SOChigh, the PEMFC was switched off.

Figure 2. The hybrid power model.

(a)

(b)

Figure 3. Power management. (a) The proton exchange membrane fuel cell (PEMFC) management [39].
(b) The electrolyzer management [33].
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Therefore, the power management can be adjusted by tuning SOClow and SOChigh. As a last stage,
the hydrogen electrolyzer transferred redundant energy to hydrogen storage based on the following
strategies (see Figure 3b) [33]:

(1) When the battery SOC was higher than 95%, the extra renewable energy was regarded
as redundant.

(2) The electrolyzer module would wait for ten minutes to avoid chattering. If the total redundant
energy increased during this period, the electrolyzer was switched on.

(3) When the hydrogen tank was full or the battery SOC dropped to 85%, the electrolyzer was
switched off.

Thus, the electrolyzer produced hydrogen when the battery SOC was between 85% and 95%.
The electrolyzer module was set to produce hydrogen at a rate of 1.14 L/min by consuming a constant
power of 410 W, based on the experimental results [33].

2.2. Inputs Energy and Output Loads

We applied the historical irradiation and wind speed data [32], as shown in Figure 4, to the PV
and WT modules, respectively. As shown in Figure 4, solar radiation was abundant in the summer
but poor in the winter; therefore, solar energy in the summer can be stored for use in the winter.
Conversely, the wind speed was high in the winter but low in the summer, so wind energy was
expected to compensate for the lack of solar energy in the winter. However, the compensation effects
were not as significant as originally designed because the wind was not sufficiently strong and the
energy cost was much higher (see Table 2) when compared to other energy sources. Note that both
solar and wind energy were concentrated in the daytime, indicating that this energy should be stored
for use at night.

(a) 61 day radiation data. (b) Average daily radiation.

(c) 61 day wind speed data. (d) Average daily wind speed.

Figure 4. Radiation and wind data.
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Three standard load profiles [43,44], as illustrated in Figure 5, were applied to the load module
to investigate the impacts of loads on the optimization of the hybrid power system. The 61-day
historical data were used for simulation and optimization analyses. Table 3 illustrates the statistical
data of these load profiles, where the household had the largest historically peak and the office had the
largest daily average peak, while the laboratory load had the greatest energy consumption. Therefore,
we used these three typical loads to demonstrate how load characteristics can affect the performance
optimization of the hybrid power system.

(a) 61 day historical data (b) Daily average [43,44]

Figure 5. Three standard load profiles.

Table 3. The statistical data of load profiles [39].

Household Lab Office

Historic peak (W) 6220 3395 5333
Daily average peak (W) 1237 1811 2178

Daily average (kWh) 19.96 30.41 22.32

3. Design Optimization of the Hybrid Power System

The hybrid power model was applied to predict system responses under different conditions,
such as the use of varying components and loads. We defined three indexes to evaluate the performance
of the hybrid power system: cost, reliability, and safety, as described by the following:

(1) System cost: the system cost J(b, s, w) consisted of two parts, Ji and Jo, as follows [39]:

J(b, s, w) = Ji(b, s, w) + Jo(b, s, w) (2)

where Ji and Jo indicate the initial and operation costs, respectively. The subscripts b, s, and w represent
the numbers of batteries, PV arrays, and WTs in units of 100Ah, 1kW, and 3kW, respectively. The initial
cost Ji accounted for the investment in the components, such as the PEMFC, power electric devices,
PV arrays, WT, hydrogen electrolyzer, chemical hydrogen generator, and battery set, as follows:

Ji(b, s, w) = ∑ k Jk
i(b, s, w) (3)

where k = PEMFC, DC, solar, WT, HE, CHG, and batt, respectively.
The operation cost Jo included the hydrogen consumption and the maintenance of the WT and PV

arrays, as in the following:
Jo(b, s, w) = ∑ l Jl

o(b, s, w) (4)

where l = NaBH4, WT, and solar, respectively.
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We calculated the initial costs Jk
i(b, s, w)

and the operation costs Jl
o(b, s, w)

as follows:

Jk
i(b, s, w) = Ck·nk·CRFk (5)

Jl
o(b, s, w) = Cl ·nl (6)

in which C and n are the price per unit and the installed units, respectively, for each component k.
CRF represented the capital recovery factor that was defined as [32,33,39]:

CRF =
ir(1 + ir)ny

(1 + ir)ny − 1
(7)

where ir is the inflation rate, which was set as 1.26% in this paper by referring to the average annual
change of consumer price index of Taiwan [39], and ny is the expected life of the components. The price
and expected life of the components are illustrated in Table 4 were used to calculate the system costs in
the following examples.

Table 4. Component life and price [32,33,39].

Component Life (year) Price ($)

Hybrid system 15 N/A
Wind turbine (3 kW) 15 9666

PV arrays (1 kW) 15 1833
Power electronic devices (6 kW) 15 1666

Chemical H2 generation 15 10,666
NaBH4 (60 g) N/A 0.33

Electrolyzer (2.5 kW–500 L/h) N/A 10,666
PEMFC (3 kW) N/A 6000

Battery (48 V–100 Ah) N/A 866

(2) System reliability: the reliability of the hybrid system was defined as the loss of power supply
(LPSP) as follows [32,33,39]:

LPSP =

∫
LPS(t)dt∫

P(t)dt
(8)

in which LPS(t) was the shortage (lost) of power supply at time t, while P(t) was the power demand of
the load profile at time t. Therefore,

∫
LPS(t)dt indicated the insufficient energy supply and

∫
P(t)dt

represented the total energy demand for the entire simulation. If the power supply met the load
demand at all times, (i.e., LPS(t) = 0, ∀t), then the system was completely reliable with LPSP = 0.

(3) System safety: system safety was defined as the guaranteed sustainable period of the hybrid
power system under extreme weather conditions when no solar or wind energy was available.
Suppose the energy stored in the system was Estore and the average daily energy consumption
was Eday; then, the system safety can be defined as follows:

Sa f ety =
Estore

Eday
(9)

For example, average daily energy demand is 19.96, 30.41, and 22.32 kWh for the household,
laboratory, and office, respectively (see Table 3). Therefore, if the energy stored in the battery
and hydrogen is 60 kWh, the system safety is 3.01, 1.97, and 2.69 days for the laboratory, office,
and household, respectively. When considering the efficiency of the battery and inverter both as 90%,
then the system safety is 2.70, 1.78, and 2.42 days, respectively.
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We applied the three typical loads to investigate their impacts on the optimization of the hybrid
power system by tuning the component sizes and power management strategies.

3.1. Household Load

Applying the household load (see Figure 5) to the original system layout (b, s, w) = (8, 10, 2) and
management settings of (SOClow, SOChigh) = (40%, 50%) gave the system’s reference plot shown in
Figure 6a, where the system cost was estimated as J = 1.300 $/kWh with LPSP = 4.89% (see Step 1
of Table 5). From Figure 6a, the system cost can be reduced to J = 1.169 $/kWh by adjusting the
components as (b, s, w) = (18, 9, 2) but with a possible power cut (LPSP = 2.61%, see Step 2 of Table 5).
If the requirement was LPSP = 0, then the optimal system cost was J = 1.189 $/kWh, achieved by
setting (b, s, w) = (18, 10, 2) (see Step 3 of Table 5). That is, we can reduce the system cost from J = 1.300
to 1.189 $/kWh, while improving the system reliability from LPSP = 4.89% to 0.

(a) w = 2 and (SOClow, SOChigh) = (40%, 50%) (b) w = 0 and (SOClow, SOChigh) = (30%, 40%)

Figure 6. The reference plots for the household load.

Table 5. The optimal design procedure for the house load.

(b, s, w) (SOClow, SOChigh) LPSP (%) J ($/kWh)

Step 1 (8, 10, 2) (40%, 50%) 4.89% 1.300
Step 2 (18, 9, 2) (40%, 50%) 2.61% 1.169
Step 3 (18, 10, 2) (40%, 50%) 0% 1.189
Step 4 (15, 15, 0) (40%, 50%) 0% 0.822
Step 5 (15, 15, 0) (30%, 40%) 0% 0.810
Step 6 (23, 15, 0) (30%, 40%) 0% 0.794
Step 7 (23, 15, 0) (30%, 40%) 0% 0.794

Optimal (23, 15, 0) (30%, 40%) 0% 0.794

Because the cost of wind energy was much higher than the cost of solar energy (see Table 2) and
the compensation effects were not significant (see Figure 4), the use of solar and a PEMFC with chemical
hydrogen production was viewed as economically efficient for the green building [32]. Therefore,
we set w = 0 and the resulting optimization showed that the system cost can be significantly reduced
to J = 0.822 $/kWh by setting (b, s, w) = (15, 15, 0), as illustrated in Step 4 of Table 5. Furthermore,
when we fixed the component settings of (b, s, w) = (15, 15, 0) and tuned the power management
strategies (SOClow, SOChigh) = (30%, 40%), the system cost was further decreased to J = 0.810 $/kWh
(see Step 5 of Table 5). Steps 6 and 7 illustrate the iterative tuning of component size and power
management, respectively. The results indicated that the system cost converged to J = 0.794 $/kWh
with (b, s, w) = (23, 15, 0) and (SOClow, SOChigh) = (30%, 40%). Compared with the original cost, the cost
was reduced by 38.9%, while maintaining complete system reliability. Note that the iterative method
can greatly reduce the computation time because the simultaneous optimization of four parameters
(b, s, SOClow, SOChigh) took much longer than iterative optimization, as indicated in [45]. Therefore,
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the proposed iterative optimization can be applied for a quick estimation of the system behavior.
Simultaneous optimization can be considered for potentially better optimization if time permits.

3.2. Laboratory Load

Similarly, the results of applying the laboratory load (see Figure 5) to the hybrid power model
are shown in Figure 7 and Table 6. First, the original system layout (b, s, w) = (8, 10, 2) with
management settings of (SOClow, SOChigh) = (40%, 50%) resulted in a system cost of J = 1.100 $/kWh
and LPSP = 26.42%. Note that the LSPS was much higher than was obtained for the household,
because the laboratory load was mainly at night and the stored energy by hydrogen electrolyzation
failed to provide sufficient energy. The initial component optimization can reduce the system cost
to J = 0.929 $/kWh by setting (b, s, w) = (27, 15, 2) but with LPSP = 2.34% (see Step 2 of Table 6).
The sub-optimal settings of (b, s, w) = (30, 16, 2) gave LPSP = 0 with J = 0.944 $/kWh (see Step 3 of
Table 6), i.e., the reliability was improved by 26.42%, while the cost was reduced by 14.18%.

(a) w = 2 and (SOClow, SOChigh) = (40%, 50%) (b) w = 0 and (SOClow, SOChigh) = (30%, 40%)

Figure 7. The reference plots for the lab load.

Table 6. The optimal design procedures for the lab load.

(b, s, w) (SOClow, SOChigh) LPSP (%) J ($/kWh)

Step 1 (8, 10, 2) (40%, 50%) 26.42% 1.100
Step 2 (27, 15,2) (40%, 50%) 2.34% 0.929
Step 3 (30, 16, 2) (40%, 50%) 0% 0.944
Step 4 (31, 21, 0) (40%, 50%) 0% 0.684
Step 5 (31, 21, 0) (30%, 40%) 0% 0.668
Step 6 (27, 21, 0) (30%, 40%) 0% 0.660
Step 7 (27, 21, 0) (30%, 40%) 0% 0.660

Optimal (27, 21, 0) (30%, 40%) 0% 0.660

Because the WT was not economically efficient for this building, setting w=0 can greatly reduce
the system cost to J = 0.684 $/kWh with LPSP = 0 by (b, s, w) = (31, 21, 0) (see Step 4 of Table 6).
The iterative procedures could then further improve the system cost to J = 0.668 $/kWh with LPSP = 0
by setting the power management as (SOClow, SOChigh) = (30%, 40%), and the cost finally converged
to J = 0.660 $/kWh with LPSP = 0 by setting (b, s, w) = (27, 21, 0) and (SOClow, SOChigh) = (30%, 40%).
When compared with the original cost, the cost was reduced by 40%, while the system reliability was
reduced by 26.42%.

3.3. Office Load

The analyses of the office load (see Figure 5) are shown in Figure 8 and Table 7. First, the original
system layout (b, s, w) = (8, 10, 2) with management settings of (SOClow, SOChigh) = (40%, 50%) gave a
system cost of J = 1.107 $/kWh and LPSP = 5.08%. Optimizing the settings slightly reduced the system
cost to J = 1.106 $/kWh with LPSP = 0 using (b, s, w) = (23, 11, 2) (see Step 2 of Table 7). Note that the

91



Energies 2019, 12, 57

system reliability was better than the house and the laboratory loads at this step, because the office load
profile was basically synchronized with the irradiation and wind curves and the solar energy could be
used directly to supply the loads. Therefore, we omitted Step 3 that represented the optimization with
w = 2 and LPSP = 0 in Tables 5 and 6.

(a) w = 2 and (SOClow, SOChigh) = (40%, 50%) (b) w = 0 and (SOClow, SOChigh) = (30%, 40%)

Figure 8. The reference plots for the office load.

Table 7. The optimal design procedures for the office load.

(b, s, w) (SOClow, SOChigh) LPSP (%) J ($/kWh)

Step 1 (8, 10, 2) (40%, 50%) 5.08% 1.107
Step 2 (23, 11, 2) (40%, 50%) 0% 1.106
Step 3 - - - -
Step 4 (29, 17, 0) (40%, 50%) 0% 0.818
Step 5 (29, 17, 0) (30%, 40%) 0% 0.817
Step 6 (26, 17, 0) (30%, 40%) 0% 0.791
Step 7 (26, 17, 0) (30%, 40%) 0% 0.791

Optimal (26, 17, 0) (30%, 40%) 0% 0.791

Setting w = 0 gave a significant cost reduction to J = 0.818 $/kWh with LPSP = 0 by setting (b, s, w)
= (29, 17, 0) (see Step 4 of Table 7). The iterative procedures then further improved the system cost
to J = 0.817 $/kWh with LPSP = 0 by adjusting the power management as (SOClow, SOChigh) = (30%,
40%), and the cost finally converged to J = 0.791 $/kWh with LPSP = 0 by setting (b, s, w) = (26, 17, 0)
and (SOClow, SOChigh) = (30%, 40%). When compared with the original cost, the cost was reduced by
28.6% while maintaining complete system reliability.

3.4. Cost and Energy Distributions

The optimal system designs for the three loads, based on the reference plots, are illustrated in
Tables 5–7. We further analyzed the cost and energy distributions of these systems, as shown in Table 8.
First, the laboratory achieved the lowest unit energy cost because its average daily energy consumption
was the largest; therefore, the initial costs were shared. The household load showed an opposite result.
Second, the laboratory used the most solar panels and batteries, while the household applied the fewest
solar panels and batteries, to produce and store sufficient energy for the load requirements. Third,
the optimal battery units for all loads did not differ much (23–27 units); this was not intuitive because
the laboratory load was mainly at night, while the office load was mainly in daytime. The reason for
this was that the battery life was shortened if only a small amount of the battery energy was used.
Therefore, using a large amount of the battery energy increased the initial cost but it also helped
to extend the battery life, thereby reducing the battery costs. For instance, for the laboratory load,
the battery cost was the lowest even though the laboratory load used the largest amount of battery
energy. Because the initial battery SOC was set as 80% in the simulation model, a negative energy
supply distribution of battery means the battery SOC is higher than 80% at the end of the simulation,
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i.e., the battery is charged by the renewable energy so that its final SOC is greater than the initial SOC.
Fourth, the costs of the solar panels, battery, and the PEMFC system (including the chemical hydrogen
production system, PEMFC, and NaBH4) are about 40%, 25%, and 20%, respectively, for all loads.
That is, the cost distributions are almost the same for all systems after optimization. Finally, solar
energy provided nearly 100% of the required load demands because the current high cost of hydrogen
requires that the system avoid using the PEMFC unless necessary. The current optimal costs are 0.794,
0.660, and 0.791 for the household, lab, and office loads, respectively. Although the costs cannot
compete with the grid power, the system provides a self-sustainable power solution for remote areas
and islands without grid power. The energy cost can be greatly reduced when the component prices
are reduced with popularity. For example, the analyses in [33] indicated that the critical hydrogen
price is about 10 NT$/batch (one batch consumes 60 g of NaBH4 to produce about 150 L of hydrogen).
That is, more hydrogen energy will be used in an optimal hybrid power system if the hydrogen price
is less than 1/15 NT$/L.

Table 8. Cost and energy distributions for the optimal systems.

House Lab Office

Daily average (kWh) 19.96 30.41 22.32
Optimal cost ($/kWh) 0.794 0.660 0.791
Optimal sizes (b, s, w) (23, 15, 0) (27, 21, 0) (26, 17, 0)

Cost Distribution (%)

Lead-acid battery 25.34% 23.50% 25.72%
Power electric devices 10.59% 11.72% 11.41%

Wind turbine 0 0% 0%
Solar panels 39.72% 43.91% 40.41%

Chemical hydrogen production 13.56% 10.71% 12.18%
PEMFC 7.63% 6.03% 6.85%

Sodium borohydride (NaBH4) 3.16% 4.13% 3.43%

Energy Supply
Distribution (%)

Wind 0% 0% 0%
PEMFC 1.27% 1.35% 1.36%

Solar 100.65% 100.30% 98.50%
Battery −1.92% −1.65% 0.14%

3.5. Safety Analyses

The optimization designs illustrated in Tables 5–7 were based on historical weather data, where
the solar and wind energy co-assisted the sustainability of the power system. Because the aim of the
hybrid power system is to provide uninterrupted power, we further investigated its ability to perform
in extreme weather conditions when no solar or wind energy is available.

We applied the optimal settings in Tables 5–7 to the hybrid power model and recorded the lowest
battery SOC during the 61-day simulation to calculate the lowest remaining energy and system safety
by Equation (9). The results are illustrated in Figure 9 and Table 9, where the lowest SOC (stored
energy) for the household, laboratory, and office loads were 29.99% (11.03 kWh), 26.04% (7.83 kWh),
and 27.18% (8.97 kWh), respectively. Therefore, the equivalent sustainable operation periods of the
system are 0.49, 0.23, and 0.36 days, respectively, considering the average daily energy consumption
shown in Table 3 and assuming a battery efficiency of 90%. If a longer sustainability is required, we can
adopt sub-optimal settings. For example, the minimal settings and costs to sustain 1 day or 2 days are
labeled in Figure 9. Suppose the safety requirement is 1 day; then, the lowest system costs to guarantee
1 day of operation are 0.8952 USD/kWh, 0.7603 USD/kWh, and 0.8735 USD/kWh, respectively, for the
household, laboratory, and office loads. The corresponding component sizes are (b, s, w) = (33, 26, 0),
(b, s, w) = (40, 24, 0), and (b, s, w) = (40, 17, 0), respectively.

Another way to extend the guaranteed system sustainability is to use the chemical hydrogen
generation system to produce hydrogen for the PEMFC as a means of providing back-up power.
Referring to [36], one mole of NaBH4 can generate four moles of hydrogen, so 20 kg of NaBH4 can
produce 4.16 kg of hydrogen, which would provide 63 kWh of electricity for the system. Therefore,
a further sustainability guarantee is possible by stocking more NaBH4 with the auto-batching system
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developed in [36], which can produce hydrogen when the system requires energy from the PEMFC.
For example, if the system stores 20 kg of NaBH4, the safety indexes for the household, laboratory,
and office loads can be extended by 3.33, 2.10, and 2.90 days, respectively, assuming an inverter
efficiency of 90%. Installing 40kg of NaBH4 could guarantee 6.17, 3.96, and 5.44 days of operation for
the household, laboratory, and office, respectively, in the worst case scenario.

(a) The house load (b) The lab load

(c) The office load

Figure 9. The reference plots with safety consideration.

Table 9. Safety analyses.

House Lab Office

Daily average (kWh) 19.96 30.41 22.32
Optimal sizes (b, s, w) (23, 15, 0) (27, 21, 0) (26, 17, 0)

Lowest SOC (%) 29.99 26.04 27.18
Lowest remaining energy (kWh) 11.03 7.83 8.97

Safety (days) 0.49 0.23 0.36

1-day safety
requirement

System Sizes (b, s, w) (33, 13, 0) (33, 24, 0) (34, 17, 0)
System Cost (USD/kWh) 0.8152 0.7062 0.8266

2-days safety
requirement

System Sizes (b, s, w) (33, 16, 0) (40, 24, 0) (40, 17, 0)
System Cost (USD/kWh) 0.8952 0.7603 0.8735

The choice of a sub-optimal design or extra NaBH4 stock would depend on the estimated extreme
weather conditions and the price of NaBH4. For instance, if the expected extreme weather happens
one day during the 61-day simulation, the total system costs are increased by $25.81, $85.70, and $48.47
for the household, laboratory, and office, respectively, using the sub-optimal settings. Conversely,
the required extra NaBH4 to guarantee sustainability under the worst-case conditions are 3.59 kg,
8.26 kg, and 5.04 kg, respectively, assuming an inverter efficiency of 90%. This will increase the system
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cost by $35.90, $82.60, and $50.40 for the household, laboratory, and office, respectively, if the NaBH4

price is 10 NT$/kg. Therefore, the second option (using extra NaBH4) will be the better choice if
the cost of NaBH4 is less than 7.19, 10.38, and 9.62 NT$/kg for the household, laboratory, and office,
respectively. Note that these analyses are based on the worst-case conditions, where the battery SOC
is at the lowest when the extreme weather happens. Hence, in general, the cost should be lower and
more benefits are possible by storing extra NaBH4 with the auto batch system [36].

4. Results and Conclusions

This paper has demonstrated the optimization of a green building that was autonomous and did
not connect to the main grid. The building can be applied to remote stations and small islands, where no
grid power is available. We discussed the impacts of three typical loads on the optimization of a hybrid
power system. First, we built a general hybrid power model based on a green building in Taiwan.
The model consisted of PV, WT, batteries, PEMFC, electrolyzer, and chemical hydrogen production
modules. Second, we evaluated the system performance by applying the household, laboratory,
and office load profiles to the model. The results indicated that the combination of PV, battery, PEMFC,
and chemical hydrogen production can guarantee system reliability. When compared with the original
settings, the total system cost was greatly reduced by 38.9%, 40%, and 28.6% for the household,
laboratory, and office loads, respectively, while the system reliability was significantly reduced by
4.89%, 24.42%, and 5.08%, respectively. Third, the cost distribution showed similar results for the three
loads: the battery, PV, and PEMFC systems accounted for about 25%, 40%, and 20% of the system
costs for all three cases. Note that the current usage of lead-acid battery is a compromise between cost
and efficiency. For example, applying the hybrid system with LiFe battery [33], the optimal system
costs became 2.237, 1.846, and 1.853 per kWh for the household, lab, and office loads, respectively.
That is much higher than the current optimal costs by the lead-acid battery. Fourth, the energy
distributions indicated that the PV provided nearly 99% of the required energy, because of the current
high price of hydrogen. As shown in [33], hydrogen energy will be compatible when the hydrogen
price drops to about one third of the current price. Finally, we evaluated the safety of these systems
under extreme weather conditions and proposed two methods for extending system sustainability:
using a sub-optimal design or using more NaBH4. The latter method tended to be more flexible and
was more able to cope with uncertainties. For example, adding 20 kg of NaBH4 will increase the
system safety by 3.33, 2.10, and 2.90 days for the household, laboratory, and office loads, respectively.
These findings can be considered when developing customized hybrid power systems in the future.
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Abstract: Continual energy availability is one of the prime inputs requisite for the persistent growth
of any country. This becomes even more important for a country like India, which is one of the rapidly
developing economies. Therefore electrical energy’s short-term demand forecasting is an essential
step in the process of energy planning. The intent of this article is to predict the Total Electricity
Consumption (TEC) in industry, agriculture, domestic, commercial, traction railways and other
sectors of India for 2030. The methodology includes the familiar black-box approaches for forecasting
namely multiple linear regression (MLR), simple regression model (SRM) along with correlation,
exponential smoothing, Holt’s, Brown’s and expert model with the input variables population,
GDP and GDP per capita using the software used are IBM SPSS Statistics 20 and Microsoft Excel
1997–2003 Worksheet. The input factors namely GDP, population and GDP per capita were taken
into consideration. Analyses were also carried out to find the important variables influencing the
energy consumption pattern. Several models such as Brown’s model, Holt’s model, Expert model
and damped trend model were analysed. The TEC for the years 2019, 2024 and 2030 were forecasted
to be 1,162,453 MW, 1,442,410 MW and 1,778,358 MW respectively. When compared with Population,
GDP per capita, it is concluded that GDP foresees TEC better. The forecasting of total electricity
consumption for the year 2030–2031 for India is found to be 1834349 MW. Therefore energy planning
of a country relies heavily upon precise proper demand forecasting. Precise forecasting is one of the
major challenges to manage in the energy sector of any nation. Moreover forecasts are important
for the effective formulation of energy laws and policies in order to conserve the natural resources,
protect the ecosystem, promote the nation’s economy and protect the health and safety of the society.

Keywords: India; TEC; short-term; forecasting; black box

1. Introduction

Energy is the driving force of any nation. Energy security and energy efficiency is the need of
the hour. Energy conservation, decentralized energy planning techniques seems to be the solution
to meet the energy requirements in almost every sector. The installed capacity out of renewable
energy during 2012–2013 was around 12.26% and now later during 2017–2018 it has come to around
18.8% (www.cea.nic.in) [1]. If this trend stays, it is anticipated that the renewable energy sources
would come forward to contribute even more in near future, which is a good sign. Renewable energy
sector is expanding rapidly and in particular it has already grabbed its attention to be the potential
contributor for sustainable energy security. India is one among the mainly swiftly developing countries
in the planet. Flourishing industrialization also requires energy to excel, which in turn makes India
an energy starving state. At present India depends heavily upon the fossil fuels and also has to
expend more, whereas India also has a huge potential for the alternative sources of energy [2]. India is
almost certainly urbanizing quicker. With a severe development predicament in the energy sector,
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energy becomes one of the top focus and an additional major issue in sustainable improvement and
also a long-term security [3]. Managing energy consumption and energy resources in parallel has
become very important among energy planners and policy framers. Thus an incorporated energy
administration approach is vital for the sustainable improvement of India. Models have turned out
to be the standard tools in energy planning. For energy modelling, energy forecasting is a basic
necessary requirement. This emphasizes the significance of energy forecasting. Demand forecast is
similarly a vital job for the effectual function and setting up of systems. Forecasts can be catalogued as
long-term, medium and short-term depending upon the time. Long-term prediction, generally keep
up a correspondence to several months to even several decades to the front. Overvalued electricity
and energy consumption forecast will result in heedless venture in the erection of surplus power
amenities and other inventories; whereas undervaluing the consumption might end up with deficient
manufacturing, planning and will not be able to bridge the gap with the demand. Short term forecasting
always draws attention and it is also paying attention in point forecasts. Density forecasts that is,
forecasts that provide approximation of the probability distributions of the likely upcoming values of
the consumption be essential for long-term forecast. In the literature a range of forecasting practices has
been witnessed in the earlier period, generally presumptuous short and midterm forecasts. To assess
the execution of the comparative study the real and forecasted results are figured out and the forecasts
based upon the data observed up to 2017 are also worked out. The outcome proves good foreseeing
capability of the proposed method at forecasting the country’s energy consumption.

The literature is actually huge with the number of competing models and some major
contributions among them are read. In support of perspective of single day or with a reduction
in it, models employing univariate time series models [4,5] and ANN [6] are quite familiar. Some of
the researchers have used forecasting models and techniques. Several forecasting methods were used
in energy forecasting leading to different levels of accomplishment. Starting from linear regression,
multi-variate regression and so on, several other models have also been used [7–9]. Time series models
for various years have been offered with multinomial, linear and also exponential approximation [10].

Mixed Integer Linear Programming model has been evolved for the optimized electricity
generation scheme planning for the country to reach a precise CO2 emission target [11]. Holt’s method
was used to determine three different circumstances such as business as usual, renewable energy and
also regarding how to conserve energy [12]. Long-term dynamic linear programming model was
considered to calculate future investments of electricity production technologies of very long-term
energy scenarios. Linear Programming (LP) can be implemented to support the choice of renewable
energy technology to meet CO2 emission reduction targets [13]. An estimation of data-driven models
was performed by Tardioli et al. at city level [14]. Choi et al. offers an extreme deep learning method
to obtain improved building energy consumption forecast [15].

Simple fuzzy models incorporating Artificial Intelligence techniques have been useful to forecast
midterm energy and also the peak load [16–18]. A new way of energy demand forecasting at an
intra-day ruling using semi parametric regression smoothing which relates for the yearly and weather
conditional components is suggested. Dependence upon the residual series is explained by one among
the two multiple variables time series models, with the measurement identical to the quantity of
intra-day range. The profit of this procedure in the process of forecasting of: (i) Demand for heating
steam network of one of the district in Germany; (ii) collective electricity demand in Victoria, a state in
Australia. With both studies accounting for meteorological conditions can perk up the predicted value
significantly, so do the application of the time series models. A multivariate non-linear regression
method for forecasting the mid-term energy power systems in yearly basis by captivating into concern
the correlation study of the elected input variables weighing factor and the training epoch that is
to be used. A fine forecasting model is framed by [19] for the power system in Greece and for the
dissimilar category of low voltage clients. Energy forecasting models in long-term basis are playing
key role, provided the concern of GHG discharge and the existing want for evaluating choices for
reaching the Kyoto’s objective as given by [20] who paid attention on gas supply and also the oil supply

99



Energies 2018, 11, 3442

projections and also provides helpful insight into the intricacy of forecasting the same and developing
an systematic structure that explains the method used by Natural Resources, Canada by setting up oil
and gas supply predictions and resolve the model for the same and provide the forecasts of the oil
supply and demand and also the natural gas supply and demand for the year 2020. Predicting the
energy need for the upcoming markets is among the key policy methods used by the international
policy makers. Autoregressive integrated moving average and Seasonal autoregressive integrated
moving average procedure is employed to guess Turkey’s energy demand in future from the year
2005 to 2020 by [21]. Autoregressive Integrated Moving Average forecasting of the overall prime
energy demand was more steadfast over the summing up of the individual predictions. The results
are a sign of the average yearly increase rates of entity energy resources and the overall prime energy
will diminish except wood and bio remains to hold pessimistic growth rate. A novel method for
predicting the rising trend in an optimized univariate discrete grey forecasting method is assumed to
predict the sum of energy making as well as utilization and a new Markov model built upon quadratic
programming technique is projected for predicting the energy production and consumption trend in
China for the year 2015 and 2020. The projected models are able to efficiently imitate and predict the
overall quantity and structure of energy production and consumption [22]. To predict energy usage in
Jordan using yearly data for 1976–2008, ref. [23] used ANN analyses. Four independent variables viz.
Population, exports, GDP and imports are employed to predict the energy utility. The outcome tells
that the predictable energy use for Jordan will get to 8349, 9269, 10,189 Ktoe for the years 2015, 2020 and
2025 respectively. The authors perform energy modelling and forecasting of Turkey’s existing need
for evaluating choices for meeting the socio-economic variables using regression and artificial neural
networks. Four dissimilar representations including different variables were used for this purpose. As a
result, Model 2 was found to be the appropriate ANN model comprising four independent variables
to competently guesstimate Turkey’s energy consumption. And the model envisioned healthier than
that of the regressive models and also the additional three models from ANN [24]. An inclusive
forecasting solution is portrayed by Hyndman et al. [25]. The author reveals and emphasizes the
significance to prevent myocardium dysfunction, which is the most general way of death globally.
He says 50,000,000 people are vulnerable to cardiac diseases around the world. He collected 744
fragments of ECG signals for one lead, ML II, from 29 patients and he proposed a new model which
comprised of longer fragments reveals of ECG signal and the spectral density was estimated using
Welch significance to prevent myocardium dysfunction and enables the efficient recognition of heart
disorders [26]. Plawiek et al. compares selected approximations of five concentration levels of phenol.
The semiconductor gas sensors’ outcome formed input vectors for further work. Prior data processing
encompassed principal component analysis, data standardization and data normalization in addition
to data reduction. Nine systems were made into a single system using fuzzy systems, neural networks
and also some hybrid systems. Every system was validated upon the complexity and accuracy. By
the combination of the three principal components the input vector was formed. They applied and
compared as many as nine CI models for the phenol concentration analysis developed from the
metal oxide sensor using signals [27]. The authors propose MARKAL model which takes care of the
allocations for various energy sources in India, for the Business As Usual (BAU) scenario and for the
case of exploitation of energy. In this scenario, the demand for electrical energy will shoot up every
year unto 5000bKwh of the installed capacity with major clients being the domestic, industrial and
the service sectors [28]. So as to obtain accurate and enhanced energy consumption for buildings,
extreme deep learning approach is given in this article. The model proposed clubs stacked auto
encoders with the machine learning to exploit its characteristics. To obtain precise prediction results
ELM is used as a predictor. The partial autocorrelation analysis method is adopted to determine the
input variables of this deep learning model [29]. In Italy the influence of economic and demographic
variables on the yearly electricity consumption was examined with the intention to develop long-term
electricity consumption model. Forecasting models were developed using different regression models
as gross domestic product and other input variables [30]. Turkey’s energy consumption was forecasted
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based on the demographic and socio-economic variables viz., GDP, population, import, export and
employment using regression and ANN [31].

Machine learning is one of the effective methods for pattern recognition in big data.
These algorithms find the patterns in the data by nature and help making better predictions and
critical decisions in Energy load, peak and price forecasting, image processing, face recognition,
motion and object detection, tumour detection, predictive maintenance, natural language processing.
Gajowniczek et al. has proposed a data mining technique to find out the electricity peak load for the
country by representing the same as a pattern recognition research problem rather than a time series
forecasting problem by using ANN. The main innovation is that they detect 96.2% of the peak electricity
load accurately up to a day ahead [32]. Singh et al. also presented a data mining model to predict
the trend in energy consumption pattern that describe the domestic device usage in connection with
hourly, daily, weekly, monthly yearly basis as well as domestic device to domestic device linkages in a
house. They proposed unsupervised data clustering and frequent pattern mining analysis on energy
time series. Bayesian network prediction was referred for energy usage forecasting. The accuracy of
the results outperformed SVM and MLP’s accuracy of 81.82%, 85.90% and 89.58% for 25%, 50% and
75% of the size of the data used for training respectively [33].

Thus the literature review of three decades reveals that various technologies and applications
were used to predict energy consumption in various sectors which helped us to utilize the proposed
approach in computing the energy consumption for India.

The main contribution of this article is that it provides

• A point forecast for the total electricity consumption for the upcoming years up to 2030 is
determined which in turn will help the energy planning in a holistic approach for the nation.

• An insight to the policy makers at bridging the gap between the forecasted and the actual data
for future.

• The major contribution of the article is that it emphasizes the researchers to get to know the basic
statistical models before proceeding to the advanced packages.

The goal of the study is to forecast the short-term TEC of India using the basic and reliable
methodologies which seems to be much better than the advanced methods in forecasting the energy
consumption of India. The corresponding author has done a forecast of energy consumption of a state
in India, Tamil Nadu, in a smaller scale during his post-graduation; which actually is the motivation of
the research. Apart from that the authors reviewed many studies pertaining to energy consumption
of Turkey, Jordan and China and so forth. which motivated them to undertake the study for India.
Dr. Iniyan is the Research supervisor of the corresponding author and is a veteran in this field of
energy planning, who has taken up various projects and is also a voracious publisher and is one of
the major sources of inspiration. The data used for the analyses is sometimes carried over from the
year 1970. Forecasted outcome reveal that it holds good on the historical data taken for the analysis.
With the intervention of new methods, there are areas for probable potential enhancement. An added
region for progress would be to optimize the forecast further. For India the energy consumption is
forecasted for the year 2030 and this shall be done even for years down the lane from then on that is,
long time forecasting.

2. Materials and Methods

Data driven models are those which use available prior data to forecast energy behaviour.
To perform this, a database is established to train the models, by combining dissimilar techniques for
predicting the energy consumption. Among the data driven models the most popular are black-box
based approaches which shall be used for energy prediction and forecasting in which regression model,
multiple linear regression model, decision trees, ANN, support vector machine and various other
optimization techniques shall also be employed. By utilizing the black-box approach the present study
is performed with the major objective of predicting the Total Electricity Consumption (TEC) in industry,
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agriculture, domestic, commercial, traction railways and other sectors of India for the year 2030;
using linear programming, multiple linear programming, correlation, exponential smoothing, Holt’s,
Brown’s and expert model using the independent variables viz., population, GDP and GDP/capita.
GDP and population are two vital independent variables which are proven to be playing an important
role in energy load forecasting in the literature among various countries. Both of the variables are
closely, positively and comparatively highly correlated with energy consumption. The predicted value
of TEC is compared to that of the actual value of Energy Statistics data of 2017.

This study is also attempted to get back to the basics and reliable methodologies which are
sometimes much better than the advanced methods which are basically built upon these methodologies
for some of the simple key research problems such as forecasting the energy consumption of Republic
India. Nevertheless several other advanced and multifaceted techniques are also in place. The key
features are (a) it provides a point forecast for the energy consumption values for the upcoming years
with demonstrated errors and (b) the gap between the forecasted and actual data are analysed in
close intervals. The data used for the analyses is considered only from the early 1960s and 1970s.
With the intervention of new methods, there are areas for probable potential enhancement in near
future. An added region for progress would be to optimize the forecast further. For India the energy
consumption is forecasted for the year 2030 and this shall be done even for years down the lane from
then on that is, long time forecasting. The software used in the analyses is SPSS which stands for
‘Statistical Package for the Social Sciences’ which was developed by IBM. The various curve estimations
and other analyses used for forecasting is carried out by IBM SPSS Statistics 20. The Linear, Compound,
Logarithmic and Power curves are also fitted using this tool. Microsoft Excel is also used for various
other analyses. The device on which the analysis is carried out configures 2.00 GHz Intel Core2 Duo
Processor, with a memory of 4096 MB and a hard drive of 320 GB.

Total Energy Consumption for the period 1960–2013 for sectors such as industry, agriculture,
commercial, domestic, traction railways and others were obtained from various energy statistics
reports of Ministry of Statistics and Programme Implementation (MOSPI), GoI. The year wise data for
the population, GDP per capita and GDP were also obtained from various other sources and other
different departments of the GoI [34].

After the independence of the country, that is, in 1947 the TEC is observed to be 4182 GwH.
At that time the domestic sector consumed around 10% of the overall and industrial sector consumed
almost 71%, these two were the major players till the end of the 3rd plan. During the 1968–1969 that is,
during the 3rd Annual plan the domestic sector experienced a dip compared to that of the agriculture
sector and the Industrial and agriculture sector were found to be the major consumers till the end of
the 9th plan that is, 2001–2002. During that point of time industrial sector consumed around 43% and
the agriculture sector engulfed 21.8% which is just short of domestic sector 21.27%. Again from the
end of the 19th plan till the end of the 12th plan that is, from 2001–2002 to 2016–2017 the domestic
sector again started consuming more compared to the agriculture sector which was found to be 24.11%
compared to agriculture’s 18.01%. Nevertheless the Industries have always been the major consumer
since independence till date even though a decreasing trend is noticed overall. The traction sector in
India has always followed a decreasing trend apart from a few periods which has also shown only a
feeble increase. The Miscellaneous sector (others) has increased lately to 6.45% since independence
compared to its 5.24% even though it is not a key consumer. This is an overview of the sector wise
total energy consumption for India since 1947 as demonstrated in Figure 1.
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Figure 1. Category wise TEC growth in India (1947–2018).

The graphical representation of the Domestic, Commercial, Industrial, Agricultural and Traction
sectors for the period 2000–2018 has been shown in Figure 2. The value for the year 2018 is an estimated
value compared to all the other values. The industrial sector has seen a steep increase since the start of
the century which usually will be the case for any country. And all the other sectors have shown a
gradual increase. The agriculture and the domestic categories have shown some fluctuations whereas
the other sectors have shown a steady increase.

 

Figure 2. Sector wise Energy Consumption since the Century (2000–2018).

By the end of India’s 12th plan the split among all the sectors is shown above in Figure 3.
The domestic and the agriculture which were going hand to hand, few decades earlier were found
to show a visible contrast of over 6% between them. The industrial sector’s consumption over the
years has decreased considerably even though it happened to be the vital consumer of all the sectors.
And the same trend is expected to continue over the years which might transform India from being an
Agriculture based economy.
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Figure 3. India’s Electricity Consumption by the end of 12th Plan (31 March 2017).

The category wise electricity consumption of India compared to other developed and developing
countries are analysedin Figures 4 and 5, along with the International Energy Agency’s report for
the year 2015. India falls short of China and the US in terms of GWh in almost all the sectors except
the agriculture sector. When compared to the European Union, India consumes electricity more in
the agriculture sector and the others sector which is quite evident, since India is a tropical country
and is agriculture based. India consumes 173,185 GWh of electricity which is higher than China’s
103,983 GWh which comes next. In the commercial sector US is the major electricity consumer, it tops
the list with 1,359,480 GWh. US consumes 1,401,616 GWh in the residential sector which is almost the
consumption of the Chinese republic’s 756,521 GWh and European Union’s 795,406 GWh combined,
in spite of world’s highly populous nations such as China and India. In the transport category China’s
179,638 GWh electricity consumption stands out way ahead of the Russian federation’s 82,120 GWh,
which is the second largest consumer. China is also the top consumer in the industrial sector in terms
of electricity which is 32,121,168 GWh which is more than 26% of the whole world.

Energy Statistics brings out energy indicators meant for the practice of policy framers and for
wide-ranging coverage. Indicators participate in a critical job by transforming the data to useful
information for the plan makers and also aid in the process of making decisions. List of indicators
identification depends upon various factors such as lucidity, technical validity, strength, sensitivity and
the degree to which they are gelled to each other. No single factor can determine everything since each
indicator needs different set of data. GDP is the country’s broadest quantitative gauge of total economic
activity. In specific GDP tells us the financial value of all the goods and services manufactured within
the country’s borders over a time span [34]. The data in the study has been gathered from the respective
ministries of the Government of India (GoI). Energy intensity’s value has dipped over the latest ten
years which might be ascribed to the quicker increase of GDP than the energy need.
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Figure 4. Category-wise Electricity Consumption across various countries (2015).

 

Figure 5. Category-wise % Shares in Electricity Consumption across various countries (2015).

3. Results

3.1. Linear Regression

In order to predict the influencing variable on Total Electricity Consumption (TEC) for India,
Linear Regression is used initially. GDP, Population and GDP per Capita are taken as the input
variables which are used one by one in linear regression to predict TEC.

The distance between the actual value and the mean is calculated and also the distance between
the estimated line and its mean is calculated in the regression line. The comparison between the two
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values that is, the difference between the actual and mean and the difference between the estimated
and the mean gives the R2 value.

1 − R2 = {SSR/SST}

SSR refers to the residual sum of squares and SST refers to the total sum of squares.
The standard error of the estimate is the distance between the estimated and the actual value.

The constant value is actually the ‘y’ intercept of the line. The independent value is the slope of the
regression line; since the line is linear the slope is also constant. The significance is the actual ‘p’ values.

Standard Error (
√

n) = σ

where σ refers to the standard deviation, n refers to the sample size.

3.1.1. Population

As depicted in Table 1, the constant value is −591,193.3447. The independent value that is,
the slope of the regression line is 959,469.219; since the line is linear the slope is also constant.
The regression equation usually frames a prediction and the precision of the prediction is calculated by
means of the standard error. It also measures the scatter or dispersion of the observed values around
the regression line.

Y = 959,469.219X − 591,193.347 is the regression equation.

Table 1. Summary of the model with Population as the variable.

Ind. Variable R Square Std. Error Constant Slope Significance

Population 0.845 89,127.342 −591,193.347 959,469.219 0.000

3.1.2. GDP

As illustrated in Table 2, the constant value is 53,096.385. The independent value that is, the slope
of the regression line is 417,965.826; since the line is linear the slope is also constant.

Y = 417,965.826X − 53,096.385 is the regression equation.

Table 2. Summary of the model with GDP as the variable.

Ind. Variable R Square Std. Error Constant Slope Significance

GDP 0.957 46,784.201 53,096.385 417,965.826 0.000

3.1.3. GDP per Capita

The constant value is −2457.344. The independent value that is, the slope of the regression line is
959,469.511; since the line is linear the slope is also constant as in Table 3.

Y = 546.511X − 2457.344 is the regression equation.

Table 3. Summary of the model with GDP per capita as the variable.

Ind. Variable R Square Std. Error Constant Slope Significance

GDP/Capita 0.951 50,234.297 −2457.344 546.511 0.000

When we forecast Total Electricity Consumption (TEC) using three variables, the GDP plays an
important role and it predicts better the Total Electricity Consumption than the GDP per Capita and
the population. The R2 value for GDP and TEC is 0.957 whereas between GDP per capita and TEC
it is only 0.951. When compared with Population and TEC it is even as lower as 0.845. Hence it is
concluded that GDP foresees TEC better. The lowest std. error, 46,784.201 of all the three is also with
the GDP.
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3.2. Multiple Linear Regression

To forecast the TEC of electricity for 2030, multiple linear regression method is used now, taking in
account the yearly GDP per capita, GDP and historical population data, as in the case of Turkey.
During most of the situations, multiple independent variables might be used to predict the significance
of a dependent variable for which we use multiple regression. In multiple regression, GDP and
Population are taken simultaneously as the predicting variables. Multiple variable regression analysis
establishes a relationship between a dependent variable (in this work Total Energy Consumption
(TEC)) and two or even more than two independent variables that is, the predictors, population and
GDPutilized an application technique for yearly consumption forecasting algorithm on the smart new
intelligent electronic devices using multiple regression method which is put into practice in addition
to recursive least square.

TEC = (332,023.240) Population + (302,638.253) GDP − 185,039.015is the regression equation from
Table 4.

Table 4. Summary of the model with both Population and GDP as the variable.

Ind. Variable R Square Std. Error Constant Slope Significance

Population 0.986 27,442.309 −185,039.015 332,023.240 0.000
GDP 0.986 27,442.309 −185,039.015 302,638.253 0.000

With one independent variable of population the R2 is 0.845 and with that of GDP it is 0.957,
whereas with two independent variables GDP and population combined, in multiple linear regression
the R2 increases to 0.986. The standard error of 46,784.201 with one variable, GDP drops to 27,442.309
with two variables. Lower is better. The GDP’s standard error is almost less than half of the population’s
error. So GDP is again the better predictor in terms of Linear Multiple Regression.

3.3. Correlation Analysis

Almost all the independent variables exhibit a higher degree of correlation against the dependent
variables, the analysis of correlation from Table 5 illustrates that there is positive high correlation
between population and TEC. The Pearson correlation coefficient is found to be 0.919. From Figures 6–8,
the analysis of correlation between GDP and TEC proves that there is a very high positive correlation.
The Pearson Correlation Coefficient is found to be 0.978Whereas the correlation between GDP per
capita and TEC demonstrates that there is a positive comparatively low correlation between GDP and
TEC. The Coefficient is found to be 0.975.

Table 5. Correlation Matrix.

Variables TEC Outcome Direction

Population 0.919 High correlation Positive
GDP 0.978 Very high correlation Positive

GDP/Capita 0.975 High correlation Positive
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Figure 6. Plot between Population and TEC.

Figure 7. Plot between GDP and TEC.
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Figure 8. Plot between GDP per Capita and TEC.

3.4. Simple Exponential Smoothing

If the time series vary about base level, simple exponential smoothing might be bring into play
to find good estimates or upcoming value of the same series. To depict this phenomenon, let At the
smoothed average of a time series. Subsequent to observing xt, At is the anticipate for the value of the
time series during any upcoming period.

• At = smoothed average at the end of the epoch
• t = ft,
• k = for the forecast period (t + k) at the end of the epoch t.

Choose α so that it minimizes the MAD.
The key in equation in simple exponential smoothing is that

At = αxt + (1 − α) At − 1 (1)

In the Equation (1), α will be the smoothing constant that suit 0< α>1. To start the forecasting
process, we have got to set a value for A0 before surveying x1. Typically, we let A0 be the experiential
value for the period right away prior the first period. As among moving-average forecasts, we let ft,k
be the estimate for xt + k ready at the final period t. Then

At = ft,k (2)

Pretentious that we attempt to forecast one period ahead, the error for forecasting xt is

Et = xt − ft − 1,1 = xt − At − 1 (3)

The smoothing constant value considered for the analysis is α = 0.3, 0.4 and 0.5.
The TEC for 2015 was found to be 746,882 MW when α = 0.3 and 793,765 MW when α = 0.4 and

823,941.3 MW when α = 0.5.
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3.4.1. Time Series Modeler—Expert Model (Sector Wise)

In the expert time series modeler it automatically assigns the model best suited based on the
system’s expertise. For the industrial, agricultural and domestic sectors it has assigned Brown’s model
and it is found to be the appropriate model. For the commercial, traction and others’ sector, the expert
model has assigned ARIMA (0,1,0) model; ARIMA (2,1,0) model and ARIMA (0,1,0) respectively,
automatically as the appropriate models as in Table 6. The respective degrees of freedom and other
parameters are shown in Table 7.

Table 6. Summary of Expert model.

Model ID Model Type

Industry Brown
Agriculture Brown
Domestic Brown

Commercial ARIMA (0,1,0)
Traction Railways ARIMA (2,1,0)

Others ARIMA (0,1,0)

Table 7. Summary of the model.

Model Statistics Ljung-Box No. of Outliers

Stationary R2 Statistics DF Sig.

Industry 0.281 3.802 17 1.00 0
Agriculture 0.080 49.040 17 0.000 0
Domestic 0.432 6.242 17 0.991 0

Commercial 1.102 × 10−15 10.125 18 0.928 0
Traction/Railways 0.331 15.057 17 591 0

Others 5.310 × 10−16 20.114 18 0.326 0

3.4.2. Holt’s Model-Exponential Smoothing with Trend

Several models such as Brown’s model, Holt’s model, Expert model and damped trend model
were analysed. And the analysis of the Holt’s model is shown in the Table 8.

Table 8. Summary of Holt’s model.

Model Statistics Ljung-Box No. of Outliers

Stationary R2 Statistics DF Sig.

Industry 0.291 2.371 16 1.00 0
Agriculture 0.103 43.582 16 0.000 0
Domestic 0.447 6.536 16 0.981 0

Commercial 0.422 3.726 16 0.999 0
Traction/Railways 0.394 35.017 16 0.004 0

Others 0.434 19.379 16 0.250 0
TEC 0.069 14.250 16 0.580 0

3.4.3. Time Series Modeler (Exponential Smoothing-Brown)

The analysis of the Brown model is shown in the Table 9.
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Table 9. Summary of Brown model.

Model Statistics Ljung-Box No. of Outliers

Stationary R2 Statistics DF Sig.

Industry 0.281 3.802 17 1.00 0
Agriculture 0.80 49.040 17 0.000 0
Domestic 0.432 6.242 17 0.991 0

Commercial 0.421 3.999 17 0.999 0
Traction/Railways 0.393 33.210 17 0.011 0

Others 0.411 23.559 17 0.132 0
TEC 0.067 14.569 17 0.627 0

3.4.4. Time series modeler (Exponential Smoothing—Damped Trend)

The TEC for the years 2019, 2024 and 2030 were forecasted to be 1,162,453 MW, 1,442,410 MW and
1,778,358 MW respectively.

RMSE =
√

{Σ (Yactual − Yforecast)/N}

The Expert model selects different models on its own for different variables and produces the
above mentioned forecast by means of a low root mean square error value, RMSE of 10,734.649 and a
R2 value of 0.997 which is comparatively high. And the analysis of the Damped trend model is shown
in the Table 10.

Table 10. Summary of Damped trend model.

Model Statistics Ljung-Box No. of Outliers

Stationary R2 Statistics DF Sig.

Industry 0.392 2.365 15 1.00 0.392
Agriculture 0.337 44.861 15 0.000 0.337
Domestic 0.570 6.543 15 0.969 0

Commercial 0.467 3.720 15 0.999 0
Traction/Railways 0.114 34.625 15 0.003 0

Others 0.062 19.223 15 0.204 0
TEC 0.760 14.245 15 0.507 0

The forecasted values are shown in Table 11 for the above mentioned years.

Table 11. Summary of the results and Time line forecasted values for 2030.

Sector Model 2019 2024 2030

Industry Brown 538,089 686,457 864,498
Agriculture Brown 208,891 258,836 318,770
Domestic Brown 259,381 321,054 395,062

Commercial ARIMA 115,130 172,213 279,201
Traction/Railways ARIMA 20,554 26,906 465,523

Others ARIMA 68,072 100,343 37,404
TEC Brown 1,162,453 1,442,410 1,778,358

3.5. Moving Average

The three years’ four years’ and five years’ moving average for the time period of 1974–2014 is
computed here and shown in Figure 9. The values were found to be 830,696, 796,620 and 759,825 MW
respectively for the year 2014.
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Figure 9. Chart for moving average method (1971–2014).

Moving average is one method which is very much suitable for short-term load forecasting, STLF.
The forecast of the fourth year is the average of the first three years and so on.

3.6. Weighted Moving Average

The three years’ and four years’ weighted moving average for the time period 1971–2015 is
calculated here. The values were found to be 786,587.1 and 765,421.5 MW respectively for the year
2015 in Figure 10.

 

Figure 10. Chart for Weighted moving average method (1971–2015).

For the three years weighted moving average the α value for the previous three years were 0.5,
0.3 and 0.2 respectively. The higher α value is allotted to the immediate month since it influences the
outcome more than that of the previous values. For the four years weighted moving average the α

value for the previous four years assigned were 0.4, 0.3, 0.2 and 0.1 respectively. It is made sure that
the α values add up to 1.
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3.7. Curve Estimation

3.7.1. Linear Model

This Table 12 presents the regression coefficients and it is to be made a note of that, the correlation
will be of negative value when the slope is negative. The following linear regression equation is
determined by these coefficients.

y = −31,615,881.66 + 16,010.77x

Table 12. Summary of Linear model.

Equation
Summary of the Model Parameter Estimates

R2 df1 df2 Sig. Constant

Linear 0.844 1 42 0.000 −31,615,881.66

Series 1 in the Figure 11 is the actual TEC and the series 2 is the linear forecast. The forecasted
value for the linear curve fitting model for 2030 is 885,981.44 MW.

 

Figure 11. Chart for Linear method (1971–2030).

3.7.2. Compound/Exponential Model

The Table 13 represents the regression coefficients and it is to be taken into account that,
the correlation will be in the negative side when the slope is of negative value. The following
regression equation is made out of these coefficients.

y = 41,116.428e0.07x

Table 13. Summary of the model.

Equation
Summary of the Model Parameter Estimates

R2 df1 df2 Sig. Constant

Comp./Exp. 0.991 1 42 0.000 41,116.428
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The forecasted value for the compound curve fitting model for 2030 is 2,741,903.862 MW is plotted
in Figure 12.

 

Figure 12. Chart for Exponential method (1971–2030).

Similarly the regression equations for several other models shall also be interpreted.

4. Discussion

The measure of the adequacy of the fit is determined by the sample correlation (r) between the true
value and responses got out of the fit. The sample correlation’s square is worked out readily out of the
statistical package in the ANOVA and is termed the coefficient of determination (R2). The coefficient
of determination is computed directly by estimating Pearson’s correlation ‘r’ between the predicted
and the actual data. The coefficients of determination are generally expressed in terms of percentage.
The value of R2 lies in between 0% and 100%. The nearer the value to the upper bound; the healthier
will be the fit [35].

LEAP and Holt’s exponential smoothing method were also employed to estimate the electricity
energy demand for 2030 in Maharashtra, India in that study. ANN, multiple regression approaches
and ANOVA were used. It is evident from the analysis of variance in this article that the regression
method is able to forecast the cutting forces with a higher accuracy [36] which supports the present
study. An optimal renewable energy model, OREM for India was evolved for the year 2020–2021
to meet the increasing energy requirements [37]. An optimization model for various end-uses was
formulated by determining the optimum allocation of renewable energy for 2020–2021, by considering
the energy requirement of the commercial sector. This study revealed that the social acceptance
of bio resources increased by 3% and solar PV utilizationdecreased by 65% [38].Various energy
demand forecasting models were reviewed by [39] and found that traditional methods viz., time series
regression, econometric analysis are extensively made use for demand side management whereas the
TEC is calculated for 2030 in this paper. Regression analysis, linear model analysis and R2 correlation
value was built by [40] for a curved vane demister which supports the using linear model analysis
of the current study. The utilization of black box approach to forecast the TEC for India is supported
by vast literature among which an optimal renewable energy model for India for 2020–2021 was
presented by distributing renewable energy effectively to help the policy framers in marketing the
renewable energy resources and to determine the optimized allotment of various non-conventional
energy resources for various end-uses. In this study linear as well as multiple regression analysis
proves GDP is again the better predictor in terms of Multiple linear regression. Therefore, a sensible
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energy forecast is needed for the policy framers while taking decision for the future. Thus, the policy
framers need to take this boost in energy usage in mind. It is also recommended that the other energy
forecasting techniques shall also be used to testify the outcome and also energy prediction shall be
recurrently done as the circumstances are dynamic.

Some of the state of art work in the same research area is discussed here

• According to National Energy Map for India: Technology Vision 2030, India’s electricity
consumption will become fourfold from about 1.1 trillion units to 4 trillion units by2030.Brookings
Institution India Centre, in 2013, estimated that the shoot up in global energy consumption is
attributed mainly due to India and China [41].

• Asia-Pacific territory lonely contributes to 79% of the hike in international liquids use, which rises
from 1281.7 Million tons of oil equivalent in 2010 to 1859.3 Million tons of oil equivalent in 2030.
The per capita energy utilization in 2030 for India is expected to rise from 19.58 million Btu to
29.84 million Btu [42].

• The former Coal and power minister of India, Mr. Piyush Goyal stated in May, 2016 that a possible
10% jump is expected in the annual electricity growth for the next 15 or 16 years [43].

• Sugandha Chauhan (2017) studied electricity demand and reported that it will increase from
1115 BU in 2015–2016 to 1692 BU in 2022, 2509 BU in 2027 and 3175 BU in 2030 reflecting the
higher end of the demand for electricity [44].

• Iniyan et al. 2000. proposed a model that allocates the renewable energy distribution pattern for
the year 2020–2021 for India [45].

5. Conclusions

This work presents the analysis of available data and the predicted one regarding what will be
the Total Electricity Consumption (TEC) of India for the year 2030 using various black box based
approaches. The forecasting of total electricity consumption for the year 2030–2031 for India is found
to be 1,834,349MW while doing so the forecast for 2017 was compared with the actual data given
by Energy statistics, GOI which sits close to the forecasted data. And the expert model is forecasted
to be the best fit that suits the prediction since the R2 value is 0.997 which is comparatively high.
Obtained results show that this model is of a high precision. The advantages of the model are that it
can be computed easily with simple statistical software and available in almost every recent statistical
package. Accessibility is not an obstacle and the analysis shall be performed with a device of minimal
configuration. The time taken for running the model is very minimal which is a mere 00:00:00.06 s
(processor time). The disadvantage of the model is that it selects the best suitable model on its
own. The limitation of the work is that we could not apply the popular methodologies of black box
approaches such as Decision Trees, ANN, SVM. There are several other variables such as imports,
exports, villages electrified, pump sets energized and so forth, which has a futuristic scope for further
extensive studies. Energy forecasting can be taken up to the next level, for example, for Asia-Pacific
territory. As the need for energy consumption is constantly increasing in manifolds, it is assumed
that the findings and forecasts given in this article would be of use to the policy makers and energy
strategists to evolve future scenarios for the Indian electricity consumption which should focus greatly
in further increasing the overall share of renewable energy resources compared to the conventional
sources of the installed capacity as well as in the consumption pattern. The future research may
be done considering more input variables such as the quantum of CO2 emission, GNP per capita,
consumer price index, power consumption per capita, wholesale price index, imports, gross domestic
savings, exports and so forth. Other methodologies such as computational intelligence forecasts,
beyond point forecasts, combined forecasts may also be applied in short term load forecasting of the
electrical energy demand.
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Abstract: A stable power supply is very important in the management of power infrastructure.
One of the critical tasks in accomplishing this is to predict power consumption accurately, which
usually requires considering diverse factors, including environmental, social, and spatial-temporal
factors. Depending on the prediction scope, building type can also be an important factor since the
same types of buildings show similar power consumption patterns. A university campus usually
consists of several building types, including a laboratory, administrative office, lecture room, and
dormitory. Depending on the temporal and external conditions, they tend to show a wide variation
in the electrical load pattern. This paper proposes a hybrid short-term load forecast model for an
educational building complex by using random forest and multilayer perceptron. To construct this
model, we collect electrical load data of six years from a university campus and split them into
training, validation, and test sets. For the training set, we classify the data using a decision tree
with input parameters including date, day of the week, holiday, and academic year. In addition,
we consider various configurations for random forest and multilayer perceptron and evaluate their
prediction performance using the validation set to determine the optimal configuration. Then,
we construct a hybrid short-term load forecast model by combining the two models and predict the
daily electrical load for the test set. Through various experiments, we show that our hybrid forecast
model performs better than other popular single forecast models.

Keywords: hybrid forecast model; electrical load forecasting; time series analysis; random forest;
multilayer perceptron

1. Introduction

Recently, the smart grid has been gaining much attention as a feasible solution to the current
global energy shortage problem [1]. Since it has many benefits, including those related to reliability,
economics, efficiency, environment, and safety, diverse issues and challenges to implementing such a
smart grid have been extensively surveyed and proposed [2]. A smart grid [1,2] is the next-generation
power grid that merges information and communication technology (ICT) with the existing electrical
grid to advance electrical power efficiency to the fullest by exchanging information between energy
suppliers and consumers in real-time [3]. This enables the energy supplier to perform efficient energy
management for renewable generation sources (solar radiation, wind, etc.) by accurately forecasting
power consumption [4]. Therefore, for a more efficient operation, the smart grid requires precise
electrical load forecasting in both the short-term and medium-term [5,6]. Short-term load forecasting
(STLF) aims to prepare for losses caused by energy failure and overloading by maintaining an active
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power consumption reserve margin [5]. It includes daily electrical load, highest or peak electrical load,
and very short-term load forecasting (VSTLF). Generally, STLF is used to regulate the energy system
from 1 h to one week [7]. Accordingly, daily load forecasting is used in the energy planning for the
next one day to one week [8,9].

A higher-education building complex, such as a university campus, is composed of a building
cluster with a high electrical load, and hence, has been a large electric power distribution consumer in
Korea [10–12]. In terms of operational cost management, forecasting can help in determining where,
if any, savings can be made, as well as uncovering system inefficiencies [13]. In terms of scheduling,
forecasting can be helpful for improving the operational efficiency, especially in an energy storage
system (ESS) or renewable energy.

Forecasting the electrical load of a university campus is difficult due to its irregular power
consumption patterns. Such patterns are determined by diverse factors, such as the academic schedule,
social events, and natural condition. Even on the same campus, the electrical load patterns among
buildings differ, depending on the usage or purpose. For instance, typical engineering and science
buildings show a high power consumption, while dormitory buildings show a low power consumption.
Thus, to accurately forecast the electrical load of university campus, we also need to consider the
building type and power usage patterns.

By considering power consumption patterns and various external factors together, many machine
learning algorithms have shown a reasonable performance in short-term load forecasting [3,4,6,8,14–17].
However, even machine learning algorithms with a higher performance have difficulty in making
accurate predictions at all times, because each algorithm adopts a different weighting method [18].
Thus, we can see that there will always be randomness or inherent uncertainty in every prediction [19].
For instance, most university buildings in Korea show various electrical load patterns which differ,
depending on the academic calendar. Furthermore, Korea celebrates several holidays, such as Buddha’s
birthdays and Korean Thanksgiving days, called Chuseok, during the semester, which are counted on
the lunar calendar. Since the campus usually remains closed on the holidays, the power consumption
of the campus becomes very low. In such cases, it is difficult for a single excellent algorithm to make
accurate predictions for all patterns. However, other algorithms can make accurate predictions in areas
where the previous algorithm has been unable to do so. For this purpose, a good approach is to apply
two or more algorithms to construct a hybrid probabilistic forecasting model [14]. Many recent studies
have addressed a hybrid approach for STLF. Abdoos et al. [20] proposed a hybrid intelligent method for
the short-term load forecasting of Iran’s power system using wavelet transform (WT), Gram-Schmidt
(GS), and support vector machine (SVM). Dong et al. [21] proposed a hybrid data-driven model to
predict the daily total load based on an ensemble artificial neural network. In a similar way, Lee and
Hong [22] proposed a hybrid model for forecasting the monthly power load several months ahead
based on a dynamic and fuzzy time series model. Recently, probabilistic forecasting has arisen as
an active topic and it could provide quantitative uncertainty information, which can be useful to
manage its randomness in the power system operation [23]. Xiao et al. [18] proposed no negative
constraint theory (NNCT) and artificial intelligence-based combination models to predict future wind
speed series of the Chengde region. Jurado et al. [24] proposed hybrid methodologies for electrical
load forecasting in buildings with different profiles based on entropy-based feature selection with
AI methodologies. Feng et al. [25] developed an ensemble model to produce both deterministic and
probabilistic wind forecasts that consists of multiple single machine learning algorithms in the first
layer and blending algorithms in the second layer. In our previous study [12], we built a daily electrical
load forecast model based on random forest. In this study, to improve the forecasting performance of
that model, we first classify the electrical load data by pattern similarity using a decision tree. Then,
we construct a hybrid model based on random forest and multilayer perceptron by considering similar
time series patterns.

The rest of this paper is organized as follows. In Section 2, we introduce several previous studies
on the machine learning-based short-term load forecasting model. In Section 3, we present all the steps
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for constructing our hybrid electrical load forecasting model in detail. In Section 4, we describe several
metrics for performance a comparison of load forecasting models. In Section 5, we describe how to
evaluate the performance of our model via several experiments and show some of the results. Lastly,
in Section 6, we briefly discuss the conclusion.

2. Related Work

So far, many researchers have attempted to construct STLF using various machine learning
algorithms. Vrablecová et al. [7] developed the suitability of an online support vector regression
(SVR) method to short-term power load forecasting and presented a comparison of 10 state-of-the-art
forecasting methods in terms of accuracy for the public Irish Commission for Energy Regulation (CER)
dataset. Tso and Yau [26] conducted weekly power consumption prediction for households in Hong
Kong based on an artificial neural network (ANN), multiple regression (MR), and a decision tree
(DT). They built the input variables of their prediction model by surveying the approximate power
consumption for diverse electronic products, such as air conditioning, lighting, and dishwashing.
Jain et al. [27] proposed a building electrical load forecasting model based on SVR. Electrical load data
were collected from multi-family residential buildings located at the Columbia University campus in
New York City. Grolinger et al. [28] proposed two electrical load forecasting models based on ANN
and SVR to consider both events and external factors and performed electrical load forecasting by
day, hour, and 15-min intervals for a large entertainment building. Amber et al. [29] proposed two
forecasting models, genetic programming (GP) and MR, to forecast the daily power consumption of
an administration building in London. Rodrigues et al. [30] performed forecasting methods of daily
and hourly electrical load by using ANN. They used a database with consumption records, logged in
93 real households in Lisbon, Portugal. Efendi et al. [31] proposed a new approach for determining the
linguistic out-sample forecasting by using the index numbers of the linguistics approach. They used
the daily load data from the National Electricity Board of Malaysia as an empirical study.

Recently, a hybrid prediction scheme using multiple machine learning algorithms has shown
a better performance than the conventional prediction scheme using a single machine learning
algorithm [14]. The hybrid model aims to provide the best possible prediction performance by
automatically managing the strengths and weaknesses of each base model. Xiao et al. [18] proposed
two combination models, the no negative constraint theory (NNCT) and the artificial intelligence
algorithm, and showed that they can always achieve a desirable forecasting performance compared to
the existing traditional combination models. Jurado et al. [24] proposed a hybrid methodology
that combines feature selection based on entropies with soft computing and machine learning
approaches (i.e., fuzzy inductive reasoning, random forest, and neural networks) for three buildings in
Barcelona. Abdoos et al. [20] proposed a new hybrid intelligent method for short-term load forecasting.
They decomposed the electrical load signal into two levels using wavelet transform and then created
the training input matrices using the decomposed signals and temperature data. After that, they
selected the dominant features using the Gram–Schmidt method to reduce the dimensions of the
input matrix. They used SVM as the classifier core for learning patterns of the training matrix.
Dong et al. [21] proposed a novel hybrid data-driven “PEK” model for predicting the daily total load
of the city of Shuyang, China. They constructed the model by using various function approximates,
including partial mutual information (PMI)-based input variable selection, ensemble artificial neural
network (ENN)-based output estimation, and K-nearest neighbor (KNN) regression-based output
error estimation. Lee and Hong [22] proposed a hybrid model for forecasting the electrical load
several months ahead based on a dynamic (i.e., air temperature dependency of power load) and a
fuzzy time series approach. They tested their hybrid model using actual load data obtained from
the Seoul metropolitan area, and compared its prediction performance with those of the other two
dynamic models.

Previous studies on hybrid forecasting models comprise parameter selection and optimization
technique-based combined approaches. This approach has the disadvantages that it is dependent on
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a designer’s expertise and exhibits low versatility [18]. On the other hand, this paper proposes data
post-processing technique combined approaches to construct a hybrid forecasting model by combining
random forest and multilayer perceptron (MLP).

3. Hybrid Short-Term Load Forecasting

In this section, we describe our hybrid electrical load forecasting model. The overall steps for
constructing the forecasting model are shown in Figure 1. First, we collect daily power consumption
data, time series information, and weather information, which will be used as independent variables
for our hybrid STLF model. After some preprocessing, we build a hybrid prediction model based on
random forest and MLP. Lastly, we perform a seven-step-ahead (one week or 145 h ahead) time series
cross-validation for the electrical load data.

 

Figure 1. Our framework for hybrid daily electrical load forecasting.

3.1. Dataset

To build an effective STLF model for buildings or building clusters, it is crucial to collect their
real power consumption data that show the power usage of the buildings in the real world. For this
purpose, we considered three clusters of buildings with varied purposes and collected their daily
power consumption data from a university in Korea. The first cluster is composed of 32 buildings with
academic purposes, such as the main building, amenities, department buildings, central library, etc.
The second cluster is composed of 20 buildings, with science and engineering purposes. Compared to
other clusters, this cluster showed a much higher electrical load, mainly due to the diverse experimental
equipment and devices used in the laboratories. The third cluster comprised 16 dormitory buildings,
whose power consumption was based on the residence pattern. In addition, we gathered other data,
including the academic schedule, weather, and event calendar. The university employs the i-Smart
system to monitor the electrical load in real time. This is an energy portal service operated by the Korea
Electric Power Corporation (KEPCO) to give consumers electricity-related data such as electricity usage
and expected bill to make them use electricity efficiently. Through this i-Smart system, we collected
the daily power consumption of six years, from 2012 to 2017. For weather information, we utilized the
regional synoptic meteorological data provided by the Korea Meteorological Office (KMA). KMA’s
mid-term forecast provides information including the date, weather, temperature (maximum and
minimum), and its reliability for more than seven days.

To build our hybrid STLF model, we considered nine variables; month, day of the month, day
of the week, holiday, academic year, temperature, week-ahead load, year-ahead load, and LSTM
Networks. In particular, the day of the week is a categorized variable and we present the seven
days using integers 1 to 7 according to the ISO-8601 standard [32]. Accordingly, 1 indicates Monday
and 7 indicates Sunday. Holiday, which includes Saturdays, Sundays, national holidays, and school
anniversary [33], indicates whether the campus is closed or not. A detailed description of the input
variables can be found in [12].
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3.2. Data Preprocessing

3.2.1. Temperature Adjustment

Generally, the power consumption increases in summer and winter due to the heavy use of
air conditioning and electric heating appliances, respectively. Since the correlations between the
temperature and electrical load in terms of maximum and minimum temperatures are not that high,
we need to adjust the daily temperature for more effective training based on the annual average
temperature of 12.5 provided by KMA [34], using Equation (1) as follows:

AdjustedTemp =

∣∣∣∣12.5 − MinimumTemp + MaximummTemp

2

∣∣∣∣. (1)

To show that the adjusted temperature has a higher correlation than the minimum and maximum
temperatures, we calculated the Pearson correlation coefficients between the electrical load and
minimum, maximum, average, and adjusted temperatures, as shown in Table 1. In the table, the
adjusted temperature shows higher coefficients for all building clusters compared to other types
of temperatures.

Table 1. Comparison of Pearson correlation coefficients.

Temperature Type
Cluster #

Cluster A Cluster B Cluster C

Minimum temperature −0.018 0.101 0.020
Maximum temperature −0.068 0.041 −0.06
Average temperature −0.043 0.072 −0.018
Adjusted temperature 0.551 0.425 0.504

3.2.2. Estimating the Week-Ahead Consumption

The electrical load data from the past form one of the perfect clues for forecasting the power
consumption of the future and the power consumption pattern relies on the day of the week, workday,
and holiday. Hence, it is necessary to consider many cases to show the electrical load of the past in
the short-term load forecasting. For instance, if the prediction time is a holiday and the same day
in the previous week was a workday, then their electrical loads can be very different. Therefore,
it would be better to calculate the week-ahead load at the prediction time not by the electrical load
data of the coming week, but by averaging the electrical loads of the days of the same type in the
previous week. Thus, if the prediction time is a workday, we use the average electrical load of all
workdays of the previous week as an independent variable. Likewise, if the prediction time is a holiday,
we use the average electrical load of all holidays of the previous week. In this way, we reflect the
different electrical load characteristics of the holiday and workday in the forecasting. Figure 2 shows
an example of estimating the week-ahead consumption. If the current time is Tuesday, we already
know the electrical load of yesterday (Monday). Hence, to estimate the week-ahead consumption of
the coming Monday, we use the average of the electrical loads of workdays of the last week.

Figure 2. Example of estimating week-ahead consumption.
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3.2.3. Estimating the Year-Ahead Consumption

The year-ahead load aims to utilize the trend of the annual electrical load by showing the power
consumption of the same week of the previous year. However, the electrical load of the exact same
week of the previous year is not always used because the days of the week are different and popular
Korean holidays are celebrated according to the lunar calendar. Every week of the year has a unique
week number based on ISO-8601 [32]. As mentioned before, the average of power consumptions of all
holidays or workdays of the week are calculated to which the prediction time belongs and depending
on the year, one year comprises 52 or 53 weeks. In the case of an issue such as the prediction time
belongs to the 53rd week, there is no same week number in the previous year. To solve this problem,
the power consumption of the 52nd week from the previous year is utilized since the two weeks have
similar external factors. Especially, electrical loads show very low consumption on a special holiday
like the Lunar New Year holidays and Korean Thanksgiving days [35]. To show this usage pattern,
the average power consumption of the previous year’s special holiday represents the year-ahead’s
special holiday’s load. The week number can differ depending on the year, so representing the
year-ahead’s special holiday power consumption cannot be done directly using the week number of
the holiday. This issue can be handled easily by exchanging the power consumption of the week and
the week of the holiday in the previous year. Figure 3 shows an example of estimating the year-ahead
consumption. If the current time is Monday of the 33rd week 2016, we use the 33rd week’s electrical
load of the last year. To estimate the year-ahead consumption of Sunday of the 33rd week, we use the
average of the electrical loads of the holidays of the 33rd week of the last year.

Figure 3. Example of estimating the year-ahead consumption.

3.2.4. Load Forecasting Based on LSTM Networks

A recurrent neural network (RNN) is a class of ANN where connections between units form a
directed graph along a sequence. Unlike a feedforward neural network (FFNN), RNNs can use their
internal state or memory to process input sequences [36]. RNNs can handle time series data in many
applications, such as unsegmented, connected handwriting recognition or speech recognition [37].
However, RNNs have problems in that the gradient can be extremely small or large; these problems
are called the vanishing gradient and exploding gradient problems. If the gradient is extremely
small, RNNs cannot learn data with long-term dependencies. On the other hand, if the gradient is
extremely large, it moves the RNN parameters far away and disrupts the learning process. To handle
the vanishing gradient problem, previous studies [38,39] have proposed sophisticated models of
RNN architectures. One successful model is long short-term memory (LSTM), which solves the
RNN problem through a cell state and a unit called a cell with multiple gates. LSTM Networks use
a method that influences the behind data by reflecting the learned information with the previous
data as the learning progresses with time. Therefore, it is suitable for time series data, such as
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electrical load data. However, the LSTM networks can reflect yesterday’s information for the next
day’s forecast. Since the daily load forecasting of a smart grid aims to be scheduled until after a
week, LSTM networks are not suitable for application to the daily load forecasting because there is a
gap of six days. Furthermore, if the prediction is not valid, the LSTM model method can give a bad
result. For instance, national holidays, quick climate change, and unexpected institution-related events
can produce unexpected power consumption. Therefore, the LSTM model alone is not enough for
short-term load forecasting due to its simple structure and weakness in volatility. Eventually, a similar
life pattern can be observed depending on the day of the week, which in return gives a similar electrical
load pattern. This study uses the LSTM networks method to show the repeating pattern of power
consumptions depending on the day of the week. The input variable period of the training dataset
is composed of the electrical load from 2012 to 2015 and the dependent variable of the training set is
composed of the electrical load from 2013 to 2015. We performed 10-fold cross-validation on a rolling
basis for optimal hyper-parameter detection.

3.3. Discovering Similar Time series Patterns

So far, diverse machine learning algorithms have been proposed to predict electrical load [1,3,6,14].
However, they showed different prediction performances depending on the various factors.
For instance, for time series data, one algorithm gives the best prediction performance on one segment,
while for other segments, another algorithm can give the best performance. Hence, one way to
improve the accuracy in this case is to use more than one predictive algorithm. We consider electrical
load data as time series data and utilize a decision tree to classify the electrical load data by pattern
similarity. Decision trees [26,40] can handle both categorical and numerical data, and are highly
persuasive because they can be analyzed through each branch of the tree, which represents the process
of classification or prediction. In addition, they exhibit a high explanatory power because they can
confirm which independent variables have a higher impact when predicting the value of a dependent
or target variable. On the other hand, continuous variables used in the prediction of values of the time
series are regarded as discontinuous values, and hence, the prediction errors are likely to occur near
the boundary of separation. Hence, using the decision tree, we divide continuous dependent variables
into several classes with a similar electrical load pattern. To do this, we use the training dataset from
the previous three years. We use the daily electrical load as the attribute of class label or dependent
variable and the characteristics of the time series as independent variables, representing year, month,
day, day of the week, holiday, and academic year. Details on the classification of time series data will
be shown in the experimental section.

3.4. Building a Hybrid Forecasting Model

To construct our hybrid prediction model, we combine both a random forest model and multilayer
perceptron model. Random forest is a representative ensemble model, while MLP is a representative
deep learning model; both these models have shown an excellent performance in forecasting electrical
load [5,12,15–17].

Random forest [41,42] is an ensemble method for classification, regression, and other tasks.
It constructs many decision trees that can be used to classify a new instance by the majority vote.
Each decision tree node uses a subset of attributes randomly selected from the original set of attributes.
Random forest runs efficiently on large amounts of data and provides a high accuracy [43]. In addition,
compared to other machine learning algorithms such as ANN and SVR, it requires less fine-tuning of
its hyper-parameters [16]. The basic parameters of random forest include the total number of trees to
be generated (nTree) and the decision tree-related parameters (mTry), such as minimum split and split
criteria [17]. In this study, we find the optimal mTry and nTree for our forecasting model by using the
training set and then verify their performance using the validation and test set. The authors in [42]
suggested that a random forest should have 64 to 128 trees and we use 128 trees for our hybrid STLF
model. In addition, the mTry values used for this study provided by scikit-learn are as follows.
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• Auto: max features = n features.
• Sqrt: max features = sqrt (n features).
• Log2: max features = log2 (n features).

A typical ANN architecture, known as a multilayer perceptron, is a type of machine learning
algorithm that is a network of individual nodes, called perceptrons, organized in a series of layers [5].
Each layer in MLP is categorized into three types: an input layer, which receives features used for
prediction; a hidden layer, where hidden features are extracted; and an output layer, which yields
the determined results. Among them, the hidden layer has many factors affecting performance, such
as the number of layers, the number of nodes involved, and the activation function of the node [44].
Therefore, the network performance depends on how the hidden layer is configured. In particular, the
number of hidden layers determines the depth or shallowness of the network. In addition, if there
are more than two hidden layers, it is called a deep neural network (DNN) [45]. To establish our
MLP, we use two hidden layers since we do not require many input variables in our prediction model.
In addition, we use the same epochs and batch size as the LSTM model we described previously.
Furthermore, as an activation function, we use an exponential linear unit (ELU) without the rectified
linear unit (ReLU), which has gained increasing popularity recently. However, its main disadvantage
is that the perceptron can die in the learning process. ELU [46] is an approximate function introduced
to overcome this disadvantage, and can be defined by:

f(x) =

{
x if x ≥ 0

α(ex − 1) if x < 0
. (2)

The next important consideration is to choose the number of hidden nodes. Many studies have
been conducted to determine the optimal number of hidden nodes for a given task [15,47,48], and we
decided to use two different hidden node counts: the number of input variables and 2/3 of the number
of input variables. Since we use nine input variables, the numbers of hidden nodes we will use are
9 and 6. Since our model has two hidden layers, we can consider three configurations, depending
on the hidden nodes of the first and second layers: (9, 9), (9, 6), and (6, 6). As in the random forest,
we evaluate these configurations using the training data for each building cluster and identify the
configuration that gives the best prediction accuracy. After that, we compare the best MLP model with
the random forest model for each cluster type.

3.5. Time series Cross-Validation

To construct a forecasting model, the dataset is usually divided into a training set and test set.
Then, the training set is used in building a forecasting model and the test set is used in evaluating the
resulting model. However, in traditional time series forecasting techniques, the prediction performance
is poorer as the interval between the training and forecasting times increases. To alleviate this problem,
we apply the time series cross-validation (TSCV) based on the rolling forecasting origin [49]. A variation
of this approach focuses on a single prediction horizon for each test set. In this approach, we use
various training sets, each containing one extra observation than the previous one. We calculate the
prediction accuracy by first measuring the accuracy for each test set and then averaging the results
of all test sets. This paper proposes a one-week (sum from 145 h to 168 h) look-ahead view of the
operation for smart grids. For this, a seven-step-ahead forecasting model is built to forecast the power
consumption at a single time (h + 7 + i − 1) using the test set with observations at several times
(1, 2, . . . , h + i − 1). If h observations are required to produce a reliable forecast, then, for the total T
observations, the process works as follows.

For i = 1 to T − h − 6:

(1) Select the observation at time h + 7 + i − 1 for the test set;
(2) Consider the observations at several times 1, 2, · · · , h + i − 1 to estimate the forecasting model;
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(3) Calculate the 7-step error on the forecast for time h + 7 + i − 1;
(4) Compute the forecast accuracy based on the errors obtained.

4. Performance Metrics

To analyze the forecast model performance, several metrics, such as mean absolute percentage
error (MAPE), root mean square error (RMSE), and mean absolute error (MAE), are used, which are
well-known for representing the prediction accuracy.

4.1. Mean Absolute Percentage Error

MAPE is a measure of prediction accuracy for constructing fitted time series values in statistics,
specifically in trend estimation. It usually presents accuracy as a percentage of the error and can be
easier to comprehend than the other statistics since this number is a percentage. It is known that the
MAPE is huge if the actual value is very close to zero. However, in this work, we do not have such
values. The formula for MAPE is shown in Equation (3), where At and Ft are the actual and forecast
values, respectively. In addition, n is the number of times observed.

MAPE =
100
n

n

∑
t=1

∣∣∣∣At − Ft

At

∣∣∣∣ (3)

4.2. Root Mean Square Error

RMSE (also called the root mean square deviation, RMSD) is used to aggregate the residuals into a
single measure of predictive ability. The square root of the mean square error, as shown in Equation (4),
is the forecast value Ft and an actual value At. The mean square standard deviation of the forecast
value Ft for the actual value At is the square root of RMSE. For an unbiased estimator, RMSE is the
square root of the variance, which denotes the standard error.

RMSE =

√
∑n

i=1(Ft − At)
2

n
(4)

4.3. Mean Absolute Error

In statistics, MAE is used to evaluate how close forecasts or predictions are to the actual outcomes.
It is calculated by averaging the absolute differences between the prediction values and the actual
observed values. MAE is defined as shown in Equation (5), where Ft is the forecast value and At is the
actual value.

MAE =
1
n

n

∑
i=1

|Ft − At| (5)

5. Experimental Results

To evaluate the performance of our hybrid forecast model, we carried out several experiments.
We performed preprocessing for the dataset in the Python environment and performed forecast
modeling using scikit-learn [50], TensorFlow [51], and Keras [52]. We used six years of daily electrical
load data from 2012 to 2017. Specifically, we used electrical load data of 2012 to configure input
variables for a training set. Data from 2013 to 2015 was used as the training set, the data of 2016 was
the validation set, and the data of 2017 was the test set.

5.1. Dataset Description

Table 2 shows the statistics of the electric consumption data for each cluster, including the number
of valid cases, mean, and standard deviation. As shown in the table, Cluster B has a higher power
consumption and wider deviation than clusters A and C.
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Table 2. Statistics of power consumption data.

Statistics
Cluster #

Cluster A Cluster B Cluster C

Number of valid cases 1826 1826 1826
Mean 63,094.97 68,860.93 30,472.31

Variance 246,836,473 269,528,278 32,820,509
Standard deviation 15,711.03 16,417.31 5728.92

Maximum 100,222.56 109,595.52 46,641.6
Minimum 23,617.92 26,417.76 14,330.88

Lower quartile 52,202.4 56,678.88 26,288.82
Median 63,946.32 66,996.72 30,343.14

Upper quartile 76,386.24 79,209.96 34,719.45

5.2. Forecasting Model Configuration

In this study, we used the LSTM networks method to show the repeating pattern of power
consumptions depending on the day of the week. We tested diverse cases and investigated the
accuracy of load forecasting for the test cases to determine the best input data selection. As shown
in Figure 4, the input variables consist of four electrical loads from one week ago to four weeks
ago as apart at a weekly interval to reflect the cycle of one month. In the feature scaling process,
we rescaled the range of the measured values from 0 to 1. We used tanh as the activation function
and calculated the loss by using the mean absolute error. We used the adaptive moment estimation
(Adam) method, which combines momentum and root mean square propagation (RMSProp), as the
optimization method. The Adam optimization technique weighs the time series data and maintains the
relative size difference between the variables. In the configuration of the remaining hyper-parameters
of the model, we set the number of hidden units to 60, epochs to 300, and batch size to 12.

Figure 4. System architecture of LSTM networks.

We experimented with the LSTM model [52] by changing the time step from one cycle to a
maximum of 30 cycles. Table 3 shows the mean absolute percentage error (MAPE) of each cluster for
each time step. In the table, the predicted results with the best accuracy are marked in bold. Table 3
shows that the 27th time step indicates the most accurate prediction performance. In general, the
electricity demand is relatively high in summer and winter, compared to that in spring and autumn.
In other words, it has a rise and fall curve in a half-year cycle, and the 27th time step corresponds to a
week number of about half a year.

We performed similar a time series pattern analysis based on the decision tree through 10-fold
cross-validation for the training set. Among several options provided by scikit-learn to construct a
decision tree, we considered the criterion, max depth, and max features. The criterion is a function for
measuring the quality of a split. In this paper, we use the “mae” criterion for our forecasting model
since it gives the smallest error rate between the actual and the classification value. Max depth is the
maximum depth of the tree. We set max depth to 3, such that the number of leaves is 8. In other words,
the decision tree classifies the training datasets into eight similar time series. Max features are the
number of features to consider when looking for the best split. We have chosen the “auto” option
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to reflect all time variables. Figure 5 shows the result of the similar time series recognition for each
cluster using the decision tree. Here, samples indicate the number of tuples in each leaf. The total
number of samples is 1095, since we are considering the daily consumption data over three years.
Value denotes the classification value of the similar time series. Table 4 shows the number of similar
time series samples according to the decision tree for 2016 and 2017.

Table 3. MAPE results of LSTM networks.

Time Step Cluster A Cluster B Cluster C Average

1 9.587 6.989 6.834 7.803
2 9.169 6.839 6.626 7.545
3 8.820 6.812 6.463 7.365
4 8.773 6.750 6.328 7.284
5 8.686 6.626 6.191 7.168
6 8.403 6.695 5.995 7.031
7 8.405 6.700 6.104 7.070
8 8.263 6.406 5.846 6.839
9 8.260 6.583 5.648 6.830
10 8.286 6.318 5.524 6.709
11 8.095 6.438 5.666 6.733
12 8.133 6.469 5.917 6.840
13 7.715 6.346 5.699 6.587
14 7.770 6.263 5.399 6.477
15 7.751 6.139 5.306 6.399
16 7.561 5.974 5.315 6.283
17 7.411 5.891 5.450 6.251
18 7.364 6.063 5.398 6.275
19 7.466 6.089 5.639 6.398
20 7.510 5.892 5.627 6.343
21 7.763 5.977 5.451 6.397
22 7.385 5.856 5.460 6.234
23 7.431 5.795 5.756 6.327
24 7.870 6.089 5.600 6.520
25 7.352 5.923 5.370 6.215
26 7.335 5.997 5.285 6.206
27 7.405 5.479 5.371 6.085
28 7.422 5.853 5.128 6.134
29 7.553 5.979 5.567 6.366
30 7.569 5.601 5.574 6.248

Table 4. Similar time series patterns.

Pattern
Cluster A Cluster B Cluster C

2016 2017 2016 2017 2016 2017

1 62 62 62 62 62 62
2 14 14 14 14 140 138
3 107 111 107 111 20 20
4 64 58 64 58 25 25
5 14 15 14 15 1 2
6 53 52 53 52 10 9
7 16 16 5 5 99 98
8 36 37 47 48 9 11

Total 366 365 366 365 366 365

The predictive evaluation consists of two steps. Based on the forecast models of random forest
and MLP, we used the training set from 2013 to 2015 and predicted the verification period of 2016.
The objectives are to detect models with optimal hyper-parameters and then to select models with a
better predictive performance in similar time series. Next, we set the training set to include data from
2013 to 2016 and predicted the test period of 2017. Here, we evaluate the predictive performance of the

129



Energies 2018, 11, 3283

hybrid model we have constructed. Table 5 is the prediction result composed of MLP, and MAPE is
used as a measure of prediction accuracy and the predicted results with the best accuracy are marked
in bold. As shown in the table, overall, a model consisting of nine and nine nodes in each hidden layer
showed the best performance. Although the nine and six nodes in each hidden layer showed a better
performance in Cluster A, the model consisting of nine and nine nodes was selected to generalize the
predictive model.

 
(a) Cluster A 

 

(b) Cluster B 

 

(c) Cluster C 

Figure 5. Results of similar time series classifications using decision trees.

Table 5. MAPE results of the multilayer perceptron.

Cluster #
Number of Neurons in Each Layer

9-6-6-1 9-9-6-1 9-9-9-1

Cluster A 3.856 3.767 3.936
Cluster B 4.869 5.076 4.424
Cluster C 3.366 3.390 3.205
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Table 6 shows the MAPE of random forest for each cluster under different mTry and the predicted
results with the best accuracy are marked in bold. Since the input variable is 9, sqrt and log2 are
recognized as 3 and the results are the same. We choose the sqrt that is commonly used [16,43].

Table 6. MAPE results of random forest.

Cluster #
Number of Features

Auto sqrt log2

Cluster A 3.983 3.945 3.945
Cluster B 4.900 4.684 4.684
Cluster C 3.579 3.266 3.266

Figure 6a–c show the use of forests of trees to evaluate the importance of features in an artificial
classification task. The blue bars denote the feature importance of the forest, along with their inter-trees
variability. In the figure, LSTM, which refers to the LSTM-RNN that reflects the trend of day of the
week, has the highest impact on the model configuration for all clusters. Other features have different
impacts, depending on the cluster type.

(a) Cluster A 

(b) Cluster B 

Figure 6. Cont.
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(c) Cluster C 

Figure 6. Feature importance in random forest.

Table 7 shows the electrical load forecast accuracy for the pattern classification of similar time
series for 2016. In the table, the predicted results with a better accuracy are marked in bold. For instance,
in the case of Cluster A, while random forest shows a better prediction accuracy for patterns 1 to 4,
MLP shows a better accuracy for patterns 5 to 8. Using this table, we can choose a more accurate
prediction model for the pattern and cluster type.

Table 7. MAPE results of load forecasting in 2016.

2016 Cluster A Cluster B Cluster C

Pattern MLP RF MLP RF MLP RF

1 3.339 3.092 3.705 2.901 2.736 2.475
2 2.199 1.965 4.395 3.602 2.987 2.731
3 2.840 2.712 3.343 2.990 2.853 2.277
4 4.165 3.472 3.794 3.978 3.517 2.568
5 7.624 9.259 8.606 15.728 4.229 10.303
6 4.617 5.272 5.404 6.172 5.159 4.894
7 3.816 4.548 9.199 8.860 3.686 4.718
8 6.108 6.402 5.844 6.768 2.152 2.595

Table 8 shows prediction results of our model for 2017. Comparing Tables 7 and 8, we can see
that MLP and random forest (RF) have a matched relative performance in most cases. There are
two exceptions in Cluster A and one exception in Cluster B and they are underlined and marked in
bold. In the case of Cluster C, MLP and RF gave the same relative performance. This is good evidence
that our hybrid model can be generalized.

Table 8. MAPE results of load forecasting in 2017.

2017 Cluster A Cluster B Cluster C

Pattern MLP RF MLP RF MLP RF

1 2.914 2.709 4.009 3.428 2.838 2.524
2 1.945 2.587 3.313 3.442 2.622 2.474
3 2.682 2.629 3.464 3.258 3.350 2.583
4 5.025 4.211 4.005 5.116 2.694 2.391
5 7.103 11.585 9.640 20.718 3.300 15.713
6 4.503 6.007 5.956 7.272 6.984 6.296
7 3.451 3.517 13.958 12.386 3.835 4.443
8 6.834 6.622 7.131 8.106 2.562 3.722
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5.3. Comparison of Forecasting Techniques

To verify the validness and applicability of our hybrid daily load forecasting model, the predictive
performance of our model should be compared with other machine learning techniques, including
ANN and SVR, which are very popular predictive techniques [6]. In this comparison, we consider eight
models, including our model, as shown in Table 9. In the table, GBM (Gradient Boosting Machine) is a
type of ensemble learning technique that implements the sequential boosting algorithm. A grid search
can be used to find optimal hyper-parameter values for the SVR/GBM [25]. SNN (Shallow Neural
Network) has three layers of input, hidden, and output, and it was found that the optimal number of
the hidden nodes is nine for all clusters.

Tables 9–11 compare the prediction performance in terms of MAPE, RMSE, and MAE, respectively.
From the tables, the predicted results with the best accuracy are marked in bold and we observe that
our hybrid model exhibits a superb performance in all categories. Figure 7 shows more detail of the
MAPE distribution for each cluster using a box plot. We can deduce that our hybrid model has fewer
outliers and a smaller maximum error. In addition, the error rate increases in the case of long holidays
in Korea. For instance, during the 10-day holiday in October 2017, the error rate increased significantly.
Another cause of high error rates is due to outliers or missing values because of diverse reasons, such
as malfunction and surge. Figure 8 compares the daily load forecasts of our hybrid model and actual
daily usage on a quarterly basis. Overall, our hybrid model showed a good performance in predictions,
regardless of diverse external factors such as long holidays.

Table 9. MAPE distribution for each forecasting model.

Forecasting Model
Cluster #

Cluster A Cluster B Cluster C

MR 7.852 8.971 4.445
DT 6.536 8.683 6.004

GBM 4.831 6.896 3.920
SVR 4.071 5.761 3.135
SNN 4.054 5.948 3.181
MLP 3.961 4.872 3.139
RF 4.185 5.641 3.216

RF+MLP 3.798 4.674 2.946

Table 10. RMSE comparison for each forecasting model.

Forecasting Model
Cluster #

Cluster A Cluster B Cluster C

MR 5725.064 6847.179 1757.463
DT 6118.835 7475.188 2351.676

GBM 4162.359 5759.276 1495.751
SVR 3401.812 5702.405 1220.052
SNN 3456.156 4903.587 1236.606
MLP 3381.697 4064.559 1170.824
RF 4111.245 4675.762 1450.436

RF + MLP 3353.639 3894.495 1143.297

Nevertheless, we can see that there are several time periods when forecasting errors are high.
For instance, from 2013 to 2016, Cluster B showed a steady increase in its power consumption due to
building remodeling and construction. Even though the remodeling and construction are finished at
the beginning of 2017, the input variable for estimating the year-ahead consumption is still reflecting
such an increase. This was eventually adjusted properly for the third and fourth quarters by the
time series cross-validation. On the other hand, during the remodeling, the old heating, ventilation,
and air conditioning (HVAC) system was replaced by a much more efficient one and the new system
started its operation in December 2017. Even though our hybrid model predicted much higher power
consumption for the cold weather in the third week, the actual power consumption was quite low due
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to the new HVAC system. Lastly, Cluster A showed a high forecasting error on 29 November 2017.
It turned out that at that time, there were several missing values in the actual power consumption.
This kind of problem can be detected by using the outlier detection technique.

Table 11. MAE comparison for each forecasting model.

Forecasting Model
Cluster #

Cluster A Cluster B Cluster C

MR 4155.572 4888.821 1262.985
DT 3897.741 5054.069 1708.709

GBM 2764.128 3916.945 1122.530
SVR 2236.318 3956.907 898.963
SNN 2319.696 3469.775 919.014
MLP 2255.537 2795.246 910.351
RF 2708.848 3235.855 1063.731

RF+MLP 2208.072 2742.543 860.989

(a) Cluster A 

(b) Cluster B 

(c) Cluster C 

Figure 7. Distribution of each model by MAPE.
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(a) First quarter (1 January–31 March) in 2017 

 
(b) Second quarter (1 April–30 June) in 2017 

 
(c) Third quarter (1 July–30 September) in 2017 

 
(d) Fourth quarter (1 October–31 December) in 2017 

Figure 8. Daily electrical load forecasting for university campus.

6. Conclusions

In this paper, we proposed a hybrid model for short-term load forecasting for higher educational
institutions, such as universities, using random forest and multilayer perceptron. To construct our
forecast model, we first grouped university buildings into an academic cluster, science/engineering
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cluster, and dormitory cluster, and collected their daily electrical load data over six years. We divided
the collected data into a training set, a validation set, and a test set. For the training set, we classified
electrical load data by pattern similarity using the decision tree technique. We considered various
configurations for random forest and multilayer perceptron and evaluated their prediction performance
by using the validation set to select the optimal model. Based on this work, we constructed our hybrid
daily electrical load forecast model by selecting models with a better predictive performance in similar
time series. Finally, using the test set, we compared the daily electrical load prediction performance of
our hybrid model and other popular models. The comparison results show that our hybrid model
outperforms other popular models. In conclusion, we showed that LSTM networks are effective for
reflecting an electrical load depending on the day of the week and the decision tree is effective in
classifying time series data by similarity. Moreover, using these two forecasting models in a hybrid
model can complement their weaknesses.

In order to improve the accuracy of electrical load prediction, we plan to use a supervised
learning method reflecting various statistically significant data. Also, we will analyze the prediction
performance in different look-ahead points (from the next day to a week) using probabilistic forecasting.
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Abstract: Artificial Intelligence (AI) has been widely used in Short-Term Load Forecasting (STLF)
in the last 20 years and it has partly displaced older time-series and statistical methods to a second
row. However, the STLF problem is very particular and specific to each case and, while there are
many papers about AI applications, there is little research determining which features of an STLF
system is better suited for a specific data set. In many occasions both classical and modern methods
coexist, providing combined forecasts that outperform the individual ones. This paper presents a
thorough empirical comparison between Neural Networks (NN) and Autoregressive (AR) models as
forecasting engines. The objective of this paper is to determine the circumstances under which each
model shows a better performance. It analyzes one of the models currently in use at the National
Transport System Operator in Spain, Red Eléctrica de España (REE), which combines both techniques.
The parameters that are tested are the availability of historical data, the treatment of exogenous
variables, the training frequency and the configuration of the model. The performance of each model
is measured as RMSE over a one-year period and analyzed under several factors like special days
or extreme temperatures. The AR model has 0.13% lower error than the NN under ideal conditions.
However, the NN model performs more accurately under certain stress situations.

Keywords: short-term load forecasting (STLF); neural networks; artificial intelligence (AI)

1. Introduction

The development of Short-Term Load Forecasting (STLF) tools has been a common topic in the
late years [1–3]. STLF is defined as forecasting from 1 h to several days ahead, and it is usually done
hourly or half-hourly. The application of STLF include transport and system operators that need to
ensure reliability and efficiency of the system and networks and producers that require to establish
schedules and utilization of their power facilities. In addition, STLF is required for the optimization of
market bidding for both buyers and sellers in the market. The ability to foresee the electric demand will
reduce the costs of deviations from the committed offers. These aspects have been especially relevant
in the last decade in which the deregulation of the Spanish market following European directives
has been enforced. In addition, the increasing availability of renewable energy sources, makes the
balancing of the system more unstable as it adds more uncertainty on the producing end. All of these
reasons make STLF a critical aspect to ensure reliability and efficiency of the power system.

Forecasting models use several techniques that can be grouped in Statistical, Artificial Intelligence
and Hybrid techniques. Statistical methods require a mathematical model that provide the relationship
between load and other input factors. These methods were the first ones used and are still
currently relevant. They include multiple linear regression models [4–6], time-series [7–10] and
exponential smoothing techniques [11]. Pattern recognition is a key aspect of load forecasting.
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Determining the daily, weekly and seasonal patterns of consumers is at the root of the load-forecasting
problem. Pattern recognition techniques stem from the context of computer vision and from there,
they have evolved to applications in all fields of engineering in forms of different types of Artificial
Intelligence. These techniques (AI) have gained attention over the last 20 years. AI offers a variety
of techniques that generally require the selection of certain aspects of their topology but they are
able to model non-linear behavior from observing past instances. The term refers to methods that
employ Artificial Neural Networks [12–16], Fuzzy Logic [13,15,17–20], Support Vector Machines [21]
or Evolutionary Algorithms [15,17,22–24]. Hybrid models are those that combine the use of two or
more techniques in the forecasting process. These are some examples that include some of the already
mentioned [15,23,25–27]. Other application of pattern recognition and AI techniques to STLF include
smaller scale systems, which present their own specificities [28,29].

The previous paragraph focused solely on the forecasting engine used to calculate the actual
forecast, as this part usually receives the most attention. However, it is not the only key aspect of the
forecasting problem. In [30], it is proposed a standard that includes 5 stages that need to be properly
addressed in order to obtain accurate forecasts:

• Data Pre-processing: Data normalizing, filtering of outliers and decomposition of signals by
transforms. This last aspect has received significant attention recently [23,24,31,32].

• Input Selection: Analysis of the available information and of how the forecasting engines process
this information best. In [33], an example of how to determine which variable should be included
is shown. The information about special days is also included in this stage, relevant attempts to
determine the best way to convert type of day information to valid input to the forecasting engine
are found in [18–20,34–36].

• Time Frame Selection: Refers to determining which period should be used for training. In [16],
a time scheme including similar days is proposed. In this paper, this issue will be addressed by
determining how the availability of historical data affects the accuracy of forecasts carried out by
different forecasting engines.

• Load Forecasting: Refers to the forecasting engine.
• Data Post-Processing: De-normalizing, re-composition, etc.

To sum up, it is also relevant to mention examples of real world applications [37–39].
The publishing of models that are validated through actual use by the industry instead of through lab
conditions is especially important for the advancement of the field [2].

The referred examples contain descriptions of particular forecasting models that are usually
described by defining their input and the inner workings, topology, configuration and other
characteristics of the forecasting engine. They also include the results of the model when it has
been tested on a specific database and for a certain period of time. This methodology has provided a
wide variety of models for the industry and scientific community to choose from for any particular
application. However, it has provided very little information on how to compare each method and how
to determine the strong and weak suits of each technique. The lack of analysis of the characteristics
of the database, and in some cases the use of testing periods shorter than a full year, makes it very
difficult for the reader to a priori determine which of the proposed models would suit best their own
personal case.

This issue has been treated in [40,41], in which the authors propose a certain methodology to
adopt different techniques depending on the forecasting problem. These papers include an analysis
of the load prior to the actual forecasting process. However, they only test one technique for the
forecasting engine. In [42] the issue of predictability of databases is addressed to provide a benchmark
indicator that could provide a fair comparison among results of different models on different databases
that may or may not be similarly affected by the same factors (temperature, social activities . . . ).
This type of information along with the standardization proposed in [30] would be useful to determine
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the characteristics of a specific problem and the features of each model available that best addresses
the subject at hand.

Consequently, there is consensus that a general solution does not exist and that the STLF problem
does not have a “one-size-fits-all” fix. Nevertheless, the objective of this paper is to provide a
comparison between two of the most common forecasting engines: the autoregressive model (AR) and
the Neural Network (NN). The goal is to determine how a given set of conditions and configuration
parameters affect the accuracy of each technique (AR and NN) and use this information to define their
strong and weak points.

The methodology aims to determine the circumstances under which each of the forecasting
engines performs more accurately. The conditions of the forecasts: historical data available, sources of
temperature information, computational burden, maintenance needed . . . are modified to determine
how each of them affects each technique. In addition, the performance results are analyzed in terms of
type of days (cold, hot, special days) in order to better assess whether one of the forecasting engines
performs better on a certain type of day.

This paper provides results from a real application using two different techniques under the same
set of conditions. These results are classified by the type of day to facilitate the analysis. The obtained
results provide proof that NN models are more reliable when meteorological information is scarce
(only few locations are available) or when it is not properly pre-processed. Nevertheless, the NN
requires a larger historical database to match the accuracy of the AR model. The overall results show
that each technique is better suited for specific types of days, but more importantly, that there are
conditions under which one technique clearly outperforms the other.

Section 2 contains the description of the forecasting engines that are compared, the parameters and
conditions under which the forecasting engines are tested and the categorization of type of days used
to compare the results. On Section 3, the characteristics of the data used are explained: characteristics
of the load, meteorological variables and their treatment and information to determine the type of day.
Section 4 includes the results obtained on the tests: a revision of each parameter and how its variation
affects the performance to both forecasting engines. Finally, Section 5 includes a brief conclusion that
summarizes the most relevant aspects of the results.

2. Methodology

This section provides a detailed description of the analyzed forecasting techniques, the conditions
under which they are tested and the classification of the results used to draw conclusions.

2.1. Forecasting Models

Both forecasting models under analysis are extracted from the STLF system currently working
at Red Eléctrica de España (REE), the Transport System Operator in Spain. They have been
thorughly described in [39], and have been running on the REE headquarters for over two years
now. Both forecasting engines use the same data filtering system to discard outliers, usually caused
by malfunctioning of the data acquisition systems. The forecasting scheme provides a forecast every
hour that contains the forecasted hourly profile for the current day and the next nine days. Internally,
each hour is forecasted separately by different sub-models. Therefore, each full model includes
24 sub-models to forecast the load profile of a full day, and different submodels are used depending on
how distant in the future the forecasted day is.

To simplify the comparison, the metric that will be used as reference is the error of the forecast
made at 9 a.m. for the full 24 h of the next day. This forecast is the most relevant for REE as it is the
one that serves as a base for operation and planning.

The input for any of the submodels is a vector that contains the latest load information available,
temperature forecasts, annual trends and calendar information. This data will be further discussed on
the next section, but it is the same for both techniques AR and NN that are now explained.
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2.1.1. Auto-Regressive Model

The auto-regressive model is actually an auto-regressive model with errors that includes
exogenous variables. Regression models with time series errors describe the behavior of a series
by accounting for linear effects of exogenous variables. However, the errors are not considered white
noise but a time series. This type of model is described in Equation (1).

yt =
p

∑
i=1

ϕi·et−i + Xt·θ + εt (1)

where, the output yt is expressed as a linear combination of previous known errors, et-i, exogenous
variables Xt and a random shock, εt. The coefficients ϕi and vector θ are calculated from the training
data by a maximum likelihood method. The parameter p expresses the number of lags of the error that
are included in the model.

2.1.2. Neural Network

The Neural Network model uses a non-linear auto-regressive system with exogenous input.
mathematically expressed in Equation (2):

yt = f
(

yt−1,, . . . , yt−ny , ut−1,, . . . , ut−nu

)
(2)

where, the output value yt is a non-linear function of ny previous outputs and nu inputs. This non-linear
function is, in our case, a feedforward neural network. Further description of this model can be found
in [39]. Figure 1 shows a visualization of this type of networks working online. The figure shows
a feedforward neural network with 119 exogenous inputs and a feedback of 14 previous values,
10 neurons in the hidden layer and 1 output.

The random nature of the training process of the NARX systems requires certain redundancy to
estabilize the output. This is achieved by using a number NN in parallel. Also, the ability of the NN to
capture non-linear behavior depends on the size of the hidden layer. Both of these parameters affect
the computational burden imposed on the system, which is one of the conditions under which the
models are tested.

Figure 1. Schematic view of the NARX system as shown on a Matlab Mathworks visualization.

2.2. Parameters and Forecasting Conditions

The forecasting engines described above have been tested with different configuration parameters
and external conditions to determine how they adapt to different situations. External conditions are
historical load availability, temperature locations availability and response timeliness, which is related
to computational burden. Configuration parameters are temperature treatment, frequency of training
and number of auto-regressive lags.
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2.2.1. Historical Load Availability

The most important input of a load-forecasting model is its past behavior. A persistent model
that only takes into account previous values may provide, in some cases, a valid baseline to start
developing a more complex one. However, in many situations, and especially in industry applications,
the availability of such historical data is not as deep as desired and it is restricted due to the quantity
or the quality of the stored data. In some cases, the data acquisition system has not been running long
enough, or a change in its configuration may cause old data to be obsolete.

The question of how old the data that we use in our forecasting system should be is a valid
one. The inclusion of data from too far back may cause the model to learn obsolete behavior that has
changed over the years and that is not currently accurate: the increment of air conditioning systems
may increase the sensitivity of load to temperature increase while the use of more efficient lighting
may decrease the load in after-sunset hours. On the other hand, there are certain phenomena like
extreme temperatures or special days that do not happen for long periods of time and, therefore, if the
database is not deep enough, it may not have enough examples to shape this type of behavior.

Our research proposes using data from the last 3, 5 and 7 years to train both models. The goal of
these experiments is to determine which one of them requires a deeper database, or which one can
benefit the most from such data availability. The data will be broken down into separate types of days
in order to determine which category is affected by this condition.

2.2.2. Temperature Locations Availability

Temperature is the most important exogenous factor for load forecasting of regular days as both
extremes of the temperature range increase electricity consumption. Load forecasting of small areas in
which temperature is homogenous may require only one series of temperature data to learn the area’s
behaviors that are related to temperature. However, if the region is larger and the weather presents
higher variability, it is necessary to determine which locations provide a relevant temperature series
that could model the local area’s behavior related to weather. Needless to say, not all local areas will be
equally affected by temperature and the relevance of each area within the overall load for the region
will vary depending on the lower or higher electricity capacity of each area. The electricity capacity
normally relates to the area’s gross product.

In our case, Spain is a large country with a wide weather diversity. In addition, the population
distribution also causes a high variability of power consumption among areas. According to this,
the model used at REE includes data from five locations that represent the five weather regions:
North-Atlantic (Bilbao), Mediterranean (Barcelona), Upper-Center (Zaragoza), Lower-Center (Madrid)
and South (Sevilla). These cities, shown in Figure 2 are the most power demanding areas in each
weather region.

Figure 2. Location of the five temperature series and distribution of the weather regions in Spain.
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The lack of availability of all temperature series affects the accuracy of the system. Both models
have been tested by including only one series of data and then adding the rest one at a time.
This experiment allows to determine which model can perform best under scarce information and
which can benefit the most from a richer dataset.

2.2.3. Temperature Treatment

As it was aforementioned, temperature has a non-linear relation with electricity consumption,
as both high and low temperature causes an increase in demand. To illustrate this, Figure 3 shows a
plot of the average load on regular days at 18 h against the average temperature of the day. Therefore,
in order for the forecasting engine to capture such behavior, it may require a pre-processing of the data.

Figure 3. Scatter plot of national load at 18 h against the daily average temperature in Madrid.

One common approach to this is using a technique called Heating Degree Days (HDD) and
Cooling Degree Days (CDD). This technique linearizes the temperature load relation by defining
threshold for high and low temperatures and splitting the series into one that accounts for cold days
and another that does for hot days. The CDD and HDD series are described in Equations (3) and (4)
and they are further discussed in [34].

CDDd =

{
Tmed,d − THhot, if Tmed > THhot

0, otherwise
(3)

HDDd =

{
THcold − Tmed,d, if Tmed < THcold

0, otherwise
(4)

where Tmed,d is the average temperature of day d, THhot and THcold are the thresholds for hot and cold
days and CDDd and HDDd are the values of each series for day d.

This technique requires the thresholds to be properly tuned to each location’s effect on the load.
This optimization process is described in [39] and the optimal threshold for each zone has been
calculated. However, the robustness of each model against the variation of these values has been tested
by introducing variations of up to 12 degrees on each threshold.

2.2.4. Neural Network Size, Redundancy and Computational Burden

According to the selected topology shown in Figure 1, part of the configuration of the network is
the selection of the number of neurons in the hidden layer. The complexity of the network is related to
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this parameter, as it is associated to its ability to model non-linear behaviors. A network with a low
number of neurons in its hidden layer would fail to learn complex, non-linear relations between input
and output. On the other hand, the number of neurons increases the computational burden of the
training and forecasting process and, therefore it should be minimized if the system is working online
and has a response time limit.

In addition, the neural network training algorithm relies on a random initialization of the neurons’
weights. The randomness causes the network’s output to contain a random component. In order to
minimize the effect of this randomness, the working model includes a redundant design. Each network
is replicated n times to obtain n different outputs for each forecast. The final output is obtained then by
discarding the lowest and highest values and averaging the rest. Increasing the number of replicas
costs a linear increase of computational burden while it reduces the randomness of the output and
reduces the variability of the output, minimizing the maximum error of a forecasted period.

The response time of the system is a critical feature. If the forecast is not produced on time,
then the whole effort could be useless. In order to test how the limit of time response affects the models
the number of neurons is set from 3 to 20 and the number of redundant networks from 3 to 25. As the
neural network model is the one with higher computational burden it is the only one affected by
this limitation.

2.2.5. Frequency of Training

As it will be further discussed in Section 3, the load series evolve over time due to changes in
factors like economic growth or shifts in consumer behaviors. This causes forecasting models to
become obsolete if the data used during training no longer follows the current trends. Therefore,
in order to keep up with load shifting behavior, forecasting models need to be frequently retrained
with new data.

The training process may have heavy computational requirements that make it unpractical to
increase frequency needlessly. Therefore, the period in between trainings is a factor that may alter the
accuracy of the model.

In this research, both AR and NN models have been tested with training frequencies of 3, 6,
12 and 24 months. In each of these tests, all sub-models were retrained using the most recent data.
In accordance with this, for frequencies higher than 12 months, the simulation period of one year was
split into separate blocks as the Table 1 shows.

To evaluate the results, all blocks from each frequency are added together into a single one-year
period and the corresponding Root Mean Square Error (RMSE) is calculated for both AR and
NN models.

Table 1. Training and simulation periods used for testing the effect of training frequency.

Frequency (Months) Block
Training Period Simulation Period

Start End Start End

3

1 1 January 2010 31 December 2016 1 January 2017 31 March 2017
2 1 April 2010 31 March 2017 1 April 2017 30 June 2017
3 1 July 2010 30 June 2017 1 July 2017 30 September 2017
4 1 October 2010 30 September 2017 1 October 2017 31 December 2017

6
1 1 January 2010 31 December 2016 1 January 2017 30 June 2017
2 1 July 2010 30 June 2017 1 July 2017 31 December 2017

12 1 1 January 2010 31 December 2016 1 January 2017 31 December 2017

24 1 1 January 2009 31 December 2015 1 January 2017 31 December 2017
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2.2.6. Number of Auto-Regressive Lags

As it was aforementioned, both models present an auto-regressive component. This part of the
model introduces the previous values as a feedback in order to enable to forecasting engine to reduce
errors due to unaccounted factors that are persistent in time.

The key parameter to configure this aspect of the models is the number of lags, which represents
how many previous values are fed back into the model. Intuitively, the most recent values carry the
most information while the further back in time that we reach, the less relevant the data become.
In addition, the AR model uses a linear relation to capture the lagged results while the NN model
allows non-linearity. Therefore, it is possible that one model is able to use a different amount of lags
than the other.

The auto-regressive order of each model has been tested from 0 to 25. The load series is highly
self-correlated on lags multiple of seven due to the weekly patterns, as it is shown in Figure 4. Therefore,
lags around 7, 14 and 21 were explored. Auto-correlation measures the correlation between yt and yt+k,
and its calculation is described in [43].
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Figure 4. Sample autocorrelation function for National load at 18 h.

It is worth mentioning that the objective of this paper is not to provide or suggest analytical
or statistical methods to determine the order of auto-regressive models like [44,45] but to offer a
comparison between AR and NN based models to understand the effect that the auto-regressive order
has on the forecasting accuracy.

2.3. Types of Days

Each of the proposed parameters and conditions under which the forecasting models are tested
will cause the forecasting accuracy to change over the whole one-year simulating period. This variation,
however, may affect some type of days more than other and, therefore, it may seem irrelevant when it
is averaged over the whole testing period. In order to avoid this error, it is important to dissect the
results and analyze the accuracy of the models on different categories of days to determine which
conditions affect which type of days and how they do it.

There are two aspects to classify the days: social character and temperature. The first one
considers days as special if they are a holiday, are in between two holidays or weekend, or are affected
by Daylight Saving Time or the vacational periods at Christmas or Easter. A more detailed description
of the days considered special is found in Section 3.

Temperature is used to classify days as hot and cold. For each category, the top 20 and bottom
20 days from the temperature series are considered. If one of the 20 days is also a special day, then it is
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discarded as either hot or cold. All days that do not belong to one of the categories (special, hot or
cold) are considered as regular days.

3. Data Analysis

It is important to describe the characteristics of the data series relevant to the forecasting process
in order to understand the forecasting problem and whether or not its conclusions may apply to a
different case:

3.1. Load

The load data series covers from 2010 to 2017 and it includes hourly values of electricity
consumption in the Spanish inland system. The long-term trend of the series shown in Figure 5 is
related to economic growth, efficiency improvements and behavioral shifts like the use of AC systems.

On a shorter term scale, the factors driving the load in Spain are temperature and social events
and holidays, which are explained in the following subsections.
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Figure 5. Evolution of 52 weeks moving average load and Gross National Product. Both series are
normalized [0, 1].

3.2. Temperature

The temperature data available includes series from 59 stations scattered across the country.
Real data of daily maximum and minimum data is collected along with daily forecasts of up to ten
days ahead. Therefore, it is possible to simulate real time conditions if forecasts are used instead of
real data.

As it was explained before, the national forecast only uses information from five stations
selected from the 59 available. This selection is made through an empirical evaluation. In addition,
the temperature from up to four previous days is also used in order to capture the dynamics of the
temperature-load relation. The non-linearity of the relation is modeled using the CDD and HDD
approach already discussed. Figure 6 shows the scatter plot of national load at 18 h on weekday against
temperature at the three most relevant locations. The HDD and CDD linearization is also plotted for
each location along with the Mean Average Percentage Error (MAPE) between the actual load and the
linearized one.
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Figure 6. Scatter plot of national load and its linearization against temperature at Madrid, Barcelona
and Sevilla.

3.3. Calendar

The type of day is determined by the official national calendar published in the Official Gazette [46].
The days are classified into 34 exclusive categories some of which include several days under a general
rule: Mondays, Wednesdays, national holidays, Mondays before a holiday . . . and others for specific
and unique days: 1 May, 25 December, 1 January . . . In addition to the exclusive categories (each day
can only be assigned to one of these), there are also 18 modifying categories that may be simultaneously
active with an exclusive one. These include regional holidays, days affected by DST . . . The complete
classification can be found in [39].

The relevance of a proper day categorization is shown in Figure 7. The graph represents the
average load profiles for 8 December, which is a national holiday, 7 December, before a holiday,
and 30 November, regular day 7 days prior to 7 December. The years considered are the ones in which
7 December was not Saturday, Sunday or Monday. Figure 7 also includes the profile for 7 December on
a Saturday. The graph shows how depending on the calendar (effects of temperature are averaged
out), the profile not only shows variation of up to 20% from a regular weekday to a national holiday
but it also shows different profiles in between.
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4. Results

The results expressed in this section correspond to the forecasting period of 2017. Each subsection
presents the accuracy of both techniques (AR and NN) when the correspondent parameter or external
condition changes. In addition, these results have been analyzed under the categories described
in Section 2.3.

4.1. Historical Load Availability

The results shown in Table 2 represent the effect of increasing the number of previous years
considered in the training of the model from 3 to 7 for both models. The results show a generally more
accurate performance by the AR model especially with fewer years of data (1.50% vs. 2.17%). The NN
model, however, benefits more from the availability of more data and this difference is reduced to 0.1%
when seven years are used. The AR model shows very little improvement from 3 to 7 years while
the NN model appears to be able to benefit from even longer training data as its performance on all
categories continues to improve from 5 to 7 years (see Figure 8). Unfortunately, the available data base
is not yet deep enough to test this.

Table 2. Forecasting error (RMSE) with training periods from 3 to 7 years.

Type of Day
3-Years 5-Years 7-Years

AR NN AR NN AR NN

Overall 1.50% 2.17% 1.52% 1.72% 1.45% 1.55%
Regular 1.44% 1.96% 1.47% 1.57% 1.40% 1.44%
Special 1.91% 3.62% 1.81% 2.71% 1.81% 2.31%

Hot 1.63% 2.65% 1.53% 2.08% 1.55% 1.93%
Cold 1.61% 2.79% 1.73% 1.81% 1.72% 1.48%

Test conditions: 10 neurons (10N), 10 redundant networks (10RN), 5 temperature locations (5TL), 12 month training
freq (12MF), 7 lags for AR and 14 for NN (7/14LAG).
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Figure 8. Overall forecasting error (RMSE) with training periods from 3 to 7 years.

Regarding the categorized results, regular days obtain almost the same result while in hot and
special days the AR outperforms the NN model. However, cold days are clearly forecasted more
accurately by the NN model. This could imply that the linear restriction present in the AR model limits
its capacity to model the behavior of the load with the data treatment used.
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4.2. Temperature Locations

The results for testing the availability of temperature data series from different locations are
included in Table 3. In addition, Figure 9 shows the evolution of the overall RMSE of both models
from having only location to including all five. Locations are included sequentially from most to
least relevant.

Table 3. Forecasting error (RMSE) with available temperature location from 1 to 5.

Type of Day
MAD MAD, BAR MAD, BAR, VIZ MAD, BAR, VIZ, SEV MAD, BAR, VIZ, SEV, ZAR

AR NN AR NN AR NN AR NN AR NN

Overall 1.63% 1.61% 1.53% 1.59% 1.48% 1.54% 1.46% 1.54% 1.45% 1.55%
Regular 1.59% 1.53% 1.48% 1.50% 1.43% 1.45% 1.41% 1.44% 1.40% 1.44%
Special 1.84% 2.22% 1.86% 2.21% 1.81% 2.15% 1.80% 2.17% 1.81% 2.31%

Hot 1.83% 2.02% 1.63% 1.91% 1.52% 1.84% 1.55% 1.94% 1.55% 1.93%
Cold 2.00% 1.61% 1.81% 1.49% 1.83% 1.47% 1.76% 1.48% 1.72% 1.48%

Test conditions: 7 Years Training (7YT), 10N, 10RN, 12MF, 7/14LAG.
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Figure 9. Overall forecasting error (RMSE) with available temperature location from 1 to 5.

The NN outperforms the AR model when only one location is available. Both models benefit from
having more data series included, but the AR model obtains a more accurate forecast with five locations.
In fact, the NN model obtains a larger error with five locations than it does with four. This could imply
that the linear restriction on the AR model allows it to correctly include this information in the model.
The excessive availability of information, however, seems to increase the risk of NN model overfitting
the training data and, therefore, losing forecasting capabilities.

4.3. Temperature Treatment

The preprocessing of the temperature data is a key aspect of the forecasting system. The thresholds
need to be properly tuned so that the linearization of the relation is correct. However, these thresholds
may shift over time as consumers’ behavior regarding temperature changes. Therefore, robustness to
this configuration is also important.

The results were obtained using one location each time and varying HDD and CDD thresholds
from 13 to 25 ◦C. Table 4 shows the overall results for shifting the HDD threshold for Barcelona along
with the hot and cold categories as the special days are not relevant to this test.

The effect of adjusting the threshold is more clearly shown in Figure 10, in which forecasting
accuracy of both models using temperature from Zaragoza and Barcelona is plotted. The graph shows
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how the NN is much less dependent on the chosen threshold while the AR performance is clearly
thrown off by a misadjusted threshold.

Table 4. Forecasting error (RMSE) with different HDD threshold adjustment in Barcelona.

Type of Day and
Model

HDD Threshold

13 14 15 16 17 18 19 20 21 22 23 24 25

Overall
AR 2.00% 1.98% 1.96% 1.95% 1.94% 1.92% 1.91% 1.91% 1.91% 1.91% 1.92% 1.93% 1.94%
NN 1.92% 1.93% 1.93% 1.93% 1.94% 1.92% 1.92% 1.93% 1.92% 1.92% 1.93% 1.93% 1.94%

Hot
AR 2.62% 2.63% 2.63% 2.62% 2.60% 2.58% 2.55% 2.53% 2.50% 2.48% 2.46% 2.43% 2.45%
NN 2.54% 2.55% 2.55% 2.53% 2.56% 2.54% 2.55% 2.54% 2.52% 2.51% 2.51% 2.46% 2.47%

Cold
AR 2.16% 2.11% 2.07% 2.03% 2.00% 1.99% 1.99% 1.99% 1.99% 2.00% 2.01% 2.02% 2.02%
NN 1.65% 1.67% 1.69% 1.71% 1.71% 1.68% 1.71% 1.68% 1.72% 1.67% 1.71% 1.69% 1.69%
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Figure 10. Overall forecasting error (RMSE) with different HDD threshold adjustment in Barcelona
and Zaragoza.

4.4. Number of Neurons

The number of neurons in the hidden layer affects both computational burden and the NN’s
performance. Therefore, both aspects are reported as results on this test. Table 5 shows the accuracy
of the neural network as the number of neurons is increased. In addition, the forecasting time for a
single 24-h profile is included. It is worth noticing that the rest of forecasting processes like data access
or treatment also consume time and, therefore, the reported time is not the only concern in order to
obtain a timely forecast.

Table 5. Forecasting error (RMSE) and execution time with different number of neurons.

Type of Day
Number of Neurons

3 4 5 10 15 20

Overall 1.56% 1.55% 1.56% 1.55% 1.58% 1.62%
Regular 1.49% 1.46% 1.45% 1.44% 1.46% 1.50%
Special 2.00% 2.10% 2.28% 2.31% 2.36% 2.46%

Hot 2.00% 1.93% 1.95% 1.93% 2.00% 2.04%
Cold 1.55% 1.45% 1.51% 1.48% 1.51% 1.58%

Time (s) 1.610 1.615 1.620 1.630 1.639 1.643

Test conditions: 7YT, 10RN, 5TL, 12MF, 7/14LAG.

151



Energies 2018, 11, 2080

Figure 11 shows the evolution of accuracy and simulation time against the number of neurons in
the hidden layer. It can be seen that the execution time is almost constant and therefore the number of
neurons is not an issue regarding computational burden. In addition, accuracy on regular days does
not improve with more complex networks. Special days, however, show a deterioration as the number
of neurons increases. A possible explanation to this is that a more complex network is able to overfit
the training data and lose generality. This is especially obvious on the special-day category due to the
scarcity of data.
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Figure 11. Overall forecasting error (RMSE) and execution time with different number of neurons.

4.5. Redundancy of Neural Networks

The use of a redundant number of NN reduces the model’s dependency of random initial
conditions. Furthermore, eliminating extreme values also reduces the overall error. Table 6 shows the
results of using from 3 to 25 redundant networks for the NN model.

Table 6. Forecasting error (RMSE) and execution time with different redundant networks.

Type of Day
Number of Networks

3 5 10 11 12 14 15 16 20 25

Overall 1.67% 1.62% 1.55% 1.56% 1.54% 1.54% 1.54% 1.55% 1.55% 1.56%
Regular 1.55% 1.51% 1.46% 1.48% 1.46% 1.45% 1.46% 1.46% 1.45% 1.46%
Special 2.51% 2.30% 2.10% 2.08% 2.08% 2.11% 2.12% 2.13% 2.18% 2.22%

Hot 2.02% 1.97% 1.93% 1.98% 1.92% 1.94% 1.92% 1.93% 1.92% 1.94%
Cold 1.54% 1.57% 1.45% 1.43% 1.45% 1.43% 1.44% 1.46% 1.47% 1.44%

Time (s) 0.839 1.09 1.686 1.746 1.868 2.039 2.228 2.333 2.713 3.363

Test conditions: 7YT, 4N, 5TL, 12MF, 7/14LAG.

There is an improvement using up to 10 redundant networks. However, there is not significant
error reduction from 10 to 25 networks. The execution time shows an increase, although for the
optimum amount of 10 networks the computational burden is still manageable. As a reference,
we have used the execution time for the AR model, which is 0.835 s. In addition, in Figure 12 it can be
seen that the type of days that benefit the most from increasing number of networks from 3 to 10 are
special days. Again, this is probably due to the higher variability in the output from different networks
for this scarcer type of days.
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Figure 12. Overall forecasting error (RMSE) and execution time with different redundant networks.

4.6. Frequency of Training

The results from Table 7 show the performance of both models when the training period is changed
from 3 months to 24 months. The testing period remains the same as described in Table 1, but the
data used to train the model that forecasted each block changes. There appear to be no significant
improvement from retraining the models more frequently than annually, as seen on Figure 13. However,
a training period longer than a year seems to cause an increase in the forecasting error. Both models are
affected very similarly by this parameter, with an increase in the error of about 23% for both models
when increasing the time in between trainings from 12 to 24 months.

Table 7. Forecasting error (RMSE) with different training frequency.

Type of Day
3 Months 6 Months 12 Months 24 Months

AR NN AR NN AR NN AR NN

Overall 1.44% 1.54% 1.44% 1.56% 1.45% 1.55% 1.78% 2.07%
Regular 1.39% 1.45% 1.40% 1.47% 1.40% 1.46% 1.74% 2.01%
Special 1.78% 2.09% 1.79% 2.10% 1.81% 2.10% 2.13% 2.35%

Hot 1.57% 1.96% 1.57% 1.97% 1.55% 1.93% 2.26% 3.11%
Cold 1.70% 1.45% 1.69% 1.46% 1.72% 1.45% 1.96% 1.96%

Test conditions: 7YT, 4N, 10RN, 5TL, 7/14LAG.
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Figure 13. Forecasting error (RMSE) for AR and NN models with training frequency from 3 to
24 months.
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4.7. Number of Lags

The number of lags in each model is changed from 0 to 25 in order to expose how this parameter
affects the accuracy of each model. The results are categorized by type of day on Table 8. The AR model
obtains a less accurate forecast than the NN when the lags are below 7 days. However, the results
beyond this threshold benefit the AR model clearly. The AR model seems to continue its improvement
up to lag number 21 (three weeks) but the NN reaches a plateau at lag 7. Once again, the NN model
performs more accurately when little information (in this case lags) is available but it is outperformed
by the AR model when the limitation is lifted. Figure 14 represents the overall accuracy of both models
as the number of lags is increased. It is worth noticing how the AR model improves specially at lags 7,
14 and 21.

Table 8. Forecasting error (RMSE) with different lagged feedback.

LAG
Overall Regular Special Hot Cold

AR NN AR NN AR NN AR NN AR NN

0 1.80% 1.73% 1.76% 1.64% 2.08% 2.31% 1.94% 1.89% 2.00% 1.57%
1 1.73% 1.65% 1.68% 1.55% 2.04% 2.34% 1.86% 1.81% 1.85% 1.47%
3 1.64% 1.61% 1.59% 1.49% 1.96% 2.36% 1.81% 1.82% 1.87% 1.53%
5 1.62% 1.57% 1.57% 1.48% 1.95% 2.16% 1.81% 1.91% 1.86% 1.44%
6 1.56% 1.56% 1.51% 1.47% 1.89% 2.11% 1.75% 1.91% 1.81% 1.41%
7 1.45% 1.56% 1.40% 1.47% 1.81% 2.14% 1.55% 1.89% 1.72% 1.47%
8 1.45% 1.55% 1.39% 1.46% 1.81% 2.15% 1.55% 1.90% 1.72% 1.45%
13 1.45% 1.57% 1.39% 1.47% 1.84% 2.16% 1.52% 1.97% 1.72% 1.45%
14 1.43% 1.55% 1.37% 1.46% 1.83% 2.10% 1.51% 1.93% 1.71% 1.45%
15 1.43% 1.57% 1.37% 1.48% 1.83% 2.15% 1.51% 1.92% 1.71% 1.50%
20 1.43% 1.58% 1.37% 1.48% 1.83% 2.21% 1.52% 1.95% 1.70% 1.48%
21 1.42% 1.56% 1.35% 1.48% 1.83% 2.08% 1.49% 1.91% 1.68% 1.48%
22 1.42% 1.54% 1.35% 1.46% 1.83% 2.03% 1.50% 1.92% 1.68% 1.45%
24 1.42% 1.58% 1.36% 1.48% 1.84% 2.17% 1.50% 1.93% 1.68% 1.47%
25 1.42% 1.59% 1.35% 1.49% 1.84% 2.25% 1.50% 1.92% 1.68% 1.49%

Test conditions: 7YT, 4N, 10RN, 5TL, 12MF.
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Figure 14. Overall forecasting error (RMSE) with different lagged feedback.

4.8. Overall Results

The previous subsections show how there is not a single solution for the load-forecasting problem.
The conditions under which the forecast is done due to availability or data or time constraints affect
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the accuracy of each technique differently and, therefore, these conditions need to be taken into
consideration when designing a forecasting system. As a general result, the AR model appears to be
slightly more accurate but requires a finer tuning when treating the temperature data and requires a
larger amount of temperature data sources.

5. Conclusions

Many different short-term load forecasting models have been proposed in the recent years.
However, it is difficult to compare the accuracy or the general performance of each model when each
one is tested under different conditions, testing periods and databases. The goal of this paper is to
provide a series of comparisons between two of the most used forecasting engines: auto-regressive
models and neural networks. The starting point is a forecasting system currently in use by REE that
includes both techniques. Several tests have been run in order to determine the conditions under
which each model performs best.

The results show that both models obtain very similar accuracy and, therefore both of them
should remain in use. The AR model obtained a better overall result under the best possible condition
but the NN model was superior when fewer temperature locations are available, the treatment of the
temperature data is not properly adjusted or the feedback is limited to less than 7 lagged days. The AR
showed higher accuracy when historical data is limited to less than 7 years. Both models have the
same needs in terms of training frequency: a one-year period in between trainings is sufficient.

Regarding computational burden, the AR model is less computationally intense than the NN.
However, the optimum configuration found at 4 neurons in the hidden layer and 10 redundant
networks only costs twice as much as the AR model. Therefore, neither model has a definite advantage
on this front.

To sum up, this paper enables the researcher to establish a set of rules to guide them in the
process of selecting or designing a forecasting system. The results of this research offer very practical
information that responds to actual empirical implementations of the system rather than to theoretical
experiments. Further research in this area should include the analysis of different databases from
other systems. The use of information from other systems would help determine if the conclusions
drawn are general or database specific, in which case, studying the specificities of each database and
determining why they behave differently would also be of value to the field.
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Abstract: Load forecasting models are of great importance in Electricity Markets and a wide range
of techniques have been developed according to the objective being pursued. The increase of smart
meters in different sectors (residential, commercial, universities, etc.) allows accessing the electricity
consumption nearly in real time and provides those customers with large datasets that contain
valuable information. In this context, supervised machine learning methods play an essential role.
The purpose of the present study is to evaluate the effectiveness of using ensemble methods based on
regression trees in short-term load forecasting. To illustrate this task, four methods (bagging, random
forest, conditional forest, and boosting) are applied to historical load data of a campus university in
Cartagena (Spain). In addition to temperature, calendar variables as well as different types of special
days are considered as predictors to improve the predictions. Finally, a real application to the Spanish
Electricity Market is developed: 48-h-ahead predictions are used to evaluate the economical savings
that the consumer (the campus university) can obtain through the participation as a direct market
consumer instead of purchasing the electricity from a retailer.

Keywords: Electricity Markets; load forecasting models; regression trees; ensemble methods; direct
market consumers

1. Introduction

Load forecasting has been a topic of interest for many decades and the literature is plenty with
a wide variety of techniques. Forecasting methods can be divided into three different categories:
time-series approaches, regression based, and artificial intelligence methods (see [1]).

Among the classical time-series approaches, the ARIMA model is one of the most utilized
(see [2–5]). Regression approaches, see [2,6], are also widely used in the field of short-term and
medium-term load forecasting, including non-linear regression [7] and nonparametric regression [8]
methods. Recently, in [9] the authors use linear multiple regression to predict the daily electricity
consumption of administrative and academic buildings located at a campus of London South
Bank University.

Several machine learning or computational intelligence techniques have been applied in the
field of Short Term Load Forecasting. For example, decision trees [10], Fuzzy Logic systems [11,12],
and Neural Networks [13–20]. In this paper, we propose the using of a particular set of supervised
machine learning techniques (called ensemble methods based on decision trees) to predict the hourly
electricity consumption of university buildings. In general, an ensemble method combines a set of weak
learners to obtain a strong learner that provides better performance than a single one. Four particular
cases of ensemble methods are bagging, random forest, conditional forest, and boosting, which are
described in Section 2. There some recent literature regarding random forest and short-term load
forecasting: for example, in [21] the authors use random forest to predict the hourly electrical load
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data of the Polish power system, whereas in [22] the same method is used to predict residential
energy consumption. In [23], the authors propose three different methods for ensemble probabilistic
forecasting. The ensemble methods are derived from seven individual machine learning models,
which include random forest, among others, and it is tested in the field of solar power forecasts. On the
other hand, in [24] the authors establish a novel ensemble model that is based on variational mode
decomposition and the extreme learning machine. The proposed ensemble model is illustrated while
using data from the Australian electricity market.

The main objective of this paper is to illustrate the performance of different ensemble methods
for predicting the electricity consumption of some university buildings, analyzing their accuracies,
relevant predictors, computational times, and parameter selection. Besides, we apply the prediction
results to the context of Direct Market Consumers (DMC) in the Spanish Electricity Market.

In Spain, electricity price seems to be above our European neighbors, mainly due to the energy
production mix and the weak electrical interconnections with the Central European Electricity System
and Markets, but consumers can do little about that. Therefore, it is quite challenging for Spanish
consumers to reduce this cost. Currently, a high voltage consumer (voltage supply greater than 1 kV),
which is the case of a small campus university, can opt for two types of supply: captive customer
(price freely agreed with a retailer or a provider) and Direct Market Consumer (also called qualified
customer), taking advantage of the operation of the wholesale markets that are involved in the Spanish
Electricity System. The literature concerning the topic of DMC is nearly non-existent and it reduces to
some official web pages, such as [25,26].

In order to participate as a DMC in the Electricity Market, the customer needs to evaluate his load
requirements, with roughly two days in advance. Another objective of this paper is to evaluate the
savings that the university would have participating as a DMC, taking the 48-h-ahead predictions of
one of the ensemble methods analyzed.

The main differences among the present paper and the previous ones dealing with the using
of ensemble methods for forecasting porpoises (for example, ref. [27] employs the gradient boosting
method for modeling the energy consumption of commercial buildings) are the following: in the
present paper, we propose the XGBoost method as a useful tool for a medium-size consumer to
purchase the electricity directly in the wholesale market. For that, a different prediction horizon (48 h
ahead) is considered and the new predictors are needed. Indeed, we highlight the importance of
calendar variables (distinguishing different types of festivities) for the case of electricity consumption
in university buildings. This approach allows us to evaluate the savings of this kind of customers
participating as Direct Market Consumers. Another novelty respect to previous papers is the using of
conditional forest as an ensemble method to get load predictions, as well as the conditional importance
measure to evaluate the relevance of each feature.

Firstly, in Section 2, four ensemble methods based on regression trees are described. Section 3
depicts the customer in study (a small campus university) and the data, discusses the parameter
selection for each ensemble method as well as other relevant aspects and it shows the prediction
results. Finally, in Section 4, the economic saving of a small campus university is computed when it
participates as a Direct Market Consumer instead of acquiring the electric power from a traditional
retailer. Note that it is not an energy efficiency study, the economic saving is given just by the type of
supply: retail or wholesale market.

2. Ensemble Methods Based on Regression Trees

Taking into account the type of data in the analysis (continuous data corresponding to electricity
consumption), in this section, we will focus on describing tree-based methods for regression and some
related ensemble techniques. However, decision trees and ensemble methods can be applied to both
regression and classification problems.

The process of building a regression tree can be summarized in two steps: firstly, we divide
the predictor space into a number of non-overlapping regions (for example J regions), and secondly,
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the prediction for a new observation is given by the mean of the response values of the training data
belonging to the same region as the new observation.

The criterion to construct the regions or “boxes” is to minimize the residual sum of squares (RSS),
but not considering every possible partition of the feature space into J boxes because it would be
computationally infeasible. Instead, a recursive binary splitting is used: at each step, the algorithm
chooses the predictor and cutpoint, such that the resulting tree has the lowest RSS. The process is
repeated until a stopping criterion is reached, see [28].

Let {(x1, y1), (x2, y2), . . . , (xn, yn)} be the training dataset, where each yi denotes the i-th output
(response variable) and xi = (xi1 , xi2 , . . . , xis) the corresponding input of the “s” predictors (features)
in study. The objective in a regression tree is to find boxes B1, B2, . . . , Bj that minimize the RSS, given
by (1):

J

∑
j = 1

∑
i∈Bj

(yi − ŷBj)
2 (1)

where ŷBj is the mean response for the training observations within the jth box.
A regression tree can be considered as a base learner in the field of machine learning. The main

advantage of regression trees against lineal regression models is that in the case of highly non-linear
and complex relationship between the features and the response, decision trees may outperform
classical approaches. Although regression trees can be very non-robust and can generally provide
less predictive accuracy than some of the other regression methods, these drawbacks can be easily
improved by aggregating many decision trees, using methods, such as bagging, random forests,
conditional forest, and boosting. These four methods have in common that can be considered as
ensemble learning methods.

An ensemble method is a Machine Learning concept in which the idea is to build a prediction
model by combining a collection of “N” simpler base learners. These methods are designed to reduce
bias and variance with respect to a single base learner. Some examples of ensemble methods are
bagging, random forest, conditional forest, and boosting.

2.1. Bagging

In the case of bagging (bootstrap aggregating), the collection of “N” base learners to ensemble
is produced by bootstrap sampling on the training data. From the original training data set, N new
training datasets are obtained by random sampling with replacement, where each observation has the
same probability to appear in the new dataset. The prediction of a new observation with bagging is
computed by averaging the response of the N learners for the new input (or majority vote in case of
classification problems). In particular, when we apply bagging to regression trees, each individual
tree has high variance, but low bias. Averaging the resulting prediction of these N trees reduces the
variance and substantially improves in accuracy (see [28]).

The efficiency of the bagging method depends on a suitable selection of the number of trees N,
which can be obtained by plotting the out-of-bag (OOB) error estimation with respect to N. Note that
the bootstrap sampling step with replacement involves that each observation of the original training
dataset is included in roughly two-thirds of the N bagged trees and it is out of the remaining ones.
Then, the prediction of each observation of the original training dataset can be obtained by averaging
the predictions of the trees that were not fit using that observation. This is a simple way, called
OOB, to get a valid estimate of the test error for the bagged model avoiding a validation dataset
or cross-validation.

Some other parameters that can also vary are the node size (minimum number of observations
of the terminal nodes, generally five by default) and the maximum number of terminal nodes in the
forest (generally trees are grown to the maximum possible, subject to limits by node size).

In this paper, the bagging method has been applied by means of the R package “randomForest”,
see [28]. The package also includes two measures of predictor importance that help to quantify
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the importance of each predictor in the final forecasting model and might suggest a reduced set
of predictors.

2.2. Random Forest

Random forests are indeed a generalization of bagging. Instead of considering all of the predictors
at each split of the tree, only a random sample of “mtry” predictors can be chosen each time. The main
advantage of random forests respect to bagging can be noticed in the case of correlated predictors, as it
is stated in [28]: predictions from the bagged trees will be highly correlated so that bagging will not
reduce the variance so much, whereas random forests overcome this problem by forcing each split to
consider only a subset of the predictors.

In the case of random forest, the efficiency of the method depends on a suitable selection of the
number of trees N and the number of predictors mtry tested at each split. Again, the OOB error can be
used for searching a suitable N as well as a suitable mtry. As with bagging, random forests will not
overfit if we increase N, so the goal is to choose a value that is sufficiently large. The random forest
method that is used in this paper has been implemented throughout the R package “randomForest”,
see [29].

2.3. Conditional Forest

Conditional forests consist in an implementation of the bagging and random forest ensemble
algorithms, but utilizing conditional inference trees as base learners. Conditional inference trees are
not only suitable for prediction (its partitioning algorithm avoid overfitting), but also for explanation
purposes because they select variables in an unbiased way. They are especially useful in the presence of
high-order interactions and when the number of predictors is large when compared to the sample size.

In conditional forests, each tree is obtained by binary recursive partitioning, as follows (see [30]):
firstly, the algorithm tests whether any predictor is associated with the response, and it chooses the one
that has the strongest association; secondly, the algorithm makes a binary split in this variable; finally,
the previous two steps are repeated for each subset until there are no predictors that are associated
with the response. The first step uses the permutation tests for conditional inference developed in [31].

As with random forest, in the case of conditional forest, we need a suitable selection of the number
mtry of features tested at each split (the total number of predictors might be preferred) and the number
of trees N (generally a lower value than for random forest is required). In this paper, the conditional
forest method has been implemented throughout the R package “party”, see [32].

2.4. Boosting

In contrast to the above ensemble methods, in boosting the “N” base, learners are obtained
sequentially, that is, each base learner is determined while taking into account the success and errors
of the previous base learners.

The first boosting algorithm was Adaptive Boosting (AdaBoost), as introduced in [33]. Instead
of using bootstrap sampling, the original training sample is weighted at each step, giving more
importance to those observations that provided large errors at previous steps. Besides, the prediction
for a new observation is given by a weighted average (instead of a simple average) of the responses of
the N base learners.

AdaBoost was later recast in a statistical framework as a numerical optimization problem where
the objective is to minimize a loss function using a gradient descent procedure, see [34]. This new
approach was called “gradient boosting”, and it is considered one of the most powerful techniques for
building predictive models.

Gradient boosting involves three elements: a loss function to be optimized, a weak learner to
make predictions (in this case, decision trees obtained in a greedy manner), and an additive model
to add weak learners (the output for each new tree is added to the output of the existing sequence of
trees). The loss function used depends on the type of problem. For example, a regression problem may
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use a squared error loss function, whereas a classification problem may use logarithmic loss. Indeed,
any differentiable loss function can be used.

Although boosting methods reduces bias more than bagging, they are more likely to overfit a
training dataset. To overcome this task, several regularization techniques can be applied.

• Tree constraints: there are several ways to introduce constraints when constructing regression
trees. For example, the following tree constraints can be considered as regularization parameters:

� The number of gradient boosting iterations N: increasing N reduces the error on the
training dataset, but may lead to overfitting. An optimal value of N is often selected by
monitoring prediction error on a separate validation data set.

� Tree depth: the size of the trees or number of terminal nodes in trees, which controls
the maximum allowed level of interaction between variables in the model. The weak
learners need to have skills but they should remain weak, thus shorter trees are preferred.
In general, values of tree depth between 4 and 8 work well and values greater than 10 are
unlikely to be required, see [35].

� The minimum number of observation per split: the minimum number of observations
needed before a split can be considered. It helps to reduce prediction variance at leaves.

• Shrinkage or learning rate: in regularization by shrinkage, each update is scaled by the value of
the learning rate parameter “eta” in (0,1]. Shrinkage reduces the influence of each individual tree
and leaves space for future trees to improve the model. As it is stated in [28], small learning rates
provide improvements in model’s generalization ability over gradient boosting without shrinking
(eta = 1), but the computational time increases. Besides, the number of iterations and learning rate
are tightly related: for a smaller learning rate “eta”, a greater N is required.

• Random sampling: to reduce the correlation between the trees in the sequence, at each
step, a subsample of the training data is selected without replacement to fit the base learner.
This modification prevent overfitting and it was first introduced in [36], which is also called
stochastic gradient boosting. Friedman observed an improvement in gradient boosting’s accuracy
with samplings of around one half of the training datasets. An alternative to row sampling is
column sampling, which indeed prevents over-fitting more efficiently, see [37].

• Penalize tree complexity: complexity of a tree can be defined as a combination of the number
of leaves and the L2 norm of the leaf scores. This regularization not only avoids overfitting,
it also tends to select simple and predictive models. Following this approach, ref. [37] describes
a scalable tree boosting system called XGBoost. In that paper, the objective to be minimized is
a combination of the loss function and the complexity of the tree. In contrast to the previous
ensemble methods, XGBoost requires a minimal amount of computational resources to solve
real-world problems.

In XGBoost, the model is trained in an additive manner and it considers a regularized objective
that includes a loss function and penalizes the complexity of the model. Following [37], if we denote
by ŷ(t)i , the prediction of the i-th instance of the response at the t-th iteration, we need to find the tree
structure ft that minimizes the following objective:

L(t) =
n

∑
i = 1

l
(

yi, ŷ(t−1)
i + ft(xi)

)
+ Ω( ft) (2)

In the first term of (2), l is a differentiable convex loss function that measures the difference
between the observed response yi and the resulting prediction ŷi. The second term of (2) penalizes the
complexity of the model, as follows:

Ω( f ) = γT +
1
2

λ ‖ w ‖2 (3)
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where T is the number of leaves in the tree with leaf weights w = (w1, w2, . . . , wT). Using the second
order Taylor expansion, (3) can be simplified to:

L̃(t) =
n

∑
i = 1

[
gi ft(xi) +

1
2

hi f 2
t (xi)

]
+ γT +

1
2

λ
T

∑
j = 1

w2
j (4)

where gi = ∂ŷ(t−1) l (yi, ŷ(t−1)) and hi = ∂2
ŷ(t−1) l (yi, ŷ(t−1)).

Denoting by Ij = {i|q(xi) = j} the instance set of leaf j, we can rewrite (4), as follows:

L̃(t) =
T

∑
j = 1

⎡⎣⎛⎝∑
i∈Ij

gi

⎞⎠wj +
1
2

⎛⎝∑
i∈Ij

hi + λ

⎞⎠w2
j

⎤⎦+ γT (5)

Therefore, the optimal weight is given by:

w∗
j = −

∑i∈Ij
gi

∑i∈Ij
hi + λ

(6)

and the corresponding optimal objective by:

L̃(t)(q) = −1
2

T

∑
j = 1

(
∑i∈Ij

gi

)2

∑i∈Ij
hi + λ

+ γT (7)

where q represents the optimal tree structure with T leaves and leaf weights w∗ =
(
w∗

1, w∗
2, . . . , w∗

T
)
.

Due to the impossibility of enumerating all the possible tree structures q, a greedy algorithm is used
(it starts with a single leaf and adds branches iteratively). Denoting by IL and IR the instance sets of left
and right nodes after the split, I = IL ∪ IR, the reduction in the objective after the split is given by:

Lsplit =
1
2

⎡⎢⎣
(

∑i∈IL
gi

)2

∑i∈IL
hi + λ

+

(
∑i∈IR

gi

)2

∑i∈IR
hi + λ

− (∑i∈I gi)
2

∑i∈I hi + λ

⎤⎥⎦− γ (8)

The task of searching the best split has been developed in two scenarios: an exact greedy algorithm
(it enumerates all the possible splits on all the features, which is computational demanding) and an
approximate greedy algorithm for big data sets, see [37] for more details.

The main difference between random forest and boosting is that the former builds the base
learners independently through bootstrap sampling on the training dataset, while the latter obtains
them sequentially focusing on the errors of the previous iteration and using gradient descent methods.
Some strengths of the XGBoost implementation comparing to other methods are:

• An exact greedy algorithm is available.
• Approximate global and approximate local algorithms are available for big datasets.
• It performs parallel learning. Besides, an effective cache-aware block structure is available for

out-of-core tree learning.
• It is efficient in case of sparse input data (including the presence of missing values).

The extreme gradient boosting method (XGBoost) has been implemented by means of the R
package “xgboost”, see [38].

Apart from its highly computational efficiency, the XGBoost offers a great flexibility, but it requires
setting up more than the ten parameters that could not be learned from the data. Taking into account
that R package “xgboost” does not have any hyperparameter tuning, the parameter tuning can be
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done by means of cross validation. However, creating a grid for all of the parameters to be tuned
implies an extremely high computational cost.

3. Prediction Results for the University Buildings

In this section, the four ensemble methods that are described above are applied to the electricity
consumption of a small campus university to evaluate the adequacy of each technique in this type of
customers. Specifically, we will focus on 48-h-ahead predictions in order to apply them to the context
of Direct Market Consumers, although different prediction horizons will be also considered for the
case of XGBoost method. Some other aspects, such us predictors importance or parameter selection,
for each method are also developed.

Firstly, in this section, the customer in study is introduced. Secondly, the load data, predictors,
and some goodness of fit measurements are depicted. Finally, the forecasting results for the case study
are shown.

3.1. Customer Description: A Campus University

The campus “Alfonso XIII” of the Technical University of Cartagena (UPCT, Spain) comprises
seven buildings ranging from 2000 m2 to 6500 m2 and a meeting zone (10,000 m2). Buildings are of two
kinds: naturally ventilated cellular (individual windows, local light switches, and local heating control)
and naturally ventilated open-plan (office equipment, light switched in longer groups, and zonal
heating control). This campus has an overall surface larger than 35,500 m2 to fulfill the needs of
different Faculties for classrooms, departmental offices, administrative offices, and laboratories for
1800 students and 200 professors. Unfortunately, the age of buildings (50 years old in four cases) and
architectural conditioning works are far from actual energy efficiency standards, specifically in the two
main electrical end-uses of the building: air conditioning/space heating (low performance, insufficient
heat insulation, and an important cluster of individual appliances for offices and small laboratories)
and lighting (where conventional magnetic ballasts and fluorescent are still used at a great extend).

With respect to the share of end-uses in the “Campus Alfonso XIII” of UPCT, heating, ventilation,
and air conditioning (HVAC) is the largest energy end-use (this trend is the same both in the residential
and non-residential buildings in Spain and other countries, see Table 1) with 40–50% of overall demand;
lighting follows with 25–30%, electronics and office equipment 7–12% and other appliances with 8–10%
(i.e., vending machines, refrigeration, water heaters WH, laboratory equipment, etc.). Notice that
building type is critical in how energy end uses are distributed in each specific building. Table 1 shows
a comparative of end-uses in office buildings in three countries [39] and in the analysed case, campus
“Alfonso XIII”.

Table 1. Energy demand in office buildings by end-use.

End-Use USA (%) UK (%) Spain (%) University Buildings (%) (UPCT)

HVAC 48 55 52 40–50
Lighting 22 17 33 25–30

Equipment (appliances) 13 5 10 7–12
Other (WH, refrigeration) 17 23 5 8–10

3.2. Data Description

Data used in this paper correspond to the campus Alfonso XIII of the Technical University of
Cartagena, as described in the previous subsection. Hourly load data from 2011 to 2016 (both included)
were analyzed, obtained from the retailer electric companies (Nexus Energía S.A. and Iberdrola S.A.).
It is well known that electricity consumption is related to several exogenous factors, such as the
hour of the day, the day of the week, or the month of the year, and therefore these factors must be
taken into account in the design of the prediction model. Temperature is a factor that might affect the
electricity consumption (cooling and heating of the university buildings). Thus, the hourly temperature
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was considered as an input in the forecasting model, as provided by AEMET (Agencia Española de
Meteorología) for the city of Cartagena (where the campus university is located), from 2011 to 2016.
Besides, depending on the end-uses of the customer in study, some other features can be relevant
for the load. For example, in this case study, different types of holidays or special days have been
distinguished throughout binary variables (see Table 2 for a detailed description).

Table 2. Description of the predictors.

Predictors Description

H2, H3, . . . H24 Hourly dummy variables corresponding to the hour of the day

WH2, WH3, . . . WH7 Hourly dummy variables corresponding to the day of the week

MH2, MH3, . . . , MH12 Hourly dummy variables corresponding to the month of the year

FH1 Hourly dummy variables corresponding to the month of the year

FH2 Hourly dummy variable corresponding to Christmas and Eastern days

FH3 Hourly dummy variable corresponding to academic holidays (patron saint festivities)

FH4 Hourly dummy variable corresponding to national, regional or local holidays

FH5 Hourly dummy variable corresponding to academic periods with no-classes and
no-exams (tutorial periods)

Temperature_lag_i Hourly external temperature lagged “i” hours. Depending on the prediction horizon,
different lags will be considered.

LOAD_lag_i Hourly load lagged “i” hours. Depending on the prediction horizon, different lags will
be considered.

Three different measurements given in (9), (10), and (11) were used to obtain the accuracy of the
forecasting models: the root mean square error (RMSE), the R-squared (percentage of the variability
explained by the forecasting model), and the mean absolute percentage error (MAPE). Although the
MAPE is the most used error measure, see [1], the squared error measures might be more fitting
because the loss function in Short Term Load Forecasting is not linear, see [13]. Some descriptive
measures of the errors (such as the mean, skewness, and kurtosis) were also considered to evaluate the
performance of the forecasting methods.

The root mean square error is defined by:

RMSE =

√√√√ n

∑
t = 1

(yt − ŷt)
2

n
(9)

the R-squared is given by:

R − squared = 1 − ∑n
t = 1 (yt − ŷt)

2

∑n
t = 1 (yt − y)2 (10)

and the mean absolute percentage error is defined by:

MAPE =
100
n

n

∑
t = 1

∣∣∣∣yt − ŷt

yt

∣∣∣∣ (11)

where n is the number of data, yt is the actual load at time t, and ŷt is the forecasting load at time t.

3.3. Forecasting Results

Data from 1 January 2011 to 31 December 2015 were selected as the training period in all methods,
whereas data from 1 January 2016 to 31 December 2016 constituted the test period. In this subsection,
firstly a prediction horizon of 48 h is established, whose forecasting results will be used in the next
section dealing with Direct Market Consumers. In this case, we consider 53 predictors (see Table 2):
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23 dummies for the hour of the day, six dummies for the day of the week, 11 dummies for the month
of the year, five dummies for special days (FH1, . . . , FH5), two predictors of historic temperatures
(lags 48 h and 72 h), and six predictors of historic loads (lags 48 h, 72 h, 96 h, 120 h, 144 h, and 168 h).

For each ensemble method, the parameter selection has been developed and measures of variable
importance have been obtained (see Table 3 for the meaning of each term). In order to have reproducible
models and comparable results, the same seed was selected in all procedures that require random
sampling. In the case of bagging and random forest, we have selected an optimal number of trees
(ntree) through the OOB error estimate and we have ordered the predictors according to the node
impurity importance measure, see [28]. For bagging, the number of predictors that are considered at
each split must be the total number of predictors, whereas in the case of random forest, the optimal
parameter has been selected using the OOB error estimate for different values of mtry. In the case of
conditional forest, the conditional variable importance measure introduced in [40] has been considered,
which better reflects the true impact of each predictor in presence of correlated predictors.

While in bagging and random forest the OOB error was used to tune the parameters, in the case
of conditional forest and XGBoost the parameters were tuned by means of cross validation with five
folds (approximately one year in each fold). As for conditional forest, only two parameters need
to be tuned (ntree and mtry), but in XGBoost, there are more parameters to tune. Although one can
apply cross validation taking into account a multi-dimension grid with all of the parameters to tune
(this approach would imply a high computational cost), we considered a simplification of the search
selecting subsample = 0.5, max depth = 6 (appropriate in most problems) and looking for a good
combination of “eta” and “nrounds”, see Table 4. The rest of parameters of the method were set up
by default, according to the R package [38]. In the case of XGBoost, features have been ordered by
decreasing importance while using the gain measure defined in [36].

Table 3. Notation.

Term Description

ntree (N) Number of trees or iterations in bagging, random forest and conditional forest

mtry Number of predictors considered at each split in bagging, random forest and
conditional forest

node impurity Importance measure in random forest

max_depth Maximum depth of a tree

subsample Subsample ratio of the training instance

eta Shrinkage or learning rate

nrounds Number of boosting iterations

gain Fractional contribution of each feature to the model

Table 4 shows the results of the parameter selection for the XGBoost method. Recall that a lower
learning rate eta implies a greater number of iterations nround, but a too large nround can lead to
overfitting. Combination (eta = 0.02, nrounds = 3400) provided the lowest RMSE and the highest
R-squared scores for the test data, whereas (eta = 0.01, nrounds = 5700) got the lowest MAPE. However,
any pair of parameters in Table 4 could be appropriate because they lead similar accuracy.
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Table 4. Results of the parameter selection for the XGBoost method.

XGBoost Pred.
Horizon = 48 h

eta = 0.01,
nrounds = 5700

eta = 0.02,
nrounds = 3400

eta = 0.05,
nrounds = 1700

eta = 0.10,
nrounds = 566

RMSE_train (kWh) 11.91 11.02 10.02 12.50
RMSE_test (kWh) 23.74 23.65 23.92 24.26
R-squared_train 0.988 0.989 0.991 0.986
R-squared_test 0.946 0.946 0.945 0.943

MAPE_train (%) 5.03 4.76 4.45 5.28
MAPE_test (%) 8.98 9.00 9.12 9.23

E_mean_train (kWh) 0.00 0.00 0.00 0.00
E_mean_test (kWh) −0.16 −0.35 −0.47 −0.09
E_skewness_train 0.31 0.29 0.24 0.28
E_skewness_test 0.14 0.02 0.09 0.04
E_kurtosis_train 6.63 6.28 5.64 6.51
E_kurtosis_test 7.58 7.68 7.41 7.53

Computational time 13 min 8 min 4 min 1.5 min

Tables 5 and 6 show the results that were obtained for the best parameter selection of each
ensemble method. They also include the comparison with traditional and simple forecasting models,
such as naïve (prediction at hour h is given by the real consumption at hour h-168) and multiple linear
regression (MLR) with the same predictors, as used in the ensemble methods. According to Table 5,
XGBoost method provides nearly null bias, more symmetry of the errors than the other ensemble
methods and the traditional ones, as well as values of the kurtosis that are closer to zero (considered
desired properties for residual in forecasting techniques).

Table 5. Descriptive measures of the errors for each ensemble method.

Pred. Horizon = 48 h Bagging RForest CForest XGBoost MLR Naïve

Optimal parameters ntree = 200,
mtry = 53

ntree = 200,
mtry = 20

ntree = 3,
mtry = 53

max_depth = 6, subsample = 0.5,
eta = 0.02, nrounds = 3400

number of
predictors = 53 lag = 168 h

Error_mean_train (kWh) 0.056 0.04 0.50 0.00 0.00 0.36
Error_mean_test (kWh) 0.25 −0.13 1.41 −0.35 −3.41 1.31
Error_skewness_train 1.48 1.46 1.54 0.29 0.64 0.49
Error_skewness_test 1.19 0.61 1.81 0.02 0.61 0.35
Error_kurtosis_train 31.12 27.12 23.44 6.28 8.14 13.39
Error_kurtosis_test 13.18 10.19 15.68 7.68 7.13 12.28

Although bagging and random forest provide the best accuracy in the training dataset (see Table 6),
XGBoost fits better in the test dataset (in this case, gradient boosting avoid more overfitting than the
others ensemble methods due to a suitable selection of the parameters). Furthermore, when comparing
the results of random forest and XGBoost, we can state that the latter fits lightly better and it is twelve
times faster to compute. Table 6 also shows that all ensemble methods significantly improve the
accuracy of the predictions with respect to MLR and naïve models.

It is also important to remark that, for all methods, roughly half of the predictors accumulate more
that 99% of the relative importance. In the case of ensemble methods, the corresponding importance
measure has been computed (for example, the node impurity for random forest and the gain for
XGBoost), whereas in the case of MLR, the forward stepwise selection method and R-squared were
used to evaluate the relative importance of each predictor. We can also highlight the following aspects:
the electricity consumption at the same hour of the previous week (predictor LOAD_lag_168) results
the most important feature in all methods, the electricity load with lags 48 h and 144 h appear among
the five most important predictors in all of the ensemble methods, and finally, the presence of the
features WH6, WH7, FH1, and FH3 among the five most important predictors for different methods
evidences that calendar variables and types of holidays are essential for this kind of customer. However,
the temperature has a reduced effect on the response because it appears between the 10th and 12th
position of importance (depending on the method), with a relative importance of around 1%.
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In order to compare the accuracy for the different types of day, the days of the test data (2016) were
divided in two groups: special days, which include weekends, August (official academic holidays),
and all days that are determined by the dummy variables FH1, . . . , FH5 in Table 2; and, regular days,
which include the rest of the days. Results are exposed in Table 7. Notice that the lowest MAPE scores
are always reached for regular days.

Table 7. MAPE (%) for regular and special days in 2016.

Pred. Horizon = 48h Bagging RForest CForest XGBoost

MAPE regular days (149) 9.07 8.60 10.44 8.15
MAPE special days (217) 9.97 9.83 11.08 9.57

MAPE total days (366) 9.60 9.33 10.82 8.99

Figure 1a,b show the monthly evolution of two goodness-of-fit measures (RMSE and MAPE).
Remark that accuracies of random forest and XGBoost are quite similar, with greatest differences
in January and March (due to lack of accuracy in Christmas and Eastern days). Also, the models
fit better for night hours (from 10 p.m. to 5 a.m.) due to the absence of activity during that period
(see Figure 2a,b).

Figure 1. Goodness-of-fit measures for each month in 2016 and each ensemble method: (a) using root
mean square error (RMSE) (kWh); and, (b) using mean absolute percentage error (MAPE) (%).

Figure 2. Goodness-of-fit measures for each ensemble method by hour of the day in 2016: (a) using
RMSE (kWh); (b) using MAPE (%).

As an example, Figure 3 shows the actual and prediction load for a complete week in May 2016.
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Figure 3. Actual and forecasting load (kWh) for a week (9–15 May 2016).

Finally, in this section, we analyze the adecuacy of the forecasting method XGBoost for the case
study when considering different prediction horizons (1 h, 2 h, 12 h, 24 h, and 48 h). In all cases,
we selected the same parameters: subsample = 0.5, max_depth = 6, eta = 0.05 and nrounds = 1700. Accuracy
results for the training and test datasets are given in Table 8 as well as the most important predictors in
each case.
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Obviously, the best accuracies are obtained for the shortest prediction horizon (1 h), where the
most important feature is the consumption at the previous hour (lag = 1) with more than 85% of
relative importance. However, for the rest of prediction horizons, the most important predictor is, once
again, the load with lag 168 h.

4. Direct Market Consumers

Direct Consumers in the market by point of supply or installation are those consumers of electric
energy who purchase electricity directly on the production market for their own consumption and
who meet some specific conditions. Firstly, this section is dealing with the performance of the Spanish
Market, specifically the aspects that are related to DMC type of supply. Secondly, the components that
define the price of the energy as a DMC are introduced. Finally, the results for the case of a campus
university are shown.

4.1. Law Framework for DMC and Market Performance

Law 24/2013 of 26 December [41] defines the Direct Consumers in the Spanish Market in article
6.g) and establishes its rights and obligations. The activity of these subjects is regulated in Royal Decree
1955/2000 of 1 December [42], which regulates the activities of transportation, distribution, retailing,
supply, and authorization procedures of Power Systems. To start the activity of qualified consumer in
the market, the interested party must send several documents to different official bodies and fulfill a
series of requirements, such as: have provided the System Operator with sufficient guarantee to cover
economic obligations and to have the status of market agent, among others. Currently, the list of DMC
includes around 200 consumers, most of them small and medium companies (see [43]).

The Day-ahead Market, as part of the electric power production market, aims to carry out electric
power transactions for the next day by resolving offers and bids that are offered by market agents.
The Market Operator ranks and matches selling offers with buying bids for electricity (received before
10:00 a.m. on the day before the dispatch), using the simple or complex matching method, according
to simple or there are offers that incorporate complex conditions.

According to that, DMC must make their bids for the day D (day of dispatch) before 10:00 a.m. of
day D-1 (day before the dispatch), so nearly two-day-ahead forecasting models for the demand are
needed. After this process, the System Operator established the Daily Base Program, which is published
at 12:00, based on the program resulting from the Market Operator program for the Day-Ahead Market
and the communication of the execution of bilateral contracts. The Intraday Market aims to meet the
Definitive Viable Daily Program through the presentation of energy offers and bids by the markets
agents. The final scheduling is the result of the aggregation of all the firm transactions that are
formalized for each programming period as a consequence of the viable daily program and market
matching intraday once the technical restrictions identified have been resolved and the subsequent
rebalancing has taken place. Finally, generation and demand deviations arising from the closing of the
final scheduling are managed by the System Operator through balance management procedures and
the provision of secondary and tertiary regulation services.

4.2. Price of the Energy Participating as a DMC

The final price of the energy consumed as a DMC consists of three clearly differentiated
components, as described below.

• Regulated prices: these are prices set by the State and also depend on the supply rate.
This component includes access fees, capacity payments and loss coefficients. This component
does not depend on the type of supply, thus the corresponding cost would be the same for
consumers through retailers and DMC.
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• Taxes: they are also regulated prices, although of a different nature from the previous ones.
This component is given by the special tax on electricity (currently 5113%) and VAT (currently
21%). This component is also common for all consumers.

• Unregulated prices: this component of the billing contemplates the price for the energy consumed
in wholesale market and therefore it is not regulated by the State. It includes the price of energy
in the Day-ahead and Intraday Market, costs for bilateral contracts, costs for measured deviations
(difference between energy consumed and programmed energy), and costs for ancillary services.

Therefore, the Final Cost of the energy for a Direct Market Consumer is given by:

FinalCostDMC = RegulatedPricesComponent
+ UnregulatedPricesComponent + Taxes

(12)

The price of energy in the Day-ahead or Daily Market, which is also called the marginal price,
is the result of matching sales and purchase offers managed the day before the energy dispatch. It is
therefore a non-regulated component of the billing. The price of energy in the Day-ahead Market is
determined for each of the 24 h of the day as a result of the matching, values that are available on the
website of the System Operator [44] (Red Eléctrica Española, REE). It is the largest component (more
than 80%) of the average final price, as it is shown in Figure 4.

 

Figure 4. Components of the Average Final Price in 2016, price for 1 MWh in euros.

As in the Daily Market, the price of energy in the Intraday Market is the result of the negotiation
of sales and purchase offers managed in the sessions held a few hours before the dispatch of energy
(intraday sessions), and both are variable and unregulated prices. The price for each hour of the day
and each intraday session are posted on the website of the System Operator, in this case REE [44].

Once the daily scope of the agents, consumers, and generators programs has been reached,
the processes of liquidation of their energies (charges and payments) actually produced and consumed
are entered, with each passing the costs of the deviation that they have incurred by have “failed”
their respective programs of production and consumption. Thus, those who have deviated to rise
at a certain time (generators that have produced more than their program and consumers who have
consumed less than their programs) are passed on the corresponding cost in case that deviation has
gone in the opposite direction (the generators charge a price lower than the marginal price of the hour
for their additional production, and consumers receive a price lower than the marginal price they paid
in that hour for their lower consumption), while if their deviation was in the same sense of the needs
of the system, no cost is passed on to them (generators charge the marginal and consumers receive
the marginal). Identical reasoning governs the case of deviations to go down, in which producers
have generated less energy than their program and consumers have consumed more than what is
established in their schedule.
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In order to compare the real electricity bill in 2016 of the customer (the campus university) with
the one that it would have had acting as a DMC, the parts that are different in both of the bills have
been emphasized. The real electricity bill emitted by the supplier in 2016 (a retailer) consists of three
components: the access fees (regulated price), the taxes, and the “referenced energy” (which includes
some regulated prices such as the capacity payments or loss coefficients and all of the unregulated prices).

FinalCostRetailer = AccessFees + Re f erencedEnergy + Taxes (13)

Taking into account that the access fees and taxes are the same for the two types of supply (retailer
and DMC), the cost of the “referenced energy” for 2016 is analyzed.

For a DMC, the hourly cost of the (referenced) energy is given by the following sum of costs:

E(h) = ECBC(h) + DMP(h)·EDM(h) + IMP(h)·EIM(h) + SAC(h)·EMCB(h)
+MDP(h)·EMD(h) + CPP(h)·EMCB(h)

(14)

where:

• E(h) = Energy cost in the hour “h”, in €.
• ECBC(h) = Energy cost in the hour “h” from bilateral contracts, in €.
• DMP(h) = Daily Market price in the hour “h”, in €/kWh.
• EDM(h) = Energy bought in the Daily Market in the hour “h”, in kWh.
• IMP(h) = Intraday Market price in the hour “h”, in €/kWh.
• EIM(h) = Energy bought in the Intraday Market in the hour “h”, in kWh.
• SAC(h) = System adjustment cost passed on to the DMC in the hour “h”, in €/kWh.
• EMCB(h) = Energy measured in Central Bars in the hour “h”, in kWh.
• MDP(h) = Measured Deviations price in the hour “h”, in €/kWh.
• EMD(h) = Measured Deviation of Energy in the hour “h” = Difference between consumed energy

and programmed energy in the hour “h”, in kWh.
• CPP(h) = Capacity payment price in the hour “h”, in €/kWh.

In this paper, it is assumed that the DMC in the study (the campus university) does not participate
in bilateral contracts nor in the Intraday Market, thus the hourly cost of the energy reduces to:

E(h) = DMP(h)·EDM(h) + SAC(h)·EMCB(h) + MDP(h)·EMD(h) + CPP(h)·EMCB(h) (15)

It is mandatory for the Spanish Regulator (Comisión Nacional del Mercado y la Competencia,
CNMC) to publish on its website a document with the criterion used to calculate the average final price
(AFP) of energy in the market. The AFP (see Figure 4) represents an approximate value of the cost
of electric energy per kWh, being only a reference that can vary to a greater or lesser extent from the
actual final price, depending on the consumer. Specifically, the capacity payments and the deviations
between energy consumed and programmed, are those that can mark greater differences between the
real cost of the invoicing and the cost resulting from using the average final price. As an additional
objective, we compare the real cost acting as a DMC with the resulting cost using the AFP.

4.3. Case Study: A Campus University as a DMC

To date, all the dependencies of the Technical University of Cartagena have contracted supply
with a retailer, which is the modality of supplying of almost all consumers in high voltage of the
Spanish electrical system. Only around 200 consumers have dared to participate in the Market as
DMC, see the list in [43]. In 2016, the contracted tariff for the Alfonso XIII campus was the ATR 6.1,
6-period high voltage tariff, with a supply voltage of 20 kV.

As it has been stated before, the final price of the campus university’s invoice is composed of
the access fees (which refers to the use of the network), the taxes, and the price of the energy freely
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agreed with the retailer (which refers to the value of the energy consumed). Note that the concepts
corresponding to access fees (power and energy terms) and taxes are independent of the mode of
supply, so they do not change for a Direct Consumer. Therefore, the calculation of the cost of the
referenced energy for the DMC and its comparison with the retailer cost, is the main concern for
this study.

Recall that, under the assumptions of this study, the hourly energy cost as a DMC is given by the
sum of four components: the cost in the Daily Market (DM cost), the adjustment services (AS cost),
the measured deviations (MD cost), and the capacity payments (CP cost). Table 9 shows the value
of each component when the cost of the energy as a DMC is evaluated. In this section, 48-h-ahead
predictions obtained with the XGBoost method (eta = 0.02, nrounds = 3700) were used, although any
of the other ensemble methods would lead to similar results. It is worth to mention that the cost of
deviations is quite limited due to the accuracy of the load forecasting method.

Table 9. Monthly cost acting as a Direct Market Consumers (DMC) and its components.

Month DM Cost (in €) AS Cost (in €) MD Cost (in €) CP Cost (in €) DMC Cost (in €)

January 5478 685 91 313 6567
February 4492 815 56 409 5772

March 3644 763 45 99 4551
April 2980 649 70 105 3804
May 3976 801 43 127 4948
June 6692 682 42 336 7752
July 7151 610 28 524 8313

August 4450 430 56 0 4936
September 8013 724 57 195 8989

October 8289 708 48 130 9176
November 7960 474 91 140 8665
December 8727 492 46 285 9575

Total 2016 71,853 (86.52%) 7834 (9.44%) 697 (0.84%) 2664 (3.2%) 83,048

Table 10 shows the electricity consumption (in kWh) of the campus university in 2016 and the
cost of the referenced energy (consumption) in four cases: the real cost paid to the retailer, the cost
using the Average Final Price (AFP), acting as a DMC, and what we call the pessimist price (a Direct
Consumer with all the deviations against the system). According to the results, it can be established
that DMC modality would have produced savings of around 11% in the energy term of the invoice
when compared to the retail price. Note also that the cost using the AFP does not coincide with the
cost of the DMC because the cost due to deviations and the capacity payments components depend on
the consumer. On the other hand, the results show that, even in the pessimistic case (all deviations of
the predictions against the system), the DMC type of supply is worthy against the retailer.

It is important to highlight that the economic benefits of the DMC type of supply depend on
two main aspects: the magnitude of the deviations and the direction of the deviations (towards or
against the system). The first aspect (magnitude of the deviations) is determined by the accuracy of the
forecasting method. However, the second aspect (direction of the deviations) is out of our control and
it depends on the whole Electric System. In particular, some worse forecasting methods could lead to
greater benefits than more accuracy methods, but only by chance and assuming that the forecasting
values are good enough (moderate deviations). Therefore, the load forecasting method is important to
some extent, but obviously lower deviations are preferable to greater deviations.
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Table 10. Comparison of costs in four cases: average final price (AFP), pessimist, DMC, and retailer.

Month Consumption kWh AFP (in €) Pessimist (in €) DMC (in €) Retailer (in €) Saving %

January 125,702 6643 6677 6567 7434 12
February 136,620 5834 5821 5772 6760 15

March 119,103 4778 4628 4551 5338 15
April 108,475 3965 3874 3804 4346 12
May 130,149 5164 5001 4948 5571 11
June 157,785 7953 7802 7752 8815 12
July 160,212 8423 8361 8313 9315 11

August 100,343 5133 4957 4936 5477 10
September 167,116 9272 9040 8989 10,036 10

October 141,077 9410 9213 9176 9953 8
November 127,613 8818 8691 8665 9534 9
December 130,583 9717 9634 9575 10,524 9
Total 2016 1,604,778 85,111 83,698 83,048 93,103 11

5. Conclusions

Load forecasting has been an important concern to provide accurate estimates for the operation
and planning of Power Systems, but it can also arise as an important tool to engage and empower
customers in markets, for example for decision making in electricity markets.

In this paper, we propose the using of different ensemble methods that are based on regression
trees as alternative tools to obtain short-term load predictions. The main advantages of this approach
are the flexibility of the model (suitable for linear and non-linear relationships), they take into account
interactions among the predictors at different levels, no assumption or transformations on the data are
needed, and they provide very accurate predictions.

Four ensemble methods (bagging, random forest, conditional forest, and boosting) were applied
to the electricity consumption of the campus Alfonso XIII of the Technical University of Cartagena
(Spain). In addition to historical load data, some calendar variables and historical temperatures
were considered, as well as dummy variables representing different types of special days in the
academic context (such as exams periods, tutorial periods, or academic festivities). The results show
the effectiveness of the ensemble methods, mainly random forest, and a recent variant of gradient
boosting called the XGBoost method. It is also worth to mention the fast computational time of
the latter.

To illustrate the utility of this load-forecasting tool for a medium-size customer (a campus
university), predictions with a horizon of 48h were obtained to evaluate the benefits that are involved
in the change from tariffs to price of wholesale markets in Spain. This possibility provides an interesting
option for the customer (a reduction of around 11% in electricity costs).
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Abstract: Deep neural networks are proposed for short-term natural gas load forecasting.
Deep learning has proven to be a powerful tool for many classification problems seeing significant
use in machine learning fields such as image recognition and speech processing. We provide an
overview of natural gas forecasting. Next, the deep learning method, contrastive divergence is
explained. We compare our proposed deep neural network method to a linear regression model and
a traditional artificial neural network on 62 operating areas, each of which has at least 10 years of data.
The proposed deep network outperforms traditional artificial neural networks by 9.83% weighted
mean absolute percent error (WMAPE).

Keywords: short term load forecasting; artificial neural networks; deep learning; natural gas

1. Introduction

This manuscript presents a novel deep neural network (DNN) approach to forecasting natural
gas load. We compare our new method to three approaches—a state-of-the-art linear regression
algorithm and two shallow artificial neural networks (ANN). We compare our algorithm on 62 datasets
representing many areas of the U.S. Each dataset consists of 10 years of training data and 1 year
of testing data. Our new approach outperforms each of the existing approaches. The remainder
of the introduction overviews the natural gas industry and the need for accurate natural gas
demand forecasts.

The natural gas industry consists of three main parts; production and processing, transmission
and storage, and distribution [1]. Like many fossil fuels, natural gas (methane) is found underground,
usually near or with pockets of petroleum. Natural gas is a common byproduct of drilling for petroleum.
When natural gas is captured, it is processed to remove higher alkanes such as propane and butane,
which produce more energy when burned. After the natural gas has been processed, it is transported
via pipelines directly to local distribution companies (LDCs) or stored either as liquid natural gas in
tanks or back underground in aquifers or salt caverns. The natural gas is purchased by LDCs who
provide natural gas to residential, commercial, and industrial consumers. Subsets of the customers of
LDCs organized by geography or municipality are referred to as operating areas. Operating areas are
defined by the individual LDCs and can be as large as a state or as small as a few towns. The amount
of natural gas used often is referred to as the load and is measured in dekatherms (Dth), which is
approximately the amount of energy in 1000 cubic feet of natural gas.

For LDCs, there are several uses of natural gas, but the primary use is for heating homes and
business buildings, which is called heatload. Heatload changes based on the outside temperature.
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During the winter, when outside temperatures are low, the heatload is high. When the outside
temperature is high during the summer, the heatload is approximately zero. Other uses of natural
gas, such as cooking, drying clothes, and heating water and other household appliances, are called
baseload. Baseload is generally not affected by weather and typically remains constant throughout the
year. However, baseload may increase with a growth in the customer population.

Natural gas utility operations groups depend on reliable short-term natural gas load forecasts to
make purchasing and operating decisions. Inaccurate short-term forecasts are costly to natural gas
utilities and customers. Under-forecasts may require a natural gas utility to purchase gas on the spot
market at a much higher price. Over-forecasts may require a natural gas utility to store the excess gas
or pay a penalty.

In this paper, we apply deep neural network techniques to the problem of short term load
forecasting of natural gas. We show that a moderately sized neural network, trained using a deep
neural network technique, outperforms neural networks trained with older techniques by an average of
0.63 (9.83%) points of weighted mean absolute percent error (WMAPE). Additionally, a larger network
architecture trained using the discussed deep neural network technique results in an additional
improvement of 0.20 (3.12%) points of WMAPE. This paper is an extension of Reference [2].

The rest of the manuscript is organized as follows. Section 2 provides an overview of natural gas
forecasting, including the variables used in typical forecasting models. Section 3 discusses prior work.
Section 4 provides an overview of ANN and DNN architecture and training algorithms. Section 5
discusses the data used in validating our method. Section 6 describes the proposed method. Section 7
explains the experiments and their results. Section 8 provides conclusions.

2. Overview of Natural Gas Forecasting

The baseload of natural gas consumption, which does not vary with temperature for an operating
area, typically changes seasonally and slowly as the number of customers, or their behavior, changes.
Given the near steady nature of baseload, most of the effort in forecasting natural gas load focuses
on predicting the heatload (load which varies with temperature). Hence, the most important factor
affecting the natural gas load is the weather.

Figure 1 shows that natural gas load has a roughly linear relationship with temperatures above
65 ◦F. For this reason, it is important to consider a variety of temperature-related exogenous variables as
potential inputs to short-term load forecasting models. This section discusses a few of these exogenous
variables, which include heating degree day (HDD), dew point (DPT), cooling degree day (CDD),
day of the week (DOW), and day of the year (DOY).

Lo
ad

 (D
th

)

Figure 1. Weighted combination of several midwestern U.S. operating areas, including Illinois,
Michigan, and Wisconsin. Authors obtained data directly from local distribution companies. The data
is from 1 January 2003 to 19 March 2018.
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Note the kink in the trend of Figure 1 at about 65 ◦F. At temperatures greater than 65 ◦F, residential
and commercial users typically stop using natural gas for heating. At temperatures greater than 65 ◦F,
only the baseload remains. Thus, heating degree days (HDD) are used as inputs to forecasting models,

HDD = max(0, Tre f − T), (1)

where T is the temperature, and Tref is the reference temperature [3]. Reference temperature is indicated
by concatenating it to HDD, i.e., HDD65 indicates a reference temperature of 65 ◦F.

Several other weather-based inputs can be used in forecasting natural gas, such as wind-adjusted
heating degree day (HDDW); dew point temperature (DPT), which captures humidity; and cooling
degree days (CDD),

CDD = max(0, T − Tre f ) (2)

and is used to model temperature-related effects above Tref as seen in Figure 1.
In addition to weather inputs, time variables are important for modeling natural energy

demand [4]. Figure 2 illustrates the day of the week (DOW) effect. Weekends (Friday–Sunday) have less
demand than weekdays (Monday–Thursday). The highest demand typically occurs on Wednesdays,
while the lowest demand generally occurs on Saturdays. A day of the year (DOY) variable is also
important. This allows homeowner behaviors between seasons to be modeled. In September, a 50 ◦F
temperature will cause few natural gas customers to turn on their furnaces, while in February at 50 ◦F
all furnaces will be on.
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Figure 2. The same data as in Figure 1 colored by day of the week.

3. Prior Work

Multiple linear regression (LR) and autoregressive integrated moving average (ARIMA) are
common models for forecasting short-term natural gas demand [5]. Vitullo et al. propose a
five-parameter linear regression model [5]. Let ŝ be the day ahead forecasted natural gas demand,
HDD65 be the forecasted HDD with a reference temperature of 65 ◦F, HDD55 be the forecasted HDD
with a reference temperature 55 ◦F, and CDD65 be the forecasted CDD with a reference temperature
65 ◦F. Let ΔHDD65 be the difference between the forecasted HDD65 and the prior day’s actual HDD65.
Then, Vitullo’s model is described as

ŝ = β0 + β1HDD65 + β2HDD55 + β3ΔHDD65 + β4CDD65. (3)

β0 is the natural gas load not dependent on temperature. The natural gas load dependent on
temperature is captured by the sum of β1 and β2. The two reference temperatures better model
the smooth transition from heating to non-heating days. β3 accounts for recency effects [5,6]. Finally,
β4 models small, but not insignificant, temperature effects during non-heating days.
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While the Vitullo model and other linear models perform well on linear stationary time-series,
they assume that load has roughly a linearly relationship with temperature [7]. However, natural
gas demand time series is not purely linear with temperature. Some of the nonlinearities can be
modeled using heating and cooling degrees, but natural gas demand also contains many smaller
nonlinearities that cannot be captured easily with linear or autoregressive models even with nonlinear
transformations of the data.

To address these nonlinearities, forecasters have used artificial neural networks (ANNs) in place
of, or in conjunction with, linear models [5,8,9]. ANNs are universal approximators, meaning that
with the right architecture, they can be used to model almost any regression problem [8]. Artificial
neural networks are composed of processing nodes that take a weighted sum of their inputs and then
output a nonlinear transform of that sum.

Recently, new techniques for increasing the depth (number of layers) of ANNs have yielded
deep neural networks (DNN) [10]. DNNs have been applied successfully to a range of machine
learning problems, including video analysis, motion capture, speech recognition, and image pattern
detection [10,11].

As will be described in depth in the next section, DNNs are just large ANNs with the
main difference being the training algorithms. ANNs are typically trained using gradient
descent. Large neural networks trained using gradient descent suffer from diminishing error
gradients. DNNs are trained using the contrastive divergence algorithm, which pre-trains the model.
The pre-trained model is fine-tuned using gradient descent [12].

This manuscript adapts the DNNs to short-term natural gas demand forecasting and evaluates
DNNs’ performance as a forecaster. Little work has been done in the field of time series regression
using DNNs, and almost no work has been done in the field of energy forecasting with DNNs.
One notable example of literature on these subjects is Qui et al., who claim to be the first to use DNNs
for regression and time series forecasting [13]. They show promising results on three electric load
demand time series and several other time series using 20 DNNs ensembled with support vector
regression. However, the DNNs they used were quite small; the largest architecture consists of two
hidden layers of 20 neurons each. Because of their small networks, Qui et al. did not take full advantage
of the DNN technology.

Another example of work in this field is Busseti et al. [14], who found that deep recurrent
neural networks significantly outperformed the other deep architectures they used for forecasting
energy demand. These results are interesting but demonstrated poor performance when compared
to the industry standard in energy forecasting, and they are nearly impossible to replicate given the
information in the paper.

Some good examples of time series forecasting using DNNs include Dalto, who used them for
ultra-short-term wind forecasting [15], and Kuremoto et al. [16], who used DNNs on the Competition
on Artificial Time Series benchmark. In both applications, DNNs outperformed neural networks
trained by backpropagation. Dalto capitalized on the work of Glorot and Bengio when designing
his network and showed promising results [17]. Meanwhile, Kuremoto successfully used Kennedy’s
particle swarm optimization in selecting their model parameters [18]. The work most similar to ours is
Ryu et al., who found that two different types of examined DNNs performed better on short-term load
forecasting of electricity than shallow neural networks and a double seasonal Holt-Winters model [19].

Other, more recent examples of work in this field include Kuo and Huang [20], who use
a seven-layer convolutional neural network for forecasting energy demand with some success.
Unfortunately, they do not use any weather information in their model which results in poor forecasting
accuracy compared to those who do account for weather. Li et al. used a DNN combined with hourly
consumption profile information to do hourly electricity demand forecasting [21]. Chen et al. used a
deep residual network to do both point and probabilistic short-term load forecasting of natural gas [22].
Perhaps the most similar recent work to that which is presented in this paper is Hosein and Hosein,
who compared a DNN without RBM pretraining to one with RBM pretraining on short-term load
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forecasting of electricity. They found that the pretrained DNN performed better, especially as network
size increased [23].

Given the successful results of these deep neural network architectures on similar problems, it is
expected that DNNs will surpass ANNs in many regression problems, including the short-term
load forecasting of natural gas. This paper explores the use of DNNs to model a natural gas
system by comparing the performance of the DNN to various benchmark models and the current
state-of-the-art models.

4. Artificial and Deep Neural Networks

This section provides an overview of ANNs and DNNs and how to train them to solve regression
problems. An ANN is a network of nodes. Each node sums its inputs and then nonlinearly transforms
them. Let xi represent the ith input to the node of a neural network, wi the weight of the ith input, b the
bias term, n the number of inputs, and o the output of the node. Then

o = σ

(
n

∑
i=1

wixi + b

)
, (4)

where
σ(x) =

1
1 + e−x . (5)

This type of neural network node is a sigmoid node. However other nonlinear transforms may be
used. For regression problems, the final node of the network is typically a linear node where

o =
n

∑
i=1

wixi + b. (6)

A network of nodes is illustrated in Figure 3 below for a feedforward ANN, whose outputs always
connect to nodes further in the network. The arrows in Figure 3 indicate how the outputs of nodes in
one layer connect to the inputs in the next layer. The visible nodes are labelled with a V. The hidden
nodes are labelled with an Hx.y, where x indicates the layer number and y indicates the node number.
The output node is labeled O.

H1.1 H1.2 H1.3

V1 V2 V3 V4

H2.1 H2.2

Inputs

O

 

Figure 3. A feedforward ANN with four visible nodes, three nodes in the first hidden layer, two nodes
in the second hidden layer, and a single node in the output layer.
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The ANN is trained using the backpropagation algorithm [24]. The backpropagation algorithm
is run over all the training data. This is called an epoch. When training an ANN, many epochs are
performed with a termination criterion such as a maximum number of epochs or the error falling
below a threshold.

Next, we describe a DNN. A DNN is essential an ANN with many hidden layers. The difference
is in the training process. Rather than training the network using only the backpropagation algorithm,
an initialization phase is done using the contrastive divergence algorithm [25,26]. The contrastive
divergence algorithm is performed on a restricted Boltzmann machine (RBM). Figure 4 illustrates
a RBM with four visible nodes and three hidden nodes. Important to note is that unlike the ANN,
the arrows point in both directions. This is to indicate that the contrastive divergence algorithm
updates the weights by propagating the error in both directions.

Figure 4. A restricted Boltzmann machine with four visible units and three hidden units. Note the
similarity with a single layer of a neural network.

Similar to an ANN, a RBM has bias terms. However, since the error is propagated in both
directions there are two bias terms, b and c. The visible and hidden nodes are calculated from one
another [26]. Let vi represent the ith visible node, wi the weight of the ith visible node, c the bias term,
n the number of visible nodes, and h the hidden node.

h = σ

(
n

∑
i=1

wivi + c

)
, (7)

which can be rewritten in vector notation for all hidden units as

h = σ(Wv + c). (8)

Similarly, the visible node can be calculated in terms of the hidden nodes. Let hj represent the jth
hidden node, wj the weight of the jth hidden node, b the bias term, m the number of hidden nodes,
and v the visible node. Then

v = σ

(
m

∑
j=1

wjhj + b

)
, (9)

which can be rewritten in vector notation for all visible units as

v = σ
(

WTh + b
)

, (10)

where WT is the transpose of W.
Training a RBM is done in three phases as described in Algorithm 1 for training vector v0 and a

training rate ε. Algorithm 1 is performed on iterations (epochs) of all input vectors.
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Algorithm 1: Training restricted Boltzmann machines using contrastive divergence

1 //Positive Phase
2 h0 = σ (Wv0 + c)
3 for each hidden unit h0i:
4 if h0i > rand(0,1)//rand(0,1) represents a sample drawn from the uniform distribution
5 h0i = 1
6 else
7 h0i = 0
8 //Negative Phase
9 v1 = σ (WTh0 + b)
10 for each visible units v1j:
11 if v1j > rand(0,1)
12 v1j = 1
13 else
14 v1j = 0
15 //Update Phase
16 h1 = σ (Wv1 + c)
17 W = ε (h0v0

T − h1v1
T)

18 b = ε (h0 − h1)
19 c = ε (v0 − v1)

As can be seen in Figure 4, a trained RBM closely resembles a single layer of an ANN. We stack
RBMs to form an ANN. First, RBM1 is trained based on our input data using Algorithm 1. Then,
the entire input set is fed into the visible layer of a now fixed RBM1, and the outputs at the hidden
layer are collected. These outputs are used as the inputs to train RBM2. This process is repeated after
RBM2 is fully trained to generate the inputs for RBM3, and so on, as shown in Figure 5. This training
is unsupervised, meaning that no target outputs are given to the model. It has information about
the inputs and how they are related to one another, but the network is not able to solve any real
problem yet.

Figure 5. Graphical representation of how RBMs are trained and stacked to function as an ANN.

The next step is training a DNN. Backpropagation is used to train the neural network to solve a
particular problem. Since our problem is short-term load forecasting, natural gas load values are used
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as target outputs, and a set of features such as temperature, wind speed, day of the week, and previous
loads are used as the inputs. After the backpropagation training, the DNN functions identically to a
large ANN.

5. Data

One common problem with training any type of neural network is that there is always some
amount of randomness in the results [27]. This means that it is difficult to know whether a single
trained model is performing well because the model parameters are good or because of randomness.
Hanson and Salamon mitigated this problem using cross validation and an ensemble of similar neural
networks [27]. They trained many models on the different parts of the same set of data so that they
could test their models on multiple parts of the data.

This paper mitigates this problem by using data sets from 62 operating areas from local
distribution companies around the United States. These operating areas come from many different
geographical regions including the Southwest, the Midwest, West Coast, Northeast, and Southeast and
thus represent a variety of climates. The data sets also include a variety of urban, suburban and rural
areas. This diverse data set allows for broader conclusions to be made about the performance of the
forecasting techniques.

For each of the 62 operating areas, several models are trained using at least 10 years of data for
training and 1 year for testing. The inputs to these models are those discussed in Section 2. The natural
gas flow is normalized using the method proposed by Brown et al. [28]. All the weather inputs in this
experiment are observed weather as opposed to forecasted weather for the sake of simplicity.

6. Methods

This section discusses the models at the core of this paper. Four models are compared: a linear
regression (LR) model [5], an ANN trained as described in Reference [26], and two DNNs trained as
described in Section 3. The first DNN is a shallow neural network with the same size and shape as the
ANN. The other DNN is much larger.

The ANN has two hidden layers of 12 and four nodes each and is trained using a Kalman
filter-based algorithm [29]. The first DNN has the same architecture as the ANN but is pretrained
using contrastive divergence. The purpose of using this model is to determine if the contrastive
divergence algorithm can outperform the Kalman filter-based algorithm on these 62 data sets when all
other variables are equal. Each RBM is trained for 1000 epochs, and 20 epochs of backpropagation are
performed. Despite its small size, the contrastive divergence trained neural network is referred to as a
DNN to simplify notation.

In addition to these models, which represent the state-of-the-art in short-term load forecasting
of natural gas, a large DNN with hidden layers of 60, 60, 60, and 12 neurons, respectively, is studied.
The purpose of this model is to show how much improvement can be made by using increasingly
complex neural network architectures. All forecasting methods are provided with the same inputs to
ensure a fair comparison.

7. Results

To evaluate the performance of the respective models, we considered several metrics to evaluate
the performance of each model. The first of these is the root mean squared error:

RMSE =

√√√√ 1
N

N

∑
n=1

[ŝ(n)− s(n)]2, (11)

for a testing vector of length N, actual demand s, and forecasted demand ŝ. RMSE is a powerful
metric for short-term load forecasting of natural gas because it naturally places more value on the
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days with higher loads. These days are important, as they are when natural gas is the most expensive,
which means that purchasing gas on the spot market or having bought too much gas can be costly.
Unfortunately, RMSE is magnitude dependent, meaning that larger systems have larger RMSE if the
percent error is constant, which makes it a poor metric for comparing the performance of a model
across different systems.

Another common metric for evaluating forecasts is mean absolute percent error,

MAPE = 100
1
N

N

∑
n=1

|ŝ(n)− s(n)|
s(n)

. (12)

Unlike RMSE, MAPE is unitless and not dependent on the magnitude of the system. This means
that it is more useful for comparing the performance of a method between operating areas. It does,
however, put some emphasis on the lowest flow days, which, on top of being the least important days
to forecast correctly, are often the easiest days to forecast. As such, MAPE is not the best metric for
looking at the performance of the model across all the days in a year, but can be used to describe the
performance on a subset of similar days.

The error metric used in this paper is weighted MAPE:

WMAPE = 100

N
∑

n=1
|ŝ(n)− s(n)|

N
∑

n=1
s(n)

(13)

This error metric does not emphasize the low flow and less important days while being unitless
and independent of the magnitude of the system. This means that it is the most effective error metric
for comparing the performance of our methods over the course of a full year.

The mean and standard deviation of the performance of each model over the 62 data sets are
shown in Table 1. As expected, the DNN has a lower mean WMAPE than the linear regression
and ANN forecasters, meaning that generally, the DNN performs better than the simpler models.
Additionally, the large DNN marginally outperforms the small DNN in terms of WMAPE. Both results
are shown to be statistically significant later in this section. In addition to the mean, the standard
deviation of the performances of the two DNN architectures are smaller than that of the LR and ANN.
This is an important result because it points to a more consistent performance across different areas as
well as better performance overall.

Table 1. The mean and standard deviation of the performance of the four models on all 62 areas.

LR WMAPE ANN WMAPE DNN WMAPE Large DNN WMAPE

Mean 6.41 6.41 5.78 5.58
Standard Deviation 2.49 2.83 2.11 2.09

Simply stating the mean performance does not tell us much without looking at the differences
in performance for each of the 62 areas individually, which is shown succinctly in Figures 6
and 7. Figure 6a,b and Figure 7 are histograms of the difference in performance on all 62 areas of
two forecasting methods. By presenting the results this way, we can visualize the general difference in
performance for each of the 62 operating areas. Additionally, t-tests can be performed on the histograms
to determine the statistical significance of the difference. Right-tailed t-tests were performed on the
distributions in Figure 6a,b. The resulting p-values are 1.2 × 10−7 and 6.4 × 10−4, respectively, meaning
that the DNN performed better, in general, than the ANN or LR, and that the difference in performance
is statistically significant in both cases.
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Figure 6. This figure shows two histograms: (a) A comparison of the performance of all 62 models
between the DNN and the LR. Instances to the left of the center line are those for which the LR
performed better, while those on the right are areas where the DNN performs better. The distance from
the center line is the difference in WMAPE. (b) The same as (a) but comparing the ANN to the DNN.
One instance (at 10.1) in (b) is cut off to maintain consistent axes.

It is also interesting to consider that in some areas, the LR and ANN forecasters perform better
than the DNN. This implies that in some cases, the simpler model is the better forecaster. It is also
important to point out that of the 13 areas where the LR outperforms the DNN, only two have LR
WMAPEs greater than 5.5, which means that the simple LR models are performing very well when
compared to industry standards for short-term load forecasting of natural gas on those areas.

Figure 7 compares the performance of the two DNNs. As with the two distributions in Figure 6,
a left-tailed t-test was performed on the histogram in Figure 7 resulting in a p-value of 9.8 × 10−5.
This means that the Large DNN offers a statistically significant better performance over the 62 areas
than the small DNN. However, much like in the comparison between the DNN and other models,
the small DNN performs better in some areas, which supports the earlier claim that complex models
do not necessarily outperform simpler ones.

Figure 7. A comparison of the performance of all 62 models between the DNN and the Large DNN.
Instances to the left of the center line are those for which the Large DNN performed better, while those
on the right are areas where the DNN performs better. The distance from the center line is the difference
in WMAPE.

8. Conclusions

We conclude that DNNs can be better short-term load forecasters than LR and ANNs. On average,
over the 62 operating areas examined, a DNN outperformed an otherwise identical ANN at short-term
load forecasting of natural gas, and a larger DNN offered even greater performance. However,
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these improvements to the performance are not present for all 62 operating areas. For some, even the
much simpler linear regression model is shown to perform better than the DNN. For this reason,
it is concluded that, although the DNN is a powerful option that in general will perform better than
simpler forecasting techniques, it may not do so for every operating area. Therefore, DNNs can be
used as a tool in short-term load forecasting of natural gas, but multiple other forecasting methods
should be considered as well.
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Nomenclature

b bias term of a neural network node
c the bias term of a restricted Boltzmann machine (RBM)
CDD cooling degree days
DPT dew point
Dth dekatherm
h vector of hidden nodes of a RBM
HDD heating degree days
hj jth hidden node of a RBM
MAPE mean absolute error
o output of a neural network node
RMSE root mean square error
s natural gas demand
T temperature in degrees Fahrenheit
Tref reference temperature for HDD and CDD
v vector of visible nodes of a RBM
vi ith visible node of a RBM
W weight matrix of a neural network
wi weight of the ith input of a neural network node
WMAPE weighted mean absolute percentage error
xi ith input to the node of a neural network
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Abstract: This paper discusses the optimization of hybrid power systems, which consist of
solar cells, wind turbines, fuel cells, hydrogen electrolysis, chemical hydrogen generation, and
batteries. Because hybrid power systems have multiple energy sources and utilize different types of
storage, we first developed a general hybrid power model using the Matlab/SimPowerSystemTM,
and then tuned model parameters based on the experimental results. This model was subsequently
applied to predict the responses of four different hybrid power systems for three typical loads,
without conducting individual experiments. Furthermore, cost and reliability indexes were defined to
evaluate system performance and to derive optimal system layouts. Finally, the impacts of hydrogen
costs on system optimization was discussed. In the future, the developed method could be applied to
design customized hybrid power systems.

Keywords: hybrid power system; fuel cell; solar; wind; hydrogen; optimization; cost; reliability

1. Introduction

The development of alternative energy, such as solar, wind, geothermal, hydropower, ocean
power, and hydrogen, has attracted much research attention because of the energy crisis and
environmental pollution problems. Among these, solar, wind, and hydrogen are promising alternative
energies. Solar cells and wind turbines (WTs) convert solar irradiation and wind power, respectively,
into electrical power. Hydrogen energy can be converted into electricity via an electrochemical reaction
of fuel cells. Each type of energy source has various strengths and weaknesses. For example, solar and
wind energy are pollution free and relatively cheap to produce but lack stability because of their
dependence on weather conditions. In contrast, hydrogen energy with fuel cells guarantees stable
power supplies but is expensive at present. Therefore, hybrid systems that utilize multiple energy
sources and storage methods are the best option for reducing system costs and increasing system
reliability. Previously, in an Iranian study, Maleki and Askarzadeh [1] designed a hybrid power system
containing photovoltaic (PV) arrays, a WT, a diesel generator, and a secondary battery. They showed
that systems consisting of a WT, diesel generator, and a secondary battery satisfied the load demand
at the lowest cost. Based on an analysis of weather data in Turkey, Devrim and Bilir [2] concluded
that wind energy could compensate for solar (PV) energy in winter. Therefore, a hybrid system
with a WT can achieve better performance than one without a WT. Martinez-Lucas et al. [3] studied
the performance of a system based on WTs and pump storage hydropower on El Hierro Island
in the Canary archipelago. This hybrid wind–hydropower plant showed improvements in system
performance to different wind speeds and power demands.

The most important issues when designing hybrid power systems are the selection of the
system components and the component sizes, according to load demands. Wang and Chen [4]
considered a hybrid system consisting of PV arrays, a proton-exchange membrane fuel cell (PEMFC),
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and an Lithium iron (Li-Fe) battery. They showed that the integration of the PEMFC improved system
reliability, and that tuning the PV and battery units greatly reduced the system cost. The present
paper extends these ideas and discusses the impacts of WTs and a hydrogen electrolyzer on
system performance.

A WT converts wind power into electricity. Many factors, such as wind speed, air density,
the rotor swept area, and the power coefficient of the motor, affect the amount of power extracted from
WTs. For example, Bonfiglio et al. [5] modeled WTs equipped with direct-drive permanent magnet
synchronous generators. They used the model to examine the influences of active power loss on the
effectiveness of wind generator control and applied Digsilent Power Factory to verify the results.
Pedra et al. [6] built fixed-speed induction generator models using PSpice and PSCAD-EMTDC codes
They compared single-cage and double-cage models, and showed that the latter was more suitable
for fixed-speed WT simulation. Lee et al. [7] assessed large-scale application of solar and wind power
in 143 urban areas. The proposed system was shown to lead to a balance of the building energy
consumption. Maouedja et al. [8] constructed a small hybrid system in Adrar, Algeria, and concluded
that wind energy can compliment solar energy. Al Ghaithi et al. [9] analyzed a hybrid energy system in
Masirah Island in Oman. The simulation results showed that a hybrid system composed of PV, a WT,
and an existing diesel power system is the most economically viable, and can significantly improve
voltage profiles. Devrim and Bilir [2] also found that a hybrid system with a WT can perform better than
one without a WT in Ankara, Turkey. However, Chen and Wang [10] reached the opposite conclusion
in their analysis of a green building in Miao-Li county of Taiwan equipped with a hybrid power
system consisting of PV arrays, a WT, a PEMFC, a hydrogen electrolyzer, and battery sets. They found
that wind and solar energy had similar profiles, and concluded that a WT was unsuitable because it
increased the cost of the system but did not significantly compensate the renewable energy of the PV
array. Therefore, the inclusion of WTs in a hybrid system should depend on local weather conditions.

Hydrogen electrolyzation is a new method of energy storage, where redundant energy is used
to produce hydrogen that can then be utilized by PEMFCs to produce electricity when the power
supply is insufficient. For example, Chennouf et al. [11] utilized solar energy to produce hydrogen
in Algeria. They demonstrated that hydrogen conversion efficiency was best under low voltage and
high temperature conditions. Tribioli et al. [12] analyzed an off-grid hybrid power system with two
energy storage methods: a lead-acid battery and reversible operation of a PEMFC. They combined the
system with a diesel engine and showed that the consumption of fossil fuels can be greatly reduced by
integrating a suitable renewable power plant to match the loads. Cozzolino et al. [13] applied the model
to analyze a particular case: the TUNeIT (Tunisia and Italy) Project. The simulation demonstrated
an almost self-sustaining renewable power plant that consisted of 1 MW WT, 1.1 MW PV, a 72 kWh
battery, a 300 kW fuel cell, a 300 kW diesel engine to cope with power demand at a cost of 0.522 €/kWh.
Aouali et al. [14] built a PV array and hydrogen electrolyzer model based on dynamic equations.
They conducted small-scale experiments and showed that the experimental responses fitted the model
responses. Rahimi et al. [15] analyzed the economic benefits of utilizing wind energy in hydrogen
electrolysis in Manjil and Binaloud, Iran. They showed that a stand-alone application was more
expensive than an on-grid one because the former required larger WTs. Bianchi et al. [16] analyzed
a hybrid system that utilized two storage methods: a solar battery system and a solar battery–hydrogen
electrolyzer fuel cell system. They found that the conversion efficiency of stored energy was about 90%
with the use of battery, and about 20% with the electrolyzer and PEMFC. Bocklisch et al. [17] proposed
a multistorage hybrid system that combined short-term storage by batteries and long-term storage by
hydrogen. They converted excessive PV energy in summer into hydrogen and hydrogen into electricity
and heat in winter. The power exchanged with the public grid was smaller and more predictable
compared with that of a conventional PV battery–hybrid system. As weather conditions have a major
influence on the performance of hybrid power systems, climate data must be incorporated into the
design of any hybrid system. For instance, Ikhsan et al. [18] collected weather data to estimate the
energy flow into hybrid systems and to resize the system components. Their results demonstrated
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an improvement in system costs after size adjustment. Chen and Wang [10] included irradiation and
wind data in a hybrid system model to optimize system costs and reliability. The present paper will also
utilize historic weather data and load conditions when analyzing the impacts of system configurations.

The paper is arranged as follows: Section 2 introduces a general hybrid power system that consists
of solar cells, WTs, a fuel cell, hydrogen electrolysis, chemical hydrogen generation, and batteries.
We extend a previous hybrid power model [4] by adding WT and hydrogen electrozation modules.
Then, system cost and reliability functions are defined to evaluate system performance. Based on this
general hybrid power model, we apply three standard load conditions (laboratory, office, and house)
to four specified hybrid power systems to estimate the impact of system configuration on performance.
Section 3 discusses the optimization of the four hybrid power models and shows that both system cost
and reliability can be improved by tuning the system component sizes. Based on the results, the solar
battery system is preferable because of high hydrogen costs at present. We also predict the system
costs at which hydrogen energy could become feasible. Last, conclusions are drawn in Section 4.

2. Results

This section builds a general hybrid power model that consists of a PV array, a WT, a PEMFC,
hydrogen electrolysis, chemical hydrogen generation, and batteries. We applied a Matlab/SimPowerSystem
(r2014a, MathWorks, Inc., Natick, MA, USA) model to predict the performance of four different hybrid
power systems under three typical loads. Furthermore, cost and reliability indexes were defined to quantify
performance measures of the hybrid systems.

2.1. Hybrid Power Systems

Figure 1a shows a general hybrid power system, which consists of a 3 kW PEMFC, a chemical
hydrogen production system with sodium borohydride (NaBH4), a 410 W hydrogen electrolyzer,
1.32 kW PV arrays, a 0.2 kW WT, a 15 Ah Li-Fe battery set, and power electronic devices. The system
specifications are illustrated in Table 1 [19–25]. The system has three energy sources (solar, wind,
and a PEMFC) and two energy storage methods (battery and hydrogen electrolysis).

Regarding energy sources, solar power is connected directly to a DC bus. Wind power is
transferred by a controller and connects to the DC bus. As both solar power and wind power are
significantly influenced by the weather, a PEMFC is used to provide reliable energy when necessary.
The PEMFC can transform hydrogen energy to electricity and can provide continuous power as long
as the hydrogen supply is sufficient. Two hydrogen supply methods are considered: the chemical
reaction of NaBH4 and hydrogen electrolysis. The former can provide power with high-energy density
using an auto-batching system developed previously [25,26]; the latter can be regarded as energy
storage, because redundant renewable energy can be stored in the form of hydrogen [24].

For energy storage, a Li-Fe battery is used for short-term electricity storage [17] because the
battery has high efficiency (about 90%), and can absorb power surges when the load changes rapidly.
Hydrogen electrolysis is used for long-term storage, considering the self-discharging problems of
batteries. A benefit of the electrolysis process is that it does not produce contaminants. However,
the energy conversion efficiency is much lower than of the battery [16].

We developed the general hybrid power model using the Matlab/SimPowerSystem, as shown in
Figure 1b, and analyzed the impacts of different energy sources and storage methods on the system.
In a previous study [4], a SimPowerSystem model was built to include a PEMFC, an Li-Fe battery
set, PV arrays, and a chemical hydrogen production system. The model parameters were tuned
based on experimental data to enable the simulation model to predict the responses/behavior of the
experimental system under various conditions. Currently, PEMFC, PV arrays, chemical hydrogen
production, and battery sets are operated as follows [4,17,25,26]:

1. The PEMFC is switched on to provide a default current of 20 A with the highest energy
efficiency [20] when the battery state-of-charge (SOC) is 30%. If the SOC continuously decreases
to 25%, the PEMFC current output is increased by up to 50 A, according to load, until the SOC is
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35%, where the PEMFC is set to provide a default current of 20 A. The PEMFC is switched off
when the battery SOC is 40%.

2. The PV array transfers irradiance into electricity as follows [4,20]:

PPV = 0.69(Irr − 1.52)

where PPV and Irr represent solar power and irradiance, respectively.
3. The chemical hydrogen generation is switched on when the pressure of the hydrogen storage

tank decreases to 3 bar [25,26]. Currently, hydrogen is generated from a NaBH4 solution by
a previously developed auto-batch process, with a maximum generation rate of 93.8 standard
liters per min (SLPM) [25]. This can sustain the operation of a 3 kW PEMFC [25].

4. The battery regulates the power supply and load demands as follows: it is charged (discharged)
when the supply is greater (lower) than the demand. To avoid overcharging, battery charging is
stopped when its SOC reaches 98%.

In this paper, we extend the previously developed model [4] by adding wind power and hydrogen
electrolysis modules.

 

(a) System configuration. 

Figure 1. Cont.
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(b) SimPowerSystem model. 

LOAD 

WIND 

SOLAR 

HYDROGEN GENERATOR 

CHEMICAL HYDROGEN GENERATOR 

PEMFC 

Figure 1. The general hybrid power system.

Table 1. Specifications of the hybrid system [19–25].

Component Type Specification

PEMFC Module M-FieldTM LPH8020 See Reference [19]

Solar Module [20] ASEC-220G6S
Maximum Power: 220 W

Open Circuit Voltage: 33.86 V
Short Circuit Current: 8.61 A

Wind Turbine [21] JPS-200
Rated Power: 200 W

Voltage Output: DC 12 V
Rotor Diameter: 0.68 m

LiFePO4 Battery [22] NA Nominal Voltage: 52.8 V
Nominal Capacity: 23 Ah

DC/DC Converter [23] M-FieldTM S/N:00051
Input Voltage: DC 44–85 V

Output Voltage: DC 42–57 V
Maximum Power: 3 kW

DC/AC Inverter [20] MWTM TS-3000-148
Input Voltage: DC 42–60 V
Output Voltage: AC 110 V
Maximum Power: 4.5 kW

PEM Electrolyzer [24] HGL-1000U
Gas Flow Rate: 1000 mL/min
Power Consumption: <430 W
Input Voltage: AC 100–240 V

Chemical Hydrogen Generation
Module [25] NA Input Voltage: DC 24V Output:

See Reference [25]
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2.2. The Wind Power Model

The WT used in this paper was a commercial product, JPS-200, which is equipped with
a permanent magnet synchronous generator that has a rating power of 200 W [21]. A wind power
system and a theoretical model are developed to estimate wind power from wind speed based
on experimental responses. The experiments were conducted using an industrial fan, which had
a maximum wind speed of about 10 m/s. The wind power system structure is shown in Figure 2.
We measured the AC current and voltage from a wind turbine and recorded the DC current and
voltage from a wind controller.

Figure 2. Measurement of the wind power.

The WT was tested under steady wind and varying wind conditions. The time responses are
shown in Figure 3a, where the responses change slowly with steady wind, but quickly with varying
wind. From the comparison of the wind speed and AC power, as illustrated in Figure 3b, the wind
power can be theoretically described using the following equation:

Pac = 0.11574 V3
wind (1)

where Pac and Vwind represent the power and speed, respectively, of the wind. The experimental
results show that the wind power can be predicted from the wind speed with maximum root mean
square errors of 7.64 W and 17.32 W for steady and varying wind, respectively. The WT reached
its maximum theoretical power of 200 W when the wind speed was greater than 12 m/s. We set
the battery voltage at 12 V. The energy conversion relationship between AC and DC wind power is
shown in Figure 3c, where the charging operation is divided into three zones according to the wind
turbine voltage Vac: (1) no charging (when Vac < 4.3V), where the wind controller does not charge the
battery; (2) linear charging (when 4.3V ≤ Vac < 8V), where the DC charging voltage increases linearly;
and (3) stable charging (when Vac ≥ 8V), where the DC charging voltage is 14.3 V. The conversion of
AC and DC power can be described as follows:

PDC = 0.70973Pac − 3.0958 = 0.0821V3
wind − 3.0958 (2)

as illustrated in Figure 3c. Therefore, given wind speed data, the wind turbine DC power can be
calculated by (1) and (2). Equations (1) and (2) can be applied to build the wind power module in
Figure 2 for the simulation and optimization analyses.
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the steady wind the varying wind 

(a) Time responses of the wind turbine. 

  
the steady wind the varying wind 

(b) AC power v.s. wind speeds. 

   

voltage current power 

(c) Scatter diagrams of the DC power v.s. AC power 

Figure 3. Experimental responses of the wind turbine.

2.3. The Hydrogen Electrolysis Model

The hydrogen electrolyzer transfers redundant energy, i.e., the extra-renewable energy when the
battery SOC is near 100%, into hydrogen when the power supply is greater than the load. The stored
hydrogen is then converted into electricity by a PEMFC when the load demand exceeds the power
supply. Therefore, a theoretical model can be built to estimate hydrogen production based on
redundant renewable energy. A hydrogen electrolyzer utilizes this redundant energy to produce
hydrogen. The hydrogen electrolyzation system is shown in Figure 4. It consists of a commercial
hydrogen electrolyzer, HGL-1000U, with a rating energy consumption of 400 W and hydrogen
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production of 1 L/min [24]. The electrolyzer has four operation modes: warm up, production, standby,
and shut down. We developed a hydrogen electrolysis model using the Matlab/SimPowerSystemTM

and applied the following management strategies (see Figure 4b):

1. Warm up: The extra-renewable energy is regarded as redundant energy when the battery SOC is
greater than an upper limit of 95%.

2. Production: The electrolyzer is switched on after 10 min, when the integrated redundant

renewable energy
∫ 10

0 (Prenew − Pload)dt increases. Prenew and Pload represent the power sources
from the renewable energy and power consumption of the loads, respectively.

3. Standby: The electrolyzer is switched off when the hydrogen tank is full (reaches the high-pressure limit).
4. Shut down: The hydrogen electrolyzer is switched off when the battery SOC falls to the lower

limit of 85%.

To avoid frequent switching, the electrolyzer is allowed to produce hydrogen when the battery
SOC is between 85% and 95%.

 

(a) System layout. 

 

(b) Management strategy. 

Figure 4. The hydrogen electrolyzation system.

A 3 L hydrogen cylinder was used to conduct the electrolyzation experiments. The results are shown in
Figure 5, where the initial and final pressures of the cylinder are 8.6 bar and 10 bar, respectively. As a check
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valve is installed at the hydrogen outlet, hydrogen is produced only when the electrolyzer pressure exceeds
the cylinder pressure, with a production rate of about 1.14 SLPM by consuming about 413 W. The hydrogen
is purged every 350 s to prevent water flooding that could disturb the electrochemical reactions. The output
hydrogen energy can be calculated using the following equation:

H2 +
1
2

O2 → H2O(g) (3)

The total enthalpy change of a reaction at 1 atm, 25 ◦C, referred to as the standard state, is the
low heat value of hydrogen, which is equivalent to 241.32 kJ · mol−1 (or 120 MJ · kg−1). Therefore,
the hydrogen production efficiency can be defined as follows:

ηLHV =
Ef uel,production

Egenerator
=

HExp
2 · LHV
Egenerator

(4)

where Egenerator and Ef uel,production represent the ratio of input electric energy and the output hydrogen

energy, respectively, and HExp
2 is the produced hydrogen. For example, in one experiment, the input

electric energy was Egenerator = 0.0372 kWh, and the output hydrogen volume was HExp
2 = 6.233

L. The standard molecular weight and density of hydrogen was 2.0158 g/mole and 0.08228 g/L,
respectively. Therefore, the output hydrogen energy can be calculated as follows:

Ef uel,production =
6.233 × 0.08228 × 241.32

2.0158 × 3600
= 0.01705 (kWh)

Hence, the hydrogen production efficiency was:

ηLHV =
Ef uel,production

Egenerator
=

0.01705
0.0372

= 45.83%

The hydrogen production efficiencies in all the experiments were about 45%. Based on the experimental
results, the hydrogen production rate was set as follows to convert renewable energy to hydrogen storage:

H2 =
ηLHV
LHV

· E = 0.0465 (L/kJ)

As the electrolyzer consumes an average power of 410 W during the production period,
the hydrogen electrolyzer module was set to produce hydrogen at a rate of 1.14 L/min by consuming
redundant renewable energy at a constant power of 410 W.

 

Figure 5. Experimental responses of the hydrogen electrolysis system.
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2.4. Performance Indexes Hybrid Power Models

The hybrid power model of Figure 1 was applied to predict the system responses under different
operation conditions based on the following management strategies (see Figure 6):

1. To avoid wasting renewable energy, the wind and solar power subsystems are operated as follows:
when the battery SOC is greater than 98% and the input renewable power, including solar and
wind power, is greater than the load, redundant renewable energy is dumped. Solar energy is
reduced first because it is much more abundant than wind energy. When the battery SOC is less
than 95%, all renewable energy is supplied to the system.

2. The PEMFC system is switched on when the battery SOC reaches a low bound of 30%. The PEMFC
is then switched off when the battery SOC rises to a high limit of 40%. The PEMFC is controlled
to provide a default current load of 20 A with the highest energy efficiency, and it is set to provide
a load up to 50 A when the battery SOC continuously drops to 25% [20].

3. The chemical hydrogen generator system is switched on if the storage hydrogen level is lower
than a safety limit [25,26]. We designed a batch procedure with suitable production rates to
satisfy the system requirements. Each batch consumes 60 g of NaBH4 and produces about 150 L
of hydrogen [25]. Thus, the PEMFC can be continuously operated.

 
(a) Management strategy of the renewable energy. 

(b) Management strategy of the PEMFC. 

Figure 6. Flow charts of the power management.
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Hydrogen fuel can be obtained from two sources for PEMFC operation: chemical production
and electrolysis. As the costs of different energy sources and storage are not the same, we utilized
standard load profiles, irradiance, and wind data, as shown in Figure 7, for the simulation and
optimization analyses.

(a) Load profiles. 

 
(b) Irradiance (c) Wind speed 

Figure 7. Daily average data.

The system responses can be applied to evaluate the system cost and reliability under
different conditions.

The system cost J(b,s,w) was defined as follows [4]:

J(b,s,w) = Ji(b,s,w) + Jo(b,s,w) (5)

where Ji and Jo were the initial and operation costs, respectively, of the hybrid power system.
In Equation (5), b, s, and w represent the numbers of the battery, PV array, and WT in units of
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30 Ah, 660 W, and 200 W, respectively. For example, (b, s, w) = (1, 2, 3) means that the system was
equipped with one 30 Ah battery set, two 660 W PV arrays, and three 200 W WTs.

The initial cost Ji consists of several system components, as follows:

Ji(b,s,w) = ∑
k=component

Jk
i(b,s,w) (6)

where k = PEMFC, DC, solar, WT, HE, CHG, and batt for the PEMFC, power electric devices, PV arrays,
wind turbine, hydrogen electrolyzer, chemical hydrogen generator, and battery set, respectively.
Similarly, the operation cost Jo includes two parts:

Jo(b,s,w) = ∑
l=component

Jl
o(b,s,w) (7)

where l = NaBH4, WT, and solar for chemical hydrogen, WT maintenance, and PV maintenance, respectively.
The costs Jk

i(b,s,w)
and Jl

o(b,s,w)
can be calculated by the following equations:

Jk
i(b,s,w) = Ck · nk · CRFk (8)

Jl
o(b,s,w) = Cl · nl (9)

in which C is the component price per unit, and n is the component units. CRF represents the capital
recovery factor and is defined as follows [10]:

CRF =
ir(1 + ir)ny

(1 + ir)ny − 1
(10)

where ir is the inflation rate, and ny is the component life. The component life and cost are listed in
Table 2. The inflation rate was set as 1.26% by referring to the average annual change of consumer
price index of Taiwan [4].

Table 2. Simulation parameters.

Component Lifetime Price ($NT)

Hybrid system 15 (year) NA
Fuel cell (3 kW) 8000 (h) 180,000

Power electronic devices (3 kW) 15 (year) 50,000
PV array (0.66 kW) 15 (year) 45,840

Wind turbine (0.2 kW) 15 (year) 19,333
Hydrogen electrolyzer (410 W) 8000 (h) 320,000
Chemical hydrogen generator 10 (year) 320,000
NaBH4 (60 g/Batch, 150 L H2) NA 28

The system reliability is defined as the loss of power supply probability (LPSP), as follows [4]:

LPSP =
∑T

1 LPS(t)
Eload(t)

(11)

in which the numerator is the total loss of power supply during time interval T, and the denominator
represents the required load demand during time interval T. The system is more reliable with
a smaller LPSP.
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2.5. Optimization of Four Hybrid Power Models

Based on the general hybrid power model, as shown in Figure 1, we considered the following
four hybrid power systems with different combinations of energy sources and storage:

1. Solar_Wind (SW) system: The system contains two energy sources (a solar panel and WT) and
one energy storage method (Li-Fe battery).

2. Solar_Wind_PEM_HE (SWPH) system: The system contains three energy sources (a solar panel,
WT, and PEMFC) and two energy storage methods (a Li-Fe battery and a hydrogen electrolyzer).

3. Solar_Wind_PEM_CHG (SWPC) system: The system contains three energy sources (a solar panel,
WT, and PEMFC) with a chemical hydrogen generator and one energy storage methods (an Li-Fe
battery).

4. Solar_Wind_PEM_HE_CHG (SWPHC) system: The system contains three energy sources (a solar
panel, WT, and PEMFC) with a chemical hydrogen generator and two energy storage methods
(an Li-Fe battery and a hydrogen electrolyzer).

The corresponding SimPowerSystem models are illustrated in Figure 8.

Figure 8. The four hybrid power models.

Three standard load conditions, as shown in Figure 7a, were applied to the four hybrid power
models to predict systems responses. Then, we used Equations (5)–(11) to evaluate system cost
and reliability using different component sizes. The resulting reference plots are shown in Figure 9,
where the number of WTs was set to zero, because using a WT tended to increase the system costs.
The optimal system costs of the four hybrid power systems are illustrated in Table 3.
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Lab Office House 

(a) The SW system. 

   
(b) The SWPH system. 

 
 

(c) The SWPC system. 

   
(d) The SWPHC system. 

Figure 9. Reference plots of four hybrid power models.
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Table 3. Optimal system costs.

Daily Energy Consumption (kWh)
Lab Office House

30.318 21.885 19.933

System Cost Per Day - - -

SW 1399 865 1064
SWPH 1591 1148 1246
SWPC 1529 963 1194

SWPHC 1685 1241 1340

System Cost Per kWh - - -

SW 46.144 39.525 53.379
SWPH 52.477 52.456 62.509
SWPC 50.432 44.003 59.901

SWPHC 55.578 56.706 67.225

3. Discussion

The analyses of the four hybrid power systems showed that system cost and reliability can be
greatly improved by optimizing system sizes. For example, Figure 10 shows the reference plot of
applying the SWPHC model to the laboratory load. If we use 10 units of battery (300 Ah), 10 units of
solar (6.6 kW), and no WT, the system cost is estimated as NT$3208/day (or NT$106.17/kWh) with
a possible power cut (LPSP = 0.33%). Based on Figure 10, the optimal system setting should be 61 units
of battery (1830 Ah), 18 units of solar (11.88 kW), and no WT. Using these settings, the system cost is
reduced to NT$1,685/day (or NT$55.6/kWh), and system reliability is improved to 100% (LPSP = 0).

 

Figure 10. The reference plot of applying SWPHC to lab load.
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The comparison of the four different hybrid power configurations shows that currently the SW
system can achieve the cheapest system cost. For example, the daily cost for the office load is NT$865
using the SW system, but NT$963, 1,148, and 1,241 using the SWPC, SWPH, and SWPCH systems,
respectively. However, the reliability (LPSP = 0) of the three systems is greater than the SW system
(see Figure 9) (i.e., the reliability of the systems improved because the PEMFC can provide reliable
energy when necessary). Under current conditions, the cost ranking is SW > SWPC > SWPH > SWPCH
for all loads for the following reasons: (1) The cost of hydrogen is high at present; (2) energy storage
efficiency by hydrogen electrolyzation is much lower than by Li-Fe batteries; (3) the extra hardware,
such as the PEMFC and hydrogen electrolyzer, significantly increase systems costs.

The cost and energy distribution of applying the optimal SWPCH system to the laboratory load
are shown in Table 4. First, due to system optimization, the PEMFC and Sodium borohydride tends
not to be used, because the fuel cost is high (NT$28 per batch to produce 150 L of H2, see Table 2).
Therefore, the corresponding equipment (hydrogen electrolyzer, PEMFC, and chemical hydrogen
production) can be saved to reduce the system cost by 13.39%. Second, the battery cost accounts for
nearly 73% of the total system costs, whereas the PV panels to store the solar power constitute only
11.21% of the system cost. Thus, system optimization tends to use solar energy, although the system
is equipped with three energy sources. Third, the system stores 4.62% energy as hydrogen; this was
not used to produce electricity during the 61-day analyses because batteries are better for short-term
storage. We further compare the cost and energy distribution of the twelve cases (four systems for
three load conditions). For all four systems, the office load reaches the highest solar cost but the lowest
battery cost, because the working hours are similar to the irradiation curve (see Figure 7). Contrarily,
the lab load reaches the highest battery cost for the same reason (the working hours are different from
the irradiation curve), so more batteries needs to be used for energy storage.

Table 4. The distribution of cost, energy sources, and loads.

SWPCH System to the Lab Load with (b, s, w) = (61, 18, 0)

1. Cost Distribution (%)

Li-Fe Battery 72.98% ($1229)
power electric devices 2.39% ($40)
WT 0% ($0)
Solar panels 9.87% ($166)
WT maintenance 0% ($0)
Solar maintenance 1.34% ($22)
Hydrogen electrolyzer 5.68% ($95)
PEMFC 2.15% ($36)
Chemical hydrogen production 5.56% ($93)
Sodium borohydride (NaBH4) 0% ($0)

2. Energy Supply Distribution (%)

Wind 0%
PEMFC 0%
Solar 99.32%
battery 0.679%

3. Load Distribution (%)

Lab load 95.38%
Hydrogen electrolyzer 4.62%

The optimization of the hybrid systems demonstrates a preference for using the solar battery
system because of the high cost of hydrogen production. Therefore, we investigated the impacts of
hydrogen prices on the total system costs. Figure 11 shows the results of applying the SWPCH system
to the laboratory load. First, the system costs begin to decrease when the hydrogen cost falls to about
NT$10 per batch (60 g of NaBH4 to produce about 150 L of hydrogen). When the cost of hydrogen
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declines from NT$28 to NT$9 (NT$1) per batch, the system cost drops from NT$1685 to NT$1662
(NT$1088) per day. Second, the energy supply ratio by the PEMFC increases to 19.6% (59.5%) when
the hydrogen price is NT$9 or NT$1 per batch. Under this scenario, the system tends to use more
hydrogen energy, as the cost is competitive with that of other renewable energies. Last, the stack
price has little influence on the system cost because it is considered in the initial cost (from 10 k to
180 k). For example, when the hydrogen price is greater than NT$11/batch and the PEMFC stack cost
drops from NT$180 k to NT$90 k, the system cost drops from NT$1685 to NT$1667 per day. When the
hydrogen cost is NT$9 (NT$1) per batch and the PEMFC stack price drops from NT$180 k to NT$90 k,
the system cost drops from NT$1662 (NT$1088) to NT$1615 (NT$999) per day.

Figure 11. The influence of hydrogen prices on system costs.

4. Conclusions

This paper demonstrated the optimization of hybrid power systems. We developed a general
hybrid power model that consisted of solar cells, a WT, a fuel cell, hydrogen electrolysis,
chemical hydrogen generation, and batteries. The model parameters are tuned based on experimental
data, so that system responses under different operation conditions can be predicted without
conducting individual experiments. Then, the performance of four hybrid systems under three
typical loads was evaluated by calculating system costs and reliability. The results showed that the
costs and reliability of all the systems were effectively improved by optimizing the system sizes.
The hybrid system with the solar panels and battery sets achieved the lowest costs, as wind and
hydrogen energy are relatively expensive at present. Last, the impacts of stack and hydrogen prices on
system costs was analyzed. The results indicated that hydrogen prices had a more substantial influence
than the stack price on system costs, and that hydrogen energy would be competitive when its price
fell to about one-third of the current price. In future research, the impact of cost of other components,
such as the PV and WT, can be analyzed in a similar way.
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Abstract: Recently, the cooling load forecasting for the short-term has received increasing attention in
the field of heating, ventilation and air conditioning (HVAC), which is conducive to the HVAC system
operation control. The load forecasting based on weather forecast data is an effective approach.
The meteorological parameters are used as the key inputs of the prediction model, of which the
accuracy has a great influence on the prediction loads. Obviously, there are errors between the
weather forecast data and the actual weather data, but most of the existing studies ignored this
issue. In order to deal with the uncertainty of weather forecast data scientifically, this paper proposes
an effective approach based on the Monte Carlo Method (MCM) to process weather forecast data
by using the 24-h-ahead Support Vector Machine (SVM) model for load prediction as an example.
The data-preprocessing method based on MCM makes the forecasting results closer to the actual
load than those without process, which reduces the Mean Absolute Percentage Error (MAPE) of load
prediction from 11.54% to 10.92%. Furthermore, through sensitivity analysis, it was found that among
the selected weather parameters, the factor that had the greatest impact on the prediction results was
the 1-h-ahead temperature T(h–1) at the prediction moment.

Keywords: uncertainty analysis; load forecasting; the Monte Carlo Method (MCM); the Support
Vector Machine (SVM) model

1. Introduction

In recent years, heating, ventilation and air conditioning (HVAC) systems have become important
elements in office buildings and are responsible for around 40% of the energy use in office buildings,
which means a great energy-saving potential [1]. However, the operation management level of HVAC
systems is generally low, and the refrigeration capacity of the equipment does not match with the
actual demand, resulting in a large energy consumption. Precise load forecasting is the basis of
the optimization of HVAC system operation, which is conducive to formulate an operation strategy
according to the load change and can lay the theoretical foundation for enhancing the thermal comfort
and reducing the energy consumption of office buildings. Among the influential factors, meteorological
parameters play a very important role in the dynamic cooling load, which has a great influence on the
actual energy consumption of a building.

In the relevant literature on building load forecasting, various prediction models are proposed for
load forecasting and related research. Xia and Xiang et al. [2] proposed a prediction model based on a
radial basis function (RBF) neural network to forecast a daily load, which mainly took some weather
parameters into consideration including temperature, humidity, wind speed, atmospheric pressure and
so on. The forecasting results illustrated that the model has better performance compared with the Back
Propagation (BP) network. Ruzic et al. [3] put forward a regression-based adaptive weather-sensitive
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short-term load-forecasting algorithm. This algorithm was used for the load prediction of the Electric
Power Utility of Serbia. Wi [4] presented a fuzzy polynomial regression method for holiday load
prediction combined with the dominant weather feature, and pointed out that it was pivotal to
select the previous data relevant to the given holiday for improving the accuracy of holiday load
forecasting. Support Vector Machines (SVMs) have been widely applied in the field of pattern
recognition, bioinformatics, and other artificial intelligence relevant areas to solve the classification and
regression issues; these are called Support Vector Classification (SVC) and Support Vector Regression
(SVR). Particularly, along with Vapnik’s ε-insensitive loss function, the SVM also has been extended
to solve nonlinear regression estimation problems by SVR. It has been widely used in many fields
involving prediction problems, such as financial industry forecasting [5–7], engineering and software
field forecasting [8], atmospheric science forecasting [9] and so on. Furthermore, the SVR model has
also been successfully applied to predict the power load [10]. The selection of the three parameters
(C, ε, and σ) in the SVR model influences the prediction accuracy significantly. Many studies have
given recommendations on appropriate setting of SVR parameters [11]. But those methods do not
comprehensively consider the interaction effects among the three parameters. Thus, the intelligent
algorithms are adopted to determine appropriate parameter values. Barman et al. [12] proposed a
regional hybrid STLF model utilizing SVM with a new technique to evaluate its suitable parameters
and pointed out that the GOA-SVM model is targeted for forecasting the load under local climatic
conditions. Li et al. [13] investigate the feasibility of using Least Squares Support vector regression
(LS-SVR) to forecast building cooling load. The evaluation of the tests illustrated that the SVR model
with the Particle Swarm Optimization (PSO) has a good generalization performance.

At present, the research on the inputs of the prediction model mainly involves the optimized
selection of input parameters. Duanmu et al. [14] proposed a simplified prediction model of the
cooling load based on the hourly cooling load coefficient method and analyzed the various influential
factors of the cooling load. They pointed out that outdoor temperature is the key influential factor of
the cooling load. Wang et al. [15] researched the influence of climate change on the heating and
the cooling (H/C) energy requirements of residential houses, which is from cold to hot humid
in five regional climates of Australia. They pointed out that the impacts of significant climate
change on H/C energy requirements may occur during the lifecycle of existing housing stock.
Jiang [16] considered that the accurate prediction of building thermal performance is dependent on
meteorological data such as dry-bulb temperature, relative humidity, wind speed and solar radiation
to a large extent. Chen et al. [17] selected different meteorological variables as inputs for different time
scales, using building dynamics simulation to forecast the energy demand for cooling and heating of
residential buildings. Petersen et al. [18] analyzed the impact of uncertainty on the indoor environment.

Indeed, only a few studies have formally dealt with the issue of uncertainty in load forecasting.
For example, Sarjiya [19] adopted a decision analysis method to handle the uncertainty of the load
forecast in power systems for the aim of optimization of the operating strategy. Domínguez-Muñoz [20]
proposed a new approach based on stochastic simulation methods to research the impact of the
uncertainty of the internal disturbance on the peak cooling load in the buildings. Douglas et al. [21]
put forward a method to analyze the risk of short-term power system operational planning with
the electrical load forecast uncertainty. MacDonald [22] focused on the problem of quantifying the
effect of uncertainty on the predictions made by simulation tools. Two approaches including external
and internal methods were used to quantify this effect. Domínguez-Muñoz et al. [23] quantified the
uncertainty that can be expected in the thermal conductivity of insulation materials in the lack of
specific experimental measurements. Sten et al. [24] analyzed the influence of the uncertainties of
temperature stratification and pressure coefficients on buildings in term of natural ventilation through
an expert review process.

Overviewing the previous research, few studies have paid attention to the influence of uncertainty
of weather forecast data on the load forecasting. However, external disturbance factors such as
meteorological parameters play a very important role in the dynamic cooling loads of a building,
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which have a great impact on the actual energy consumption of the building. It is effective to use the
weather forecast data to predict the building load in advance and adjust the air conditioning units
in time according to the forecast loads for the purposes of improvement of the indoor comfort and
reduction of building energy consumption. If the uncertainty of weather forecast data is ignored,
it may cause errors in model inputs, which reduces the accuracy of the forecast load. The paper fills a
gap in terms of the correction of the uncertainty of weather forecast data.

This paper explored the impact of weather forecast uncertainty on load forecasting, and the
Monte Carlo Method (MCM) was used to modify the input parameters of the model for load
forecasting, which can increase the accuracy of the load forecasting before and after the correction.
Furthermore, the sensitivity analysis was adopted to explore the factors that have a great impact on
load forecasting results.

The contents of the paper are as follows. Section 2 presents a general overview of the principles of
the MCM, the SVM and sensitivity analysis. Section 3 presents a case study, in which this case study
is used to illustrate how the methodology can be applied to study the impact of uncertainty of the
weather forecast data on load prediction, and the main factors contributing to the load prediction are
identified through a sensitivity analysis. Section 4 presents a discussion of the results, as well as some
proposals for future research. Section 5 summarizes two important conclusions in the research.

2. Methodology

In this paper, the MCM is used to analyze the uncertainties of weather forecasting parameters,
and the model based on SVM is established to forecast the cooling load of an office building.
In addition, the Standardized Regression Coefficient (SRC) method for sensitivity analysis is introduced
comprehensively. The flowchart shown in Figure 1 depicts the main steps in developing the research,
which facilitates the understanding of the proposed approach.

 
The improvement of load prediction accuracy 

Sensitivity 
analysis by the 
SRCs method 

The predicted 
load P3 

The predicted 
load P1 

The predicted 
load P2 

Weather forecast data 
revised by MCM 

Weather 
forecast data 

SVM model 

The model built by 
DesignBuilder 

Actual 
weather data  

Real load 

Figure 1. The framework of the research methods.

2.1. The MCM of Random Sampling in Processing Weather Forecast Data

The MCM, also called a statistical simulation method, is an important numerical calculation
method guided by probability statistics theory due to the development of science technology and the
invention of electronic computers in the mid–1940s. It is an effective way to use random numbers
to solve many problems. The Monte Carlo simulation is a method of studying the distribution
characteristics by setting up a stochastic process and calculating the estimates and statistics of
parameters. Specifically, the reliability of the system is too complex, and it is difficult to establish
an accurate mathematical model for reliability prediction. When the model is inconvenient to apply,

213



Energies 2018, 11, 1900

the estimated value of the desired target can be approximated by the stochastic simulation method.
As the number of simulations increases, the expected accuracy of the target is gradually increased.

2.1.1. The Principle of the MCM

The Theorem of Large Numbers and Central Limits in Probability Theory are the theoretical basis
of the MCM [25]. The principle of the Monte Carlo simulation method is that when the problem or the
object itself has a probability feature, a sampling result can be generated by a computer simulation
method. The statistic or the value of the parameter can be calculated according to the sampling.

Based on these two theorems, the function can be expressed as follows.
Assuming the function [26]:

Y = f (X1, X2, · · · , Xn), (1)

where the probability distributions of the variables X1, X2, . . . , Xn are known. The values (x1, x2,
. . . , xn) of each set of random variables (X1, X2, . . . , Xn) are obtained by direct or indirect sampling,
then the value yi of the function Y can be determined according to Formula (2) [26]:

yi = f (xi1, xi2, · · · , xin) (2)

Sampling multiple times (i = 1, 2, . . . , m) repeatedly and independently, we can obtain a batch of
sampling numbers y1, y2, . . . , yn of the function Y, which are in accordance with the characteristics of
the normal distribution.

For each output, m possible results are obtained [20]:

Y =

⎡⎢⎢⎢⎢⎣
y1

y2
...

ym

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
f (x11, x12, . . . , x1n)

f (x21, x22, . . . , x2n)
...

f (xm1, xm2, . . . , xmn)

⎤⎥⎥⎥⎥⎦, (3)

2.1.2. The Steps of the MCM

First, a statistical analysis tool, such as IBM SPSS Statistics 19.0 software (19.0, IBM, Armonk,
NY, USA), is used to analyze the probability distribution of the errors of the weather forecast data
and the real data. A statistical model related to the problem is determined, of which the solution
is regarded as the probability distribution and mathematical expectation of the constructed model.
Generally, an appropriate theoretical distribution (e.g., Uniform distribution, Normal distribution,
Binomial distribution, Poisson distribution, Triangular distribution, etc.) is used to describe the
empirical probability distribution of random variables. If there is no typical theoretical probability
distribution that can be directly quoted, it is necessary to estimate an initial probability distribution of
the research object based on historical statistics and subjective prediction.

Second, it is important to generate random numbers to simulate the random changes of variables.
There are mainly two methods to generate random numbers. We can use an existing random numbers
table, or they can be calculated by using a computer program. In this paper, the program of the MCM
for the research was written into MATLAB to implement the Monte Carlo random sampling according
to the probability distribution obtained by the previous step. After multiple sampling, we can get m
possible results, such as Equation (2).

Finally, when the number of simulations is sufficiently large, the probability distribution of
the function Y and the concerned digital feature information can be close to the actual situation.
Stable conclusions could be obtained by averaging the statistics or estimates of the parameters.
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Y =
∑m

i=1 yi

m
, (4)

where yi (i = 1, 2, . . . , m) is the sampling result calculated by Equation (2). Y is the expected value of
the results.

2.2. The Load Forecast Model Based on SVM

SVM is the technique first proposed by Vapnik to solve classification and regression problems [27].
SVR is a machine learning method based on statistical learning theory. It can effectively solve
practical problems such as small samples and nonlinearities and has strong generalization ability. It
mainly includes two regression models: ε-SVR and υ-SVR. The ε-SVR model is used in this paper.
By introducing a kernel function, the nonlinear problem of low-dimensional space is transformed into
a linear problem in high-dimensional feature space using nonlinear mapping. After the transformation,
the decision function [28] is:

f (x) = ωT ·ϕ(x) + b (5)

In Formula (5), ω is a weight vector, b is a threshold, and ϕ(x) is a sublinear mapping relationship
from a low-dimensional space to a high-dimensional space.

The SVM uses the minimum structural risk to determine the parameters ω and b and introduces
the insensitive loss function parameter ε, which translates the problem into the following optimization
problems [28]:

min
1
2

ωTω + C ∑m
i=1(ξi + ξ∗i ), (6)

s.t. yi − ωT ·φ(xi)− b ≤ ε + ξi, (7)

ωT ·φ(xi) + b − yi ≤ ε + ξ∗i , (8)

ωT ·φ(xi) + b − yi ≤ ε + ξ∗i , (9)

where (x1, y1), . . . , (xm, ym) are a pair of input and output vectors, m is the number of samples, ω is
weight factor, b is the threshold value, C is error cost, input samples are mapped to higher dimensional
space by using kernel function φ, ξi is the upper training error and the ξ∗i is the lower training error
subject to ε-insensitive tube |y − (ωT ·ϕ(x) + b)| ≤ ε.

The SVM includes two parameters: Intrinsic parameters of the support vector machine, including
the penalty parameter ‘C’, the loss function parameter ‘ε’; and parameters in the kernel function,
such as the kernel width in the Gaussian kernel. The choices of these parameters are very important.
The penalty parameter ‘C’ directly affects the complexity and stability of the model. It can make the
model a tradeoff between complexity and training error. The loss function parameter ‘ε’ controls the
simulation of SVR, which effects the number of support vectors and the generalization ability of the
model. The width coefficient ‘γ’ in the kernel function that reflects the correlation between the vectors.
The main types of kernel functions include linear kernel functions, polynomial kernel functions,
Gaussian radial basis kernel functions, and sigmoid colony kernel functions. Among these functions,
Gaussian kernel functions, suited to represent the complex nonlinear relationship between input and
output [28,29], have the advantages of computational efficiency, simplicity, reliability, and ease of
adaptation. Gaussian kernel functions [28] are as follows:

K
(
xi, xj

)
= exp

(
−γ‖ xi − xj ‖2

)
, γ > 0 (10)

where the γ is the kernel parameter. When training SVM models, two free parameters need to be
identified, which are kernel parameter γ and regularization constant C.

Since the key parameters of the above support vector machine model directly affect the accuracy
of the model, this paper uses the particle swarm optimization algorithm to determine the optimal
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combination of these parameters, and then substitutes the optimal combination parameters into the
support vector machine model to obtain its regression model. The specific steps are as follows:

• Data normalization:

x∗ij =
xij − xjmin

xjmax − xjmin
, (11)

where xij, x∗ij are data before and after normalization, respectively, and xjmin and xjmax are the
respective minimum and maximum values of the column where xij is located. The normalization
process of the dependent variable data is similar to the independent variable data, and will not be
described here.

• Establishing the support vector machine objective function based on training samples.
• Using the particle swarm optimization algorithm to select the key parameters of the SVM to

obtain the optimal combination of the key parameters of the SVM.
• Substituting the optimal combination parameters into the SVM model to obtain its

regression model.
• Using the prediction sample and the model obtained above to forecast the energy consumption of

the building.

2.3. The SRCs Method for Sensitivity Analysis

Sensitivity analysis is used to study the mapping relations of uncertainties of input parameters and
outputs [30]. There are a lot of sensitivity analysis methods among previous studies [31]. Some methods
directly research the input-output map generated by the Monte Carlo method without additional
runs of the model. Other methods propagate specific samples are aimed at the sensitivity analysis,
for example, the screening method of Morris [32]. The SRCs method has been adopted in this
paper, of which the basis is to fit a linear multidimensional model [20] between model inputs and
model outputs.

ŷi = β0 + ∑k
j=1 β jxij (12)

The regression coefficients β j are determined such that the sum of error squares

∑N
i=1(yi − ŷi)

2 = ∑N
i=1

[
yi −

(
β0 + ∑k

j=1 β jxij

)]2
(13)

is minimized. The following ratio, called the coefficient of determination [20],

R2 =
∑N

i=1 (ŷi − yi)
2

∑N
i=1(yi − y)2 (14)

is a measure of how well the model (12) matches the data. The closer to 1 the corresponding value of
R2, the greater the model matches the data, but considering the different units and orders of magnitude
of parameters, these drawbacks are easily worked out reformulating Equation (12) [20] as

ŷ − y
σy

= ∑k
j=1

β jσj

σy

xj − xj

σj
, (15)

where y is the mean value and σy the variance of the output under the consideration

σy =

[
∑N

i=1
(yi − y)2

N − 1

]1/2

, (16)
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and xj is the mean value and σj the variance of the j input factor

σj =

[
∑N

i=1

(
xij − xj

)2

N − 1

]1/2

. (17)

The Standardized Regression Coefficient [20] for the input factor j is defined as

SRCJ =
β jσj

σy
. (18)

Under the premise that the input variables are independent, the SRCs show the importance of
each factor through moving each factor from its expected value by a fixed fraction of its standard
deviation while keeping all other factors at their expected values [20]. Calculating the SRCs means to
perform the regression analysis, with input and output parameters normalized to zero and standard
deviation one. A positive sign indicates that the input is positively correlated with the output, while a
negative sign indicates a negative correlation. The importance of these factors can be ranked according
to the absolute value of the SRCs.

3. Case Study and Results

3.1. The Framework of the Case Study

The framework of the case study is shown in Figure 2. The real-time meteorological parameters
that we collected were input into the DesignBuilder (DB), and the simulated cooling load was regarded
as the real load of the office building. Next, the actual meteorological data and simulated load data
are used as training samples to build a load forecasting model based on SVM. We use the actual
weather data in July as test samples to perform load forecasting to obtain the predicted load P1.
Then, the weather forecast data before and after processing are input into the SVM model to obtain
predicted loads P2 and P3, which are used for comparing the prediction accuracy of P2 and P3.
Sensitivity analysis was used to study the factors that have a significant impact on load forecasting in
the input parameters.

 

The predicted load P1 

Real load 

The predicted load P2 

The predicted load P3 

The 

SVM 

model 

The DB model 

Actual weather data  

Forecast weather data 

Forecast weather data 

revised by MCM 

Actual weather data 

(from Jun.16 to Sep.15) 

Figure 2. The framework of the case study.

In order to verify the validity of the MCM and the SVM model established, three evaluation
indexes are used to compare the prediction results between P1, P2 and P3, which include the following:
the Mean Absolute Percentage Error (MAPE) [33], the Mean Absolute Error (MAE) [34], the Root Mean
Square Error (RMSE) [34]. Their definitions and the calculation results can then be shown as follows.

MAPE =
1
N ∑N

i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ (19)
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MAE =
1
N
|ŷi − yi| (20)

RMSE =

√
1
N ∑N

i=1(ŷi − yi)
2 (21)

where yi is the real load, ŷi is the forecasting load, and N is the number of samples.
MAPE not only considers the error between the predicted value and the true value but also the

ratio between the error and the true value. It is a measure of the accuracy of the total prediction in the
statistical field [32]. MAE and RMSE can amplify the value of the larger prediction bias, which can
compare the stability of different prediction models.

3.2. Data Sources and Collection

The data used in the research work of this paper mainly include two parts: meteorological
data and load data. For the load forecasting work, there are mainly two ways to obtain the energy
consumption of the construction. First, it is obtained through testing. In addition, it is calculated using
energy simulation software. For the first approach, due to the low level of operation and management
techniques of the current HVAC system, it is usually regulated by the operating experience of workers.
The adjustment of the HVAC system has a certain lag, which cannot immediately bring changes to
the load even if it is adjusted according to actual conditions. In the case of fluctuations of indoor
temperature, the load data obtained by this method do not reflect the impact of real-time changes in
meteorological parameters. Therefore, this paper adopts the second method. We use DesignBuilder
to simulate the cooling load of the building, analyze the relevant data and establish the model.
The meteorological data used in this paper are composed of real-time weather data collected by
a small weather station shown in Figure 3 and weather forecast data from the weather website
(https://www.worldweatheronline.com). Table 1 shows the measurement information of the weather
elements recorded by the station.

 

Figure 3. Meteorological station.

Table 1. Measurement information of the meteorological elements.

Meteorological Element Measuring Range Resolution Ratio Accuracy

Dry-bulb temperature −50~+100 ◦C 0.1 ◦C ±0.2 ◦C
Relative humidity 0~100% 0.1% ±2% (≤80%) ±5% (>80%)
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This small weather station is located in Tianjin University, China, which consists of a PC-2-T
solar radiation observer, a PC-4 meteorological monitoring recorder, transducers and the management
software of the weather station monitoring system. It records the weather data every half hour
by these devices and transfers data to the computer via wired cables. The weather data collected
by the meteorological station mainly include dry-bulb temperature, relative humidity, wind speed,
wind direction, sunshine hours, rainfall, solar radiation intensity. In addition, among the weather
parameters from most existing weather websites, the prediction accuracies of the dry-bulb temperature
and the relative humidity are relatively high, while the prediction accuracies of parameters such
as wind speed, wind direction and solar radiation intensity are poor. Some cannot be predicted
in advance, such as solar radiation intensity. Most of the previous literature selected temperature
and relative humidity as inputs to establish the prediction model [14–16]. Therefore, in this paper,
we mainly recorded the hourly weather forecast data from the weather website, including dry-bulb
temperature and relative humidity, and discussed the influence of the uncertainty of forecast dry-bulb
temperature and relative humidity on the cooling load forecast.

3.3. The DB Model of the Office Building

The case selected in this article is an office building in Tianjin City, located in Binhai New District,
Tianjin, with a construction area of 10,723.16 square meters, building height of 22.80 m, 5 floors above
ground, 1 floor underground and a roof set with skylights.

The final model created by the DesignBuilder software version 4.2.0.015 is shown in Figure 4. DB is
the most comprehensive Graphical User Interface to the Energy Plus simulation engine which is widely
used for modeling [35]. Parameters of the building structure are obtained through research, and other
parameters refer to “Tianjin Public Building Energy Efficiency Design Standards” (DB 29-153-2014) for
setting, such as personnel density, personnel per room rate, lighting density, running time. The heat
source is supplied by the district heating pipe network in winter, and the terminal of the air conditioning
system is the fan coil system, while it uses the split Variable Refrigerant Volume (VRV) air conditioning
system for cooling in summer. It is difficult to obtain the hourly cooling load by measurement.
In addition, the HVAC systems of the office building are normally used from Monday to Friday and
are not used on weekends and holidays. Therefore, only the loads from 9 a.m. to 5 p.m. on weekdays
are considered in the scope of the study of load forecasting. The error analysis of the simulated hourly
heating load and the measured heating supply data from 9:00 to 17:00 for three working days is carried
out to verify the simulation.

 

Figure 4. The office building model built by DesignBuilder.

The result is shown in Figure 5. The average relative error between the measured data and the
simulated data was 16.1%, which is acceptable considering of the limitations of the on-site tests and
measurement instruments. Therefore, the simulation load can be regarded as the real load to establish
the database.
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Figure 5. Comparison between the simulated heating load and the measured heating supply.

3.4. The SVM Model and Validation

The final input parameters of the dynamic cooling load forecasting model for the construction
of this project still need to be determined in combination with the weather forecast and the actual
situation. For the 24-h-ahead load forecasting model, it is difficult to obtain information about historical
loads and solar radiation values for the 1-h to 3-h ahead, so we select weather data and load data from
16 June to 15 September as training samples (576 observation values) to establish a support vector
machine model. Table 2 gives some examples of training samples.

Table 2. Some examples of training samples.

Time
Output Inputs

L(h) L(d–1,h) T(h) T(h–1) T(h–2) T(h–3) RH(h) RH(h–1) RH(h–2)

7/3/9:00 −772.61 −584.99 27.4 26.0 25.2 24.7 78.9 84.2 87.8
7/3/10:00 −813.45 −649.59 28.3 27.4 26.0 25.2 75.1 78.9 84.2
7/3/11:00 −861.98 −700.47 28.3 28.3 27.4 26.0 74.3 75.1 78.9
7/3/12:00 −770.72 −660.08 28.5 28.3 28.3 27.4 71.8 74.3 75.1
7/3/13:00 −753.09 −723.44 28.8 28.5 28.3 28.3 71.3 71.8 74.3
7/3/14:00 −881.99 −876.29 29.3 28.8 28.5 28.3 68.2 71.3 71.8
7/3/15:00 −884.55 −844.72 29.2 29.3 28.8 28.5 68.6 68.2 71.3
7/3/16:00 −866.96 −824.41 28.8 29.2 29.3 28.8 69.2 68.6 68.2
7/3/17:00 −829.87 −815.52 28.5 28.8 29.2 29.3 70.2 69.2 68.6

L(d–1, h) represents the historical load at the same moment we predict for the previous day. T(h), T(h–1), T(h–2),
T(h–3) are the dry-bulb temperature at the moment we forecast and the time of the 1–h to 3–h ahead, respectively,
RH(h), RH(h–1), RH(h–2) are the relative humidity at the moment we forecast and the 1–h to 2–h ahead, respectively.

The particle swarm optimization algorithm is used to optimize the parameters of the
support vector machine, where we set ε = 0.1, Cε[0.1, 100], gε[0.01, 100], where g is γ in
Equation (10). The particle swarm optimization algorithm hyper-parameter optimization results
are: Best C = 17.9873, Best g = 0.01, CVmse = 0.0068. Figure 6 shows the results of the fitness
function of the particle swarm optimization algorithm.
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Figure 6. The fitness curve of the particle swarm optimization algorithm.

According to the above optimal parameter combination, the cooling load forecasting model
based on SVM can be obtained. We use the actual meteorological parameters in July as test samples.
Then, the forecasted data are anti-normalized to obtain the load forecast value, which is compared
with the actual load simulated by DesignBuilder to verify the accuracy of the SVM model. The results
of the comparison are shown in Figure 7.
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Figure 7. Comparison between the real load and forecast load P1. P1 is the forecast load adopting real
weather data using the SVM model.

By calculation, the MAPE of the SVM model is 10.74% compared to the actual situation. Due to
the 24-h-ahead load forecast model and the source limits of weather forecast data, we believe that the
model basically meets the forecasting requirements. The next research can be done using this model.
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3.5. Load Prediction with the Weather Forecast Data

3.5.1. Data Preprocessing Based on MCM

We recorded daily weather forecast data for July except for weekends with a total of 171 samples.
Through analysis, it is found that the errors between weather forecast data and real weather data obey
the normal distribution N[μ, σ2]. In order to study the influence of the uncertainty of the weather
forecast data on the accuracy of load forecasting, we use the MCM to modify the input parameters of
the SVM model, namely, the meteorological data. Then, the preprocessed weather forecast data are
input into the model for load forecasting.

The IBM SPSS Statistics 19.0 software is used to analyze the error distribution of seven
meteorological input parameters in turn. Figure 8 shows the error probability distribution between the
weather forecast temperature T(h–1) and the actual temperature one hour before the predicted time.
The mean value is μ = 0.588 and the standard deviation is σ = 1.799.

Figure 8. The error probability distribution of T(h–1).

Next, we write the program of MCM into MATLAB to implement the Monte Carlo random
sampling of its error Δw, setting the number of simulations M as 1000, and use a corresponding
calculation program to obtain a set of revised weather forecast data T(h–1)*. The formula is as follows:

T(h − 1)∗ = T(h − 1) + Δw (22)

For example, for forecasting the load at 9 o’clock on 3 July, it is known that the 1-h-ahead weather
forecast dry bulb temperature of the prediction moment T(h–1) is 27.2 ◦C. The result of the random
sampling for T(h–1) using the MCM based on 1000 runs of the model is shown in Figure 9. The most
frequent values of T(h–1) in the results of random sampling simulation are near 26.7 ◦C. Actually,
the error Δw obtained by random sampling is −0.6 through calculation, and the revised weather
forecast data T(h–1)* is 26.6 ◦C, which means that the expected value of T(h–1) is 26.6 ◦C and is closer
to the real weather data, i.e., 26.0 ◦C.
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Figure 9. Histogram and the cumulative probability distribution of the T(h–1)*.

Table 3 lists the example of the corrected weather forecast values using MCM and actual values to
predict the cooling load at 9 o’clock on 3 July. It can be seen that the weather forecast data corrected by
MCM are closer to the actual data. The other samples have the same effects and will not be repeated
here due to space limitations.

Table 3. The input parameters of the load forecasting model.

Data Type L(d–1,h) kw T(h) ◦C T(h–1) ◦C T(h–2) ◦C T(h–3) ◦C RH(h) % RH(h–1) % RH(h–2) %

Actual data −584.99 27.4 26.0 25.2 24.7 78.9 84.0 87.8
Forecast data −584.99 28.9 27.2 25.6 24.4 58.0 66.0 78.0
Revised data −584.99 28.2 26.6 25.1 24.1 68.0 75.1 86.0

Table 4 shows the probability distribution functions obeyed by the errors of input parameters
obtained from the statistical analysis by SPSS. The procedures for the correction of other parameters
are similar to that of the parameter T(h–1). We no longer describe more details here.

Table 4. The probability distribution of each input parameter.

Factor Parameter Probability Distribution

X2 T(h) N[0.677, 1.8892]
X3 T(h–1) N[0.588, 1.7992]
X4 T(h–2) N[0.494, 1.6762]
X5 T(h–3) N[0.358, 1.5392]
X6 RH(h) N[−9.424, 10.3792]
X7 RH(h–1) N[−8.882, 9.8222]
X8 RH(h–2) N[−8.038, 9.1782]

We imported the forecast data for July before and after the correction into the SVM model for load
forecasting. Both of the results are compared with the real cooling load simulated by the DesignBuilder,
which are shown in Figure 10.
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Figure 10. In (a), P2 is the forecasting load adopting weather forecast data, and in (b), P3 is the
forecasting load adopting the weather forecast data dealt with MCM.

As can be seen from the figures above, the prediction results of P2 and P3 are still different from
the actual load at some points, but P3 is closer to the real load from the overall level than P2, especially
from 10th to 24th July. This proves that the uncertainty analysis of weather forecast data for cooling
load forecasting based on MCM is beneficial to improve the accuracy of load prediction.

According to the results of load forecasting under the two scenarios, the evaluation of the
prediction performance is shown in Table 5. As can be seen from the table, the 24-h-ahead load
forecasting model based on SVM has good prediction accuracy. We established the SVM model and
used actual meteorological data for load forecasting. The MAPE of P1 compared with the actual load
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is 10.74%, which includes the uncertainty of the model itself. Then, using the weather forecast data
before and after processing with MCM to forecast load separately, we obtain the forecast results P2 and
P3. The accuracy of load forecasting using the meteorological forecast data directly and that of the data
processed by the MCM are 11.54%, 10.92%, respectively. In terms of MAE and RMSE, the values of P2
are 74.3807 kW and 90.8474 kW, respectively, while the values of P3 are 67.0291 kW and 85.4057 kW.
It is clear that the accuracy of P3 is better than that of P2.

Table 5. Comparison between P1, P2, and P3.

Prediction Load MAPE (%) MAE (kW) RMSE (kW)

P1 10.74% 67.8305 84.4138
P2 11.54% 74.3807 90.8474
P3 10.92% 67.0291 85.4057

3.5.2. Sensitivity Analysis

The SRCs for the case study are shown in Figure 11. The uncertainty in the previous seven
factors explains most of the variance in the cooling load forecasting that is observed in Figure 10b.
The remaining one uncertain factor RH(h–2) has little or no effect on the load forecasting.
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Figure 11. The SRCs of input parameters of the case study. X1 = L(d–1, h); X2 = T(h);X3 = T(h–1);
X4 = T(h–2); X5 = T(h–3); X6 = RH(h); X7 = RH(h–1); X8 = RH(h–2).

It can be found that from the input parameters we selected, the factors that have the greatest
impact on the load forecast are T(h–1) > T(h) > L(d–1, h) > T(h–3) > RH(h) > T(h–2) > RH(h–1) > RH(h–2)
in turn. Obviously, the load at the predicted moment is mostly affected by the outdoor temperature at
the previous moment. Due to the thermal inertia of the enclosure, the disturbance caused by the change
of the outdoor temperature will not immediately affect the indoor temperature. Heat is transferred
between the envelopes with detention and attenuation, which affects the load of the building in the
next moments.

4. Discussion

Overviewing the previous research in Section 1, most focused on the optimization of the load
prediction model itself to improve the accuracy of load prediction, and few studies have paid attention
to the influence of uncertainty of the weather forecast data on the load forecasting. This paper fills a
gap in this aspect by uncertainty analysis of weather forecast data for cooling load forecasting based
on MCM. Three evaluation indexes are used to compare the prediction results between P1, P2 and P3
in Section 3.4. The results illustrate that the evaluation of the load forecasting with the data processed
by the MCM is better than that of the load forecasting using the meteorological forecast data directly
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according to Figure 10 and Table 5. Furthermore, through sensitivity analysis, it was found that among
the selected weather parameters shown in Figure 11, the factor that had the greatest impact on the
prediction results was the 1-h-ahead temperature T(h–1) at the prediction moment.

It is worth noting that both of the results P2 and P3 are obtained by the SVM model, and their
uncertainties include two parts: one is the uncertainty from the SVM model itself, and the other is
the uncertainty from the weather forecast data. This paper mainly focuses on adopting the MCM
to process weather forecast data and explore the impact of the uncertainty of weather forecast on
load forecasting, not the load forecasting model itself. The research just selects the SVM model as an
example, because it is accepted by most researchers due to good performance. With the development
of artificial intelligence algorithm technology, the optimal combination of various algorithms is used
for load prediction [35], which indicates that the accuracy of load forecasting model itself can be
improved to some extent.

The data-preprocessing method based on MCM makes the forecasting results closer to the actual
load compared to those without processing, which is suitable for not only office buildings but also
other types of buildings. The precise load forecasting results are conducive to the HVAC system
operation control. Moreover, the MCM method is convenient for application. Historical weather
forecast data and real-time meteorological data are obtained from reliable weather forecasting agencies.
In addition, SPSS is used to analyze and obtain the probability distributions of the errors between
weather forecast data and real-time meteorological data. The revised weather data are obtained by
MATLAB with the relevant programs according to the probability distribution of the errors. Both of
the tools are free for application.

When using the MCM to process weather forecast data, it is necessary to analyze the probability
distribution characteristics that the error between the weather forecast data and actual weather data
obey. The current work is limited by the sources of historical weather forecast data. The larger the
historical samples size we collect from the weather forecast websites, the more accurate the probability
distribution function of the errors, and then the closer the modified weather forecast data to the actual
weather data. In the future, under the condition that the meteorological forecast data sources are more
widely available and reliable, the 1-h-ahead load forecasting model can be established to predict the
load combined with the MCM for data processing. It seems that more precise results of load predictions
will be obtained. With the completion of follow-up work, software of the data-preprocessing method
based on MCM will be developed.

5. Conclusions

This paper investigated the influence of the uncertainty of weather forecast data on the cooling
load forecast. Here, taking the 24-h-ahead SVM model as an example, the MCM was adopted to
preprocess meteorological forecast data to improve the accuracy of load forecasting. It was indicated
that the accuracy of the load forecasting with the data processed by the MCM is better than that of the
load forecasting using the meteorological forecast data directly, which is closer to the real load.

Among the selected input parameters, the factors that have the greatest impact on the load forecast
are T(h–1) >T(h) > L(d–1, h) > T(h–3) > RH(h) > T(h–2) > RH(h–1) >RH(h–2) in turn. Therefore, we must
improve the accuracy of model input parameters to reduce the influence of uncertainty deriving from
input parameters on load forecasting, especially those influential input parameters.
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Abstract: Smart grids require flexible data driven forecasting methods. We propose clustering
tools for bottom-up short-term load forecasting. We focus on individual consumption data analysis
which plays a major role for energy management and electricity load forecasting. The first section is
dedicated to the industrial context and a review of individual electrical data analysis. Then, we focus
on hierarchical time-series for bottom-up forecasting. The idea is to decompose the global signal and
obtain disaggregated forecasts in such a way that their sum enhances the prediction. This is done in
three steps: identify a rather large number of super-consumers by clustering their energy profiles,
generate a hierarchy of nested partitions and choose the one that minimize a prediction criterion.
Using a nonparametric model to handle forecasting, and wavelets to define various notions of
similarity between load curves, this disaggregation strategy gives a 16% improvement in forecasting
accuracy when applied to French individual consumers. Then, this strategy is implemented using
R—the free software environment for statistical computing—so that it can scale when dealing with
massive datasets. The proposed solution is to make the algorithm scalable combine data storage,
parallel computing and double clustering step to define the super-consumers. The resulting software
is openly available.

Keywords: clustering; forecasting; hierarchical time-series; individual electrical consumers; scalable;
short term; smart meters; wavelets

1. Introduction

1.1. Industrial Context

Energy systems are facing a revolution and many challenges. On the one hand, electricity
production is moving to more intermittency and complexity with the increase of renewable energy
and the development of small distributed production units such as photovoltaic panels or wind farms.
On the other hand, consumption is also changing with plug-in (hybrid) electric vehicles, heat pumps,
the development of new technologies such as smart phones, computers, robots that often come
with batteries. To maintain the electricity quality, energy stakeholders are developing smart grids
(see [1,2]), the next generation power grid including advance communication networks and associated
optimisation and forecasting tools. A key component of the smart grids are smart meters. They allow
two-sided communication with the customers, real time measurement of consumption and a large
scope of demand side management services. A lot of countries have deployed smart meters, as stated
in [3], the UK, the US and China have respectively deployed 2.9, 70 and 96 million of such equipments
in 2016. In France, 35 million will be deployed before 2021 for a global cost of 5 billion (see e.g., [4]).
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Ref. [5] mentions that Sweden and Italy have achieved full deployment and [6] that Italian distribution
system operators are planning the second wave of roll-outs.

This results in new opportunities such as local optimisation of the grid, demand side management
and smart control of storage devices. Exploiting the smart grid efficiently requires advanced data
analytics and optimisation techniques to improve forecasting, unit commitment, and load planning
at different geographical scales. Massive data sets are and will be produced as explained in [7]: data
from energy consumption measured by smart meters at a high frequency (every half minute instead of
every 6 months); data from the grid management (e.g., Phasor Measurement Units); data from energy
markets (prices and bidding, transmission and distribution system operators data, such as balancing
and capacity); data from production units and equipments for their maintenance and control (sensors,
periodic measures...). A lot of efforts are made by utilities to develop datalakes and IT structures to
gather and make these data available for their business units in real time. Designing new algorithms
to analyse and process these data at scale is a key activity and a real competitive advantage.

We will focus on individual consumption data analysis which plays a major role for
energy management and electricity load forecasting, designing marketing offers and commercial
strategies, proposing new services as energy diagnostics and recommendations, detect and prevent
non-technical losses.

1.2. Individual Electrical Consumption Data: A State-of-the-Art

Individual consumption data analysis is, according to the development of smart meters, a popular
and growing field of research. Composing an exhaustive survey of recent realizations is then a difficult
challenge not addressed here. As detailed in [3], individual consumption data analytics covers various
fields of statistics and machine learning: time series, clustering, outlier detection, deep learning,
matrix completion, online learning among others.

Given a data set of individual consumptions, a first natural step is exploratory: clustering, which is
the most popular unsupervised learning approach. The purpose of clustering is to partition a dataset
into homogeneous subsets called clusters (see [8]). Homogeneity is measured according to various
criteria such as intra and inter class variances, or distance/dissimilarity measures. The elements of a
given cluster are then more similar to those of the same cluster than the elements of the other clusters.
Time series clustering is an active subfield where each individual is not characterised by a set of scalar
variables but are described by time series, signals or functions, considered as a whole, opening the way
for signal processing techniques or functional data analysis methods (see [9,10] for general surveys).

Clustering methods for electricity load data have been widely applied for profiling or
demand response management. Refs. [11,12] give an overview of the clustering techniques for
customer grouping, finding patterns into electricity load data or detecting outliers and apply it to
400 non-residential medium voltage customers. Clustering can be seen as longitudinal when the
objective is to cluster temporal patterns (e.g., daily load curves) from a single individual or transversal
when the goal is to build clusters of customers according to their load consumption profile and/or
side information. The main application of clustering is load profiling which is essential for energy
management, grid management and demand response (see [13]). For example, in [14] data mining
techniques are applied to extract load profiles from individual load data of a set of low voltage
Portuguese customers, and then supervised classification methods are used to allocate customers to the
different classes. In [15], load profiles are obtained by iterative self-organizing data analysis on metered
data and demonstrated on a set of 660 hourly metered customers in Finland. Ref. [16] proposes an
unsupervised clustering approach based on k-means on features obtained by average seasonal curves
using minute metered data from 103 homes in Austin, TX. Correspondence between clusters, their
associated profiles and survey data are also studied. Authors of [17] suggest a k-means clustering
to derive daily profiles from 220,000 homes and a total of 66 millions daily curves in California.
Other approaches based on mixture models are presented in [18] for customers categorization and
load profiling on a data set of 2613 smart metered household from London.
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Another interest of clustering is forecasting, more precisely bottom-up forecasting which means
forecasting the total consumption of a set of customers using individual metered data. Forecasting is
an obvious need for optimisation of the grid. As pointed previously, it becomes more and more
challenging but also crucial to forecast electricity consumption at different “spatial” scale (a district,
a city, a region but also a segment of customers). Bottom up methods are a natural approach
consisting of building clusters, forecasting models in each cluster and then aggregating them. In [19],
clustering algorithms are compared according to their forecasting accuracy on a data set consisting
of 6000 residential customers and SME in Ireland. Good performances are reached but the proposed
clustering methods are defined quite independently of the model used for forecasting. On the same
data set, Ref. [20] associate a longitudinal clustering and a functional forecasting model similar to
KWF (see [21]) for forecasting individual load curves.

A clustering method supervised by forecasting accuracy is proposed in [22] to improve the forecast
of the total consumption of a French industrial subset obtaining a substantial gain but suffering from
high computational time. In [23], a k-means procedure is applied on features consisting of mean
consumption for 5 well chosen periods of day, mean consumption per day of a week and peak position
into the year. In each cluster a deep learning algorithm is used for forecasting and then the bottom
up forecast is the simple sum of clusters forecasts. Results showing a minimum gain of 11% in
forecast accuracy are provided on the Irish data set and smart meter data from New-York. On the
Irish data again, Ref. [3] propose to build an ensemble of forecasts from a hierarchical clustering on
individual average weekly profiles, coupled with a deep learning model for forecasting in each cluster.
Different forecasts corresponding to different sizes of the partition are at the end aggregated using
linear regression.

We propose here a new approach, following the previous work of [24], to build clusters and
forecasting models that are performant for the bottom-up forecasting problem as well as from the
computational point of view.

The paper is organized as follows. After this first section introducing the industrial context and a
state-of-the-art review of individual electrical data analysis, Section 2 provides the big picture of our
proposal for bottom-up forecasting from smart meter data, without technical details. The next three
sections focus on the main tools: wavelets (Section 3) to represent functions and to define similarities
between curves, the nonparametric forecasting method KWF (Section 4) and the wavelet-based
clustering tools to deal with electrical load curves (Section 5). Section 6 is specifically devoted
to the upscaling issue and strategy. Section 7 describes an application for forecasting a French
electricity dataset. Finally, Section 8 collects some elements of discussion. It should be noted that we
tried to write the paper in such a way that each section could be read independently of each other.
Conversely, some sections could be skipped by some readers, without altering the local consistency of
the others.

2. Bottom-Up Forecasting from Smart Meter Data: Big Picture

We present here our procedure to get a hierarchical partition of individual customers,
schematically represented in Figure 1. On the bottom line, there are N individual customers, say
I1, . . . , IN . Each of them has an individual demand coded into an electrical load curve. At the top of
the schema, there is one single global demand G obtained by the simple aggregation of the individual
ones at each time step, i.e., G = ∑n In. We look for the construction of a set of K medium level
aggregates, A1, . . . , AK such that they form a partition of the individuals. Each of the considered
entities (individuals, medium level aggregates and global demand) can be considered as time series
since they carry important time dependent information.
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Figure 1. Schematic representation of a hierarchy of customers.

Seasonal univariate time series can naturally be partitioned with regards to time. For example,
electrical consumption could be viewed as a sequence of consecutive daily curves which exhibit rich
information related to calendar, weather conditions or tariff options. Functional data analysis and
forecasting is then a very elegant method to consider. Ref. [25] propose a non-parametric functional
method called KWF (Kernel + Wavelet + Functional) to cope with nonstationary time series. Briefly,
the main idea is to see the forecasts as a weighted mean of futures of past situations. The weights are
obtained according to a similarity index between past curves and actual ones.

Pattern research-based methods repose on a fully non parametric and thus more general frame
than prediction approaches more adapted to electricity load demand. This point can be seen as both
a weakness and a strength. Specific models can better express the known dependences of electricity
demand to long-term trend, seasonal components (due to the interaction of economic and social
activities) and climate. However, they usually need more human time to be calibrated. The arrival of
new measurement technologies structure of intelligent networks, with more local and high resolution
information, unveils forecasting electricity consumption at local scale.

Several arguments can be given to prefer bottom-up approaches with respect to some
descending alternatives. Let us briefly mention two of them. The first is related to electrical individual
signals themselves which need to be smoothed and the most natural and interpretable way is to
define small aggregates of individuals leading to more stable signals, easier to analyse and to forecast
(see [17]). The second reason is more statistically related and refers to descending clustering strategies
which involve supervised strategies which appear to be especially time consuming (see [22]).

Bottom-up forecasting methods are composed of two successive steps: clustering and forecasting.
In the clustering step, the objective is to infer classes from a population such that each class could be
accurately forecast. Typically, each class corresponds to customers with specific daily/weekly profile,
different relationships to temperature, tariff options or prices (see e.g., [26] regarding demand response).
The second step consists in aggregating forecasts to predict the total or any subtotal. In the context
of demand response and distribution grid management it could be forecasting the consumption of
a district, a town or a substation on the distribution grid.

Recently, Ref. [24] suggested a clustering method achieving both clustering and forecasting of
a population of individual customers. They decompose the total consumption such that the sum
of disaggregated forecasts improves significantly the forecast of the total. The strategy includes
three steps: in the first one super-consumers are designed with a greedy but computationally efficient
clustering, then a hierarchical partitioning is done and among which the best partition is chosen
according to a disaggregated forecast criterion. The predictions are made with the KWF model which
allows one to use it as a off-the-shelve tool.

In concrete, data for each customer is a set of P time dependent (potentially noisy) records evenly
sampled at a relatively high frequency (e.g., 1/4, 1/2 or hourly records). Then, we consider the data
for each individual as a time series that we treat as a function of time. Wavelets are used to code
the information about the shape of the curves. Thanks to nice mathematical properties of wavelets,
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we compress the information of each curve into a handy number of coefficients (in total J = [log2(P)])
that are called relative energetic contributions. The compression is such that discriminative power is
kept even if information is lost. Data are so tabulated in a matrix where lines correspond to observations
and columns to variables (see Figure 2).

Figure 2. From curves to matrices.

3. Wavelets

A wavelet ψ is a sufficiently regular and well localized function verifying a simple admissibility
condition. During a certain time a wavelet oscillates like a wave and is then localized in time due
to a damping. Figure 3 represents the Daubechies least-asymmetric wavelet of order 6. From this
single function ψ, using translation and dilation a family of functions that form the basic atoms
of the Continuous Wavelet Transform (CWT) is derived From this single function ψ, a family of
functions is derived using translation and dilation that form the basic atoms of the Continuous Wavelet
Transform (CWT)

ψa,b(t) =
1√
a

ψ

(
t − b

a

)
, a ∈ R+∗ , b ∈ R.

Figure 3. Daubechies least-asymmetric wavelet with filter size 6.

For a function z(t) of finite energy we define its CWT by the function Cz of two
real-valued variables:

Cz(a, b) =
∫ ∞

−∞
z(t)ψa,b(t)dt

Each single coefficient measures the fluctuations of function f at scale a, around the position b.
Figure 4 gives a visual representation of |Cz(a, b)|2, also known as wavelet spectrum, for a 10 day
period of load demand sampled at 30 min. The waves that one can visually find on the image indicate

233



Energies 2018, 11, 1893

the highest zone of fluctuations which corresponds to the days. CWT is then extremely redundant
but it is useful for example, to characterize the Holderian regularity of functions or to detect transient
phenomena or change-points. A more compact wavelet transform can also be defined.

Figure 4. Wavelet spectrum of a week of electrical load demand.

The Discrete Wavelet Transform is a technique of hierarchical decomposition of the finite
energy signals. It allows representing a signal in the time-scale domain, where the scale plays a
role analogous to that of the frequency in the Fourier analysis ([27]). It allows to describe a real-valued
function through two objects: an approximation of this function and a set of details. The approximation
part summarizes the global trend of the function, while the localized changes (in time and frequency)
are captured in the detail components at different resolutions. The analysis of signals is carried out by
wavelets obtained as before from simple transformations of a single well-localized (both in time and
frequency) mother wavelet. A compactly supported wavelet transform provides with an orthonormal
basis of waveforms derived from scaling (i.e., dilating or compressing) and translating a compactly
supported scaling function φ̃ and a compactly supported mother wavelet ψ̃. If one works over the
interval [0, 1], periodized wavelets are useful denoting by

φ(t) = ∑
l∈Z

φ̃(t − l) and ψ(t) = ∑
l∈Z

φ̃(t − l), for t ∈ [0, 1],

the periodized scaling function and wavelet, that we dilate or stretch and translate

φj,k(t) = 2j/2φ(2jt − k), ψj,k(t) = 2j/2φ(2jt − k).

For any j0 ≥ 0, the collection

{φj0,k, k = 0, 1, . . . , 2j0 − 1; ψj,k, j ≥ j0, k = 0, 1, . . . , 2j − 1},

is an orthonormal basis of H. Then, for any function z ∈ H, the orthogonal basis allows one to write
the development

z(t) =
2j0−1

∑
k=0

cj0,kφj0,k(t) +
∞

∑
j=j0

2j−1

∑
k=0

dj,kψj,k(t), (1)

where cj,k and dj,k are called respectively the scale and the wavelet coefficients of z at the position k of
the scale j defined as

cj,k =< z, φj,k >H dj,k =< z, ψj,k >H .
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The wavelet transform can be efficiently computed using the notion of mutiresolution analysis of
H (MRA), introduced by Mallat, who also designed a family of fast algorithms (see [27]). Using MRA,
the first term at the right hand side of (1) describe a smooth approximation of the function z at a
resolution level j0 while the second term is the approximation error. It is expressed as the aggregation
of the details at scales j ≥ j0. If one wants to focus on the finer details then only the information at the
scales {j : j ≥ j0} is to be looked.

Figure 5 is the multiresolution analysis of a daily load curve. The original curve is represented on
the top leftmost panel. The bottom rightmost panel contains the approximation part at the coarsest scale
j0 = 0, that is, a constant level function. The set of details are plotted by scale which can be connected
to frequencies. With this, the detail functions clearly show the different patterns ranging between low
and high frequencies. The structure of the signal is centred on the highest scales (lowest frequencies),
while the lowest scale (highest frequencies) keep the noise of the signal.

of a daily load curve.

Figure 5. Multiresolution analysis

From a practical point of view, let us suppose for simplicity that each function is observed on
a fine time sampling grid of size N = 2J (if not, one may interpolate data to the next power of two).
In this context we use a highly efficient pyramidal algorithm ([28]) to obtain the coefficients of the
Discrete Wavelet Transform (DWT). Denote by z = {z(tl) : l = 0, . . . , Ni − 1} the finite dimensional
sample of the function z. For the particular level of granularity given by the size N of the sampling grid,
one rewrites (1) using the truncation imposed by the 2J points and the coarser approximation level
j0 = 0, as:

z̃J(t) = c0φ0,0(t) +
J−1

∑
j=0

2j−1

∑
k=0

dj,kψj,k(t). (2)

Hence, for a given wavelet ψ and a coarse resolution j0 = 0, one may define the DWT operator:

Wψ : RN → R
N , z �→ (

d0, . . . , dJ−1, c0 f
)
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with dj = {dj,0, . . . , dj,2j−1}. Since the DWT operator is based on an L2-orthonormal basis
decomposition, the energy of a square integrable signal is preserved:

‖z‖2
2 = c2

0 +
J−1

∑
j=0

2j−1

∑
k=0

d2
j,k = c2

0 +
J−1

∑
j=0

‖dj‖2
2. (3)

Hence, the global energy ‖z‖2
2 of z is distributed over some energetic components. The key fact

that we are going to exploit is how these energies are distributed and how they contribute to the
global energy of a signal. Then we can generate a handy number of features that are going to be used
for clustering.

4. KWF

4.1. From Discrete to Functional Time Series

Theoretical developments and practical applications associated with functional data analysis
were mainly guided by the case of independent observations. However, there is a wide range of
applications in which this hypothesis is not reasonable. In particular, when we consider records on
a finer grid of time assuming that the measures come from a sampling of an underlying unknown
continuous-time signal.

Formally, the problem can be written by considering a continuous stochastic process
X = (X(t), t ∈ R). So the information contained in a trajectory of X observed on the interval [0, T],
T > 0 is also represented by a discrete-time process Z = (Zk(t), k = 0, . . . , n; t ∈ [0, δ]) where
Zk(t) = X((δ − 1)k + t) comes from the segmentation of the trajectory X in n blocks of size
δ = T/n ([29]). Then, the process Z is a time series of functions. For example, we can forecast
Zn+1(t) from the data Z1, . . . , Zn. This is equivalent to predicting the future behaviour of the X process
over the entire interval [T, T + δ] by having observed X on [0, T]. Please note that by construction,
the Z1, . . . , Zn are usually dependent functional random variables.

This framework is of particular interest in the study of electricity consumption. Indeed, the discrete
consumption measurements can naturally be considered as a sampling of the load curve of an electrical
system. The usual segment size, δ = 1 day, takes into account the daily cycle of consumption.

In [21], the authors proposed a prediction model for functional time series in the presence of
non stationary patterns. This model has been applied to the electricity demand of Electricité de
France (EDF). The general principle of the forecasting model is to find in the past, situations similar
to the present and linearly combine their futures to build the forecast. The concept of similarity
is based on wavelets and several strategies are implemented to take into account the various non
stationary sources. Ref. [30] proposes for the same problem to use a predictor of a similar nature
but applied to a multivariate process. Next, [31] provide an appropriate framework for stationary
functional processes using the wavelet transform. The latter model is adapted and extended to the
case of non-stationary functional processes ([32]).

Thus, a forecast quality of the same order of magnitude as other models used by EDF is obtained
for the national curve (highly aggregated) even though our model can represent the series in a
simple and parsimonious way. This avoids explicitly modeling the link between consumption and
weather covariates, which are known to be important in modeling and often considered essential to
take into account. Another advantage of the functional model is its ability to provide multi-horizon
forecasts simultaneously by relying on a whole portion of the trajectory of the recent past, rather than
on certain points as univariate models do.
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4.2. Functional Model KWF

4.2.1. Stationary Case

We consider a stochastic process Z = (Zi)i∈Z assumed for the moment, to be stationary, with
values in a functional space H (for example H = L2([0, 1])). We have a sample of n curves Z1, . . . , Zn

and the goal is to forecast Zn+1. The forecasting method is divided in two steps. First, find among the
blocks of the past those that are most similar to the last observed block. Then build a weight vector
wn,i, i = 1, . . . , n − 1 and obtain the desired forecast by averaging the future blocks corresponding to
the indices 2, . . . , n respectively.

First step.

To take into account in the dissimilarity the infinite dimension of the objects to be compared, the
KWF model represents each segment Zi, i = 1, . . . , n, by its development on a wavelet basis truncated
to a scale J > j0. Thus, each observation Zi is described by a truncated version of its development
obtained by the discrete wavelet transform (DWT):

Zi,J(t) =
2j0−1

∑
k=0

c(i)j0,kφj0,k(t) +
J

∑
j=j0+1

2j−1

∑
k=0

d(i)j,k ψj,k(t), t ∈ [0, 1].

The first term of the equation is a smooth approximation to the resolution j0 of the global behaviour
of the trajectory. It contains non-stationary components associated with low frequencies or a trend.
The second term contains the information of the local structure of the function. For two observed
segments Zi(t) and Zi′(t), we use the dissimilarity D defined as follows:

D(Zi, Zi′) =
J

∑
j=j0+1

2−j
2j−1

∑
k=0

(d(i)j,k − d(i
′)

j,k )2. (4)

Since the Z process is assumed to be stationary here, the approximation coefficients do not contain
useful information for the forecast since they provide local averages. As a result, they are not taken
into account in the proposed distance. In other words, the dissimilarity D makes it possible to find
similar patterns between curves even if they have different approximations.

Second step.

Denote Ξi = {c(i)J,k : k = 0, 1, . . . , 2J − 1} the set of scaling coefficients of the i-th segment Zi at the

finer resolution J. The prediction of scaling coefficients (at the scale J ) Ξ̂n+1 of Zn+1 is given by:

Ξ̂n+1 =
∑n−1

m=1 Khn(D(Zn,J , Zm,J))Ξm+1

1/n + ∑n−1
m=1 Khn(D(Zn,J , Zm,J))

,

where K is a probability kernel. Finally, we can apply the inverse transform of the DWT to Ξ̂n+1 to
obtain the forecast of the Zn+1 curve in the time domain. If we note

wn,m =
Khn(D(Zn,J , Zm,J))

∑n−1
m=1 Khn(D(Zn,J , Zm,J))

, (5)

these weights allow to rewrite the predictor as a barycentre of future segments of the past:

Ẑn+1(t) =
n−1

∑
m=1

wn,mZm+1(t). (6)
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4.2.2. Beyond the Stationary Case

In the case where Z is not a stationary functional process, some adaptations in the predictor (6)
must be made to account for nonstationarity. In Antoniadis et al, (2012) corrections are proposed
and their efficiency is studied for two types of non-stationarities: the presence of an evolution of the
mean level of the approximations of the series and the existence of classes segments. Let us now be
more precise.

It is convenient to express each curve Zi according to two terms Si(t) and Di(t) describing
respectively the approximation and the sum of the details,

Zi(t) = ∑
k

c(i)j0,kφj0,k(t) + ∑
j≥j0

∑
k

d(i)j,k ψj,k(t)

= Si(t) +Di(t).

When the curves Zm+1 have very different average levels, the first problem appears. In this case, it
is useful to centre the curves before calculating the (centred) prediction, and then update the forecast in
the second phase. Then, the forecast for the segment n + 1 is ̂Zn+1(t) = ̂Sn+1(t) + ̂Dn+1(t). Since the
functional process Dn+1(t) is centred, we can use the basic method to obtain its prediction

̂Dn+1(t) =
n−1

∑
m=1

wm,nDn+1(t), (7)

where the weights wm,n are given by (5). Then, to forecast Sn+1(t) we use

̂Sn+1(t) = Sn(t) +
n−1

∑
m=1

wm,nΔ(Sn)(t). (8)

To solve the second problem, we incorporate the information of the groups in the prediction stage
by redefining the weights wm,n according to the belonging of the functions m and n to the same group:

w̃m,n =
wm,n1{gr(m)=gr(n)}

∑n
m=1 wm,n1{gr(m)=gr(n)}

, (9)

where 1{gr(m)=gr(n)} is equal to 1 if the groups gr(n) of the n-th segment is equal to the group of
the m-th segment and zero elsewhere. If the groups are unknown, they can be determined from an
unsupervised classification method.

The weight vector can give an interesting insight into the prediction power carried out by the
shape of the curves. Figure 6 represents the computed weights obtained for the prediction of a day
during Spring 2007. When plotted against time, it is clear that the only days found similar to the
current one are located in a remarkably narrow position of each year in the past. Moreover, the weights
seem to decrease with time giving more relevance to those days closer to the prediction past. A closer
look at the weight vector (not shown here) reveals that only days in Spring are used. Please note that
no information about the position of the year was used to compute the weights. Only the information
coded in the shape of the curve is necessary to locate the load curve at its effective position inside
the year.
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Figure 6. Vector of weights (sorted chronologically) obtained for the prediction of a day during Spring.

Figure 7 is also of interest to understand how the prediction works. There, the plot on the left
contains all the days of the dataset against which the similarity was computed with respect to the curve
in blue. A transparency scale which makes visible only those curves with a relatively high similarity
index. The plot on the right contains the futures of the past days on the left. These are also plot on the
transparent scale with the curve in orange which is the prediction given by the weighted average.

Figure 7. Past and future segments involved in the construction of the prediction by KWF.
On each panel, all the days are represented with a transparent colour making visible only the most
relevant days for the construction of the predictor.

5. Clustering Electrical Load Curves

Individual load prediction is a difficult task as individual signals have a high volatility.
The variability of each individual demand is such that the ratio signal to noise decreases dramatically
when passing from aggregate to individual data. With almost no hope of predicting individual data, an
alternative strategy is to use these data to improve the prediction of the aggregate signal. For this, one
may rely on clustering strategies where customers of similar consumption structure will be put into
classes in order to form groups of heterogeneous clients. If the clients are similar enough, the signal of
the aggregate will gain in regularity and thus in predictability.

Many clustering methods exist in the specialized literature. We adopt the point of view of [33]
where two strategies for clustering functional data using wavelets are presented. While the first one
allows to rapidly create groups using a dimension reduction approach, the second one permits to
better exploit the time-frequency information at the price of some computational burden.
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5.1. Clustering by Feature Extraction

From Equation (3), we can see that the global energy of the curve is approximately decomposed
into energy components associated with the smooth approximation of the curve (c2

0) plus a set of
components related to each detail level. In [33] these detail levels were called the absolute contributions
ACj = ‖dj‖2

2, j = 0, . . . , J − 1 of each scale to the global energy of the curve. Notice that the
approximation part is not of primary interest since the underlying process of electrical demand may be
highly non stationary. With this, we focus only on the shape of the curves and on its frequency content
in order to unveil the structure of similar individual consumers to construct clusters. A normalized
version of absolute contributions can be considered, which is called relative contributions and is
defined as RCj = ACj/ ∑j ACj. After this representation step, the result is depicted by the schema
in Figure 2, where the original curves are now embedded into a multi dimensional space of dimension J.
Moreover if relative contributions are used, the points are in the simplex of RJ.

Let us describe now the clustering step more precisely. For this any clustering algorithm on
multivariate data can be used. Since the time complexity of this step is not only dependant on the
sample size N but also on the number of variables P, we choose to detect and remove irrelevant
features using a variable selection algorithm for unsupervised learning introduced in [34]. Besides the
reduction of the computation time, feature selection allows also to gain in interpretability of the
clustering since it highly depends on the data.

The aim of this first clustering step is to produce first a coarse clustering with a rather large quantity
K′ of aggregated customers, each of them called super-customer (SC). The synchrone demand—that is
to say, the sum of all individual demand curves in a specific group—is computed then in all clusters.
A parallel can be drawn with the primary situation: we now obtain K′ coarsely aggregated demands
over P features, that can be interpreted as a discrete noisy sampling of a curve.

Figure 8 shows this first clustering round on the first row of the schema.

Figure 8. Two step clustering.

5.2. Clustering Using a Dissimilarity Measure

The second clustering stage consists in grouping the SC into a small quantity K of
(super-)aggregates, and building a hierarchy of partitions—as seen before. We consider the samples
as functional objects and thus define a dissimilarity between curves, to obtain a dissimilarity matrix
between the SC. The projection alternative (working with coefficients) was discarded because of the
loss of information.
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Following [33] we use the wavelet extended R2 based distance (WER) which is constructed on
top of the wavelet coherence. If x(t) and z(t) are two signals, the wavelet coherence between them is
defined as

Rx,z(a, b) =
|S(Cx,z(a, b))|

|S(Cx,x(a, b))|1/2|S(Cz,z(a, b))|1/2 ,

where Cx,z(a, b)) = Cx(a, b))C∗
z (a, b)) is the cross-wavelet transform, and S is a smooth operator. Then,

the wavelet coherence can be seen as a linear correlation coefficient computed in the wavelet domain
and so localized both in time and scale. Notice that smoothing is a mandatory step in order to avoid a
trivial constant Rx,z(a, b) = 1 for all a, b.

The wavelet coherence is then a two dimensional map that quantifies for each time-scale location
the strength of the association between the two signals. To produce a single measure of this map,
some kind of aggregation must be done. Following the construction of the extended determination
coefficient R2, Ref. [33] propose to use the wavelet extended R2 which can be computed using

WER2
x,z =

∑J
j=1

(
∑N

k=1 |S(Cx,z(j, k))|
)2

∑J
j=1

(
∑N

k=1 |S(Cx,x(j, k))|∑N
k=1 |S(Cz,z(j, k))|

) .

Notice that WER2
x,z is a similarity measure and it can easily be transformed into a dissimilarity

one by

D(x, z) =
√

JN(1 − WER2
x,z),

where the computations are done over the grids {1, . . . , N} for the locations b and {aj, j = 1, . . . J} for
the scales a.

The boundary scales (smallest and greatest) are generally taken as a power of two which depend
respectively on the minimum detail resolution and the size of the time grid. The other values
correspond usually to a linear interpolation over a base 2 logarithmic scale.

While the measure is justified by the power of the wavelet analysis, in practice this distance
implies heavy computations involving complex numbers and so requires of a larger memory space.
This is one of the two reason that renders its use on the original dataset intractable. The second reason
is related to the size of the dissimilarity matrix that results from its applications and that grows with
the square of the number of time series. Indeed, such a matrix obtained from the SC is largely tractable
for a moderate number of super customers of about some hundreds, but it is not if applied on the
whole dataset of some tens of millions of individual customers. The trade off between computation
time and precision is resolved by a first clustering step that dramatically reduces the number of time
series using the RC features; and a second step that introduces the finer but computationally heavier
dissimilarity measure on the SC aggregates.

Since K′ (the number of SC) is sufficiently small, a dissimilarity matrix between the SC can be
computed in a reasonable amount of time. This matrix is then used as the input of the classical
Hierarchical Agglomerative Clustering (HAC) algorithm, used here with the Ward link. Its output
corresponds to the desired hierarchy of (super-)customers.

Otherwise, one may use other clustering algorithms that use a dissimilarity matrix as input
(for instance Partitioning Around Mediods, PAM) to get an optimal partitioning for a fixed number
of clusters. The second row of the scheme in Figure 8 represents this second step clustering.

6. Upscaling

We discuss in this section the ideas we develop to upscale the problem. Our final target is to
work over twenty million time-series. For this, we run many independent clustering tasks in parallel,
before merging the results to obtain an approximation of the direct clustering. We give proposed
solutions that were tested in order to improve the code performance. Some of our ideas proved to
be useful for moderate sample sizes (say tens of thousands) but turned to be counter-productive
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for larger sizes (tens of millions). Of course all these considerations depend heavily on the specific
material and technology. We recall that our interest is on relatively standard scientific workstations.
The algorithm we use on the first step of the clustering is described below. We then show the results of
the profiling of our whole strategy to highlight where are the bottlenecks when one wishes to up-scale
the method. We end this section discussing the solutions we proposed.

6.1. Algorithm Description

The massive dataset clustering algorithm is as follows:

1. Data serialization. Time series are given in a verbose by-column format. We re-code all of them in
a binary file (if suitable), or a database.

2. Dimensionality reduction. Each series of length N is replaced by the log2(N) energetic coefficients
defined using a wavelet basis. Eventually a feature selection step can be performed to further
reduction on the number of features.

3. Chunking. Data is chunked into groups of size at most nc, where nc is a user parameter (we use
nc = 5000 in the next section experiments).

4. Clustering. Within each group, the PAM clustering algorithm is run to obtain K0 clusters.
5. Gathering. A final run of PAM is performed to obtain K′ mediods, K′ � n out of the nc × K0

mediods obtained on the chunks..

From these K′ medoids the synchrone curves are computed (i.e., the sum of all curves within each
group for each time step), and given on output for the prediction step.

6.2. Code Profiling

Figure 9 gives some timings obtained by profiling the runs of our initial (C) code. To give a
clearer insight, we also report the size of the objects we deal with. The starting point is the ensemble of
individual records of electricity demand for a whole year. Here, we treat over 25,000 clients sampled
half-hourly during a year. The tabulation of these data to obtain a matrix representation suitable to fit
in memory take about 7 min. and requires over 30 Gb of memory.

Task Time Memory Disk

Raw (15 Gb) to matrix 7 min 30 Gb 2.7 Gb
Compute contributions 7 min <1 Gb 7 Mb
1st stage clustering 3 min <1 Gb –
Aggregation 1 min 6 Gb 30 Mb
Wer distance matrix 40 min 64 Gb 150 Kb
Forecasts 10 min <1 Gb –

Figure 9. Code profiling by tasks.

6.3. Proposed Solutions

Two main solutions are to be discussed, concerning the internal data storage strategy and the use
of a simple parallelization scheme. The former looks for reducing the communication time of internal
operations using serialization. The latter attacks the major bottleneck of our clustering approach,
that is the construction of the WER dissimilarity matrix.

The initial format (verbose, by-column) is clearly inappropriate for efficient data processing.
There are several options starting from this data format, they imply having all series stored as

• an ASCII file, one sample per line; very fast, but data retrieval will depend on line number;
• a binary format (3 or 4 octets per value); compression is unadvised since it would increase both

preprocessing time and (by a large amount) reading times;
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• a database (this is the slowest option), so that retrieval can be very quick.

Since we plan to deal with millions of series of thousands time steps, binary files seemed like a
good compromise because they can easily fit on disk—and often also in memory. Our R package uses
this format internally, although it allows to input data in any of these three shapes. If we were speaking
of billions of series of a million time steps or more, then distributed databases would be required.
In this case one would only has to fill the database and tell the R package how to access time-series.

The current version is mostly written in R using the parallel package for efficiency, [35]. A partial
version written fully in C was slightly faster, but not enough compared to the loss of code clarity.
The current R version can handle the 25 millions samples on an overnight computation over a standard
desktop workstation—assuming the curves can be stored and accessed quickly. Our implementation is
called iecclust is available as open source software.

7. Forecasting French Electricity Dataset

7.1. Data Presentation

We work on the data provided by EDF also used in [24] which is composed of big customers
equipped with smart meters. Unfortunately, this dataset is confidential and cannot be shared.
Nevertheless we suggest to the reader interested in bottom up electricity consumption forecasting
problems to refer to the open data sets listed in [3].

The dataset consists in approximately 25000 half-hourly load consumption series over two years
(2009–2010). The first year is used for partitioning and the calibration of our forecasting algorithm,
then the second year is used as a test set to simulate a real forecasting use-case.

The initial dataset contains over 25,000 individual load curves. To test the up-scaling ability of
our implementation, we create three datasets of sizes 250,000; 2,500,000 and 25,000,000. In other words,
we progressively increase the sample sizes by a factor of 10, 100 and 1000 respectively. The creation
follows a simple scheme where each individual curve is multiplied by the realization of independent
variables uniformly distributed on [0.95, 1.05] at each time step. Each curve is then replicated using
this scheme by several times equal to the up-scaling factor.

7.2. Numerical Experiments

The first task clustering is crucial for reducing the dimension of the dataset. We give some timings
in order to illustrate how our approach can deal with tens of thousands of time series. Of course,
the total computation time depends on the technical specification of the structure used to perform the
computation. In our case, we restrict ourselves to a standard scientific workstation with 8 physical cores
and 70 Gigabits of live memory. We use all the available cores to cluster chunks of 5000 observations
following the algorithm described in Section 6 for both the first and second clustering task.

A very simple pretreatment is done in order to eliminate load curves with eventual errors. For this,
we measure the standard deviation of the contributions of each curve to keep only the 99% central
observations eliminating the extremest ones. With this, too flat curves (maybe constant) consumptions
or very wiggle ones are considered to be abnormal.

Table 1 gives mean average running times over 5 replicates for each of the different sample sizes.
These figures show that our strategy yields on a linear increment on the computation time with
respect to the number of time series. The maximum number of series we treat, that is 25 millions of
individual curves, needs about 12 h to achieve the first task clustering.
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Table 1. Mean average running times (over 5 replicates) for different sample sizes (in log).

Sample Size Time (In Seconds)

25 × 103 67
25 × 104 513
25 × 105 4420
25 × 106 43,893

The result of this first clustering task is the load curves of 200 super consumers (SC). We now
explore how much time series contains the super consumers. For this, we plot (in Figure 10) the
relative frequency of each SC cluster (i.e., proportion of observations in the cluster) against its size rank
(in logarithmic scale). With this, the leftmost point of the curve represents the largest cluster, while the
following ones are sorted in decreasing order of size. To compare between sample sizes four curves are
plotted, one for each sample size. A common decreasing trend of the curves appears producing several
relatively small clusters. This is not a desired behaviour for a final clustering task. However, we are in
an intermediate step which aims at reducing the number of curves n to a certain number K′ of super
customers, here K′ = 200. The isolated super customers may merge together in the following step,
producing meaningful aggregates.

Figure 10. Relative frequency of observations by cluster, in decreasing order, for different sample sizes,
n = 103, 104, 105, 106.

In what follows we focus on the results for the largest dataset, which is the one with over
25 millions of load curves. The resulting 200 super consumers are used to construct the WER
dissimilarity matrix, which contains rich information about the clustering structure. One may use
for instance a hierarchical clustering algorithm to obtain a hierarchy of SC. A graphical result of this
structure in the object of Figure 11, which corresponds to the dendrogram obtained by agglomerative
hierarchical clustering using the Ward link function. Then, one may get a partitioning of the ensemble
of SC by setting some threshold (a value of height in the figure). However, we will not follow this idea
to concentrate on the bottom-up prediction task.

The WER dissimilarity matrix encodes rich information about the pairwise closeness between the
200 super consumers. A way to visualize this matrix is to obtain a multidimensional scaling, that is
to construct a setting of low dimension coordinates that best represent the dissimilarities between
the curves. Figure 12 contains the matrix scatter plot of the first 4 dimensions of such a setting. For each
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bivariate scatter plot, the points are drawn with a discrete scale of 15 colours, each one representing a
different cluster. This low dimensional representation succeed to represent the clustering structure
since points with the same colour are closer forming compact groups.

Figure 11. Dendrogram obtained from the WER dissimilarity matrix.

Figure 12. Multidimensional scaling of the WER dissimilarity matrix for the 200 super consumers.
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Bottom-up forecast is the leading argument of using the individual load curve clustering. We test
the appropriateness of our proposition by getting for a final number of clusters ranging from 2 to 20,
50, 100 and 200 the respective aggregates in terms of load demand. Then, we use KWF as an automatic
prediction model for both strategies: prediction of the global demand using the global demand, and the
one based on the bottom-up approach.

We use the second year on the dataset to measure the quality of the daily prediction using a
rolling basis. Figure 13 reports the prediction error using the MAPE for both the two forecasting
strategies. The full horizontal line indicates the annual mean MAPE using the direct method and so it
is independent of the number of clusters. For different choices of the number of clusters, the dashed
line represent the associated MAPE. All possible clusterings produce then bottom-up forecasts that are
better than the one obtained from direct global forecasting.

Figure 13. MAPE for the aggregate demand by number of classes for the two strategies: direct global
demand forecast (full) and bottom-up forecast (dashed).

8. Discussion

In this final section, we discuss the various choices made as well as some possible extension to
cope with multiscale model point of view and how to handle non stationarity.

8.1. Choice of Methods

The three main tools are:

• the wavelet decomposition to represent functions and compute dissimilarities. Of course,
several other choices could be interesting, such as splines for bases of functions which are
independent of the data or even some data-driven bases like those coming from functional
principal component analysis. With respect to these two classical alternatives, (more or less
related to a monoscale strategy) the choice of wavelets allows simultaneously a parsimonious
representation capturing local features of the data as well as redundant one delivering a more
accurate multiscale representation. In addition, from a computational viewpoint, DWT is a
very fast: of linear complexity. So to design the super-customers the discrete transform is good
enough, for the final clusters, the continuous transform leads to better results. Let us remark
that combining wavelets and clustering has recently been considered in [36] from a different

246



Energies 2018, 11, 1893

viewpoint: details and approximations of the daily load curves are clustered separately leading to
two different partitions which are then fused.

• the PAM algorithm and the hierarchical clustering to build the clusters are of very common use
and well adapted to their specific role in the whole strategy. It should be noted that the use of
PAM to construct the super customers must necessarily be biased towards a large number of
clusters (defining the super customers) so it is useless to include sophisticated model-selection
rules to choose an optimal number of clusters since the strategy is used only to define a sufficiently
large number of clusters.

• the Kernel-Wavelet-Functional (KWF) method to forecast time-series. The global forecasting
scheme is clearly fully modular and then, KWF could be replaced by any other time-series
model forecasting. The model must be flexible and easy to automatically be tuned because the
modeling and forecasting must be performed in each cluster in a rather blind way. The main
difficulty with KWF is to introduce exogenous variables. We could imagine to include a single one
quite easily but not a richer family in full generality. Nevertheless, it is precisely when dealing
with models corresponding to some specific clusters that it could be of interest to use exogenous
variables especially informative, for example describing meteo at a local level or some specific
market segment. Therefore, some alternatives could be considered, such as generalized additive
models (see [37] for a strategy which could be plugged into our scheme).

8.2. Multiscale Modeling and Forecasting

In fact, such a forecasting strategy combining clustering in individuals and forecasting of the
total consumption of each cluster can be also viewed as a multiscale modeling. Indeed a by-product
is a forecasting at different levels of aggregation from the super customers to the total population.
Therefore, instead of restricting our attention on the forecasting of the global signal for a given partition
we could imagine to combine in time the different predictions given by each piece of the different
partitions in such a way that all the levels could contribute to the final forecasting. The way to weight
the different predictions could be fixed for all the instants (see [38] for a large choice of proposals)
or, on the contrary, time-dependent according to a convenient choice of the updating policy (see the
sequential learning strategies already used in the electrical context in [39]). An attempt in this direction
can be found in [40].

Another related topic is individual forecasting or prediction. It must be mentioned since it is
interesting to have some ideas about the kind of statistical models or strategies used in this especially
hard context, due to extreme volatility and wild nonstationarity. Ref. [41] examine the short-term (one
hour) forecasting of individual consumptions using a sparse autoregressive model which is compared
against well-known alternatives (support vector machine, principal component regression, and random
forests). In general, exogenous variables are used to forecast electricity consumptions, but some authors
focus on the reverse. Ref. [42,43] are interested in determining household characteristics or customers
information based on temporal load profiles of household electricity demand. They use sophisticated
deep learning algorithm for the first one and more classical tools for the second one. In the context of
customers surveys, Ref. [44] use smart meter data analytics for optimal customer selection in demand
response programs.

8.3. How to Handle Non Stationarity?

Even if the model KWF is well suited to handle non stationarities in the time-domain, it remains
that the clusters of customers are also subjected to some dynamics which could be of interest to model
in order to control these changes. A first naive possibility is to periodically recompute the entire
process including a new calculation of the super-customers and decide, at some stage if the change
is significant to be taken into account. A second possibility could be to directly model the evolution
of the clusters. For example, in [45] a time-varying extension of the K-means algorithm is proposed.
A multivariate vector autoregressive model is used to model the evolution of clusters’ centroids over
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time. This could help to model the changes of clusters along time but we have to think about a penalty
mechanism allowing to make changes in the cluster only when it is useful.
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Abstract: The heat load in district heating systems is affected by the weather and by human behavior,
and special consumption patterns are observed around holidays. This study employs a top-down
approach to heat load forecasting using meteorological data and new untraditional data types such
as school holidays. Three different machine learning models are benchmarked for forecasting the
aggregated heat load of the large district heating system of Aarhus, Denmark. The models are trained
on six years of measured hourly heat load data and a blind year of test data is withheld until the
final testing of the forecasting capabilities of the models. In this final test, weather forecasts from
the Danish Meteorological Institute are used to measure the performance of the heat load forecasts
under realistic operational conditions. We demonstrate models with forecasting performance that
can match state-of-the-art commercial software and explore the benefit of including local holiday
data to improve forecasting accuracy. The best forecasting performance is achieved with a support
vector regression on weather, calendar, and holiday data, yielding a mean absolute percentage error
of 6.4% on the 15–38 h horizon. On average, the forecasts could be improved slightly by including
local holiday data. On holidays, this performance improvement was more significant.

Keywords: district heating; load forecasting; machine learning; weather data; consumer behavior;
neural networks; support vector machines

1. Introduction

Energy systems are changing throughout the world, and heat load forecasting is gaining importance
in modern district heating systems [1]. The growing penetration of renewable energy sources makes
energy production fluctuate beyond human control and increases the volatility in electricity markets.
Stronger coupling between the heating and electricity sectors means that production planners in
systems with combined heat and power generation need accurate heat load forecasts in order to
optimize the production.

It is not trivial to forecast district heating demand on time scales that are relevant for trading
on the day-ahead electricity market. The total heat load in a district heating system is influenced by
several factors—most importantly, the weather, the building mass of the city, and the behavior of the
heat consumers. Cold and windy weather increases the heat demand, and warm and sunny weather
decreases it. The constitution of the building mass influences how the heat load responds to changes
in the weather [2]. Human behavior is an often overlooked factor, and, especially in summer, the heat
demand is dominated by hot water consumption rather than space heating. Consumer behavior
can vary considerably from day to day, and the heat load on special occasions, e.g., New Year’s Eve,
is notoriously difficult to forecast accurately.

Energies 2018, 11, 1678; doi:10.3390/en11071678 www.mdpi.com/journal/energies251



Energies 2018, 11, 1678

Heat load forecasting has been studied extensively in the scientific literature. The successful
application of simple linear models in [3,4] has inspired us to use an ordinary least squares
(OLS) model as a simple benchmarking model. Statistical time-series models, such as SARIMA
(seasonal autoregressive integrated moving average) models [4,5] and grey-box models combining
physical insight with statistical modeling [6], are natural ways of handling the temporal nature of
load forecasting. These models are usually linear and struggle with multiple seasonality. In [7],
the authors compared a number of machine learning algorithms, including a simple feed forward
neural network, support vector regression (SVR), and OLS. They concluded that the SVR model
performs best. The strong forecasting capabilities of SVR models have also been demonstrated in [8],
where heat demand was forecasted based on natural gas consumption. Neural networks have been
widely applied in load forecasting. Several studies apply simple feed forward networks with one
hidden layer such as the multilayer perceptron (MLP) [7,9,10]. A recurrent neural network is used
in [11] to better handle non-stationarities in the heat load. A comprehensive review of load forecasting
in districts can be found in [1].

In the present study, we chose to compare three different machine learning models: OLS, MLP,
and SVR, as they have all proven effective for heat load forecasting. Some studies attempt to include
the different consumer behavior on weekdays and weekends. Working days and non-working days
are modeled with distinct profiles in [12], and in [4] mid-week holidays were treated as Saturdays or
Sundays. In [13], the correlation between electric load and weather variables was exploited to forecast
the aggregated load using MLP models, and the authors explored the different autocorrelations of the
load on weekdays and weekends. In this study, we include generic calendar data such as the day of
the week, as well as local holiday data to account for observances, national holidays, and city-specific
holidays, i.e., school holidays.

School holidays are often planned locally, and some religious holidays, e.g., Easter, fall on
different dates each year. Therefore, generic calendar data is insufficient for modeling events that
depend on local holidays. Heat consumers behave differently on holidays and change the pattern of
consumption, so including local holiday data in heat load forecast models has the potential to improve
forecast accuracy.

The novelty of this work lies in the application of new data sources, specifically local holiday data,
to create heat load forecasting models that more accurately capture consumer behavior. To the best of
our knowledge, school holiday data has not previously been used for heat load forecasting. We isolate
the effect of using local holiday data by employing machine learning models that have proven effective
for heat load forecasting in the past. Moreover, we base our modeling on a very large amount of data.
Seven years of hourly heat load and weather data supplemented with data about national holidays,
observances, and school holidays help the forecast models capture rare load events.

The remainder of the paper is structured as follows. The Methodology section describes the data
foundation, the machine learning models, and the validation and testing procedure. In the Results
section, the forecasting models are benchmarked and compared, and the potential of using new data
sources is evaluated. The paper is wrapped up in the Conclusion section.

2. Methodology

In this section, we describe the data foundation and how the heat load forecasting models were
built, validated and tested.

The focus of this paper is to create heat load forecasts that are relevant on the time horizon of the
day-ahead electricity market. Therefore, a forecast must be produced each morning at 10:00 for each
hour of the following day. This timeline, illustrated in Figure 1, allows time for communication between
different actors in a production system and for planning of the following day’s heat production in
accordance with the bids in the day-ahead electricity market.
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Figure 1. Timeline for the heat load forecast that is relevant for the trading decisions in the day-ahead
electricity market. Every day at 10:00 a forecast is produced for each hour of the following day.

The analysis in this paper is based on seven years of data for the total hourly heat load of Aarhus,
Denmark. The years 2009, 2010, 2012, 2013, 2014, 2015, and 2016 were used. Unfortunately, heat load
data from 2011 has not been available to us. We denote the heat load in hour t by Pt.

2.1. Weather Data

The heat demand depends strongly on the weather. Hourly outdoor temperature, wind speed,
and solar irradiation for the seven years were obtained from [14]. Weather data from the geographical
point N 56◦2′42.24′′, E 9◦59′59.95′′ in the southern part of Aarhus was used. Weather forecasts of the
outdoor temperature, wind speed, and solar irradiation were provided by the Danish Meteorological
Institute (DMI) and used to test the performance of the heat load forecasts as realistically as
possible. These weather forecasts were based on the HIRLAM (High Resolution Limited Area Model),
a numerical weather prediction system developed by a consortium of European meteorological
institutes with the purpose of providing state-of-the-art short-range weather predictions [15], for
numerical weather prediction, had a forecast horizon of up to 54 h, and were disseminated four times
a day [15]. We denote the outdoor temperature, wind speed, and solar irradiance by Tout

t , vwind
t and

Isun
t , respectively.

2.2. Calendar Data

The heat demand has a strong social component that depends on human behavior. The social
component is part of the reason for the daily and weekly patterns in the heat load. Different load
profiles on weekdays and weekends can also be explained by consumer behavior. In order to allow the
forecast models to account for load variations that are tied to specific days, seasons, and times of day,
certain calendar data were included as input variables. Specifically, the hour of the day, the day of
the week, the weekend, and the month of the year were used as input. How the calendar data was
encoded and included in the models is described in Section 2.4.1.

2.3. Holiday Data

In addition to generic calendar data, we also used more specific local data about special days that
may influence the heat consumption pattern. The district heating system of Aarhus, Denmark, served
as our case study. Therefore, we used data about Danish national holidays, observances, and local
school holidays. National holidays and observances were sourced from [16]. National holidays include
New Year’s Day, Christmas Day, Easter Day, etc. and constitute 11 days per year. Observances include,
e.g., Christmas Eve and Constitution Day and amount to six days per year. Information about the
municipal school holidays was collected from local schools in the Aarhus area and amounts to 96 days
per year on average. Note that all national holidays are also school holidays. It is clear that this kind
of information is highly local and that gathering such data, compared to the generic calendar data,
is more difficult. The following analysis will illuminate whether including this data significantly
improves heat load forecasts, or if more easily available data types are sufficient.
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2.4. Data Exploration

Figure 2 shows the average hourly heat load for the example year of 2010. Notice how much
the heat load varies over the year both in magnitude and in variance. The zoomed inset in the plot
shows the heat load variations over a week in March. A clear daily pattern can be observed, with a
sharp morning peak between 7:00 and 8:00 on weekday mornings. The morning peak is a well-known
phenomenon in the district heating community and is caused by many people showering around the
same time every morning. On weekends, morning peaks can be observed later in the morning and
tend to be less sharp compared to weekdays. From the inset, it is clear that the daily load pattern varies
substantially within just one week.

Figure 2. Time series for the hourly heat load in the year 2010. The inset shows a zoom of a week in March.

The heat demand has peaks in its autocorrelation function at 24 h, 48 h, 72 h, and so on. This is
due to the strong daily pattern. There is also a notable peak at 168 h (one week). In order to capture this
behavior, lagged values of the heat load were used as input variables in the modeling. Specifically, we
included the heat load lagged with 24 h, 48 h, and 168 h. Looking at Figure 1, we see that the forecast
horizon varies between 15 h and 38 h. The heat load in the first hour of the day can be forecasted
with the shortest horizon, and the last hour of each day is forecasted with the longest horizon. When
forecasting hours with a forecast horizon of 24 h or less, the heat load lagged 24 h can be used. When
forecasting hours with a longer horizon than 24 h, the heat load lagged with 48 h must be used instead.
A power spectrum analysis confirmed strong peaks at frequencies 1/12 h−1 and 1/24 h−1, but 12 h is
shorter than the shortest forecast horizon and was thus discarded. The two lags that best captured the
daily and weekly pattern of the heat load were included. We denote the lagged heat load by Pt−24,
Pt−48, and Pt−168, respectively.

The most important weather variable when modeling district heating loads is the outdoor
temperature, because there is a strong negative correlation between the heat demand and the outdoor
temperature. Depending on the specific district heating system, solar irradiation and wind speed
can also be significant predictors for the heat load [2]. Due to the thermal mass of the buildings
in a district heating system, there is a certain inertia in the heat load when changes in the weather
occur. On the individual building level, this inertia is handled in great detail in the civil engineering
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literature [17]. Since we were forecasting the heat load of an entire city, we took a more simplified
approach. In the Aarhus district heating system, the heat load is most strongly correlated with the
outdoor temperature lagged by 4 h, compared to other time lags of the temperature. The heat load
also correlates most strongly with the solar irradiation lagged by 4 h. There seemed to be no benefit in
lagging the wind speed. Only including two specific lags, is of course a simplification of the dynamics
of the system, but the results of including them were significantly better than just using simultaneous
(lag 0 h) weather variables. Summing up, the following five weather variables were included in the
modeling: Tout

t , vwind
t , Isun

t , Tout
t−4, and Isun

t−4.
Outdoor temperature and, as a consequence, the heat load varies substantially from year to

year [18]. The mean annual temperatures in our dataset spanned a range of 2.5 ◦C. Compared to the
mean load of the whole dataset (excluding 2016), the annual mean heat load was 15% higher in the
coldest year and 11% lower in the warmest year.

2.4.1. Data Scenarios and Pre-Processing

In order to evaluate the effect of including the various types of input data for forecasting heat
load, three different data scenarios have been defined. We call these scenarios: “Only Weather Data,”
“Weather and Calendar,” and “Weather, Calendar, and Holidays”. Table 1 details the input data used
in each scenario.

Table 1. Input variables used in the three data scenarios (in bold).

Only Weather Data Weather and Calendar Weather, Calendar and Holidays

Lagged heat load Pt−24 or Pt−48 � � �
Pt−168 � � �

Weather data

Tout
t � � �

vwind
t � � �
Isun
t � � �

Tout
t−4 � � �

Isun
t−4 � � �

Calendar data

Hour of day � �
Day of week � �

Weekend � �
Month of year � �

Holiday data
National holiday �

Observance �
School holiday �

To achieve the best performance of the models, the input data were scaled and encoded as follows.
All the continuous variables (lagged heat load and weather) were standardized to have mean 0 and
standard deviation 1. The calendar data and holiday data were included as so-called dummy variables.
Dummy variables are a way to represent categorical variables as binary variables. For instance, whether
or not a given hour falls on a school holiday can be encoded as a binary variable (0 or 1). The day of
week can be encoded as six binary variables: one variable indicating if it is Monday, one indicating if it
Tuesday, etc. Only six variables are needed to encode seven days, because if it is not any of the days
from Monday to Saturday, then it must be Sunday. Using similar dummy variables all the calendar
and holiday data was included. Encoding categorical data as dummy variables is a standard machine
learning method [19].

2.5. Machine Learning Models

We benchmarked and compared three different machine learning models that have all previously
been proven adequate for heating load forecasting [7,8]: ordinary least squares regression,
multilayer perceptron, and support vector regression.
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2.5.1. OLS—Ordinary Least Squares Regression

Ordinary least squares regression is a simple model type in which the output is modeled with
the hyperplane that minimizes the squared residuals between the target and the output of the model.
Sometimes referred to as multiple linear regression, it is a popular model due to its simplicity,
computational speed, and the fact that results can be easily interpreted. Because of its linear structure,
the OLS model underperforms when modeling nonlinear input–output relationships.

2.5.2. MLP—Multilayer Perceptron

A multilayer perceptron is a simple kind of neural network. Neural networks have been applied
to problems in many fields, including heat load forecasting, due to their ability to capture complicated
relationships between input and output [7,9,11]. A multilayer perceptron has at least one hidden layer
between the input and output layers of the model and a nonlinear activation function allows the model
to capture nonlinear relationships between input and output. A good coverage of neural network
models and the multilayer perceptron can be found in [20]. We used a multilayer perceptron with
one hidden layer and the rectifier activation function: f (x) = max(0, x). We have experimented with
adding more hidden layers, but the increase in the model accuracy was not large enough to justify the
growth in model complexity and the risk of overfitting.

Besides the simple multilayer perceptron, we have experimented with a more advanced type of
neural network. Recurrent neural networks with long short-term memory (LSTM) units [21] were
implemented in an attempt to simplify the feature selection and leave it to the model to discover
relevant lags of heat load and weather data. Our initial LSTM networks yielded results comparable to
the simpler models included in this work, but their performance tended to be inconsistent. The benefit
of simplified feature selection may also be outweighed by a more complicated model selection and
training procedure. The LSTM modeling for heat load forecasting requires more work and will be left
for future work.

2.5.3. SVR—Support Vector Regression

Support vector regression is the application of support vector machine models to regression
problems and was first introduced in [22]. Support vector regression has a computational advantage
in very high dimensional feature spaces. The model only depends on a subset of input data, because it
minimizes a cost function that is insensitive to points within a certain distance from the prediction.
The cost function is less sensitive to small errors and less sensitive to very large errors and outliers,
compared to the quadratic cost function minimized in the ordinary least squares regression. To avoid
overfitting, the model is governed by a regularization parameter C, that ensures that the parameters of
the model do not grow uncontrollably. The smaller the value of C, the harder large model parameters
are penalized. Support vector regression is explained in great detail in [19,20]. By employing the
so-called “kernel trick”, support vector regression can handle nonlinear input–output relationships.
A very popular kernel function is the radial basis function kernel (RBF), which has been proven
effective in this application as well. The RBF kernel is governed by a kernel parameter γ. The greater
the value of γ, the more prone the model is to overfitting, but if γ is chosen too small, the model may
be underfitting and fail to capture actual input–output relationships.

Summing up, the three machine learning models OLS, MLP, and SVR were chosen because
they have all been successfully applied to heat load forecasting in the past. Using well-established
algorithms allows us to focus on the main research question: whether conventional heat load forecasts
can be improved by adding new types of data. Each of the models have advantages and disadvantages.
The advantage of the OLS model is that it is computationally cheap, and its estimated parameters carry
a physical interpretation. The disadvantage is that the model is linear and fails to capture nonlinearities
in input–output relationships. The advantage of the MLP model is that it is capable of capturing very
complex relationships between input and output. A disadvantage of neural network models, such as
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MLP, is the risk of overfitting and that they require careful tuning of several hyperparameters. Finally,
the SVR model has the advantage of being robust to outliers and that the final model depends only on
a subset of the training data. The SVR model, however, is sensitive to the scaling of the input data and
the correct tuning of regularization and kernel parameters.

2.6. Model Selection and Testing

A good forecast model is one that performs well on previously unseen data. This is the generalization
ability of the model. In order to accurately measure the generalization performance of the models, we
divided the full dataset (seven years of hourly data) into a training and validation set and a test set.
All model selection and training was performed on the years from 2009 to 2015 (2011 not included).
This is the training and validation set. The entire year of 2016 was used as a blind test set to estimate
the generalization performance of the forecasts.

The three models were chosen and their hyperparameters tuned based on sixfold cross-validation
on the years 2009, 2010, 2012, 2013, 2014, and 2015. Using six folds ensured that each fold contained an
entire year and thus represented the full annual variation of the heat load. In the cross-validation, the
different models and data scenarios were scored according to the hourly root mean square error (RMSE)

RMSE =

√
1
N ∑

t
(P̂t − Pt)2 (1)

where P̂t is the forecasted heat load for hour t, and N is the number of hours.
The OLS model does not have any hyperparameters to tune, but a model with a nonzero constant

term was chosen. In the MLP model, we tuned the number of neurons in the hidden layer using
a grid search on the cross-validation scores. A MLP model with one hidden layer consisting of
110 hidden neurons was chosen, and the L2 regularization parameter α was set to 0.1. In the SVR
model, the best choices for the regularization parameter and the kernel parameter were found to be
C = 4.3 and γ = 0.2. All modeling has been performed in Python 2.7 using the scikit-learn framework
(version 0.19.0) [23].

All results presented in the following section were produced using the blind test year 2016.
This year was not used for any of the training, data exploration, or model selection. In the Results
section, we employ two other forecast error metrics, in addition to the RMSE. The mean absolute error
(MAE) is also an absolute error metric (here in units of MW), but it is less sensitive to large errors,
compared to the RMSE. The MAE is defined as

MAE =
1
N ∑

t

∣∣P̂t − Pt
∣∣ . (2)

Finally, we use the relative error metric mean absolute percentage error (MAPE) to facilitate easier
comparison between different district heating systems. The MAPE is defined as

MAPE =
1
N ∑

t

∣∣∣∣ P̂t − Pt

Pt

∣∣∣∣ . (3)

3. Results

The heat load in a district heating system has been forecasted using three different machine
learning models, described in the previous section: OLS, MLP, and SVR. The performance of these
models have been tested by letting them produce a forecast for the following day using the input data
available each day at 10:00 a.m.The models have been trained exclusively on data prior to the test year
2016 to be able to accurately gauge their generalization performance. Figure 3 shows an example of
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the forecasts produced for 4 May. Only the heat load up to the time of the forecast was used as input to
produce the forecast. Real weather forecasts were used as weather inputs for 4 May, as opposed to
the historical weather data used for training. It is clear how the three forecast models produce similar,
yet distinct forecasts. On 4 May, the MLP model appears to produce the best forecast, especially in
the morning.

Figure 4 summarizes the performance of the three models in the three different data scenarios.
The top panel shows the forecast performance that could be achieved if weather forecasts were 100%
accurate, simulated by using historical weather data. The bottom panel shows the performance using
real weather forecasts. Comparing the three data scenarios, we see the benefit of including different
data types in the modeling. In the first scenario, only lagged heat load and weather data are used
as input. In the second scenario, generic calendar data is included as well, and in the third scenario,
local observances, national holidays, and school holidays are also included as inputs to the model.
Including calendar data significantly improves performance, compared to only using weather data.
Extending the input data with holiday data as well results in an additional, but small improvement
compared to using generic calendar data only. Obtaining the local holiday data can be laborious or
impossible, so it is positive to see generic calendar data yielding comparable results. It is much easier
to apply these models to a wide range of district heating systems around the world if it can be done
without collecting local holiday data.

Figure 3. Example forecasts for 4 May 2016. The forecasts were produced on 3 May at 10:00 and based
on real weather forecasts, calendar, and holiday data.

Figure 4 allows for comparison of the performance of the three machine learning models as well.
The OLS model stands out by performing significantly worse than the other two models in all scenarios.
The OLS model has a root mean square error of 38.9 MW, compared to 31.1 MW and 29.3 MW for
the other two models when using real weather forecasts, calendar, and holiday data (bottom panel).
The poor performance of the OLS model can be attributed to its linear structure. The relationship
between the outdoor temperature and the heat load in a temperate climate is nonlinear. This causes the
linear model to perform poorly during summer by undershooting the heat load and overestimating its
variance. The two nonlinear models, MLP and SVR, perform similarly in these scenarios. The SVR
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model has the smallest error, and the focus in the rest of this paper will be on the SVR model using
weather, calendar, and holiday data.

Figure 4. Root mean square error of the three forecast models OLS, MLP, and SVR on the year 2016.
The top panel (a) shows the error using historical weather data to simulate 100% accurate weather
forecasts. The bottom panel (b) shows the error using real weather forecasts.

3.1. The Value of Improving Weather Forecasts

Figure 4 has two panels. The top panel shows the forecast errors that could be achieved if
weather forecasts predicted the measured weather completely accurately. This has been simulated
by allowing the models to use actual measured weather data, instead of weather forecasts as input
when producing the load forecast. The top panel reflects the scenario in the which future weather is
known. The bottom panel shows the results in the case where real forecast data has been used instead.
This is the actual forecast performance that can be achieved in an operational situation, given the
current quality of weather forecasts. Having access to weather forecasts without prediction errors
could, in a perfect world, reduce the error from 29.3 MW to 25.2 MW in the forecasts from the best
model. While an error reduction of 4.1 MW is a start, perfecting the weather forecast only shaves 14%
off the error. The remainder of the load forecast error has other causes than weather forecast errors, a
result that was also found in [24], where ensemble weather predictions were used to quantify heat
load forecasting uncertainty.

The OLS model using only weather data and lagged heat load does not perform notably different
on historical weather data compared to real weather forecasts. This can be explained by the OLS model
attributing greater weight to the lagged heat load compared to the weather, because the relationship
between the heat load and the weather is nonlinear.
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The forecast performance, shown in the top of Figure 4, is similar to the performance that was
achieved during training and cross-validation. This indicates that the models have not been overfitted
and generalize well to out-of-sample predictions.

It is worth pointing out that the performance of all these models, even the OLS model using
only weather data, exceeds the performance of the commercial forecasting system that is currently in
operation in the Aarhus district heating system. This commercial forecasting system had an RMSE of
41.9 MW in year of 2016 on the same forecast horizons. In relative terms, the SVR model has a MAPE
of 6.4% versus 8.3% for the commercial system. The models presented here perform better than all
other forecast models that have been used in the Aarhus district heating system.

3.2. Seasonal Performance Variations

The heat load varies significantly over the year, both in magnitude and in variance, as exemplified
in Figure 2. It can be a challenge for a single model to adequately forecast both winter and summer
heat loads. Therefore, it is relevant to further investigate the model performance throughout the year.
The forecast error of the best model, SVR using weather, calendar, and holiday data, is illustrated in
Figure 5. Three different error metrics are shown: on the left axes, the RMSE (blue) and MAE (yellow)
are shown in MW; on the right axes, the MAPE (red) is shown in percent. The horizontal axes show
the hour of day for the forecasted hour, and each subplot depicts a month in the year. This makes
it possible to see if it is harder to forecast the morning peak and if the forecast horizon impacts the
accuracy. Keep in mind that Hour 1 has the shortest forecast horizon (15 h), and Hour 24 has the
longest horizon (38 h), since the forecasts are produced at 10:00 a.m. the previous day.

Inspecting Figure 5, it is clear that the absolute error measures RMSE and MAE are largest in
winter and smallest in summer. This is a reflection of the annual heat load profile and the large load
with large variance during winter. In late fall and winter, the RMSE can be above 50 MW in some
hours, whereas it can be below 10 MW in some hours in July. The relative error metric MAPE behaves
in the opposite way. The relative error is smaller in the winter months and larger in summer months,
but it stays between 2.5% and 10.5%. This is a consequence of the annual load variations being larger
than the annual variations in the absolute error.

There is no clear pattern in the way the error changes during the day. The model does not seem to
perform worse between 7:00 and 8:00 in the morning, where the morning peak falls. November and
May are exceptions to this rule. In many applications, the error of a forecast model increases with the
forecast horizon (here the hour of day). We do not observe a general increasing trend in the error with
the hour of day. This indicates that the weather forecasts that are used as inputs to create the forecast
are not significantly worse at the longest horizon compared to the shortest horizon. It may also be
due to weather forecasting accuracy having a minor impact on the heat load forecasting error, as we
saw from Figure 4. If we were to increase the forecast horizon further, the forecast error would most
likely increase.

The forecast error varies significantly over the year, but aggregated error metrics such as RMSE,
MAE, or MAPE do not tell the full story. Maximum errors can be relevant for unit commitment in the
production planning and for evaluating risk regarding trading in the electricity market. Figure 6 shows
histograms for the hourly error for each month of the blind test year 2016. The 10% and 90% quantiles
have been indicated in each plot. It is clear that the width of the error distribution varies substantially
from month to month. During the summer, the forecast error is quite confined, but the distribution
widens in late fall and becomes widest in December.

In Table 2, a summary of the error distribution is shown. The 99% and 1% quantiles of the error
distribution are indications of the maximum errors that can be expected. Ninety-eight percent of the
forecasted hours have forecast errors between the 1% and the 99% quantile. The best month is July
with 98% of the errors falling between −16.0 and 25.8 MW. The worst month is December, where
there is a 1% risk of the forecast overshooting by more than 115.0 MW and a 1% risk of the forecast
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being more than 96.7 MW too low. These extreme errors can approach 20% of the mean heat load in
December.

Figure 5. Performance of the SVR model on the year 2016, using real weather forecasts, calendar, and
holiday data. Three different error metrics are shown for each month of the year. The forecast error
varies with the time of day, shown on the horizontal axes. RMSE (blue) and MAE (yellow) are shown
units of MW on the left axes. MAPE (red) is shown in percent on the right axes.

261



Energies 2018, 11, 1678

Figure 6. Histograms for the forecast error of the SVR model on the year 2016 using real weather forecasts,
calendar, and holiday data. The distribution of the forecast error is depicted for each month in the
year along with the 10% and 90% quantiles. The number of bins was chosen using Scott’s rule [25]
within each month. A positive error indicates that the forecast was too high, a negative error that it
was too low.

From the histograms in Figure 6, it is also clear that the error distributions are not completely
symmetric around 0. In January, for instance, the distribution is shifted slightly to the positive, and
in April it is shifted to the negative side. The forecast appears to be biased differently in different
months. The mean error for each month (ME) is shown in Table 2. The bias can be as large as 20.5 MW,
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with November being the worst month. September performs the best with a mean error of merely
0.3 MW. Varying monthly biases could be remedied by training separate models for each month.
However, the focus in this paper is to investigate the effects of including holiday data to model human
behavior, and training monthly forecast models would obscure the effects of using holiday data. There
is also the possibility that the weather forecasts perform differently at different times of year.

Table 2. Summary of the hourly forecast error for each month for the SVR model using real weather
forecasts, calendar, and holiday data. Histograms of the forecast error appear in Figure 6. The months
with the worst performance are indicated in red, the best in green. The quantiles are evaluated in pairs,
so the widest symmetric quantile interval is considered the worst.

RMSE ME Error Quantiles (MW)
(MW) (MW) 10% 90% 1% 99%

January 41.2 18.7 –24.0 64.1 –66.8 117.6
February 31.8 –2.2 –42.8 36.6 –91.6 61.3
March 36.9 2.0 –43.7 48.8 –80.4 89.3
April 34.2 –11.7 –52.9 27.1 –93.6 64.8
May 18.2 4.3 –14.7 25.6 –33.6 64.3
June 15.8 –3.3 –19.3 12.8 –45.3 34.0
July 10.6 5.0 -7.0 17.2 –16.0 25.8
August 14.2 6.9 –8.2 21.6 –20.1 41.6
September 14.3 0.3 –17.9 17.6 –35.0 33.3
October 25.6 4.8 –26.0 37.8 –43.5 70.0
November 38.1 20.5 –20.0 61.5 –59.1 98.1
December 43.1 12.5 –38.4 58.2 –96.7 115.0

In conclusion, there are significant seasonal variations in the performance of the best heat load
forecast. The absolute errors are largest in winter and smallest in summer, with December being the
hardest month to forecast and July being the easiest.

3.3. The Value of Calendar and Holiday Data

The goal of this analysis is to gauge the potential of including local holiday data in heat load
forecasts in order to better capture the consumer behavior. The reduction in the annual error was
very small when comparing models with only generic calendar data to models including local holiday
data. This was clear from Figure 4b. It is well known among district heating operators that heat load
forecasts tend to perform poorly on special occasions, such as Christmas or New Year’s Eve. These
special days are rare, so the performance on those specific days has little impact on the average annual
performance (Figure 4b). Improved performance on special days is valuable to production planners,
and whether including local holiday data can improve forecast performance on specific days is worth
investigating in more detail.

Figure 7 shows the performance of the SVR model in the three data scenarios on different sets of
days during the year. “Holidays” refer to all days that are observances, national holidays, or school
holidays. “Weekdays” include all weekdays that are not also in holidays, and “weekends” include
all weekend days not included in holidays. In 2016, there were 201 weekdays, 65 weekend days,
and 100 holidays.

There is significant benefit in including generic calendar data in the forecast models for all day
types. On weekdays, there is no performance improvement to gain by including local holiday data.
The forecast error on weekends can be reduced by 0.5 MW. Not surprisingly, the greatest performance
increase can be observed on holidays. The holiday error decreases by 1.3 MW when augmenting the
modeling with local holiday data. The holiday error is generally smaller than the error for the other
day types. This is due to the holidays being dominated by the schools’ summer holidays, and the error
is generally smaller during the summer. Summing up, including local holiday data only improves
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the forecasts slightly on average. The largest improvement is seen on holidays where the error can be
reduced by 5%, compared to only using generic calendar data.

Figure 7. Forecast performance of the SVR model on the year 2016 using real weather forecasts,
calendar, and holiday data. The second and third group of bins refer to weekdays and weekends that
are not also included in holidays. Holidays refer to all days that are observances, national holidays,
or school holidays (see Table 1).

4. Conclusions

We have tested heat load forecasts with horizons from 15 h to 38 h, relevant for district heating
production planning considering the day-ahead electricity market. The work was based on seven
years of heat load and weather data for the large district heating system of Aarhus, Denmark. In order
to measure the forecast performance that can realistically be experienced in actual operation, we used
blind testing on a whole year with real weather forecasts.

Three machine learning models have been tested: an ordinary least squares model, a multilayer
perceptron, and a support vector regression model. The SVR model performed best, beating the OLS
model by a large margin and the MLP model by a small margin. All the models were trained on
lagged heat load data and weather data. The forecast performance could be significantly improved by
including generic calendar data, such as month, weekday, and hour of day. A smaller improvement of
the forecasts could be gained by supplying the models with local holiday data including observances,
national holidays, and school holidays. This improvement was most significant on holidays and
weekends. Local holiday data can be difficult and time-consuming to obtain, but merely including
lagged heat load, weather, and generic calendar data can provide a good overall forecast performance.

The SVR model using weather, calendar, and holiday data had the best performance. The root
mean square error was 29.3 MW, and the mean absolute percentage error was 6.4%. This forecast
model beat all other models that we have seen for the Aarhus system. The commercial forecast system,
currently in operation in the Aarhus district heating system, had an RMSE of 41.9 MW, and a MAPE of
8.3% on the test year.

Including local holiday data showed only minor overall improvements in forecast performance,
and including new data types in forecast models requires a careful evaluation of the trade-off between
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forecast accuracy and reliability of the data source. In live operational forecast systems, reliability
is valued highly, and inputting data into a simpler model may work to make a more robust system.
More features are thus not always an advantage, if the improvement in accuracy is insufficient to
justify the added implementation and maintenance cost.

Initial experiments using long short-term memory networks have not shown notable improvement
over the results attainable with the SVR model. However, future works should explore this type of
model further, as it has the potential to simplify the feature selection procedure and make it easier to
transfer these results to a wide range of district heating systems around the world.
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Abbreviations

The following abbreviations are used in this manuscript:
Pt Heat load in hour t (MW)
Pt−l Heat load lagged by l hours (MW)
Tout

t Outdoor temperature in hour t (◦C)
vwind

t Wind speed in hour t (m/s)
Isun
t Solar irradiation in hour t (W/m2)

Tout
t−l Outdoor temperature lagged by l hours (◦C)

Isun
t−l Solar irradiation lagged by l hours (W/m2)

P̂t Heat load forecasted for hour t (MW)
α L2 regularization parameter of the MLP model
C Regularization parameter of the SVR model
γ RBF kernel parameter of the SVR model
RMSE Root mean square error (MW)
MAE Mean absolute error (MW)
MAPE Mean absolute percentage error (%)
ME Mean error (MW)
OLS Ordinary least squares regression model
MLP Multilayer perceptron model
SVR Support vector regression model
RBF Radial basis function kernel
LSTM Long short-term memory network model
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Abstract: In the real-life, time-series data comprise a complicated pattern, hence it may be challenging
to increase prediction accuracy rates by using machine learning and conventional statistical methods
as single learners. This research outlines and investigates the Stacking Multi-Learning Ensemble
(SMLE) model for time series prediction problem over various horizons with a focus on the forecasts
accuracy, directions hit-rate, and the average growth rate of total oil demand. This investigation
presents a flexible ensemble framework in light of blend heterogeneous models for demonstrating
and forecasting nonlinear time series. The proposed SMLE model combines support vector regression
(SVR), backpropagation neural network (BPNN), and linear regression (LR) learners, the ensemble
architecture consists of four phases: generation, pruning, integration, and ensemble prediction task.
We have conducted an empirical study to evaluate and compare the performance of SMLE using
Global Oil Consumption (GOC). Thus, the assessment of the proposed model was conducted at
single and multistep horizon prediction using unique benchmark techniques. The final results reveal
that the proposed SMLE model outperforms all the other benchmark methods listed in this study at
various levels such as error rate, similarity, and directional accuracy by 0.74%, 0.020%, and 91.24%,
respectively. Therefore, this study demonstrates that the ensemble model is an extremely encouraging
methodology for complex time series forecasting.

Keywords: time series forecasting; ensemble learning; heterogeneous models; SMLE; oil consumption

1. Introduction

In Machine Learning (ML), ensemble methods combine various learners to calculate prediction
based on constituent learning algorithms [1]. The standard Ensemble Learning (EL) methods include
bootstrap aggregating (or bagging) and boosting. Random Forest (RF) [2]; for instance, bagging
combines random decision trees and can be used for classification, regression, and other tasks.
The effectiveness of RF for regression has been investigated and analyzed in [3]. The boosting
method, which builds an ensemble by adding new instances to emphasize misclassified cases,
yields competitive performance for time series forecasting [4]. As the most generally utilized usage
of boosting, Ada-Boost [5] has been compared with other ML algorithms such as support vector
machines (SVM) [6] and furthermore combined with this algorithm to additionally enhance the
forecasting performance [7]. Also, stacking [8] is an instance of EL multiple algorithms. It combines
the yield which is produced by various base learners in the first level. In addition, by utilizing
a meta-learner, it tries to combine the outcomes from these base learners in an ideal method to augment
the generalization ability [9].
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Although multistep predictions are desired in various applications, they are more difficult tasks than
the one-step, due to lack of information and accumulation of errors. In some universal forecasting rivalries
held lately, different forecasting methods were proposed to solve some genuine issues. In numerous
studies, authors compared the performance of hybrid model on long-term forecasting, for instance, in [10],
comparison results demonstrated that an ensemble of neural networks, such as multilayer perceptron (MLP),
performed well in these competitions [10]. Also, Ardakani et al. [11] proposed optimal artificial neural
networks (ANN) models based on improved particle swarm optimization for long-term electrical energy
consumption. Regarding the same aspect this study, [12] introduced a model named the hybrid-connected
complex neural network (HCNN), which is able to capture the dynamics embedded in chaotic time series
and to predict long horizons of such series. In [13], researchers combined models with self-organizing maps
for long-term forecasting of chaotic time series.

On the other hand, in short-term forecasting models, such as ANN and SVM, provide excellent
performance for one-step forecasting task [14,15]. However, these models perform poorly or suffer
severe degradation when applied to the general multistep problems. As well, the long-term forecasting
models are designed for long time prediction tasks (for instance monthly or weekly time series prediction).
That means they may perform better in multistep forecasting, while worse in one-step ahead than other
methods. In general, the performance of combined forecasting models (e.g., mixing short-term and
long-term approaches) is better when compared to single models [16]. Therefore, a forecasting combination
can be benefit from performance advantages of short-term and long-term models, while avoiding their
disadvantages. Furthermore, major static combination approaches [17–19] depend on assign a fixed weight
for each model such as (average, inverse mean), while dynamic combinations methods such as bagging and
boosting investigated to combine the results of complementary and diverse models generated by actively
perturbing, reweighting, and resampling training data [20,21]. Therefore horizon dependent weights used
to avoid the shortcoming of a static and dynamic combination for short- and long-term forecasts [14].

Oil Consumption (OC) is a significant factor for economic development, while the accuracy of demand
forecasts is an essential factor leading to the accomplishment of proficiency arranging. Due to this reason,
energy analysts are concerned with how to pick the most suitable forecasting methods to provide accurate
forecasts of OC trends [22]. However, numerous techniques contribute to estimating the oil demand in
future. The field of energy production, consumption, and price forecasting have been gaining significance
as a current research theme in the entire energy sectors. For instance, numerous studies investigated foe
electricity price forecasting such as Rafał [23], this review article aims to explain and partition the primary
methods of electricity price forecasting. Furthermore, Silvano et al. [24] analyzed electricity spot-prices of the
Italian power exchange by comparing traditional methods and computational intelligence techniques NN
and SVM models. Also, Nima and Farshid [25] proposed a hybrid method for short-ahead price forecasting
composed of NN and evolutionary algorithms.

Several studies discussed the issue of time series prediction using different methodologies
including statistical methods, single machine learning models, soft computing on ensemble,
and hybrid modeling.

Statistical methods have been investigated for time series prediction in the energy consumption area,
such as moving average [26], exponential smoothing [27,28], autoregressive moving average (ARMA) [29],
and autoregressive integrated moving average (ARIMA) models [30]. For instance, the ARIMA model has
been introduced for natural gas price forecasting [31]. However, these statistical techniques do not yield
convincing results for complicated data patterns [32,33]. In this context, the Gray Model (GM) forecast
accuracy was enhanced by using a Markov-chain model. The outcome of this study demonstrated that the
hybrid GM-Markov-chain model was more accurate and had a higher forecast accuracy than GM (1, 1) [34].

In fact, neural networks offer a promising tool for single machine learning model in time series
analysis due to their unique features [35]. To further improve the generalization performance, ANN
models were investigated for forecasting future OC [36]. Another study experimented with ANN
models to predict the long-term energy consumption [37]. For the same purpose, an ANN model was
applied to forecast load demands in future [38].
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However, ANNs yield mixed results when dealing with linear patterns [39], it is difficult to
obtain high accuracy rates of predictors by using the single method, either statistical or ML techniques
individually. In order to avoid the limitations associated with the individual models; researchers
suggested a hybrid model which combines linear and nonlinear methods to yield high prediction
accuracy rates [32,39]. Several studies investigated hybrid modeling to optimize the parameters of the
ANN [40]. Hence the improved performance of artificial bee colony (ABC-LM) over other alternatives
has been demonstrated on both benchmark data and OC time series.

Similarly, an NN, combined with three algorithms in a hybrid model, then optimized by using a genetic
algorithm was used to estimate OC; the outcome demonstrated the efficiency of the hybrid model overall
benchmark models [41]. Moreover, a researcher in [42] proposed a genetic algorithm—gray neural network
(GA-GNNM) hybrid model to avoid the problem of over-fitting, by examining hybrid versus a total of
26 combination models. Authors concluded that the hybrid models provided desirable forecasting results,
compared to the conventional models. Also, the GA has more flexibility in adapting NN parameters to
overcome the performance instability of neural networks [22].

In the same context, hybrid models were investigated to solve prediction intervals and densities
problems, and have become more common. As shown in Hansen [43] fuzzy model combined with
neural models, this combination increased the computation speed, and the coverage is extended.
Thus, the problem of the narrow prediction intervals is resolved. Similarly, in [44] the prediction
interval also concerned with blend of neural networks and fuzzy models to determine the optimal
order for the fuzzy prediction model and estimate its parameters with greater accuracy. Since prediction
intervals and forecast densities have become more popular, many types of research have been done
about how to determine the appropriate input lag, for this purpose, the fuzzy time series model
suggested increasing accuracy by solving the problems of data size (sampling) and the normality [45].
Regarding the same aspect, Efendi and Deris extended a new adjustment of the interval-length and
the partition number of the data set, this study discussed the impact of the proposed interval length
in reducing the forecasting error significantly, as well as the main differences between the fuzzy and
probabilistic models [46].

Finally, as a conclusion from the above studies, hybrid methods give off an impression of being
an astounding way to combine predictions of several learning algorithms. The hybrid regression
models give preferred predictive accuracy over any single learner. Nonetheless, there was no distinctive
way to merge the outcome forecasts of individual models.

In this paper, the goal is to introduce a novel EL framework that can reduce model uncertainty,
enhance model robustness, and enhance forecasting accuracy on oil datasets, improve model accuracy,
being defined as having a lower measure of forecasting error. The most important motivation for
combining different learning algorithms is based upon the assumption that diverse algorithms using
different data representations, dissimilar perceptions, and modelling methods are expected to arrive
at outcomes with different prototypes of generalization [47]. In addition, to date, comparatively few
researches have addressed ensembles for different regression algorithms [48].

We demonstrate that the OC framework can significantly outperform the current methodologies
of utilizing the single and classic ensemble forecasting models in single and multistep performance.
Although the idea is straightforward, it is yet a robust approach, as it can outperform the average
model, as one does not know a priori which model will perform best. The merits of this proposed
methodology are analyzed empirically by first describing the exact study design and after that,
assessing the performance of various ensembles of different OC models on the GOC. These outcomes
are then compared to the classical approach in the literature, which takes the calibrated model with
the lowest measure of forecasting error on the calibration dataset at the horizon (1-ahead) to OC of the
same dataset at the horizon t = n (10-ahead).

In summary, the developed ensemble model takes full advantage of each component and
eventually achieves final success in energy consumption forecasting. The major contributions of
this paper come therefore from three dimensions as follows:
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1. In this study, we develop a new ensemble forecasting model that can integrate the merits of single
forecasting models to achieve higher forecasting accuracy and stability.
We have introduced a novel theoretical framework how to predict OC. Although the ensemble
concept is more demanding regarding computational requirements, it can significantly
outperform the best performing model (SVR) of individual models. While the idea is
straightforward, it is yet a robust approach, as it can outperform the linear combination methods,
as one does not know a priori which model will perform best.

2. The proposed ensemble forecasting model aims to achieve effective performance in multi-step oil
consumption forecasting.
Multi-step forecasting can effectively capture the dynamic behavior of oil consumption in the
future, which is more beneficial to energy systems than one-step forecasting. Thus, this study
builds a combined forecasting model to achieve accurate results for multi-step oil consumption
forecasting, which will provide better basic for energy planning, production and marketing.

3. The superiority of the proposed ensemble forecasting model is validated well in a real energy
consumption data.
The novel ensemble forecasting displays its superiority compared to the single forecasting
model and classic ensemble models, and the prediction validity of the developed combined
forecasting model demonstrates its superiority in oil consumption forecasting compared to
classical ensemble models (AR, Bagging) and the benchmark single models (SVR, BPNN and LR)
as well. Therefore, the new developed forecasting model can be widely used in all temporal data
application prediction.

4. A perceptive discussion is provided in this paper to further verify the forecasting efficiency of the
proposed model.
Four discussion aspects are performed, which include the significance of the proposed forecasting
model, the comparison with single models, and classical ensemble methods, the superiority of
the developed forecasting model’s stability, which bridge the knowledge gap for the relevant
studies, and provide more valuable analysis and information for oil consumption forecasting.

The structure of the paper is organized into five sections: Section 2 is devoted to describing
proposed methods design. Section 3 presents the experimental results. Section 4 offers the consumption
prediction analysis and discussion. Section 5 describes the conclusion and further suggestion for
future works.

2. Materials and Methods

2.1. Proposed Framework

In Section 1, reviewed the literature in three different areas (i.e., single, hybrid, and soft computing
on ensemble). While the hybrid modeling literature advanced significantly over the last 20 years,
the research on minimizing forecast error, model uncertainty, and hybrid methods is still relatively
limited so far. To the best of our knowledge, no attempts exist yet of combining these different areas,
by using EL methods to reduce the issues of OC tasks (see Table 1 for a summary).

In particular, we will outline a very general theoretical framework to calibrate and combine
heterogeneous ML models using ensemble methods. Its modularity is displayed in Figure 1 and allows
for flexible implementation regarding base models, forecasting techniques, and ensemble architecture.
For a practical application of this method, we have split the Stacking Multi-Learning Ensemble (SMLE)
framework into four main phases and will describe them including their sub-steps in further detail
as follows.
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Table 1. Summary of related studies on forecasting OC between 2009 and 2017.

Reference Method Type Duration Region Horizon

[36] ANN Single 1965–2010 Turkey Long-term

[37] MLP Single 1992–2004 Greek Long-term

[46] FTS 1, RTS 2 Hybrid 1965–2012 Malaysia and Indonesia Long-term

[45] FTS, RTS Hybrid 1965–2012 Malaysia Long-term

[40] ABCLM 3 Hybrid 1981–2006 Jordan, Lebanon, Oman,
and Saudi Arabia Short-term

[41] ABCNN 4, CSNN 5,
GANN 6 Hybrid 1980–2006 Middle East region Short-term

[22] GANN, ABCNN Hybrid 1980–2006 OPEC 10 Short-term

[34] GM 7 Hybrid 1990–2002 China Short-term

[44] ANFIS 8 Hybrid 1974–2012 U.S. Short-term

[42] GA, GNNM 9 Hybrid 2000–2010 China Short-term

SMLE * SVR, BPNN, LR Ensemble 1965–2016 GOC 11 Long-term
1 Fuzzy Time Series; 2 Regression Time Series; 3 Artificial Bee Colony Algorithm; 4 Artificial Bee Colony Neural
Network; 5 Cuckoo Search Neural Network; 6 Genetic Algorithm Neural Network; 7 Grey Markov; 8 Adaptive
Neuro-Fuzzy Inference Systems; 9 Genetic Algorithm—Gray Neural Network; 10 Organization of the Petroleum
Exporting Countries; 11 Global Oil Consumption; * Proposed Method.

Figure 1. Stacking Multi-Learning Ensemble (SMLE) Framework.

2.2. Ensemble Generation

In the original data set, the initial training data, represented as D, had m observations and
n features, so that it is m × n. The modeling procedure can be realized by setting different parameters
of the base learners. In this level, some heterogeneous models were trained on D using one method
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of training (i.e., cross-validation). Moreover, each model offered prediction results pi(i ∈ 1, 2, . . . , n)
which were then cast into a second level data; the outcome became the input for the second level as
training data.

2.2.1. Ensemble Pruning

Ranking-based subset selection method ranks the candidate models according to criteria, such as
the mean absolute percentage error (MAPE), directional accuracy (DA), and Euclidean Distance (ED),
and included only the top n models from all candidate models.

2.2.2. Ensemble Integration

This step describes how the selecting models were combined into ensemble forecast. In this
context, the stacking method is used to build the second level data, stacking uses a similar idea to
K-folds cross-validation to solve two significant issues: Firstly, to create out-of-sample predictions.
Secondly, to capture distinct regions, where each model performs the best. The stacking process
investigates by inferring the biases of the generalizers concerning the provided base learning set.
Then, stacked regression using cross-validation was used to construct the ’good’ combination.
Consider a linear stacking for the prediction task. The basic idea of stacking is to ’stack’ the predictions
f1, . . . , fm by linear combination with weights ai, . . . , (i = 1, . . . , m):

fstacking(x) =
m

∑
i=1

ai fi(x), (1)

where the weight vector a is learned by a meta-learner.

2.2.3. Ensemble Prediction

The second level learner model(s) can be trained on the D′ data to produce the outcomes which
will be used for final predictions. In addition, to select multiple sub-learners, stacking allows the
specification of alternative models to learn how to best combine the predictions from the sub-models.
Because a meta-model is used to combine the predictions of sub-models best, this method is sometimes
termed blending, as in mixing the final predictions.

In brief, Figure 1 demonstrated the general structure of SMLE framework, which consisted of
various learning steps, after applying this scheme, three SMLE models were generated, while the
difference between the SMLE models were not in structure, but in the type of base model in level #0
and the differences between the three models in the part of base model can be explained as follows:

• 1st SMLE in base layer used SVR learner and in Meta layer LR used as meta learner.
• 2nd SMLE in base layer used BPNN learner and in Meta layer LR used as meta learner.
• 3rd SMLE in base layer used SVR and BPNN learners and in Meta layer LR used as meta learner.

2.3. Experiment Study Design

2.3.1. Data

The GOC data were used as benchmark data; this dataset was downloaded from the website:
https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-worldenergy.html.
The data represented total OC in the world; the data was yearly type and had a duration from 1965 to
2016. The data consisted of two factors, thus dependent variable oil consumption (in Million Tonnes),
which was a feature over time, and date (in years) was the independent variable in this case study.
Therefore, the OC time series for this experiment had 52 data points. For a better explanation,
we visualized whole actual time series in Figure 2, with a blue circle in curve.
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Figure 2. Comparison of (a) the actual and predicted consumption with the use of the SVR, BPNN and
LR single learners (b) errors of all single models.

2.3.2. Models

As above-mentioned, we applied the ensemble SMLE model to predict the GOC data set after
combining the heterogeneous models, Table 2 lists the learners’ parameters that have been investigated
in this paper. These related methods are presented briefly as follows:

1. The BPNN algorithm consists of multiple layers of nodes with nonlinear activation functions and
can be considered as the generalization of the singer-layer perceptron. It has been demonstrated
to be an effective alternative to traditional statistical techniques in pattern recognition and can
be used for approximating any smooth and measurable functions [49]. This method has some
superior abilities, such as its nonlinear mapping capability, self-learning and adaptive capabilities,
and generalization ability. Besides these features, the ability to learn from experience through
training makes MLP an essential type of neural networks and it is widely applied to time series
analysis [50].

2. The SVM algorithm is always considered a useful tool for classification and regression problems
due to the ability to approximate a function. Furthermore, the kernel function is utilized in the
SVR to avoid the calculations in high-dimensional space. As a result, it can perform well when
the input features have high dimensionality. It separates the positive and negative examples
as much as possible by constructing a hyperplane as the decision surface. The support vector
regression (SVR) is the regression extension of SVM, which provides an alternative and promising
method to solve time series modeling and forecasting [51,52].

3. LR is a popular statistical method for regression and prediction. It utilizes the ordinary
least-squares method or generalized least-squares to minimize the sum of squares of errors
(SSE) for obtaining the optimal regression function [53].
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Table 2. Summary of parameters setting for all learners.

Model Parameters

LR Attribute method selection = Md5, batch Size = 100, and ridge = 1.0 × 10−8

SVR Kernel = (Poly), C = 1, exponent = 2 and epsilon = 0.0001.

BPNN MLP(1-3-1)

Bagging Base learner = REPTree, bagSizePercent = 100%, No. iteration = 10.

AR Base learner = linear regression, No. iteration = 10, Shrinkage = 1.0.

1st SMLE Base learner (SVR(Kernel = (Poly),C = 1, exponent = 2, epsilon = 0.0001)), meta learner (LR),
Combination method= Stacked generalization

2nd SMLE Base learner (MLP(1-3-1)), meta learner (LR), Combination method = Stacked generalization

3rd SMLE Base learner (SVR (Kernel = (Poly), C = 1, exponent = 2, epsilon = 0.0001) and MLP (1-3-1),
meta learner (LR), Combination method= Stacked generalization

2.3.3. Evaluation Measure

This subsection describes several aspects of the evaluation of the different models; the evaluation
aspects include the estimation of error rates and pairwise comparisons of classifiers/ensembles.

1. Performance Evaluation

In terms of performance error estimation, the mean absolute percentage error (MAPE) was
adopted as an indicator of accuracy for all forecasting methods. The accuracy is expressed as
a percentage value, and is defined by the Formula (2) as below:

MAPE =
100
n

n

∑
i=i

∣∣∣∣∣∣∣∣
∧
yi − yi

yi

∣∣∣∣∣∣∣∣, (2)

where yi is the actual value and
∧
yi is the forecast value.

2. Time Series Similarity

The distance between time series can be measured by calculating the difference between each
point of the series. The Euclidean Distance (ED) between two-time series Q = {q1, q2, . . . , qn} and
S = {s1, s2, . . . , sn} is defined as:

D(Q, S) =

√
n

∑
i=1

(qi − si)
2. (3)

This method is moderately easy to calculate, and has complexity of O(n) [54].

3. Continuous Growth Rates (CGR)

Calculating change growth rate in data is useful for average annual growth rates that steadily
change. It is famous because it relates the final value in series to the initial value in the same series,
rather than just providing the initial and final values separately—it gives the ultimate value in
context [30]. The CGR value calculated according to Formula (4) as follows:

k =
ln
(

yt+1
yt

)
t

, (4)

where k represents the annual growth rate yt represents the initial population size, t represents the
future time in years and k is CGR.
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2.4. The Algorithm for Stacking Multi-Learning Ensemble (SMLE)

In this study, SMLE offers a dynamic EL method. The SMLR method depends on the sequence
characteristic of OC data. For accurate OC prediction, we express the algorithm of SMLE when
predicting the next mth moment OC at the time t. The general design of the proposed model considered
both diversity management and accuracy enhancement for base models. Here the algorithm of SMLE
is described below as pseudocode in Algorithm 1:

Algorithm 1: Stacking Multi-Learning Ensemble (SMLE).

Input: Dataset D = {(x1, y1), (x2, y2), . . . , (xm, ym)};
First-level learning algorithms L1, L2, . . . , Ln;
Second-level learning algorithm L;

Process:

%Train a first-level individual learner ht by applying the first-level learning algorithm Lt to the original dataset D
for t = 1, . . . , T:

ht = Lt(D)

end;

% generate a new data set
D′ = φ;
for i = 1, . . . , m:

for t = 1, . . . , T:
zit = hi(xi) % Use ht to predict training example xi

end;

D′ = D′ ∪ {((zI1, zi2, . . . , zT), yi)}
end;

% Train the second-level learner h′ by applying the second-level learning algorithm L to the new data set D′
h′ = L(D′).

Output: H(x) = h′(h1(x1), . . . , hT(xT))

3. Results

In this section, we evaluated various models on GOC 52-year data sets using BPNN, SVR,
and LR as the base models to demonstrate their predictability of both single and EL forecasting.
Hence, there were single models used as benchmark model compared to ensemble predictors.
In the second experiment, we tested two classic ensemble models include bagging and additive
regression (AR). Moreover, the third experiment tested three ensemble models based on SMLE scheme.
To establish the validity of the evaluated method, a further procedure was done by comparing the
obtained results of single models with the outcome of the ensemble models. Evaluation criteria were
used to compare and analyze the prediction, such as T-Time, DA, MAPE, and ED, which are excellent
methods for predicting GOC. Meanwhile, we compare the evaluation criteria of multistep (10-ahead)
with single step (1-ahead) forecasting to find the better SMLE model for predicting GOC in both
short-term and term-long horizon situations. Finally, consumption growth rate evaluated for all
prediction outcome.

3.1. Single Models Results

Regarding the experiment design and the overall steps described in Section 2.2, the first test in
this experiment was to compare the performance of all base models separately. The output of 10-fold
cross-validation tests run on the initial training were used to determine whether each model was
sufficient for OC data to make the forecasting results more stable. Figure 2a presents the comparison
of the best-obtained results from all base models with the real OC data. It is evident that the results
obtained according to the SVR method for the 52 known years (1965–2016) were close to the actual
ones and comparable to those produced by the BPNN and LR models.
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Similarly, Figure 2b demonstrated the residual errors of the prediction, to make a reliable
comparison to quantitatively analyze the performances of the base models; we considered the MAPE
measure indices for performance accuracy processes, which are listed in Table 3.

In brief, as seen in Table 3, the MAPE between predicted and actual values for the SVR model is
1.24% given by relative accuracy (DA) 89.9% which indicates clearly that the SVR model is well working
and has acceptable accuracy. Regarding the same aspect, we can observe that the SVR had superiority
in both run time and similarity (0.01 and 0.034, respectively). However, it is worth mentioning that the
LR models scored poor performance compared to other single models. The similarity between actual
and predicted data was measured using the Euclidean Distance (ED), as shown in Table 3; the BPNN
score 0.034, which was small indicates the best predictive performance, while LR scores 0.074 was the
worst similarity across the models.

3.2. Classic Ensemble Models Results

In the second experiment, we empirically tested two classical ensemble models, included bagging
and additive regression (AR). To illustrate the behavior of all classical ensemble fitting, they were
compared with actual data in Figure 3a,b, for visual comparison of the residual error of each model.
The evaluation matrix of single learning, classical ensemble methods, and proposed SMLE models
are summarized in Table 3. As observed from Table 3 and Figure 3, the bagging model performed
better than the AR model in all evaluation measures, except in DA. Similarly, the bagging model
performed better than the best single model (SVR) in performance and similarity while SVR perform
best in DA and has least training time. For this dataset, we accordingly developed homogeneous and
heterogeneous ensembles of individual models rather than using their hybrid versions.

 

Figure 3. Illustrated (a) actual and predicted consumption using classic ensemble learners (b) error of
classic ensemble models.

3.3. The SMLE Results

In the third experiment, we empirically tested three heterogeneous stacking models, each model
was composed of a combination of base and meta-models. The first ensemble model consists of SVR
as a base learner and LR as meta-learner. To illustrate the behavior of all SMLE for fitting, they were
compared with actual data in Figure 4a,b, for visual comparison of the residual error of each model.
The evaluation matrix of single learning methods, and proposed framework is summarized in Table 3.
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The outcome of this model, as presented in Table 3, enhanced the forecasting accuracy by 34%
when it was compared to the best base learner, SVR. Moreover, the second ensemble model was a mix
of BPNN as the base learner and LR as the meta-learner, the combined model increased the forecasting
accuracy by decreasing the error by 46%, compared to the best single model as mentioned previously.

Figure 4. Illustrated (a) actual and predicted consumption using SMLE learners (b) error of SMLE models.

Table 3. Summary of different evaluating measures among all models on GOC data.

Measures
Single Models Classic Ensemble Models SMLE Models

LR SVR BPNN Bagging AR 1st SMLE 2nd SMLE 3rd SMLE

MAPE (%) 6.77 2.82 3.15 2.52 5.19 2.27 2.07 1.65
DA (%) 82.59 89.03 89.90 66.17 82.59 88.50 90.69 91.24

ED 0.074 0.035 0.034 0.026 0.059 0.028 0.024 0.020
T-Time 0.04 0.05 0.03 0.06 0.07 0.09 0.13 0.17

Bold number indicates the best value in all measures.

Finally, the third ensemble model was a combination of SVR and BPNN as base learners and LR
as the meta-learner. The forecasting result of this model indicates that the accurate predictive model
decreased the error of the best base model by 50%, which led to proof of the superiority of the third
model over both the single and combination models. The similarity between actual and predicted data
is shown in Table 3, the 3rd SMLE based (SVR-BPNN) model score was 0.020, while 1st SMLE based
(SVR) score was 0.028, the worst similarity in across all the models. Also, it can be observed that all
ensemble model had less distance compared to single models.

In the same aspect, the 3rd SMLE performed better than the best classic ensemble model (bagging)
in all measures, except for training time (T-Time); this was due to the ensemble model learning level
which consumed more time and calculation.

4. Discussion

In this subsection, we practically used all single and ensemble forecasters to solve the problem
of how to estimate the future OC. For further evaluation of SMLE scheme stability, all models were
examined in 1-ahead and 10-ahead horizon predictions.

From Figure 5 and Table 4, it is easy to find that the proposed SMLE method was the best one
for OC forecasting in all prediction horizons (i.e., 1, 3, 5, 7, and 10-step-ahead), relative to other
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models considered in this study. In all the models, the SMLE-based BPNN-SVR model did not only
accomplish the highest accuracy at the level estimation, which was measured by the MAPE criteria,
it additionally got the highest hit rate in direction prediction, which was estimated by the DA criterion.
Then again, among the majority of the models utilized as a part of this investigation, the single LR
model performed the poorest in all progression ahead forecasts. LR model not only had the lowest
level accuracy, which was measured by MAPE, but also acquired the worst score in direction accuracy,
which was measured by the DA criteria. The main reason might be that LR was a class of the typical
linear model and it could not capture the nonlinear patterns and occasional characteristics existing in
the data series. Apart from the SMLE-based BPNN-SVR and LR models, which performed the best
and the poorest, respectively. All models listed in this study produce some interestingly blend results,
these outcomes were analyzed by using four estimation criteria (i.e., MAPE, DA, T-test, and CGR).

 

 

 

Figure 5. Illustrated 10-ahead consumption prediction and MAPE. (a) Single models. (b) Error of single
models. (c) Classic ensemble models. (d) Error of classic ensemble models. (e) SMLE models. (f) error
of SMLE models.

Firstly, in the case of level accuracy, the results of the MAPE measure demonstrated that
the SMLE-based BPNN-SVR performed the best, followed by SMLE-based BPNN, SMLE-based
SVR models, SVR and BPNN, and the weakest model was LR as shown in Figure 5b,f. Moreover,
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from Table 4, the MAPE values of the SMLE-based BPNN-SVR model were 0.61 in 1-ahead and
0.74 as an average of the 10-step-ahead predictions, which was less than other methods. Also, in the
short-term prediction step, better performance was observed when comparing ensemble methods with
single models, the results indicate that the ensemble methods outperformed the single and classic
ensemble methods in all cases. The principle reason could be that the cross-validation decomposition
methodology did efficiently enhance the forecast execution. Interestingly, the 1-step-ahead and
multi-step-ahead prediction horizon of single model forecasts were inferior to ensemble models.
Focusing on the single methods and classic ensembles, all the ML models outperformed the LR model;
the reason may be that LR is a typical linear model, which is not suitable for capturing the nonlinear
and seasonal characteristics of OC series. In ML models (i.e., SVR, BPNN), it can be seen that SVR
performed slightly better than BPNN in all 10-step-ahead predictions and BPNN perform poorest in
all the step prediction. The main reason leading to this may the parameter selection. The MAPE values
of LR were from 2.91 to 2.40, which were slightly inferior to SVR and BPNN models. The possible
reason was that the prediction results of LR, which was under the linear hypothesis were more volatile
than those of the ML models.

Second, the high-level exactness does not necessarily imply that there was a high hit rate in
forecasting direction of OC. The correct forecasting direction is essential for the policy manager to
make an investment plan in oil-related operations (production, price, and demand).

Table 4. 10-ahead forecasting performance among all models on GOC data.

Model
MAPE (%) over 10-Ahead Horizon

Avg.
1-ahead 3-ahead 5-ahead 7-ahead 10-ahead

LR 2.91 3.76 2.76 1.77 1.30 2.40
SVR 1.08 1.30 1.17 1.23 1.36 1.24

BPNN 1.39 1.33 1.28 1.48 1.61 1.42
Bagging 1.31 1.70 1.99 1.86 1.19 1.66

RF 1.39 1.33 1.28 1.45 1.61 1.41
1st SMLE 0.62 0.82 0.83 1.03 1.05 0.90
2nd SMLE 0.73 0.80 0.79 0.77 0.80 0.78
3rd SMLE 0.61 0.74 0.74 0.78 0.83 0.74

Therefore, the DA comparison is necessary. In Figure 6a–c, some similar conclusions can be drawn
regarding DA criterion. (i) The proposed 3rd SMLE model performed significantly better than all other
models in all cases, followed by the other two ensemble models, then two of the single ML models
(i.e., SVR, BPNN), (LR, AR) had equal values, and bagging model had the worst values. Individually,
the DA values of all SMLE-based ensembles were similar 92.31% for the 1 step-ahead predictions
and showed superiority with 91.24% for average 10-ahead step forecasts for the 3rd SMLE model.
(ii) The three ensemble methods mostly outperformed the single prediction models. Furthermore,
among the ensemble methods, the SMLE- based BPNN-SVR model performed the best, and SMLE-
based BPNN model outperformed SMLE- based SVR model, except for the 2-ahead forecast. (iii) SVR
model outperformed other methods, BPNN had the similar performance as SVR in the 2, 3, 5 step-ahead
forecasts, except that SVR exceeded BPNN in both 1-ahead and average ahead prediction. The possible
reason leading to this phenomenon may be the choice of optimal parameters for the models. We also
found that bagging model had the lowest directional accuracy of 66.17%.
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Figure 6. Illustrated 10-ahead consumption directional accuracy (DA) of (a) single models, (b) classic
ensemble models, and (c) SMLE ensemble models.

Also, comparing different prediction horizons, the short-term prediction horizon showed better
performance for in all the model see Table 4. Taking 1-step-ahead forecasting and an average of
the 10-step-ahead predictions for example, for all the SMLE–based ensemble, BPNN, SVR, bagging,
AR models, the 1-step-ahead forecasting outperformed the average of the 10-step-ahead forecast,
no matter the level accuracy or directional accuracy. Apart from the models mentioned above,
SMLE-based ensembles and ML models and classic ensembles performed better in 1-step-ahead
prediction given directional accuracy. However, from the point of level accuracy, both these
approaches only had slight superiority in 6-step-ahead prediction. Except for the LR, which performed
almost poorer in the 1-step-ahead compared to the average of 10-step-ahead prediction as shown
in Figure 7a–c.

Third, to further validation of SMLE models forecasting, the t-test was used to test the statistical
significance of the prediction performance. The t-test results presented in Table 5, for all ensemble
models under this study were not significant (df = 51, p-value > 0.05)). Based on the detailed statistical
test, no significant differences were observed between the actual OC and that predicted by the SMLE
models. The mean differences in the last column of Table 5, indicate that in the population from where
the sample models were drawn, the actual and predicted OC was statistically semi-equal. Therefore,
it was possible to prove that the SMLE model was useful in predicting OC based on the heterogeneous
models with excellent levels of accuracy (see Table 5). So, we can conclude that the model developed
structure is sufficient with more parameters setting (i.e., kernels, neuron) for OC prediction.

Table 5. The t-test results of actual and predicted oil consumption using SMLE models.

Model t p-Value Mean Difference

1st SMLE 0.227 0.823 0.8081
2nd SMLE 1.320 0.193 0.6803
3rd SMLE 0.728 0.470 0.6178

The forecasted values for each model and total OC growth rate from 2017 to 2026 is summarized
in Table 6. As seen from the table, all models will still be increasing in the period from 2017 to
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2026. However, the average annual rates will decrease in all. For the period between 1965 and
2016, the rate of increases was 2.2% for BPNN, 1.3% for LR, 1.8% for SVR, 1.5% for bagging 1.6%,
for AR 2.0% for SMLE-based SVR, 2.0% for SMLE-based BPNN, and 2.1% for SMLE-based BPNN-SVR.
Additionally, for the forecasted period between 2017 and 2026 the rates were expected to be 0.74%,
1.39%, 1.38%,1.42%, 1.39% 0.13%, 0.38%, and 0.44, respectively. On the other hand, the average annual
rate of total oil demand decreased from 1.8% between 1965 and 2016 to 0.91% between 2017 and 2026.

Lastly, the summarized results in Table 6 demonstrate that the annual growth rates of 1-ahead
OC were more significant than the total average OC in 10-ahead years. Figure 8, shows the apparent
rise in the 1-ahead in both single and classic ensemble models, and for the SMLE models there was
a sudden drop from 1- to 2-ahead years, also note the stability in the growth from 2-ahead to 10-ahead,
with close values in all models, except for SMLE-based BPNN where there was a few decreasing in
the 9-, 10-ahead, sequentially. The decrease in the rate of oil demand may be interpreted as there
being other alternative energies that affect oil demand, this will be achieved in the coming decades,
as compared with all other energy type consumption. Rates of changes and reserves in the OC of all
the models indicate that the SMLE scheme was the best to determine the actual demand of energy
globally, which facilitates the planning process, associated with the issue OC prediction. Based on
these study findings, we suggested some recommendations.

 

 

Figure 7. Illustrated 10-ahead consumption prediction errors of (a) single models (b) classic models
(c) SMLE ensemble models.

Table 6. Summary of forecasted values and CGR for OC using all models from 2017 to 2026.

Years
Models

BPNN LR SVR Bagging RF 1st SMLE 2nd SMLE 3rd SMLE

2017 4279.16 4531.93 4504.13 4559.73 4531.93 4554.73 4395.00 4459.94
2018 4316.27 4595.00 4567.34 4646.02 4595.00 4737.14 4409.57 4523.12
2019 4349.24 4677.23 4650.48 4748.19 4677.23 4764.54 4426.70 4511.95
2020 4401.42 4771.37 4746.31 4819.88 4771.37 4835.67 4454.33 4530.88
2021 4448.96 4857.41 4821.93 4896.70 4857.41 4967.25 4482.28 4592.90
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Table 6. Cont.

Years
Models

BPNN LR SVR Bagging RF 1st SMLE 2nd SMLE 3rd SMLE

2022 4471.17 4915.79 4889.67 4956.50 4915.79 4967.25 4501.68 4602.70
2023 4496.30 4980.78 4954.70 5025.85 4980.78 5056.31 4519.38 4633.88
2024 4555.86 5052.61 5023.62 5095.53 5052.61 5029.93 4536.88 4635.57
2025 4578.78 5128.13 5097.75 5163.26 5128.13 4861.17 4553.77 4628.92
2026 4606.92 5205.40 5170.20 5215.23 5205.40 4615.31 4566.33 4659.36

2017–2026 0.74% 1.39% 1.38% 1.42% 1.39% 0.13% 0.38% 0.44%
1965–2016 2.2% 1.3% 1.8% 1.5% 1.6% 2.0% 2.0% 2.1%

 

Figure 8. Illustrated annual CGR for 10-ahead consumption prediction using (a) single models
(b) classic ensemble models (c) SMLE models.

We summarized all of the above results in Table 7 and Figure 9. In general, combining the
forecasters using SMLE will significantly improve the final prediction. Generally, from the analysis of
the experiments presented in this study, we can draw several important conclusions as follows: Firstly,
the SMLE-based BPNN-SVR model was significantly superior to all models in this study regarding
similarity, level accuracy, and direction accuracy. Through performance enhancement, the SMLE-based
BPNN-SVR outperformed other models at the 1.17 statistical significance level, compared to the
best benchmark models SVR and bagging, respectively. Secondly, the prediction performance of
the SMLE-based BPNN-SVR, SMLE-based SVR and SMLE-based BPNN models were better than
the single and classic ensemble methods. These results indicate that the hybrid, based on stacking
method, can efficiently improve the prediction performance in the case of OC. Thirdly, nonlinear
models, with seasonal adjustment, were more suitable as base learners for the ensemble to predict the
time series with annual volatility than linear methods, due to properties above of OC (i.e., nonlinear
and non-stationary). However, computationally, the new method consumed more time because of its
way of segmenting inputs and the use of the ensemble. Fourthly, the average annual rate of total oil
demand decreased from 1.8% between 1965 and 2016 to 0.91% between 2017 and 2026. Finally, on one
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hand, short-term forecasting models, such as BPNN and SVM, provided excellent performance for
one-step forecasting task. However, these models performed poorly or suffered severe degradation
when applied to the general multistep problems. In general, the performance of ensemble forecasting
models (e.g., combining short-term and long-term approaches) was better when compared to single
models. Therefore, a forecasting combination can benefit from performance advantages of short-term
and long-term models, while avoiding their disadvantages. Furthermore, to overcome the shortcoming
of a static combination approach, a dynamic combination of short- and long-term forecasts can be
employed by using horizon dependent weights.

Table 7. Summary of evaluation measures among all models on GOC data.

NO. Model
Evaluation Matrix

Score 1 Indexed Rank 2

T-Time MAPE (%) ED DA (%)

1 LR 0.04 2.4 0.074 82.59 29 8
2 BPNN 0.05 1.42 0.035 89.03 20 6
3 SVR 0.03 1.24 0.034 89.90 19 5
4 Bagging 0.06 1.66 0.026 66.17 18 4
5 AR 0.07 1.41 0.059 82.59 22 7
6 1st SMLE 0.09 0.9 0.028 88.50 15 3
7 2nd SMLE 0.13 0.78 0.024 90.69 9 2
8 3rd SMLE 0.17 0.74 0.020 91.24 8 1

1 Score: sum of rank values from (1–8) for each model depends on performance in related measure. 2 Order value
for each model depending on total score, for example rank no 1 means the first model.

Figure 9. Illustrated T. Time MAPE, ED, and AD evaluation measures of all models on 10-ahead GOC
prediction. (The order of models were arranged from 1–8 according to Table 6, as LR, BPNN SVR,
bagging, AR, 1st, 2nd, and 3rd SMLE, respectively).

283



Energies 2018, 11, 1605

5. Conclusions

Forecasting time series data is considered as one of the most critical applications and has concerned
interests of researchers. In this study, we discussed the problem of combining heterogeneous forecasters
and showed that ensemble learning methods could be readily adapted for this purpose. We have
introduced a novel theoretical ensemble framework integrating BPNN, SVR, and LR, based on the
principle of stacking; which was proposed for the GOC forecasting. This framework has been able to
reduce uncertainty, improve forecasting performance, and manage the diversity of learning models in
empirical analysis.

According to the experimental results and analyses, the proposed ensemble models have been
able to outperform the classical ensemble and single models on OC data analyzed results. Furthermore,
all ensemble models have been able to exceed the best performing individual models on single-ahead,
as well as the multi-ahead horizon.

The advantages of proposed model to the knowledge comes therefore along three aspects
as follows:

Firstly, in methodology part, we have introduced a novel theoretical framework based on
ensemble learning for OC forecasting. Although the ensemble concept is more demanding regarding
computational requirements, it can significantly outperform single models and classical hybrid models.
While the idea is straightforward, it is yet a robust approach, as it can outperform linear combination
methods, as one does not know a priori which model will perform best.

Secondly, theoretically we have demonstrated that ensemble methods can be successfully used in
the context of OC forecasting due to the ambiguity decomposition.

Thirdly, we have conducted a very extensive empirical analysis of advanced machine learning
models, as well as ensemble methods. Just the calibration alone of such a wide range of ensemble
models is very rare in the literature, considering that the ranking of some evaluation measures per
model to run, which was not only due to the limited.

This study has two limitations including: the consideration of the integration of heterogeneous
algorithms (SVR, BPNN and LR) without using ensemble pruning for internal hyper-parameters;
and the evaluation process investigated on single data set, so that this model can verified in different
data sets. All these limitations could be interesting future research.

In future work, homogeneous ensemble model based SVR with different kernels can be developed
and evaluated. In addition, investigating ensemble pruning by using evolutionary algorithms that
provides an automatic optimization approach to SVR hyper-parameters, could be an interesting
future research work in the hybrid-based energy forecasting field. Another direction of future
work is to apply ensemble models in other energy prediction problems, such as pricing, production,
and load forecasting.
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Abstract: Effective and reliable load forecasting is an important basis for power system planning and
operation decisions. Its forecasting accuracy directly affects the safety and economy of the operation
of the power system. However, attaining the desired point forecasting accuracy has been regarded as
a challenge because of the intrinsic complexity and instability of the power load. Considering the
difficulties of accurate point forecasting, interval prediction is able to tolerate increased uncertainty
and provide more information for practical operation decisions. In this study, a novel hybrid system
for short-term load forecasting (STLF) is proposed by integrating a data preprocessing module,
a multi-objective optimization module, and an interval prediction module. In this system, the training
process is performed by maximizing the coverage probability and by minimizing the forecasting
interval width at the same time. To verify the performance of the proposed hybrid system, half-hourly
load data are set as illustrative cases and two experiments are carried out in four states with four
quarters in Australia. The simulation results verified the superiority of the proposed technique and
the effects of the submodules were analyzed by comparing the outcomes with those of benchmark
models. Furthermore, it is proved that the proposed hybrid system is valuable in improving power
grid management.

Keywords: short-term load forecasting; interval prediction; lower upper bound estimation; artificial
intelligence; multi-objective optimization algorithm; data preprocessing

1. Introduction

Load forecasting is of upmost significance and affects the construction and operation of power
systems. In the preparation of the power system planning stage, if the load forecasting result is lower
than the real demand, the installed and distribution capacities of the planned power system will be
insufficient. The power generated will not be able to meet electricity demand of the community it
serves, and the entire system will not be able to operate in a stable manner. Conversely, if the load
forecast is too high, it will result in power generation, transmission, and distribution, at a larger scale,
that cannot be fully used in the real power system. The investment efficiency and the efficiency of
the resource utilization will be reduced in this situation. Therefore, effective and reliable power load
forecasting can promote a balanced development of the power system while improving the utilization
of energy. There are various power load forecasting methods and, commonly, load forecasting is
classified into short-term, medium-term, and long-term, based on the application field and forecasting
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time. Among these categories, short-term load forecasting (STLF) is an essential tool for the planning
and operation [1,2] of energy systems and it has thus been a major area of research during the past
few decades.

According to existing research, concern mostly focuses on the point forecasting of STLF.
Additionally, the relative algorithms can be mainly classified into three major categories: traditional
statistical techniques, computational intelligent methods, and multimodule hybrid models [3].

In the early stages of research, traditional statistical techniques were extensively employed for
point forecasting of STLF, such as linear regression methods [4,5], exponential smoothing [6], Kalman
filters [7], and other linear time-series models. In general, most of the traditional statistical approaches
have been involved in linear analysis and have mainly considered linear factors in time series. However,
the short-term load series are a mixture of multiple components which include linear and non-linear
factors. Therefore, the traditional statistical approaches encounter difficulties when dealing with the
STLF, and the forecasting accuracy is often unsatisfactory. With the development of machine learning
and artificial intelligence, an increased number of non-linear computational intelligent methods have
been applied to STLF, such as neural network models (NN) [8,9], expert systems [10] and support
vector machines (SVM) [11,12]. These approaches have been proved to have advantages in dealing
with the non-linear problems of STLF compared to traditional statistical methods, thereby eliciting
improved performances in most cases. Most importantly, a key point that influences the performance
of computational intelligent methods is the setting of related parameters in algorithms. At this time,
efficient hybrid models appeared. In hybrid models, different modules were introduced to improve
the performance and accuracy of STLF [13–19]. Among existing reviews in the literature, two popular
and efficient modules include the data preprocessing and optimization modules. In the case of the
data preprocessing modules, a multiwavelet transform was used in combination with a three-layer
feed-forward neural network to extract the training data and predict the load in [13]. Fan et al. [14] used
empirical mode decomposition (EMD) to decompose electric load data, generating high-frequency
series and residuals for the forecasting of support vector regression (SVR) and autoregression (AR),
respectively. The results showed that the hybrid methods can perform well by eliciting good forecasting
accuracy and interpretability. In the case of the optimization modules, AlRashidi et al. [15] employed
the particle swarm optimizer (PSO) to fine-tune the model parameters, and the forecasting problem
was presented in a state space form. Wang et al. [16] proposed a hybrid forecasting model combining
differential evolution (DE) and support vector regression (SVR) for load forecasting, where the DE
algorithm was used to choose the appropriate parameters for SVR.

However, as mentioned above, the current research on STLF mainly concentrates on point
forecasting in which the accuracy is usually measured by the errors between the predicted and the
target values. With power system growth and the increase in its complexity, point forecasting might
not be able to provide adequate information support for power system decision making. An increasing
number of factors, such as load management, energy conversion, spot pricing, independent power
producers and non-conventional energy, make point forecasting undependable in practice. In addition
to the fact that most of these point forecasting models do not elicit the required precision, they are
also not adequately robust. They fail to yield accurate forecasts when quick exogenous changes occur.
Other shortcomings are related to noise immunity, portability, and maintenance [20].

In general, point forecasting cannot properly handle uncertainties associated with load datasets
in most cases. To avoid such imperfection, interval prediction (IP) of STLF is an efficient way to
deal with the forecast uncertainty in electrical power systems. Prediction intervals (PIs) not only
provide a range in which targets are highly likely to be covered, but they also provide an indication of
their accuracy, known as the coverage probability. Furthermore, the PIs can take into account more
uncertain information and the result of (PIs) commonly form a double output (upper bounds and
lower bounds) which can reflect more uncertain information and provide a more adequate basis for
power system planning.
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With the development of artificial intelligence technology, the interval prediction methods based
on NN have been proved to be efficient techniques. According to existing research, the popular
techniques for constructing PIs are Bayesian [21], delta [22], bootstrap [23], and mean–variance
estimation [24]. In the literature, the Bayesian technique [25] is used for the construction of NN-based
PIs. Error bars are assigned to the predicted NN values using the Bayesian technique. Even if the
theories are effective in the construction of PIs, the calculation of the Hessian matrix will result in
the increase of model complexity and computation cost. In [26], the delta technique was applied to
construct PIs for STLF, and a simulated annealing (SA) algorithm was introduced to improve the
performance of PIs through the minimization of a loss function. In [27], according to bootstrap, error
output, resampling, and multilinear regression, were used with STLF for the construction of confidence
intervals with NN models. In [24], a mean–variance estimation-based method used NN to estimate
the characteristics of the conditional target distribution. Additive Gaussian noise with non-constant
variance was the key assumption of the method for PI construction.

Considering most of the existing research studies of PIs by NN mentioned above, the PIs were
usually calculated depending on the point forecasting. The NNs were first trained by minimizing
an error-based cost function, and the PIs were then constructed depending on the outcomes of
trained and tuned NNs. It may be questionable to construct PIs in this way. Furthermore, it is
a more reasonable way to output the upper and lower bounds directly [28]. Compared with the
Bayesian, delta, and bootstrap techniques, this approach can output the PIs without being dependent
on point prediction. However, in traditional research approaches, the cost function mainly aims at
guaranteeing coverage probability (CP). However, a satisfactory coverage probability can be achieved
easily by assigning sufficiently large and small values to the upper and lower bounds of the PIs.
Thus, the prediction interval width (PIW) is another key characteristic which needs to be considered
fully. These two goals, that is, achieving a higher CP and a lower PIW, should be considered in
a comprehensive manner when the NN parameters are determined.

Therefore, in this study, a hybrid, lower upper bound estimation (LUBE) based on multi-objective
optimization is proposed. The requirements for higher CP and lower PIW constitute a typical
case of the Pareto optimization problem. In the present study, a significant and valid approach
was used to solve the Pareto optimization problem is the multi-objective optimization [29]. There
are many algorithms in the literature for solving multi-objective optimizations. For the GA,
the most well-regarded multi-objective algorithm is the non-dominated sorting genetic algorithm
(NSGA) [30]. Other popular algorithms include the multi-objective particle swarm optimization
(MOPSO) [31,32], multi-objective ant colony optimization (MOACO) [33], multi-objective differential
evolution (MODE) [34], multi-objective grasshopper optimization (MOGO) [35], multi-objective
evolution strategy (MOES) [36], multi-objective sine cosine (MOSC) [37], and multi-objective ant
lion [38]. All these algorithms are proved to be effective in identifying non-dominated solutions for
multi-objective problems. According to the “no free lunch theorem” for optimization [39,40], there is
no algorithm capable of solving optimization algorithms for all types of problems. This theorem
logically proves this and proposes new algorithms, or improves the current ones.

In this study, to achieve a better performance in STLF, one of the novel recurrent neural networks,
the Elman neural network (ENN) [41], is applied to construct the structure of a modified LUBE.
The Elman neural network has already been extensively used in time-series forecasting [42–44].
As a type of recurrent neural network, ENN exhibits superiority on the time delay information
because of the existence of the undertaking layer which can connect hidden NN layers and store the
historical information in the training process. This structure design of NN commonly leads to a better
performance in time-series forecasting.

In traditional STLF, most of the methods construct the training set of the model directly using the
original data. However, data in the natural world often receives a lot of noise interference, which will
cause more difficulties for desired STLF. Furthermore, improving the signal-to-noise ratio of the
training dataset will help the effective training of the model. Amongst the existing denoising methods,
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empirical mode decomposition (EMD) [45] is extensively used, which is an adaptive method introduced
to analyze non-linear and non-stationary signals. In order to alleviate some reconstruction problems,
such as “mode mixing” of EMD, some other versions [46–48] are proposed. Particularly, the problem
of different number of modes for different realizations of signal and noise need to be considered.

Summing up the above, in this study, a hybrid interval prediction system is proposed to solve
the STLF problem based on the modified Lower and Upper bound estimate (LUBE) technique,
by incorporating the use of a data preprocessing module, an optimization module, and a prediction
module. In order to verify the performance of the proposed model, we choose as the experimental case
the power loads of four states in Australia. The elicited results are compared with those from basic
benchmark models. In summary, the primary contributions of this study are described below:

(1) A modified LUBE technique is proposed based on a recurrent neural network, which is able to
consider previous information of former observations in STLF. The contest layer of ENN can
store the outputs of a former hidden layer, and then connect the input layer in the current period.
Comparison of the traditional interval predictive model with the basic neural network, this
mechanism can improve the performance of time series forecasting methods, such as STLF.

(2) A more convincing optimization technique based on multi-objective optimization is proposed
for LUBE. In LUBE, besides CP, PIW should also be considered in the construction of the cost
function. In this study, the novel multi-objective optimization method MOSSA is employed in
the optimization module to balance the conflict between higher CP and lower PIW, and to train
the parameters in ENN. With this method, the structure of neural networks can provide a better
performance in interval prediction.

(3) A novel and efficient data preprocessing method is introduced to extract the valuable
information from raw data. In order to improve the signal noise ratio (SNR) of the input data,
an efficient method is used to decompose the raw data into several empirical modal functions
(IMFs). According to the entropy theory, the IMFs with little valuable information are ignored.
The performance of the proposed model trained with processed data improves significantly.

(4) The proposed hybrid system for STLF can provide powerful theoretical and practical support
for decision making and management in power grids. This hybrid system is simulated and
tested depending on the abundant samples involving different regions and different times,
which indicate its practicability and applicability in the practical operations of power grids
compared to some basic models.

The rest of this study is organized as follows: The relevant methodology, including data
preprocessing, Elman neural network, LUBE, and multi-objective algorithms, are introduced in
Section 2. Section 3 discusses our proposed model in detail. The specific simulation, comparisons
and analyses of the model performances are shown in Section 4. In order to further understand the
features of the proposed model, several points are discussed in Section 5. According to the results of
our research, conclusions are outlined in Section 6.

2. Methodology

In this section, the theory of the hybrid interval prediction model is elaborated, and the
methodology of the components in hybrid models, including complete ensemble empirical mode
decomposition with adaptive noise (CEEMDAN), Elman neural networks, LUBE, and MOSSA,
are explained in detail.

2.1. Data Preprocessing

The EMD technique [45] usually decomposes a signal into several numbers of IMFs. For each
IMF, the series have to fulfill two conditions: (i) the number of extrema (maxima and minima)
and the number of zero-crossings must be equal or differ at most by one; and (ii) the local mean,
defined as the mean of the upper and lower envelopes, must be zero. In order to alleviate mode
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mixing, the EEMD [46], defines the “true” modes as the average of the corresponding IMFs obtained
from an ensemble of the original signal plus different realizations of finite variance white noise.
But incompletion of decomposition still exists, and the number of modes will be different due to
the noise added. Taking these short comes into account, CEEMDAN is proposed. The details are
described as follows: let Ek(·) be the operator which produces the kth mode obtained by EMD and w(i)

be a realization of white noise with N (0, 1). And then the process of CEEMDAN can be expressed as
several stages:

1st step. For every i = 1, . . . , I decompose each x(i) = x + β0w(i) by EMD, until the first mode is
extracted and compute d̃1 by:

d̃1 =
1
I

I

∑
i=1

di
1 = d1 (1)

2nd step. At the first stage (k = 1) calculate the first residue as r1 = x − d̃1.
3rd step.Obtain the first mode of r1 + β1E1(wi) , i = 1, . . . I, by EMD and define the second

CEEMDAN mode as:

d̃2 =
1
I

I

∑
i=1

E1(r1 + β1E1(w(i))) (2)

4th step. For k = 2, . . . K calculate the kth residue:

rk = r(k−1) − d̃k (3)

5th step. Obtain the first mode of rk + βkEk(w(i)) , i = 1, . . . , I, by EMD until define the (k + 1)th
CEEMDAN mode as:

d̃(k+1) =
1
I

I

∑
i=1

E1(rk + βkEk(w(i))) (4)

6th step. Go to 4th step for the next k.

Iterate the steps 4 to 6 until the obtained residue cannot be further decomposed by EMD, either
because it satisfies IMF conditions or because it has less than three local extremums. Observe that,
by construction of CEEMDAN, the final residue satisfies:

rK = x −
K

∑
k=1

d̃k (5)

with K being the total number of modes. Therefore, the signal of interest x can be expressed as:

x =
K

∑
k=1

d̃k + rk (6)

which ensures the completeness property of the proposed decomposition and thus providing an exact
reconstruction of the original data. The final number of modes is determined only by the data and the
stopping criterion. The coefficients βk = εkstd(rk) allow the selection of the SNR at each stage.

The CEEMDAN method can add a limited number of self-use white noises at each stage, which can
achieve almost zero reconstruction error with fewer average times. Therefore, CEEMDAN can
overcome the “mode-mixing” phenomenon existing in EMD, and can also solve the incompleteness of
EEMD decomposition and reduce the computational efficiency by reducing the reconstruction error by
increasing the number of integrations.
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2.2. Elman Neural Network (ENN)

As an important branch of deep learning, recurrent neural networks have been widely used in
academic and industrial fields. The common neural network mainly consists of three layers: input
layer, hidden layer and output layer. For the hidden layer, the input information only comes from the
input layer. For a recurrent neural network, the input information of the hidden layer will not only
come from the input layer, but also from the hidden layer itself and the output layer.

In various structures of the recurrent neural network, Elman neural network (ENN) [49] is typical
structure in which the lags of hidden layer are delivered into the current hidden layer by a new layer
called the context layer. This structure takes the former information of the hidden layer into account
and commonly has a better performance in the time-series forecasting such as STLF, wind speed
forecasting, financial time-series forecasting. The structure is showed in Figure 1.

The context layer can feed back the hidden layer outputs in the previous time steps and neurons
contained in each layer are used to transmit information from one layer to another. The dynamics of
the change in hidden state neuron activations in the context layer is as follows:

Si(t) = g(
K

∑
k=1

VikSk(t − 1) +
j

∑
j=1

Wij Ij(t − 1)) (7)

where Sk(t) and Ij(t) denote the output of the context state and input neurons, respectively; Vik and
Wij denote their corresponding weights; and g(·) is a sigmoid transfer function. The other related
theories such as feed-forward and back propagation are similar with the common back propagation
neural network.

Figure 1. The structure of the lower bound and upper bound estimation (LUBE) based on the Elman
neural network.

2.3. Lower Bound and Upper Bound Estimation (LUBE)

In the literature, the traditional interval prediction commonly attempts to construct the PI based
on the point prediction. The upper bound and the lower bound are calculated according to the
forecasting value and the confidence level. The accuracy of the point forecasting has played a key role
in the accuracy of the PI. In this paper, we introduce a novel method of interval prediction called lower
bound and upper bound estimation (LUBE). This method directly outputs the lower bound and the
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upper bound of PI depending on the multi-output neural network. The structure we employed in this
paper is shown in Figure 1.

The output of the normal LUBE structure [50] just consist of two neurons which denote the upper
bound and the lower bound, while the outputs in our structure of LUBE consist of three neurons.
The first output corresponds to the upper bound of the PI, the second output denotes the predicted
value, and third output approximates the lower bound of the PI. In the literature, the PI construction
techniques attempt to estimate the mean and variance of the targets for construction of PIs. In contrast
to existing techniques, the proposed method tries to directly approximate upper and lower bounds of
PIs based on the set of inputs. Therefore, in the training process, loss function of this LUBE method
based on neural network should be set according to the key criterion of PIs (CP and PIW).

2.4. Multi-Objective Optimization Algorithm

The multi-objective optimization algorithm has been widely used to solve multi-objective
optimization problem. In this paper, a novel multi-objective optimization algorithm named
Multi-Objective Salp Swarm Algorithm (MOSSA) is introduced.

2.4.1. Multi-Objective Optimization Problem

In multi-objective optimization, all of the objectives are optimized simultaneously. The main
concern is formulated as follows:

Minimize : F(X) = { f1(X), f2(X), . . . , fo(X)} (8)

Subject to : gi(X) ≥ 0, i = 1, 2, . . . , m (9)

hi(X) = 0, i = 1, 2, . . . , p (10)

lbi ≤ xi ≤ ubi, i = 1, 2, . . . , n (11)

where o is the number of objectives, m is the number of inequality constraints, p is the number of
equality constraints, and lbi is the lower bound of the ith variable, and ubi is the upper bound of the
ith variable. With one objective we can confidently estimate that a solution is better than another
depending on comparing the single criterion, while in a multi-objective problem, there is more than
one criterion to compare solutions. The main theory to compare two solutions considering multiple
objectives is called Pareto optimal dominance as explained in [51].

There are two main approaches for solving multi-objective problems: a priori and a posteriori [52].
In the priori method, the multi-objective problem is transformed to a single-objective problem by
aggregating the objectives with a set of weights determined by experts. The main defect of this method
is that the Pareto optimal set and the front need to be constructed by re-running the algorithm and
changing the weights [53]. However, the a posteriori method keeps the multi-objective formulation in
the solving process, and the Pareto optimal set can be determined in a single run. Without any weight
to be defined by experts, this approach can approximate any type of Pareto optimal front. Because
of the advantages of a posteriori optimization over the a priori approach, the focus of our research is
aimed at a posteriori multi-objective optimization.

2.4.2. Multi-Objective Salp Swarm Algorithm (MOSSA)

As an a posteriori multi-objective optimization, MOSSA [54] is similar to some swarm
multi-objective optimization algorithm such as MOPSO [31], MOACO [33] and MOGO [35].
By simulating the biological behavior of ecological communities, the optimal solution is achieved.

Salps belong to the family of Salpidae and have transparent barrel-shaped body. Their tissues are
highly similar to jellyfishes. They also move very similar to jellyfish, in which the water is pumped
through body as propulsion to move forward. In deep oceans, salps often form a swarm called a salp
chain. The main concern about salps in MOSSA is their swarming behavior.
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To mathematically model the salp chains, the population is first divided to two groups: leader
and followers. The leader is the salp at the front of the chain, whereas the rest of salps are considered
as followers. As the name of these salps implies, the leader guides swarm and the followers follow
each other.

Similar to other swarm-based techniques, the position of salps is defined in an n-dimensional
search space where n is the number of variables of a given problem. Therefore, the positions of all
salps are stored in a two-dimensional matrix called x. It is also assumed that there is a food source
called F in the search space as the swarm’s target.

Definition 1. To update the position of the leader the following equation is proposed:

x1
j =

{
Fj + c1

((
ubj − lbj

)
c2 + lbj

)
c3 ≥ 0

Fj − c1
((

ubj − lbj
)
c2 + lbj

)
c3 < 0

(12)

where x1
j shows the position of the first salp (leader) in the jth dimension, Fj is the position of the food source in

the jth dimension, ubj indicates the upper bound of jth dimension, lbj indicates the lower bound of jth dimension,
c1, c2, and c3 are random numbers. Equation (12) shows that the leader only updates its position with respect to
the food source.

Definition 2. The coefficient c1 is the most important parameter in the Salp swarm algorithm (SSA) because it
balances exploration and exploitation is defined as follows:

c1 = 2e−( 4l
L )

2
(13)

where l is the current iteration and L is the maximum number of iterations.

The parameter c2 and c3 are random numbers uniformly generated in the interval of [0, 1]. In fact,
they dictate if the next position in jth dimension should be towards positive infinity or negative infinity
as well as the step size.

Definition 3. To update the position of the followers, the following equations is utilized depending on Newton’s
law of motion:

xi
j =

1
2

aijt2 + v0t (14)

where i ≥ 2, xi
j shows the position of ith follower salp in jth dimension, t is time, v0 is the initial speed,

and aij =
vij−v0

t where vij =
xij−x0

t , i ≥ 2, j ≥ 1.

Because the time in optimization is iteration, the discrepancy between iterations is equal to 1,
and considering v0 = 0, this equation can be expressed as follows:

xi
j(t) =

1
2

(
xi

j(t−1) + xi−1
j(t−1)

)
(15)

where i ≥ 2 and xi
j(t) show the position of ith follower salp in jth dimension at t-th iteration.

According to the mathematical emulation explained above, the swarm behavior of salp chains
can be simulated vividly.

When dealing with multi-objective problems, there are two issues that need to be adjusted for
SSA. First, MOSSA need to store multiple solutions as the best solutions for a multi-objective problem.
Second, in each iteration, SSA updates the food source with the best solution, but in the multi-objective
problem, single best solutions does not exist.
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In MOSSA, the first issue is settled by equipping the SSA algorithm with a repository of food
sources. The repository can store a limited number of non-dominated solutions. In the process of
optimization, each salp is compared with all the residents in repository using the Pareto dominance
operators. If a salp dominates only one solution in the repository, it will be swapped. If a salp
dominates a set of solutions in the repository, they all should be removed from the repository and the
salp should be added in the repository. If at least one of the repository residents dominates a salp in the
new population, it should be discarded straight away. If a salp is non-dominated in comparison with all
repository residents, it has to be added to the archive. If the repository becomes full, we need to remove
one of the similar non-dominated solutions in the repository. For the second issue, an appropriate way
is to select it from a set of non-dominated solutions with the least crowded neighborhood. This can
be done using the same ranking process and roulette wheel selection employed in the repository
maintenance operator. The pseudo code of MOSSA is showed in Algorithm 1:

Algorithm 1. Pseudo-code of MOSSA.

1 Set the hyper-parameter: 
2 Max_iter:  Maximum of iteration 
3 ArchiveMaxSize: Max capacity of archive (repository) 
4 Dim: The number of parameters on each salp  
5 Ub and lb: The upper bound and the lower bound of salp population 
6 Obj_no: The objective number to be estimated 
7 Initialize the salp population  depending on the ub and lb 
8 Define the objective function (loss function): @ Ob_func 
9 While (end criterion is not met) 

10  Calculate the fitness of each search agent (salp) with Ob_func 
11  Determine the non-dominated salps 
12  Update the repository considering the obtained non-dominated salps 
13  If (the repository become full) 
14   Call the repository maintenance procedure to remove one repository resident 
15   Add the non-dominated salp to the repository 
16  End If 
17  Choose a source of food from repository: F = SelectFood (repository) 

18  Update c1 by  

19  For each salp ( ): 
20   If (i==1): 

21    

Update the position of the leading salp by:

 

22   Else: 

23    Update the position of the leading salp by:  

24   End If 
25  End For 
26  Amend the salps based on the upper and lower bound of variables 
27 End While 
28 Return repository 
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3. Proposed Interval Prediction Model for Short-Term Load Forecasting (STLF)

In this paper, we proposed a hybrid model for interval prediction based on the data preprocessing,
multi-objective optimization algorithm and LUBE to solve the problem of STLF. This hybrid model
consist of two stages: data de-noising and model prediction.

In the first stage, the main task is to refine the original data. The raw power load data is affected by
many internal and external factors in the collection process. Therefore, a lot of unrelated information
is integrated in the data. Several pieces of information will further affect the quality of the power
load data, and increase the difficulty of accurate forecasting of the power load. In the neural network
model, the performance of the model is directly affected by the quality of the data. As a type of
machine learning algorithm, the neural network uses its multilayered structure to learn the relevant
interdependencies of the data and determine the structural parameters of the prediction model, so as
to achieve fitting and forecasting. However, if the input set of the model contains too much noise and
“false information”, the model will be seriously affected in the training process, and some problems
will emerge, such as the overfitting problem. Therefore, we introduced CEEMDAN to eliminate useless
information in the raw data. As mentioned above, CEEMDAN can decompose the data series into
several IMFs with different frequencies, as shown in Figure 2. Because the IMFs are extracted with
envelope curves depending on the extremum, some of the IMFs have higher frequencies, just as the
first few IMFs that are shown in Figure 2. In addition, the other IMFs also have lower frequencies and
represent the trend factors, thereby formulating the vital basis for time-series prediction. In the actual
operations, we can remove the IMFs with higher frequencies, which effectively represent noise to refine
the original data. In order to determine which IMFs ought to be abandoned, we calculated the entropy
of each IMF and removed the IMFs with lower entropy. After the denoising process, the refined data
are transferred to next stage as the input data for training in the predictive model.

In the second stage, the main interval prediction model was proposed. In our hybrid interval
prediction model, the PI is output dependent on LUBE, which is based on the multi-output of the
Elman neural network (E–LUBE). In the training process, the input set of E–LUBE is constructed as
indicated in Formula (16), while the output set is constructed as indicated in Formula (17), where m and
s respectively denote the number of features and the numbers of samples, and α denotes the interval
width coefficient. In the case of the STLF problem, m indicates the number of previous time-points that
we use to forecast the predictive value.

Input set :

⎡⎢⎢⎢⎢⎣
x1 x2 · · · xm

x2 x3 · · · xm+1
...

...
. . .

...
xs xs+1 · · · xs+m

⎤⎥⎥⎥⎥⎦ (16)

Output set :

⎡⎢⎢⎢⎢⎣
xm+1 × (1 − α)

xm+2 × (1 − α)
...

xm+s+1 × (1 − α)

xm+1

xm+2
...

xm+s+1

xm+1 × (1 + α)

xm+2 × (1 + α)
...

xm+s+1 × (1 + α)

⎤⎥⎥⎥⎥⎦ (17)

According to a trained model, when a new series Xi, i = 1, . . . , m, is input into the model, Xm+1 with
an upper bound XU

m+1 and a lower bound XL
m+1 will be output. This is the basic mechanism of interval

prediction for STLF in this study. However, in traditional multi-output neural networks, the loss
function is always the mean-square-error (MSE), which is a key criterion for point forecasting. In this
study, we introduced two new criteria (PIW and CP) to construct the loss function, considering the
main purpose of our interval prediction. The traditional neural network parameters were determined
by using a gradient descent algorithm, but for two of the set criteria, the calculation of the gradient
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was difficult. Therefore, we employed MOSSA to realize the multi-objective parameter optimization.
Furthermore, the optimization problem can be expressed as,

argmin

{
PIW(θ)
1/CP(θ)

(18)

where θ is a set of parameters in E–LUBE, including the weight and bias.
When the parameters are determined in the training process, the entire model can be applied to

the test set to verify the performance of interval prediction.

 

Figure 2. Forecasting flowchart of the proposed hybrid model.

4. Simulations and Analyses

In order to validate the performance of the proposed hybrid model in STLF, four electrical load
datasets collected from four states in Australia are used in our research. The four states include
New South Wales (NSW), Tasmania (TAX), Queensland (QLD) and Victoria (VIC), and the specific
location is showed in Figure 3. The experiments in this study consist of two parts: experiment I
and experiment II. For experiment I, the load data of four states are modeled with interval width
coefficient α = 0.05, and for the experiment II, the interval width coefficient α is set as 0.025 for further
analysis. In order to verify the superiority of the proposed hybrid model, several benchmark models
which include basic LUBE (LUBE), LUBE with Elman neural network (E–LUBE), E–LUBE with point
optimization (PO–E–LUBE), E–LUBE with interval optimization (IO–E–LUBE), and models integrated
with CEEMDAN, are exhibited. For persuasive comparability and fairness, the hyper-parameters in
each model are consistent, as shown in Table 1. All experiments have been carried out in MATLAB
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2016a on a PC with the configuration of Windows 7 64-bit, Inter Core i5-4590 CPU @ 3.30GHz,
8GB RAM.

Figure 3. Data description of experiments. (a) Location of sample sites; (b) Division of train set and
test set; (c) Structure of input set and output set; and (d) Entropy of each IMF).

Table 1. Related parameters in hybrid model.

Submodels and Parameters Value

Elman Neural Network (ENN)

Inputnum 6
Hiddennum 13
Outputnum 3
Train.epoch 500

Train.lr 0.1
Train.func “Adam”

Complete ensemble empirical mode
decomposition with adaptive noise (CEEMDAN)

Nstd 0.2
NR 200

Maxiter 100

Multi-objective salp swarm algorithm (MOSSA)

Dim 754
Lb −2
Ub 2

Obj_no 2
Pop_num 50
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4.1. Data Descriptions

For each state, we considered the data using half an hour interval in four quarters. The data
used in this paper can be obtained on the website of Australian energy market operator (http://www.
aemo.com.au/). We chose data from the whole of 2017 from 1 January 2017 0:30 am to 31 December
2017 0:00 am to construct dataset. In each state, the total sample number is 17,520. For each quarter,
the number of samples were 4320, 4358, 4416, 4416 respectively. In order to control the comparability,
we selected 1200 samples to test the trained model, and used the rest in each quarter to train the models.
The proportion of train sets versus the test sets was approximately equal to 3:1. The description of
the data characteristics are shown in Figure 4. Considering the structure of the neural network in this
study, we set six input neurons, 13 hidden neurons, and three output neurons. Specifically, the output
set was formulated in accordance with Formula (17).

During data preprocessing, the input data were divided into several IMFs depending on
CEEMDAN, as displayed in Figure 2. According to the energy entropy of each IMF shown in Figure 3,
we ignored the IMFs which contained high frequencies, and summed the rest of the IMFs to reconstruct
the input set, as shown in Figure 1.

 

Figure 4. Boxplot of the entire set of data samples.

4.2. Performance Metrics

In order to comprehensively assess the performance of the models, some metrics were employed.
These metrics primarily focused on the coverage of the real value in the prediction interval and the
width of the interval.

4.2.1. Coverage Probability

Coverage probability [50] is usually considered as a basic feature of PIs and CP is calculated
according to the ratio of the number of target values covered by PIs:

CP =
1
m

m

∑
i=1

θi (19)
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where m denotes the number of samples, and θi is a binary index which measures whether the target
value is covered by PIs:

θi =

{
1 , yt

i ∈ [L̂i, Ûi]

0 , yt
i /∈ [L̂i, Ûi]

(20)

where yt
i denote the ith target value and L̂i, Ûi represent the ith lower bound and the upper

bound, respectively.
A larger CP means more targets are covered by the constructed PIs and a too small CP indicates

the unsatisfied coverage behaviors. To have valid PIs, CP should be larger or at least equal to the
nominal confidence level of PIs. Furthermore, in this paper, CP is also an important factor in the
process of parameter optimization by the multi-objective optimization algorithm.

4.2.2. Prediction Interval (PI) Normalized Average width and PI Normalized Root-Mean-Square Width

In research studies on interval prediction, more attention is usually paid to CP. However, if the
lower and upper bounds of the PIs are expanded from either side, any requirement for a larger CP
can be satisfied, even for 100%. However, in some cases, a narrower interval width is necessary for
a more precise support for electric power supply. Therefore, the width between the lower and upper
bounds should be controlled so that the PIs are more convincing. In this study, the prediction interval
width (PIW) is another factor in the process of parameter optimization. With CP and PIW, two objects
compose the solution space within which the Pareto solution set is estimated.

In order to eliminate the impact of dimension, some relative indexes should be introduced to
improve the comparability of width indicators. Inspired by the mean absolute percentage error
(MAPE) in point forecasting, we employed PI normalized average width (PINAW) and PI normalized
root-mean-square width (PINRW) [50]:

PINAW =
1

mR

m

∑
i=1

(Ui − Li) (21)

PINRW =
1
R

√
1
m

m

∑
i=1

(Ui − Li)
2 (22)

where R equals to the maximum minus minimum of the target values. Normalization by the range R
is able to improve comparability of PIs constructed using different methods and for different types
of datasets.

4.2.3. Accumulated Width Deviation (AWD)

Accumulated width deviation (AWD) is a criterion that measure the relative deviation degree, and
it can be obtained by the cumulative sum of AWDi [55]. The calculation formula of AWD is expressed
as Equations (23) and (24), where α denotes the interval width coefficient and Ii represents the i-th
prediction interval.

AWDi =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

L(α)
i −zi

U(α)
i −L(α)

i

, zi < L(α)
i

0, zi ∈ I(α)i
zi−U(α)

i

U(α)
i −L(α)

i

, zi > U(α)
i

(23)

AWD(α) =
1
n

n

∑
i=1

AWDα
i (24)
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4.3. Experiment I: Cases with Larger Width Coefficients

In this experiment, we set the interval width coefficient α = 0.05, which is equivalent to setting
the output to [0.95 × X, X, 1.05 × X] for a single sample in the training process of the neural network.
Based on this structure, the PIs can be output given an input test set. In order to guarantee the diversity
of the samples, we studied four different quarterly data for four different states.

The models involved in our research can be divided into three groups for better explanations for
the impact of different components. The first group included LUBE and E–LUBE, and the difference
between them were the structures of the neural network. The structure of LUBE consisted of three
layers which were similar to the traditional BP neural network. Moreover, in the E–LUBE, an extra
context layer was added to the structure so that we could validate the impact of the context layer
in prediction by comparing the performance of these two models. The second group included the
PO–E–LUBE and IO–E–LUBE, and the difference between them included the optimization algorithm
in the training process. PO–E–LUBE used the error and variance of point prediction to construct
the cost function in MOSSA, whereby the target of minimizing the cost function effectively denotes
a requirement for better prediction accuracy. In addition, IO–E–LUBE employed the CP and PIW of
the interval prediction to construct the cost function in multi-objective optimization, while the target
of minimizing such a cost function denoted the requirements for a better performance in interval
coverage, which is more rational for our goal of interval prediction. The comparison between such
models can reflect the influence of different cost functions in the parameter optimization process.
Furthermore, in the first group, the parameters of the neural network are determined by a conventional
gradient descent algorithm, and in the second group, the parameters are determined by a heuristic
optimization algorithm. Therefore, the impact of different optimization algorithms can be shown by
comparing the models in different groups. In addition, in the third group, the data preprocessing is
introduced. Based on the models in the first two groups, CEEMDAN was used to refine the input
dataset. The results of the models in this group will display the effect of data preprocessing in the
hybrid model.

The simulation results are shown in Tables 2 and 3. Also shown in Figure 5 are the principal
indices of interval prediction, namely, CP and PINAW. Based on the conducted comparisons referred
to earlier, several conclusions can be inferred:

(1) By comparing the models in the first group, we can conclude that the E–LUBE is superior to
LUBE in most cases, such as the fourth quarter in NSW and the first quarter in TAX, as shown in
Table 2 and Figure 5. The CP of E–LUBE reached 87.17%, while the CP of LUBE was 72.36% for
the fourth quarter in NSW. The rate of improvement was more than 15% with the maintenance of
PINAW and PINRW. However, in some cases, the improvement is not remarkable, such as the
fourth quarter in QLD, as shown in Table 3 and Figure 5. The performances of these two models
are almost the same. In general, the performance of E–LUBE is better than LUBE, which means
that E–LUBE with an extra context layer can improve the performance. In theory, the context
layers are able to provide more information compared to previous outputs of hidden layers.
This superiority has been proved in our experiments. However, owing to the instability of the
parameters in the neural network, the improvement is not adequately remarkable in a few cases.

(2) In terms of the optimization methods, and according to the results shown in Figure 5, and Tables 2
and 3, the CPs of the second group (PO–E–LUBE and IO–E–LUBE) perform better than E–LUBE
in most cases. E–LUBE uses the gradient descent algorithm, which is sensitive to the initialization,
in order to obtain the parameters in NN. Furthermore, the models in the second group use the
heuristic swarm optimization algorithm which can synthesize the initialization results using
an adequate population size. Thus, the models in the second groups should have elicited better
performances in theory unless the random initializations of E–LUBE are perfect. Moreover, within
the second group, IO–E–LUBE has a larger CP value than PO–E–LUBE, with low levels of PINAW
and PINRW. It is just the influence of the cost function that makes such a difference. The main
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object of the interval prediction is a larger CP value along with a narrow width. Therefore, the IO
should have an advantage

(3) Incorporation of CEEMDAN in the hybrid models is improved the performances significantly
because of the denoising preprocessing. In most cases, the CPs are larger than 80% and
90%, which means more than 80% target load values are covered by the predicted intervals.
Furthermore, in some cases, the CPs can reach 100%, such as the second and third quarters
in NSW, and the second quarter in QLD. Such accuracy can ensure that the power supply
meets the demand. Compared with the original LUBE and E–LUBE, the hybrid model we
proposed (CEEMDAN–IO–E–LUBE) elicited a significant improvement in the elicited results of
interval prediction.

(4) With a larger width coefficient, the CPs of our models were almost satisfactory. The smallest
CP was more than 70%, and the largest CP was able to reach 100%, which is perfect for interval
prediction in STLF. However, the PINAW and PINRW were almost all larger than 10, and even
reached the value of 20 in second quarter in QLD. But the proposed model still outperforms
other models.

(5) Considering the accumulated width deviation (AWD), for a larger width coefficient, the proposed
model (CEEMDAN-IO-E-LUBE) has a smaller AWD compared with other benchmark models
in most cases. According to the definition of AWD, a smaller AWD means more target values
fall into the predicted intervals. For the results in which the target values are over the bounds,
the deviations are relatively small. In this experiment, the AWDs of the proposed model are
satisfactory in most case. For some cases, the AWDs is even closed to 0, which means almost all
target load values fall into the predicted intervals. According to these predicted intervals, load
dispatch will be more rational.

 

Figure 5. Performance of different samples with the width coefficient 0.05.
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4.4. Experiment II: Cases with Smaller Width Coefficients

In this experiment, we set the interval width coefficient α = 0.025, which means we set the
output to be [0.925 × X, X, 1.025 × X] for a single sample in the training process of the neural network.
With a narrow width coefficient, the lower and upper bounds were closer to the target value in the
training process, which can provide more valuable information in practice. However, a narrow bound
might lead to the increase of CP. Thus, a smaller width coefficient requires the models to have better
predictive properties. The results of this simulation are shown in Tables 4 and 5, and in Figure 6.
Correspondingly, the following conclusions can be drawn:

(1) As Table 4 and Figure 6 show, the distinction of the models is similar to experiment I. The CPs of
the original LUBE and E–LUBE are the smallest among the models in our simulation, and our
proposed model CEEMDAN–IO–E–LUBE elicits the best performance

(2) For some benchmark models in this experiment, with a narrow bound in the training process,
the performance was not adequately satisfactory. As the cases of the third quarter in NSW denote
and the second quarter in TAX show the CPs of LUBE and E–LUBE are close to 50%, which is not
conclusive in practice. However, based on the hybrid mechanism we proposed, the performances
were improved significantly. The minimum CP values of CEEMDAN–IO–E–LUBE can reach 70%,
and the maximum is close to 100%, such as in the third quarter in QLD. Such results show that
the predicted intervals can better cover actual electricity demand data and economize spinning
reserve in power grid.

(3) With a smaller width coefficient, the CPs decreased while the PINAW and PINRW are reduced.
For the benchmark models, the results mostly display smaller CPs and larger PINAW or PINRW.
However, the proposed model is able to demonstrate larger CPs with smaller PINAW and PINRW
values, which is equivalent to a good performance in interval prediction. In some cases, the CP
values were larger than 95% with PINAW and PINRW values less than 10. In such cases, the CPs
are satisfactory and the widths of the PIs are most appropriate.

(4) In terms of AWD in this experiment, the proposed model still showed a relatively small
AWD compared with other benchmark models, which means the proposed model has a better
performance at predicted accuracy. Compared with experiment I, the AWDs in this experiment
are bigger. For a smaller width coefficient, the predicted interval will be narrower, which means
there will be more target points falling outside the intervals. In some situations, a narrower
predicted interval is necessary. The proposed model is able to provide a better performance on
the condition of the requirement of a narrower predicted interval of electric load.

4.5. Comparisons and Analyses

According to the comparison of the above two experimental results, the width coefficient has
a significant influence on performance, as shown in Figure 7. From one perspective, for most models,
a coefficient with a larger width may lead to a larger and more satisfactory CP value, but the index
about the width of PI may not be desired. From another perspective, for most models, a narrower
width coefficient may elicit the desired PINAW and PINRW values, but the CP is not good enough.
Considering such a situation, the proposed models alleviate the contradiction. Even though the
CP value of the proposed model will decline when the width coefficient decreases, comprehensive
performance is satisfactory. In some exceptional cases, owing to the complexity and instability of the
datasets, the performance of the proposed models is not adequate, as the description in Figure 3 shows.
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Figure 6. Performance of different samples with the width coefficient 0.025.

Figure 7. Interval prediction plot of partial samples in NSW.
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5. Discussion

In this section, we discuss some factors which may have an effect on the performances of the
proposed models in order to improve the practicability of our hybrid model. The factors involved
mainly include the features of the datasets and the setting of the hyperparameters in the algorithm.

5.1. Dataset Features

The feature and quality of the datasets have a significant effect on the performance of the
prediction models. In STLF, the data shows periodicity and volatility. The periodicity is attributed
to the regularity in the actual use of electricity, and the volatility is attributed to the randomness and
occasional use of electricity. Therefore, the linear component and the non-linear components operate
simultaneously during the forecasting of the model. Specifically, some outliers may have a negative
effect in the process of prediction.

As Figure 4 shows, the dataset features of the different samples are various. According to the
boxplot theory, the data points that are larger than Q3 + 1.5IQR or smaller than Q1 − 1.5IQR are
regarded as outliers. For the first and fourth quarters in NSW, and the first and fourth quarters in VIC,
the distributions of the datasets displayed a number of outliers. Additionally, the results of the models
shown in Tables 2–5 demonstrate that the model performance of the sample whose distribution is not
desired may be unremarkable. These outliers are important factors that lead to such results, even if the
CEEMDAN model has been applied in data preprocessing.

Another set of data features that may cause an unsatisfactory result are the non-linear
characteristics of the dataset. It is well known that in traditional research, the prediction of regular and
linear time series are easy to reach the desired accuracy. However, unstable and non-linear time series
are more difficult to forecast in spite of the applications of novel models, such as the case of machine
learning algorithms. A method used to measure the instability of data series is the recurrence plot
(RP) [56]. A recurrence plot is an advanced technique of non-linear data analyses. It is the visualization
(or a graph) of a square matrix in which the matrix elements correspond to those times at which the
state of the dynamical system recurs. Stationary systems will deliver homogeneous recurrence plots,
and unstable systems cause changes in the distribution of recurrence points in the plot, which is visible
and identifiable by the brightened areas. In this study, we selected VIC as an example to verify the
influence of instability. Before drawing the recurrence plot, the time delay and the dimension of the
embedded matrix were determined by the C–C method. Depending on the “CRP Toolbox” released by
Norbert Marwan [57], the recurrence plot of the four datasets of the different quarters in VIC is shown
in Figure 8.

Figure 8. Cont.
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Figure 8. Recurrence plot of the samples obtained from the four quarters in VIC.

As the figure shows, the second and third quarters in VIC display relatively homogeneous
distributions, while other quarters display isolated brightened areas. According to the theory of the
recurrence plot, the instabilities of the former two samples are weaker, and the other two samples
reveal stronger instabilities. Furthermore, we can conclude that the performances of the forecasting
models shown in Table 5 are remarkable when the dataset is relatively stable, while the unstable
dataset results in an unsatisfactory performance, which cannot be avoided.

5.2. Sensitivity Analysis

The hybrid model proposed in this study is based on the structure of the neural network shown
in Figure 1. In the hybrid model, the hyperparameter is a key factor that influences the model’s
performance. In most studies on machine learning, the setting of the hyperparameters always depends
on trials or empirical knowledge. This is the reason why many experimental results cannot be
reproduced and why a considerable amount of time and energy is spent on tuning parameters
in industrial applications. At present, there is no absolute method to determine the values of all
types of hyperparameters. In this study, we also mainly relied on experiences and trials to set the
hyperparameters, as shown in Table 1. Among the hyperparameters, several parameters need to
be highlighted.

The first one is the number of salp populations in MOSSA. In the swarm heuristic optimization
algorithm, the number of swarms is usually a vital factor that needs to be considered. A larger
population might provide a larger probability to reach the best individual, but exceeding the desired
population may cause an increase in the complexity of the algorithm, which is related to the number of
algorithmic iterations. Considering the number of parameters in our proposed model, the population
numbers that ranged from 10 to 100 with a step of 10 were evaluated. As a result, we selected the
number 50 as the population number (as shown in Table 6) after comprehensively considering the time
complexity and model performance.

The second type of hyperparameters that need to be emphasized are the upper and lower bounds
of individual parameters in MOSSA. In our simulation, the datasets were normalized within the range
of −1 to 1 in order to avoid the influence of dimension and improve the training speed. Therefore,
the absolute value of weights and thresholds of neural networks in the training process will not be
too large. As Table 6 shows, we set the initial upper and lower bounds to 2 and −2 according to
the experiment trials. Excessive range limits may increase the difficulty of searching for the best
parameters with a limited number of iterations. Furthermore, the algorithm that operates based on a
small range may not elicit the optimal solution.
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Table 6. Sensitivity analysies results of different hyper-parameters.

Metrics
The Number of Salp Populations in MOSSA

10 20 30 40 50 60 70 80 90 100

CP 95.21 95.32 97.01 96.66 98.69 98.33 98.50 97.85 97.46 98.10
PINAW 17.34 17.63 13.52 13.89 13.10 13.02 13.64 14.05 13.82 13.72
PINRW 18.28 18.05 14.18 14.35 13.84 13.75 14.36 14.92 14.67 14.53
Time(s) 425 452 472 524 548 593 668 734 869 10.45

Metrics
The Initial Threshold of Parameters

[−0.5, 0.5] [−1, 1] [−2, 2] [−3, 3] [−5, 5]

CP 97.65 98.84 99.00 98.26 96.89
PINAW 14.36 12.82 12.80 13.12 13.68
PINRW 15.32 13.46 13.42 13.94 14.36
Time(s) 433 450 461 453 484

5.3. Consistency Analysis

In this section, in order to verify the consistency of our proposed model, new datasets involving
latest dates are introduced. In addition, several basic compared models including long short-term
memory (LSTM) networks, function fitting neural networks (FITNET), and least squares support
vector machine (LSSVM) which have been proved to provide good results for STLF are employed to
verify the advantages of the proposed model.

We chose NSW and VIC randomly as examples. The new datasets are collected from 1 January
2018 0:30 am to 30 May 2018 0:00 am and the total number of samples is 7152. The samples in the
second quarter in NSW and the fourth quarter in VIC are chosen as compared datasets. According to
the results shown in Table 7, the proposed model also has a good performance on the new datasets.
The CP is almost 90%, which means the predicted interval can cover 90% target load value. The
consistency of the proposed can be guaranteed, and the change of the dates of dataset will not risk
altering the final conclusion.

Considering different basic models for STLF, we chose three widely used artificial intelligence
models (LSTM, FITNET, and LSSVM) as comparators to verify the superiority. As shown in Table 7,
the proposed models provide a larger CP and smaller PINAW compared with the other three models.
In particular, LSTM reveals desired narrower PINAW and PINRW, but the CPs are not satisfactory.
Moreover, the proposed model outperformed than other basic models in AWD. Therefore, the proposed
approach have a distinct advantage in the performance of short-term power load interval forecasting.
It is able to provide a satisfactory CP and restrict the interval width at the same time, which is the most
important aspect of superiority of the proposed model.

Table 7. Consistency analysis results of some basic models and new datasets.

Models
NSW-2018-NEW VIC-2018-NEW

CP PINAW PINRW AWD Time(s) CP PINAW PINRW AWD Time(s)

Proposed 89.58 15.51 16.58 0.023 593.29 89.08 11.50 12.66 0.065 564.55
LSSVM 78.67 15.95 17.64 0.677 495.32 86.67 12.16 13.01 0.026 486.85
FITNET 72.08 16.25 17.24 0.043 405.52 74.33 11.66 12.95 0.087 300.72
LSTM 44.00 5.47 5.92 0.382 1199.04 59.83 5.28 5.79 0.250 947.78

Models
NSW-2017-2Q VIC-2017-4Q

CP PINAW PINRW AWD Time(s) CP PINAW PINRW AWD Time(s)

Proposed 100.00 16.27 16.66 0.000 543.20 82.08 6.90 7.78 0.001 526.39
LSSVM 94.42 16.67 17.12 0.038 409.24 71.58 7.60 10.59 0.097 435.50
FITNET 94.33 15.83 17.29 0.012 402.12 74.33 7.88 8.94 0.076 504.31
LSTM 70.67 6.01 6.37 0.101 753.60 65.33 3.10 3.55 0.248 732.21
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On the other hand, in order to obtain a better performance and accuracy, the proposed approach is
more complex. The algorithm with higher complexity often takes longer in practice. As Table 7 shows,
compared with LSSVM and FITNET, the execution times of the proposed model are longer, which is
the major disadvantage. However, with the development of hardware, the operational capability of
computer can be improved, and the execution time can be reduced. Furthermore, as a kind of artificial
intelligence technique, the fine-tuning of hyper-parameters in the proposed model will take time,
which is a common situation in academic and industrial fields.

5.4. Further Research Prospect

This paper proposes a hybrid interval prediction model to predict the power load intervals.
Compared with other basic models, this model has achieved good results in terms of coverage, interval
width, and deviation error of the prediction interval. The model can obtain relatively high coverage
under the condition of relatively narrow interval width, and the interval obtained can accurately
reflect the changes of future short-term power load and provide more accurate and reliable support for
power dispatch. On the other hand, for datasets with more complex changes and non-linear features,
although the performance of proposed model is improved compared with the traditional models, it
is still not ideal in some cases. For the unfavorable results caused by the characteristics of datasets,
we may explore the following two aspects in future:

(a) Finding and improving prediction methods that can better solve the non-linear characteristics of
electrical loads, and improving the performance of predictive models in complex situations;

(b) Fully analyzing the relevant characteristics in the power load data, selecting different models
for different characteristics, and using ensemble learning to integrate and enhance the
prediction results.

6. Conclusions

STLF is the basic work of power system planning and operation. However, the power load has
regularity and certain randomness at the same time, which increases the difficulty of desired and
reliable STLF. Moreover, compared with the prediction of specific points, interval prediction may
provide more information for decision making in STLF. In this study, based on LUBE, we developed
a novel hybrid model including data preprocessing, a multi-objective salp algorithm, and E–LUBE.
In theory, such a hybrid model can reduce the influence of noise in a dataset and the parameter
optimization process is more effective and efficient in E–LUBE.

In our proposed approach, we used a multi-objective optimization algorithm to search for the
parameters of the neural network and reconstructed the cost function with double interval criterions
instead of point criterions (such as MSE) in the traditional method. As Tables 2–5 show, by comparing
it with traditional methods, the proposed approach provides a higher CP and a lower interval width at
the same time, which makes up for the lower CP and higher interval width of traditional methods.

In order to verify the performance of the proposed model and validate the impact of the constituent
components in a hybrid model, we collected 16 samples involving four states using four quarters in
Australia, and set several model comparisons in experiments

Furthermore, according to the comparison and analyses results, the conclusions are summarized
as follows: (a) an efficient data preprocessing method was applied herein. Depending on the
decomposition and reconstruction, this method can significantly improve the model performance
in STLF. (b) Compared to the traditional prediction models based on neural networks, the newly
developed E–LUBE method has an advantage in terms of comprehensive performance in interval
prediction. It can be validated that the context layer with the information of the former hidden layer
can improve model performance. (c) The introduction of the novel multi-objective algorithm MOSSA
optimized the process of parameter search. The new cost function was based on a double-objective
interval index that outperformed the traditional single-objective point error index (such as MSE) in
interval prediction. (d) For STLF based on the E–LUBE mechanism, the width coefficient is an important
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factor. A larger width coefficient may lead to satisfactory CPs, and a smaller width coefficient may
result in a satisfactory interval width. Therefore, in practice, the decision maker needs to adjust the
width coefficient for specific demands. For example, we chose the width coefficient with a minimum
interval width at the same time that the minimum demand of CP was guaranteed. (e) No matter
how complex is the dataset, the proposed model always provides the best performance compared to
benchmark models. However, because of the complexity of the data itself, some of the performance is
not remarkable. In general, the proposed model provided a desired result in most cases.

Furthermore, in a power grid operator the proposed method has a strong practical application
significance. A highly accurate forecasting method is one of the most important approaches used
in improving power system management, especially in the power market [58]. In actual operation,
for secure power grid dispatching, a control center has to make a prediction for the subsequent
load. According to historical data, the dataset for the predictive model involved can be constructed.
The results of the predictive model are able to provide the upper bound and lower bound of the load
at some point in the future. Depending on the upper bound and lower bound, the control center
can adjust the quantity of electricity on each charging line. Therefore, such a hybrid approach which
can provide more accurate results can ensure the safe operation of the power grid and improve the
economic efficiency of power grid operation.
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Abbreviation

STLF Short-term load forecasting
PI Prediction intervals
PIW Prediction intervals width
PINAW PI normalized average width
ENN Elman neural network
SNR Signal to noise ratio
IMF Intrinsic mode function
Nstd Noise standard deviation
Pop_num Total population number
Maxiter The maximum number of iterations
CEEMDAN The complete ensemble empirical mode decomposition with adaptive noise
NN Neural networks
CP Coverage probability
LUBE Lower upper bound estimation
PINRW PI normalized root-mean-square width
Dim Individual parameter dimension
EMD Empirical mode decomposition
MSE Mean square error
NR Number of realizations
RP Recurrence plot
MOSSA Multi-objective salp swarm algorithm
E-LUBE Lower upper bound estimation with ENN
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Abstract: Accurate short-term load forecasting is of momentous significance to ensure safe and
economic operation of quick-change electric bus (e-bus) charging stations. In order to improve
the accuracy and stability of load prediction, this paper proposes a hybrid model that combines
fuzzy clustering (FC), least squares support vector machine (LSSVM), and wolf pack algorithm
(WPA). On the basis of load characteristics analysis for e-bus charging stations, FC is adopted to
extract samples on similar days, which can not only avoid the blindness of selecting similar days
by experience, but can also overcome the adverse effects of unconventional load data caused by a
sudden change of factors on training. Then, WPA with good global convergence and computational
robustness is employed to optimize the parameters of LSSVM. Thus, a novel hybrid load forecasting
model for quick-change e-bus charging stations is built, namely FC-WPA-LSSVM. To verify the
developed model, two case studies are used for model construction and testing. The simulation test
results prove that the proposed model can obtain high prediction accuracy and ideal stability.

Keywords: short-term load forecasting; electric bus charging station; fuzzy clustering; least squares
support vector machine; wolf pack algorithm

1. Introduction

In recent years, low-carbon cities have become a common pursuit around the world, which is
faced with increasing energy crises and environmental problems [1]. Electric buses (e-buses) have
developed quickly with the burgeoning construction of low-carbon cities [2]. As important supporting
facilities, charging stations bring new challenges to optimal dispatching and safe operation of the
power grid due to great volatility, randomness and intermittence of the load [3]. Therefore, it is of
great significance to conduct research on load characteristics analysis and short-term load forecasting.
On one hand, this contributes to the optimal combination of generator units in terms of power system,
economical dispatch, optimal power flow and electricity market transactions. On the other hand,
it provides a decision basis for construction planning, energy management, orderly charging and
economical operation for charging stations, which can guarantee and promote the development
of low-carbon cities. Therefore, research on short-term load forecasting for quick-change e-bus
charging stations has been conducted to provide data support and a theoretical basis for the large-scale
construction of charging stations.

Nowadays, scholars have conducted a large amount of research on load forecasting for
charging stations. The prediction methods are primarily divided into two categories: traditional
forecasting approaches, such as time series [4], regression analysis [5], and fuzzy prediction [6],
and artificially intelligent algorithms. Conventional prediction methods aiming at load forecasting
for e-bus charging stations are mainly established on the foundation of probability and statistics
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theory. Ashtari et al. [7] installed GPS equipment on 76 representative plug-in electric vehicles in
Winnipeg, Canada, and collected driving data for the whole year. The load forecasting was conducted
in consideration of the actual charging sate of battery, stopping time, parking type and vehicle
power system. In [8], four variables, including the number of vehicles needing battery change per
hour, the starting time of charging, driving distance and charging duration, were taken into account
under an uncontrolled swapping and charging scenario. On this basis, the Monte Carlo method
integrated non-parameter estimation approach was employed in load forecasting for electric vehicle
charging stations. As we can see, traditional prediction methods have the advantages of mature theory,
perfect verification approaches and simple calculation, but the weaknesses of a single applicable object
and unideal prediction precision are also notable. Accordingly, it is of great importance to apply
intelligent forecasting techniques to load forecasting of charging stations with the rapid development
of artificial intelligence technology.

Intelligent algorithms for load forecasting chiefly consist of artificial neural networks (ANNs)
and support vector machine (SVM) [9]. Back propagation neural network (BPNN), treated as
representative of ANNs, is suitable for load prediction of quick-change e-bus charging stations.
For example, [10] analyzed the load characteristics and influential factors, as well as executing a
BPNN model to predict the short-term load based on the measured data of quick-change e-bus
charging stations at the Beijing Olympic Games. The approach in this study proved to be useful.
Additionally, some scholars have adopted ANNs for short-term load forecasting of other power
systems. Xiao et al [11] combined single spectrum analysis (SSA) with modified wavelet neural
network (WNN) to establish a reliable short-term forecasting approach in the field of load, wind speed
and electricity price. Reference [12] proposed a novel ensemble prediction method for short-term
load forecasting on the foundation of the extreme learning machine (ELM), where four improvements
were made to the ELM. The results showed that the prediction accuracy of the proposed technique
was superior to the standard ANNs. However, the drawbacks of ANNs include slow convergence
and easy trapping into the local minimum, which greatly limit the forecasting precision and stability.
SVM model can effectively address these problems [13]; thus, this approach has been widely used in
the research of load forecasting. Reference [14] designed an incremental learning model on the basis of
SVM to implement load prediction under batch arrival with a large sample. In reference [15], an SVM
model based on the selection of similar days for daily load forecasting of electric vehicles was come up
with. Correlation analysis was presented to extract the influential factors and grey correlation theory
was utilized to obtain a small sample set of similar days. Compared with ANNs, the SVM model
achieved better results for load forecasting. Nevertheless, the transformation of the kernel function to
convert the problem into quadratic programming reduces the efficiency and accuracy of traditional
SVM [16].

Least squares support vector machine (LSSVM) is a modified form for SVM where the least squares
linear system serves as the loss function to avoid quadratic programming, and the kernel function is
employed to transform prediction problems into equations, as well as to convert inequality constraints
into equality ones, which can improve the forecasting accuracy and speed [17]. Reference [18]
introduced LSSVM to predict the annual load in China with the rolling mechanism. The good results
verified the applicability of LSSVM in load forecasting. Reference [19] built a hybrid model integrated
LSSVM with cuckoo search algorithm (CS) for short-term load forecasting. The findings indicated that
this proposed technique could obtain good prediction results. Remarkably, LSSVM has not yet been
applied to load forecasting for quick-change e-bus charging station. The learning and generalization
ability of LSSVM model hinges on the selection of two parameters, namely, regularization parameter γ

and kernel parameter σ2. As a result, it is necessary to utilize an appropriate intelligent algorithm to
determine these values. The commonly employed optimization methods include genetic algorithm
(GA) [20], particle swarm optimization (PSO) [21], CS [22] and bat algorithm (BA) [23]. However,
GA has the disadvantages of premature convergence, complex computation, small processing scale,
poor stability and difficulty in coping with nonlinear constraints. The poor accuracy of local search
of PSO cannot fully satisfy the need of parameter optimization in LSSVM. The shortcoming of CS
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and BA is that they easily fall into local optimums, leading to reduction in prediction accuracy.
Wolf pack algorithm (WPA), as a new metaheuristic approach, is introduced in this paper to optimize
the parameters in LSSVM. This technique possesses good global convergence and computational
robustness due to insensitivity of the change of parameters in WPA [24].

As a result of the complexity and diversity of the influential factors for load forecasting in
quick-change e-bus charging stations, it is of great necessity to select proper inputs for the prediction,
so that redundant data can be reduced and computing efficiency can be improved [25]. Fuzzy clustering
(FC) is a mathematical technique that classifies objects according to their characteristics [26]. In view
of the fact that the daily load curves with similar influential factors of charging stations are basically
consistent, good prediction results can be achieved by the use of samples on similar days. Consequently,
a transitive closure algorithm grounded on a fuzzy equivalent matrix in FC is selected in this paper,
which can extract samples similar to the predicted day. It can not only avoid the blindness of choosing
similar days by experience, but also overcome the adverse effects of unconventional load data caused
by sudden change of factors on LSSVM training.

Therefore, the influential factors for the load in quick-change e-bus charging stations are analyzed
in this paper, and a load forecasting model combining FC with LSSVM and optimized by WPA
(FC-WPA-LSSVM) is established here. The rest of paper is organized as follows: Section 2 conducts
an analysis of the daily load characteristics for quick-change e-bus charging stations based on related
statistical data and studies various influential factors including day types, meteorological conditions
and bus dispatch; Section 3 provides a brief description of FC, LSSVM and WPA, as well as the
complete prediction framework; Section 4 introduces an experimental study to validate the proposed
method; and Section 5 makes further validation. In Section 6, conclusions are obtained.

2. Analysis of Load Characteristics of E-Bus Charging Stations

The load of a large quick-change e-bus charging station in Baoding, China, is provided in this
paper. When the bus comes into the station, the battery with electricity depletion is changed by the
quick-change robot, which is further connected to the charging platform. Then, a battery filled with
electricity is installed in the bus. After that, the e-bus goes into a specific area to wait for dispatch
instructions. According to the dispatch, the e-bus appears at the charging station after 8:00 a.m. each
day, which leads to a rise in load. The chargers will not stop working until the battery charging of the
last e-bus is completed. At that time, the load decreases to the lowest point.

A typical daily load curve of the e-bus charging station is shown in Figure 1, which displays
the active power per hour in a day. In common with the traditional load curve, there exist obvious
crests and troughs. However, the curve of the e-bus charging station fluctuates greatly, and apparent
distinctions appear among different curves, whereby the load in winter and summer is high, while the
load in spring and autumn is low. All of these characteristics create difficulties for the daily load
forecasting of the charging station.

 

Figure 1. Typical daily load curve of an e-bus charging station in Baoding.
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The load is influenced by various factors. Here, three variables, including day types,
meteorological conditions and e-bus dispatching, are selected. Unlike traditional motor vehicles,
the source of power for electric buses is all electric power. When there is a traffic jam, there is no energy
loss for electric buses. Therefore, traffic congestion factors do not affect the load of charging stations.

2.1. Day Types

E-bus charging stations serve the electricity supply of urban e-buses. In accordance with the
habits and demands of citizens, the scheduling of e-buses between weekdays and weekends is different
across the week, which also results in obvious differences in the load curve.

Table 1 displays the annual mean of daily maximum load and daily average load for the e-bus
charging station in Baoding in 2016 on the basis of day types. It can be seen that the loads on workdays
are relatively higher than those on weekends. Thus, a week can be divided into two categories,
namely workdays, including Monday to Friday, and weekends, which contain Saturday and Sunday.
Special holidays, such as Dragon Boat Day, Labor Day or National Day, can be separated as a new
type alone.

Table 1. Load characteristics of different day types.

Day Type
Annual Average Daily

Maximum Load/kW
Annual Average Daily

Average Load/kW

Monday 669.16 386.70
Tuesday 663.28 377.07

Wednesday 649.63 376.95
Thursday 647.03 366.23

Friday 636.54 370.55
Saturday 573.46 338.97
Sunday 590.45 349.94

2.2. Meteorological Conditions

Data related to meteorological conditions and the power load of Baoding from August 16 to
September 15, 2017 (31 days in total) are collected and shown in Figure 2. The meteorological conditions
include the daily maximum temperature, daily weather, daily average wind speed and daily average
humidity. In the daily weather condition, “1” is used to represent a sunny day, “2” is used to represent
cloudy day, and “3” is used to represent a rainy or snowy day. As can be seen in Figure 2, there is a
significant positive correlation between daily maximum temperature and power load, and weather
and power load show a negative correlation. However, there is no obvious relationship between the
average wind speed factor and load, and the average humidity factor is similar. Thus, it can be found
that the load of e-bus charging stations is remarkably affected by temperature, as well as by rainy and
snowy days, while the influence of other meteorological conditions such as humidity and wind speed
is so weak that they can be omitted. Therefore, temperature and rainy and snowy days are selected as
influential indicators in this paper.
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Figure 2. The relationship between meteorological conditions and power load. (a) the highest
temperature and load; (b) the weather and load; (c) the average wind speed and load; (d) the average
humidity and load.

Similar to traditional power loads, the daily load of the charging station increases owing to the
use of air conditioners on e-buses when the temperature change of coldness and warmth is aggravated.
Since temperature has an important influence on battery capacity, as well as on the charging and
discharging process, the charging time is diverse at different temperatures, which also leads to distinct
trends of load. The daily load curves from September 12 to 14, 2017 are taken as an example, in which
the total number of charged e-buses in these three days was about 60 and the maximum temperature
dropped from 35 to 24. As seen in Figure 3, the violent fluctuation of air temperature in adjacent days
causes great changes in daily load curves. Thus, it is necessary to take temperature as an influential
factor in the selection of subsequent similar day samples.

 

Figure 3. Relationship between temperature and daily load.

Taking the daily load curves on August 29 and August 30 in 2017 as an example,
weather conditions can be divided into sunny days and rainy days. Figure 4 illustrates the relationship
between weather conditions and the daily load of the charging station. It proves that daily maximum

322



Energies 2018, 11, 1449

load decreases on rainy and snowy days on account of the deceleration of e-buses, which leads to
a decrease in the daily driving mileage and charging times as well as the reduction of total load in
the charging station. To this end, rainy and snowy days are another vital factor that affects the load
characteristics of e-bus charging stations.

 

Figure 4. Relationship between weather conditions and daily load.

2.3. Bus Dispatching

The scheduling of departure time and off-running time is a momentous task for bus operation
companies. In light of the daily plan of bus dispatching, different charging intensities of e-buses in the
station cause changes in the daily load curve in the charging station at different periods. Moreover,
diverse demands of the public, traffic jams, and sudden situations require the addition of temporary
e-buses to enhance transport capacity, which brings about changes in bus scheduling on different days.
Bus dispatching is one of the direct reasons for the fluctuation of daily load curve and the distinction
of load curves among days. According to the dispatch plan made in advance, the total number of
e-buses that need to be charged on a predicted day can be estimated; namely, the accumulated number
of e-buses charged daily, which is used as an indicator to reflect the effect of bus dispatching on the
load of the quick-change e-bus charging station.

3. Methodology

3.1. Fuzzy Clustering

FC analysis is a mathematical technique that achieves classification of objects through the
establishment of fuzzy similarity relations based on their characteristics, familiarity and comparability.
The fuzzy equivalent matrix dynamic clustering method is implemented in this paper.

Suppose n samples on the predicted day, that is X = [x1, x2, ..., xn]. Each sample xj comprises m

indicators, expressed as xj =
[
xj1, xj2, ..., xjm

]T , j = 1, 2, ..., n.
The specific steps of FC can be explained as follows:
(1) Data standardization. Considering different dimensions and orders of magnitude, the data

must be standardized as Equation (1) [27].

x′jk = (xjk − xkmin)/(xkmax − xkmin), (j = 1, 2, ... , n; k = 1, 2, ..., m) (1)

where xjk is the raw data, xkmin and xkmax are the minimum and maximum of x1k, x2k, · · · , xnk,
respectively, x′jk is the standardized data.

(2) Establishment of fuzzy similarity relation matrix. In order to measure the comparability of the
classified samples, a fuzzy similarity relation matrix R =

{
rij
}

needs to be constructed by similarity of
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coefficient approach, distance or closeness. An absolute value index method is introduced here [28],
as expressed in Equation (2).

rij = exp(−
m

∑
k=1

∣∣∣x′ik − x′jk
∣∣∣), (i = 1, 2, ..., n; j = 1, 2, ..., n; k = 1, 2, ..., m) (2)

Then the transitive closure R∗ of R can be obtained by square synthesis.
(3) Dynamic clustering. Select an appropriate threshold L to separate R∗. The clustering results

are up to the level of L. When L drops from 1 to 0, a dynamic clustering graph is obtained by changing
the rough classification to a fine one. The best value of L can be acquired based on its change rate [29].

Ci =
Li−1 − Li
ni − ni−1

(3)

where i is the clustering order of L in a descending form; ni and ni−1 are the number of elements in i
and i − 1 clusters, respectively; Li and Li−1 are the confidence levels in i and i − 1 clusters, respectively.
If Ci = max(Cj), Li is treated as the best threshold. Thus, n samples can be separated into several
categories and each type contains a different number of samples.

(4) Classification recognition. The category consistent with the forecasted day needs to be
identified after sample classification. The Euclidean distance is calculated between the predicted
day and the above categories one by one [26]:

dij =
1√
m

√
m

∑
k=1

(x′ik − x′jk)
2 (4)

where x′ik is the characteristic vector on the predicted day, x′jk represents the characteristic vector of
each category. This paper takes the type with the shortest Euclidean distance as the classification of the
forecasted day to make the prediction.

3.2. Least Squares Support Vector Machine

As an extension of SVM, LSSVM transforms the inequality constraints into equality ones and
converts quadratic programming problems into linear equation ones, which is conducive to the
improvement of convergence speed [30].

Set the training samples as T = {(xi, yi)}N
i=1, where N is the total number of samples.

The regression model can be expressed as follows [31]:

y(x) = wT × ϕ(x) + b (5)

where ϕ() is a function that maps the training samples into a highly dimensional space, w and b
represent the weight and bias, respectively.

For LSSVM, the optimization problem can be defined as Equation (6) [32]:

min
1
2

wTw +
1
2

γ
N

∑
i=1

ξ2
i (6)

s.t. yi = wTφ(xi) + b + ξi, i = 1, 2, ..., N (7)

where γ is the regularization parameter that balances the complexity and precision of the model.
ξi equals the error.
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To obtain the solution, the Lagrange function can be established as Equation (8).

L(w, b, ξi, αi) =
1
2

wTw +
1
2

γ
N

∑
i=1

ξ2
i −

N

∑
i=1

αi

[
wT ϕ(xi) + b + ξi − yi

]
(8)

where αi is the Lagrange multipliers. Take the derivatives of each variable in the function and make
them equal zero: ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂L
∂w = 0 → w =

N
∑

i=1
αi ϕ(xi)

∂L
∂b = 0 → N

∑
i=1

αi = 0

∂L
∂ξ = 0 → αi = γξi

∂L
∂α = 0 → wT ϕ(xi) + b + ξi − yi = 0

(9)

Eliminate w as well as ξi and transform it into the following problem:[
0 eT

n
en Ω + γ−1 · I

]
×
[

b
a

]
=

[
0
y

]
(10)

where
Ω = ϕT(xi)ϕ(xi) (11)

en = [1, 1, ..., 1]T (12)

α = [α1, α2, ..., αn] (13)

y = [y1, y2, ..., yn]
T (14)

The solution can be obtained based on the linear equations above:

y(x) =
N

∑
i=1

αiK(xi, x) + b (15)

where K(xi, x) is the kernel function that meets Mercer’s condition. The radial basis function (RBF)
is employed as the kernel function here on the basis of its wide convergence region and extensive
application scope, as shown in Equation (16).

K(xi, x) = exp
{
−‖x − xi‖2/2σ2

}
(16)

where σ2 represents the kernel parameter that reflects the characteristic of training samples and has
influence on generalization ability of the technique.

As we can see, the performance improvement of LSSVM model is greatly dependent on the
appropriate setting of the following parameters: regularization parameter γ and kernel parameter
σ2 [33].

3.3. Wolf Pack Algorithm

In consideration of the blindness of manual selection in LSSVM model parameters, the optimal
value of regularization parameter γ and kernel parameter σ2 of LSSVM is obtained through the wolf
pack algorithm. The WPA technique is inspired by research on the hunting behaviors of wolves [34].
According to their roles in hunting, wolves can be divided into three types: head wolves, safari wolves
and feral wolves, who work together to complete the task. Random walk, call to action and siege are
three main behaviors of wolves, which are simulated in the WPA model. The determination of the
head wolf and the replacement of the wolf pack follow the common rules that the “winner is the king”
and “the survival of the fittest”, respectively [35]. WPA is illustrated in Figure 5.
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Figure 5. Bionic graph of WPA.

The principle and steps of WPA are summarized as follows [36]:
(1) Initialize wolf pack. Suppose in D dimensional space, there are N wolves, wherein the location

of the i-th wolf is set as:
Xi = (xi1, xi2, ..., xid), 1 ≤ i ≤ N, 1 ≤ d ≤ D (17)

The initial position is generated as Equation (18):

xid = xmin + rand × (xmax − xmin) (18)

where rand represents random numbers within the range [0,1], and xmax and xmin are the upper limit
and lower limit of the search space, respectively.

(2) Generate the head wolf. The wolf at Ylead with the best target function is selected as the head
one. The head wolf does not update its position in the hunting process or participate in hunting;
instead, it is directly iterated. If Ylead < Yi, Ylead = Yi, where Yi represents the location of the safari wolf
i. Otherwise, the safari wolf i randomly walks in h directions until the maximum value H is achieved
or the location cannot be further optimized; then the search is stopped. yijd is the location at j-th point
in d-th dimension of the i-th wolf.

yijd = yid + rand × stepa (19)

(3) Keep close to the prey. The head wolf pushes the wolf pack to update their positions through
call to action. The new position of the i-th wolf in d-dimension is described as Equation (20):

zid = xid + rand × stepb × (xid − xlid) (20)

where stepa is the step length of wolves in search, stepb represents the step length of wolves
towards the target, xid and xlid are the location of the i-th wolf and the corresponding head wolf
in d-dimension, respectively.

(4) Encircle the prey. The head wolf sends signals to the surrounding wolf pack after finding
the prey so that the encirclement and suppression of the target prey can be completed, as shown in
Equations (21) and (22):

Xt+1
i =

{
Xt

i , rm < θ

Xi + rand × ra, rm > θ
(21)

ra(t) = ramin × (xmax − xmin)× e
ln (ramin/ramax)

maxt (22)

where t equals the number of iterations, ra is the step length at the time of encirclement and suppression,
Xi is the location of the head wolf that sends the signal, and Xt

i is the location of the i-th wolf in the
t-th iteration.
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(5) The mechanism of competition and regeneration of the wolf pack. In encirclement and
suppression, the wolves that fail to get food will be eliminated and the rest of wolves will be retained.
Simultaneously, new wolves are randomly generated in the same number as the eliminated ones.

(6) Judge whether the maximum number of iterations has been reached. If the maximum number
of iterations has been reached, the position of the wolf is output; that is, the optimal value of the
LSSVM’s parameters. If the maximum number of iterations has not been reached, then return to step 2.

3.4. Establishment of the Hybrid Forecasting Model

This paper firstly analyzes the influential load factors for quick-change e-bus charging stations,
and FC is implemented to extract similar days to the predicted one as the training samples. Then,
WPA is integrated with the LSSVM model to obtain the optimal values of γ and σ2. Finally, an analysis
is performed on the forecasting results. The framework of the proposed hybrid approach is displayed
in Figure 6.

Initialize the location of wolf pack and 
parameters of LSSVM

Select the wolf at the location with the 
best target function as the head one

The head wolf pushes wolf pack to 
update their positions through call to 

action and keep close to the prey 
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Figure 6. The flow chart of the proposed forecasting model.
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4. Case Study

Base on the daily load, meteorological data and operation information of an e-bus charging station
in Baoding, China, in 2017, a case study was carried out for the purpose of demonstrating the efficiency
of the proposed model in load forecasting for e-bus charging station. The load data was provided by
State Grid Hebei Electric Power Company in China, and the input data was provided by the local
meteorological department. This paper adopts Matlab R2014b (Gamax Laboratory Solutions Kft.,
Budapest, Hungary) to program, and as for the test platform environment, an Intel Core i5-6300U
(Intel Corporation, Santa Clara, CA, USA), 4G memory and Windows 10 Professional (Microsoft
corporation, Redmond, WA, USA) Edition system was used. In order to eliminate the particularity of
the target days and examine the generalization performance of the established technique, the data for
one day from each of the four seasons was selected as test samples; that is, April 15, July 15, October 15
and January 15 were chosen as test samples for spring, summer, autumn and winter, respectively.

4.1. Input Selection and Pre-Processing

Based on the analysis of load characteristics in the e-bus charging station in Section 2, a set of eight
variables was used as the input, including day type, maximum temperature, minimum temperature,
weather condition, the accumulated daily number of charged e-buses and the loads at the same
moment in the previous three days. Days can be divided into three categories: workdays (Monday to
Friday), weekends (Saturday and Sunday) and legal holidays were valued at 1, 0.5 and 0, respectively.
Weather conditions were separated into two types, where sunny and cloudy days were valued at 1,
and rainy and snowy days were valued at 0.5. The loads at the same moment in the previous three
days refer to those nearest the predicted day in similar samples after clustering according to the rule
that “Everything looks small in the distance and is big on the contrary.” The temperature, load data,
and daily accumulated charged e-buses should be normalized as presented in Equation (1).

4.2. Model Performance Evaluation

It’s important to effectively evaluate the load forecasting results for e-bus charging stations,
and the performance of the prediction models is usually assessed by statistical criteria: the relative
error (RE), root mean square error (RMSE), mean absolute percentage error (MAPE) and average
absolute error (AAE). The smaller the values of these four indicators are, the better the forecasting
performance is. In addition, the indicators named RMSE, MAPE and AAE can reflect the overall error
of the prediction model and the degree of error dispersion. The smaller the values of these three
indicators are, the more concentrated the distribution of errors is. The four generally adopted error
criteria are displayed as follows:

(1) Relative error (RE)

RE =
x̂i − xi

xi
× 100% (23)

(2) Root mean square error (RMSE)

RMSE =

√
1
n

n

∑
i=1

(
x̂i − xi

xi
)

2
(24)

(3) Mean absolute percentage error (MAPE)

MAPE =
1
n

n

∑
i=1

|(x̂i − xi)/xi| · 100% (25)
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(4) Average absolute error (AAE)

AAE =
1
n
(

n

∑
i=1

|x̂i − xi|)/( 1
n

n

∑
i=1

xi) (26)

where x and x̂ are the actual load and the forecasted one of charging station, respectively; n equals the
number of groups in the dataset. The smaller these evaluation indicators are, the higher the prediction
accuracy is.

4.3. Results Analysis

The parameters of the proposed model are set as: the total wolf pack N = 50, iteration number
t = 100, stepa = 1.5, stepb = 0.8, q = 6, h = 5. The forecasting results are shown in Figure 7.

 

Figure 7. Forecasting results of the proposed model.

As can be seen from Figure 7, the proposed model is very close to the actual load curve in each
season and has a good degree of fit. Figure 8 shows the relative error of the prediction results. It can be
seen that the relative error of the prediction results of the FC-WPA-LSSVM model is controlled within
the range [−3%, 3%], and the degree of deviation is acceptable.

 

Figure 8. The RE of the proposed model.
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4.4. Discussion

In order to verify the performance of the forecasting approach, three basic techniques,
including WPA-LSSVM [37], LSSVM [38], and BPNN [39], were introduced to make a comparison.
The parameter settings in WPA-LSSVM were consistent with those in the established model. In LSSVM,
the regularization parameter γ and the kernel parameter σ2 were valued at 12.6915 and 12.0136,
respectively. In BPNN, tansig was utilized as the transfer function in the hidden layer, and purelin
was employed as the transfer function in the output layer. The maximum number of convergence was
200, the error was equal to 0.0001, and the learning rate was set as 0.1. The determination of the initial
weights and thresholds depend on their own training. Figure 9 illustrates the load forecasting results
of FC-WPA-LSSVM, WPA-LSSVM, LSSVM and BPNN. Figure 10 presents the values of RE for each
prediction method.

 

Figure 9. Forecasting results: (a) forecasting results of Spring test; (b) forecasting results of Summer
test; (c) forecasting results of Autumn test; (d) forecasting results of Winter test.
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Figure 10. RE of forecasting approaches: (a) RE of Spring test; (b) RE of Summer test; (c) RE of Autumn
test; (d) RE of Winter test.

From Figures 9 and 10, it can be seen that the prediction error range of FC-WPA-LSSVM was
controlled to within [−3% + 3%], where the minimum error (7:00 in the spring test) and the maximum
error (18:00 in the autumn test) were 0.08% and −2.98%, respectively. Among them, 10 error points
of the results were within [−1%, 1%], namely 7:00, 11:00 and 16:00 in the spring test, 1:00, 2:00, 9:00,
16:00, 23:00 in the summer test, 6:00 in the autumn test, 19:00 in the winter test; the corresponding
values of RE were 0.08%, −0.49%, −0.52%, −0.71%, −0.98%, −0.74%, −0.85%, 0.71%, −0.81% and
0.31%, respectively. In addition, 19 error points of WPA-LSSVM were controlled to within [−3%, 3%],
while the corresponding number for LSSVM was 17, of which 2 points of WPA-LSSVM were within
the range [−1%, 1%], namely at 10:00 in the spring test (RE = −0.86%) and 9:00 in the winter test
(RE = − 0.79%), but all error points of LSSVM were outside the range [−1%, 1%]. The minimum
errors of WPA-LSSVM and LSSVM were −0.79% and −1.07% respectively, while their maximum
errors were 6.6% and −7.59%, respectively. The errors of the BPNN model were mostly within the
ranges [−6%, −4%] or [4%, 6%], where the maximum and minimum of RE were individually equal to
1.36% and 8.73%, respectively. In this regard, the forecasting accuracy ranked from the highest to the
lowest was: FC-WPA-LSSVM, WPA-LSSVM, LSSVM, and BPNN. Hence, FC can effectively avoid the
blindness in the selection of similar days through experience. In contrast with LSSVM, administering
WPA improves the prediction precision by virtue of the parameter optimization of LSSVM. It is without
doubt that the forecasting accuracy of some points in FC-WPA-LSSVM is worse than the other three
approaches; for instance, the error of FC-WPA-LSSVM was 1.76% at 22:00 in the spring test, which was
greater than WPA-LSSVM and BPNN.

The performance comparison results of the forecasting models were measured by RMSE,
MAPE and AAE, as presented in Figure 11. This demonstrates that the proposed approach outperforms
the other models in terms of all the evaluation criteria, of which RMSE, MAPE and AAE of
FC-WPA-LSSVM were equal to 2.20%, 2.09% and 2.09%, respectively. This is mainly due to the
fact that FC can overcome the adverse effects of unconventional load data caused by factor mutation on
LSSVM training, and WPA improves the generalization ability and prediction accuracy by parameter
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optimization in LSSVM model. In comparison with BPNN, LSSVM can avoid the drawbacks of
premature convergence and easily falling into local optimum.

Figure 11. RMSE, MAPE and AAE of the forecasting results (I).

5. Further Study

In order to further verify the validity of the proposed method, another e-bus charging station in
Baoding, China, was selected for an experimental study. The load data of the station from January,
2016 to December, 2016 are provided in this paper, where seven successive days in each season were
taken as test samples and the remaining data were used as training samples. The setting of parameters
in WPA-LSSVM was consistent with the proposed method. In LSSVM, γ and σ2 were equal to 10.2801
and 11.2675, respectively. The values of the parameters in the BPNN model were same as those in the
previous case study. Figure 12 displays the values of RMSE, MAPE and AAE.

 

Figure 12. RMSE, MAPE and AAE of the forecasting results (II): (a) Spring test; (b) Summer test;
(c) Autumn test; (d) Winter test.
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From Figure 12, it can be seen that FC-WPA-LSSVM presents the lowest RMSE, MAPE and AAE,
with corresponding values of 2.07%, 1.92% and 1.97 in the spring test, 2.29%, 2.20% and 2.11% in the
summer test, 2.39%, 2.35% and 2.25% in the autumn test, and 2.08%, 1.90% and 1.84% in the winter
test. It can be seen that the overall prediction performance of the forecasting approach was optimal
due to the advantages of FC, WPA and LSSVM. In conclusion, the load forecasting model for e-bus
charging stations based on FC-WPA-LSSVM can provide accurate data support for the economical
operation of the station. In addition, the proposed model can also be applied to the load forecasting of
other charging stations, and its prediction accuracy will not be affected by changes in the number of
electric vehicles and other factors.

Since this forecasting model is based on MATLAB development, if the transportation company
wants to use this model to predict the load in the future, they can also use it easily and obtain the
forecast results without additional costs.

6. Conclusions

In view of the load characteristics for e-bus charging stations, this paper selected eight variables,
including day type, maximum temperature, minimum temperature, weather condition, the number
of accumulated daily number of charged e-buses and the loads at the same moment in the previous
three days, as the input. A novel short-term load forecasting technique for e-bus charging stations
based on FC-WPA-LSSVM was proposed, in which FC was used to extract similar dates as training
samples, and WPA was introduced to optimize the parameters in LSSVM to improve the prediction
accuracy. Two case studies were carried out to verify the developed approach in comparison with
WPA-LSSVM, LSSVM and BPNN. The experimental results showed that the forecasting precision of
the proposed model was better than the contrasting models. Hence, FC-WPA-LSSVM provides a new
idea and reference for short-term load forecasting of e-bus charging stations.

The load of e-bus charging stations is a kind of power load with complex change rules and diverse
influential factors. With the large-scale application of electric vehicles, more and more e-bus charging
stations will start to be put into use. At that time, research on actual operation of charging stations
will be more abundant. It is necessary to make further efforts to seek more suitable load forecasting
approaches for e-bus charging stations based on the study of load variation rules and the internal
relationships between the load and influential factors.
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Abstract: Accurate power-load forecasting for the safe and stable operation of a power system
is of great significance. However, the random non-stationary electric-load time series which is
affected by many factors hinders the improvement of prediction accuracy. In light of this, this paper
innovatively combines factor analysis and similar-day thinking into a prediction model for short-term
load forecasting. After factor analysis, the latent factors that affect load essentially are extracted from
an original 22 influence factors. Then, considering the contribution rate of history load data, partial
auto correlation function (PACF) is employed to further analyse the impact effect. In addition, ant
colony clustering (ACC) is adopted to excavate the similar days that have common factors with the
forecast day. Finally, an extreme learning machine (ELM), whose input weights and bias threshold are
optimized by a bat algorithm (BA), hereafter referred as BA-ELM, is established to predict the electric
load. A simulation experience using data deriving from Yangquan City shows its effectiveness and
applicability, and the result demonstrates that the hybrid model can meet the needs of short-term
electric load prediction.

Keywords: short-term load forecasting; factor analysis; ant colony clustering; extreme learning
machine; bat algorithm

1. Introduction

Short-term load forecasting is an important component of smart grids, which not only can achieve
the goal of saving cost but also ensure a continuous flow of electricity supply [1]. Moreover, against
the background of energy-saving and emission-reduction, accurate short-term load prediction plays
an important role in avoiding a waste of resources in the process of power dispatch. Nevertheless,
it should be noted that the inherent irregularity and linear independence of the loading data present
a negative effect on the exact power load prediction.

Since the 1950s, short-term load forecasting has been attracting considerable attention from
scholars. Generally speaking, the methods for load forecasting can be classified into two categories:
traditional mathematical statistical methods and approaches which are based on artificial intelligence.
The conventional methods like regression analysis [2,3] and time series [4] are mainly based on
mathematical statistic models such as the vector auto-regression model (VAR) and auto-regressive
moving average model (ARMA). With the development of science and technology, the shortcomings
of statistical models, such as the effect of regression analysis based on historical data that will be
weakened with the extension of time or the results of time-series prediction that are not ideal when
the stochastic factors are large, are beginning to appear and are criticized by researchers for their low
non-linear fitting capability.
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Owing to the characteristic of strong self-learning, self-adapting ability and non-linearity, artificial
intelligence methods such as back propagation neural networks (BPNN), support vector machine (SVM)
as well as the least squares support vector machine (LSSVM) etc. have obtained greater attention and
have had a wide application in the field of power load forecasting during the last decades [5,6]. Park [7]
and his partners first used the artificial neural network in electricity forecasting. The experimental
results demonstrated the higher fitting accuracy of the artificial neural network (ANNs) compared
with the fundamental methods. Hernandez et al. [8] successfully presented a short-term electric
load forecast architectural model based on ANNs and the results highlighted the simplicity of the
proposed model. Yu and Xu [9] proposed a combinational approach for short-term gas-load forecasting
including the improved BPNN and the real-coded genetic algorithm which is employed for the
parameter optimization of the prediction model, and the simulation illustrated its superiority through
the comparisons of several different combinational algorithms. Hu et al. [10] put forward a generalized
regression neural network (GRNN) optimized by the decreasing step size fruit fly optimization
algorithm to predict the short-term power load, and the proposed model showed a better performance
with a stronger fitting ability and higher accuracy in comparison with traditional BPNN.

Yet, the inherent feature of BPNN may cause low efficiency and local optimal. Furthermore,
the selection of the number of BPNN hidden nodes depends on trial and error. As a consequence,
it is difficult to obtain the optimal network. On the basis of structural risk, empirical risk and
vapnik–chervonenkis (VC) dimension bound minimization principle, the support vector machine
(SVM) showed a smaller practical risk and presented a better performance in general [11]. Zhao and
Wang [12] successfully conducted a SVM for short-term load forecasting, and the results demonstrated
the excellence of the forecasting accuracy as well as computing speed. Considering the difficulty of the
parameter determination that appeared in SVM, the least squares support vector machine (LSSVM) was
put forward as an extension, which can transform the second optimal inequality constraints problem in
original space into an equality constraints’ linear system in feature space through non-linear mapping
and further improve the speed and accuracy of the prediction [13]. Nevertheless, how to set the kernel
parameter and penalty factor of LSSVM scientifically is still a problem to be solved.

Huang et al. [14] proposed a new single-hidden layer feed forward neural network and named it as
the extreme learning machine (ELM) in 2009, in which one can randomly choose hidden nodes and then
analytically determine the output weights of single-hidden layer feed-forward neural network (SLFNs).
The extreme learning machine tends to have better scalability and achieve similar (for regression and
binary class cases) or much better (for multi-class cases) generalization performance at much faster
learning speed (up to thousands of times) than the traditional SVM and LSSVM [15]. However, it is
worth noting that the input weights matrix and hidden layer bias assigned randomly may affect
the generalization ability of the ELM. Consequently, employing an optimization algorithm so as to
obtain the best parameters of both the weight of input layer and the bias of the hidden layer is vital
and necessary. The bat algorithm (BA), acknowledged as a new meta-heuristic method, can control
the mutual conversion between local search and global search dynamically and performs better
convergence [16]. Because of the excellent performance of local search and global search in comparison
with existing algorithms like the genetic algorithm (GA) and particle swarm optimization algorithm
(PSO), researchers and scholars have applied BA in diverse optimization problems extensively [17–19].
Thus, this paper adopted the bat algorithm to obtain the input weight matrix and the hidden layer
bias matrix of ELM corresponding to the minimum training error, which can not only maximize the
merit of BA’s global and local search capability and ELM’s fast learning speed, but also overcome the
inherent instability of ELM.

The importance of forecasting methods is self-evident, yet the analysis and processing of the
original load data also cannot be ignored. Some predecessors have supposed historical load and
weather as the most influential factors in their research [20–22]. However, selecting the historical load
data scientifically or not can cause a strong impact on the accuracy of prediction. In addition, there
are still many other external weather factors that may also potentially influence the power load. Only
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considering the temperature as the input variable may be not enough [23–25], and other meteorological
factors such as humidity, visibility and air pressure etc. also should be taken into consideration.
Besides, it is necessary to analyze and pretreat the influence factors on the premise of considering
the influence factors synthetically so as to achieve the goal of improving the generalization ability
and the precision of the prediction model. Therefore, this paper applied factor analysis (FA) and the
similar-day approach (SDA) for input data pre-processing, where the former is utilized to extract the
latent factors that essentially affect the load and the SDA is adopted to excavate the similar days that
have common factors with the forecast day.

To sum up, the load forecasting process of the ELM optimized by the bat algorithm can be
elaborated in four steps. Firstly, based on 22 original influence factors, factor analysis is adopted to
extract the latent factors which essentially affect load. To further explore the relationship between
historical load and current load, a partial auto correlation function (PCAF) is applied to demonstrate
the significance of previous data. Then, in accordance with the latent factors and the loads of each day,
ant colony clustering is used to divide the load to different clusters.

The rest of the paper is organized as follows: Section 2 gives a brief description about the material
and methods, including bat algorithm (BA), extreme learning machine (ELM), ant colony clustering
algorithm (ACC) as well as the framework of the whole model. Data analysis and processing are
considered in Sections 3 and 4 which present an empirical analysis of the power load forecasting.
Finally, conclusions are drawn in Section 5.

2. Methodology

2.1. Bat Algorithm

Based on the echolocation of micro-bats, Yang [26] proposed a new meta-heuristic method and
called it the bat algorithm, one that combines the advantages both the genetic algorithm and particle
swarm optimization with the superiority of parallelism, quick convergence, distribution and less
parameter adjustment. In the d dimensions of search space during the global search, the bat i has
the position of xt

i, and velocity vt
i at the time of t, whose position and velocity will be updated as

Equations (1) and (2), respectively:
xt+1

i = xt
i + vt+1

i ; (1)

vt+1
i = vt

i +
(

xt
i − x̂

)
·Fi (2)

where xˆ is the current global optimal solution; and Fi is the sonic wave frequency which can be seen
in Equation (3):

Fi = Fmin + (Fmax − Fmin)β (3)

where β is a random number within [0, 1]; Fmax and Fmin are the max and min sonic wave frequency
of the bat I. In the process of flying, each initial bat is assigned one random frequency in line with
[Fmin, Fmax].

In local search, once a solution is selected in the current global optimal solution, each bat would
produce a new alternative solution in the mode of random walk according to Equation (4):

xn(i) = x0 + μAt (4)

where x0 is a solution that is chosen in current optimal disaggregation randomly; At is the average
volume of the current bat population; and μ is a D dimensional vector within in [−1, 1].

The balance of bats is controlled by the impulse volume A(i) and impulse emission rate R(i).
Once the bat locks the prey, the volume A(i) will be reduced and the emission rate R(i) will be increased
at the same time. The update of A(i) and R(i) are expressed as Equations (5) and (6), respectively:

At+1(i) = γAt(i) (5)
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Rt+1 = R0(i)·(1 − e−θt) (6)

where γ and θ are both constants that γ is within [0, 1] and θ > 0. This paper set the two parameters
as γ = θ = 0.9. The basic steps of the standard bat algorithm can be summarized as the pseudo code
seen in the following:

Bat algorithm.

1: Initialize the location of bat populations xi (i = 1, 2, 3, . . . , n) and velocity vi

2: Initialize frequency Fi pulse emission rate Ri and loudness Ai

3: While (t < the maximum number of iterations)
4: Generate new solutions by adjusting the frequency
5: Generate new velocity and location
6: If (rand >Ri)
7: Select a solution among best solutions
8: Generate new local solution around the selected best solution
9: End if
10: Get a new solution through flying randomly
11: If (rand < Ai & f(xi) < f(x*))
12: Accept the new solution
13: Increase ri and decrease Ai

14: End if
15: Rank the bats and find the current best x*.
16: End

2.2. Extreme Learning Machine

After setting the input weights and hidden layer biases randomly, the output weights of the
ELM can be analytically determined by solving a linear system in accordance with the thinking of the
Moore–Penrose (MP) generalized inverse. The only two parameters needed to be assigned allow the
extreme learning machine to generate the input weights matrix and hidden layer biases automatically
at fast running speed. Consequently, the extreme learning machine expresses the advantages of a fast
learning speed, small training error and strong generalization ability compared with the traditional
neural networks in solving non-linearity problems [27]. The concrete framework of ELM is shown in
Figure 1 and the computational steps of the standard ELM can be illustrated as follows:

 

Figure 1. The framework of the extreme learning machine.

The connection weights both between input layer and hidden layer and between hidden layer
and output layer as well as the hidden layer neuron threshold are shown in the following:

ω = [ωi1,ωi2, · · · ,ωin]L×n (7)
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where ω is the connection weights between input layer and hidden layer; n is the input layer neuron
number, and L is the hidden layer neuron number, and,

β = [βi1,βi2, · · · ,βim]L×m (8)

where β is the connection weights between hidden layer and output layer and m is the output layer
neuron number, and,

X = [xi1, xi2, · · · , xiQ]n×Q (9)

Y =
[
yi1, yi2, · · · , yiQ

]
m×Q

(10)

where X is the input vector and Y is the corresponding output vector, and,

H =

⎡⎢⎢⎢⎢⎣
g(ω1x1 + b1) g(ω2x1 + b2) · · · g(ωlx1 + bl)

g(ω1x2 + b1) g(ω2x2 + b2) · · · g(ω1x2 + b1)
...

...
...

g(ω1xQ + b1) g(ω2xQ + b2) · · · g(ωlxQ + bl)

⎤⎥⎥⎥⎥⎦ (11)

where H is the hidden layer output matrix, b is the bias which is generated randomly in the process of
network initialization, and g(x) is the activation function of the ELM.

2.3. Ant Colony Clustering Algorithm

When processing the large number of samples, the traditional clustering learning algorithm often
has the disadvantages of slow clustering speed, falling easily into local optimal, and it is difficult to
obtain the optimal clustering result. At the same time, the clustering algorithm involves the selection
of the number of clustering K, which directly affects the clustering result. Using ant colony clustering
to pre-process the load samples can reduce the number of input samples on the premise of including
all sample features, and also can effectively simplify the network structure and reduce the calculation
effort. The flowchart of the ant colony clustering algorithm is shown in Figure 2.

Start

Initialize the 
parameters 

Calculate the 
Transition 

probability Of ant

Update cluster 
centers and 
pheromones

Terminal 
condition

End

Yes

No

Figure 2. The flowchart of the ant colony clustering algorithm.
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2.4. Introduction of Factor Analysis-Ant Colony Clustering-Bat Algorithm-Extreme Learning Machine
(FA-ACC-BA-ELM) Model

Since the ELM has less ability to respond to samples of the training set, its generalization ability is
insufficient. So we propose BA-ELM. In this paper, the flowchart of the factor analysis-similar day-bat
algorithm-extreme learning machine (FA-SD-BA-ELM) model is shown in Figure 3. As discussed in
part 1, auto correlation and the partial correlation function (PACF) are executed to analyze the inner
relationships between the history loads. Based on the influencing factors of load, factor analysis (FA)
is used for extracting input variables. According to the result of factors analysis and previous load,
the ant colony clustering algorithm (ACC) is used to find historical days that have common factors
similar to the forecast day. Part 2 is the bat optimization algorithm (BA) and part 3 is the forecasting of
the extreme learning machine (ELM).

Start

22 influence 
factors

Continuous 
load values

auto correlation and 
partial autocorrelation 

Input variables

The topological 
structure of ELM

Initialize the weight  and bias of 
ELM 

Optimum the weight 
and threshold

Optimum matrix of the output 
weights  

Predict load values

end

Initialize the parameters of BA 

Terminal condition

Update search pulse frequency 
and position of bats

Calculate the fitness value of bats 
and hold the best postiion

Calculate the fitness value of bats 
and hold the best  position of 

bats

NY

Part 1Part 1

Part 3Part 3 Part 2Part 2

Ant colony 
clustering Factor analysis

Load values of 
the same time 

of each day

Update the pulse frequency and 
the volume of BA

Figure 3. The flowchart of the factor analysis-ant colony clustering-bat algorithm-extreme learning
machine (FA-ACC-BA-ELM) model.
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3. Data Analysis and Preprocessing

3.1. Selection of Influenced Indexes

Considering that the human activities are always disturbed by many external factors and then the
power load is affected, some effective features are selected as factors. In this paper, the selection of
factors is mainly based on four aspects:

(1) The historical load. Generally speaking, the historical load impacts on the current load in
short-term load forecasting. In this paper, the daily maximum load, daily minimum load, average
daily load, peak average load of previous day, valley average load of previous day, average
load of the day before, average load of 2 days before, average load of 3 days before, average
load of 4 days before, average load of 5 days before and average load of 6 days before are taken
into consideration.

(2) The temperature. As people use temperature-adjusting devices to adapt to the temperature,
in a previous study [23–25], temperature was considered as an essential input feature and the
forecasting results were accurate enough. In this paper, the maximum temperature, the minimum
temperature and the average temperature are selected as factors.

(3) The weather condition. We mainly take into account the seasonal patterns, humidity, visibility,
weather patterns, air pressure and wind speed. The four seasons are represented as 1, 2, 3 and 4
respectively. For different weather patterns, we set different weights: {sunny, cloudy, overcast,
rainy} = {0, 1, 2, 3}.

(4) The day type. In this aspect, the type of day and date are taken into consideration. The type of
date means the days are divided into workdays (Monday–Friday), weekend (Saturday–Sunday),
and holidays. The weights of three types of date are 0, 1 and 2 respectively. For the date, we set
different weight: {Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday} = {1, 2, 3, 4,
5, 6, 7}.

3.2. Factor Analysis

Originally proposed by British psychologist C.E. Spearman, factor analysis is the study of
statistical techniques for extracting highly interrelated variables into one group, and each type of
group becomes a factor that reflects most of the original information with fewer factors. Not only does
factor analysis reduce indicators’ dimensions and improve the generalization of the model but also
the common factors it elicited to portray and replace primitive variables can commendably mirror
and explain the complicated relationship between variables, keeping data messages with essentially
no less information. In this paper, factor analysis is used to extract factors that can reflect the most
information of the original 22 influencing variables, whose result is shown in Table Table 2.

First of all, Table 1 gives the result of Kaiser-Meyer-Olkin (KMO) and the Barlett test of sphericity
that can serve as a criteria to judge whether the data is suitable for the factor analysis. The statistic
value more than 0.7 can illustrate the compatibility and the 0.74 obtained from the power load data
confirms the correctness of factor analysis.

Table 2 shows six factors that are extracted from 22 original variables. The accumulative
contribution rate at 84.434%, more than 80%, reflects that the new six factors can deliver the most
information of the original indicators. It can be seen from Table 2 that factor 1 that mainly represents
the history load accounts for the largest proportion at 35.128%. In addition, considering that the
variables in factor 1 may not be sufficient on behalf of the historical load, the paper carried out a further
analysis of the previous data by means of the correlation analysis which can be seen in part 3.2. Factor
2 which mainly represents meteorology element accounts for 19.646%, and the remaining four factors
are 10.514%, 7.746%, 6.087%, and 5.313%, respectively.
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Table 1. KMO and Barlett test of sphericity.

KMO Value 0.740

Barlett test of sphericity
Approximate chi-square value 1525.304

Degrees of freedom (Df.) 231
Significance (Sig.) 0.000

Table 2. Results of factor analysis.

Indicator Variable Load Contribution Rate (%)

Factor 1

Minimum temperature 0.732

35.128

Daily maximum load 0.714
Daily minimum load 0.726
Average daily load 0.870

Season patterns 0.736
Peak average load of previous day 0.922

Valley average load of previous day 0.801
Average load of the day before 0.917
Average load of 2 days before 0.830
Average load of 3 days before 0.695

Factor 2

Maximum temperature −0.732

19.646

Average temperature −0.697
Humidity 0.810
Visibility −0.724

Weather patterns 0.724
Average load of 4 days before 0.547

Factor 3
Type of date 0.622

10.514Average load of 5 days before 0.612
Average load of 6 days before 0.609

Factor 4 Air pressure 0.563 7.746

Factor 5 Date 0.883 6.087

Factor 6 Wind speed −0.533 5.313

3.3. The Analysis of Correlation

Additionally, this paper conducted a further analysis of the correlation between the amount
of historical load and the target load from two different viewpoints so as to eliminate the internal
correlation. On the one hand, the partial auto correlation function (PACF) was carried out throughout
the overall power load to dig out the correlation between the target load and the previous load.
On the other hand, the whole load data with the same time interval were also implemented by PACF
individually to seek the relationship among the load with the same time. The results of partial auto
correlation can be seen in Figures 4 and 5, respectively.

For instance, under the confidence level of 90%, it can be seen from Figure 4 that the lags of the
first 2 h are significant to the current data. That is to say, the loads of the first two hours are influential
to the current load. As for Figure 5, it is known that only the first lag 1 is prominent to the current load
data except the load of 00:00 (Lag 2). Consequently, it can be concluded that the four factors including
the first two hours before 00:00 and the same time power load that occurred yesterday and the day
before yesterday were selected as the input factors at the time of 00:00.
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Figure 4. The partial auto correlation result of the overall power load.

01 0000 00 02 00 03 00

04 00 05 00 06 00 07 00

09 0008 00 10 00 11 00

12 00 13 00 14 00 15 00

16 00 17 00 18 00 19 00

21 0020 00 22 00 23 00

Figure 5. The partial auto correlation result of the load with the same interval.

3.4. Clustering with Ant Colony Algorithm

Selecting the exogenous features as input directly may lead the prediction model to a slow
convergence and to poor prediction accuracy. Thus, the paper employs the similar day load which is
clustered by the ant colony clustering algorithm for the prediction so as to improve the forecasting
accuracy. According to the load every day and the six factors extracted from 22 variables, the 60 days
from 1 May 2013 to 30 June 2013 are named with numbers from 1 to 60 and are divided into four
clusters by the ant colony algorithm. The parameters of the ACC algorithm can be seen in Table 3,
and the clustering result is expressed in Table 4. As a consequence, it can be known that the three test
days whose numbers are 58, 59, and 60 belong to class 4, class 1, and class 3, respectively.

Table 3. Parameters of the ant colony clustering algorithm.

Parameter m Alpha Beta Rho N NC_max

Value 30 0.5 0.5 0.1 4 100
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Table 4. Results of ant colony clustering algorithm.

Classification Date Number

Class 1 3→21→25→28→45→51→54→56→59
Class 2 1→7→8→9→10→15→16→26→39→43→44→49→53→57
Class 3 5→12→13→17→19→20→29→31→34→35→37→40→41→42→46→47→48→55→60
Class 4 2→4→6→11→14→18→22→23→24→27→30→32→33→36→38→50→52→58

3.5. Application of BA-ELM

To verify the rationality of data processing, the BA-ELM model was conducted on Yangquan City
load forecasting. In this paper, the relative error (RE), mean absolute percentage error (MAPE), mean
absolute error (MAE) and root-mean-square error (RMSE) are employed to validate the performance
of the model. The formulas definition are expressed as follows, respectively:

RE(i) =
ŷi − yi

yi
× 100% (12)

AE(i) =
∣∣∣∣ ŷi − yi

yi

∣∣∣∣× 100% (13)

MAPE =
1
n

n

∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ (14)

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2 (15)

MAE =
1
n

n

∑
i=1

|ŷi − yi| (16)

where n stands for the quantity of the test sample, ŷi is the real load, while yi is the corresponding
predicted output.

Moreover, the paper compared the ELM with the benchmark model’s LSSVM and the BPNN
to demonstrate the superiority of the proposed model. The parameters of the models are shown in
Table 5. Figure 6 shows the iterations process of BA. From the figure we can see that BA achieves
convergence at 350 times. The optimal values of the parameters are shown in Table 6.

Table 5. Parameters of models.

Model Parameters

BA-ELM n = 10, N_iter = 500, A = 1.6, r = 0.0001, f = [0, 2]
ELM N = 10, g(x) = ‘sig’

LSSVM γ = 50; σ2 = 2
BPNN G = 100; hidden layer node = 5; learning rate = 0.0004

Table 6. The optimal parameters.

Parameter Value

The input weight matrix ωij =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−5.12 −5.12 −5.12 −2.62 −5.11 5.12 5.12 −5.05 −5.12
−3.61 −0.52 −1.50 5.12 5.12 −5.11 −0.13 −5.12 −5.12
1.14 −5.12 4.77 −5.12 5.12 −0.06 −0.61 2.08 −3.05
−2.03 5.12 4.26 4.92 0.03 5.12 2.74 3.37 2.28
−0.44 2.33 5.12 −1.72 5.12 0.54 1.38 3.48 4.83
5.12 −4.59 −5.12 −5.12 2.56 0.49 1.32 4.03 1.46
3.18 4.87 5.12 5.10 2.65 2.19 −5.12 1.06 4.63
2.66 −5.12 −3.91 −5.12 5.12 2.16 5.12 −5.12 −2.09
3.86 −5.12 1.85 5.12 −1.44 −5.12 5.12 1.97 5.00
0.30 5.12 −4.42 −5.12 4.08 −4.79 5.12 −5.12 −5.12

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Table 6. Cont.

Parameter Value

The bias matrix βik =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−5.12 −5.12 −5.12
5.12
3.19
5.12
−1.84
−1.37
2.81
−2.42

5.12
3.19
5.12
−1.84
−1.37
2.81
−2.42

5.12
3.19
5.12
−1.84
−1.37
2.81
−2.42

−5.12
3.61

−5.12
3.61

−5.12
3.61

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The output weight matrix ρ =

(
0.34 −0.45 −0.48 0.38 0.41 −0.28 0.40 −0.23 −0.21 0.24

)

Figure 6. The iterations process of the bat algorithm (BA).

4. Case Study

In order to testify the feasibility of the proposed model, the 24-h power load data of Yangquan
City are selected for two months. It can be seen that there is nearly no apparent regularity to be
obtained from the actual load curves showed in Figure 7 which represents the four classes of load
curve. As mentioned above, the three testing days belong to classes 4, 1, 3 respectively and the
prediction model is built for the power load forecasting at the same time.

Class 1 Class 2

Class 3 Class 4

Figure 7. The four types of power load curve.

The program runs in MATLAB R2015b under the WIN7 system. The short-term electric load
forecasting results of three days of the BA-ELM, ELM, BP and LSSVM models are shown in Tables 7–9,
respectively. For the purpose of explaining the results more clearly, the forecasting values curve of the
proposed model and comparisons are shown in Figures 8–10. In addition, Figures 11–13 reflect the
comparisons of relative errors between the proposed model and the others. According to Figures 8–10,
the deviation can be captured between the actual value and the forecasting results. It can be seen that
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the forecasting results’ curve of the BA-ELM method are close to the actual data in all testing days,
which indicates its higher fitting accuracy.

Figure 8. Compared load forecasting results on 28 June.

Figure 9. Compared load forecasting results on 29 June.

Figure 10. Compared load forecasting results on 30 June.

Figure 11. Compared relative errors of four models on 28 June.
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Figure 12. Compared relative errors of four models on 29 June.

Figure 13. Compared relative errors of four models on 30 June.

Table 7. Actual load and forecasting results on Day 1 (Unit: MV).

Time/h Actual Data BA-ELM ELM BP LSSVM

D1 0:00 816.47 819.89 828.77 809.44 813.29
D1 1:00 810.47 808.58 814.55 817.98 801.67
D1 2:00 795.42 805.98 811.75 795.65 794.95
D1 3:00 793.99 797.15 807.93 792.02 795.95
D1 4:00 809.73 806.25 817.20 800.71 801.11
D1 5:00 813.95 812.47 813.37 806.33 805.36
D1 6:00 832.92 826.51 831.65 833.89 820.42
D1 7:00 839.06 855.99 845.01 859.13 847.20
D1 8:00 829.00 831.28 843.41 848.80 830.78
D1 9:00 848.10 852.50 861.05 852.81 842.98
D1 10:00 865.43 870.18 868.09 866.61 856.15
D1 11:00 882.36 893.75 886.89 876.41 873.40
D1 12:00 881.99 895.85 894.77 889.86 878.92
D1 13:00 828.12 839.33 838.77 840.03 831.76
D1 14:00 824.73 844.35 849.89 835.96 831.65
D1 15:00 856.02 871.74 857.20 856.50 854.95
D1 16:00 868.95 900.32 881.47 897.30 872.83
D1 17:00 904.87 900.41 907.67 902.96 889.97
D1 18:00 905.26 911.81 903.64 903.92 894.79
D1 19:00 902.23 909.76 912.14 938.68 897.51
D1 20:00 920.87 939.86 933.37 930.14 926.57
D1 21:00 925.12 931.54 948.12 926.59 923.08
D1 22:00 893.86 891.45 907.02 888.47 883.78
D1 23:00 843.04 844.05 850.39 836.67 841.05
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Table 8. Actual load and forecasting results on Day 2 (Unit: MV).

Time/h Actual Data BA-ELM ELM BP LSSVM

D2 0:00 813.56 823.65 831.48 808.98 817.28
D2 1:00 809.75 813.14 807.71 821.76 805.37
D2 2:00 814.06 805.71 808.58 791.03 798.56
D2 3:00 794.74 802.96 803.47 791.70 799.16
D2 4:00 809.89 807.84 817.35 800.06 805.06
D2 5:00 816.16 815.76 811.90 810.62 808.21
D2 6:00 828.37 827.97 839.11 834.82 823.81
D2 7:00 844.26 855.64 846.80 881.84 849.91
D2 8:00 824.92 831.49 831.84 847.35 832.55
D2 9:00 852.17 853.25 850.02 850.91 846.54
D2 10:00 863.06 870.05 864.05 860.95 859.72
D2 11:00 880.26 896.07 883.27 877.19 875.25
D2 12:00 883.78 891.19 894.20 882.91 880.90
D2 13:00 828.22 840.99 838.46 840.79 833.57
D2 14:00 821.18 846.60 839.96 830.01 831.78
D2 15:00 851.78 875.29 854.88 854.81 855.43
D2 16:00 871.49 897.56 878.00 892.13 874.37
D2 17:00 899.60 908.66 905.04 902.64 890.10
D2 18:00 901.80 910.90 904.57 906.42 897.73
D2 19:00 898.35 920.69 906.55 933.13 896.98
D2 20:00 908.94 938.02 927.70 929.86 926.43
D2 21:00 931.82 929.26 954.66 925.09 926.55
D2 22:00 891.29 892.19 898.24 887.12 887.74
D2 23:00 839.30 843.91 851.50 837.50 845.48

Table 9. Actual load and forecasting results on Day 3 (Unit: MV).

Time/h Actual Data BA-ELM ELM BP LSSVM

D3 0:00 812.83 826.59 828.03 810.38 816.37
D3 1:00 801.64 810.06 799.93 821.78 804.09
D3 2:00 801.97 803.68 799.95 792.22 797.19
D3 3:00 796.35 803.46 800.56 790.13 797.01
D3 4:00 808.94 812.67 810.88 798.79 803.98
D3 5:00 816.21 810.10 811.44 808.49 806.53
D3 6:00 828.45 826.87 843.63 827.00 822.53
D3 7:00 847.85 846.77 844.31 877.13 846.64
D3 8:00 831.33 837.25 819.12 831.35 829.91
D3 9:00 853.77 851.47 843.37 843.03 845.06
D3 10:00 851.61 865.18 860.53 852.02 857.88
D3 11:00 878.35 895.21 876.79 881.66 872.19
D3 12:00 884.54 880.56 891.03 877.67 877.97
D3 13:00 832.52 837.68 837.29 839.94 830.52
D3 14:00 826.76 842.95 829.22 822.08 828.02
D3 15:00 857.72 873.55 857.38 853.94 851.38
D3 16:00 870.69 889.24 874.85 878.75 870.82
D3 17:00 897.52 907.94 898.13 900.71 886.03
D3 18:00 891.26 902.31 901.23 897.71 893.15
D3 19:00 891.92 909.41 892.96 917.94 891.46
D3 20:00 911.87 934.60 923.71 927.50 921.99
D3 21:00 929.45 928.95 949.86 925.33 923.44
D3 22:00 890.98 893.84 891.63 879.08 885.75
D3 23:00 842.39 842.59 848.01 836.70 843.36

We commonly consider the RE in the range of [−3%, 3%] and [−1%, 1%] as a standard to testify the
performance of the proposed model. Based on these tables and figures, we can determine that: (1) on 28
June, the relative errors of the proposed model and others were all in the range of [−3%, 3%]; only one
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point (3.52%) of BPNN on 29 June and one point (−3.50%) of LSSVM on 30 June are beyond the range of
[−3%, 3%], which indicates that the accuracy is increased after the process of reducing dimensions and
clustering. (2) Most relative error points of the BA-ELM locate in the range of [−1%, 1%] on all three
days. By contrast, most points of the ELM are beyond the range of [−1%, 1%], which can demonstrate
that the BA applied in ELM increases the accuracy and stability of ELM. (3) On 28 June, called Day 1
in this paper, the ELM has 14 predicted points exceed the range of [−1%, 1%], and there is only one
point (2.12%) beyond the range of [−2%, 2%] at 21:00; the BP has a dozen predicted points outside the
range of [−1%, 1%], and there is one predicted point (−2.05%) beyond the range of [−2%, 2%] at 11:00;
the LSSVM has 14 predicted points beyond the range of [−1%, 1%], and there are six predicted points
beyond the range of [−2%, 2%], which are −2.38% at 11:00, −2.76% at 12:00, −2.07% at 16:00, −2.85%
at 17:00, −2.17% at 18:00 and −2.7% at 19:00. (4) On 29 June, called Day 2 in this paper, the ELM has
10 predicted points exceed the range of [−1%, 1%], and there is only one points beyond the range of
[−2%, 2%], which is 2.52% at 21:00; the BP has 16 predicted points exceeding the range of [−1%, 1%],
and there are three predicted points beyond the range of [−2%, 2%], which are 3.52% at 7:00, −2.03%
at 12:00 and −2.03% at 14:00; the LSSVM has 13 predicted points beyond the range of [−1%, 1%], and
there are four predicted points outside the range of [−2%, 2%], which are −2.25% at 12:00, −2.27% at
16:00, −2.77% at 15:00 and −2.17% at 19:00. (5) On 30 June, called Day 3 in this paper, the ELM has
15 predicted points exceed the range of [−1%, 1%], and there are three points beyond the range of
[−2%, 2%], which are −2.48% at 8:00, −2.19% at 17:00 and −2.61% at 19:00; the BP has 19 predicted
points exceed the range of [−1%, 1%], and there are six predicted points beyond the range of [−2%,
2%], which are 2.91% at 7:00, −2.43% at 10:00, −2.85% at 12:00, −2.73% at 14:00, −2.3% at 15:00 and
−2.05% at 22:00; the LSSVM has 18 predicted points beyond the range of [−1%, 1%], and there are
nine predicted points outside the range of [−2%, 2%], which are −2.17% at 12:00, −2.03% at 13:00,
−2.59% at 14:00, −2.41% at 15:00, −3.5% at 16:00, −2.19% at 17:00 and −2.78% at 18:00. From the
global view of relative errors, the forecasting accuracy of BA-ELM is better than the other models,
since it has the most predicted points in the ranges [−1%, 1%], [−2%, 2%] and [−3%, 3%]. Compared
with BPNN and LSSVM, the relative errors of ELM are low. The reason is that the BPNN can have
advantages when dealing with the big sample, but its forecasting results are not very good when
dealing with a small sample problem like short-term load forecasting. The kernel parameter and
penalty factor setting manually of LSSVM are difficult to confirm, which has a significant influence on
the forecasting accuracy.

The number of points that are less than 1%, 2%, 3% and more than 3% and the corresponding
percentage of them in the predicted points are accounted for, respectively. The statistical results are
shown in Table 10. It can be seen that there are 61 predicted points whose the AE of the BA-ELM
model is less than 1%, which accounts for 84.72% of the total amount; and 10 predicted points in the
range of [1%, 2%], accounting for 13.89% of the total amount; and only 1 predicted point in the range
of [2%, 3%], accounting for 1.39% of the total amount. Moreover, there are no predicted points whose
AE is more than 3%, accounting for 0% of the total amount. It can be concluded that the forecasting
performance of the proposed model is superior, and its accuracy is higher, which means the BA-ELM
model is suitable for short-term load forecasting.

The average RMSE and MAPE of the BA-ELM, ELM, BPNN and LSSVM models are listed in
Table 11. In order to show the comparisons clearly, the RMSE, MAE and MAPE of four forecasting
models in three testing days are show in Figures 14–16. It can be concluded that both of the RMSE,
MAE and MAPE of BA-ELM are lower on three testing days. On 28 June, the RMSE, MAE and MAPE
of ELM are slightly bigger than BP, but smaller than that of LSSVM. On 29 June, the RMSE, MAE and
MAPE of ELM are smaller than that of BP and LSSVM. The RMSE, MAE and MAPE of BP are close to
that of LSSVM. On 30 June, the RMSE, MAE and MAPE of ELM are smaller than BP and LSSVM’s,
and that of BP are smaller than LSSVM’s. To sum up, combining this with the Table 11, the average
behavior of four models are BA-ELM, ELM, BPNN and LSSVM from low to high successively.
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Table 10. Accuracy estimation of the prediction point for the test set.

Prediction
Model

<1% >1% and <2% >2% and <3% >3%

Number Percentage Number Percentage Number Percentage Number Percentage

BA-ELM 61 84.72% 10 13.89% 1 1.39% 0 0
ELM 33 45.83% 33 45.83% 6 8.34% 0 0

BPNN 24 33.33% 37 51.39% 10 14.29% 1 1.39%
LSSVM 27 37.50% 26 36.11% 18 25% 1 1.39%

Table 11. Average forecasting results of four models.

Index

Model
BA-ELM ELM BPNN LSSVM

RMSE (MW) 5.89 11.08 12.74 14.47
MAPE (%) 0.49 1.13 1.29 1.43

MAE (MW) 4.27 9.81 11.14 12.51

Figure 14. Root-mean-square error (RMSE) of different models in testing period.

Figure 15. Mean absolute percentage error (MAPE) of different models in testing period.

Figure 16. Mean absolute error (MAE) of different models in testing period.
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5. Conclusions

With the development of society and technology, research to improve the precision of load
forecasting has become necessary because short-term power load forecasting can be regarded as
a vital component of smart grids that can not only reduce electric power costs but also ensure the
continuous flow of electricity supply. This paper selected 22 original indexes as the influential factors of
power load and factor analysis was employed to discuss their correlation and economic connotations,
from which it can be seen that the historical data occupied the largest contribution rate and the
meteorological factor followed thereafter. Consequently, the paper introduced the auto correlation and
partial auto correlation function to further explore the relationship between historical load and current
load. Considering the influence of similar day, ant colony clustering was adopted to cluster the sample
for the sake of searching the days with analogous features. Finally, the extreme learning machine
optimized by a bat algorithm was conducted to predict the days that are chosen to test. The simulation
experiment carried out in Yangquan City in China verified the effectiveness and applicability of the
proposed model, and a comparison with benchmark models illustrated the superiority of the novel
hybrid model successfully.
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Abstract: Accurate and stable prediction of short-term load for electric vehicle charging stations is
of great significance in ensuring economical and safe operation of electric vehicle charging stations
and power grids. In order to improve the accuracy and stability of short-term load forecasting for
electric vehicle charging stations, an innovative prediction model based on a convolutional neural
network and lion algorithm, improved by niche immunity, is proposed. Firstly, niche immunity is
utilized to restrict over duplication of similar individuals, so as to ensure population diversity of lion
algorithm, which improves the optimization performance of the lion algorithm significantly. The lion
algorithm is then employed to search the optimal weights and thresholds of the convolutional neural
network. Finally, a proposed short-term load forecasting method is established. After analyzing
the load characteristics of the electric vehicle charging station, two cases in different locations and
different months are selected to validate the proposed model. The results indicate that the new hybrid
proposed model offers better accuracy, robustness, and generality in short-term load forecasting for
electric vehicle charging stations.

Keywords: electric vehicle (EV) charging station; short-term load forecasting; niche immunity (NI);
lion algorithm (LA); convolutional neural network (CNN)

1. Introduction

The development of the electric vehicle (EV) industry has attracted broad attention from
governments, auto manufacturers, and energy enterprises. Electric vehicles are regarded as an
effective way to cope with the depletion of fossil energy and increasingly serious environmental
pollution [1]. Charging stations, serving as the infrastructure, have been extensively built along
with the advance of EVs. However, the volatility, randomness, and intermittence of the load bring
new challenges to optimal dispatching and safe operation of power grids [2]. The establishment
of a scientific and reasonable short-term load forecasting model for EV charging stations will not
only improve the prediction precision for optimal dispatching, but will also promote the rational
construction of charging stations, and boost the popularity rate of EVs. Accordingly, focus on the
research of load forecasting for EV charging stations is of great significance.

The current methods of load forecasting for EV charging stations can be divided into two parts,
namely: statistical approaches and artificial intelligent algorithms. Statistical forecasting models are
based on the theory of probability and statistics, such as the Monte Carlo method [3]. Concretely,
on the foundation of a residents’ traffic behavior database, the Monte Carlo approach exploits a definite
probability distribution function to fit the users’ driving behaviors, and establishes a mathematical
model with random probability to forecast the charging time, location, and load demand of EVs in
the future [4]. Simple though it is, this kind of method is not suited to address load forecasting for
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inaccurate estimation, considering the randomly selected distribution parameters [5]. Additionally,
Ref. [6] carried out charging load prediction of EVs based on the statistical analysis of vehicle data from
the perspective of time and space. In order to simulate the driving patterns of EVs, Ref. [7] outlined
an improved charging load calculation model, where charging probability was proposed to illustrate
the uncertainty of charging behaviors and kernel density functions. Multidimensional probability
distribution functions were utilized to replace deterministic ones, and a random number was generated
to present the coupling characteristics of driving discipline. The view of big data was indicated in the
literature [8], which calculated the load of every EVs at the charging station, and summed them up;
thus, load forecasting results were obtained. Nevertheless, these statistical approaches are criticized by
researchers for their weakness of universality, due to the difficulty of parameter determination.

With the rapid development of artificial intelligence (AI) technology, intelligent algorithms,
which mainly include artificial neural networks (ANNs) and support vector machines (SVM), are
gradually applied to load forecasting of EV charging stations by scholars [9]. Ref. [10] employed back
propagation neural network (BPNN) models to predict the daily load curve of EV charging stations,
with consideration of various factors. Here, fuzzy clustering analysis based on transfer closure methods
was adopted to select the historical load similar to the predicted one as the training samples, so as to
improve forecasting accuracy. The drawbacks of BPNN are the existence of many parameters to set,
and trapping into the local minimum or over-fitting easily. To address these problems, Ref. [11] studied
a short term load forecasting model for EV charging stations on the basis of radial basis function
neural networks (RBFNN), and modified it by the use of fuzzy control theory. The results showed that
prediction accuracy was further improved. In [12], particle swarm optimization and spiking neural
networks were combined to forecast the short term load of EV charging stations. The findings revealed
that the prediction accuracy of the proposed model was superior to BPNN. An SVM integrated with
genetic algorithms was exploited in short term load forecasting for EV charging stations in [13], which
illustrated that it was difficult for SVMs to deal with large-scale training samples and achieve ideal
prediction accuracy. The aforementioned algorithms belong to shallow learning with weak ability in
processing complex functions, and cannot completely reflect the characteristics of information based
on prior knowledge. To this end, deep learning algorithms provide better ways to present data feature
by abstracting the bottom feature combination into high-level [14].

At present, deep learning algorithms have been widely applied in various fields, especially in
the field of prediction. Ref. [15] executed an advertising click rate prediction method based on a
deep convolutional neural network (CNN). This model accomplished feature learning through the
simulation of human thinking, and analyzed the role of different features in forecasting. Ref. [16]
successfully introduced deep structure networks into ultra short term photovoltaic power predictions.
A deep belief network with restricted Boltzmann machine was presented to extract deep features to
finish the unsupervised learning, and the supervised BPNN was taken as the conventional fitting layer
to obtain the forecasting results. Ref. [17] built deep CNN for bioactivity prediction of small molecules
in drug discovery applications. These studies have demonstrated that deep learning algorithms
have better prediction accuracy in comparison to shallow learning. CNN allows the existence of
deformed data and reduces parameters through local connection and weight sharing; thus, forecasting
precision and efficiency can be greatly improved [18]. As a result, CNN is selected as the prediction
model in this paper. Notably, the fitting accuracy of CNN is influenced by its two parameters’
selection, namely: weight and threshold. Consequently, it’s vital to apply an appropriate intelligent
algorithm to determine theses values. Several traditional optimization algorithms have been used to
select parameters for CNN, such as genetic algorithms, particle swarm optimizations and ant colony
algorithms. Although the above algorithms have their own advantages, they also have corresponding
shortcomings. For example, genetic algorithm cannot guarantee the convergence to the best, and is
easy to fall into the local optimum, which leads to a decrease in prediction accuracy [19]. Particle
swarm optimization will appear in premature convergence in different situations [20]. Ant colony
algorithms have low searching efficiency and long calculation times, and local search accuracy is not
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high. Also, it cannot fully meet the needs of the CNN parameter optimization problem [21]. The Lion
algorithm (LA), based on the social behavior of lions, was introduced by B.R. Rajakumar in 2012 [22].
Compared with preceding models, this approach shows strong robustness and good abilities in global
optimization, and fast convergence. Nevertheless, inbreeding appears among the lions with large
fitness during the iterative process, which leads to premature convergence and diversity reduction.
To settle this problem, niche immune algorithms are employed in this paper to optimize LA, namely
NILA. Here, niche immune algorithms can restrict over-duplication of similar individuals, so as to
ensure the diversity of the population, and improve the optimization effect of the lion algorithm for
selecting the parameters of CNN. This hybrid optimization method is used to automatically determine
the appropriate values in CNN model.

This paper combines NILA with the CNN model for load forecasting of EV charging stations,
with scientific analysis of influential factors. The rest of the paper is organized as follows: Section 2
shows a brief description of LA, NILA, and CNN, as well as the framework of the proposed technique;
Section 3 presents an analysis of the influential factors and determines the input; Section 4 introduces
an experiment study to test the accuracy and robustness of the established model; Section 5 makes
further validation on this method, and Section 6 concludes this paper.

The innovations of this paper are as follows:

(1) The construction of the forecasting model

Firstly, it is the first time to combine CNN and lion algorithm improved by niche immunity and
employ this model for the load forecasting of electric vehicle charging stations. Furthermore, the CNN
model used for load forecasting cannot only allow the existence of deformed data, but also improve
the load forecasting efficiency and accuracy by parameter reduction through local connection and
shared weight. Finally, niche immunity is used in this paper to restrict over duplication of similar
individuals, so as to ensure the diversity of population, and it effectively improves the optimization
effect of the lion algorithm, as we can conclude from the case study.

(2) The input selection of the forecasting

In order to produce a scientific and reasonable input index system for the forecasting model,
this paper fully analyzes the load characteristics in an EV charging station. And it can be concluded
that the load in the EV charging station is heavily influenced by meteorological conditions, seasonal
variation, and day types, which are more comprehensive and effective for forecasting.

In summary, this paper not only creatively combines various prediction theories to construct a
comprehensive forecasting model, but also conducts the study of influential factors affecting the load
of EV charging stations so that a scientific and reasonable input index system is produced.

2. Methodology

2.1. Lion Algorithm Improved by Niche Immune (NILA)

2.1.1. Lion Algorithm (LA)

Lion algorithm is a social behavior-based bionic algorithm developed by B. R. Rajakumar in 2012.
The iteration and generation of optimal solutions can be realized through territorial lion’s breeding,
and its defense to other nomadic lions. In this approach, every single solution corresponds to “Lion”.

LA proceeds through four main steps: population initialization, mating and mutation, territorial
defense, and territorial takeover. The objective function is set as Equation (1):

min f (x1, x2, · · · , xn), (n ≥ 1) (1)

Step 1: Population initialization

356



Energies 2018, 11, 1253

In the first stage of this algorithm, 2n lions are averagely assigned to two groups as
the candidate population, namely male lions Am =

[
ψm

1 , ψm
2 , ψm

3 , · · · , ψm
l
]

and female lions

A f =
[
ψ

f
1 , ψ

f
2 , ψ

f
3 , · · · , ψ

f
l

]
. l represents the length of the solution vector.

Step 2: Mating

Mating is an essential process to update and maintain the stability of the lion group via crossover,
mutation, cluster or killing the sick and weak, thus new solutions can be continually delivered
through iteration.

Dual probabilities based crossover is introduced in this paper, that is, crossover is
implemented with two different probabilities. The lion Am and lioness A f generate a new cub
Acub =

[
ψcub

1 , ψcub
2 , ψcub

3 , · · · , ψcub
l

]
through mating. Then, four cubs Acub

1∼4 are generated according to

two randomly selected crossover points by ψm
i and ψ

f
j .

Random mutation with p is enabled to generate Acub
5∼8, resulting in 8 cubs after crossover

and mutation.
The cubs are separated into male cubs (Am_cub) and female cubs (A f _cub) by K-means clustering.
Then, in light of health status, the weak cubs in larger group are killed off to ensure an equal

number in the two cubs. After population regeneration, the age of the cub is initialized as 0.

Step 3: Territorial defense

During breeding, it will be attacked by the nomadic lion. At this time, the male lion will defend
and protect the cubs, and occupy the territory, as illustrated in Figure 1.

Territorial lion

Lioness

New adult 
territorial lion

Swimming lion

Figure 1. Lion defense process.

The nomadic lion ψnomad is generated in the way that is the same as territorial lion. Then the new
solution ψnomad is used to attack the male lion ψm

i . If ψnomad is superior to other solutions in the pride,
replace ψm

i with ψnomad. The new lion will continue to mate, and the old, as well as the cubs, will be
killed off. Otherwise, the old lion will continue with territory defense, and the cubs will be one year
older than before.

f (·) is the objective function and f
(

ψpride
)

is the value of the whole population which can be
calculated as Equation (2).

f
(

ψpride
)
=

1
2
(
1 + ‖ψm_cub‖)

⎛⎝ f (ψm) + f
(

ψ f
)
+

agemat

agecub + 1
·
‖ψm_cub‖

∑
k=1

f
(

ψm_cub
k

)
+ f

(
ψ

f _cub
k

)
‖ψm_cub‖

⎞⎠ (2)
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where f (ψm) and f
(

ψ f
)

represent the values of lion and lioness, respectively; f
(

ψm_cub
k

)
and

f
(

ψ
f _cub
k

)
equals the values of male cub and female cub, respectively; ‖ψm_cub‖ means the number of

male cubs; agemat is employed to designate the time required for mating.

Step 4: Territorial takeover

In this step, the optimal solutions among the lion and lioness are found to replace the inferior one.
Mating will not end until the terminating conditions are reached. The best lion ψm

best and lioness ψ
f
best

are determined according to the following criteria:

f (ψm
best) < f

(
ψm

pride

)
, ψm

best �= ψm
pride, ψm

pride =
{

ψm, ψm_cub
}

(3)

f
(

ψ
f
best

)
< f

(
ψ

f
pride

)
, ψ

f
best �= ψ

f
pride, ψ

f
pride =

{
ψ f , ψ f _cub

}
(4)

In the pseudo code, κ represents the number of breeding and κstrenth describes the female’s optimal
breeding ability, generally set to 5. κstrenth is set as 0 at the time of initial pride generation, and should
be incremented. If the female lion is replaced, κ has to be started from 0. On the other hand, if the old
lioness continually existed, κ should be accumulated. When the previous steps are completed, go back
to Step 2 until the termination condition is satisfied. The best lion responds to the optimal solution.

2.1.2. LA Improved by Niche Immune

LA is a parallel combination of self-adaption, group search and a heuristic random search,
while inbreeding appears among the lions with large fitness during the iterative process, resulting in
premature convergence and diversity reduction. Niche immunity is exploited in this paper to restrict
over duplication of similar individuals, so as to ensure the diversity of population. The detailed steps
of NI algorithm are displayed in [23]. LA optimized by NI can be performed as follow:

Step 1: According to the value of objective function, M cloned lions can be obtained in the center
of the location at a specified iteration interval.

Mj = Mmax × (1 − ρj
N
∑

j=1
ρj

) (5)

where Mj is the clone number of the j-th lion, Mmax represents the maximum clone number that is set
to 40 here. ρj is the objective function value of the j-th lion.

Step 2: M lions are mutated by single parent after clone. For the lion with low objective function
value, mutation is carried out by the parthenogenetic lions, as given in Equations (6) and (7).

xi+1 = xi + r × randn(1) (6)

r =
2 × Pmax

N
(7)

where xi represents the lion, xi+1 is the offspring generation after parthenogenesis, Pmax is the
maximum value of lion location, N equals the number of lions.

Step 3: Make comparison among the M mutated lions and select the one with the maximum
objective function value as the new lion.

2.2. Convolutional Neural Network (CNN)

As a kind of ANN with deep learning ability, the CNN achieves local connections and shares the
weights of neurons in the same layer [24]. The network consists of 1~3 feature extraction layers and
fully connected layers. Each feature extraction layer includes a convolutional one and a subsampling
one. The structure of CNN containing a feature extraction layer is shown in Figure 2.
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Figure 2. Convolutional neural network model.

In convolutional layer, the original data is processed by the convolutional kernel to obtain the
output, as described in Equation (8).

xl
j = f

(
k

∑
j=m

xl−1
j wl

j + θl
j

)
(j = 1, 2, · · · , n; 0 < m ≤ k ≤ n) (8)

where f (I) = 1
1+e−I , I =

k
∑

j=m
xl−1

j wl
j + bl

j (1, 2, · · · , n; 0 < m ≤ k ≤ n). xl
j and xl−1

j represent the output

in Layer l and the input in Layer l − 1, respectively. j is the local connection ranging from m to k. wl
j

equals the weight and θl
j is the bias.

The subsampling process can be expressed as follows:

xl
j = g(xl−1

j ) + θl
j (9)

where g(∼) represents the function that selects the average or maximum value.
Then, the obtained data is linked to the fully connected layer as presented in Equation (10).

xl = f (Il), Il = Wl xl−1 + θl (10)

where Wl is the weight from Layer l − 1 to Layer l and xl represents the output data.
In the above calculation, each convolutional kernel plays a role in all the input via the slide.

Different convolutional kernels corresponding to multiple sets of output where the weight of the same
convolutional kernel is identical. The output of different groups are combined and then transferred
to the subsampling layer. Here, the output in the previous convolutional layer is treated as the input
data. At this time, set the range of values and use the average or maximum as the specific values in the
range. The data needs to be combined to satisfy a dimensionality reduction. Finally, the results can be
derived from the fully connected layer [25].

The application of the CNN model has two main advantages: (a) the existence of deformed data
is allowed; (b) the load forecasting efficiency and accuracy can be improved by parameter reduction
through local connection and shared weight. However, the stability of the prediction results can not
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be guaranteed, due to the subjective determination of the weights and thresholds [26]; thus, NILA is
proposed to complete the optimal parameter selection in this paper to overcome this shortcoming.

2.3. The Forecasting Model of NILA-CNN

The short-term load forecasting approach for EV charging stations incorporating NILA and CNN
is constructed as Figure 3 shows.

Original load 
data

Data 
pretreatment

Training set Testing set

Initialized the 
parameters of NILA

Population 
initialization

Mating

Territorial 
defense

Territorial 
takeover

Lion clone

Single parent 
mutation

Stop criteria

Obtain the optimal 
parameters

CNN
Output the 
forecasting 

results

YesNo

Niche 
immune

Lion 
algorithm 
improved 
by niche 
immunity

Figure 3. Flowchart of Lion Algorithm Improved by Niche Immune (NILA) - Convolutional Neural
Network (CNN) algorithm.

On the basis of NILA-CNN model, the optimal parameters of CNN can be derived as follows:
(1) Input selection (xi) and data pre-processing. The initial input set is formed based on the

load analysis of EV charging stations and needs to be quantified and normalized. The specific data
preprocessing method is shown in Section 4.1.

(2) Parameters initialization. Randomly determine the weights and thresholds of all layers in
CNN model from the smaller numerical set.
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(3) NILA optimization. Search the optimal weights and thresholds of CNN on the basis of NILA.
If the maximum iteration number is reached, the optimal parameters are obtained; if not, repeat the
optimization steps until the condition is satisfied.

(4) CNN training. After initialization including the neuron numbers in the input layer,
convolutional layer, and subsampling layer, respectively, train the CNN optimized by NILA, and derive
the optimal forecasting model.

(5) Simulation and prediction. Forecast the short-term load of EV charging stations based on the
trained approach and analyze the results.

3. Analysis of Load Characteristics in Electric Vehicle (EV) Charging Station

The study of influential factors that affect the load in charging station contribute to load forecasting
accuracy improvement. This paper selects an EV charging station in Beijing as a case study. It can be
seen that the load is heavily influenced by meteorological conditions, seasonal variation, and day types.

3.1. Seasonal Variation

Seasonal variation has an obvious effect on the load characteristics in EV charging station [27].
Therefore, the typical daily load curves in spring, summer, autumn and winter are compared in
Figure 4. It should be noted that these four days are all Tuesday, and are all sunny days.

Figure 4. Typical daily load curves in four seasons.

As presented in Figure 4, the load of the EV charging station is relatively high in winter and
summer, mainly due to increasing use of air conditioning in these two seasons, which leads to more
energy consumption. As a result, air conditioning load can be considered as a vital influencing factor.

3.2. Meteorological Conditions

The load in EV charging station is greatly affected by temperature and weather type, while wind
and humidity play insignificant roles [28,29]. Here, take the daily load curves on 1 June, 8 June and
15 June in 2017 as examples. The average daily temperatures are 23.5 ◦C, 27 ◦C and 31 ◦C, respectively.
It can be seen that there is a positive relationship between temperature and daily load, as shown in
Figure 5. Therefore, temperature is selected as the influential factor in this paper.
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Figure 5. Relationship between temperature and daily load of electric vehicle (EV) charging station.

Divide the weather conditions into two categories: sunny days and rainy days. Figure 6 illustrates
the relationship between weather conditions and the daily load of the EV charging station on
21 February and 22 February in 2017. It is sunny on 21 February and it is rainy on 22 February.
It proves that snow days can reduce the daily maximum load as a result of vehicle’s deceleration,
which leads to the decrease of daily driving mileage and charging. Hence, snow is another important
influential factor.

Figure 6. Relationship between weather condition and daily load of EV charging station.

3.3. Day Types

Divide the days into workdays, Saturday and Sunday. Figure 7 describes the relationship between
day types and daily load of the EV charging station based on the data from 14 August to 20 August in
2017. It is Monday to Friday from 14 August to 18 August. 19 August and 20 August are Saturday
and Sunday respectively. The loads on workdays are slightly lower than those of the weekends.
From Monday to Friday, the use of EVs focuses on the period that people go to and from work,
while the abundant outdoor activities on Saturday and Sunday increase the use of EVs. To this end,
the day type is chosen as an influential indicator in this paper.
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Figure 7. Relationship between day type and daily load of EV charging station.

4. Case Study

The selected EV charging station in this paper is composed of 5 large power chargers which can
be used by batteries with high capacity in a single box, or series batteries with low capacity in three
boxes, and 10 small power chargers that can be only employed by a battery with low capacity in a
single box. The load data every 30 min from 1 June 2016 to 30 November 2017 are collected from the
charging station. The data from 1 June 2016 to 29 November 2017 are selected as training set, and the
remaining data on 30 November 2017 are utilized as test set.

4.1. Input Selection and Processing

According to the analysis of the load characteristics for EV charging station, ten influential factors
including seasonal category, maximum temperature, minimum temperature, weather condition, day
type, and the loads at the same moment in the previous five days are selected as input in this paper.
The input features are discussed as follows: (a) the season can be divided into four categories: spring
(March, April and May), summer (June, July and August), autumn (September, October, November)
and winter (December, January and February), which are set as {1, 2, 3, 4}. (b) Weather conditions are
decomposed into two types: sunny and cloudy days, valued at 1, and rainy and snowy days, valued at
0.5. (c) Days can be divided into workdays (Monday to Friday) and weekends (Saturday and Sunday).
When quantifying the day type, workdays are valued at 1, and weekends at 0.5. Because the collecting
data is not publically available, statistically significant parameters are presented in Table 1.

Table 1. Statistically significant parameters of the collecting data.

Statistics Total Days
Maximum Load

(MW)
Minimum Load

(MW)
Maximum

Temperature (◦C)
Minimum Temperature

(◦C)

Value 547 5.212 0.006 36 −13

Statistics Number of days
in spring (day)

Number of days
in summer (day)

Number of days
in autumn (day)

Number of days in
winter (day)

Number of precipitation
days (day)

Value 92 184 182 89 76

The temperature and load data should be normalized in accordance with Equation (11).

Y = {yi} =
xi − xmin

xmaxxmin
i = 1, 2, 3, . . . , n (11)
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where xi is the actual value, xmin and xmax equals the minimum and maximum values in the samples,
respectively, yi represents the normalized load.

4.2. Model Performance Evaluation

This paper assesses the forecasting model by using the following appropriate indicators.

(1) Relative error (RE):

RE =
xi − x̂i

xi
× 100% (12)

(2) Root mean square error (RMSE):

RMSE =

√
1
n

n

∑
i=1

(
xi − x̂i

xi
)

2
(13)

(3) Mean absolute percentage error (MAPE):

MAPE =
1
n

n

∑
i=1

|(xi − x̂i)/xi| · 100% (14)

(4) Average absolute error (AAE):

AAE =
1
n
(

n

∑
i=1

|xi − x̂i|)/( 1
n

n

∑
i=1

xi) (15)

where x is the actual load of charging station and x̂ is the corresponding forecasted load, n
represents the groups in the dataset. The smaller these evaluation indicators are, the higher the
prediction accuracy.

4.3. Results Analysis

In NILA, set agemat = 3, κstrenth = 5, the maximum iteration number is 100, p = 0.5, and the
specific iteration process is shown in Figure 8. As can be seen in Figure 8, the optimal parameter of CNN
is obtained at the thirty-fifth iteration. In order to validate the performance of the proposed technique
NILA-CNN, comparisons are made with the final forecasting results from different algorithms
involving LA-CNN, single CNN, SVM, and time series (TS). The parameter settings in LA-CNN
model are consistent with those in NILA-CNN. The CNN model consists of one feature extraction
layer which includes a convolutional layer with 12 neurons, and a subsampling layer with 5 neurons.
The maximum number of training times, and the training error, are 200 and 0.0001, respectively. In SVM,
the regularization parameter is 9.063, the kernel parameter equals 0.256, and the loss parameter is
equal to 3.185. In Table 2, load forecasting results are derived from five different techniques.
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Table 2. Actual load and forecasting results in 30 November 2017 (Unit: MW).

Time/h Actual Data NILA-CNN LA-CNN CNN SVM TS

0:00 0.374 0.384 0.387 0.361 0.364 0.354
0:30 0.408 0.398 0.422 0.399 0.427 0.432
1:00 0.282 0.282 0.277 0.272 0.292 0.302
1:30 0.262 0.255 0.254 0.271 0.247 0.245
2:00 0.402 0.411 0.414 0.418 0.381 0.431
2:30 0.330 0.321 0.341 0.342 0.315 0.353
3:00 0.269 0.267 0.260 0.258 0.280 0.284
3:30 0.247 0.242 0.244 0.241 0.257 0.261
4:00 0.251 0.254 0.243 0.242 0.257 0.240
4:30 0.253 0.245 0.245 0.262 0.265 0.267
5:00 0.246 0.252 0.255 0.256 0.233 0.226
5:30 0.269 0.276 0.277 0.259 0.254 0.285
6:00 0.503 0.510 0.519 0.510 0.515 0.537
6:30 0.696 0.715 0.719 0.668 0.721 0.743
7:00 0.850 0.832 0.824 0.882 0.889 0.910
7:30 1.003 1.013 0.987 1.038 0.957 1.059
8:00 1.560 1.518 1.507 1.615 1.521 1.653
8:30 1.999 2.055 2.066 2.071 1.901 2.109
9:00 2.100 2.159 2.170 2.025 2.185 1.980
9:30 2.316 2.374 2.387 2.283 2.396 2.450
10:00 3.757 3.687 3.628 3.618 3.932 3.995
10:30 3.761 3.671 3.784 3.806 3.598 4.000
11:00 3.612 3.519 3.486 3.752 3.780 3.928
11:30 3.821 3.923 3.706 3.971 3.883 4.120
12:00 2.635 2.679 2.595 2.736 2.760 2.503
12:30 2.882 2.955 2.783 2.985 3.004 3.043
13:00 3.354 3.403 3.470 3.220 3.153 3.582
13:30 3.832 3.930 3.707 3.686 4.008 4.094
14:00 4.335 4.225 4.189 4.487 4.531 4.643
14:30 3.867 3.876 3.897 4.013 4.028 4.136
15:00 4.063 3.942 3.931 4.121 3.889 4.330
15:30 4.559 4.688 4.707 4.741 4.363 4.879
16:00 4.654 4.708 4.799 4.830 4.438 4.988
16:30 3.819 3.710 3.936 3.906 3.593 4.079
17:00 3.498 3.472 3.379 3.623 3.566 3.303
17:30 2.959 2.886 2.858 2.856 3.081 3.170
18:00 2.647 2.710 2.686 2.595 2.762 2.829
18:30 2.695 2.753 2.783 2.591 2.551 2.846
19:00 2.795 2.773 2.890 2.898 2.651 2.950
19:30 3.158 3.068 3.253 3.044 3.020 3.003
20:00 3.479 3.407 3.594 3.396 3.565 3.684
20:30 4.271 4.381 4.130 4.114 4.449 4.511
21:00 3.577 3.673 3.454 3.437 3.752 3.829
21:30 2.605 2.583 2.625 2.697 2.489 2.787
22:00 2.059 2.006 1.988 2.136 1.980 2.200
22:30 1.831 1.876 1.891 1.904 1.754 1.958
23:00 1.135 1.165 1.170 1.091 1.101 1.071
23:30 0.447 0.438 0.462 0.463 0.428 0.478
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Figure 8. The iterative process of NILA.

Figure 9 displays the prediction results of Table 2, shown for more intuitive analysis. The values
of RE obtained from the forecasting models are illustrated in Figure 10. Under the circumstance of
electricity market, the error range between short-term load forecasting and the actual value should
be [−3%, +3%]. It can be seen that the prediction error range of NILA-CNN is controlled within
[0.23%, 2.86%] while the prediction error ranges of LA-CNN and CNN are [0.62%, 3.47%] and [−4%,
2.28%], respectively. Among them, 6 error points of NILA-CNN are controlled in [−1%, 1%], while
the corresponding number of LA-CNN and CNN are 3 and 0. The errors of SVM model mostly range
from [−6%, −4%] or [4%, 6%], and additionally, the errors of TS present a large fluctuation ranging,
from [−8%, −5%] and [5%, 8%]. Thus, the prediction precision from the superior to the inferior can be
ranked as follows: NILA-CNN, LA-CNN, CNN, SVM, TS. This demonstrates that NI can effectively
improve the performance of LA. Further, NILA is conducive to high forecasting accuracy, due to the
optimal parameter setting in the CNN model. Although the prediction results of NILA-CNN model are
greater than other four methods in some points, such as at 10: 30, the overall errors perform the best.

Figure 9. Prediction results.
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Figure 10. RE of prediction methods.

The statistical errors of the five prediction models are displayed in Figure 11. The analysis shows
that: (a) NILA-CNN model outperforms other four techniques in terms of RMSE (2.27%), MAPE
(2.14%) and AAE (2.096%). (b) Compared with LA-CNN, NI avoids premature convergence based on
increasing the diversity of lion population. (c) The generalization ability and prediction accuracy of
the CNN model can be improved by parameter optimization. (d) the CNN model can make a deep
excavation of the internal relationship between the influential factors and the load of EV charging
station in comparison with SVM. (e) ANN can reflect the non-linear relationship more accurately than
TS methods.

Figure 11. RMSE, MAPE and AAE of prediction methods (I).

5. Further Study

In order to further verify the effectiveness of the proposed model, one more case which selects the
data from another EV charging station is provided in this paper. The study is carried out with data
from 1 June 2016 to 31 May 2017. To reflect the influence of seasonal factors on load, data from 7 days
of each season are selected as a test set, with the rest as a training set. The specific data division is
shown in Table 3.
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Table 3. The data division of case two.

Data Type Data Range Season Type

Training set

1 June 2016–24 August 2016 Autumn
1 September 2016–23 November 2016 Winter
1 December 2016–21 February 2017 Spring

1 March 2017–24 May 2017 Summer

Test set

25 August 2016–31 August 2016 Autumn
24 November 2016–30 November 2016 Winter

22 February 2017–28 February 2017 Spring
25 May 2017–31 May 2017 Summer

The five models shown above are still used in this experiment, where the parameter settings
of NILA-CNN, LA-CNN and CNN are consistent. In SVM, the regularization parameter is 2.0153,
the kernel parameter is 0.015, and the loss parameter is 0.013. The statistical errors including RMSE,
MAPE and AAE are displayed in Figure 12.

Figure 12. RMSE, MAPE and AAE of prediction methods (II). ((a) is the error results of test set in Spring;
(b) is the error results of test set in Summer; (c) is the error results of test set in Autumn; (d) is the error
results of test set in Winter).

As demonstrated in Figure 12, the values of RMSE, MAPE and AAE of NILA-CNN in four seasons
are all the lowest among the forecasting techniques, namely 2.010, 2.00% and 1.97% in Spring, 1.93%,
1.86% and 1.80% in Summer, 2.16%, 2.14% and 2.04% in Autumn, 2.07%, 2.00% and 1.90% in Winter.
Meanwhile, it can be noted that the overall prediction accuracy of LA-CNN is better than that of the
CNN model, and CNN-based approaches are superior to SVM and TS, which proves the advantages
of NI, LA and CNN. Therefore, the short-term load forecasting for EV charging stations based on the
NILA-CNN model is efficient enough to compete with existing approaches in prediction precision.
As a hybrid algorithm, the proposed model is able to provide accurate data support for economic
operation of the charging station.
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6. Conclusions

In recent years, with the gradually worsening energy crisis and the intensification of global
warming, EVs have become one of the main development directions for new energy vehicles due,
to their energy savings and emission reductions. EV charging stations are an important part of
the power load; thus, research on their short-term load forecasting is not only of great significance
for economic dispatch in the grid, but also contributes to stable operation of the charging station.
In this paper, a short-term load forecasting method for EV charging stations combining NILA with
CNN is established, where NI is used to improve the optimization performance of LA, and the
hybrid technique NILA is introduced to determine the optimal parameters of CNN model, so as to
obtain better prediction accuracy. Through analysis of load characteristics in the charging station, ten
influential factors are selected as input, including seasonal category, maximum temperature, minimum
temperature, weather condition, day type, and the loads at the same moment in previous five days.
According to the case studies, CNN integrated with NILA outperforms other models in terms of
prediction precision, indicating that NILA-CNN model is a promising technique for short-term load
forecasting of EV charging station.
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CNN Convolutional neural network
LA Lion algorithm
NI Niche immunity
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SVM Support vector machine
RBFNN Radial basis function neural network
TS time series
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RMSE Root mean square error
MAPE Mean absolute percentage error
AAE Average absolute error
LA-CNN Convolutional neural network optimized by lion algorithm
NILA-CNN Convolutional neural network optimized by niche immunity lion algorithm
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Abstract: Short-term load forecasting is an important task for the planning and reliable operation
of power grids. High-accuracy forecasting for individual customers helps to make arrangements
for generation and reduce electricity costs. Artificial intelligent methods have been applied to
short-term load forecasting in past research, but most did not consider electricity use characteristics,
efficiency, and more influential factors. In this paper, a method for short-term load forecasting
with multi-source data using gated recurrent unit neural networks is proposed. The load data of
customers are preprocessed by clustering to reduce the interference of electricity use characteristics.
The environmental factors including date, weather and temperature are quantified to extend the input
of the whole network so that multi-source information is considered. Gated recurrent unit neural
networks are used for extracting temporal features with simpler architecture and less convergence
time in the hidden layers. The detailed results of the real-world experiments are shown by the
forecasting curve and mean absolute percentage error to prove the availability and superiority of the
proposed method compared to the current forecasting methods.

Keywords: short-term load forecasting; artificial intelligence; gated recurrent unit; recurrent neural
network; power grid

1. Introduction

Load forecasting is an essential part for energy management and distribution management in
power grids. With the continuous development of the power grids and the increasing complexity of
grid management, accurate load forecasting is a challenge [1,2]. High-accuracy power load forecasting
for customers can make the reasonable arrangements of power generation to maintain the safety
and stability of power supply and reduce electricity costs so that the economic and social benefit is
improved. Moreover, forecasting at individual customer level can optimize power usage and help
to balance the load and make detailed grid plans. Load forecasting is the process of estimating the
future load value at a certain time with historical related data, which can be divided into long-term
load forecasting, medium-term load forecasting and short-term load forecasting according to the
forecasting time interval. Short-term load forecasting, which this paper focuses on, is the daily or
weekly forecasting [3,4]. It is used for the daily or weekly schedule including generator unit control,
load allocation and hydropower dispatching. With the increasing penetration of renewable energies,
short-term load forecasting is fundamental for the reliability and economy of power systems.

Models of short-term load forecasting can be classified into two categories consisting of tradition
statistic models and artificial intelligent models. Statistic models, such as regression analysis models
and time sequence models, are researched and used frequently were previously limited by computing
capability. Taylor et al. [5] proposed an autoregressive integrated moving average (ARIMA) model
with an extension of Holt–Winters exponential smoothing for short-term load forecasting. Then,
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an power autoregressive conditional heteroskedasticity (PARCH) method was presented for better
performance [6]. These statistic models need fewer historical data and have a small amount of
calculation. However, they require a higher stability of the original time sequences and do not consider
the uncertain factors such as weather and holidays. Therefore, artificial intelligent models about
forecasting, such as neural networks [7,8], fuzzy logic method [9] and support vector regression [10],
were proposed with the development of computer science and smart grids. Recently, neural networks
are becoming an active research topic in the area of artificial intelligence for its self-learning and fault
tolerant ability. Some effective methodologies for load forecasting based on neural networks have been
proposed in recent years. A neural network based method for the construction of prediction intervals
was proposed by Quan et al. [7]. Lower upper bound estimation was applied and extended to develop
prediction intervals using neural network models. The method resulted in higher quality for different
types of prediction tasks. Ding [8] used separate predictive models based on neural networks for the
daily average power and the day power variation forecasting in distribution systems. The prediction
accuracy was improved with respect to naive models and time sequence models. The improvement
of forecasting accuracy cannot be ignored, but, with the increasing complexity and scale of power
grids, high-accuracy load forecasting with advanced network model and multi-source information
is required.

Deep learning, proposed by Hinton [11,12], made a great impact on many research areas including
fault diagnosis [13,14] and load forecasting [15–17] by its strong learning ability. Recurrent neural
network (RNNs), a deep learning framework, are good at dealing with temporal data because of its
interconnected hidden units. It has proven successful in applications for speech recognition [18,19], image
captioning [20,21], and natural language processing [22,23]. Similarly, during the process of load
forecasting, we need to mine and analyse large quantities of temporal data to make a prediction of
time sequences. Therefore, RNNs are an effective method for load forecasting in power grids [24,25].
However, the vanishing gradient problem limits the performance of original RNNs. The later time nodes’
perception of the previous ones decreases when RNNs become deep. To solve this problem, an improved
network architecture called long short-term memory (LSTM) networks [26] were proposed, and have
proven successful in dealing with time sequences for power grids faults [27,28]. Research on short-term
load forecasting based on LSTM networks was put forward. Gensler et al. [29] showed the compared
results for solar power forecasting about physical photovoltaic forecasting model, multi-layer perception,
deep belief networks and auto-LSTM networks. It proved the LSTM networks with autoencoder had
the lowest error. Zheng et al. [30] tackled the challenge of short-term load forecasting with proposing a
novel scheme based on LSTM networks. The results showed that LSTM-based forecasting method can
outperform traditional forecasting methods. Aiming at short-term load forecasting for both individual
and aggregated residential loads, Kong et al. [31] proposed an LSTM recurrent neural network based
framework with the input of day indices and holiday marks. Multiple benchmarks were tested in the
real-world dataset and the proposed LSTM framework achieved the best performance. The research
works mentioned above indicate the successful application of LSTM for load forecasting in power grids.
However, load forecasting needs to be fast and accurate. The principle and structure of LSTM are complex
with input gate, output gate, forget gate and cell, so the calculation is heavy for forecasting in a large
scale grid. Gated recurrent unit (GRU) neural networks was proposed in 2014 [32], which combined the
input gate and forget gate to a single gate called update gate. The model of a GRU is simpler compared
with an LSTM block. It was proved on music datasets and ubisolf datasets that GRU’s performance is
better with less parameters about convergence time and required training epoches [33]. Lu et al. [34]
proposed a multi-layer self-normalizing GRU model for short-term electricity load forecasting to overcome
the exploding and vanishing gradient problem. However, short-term load forecasting for customers is
influenced by factors including date, weather and temperature, which previous research did not consider
seriously. People may need more energy when the day is cold or hot. Enterprises or factories may reduce
their power consumption on holidays.
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In this paper, a method based on GRU neural networks with multi-source input data is proposed
for short-term load forecasting in power grids. Moreover, this paper focuses on the load forecasting
for individual customers, which is an important and tough problem because of the high volatility and
uncertainty [30]. Therefore, before training the networks, we preprocess the customers’ load data with
clustering analysis to reduce the interference of the electricity use characteristics. Then, the customers
are classified into three categories to form the training and test samples by K-means clustering
algorithm. To obtain not only the load measurement data but also the important factors including
date, weather and temperature, the input of the network are set as two parts. The temporal features
of load measurement data are extracted by GRU neural networks. The merge layer is built to fuse
the multi-source features. Then, we can get the forecasting results by training the whole network.
The methodologies are described in detail in Section 2. The main contributions of this paper are
as follows.

1. Trained samples are formed by clustering to reduce the interference of different characteristics
of customers.

2. Multi-source data including date, weather and temperature are quantified for input so that the
networks obtain more information for load forecasting.

3. The GRU units are introduced for more accurate and faster load forecasting of individual customers.

In general, the proposed method uses the clustering algorithm, quantified multi-source
information and GRU neural network for short-term load forecasting, which past research did not
consider comprehensively. The independent experiments in the paper verify the advantages of the
proposed method. The rest of the paper is organized as follows. The methodology based on GRU
Neural Networks for short-term load forecasting is proposed in Section 2. Then, the results and
discussion of the simulation experiments are described to prove the availability and superiority of the
proposed method in Section 3. Finally, the conclusion is made in Section 4.

2. Methodology Based on GRU Neural Networks

In this section, the methodology is proposed for short-term load forecasting with multi-source data
using GRU Neural Networks. First, the basic model of GRU neural networks are introduced [32]. Then,
data description and processing are elaborated. The load data are clustered by K-means clustering
algorithm so that the load samples with similar characteristics in a few categories are obtained. This
helps improve the performance of load forecasting for individual customers. In the last subsection, the
whole proposed model based on GRU neural networks is shown in detail.

2.1. Model of GRU Neural Networks

Gated recurrent unit neural networks are the improvement framework based on RNNs. RNNs are
improved artificial neural networks with the temporal input and output. Original neural networks
only have connections between the units in different layers. However, in RNNs, there are connections
between hidden units forming a directed cycle in the same layer. The network transmits the temporal
information through these connections. Therefore, the RNNs outperform conventional neural networks
in extracting the temporal features by these connections. A simple structure for an RNN is shown in
Figure 1. The input and output are time sequences, which is different from original neural networks.
The process of forward propagation is shown in Figure 1 and given by Equations (1)–(3).
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where w is the weight; a is the sum calculated through weights; f is the activation function; s is the
value after calculation by the activation function; t represents the current time of the network; i is the
number of input vectors; h is the number of hidden vectors in t is time; h′ is the number of hidden
vectors in t − 1 time; and o is the number of output vectors.

Figure 1. A simple RNN structure, where X is the input unit, H is the hidden unit, Y is the output unit,
and W is the weight matrix.

Similar to conventional neural networks, RNNs can be trained by back-propagation through
time [35] with the gradient descent method. As shown in Figure 1, each hidden layer unit receives
not only the data input but also the output of the hidden layer in the last time step. The temporal
information can be recorded and put into the calculation of the current output so that the dynamic
changing process can be learned with this architecture. Therefore, RNNs are reasonable to predict the
customer load curves in power grids. However, when the time sequence is longer, the information will
reduce and disappear gradually through transferring in hidden units. The original RNNs have the
vanishing gradient problem and the performance declines when dealing with long time sequences.

The vanishing gradient problem can be solved by adding control gates for remembering
information in the process of data transfer. In LSTM networks, the hidden units of RNNs are replaced
with LSTM blocks consisting of cell, input gate, output gate and forget gate. Moreover, the forget gate
and input gate are combined into a single update gate in GRU neural network. The structure of GRU
is shown in Figure 2.

The feedforward deduction process for GRU units is shown in Figure 2 and given by
Equations (4)–(10).
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Figure 2. Inner structure of GRU, where all arrows represent the weights between gates and units
and the units of f and φ are the activation functions. The parameters are explained in detail after the
Equations (4)–(10).

where u is the number of update gate vector; r is the number of reset gate vector; h is the number
of hidden vectors at t time step; h′ is the number of hidden vectors at t − 1 time step; f and φ are the
activation functions; f is the sigmoid function and φ is the tanh function generally; and s̃t

h′ means the
new memory of hidden units at t time step.

According to Figure 2, the new memory s̃t
h′ is generated by the input xt

i at the current time step
and the hidden unit state st−1

h at the last time step, which means the new memory can combine the
new information and the historical information. The reset gate determines the importance of st−1

h
to s̃t

h′ . If the historical information st−1
h is not related to new memory, the reset gate can completely

eliminate the information in the past. The update gate determines the degree of transfer from st−1
h to

st
h. If st

u ≈ 1, st−1
h is almost completely passed to st

h. If st
u ≈ 0, s̃t

h′ is passed to st
h. The structure shown

in Figure 2 results in a long memory in GRU neural networks. The memory mechanism solves the
vanishing gradient problem of original RNNs. Moreover, compared to LSTM networks, GRU neural
networks merge the input gate and forget gate, and fuse the cell units and hidden units in LSTM block.
It maintains the performance with simpler architecture, less parameters and less convergence time [33].
Correspondingly, GRU neural networks are trained by back-propagation through time as RNNs [35].

2.2. Data Description

The real-world load data of individual customers in Wanjiang area is recorded from Dongguan
Power Supply Bureau of China Southern Power Grid in Guangdong Province, China during 2012–2014.
The topology structure of Wanjiang area is shown in Figure 3. There are 36 feeders connecting to the
load sides in the Wanjiang area, i.e., Feeders 1—36. The active power is extracted for load forecasting
from these feeders. The sampling period is 15 min as the meter record data. The load curve of a
customer, No. 53990001, from Feeder 2 during a month is shown in Figure 4, where the different load
characteristics of the customer on each day can be concluded.
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Figure 3. Primary electrical system in Wanjiang area above 110 kv, including electric power plants,
transmission buses, converting stations, and user loads. The feeders are marked under their
corresponding load sides.

Figure 4. Load curve of Customer 53990001 from Feeder 2 during a month, where the sampling period is
15 min.

Besides the historical load curves, short-term load forecasting is influenced by the factors of date,
weather and temperature. The real historical data of weather and temperature in the corresponding
area in Dongguan City were obtained online from the weather forecast websites. The categories of
weather include sunny, cloud, overcast, light rain, shower, heavy rain, typhoon and snow. The date
features can be found in calendars.

2.3. Clustering and Quantization

The custom of electricity use and characteristics of load curve are different among the different
categories of customers such as industrial customers, residential customers and institution customers.
The different characteristics would affect the performance of forecasting. Training forecasting networks
with each customer separately would be a huge computation and storage problem. Therefore, in
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the proposed method, the load curve samples are divided into certain categories using K-means
clustering algorithm. Samples with similar characteristics form a certain category, which form the
input of GRU neural networks for the corresponding customers. K-means clustering algorithm is
a simple and available method for clustering through unsupervised learning with fast convergence
and less parameters. The only parameter, K, number of clustering category, can be determined by
Elbow method with the turning point of loss function curve.

Suppose the input sample is S = x1, x2, ..., xm. The algorithm is shown as follows.

1. Randomly initialize K clustering centroids c1, c2, ..., cK.
2. For i = 1, 2, ..., m, label each sample xi with the clustering centroid closest to xi, getting K categories

noted by Gk.
labeli = arg min

1≤k≤K
‖xi − ck‖, i = 1, 2, ..., m (11)

3. For k = 1, 2, ..., K, average the samples assigned to Gk to update ck.

ck =
1

|Gk| ∑
i∈Gk

xi, k = 1, 2, ..., K (12)

4. Repeat Steps 2 and 3 until the change of clustering centroid or the loss function of clustering
less than a set threshold. The loss function is given by Equation (13), where xj is the samples in
categories Gk, j = 1, 2, ..., nk and nk is the number of samples in categories Gk.

J(c1, c2, ..., cK) =
1
2

K

∑
k=1

nk

∑
j=1

‖xj − ck‖ (13)

Moreover, the factors of date, weather and temperature should be added into input with
quantization. First, the power consumption should be different between weekdays and weekends.
The official holidays are also an important factor, so we quantify the date index as shown in Table 1,
where the index of official holidays is 1 no matter what day it is. Similarly, the weather and temperature
are quantified according to their inner relations, as shown in Tables 2 and 3.

Table 1. Quantization for the factors of date.

Date (D) Mon. Tues. Wed. Thur. Fri. Sat. Sun. Official Holidays

Index 0 0.02 0.04 0.06 0.08 0.6 0.8 1

Table 2. Quantization for the factors of weather.

Weather (W) Sunny Cloud Overcast Light Rain Shower Heavy Rain Typhoon Snow

Index 0 0.1 0.2 0.4 0.5 0.6 0.8 1

Table 3. Quantization for the factors of temperature.

Temperature (T/◦C) T ≤ 0 0 < T ≤ 10 10 < T ≤ 20 20 < T ≤ 30 30 < T ≤ 40 T ≥ 40

Index 0 0.2 0.4 0.6 0.8 1

2.4. The Proposed Framework Based on GRU Neural Networks

The schematic diagram of proposed framework based on GRU neural networks for short-term
load forecasting is shown in Figure 5. The individual customers are clustered into a few categories
for more accurate forecasting. The samples are recorded from the categories where the customer to
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be predicted locates in. The load measurement data of individual customers in one day is extracted
as a sample for short-term load forecasting, noted by P. The dimension of P is 96 with the 15 min
sampling period. Then, the samples are reshaped into two-dimension for the input of GRU neural
networks. Considering the influencing factors date D, weather W and temperature T, date Dp, weather
Wp and temperature Tp on the forecasting day are added to the another input of the GRU neural
networks. Considering the general factor of date, the prediction interval is set to seven days. Therefore,
the load measurement data Pl on the day in the last week from the forecasting day, Dp, Wp and Tp,
are recorded as the overall input. The load measurement data Pp on the forecasting day are recorded
as the output, whose dimension is 96. Therefore, the input X and output Y of samples are given by
Equations (14) and (15).

X = {Pl; Dp, Wp, Tp} (14)

Y = {Pp} (15)

Figure 5. Schematic diagram of proposed framework based on GRU Neural Networks for short-term
load forecasting, where k is the number of hidden units and t is the time step. The parameters of GRU
units are clarified in Section 2.1. The input and output parameters are explained in the next subsection.

The features from GRU neural networks and fully connected neural network are merged with the
concatenating mode and passes through batch normalization and dropout layer to avoid overfitting
and increase the learning efficiency. The principle is that batch normalization can avoid the gradient
vanishing of falling into the saturated zone, and that the better performance in fixed combination
is avoided when random neurons do not work in a dropout layer. Then, two-layer fully connected
neural network are added before the output for learning and generalization ability. With training
by back-propagation through time, the whole network implements the short-term load forecasting
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for individual customers. The structure can be extended if there is more information in the practical
situation. The basic theory is also acceptable for medium-term load forecasting and long-term load
forecasting, but different influence factors should be considered and the model should be changed
with different input, output, and inner structure for good performance.

3. Experiments and Results

In this section, the experiments are described in detail and the results are shown in figures and
tables. The specific discussion for results is elaborated after the results and prove the improved
performance compared to other methods. The data for experiments are recorded in Section 2.2.

3.1. Clustering Analysis for Load Curve of Individual Customers

Before the short-term load forecasting using GRU neural networks, the load curves of individual
customers are clustered to different categories for samples with K-means clustering algorithm.
The parameter K is selected as 3 by Elbow method. There are 746 customers in the Wanjiang area in
Dongguan city. The load measurement data should be processed with 0–1 standardization to the same
scale for clustering to reduce the impact of different magnitudes and dimensions. The clustering is
done for 10 times with load curves in 10 days for the individual customers. The clustering results are
obtained with the average results in 10 days and the number of each clustering category is shown in
Table 4. The standardized curves for 30 selected customers in three categories on a weekday are shown
in Figures 6–8.

Table 4. Number of each clustering category.

Categories Category 1 Category 2 Category 3

Number of Customers 221 308 217

Figure 6. Load curves of 30 customers in Category 1.

As can be seen in Figures 6–8, different customers have different characteristics of electricity use.
According to Figure 6, there are two electric peaks in a day. The evening peak is higher than the noon
peak. The classic representation of this characteristic in Figure 6 is residential customers. Different
from Figure 6, Figure 7 maintains the peak from 9 a.m. to late at night except noon. They are the
general load curves of industry and business customers. In Figure 8, there are two electric peaks in
the morning and afternoon. It should belong to the government and institutional customers. Even
though a few customers have differences with the overall curve, this is the best clustering for them and
it does not influence the overall performance greatly. With the clustering of individual customers, the
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networks can be trained with samples in the same category according to the customer to be predicted,
so that the interference of electricity use characteristics can be reduced.

Figure 7. Load curves of 30 customers in Category 2.

Figure 8. Load curves of 30 customers in Category 3.

3.2. The Detailed Network Structure and Parameters

The detailed structure of whole network are shown in Table 5. The parameters of the network
are set as shown in Table 6. The structure and parameters are set for better performance according
to the multiple experiments for customers in Wanjiang area. The “RMSprop” optimizer is chosen for
its better performance in recurrent neural networks. The parameters can be adjusted for the different
practical situations. In this paper, the number of epoch is set to 200 for the proposed method and can be
adjusted for the compared methods. The training is stopped when the error decreases to a steady state.
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Table 5. Number of units in the proposed network.

Layer Number of Units Layer Number of Units

INPUT: Pl (6, 16) INPUT: Dp Wp Tp 3
BATCH NORMALIZATION (6, 16) DENSE1 100

GRU 300 DENSE2 100
MERGE 400

DROPOUT 400
DENSE3 100
DENSE4 100

OUTPUT:Pp 96

Table 6. Parameter setting in the proposed network.

Parameters Value

Input Time Steps 6
Input Dimension 16

Batch Size 30
Epoch 200

Optimizer RMSprop
Learning Rate 0.001

Decay 0.9
Dropout Rate 0.6

3.3. Comparison of Results of Proposed Method

The results of the proposed method are shown as follows. In the experiments, the training samples
are recorded from the load data in the period from October 2012 to September 2013 while the test
samples are recorded from load data in the period from October to December of 2013. The number
of recorded training samples and test samples of each categories is 36,000 and 9000, respectively,
with 100 customers in a category. The ratio of sample number is 4:1. Mean absolute percentage error
(MAPE) is the classic evaluation index for load forecasting. The computational formula is given by
Equations (16) and (17), where n = 96 represents the dimension of samples and m represents the
number of test samples.

MAPE =
∑m

j=1
∣∣Ej
∣∣

m
× 100% (16)

Ej =
∑n

i=1

∣∣∣Pp,ij − Pl,ij

∣∣∣
n

(17)

Customer 53990001 is selected from Category 2 for the forecasting customer. The MAPEs during
a training period for Category 2 are shown in Figure 9 when the parameters are set as shown in Table 6.
The compared curves of actual load and forecasting load using the proposed method on 18 November
for Customer 53990001 are shown in Figure 10. The MAPE for Customer 53990001 on 18 November
is 10.23%. The compared curves of actual load and forecasting load from 18 to 24 November for
Customer 53990001 are shown in Figure 11. The MAPE for Customer 53990001 in this week is 10.97%.
In Figures 10 and 11, the error in sample points of one day is basically average and becomes larger
when the curve comes to a peak. It is reasonable because the high or low peak is not reachable in
most cases. The network should balance the prediction results for most situations during the training
process. According to Figure 9, the MAPE decreases to a steady state as the epoch increases to 200.
According to Figures 10 and 11, the forecasting curve is close to the actual curve, which proves the
availability of the proposed method.
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Figure 9. MAPEs during a training period for the Category 2.

Figure 10. Compared curves of actual load and forecasting load in a day for Customer 53990001.

Figure 11. Compared curves of actual load and forecasting load in a week for Customer 53990001.

The samples are preprocessed by K-means clustering algorithm to form three categories for
training. We performed a comparative experiment with variable-controlling approach about clustering.
The compared results of Customer 53990001 on four different days of November 2013 are shown in
Figure 12. The compared MAPEs of prediction on 18 November for nine customers in three categories
from different feeders are shown in Table 7. It can be concluded that the forecasting curve without
clustering deviates from the actual curve and that its MAPE is larger. The reason is that different
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characteristics of electricity use create a bad effect for short-term load forecasting. The effect reduces
when we use corresponding trained networks for different customers. Therefore, the performance is
generally improved by clustering.

Table 7. Compared MAPEs for nine customers in three categories with or without clustering.

Customer Category Feeder MAPE with Clustering MAPE without Clustering

37148000 1 2 10.80% 22.98%
51690000 1 7 9.25% 21.17%
37165000 1 7 11.12% 20.12%
53990001 2 2 10.07% 27.31%
54265001 2 3 11.91% 22.72%
54265002 2 3 10.76% 28.45%
31624001 3 35 13.56% 21.12%
41661001 3 34 12.23% 24.85%
76242001 3 33 9.98% 28.38%

Figure 12. Compared curves of actual load and forecasting load of Customer 53990001 with or without
clustering: (a–d) the results for four different days in November 2013.

The input of proposed network includes Dp, Wp, Tp and Pl, which means that the network obtains
and fuses the previous load changing process and other environmental information. In this case,
we removed the input layer and the following fully connected layers in the network. The comparison
results of Customer 53990001 with multi-source or only load data input are shown in Figure 13.
The compared MAPEs for nine customers in three categories from different feeders are shown in
Table 8. The experimental condition is the same as the one above. It can be concluded that the
performance of only using load data is obviously poorer. Although the change shape is similar
to actual, the curves deviate from the actual curves. Correspondingly, the MAPEs are larger. The
reason is that date, weather and temperature are necessary factors to consider during short-term load
forecasting processing. People would raise their load on a hot or cold day, even a rainy or snowy day.
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Resident customers may increase electricity consumption on weekends but business customers may
not. These are some obvious reasons why we should consider the environment factors.

Table 8. Compared MAPEs for nine customers in three categories with multi-source data or only
load data.

Customer Category Feeder MAPE with Multi-Source Data MAPE with only Load Data

37148000 1 2 10.80% 15.09%
51690000 1 7 9.25% 15.06%
37165000 1 7 11.12% 16.50%
53990001 2 2 10.07% 18.56%
54265001 2 3 11.91% 17.36%
54265002 2 3 10.76% 15.99%
31624001 3 35 13.56% 15.89%
41661001 3 34 12.23% 16.46%
76242001 3 33 9.98% 17.33%

Figure 13. Comparison curve of actual load and forecasting load of Customer 53990001 with or without
multi-source data: (a–d) the results for the same four days in November 2013 as the experiment in
Figure 12.

It can be concluded from the two experiments that the MAPEs are floating in a certain degree.
The maximal MAPEs of all samples in the conditions of the two experiments are shown in Table 9.
The maximal MAPE without clustering and with only load data is significantly larger than the proposed
method with clustering and multi-source data. The maximal MAPE of proposed method is 15.12%,
which is acceptable for load forecasting of individual customers.

Table 9. Maximal MAPEs in different conditions.

Conditions Forecast without Clustering Forecast with only Load Data Proposed Method

Maximal MAPE 30.25% 21.87% 15.12%
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The performances are good with LSTM networks in dealing with time sequence but there are
more parameters to train compared with GRU neural networks. In the proposed network, the GRU
layers have 285,300 parameters to train while the LSTM layers have 380,400 parameters with the same
architecture. The cost time for training with LSTM network is about 20% longer than training with
GRU neural networks in the experiments in this paper. The MAPEs of network with LSTM and GRU
layer in the same architecture with the same samples in Category 2 during the training process are
shown in Figure 14. We can conclude that GRU neural networks do better in both convergence speed
and training time, which depends on the improved single structure of GRU units.

Figure 14. The MAPEs of network with LSTM and GRU layers in the same architecture with same
samples during the training process.

We also performed the experiments to compare with current methods such as back-propagation
neural networks (BPNNs) [7,8], stacked autoencoders (SAEs) [17], RNNs [24,25], and LSTM [29–31].
Their parameters and structures are set as described in Section 3.2. The compared average MAPEs
of these methods, trained and tested with all samples described at the beginning of this subsection,
are shown in Figure 15. The specific values of average and maximal MAPEs are shown in Table 10.
Moreover, the results of nine customers are shown to validate the better performance of the proposed
methods. The MAPEs for 30 November 2013 are shown in Table 11. It can be concluded that the
proposed method results in smaller error in both average and maximal MAPEs. The proposed method
performs better compared to the other current methods in most cases for short-term load forecasting
in Wanjiang area.

Figure 15. Compared average MAPEs trained and tested with all samples in three categories.
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Table 10. Average and maximal MAPEs of the proposed and current methods for short-term load forecasting.

Method BPNNs SAEs RNNs LSTM Proposed Method

Average MAPE 26.12% 23.23% 16.85% 13.26% 10.98%
Maximal MAPE 32.42% 28.51% 20.97% 17.45% 15.12%

Table 11. MAPEs of compared methods for nine customers’ short-term load forecasting on
30 November 2013.

Customer Category Feeder BPNNs SAEs RNNs LSTM Proposed Method

37148000 1 2 26.96% 23.28% 16.56% 13.09% 10.80%
51690000 1 7 27.56% 25.61% 15.56% 10.77% 9.25%
37165000 1 7 28.55% 24.81% 13.35% 14.55% 11.12%
53990001 2 2 24.23% 22.23% 17.87% 11.27% 10.07%
54265001 2 3 26.33% 27.56% 17.23% 12.22% 11.91%
54265002 2 3 29.23% 24.89% 15.63% 14.63% 10.76%
31624001 3 35 30.45% 22.56% 19.93% 12.29% 13.56%
41661001 3 34 32.23% 25.65% 16.72% 14.65% 12.23%
76242001 3 33 25.36% 23.22% 14.66% 13.27% 9.98%

In detail, the forecasting load curves of Customers 37148000 and 53990001 on 30 November 2013
based on these methods are shown in Figures 16 and 17. We can observe the closest curve to the actual
curve is the proposed method in the results of these experiments. Time information is important in
short-term load forecasting which the BPNNs and SAEs cannot extract. Therefore, they get poorer
performance in the experiments. The vanishing gradient problem limits the performance of RNNs
because of the decreasing perception of nodes. The architecture is simpler and the parameters are
fewer in GRU neural network compared to LSTM networks (Section 2.1). Therefore, the performances
of GRU neural networks are better than the other current methods. In general, the availability and
improvement of the proposed method are proven by the real-world experiments.

Figure 16. The load curves of Customer 37148000 based on the proposed method and the other current methods.
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Figure 17. The load curves of Customer 53990001 based on the proposed method and the other current methods.

4. Conclusions

To increase the stability and economy of power grids, a method for short-term load forecasting with
multi-source data using GRU neural networks is proposed in this paper, which focuses on individual
customers. The proposed structure of the whole network is shown in Figure 5. The real-world load data
of individual customers is recorded from Dongguan Power Supply Bureau of China Southern Power
Grid in Guangdong Province, China. Before training, the customers with load data are clustered into
three categories by K-means clustering algorithm to reduce the interference of different electricity use
characteristics. Then, the environment factors are quantified and put into the input of the proposed
networks for more information. The GRU units are introduced into the network for its simpler structure
and faster convergence compared to LSTM blocks. The results in Figures 12 and 13 show that clustering
and multi-source input can help to improve the performance of load forecasting. The average MAPE can
be low as 10.98% for the proposed method, which outperforms the other current methods such as BPNNs,
SAEs, RNNs and LSTM. The improvement is notable (Figures 15–17). In general, the availability and
superiority of the proposed method are verified in this paper. In the future, combining with the technique
of peak prediction could be a subject worth studying for load forecasting. Moreover, since the load
forecasting for the customers in all power grid areas is a large-scale task, transfer learning and continuous
learning will be considered based on the proposed framework for high-efficiency load forecasting.
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Abstract: To enhance the prediction performance for building energy consumption, this paper
presents a modified deep belief network (DBN) based hybrid model. The proposed hybrid model
combines the outputs from the DBN model with the energy-consuming pattern to yield the final
prediction results. The energy-consuming pattern in this study represents the periodicity property of
building energy consumption and can be extracted from the observed historical energy consumption
data. The residual data generated by removing the energy-consuming pattern from the original
data are utilized to train the modified DBN model. The training of the modified DBN includes
two steps, the first one of which adopts the contrastive divergence (CD) algorithm to optimize
the hidden parameters in a pre-train way, while the second one determines the output weighting
vector by the least squares method. The proposed hybrid model is applied to two kinds of building
energy consumption data sets that have different energy-consuming patterns (daily-periodicity and
weekly-periodicity). In order to examine the advantages of the proposed model, four popular artificial
intelligence methods—the backward propagation neural network (BPNN), the generalized radial
basis function neural network (GRBFNN), the extreme learning machine (ELM), and the support
vector regressor (SVR) are chosen as the comparative approaches. Experimental results demonstrate
that the proposed DBN based hybrid model has the best performance compared with the comparative
techniques. Another thing to be mentioned is that all the predictors constructed by utilizing the
energy-consuming patterns perform better than those designed only by the original data. This verifies
the usefulness of the incorporation of the energy-consuming patterns. The proposed approach can
also be extended and applied to some other similar prediction problems that have periodicity patterns,
e.g., the traffic flow forecasting and the electricity consumption prediction.

Keywords: building energy consumption prediction; deep belief network; contrastive divergence
algorithm; least squares learning; energy-consuming pattern

1. Introduction

With the growth of population and the development of economy, more and more energy is
consumed in the residential and office buildings. Building energy conservation plays an important
role in the sustainable development of economy. However, some ubiquitous issues, e.g., the poor
building management and the unreasonable task scheduling, are impeding the efficiency of the energy
conservation policies. To improve the building management and the task scheduling of building
equipment, one way is to provide accurate prediction of the building energy consumption.

Nowadays, numerous data-driven artificial intelligence approaches have been proposed for
building energy consumption prediction. In [1], the random forest and the artificial neural network
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(ANN) were applied to the high-resolution prediction of building energy consumption, and their
experimental results demonstrated that both models have comparable predictive power. In [2],
a hybrid model combining different machine learning algorithms was presented for optimizing
energy consumption of residential buildings under the consideration of both continuous and discrete
parameters of energy. In [3], the extreme learning machine (ELM) was used to estimate the building
energy consumption, and simulation results indicated that the ELM performed better than the genetic
programming (GP) and the ANN. In [4], the clusterwise regression method, also known as the latent
class regression, which integrates clustering and regression, was utilized to the accurate and stable
prediction of building energy consumption data. In [5], the feasibility and applicability of support
vector machine (SVM) for building energy consumption prediction were examined in a tropical region.
Moreover, in [6–9], a variation of SVM, the support vector regressor (SVR) was proposed for forecasting
the building energy consumption and the electric load. Furthermore, in [10], a novel machine learning
model was constructed for estimating the commercial building energy consumption.

The historical building energy consumption data have high levels of uncertainties and randomness
due to the influence of the human distribution, the thermal environment, the weather conditions and
the working hours in buildings. Thus, there still exists the need to improve the prediction precision for
this application. To realize this objective, we can take two strategies into account. The first strategy is
to adopt the more powerful modeling methods to learn the information hidden in the historical data,
while the other one is to incorporate the knowledge or patterns from our experience or data into the
prediction models.

On the one hand, the deep learning technique provides us one very powerful tool for constructing
the prediction model. In the deep learning models, more representative features can be extracted from
the lowest layer to the highest layer [11,12]. Until today, this miraculous technique has been widely used
in various fields. In [13], a novel predictor, the stacked autoencoder Levenberg–Marquardt model was
constructed for the prediction of traffic flow. In [14], an extreme deep learning approach that integrates
the stacked autoencoder (SAE) with the ELM was proposed for building energy consumption prediction.
In [15], the deep learning was employed as an ensemble technique for cancer detection. In [16], the deep
convolutional neural network (CNN) was utilized for face photo-sketch recognition. In [17], a deep
learning approach, the Gaussian–Bernoulli restricted Boltzmann machine (RBM) was applied to 3D
shape classification through using spectral graph wavelets and the bag-of-features paradigm. In [18],
the deep belief network (DBN) was applied to solve the natural language understanding problem.
Furthermore, in [19], the DBN was utilized to fuse the virtues of multiple acoustic features for improving
the robustness of voice activity detection. As one popular deep learning method, the DBN has shown its
superiority in machine learning and artificial intelligence. This study will adopt and modify the DBN to
make it be suitable for the prediction of building energy consumption.

On the other hand, knowledge or patterns from our experience can provide additional information
for the design of the prediction models. In [20–22], different kinds of prior knowledge were
incorporated into the SVM models. In [23], the knowledge of symmetry was encoded into the
type-2 fuzzy logic model to enhance its performance. In [24,25], the knowledge of monotonicity
was incorporated into the fuzzy inference systems to assure the models’ monotonic input–output
mappings. In [26–29], how to encode the knowledge into neural networks was discussed. As shown
in these studies, through incorporating the knowledge or pattern, the constructed machine learning
models will yield better performance and have significantly improved generalization ability.

From the above discussion, both the deep learning method and the domain knowledge are
helpful for the prediction models’ performance improvement. Following this idea, this study tries to
present a hybrid model that combines the DBN model with the periodicity knowledge of the building
energy consumption to further improve the prediction accuracy. The final prediction results of the
proposed hybrid model are obtained by combining the outputs from the modified DBN model and
the energy-consuming pattern model. Here, the energy-consuming pattern represents the periodicity
property of building energy consumption and can be extracted from the observed historical energy
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consumption data. In this study, firstly, the structure of the proposed hybrid model will be presented,
and how to extract the energy-consuming pattern will be demonstrated. Then, the training algorithm
for the modified DBN model will be provided. The learning of the DBN model mainly includes two
steps, which firstly optimizes the hidden parameters by the contrastive divergence (CD) algorithm
in a pre-train way, and then determines the output weighting vector by the least squares method.
Furthermore, the proposed hybrid model will be applied to the prediction of the energy consumption
in two kinds of buildings that have different energy-consuming patterns (daily-periodicity and
weekly-periodicity). Additionally, to show the superiority of the proposed hybrid model, comparisons
with four popular artificial intelligence methods—the backward propagation neural network (BPNN),
the generalized radial basis function neural network (GRBFNN), the extreme learning machine (ELM),
and the support vector regressor (SVR) will be made. From the comparison results, we can observe
that all the predictors (DBN, BPNN, GRBFNN, ELM and SVR) designed using both the periodicity
knowledge and residual data perform much better than those designed only by the original data.
Hence, we can judge that the periodicity knowledge is quite useful for improving the prediction
performance in this application. The experiments also show that, among all the prediction models,
the proposed DBN based hybrid model has the best performance.

The rest of this paper is as follows. In Section 2, the deep belief network will be reviewed.
In Section 3, the proposed hybrid model will be presented firstly, and then the modified DBN will
be provided. In Section 4, two energy consumption prediction experiments for buildings that have
different energy-consuming patterns will be done. In addition, the experimental and comparison
results will be given. Finally, in Section 5, the conclusions of this paper will be drawn.

2. Introduction of DBN

The DBN is a stack of restricted Boltzmann machine (RBM) [11,30]. Therefore, for better
understanding, we will introduce the RBM before the introduction of the DBN in this section.

2.1. Restricted Boltzmann Machine

The structure of a typical RBM model is shown in Figure 1. The RBM is an undirected, bipartite
graphical model, which consists of the visible (input) layer and the hidden (output) layer. The visible
layer and the hidden layer are respectively made up of n visible units and m hidden units, and there
is a bias in each unit. Moreover, there are no interconnection within the visible layer or the hidden
layer [31].

Figure 1. The structure of a typical RBM model.
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The activation probability of the jth hidden unit can be computed as follows when a visible vector
vvv(v1, . . . , vi, . . . , vn) is given [32]

p(hj = 1|vvv) = σ(bj +
n

∑
i=1

viwij), (1)

where σ(···) is the sigmoid function, wij is the connection weight between the ith visible unit and jth
hidden unit, and bj is the bias of the jth hidden unit.

Similarly, when a hidden vector hhh(h1, . . . , hj, . . . , hm) is known, the activation probability of the
ith visible unit can be computed as follows:

p(vi = 1|hhh) = σ(ai +
m

∑
j=1

hjwij), (2)

where i = 1, 2, . . . , n, and ai is the bias of the ith visible unit.
Hinton et al. [33] have proposed the contrastive divergence (CD) algorithm to optimize the

RBM. The CD algorithm based RBM’s iterative learning procedures for binomial units are listed as
follows [32].

Step 1: Initialize the number of visible units n, the number of hidden units m, the number of training
data N, the weighting matrix WWW, the visible bias vector aaa, the hidden bias vector bbb and the
learning rate ε.

Step 2: Assign a sample xxx from the training data to be the initial state v0v0v0 of the visible layer.
Step 3: Calculate p(h0j = 1|v0v0v0) according to Equation (1), and extract h0j ∈ {0, 1} from the conditional

distribution p(h0j = 1|v0v0v0), where j = 1, 2, . . . , m.
Step 4: Calculate p(v1i = 1|h0h0h0) according to Equation (2), and extract v1i ∈ {0, 1} from the conditional

distribution p(v1i = 1|h0h0h0), where i = 1, 2, . . . , n.
Step 5: Calculate p(h1j = 1|v1v1v1) according to Equation (1).
Step 6: Update the parameters according to the following equations:

WWW = WWW + ε(p(hhh0 = 1|vvv0)v0v0v0
T − p(hhh1 = 1|vvv1)v1v1v1

T),
aaa = aaa + ε(vvv0 − vvv1),
bbb = bbb + ε(p(hhh0 = 1|vvv0)− p(hhh1 = 1|vvv1)).

Step 7: Assign another sample from the training data to be the initial state v0v0v0 of the visible layer,
and iterate Steps 3 to 7 until all the N training data have been used.

2.2. Deep Belief Network

As aforementioned, the DBN as a miraculous deep model is a stack of RBMs [11,30,34,35]. Figure 2
illustrates the architecture of the DBN with k hidden layers and its layer-wise pre-training process.

The activation of the kth hidden layer with respect to input sample xxx can be computed as

AAAk(xxx) = σ (bbbk +WWWkσ (· · ·+WWW2σ (bbb1 +WWW1xxx))) , (3)

where Wu and bu (u = 1, 2, . . . , k) are, respectively, the weighting matrices and hidden bias vectors of
the uth RBM. Furthermore, σ is the logistic sigmoid function σ(x) = 1/(1 + e−x).

In order to obtain better feature representation, the DBN utilizes deep architecture and adopts the
layer-wise pre-training to optimize the inter-layer weighting matrix [11]. The training algorithm of the
DBN will be given in the next section in detail.
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Figure 2. The architecture of the DBN with k hidden layers.

3. The Proposed Hybrid Model

In this section, the structure of the hybrid model will be proposed first. Then, the extraction of the
energy-consuming pattern and the generation of the residual data will be given. Finally, the modified
DBN (MDBN) and its training algorithm will be presented.

To begin, we assume that we have collected the sampling data for M consecutive days, and,
in each day, we collected T data points. Then, sampled time series of energy consumption data can be
written as a series of 1D vectors as

YYY = {YYY1,YYY2, . . . ,YYYM} , (4)

where

YYY1 = [y1(1), y1(2), . . . , y1(T)],
...

YYYM = [yM(1), yM(2), . . . , yM(T)],

(5)

and T is the sampling number per day.

3.1. Structure of the Hybrid Model

The hybrid model combines the modified DBN (MDBN) model with the periodicity knowledge
of the building energy consumption to obtain better prediction accuracy. The design procedure of the
proposed model is depicted in Figure 3 and is also given as follows:

Step 1: Extract the energy-consuming pattern as the periodicity knowledge from the training data.
Step 2: Remove the energy-consuming pattern from the training data to generate the residual data.
Step 3: Utilize the residual data to train the MDBN model.
Step 4: Combine the outputs from the MDBN model with the periodicity knowledge to obtain the

final prediction results of the hybrid model.
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It is obvious that the extraction of the energy-consuming pattern, the generation of the residual
data and the construction of the MDBN model are crucial in order to build the proposed hybrid model.
Consequently, we will introduce them in detail in the following subsections.

Figure 3. The structure of the hybrid model.

3.2. Extraction of the Energy-Consuming Patterns and Generation of the Residual Data

Obviously, various regular patterns of energy consumption (e.g., daily-periodicity, weekly-periodicity,
monthly-periodicity and even yearly-periodicity) exist in different kinds of buildings. In this study,
we will take the daily-periodic and the weekly-periodic energy-consuming patterns as examples to
introduce the method for extracting them from the original data.

3.2.1. The Daily-Periodic Pattern

For daily-periodic energy-consuming pattern, it can be extracted from the original time series by
the following equation:

Ȳ̄ȲYAve =

[
1
M

M

∑
z=1

yz(1),
1
M

M

∑
z=1

yz(2), . . . ,
1
M

M

∑
z=1

yz(T)

]
. (6)

Then, the residual time series YYYRes of the data set after removing the daily-periodic pattern can be
generated as

YYYRes =
{

YYY1 − ȲYYAve,YYY2 − ȲYYAve, · · · ,YYYM − ȲYYAve
}

. (7)

3.2.2. The Weekly-Periodic Pattern

Being different from the daily-periodic energy-consuming pattern, the weekly-periodic
energy-consuming pattern includes two parts, which are the patterns of weekdays and weekends.
The weekday pattern and the weekend pattern can be respectively computed as

ȲYYWeekday =

[
1

M1

M1

∑
z=1

pz(1),
1

M1

M1

∑
z=1

pz(2), . . . ,
1

M1

M1

∑
z=1

pz(T)

]
, (8)

ȲYYWeekend =

[
1

M2

M2

∑
z=1

qz(1),
1

M2

M2

∑
z=1

qz(2), . . . ,
1

M2

M2

∑
z=1

qz(T)

]
, (9)

where

PPP =
{

PPP1 = [p1(1), . . . , p1(T)], . . . , PPPM1 = [pM1(1), . . . , pM1(T)]
}

, (10)

QQQ =
{

QQQ1 = [q1(1), . . . , q1(T)], . . . , QQQM2 = [qM2(1), . . . , qM2(T)]
}

, (11)
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are, respectively, the data sets of weekdays and weekends, and M1 + M2 = M.
Then, to generate the residual time series YYYRes for the building energy consumption data set,

we use the following rules:

I f YYYz ∈ PPP, then YYYz,Res = YYYz − ȲYYWeekday, (12)

I f YYYz ∈ QQQ, then YYYz,Res = YYYz − ȲYYWeekend, (13)

where z = 1, 2, . . . , M.
Subsequently, YYYRes can be written as

YYYRes = {YYY1,Res,YYY2,Res, . . . ,YYYM,Res} . (14)

3.3. Modified DBN and Its Training Algorithm

In this subsection, the structure of the MDBN will be shown firstly. Then, the pre-training process
of the DBN part will be described in detail. At last, the least squares method will be employed to
determine the weighting vector of the regression part.

3.3.1. Structure of the MDBN

In the parameter optimization of the traditional DBNs, the CD algorithm is adopted to pre-train
the parameters of multiple RBMs, and the BP algorithm is used to finely tune the parameters of the
whole network. In this paper, we add an extra layer as the regression part to the DBN to realize
the prediction function. Thus, we call it the modified DBN (MDBN). The structure of the MDBN
is demonstrated in Figure 4. In addition, we propose a training algorithm that combines the CD
algorithm with the least squares method for the learning of the MDBN model.

Figure 4. The structure of the modified DBN.

We divide the training process of the MDBN into two steps. The first step adopts the contrastive
divergence algorithm to optimize the hidden parameters in a pre-train way, while the second one
determines the output weighting vector by the least squares method. The detailed description will be
given as below.
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3.3.2. Pre-Training of the DBN Part

Generally speaking, with the number of hidden layers increasing, the effectiveness of the BP
algorithm for optimizing the parameters of the deep neural network is getting lower and lower because
of the gradient divergence. Fortunately, Hinton et al. [11] proposed a fast learning algorithm for
the DBN. This novel approach realizes layer-wise pre-train of the multiple RBMs in the DBN in a
bottom-up way as described below:

Step 1: Initialize the number of hidden layers k, the number of the training data N and the initial
sequence number of hidden layer u = 2.

Step 2: Assign a sample xxx from the training data to be the input data of the DBN.
Step 3: Regard the input layer and the first hidden layer of the DBN as an RBM, and compute the

activation AAA1(xxx) by Equation (3) when the training process of this RBM is finished.
Step 4: Regard the uth and the (u + 1)th hidden layer as an RBM with the input AAAu−1(xxx),

and compute the activation AAAu(xxx) by Equation (3) when the training process of this RBM
is completed.

Step 5: Let u = u + 1, and iterate Step 4 until u > k.
Step 6: Use the AAAk(xxx) as the input of the regression part.
Step 7: Assign another sample from the training data as the input data of the DBN, and iterate Step 3

to 7 until all the N training data have been assigned.

3.3.3. Least Squares Learning of the Regression Part

Suppose that the training set is ℵ = {(xxx(l), y(l))|xxx(l) ∈ Rn, y(l) ∈ R, l = 1, · · · , N}.
As aforementioned, once the pre-training of the DBN part is completed, the activation of the
final hidden layer of the MDBN with respect to the input xxx(l) can be obtained to be AAAk(xxx(l)),
where l = 1, 2, . . . , N. Furthermore, the activation of the final hidden layer of the MDBN with
respect to all the N training data can be written in the matrix form as

AAAk(XXX) = [AAAk(xxx(1)), AAAk(xxx(2)), · · · , AAAk(xxx(N))]T

=

⎡⎢⎢⎢⎢⎢⎢⎣
σ
(

bbbk +wwwkσ
(
· · ·+www2σ

(
bbb1 +www1xxx(1)

)))
σ
(

bbbk +wwwkσ
(
· · ·+www2σ

(
bbb1 +www1xxx(2)

)))
...

σ
(

bbbk +wwwkσ
(
· · ·+www2σ

(
bbb1 +www1xxx(N)

)))

⎤⎥⎥⎥⎥⎥⎥⎦
N×nk

,
(15)

where nk is the number of neurons of the kth hidden layer.
We always expect that each actual value y(l) with respect to xxx(l) can be approximated by the

output ŷ(l) of the predictor with no error. This expectation can be mathematically expressed as

N

∑
l=1

‖ŷ(l) − y(l)‖ = 0, (16)

where ŷ(l) is the output of the MDBN and can be computed as

ŷ(l) = AAAk(xxx(l))βββ (17)

in which βββ is the output weighting vector and can be expressed as

βββ = [β1, β2, · · · , βnk ]
T
nk×1. (18)

Then, Equation (16) can be rewritten in the matrix form as
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AAAk(XXX)βββ = YYY, (19)

where

YYY = [y(1), y(2), . . . , y(N)]TN×1. (20)

From Equation (19), the output weighting vector βββ can be derived by the least squares method
as [36–39]

βββ = AAAk(XXX)†YYY, (21)

where AAAk(XXX)† is the Moore–Penrose generalized inverse of AAAk(XXX).

4. Experiments

In this section, first of all, four comparative artificial intelligence approaches will be introduced
briefly. Next, the applied data sets and experimental setting will be discussed. Then, the proposed
hybrid model will be applied to the prediction of the energy consumption in a retail store and an
office building that respectively have daily-periodic and weekly-periodic energy-consuming patterns.
Finally, we will give the comparisons and discussions of the experiments.

4.1. Introduction of the Comparative Approaches

To make a quantitative assessment of the proposed MDBN based hybrid model, four popular
artificial intelligence approaches, the BPNN, GRBFNN, ELM, and SVR, are chosen as the comparative
approaches and introduced briefly below.

4.1.1. Backward Propagation Neural Network

The structure of BPNN with L hidden layers is demonstrated in Figure 5. The BPNN as one
popular kind of ANN adopts back propagation algorithm to obtain the optimal weighting parameters
of the whole network [40–42].

Figure 5. The structure of BPNN with L hidden layers.

As shown in Figure 5, the final output of the network can be expressed as [40–42]

ŷ = f (
nL

∑
s=1

wL+1
s1 · · · f (

n1

∑
j=1

w2
jk f (

n

∑
i=1

w1
ijxi))), (22)
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where wk
ij is the connection weight between the ith unit of kth layer and the jth unit of (k + 1)th layer,

and f (·) is the logistic sigmoid function.
In order to obtain the optimal parameters of the BPNN, the Backward Propagation (BP) algorithm

is adopted to minimize the following cost function for each training data point

E(t, www) = (ŷ(t) − y(t))2, (23)

where ŷ(t) and y(t) are the predicted and actual values with respect to the input xxx(t).
The update rule for the weight wk

ij can be expressed as

wk
ij(t + 1) = wk

ij(t)− η
∂E(t, www)

∂wk
ij

, (24)

where η is the learning rate, and ∂E(t,www)

∂wk
ij

is the gradient of the parameter wk
ij, and can be calculated by

the backward propagation of the errors.
The BP algorithm has two phases—forward propagation and weight update. In the forward

propagation stage, when an input vector is input to the NN, it is propagated forward through the
whole network until it reaches the output layer. Then, the error between the output of the network and
the desired output is computed. In the weight update phase, the error is propagated from the output
layer back through the whole network, until each neuron has an associated error value that can reflect
its contribution to the original output. These error values are then used to calculate the gradients of
the loss function that are fed to the update rules to renew the weights [40–42].

4.1.2. Generalized Radial Basis Function Neural Network

The radial basis function (RBF) NN is a feed-forward NN with only one hidden layer whose
structure is demonstrated in Figure 6. The RBFNN has Gaussian functions as its hidden neurons.
The GRBFNN is a modified RBFNN and adopts the generalized Gaussian functions as its hidden
neurons [43,44].

Figure 6. The topological structure of the feed-forward single-hidden-layer NN.
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The output of the GRBFNN can be expressed as [43,44]

ŷ =
n1

∑
j=1

wjGj(xxx) =
n1

∑
j=1

wjexp

⎛⎝−‖xxx − cj‖τj

d
τj
j

⎞⎠ , (25)

where n1 is the number of hidden neurons, τj is the shape parameter of the jth radial basis function in
the hidden layer, and cj and dj are, respectively, the center and width of the jth radial basis function.

In order to determine the parameters τττ, ccc and ddd in the hidden layer and the connection weight wj,
the aforementioned BP algorithm can also be employed.

4.1.3. Extreme Learning Machine

The ELM is also a feed-forward neural network with only one hidden layer as demonstrated in
Figure 6. However, the ELM and GRBFNN have different parameter learning algorithms and different
activation functions in the hidden neurons.

In the ELM, the activation functions in the hidden neurons can be the hard-limiting activation
function, the Gaussian activation function, the Sigmoidal function, the Sine function, etc. [36,37].

In addition, the learning algorithm for the ELM is listed below:

• Randomly assign input weights or the parameters in the hidden neurons.
• Calculate the hidden layer output matrix HHH, where

HHH =

⎛⎜⎝ G1(xxx(1)) · · · Gn1(xxx
(1))

...
. . .

...
G1(xxx(N)) · · · Gn1(xxx

(N))

⎞⎟⎠
N×n1

. (26)

• Calculate the output weights www = [w1, w2, · · · , wn1 ]
T = HHH+YYY, where YYY = [y(1), y(2), · · · , y(N)]T

and HHH+ is the Moore–Penrose generalized inverse of the matrix HHH.

This learning process is very fast and can lead to excellent modeling performance. Hence, the ELM
has found lots of applications in different research fields.

4.1.4. Support Vector Regression

The SVR is a variant of SVM. It can yield improved generalization performance through
minimizing the generalization error bound [45]. In addition, the kernel trick is adopted to realize the
nonlinear transformation of input features.

The model of the SVR can be defined by the following function

ŷ = f (xxx, www) = wwwTϕ(xxx) + b, (27)

where www = [w1, · · · , wn], ϕ(xxx) is the nonlinear mapping function.
Using the training set ℵ = {(xxx(l), y(l))}N

l=1, we can determine the parameters www and b, and then
obtain the SVR model as

ŷ = f (xxx) =
N

∑
l=1

w∗Tϕ(xxx) + b∗, (28)

where ⎧⎪⎪⎪⎨⎪⎪⎪⎩
w∗ =

N

∑
l=1

(α∗l − αl)ϕ(xxx(l)),

b∗ = 1
yl

− w∗Tϕ(xxx(l)),

(29)
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in which αl and α∗l are the Langrange multipliers and can be determined by solving the following dual
optimization problem [46]:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

max
α,α∗

−ε
N

∑
l=1

(α∗l + αl) +
N

∑
l=1

(α∗l − αl)y(l) − 1
2

N

∑
l,t=1

(α∗l − αl)(α
∗
t − αt)ϕT(xxx(l))ϕ(xxx(t)),

N

∑
l=1

α∗l =
N

∑
l=1

αl , 0 < αl , α∗l < C,

(30)

where C is the regularization parameter and ε is the error tolerance parameter.

4.2. Applied Data Sets and Experimental Setting

In this subsection, first of all, the building energy consumption data sets will be described. Next,
three design factors that are utilized to determine the optimal structure of the MDBN will be shown.
Finally, five indices will be given to evaluate the performances of the predictive models.

4.2.1. Applied Data Sets

Two kinds of building energy consumption data sets were downloaded from [47]. The first data
set includes 34,848 samples from 2 January 2010 to 30 December 2010. The data in this data set were
collected every 15 min in one retail store in Fremont, CA, USA. We then aggregated them to generate
the hourly energy consumption data. The second data set contains 22,344 samples from 4 April 2009 to
21 October 2011. The data in this set were collected every 60 min in one office building in Fremont,
CA, USA. Parts of the samples of the two data sets are depicted in Figure 7.

Figure 7. Parts of the samples of two data sets: (a) the first 500 data points of the retail store; (b) the first
500 data points of the office building.
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4.2.2. Design Factors for MDBN

To determine the optimal structure of the MDBN for building energy consumption prediction,
we will take three design factors, the number of hidden layers, hidden neurons and input variables,
with their corresponding levels into account. The three design factors and their corresponding levels
are presented in Table 1 and discussed in detail below.

Table 1. Design factors and their corresponding levels.

Design Factors
Level

1 2 3

i 2 hidden layers 3 hidden layers 4 hidden layers
ii 50 hidden units 100 hidden units 150 hidden units
iii 4 input variables 5 input variables 6 input variables

• Design Factor i: the number of hidden layers k
The number of hidden layers determines how many RBMs are stacked. In this study, we consider
the number of hidden layers 2, 3 and 4 as Levels 1, 2 and 3, respectively.

• Design Factor ii: the number of uth hidden units nu

The number of hidden units is an important factor that greatly influences the performance of
the MDBN model. Here, we assume that the numbers of neurons in all hidden layers are equal,
i.e., n1 = n2 = · · · = nk. In this paper, we set the number of neurons 50, 100 and 150 as Levels 1, 2
and 3, respectively.

• Design Factor iii: the number of input variables r
In this paper, we utilize r energy consumption data in the building energy consumption
time series before time t to predict the value at time t. In other words, we utilize
xxx = [y(t − 1), y(t − 2), . . . , y(t − r)] to predict the value of y = y(t). Here, we consider the number
of input variables 4, 5 and 6 as Levels 1, 2 and 3, respectively.

4.2.3. Comparison Setting

In this study, the performances of all the predictors constructed by utilizing the energy-consuming
patterns are compared with those designed by the original data. To evaluate the performances of the
models, we utilize the following two kinds of indices.

We first consider the mean absolute error (MAE), the root mean square error (RMSE), and the
mean relative error (MRE), and calculate them as

MAE =
1
K

K

∑
l=1

∣∣∣ŷ(l) − y(l)
∣∣∣ , (31)

RMSE =

√
∑K

l=1(ŷ(l) − y(l))2

K
, (32)

MRE =
1
K

K

∑
l=1

∣∣∣ŷ(l) − y(l)
∣∣∣

y(l)
× 100%, (33)

where K is the number of training or testing data pairs, and ŷ(l), y(l) are, respectively, the predicted
value and actual value with respect to the input xxx(l).

The MAE, RMSE and MRE are common measures of forecasting errors in time series analysis.
They serve to aggregate the magnitudes of the prediction errors into a single measure. The MAE is an
average of the absolute errors between the predicted values and actual observed values. In addition,
the RMSE represents the sample standard deviation of the differences between the predicted values
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and the actual observed values. As larger errors have a disproportionately large effect on MAE and
RMSE, they are sensitive to outliers. The MRE, also known as the mean absolute percentage deviation,
can remedy this drawback, and it expresses the prediction accuracy as a percentage through dividing
the absolute errors by their corresponding actual values. For prediction applications, the smaller the
values of MAE, RMSE and MRE are, the better the forecasting performance will be.

To better show the validity of the models, we also consider another two statistical indices,
which are, respectively, the Pearson correlation coefficient, denoted as r, and the coefficient of
determination, denoted as R2. These two indices can be calculated as

r =
K(∑K

l=1 ŷ(l) · y(l))− (∑K
l=1 ŷ(l)) · (∑K

l=1 y(l))√
(K ∑K

l=1(ŷ(l))2 − (∑K
l=1 ŷ(l))2) · (K ∑K

l=1(y(l))2 − (∑K
l=1 y(l))2)

, (34)

R2 =

[
∑K

l=1(ŷ
(l) − ŷAve) · (y(l) − yAve)

]2

∑K
l=1(ŷ(l) − ŷAve) · ∑K

l=1(y(l) − yAve)
, (35)

where K is also the number of training or testing data pairs, and ŷAve, yAve are, respectively, the averages
of the predicted and actual values.

The statistic r is a measure of the linear correlation between the actual values and the predicted
values. It ranges from −1 to 1, where −1 means the total negative linear correlation, while 1 is total
positive linear correlation. The statistic R2 provides a measure of how well actual observed values are
replicated by the predicted values. In other words, it is a measure of how good a predictor might be
constructed from the observed training data [48]. The value of R2 ranges from 0 to 1. In regression
applications, the larger the values of r and R2 are, the better the prediction performances will be.

4.3. Energy Consumption Prediction for the Retail Store

In this subsection, the energy-consuming pattern of the retail store will be extracted from the
retail store data set firstly. Then, the configurations of the five prediction models for predicting the
retail store energy consumption will be shown in detail. At last, the experimental results will be given.

4.3.1. Energy-Consuming Pattern of the Retail Store

We utilize Equations (6) and (7) to obtain the daily-periodic energy-consuming pattern and the
residual time series of the retail store.

Figure 8a shows the daily-periodic energy-consuming pattern. In addition, the residual time
series of the retail store, which is used to optimize the MDBN is demonstrated in Figure 8b.

4.3.2. Configurations of the Prediction Models

As aforementioned, we will take three design factors, the number of hidden layers, hidden neurons
and input variables, with their corresponding levels into account to determine the optimal structure of
the MDBN model for building energy consumption prediction. Consequently, 33 = 27 trials are ran.
In addition, the experimental results are shown in Table 2. It is obvious that trail 19 can obtain the best
performance. In other words, the optimal structure of the MDBN for retail store energy consumption
prediction has four hidden layers, 150 hidden units and four input variables.

Furthermore, the parameter configurations of the other four comparative predictors for retail
store energy consumption prediction are listed in detail as follows.

• For the BPNN, there were 110 neurons in the hidden layer that can realize the nonlinear
transformation of features by the sigmoid function. Additionally, the algorithm was ran for
7000 iterations to achieve the learning objective.

• For the GRBFNN, the 6-fold cross-validation was adopted to determine the optimized spread of the
radial basis function. Furthermore, the spread was chosen from 0.01 to 2 with the 0.1 step length.
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• For the ELM, there were 100 neurons in the hidden layer, and the hardlim function was chosen as
the activation function for converting the original features into another space.

• For the SVR, the penalty coefficient was set to be 80, and the radial basis function was chosen as
the kernel function to realize the nonlinear transformation of input features.

Figure 8. Periodicity knowledge and the residual time series of the retail store data set:
(a) the daily-periodic energy-consuming pattern; (b) the residual time series.
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4.3.3. Experimental Results

For the testing data of the retail store, parts of the prediction results of the five predictors
constructed by utilizing the energy-consuming pattern are illustrated in Figure 9. Furthermore,
for better visualization, the prediction error histograms of the five predictors are shown in Figure 10.
It is obvious that the more the prediction errors float around zero, the better the forecasting performance
of the predictor will be.

Then, to examine the superiority of the hybrid model for the retail store energy consumption
prediction, the five prediction models are compared considering different data types (the original
and residual data). The original data means that the predictors are learned using the original data
series, while the residual data means that the predictors are constructed by both the energy-consuming
pattern and the residual data series. Experimental results are demonstrated in detail in Table 3.

Figure 9. Parts of prediction results of the five predictors constructed by utilizing the energy-consuming
pattern: (a) hybrid DBN model; (b) BPNN; (c) GRBFNN; (d) ELM; and (e) SVR.
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Figure 10. Prediction error histograms of the five predictors constructed by utilizing the
energy-consuming pattern: (a) hybrid DBN model; (b) BPNN; (c) GRBFNN; (d) ELM; and (e) SVR.

Table 3. The performances of the five models for the retail store energy consumption prediction.

Methods Data Type MAE (kwh) MRE (%) RMSE (kwh) r R2

MDBN Residual data 47.71 5.03 76.83 0.94 0.89
Original data 54.38 5.59 86.43 0.93 0.86

BPNN Residual data 65.69 7.24 93.38 0.92 0.85
Original data 75.45 8.20 100.40 0.94 0.87

GRBFNN Residual data 54.60 5.75 83.87 0.93 0.87
Original data 52.51 5.62 87.54 0.93 0.86

ELM Residual data 58.54 6.29 88.62 0.93 0.86
Original data 78.86 8.34 113.02 0.89 0.79

SVR Residual data 48.28 5.19 81.31 0.93 0.87
Original data 52.19 5.42 89.93 0.92 0.85

4.4. Energy Consumption Prediction for the Office Building

In this subsection, first of all, the energy-consuming pattern of the office building will be extracted
from the office building data set. Then, the configurations of the five prediction models for predicting
the office building energy consumption will be shown in detail. Finally, the experimental results will
be given.
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4.4.1. Energy-Consuming Pattern of the Office Building

Being similar to the retail store experiment, we utilize Equations (8)–(14) to obtain the
weekly-periodic energy-consuming pattern and the residual time series of the office building.

As mentioned previously, the weekly-periodic energy-consuming pattern should include two
parts, which are the weekday pattern and the weekend pattern. The obtained weekday pattern is
depicted in Figure 11a, while the weekend pattern is shown in Figure 11b. We can observe that
the energy consumption in weekends is quite different from that in weekdays. After removing the
energy-consuming pattern, the residual time series of the office building is demonstrated in Figure 11c.
This residual time series is utilized to train the MDBN in the hybrid model.

Figure 11. Periodicity knowledge and the residual time series of the office building data set:
(a) the energy-consuming pattern of weekdays; (b) the energy-consuming pattern of weekends;
(c) the residual time series.

4.4.2. Configurations of the Prediction Models

Similarly, we run 33 = 27 trials to determine the optimal structure of the MDBN model for
the office building energy consumption prediction. The experimental results are listed in Table 4.
As shown in Table 4, the trail 13 obtains the best performance. Consequently, the optimal structure of
the MDBN in the hybrid model for office building has three hidden layers, 100 hidden units in each
layer and four input variables.
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For the other four comparative predictors, their parameter configurations for the office building
energy consumption prediction are listed as follows:

• For the BPNN, there were 200 neurons in the hidden layer. Furthermore, the sigmoid function was
chosen to realize the nonlinear transformation of features. Additionally, we ran the BP algorithm
1000 times to obtain the final outputs.

• For the GRBFNN, the 5-fold cross-validation was utilized to determine the optimized spread of
the radial basis function. Furthermore, the spread was chosen from 0.01 to 2 with a 0.1 step length.

• For the ELM, there were 150 neurons in the hidden layer, and the hardlim function was chosen as
the activation function for converting the original features into another space.

• For the SVR, the penalty coefficient was set to be 10 and the sigmoid function was chosen as the
kernel function to realize the nonlinear transformation of input features.

4.4.3. Experimental Results

For the testing data of the office building, parts of the prediction results of the five predictors
are illustrated in Figure 12. Again, for better visualization, the prediction error histograms of the five
predictors are shown in Figure 13.

Figure 12. Parts of the prediction results of the five predictors constructed by utilizing the
energy-consuming pattern: (a) hybrid DBN model; (b) BPNN; (c) GRBFNN; (d) ELM; and (e) SVR.
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Figure 13. Prediction error histograms of the five predictors constructed by utilizing the
energy-consuming pattern: (a) hybrid DBN model; (b) BPNN; (c) GRBFNN; (d) ELM; and (e) SVR.

Then, in order to examine the superiority of the hybrid model for the office building energy
consumption prediction, the five prediction models are compared under the consideration of different
data types (the original and residual data). Experimental results are demonstrated in Table 5.

Table 5. The performances of the five models with different data types for the office building energy
consumption prediction.

Methods Data Type MAE (kwh) MRE (%) RMSE (kwh) r R2

MDBN Residual data 2.09 11.62 3.54 0.97 0.93
Original data 2.32 11.50 4.19 0.95 0.90

BPNN Residual data 2.57 12.64 4.04 0.96 0.93
Original data 3.85 23.21 4.75 0.95 0.91

GRBFNN Residual data 2.54 12.62 4.39 0.95 0.91
Original data 4.35 21.94 5.98 0.93 0.87

ELM Residual data 3.50 17.18 4.92 0.96 0.92
Original data 4.61 25.52 5.92 0.90 0.82

SVR Residual data 3.23 14.89 4.98 0.94 0.88
Original data 6.13 34.42 7.55 0.92 0.85
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4.5. Comparisons and Discussions

As discussed previously, smaller values of the MAE, RMSE and MRE represent better prediction
results while lager values of r and R2 correspond to better performance. Considering all the values of
such indices as shown in Tables 3 and 5 (It is worth noting that the values of the indices in Table 3 are
about the retail energy consumption while the values in Table 5 are about the office energy consumption.
The retail building consumed much more energies than the office building. As a result, some values
of the MAE, RMSE and MRE in Table 3 are larger than those in Table 5), the predictors constructed
by utilizing the energy-consuming patterns perform better than those designed only by the original
data. Taking the RMSE index for example, in the first experiment, the accuracies of the MDBN, BPNN,
GRBFNN, ELM and SVR based hybrid models are promoted by 11.1%, 7.0%, 4.2%, 21.6% and 9.6%,
respectively, while, in the second experiment, the accuracy improvements of such models are 15.6%,
14.8%, 26.5%, 16.9% and 34.0%, respectively. As a result, we can draw a conclusion that the periodicity
knowledge is helpful to improve the accuracy for building energy consumption prediction.

From Figures 9 and 12, we can see that the hybrid DBN model can not only predict the regular
testing data well for both the retail store and the office building energy consumption from the global
perspective, but also give the best prediction results for the noisy irregular data, e.g., the sampling
points from 25 to 50 in Figure 9 in the retail store experiment. These irregular testing data can reflect
the uncertainties in the energy consumption time series. In other words, the proposed hybrid DBN
model has the most powerful ability to deal with the uncertain and/or the randomness in the historical
building energy consumption data.

Figures 10 and 13 demonstrated the prediction error histograms of the five models designed
through using the periodicity knowledge in the two experiments. In the histograms, the horizontal
direction depicts the exact values of the prediction errors, while the vertical direction indicates the
number of the prediction errors in different partitioned intervals. The more the prediction errors float
around zero, the better performance the predictors will achieve. From both figures, we can clearly
observe that the proposed hybrid DBN model has more prediction errors floating near zero compared
with the other four artificial intelligence techniques—that is to say, the approximation capability of the
proposed hybrid DBN model is promising for the two experimented buildings. Furthermore, to further
validate the accuracy of the MDBN based hybrid model, scatter plots of the actual and predicted values
in the two experiments are demonstrated in Figure 14a,b, respectively. From Figure 14, we can observe
that the predicted values from the hybrid DBN model can duplicate the actual values well.

Among all the predictors constructed by both the original and residual data, the proposed
MDBN based hybrid model has the best prediction accuracy in the two experiments as shown
in Tables 3 and 5. This phenomenon indicates that the proposed deep learning method has the
miraculous learning and prediction abilities in time series forecasting applications. This also verifies
the powerful feature extraction ability of the deep learning algorithm and the effectiveness of the
modified learning strategies.

One thing to be mentioned is that the numbers of the data used in this paper are not very big
(about the ten thousand scale). Even though the hybrid MDBN model is not learned by big data in
both experiments, it still shows us excellent performances. This is also consistent with some other
application results where the DBNs were trained without a mass of data. For example, in [49,50],
the DBNs were applied to the time series prediction and the wind power prediction, which also do not
have a large quantity of data. In both applications, the experimental results demonstrated that the
DBN approach performs best compared with the traditional techniques. All these applications verified
the learning ability of the DBN models for not very large data applications.
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Figure 14. Scatter plots of the actual and predicted values of the energy consumptions in the retail
building (a) and the office building (b).

5. Conclusions

In this paper, a hybrid model is presented to further improve the prediction accuracy for building
energy consumption prediction. The proposed model combines the MDBN model with the periodicity
knowledge to obtain the final prediction results. The theoretical contributions of this study consist
of two aspects: (1) the periodicity knowledge was extracted and encoded into the prediction model.
In addition, the prediction accuracy can be greatly improved through utilizing this kind of prior
knowledge; (2) a novel learning algorithm that combines the contrastive divergence algorithm and
the least squares method was proposed to optimize the parameters of the MDBN. This is the first
time that the DBN is applied to the building energy consumption prediction. On the other hand,
this study applied the proposed approach to the energy consumption prediction of two kinds of
buildings. Experimental and comparison results verified the effectiveness and superiorities of the
proposed hybrid model.

As is well known, many kinds of time series data, e.g., the traffic flow time series and the electricity
consumption time series, have the periodicity property. The hybrid model can be expected to yield
better performance in the predictions of such time series. In the future, we will extend our approach
to these applications. On the other aspect, our study only focuses on the data science that tries to
utilize the data to realize the energy-consumption prediction without considering any scientific or
practical information of energy related principles. Theoretically, the energy related principles are very
helpful to improve the prediction performance. We are now exploring the strategies to construct the
novel hybrid prediction models through combining the energy related principles and observed data to
further improve the prediction accuracy.
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Abstract: One of the most important research topics in smart grid technology is load forecasting,
because accuracy of load forecasting highly influences reliability of the smart grid systems. In the
past, load forecasting was obtained by traditional analysis techniques such as time series analysis
and linear regression. Since the load forecast focuses on aggregated electricity consumption patterns,
researchers have recently integrated deep learning approaches with machine learning techniques.
In this study, an accurate deep neural network algorithm for short-term load forecasting (STLF) is
introduced. The forecasting performance of proposed algorithm is compared with performances of
five artificial intelligence algorithms that are commonly used in load forecasting. The Mean Absolute
Percentage Error (MAPE) and Cumulative Variation of Root Mean Square Error (CV-RMSE) are used
as accuracy evaluation indexes. The experiment results show that MAPE and CV-RMSE of proposed
algorithm are 9.77% and 11.66%, respectively, displaying very high forecasting accuracy.

Keywords: artificial intelligence; convolutional neural network; deep neural networks; short-term
load forecasting

1. Introduction

Nowadays, there is a persistent need to accelerate development of low-carbon energy technologies
in order to address the global challenges of energy security, climate change, and economic growth.
The smart grids [1] are particularly important as they enable several other low-carbon energy
technologies [2], including electric vehicles, variable renewable energy sources, and demand
response. Due to the growing global challenges of climate, energy security, and economic growth,
acceleration of low-carbon energy technology development is becoming an increasingly urgent issue [3].
Among various green technologies to be developed, smart grids are particularly important as they are
key to the integration of various other low-carbon energy technologies, such as power charging for
electric vehicles, on-grid connection of renewable energy sources, and demand response.

The forecast of electricity load is important for power system scheduling adopted by energy
providers [4]. Namely, inefficient storage and discharge of electricity could incur unnecessary
costs, while even a small improvement in electricity load forecasting could reduce production costs
and increase trading advantages [4], particularly during the peak electricity consumption periods.
Therefore, it is important for electricity providers to model and forecast electricity load as accurately as
possible, in both short-term [5–12] (one day to one month ahead) and medium-term [13] (one month
to five years ahead) periods.

With the development of big data and artificial intelligence (AI) technology, new machine learning
methods have been applied to the power industry, where large electricity data need to be carefully
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managed. According to the Mckinsey Global Institute [14], the AI could be applied in the electricity
industry for power demand and supply prediction, because a power grid load forecast affects many
stakeholders. Based on the short-term forecast (1–2 days ahead), power generation systems can
determine which power sources to access in the next 24 h, and transmission grids can timely assign
appropriate resources to clients based on current transmission requirements. Moreover, using an
appropriate demand and supply forecast, electricity retailers can calculate energy prices based on
estimated demand more efficiently.

The powerful data collection and analysis technologies are becoming more available on the
market, so power companies are beginning to explore a feasibility of obtaining more accurate results
using AI in short-term load forecasts. For instance, in the United Kingdom (UK), the National Grid
is currently working with the DeepMind [15,16], a Google-owned AI team, which is used to predict
the power supply and demand peaks in the UK based on the information from smart meters and by
incorporating weather-related variables. This cooperation tends to maximize the use of intermittent
renewable energy and reduce the UK national energy usage by 10%. Therefore, it is expected that
electricity demand and supply could be predicted and managed in real time through deep learning
technologies and machines, optimizing load dispatch, and reducing operation costs.

The load forecasting can be categorized by the length of forecast interval. Although there is no
official categorization in the power industry, there are four load forecasting types [17]: very short term
load forecasting (VSTLF), short term load forecasting (STLF), medium term load forecasting (MTLF),
and long term load forecasting (LTLF). The VSTLF typically predicts load for a period less than 24 h,
STLF predicts load for a period greater than 24 h up to one week, MTLF forecasts load for a period
from one week up to one year, and LTLF forecasts load performance for a period longer than one year.
The load forecasting type is chosen based on application requirements. Namely, VSTLF and STLF are
applied to everyday power system operation and spot price calculation, so the accuracy requirement
is much higher than for a long term prediction. The MTLF and LTLF are used for prediction of power
usage over a long period of time, and they are often referenced in long-term contracts when determining
system capacity, costs of operation and system maintenance, and future grid expansion plans. Thus,
if the smart grids are integrated with a high percentage of intermittent renewable energy, load forecasting
will be more intense than that of traditional power generation sources due to the grid stability.

In addition, the load forecasting can be classified by calculation method into statistical methods
and computational intelligence (CI) methods. With recent developments in computational science
and smart metering, the traditional load forecasting methods have been gradually replaced by AI
technology. The smart meters for residential buildings have become available on the market around
2010, and since then, various studies on STLF for residential communities have been published [18,19].
When compared with the traditional statistical forecasting methods, the ability to analyze large amounts
of data in a very short time frame using AI technology has displayed obvious advantages [10].

Some of frequently used load forecast methods include linear regression [5,6,20], autoregressive
methods [7,21], and artificial neural networks [9,22,23]. Furthermore, clustering methods were also
proposed [24]. In [20,25] similar time sequences were matched while in [24] the focus was on customer
classification. A novel approach based on the support vector machine was proposed in [26,27].
The other forecasting methods, such as exponential smoothing and Kalman filters, were also applied
in few studies [28]. A careful literature review of the latest STLF method can be found in [8]. In [13],
it was shown that accuracy of STLF is influenced by many factors, such as temperature, humidity,
wind speed, etc. In many studies, the artificial neural network (ANN) forecasting methods [9–11,29]
have been proven to be more accurate than traditional statistical methods, and accuracy of different
ANN methods has been reviewed by many researchers [1,30]. In [31], a multi-model partitioning
algorithm (MMPA) for short-term electricity load forecasting was proposed. According to the obtained
experimental results, the MMPA method is better than autoregressive integrated moving average
(ARIMA) method. In [17], authors used the ANN-based method reinforced by wavelet denoising
algorithm. The wavelet method was used to factorize electricity load data into signals with different

418



Energies 2018, 11, 213

frequencies. Therefore, the wavelet denosing algorithm provides good electricity load data for neural
network training and improves load forecasting accuracy.

In this study, a new load forecasting model based on a deep learning algorithm is presented.
The forecasting accuracy of proposed model is within the requested range, and model has advantages of
simplicity and high forecasting performance. The major contributions of this paper are: (1) introduction
of a precise deep neural network model for energy load forecasting; (2) comparison of performances of
several forecasting methods; and, (3) creation of a novel research direction in time sequence forecasting
based on convolutional neural networks.

2. Methodology of Artificial Neural Networks

Artificial neural networks (ANNs) are computing systems inspired by the biological neural
networks. The general structure of ANNs contains neurons, weights, and bias. Based on their powerful
molding ability, ANNs are still very popular in the machine learning field. However, there are many
ANN structures used in the machine learning problems, but the Multilayer Perceptron (MLP) [32] is
the most commonly used ANN type. The MLP is a fully connected structure artificial neural network.
The structure of MLP is shown in Figure 1. In general, the MLP consists of one input layer, one or more
hidden layers, and one output layer. However, the MLP network presented in Figure 1 is the most
common MLP structure, which has only one hidden layer. In the MLP, all the neurons of the previous
layer are fully connected to the neurons of the next layer. In Figure 1, x1, x2, x3, . . . , x6 are the neurons
of the input layer, h1, h2, h3, h4 are the neurons of the hidden layer, and y1, y2, y3, y4 are the neurons of
the output layer. In the case of energy load forecasting, the input is the past energy load, and the output
is the future energy load. Although, the MLP structure is very simple, it provides good results in many
applications. The most commonly used algorithm for MLP training is the backpropagation algorithm.

Figure 1. The Multilayer Perceptron (MLP) structure.

Although MLPs are very good in modelling and patter recognition, the convolutional neural
networks (CNNs) provide better accuracy in highly non-linear problems, such as energy load
forecasting. The CNN uses the concept of weight sharing. The one-dimensional convolution and
pooling layer are presented in Figure 2. The lines in the same color denote the same sharing weight,
and sets of the sharing weights can be treated as kernels. After the convolution process, the inputs x1,
x2, x3, . . . , x6 are transformed to the feature maps c1, c2, c3, c4. The next step in Figure 2 is pooling,
wherein the feature map of convolution layer is sampled and its dimension is reduced. For instance, in
Figure 2 dimension of the feature map is 4, and after pooling process that dimension is reduced to 2.
The process of pooling is an important procedure to extract the important convolution features.
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Figure 2. The one-dimensional (1D) convolution and pooling layer.

The other popular solution of the forecasting problem is Long Short Term Memory network
(LSTM) [33]. The LSTM is a recurrent neural network, which has been used to solve many time
sequence problems. The structure of LSTM is shown in Figure 3, and its operation is illustrated by the
following equations:

ft = σ(Wf · [ht−1, xt] + b f ) (1)

it = σ(Wi · [ht−1, xt] + bi) (2)

C̃t = tanh(WC · [ht−1, xt] + bC) (3)

Ct = ft × Ct−1 + it × C̃t (4)

ot = σ(Wo · [ht−1, xt] + bo) (5)

ht = ot × tanh(Ct) (6)

where xt is the network input, and ht is the output of hidden layer, σ denotes the sigmoidal function,
Ct is the cell state, and C̃t denotes the candidate value of the state. Besides, there are three gates in
LSTM: it is the input gate, ot is the output gate, and ft is the forget gate. The LSTM is designed for
solving the long-term dependency problem. In general, the LSTM provides good forecasting results.

tC

Figure 3. The Long Short Term Memory network (LSTM) structure.

3. The Proposed Deep Neural Network

The structure of the proposed deep neural network DeepEnergy is shown in Figure 4. Unlike the
general forecasting method based on the LSTM, the DeepEnergy uses the CNN structure. The input
layer denotes the information on past load, and the output values represent the future energy load.
There are two main processes in DeepEnergy, feature extraction, and forecasting. The feature extraction
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in DeepEnergy is performed by three convolution layers (Conv1, Conv2, and Conv3) and three pooling
layers (Pooling1, Pooling2, and Pooling3). The Conv1–Conv3 are one-dimensional (1D) convolutions,
and the feature maps are all activated by the Rectified Linear Unit (ReLU) function. Besides, the kernel
sizes of Conv1, Conv2, and Conv3 are 9, 5, 5, respectively, and the depths of the feature maps are 16, 32,
64, respectively. The pooling method of Pooling1 to Pooling3 is the max pooling, and the pooling size
is equal to 2. Therefore, after the pooling process, the dimension of the feature map will be divided by
2 to extract the important features of the deeper layers.

In the forecasting, the first step is to flat the Pooling3 layer into one dimension and construct
a fully connected structure between Flatten layer and Output layer. In order to fit the values previously
normalized in the range [0, 1], the sigmoidal function is chosen as an activation function of the output
layer. Furthermore, in order to overcome the overfitting problem, the dropout technology [34] is
adopted in the fully connected layer. Namely, the dropout is an efficient way to prevent overfitting in
artificial neural network. During the training process, neurons are randomly “dead”. As shown in
Figure 4, the output values of chosen neurons (the gray circles) are equal to zero in certain training
iteration. The chosen neurons are randomly changed during training process.

Furthermore, the flowchart of proposed DeepEnergy is represented in Figure 5. Firstly, the raw
energy load data are loaded into the memory. Then, the data preprocessing is executed and data are
normalized in the range [0, 1] in order to fit the characteristic of the machine learning model. For the
purpose of validation of DeepEnergy generalization performance, the data are split into training data
and testing data. The training data are used for training of proposed model. After the training process,
the proposed DeepEnergy network is created and initialized. Before the training, the training data
are randomly shuffled to force the proposed model to learn complicated relationships between input
and output data. The training data are split into several batches. According to the order of shuffled
data, the model is trained on all of the batches. During the training process, if the desired Mean Square
Error (MSE) is not reached in the current epoch, the training will continue until the maximal number
of epochs or desired MSE is reached. On the contrary, if the maximal number of epochs is reached,
then the training process will stop regardless the MSE value. Final performances are evaluated to
demonstrate feasibility and practicability of the proposed method.

Input
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

... ...

Conv1 Pooling1 Conv2 Pooling2 Conv3 Pooling3 Flatten Output

Feature extraction Forecasting
 

Figure 4. The DeepEnergy structure.
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Network
converged?

Load the raw 
energy load data

Start

Data 
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Split the training 
and testing data

Shuffle the order 
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neural network
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on batchs

Performance 
evaluation on 
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End

Yes

No

Figure 5. The DeepEnergy flowchart.

4. Experimental Results

In the experiment, the USA District public consumption dataset and electric load dataset from
2016 provided by the Electric Reliability Council of Texas were used. Since then, the support vector
machine (SVM) [35] is a popular machine learning technology, in experiment; the radial basis function
(RBF) kernels of SVM were chosen to demonstrate the SVM performance. Besides, the random
forest (RF) [36], decision tree (DT) [37], MLP, LSTM, and proposed DeepEnergy network were also
implemented and tested. The results of load forecasting by all of the methods are shown in Figures 6–11.
In the experiment, the training data were two-month data, and test data were one-month data. In order
to evaluate the performances of all listed methods, the dataset was divided into 10 partitions. In the
first partition, training data consisted of energy load data collected in January and February 2016, and
test data consisted of data collected in March 2016. In the second partition, training data were data
collected in February and March 2016, and test data were data collected in April 2016. The following
partitions can be deduced by the same analogy.

In Figures 6–11, red curves denote the forecasting results of the corresponding models, and
blue curves represent the ground truth. The vertical axes represent the energy load (MWh), and the
horizontal axes denote the time (hour). The energy load from the past (24 × 7) h was used as an
input of the forecasting model, and predicted energy load in the next (24 × 3) h was an output of the
forecasting model. After the models received the past (24 × 7) h data, they forecasted the next (24 × 3)
h energy load, red curves in Figures 6–11. Besides, the correct information is illustrated by blue curves.
The differences between red and blue curves denote the performances of the corresponding models.
For the sake of comparison fairness, testing data were not used during the training process of models.
According to the results presented in Figures 6–11, the proposed DeepEnergy network has the best
prediction performance among all of the models.
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(a) (b) 

 
(c) (d) 

 
(e) (f) 

Figure 6. The forecasting results of support vector machine (SVM): (a) Partial results A; (b) Partial
results B; (c) Partial results C; (d) Partial results D; (e) Partial results E; (f) Partial results F.

 
(a) (b) 

 
(c) (d) 

 
(e) (f) 

Figure 7. The forecasting results of random forest (RF): (a) Partial results A; (b) Partial results B;
(c) Partial results C; (d) Partial results D; (e) Partial results E; (f) Partial results F.
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(a) (b)

(c) (d)

(e) (f)

Figure 8. The forecasting results of decision tree (DT): (a) Partial results A; (b) Partial results B;
(c) Partial results C; (d) Partial results D; (e) Partial results E; (f) Partial results F.

 
(a) (b)

 
(c) (d)

 
(e) (f)

Figure 9. The forecasting results of Multilayer Perceptron (MLP): (a) Partial results A; (b) Partial results B;
(c) Partial results C; (d) Partial results D; (e) Partial results E; (f) Partial results F.
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(c) (d)

 
(e) (f)

Figure 10. The forecasting results of LSTM: (a) Partial results A; (b) Partial results B; (c) Partial results C;
(d) Partial results D; (e) Partial results E; (f) Partial results F.

 
(a) (b)

 
(c) (d)

 
(e) (f)

Figure 11. The forecasting results of proposed DeepEnergy: (a) Partial results A; (b) Partial results B;
(c) Partial results C; (d) Partial results D; (e) Partial results E; (f) Partial results F.
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In order to evaluate the performance of forecasting models more accurately, the Mean Absolute
Percentage Error (MAPE) and Cumulative Variation of Root Mean Square Error (CV-RMSE) were
employed. The MAPE and CV-RMSE are defined by Equations (7) and (8), respectively, where yn

denotes the measured value, ŷn is the estimated value, and N represents the sample size.

MAPE =
1
N

N

∑
n=1

∣∣∣∣yn − ŷn

yn

∣∣∣∣ (7)

CV − RMSE =

√
1
N

N
∑

n=1

(
yn−ŷn

yn

)2

1
N

N
∑

n=1
yn

(8)

The detailed experimental results are presented numerically in Tables 1 and 2. As shown in
Tables 1 and 2, the MAPE and CV-RMSE of the DeepEnergy model are the smallest and the goodness
of error is the best among all models, namely, average MAPE and CV-RMSE are 9.77% and 11.65%,
respectively. The MAPE of MLP model is the largest among all of the models; an average error is
about 15.47%. On the other hand, the CV-RMSE of SVM model is the largest among all models; an
average error is about 17.47%. According to the average MAPE and CV-RMSE values, the electric load
forecasting accuracy of tested models in descending order is as follows: DeepEnergy, RF, LSTM, DT,
SVM, and MLP.

Table 1. The experimental results in terms of Mean Absolute Percentage Error (MAPE) given
in percentages.

Test SVM RF DT MLP LSTM DeepEnergy

#1 7.327408 7.639133 8.46043 9.164315 10.40804813 7.226127
#2 7.550818 8.196129 10.23476 11.14954 9.970662683 8.244051
#3 13.07929 10.11102 12.14039 19.99848 14.85568499 11.00656
#4 16.15765 17.27957 19.86511 22.45493 12.83487893 12.17574
#5 5.183255 6.570061 8.50582 15.01856 5.479091542 5.41808
#6 10.33686 9.944028 11.11948 10.94331 11.7681534 9.070998
#7 8.934657 6.698508 8.634132 7.722149 7.583802292 9.275215
#8 18.5432 16.09926 17.17215 16.93843 15.6574951 13.2776
#9 49.97551 17.9049 21.29354 29.06767 16.31443679 11.18214

#10 11.20804 8.221766 10.68665 12.20551 8.390061493 10.80571
Average 14.82967 10.86644 12.81125 15.46629 11.32623153 9.768222

Table 2. The experimental results in terms of Cumulative Variation of Root Mean Square Error
(CV-RMSE) given in percentages.

Test SVM RF DT MLP LSTM DeepEnergy

#1 9.058992 9.423908 10.57686 10.65546 12.16246177 8.948922
#2 10.14701 10.63412 12.99834 13.91199 12.19377007 10.46165
#3 17.02552 12.42314 14.58249 23.2753 16.9291218 13.30116
#4 21.22162 21.1038 24.48298 23.63544 14.13596516 14.63439
#5 6.690527 7.942747 10.10017 15.44461 6.334195125 6.653999
#6 11.88856 11.6989 13.39033 12.20149 12.96057349 10.74021
#7 10.77881 7.871596 10.35254 8.716806 8.681353107 10.85454
#8 19.49707 17.09079 18.95726 17.73124 16.55737557 14.51027
#9 54.58171 19.91185 24.84425 29.37466 17.66342548 13.01906

#10 13.80167 10.15117 13.06351 13.39278 10.20235927 13.47003
Average 17.46915 12.8252 15.33487 16.83398 12.78206008 11.65942
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It is obvious that red curve in Figure 11, which denotes the DeepEnergy algorithm, is better than
other curves in Figures 6–10, which further verifies that the proposed DeepEnergy algorithm has the
best prediction performance. Therefore, it is proven that the DeepEnergy STLF algorithm proposed
in the paper is practical and effective. Although the LSTM has good performance in time sequence
problems, in this study, the reduction of training loss is still not fast enough to handle this forecasting
problem because the size of input and output data is too large for the traditional LSTM neural network.
Therefore, the traditional LSTM is not suitable for this kind of prediction. Finally, the experimental
results show that proposed DeepEnergy network provides the best results in energy load forecasting.

5. Discussion

The traditional machine learning methods, such as SVM, random forest, and decision tree, are
widely used in many applications. In this study, these methods also provide acceptable results.
In aspect of SVM, the supporting vectors are mapped into a higher dimensional space by the kernel
function. Therefore, the selection of kernel function is very important. In order to achieve the goal
of nonlinear energy load forecasting, the RBF is chosen as a SVM kernel. When compared with the
SVM, the learning concept of decision tree is much simpler. Namely, the decision tree is a flowchart
structure easy to understand and interpret. However, only one decision tree does not have the ability
to solve complicated problems. Therefore, the random forest, which represents the combination of
numerous decision trees, provides the model ensemble solution. In this paper, the experimental
results of random forest are better than those of decision tree and SVM, which proves that the model
ensemble solution is effective in the energy load forecasting. In aspect of the neural networks, the
MLP is the simplest ANN structure. Although the MLP can model the nonlinear energy forecasting
task, its performance in this experiment is not outstanding. On the other hand, the LSTM considers
data relationships in time steps during the training. According to the result, the LSTM can deal with
the time sequence problems, and the forecasting trend is marginally correct. However, the proposed
CNN structure, named the DeepEnergy, has the best results in the experiment. The experiments
demonstrate that the most important feature can be extracted by the designed 1D convolution and
pooling layers. This verification also proves the CNN structure is effective in the forecasting, and the
proposed DeepEnergy gives the outstanding results. This paper not only provides the comparison of
the traditional machine learning and deep learning methods, but also gives a new research direction in
the energy load forecasting.

6. Conclusions

This paper proposes a powerful deep convolutional neural network model (DeepEnergy) for energy
load forecasting. The proposed network is validated by experiment with the load data from the past
seven days. In the experiment, the data from coast area of the USA were used and historical electricity
demand from consumers was considered. According to the experimental results, the DeepEnergy
can precisely predict energy load in the next three days. In addition, the proposed algorithm was
compared with five AI algorithms that were commonly used in load forecasting. The comparison
showed that performance of DeepEnergy was the best among all tested algorithms, namely the
DeepEnergy had the lowest values of both MAPE and CV-RMSE. According to all of the obtained
results, the proposed method can reduce monitoring expenses, initial cost of hardware components,
and long-term maintenance costs in the future smart grids. Simultaneously, the results verify that
proposed DeepEnergy STLF method has strong generalization ability and robustness, thus it can
achieve very good forecasting performance.
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